salesforce

Mobile SDK Development Guide
Salesforce Mobile SDK 5.1 (Android Native,
iOS Native, and Hybrid)

salesforce

Y @salesforcedocs
Last updated: April 27, 2017

https://twitter.com/salesforcedocs

© Copyright 2000-2017 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

VISION .« oo e 4
Sending Feedback 4
Chapter 2: Introduction to Salesforce Mobile SDK Development. 5
About Native, HTML5, and Hybrid Development e 6
Enough Talk; IM Readyo oo 8
Chapter 3: What's New in Mobile SDK 5.1o i 9
What Was New in Recent Releases et n
Chapter 4: Getting Started With Mobile SDK 5.1 for Android andiOS 13
Developer Edition or Sandbox Environment? 14
Development Prerequisites for Android and iOS 15
Sign Up for FOrce.Com . . . o 16
Creatinga Connected APP oottt e 16

Create a Connected APP . . .o oottt 16
Installing Mobile SDK for Android and iOS 19

Mobile SDK npmM PACKAgES o oot 19

Mobile SDK GitHub Repositories 22
Mobile SDK SaMPIE APPS .« . . o oo e e e e e e e e e e 23

Installing the SamMpPle APPS 23
Chapter 5: Updating Mobile SDK Apps (5.0 and Later) 25
Using Maven to Update Mobile SDK Libraries in Android Apps - - . <« oo vviiiiii e a 27
Chapter 6: Welcome to Mobile SDK Labs! 28
React Native for Salesforce Mobile SDKo 29

Mobile SDK Native Modules for React Native Appso 30

Mobile SDK Sample App Using React Native 34

Defer LOgin . . . 36

Upload Binary Contento o 37
Mobile Ul Elements with Polymer 38

force_selector_list 38

force-selector-relatedlist L 39

force-sobject 39

force-sobject-collection 39

Contents

force-sobject-layout 39
force-sobject-relatedlists 40
force-sobject-Store 40
fOrCE-Ui-aPD .« o o 40
force-ui-detail 40
force-uUi-list . . . oo 1
force-ui-relatedlist 4
Chapter 7: Native iOS Development it e e 42
iI0S Native QUICk Start o 43
Nafive IOS RequIrements o e 43
Creating an iOS Project with forceios e 43
Run the Xcode Project Template App oo oot 46
Using a Custom Templateto Create APpS .« .« o oo v i e e e 46
Use CocoaPods with Mobile SDK 49
Refreshing Mobile SDKPOdS e 52
Developing a Native i0S APP - -+« « v oo et e 52
About Login and Passcodes 52
About Memory Managementt 53
Overview of Application Flow 53
SalesforceSDKManager and SalesforceSDKManagerWithSmartStore Classes 54
AppDelegate Classt 59
About View Confrollers e 62
RootViewConfroller Class 63
About Salesforce RESTAPISo 64
Handling Authentication Errors 78
Using iOS App Extensions with Mobile SDK 79
Tutorial: Creating a Native iOSWarehouse App oo oo vt 86
Create NGHIVEIOS APP - - - o oot e 87
Customize the ListSCreeno oo 92
Createthe Detfail Screen oo oo 93
i0S Sample Applications 104
Chapter 8: Native Android Development 106
Android Natfive Quick Start00 e 107
Native Android Requirements oot 107
Creating an Android Project with forcedroid 108
Using a Custom Templateto Create APPS o o oot m
Setting Up Sample Projects in Android Studio N4
Android Project Files N4
Developing a Native Android APP n5
Android Application Structure n5
Native APl Packages oo n7z

Overview of Native ClaSSES o ot vt e e e e e e e e e n7

Contents

UsSiNg PasSscodes e 126
Resource Handlingot 127
UsSing REST APIS .« . . o e 129
Unauthenticated REST ReqUESES oo oottt i 131
Deferring Login in Native Android AppsS oo oottt 132
Android Template App: DEEP DIVE oo oo oo e e e 134
Tutorial: Creating a Native Android Warehouse Application 137
PrerequUISITES . . . o oo e 137
Create aNative Android AP . .« .« oottt 139
Customize the List Screen 141
Create the Detail Screen 144
Android Sample Applications 152
Chapter 9: HTML5 and Hybrid Development 153
Getting Started e 154
Using HTML5 and JavaScripto e e et 154
HTML5 Development Requirements 154
Multi-Device SHOtegY 154
HTML5 Development TOOISt e 158
Delivering HTML5 Content With Visualforce i 158
Accessing Salesforce Data: Controllers vs. APIS 158
Hybrid Apps Quick Start 161
Creating Hybrid APPS . . o o oo e e 162
About Hybrid Development 163
Building Hybrid Apps With Cordova 163
Developing Hybrid Remote AppS o oo oot 166
Hybrid Sample AppSo oot 168
Running the ContactExplorer Hybrid Sample 170
Debugging Hybrid Apps On a Mobile Deviceot 182
Debugging a Hybrid App On an Android Deviceo 182
Debugging a Hybrid App Running OnaniOSDeviceot 183
Controlling the Status Bar in i0OS 7 Hybrid Apps o oo oo 183
JavaScript Files for Hybrid Apps . - . . .o oo 184
Versioning and JavaScript Library Compatibility 185
Example: Serving the Appropriate Javascript Libraries 187
Managing Sessions in Hybrid Apps oo e 188
Defer LOgin .« . oo 190
Remove SmartStore and SmartSync From an Android Hybrid Appo 191
Chapter 10: Offline Management i 192
Using SmartStore to Securely Store Offine Data i 193
ADOUE SMAMSIOre 194
Enabling SmartStore in Hybrid and Native Apps o L 197

Adding SmartStore to Existing Android AppsS 197

Contents

Creating and Accessing User-based Stores 198
Using Global SmartStoreo 199
Registering A SoUp . - . . .o oo 201
Using Arrays in Index Pathso 206
Populahing @ SOUP .« . o oottt 208
Retrieving Data from aSoUpo oottt 2n
SMart SQLQUENES e 218
Using Full-Text Search QUErieso i 220
Working with Query Results 224
Inserting, Updating, and UpsertingDatao oo 225
Using External Storage for Large Soup Elements 229
Removing Soup Elements 231
Managing SOUPSottt 233
Managing Stores e 239
Testing with the SmartStore Inspector 240
Using the Mock SmartStore 24
Using SmartSync to Access Salesforce Objects i 242
Using SmarSync in Native APPS -« -« o oo oot 242
Using SmartSync in Hybrid and React Native Appso oo 268
Chapter 11: Filesand Networking i e 318
Architecture 319
Downloading Files and Managing Sharing o i 319
Uploading Files 319
Encryption and Caching 320
Using Files in ANdroid APPS .« .« « . v 320
Managing the Request QUEUE 320
Using Files in iIOS NGtIVE APPS .« « . o oottt e e e e e e e e e e 321
Managing Requests e 322
Using Files in Hybrid AppS . . . o . o 323
Chapter 12: Push Nofifications and Mobile SDK 324
About Push Nofifications e 325
Using Push Notifications in Hybrid Apps oo e e e 325
Code Modifications (Hybrid) 325
Using Push Notifications in Android 326
Configure a Connected App For GCM (Android)ot 327
Code Modifications (Android) 327
Using Push Nofifications ini0S o 328
Configure a Connected App for APNS (iOS) 328
Code Modifications (IOS) e 329
Chapter 13: Authentication, Security, and Identity in Mobile Apps 332

OAUth Terminologyo e 333

Contents

OAuth 2.0 Authentication Flowo 333
OAuth 2.0 User-Agent Flow 334
OAuth 2.0 Refresh Token Flow 335
Scope Parameter Values 335
Using Identity URLS e 337
Setting Custom Login Servers in ANdroid APPS .« « . oo 342
Setting Custom Login Servers in iOS APPS « .« . o oo ittt 343
Hiding the Settings Icon iNIOS APPS - .+« o oo it 344
Revoking OQAUth TOKENS oo e e 345
Refresh Token Revocation in Android Native Appso oo 346

CoNNECIEA APPS - - o o e e e e e e e e e 346
AbOUT PIN SeCUNiY 346

Portal Authentication Using OAuth 2.0 and Force.comSites 347

Customizing the Salesforce Login Page 347

Using MDM with Salesforce Mobile SDK APPS . . . o« oo e e 348
Sample Property List Configuration 351

Chapter 14: Using Communities With Mobile SDK Apps 352

Communities and Mobile SDK APPS .« .« o v v oo e e e e e e e e e e 353

SetUp an API-Enabled Profile oo o 353

Set Up a Permission Set e 353

Grant APLACCesSto USers o 355

Configure the Login ENdpointo e 355

Brand Your COMMUNItY o oot e e e 356

Customize Login, Self-Registration, and Password Management for Your Community 357

Using External Authentication With Communities 357
External Authenfication Providerso 358
Using the Community URLParameter 359
Usethe Scope Parameter 360
Configure a Facebook Authentication Provider 361
Configure a Salesforce Authentication Provider 363
Configure an OpenID Connect Authentication Provider 366

Example: Configure a Community For Mobile SDK App Access oo oo v iiioe .. 368
Add Permissionsto aProfile 368
Create a COMMUNITY . . .o oot e e e e 369
Add the API User Profile To Your Communityo 369
Create aNew Contactand User 369
Test Your New Community Logino 370

Example: Configure a Community For Facebook Authentication 3N
Create @ FAcebook App o 37
Define a Salesforce Auth. Provider 372
Configure Your FacebooK AP 373
Customize the Auth. Provider Apex Classot 373

Configure Your Salesforce Community 373

Contents

Chapter 15: Multi-User Supportin Mobile SDK 375
About MUlti-User SUPPOrt 376
Implementing Multi-User SUpport o 376
Android Native APIS 377
IOSNGHVE APIS . . . o 382
Hybrid APIs . . . 386
Chapter 16: Migrating from PreviousReleases i, 388
Migrate Android Apps from 5.0 10 5.1o 389
Migrate i0S Apps from 5.010 5.1o 391
Migrate Hybrid Apps from 5.0 10 5.1o 394
Migrating from Earlier Releases 394
Migrate Android Apps from 4.310 5.0 394
Migrate i0OS Apps from 4.3105.0 394
Migrate Hybrid Apps from 4310 5.0 395
Migrate Android Apps from 4.210 4.3 396
Migrate i0OS Apps from 4.210 4.3o 396
Migrate Hybrid Apps from 4210 4.3 396
Migrate Android Apps from 4.1104.2 397
Migrate i0OS Apps from 4110 4.2 e 397
Migrate Hybrid Apps from 4110 4.2 e 397
Migrate Android Apps from 4.01t0 4.1 397
Migrate iOS Apps from 4.010 4.1 e 397
Migrate Hybrid Apps from 4.0t0 4.1, 398
Chapter 17: Instrumentation and Event Collection 399
Chapter 18: Reference i e e 401
REST API RESOUICES . . . o ottt e e e e e e e e e e 402
I0S Archifecture o e 402
Native REST API Classes for i0S oot 402
Android Architecture 404
Android Packages and Classeso 404
ANroid RESOUICES v 406
Files APIREference 409
FileRequests Methods (Android) o 409
SFRestAP! (Files) Category—Request Methods (iOS) o ... 415
Files Methods For Hybrid Apps oo 421
Forceios Parameters o e 426
Forcedroid Parameterso 427

CHAPTER 1

In this chapter ...

Introduction to
Mobile Development
Customize
Salesforcel, or
Create a Custom
App?

About This Guide
Sending Feedback

Preface

In less than a decade, mobile devices have profoundly changed our personal and professional lives. From
impromptu videos to mobile geolocation to online shopping, people everywhere use personal mobile
devices to create and consume content. Corporate employees, too, use smart devices to connect with
customers, stay in touch with coworkers, and engage the public on social networks.

For enterprise IT departments, the explosion of mobile interaction requires a quick response in software
services. Salesforce provides the Salesforce App Cloud to address this need. This cloud supports
new-generation mobile operating systems on various form factors—phone, tablet, wearable—with
reliability, availability, and security. Its technologies let you build custom apps, connect to data from any
system, and manage your enterprise from anywhere.

Preface Introduction to Mobile Development

Introduction to Mobile Development

The Salesforce App Cloud offers two ways to build and deploy enterprise-ready mobile applications.

e Salesforcel Application, available on Apple AppStore and Google Play Store, delivers the fastest way for Force.com administrators
and developers to build and deliver apps for employees. It offers simple point-and-click tools for administrators and the Lightning
web development platform for advanced developers. This trail doesn’t address Salesforcel application development.

e Salesforce Mobile SDK gives developers the tools to build mobile applications with customized user experiences. Mobile SDK lets
you produce stand-alone custom apps that you distribute through the Apple App Store or Google Play Store. These apps can target
employees, customers, or partners. You can choose native or web technologies to build these apps while enjoying the same grade
of reliability and security found in Salesforce1. This trail teaches you how to get started with Mobile SDK app development.

Mobile SDK harnesses platform technology for a complete mobile development platform. Its modular architecture provides features
and services such as:

Enterprise Identity & Security
Mobile SDK includes a complete implementation of Salesforce Connected App Policy, so that all users can access their data securely
and easily. It supports SAML and advanced authentication flows so that administrators always have full control over data access.

SmartStore Encrypted Database
Mobile databases are useful for building highly responsive apps that also work in any network condition. SmartStore provides an
easy way to store and retrieve data locally while supporting a flexible data model. It also uses AES-256 encryption to ensure that
your data is always protected.

SmartSync Data Synchronization
SmartSync provides a simple API for synchronizing data between your offline database and the Salesforce cloud. With SmartSync,
developers can focus on the Ul and business logic of their application while leaving the complex synchronization logic to Mobile
SDK.

Mobile Services
Mobile SDK supports a wide range of platform mobile services, including push notifications, geolocation, analytics, collaboration
tools, and business logic in the cloud. These services can supercharge your mobile application and also reduce development time.

Salesforce Communities
With Salesforce Communities and Mobile SDK, developers can build mobile applications that target your customers and partners.
These applications benefit from the same enterprise features and reliability as employee apps.

Native and Hybrid
Mobile SDK lets you choose any technology (native, React Native, or Cordova-based hybrid apps) on iOS and Android.

Customize Salesforcel, or Create a Custom App?

When it comes to developing functionality for your Salesforce mobile users, you have options. Although this book deals only with Mobile
SDK development, here are some differences between Salesforce1 apps and custom apps built with Mobile SDK.

For more information on Salesforce1, see developer.salesforce.com/docs.

Customizing Salesforcel

e Has a pre-defined user interface.
e Has full access to Salesforce data.

® You can create an integrated experience with functionality developed in the Salesforce App Cloud.

https://developer.salesforce.com/docs

Preface Customize Salesforcel, or Create a Custom App?

e The Action Bar gives you a way to include your own apps/functionality.
e You can customize Salesforce1 with either point-and-click or programmatic customizations.
e Functionality can be added programmatically through Visualforce pages or Force.com Canvas apps.

e Salesforcel customizations or apps adhere to the Salesforce1 navigation. So, for example, a Visualforce page can be called from the
navigation menu or from the Action Bar.

* You can leverage existing Salesforce development experience, both point-and-click and programmatic.

e Included in all Salesforce editions and supported by Salesforce.

Developing Custom Mobile Apps

Custom apps can be free-standing apps built on Salesforce Mobile SDK, or browser apps using plain HTML5 and JavaScript with Ajax.
With custom apps, you can:

e Define a custom user experience.

e Access Salesforce data using REST APIs in native and hybrid local apps, or with Visualforce in hybrid apps using JavaScript Remoting.
In HTMLS apps, do the same using JQueryMobile and Ajax.

e Brand your user interface for customer-facing exposure.

e (reate standalone mobile apps, either with native APIs using Java for Android or Objective-C for iOS, or through a hybrid container
using JavaScript and HTMLS5 (Mobile SDK only).

e Distribute apps through mobile industry channels, such as the Apple App Store or Google Play (Mobile SDK only).
e (Configure and control complex offline behavior (Mobile SDK only).
e Use push notifications.
e Design a custom security container using your own OAuth module (Mobile SDK only).
e Other important Mobile SDK considerations:
-~ Open-source SDK, downloadable for free through npm installers as well as from GitHub.

- Requires you to develop and compile your apps in an external development environment (Xcode for iOS, Android Studio for
Android).

— Development costs depend on your app and your platform.

Mobile SDK integrates Force.com cloud architecture into Android and i0S apps by providing:

e Implementation of Salesforce Connected App policy.

e Salesforce login and OAuth credentials management, including persistence and refresh capabilities.
e Secure offline storage with SmartStore.

e Syncing between the Salesforce cloud and SmartStore through SmartSync.

e Support for Salesforce Communities.

e Wrappers for Salesforce REST APIs with implicit networking.

e Fast switching between multiple users.

e (Cordova-based containers for hybrid apps.

Preface About This Guide

About This Guide

This guide introduces you to Salesforce Mobile SDK and teaches you how to design, develop, and manage mobile applications for the
cloud. The topics cover a wide range of development techniques for various skill sets, beginning with HTML5 and JavaScript, continuing
through hybrid apps, and culminating in native development.

We've included tutorials for major features. Most of these tutorials take you through the steps of creating a simple master-detail application
that accesses Salesforce through REST APIs. Tutorials include:

e Running the ContactExplorer Hybrid Sample

e Tutorial: Creating a Native Android Warehouse Application
e Tutorial: Creating a Native i0S Warehouse App

e Tutorial: Creating a Hybrid SmartSync Application

Shorter, less formal tutorials are scattered throughout the book.

Intended Audience

This guide is primarily for developers who are already familiar with mobile technology, OAuth2, and REST APIs, and who probably have
some Force.com experience. But if that doesn't exactly describe you, don't worry. We've tried to make this guide usable for a wider
audience. For example, you might be a Salesforce admin who's developing a new mobile app to support your organization, or you might
be a mobile developer who's entirely new to Force.com. If either of those descriptions fit you, then you should be able to follow along
just fine.

Mobile SDK and Trailhead

You can learn most of the content of this guide interactively in Trailhead. In the Mobile SDK Beginner's Trail, you study each development
topic online and then earn points and badges through interactive exercises and quizzes. See trailhead.salesforce.com/trail/mobile_sdk_intro.

@ Notfe: An online version of this book is available at developer.salesforce.com/docs.

Version

This book is current with Salesforce Mobile SDK 5.1.

Sending Feedback

Questions or comments about this book? Suggestions for topics you'd like to see covered in future versions? You can:
e Join the SalesforceMobileSDK community at plus.google.com/communities

e Post your thoughts on the Salesforce developer discussion forums at developer.salesforce.com/forums

e Email us directly at developerforce@salesforce.com

e Use the Feedback button at the bottom of each page in the online documentation
(developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/)

https://trailhead.salesforce.com/trail/mobile_sdk_intro
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/
https://plus.google.com/communities
https://developer.salesforce.com/forums
mailto:developerforce@salesforce.com
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/

CHAPTER 2 Introduction to Salesforce Mobile SDK
Development

In this chapter ... Salesforce Mobile SDK lets you harness the power of Force.com within stand-alone mobile apps.

o About Native Force.com provides a straightforward and productive platform for Salesforce cloud computing. Developers
HTML5. and I,-|ybrid can use Force.com to define Salesforce application components—custom objects and fields, workflow
Develo;)men'r rules, Visualforce pages, Apex classes, and triggers. They can then assemble those components into

< Enough Talk: I'm awesome, browser-based desktop apps.

Ready Unlike a desktop app, a Mobile SDK app accesses Salesforce data through a mobile device's native
operating system rather than through a browser. To ensure a satisfying and productive mobile user
experience, you can configure Mobile SDK apps to move seamlessly between online and offline states.
Before you dive into Mobile SDK, take a look at how mobile development works, and learn about essential
Salesforce developer resources.

Introduction to Salesforce Mobile SDK Development About Native, HTML5, and Hybrid Development

About Native, HTML5, and Hybrid Development

Salesforce Mobile SDK gives you options for how you'll develop your app. The option you choose depends on your development skills,
device and technology requirements, goals, and schedule.

Salesforce Mobile SDK offers three ways to create mobile apps:

e Native apps are specific to a given mobile platform (iOS or Android) and use the development tools and language that the respective
platform supports (for example, Xcode and Objective-C with iOS, Android Studio and Java with Android). Native apps look and
perform best but require the most development effort.

e HTMLS5 apps use standard web technologies—typically HTML5, JavaScript, and CSS—to deliver apps through a mobile web browser.
This “write once, run anywhere” approach to mobile development creates cross-platform mobile applications that work on multiple
devices. While developers can create sophisticated apps with HTML5 and JavaScript alone, some challenges remain, such as session
management, secure offline storage, and access to native device functionality (such as camera, calendar, notifications, and so on).

e Hybrid apps combine the ease of HTML5 web app development with the power of the native platform by wrapping a web app
inside the Salesforce container. This combined approach produces an application that can leverage the device's native capabilities
and be delivered through the app store. You can also create hybrid apps using Visualforce pages delivered through the Salesforce
hybrid container.

Native e Hybrid

Advanced U imersctions ca quirir-ﬁ.- Web developer shills
Fastest performance Access 1o native platform
App store distribution ﬁ a App store distribution
single mulfiple
platform - »>- platforms
HTHL
Web developer skills
Instant updates
Unrestrizted sstribution

partial
capability

Native Apps

Native apps provide the best usability, the best features, and the best overall mobile experience. There are some things you get only
with native apps:

¢ Fast graphics API—The native platform gives you the fastest graphics, which might not be a big deal if you're showing a static
screen with only a few elements, but might be a very big deal if you're using a lot of data and require a fast refresh.

¢ Fluid animation—Related to the fast graphics APl is the ability to have fluid animation. This is especially important in gaming,
highly interactive reporting, or intensely computational algorithms for transforming photos and sounds.

¢ Built-in components—The camera, address book, geolocation, and other features native to the device can be seamlessly integrated
into mobile apps. Another important built-in component is encrypted storage, but more about that later.

Introduction to Salesforce Mobile SDK Development About Native, HTML5, and Hybrid Development

e Ease of use—The native platform is what people are accustomed to. When you add that familiarity to the native features they
expect, your app becomes that much easier to use.

Native apps are usually developed using an integrated development environment (IDE). IDEs provide tools for building, debugging,
project management, version control, and other tools professional developers need. You need these tools because native apps are more
difficult to develop. Likewise, the level of experience required is higher than in other development scenarios. If you're a professional
developer, you don't have to be sold on proven APIs and frameworks, painless special effects through established components, or the
benefits of having all your code in one place.

HTMLS Apps

An HTML5 mobile app is essentially one or more web pages that are designed to work on a small mobile device screen. As such, HTML5
apps are device agnostic and can be opened with any modern mobile browser. Because your content is on the web, it's searchable,
which can be a huge benefit for certain types of apps (shopping, for example).

Getting started with HTML5 is easier than with native or hybrid development. Unfortunately, every mobile device seems to have its own
idea of what constitutes usable screen size and resolution. This diversity imposes an additional burden of testing on different devices
and different operating systems.

Animportant part of the "write once, run anywhere" HTML5 methodology is that distribution and support is much easier than for native
apps. Need to make a bug fix or add features? Done and deployed for all users. For a native app, there are longer development and
testing cycles, after which the consumer typically must log into a store and download a new version to get the latest fix.

If HTML5 apps are easier to develop, easier to support, and can reach the widest range of devices, what are the drawbacks?

* No secure offline storage—HTMLS5 browsers support offline databases and caching, but with no out-of-the-box encryption
support. You get all three features in Mobile SDK native applications.

e Unfriendly security features—Trivial security measures can pose complex implementation challenges in mobile web apps. They
can also be painful for users. For example, a web app with authentication requires users to enter their credentials every time the app
restarts or returns from a background state.

¢ Limited native features—The camera, address book, and other native features are accessible on few, if any, browser platforms.

e Lack of native look and feel—HTML5 can only emulate the native look, and customers won't be able to use familiar compound
gestures.

Hybrid Apps

Hybrid apps are built using HTML5 and JavaScript wrapped inside a thin container that provides access to native platform features. For
the most part, hybrid apps provide the best of both worlds, being almost as easy to develop as HTML5 apps with all the functionality of
native. In addition, hybrid apps can use the SmartSync Data Framework in JavaScript to

e Model, query, search, and edit Salesforce data.
e Securely cache Salesforce data for offline use.
e Synchronize locally cached data with the Salesforce server.

You know that native apps are installed on the device, while HTML5 apps reside on a web server, so you might be wondering whether
hybrid apps store their files on the device or on a server? You can implement a hybrid app locally or remotely.

Locally
You can package HTML and JavaScript code inside the mobile application binary, in a structure similar to a native application. In this
scenario you use REST APIs and Ajax to move data back and forth between the device and the cloud.

Introduction to Salesforce Mobile SDK Development

Remotely

Alternatively, you can implement the full web application from the server (with optional caching for better performance). Your

Enough Talk; I'm Ready

container app retrieves the full application from the server and displays it in a browser window.

Both types of hybrid development are covered here.

Native, HTML5, and Hybrid Summary

The following table shows how the three mobile development scenarios stack up.

Graphics

Performance

Look and feel

Distribution

Camera

Notifications

Contacts, calendar

Offline storage

Geolocation

Swipe

Pinch, spread

Connectivity

Development skills

Native
Native APIs
Fastest
Native
App store
Yes

Yes

Yes

Secure file system

Yes
Yes
Yes
Online, offline

Objective-C, Java

Enough Talk; I'm Ready

HTML5

HTML, Canvas, SVG
Fast

Emulated

Web

Browser dependent
No

No

Not secure; shared SQL,
Key-Value stores

Yes
Yes
Yes
Mostly online

HTML5, CSS, JavaScript

Hybrid

HTML, Canvas, SVG
Fast

Emulated

App store

Yes

Yes

Yes

Secure file system; shared SQL

Yes
Yes
Yes
Online, offline

HTMLS5, CSS, JavaScript

If you'd rather read about the details later, there are Quick Start topics in this guide for each native development scenario.

Hybrid Apps Quick Start
iOS Native Quick Start

Android Native Quick Start

CHAPTER 3 What's New in Mobile SDK 5.1

In this chapter ...

What Was New in
Recent Releases

The 5.7 release brings Mobile SDK support for recent REST APl enhancements. It also includes updates
for SmartSync in native apps. For details on updating your code, see Migrating from Previous Releases.

How to Upgrade Your Apps

To upgrade existing Mobile SDK apps, follow the instructions at Migrating from Previous Releases.

General Updates (All Platforms)

In the Force.com REST API, SOSL search response bodies recently changed. Instead of returning an array
of matching records, SOSL search now returns a dictionary. The array of matching records is in this
dictionary under the key “searchRecords”. Mobile SDK 5.1 has amended all SOSL code in its libraries to
handle the new response format.

@ Important: If your application uses SOSL, be sure to update your code accordingly!

See Force.com REST API Developer Guide.

What's New in Mobile SDK 5.1 for Android

To keep up with recentinnovations in the Force.com REST API, Mobile SDK adds support for the following
features:

e If-Unmodified-Since conditional requests.

e Use of Id" as the external ID field for upserts, coupled with null for the external ID. This pattern is
useful if you're upserting multiple records with different external ID field:s.

® SObjectTree requests.
e Batch requests.

e Composite requests.

All APl changes occur in the RestRequest class. See RestRequest Class.

What's New in Mobile SDK 5.1 for iOS

e Tokeep up with recent innovations in the Force.com REST API, Mobile SDK adds support for the
following features:

- 1ifUnmodifiedSinceDate conditional requests.

-~ Use of "Id" as the external ID field for upserts, coupled with null for the external ID. This pattern
is useful if you're upserting multiple records with different external ID fields.

- SObjectTree requests.

https://developer.salesforce.com/docs/atlas.en-us.206.0.api_rest.meta/api_rest/dome_search.htm?search_text=sosl

What's New in Mobile SDK 5.1

-~ Batchrequests.
- Composite requests.
See Supported Operations for more information.

e Qur native network stack now uses NSURLSession directly via the new SFNetwork class.
These classes replace the CSFNetwork and CSFAction classes.

What's New in Hybrid Apps for Mobile SDK 5.1

We've replaced our custom WKWebViewEngine plug-in with Cordova's WKWebViewEngine
plug-in.

What's New in SmartSync for Mobile SDK 5.1

e Thanks to API refactoring, custom targets can now control SmartSync interaction with SmartStore
databases. See About Sync Targets.

* Youcan now initialize “sync up” targets with separate field lists for create and update operations.
This configuration can sometimes save you from implementing a custom “sync up” target.

- Native apps and native targets: Defining a Custom Sync Up Target.

- Hybrid apps: SmartSync Plugin Methods.

What's New in React Native for Mobile SDK 5.1

e Version Update—Mobile SDK is now built with React Native version 0.43.1.

e SmartSync Update—Handling of field lists for “sync up” operations has changed in Mobile SDK
5.1. See SmartSync Plugin Methods.

10

What's New in Mobile SDK 5.1 What Was New in Recent Releases

What Was New in Recent Releases

Here's an archive of What's New bulletins from recent Mobile SDK releases.

Mobile SDK 5.0

What Was New in Mobile SDK 5.0 for Android

We've added a library named SalesforceAnalytics. Thislibrary collects non-sensitive data that tells us which Mobile SDK
features are being used. The analytics feature is on by default, but you can turn it off if necessary. See Instrumentation and Event
Collection.

The forcedroid utility now supports rich app templates. See Using a Custom Template to Create Apps.
Mobile SDK for Android now requires the following versions of third-party tools.

- Java JDK8

- Gradle 2.14.1

- Target APl version: Android Nougat (API 25)

-~ Android Studio 2.2

- Cordova Android 6.1.0 (hybrid apps)

- Cordova CLI 6.4.0 (hybrid apps)

We've removed dependencies on the guava library.

What Was New in Mobile SDK 5.0 for iOS

The forceios utility now supports rich app templates. See Using a Custom Template to Create Apps.
As a result of refactoring libraries, our CocoaPods pod specs have changed. See Migrate iOS Apps from 4.3 to 5.0 for details.
i0S app extensions are now fully supported. See the SmartSyncExplorer sample app for an example.

Salesforce servers are now fully ATS-compliant. As a result, we have removed ATS exceptions from Mobile SDK apps.

Mobile SDK for iOS now requires the following versions of third-party tools.

i0S 9 (minimum), i0S 10 (fully supported)
Xcode 8

CocoaPods 1.10 (minimum)

Cordova i0S 4.3.0 (hybrid apps)

Cordova CLI 6.4.0 (hybrid apps)

What Was New in Hybrid Apps for Mobile SDK 5.0

Mobile SDK upgrades its Cordova requirements as follows:
- i0S: Cordova4.3.0

-~ Android: Cordova 6.1.0

- Cordova CLI 6.4.0 or later

The forceios and forceios utilities now support rich app templates. See Using a Custom Template to Create Apps.

The forcetk.mobilesdk. js library has been replaced with force. js. This new library handles networking natively
throughthe com.salesforce.plugin.network plug-in. Asa result, you nolonger have to refresh session tokens in your
own code.

n

What's New in Mobile SDK 5.1 What Was New in Recent Releases

@ Nofte: This update results in breaking changes for hybrid apps. See Migrate Hybrid Apps from 4.3 to 5.0 for details.

e Anew JavaScript library, force+promise. js, serves as an alternative to force. js and reimplements force. js using
promises instead of callbacks.

e We've changed the way you run hybrid tests and sample apps in a browser.

@ Note: This update results in breaking changes for hybrid apps. See Migrate Hybrid Apps from 4.3 to 5.0 for details.

See the following SmartStore and SmartSync sections for more JavaScript updates.
What Was New in SmartStore for Mobile SDK 5.0

e We've made it easier for hybrid and React Native apps to use multiple named stores, either global or user-based. Hybrid SmartStore
APIs that previously accepted an optional isGlobalStore firstargument now give you an extra option. Instead of a Boolean
value, you can provide a StoreConfig object that specifies an optional store name and indicates whether the store you're using
is global. See Creating and Accessing User-based Stores.

e AnewCordovaplug-in, com.salesforce.plugin.smartstore.client,reimplements SmartStore APIs using promises
instead of callbacks.

e The parameter list for moveCursorToNextPage () and moveCursorToPreviousPage () JavaScript functions has
changed. See Migrate Hybrid Apps from 4.3 to 5.0.

What Was New in SmartSync for Mobile SDK 5.0
e SmartSync provides a new “refresh” target that is streamlined for easily importing cloud data into cached SmartStore records.
e SmartSync now lets you specify which fields to include in sync down and refresh operations.

e The smartsync.js library has dropped jQuery and implemented native promises. If you use this library on Android 19, see
Migrate Hybrid Apps from 4.3 to 5.0 for an important instruction.

What Was New in React Native for Mobile SDK 5.0

e Version Update—Mobile SDK is now built with React Native version 0.35.

e Many SmartStore and SmartSync APIs receive non-breaking changes to their prototypes. See What Was New in Hybrid Apps for
Mobile SDK 5.0 for more information.

Mobile SDK 4.3

What Was New in SmartStore for Mobile SDK 4.3

e For Android only, SmartStore upgrades SQLCipher to version 3.5.2 (July 2016). For iOS, SmartStore remains on SQLCipher 3.4.0 (April
2016).

e To enhance performance in certain edge cases, SmartStore adds an option for serializing unusually large soup elements in external
storage. See Using External Storage for Large Soup Elements.

What Was New in Hybrid Apps for Mobile SDK 4.3
e Mobile SDK 4.3 upgrades its Cordova support as follows:
- i0S: Upgraded to Cordova 4.3.0
- Android: No change—remains Cordova 6.1.2
What Was New in React Native for Mobile SDK 4.3
e Version Update—Mobile SDK is now built with React Native version 0.43.1.

12

CHAPTER 4 Getting Started With Mobile SDK 5.1 for
Android and iOS

In this chapter ... Let's get started creating custom mobile apps! If you haven't done so already, begin by signing up for

Force.com and installing Mobile SDK development tools.
¢ Developer Edition or

Sandbox
Environment?

In addition to signing up, you need a connected app definition, regardless of which development options
you choose. To install Mobile SDK for Android or iOS (hybrid and native), you use the Mobile SDK npm

kages.
e Development packages

Prerequisites for
Android and iOS

e Sign Up for
Force.com

e Creatinga
Connected App

e Installing Mobile SDK
for Android and iOS

* Mobile SDK Sample
Apps

13

Getting Started With Mobile SDK 5.1 for Android and iOS Developer Edition or Sandbox Environment?

Developer Edition or Sandbox Environment?

Salesforce offers a range of environments for developers. The environment that's best for you depends on many factors, including:
e The type of application you're building

e Youraudience

e Your company's resources

Development environments are used strictly for developing and testing apps. These environments contain test data that isn't
business-critical. Development can be done inside your browser or with the Force.com IDE, which is based on the Eclipse development
tool.

Types of Developer Environments

A Developer Edition environment is a free, fully featured copy of the Enterprise Edition environment, with less storage and users. Developer
Editionis a logically separate environment, ideal as your initial development environment. You can sign up for as many Developer Edition
orgs as you need. This allows you to build an application designed for any of the Salesforce production environments.

A Partner Developer Edition is a licensed version of the free Developer Edition that includes more storage, features, and licenses. Partner
Developer Editions are free to enrolled Salesforce partners.

Sandbox is a nearly identical copy of your production environment available to Professional, Enterprise, Performance, and Unlimited
Edition customers. The sandbox copy can include data, configurations, or both. You can create multiple sandboxes in your production
environments for a variety of purposes without compromising the data and applications in your production environment.

Choosing an Environment

In this book, all exercises assume you're using a Developer Edition org. However, in reality a sandbox environment can also host your
development efforts. Here's some information that can help you decide which environment is best for you.

e Developer Edition is ideal if you're a:

- Partner who intends to build a commercially available Force.com app by creating a managed package for distribution through
AppExchange or Trialforce. Only Developer Edition or Partner Developer Edition environments can create managed packages.

- Salesforce customer with a Group or Personal Edition, and you don't have access to Sandbox.

- Developer looking to explore the Force.com platform for FREE!

e Partner Developer Edition is ideal if you:

— Aredeveloping in ateam and you require a master environment to manage all the source code. In this case, each developer has
a Developer Edition environment and checks code in and out of this master repository environment.

— Expect more than two developers to log in to develop and test.

— Require a larger environment that allows more users to run robust tests against larger data sets.
e Sandbox is ideal if you:
- Are a Salesforce customer with Professional, Enterprise, Performance, Unlimited, or Force.com Edition, which includes Sandbox.
- Are developing a Force.com application specifically for your production environment.
- Aren't planning to build a Force.com application to be distributed commercially.

- Have no intention to list on the AppExchange or distribute through Trialforce.

14

Getting Started With Mobile SDK 5.1 for Android and iOS Development Prerequisites for Android and iOS

Development Prerequisites for Android and iOS

We recommend some background knowledge and system setup before you begin building Mobile SDK apps.
It's helpful to have some experience with Force.com. You also need a Force.com Developer Edition organization.

Familiarity with OAuth, login and passcode flows, and Salesforce connected apps is essential to designing and debugging Mobile SDK
apps. See Authentication, Security, and Identity in Mobile Apps.

The following requirements apply to specific platforms and technologies.

IOS Requirements

e i0S9orlater.

e Xcode version 8 or later. (We recommend the latest version.)
e (CocoaPods version 1.1 or later (cocoapods.org).

e Node Package Manager (npm) version 3.10 or later.

e forceios version 5.1.

e ASalesforce Developer Edition organization with a connected app.

Android Requirements

e Java JDK 8 or later—www.oracle.com/downloads.

e Node Package Manager (npm) 3.10 or later—Must be installed for all Android development scenarios, including direct access to
the SalesforceMobileSDK-Android repo

e Android Studio 2.3 or later—developer.android.com/sdk.
e Android SDK and Android SDK Tools—Install from within Android Studio.
1. Inthe Android Studio menu, click Tools > Android > SDK Manager.
2. C(lick the SDK Platforms tab.
3. Install at least the following required SDK levels and all intervening levels:

- Minimum API: Android KitKat (APl 19)
- Target API: Android Nougat (APl 25)

4. C(lickthe SDK Tools tab.
5. Install the latest Android SDK Tools version.

e Android Virtual Device (AVD)—Install from within Android Studio.
1. Inthe Android Studio menu, click Tools > Android > AVD Manager.
2. C(lick Create Virtual Device....

3. Install at least one AVD that targets Android KitKat (API 19) and above. To learn how to set up an AVD in Android Studio, follow
the instructions at developer.android.com/guide/developing/devices/managing-avds.html.

Hybrid Requirements

e Allrequirements listed in the preceding sections for each mobile platform that you plan to support.

15

https://cocoapods.org/
http://www.oracle.com/downloads/
http://developer.android.com/sdk/
http://developer.android.com/guide/developing/devices/managing-avds.html

Getting Started With Mobile SDK 5.1 for Android and iOS Sign Up for Force.com

Proficiency in HTML5 and JavaScript languages.
For hybrid remote applications:
- ASalesforce organization that has Visualforce.

- A Visualforce start page.

Sign Up for Force.com

To access a wealth of tutorials, blogs, and support forums for all Salesforce developer programs, join Force.com.

1.

Inyour browsergotohttps://developer.salesforce.com/signup.

. Fill'in the fields about you and your company.

2
3.
4

Inthe Email Address field, make sure to use a public address you can easily check from a Web browser.

. Entera unique Username. Note that this field is also in the form of an email address, but it does not have to be the same as your

email address, and in fact, it's usually better if they aren't the same. Your username is your login and your identity on
developer.salesforce.com, and soyou're often better served by choosing a username that describes the work you're
doing, such as develop@workbook. org, or that describes you, such as firstname@lastname.com.

Read and then select the checkbox for the Master Subscription Agreement.
Enter the Captcha words shown and click Submit Registration.

In a moment you'll receive an email with a login link. Click the link and change your password.

Creating a Connected App

To enable your mobile app to connect to the Salesforce service, you need to create a connected app. The connected app includes a
consumer key, a prerequisite to all development scenarios in this guide.

Create a Connected App

To create a connected app, you use the Salesforce app.

1.

6.

Log into your Force.com instance.

2. InSetup, enter Apps inthe Quick Find box, then select Apps.
3. Under Connected Apps, click New.

4,
5

Perform steps for Basic Information.

. Perform steps for API (Enable OAuth Settings).

Click Save.

If you plan to support push notifications, see Push Notifications and Mobile SDK for additional connected app settings. You can add
these settings later if you don't currently have the necessary information.

@ Note:
[]

The Callback URL provided for OAuth doesn't have to be a valid URL; it only has to match what the app expects in this
field. You can use any custom prefix, such as sfdc://.

e The detail page for your connected app displays a consumer key. It's a good idea to copy this key, as you'll need it later.

e Afteryou create a new connected app, wait a few minutes for the token to propagate before running your app.

16

https://developer.salesforce.com/signup

Getting Started With Mobile SDK 5.1 for Android and iOS Create a Connected App

Basic Information
Specify basic information about your app in this section, including the app name, logo, and contact information.

1. Enter the connected app name. This name is displayed in the App Manager and on its App Launcher tile.

@ Nofe: The connected app name must be unique for the connected apps in your org. You can reuse the name of a deleted
connected app if the connected app was created using the Spring ‘14 release or later.

2. Enterthe APIname used when referring to your app from a program. It defaults to a version of the name without spaces. Only letters,
numbers, and underscores are allowed, so if the original app name contains any other characters, edit the default name.

3. Enterthe contact email for Salesforce to use when contacting you or your support team. This address isn't given to Salesforce admins
who install the app.

4. Enter the contact phone for Salesforce to use in case we need to contact you. This number isn't given to Salesforce admins who
install the app.

5. Enteralogoimage URL to display your logo on the App Launcher tile. It also appears on the consent page that users see when
authenticating. The URL must use HTTPS. Use a GIF, JPG, or PNG file format and a file size that's preferably under 20 KB, but at most
100 KB. We resize the image to 128 pixels by 128 pixels, so be sure that you like how it looks. If you don't supply a logo, Salesforce
generates one for you using the app’s initials.

® You can upload your own logo image by clicking Upload logo image. Select an image from your local file system that meets
the size requirements for the logo. When your upload is successful, the URL to the logo appears in the Logo Image URL field.
Otherwise, make sure that the logo meets the size requirements.

® Youcan also select a logo from the Salesforce samples by clicking Choose one of our sample logos. The logos include ones
for Salesforce apps, third-party apps, and standards bodies. Click the logo you want, and then copy and paste the URL into the
Logo Image URL field.

® You can use a logo hosted publicly on Salesforce servers by uploading an image as a document from the Documents tab. View
the image to get the URL, and then enter the URL into the Logo Image URL field.

6. Enteranicon URL to display a logo on the OAuth approval page that users see when they first use your app. Use an icon that's 16
pixels high and wide and on a white background.
You can select an icon from the samples provided by Salesforce. Click Choose one of our sample logos. Click the icon you want,
and then copy and paste the displayed URL into the Icon URL field.

7. If you have a web page with more information about your app, provide an info URL.

8. Enter a description up to 256 characters to display on the connected app’s App Launcher tile. If you don't supply a description, just

the name appears on the tile.

@ Notfe: The App Launcher displays the connected app’s name, description, and logo (if provided) on an App Launcher tile. Make
sure that the text is meaningful and mistake-free.

API (Enable OAuth Settings)

This section controls how your app communicates with Salesforce. Select Enable OAuth Settings to configure authentication settings.

1. Enterthe callback URL (endpoint) that Salesforce calls back to your application during OAuth. It's the OAuth redirect URI. Depending
on which OAuth flow you use, the URL is typically the one that a user's browser is redirected to after successful authentication.
Because this URL is used for some OAuth flows to pass an access token, the URL must use secure HTTPS or a custom URI scheme. If
you enter multiple callback URLs, at run time Salesforce matches the callback URL value specified by the app with one of the values
in Callback URL. It must match one of the values to pass validation.

17

Getting Started With Mobile SDK 5.1 for Android and iOS Create a Connected App

2.

If you're using the JWT OAuth flow, select Use Digital Signatures. If the app uses a certificate, click Choose File and select the
certificate file.

Add all supported OAuth scopes to Selected OAuth Scopes. These scopes refer to permissions given by the user running the connected
app. The OAuth token name is in parentheses.

Access and manage your Chatter feed (chatter_api)
Allows access to Chatter REST APl resources only.

Access and manage your data (api)
Allows access to the logged-in user's account using APIs, such as REST APland Bulk API. This value also includes chatter api,
which allows access to Chatter REST API resources.

Access your basic information (id, profile, email, address, phone)
Allows access to the Identity URL service.

Access custom permissions (custom_permissions)
Allows access to the custom permissions in an org associated with the connected app. It shows whether the current user has
each permission enabled.

Allow access to your unique identifier (openid)
Allows access to the logged-in user’s unique identifier for OpenlD Connect apps.

Full access (full)
Allows access to the logged-in user’s data, and encompasses all other scopes. ful1l doesn't return a refresh token. You must
explicitly request the refresh _token scope to get one.

Perform requests on your behalf at any time (refresh_token, offline_access)
Allows a refresh token to be returned if the app is eligible to receive one. This scope lets the app interact with the user’s data
while the user is offline. The refresh token scope is synonymous with off1ine access.

Provide access to custom applications (visualforce)
Allows access to Visualforce pages.

Provide access to your data via the Web (web)
Allows use of the access_token on the web. It includes visualforce, which allows access to Visualforce pages.

Ifyou're setting up OAuth for applications on devices with limited input or display capabilities, such as TVs, appliances, or command-line
applications, select Enable for Device Flow.

@ Note: When enabled, the value for the callback URL defaults to a placeholder unless you specify your own URL. A callback
URL isn't used in the device authentication flow. You can specify your own callback URL as needed, such as when this same
consumer is being used for a different flow.

If you're setting up OAuth for a client app that can't keep the client secret confidential and must use the web server flow because
it can't use the user-agent flow, deselect Require Secret for Web Server Flow. We still generate a client secret for your app but
this setting instructs the web server flow to not require the c1ient secret parameter in the access token request. If your app
can use the user-agent flow, we recommend user-agent as a more secure option than web server flow without the secret.

Control how the OAuth request handles the ID token. If the OAuth request includes the openid scope, the returned token can
include the ID token.

e Toinclude the ID token in refresh token responses, select Include ID Token. It's always included in access token responses.

e With the primary ID token setting enabled, configure the secondary settings that control the ID token contents in both access
and refresh token responses. Select at least one of these settings.

Include Standard Claims
Include the standard claims that contain information about the user, such as the user's name, profile, phone_number, and
address. The OpenlD Connect specifications define a set of standard claims to be returned in the ID token.

18

Getting Started With Mobile SDK 5.1 for Android and iOS Installing Mobile SDK for Android and iOS

Include Custom Attributes
If your app has specified custom attributes, include them in the ID token.

Include Custom Permissions
If your app has specified custom permissions, include them in the ID token.

7. Ifyou're setting up your app to issue asset tokens for connected devices, configure the asset token settings.
e Select Enable Asset Tokens. Then specify these settings.

Token Valid for
The length of time that the asset token is valid after it's issued.

Asset Signing Certificate
The self-signed certificate that you've already created for signing asset tokens.

Asset Audiences
The intended consumers of the asset token. For example, the backend service for your connected device, such as
https://your device backend.comn.

Include Custom Attributes
If your app has specified custom attributes, include them in the asset token.

Include Custom Permissions
If your app has specified custom permissions, include them in the asset token.
e Specify the callback URL (endpoint). For example, https://your device backend.com/callback.
e Make sure that you add the OAuth scopes that are required for asset tokens.
- Access and manage your data (api)

— Allow access to your unique identifier (openid)

If your org had the No user approval required for users in this organization option selected on your remote access before the Spring
"12 release, users in the org where the app was created are automatically approved for the app. This option is selected to indicate the
automatic approval. For connected apps, the recommended procedure after you've created an app is for admins to install the app and
then set Permitted Users to Admin-approved users. If the remote access option wasn't originally selected, the option doesn’t show

up.

SEE ALSO:

Scope Parameter Values

Installing Mobile SDK for Android and iOS

Salesforce Mobile SDK provides two installation paths.

e (Recommended) You can install the SDK in a ready-made development setup using a Node Packaged Module (npm) script.

* You can download the Mobile SDK open source code from GitHub and set up your own development environment.

Mobile SDK npm Packages

Most mobile developers want to use Mobile SDK as a “black box" and begin creating apps as quickly as possible. For this use case
Salesforce provides two npm packages: forceios for iOS, and forcedroid for Android.

19

Getting Started With Mobile SDK 5.1 for Android and iOS Mobile SDK npm Packages

Mobile SDK npm packages provide a static snapshot of an SDK release. For iOS, the npm package installs binary modules rather than
uncompiled source code. For Android, the npm package installs a snapshot of the SDK source code rather than binaries. You use the
npm scripts not only to install Mobile SDK, but also to create template projects.

Npm packages for the Salesforce Mobile SDK reside at https://www.npmijs.org.

@ Notfe: Npm packages do not support source control, so you can't update your installation dynamically for new releases. Instead,
you install each release separately. To upgrade to new versions of the SDK, go to the npmjs.org website and download the new
package.

Do This First: Install Node.js and npm

To use the Mobile SDK npm installers, you first install Node js. The Node js installer automatically installs npm.

Mobile SDK 5.1 requires the following minimum version:

npm 3.10
1. Download the Node js installer from www.nodejs.org.

2. Runtheinstaller, accepting all prompts that ask for permission to install. This module installs both node.js and npm.

w

Testyour installation ata command prompt by running the npm command. If you don't see a page of command usage information,
revisit Step 2 to find out what's missing.

Now you're ready to download the npm scripts and install Salesforce Mobile SDK for Android and iOS.

iOS Installation

For the fastest, easiest route to iOS development, use the forceios npm package to install Salesforce Mobile SDK. We'll install the packages
globally so that you can run them from any directory.

In Mobile SDK 4.0 and later, forceios requires CocoaPods. Apps created with forceios run in a CocoaPod-driven workspace. The CocoaPods
utility enhances debugging by making Mobile SDK source code available in your workspace. Also, with CocoaPods, updating to a new
Mobile SDK version is painless. You merely update the podfile and then run pod update in aterminal window.

1. Install CocoaPods using the Getting Started instructions at guides.cocoapods.org.
2. |Install the forceios npm package. Open a terminal window and type sudo npm install -g forceios.

The npm utility installs global packages under /usr/local/lib/node_modules,and links binary modulesin
/usr/local/bin.The sudo command is necessary if you lack read-write permissions in /usr/local.

SEE ALSO:
Use CocoaPods with Mobile SDK
Refreshing Mobile SDK Pods

Android Installation

For the fastest, easiest route to Android development, install the forcedroid npm package to create Salesforce Mobile SDK projects for
Android. We'll install the packages globally so that you can run them from any directory.

e Mac OS X (or other non-Windows environments)—In a terminal window, type:

sudo npm install -g forcedroid

20

https://www.npmjs.org
https://www.npmjs.org
https://www.nodejs.org
https://guides.cocoapods.org

Getting Started With Mobile SDK 5.1 for Android and iOS Mobile SDK npm Packages

The npm utility installs global packages under /usr/local/lib/node modules, and links binary modules in
/usr/local/bin.The sudo command is necessary if you lack read-write permissionsin /usr/local.

e Windows—At the Windows command prompt, type:
npm install -g forcedroid

The npm utility installs global packages in $APPDATA%\npm\node modules,and links binaries in $APPDATA% \npm.

Uninstalling Mobile SDK npm Packages

If you need to uninstall an npm package, use the npm script.

Uninstalling the Forcedroid Package
The instructions for uninstalling the forcedroid package vary with whether you installed the package globally or locally.

If you installed the package globally, you can run the uninstall command from any folder. Be sure to use the —g option. On a
Unix-based platform such as Mac OS X, use sudo as well.

S pwd
/Users/joeuser
$ sudo npm uninstall forcedroid -g

$
If you installed the package locally, run the uninstall command from the folder where you installed the package. For example:

cd <my projects/my sdk folder>
npm uninstall forcedroid

If you try to uninstall a local installation from the wrong directory, you'll get an error message similar to this:

npm WARN uninstall not installed in /Users/joeuser/node modules:
"my projects/my sdk folder/node modules/forcedroid”

Uninstalling the Forceios Package

Instructions for uninstalling the forceios package vary with whether you installed the package globally or locally. If you installed the
package globally, you can run the uninstall command from any folder. Be sure to use sudo and the —g option.

$ pwd
/Users/joeuser
$ sudo npm uninstall forceios -g

$

To uninstall a package that you installed locally, run the uninstall command from the folder where you installed the package. For
example:

S pwd

/Users/joeuser

cd <my projects/my sdk folder>
npm uninstall forceios

21

Getting Started With Mobile SDK 5.1 for Android and iOS Mobile SDK GitHub Repositories

If you try to uninstall a local installation from the wrong directory, you'll get an error message similar to this:

npm WARN uninstall not installed in /Users/joeuser/node modules:
"my projects/my sdk folder/node modules/forceios"

Mobile SDK GitHub Repositories

More adventurous developers can delve into the SDK, keep up with the latest changes, and possibly contribute to SDK development
through GitHub. Using GitHub allows you to monitor source code in public pre-release development branches. In this scenario, your
app includes the SDK source code, which is built along with your app.

You don't have to sign up for GitHub to access the Mobile SDK, but it's a good idea to join this social coding community.
https://github.com/forcedotcom

You can always find the latest Mobile SDK releases in our public repositories:

® https://github.com/forcedotcom/SalesforceMobileSDK-10S

® https://github.com/forcedotcom/SalesforceMobileSDK-Android

@ Important: To submit pull requests for any Mobile SDK platform, check out the dewv branch as the basis for your changes.

If you're using GitHub only to build source code for the current release, check out the master branch.

Cloning the Mobile SDK for iOS GitHub Repository (Optional)

1. Clone the Mobile SDK for iOS repository to your local file system by issuing the following command at the OS X Terminal app: git
clone git://github.com/forcedotcom/SalesforceMobileSDK-10S.git

@ Nofte: If you have the GitHub app for Mac OS X, click Clone in Mac. In your browser, navigate to the Mobile SDKiOS GitHub
repository: https://github.com/forcedotcom/SalesforceMobileSDK-10S.

2. Inthe OS X Terminal app, change to the directory where you installed the cloned repository (SalesforceMobileSDK-10S
by default).

3. Runtheinstall script from the command line: . /install.sh

Cloning the Mobile SDK for Android GitHub Repository (Optional)

1. Inyour browser, navigate to the Mobile SDK for Android GitHub repository:
https://github.com/forcedotcom/SalesforceMobileSDK-Android.

2. Clone the repository to your local file system by issuing the following command: git clone
git://github.com/forcedotcom/SalesforceMobileSDK-Android.git

3. Open a terminal prompt or command window in the directory where you installed the cloned repository.

4., Run ./install.sh onMac or cscript install.vbs on Windows

@ Nofe: Afteryou'verun cscript install.vbs onWindows, git status returnsa list of modified and deleted files.
This output is an unfortunate side effect of resolving symbolic links in the repo. Do not clean or otherwise revert these files.

Creating Android Projects with the Cloned GitHub Repository

To create native and hybrid projects with the cloned SalesforceMobileSDK-Android repository, follow the instructions in
native/README.md and hybrid/README .md files.

22

https://github.com/forcedotcom
https://github.com/forcedotcom/SalesforceMobileSDK-iOS
https://github.com/forcedotcom/SalesforceMobileSDK-Android
https://github.com/forcedotcom/SalesforceMobileSDK-iOS
https://github.com/forcedotcom/SalesforceMobileSDK-Android

Getting Started With Mobile SDK 5.1 for Android and iOS Mobile SDK Sample Apps
@ Note: Be sure to install npm before building Mobile SDK for Android.

Creating iOS Projects with the Cloned GitHub Repository

To create projects with the cloned salesforceMobileSDK-10S repository, follow the instructionsin build.md inthe
repository’s root directory.

SEE ALSO:
Do This First: Install Node.js and npm

Mobile SDK Sample Apps

Salesforce Mobile SDK includes a wealth of sample applications that demonstrate its major features. You can use the hybrid and native
samples as the basis for your own applications, or just study them for reference.

Installing the Sample Apps

In GitHub, sample apps live in the Mobile SDK repository for the target platform. For hybrid samples, you have the option of using the
Cordova command line with source code from the SalesforceMobileSDK-Shared repository.

Accessing Sample Apps From the GitHub Repositories

When you clone Mobile SDK directly from GitHub, sample files are placed in the hybrid/HybridSampleApps and
native/NativeSampleApps directories.

For Android: After cloning or updating the repository locally, run cscript install.vbs onWindowsor . /install.sh
on Mac in the repository root folder. You can then build the Android samples by importing the SalesforceMobileSDK-Android project
into Android Studio. Look for the sample apps in the hybrid/HybridNativeSamples and
native/NativeHybridSamples project folders.

@ Important: On Windows, be sure to run Android Studio as administrator.

For iOS: After cloning or updating the repository locally, run . /install. sh inthe repository root folder. You can then build the
iOS samples by opening the SalesforceMobileSDK-i10S/SalesforceMobileSDK.xcworkspace filein Xcode. Look
for the sample apps in the NativeSamples and HybridSamples workspace folders.

Building Hybrid Sample Apps With Cordova

To build hybrid sample apps using the Cordova command line, see Build Hybrid Sample Apps.
Android Sample Apps

Native

e RestExplorer demonstrates the OAuth and REST API functions of Mobile SDK. It's also useful for investigating REST APl actions from
a tablet.

23

Getting Started With Mobile SDK 5.1 for Android and iOS Installing the Sample Apps

e SmartSyncExplorer demonstrates the power of the native SmartSync library on Android. It resides in Mobile SDK for Android under
native/NativeSampleApps/SmartSyncExplorer.

Hybrid
e AccountEditor: Demonstrates how to synchronize offline data using the smartsync. s library.
¢ NoteSync: Demonstrates how to use non-REST APIs to retrieve Salesforce Notes.

e SmartSyncExplorerHybrid: Demonstrates how to synchronize offline data using the SmartSync plugin.
iOS Sample Apps

Native

e RestAPIExplorer exercises all native REST APl wrappers. It resides in Mobile SDK for iOS under
native/SampleApps/RestAPIExplorer.

e SmartSyncExplorer demonstrates the power of the native SmartSync library on iOS. It resides in Mobile SDK for iOS under
native/SampleApps/SmartSyncExplorer

Hybrid
e AccountEditor: Demonstrates how to synchronize offline data using the smartsync.js library.
e NoteSync: Demonstrates how to use non-REST APIs to retrieve Salesforce Notes.

e SmartSyncExplorerHybrid: Demonstrates how to synchronize offline data using the SmartSync plugin.

Hybrid Sample Apps (Source Only)

Mobile SDK provides only the web app source code for most hybrid sample apps. You can build platform-specific versions of these apps
using the Cordova command line. To get the source code, clone the SalesforceMobileSDK-Shared GitHub repository and look in the
samples folder. To build these hybrid apps for specific mobile platforms, follow the instructions at Build Hybrid Sample Apps.

e accounteditor: Uses the SmartSync Data Framework to access Salesforce data.

e contactexplorer: Uses Cordova to retrieve local device contacts. Italso uses the force. js toolkittoimplement REST transactions
with the Salesforce REST API. The app uses the OAuth2 support in Salesforce SDK to obtain OAuth credentials and then propagates
those credentials to force.js by sending ajavascript event.

o fileexplorer: Demonstrates the Files API.

® notesync: Uses non-REST APIs to retrieve Salesforce Notes.

e simplesyncreact:: Demonstrates a React Native app that uses the SmartSync plug-in.

e smartstoreexplorer: Lets you explore SmartStore APIs.

e smartsyncexplorer: Demonstrates using smartsync. s, rather than the SmartSync plug-in, for offline synchronization.
e userandgroupsearch: Lets you search for users in groups.

e userlist: Lists users in an organization. This is the simplest hybrid sample app.

e usersearch: Lets you search for users in an organization.

e vfconnector: Wraps a Visualforce page in a native container. This example assumes that your org has a Visualforce page called
BasicVFTest. The app first obtains OAuth login credentials using the Salesforce SDK OAuth2 support and then uses those
credentials to set appropriate webview cookies for accessing Visualforce pages.

24

https://github.com/forcedotcom/SalesforceMobileSDK-Shared

CHAPTER 5 Updating Mobile SDK Apps (5.0 and Later)

In this chapter ...

e Using Maven to
Update Mobile SDK
Libraries in Android

Apps

In Mobile SDK 5.0, native and React native apps get an easier path to future Mobile SDK upgrades. Instead
of creating an app and porting your app’s resources to it, you now update a simple configuration file
and then run a script that regenerates your app with the new SDK libraries.

Updating Native and React Native Apps

Each native and React native app directory contains a package . json file atits root level. This JSON
file contains a “dependencies” object that includes a list of name-value pairs describing Mobile SDK
source paths. You can set these values to any local or network path that points to a valid copy of the
platform'’s Mobile SDK. After you've updated this file, perform the update by running:

® install.qjs for Android native, iOS native, and native Swift apps
e installandroid.js forReact native apps on Android

® installios.js forReact native appsoniOS

You can find the appropriate file in your app’s root folder.

For example, here’s the dependencies section of a native Android package. jsonfile:

"dependencies": {

"salesforcemobilesdk-android":
"https://github.com/forcedotcom/SalesforceMobileSDK-Android.git"
}

This path points to the current release branch of the SalesforceMobileSDK-Android repo.
ForiOS, it's the same idea:

"dependencies": {

"salesforcemobilesdk-ios":
"https://github.com/forcedotcom/SalesforceMobileSDK-10S.git"
}

For React native, you can set targets for both Android and iOS, as well as React native versions:

"dependencies": {
"react": "15.3.2",
"react-native": "0.35.0",

"salesforcemobilesdk-ios":
"https://github.com/forcedotcom/SalesforceMobileSDK-i0S.git",

"react-native-force":
"https://github.com/forcedotcom/SalesforceMobileSDK-ReactNative.git",

"salesforcemobilesdk-android":
"https://github.com/forcedotcom/SalesforceMobileSDK-Android.git"
}

@ Important: Remember that your React native version must be paired with compatible Mobile
SDK versions.

25

Updating Mobile SDK Apps (5.0 and Later)

To point to the development branch of any Mobile SDK repo—that is, the branch where the upcoming
release is being developed—append “#dev” to the URL. For example:

"dependencies": {

"salesforcemobilesdk-android":
"https://github.com/forcedotcom/SalesforceMobileSDK-Android.git#dev"
}

@ Example: The following steps update an Android native app.
1. From your app directory, open package . json for editing.

2. Inthe “"dependencies” section, change the value for “salesforcemobilesdk-android” to point a
different version of the SalesforceMobileSDK-Android repo. You can point to the development
branch or a different tag of the master branch (5.x or later).

3. Run install.qjs fornative apps,or installandroid.js for React native apps.

The steps for iOS are identical. Just replace the Android references with iOS labels.

Updating Hybrid Apps

For hybrid apps, the Mobile SDK libraries are delivered through the Mobile SDK Cordova plug-in. However,
with a major release such as 5.0, we recommend that you start with a new template app.

1. Run: forcedroid create or forceios create

2. Createthe same type of hybrid project with the same name as your existing project, but in a different
folder.

3. When the script finishes, cd to your new project folder.

4. Add any third-party Cordova plug-ins that your original app used. For example, if your app uses the
Cordova status bar plug-in, type:

cordova plugin add cordova-plugin-statusbar

5. After you've added all your third-party plugins, remove and then re-add the Mobile SDK Cordova
plugin as follows:

cordova plugin remove com.salesforce

cordova plugin add
https://github.com/forcedotcom/SalesforceMobileSDK-CordovaPlugin
--force

6. Copy your web app resources—JavaScript, HTML5, and CSS files, and so on—from the original
project into your new project's www/ folder. For example, on Mac OS X:

cp -RL ~/MyProjects/MyMobileSDK50Project/www/* www/

7. Run: cordova prepare

@ Note: Fordetails on required changes for specific releases, see Migrating from Previous Releases.

26

Updating Mobile SDK Apps (5.0 and Later)

Using Maven to Update Mobile SDK Libraries in Android Apps

Beginning with version 5.0, Mobile SDK provides native Android libraries on Bintray’s jCenter Maven repository. As a result, you can now

consume any Mobile SDK library by adding a single line to the dependencies section of your app’s build.gradle file.

Toimport a library with Gradle, you add a compi 1e statement to the dependencies section of your project’s build.gradle
file. To update a library with Gradle, you simply change its version number in the compile statement to the updated version, and

then resync your libraries.

The Details

Here's what a typical Gradle dependencies section looks like:

dependencies {

classpath 'com.android.tools.build:gradle:2.2.3"

A compile statement takes the form

compile '<groupID>:<artifactID>:<version>'

For Mobile SDK libraries:

The compile statementimports not only the specified library, but also all its dependencies. As a result, you never have to explicitly
compile SalesforceAnalytics, for example, because every other library depends on it. It also means that you can get everything you need

grouplD is “com.salesforce.mobilesdk”

artifactlD is “SalesforceSDK”, “SalesforceHybrid", “SmartStore”, or “SmartSync”

version is “x.x.x" (for example, “5.0.1")

with just one statement.

To import Mobile SDK 5.0.1 libraries, add one of the following lines:

For the SalesforceSDK library:

compile 'com.salesforce.mobilesdk:SalesforceSDK:5.0.1"'

For the SmartStore library (also imports the SalesforceSDK library):

compile 'com.salesforce.mobilesdk:SmartStore:5.0.1"

For the SmartSync library (also imports the SalesforceSDK and SmartStore libraries):

compile 'com.salesforce.mobilesdk:SmartSync:5.0.1"'

For the SalesforceHybrid library (also imports the SalesforceSDK, SmartStore, SmartSync, and Apache Cordova libraries):

compile 'com.salesforce.mobilesdk:SalesforceHybrid:5.0.1"

@ Note:

e The Salesforce React library is not currently available through Maven.

e Mobile SDK enforces a few coding requirements for proper initialization and configuration. To get started, see Android
Application Structure.

27

Using Maven to Update Mobile SDK Libraries in Android

Apps

CHAPTER 6 Welcome to Mobile SDK Labs!

In this chapter ...

React Native for
Salesforce Mobile
SDK

Mobile Ul Elements
with Polymer

Mobile SDK Labs is where we share information on newer technologies that we're currently testing, or
that could become unstable because they're rapidly evolving. Check here with each release if you're
eager to experiment with the cutting edge in your Mobile SDK apps.

Intfroducing Salesforce Mobile SDK Labs

Salesforce is committed to empowering developers to create mobile apps on their own terms. We hope
to provide you with complete freedom to use the technologies that best serve your needs.

In the mobile development world, innovation moves at breakneck speeds. New tools, frameworks,
libraries, and design patterns emerge almost on a weekly basis. Some of these technologies become
mainstream—stable and secure enough for production apps—while others fade away. The Mobile SDK
team is always testing emerging technologies for use with SDK libraries, samples, and resources. Salesforce
Mobile SDK Labs gives you the opportunity to try out the third-party tools and frameworks as we're
investigating them.

Because Mobile SDK is a community-assisted effort, we value your feedback and typically incorporate it
into our decision-making process. You can contact us at our Google+ community: SalesforceMobileSDK.

O Warning: Salesforce does not officially support the apps and code in Salesforce Mobile SDK Labs.
Use these projects with caution in production apps.

28

Welcome to Mobile SDK Labs! React Native for Salesforce Mobile SDK

React Native for Salesforce Mobile SDK

React Native is a third-party framework that lets you access native Ul elements directly with JavaScript, CSS, and markup. You can combine
this technology with special Mobile SDK native modules for rapid development using native resources.

Since its inception, Mobile SDK has supported two types of mobile apps:

e Native apps provide the best user experience and performance. However, you have to use a different development technology for
each mobile platform you support.

e Hybrid apps let you share your JavaScript and CSS code across platforms, but the generic underlying WebView can compromise
the user experience.

In Mobile SDK 4.0 and later, you have a third option: React Native. React Native couples the cross-platform advantages of JavaScript
development with the platform-specific "look and feel" of a native app. At the same time, the developer experience matches the style
and simplicity of hybrid development.

* You use flexible, widely known web technologies (JavaScript, CSS, and markup) for layout and styling.

e No need to compile. You simply refresh the browser to see your changes.

e Todebug, you use your favorite browser's developer tools.

e All views are rendered natively, so your customers get the user experience of a native app.

Mobile SDK 5.1 uses React Native 0.43.1. You can find React Native 0.43.1 source code and documentation at

github.com/facebook/react-native/releases/ under the 0.43.1 tag.

@ Nofte: Although React Native is a fully supported app development option, we present it in Labs because the framewaork is still
rapidly evolving.

What's New in React Native for Mobile SDK 5.1

e Version Update—Mobile SDK is now built with React Native version 0.43.1.
e SmartSync Update—Handling of field lists for “sync up” operations has changed in Mobile SDK 5.1. See SmartSync Plugin Methods.

Getting Started on Android

To get ready for React Native on Android:

1. Install the software required by React Native. See "Requirements" and "iOS Setup" under Getting Started at
facebook.github.io/react-native/docs/

2. Install the latest version of forcedroid as described in Android Installation.

To create a React Native project for Android, you use forcedroid with the React Native template. Specify react native asthe project
type. For example, using interactive forcedroid:

$ forcedroid create
Enter your application type (native, react native, hybrid remote, or hybrid local):
react_native

Or, using forcedroid command-line parameters:

$ forcedroid create --apptype="react native" --appname="packagetest"

--packagename="com.acme.mobileapps" --organization="Acme Widgets, Inc.
--outputdir="PackageTest"

29

https://github.com/facebook/react-native/releases/
https://facebook.github.io/react-native/docs/

Welcome to Mobile SDK Labs! Mobile SDK Native Modules for React Native Apps

You're now ready to begin developing your React Native app.

Getting Started on iOS

To get ready for React Native on iOS:

1. Install the software required by React Native. See "Requirements" and "iOS Setup" under Getting Started at
facebook.github.io/react-native/docs/

2. |Install the latest version of forceios as described in iOS Installation.

To create a React Native project for iOS, you use forceios with the React Native template. Specify react native asthe project type.
For example, using interactive forceios:

$ forceios create
Enter your application type (native, native swift, react native, hybrid remote,
hybrid local): react_native

Or, using forceios command-line parameters:

$ forceios create --apptype="react native" --appname="packagetest"
--packagename="com.acme.mobileapps" --organization="Acme Widgets, Inc."
--outputdir="PackageTest"

You're now ready to begin developing your React Native app.

Using Mobile SDK Native Components with React Native

React Native apps access Mobile SDK in JavaScript through the following native bridges:
® react.force.oauth.js

® react.force.network.js

® react.force.smartstore.js

® react.force.smartsync.js

These bridges are similar to the Mobile SDK components used in hybrid apps. To use them, add the following import statement in your
JavaScript code:

import {oauth, net, smartstore, smartsync} from 'react-native-force';
React native apps built with forceios or forcedroid specify the react-native-force source pathinthe package. json file:

"react-native-force": "https://github.com/forcedotcom/SalesforceMobileSDK-ReactNative.git"

@ Note: You cant use the force. js library with React Native.

Mobile SDK Native Modules for React Native Apps

Mobile SDK provides native modules for React Native that serve as JavaScript bridges to native Mobile SDK functionality.

OAuth
The OAuth bridge is similar to the OAuth plugin for Cordova.

30

https://facebook.github.io/react-native/docs/

Welcome to Mobile SDK Labs!

Usage
import {oauth} from 'react-native-force';
Methods

oauth.getAuthCredentials (success, fail);
oauth.logout () ;

Network

The Network bridge is similar to the force js library for hybrid apps.
Usage
import {net} from 'react-native-force';

Methods

net.setApiVersion (version) ;

net.getApiVersion () ;

net.versions (callback, error);

net.resources (callback, error);

net.describeGlobal (callback, error);

net.metadata (objtype, callback, error);

net.describe (objtype, callback, error);

net.describelayout (objtype, recordTypeld, callback, error);
net.create (objtype, fields, callback, error);

net.retrieve (objtype, id, fieldlist, callback, error);

net.upsert (objtype, externalldField, externalld, fields, callback,

net.update (objtype, id, fields, callback, error);
net.del (objtype, 1d, callback, error);
net.query(sogl, callback, error);

net.queryMore(url, callback, error);
net.search(sosl, callback, error);

SmartStore

The SmartStore bridge is similar to the SmartStore plugin for Cordova. Unlike the plugin, however, first arguments are not optional in

React Native.
Usage
import {smartstore} from 'react-native-force';

Methods

smartstore.buildAllQuerySpec (indexPath, order, pageSize,
selectPaths) ;
smartstore.navigator.smartstore.buildExactQuerySpec (
path, matchKey, pageSize, order, orderPath, selectPaths);
smartstore.navigator.smartstore.buildRangeQuerySpec (

Mobile SDK Native Modules for React Native Apps

error) ;

path, beginKey, endKey, order, pageSize, orderPath, selectPaths);

smartstore.navigator.smartstore.buildLikeQuerySpec (
path, likeKey, order, pageSize, orderPath, selectPaths);
smartstore.navigator.smartstore.buildMatchQuerySpec (

31

Welcome to Mobile SDK Labs!

path, matchKey, order, pageSize, orderPath, selectPaths);
smartstore.buildSmartQuerySpec (smartSgl, pageSize);

smartstore.getDatabaseSize (isGlobalStore, successCB, errorCB);
smartstore.getDatabaseSize (storeConfig, successCB, errorCB);

smartstore.registerSoup (isGlobalStore, soupName, indexSpecs,
successCB, errorCB);

smartstore.registerSoup (storeConfig, soupName, indexSpecs,
successCB, errorCB);

smartstore.removeSoup (isGlobalStore, soupName, successCB, errorCB);
smartstore.removeSoup (storeConfig, soupName, successCB, errorCB);

smartstore.getSoupIndexSpecs (isGlobalStore, soupName, successCB,
errorCB) ;

smartstore.getSoupIndexSpecs (storeConfig, soupName, successCB,
errorCB) ;

smartstore.alterSoup (isGlobalStore, soupName, indexSpecs, relndexData,
successCB, errorCB);

smartstore.alterSoup (storeConfig, soupName, indexSpecs, relndexData,
successCB, errorCB);smartstore.relndexSoup (storeConfig, soupName, paths,

errorCB) ;

smartstore.clearSoup (isGlobalStore, soupName, successCB, errorCB);
smartstore.clearSoup (storeConfig, soupName, successCB, errorCB);

smartstore.showInspector (isGlobalStore) ;
smartstore.showInspector (storeConfiqg) ;

smartstore.soupExists (isGlobalStore, soupName, successCB, errorCB);
smartstore.soupExists (storeConfig, soupName, successCB, errorCB);

smartstore.querySoup (isGlobalStore, soupName, querySpec,
successCB, errorCB);

smartstore.querySoup (storeConfig, soupName, querySpec,
successCB, errorCB);

smartstore.runSmartQuery (isGlobalStore, querySpec, successCB, errorCB);
smartstore.runSmartQuery (storeConfig, querySpec, successCB, errorCB);

smartstore.retrieveSoupEntries (isGlobalStore, soupName, entryIds,
successCB, errorCB);

smartstore.retrieveSoupEntries (storeConfig, soupName, entryIlds,
successCB, errorCB);

smartstore.upsertSoupEntries (isGlobalStore, soupName, entries,
successCB, errorCB);
smartstore.upsertSoupEntries (storeConfig, soupName, entries,

successCB, errorCB);

smartstore.upsertSoupEntriesWithExternalld(isGlobalStore, soupName,

32

Mobile SDK Native Modules for React Native Apps

successCB,

Welcome to Mobile SDK Labs! Mobile SDK Native Modules for React Native Apps

entries, externallIdPath, successCB, errorCB);
smartstore.upsertSoupEntriesWithExternallId(storeConfig, soupName,
entries, externalldPath, successCB, errorCB);

smartstore.removeFromSoup (isGlobalStore, soupName, entrylds,
successCB, errorCB);

smartstore.removeFromSoup (storeConfig, soupName, entrylds,
successCB, errorCB);

smartstore.moveCursorToPageIndex (isGlobalStore, cursor, newPagelIndex,
successCB, errorCB);

smartstore.moveCursorToPageIndex (storeConfig, cursor, newPagelndex,
successCB, errorCB);

smartstore.moveCursorToNextPage (isGlobalStore, cursor, successCB,
errorCB) ;

smartstore.moveCursorToNextPage (storeConfig, cursor, successCB,
errorCB) ;

smartstore.moveCursorToPreviousPage (isGlobalStore, cursor, successCB,
errorCB) ;

smartstore.moveCursorToPreviousPage (storeConfig, cursor, successCB,
errorCB) ;

smartstore.closeCursor (isGlobalStore, cursor, successCB, errorCB);
smartstore.closeCursor (storeConfig, cursor, successCB, errorCB);

SmartSync

The SmartSync bridge is similar to the SmartSync plugin for Cordova. Unlike the plugin, however, first arguments are not optional in
React Native.

Usage
import {smartsync} from 'react-native-force';

Methods

smartsync.syncDown (isGlobalStore, target, soupName, options, successCB, errorCB);
smartsync.syncDown (storeConfig, target, soupName, options, successCB, errorCB);

smartsync.reSync (isGlobalStore, syncId, successCB, errorCB);
smartsync.reSync (storeConfig, syncId, successCB, errorCB);

smartsync.syncUp (isGlobalStore, target, soupName, options, successCB, errorCB);
smartsync.syncUp (storeConfig, target, soupName, options, successCB, errorCB);

smartsync.getSyncStatus (isGlobalStore, syncId, successCB, errorCB);
smartsync.getSyncStatus (storeConfig, syncId, successCB, errorCB);

Note: Handling of field lists for “sync up” operations has changed in Mobile SDK 5.1. See SmartSync Plugin Methods for a description
of the JavaScript syncUp () method.

33

Welcome to Mobile SDK Labs!

Mobile SDK Sample App Using React Native

The best way to get up-to-speed on React Native in Mobile SDK is to study the sample code.

Mobile SDK provides four implementations of the SmartSyncExplorer application:

e Objective-C (for iOS native)

e Java (for Android native)

e HTML/JavaScript (for hybrid on iOS and Android)
e JavaScript with React (for React Native on iOS and Android)

Implementation

Native (Objective-C/Java)

Hybrid (HTML/JavaScript)

React Native (JavaScript with React)

i0S

1. Clone the SalesforceMobileSDK-iOS
GitHub repo.

2. Openthe SalesforceMobileSDK
workspace in Xcode.

3. Runthe SmartSyncExplorer
application (in the NativeSamples
workspace folder).

1. Clone the SalesforceMobileSDK-iOS
GitHub repo.

2. Openthe salesforceMobileSDK
workspace in Xcode.

3. Runthe
SmartSyncExplorerHybrid
application (in the HybridSamples
workspace folder).

1. Clone SmartSyncExplorerReactNative
GitHub repo.

2. Inaterminal window or command
prompt, run . /install.sh(on
Mac) or cscript install.vbs
(on Windows)

3. cdtothe app folderand run npm
start

4. Openthe app/ios folderin Xcode.
5. Runthe

SmartSyncExplorerReactNative
application

34

Mobile SDK Sample App Using React Native

Android

1. Clonethe SalesforceMobileSDK-Android
GitHub repo.

2. Import the
SalesforceMobileSDK-Android project
in Android Studio.

3. Runthe SmartSyncExplorer application
(in the
native/NativeSampleApps
project folder).

1. Clonethe SalesforceMobileSDK-Android
GitHub repo.

2. Import the
SalesforceMobileSDK-Android project
in Android Studio.

3. Runthe “SmartSyncExplorer” application
(inthe
hybrid/HybridSampleApps
project folder).

1. Clone SmartSyncExplorerReactNative
GitHub repo.

2. Inaterminal window or command
prompt, run . /install.sh(on
Mac) or cscript install.vbs
(on Windows)

3. cdtothe app folderand run npm
start

4. Openthe app/android folderin
Android Studio

5. Runthe
SmartSyncExplorerReactNative
application

https://github.com/forcedotcom/SalesforceMobileSDK-Android
https://github.com/forcedotcom/SalesforceMobileSDK-Android
https://github.com/forcedotcom/SalesforceMobileSDK-iOS
https://github.com/forcedotcom/SalesforceMobileSDK-iOS
https://github.com/forcedotcom/SalesforceMobileSDK-Android
https://github.com/forcedotcom/SalesforceMobileSDK-Android
https://github.com/forcedotcom/SalesforceMobileSDK-iOS
https://github.com/forcedotcom/SalesforceMobileSDK-iOS
https://github.com/forcedotcom/SmartSyncExplorerReactNative
https://github.com/forcedotcom/SmartSyncExplorerReactNative
https://github.com/forcedotcom/SmartSyncExplorerReactNative
https://github.com/forcedotcom/SmartSyncExplorerReactNative

Welcome to Mobile SDK Labs!

A few notes about the SmartSyncExplorer for React Native

Path
README . md

external

app/ios
app/android

app/js

File
app/js/index.android.js
app/js/index.ios.js

app/js/BApp.Js

app/js/SearchScreen.js

app/jsContactScreen.js

app/js/SearchBar.ios.js
app/js/SearchBar.android.js

app/js/ContactCell.js

app/js/ContactBadge. s

app/js/Field js

app/js/StoreMar js

Mobile SDK Sample App Using React Native

Table 1: Key Folder and Files

Description
Instructions to get started

Dependencies (i0S/Android SDKs) They are downloaded when
yourun . /install.sh (Mador cscript install.vbs
(Windows)

The iOS application
The Android application

The JavaScript source files for the application

Table 2: React Components

Component Description
Android starting script
iOS starting script
SmartSyncExplorerReactNative Root component (the entire application)
(i0S and Android)
SearchScreen Search screen (i0OS and Android)
ContactScreen Used for viewing and editing a single
contact (iOS and Android)
SearchBar Search bar in the search screen (i0S)
SearchBar Search bar in the search screen (Android)
ContactCell A single row in the list of results in the
search screen (i0OS and Android)
ContactBadge Colored circle with initials used in the search
results screen (i0S and Android)
Field A field name and value used in the contact
screen (i0S and Android)
StoreMgr Interacts with SmartStore and the server (via

SmartSync).

@ Note: Most components are shared between i0OS and Android. However, some components are platform specific.

35

Welcome to Mobile SDK Labs! Defer Login

Defer Login

Apps built with early versions of React Native for Mobile SDK always present a Salesforce login screen at startup. Sometimes, however,
these apps can benefit from deferring authentication until some later point. Beginning with React Native for Mobile SDK 4.2, you can
defer login to any logical place in your app.

Deferred login implementation is a two-step process:
1. InyouriOS or Android native container app, you call Mobile SDK native methods to disable authentication at startup.
2. Inyour React code, you call a Mobile SDK JavaScript function at the point where you plan to initiate authentication.

Read on for the implementation details.

Stepl: Disable Login at Startup
iOS (Objective-Q):

By default, the Salesforce login screen appears at startup. To disable this behavior, set the authenticateAtLaunch property of
SalesforceSDKManager 10 NO.

1. Editthe AppDelegate.m file

2. Change this line:

[SalesforceSDKManager sharedManager].authenticateAtLaunch YES;

to:

[SalesforceSDKManager sharedManager].authenticateAtLaunch = NO;

Android (Java):

By default, the Salesforce login screen appears at startup. To disable this behavior, override the shouldAuthenticate () method
inyour MainActivity class (or whichever class subclasses SalesforceReactActivity), asfollows:

@Override
public boolean shouldAuthenticate () {
return false;

Step 2: Initiate Authentication in React (JavaScript)

To initiate the authentication process, call the following react . force.oauth. js function:

function authenticate (success, fail)

This function takes two arguments: a success callback function and a failure callback function. If authentication fails, your failure callback
is invoked. If authentication succeeds, your success callback is invoked with a dictionary containing the following keys:
® accessToken

® refreshToken

® clientId

® userld

® orgld

® loginUrl

36

Welcome to Mobile SDK Labs! Upload Binary Content

® instanceUrl
® userAgent
® communityId

® communityUrl

Upload Binary Content

Beginning with Mobile SDK 4.2, you can upload binary contentto any force . com endpoint that supports the binary upload feature.

The sendRequest () methodin react.force.net.js hasanew optional parameter named fileParams.

function sendRequest (endPoint, path, successCB, errorCB, method, payload, headerParams,
fileParams)

This parameter expects the following form:

{

<fileParamNameInPost>: // value depends on the endpoint

{
fileMimeType:<someMimeType>,
fileUrl:<fileUrl>, // url to file to upload
fileName:<fileNameForPost>

}
For example:

{
fileUpload:

{
fileMimeType: 'image/jpegqg’,
fileUrl:localPhotoUrl,
fileName: 'pic.jpg'

}

@ Example: The github.com/wmathurin/MyUserPicReactNative sample app demonstrates binary upload. This sample allows you
to change your profile picture. Binary upload of the new pic happensin the uploadPhoto () functionofthe UserPic.js
file.

Here's the sample’s sendRequest () callinthe getUserInfo () function:

getUserInfo (callback) {
forceClient.sendRequest ('/services/data',
'/v36.0/connect/user-profiles/' + this.state.userId + '/photo',
(response) => {
callback (response);
s
(error) => {

console.log('Failed to upload user photo:' + error);
by
'POST',
{1,
{'X-Connect-Bearer-Urls': 'true'},
{fileUpload:

37

https://github.com/wmathurin/MyUserPicReactNative

Welcome to Mobile SDK Labs! Mobile Ul Elements with Polymer

fileUrl:localPhotoUrl,
fileMimeType: 'image/jpeg’',
fileName: 'pic.jpg'

Mobile Ul Elements with Polymer

Happy mobile app developers spend their time creating innovative functionality—not writing yet another detail page bound to a set
of APIs. The Salesforce Mobile Ul Elements library wraps Force.com APIs in Google’s Polymer framework for rapid HTML5 development.

Mobile Ul Elements empower HTML and JavaScript developers to build powerful Salesforce mobile apps with technologies they already
know. The open source Mobile Ul Elements project provides a pre-built component library that is flexible and surprisingly easy to learn.

You can deploy a Mobile Ul Elements app several ways.

e Ina Visualforce page
e Inaremotely hosted page on www.heroku.com or another third-party service
e Asa stand-alone app, using the hybrid container provided by Salesforce Mobile SDK

Mobile Ul Elements is an open-source, unsupported library based on Google’s Polymer framework. It provides fundamental building
blocks that you can combine to create fairly complex mobile apps. The component library enables any HTML developer to quickly and
easily build mobile applications without having to dig into complex mobile frameworks and design patterns.

You can find the source code for Mobile Ul Elements at github.com/ForceDotComLabs/mobile-ui-elements.

Third-Party Code

The Mobile Ul Elements library uses these third-party components:

e Polymer, aJavaScript library for adding new extensions and features to modern HTML5 browsers. It's built on Web Components and
is designed to use the evolving Web platform on modern browsers.

jQuery, the JavaScript library that makes it easy to write JavaScript.

Backbone.js, a JavaScript library providing the model-view—presenter (MVP) application design paradigm.
e Underscore,js, a “utility belt” library for JavaScript.

e Ratchet, prototype iPhone apps with simple HTML, CSS, and JavaScript components.

See github.com/ForceDotComLabs/mobile-ui-elements for a catalog of currently available elements.

force_selector_list

The force-selector-1list elementisan extension of core-selector elementand provides a wrapper around the
force-sobject-collection element. force-selector-1list actsasabase forany list Ul element that needs selector
functionality. It automatically updates the selected attribute when the user taps a row.

38

https://www.heroku.com
https://github.com/ForceDotComLabs/mobile-ui-elements
http://www.polymer-project.org/
http://jquery.com/
http://backbonejs.org/
http://underscorejs.org/
http://goratchet.com/
https://github.com/ForceDotComLabs/mobile-ui-elements

Welcome to Mobile SDK Labs! force-selector-relatedlist

Example

<force-selector-list sobject="Account" querytype="mru"></force-selector-list>

force-selector-relatedlist

The force-selector-relatedlist elementisan extension of the core-selector element and fetches the records of
related sObjects usinga force-sobject-collectionelement. force-selector-relatedlist isabaseelementfor
Ul elementx that render a record'’s related list and also require selector functionality.

Example

<force-selector-relatedlist related="{{related}}"></force-selector-relatedlist>

force-sobiject

The force-sobject elementwraps the SmartSync Force.SObject inaPolymerelement. The force-sobject element:
e Provides automatic management of the offline store for caching
e Provides a simpler DOM-based interface to interact with the SmartSync SObject Model

e Allows other Polymer elements to consume SmartSync easily

Example

<force-sobject sobject="Account" recordid="001000000000AAA"></force-sobject>

force-sobiject-collection

The force-sobject-collection elementisalow-level Polymerwrapperforthe SmartSync Force.SObjectCollection
object. This element:

e Automatically manages the offline data store for caching (when running inside a container)
® Provides a simple DOM-based interface for SmartSync interactions

e Allows other Polymer elements to easily consume SmartSync data

Example

<force-sobject-collection sobject="Account" querytype="mru"></force-sobject-collection>

force-sobject-layout

The force-sobject-layout element provides the layout information for a particular sObject record. It wraps the
describeLayout APlcall. The layoutinformation is cached in memory for the existing session and is stored in SmartStore for offline
consumption. The force-sobject-layout element also provides a base definition for elements that depend on page layouts,
suchas force-ui-detail and force-sobject-related

39

Welcome to Mobile SDK Labs! force-sobject-relatedlists

Example

<force-sobject-layout sobject="Account"></force-sobject-layout>

force-sobject-relatedlists

The force-sobject-relatedlists elementenablesthe rendering of related lists of a sObject record. It embeds the
force-sobject-layout element to fetch the related lists configuraton from the page layout settings. It parses the related lists
configuration for a particular sObject type. If the recordid attribute is provided, it also generates a SOQL/cache query to fetch the
related record items.

Example

<force-sobject-relatedlists sobject="Account"
recordid="001000000000AAA"></force-sobject-relatedlists>

force-sobject-store

The force-sobject-store element wraps the SmartSync Force.StoreCache ina Polymer element. This element:

e Automatically manages the lifecycle of the SmartStore soup for each sObject type
e Automatically creates index specs based on the lookup relationships on the sObject
e Provides a simpler DOM-based interface to interact with the SmartSync SObject model

e Allows other Polymer elements to easily consume SmartStore data

Example

<force-sobject-store sobject="Account"></force-sobject-store>

force-ui-app

The force-ui-app elementis a top-level Ul element that provides the basic styling and structure for the application. This element
uses Polymer layout features to enable flexible sections on the page. This is useful in a single-page view with split view panels. All children
of the main section must specify the "content” class to apply the correct styles.

Example
When used in a Visualforce context:

<force-ui-app multipage="true"></force-ui-app>

force-ui-detail

The force-ui-detail elementenables the rendering of a full view of a Salesforce record. This element uses the
force-sobject-layout element to fetch the page layout for the record. This element also embeds a force-sobject

40

Welcome to Mobile SDK Labs! force-ui-list

element to allow all the CRUD operations on an sObject. To inherit the default styles, this element should always be a child of
force-ui-app

Example

<force-ui-detail sobject="Account" recordid="001000000000AAA"></force-ui-detail>

force-ui-list

The force-ui-1list elementenables the rendering of the list of records for any sObject. Using attributes, you can configure this
element to show specific set of records. To inherit the appropriate styles, this element should always be a child of force-ui-app.

Example

<force-ui-list sobject="Account" querytype="mru"></force-ui-list>

force-ui-relatedlist

The force-ui-relatedlist elementextends force-selector-relatedlistelement andrenders a list of related
records to an sobject record. To inherit the default styles, this element should always be a child of force-ui-app.

Example

<force-ui-relatedlist related="{{related}}"></force-ui-relatedlist>

41

CHAPTER 7 Native iOS Development

In this chapter Salesforce Mobile SDK delivers libraries and sample Xcode projects for developing mobile apps on iOS.
« i0S Native Quick Start Two important features that the iOS native SDK provides are:
o Native iOS e Automation of the OAuth2 login process, making it easy to integrate OAuth with your app.
Requirements e Access to the REST APl with infrastructure classes that make that access as easy as possible.
° Cregting gn i0S ' When you create a native app using the forceios application, your project starts as a fully functioning
Project with forceios app. This app allows you to connect to a Salesforce organization and run a simple query. It doesn’t do
e Use CocoaPods with much, but it lets you know things are working as designed.
Mobile SDK
e Developing a Native
iOS App
e UsingiOS App
Extensions with
Mobile SDK
e Tutorial: Creating a
Native iOS
Warehouse App
e i0OS Sample
Applications

42

Native iOS Development iOS Native Quick Start

iOS Native Quick Start

Use the following procedure to get started quickly.

1. Make sure you meet all of the native iOS requirements.

2. Install Mobile SDK for iOS. If you prefer, you can install Mobile SDK from the Mobile SDK GitHub Repositories instead.
3. Run the template app.

Native iOS Requirements

iOS development with Mobile SDK 5.1 requires the following software.
e i0S9orlater.

e Xcode version 8 or later. (We recommend the latest version.)

e (CocoaPods version 1.1 or later (cocoapods.org).

e Node Package Manager (npm) version 3.10 or later.

e forceios version 5.1.

e A Salesforce Developer Edition organization with a connected app.

@ Nofe: As of version 4.0, Mobile SDK for iOS supports Cocoa Touch dynamic frameworks.

SEE ALSO:
iOS Installation
Use CocoaPods with Mobile SDK
Refreshing Mobile SDK Pods

Creating an iOS Project with forceios

To create an app, use forceios in a terminal window. The forceios utility gives you two ways to create your app.
e Specify the type of application you want, along with basic configuration data.

OR

e Use an existing Mobile SDK app as a template. You still provide the basic configuration data.

You can use forceios in interactive mode with command line prompts, or in scripted mode with the parameterized command line version.

@ Note: Be sure to install CocoaPods before using forceios. See iOS Installation.

Specifying a Project Type

The forceios create command prompts you to choose a project type. These types represent a range of architectures so that
you can use the development environment that you find most productive. Mobile SDK for iOS supports the following types:

43

https://cocoapods.org/

Native iOS Development Creating an iOS Project with forceios

App Type Architecture Language

native Native Objective-C

native swift Native Swift

react native React Native JavaScript with React markup and CSS
hybrid local Hybrid JavaScript, CSS, HTML5

hybrid remote Hybrid with Visualforce JavaScript, CSS, HTMLS5, Apex

To create a native i0S app, specify either native or native swift.

Specifying a Template

forceios createWithTemplate isidenticalto forceios create exceptthatitasks fora GitHub repo URlinstead of an
app type. You set this path to point to any repo directory that contains a Mobile SDK app that can be used as a template. Your template
app can be any supported Mobile SDK app type. The force script changes the template’s identifiers and configuration to match the
values you provide for the other parameters.

Using forceios Interactively

To use forceios interactively, open a Terminal window and type forceios create or forceios createWithTemplate.
The forceios utility then prompts you for each configuration value.

Using forceios create with Command Line Arguments

If you prefer, you can specify the forceios options as command line arguments. To see usage information, type forceios without
arguments. The list of available options displays.

$ forceios
Usage:
forceios create
-—apptype=<Application Type> (native, native swift, react native, hybrid remote,
hybrid local)
--appname=<Application Name>
--packagename=<App Package Identifier> (e.g. com.mycompany.myapp)
--organization=<Organization Name> (Your company's name)
--outputdir=<Output directory> (Leave empty for current directory)
--startpage=<App Start Page> (The start page of your remote app.
Required for hybrid remote only)

Using this information, type forceios create,followed by your options and values. For example, to create a native app written
in Objective-C:

$ forceios create —--apptype="native" --appname="package-test"
--packagename="com.acme.mobile apps"
--organization="Acme Widgets, Inc." --outputdir="PackageTest"

44

Native iOS Development Creating an iOS Project with forceios

Or, to create a native app written in Swift:

$ forceios create --apptype="native swift" --appname="package-test"
--packagename="com.acme.mobile apps"
--organization="Acme Widgets, Inc." --outputdir="PackageTest"

Using forceios createWithTemplate With Command Line Arguments
Here's command line usage information for forceios createWithTemplate:

forceios createWithTemplate
--templaterepouri=<Template repo URI> (e.g.
https://github.com/forcedotcom/SmartSyncExplorerReactNative)]
—--appname=<Application Name>
--packagename=<App Package Identifier> (e.g. com.mycompany.myapp)
--organization=<Organization Name> (Your company's/organization's name)
--outputdir=<Output directory> (Leave empty for current directory)]

For example, the following call creates an app in the current directory with the same source code and resources as the
SmartSyncExplorerReactNative sample app. However, forceios changes the app name to “MyReact” throughout the app.

forceios createWithTemplate
--templaterepouri="https://github.com/forcedotcom/SmartSyncExplorerReactNative"
--appname="MyReact"

--packagename="com.mycompany.react" --organization="Acme Software, Inc." --outputdir=""

Open the New Project in XCode

Apps created with the forceios template are ready to run, right out of the box. After the app creation script finishes, you can open and
run the project in Xcode.

1. InXcode, select File > Open.
2. Navigate to the output folder you specified.

3. Fornative, native swift,and react native apps, open the workspace file generated by CocoaPods. For
hybrid local and hybrid remote apps, openyourapp’s xcodeproj file.

4. When Xcode finishes building, click the Run button.

How the forceios Script Generates New Apps

App Type Generation Details

Native, native Swift, React native o Apps are based on CocoaPods.

e The script downloads templates at runtime from a GitHub repo.

e Forthe forceios createcommand,the script usesthe
default templates in the SalesforceMobileSDK-Templates
GitHub repo.

45

https://github.com/forcedotcom/SalesforceMobileSDK-Templates

Native iOS Development Run the Xcode Project Template App

App Type Generation Details

e For native and React native apps, the script uses npm at
runtime to download Mobile SDK libraries. The podfile refers
totheselibrarieswith :path => node modules/...
directives.

e For native Swift apps only, the podfile includes

!use frameworks.

Hybrid (local and remote) e The script generates apps with the Cordova command line.

e The script downloads the template app and a
bootconfig. json file from GitHub at runtime.

e The script downloads the SalesforceMobileSDK Cordova plugin
from GitHub at runtime.

e Mobile SDK libraries are compiled as static libraries and
delivered through the SalesforceMobileSDK Cordova plugin.

SEE ALSO:
Forceios Parameters
Updating Mobile SDK Apps (5.0 and Later)

Run the Xcode Project Template App

The Xcode project template includes a sample application you can run right away.
1. Press Command-R and the default template app runs in the iOS simulator.

2. On startup, the application starts the OAuth authentication flow, which results in an authentication page. Enter your credentials,
and click Login.

3. Tap Allow when asked for permission.

You should now be able to compile and run the sample project. It's a simple app thatlogs you into an org via OAuth2, issuesa select
Name from Account SOQL query, and displays the resultina UITableView instance.

Using a Custom Template to Create Apps

Wishing you could use your own—or someone else’s—custom app as a template? Good idea! Custom templates promote reuse of
code, rapid development, and internal consistency. Beginning in Mobile SDK 5.0, you can use either forceios or forcedroid to create apps
with custom templates. To turn a Mobile SDK app into a template, you perform a few steps to prepare the app’s repo for Mobile SDK
consumption.

About Mobile SDK Templates

Mobile SDK defines a template for each architecture it supports on iOS and Android. These templates are maintained in the
github.com/forcedotcom/SalesforceMobileSDK-Templates repo. When a customer runs the forcedroid or forceios create command,
the script copies the appropriate built-in template from the repo and transforms this copy into the new app. Apps created this way are
basic Mobile SDK apps with little functionality.

46

https://github.com/forcedotcom/SalesforceMobileSDK-Templates

Native iOS Development Using a Custom Template to Create Apps

Perhaps you'd like to create your own template, with additional functionality, resources, or branding. You can harness the same Mobile
SDK mechanism to turn your own app into a template. You can then tell forcedroid or forceios to use that template instead of its own.

How to Use a Custom Template

In addition to forcedroid and forceios create, Mobile SDKdefinesa createwi thTemplate command.When you runforcedroid
orforceios createlithTemplate,you specify atemplate app repo instead of an app type, followed by the remaining app creation
parameters. The template app repo contains a Mobile SDK app that the script recognizes as a template. To create a new Mobile SDK app
from this template, the script copies the template app to a new folder and applies your parameter values to the copied code.

The template.js File

To accept your unknown app as a template, forceios and forcedroid require you to define a template. js configuration file. You
save this file in the root of your template app repo. This file tells the script how to perform its standard app refactoring tasks—moving
files, replacing text, removing and renaming resources. However, you might have even more extensive changes that you want to apply.
In such cases, you can also adapt template.djs to perform customizations beyond the standard scope. For example, if you insert
your app name in classes other than the main entry point class, you can use template. js to perform those changes.

A template. js file contains two parts: a JavaScript “prepare” function for preparing new apps from the template, and a declaration
of exports.

The template.js Prepare Funtion

Most of a template. js file consists of the “prepare” function. By default, prepare functions use the following signature:
function prepare(config, replaceInFiles, moveFile, removeFile)

You can rename this function, as long as you remember to specify the updated name in the list of exports. The Mobile SDK script calls

the function you export with the following arguments:

e config: Adictionary identifying the platform (iOS or Android), app name, package name, organization, and Mobile SDK version.
* replaceInFiles:Helperfunction to replace a string in files.

® moveFile:Helperfunction to move files and directories.

® removeFile: Helper function to remove files and directories.

The default prepare function found in Mobile SDK templates replaces strings and moves and removes the files necessary to personalize
a standard template app. If you intend to add functionality, place your code within the prepare function. Note, however, that the helper
functions passed to your prepare function can only perform the tasks of a standard template app. For custom tasks, you'll have to
implement and call your own methods.

Exports Defined in template.js

Each template. s file defines the following two exports.

appType
Assign one of the following values:
® 'native'
e ‘'native swift' (forceios only)
¢ 'react native'

® 'hybrid local'

47

Native iOS Development Using a Custom Template to Create Apps

® 'hybrid remote'

prepare

The handle of your prepare function (listed without quotation marks).
Here's an example of the export section of a template. js file. This template is for a native app that defines a prepare function
named prepare:

//

// Exports

//

module.exports = {
appType: 'native',
prepare: prepare

bi
In this case, the prepare function’s handle is, in fact, “prepare”:

function prepare(config, replaceInFiles, moveFile, removeFile)

Template App Identification in template.js (Native and React Native Apps)

For native and React native apps, a template app’s prepare function defines an app name, a package name, and an organization or
company name. These values identify the template app itself—not a new custom app created from the template. At runtime, the Mobile
SDK script uses these values to find the strings to be replaced with the script’s input values. Here's an example of the settings for these
iOSNativeTemplate template app:

// Values in template

var templateAppName = 'iOSNativeTemplate';
var templatePackageName = 'com.salesforce.iosnativetemplate';
var templateOrganization = 'iOSNativeTemplateOrganizationName';

Examples of template.js Files

Mobile SDK defines the following template. 7s filesin the github.com/forcedotcom/SalesforceMobileSDK-Templates repo:
® i0OSNativeTemplate/template.js (forceios only)

e i0SNativeSwiftTemplate/template.js (forceiosonly)

® ReactNativeTemplate/template.js

® HybridLocalTemplate/template.js

® HybridRemoteTemplate/template.js

® AndroidNativeTemplate/template.js (forcedroid only)

These templates are the bare bones apps used by forceios create and forcedroid create. Their level of complexity is
intentionally low. For an example of a more complex template repo created from a full-fledged app, check out
github.com/forcedotcom/SmartSyncExplorerReactNative.

@ Nofte: Always match the script command to the template. Use i0S-specific templates with forceios
createWithTemplate only, and Android-specific templates with forcedroid createWithTemplate only. This
restriction doesn’t apply to hybrid and React native templates.

48

https://github.com/forcedotcom/SalesforceMobileSDK-Templates
https://github.com/forcedotcom/SmartSyncExplorerReactNative

Native iOS Development Use CocoaPods with Mobile SDK

Define a Basic template. js File
The following steps describe the quickest way to create a basic template.js file.

1. Copya template.js file from the github.com/forcedotcom/SalesforceMobileSDK-Templates repo to the root of your custom
template app repo. Be sure to choose the template that matches the type of app your template should build.

2. For native or React native apps only, update the app name, package name, and organization to reflect your template app.

3. Ifnecessary, update the appType and prepare settings in the module.exports object, as described earlier. Although
this step isn't required for this basic example, you might need it later if you create your own template. js files.

Restrictions and Guidelines
A few restrictions apply to custom templates.

e The template app can be any valid Mobile SDK app that targets any supported platform and architecture.

e Aprimary requirement is that the template repo and your local Mobile SDK repo must be on the same Mabile SDK version. You can
use git version tags to sync both repos to a specific earlier version, but doing so isn't recommended.

e Always match the script command to the template. Use iOS-specific templates with forceios createWithTemplate
only,and Android-specific templates with forcedroid createWithTemplate only.Thisrestriction doesn‘tapply to hybrid
and React native templates.

Use CocoaPods with Mobile SDK

CocoaPods provides a convenient mechanism for merging Mobile SDK modules into existing Xcode projects.

Beginning in Mobile SDK 4.0, forceios uses CocoaPods to create projects. Developers can also use CocoaPods manually to add Mobile
SDK to existing iOS apps.

You're required to install CocoaPods to use Mobile SDK 4.0 and later for iOS. If you're unfamiliar with CocoaPods, start by reading the
documentation at www.cocoapods.org.

Mobile SDK provides CocoaPods pod specifications, or podspecs, for each Mobile SDK module.

® SalesforceSDKCore—Implements OAuth, passcodes, networking, and REST APIs. All other pods depend on this pod, either
directly or indirectly.

® SmartStore—Implements secure offline storage. Depends on FMDB.
* SmartSync—Implements offline synchronization. Depends on SalesforceRestAPI and SmartStore.

® SalesforceReact—Implements Salesforce Mobile SDK React Native bridges for apps written with React JavaScript and markup.
Depends on SmartSync.

® SalesforceAnalytics—Implementsareporting mechanism that sends Salesforce anonymous statistics on Mobile SDK
feature usage and popularity.

The following chart shows the dependencies between specs. In this chart, the arrows point from the dependent specs to their
dependencies.

49

https://github.com/forcedotcom/SalesforceMobileSDK-Templates
http://cocoapods.org

Native iOS Development Use CocoaPods with Mobile SDK

IOS Library Hierarchy

SalesforceAnalytics SalesforceSDKCore
Anonymous app usage ‘ OAuth, passcodes, networking,
reporting REST APIs (Default spec)
SmartStore

Offline secure storage

i

SalesforceReact ‘ SmartSync .

React Native library Offline synchronization

SalesforceHybrid
(com.salesforce.iossdk.
hybrid)

: 2 $

React Native Cordova
(from npm) (local Mobile SDK project)

LEGEND

Required

Depends on B module

If you declare a pod, you automatically get everything in that pod’s dependency chain. For example, by declaring a pod for
SalesforceReact, you automatically get the entire chain of Mobile SDK.

You can access all versions of the Mobile SDK podspecs in the github.com/forcedotcom/SalesforceMobileSDK-iOS-Specs repo. You can

also get the current version from the github.com/forcedotcom/SalesforceMobileSDK-iOS repo.

To use CocoaPods with Mobile SDK, follow these steps.

1. Besureyou'veinstalled the cocoapods Ruby gem as described at www.cocoapods.org. Mobile SDK 5.1 requires pod version 1.1
minimum.

2. Inyour project's Podfile, add the SalesforceMobileSDK-i0OS-Specs repo as a source. Make sure that you put this entry first, before the
CocoaPods source path.

target 'YourAppName' do
source 'https://github.com/forcedotcom/SalesforceMobileSDK-10S-Specs.git' # needs to be

first
source 'https://github.com/CocoaPods/Specs.git'

50

https://github.com/forcedotcom/SalesforceMobileSDK-iOS-Specs
https://github.com/forcedotcom/SalesforceMobileSDK-iOS
http://www.cocoapods.org

Native iOS Development Use CocoaPods with Mobile SDK

3. Reference the Mobile SDK podspec that you intend to merge into your app. For example, to add OAuth and passcode modules to
your app, declare the SalesforceSDKCore pod in your Podfile. For example:

target 'YourAppName' do

source 'https://github.com/forcedotcom/SalesforceMobileSDK-10S-Specs.git' # needs to be
first
source 'https://github.com/CocoaPods/Specs.git'

pod 'SalesforceSDKCore'

end

4. To add other modules, add pod calls. For example, to use the SmartStore and SmartSync packages, declare the SmartStore,
SmartSync,and SalesforceAnalytics podsinadditionto SalesforceSDKCore. For example:

target 'YourAppName' do

source 'https://github.com/forcedotcom/SalesforceMobileSDK-10S-Specs.git' # needs to be
first

source 'https://github.com/CocoaPods/Specs.git'

pod 'SalesforceSDKCore'
pod 'SalesforceAnalytics'
pod 'SmartStore'

pod 'SmartSync'

end

5. To work with the upcoming release of Mobile SDK, you clone the dev branch of SalesforceMobileSDK-iOS, and then pull resources
from it.

a. Clone github.com/forcedotcom/SalesforceMobileSDK-iOS locally at the desired commit.
b. Atthe terminal window, run . /install. sh inthe root directory of your clone.
¢. Toeach pod callin your Podfile, add a : path parameter that points to your clone.

Here's the previous example repurposed to pull resources from a local clone:

target 'YourAppName' do

source 'https://github.com/forcedotcom/SalesforceMobileSDK-i0S-Specs.git' # need to be
first

source 'https://github.com/CocoaPods/Specs.git'

pod 'SalesforceSDKCore', :path => ‘/<path-to-clone-of>/SalesforceMobileSDK-iOS/’
pod 'SalesforceRnalytics', :path => ‘/<path-to-clone-of>/SalesforceMobileSDK-iOS/’
pod 'SmartStore', :path => ‘/<path-to-clone-of>/SalesforceMobileSDK-iOS/’

pod 'SmartSync', :path => ‘/<path-to-clone-of>/SalesforceMobileSDK-iOS/’

end

6. InaTerminalwindow,run pod install from your projectdirectory. CocoaPods downloads the dependencies for your requested
pods, merges them into your project, and creates a workspace containing the newly merged project.

@ Important: After running CocoaPods, always access your project only from the workspace that pod install creates.
For example, instead of opening MyProject .xcodeproj,open MyProject .xcworkspace.

7. To use Mobile SDK APIs in your merged app, remember these important tips.

51

https://github.com/forcedotcom/SalesforceMobileSDK-iOS-Specs

Native iOS Development Refreshing Mobile SDK Pods

a. Import header files using angle brackets (<" and “>") rather than double quotes. For example:
import <SalesforceSDKCore/SFRestAPI.h>
b. For Swift applications, be sure to specify use frameworks! inyour Podfile. Also, in your Swift source files, remember to
import modules instead of header files. For example:

import SalesforceSDKCore

Refreshing Mobile SDK Pods

CocoaPods caches its pods in repos stored locally on your machine. If the pod repo gets out of sync with forceios, you can manually
update it.

When forceios creates a native app, it prints a list of installed pods and their versions. For example:

Installing SalesforceSDKCore (5.0.0)
Installing SalesforceAnalytics (5.0.0)
Installing SmartStore (5.0.0)
Installing SmartSync (5.0.0)

You can compare these versions to your forceios version by typing:
forceios version
If the reported pod versions are older than your forceios version, run the following commands in the Terminal window:

pod repo remove forcedotcom
pod setup

After setup completes, recreate your app with forceios create.

Developing a Native iOS App

The Salesforce Mobile SDK for native iOS provides the tools you need to build apps for Apple mobile devices. Features of the SDKinclude:
e (lasses and interfaces that make it easy to call the Salesforce REST AP
e Fully implemented OAuth login and passcode protocols

e SmartStore library for securely managing user data offline

The native iOS SDK requires you to be proficient in Objective-C coding. You also need to be familiar with iOS application development
principles and frameworks. If you're a newhbie, developer.apple.com/develop/ is a good place to begin learning. See Native iOS Requirements
for additional prerequisites.

In a few Mobile SDK interfaces, you're required to override some methods and properties. SDK header (.h) files include comments that
indicate mandatory and optional overrides.

About Login and Passcodes

To access Salesforce objects from a Mobile SDK app, the customer logs in to an organization on a Salesforce server. When the login flow
begins, your app sends its connected app configuration to Salesforce. Salesforce responds by posting a login screen to the mobile device.

Optionally, a Salesforce administrator can set the connected app to require a passcode after login. Mobile SDK handles presentation of
the login and passcode screens, as well as authentication handshakes. Your app doesn't have to do anything to display these screens.

52

https://developer.apple.com/develop/

Native iOS Development About Memory Management

However, it's important to understand the login flow and how OAuth tokens are handled. See About PIN Security and OAuth 2.0
Authentication Flow.

@ Note: Mobile SDK for iOS supports the use of Touch ID to supply the PIN. Customers must type the PIN when first launching the
app. After first launch, the app prompts the customer to use either Touch ID or the keyboard to enter the PIN.

About Memory Management

Beginning in Mobile SDK 2.0, native iOS apps use Automatic Reference Counting (ARC) to manage object memory. You don't have to
allocate and then remember to deallocate your objects. See the Mac Developer Library at https://developer.apple.com for ARC syntax,
quidelines, and best practices.

Overview of Application Flow

Aproject created with forceios defines three classes: AppDelegate, InitialViewController,and RootViewController.
The AppDelegate objectloads InitialViewController asthefirst view to show. After the authentication process completes,
the AppDelegate object displays the view associated with RootViewController asthe entry point to your app.

Native iOS apps built with Mobile SDK follow the same design as other iOS apps. The main . m source file creates a
UIApplicationMain objectthatis the root object for the rest of the application. The UIApplicationMain constructor
creates an AppDelegate object that manages the application lifecycle.

AppDelegate usesaMobile SDKservice object, SalesforceSDKManager,to coordinate Salesforce authentication and passcode
activities. After the user is authenticated, AppDelegate passes control to the RootViewController object.

Y
UlApplicationhain

Y
AppDelegate - SalesforceSDKManager

. | Oauth, Passcode Modules and
Related App Customizations

Y
RootViewController

Can be RootViewController,
UlNavigationController, or a specialized
controller

@ Nofte: The workflow demonstrated by the template app is just an example. You can tailor your AppDelegate and supporting
classes to achieve your desired workflow. For example, you can postpone Salesforce authentication until a later point. You can

53

https://developer.apple.com
https://developer.apple.com

Native iOS Development SalesforceSDKManager and
SalesforceSDKManagerWithSmartStore Classes

retrieve data through REST API calls and display it, launch other views, perform services, and so on. Your app remains alive in
memory until the user explicitly terminates it, or until the device is rebooted.

SEE ALSO:
SalesforceSDKManager and SalesforceSDKManagerWithSmartStore Classes

SalesforceSDKManager and SalesforceSDKManagerWithSmartStore Classes

The SalesforceSDKManager class combines app identity and bootstrap configuration in a single component. It manages complex
interactions between authentication and passcodes using configuration provided by the app developer. In effect,
SalesforceSDKManager shields developers from having to control the bootstrap process.

The Mobile SDK template application usesthe SalesforceSDKManager classtoimplement most of the Salesforce-specific startup
functionality for you. SalesforceSDKManager manages and coordinates all objects involved in app launching, including PIN
code, OAuth configuration, and other bootstrap processes. Using SalesforceSDKManager ensures that interactions between
these processes occur in the proper sequence, while still letting you customize individual parts of the launch flow. Beginning with Mobile
SDK 3.0, all iOS native apps must use SalesforceSDKManager to manage application launch behavior.

@ Nofe: The SalesforceSDKManager class, which debuted in Mobile SDK 3.0, does not replace existing authentication
management objects or events. Rather, it's a super-manager of the existing boot management objects. Existing code should
continue to work fine, but we strongly urge developers to upgrade to the latest Mobile SDK version and
SalesforceSDKManager.

What About SalesforceSDKManagerWithSmartStore?

In Mobile SDK 4.0, the SmartStore library moved out of Mobile SDK core into its own housing. As a result, apps that use SmartStore now
require an instance of the SalesforceSDKManagerWithSmartStore class. This class does not replace
SalesforceSDKManager inyour code. Instead, you configure the shared SalesforceSDKManager instance to use
SalesforceSDKManagerWithSmartStore asitsinstance class.

The following steps are mandatory for SmartStore apps that upgrade to Mobile SDK 4.0 from earlier releases.
Inyour AppDelegate .mfile:

1. Importthe SalesforceSDKManagerWithSmartStore header:

#import <SmartStore/SalesforceSDKManagerWithSmartStore.h>

2. Inyour init method, before the first use of [SalesforceSDKManager sharedManager],add the following call:

[SalesforceSDKManager setInstanceClass:[SalesforceSDKManagerWithSmartStore class]];

This call is the only place where you should explicitly reference the SalesforceSDKManagerWithSmartStore class. The
rest of your code should continue working as before.

Foran example, see the AppDelegate class in the SmartSyncExplorer sample app.

Life Cycle
SalesforceSDKManager isa singleton object that you access by sending the sharedManager class message:

[SalesforceSDKManager sharedManager]

54

https://github.com/forcedotcom/SalesforceMobileSDK-iOS/blob/master/native/SampleApps/SmartSyncExplorer/SmartSyncExplorer/Classes/AppDelegate.m

Native iOS Development SalesforceSDKManager and
SalesforceSDKManagerWithSmartStore Classes

This shared object is created exactly once, thefirst time yourapp calls [SalesforceSDKManager sharedManager].ltserves
as a delegate for three other Mobile SDK manager objects:

® SFUserAccountManager

® SFAuthenticationManager

® SFPasscodeManager

Your app uses the SalesforceSDKManager object in two scenarios:

1. Atapplication startup, inthe init and application:didFinishLaunchingWithOptions: methods of
AppDelegate

2. Anytime the current user's OAuth tokens become invalid—either through logout, token expiration, or token revocation—while the
app continues to run

The events in the first scenario happen only once during the app life cycle. The second scenario, though, can happen anytime. When
Mobile SDK detects invalid tokens, it reruns the SalesforceSDKManager application launch flow, including any related event
handlers that your app provides. Be sure to code these event handlers defensively so that you don't suffer unwanted losses of data or
state if the app is reinitialized.

Application Launch Flow

When the application:didFinishLaunchingWithOptions: message arrives, you launch your app by sending the
launch message to the shared SalesforceSDKManager instance. If the app’s connected app requires a passcode,
SalesforceSDKManager displays the passcode verification screen to the user before continuing with the bootstrap process. The
following diagram shows this flow.

55

Native iOS Development SalesforceSDKManager and
SalesforceSDKManagerWithSmartStore Classes

SalesforceSDKManager bagins launch
process

Passcode prompt |-

Upto10
tries
allowed
Authanticate at launch?
T e e T T e e
Authentication
ermor thrown
Y
Authentication Authenfication
process starls SCreen

postLaunch event

- App runs

Key points:
e Ifthe OAuth settings in the connected app definition don't require a passcode, the flow proceeds directly to Salesforce authentication.
e Ifavalid access token is found, the flow bypasses Salesforce authentication.

e Ifnoaccess token is found and the device is offline, the authentication module throws an error and returns the user to the login
screen. SalesforceSDKManager doesn't reflect this event to the app.

e The postLaunch event occurs only after all credentials and passcode challenges are verified.

Besides what's shown in the diagram, the SalesforceSDKManager launch process also delegates user switching and push
notification setup to the app if the app supports those features. If the user fails or cancels either the passcode challenge or Salesforce
login, a postLogout event fires, after which control returns to AppDelegate.

56

Native iOS Development SalesforceSDKManager and
SalesforceSDKManagerWithSmartStore Classes

Afterthe postLaunch event, the SalesforceSDKManager object doesn't reappear until a user logout or user switch event
occurs. For either of these events, SalesforceSDKManager notifies your app. At that point, you can reset your app’s Mobile SDK
state and restart the app.

SalesforceSDKManager Launch Events

SalesforceSDKManager directsthe app’s bootstrap process according to the state of the app and the device. During the bootstrap
process, several events fire at important points in the launch sequence. You can use these events to run your own logic after the
SalesforceSDKManager flowiscomplete. Forforegrounding, be sure to wait until your app receives the postAppForeground
event before you resume your app’s logic.

Table 3: Launch Events
Event Description

postLaunch Arrives after all launch activities have completed. The app can
proceed with its business processes.

launchError Sent if fatal errors occur during the launch process.

postLogout rrives after the current user has logged out, or if the user fails the
A fterth t has logged out, orifth fails th
passcode test or the login authentication.

postAppForeground Arrives after the app returns to the foreground and the passcode
(if applicable) has been verified. This event indicates that
authentication is valid. After your app receives this event, you can
take extra actions to handle foregrounding.

switchUser Arrives after the current user has changed.

Certain events supersede others. For example, if passcode validation fails during launch, the postLogout event fires, but the
postLaunch event does not. Between priority levels, the higher ranking event fires in place of the lower ranking event. Here is the
list of priorities, with 1 as the highest priority level:

Table 4: Launch Event Priority Levels

Priority Level Events Comments
1 postLogout, switchUser These events supersede all others.
2 postLaunch, launchError It's important to note that these events

always supersede
postAppForeground. Forinstance, if
you send the app to the background and
then return it to the foreground during
login, postLaunch firesiflogin succeeds,
but postAppForeground does not.

3 postAppForeground Any of the other events can supplant this
lowest ranking event.

57

Native iOS Development SalesforceSDKManager and
SalesforceSDKManagerWithSmartStore Classes

SalesforceSDKManager Properties

You configure your app’s launch behavior by setting SalesforceSDKManager propertiesinthe init method of AppDelegate.
These properties contain your app’s startup configuration, including:

e Connected app identifiers

e Required OAuth scopes

e Authentication behavior and associated customizations

You're required to specify at least the connected app and OAuth scopes settings.

Youalsouse SalesforceSDKManager propertiesto define handler blocks forlaunch events. Event handler properties are optional.
If you don't define them, the app logs a runtime warning when the event occurs. In general, it's a good idea to provide implementations
for these blocks so that you have better control over the app flow.

Another especially useful property is the optional authenticateAtLaunch. Setthis property to NO to defer Salesforce authentication
until some point after the app has started running. You can run the authentication process at any point by sending the authenticate
message to SalesforceSDKManager. However, always set the launch propertiesin the init method of AppDelegate and
sendthe launch messageto SalesforceSDKManager inthe application:didFinishLaunchingWithOptions:
method.

The following table describes SalesforceSDKManager properties.

Table 5: SalesforceSDKManager Properties
Property Description

connectedAppId (Required) The consumer ID from the associated Salesforce
connected app.

connectedAppCallbackUri (Required) The Callback URI from the associated Salesforce
connected app.

authScopes (Required) The OAuth scopes required for the app.

postLaunchAction (Required) Controls how the app resumes functionality after
launch completes.

authenticateAtLaunch (Optional) If setto YES (the default), SalesforceSDKManager
attempts authentication at launch. Set this value to NO to defer
authentication to a different stage of your application. At the
appropriate time, send the authenticate message to
SalesforceSDKManager to initiate authentication.

launchErrorAction (Optional) If defined, this block responds to any errors that occur
during the launch process.

postLogoutAction (Optional) If defined, this block is executed when the current user
has logged out.

switchUserAction (Optional) If defined, this block handles a switch from the current
user to an existing or new user.

@ Note: This property is required if your app supports user
switching.

58

Native iOS Development AppDelegate Class

Property Description

postAppForegroundAction (Optional) If defined, this block is executed after Mobile SDK finishes
its post-foregrounding tasks.

useSnapshotView (Optional) Set to YES to use a snapshot view when your app is in
the background. This view obscures sensitive content in the app
preview screen that displays when the user browses background
apps from the home screen. Default is YES.

snapshotView (Optional) Specifies the view that obscures sensitive app content
from home screen browsing when your app is in the background.
The default view is a white opaque screen.

preferredPasscodeProvider (Optional) You can configure a different passcode provider to use
adifferent passcode encryption scheme. Default is the Mobile SDK
PBKDF2 provider.

AppDelegate Class

The AppDelegate classis the true entry point for an iOS app. In Mobile SDK apps, AppDelegate implements the standard iOS
UIApplicationDelegate interface.ltinitializes Mobile SDK by using the shared SalesforceSDKManager objecttooversee
the app launch flow.

OAuth functionality resides in an independent module. This separation makes it possible for you to use Salesforce authentication on
demand. You can start the login process from within your AppDelegate implementation, or you can postpone login until it's actually
required—for example, you can call OAuth from a subview.

Setup

To customize the AppDelegate template, start by resetting the following static variables to values from your Force.com Connected
Application:

® RemoteAccessConsumerKey

static NSString * const RemoteAccessConsumerKey =
@"3MVGOIu66FKeHhINkB117xt7kR8...YFDUpgRWcoQ2.dBv_alDyub5xa";

This variable corresponds to the Consumer Key in your connected app.
® OAuthRedirectURI
static NSString * const OAuthRedirectURI = Q@"testsfdc:///mobilesdk/detect/ocauth/done";

This variable corresponds to the Callback URL in your connected app.

Initialization

The following listing shows the init method asimplemented by the template app. It is followed by a call to the 1aunch method
of SalesforceSDKManager inthe application:didFinishLaunchingWithOptions: method.

- (id)init
{

59

Native iOS Development AppDelegate Class

self = [super init];
if (self) {
[SalesforceSDKManager sharedManager].connectedAppld =
RemoteAccessConsumerKey;
[SalesforceSDKManager sharedManager].
connectedAppCallbackUri = OAuthRedirectURI;
[SalesforceSDKManager sharedManager].authScopes =
@[@”"web”, Q@"api” 1;
__weak AppDelegate *weakSelf = self;
[SalesforceSDKManager sharedManager].postLaunchAction =
~ (SFSDKLaunchAction launchActionList) {
[weakSelf log:SFLogLevelInfo
format:@"Post-launch: launch actions taken: %@",
[SalesforceSDKManager
launchActionsStringRepresentation:
launchActionList]];
[weakSelf setupRootViewController];
bi
[SalesforceSDKManager sharedManager].launchErrorAction =
~(NSError *error, SFSDKLaunchAction launchActionList) {
[weakSelf log:SFLogLevelError
format:@"Error during SDK launch: %@",
[error localizedDescription]];
[weakSelf initializeAppViewState];
[[SalesforceSDKManager sharedManager] launch];
}i
[SalesforceSDKManager sharedManager].postLogoutAction = "{
[weakSelf handleSdkManagerLogout];
b
[SalesforceSDKManager sharedManager].switchUserAction =
~ (SFUserAccount *fromUser, SFUserAccount *toUser) {
[weakSelf handleUserSwitch:fromUser toUser:toUser];
b
return self;

- (BOOL)application: (UIApplication *)application
didFinishLaunchingWithOptions: (NSDictionary *)launchOptions

[[SalesforceSDKManager sharedManager] launch];

}

Inthe init method, the SalesforceSDKManager object:

e Initializes configuration items, such as Connected App identifiers amd OAuth scopes, using the SalesforceSDKManager
shared instance. For example:

[SalesforceSDKManager sharedManager].connectedAppld =
RemoteAccessConsumerKey;

[SalesforceSDKManager sharedManager].connectedAppCallbackUri =
OAuthRedirectURI;

[SalesforceSDKManager sharedManager].authScopes =
@[@"web", Q@"api"];

60

Native iOS Development AppDelegate Class

e Assigns code blocks to properties that handle the postLaunchAction, launchErrorAction, postLogoutAction,
and switchUserAction events. Notice the use of weak self in the block implementations. Besides protecting the code against
cycles, this usage demonstrates an important point: SalesforceSDKManager is just a manager—any real work requiring a
persistent self occurs within the delegate methods that actually perform the task. The following table summarizes how the
AppDelegate template handles each event.

Event Delegate Method Default Behavior

postLaunch setupRootViewController Instantiates the controller for the app’s root
view and assigns it to the
window.rootViewController
property of AppDelegate.

launchError initializeAppViewState Resets the root view controller to the initial
view controller.

postLogout handleSdkManagerLogout If there are multiple active user accounts,
changes the root view controller to the
multi-user view controller to allow the user
to choose a previously authenticated
account. If there is only one active account,
automatically switches to that account. If
there are no active accounts, presents the
login screen.

switchUser handleUserSwitch:toUser: Resets the root view controller to the initial
view controller, and then re-initiates the
launch flow.

You can customize any part of this process. At a minimum, change setupRootViewController todisplay your own controller
after authentication. You can also customize initializeAppViewState todisplay your own launch page, or the
InitialViewController tosuityourneeds. You can also move the authentication details to where they make the most sense
for your app. The Mobile SDK does not stipulate when—or if—actions must occur, but standard iOS conventions apply. For example,
self.window musthavea rootViewController bythetime application:didFinishLaunchingWithOptions:
completes.

UlApplication Event Handlers

You can also use the application delegate class to implement UIApplication event handlers. Important event handlers that you
might consider implementing or customizing include:

application:didFinishLaunchingWithOptions:

First entry point when your app launches. Called only when the process first starts (not after a backgrounding/foregrounding cycle).
The template app uses this method to:

e Initialize the window property
e Set the root view controller to the initial view controller (see initializeAppViewState)
e Display the initial window

e Initiate authentication by sending the launch message to the shared SalesforceSDKManager instance.

61

Native iOS Development About View Controllers

applicationDidBecomeActive

Called every time the application is foregrounded. The iOS SDK provides no default parent behavior; if you use it, you must implement
it from the ground up.

application:didRegisterForRemoteNotificationsWithDeviceToken:,
application:didFailToRegisterForRemoteNotificationsWithError:

Used for handling incoming push notifications from Salesforce.

Foralistofall UTApplication event handlers, see “UlApplicationDelegate Protocol Reference” in the iOS Developer Library.

About Deferred Login

You can defer user login authentication to any logical point after the postLaunch event occurs. To defer authentication:

1. Inthe init method of your AppDelegate class, setthe authenticateAtLaunch property of
SalesforceSDKManager 10 NO.

2. Sendthe launch methodto SalesforceSDKManager.
3. Callthe loginWithCompletion: failure: methodof SFAuthenticationManager atthe point of deferred login.

If you defer authentication, the logic that handles login completions and failures is left to your app’s discretion.

Upgrading Existing Apps

If you're upgrading an app from Mobile SDK 2.3 or earlier, you can reuse any custom code that handles launch events, but you'll have
to move it to slightly different contexts. For example, code that formerly implemented the authManagerDidLogout: method
of SFAuthenticationManagerDelegate nowgoesintothe postLogoutAction blockof SalesforceSDKManager.
Likewise, code that implemented the useraccountManager:didSwitchFromUser:toUser: method of
SFUserAccountManagerDelegate now belongsinthe switchUserAction blockof SalesforceSDKManager.

Finally, in your AppDelegate implementation, replace all calls to the loginWithCompletion: failure: method of
SFAuthenticationManager withthe launch methodof SalesforceSDKManager. Move the code in your completion
block to the postLaunchAction property, and move the failure block code to the 1aunchErrorAction property.

SEE ALSO:
Using Push Notifications in iOS

About View Controllers

In addition to the views and view controllers discussed with the AppDelegate class, Mobile SDK exposes the
SFAuthorizingViewController class. This controller displays the login screen when necessary.

To customize the login screen display:
1. Override the SFAuthorizingViewController classtoimplement your custom display logic.

2. Setthe [SFAuthenticationManager sharedManager].authViewController property to an instance Ofyour
customized class.

The most important view controller in your app is the one that manages the first view that displays, after login or—if login is
postponed—after launch. This controller is called your root view controller because it controls everything else that happens in your app.
The Mobile SDK for iOS project template provides a skeletal class named RootViewController that demonstrates the minimal
required implementation.

62

http://developer.apple.com/library/ios

Native iOS Development RootViewController Class

If your app needs additional view controllers, you're free to create them as you wish. The view controllers used in Mobile SDK projects
reveal some possible options. For example, the Mobile SDK iOS template project bases its root view class on the
UITableViewController interface,whilethe RestAPIExplorer sample projectusesthe UIViewController interface.
Your only technical limits are those imposed by iOS itself and the Objective-C language.

RootViewController Class

The RootViewController class exists only as part of the template project and projects generated from it. It implements the
SFRestDelegate protocol to set up a framework for your app’s interactions with the Salesforce REST API. Regardless of how you
define your root view controller, it must implement SFRestDelegate if you intend to use it to access Salesforce data through the
REST APIs.

RootViewController Design

As an element of a very basic app built with the Mobile SDK, the RootViewController class covers only the bare essentials. Its
two primary tasks are:

e Use Salesforce REST APIs to query Salesforce data
e Display the Salesforce data in a table

To do these things, the class inherits UITableViewController andimplementsthe SFRestDelegate protocol. The action
begins with an override of the UIViewController:viewDidLoad method:

- (void)viewDidLoad

{

[super viewDidLoad];
self.title = @"Mobile SDK Sample App";

// Here we use a query that should work on either
// Force.com or Database.com
SFRestRequest *request =
[[SFRestAPI sharedInstance]
requestForQuery:Q@"SELECT Name FROM User LIMIT 10"];
[[SFRestAPI sharedInstance] send:request delegate:self];
}

The iOS runtime calls viewDidLoad only once in the view's life cycle, when the view is first loaded into memory. The intention in
this skeletal app is to load only one set of data into the app’s only defined view. If you plan to create other views, you might need to
perform the query somewhere else. For example, if you add a detail view that lets the user edit data shown in the root view, you'll want
to refresh the values shown in the root view when it reappears. In this case, you can perform the query in a more appropriate method,
suchas viewWillAppear

After calling the superclass method, this code sets the title of the view and then issues a REST request in the form of an asynchronous
SOQL query. The query in this case is a simple SELECT statement that gets the Name property from each User object and limits the
number of rows returned to ten. Notice that the requestForQuery and send:delegate: messages are sent to a singleton
shared instance of the SFRestAPT class. Use this singleton object for all REST requests. This object uses authenticated credentials
from the singleton SFAccountManager object to form and send authenticated requests.

The Salesforce REST APl responds by passing status messages and, hopefully, data to the delegate listed in the send message. In this
case, the delegate is the RootViewController objectitself:

[[SFRestAPI sharedInstance] send:request delegate:self];

63

Native iOS Development About Salesforce REST APIs

The RootViewController objectcanactasan SFRestAPT delegate becauseitimplementsthe SFRestDelegate protocol.
This protocol declares four possible response callbacks:

®* request:didLoadResponse:—Request was processed. The delegate receives the response in JSON format. This callback
is the only one that indicates success.

®* request:didFailLoadWithError:—Requestcouldn’t be processed. The delegate receives an error message.

® requestDidCancelLoad—Request was canceled due to some external factor, such as administrator intervention, a network
glitch, or another unexpected event. The delegate receives no return value.

* requestDidTimeout—The Salesforce server failed to respond in time. The delegate receives no return value.

The response arrives in one of the callbacks you've implemented in RootViewController.Placeyour code forhandling Salesforce
datainthe request:didLoadResponse: callback. For example:

- (void) request: (SFRestRequest *)request
didLoadResponse: (id) jsonResponse {

NSArray *records = [JjsonResponse objectForKey:@"records"];
NSLog (@"request:didLoadResponse: #records: %d", records.count);
self.dataRows = records;

[self.tableView reloadDatal;
}

As the use of the id data type suggests, this code handles JSON responses in generic Objective-C terms. It addresses the
jsonResponse objectas an instance of NSDictionary and treats its records as an NSArray object. Because
RootViewController implements UITableViewController,it's simple to populate the table in the view with extracted
records.

Acallto request:didFaillLoadWithError: results from one of the following conditions:

e [fyou use invalid request parameters, you geta kSFRestErrorDomain error code. For example, you get this error if you pass
nilto requestForQuery:, or you try to update a nonexistent object.

e Ifan OAuth access token expires, the framework tries to obtain a new access token and, if successful, retries the query. If a request
for a new access token or session ID fails, you get a kSFOAuthErrorDomain error code. For example, you get this error if the
access token expires, and the OAuth refresh token is invalid. This scenario rarely occurs.

e Ifthe low-level HTTP request fails, you getan RKRestKitErrorDomain error code. Forexample, you get this errorif a Salesforce
server becomes temporarily inaccessible.

The other callbacks are self-describing and don't return an error code. You can choose to handle the result however you want: display
an error message, write to the log, retry the request, and so on.

About Salesforce REST APIs

Native app development with the Salesforce Mobile SDK centers around the use of Salesforce REST APIs. Salesforce makes a wide range
of object-based tasks available through URIs with REST parameters. Mobile SDK wraps these HTTP calls in interfaces that handle most
of the low-level work in formatting a request.

In Mobile SDK for i0S, all REST requests are performed asynchronously. You can choose between delegate and block versions of the
REST wrapper classes to adapt your requests to various scenarios. REST responses are formatted as NSArray or NSDictionary
objects for a successful request, or NSError if the request fails.

See the Force.com REST API Developer Guide for information on Salesforce REST response formats.
SEE ALSO:

Native REST API Classes for iOS

64

https://developer.salesforce.com/docs/atlas.en-us.206.0.api_rest.meta/api_rest/

Native iOS Development About Salesforce REST APIs

Supported Operations

TheiOS REST APIs support the standard object operations offered by Salesforce REST and SOAP APIs. Salesforce Mobile SDK offers delegate
and block versions of its REST request APIs. All versions return an SFRestRequest object that you can then send to Salesforce for
execution. With delegate methods, the REST response goes to an implementation of the SFRestDelegate protocol thatyou specify.
With block methods, the REST response goes to the success or failure block that you define in your method call.

Delegate request methods are defined in the SFRestAPT class, while block request methods are defined in the SFRestAPT
(Blocks) category.File requests are defined inthe SFRestAPI (Files) category and are documented in SFRestAPI
(Files) Category.

The following sections describe the supported operations.

Manual REST Request

Execute a request that you've built.

Delegate Method

- (void) send: (SFRestRequest *)request
delegate: (nullable id<SFRestDelegate>)delegate;

Block Method

- (void) sendRESTRequest: (SFRestRequest *)request
failBlock: (SFRestFailBlock) failBlock
completeBlock: (SFRestResponseBlock) completeBlock;

SOQL Query

Execute the given SOQL string and return the resulting data set.

Delegate Method
- (SFRestRequest *)requestForQuery: (NSString *)soqgl;
Block Method

- (SFRestRequest *) performSOQLQuery: (NSString *)query
failBlock: (SFRestFailBlock) failBlock
completeBlock: (SFRestDictionaryResponseBlock)completeBlock;

SOQL Query All

Execute the given SOQL string. The result includes all current and deleted objects that satisfy the query.

Delegate Method
- (SFRestRequest *)requestForQueryAll: (NSString *)soql;
Block Method

- (SFRestRequest *) performSOQLQueryAll: (NSString *)query
failBlock: (SFRestFailBlock) failBlock
completeBlock: (SFRestDictionaryResponseBlock) completeBlock;

65

Native iOS Development About Salesforce REST APIs

Batch Request
Execute a batch of up to 25 subrequests specified as an array of SFRestRequest objects. Each subrequest counts against rate limits.

Delegate Method

- (SFRestRequest *) batchRequest: (NSArray<SFRestRequest*>¥*)
requests haltOnError: (BOOL) haltOnError;

Block Method
(Not supported)

Composite Request

Execute a composite request. The Boolean al10rNone parameter indicates whether to treat all requests as a transactional block in
error conditions. Regardless of the number of subrequests, each composite request counts as one API call. See “Composite” in the
Force.com REST API Developer Guide.

Delegate Method

- (SFRestRequest *) compositeRequest: (NSArray<SFRestRequest*>*) requests
reflIds: (NSArray<NSString*>*)reflds
allOrNone: (BOOL) allOrNone;

Block Method
(Not supported)

SOSL Search

Execute the given SOSL string and return the resulting data set.

Delegate Method
- (SFRestRequest *)requestForSearch: (NSString *)sosl;
Block Method

- (SFRestRequest *) performSOSLSearch: (NSString *)search
failBlock: (SFRestFailBlock) failBlock
completeBlock: (SFRestArrayResponseBlock) completeBlock;

Search Result Layout
Get a search result layout.

Delegate Method
- (SFRestRequest *)requestForSearchResultLayout: (NSString*)objectList;
Block Method

- (SFRestRequest *) performRequestForSearchResultLayout: (NSString*)objectList
failBlock: (SFRestFailBlock) failBlock

completeBlock: (SFRestArrayResponseBlock) completeBlock;

66

https://developer.salesforce.com/docs/atlas.en-us.206.0.api_rest.meta/api_rest

Native iOS Development About Salesforce REST APIs

Search Scope and Order
Get the search scope and order.

Delegate Method
- (SFRestRequest *)requestForSearchScopeAndOrder;
Block Method

- (SFRestRequest *)
performRequestForSearchScopeAndOrderWithFailBlock: (SFRestFailBlock) failBlock
completeBlock: (SFRestArrayResponseBlock) completeBlock;

Metadata

Return the object’s metadata.

Delegate Method
- (SFRestRequest *)requestForMetadataWithObjectType: (NSString *)objectType;
Block Method

- (SFRestRequest *) performMetadataWithObjectType: (NSString *)objectType
failBlock: (SFRestFailBlock) failBlock
completeBlock: (SFRestDictionaryResponseBlock)completeBlock;

Describe Global

Return a list of all available objects in your org and their metadata.

Delegate Method
- (SFRestRequest *)requestForDescribeGlobal;
Block Method

- (SFRestRequest *)
performDescribeGlobalWithFailBlock: (SFRestFailBlock) failBlock
completeBlock: (SFRestDictionaryResponseBlock) completeBlock;

Describe with Object Type
Return a description of a single object type.

Delegate Method
- (SFRestRequest *)requestForDescribeWithObjectType: (NSString *)objectType;
Block Method

- (SFRestRequest *) performDescribeWithObjectType: (NSString *)objectType
failBlock: (SFRestFailBlock) failBlock
completeBlock: (SFRestDictionaryResponseBlock)completeBlock;

67

Native iOS Development About Salesforce REST APIs

Retrieve
Retrieve a single record by object ID.

Delegate Method

- (SFRestRequest *)requestForRetrieveWithObjectType: (NSString *)objectType
objectId: (NSString *)objectId
fieldList: (nullable NSString *)fieldList;

Block Method

- (SFRestRequest *) performRetrieveWithObjectType: (NSString *)objectType
objectId: (NSString *)objectId
fieldList: (NSArray<NSString*> *)fieldList
failBlock: (SFRestFailBlock) failBlock
completeBlock: (SFRestDictionaryResponseBlock)completeBlock;

Update

Update an object with the given map and, optionally, that satisfies a given If-Modified-Since condition.

Delegate Method

- (SFRestRequest *)requestForUpdateWithObjectType: (NSString *)objectType
objectId: (NSString *)objectId
fields: (nullable NSDictionary<NSString*, id> *)fields;

- (SFRestRequest *)requestForUpdateWithObjectType: (NSString *)objectType
objectId: (NSString *)objectId
fields: (nullable NSDictionary<NSString*, id> *)fields

ifUnmodifiedSinceDate: (nullable NSDate *) ifUnmodifiedSinceDate;
Block Method

- (SFRestRequest *) performUpdateWithObjectType: (NSString *)objectType
objectId: (NSString *)objectId
fields: (NSDictionary<NSString*, id> *)fields
failBlock: (SFRestFailBlock) failBlock
: (

completeBlock: (SFRestDictionaryResponseBlock)completeBlock;

Upsert

Update or insert an object from external data, based on whether the external ID currently exists in the external ID field. If you set the
name of the external ID field to “Id” and the external ID to null, a new record is created.

Delegate Method

- (SFRestRequest *)requestForUpsertWithObjectType: (NSString *)objectType
externalIdField: (NSString *)externalldField
externalld: (nullable NSString *)externalld
fields: (NSDictionary<NSString*, id> *)fields;

68

Native iOS Development

Block Method

- (SFRestRequest *) performUpsertWithObjectType: (NSString *)objectType
externalIdField: (NSString *)externalldField
externalld: (NSString *)externalld
fields: (NSDictionary<NSString*, id> *)fields
failBlock: (SFRestFailBlock) failBlock
completeBlock: (SFRestDictionaryResponseBlock) completeBlock;

Create
Create a record in the specified object.

Delegate Method

- (SFRestRequest *)requestForCreateWithObjectType: (NSString *)objectType

About Salesforce REST APIs

fields: (nullable NSDictionary<NSString*, id> *)fields;

Block Method

- (SFRestRequest *) performCreateWithObjectType: (NSString *)objectType
fields: (NSDictionary<NSString*, id> *)fields
failBlock: (SFRestFailBlock) failBlock
completeBlock: (SFRestDictionaryResponseBlock)completeBlock;

Delete
Delete the object of the given type with the given ID.
Delegate Method

- (SFRestRequest *)requestForDeleteWithObjectType: (NSString *)objectType
objectId: (NSString *)objectId;

Block Method

- (SFRestRequest *) performDeleteWithObjectType: (NSString *)objectType
objectId: (NSString *)objectId
failBlock: (SFRestFailBlock) failBlock
completeBlock: (SFRestDictionaryResponseBlock) completeBlock;

Versions
Return Salesforce version metadata.

Delegate Method
- (SFRestRequest *)requestForVersions;
Block Method

- (SFRestRequest *) performRequestForVersionsWithFailBlock: (SFRestFailBlock)failBlock

completeBlock: (SFRestDictionaryResponseBlock)completeBlock;

69

Native iOS Development About Salesforce REST APIs

Resources
Return available resources for the specified API version, including resource name and URI.
Delegate Method

- (SFRestRequest *)requestForResources;

Block Method

- (SFRestRequest *) performRequestForResourcesWithFailBlock: (SFRestFailBlock)failBlock

completeBlock: (SFRestDictionaryResponseBlock) completeBlock;

SObject Tree

Returns an SFRestRequest object that requests one or more sObject trees.

Delegate Method

- (SFRestRequest*) requestForSObjectTree: (NSString*)objectType
objectTrees: (NSArray<SFSObjectTree*>*)objectTrees;

Block Method
(Not supported)
@ Example: For sample calls, see

/libs/SalesforceSDKCore/SalesforceSDKCoreTests/SalesforceRestAPITests.mat
github.com/forcedotcom/SalesforceMobileSDK-iOS.

SFRestAPI Interface
SFRestAPI defines the native interface for creating and formatting Salesforce REST requests. It works by formatting and sending your
requests to the Salesforce service, then relaying asynchronous responses to your implementation of the SFRestDelegate protocol.

SFRestAPI servesas afactory for SFRestRequest instances. It defines a group of methods that represent the request types
supported by the Salesforce REST API. Each SFRestAPTI method corresponds to a single request type. Each of these methods returns
your request in the form of an SFRestRequest instance. You then use that return value to send your request to the Salesforce
server. The HTTP coding layer is encapsulated, so you don't have to worry about REST API syntax.

For a list of supported query factory methods, see Supported Operations

SFRestDelegate Protocol

When a class adopts the SFRestDelegate protocol, it intends to be a target for REST responses sent from the Salesforce server.
When you send a REST request to the server, you tell the shared SFRestAPT instance which object receives the response. When the
server sends the response, Mobile SDK routes the response to the appropriate protocol method on the given object.

The SFRestDelegate protocol declares four possible responses:

®* request:didLoadResponse:—Request was processed. The delegate receives the response in JSON format. This callback
is the only one that indicates success.

®* request:didFailLoadWithError:—Requestcouldn't be processed. The delegate receives an error message.

®* requestDidCancelLoad—Request was canceled due to some external factor, such as administrator intervention, a network
glitch, or another unexpected event. The delegate receives no return value.

70

https://github.com/forcedotcom/SalesforceMobileSDK-iOS

Native iOS Development About Salesforce REST APIs

® requestDidTimeout—The Salesforce server failed to respond in time. The delegate receives no return value.

The response arrives in your implementation of one of these delegate methods. Because you can't predict the type of response, you're
required to implement all the methods.

request:didLoadResponse: Method

The request:didLoadResponse: method is the only protocol method that handles a success condition, so place your code
for handling Salesforce data in that method. For example:

- (void) request: (SFRestRequest *)request
didLoadResponse: (id) jsonResponse {
NSArray *records = [JjsonResponse objectForKey:@"records"];
NSLog (@"request:didLoadResponse: #records: %d", records.count);
self.dataRows = records;
[self.tableView reloadDatal;
}

At the server, all responses originate as JSON strings. Mobile SDK receives these raw responses and reformats them as iOS SDK objects
before passing them to the request :didLoadResponse: method. Thus, the jsonResponse payload arrives as either an
NSDictionary objectoran NSArray object. The object type depends on the type of JSON data returned. If the top level of the
server response represents a JSON object, jsonResponse isan NSDictionary object. If the top level represents a JSON array
of other data, § sonResponse isan NSArray object.

If your method cannot infer the data type from the request, use [NSObject isKindOfClass:] todetermine the datatype.For
example:

if ([jsonResponse isKindOfClass: [NSArray class]]) {
// Handle an NSArray here.

} else {
// Handle an NSDictionary here.

}

You can address the response as an NSDictionary objectand extract its records into an NSArray object. To do so, send the
NSDictionary:objectForKey: message using the key “records”.

request:didFailLoadWithError: Method

Acalltothe request:didFailLoadWithError: callback results from one of the following conditions:

e Ifyou use invalid request parameters, you geta kSFRestErrorDomain error code. For example, you pass nil to
requestForQuery:,oryou try to update a non-existent object.

e Ifan OAuth access token expires, the framework tries to obtain a new access token and, if successful, retries the query. If a request
fora new access token or session ID fails, you geta kSFOAuthErrorDomain error code. For example, the access token expires,
and the OAuth refresh token is invalid. This scenario rarely occurs.

e Ifthe low-level HTTP request fails, you get an RKRestKitErrorDomain error code. For example, a Salesforce server becomes
temporarily inaccessible.

requestDidCancelload and requestDidTimeout Methods

The requestDidCancelLoad and requestDidTimeout delegate methods are self-describing and don't return an error
code. You can choose to handle the result however you want: display an error message, write to the log, retry the request, and so on.

71

Native iOS Development About Salesforce REST APIs

Creating REST Requests

Salesforce Mobile SDK for iOS natively supports many types of SOQL and SOSL REST requests. The SFRestAPT class provides factory
methods that handle most of the syntactical details for you. Mobile SDK also offers considerable flexibility for how you create REST
requests.

e Forstandard SOQL queries and SOSL searches, SFRestAPI methods create query strings based on minimal data input and
package them in an SFRestRequest object that can be sent to the Salesforce server.

e Ifyou are using a Salesforce REST API that isn't based on SOQL or SOSL, SFRestRequest methods let you configure the request
itself to match the API format.

e The SFRestAPI (QueryBuilder) category provides methods that create free-form SOQL queries and SOSL search strings
so you don't have to manually format the query or search string.

e Request methodsinthe SFRestAPI (Blocks) category letyou pass callback code as block methods, instead of using a
delegate object.

Sending a REST Request

Salesforce Mobile SDK for iOS natively supports many types of SOQL and SOSL REST requests. Luckily, the SFRestAPI provides factory
methods that handle most of the syntactical details for you.

At runtime, Mobile SDK creates a singleton instance of SFRestAPI. You use this instance to obtain an SFRestRequest object
and to send that object to the Salesforce server.

To send a REST request to the Salesforce server from an SFRestAPI delegate:

1. Build a SOQL, SOSL, or other REST request string.

For standard SOQL and SOSL queries, it's most convenient and reliable to use the factory methods in the SFRestAPT class. See
Supported Operations.

2. Create an SFRestRequest object with your request string.

Message the SFRestAPT singleton with the request factory method that suits your needs. For example, this code uses
theSFRestAPI:requestForQuery: method, which preparesa SOQL query.

// Send a request factory message to the singleton SFRestAPI instance
SFRestRequest *request = [[SFRestAPI sharedInstance]
requestForQuery:Q@"SELECT Name FROM User LIMIT 10"];

3. Sendthe send:delegate: message to the shared SFRestAPI instance. Use your new SFRestRequest object as the
send: parameter. The second parameter designates an SFRestDelegate object to receive the server's response. In the
following example, the class itself implements the SFRestDelegate protocol, soit sets delegate: to self.

// Use the singleton SFRestAPI instance to send the
// request, specifying this class as the delegate.
[[SFRestAPI sharedInstance] send:request delegate:self];

SFRestRequest Class

Salesforce Mobile SDK provides the SFRestRequest interface as a convenience class for apps. SFRestAPT provides request
methods that use your input to form a request. This request is packaged as an SFRestRequest instance and returned to your app.
In most cases you don't manipulate the SFRestRequest object. Typically, you simply pass it unchanged to the
SFRestAPI:send:delegate: method.

72

Native iOS Development About Salesforce REST APIs

If you're sending a REST request that isn't directly supported by the Mobile SDK—for example, if you want to use the Chatter REST
APl—you can manually create and configure an SFRestRequest object.

Using SFRestRequest Methods

SFRestAPI tools support SOQL and SOSL statements natively: they understand the grammar and can format valid requests based
on minimal input from your app. However, Salesforce provides some product-specific REST APIs that have no relationship to SOQL
queries or SOSL searches. You can still use Mobile SDK resources to configure and send these requests. This process is similar to sending
a SOQL query request. The main difference is that you create and populate your SFRestRequest object directly, instead of relying
on SFRestAPI methods.

To send a non-SOQL and non-SOSL REST request using the Mobile SDK:
1. Create aninstance of SFRestRequest.
2. Setthe properties you need on the SFRestRequest object.

3. Call send:delegate: onthesingleton SFRestAPI instance, passing in the SFRestRequest object you created as the
first parameter.

The following example performs a GET operation to obtain all items in a specific Chatter feed.

SFRestRequest *request = [[SFRestRequest alloc] init];

[request setDelegate:self];

[request setEndpoint:kSFDefaultRestEndpoint];

[request setMethod:SFRestMethodGET] ;

[request setPath:
[NSString stringWithFormat:@"/v26.0/chatter/feeds/record/%Q/feed-items",
recordId]];

[[SFRestAPI sharedInstance] send:request delegate:self];

4. Alternatively, you can create the same request using the requestWithMethod:path:queryParams class method.

SFRestRequest *request =

[SFRestRequest
requestWithMethod: SFRestMethodGET
path:
[NSString
stringWithFormat:

@"/v26.0/chatter/feeds/
record/%$@/feed-items",
recordId]
queryParams:nil];
[[SFRestAPI sharedInstance] send:request delegate:self];

5. To perform arequest with parameters, create a parameter string, and then use the SFJsonUtils:objectFromJSONString
static method to wrap itin an NSDictionary object. (If you prefer, you can create your NSDictionary object directly,
before the method call, instead of creating it inline.)

The following example performs a POST operation that adds a comment to a Chatter feed.

NSString *body =
[NSString stringWithFormat:
@"{ \"body\"
{\"messageSegments\"
[{ \"type\" : \"Text\",
\"text\" : \"%@\"}]

73

Native iOS Development About Salesforce REST APIs

Yy

comment];

SFRestRequest *request =
[SFRestRequest
requestWithMethod:SFRestMethodPOST
path: [NSString
stringWithFormat:
@"/v26.0/chatter/feeds/
record/%Q/feed-items",
recordId]
queryParams:
(NSDictionary *)
[SFJsonUtils objectFromJSONString:body]];
[[SFRestAPI sharedInstance] send:request delegate:self];

6. Tosetan HTTP header for your request, use the setHeaderValue: forHeaderName method. This method can help you
when you're displaying Chatter feeds, which come pre-encoded for HTML display. If you find that your native app displays unwanted
escape sequences in Chatter comments, set the X-Chatter-Entity-Encoding header to “false” before sending your
request, as follows:

[request setHeaderValue:@"false" forHeaderName:@"X-Chatter-Entity-Encoding"];
[[SFRestAPI sharedInstance] send:request delegate:self];

Unauthenticated REST Requests

In certain cases, some applications must make REST calls before the user becomes authenticated. In other cases, the application must
access services outside of Salesforce that don't require Salesforce authentication. To configure your SFRestRequest instance so
that it doesn't require an authentication token, setits requiresAuthentication property to NO.

@ Note: Unauthenticated REST requests require a full path URL. Mobile SDK doesn't prepend an instance URL to unauthenticated
endpoints.

@ Example:

SFRestRequest *request = [[SFRestAPI sharedInstance] requestForVersions];
request.requiresAuthentication = NO;

SFRestAPI (Blocks) Category

If you prefer, you can use blocks instead of a delegate to execute callback code. Salesforce Mobile SDK for native iOS provides a block
corollary for each SFRestAPT request method. These methods are defined in the SFRestAPI (Blocks) category.

Block request methods look a lot like delegate request methods. They all return a pointer to SFRestRequest, and they require the
same parameters. Block request methods differ from their delegate siblings in these ways:

1. Inaddition to copying the REST API parameters, each method requires two blocks: a fail block of type SFRestFailBlock,and
a complete block of type SFRestDictionaryResponseBlock ortype SFRestArrayResponseBlock, depending
on the expected response data.

74

Native iOS Development About Salesforce REST APIs

2. Block-based methods send your request for you, so you don't need to call a separate send method. If your request fails, you can use
the SFRestRequest * return value to retry the request. To do this, use the
SFRestAPI:sendRESTRequest:failBlock:completeBlock: method.

Judicious use of blocks and delegates can help fine-tune your app’s readability and ease of maintenance. Prime conditions for using
blocks often correspond to those that mandate inline functions in C++ or anonymous functions in Java. However, this observation is
just a general suggestion. Ultimately, you need to make a judgement call based on research into your app’s real-world behavior.

SFRestAPI (QueryBuilder) Category

If you're unsure of the correct syntax for a SOQL query or a SOSL search, you can get help from the SFRestAPI (QueryBuilder)
category methods. These methods build query strings from basic conditions that you specify, and return the formatted string. You can
pass the returned value to one of the following SFRestAPTI methods.

® - (SFRestRequest *)requestForQuery: (NSString *)soql;
® - (SFRestRequest *)requestForSearch: (NSString *)sosl;

SFRestAPI (QueryBuilder) providestwo static methods each for SOQL queries and SOSL searches: one takes minimal
parameters, while the other accepts a full list of options.

SOSL Methods
SOSL query builder methods are:

+ (NSString *) SOSLSearchWithSearchTerm: (NSString *)term
objectScope: (NSDictionary *)objectScope;

+ (NSString *) SOSLSearchWithSearchTerm: (NSString *)term
fieldScope: (NSString *)fieldScope
objectScope: (NSDictionary *)objectScope
limit: (NSInteger)limit;

Parameters for the SOSL search methods are:

e term isthe search string. This string can be any arbitrary value. The method escapes any SOSL reserved characters before processing
the search.

e fieldScope indicateswhichfieldstosearch.t'seither nil orone of the IN search group expressions: “IN ALL FIELDS", “IN EMAIL
FIELDS", “IN NAME FIELDS", “IN PHONE FIELDS”, or “IN SIDEBAR FIELDS". A ni1 value defaults to “IN NAME FIELDS". See Salesforce
Object Search Language (SOSL).

* objectScope specifies the objects to search. Acceptable values are;
= nil—No scope restrictions. Searches all searchable objects.

- An NSDictionary object pointer—Corresponds to the SOSL RETURNING fieldspec. Each key is an sObject name; each
value is a string that contains a field list as well as optional WHERE, ORDER BY, and LIMIT clauses for the key object.

If you use an NSDictionary object, each value must contain at least a field list. For example, to represent the following
SOSL statement in a dictionary entry:

FIND {Widget Smith}
IN Name Fields
RETURNING Widget c¢ (name Where createddate = THIS FISCAL QUARTER)

75

https://developer.salesforce.com/docs?filter_text=sosl
https://developer.salesforce.com/docs?filter_text=sosl

Native iOS Development

About Salesforce REST APIs

set the key to “Widget__c” and its value to “‘name WHERE createddate = "THIS_FISCAL_QUARTER". For example:

[SFRestAPI

SOSLSearchWithSearchTerm:@"all of these will be escaped:~{]"
objectScope: [NSDictionary

NSNull—No scope specified.

dictionaryWithObject:@"name WHERE
createddate="THIS FISCAL QUARTER"
forKey:@"Widget c"]];

e 1limit—Ifyouwantto limit the number of results returned, set this parameter to the maximum number of results you want to

receive.

SOQL Methods

SOQL QueryBuilder methods that construct SOQL strings are:

+ (NSString *) SOQLQueryWithFields:
sObject:

where:

limit:

+ (NSString *) SOQLQueryWithFields:
sObject:

where:

groupBy:

having:

orderBy:

limit:

(NSArray *)fields
(NSString *)sObject
(NSString *)where
(NSInteger)limit;
NSArray *)fields
NSString *)sObject
NSString *)where

NSString *)having
NSArray *)orderBy

(
(
(
(NSArray *)groupBy
(
(
(NSInteger)limit;

Parameters for the SOQL methods correspond to SOQL query syntax. All parameters except fields and sObject can be setto

nil.

Parameter name
fields
sObject

where

groupBy

having

orderBy

limit

See SOQL SELECT Syntax.

Description

An array of field names to be queried.

Name of the object to query.

An expression specifying one or more query conditions.

An array of field names to use for grouping the resulting records.

An expression, usually using an aggregate function, for filtering
the grouped results. Used only with groupBy.

An array of fields name to use for ordering the resulting records.

Maximum number of records you want returned.

76

https://developer.salesforce.com/docs/atlas.en-us.206.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select.htm

Native iOS Development About Salesforce REST APIs

SOSL Sanitizing

The QueryBuilder category also provides a class method for cleaning SOSL search terms:

+ (NSString *) sanitizeSOSLSearchTerm: (NSString *)searchTerm;

This method escapes every SOSL reserved character in the input string, and returns the escaped version. For example:
NSString *soslClean = [SFRestAPI sanitizeSOSLSearchTerm:@"FIND {MyProspect}"];

This call returns “FIND \{MyProspect\}".

The sanitizeSOSLSearchTerm: method is called in the implementation of the SOSL and SOQL QueryBuilder methods, so you
don't need to call it on strings that you're passing to those methods. However, you can use it if, for instance, you're building your own
queries manually. SOSL reserved characters include:

VIR0 A~ -

SFRestAPI (Files) Category

The SFRestAPI (Files) category provides methods that create file operation requests. Each method returns a new
SFRestRequest object. Applications send this object to the Salesforce service to process the request. For example, the following
code snippet calls the requestForOwnedFilesList:page: method toretrieve a SFRestRequest object. It then sends
the request object to the server, specifying its owning object as the delegate that receives the response.

SFRestRequest *request = [[SFRestAPI sharedInstance] requestForOwnedFilesList:nil page:0];
[[SFRestAPI sharedInstance] send:request delegate:self];

Note: Thisexample passes nil to the first parameter (userId). Thisvalue tellsthe requestForOwnedFilesList:page:
method to use the ID of the context, or logged in, user. Passing 0 to the pageNum parameter tells the method to fetch the first

page.

See Files and Networking for a full description of the Files feature and networking functionality.

Methods

SFRestAPI (Files) category supports the following operations. For a full reference of this category, see SFRestAPI (Files)
Category—Request Methods (i0S). For a full description of the REST request and response bodies, go to Chatter REST APl Resources >
FilesResources at http://www.salesforce.com/us/developer/docs/chatterapi.

- (SFRestRequest*) requestForOwnedFilesList:(NSString*) userld page:(NSUInteger)page;
Builds a request that fetches a page from the list of files owned by the specified user.

- (SFRestRequest*) requestForFilesinUsersGroups: (NSString*)userld page:(NSUInteger)page;
Builds a request that fetches a page from the list of files owned by the user’s groups.

- (SFRestRequest*) requestForFilesSharedWithUser: (NSString*)userld page:(NSUInteger)page;
Builds a request that fetches a page from the list of files that have been shared with the user.

- (SFRestRequest*) requestForFileDetails: (NSString*)sfdcld forVersion:(NSString*)version;
Builds a request that fetches the file details of a particular version of afile.

- (SFRestRequest*) requestForBatchFileDetails: (NSArray*)sfdclds;
Builds a request that fetches the latest file details of one or more files in a single request.

- (SFRestRequest*) requestForFileRendition: (NSString*)sfdcld version:(NSString*)version renditionType:
(NSString*)renditionType page:(NSUInteger)page;
Builds a request that fetches the a preview/rendition of a particular page of the file (and version).

77

https://developer.salesforce.com/docs/atlas.en-us.206.0.chatterapi.meta/chatterapi/connect_resources_files.htm

Native iOS Development Handling Authentication Errors

- (SFRestRequest*) requestForFileContents: (NSString*) sfdcld version:(NSString*) version;
Builds a request that fetches the actual binary file contents of this particular file.

- (SFRestRequest*) requestForAddFileShare: (NSString*)fileld entityld:(NSString*)entityld shareType:(NSString*)shareType;
Builds a request that add a file share for the specified file ID to the specified entity ID.

- (SFRestRequest*) requestForDeleteFileShare: (NSString*)shareld;
Builds a request that deletes the specified file share.

- (SFRestRequest*) requestForFileShares: (NSString *)sfdcld page:(NSUInteger)page;
Builds a request that fetches a page from the list of entities that share this file.

- (SFRestRequest*) requestForDeleteFileShare: (NSString*)shareld;
Builds a request that deletes the specified file share.

- (SFRestRequest*) requestForUploadFile: (NSData*)data name:(NSString*)name description: (NSString*)description
mimeType: (NSString*)mimeType;
Builds a request that uploads a new file to the server. Creates a new file with version set to 1.

Handling Authentication Errors

Mobile SDK provides default error handlers that display messages and divert the app flow when authentication errors occur. These error
handlersareinstancesofthe SFAuthErrorHandler class. They'remanaged by the SFAuthErrorHandlerList class, which
stores references to all authentication error handlers. Error handlers define their implementation in anonymous blocks that use the
following prototype:

typedef BOOL ("“SFAuthErrorHandlerEvalBlock) (NSError *, SFOAuthInfo *);

Areturn value of YES indicates that the handler was used for the current error condition, and none of the other error handlers apply.
Ifthe handler returns NO, the block was not used, and the error handling process continues to the next handler in the list. Implementation
details for error handlers are left to the developer’s discretion. To see how the Mobile SDK defines these blocks, look at the
SFAuthenticationManager.m fileinthe SalesforceSDKCore project.

To substitute your own error handling mechanism, you can:
e Override the Mobile SDK default error handler by adding your own handler to the top of the error handler stack (at index 0):

SFAuthErrorHandler *authErrorHandler =
[[SFAuthErrorHandler alloc] initWithName:@"myAuthErrorHandler"
evalBlock:"BOOL (NSError *error, SFOAuthInfo *authInfo) {
// Add your error-handling code here
P1:
[[SFAuthenticationManager sharedManager].authErrorHandlerList
addAuthErrorHandler:authErrorHandler atIndex:0];

e Remove the Mobile SDK generic “catch-all” error handler from the list. This causes authentication errors to fall through to the
launchErrorAction block of your SalesforceSDKManager implementation during the launch process, or to the
failure: blockofyour loginWithCompletion:failure: definitionifyou’'veimplemented deferred login.Here’'show
you disable the generic error handler:

SFAuthErrorHandler *genericHandler =
[SFAuthenticationManager sharedManager].genericAuthErrorHandler;
[[SFAuthenticationManager sharedManager].authErrorHandlerList
removeAuthErrorHandler:genericHandler];

78

Native iOS Development

Using iOS App Extensions with Mobile SDK

Using iOS App Extensions with Mobile SDK

iOS app extensions provide opportunities for developers to extend their app's functionality beyond the app window. Mobile SDK supports

app extensions with only a small amount of extra configuration.

About iOS App Extensions in Mobile SDK Apps

An'iOS app extension is itself an app. It lives in a separate folder in your Xcode project. The app extension can access the same resources

and libraries as your main app.

To enable extensions, you add special configuration in two areas:

e Workspace settings: \When you add an app extension, Xcode creates an app extension build target. You configure the existing

main target and the new extension target to join the same app group and share keychains.

Application code: At runtime, the two apps must share bootstrap configuration and user authentication. For this purpose, you add
special bootstrapping code to both apps.

Once everything is properly configured, your app extension can run any Mobile SDK code that's appropriate for the extension type.

Workspace Configuration

1.

In your Mobile SDK app, create an extension target as described in the Apple developer documentation. How you handle this step
is between you and iOS.

After you've created the target, select the top-level node of your Mobile SDK project in the Xcode Project Navigator. This step opens
your app’s configuration wizard.

Click General, and then specify a unique bundle identifier for the Mobile SDK app target. Here’s how it looks in Xcode 8.2.1.
BRAaAsAcme @8 <

MativeSamples) [SmartSyncExplorer

& SmartStore

[
» & sSmartSync

» & SalesforceHybridSDK
» & SalesforceReact

¥ [NativeSamples

> & RestAPIExplorer

¥ = SmartSyncExplorer M

Capabilities

& SmartSyncExplorer

san, SmartSyncExplorer

SmartSyncExplordglliTests

Resource Tags Info Build Settings Build Rules

D :’.plaM ${PRODUCT_NAME}

Bundle Identifier l com.salesforce.mobilesdk.internal. Smart SyncExp!

Build Phases

v Identity

Version 1.0

v SmartSyncExplorer

i) RecentContactsTod

L SmartS..tlements M B SmartSyncExplorercy Build 1.0
v Classes

> [WYPop...ontroller
¥ Signing
m Actions..troller.m

i Actions..ntroller.h Autematically manage signing

h AppDelegate.h
m AppDelegate.m

b InitialVi..ntroller.h Team Salesforce.com %)
m InitialVi..troller.m Provisioning Profile Xcode Managed Profile
h Contact..troller.h Signing Certificate iPhone Developer: Raj Rao (N7WUXS2TSN)
Contact..troller.m

h Contact..troller.h
v
m Contact..troller.m Deplayment Info

[Resources
Deployment Target a
Universal %)

> Supporting Files
> SmartSyn...orerUiTests Devices
L RecentCo...ayExtension
] Recent...tiements M
h T:day\«'fe...mro.ler.h e e a
m| TodayVi_rollerm M
Maininter...oryboard Device Orientation Portrait
Info.plist Upside Down

Repeat the bundle identifier step for the extension target. This identifier must also be unique.

79

Native iOS Development Using iOS App Extensions with Mobile SDK

5. Inyour app configuration, select your Mobile SDK app target and then click Capabilities.

6. Turn on App Groups and Keychain Sharing in your Mobile SDK target.

7. Under App Groups, select or create an app group. Use a unique label that identifies your app, such as “group.myapp.shared”.
8

. UnderKeychain Sharing, select or create a keychain group. Use a unique label that identifies your app, such as “com.myapp.MyApp".

ARaAasao=Ec @ B <> NativeSamples) [SmartSyncExplorer ¢
L a SmartStore D General Resource Tags Info Build Settings Build Phases Build Rules
P
k2 SmartSync PROJECT L
» [& salesforceHybridSDK = JIOEE
P &= SmartSyncExplorer
> £ SalesforceReact e
¥ | NativeSamples TARGETS L o) Inter-App Audio m
» & RestaPIExplorer sa., SmartSyncExplorer
3 Explorégl)ITest: &), i
v ﬁ SmartSyncExplorer M SmartSyncExplor ests v - Keychain Sharing m

¥ [SmartSyncExplorer £) RecentContactsTod tension

SmartS..tlements M .
n Keychain Groups: |com,.salesferce.mobilesdk.internal. SmarnSyncExplorer
| ¥ [Classes

| > WYPop...ontroller
m Actions...troller.m T=
Actions...ntroller.h
AppDelegate.h

m AppDelegate.m Steps: v Add the Keye
¥ Add the Keyc

ﬁ SmartSyncExploren

EHE2IE]

in Sharing entit
ain Sharing feature to

t to your entitlernents file
our App ID.

InitialVi_..ntroller.h

m| InitialVi_..trollar.m

Contact...troller.h

Background Modes

-

m Contact...troller.m

o,

Feae
i g » (] Associated Domains
m Contact...troller.m

» Resources

» [Supporting Files ¥ [¢f] App Groups
1 3 SmartSyn._.orerUiTests
v

RecentCo..ayExtension
Y App Groups: I group.com.salesforce.mobilesdk.internal.SmartSyncExplorer
group.com.salesforce.dreamforce.internal dreamforce
group.com.salesforce.internal authenticator
-

ol

L] Recent...tlements M

h TodayVie..ntroller.h

m TodayVi.rollerm M +
Maininter..oryboard
Info.plist b

| 3 SmartSy.rCommon M] =

- s iea T S ———

80

Native iOS Development

B2 Q

>
>

» B

>

>

v

Using iOS App Extensions with Mobile SDK

9. Repeat the App Groups and Keychain Sharing steps for your extension target. The two values in the extension target must exactly

match the corresponding values in the application

o .

2 QaQ M © 2 B |8 (¢ NativeSamples) [SmartSyncExplorer
2 SmartStore |E| General Resource Tags Info Build Settings
2 smartSync PROJECT

SalesforceHybrid SDK

. B SmartSyncExplorer ¥ . Keychain Sharing
= SalesforceReact

NativeSamples TARQGETS

Build Phases Build Rules

Ps RestAPIExplorer g.‘}mnrls,-nr:l-xp!n.'n' Keychain Groups:

com.salesforce.mobilesdk.internal.SmartSyncExplorer

L] smartS..tlements M

B8 SmartSyncExplordyCommon

v Classes
> WYPop...ontroller Steps: ‘r’
1 Actions..troller.m
h Actions..ntroller.h
h| AppDelegate.h | Associated Domains

1 AppDelegate.m

h | InitialVi...ntroller.h
m InitialVi...troller.m ¥ i) App Groups
h Contact...troller.h
n Contact...troller.m

: SmartSyncExplorer M SmartSyncExplorerUiTests
¥ | SmartSyncExplorer @ RecentContactsTodayExtension

h Contact..troller.h

App Groups: [group.com.salesforce.mobilesdk.internal.SmartSyncExplorer

n Comact..troller.m
> Resources

> Supporting Files
L SmartSyn..crerUiTests
¥ [RecentCo..ayExtension Steps i 4
] Recent..tlements M v A

1 TodayVie...ntroller.h

m TodayVi..rollerm M » [pata Protection
Mainlnter...oryboard T

info.plist

Application Bootstrapping

group.com salesforce.dreamforce.internal dreamforce
group.com salesforce.internal. authenticatort

In Mobile SDK template apps, the AppDelegate class contains “bootstrapping” code that initializes Mobile SDK. When you incorporate
an iOS app extension, you add a couple of lines that tell Mobile SDK that you're working in an app group.

To support extensions, you change your AppDelegate class to make it aware of the app group that you've defined. You then add
similar code to your app extension view controller. Mobile SDK 5.0 introduces a new class, SFSDKDatasharingHelper, for this

purpose.
AppDelegate Code Changes

The following steps apply to the init method of your main app’s AppDelegate class.

1. Inthe init method,set appGroupName and appGroupEnabled onthe SFSDKDatasharingHelper sharedinstance

before setting any SalesforceSDKManager properties.

// Insert these two lines, using your app group name

[SFSDKDatasharingHelper sharedInstance] .appGroupName = @"<your app group name>";

[SFSDKDatasharingHelper sharedInstance] .appGroupEnabled = YES;

// Now it's OK to set SalesforceSDKManager properties

[SalesforceSDKManager sharedManager].connectedApplId = @"<your consumer key>";

[SalesforceSDKManager sharedManager].connectedAppCallbackUri

[SalesforceSDKManager sharedManager].authScopes = @[Q@"api",
your app requires>];

81

= @"<your callback URL>";

@"web", <any other scopes

Native iOS Development Using iOS App Extensions with Mobile SDK

2. Inthe postLaunchAction block use NSUserDefaults to cache aflag that indicates login success. Store the value with
the userLoggedIn key.

[SalesforceSDKManager sharedManager] .postLaunchAction = » (SFSDKLaunchAction
launchActionList) {

/* Write a boolean indicating whether a user has logged into the app.
To make the data accessible to your app extension, use NSUserDefaults
to save it into your app group. */
[[NSUserDefaults initWithSuiteName:(@"<your app group name>"] setBool:QRYES
forKey:(@"userLoggedIn"] ;
}

It's important to also reset this key in the postLogoutActionand switchUserAction blocks.

App Extension Code Changes

At runtime, your iOS app extension operates as a second app, s0 you have to “bootstrap” it as well. You apply the same appGroupName
and appGroupEnabled changes as you did in the main app’s AppDelegate class. You also set the following
SalesforceSDKManager properties in your extension view controller as you did in your AppDelegate class:

® [SalesforceSDKManager sharedManager].connectedAppId
® [SalesforceSDKManager sharedManager] .connectedAppCallbackUri

® [SalesforceSDKManager sharedManager].authScopes

App extensions can't perform authentication tasks such as user logins. However, before making callsto SalesforceSDKManager,
you must verify that a user has logged in. You do this verification by checking the userLoggedIn value that you captured in the
postLaunchAction block of AppDelegate.

1. Inyour app extension’s initialization entry point, set and enable the app group.

[SFSDKDatasharingHelper sharedInstance].appGroupName = @"<your app group name>";
[SFSDKDatasharingHelper sharedInstance].appGroupEnabled = YES;

2. Addthe checkforthe userLoggedIn value. Continue with bootstrapping and other Mobile SDK calls only if userLoggedIn
equals YES.

[SFSDKDatasharingHelper sharedInstance].appGroupName = @"<your app group name>";
[SFSDKDatasharingHelper sharedInstance].appGroupEnabled = YES;

/* Before calling SalesforceSDKManager, check whether a user has logged in
through the main app. As your condition, use the userlLoggedIn Boolean value
that you set in your app's postLaunchAction block. Remember that you saved
this value in your app group using NSUserDefaults. */

if ([[NSUserDefaults initWithSuiteName:(@"<your app group name>"]

boolForKey:@"userLoggedIn"]]) ({
/* Now you can set the following SalesforceSDKManager properties
as you did in your AppDelegate init method */
[SalesforceSDKManager sharedManager] .connectedAppId = @"<your consumer key>"
[SalesforceSDKManager sharedManager] .connectedAppCallbackUri =
@"<your callback URL>";
[SalesforceSDKManager sharedManager].authScopes = @[@"api", @"web",
<any other scopes your app requires>];
// Call other Mobile SDK APIs

82

Native iOS Development Using iOS App Extensions with Mobile SDK

}

// Continue with standard extension implementation

If the bootstrapping succeeds, your app extension can use the current user’s shared credentials to directly access Salesforce data. The
following example shows typical REST API calls that you can add to an extension.

NSDictionary *fields = Q{@"FirstName": @"\%",@"LastName": Q"\%"};
SFRestRequest* request = [[SFRestAPI sharedInstance] requestForQuery:

@Q"SELECT FirstName, LastName FROM Contact ORDER BY CreatedDate DESC LIMIT 5"];
[[SFRestAPI sharedInstance] send:request delegate:self];

@ Important:

e |t'sthe developer's responsibility to determine the user’s login status. The iOS app extension code must not attempt to invoke
the SalesforceSDKManager object before the user successfully logs in.

e Fortesting iOS app extensions, there’s one important restriction: You're required to use a real device. You can't test iOS app
extensions in an iOS simulator.

Example: The following code is taken from the SmartSyncExplorer native sample app. This app defines an app extension that
looks up Contact records and displays a list of MRU records.

Here'sthe init methodfrom AppDelegate.m. Noticethatthe userLoggedIn property mustberesetforthree different
actions: postLaunchAction, postLogoutAction,and switchUserAction

- (id) init
{
self = [super init];
if (self) {
#if defined (DEBUG)
[SFLogger sharedLogger].loglevel = SFLogLevelDebug;

#else
[SFLogger sharedLogger].loglevel = SFLogLevelInfo;
#endif
SmartSyncExplorerConfig *config = [SmartSyncExplorerConfig sharedInstance];

[SFSDKDatasharingHelper sharedInstance] .appGroupName = config.appGroupName ;
[SFSDKDatasharingHelper sharedInstance] .appGroupEnabled =
config.appGroupsEnabled;
[SalesforceSDKManager setInstanceClass:
[SalesforceSDKManagerWithSmartStore class]];

// Need to u