Modern Java - A
Guide to Java 8

wizardforcel Published
ararorce with GitBook

is

Modern Java - A Guide to Java 8

Table of Contents

Introduction

Modern Java - A Guide to Java 8

Java 8 Stream Tutorial

Java 8 Nashorn Tutorial

Java 8 Concurrency Tutorial: Threads and Executors

Java 8 Concurrency Tutorial: Synchronization and Locks

Java 8 Concurrency Tutorial: Atomic Variables and ConcurrentMap
Java 8 API by Example: Strings, Numbers, Math and Files
Avoiding Null Checks in Java 8

Fixing Java 8 Stream Gotchas with IntelliJ IDEA

Using Backbone.js with Nashorn

o © oo N o g b~ W DN

—

Modern Java - A Guide to Java 8

Author: winterbe
From: java8-tutorial

License: MIT License

https://github.com/winterbe
https://github.com/winterbe/java8-tutorial
https://github.com/winterbe/java8-tutorial/blob/master/LICENSE

Modern Java - A Guide to Java 8

“Java is still not dead—and people are starting to figure that out.”

Welcome to my introduction to Java 8. This tutorial guides you step by step through all new
language features. Backed by short and simple code samples you'll learn how to use default
interface methods, lambda expressions, method references and repeatable annotations. At
the end of the article you'll be familiar with the most recent AP| changes like streams,
functional interfaces, map extensions and the new Date API. No walls of text, just a bunch
of commented code snippets. Enjoy!

This article was originally posted on my blog. You should follow me on Twitter.

Table of Contents

e Default Methods for Interfaces
e Lambda expressions
e Functional Interfaces
e Method and Constructor References
e Lambda Scopes
o Accessing local variables
o Accessing fields and static variables
o Accessing Default Interface Methods
e Built-in Functional Interfaces
o Predicates
o Functions
o Suppliers
o Consumers
o Comparators
e Optionals
e Streams
o Filter
o Sorted
o Map
o Match
o Count
o Reduce
e Parallel Streams
o Sequential Sort

https://twitter.com/mreinhold/status/429603588525281280
https://jdk8.java.net/
http://download.java.net/jdk8/docs/api/
http://winterbe.com/posts/2014/03/16/java-8-tutorial/
https://twitter.com/winterbe_

o Parallel Sort
e Maps
Date API
o Clock

o Timezones

o LocalTime

o

LocalDate

o

LocalDateTime

Annotations

Where to go from here?

Default Methods for Interfaces

Java 8 enables us to add non-abstract method implementations to interfaces by utilizing the
default keyword. This feature is also known as virtual extension methods.

Here is our first example:
interface Formula {
double calculate(int ;

default double sqrt(int {
return Math.sqrt(a);
}

Besides the abstract method calculate the interface Formula also defines the default
method sqrt . Concrete classes only have to implement the abstract method calculate .
The default method sqrt can be used out of the box.

Formula formula = new Formula() {

@Ooverride
public double calculate(int {
return sqrt(a *);
}
}
formula.calculate(); // 100.0
formula.sqrt(16); // 4.0

The formula is implemented as an anonymous object. The code is quite verbose: 6 lines of
code for such a simple calculation of sqrt(a * 100) . As we'll see in the next section, there's
a much nicer way of implementing single method objects in Java 8.

Lambda expressions

http://stackoverflow.com/a/24102730

Let's start with a simple example of how to sort a list of strings in prior versions of Java:

List<String> names = Arrays.asList('"peter", "anna", "mike", "xenia");

Collections.sort(names, new Comparator<String>() {
@Override
public int {
return b.compareTo(a);
}

1K

The static utility method collections.sort accepts a list and a comparator in order to sort
the elements of the given list. You often find yourself creating anonymous comparators and
pass them to the sort method.

Instead of creating anonymous objects all day long, Java 8 comes with a much shorter
syntax, lambda expressions:

Collections.sort(names, (String a, String b) -> {
return b.compareTo(a);

1K

As you can see the code is much shorter and easier to read. But it gets even shorter:

Collections.sort(names, (String a, String b) -> b.compareTo(a));

For one line method bodies you can skip both the braces {} andthe return keyword. But
it gets even shorter:

names.sort((a, b) -> b.compareTo(a));

List now has a sort method. Also the java compiler is aware of the parameter types so you
can skip them as well. Let's dive deeper into how lambda expressions can be used in the
wild.

Functional Interfaces

How does lambda expressions fit into Java's type system? Each lambda corresponds to a
given type, specified by an interface. A so called functional interface must contain exactly
one abstract method declaration. Each lambda expression of that type will be matched to
this abstract method. Since default methods are not abstract you're free to add default
methods to your functional interface.

We can use arbitrary interfaces as lambda expressions as long as the interface only
contains one abstract method. To ensure that your interface meet the requirements, you
should add the @runctionalinterface annotation. The compiler is aware of this annotation
and throws a compiler error as soon as you try to add a second abstract method declaration
to the interface.

Example:

@FunctionalInterface
interface <F, 7> {

T ;
b

Converter<String, Integer> converter = (from) -> Integer.valueOf(from);
Integer converted = converter.convert("123");
System.out.println(converted);

Keep in mind that the code is also valid if the @Functionalinterface annotation would be
omitted.

Method and Constructor References

The above example code can be further simplified by utilizing static method references:

Converter<String, Integer> converter = Integer::valueOf;
Integer converted = converter.convert("123");
System.out.println(converted);

Java 8 enables you to pass references of methods or constructors via the :: keyword. The
above example shows how to reference a static method. But we can also reference object
methods:

class {
String
return String.valueOf(s.charAt(0));
}

Something something = new Something();

Converter<String, String> converter = something::startsWith;
String converted = converter.convert("Java");
System.out.println(converted);

Let's see how the :: keyword works for constructors. First we define an example bean with
different constructors:

class
String firstName;
String lastName;
Person() {}
Person(String firstName, String lastName) {

this.firstName = firstName;
this.lastName = lastName;

Next we specify a person factory interface to be used for creating new persons:

interface <P extends > {

P ;
b

Instead of implementing the factory manually, we glue everything together via constructor
references:

PersonFactory<Person> personFactory = Person::new,;
Person person = personFactory.create("Peter", "Parker");

We create a reference to the Person constructor via person::new . The Java compiler
automatically chooses the right constructor by matching the signature of

PersonFactory.create .

Lambda Scopes

Accessing outer scope variables from lambda expressions is very similar to anonymous
objects. You can access final variables from the local outer scope as well as instance fields
and static variables.

Accessing local variables

We can read final local variables from the outer scope of lambda expressions:

final int num = 1;
Converter<Integer, String> stringConverter =
(from) -> String.valueOf(from + num);

stringConverter.convert(2);

But different to anonymous objects the variable num does not have to be declared final.
This code is also valid:

int num = 1;
Converter<Integer, String> stringConverter =
(from) -> String.valueOf(from + num);

stringConverter.convert(2);

However num must be implicitly final for the code to compile. The following code does not
compile:

int num = 1;

Converter<Integer, String> stringConverter =
(from) -> String.valueOf(from + num);

num = 3;

Writing to num from within the lambda expression is also prohibited.

Accessing fields and static variables

In contrast to local variables, we have both read and write access to instance fields and
static variables from within lambda expressions. This behaviour is well known from
anonymous objects.

class
static int outerStaticNum;
int outerNum;

void
Converter<Integer, String> stringConverterl = (from) -> {
outerNum = ;
return String.valueOf(from);
1
Converter<Integer, String> stringConverter2 = (from) -> {
outerStaticNum = ;
return String.valueOf(from);
1
}

Accessing Default Interface Methods

Remember the formula example from the first section? Interface rormula defines a default
method sqrt which can be accessed from each formula instance including anonymous
objects. This does not work with lambda expressions.

Default methods cannot be accessed from within lambda expressions. The following code
does not compile:

Formula formula = (a) -> sqrt(a *);

Built-in Functional Interfaces

The JDK 1.8 API contains many built-in functional interfaces. Some of them are well known
from older versions of Java like comparator Or Runnable . Those existing interfaces are
extended to enable Lambda support via the @Functionalinterface annotation.

But the Java 8 API is also full of new functional interfaces to make your life easier. Some of
those new interfaces are well known from the Google Guava library. Even if you're familiar
with this library you should keep a close eye on how those interfaces are extended by some
useful method extensions.

Predicates

Predicates are boolean-valued functions of one argument. The interface contains various
default methods for composing predicates to complex logical terms (and, or, negate)

Predicate<String> predicate = (s) -> s.length() >

r

predicate.test("foo");
predicate.negate().test("foo");

Predicate<Boolean> nonNull = Objects::nonNull;
Predicate<Boolean> isNull = Objects::isNull;

Predicate<String> isEmpty = String::isEmpty;
Predicate<String> isNotEmpty = isEmpty.negate();

Functions

Functions accept one argument and produce a result. Default methods can be used to chain
multiple functions together (compose, andThen).

Function<String, Integer> toInteger = Integer::valueOf;
Function<String, String> backToString = toInteger.andThen(String: :valueOf);

backToString.apply("123");

Suppliers

Suppliers produce a result of a given generic type. Unlike Functions, Suppliers don't accept
arguments.

Supplier<Person> personSupplier = Person::new;
personSupplier.get();

Consumers

https://code.google.com/p/guava-libraries/

Consumers represent operations to be performed on a single input argument.

Consumer<Person> greeter = (p) -> System.out.println("Hello, " + p.firstName);
greeter.accept(new Person("Luke", "Skywalker'"));
Comparators

Comparators are well known from older versions of Java. Java 8 adds various default
methods to the interface.

Comparator<Person> comparator = (pl, p2) -> pl.firstName.compareTo(p2.firstName);

Person p1l1
Person p2

new Person("John", "Doe");
new Person("Alice", "Wonderland");

comparator.compare(pl, p2);
comparator.reversed().compare(pl, p2);

Optionals

Optionals are not functional interfaces, but nifty utilities to prevent NullpointerException . It's
an important concept for the next section, so let's have a quick look at how Optionals work.

Optional is a simple container for a value which may be null or non-null. Think of a method
which may return a non-null result but sometimes return nothing. Instead of returning nu11
you return an optional in Java 8.

Optional<String> optional = Optional.of("bam");
optional.isPresent();

optional.get();
optional.orElse("fallback");

optional.ifPresent((s) -> System.out.println(s.charAt(0)));

Streams

A java.util.stream represents a sequence of elements on which one or more operations
can be performed. Stream operations are either intermediate or terminal. While terminal
operations return a result of a certain type, intermediate operations return the stream itself
S0 you can chain multiple method calls in a row. Streams are created on a source, e.g. a

java.util.collection like lists or sets (maps are not supported). Stream operations can
either be executed sequentially or parallely.

Streams are extremely powerful, so | wrote a separate Java 8 Streams Tutorial. You
should also check out Stream.js, a JavaScript port of the Java 8 Streams API.

http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/
https://github.com/winterbe/streamjs

Let's first look how sequential streams work. First we create a sample source in form of a list
of strings:

List<String> stringCollection = new ArraylList<>();
stringCollection.add("ddd2");
stringCollection.add("aaa2");
stringCollection.add("bbb1");
stringCollection.add("aaal");
stringCollection.add("bbb3");
stringCollection.add("ccc");
stringCollection.add("bbb2");
stringCollection.add("ddd1");

Collections in Java 8 are extended so you can simply create streams either by calling
Collection.stream() Or Collection.parallelstream() . The following sections explain the
most common stream operations.

Filter

Filter accepts a predicate to filter all elements of the stream. This operation is infermediate
which enables us to call another stream operation (foreach) on the result. ForEach accepts
a consumer to be executed for each element in the filtered stream. ForEach is a terminal
operation. It's void , so we cannot call another stream operation.

stringCollection
.stream()
.filter((s) -> s.startswWith("a"))
.forEach(System.out: :println);

Sorted

Sorted is an intermediate operation which returns a sorted view of the stream. The elements
are sorted in natural order unless you pass a custom comparator .

stringCollection
.stream()
.sorted()
.filter((s) -> s.startswWith("a"))
.forEach(System.out::println);

Keep in mind that sorted does only create a sorted view of the stream without manipulating
the ordering of the backed collection. The ordering of stringcollection is untouched:

System.out.println(stringCollection);

Map

The intermediate operation map converts each element into another object via the given
function. The following example converts each string into an upper-cased string. But you can
also use map to transform each object into another type. The generic type of the resulting
stream depends on the generic type of the function you pass to map .

stringCollection
.stream()
.map(String: :toUpperCase)
.sorted((a, b) -> b.compareTo(a))
.forEach(System.out::println);

Match

Various matching operations can be used to check whether a certain predicate matches the
stream. All of those operations are terminal and return a boolean result.

boolean anyStartswithA =
stringCollection
.stream()
.anyMatch((s) -> s.startswith("a"));

System.out.println(anyStartswithA);
boolean allStartswithA =
stringCollection
.stream()
.allMatch((s) -> s.startswith("a"));
System.out.println(allStartswithA);
boolean noneStartsWithz =
stringCollection
.stream()
.noneMatch((s) -> s.startswith("z"));

System.out.println(noneStartswithz);

Count

Count is a terminal operation returning the number of elements in the stream as a 1ong .

long startswWithB =
stringCollection
.stream()
.filter((s) -> s.startswWith("b"))
.count();

System.out.println(startswithB);

Reduce

This terminal operation performs a reduction on the elements of the stream with the given
function. The result is an optional holding the reduced value.

Optional<String> reduced =
stringCollection
.stream()
.sorted()
.reduce((s1, s2) -> s1 + "#" + s2);

reduced.ifPresent(System.out: :println);

Parallel Streams

As mentioned above streams can be either sequential or parallel. Operations on sequential
streams are performed on a single thread while operations on parallel streams are
performed concurrently on multiple threads.

The following example demonstrates how easy it is to increase the performance by using
parallel streams.

First we create a large list of unique elements:

int max = ;
List<String> values = new ArrayList<>(max);
for (int 1 = 0; i < max; i++) {
UUID uuid = UUID.randomUUID();
values.add(uuid.toString());

Now we measure the time it takes to sort a stream of this collection.

Sequential Sort

long tO® = System.nanoTime();

long count = values.stream().sorted().count();
System.out.println(count);

long t1 = System.nanoTime();

long millis = TimeUnit.NANOSECONDS.toMillis(t1 - tO);
System.out.println(String.format("sequential sort took: %d ms", millis));

Parallel Sort

long tO® = System.nanoTime();

long count = values.parallelStream().sorted().count();
System.out.println(count);

long t1 = System.nanoTime();

long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0);
System.out.println(String.format("parallel sort took: %d ms", millis));

As you can see both code snippets are almost identical but the parallel sort is roughly 50%
faster. All you have to do is change stream() to parallelStream() .

Maps

As already mentioned maps do not directly support streams. There's no stream() method
available on the map interface itself, however you can create specialized streams upon the
keys, values or entries of a map via map.keyset().stream() , map.values().stream() and

map.entrySet().stream()

Furthermore maps support various new and useful methods for doing common tasks.

Map<Integer, String> map = new HashMap<>();
for (int i = 0; i < ;o oi++) {

map.putIfAbsent(i, "val" + i);
}

map.forEach((id, val) -> System.out.println(val));

The above code should be self-explaining: putifabsent prevents us from writing additional
if null checks; foreach accepts a consumer to perform operations for each value of the
map.

This example shows how to compute code on the map by utilizing functions:

map.computeIfPresent(3, (num, val) -> val + num);
map.get(3);

map.computeIfPresent(9, (num, val) -> null);
map.containsKey(9);

map.computeIfAbsent (23, num -> "val" + num);
map.containsKey(23);

map.computeIfAbsent (3, num -> "bam");
map.get(3);

Next, we learn how to remove entries for a given key, only if it's currently mapped to a given
value:

map.remove(3, "val3");
map.get(3);

map.remove(3, '"val33");
map.get(3);

Another helpful method:

map.getOrDefault (42, "not found");

Merging entries of a map is quite easy:

map.merge(9, "val9", (value, newValue) -> value.concat(newValue));
map.get(9);

map.merge(9, "concat", (value, newValue) -> value.concat(newValue));
map.get(9);

Merge either put the key/value into the map if no entry for the key exists, or the merging
function will be called to change the existing value.

Date API

Java 8 contains a brand new date and time APl under the package java.time . The new
Date API is comparable with the Joda-Time library, however it's not the same. The following
examples cover the most important parts of this new API.

Clock

Clock provides access to the current date and time. Clocks are aware of a timezone and
may be used instead of system.currentTimeMillis() to retrieve the current time in
milliseconds since Unix EPOCH. Such an instantaneous point on the time-line is also
represented by the class 1nstant . Instants can be used to create legacy java.util.pate
objects.

Clock clock
long millis

= Clock.systemDefaultZone();
= clock.millis();

Instant instant
Date legacyDate

clock.instant();
Date.from(instant);

Timezones

http://www.joda.org/joda-time/
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html

Timezones are represented by a zonerd . They can easily be accessed via static factory
methods. Timezones define the offsets which are important to convert between instants and

local dates and times.
System.out.println(Zoneld.getAvailableZonelIds());

ZoneIld zonel = Zoneld.of("Europe/Berlin'");
ZoneIld zone2 = Zoneld.of("Brazil/East");
System.out.println(zonel.getRules());
System.out.println(zone2.getRules());

LocalTime

LocalTime represents a time without a timezone, e.g. 10pm or 17:30:15. The following
example creates two local times for the timezones defined above. Then we compare both
times and calculate the difference in hours and minutes between both times.

LocalTime.now(zonel);
LocalTime.now(zone2);

LocalTime nowl =
LocalTime now2 =

System.out.println(nowl.isBefore(now2));

long hoursBetween = ChronoUnit.HOURS.between(nowl, now2);
long minutesBetween = ChronoUnit.MINUTES.between(nowl, now2);

System.out.println(hoursBetween);
System.out.println(minutesBetween);

LocalTime comes with various factory methods to simplify the creation of new instances,
including parsing of time strings.

LocalTime late = LocalTime.of (23, ,);
System.out.println(late);

DateTimeFormatter germanFormatter =
DateTimeFormatter
.ofLocalizedTime(FormatStyle.SHORT)
.withLocale(Locale.GERMAN);

LocalTime leetTime = LocalTime.parse("13:37", germanFormatter);
System.out.println(leetTime);

LocalDate

LocalDate represents a distinct date, e.g. 2014-03-11. It's immutable and works exactly
analog to LocalTime. The sample demonstrates how to calculate new dates by adding or
subtracting days, months or years. Keep in mind that each manipulation returns a new

instance.

LocalDate today = LocalDate.now();
LocalDate tomorrow = today.plus(l, ChronoUnit.DAYS);
LocalDate yesterday = tomorrow.minusDays(2);

LocalDate independenceDay = LocalDate.of(, Month.JuLy, 4);
DayOfWeek dayOfWeek = independenceDay.getDayOfWeek();
System.out.println(dayOfWweek);

Parsing a LocalDate from a string is just as simple as parsing a LocalTime:

DateTimeFormatter germanFormatter =
DateTimeFormatter
.ofLocalizedDate(FormatStyle.MEDIUM)
.withLocale(Locale.GERMAN);

LocalDate xmas = LocalDate.parse('"24.12.2014", germanFormatter);
System.out.println(xmas);

LocalDateTime

LocalDateTime represents a date-time. It combines date and time as seen in the above
sections into one instance. LocalbateTime is immutable and works similar to LocalTime and
LocalDate. We can utilize methods for retrieving certain fields from a date-time:

LocalDateTime sylvester = LocalDateTime.of(, Month.DECEMBER, , , ,);

DayOfWeek dayOfWeek = sylvester.getDayOfWeek();
System.out.println(dayOfWeek);

Month month = sylvester.getMonth();
System.out.println(month);

long minuteOfDay = sylvester.getLong(ChronoField.MINUTE_OF_DAY);
System.out.println(minuteOfDay);

With the additional information of a timezone it can be converted to an instant. Instants can
easily be converted to legacy dates of type java.util.pate .

Instant instant = sylvester
.atZone(Zoneld.systemDefault())
.toInstant();

Date legacyDate = Date.from(instant);
System.out.println(legacyDate);

Formatting date-times works just like formatting dates or times. Instead of using pre-defined
formats we can create formatters from custom patterns.

DateTimeFormatter formatter =
DateTimeFormatter
.ofPattern("MMM dd, yyyy - HH:mm");

LocalDateTime parsed = LocalDateTime.parse('"Nov 03, 2014 - 07:13", formatter);
String string = formatter.format(parsed);
System.out.println(string);

Unlike java.text.NumberFormat the new bDateTimeFormatter is immutable and thread-safe.

For details on the pattern syntax read here.

Annotations

Annotations in Java 8 are repeatable. Let's dive directly into an example to figure that out.

First, we define a wrapper annotation which holds an array of the actual annotations:

@interface Hints {
Hint[] value();
}

@Repeatable(Hints.class)
@interface Hint {

String A
}

Java 8 enables us to use multiple annotations of the same type by declaring the annotation

@Repeatable .

Variant 1: Using the container annotation (old school)

@Hints({@Hint("hint1"), @Hint("hint2")3})
class {}

Variant 2: Using repeatable annotations (new school)

@Hint("hint1")
@Hint("hint2")
class {}

Using variant 2 the java compiler implicitly sets up the e@Hints annotation under the hood.
That's important for reading annotation information via reflection.

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

Hint hint = Person.class.getAnnotation(Hint.class);
System.out.println(hint); // null

Hints hintsl = Person.class.getAnnotation(Hints.class);
System.out.println(hintsl.value().length); // 2

Hint[] hints2 = Person.class.getAnnotationsByType(Hint.class);
System.out.println(hints2.length); // 2

Although we never declared the @Hints annotation on the person class, it's still readable
via getAnnotation(Hints.class) . However, the more convenient method is
getAnnotationsByType Which grants direct access to all annotated @Hint annotations.

Furthermore the usage of annotations in Java 8 is expanded to two new targets:

@Target({ElementType.TYPE_PARAMETER, ElementType.TYPE_USE})
@interface MyAnnotation {}

Where to go from here?

My programming guide to Java 8 ends here. If you want to learn more about all the new

classes and features of the JDK 8 API, check out my JDK8 API Explorer. It helps you

figuring out all the new classes and hidden gems of JDK 8, like Arrays.parallelSort ,
stampedLock and completableFuture - justto name a few.

I've also published a bunch of follow-up articles on my blog that might be interesting to you:

e Java 8 Stream Tutorial

e Java 8 Nashorn Tutorial

e Java 8 Concurrency Tutorial: Threads and Executors

e Java 8 Concurrency Tutorial: Synchronization and Locks

e Java 8 Concurrency Tutorial: Atomic Variables and ConcurrentMap
e Java 8 API by Example: Strings, Numbers, Math and Files

e Avoid Null Checks in Java 8

e Fixing Java 8 Stream Gotchas with IntelliJ IDEA

e Using Backbone.js with Java 8 Nashorn

You should follow me on Twitter. Thanks for reading!

http://winterbe.com/projects/java8-explorer/
http://winterbe.com
http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/
http://winterbe.com/posts/2014/04/05/java8-nashorn-tutorial/
http://winterbe.com/posts/2015/04/07/java8-concurrency-tutorial-thread-executor-examples/
http://winterbe.com/posts/2015/04/30/java8-concurrency-tutorial-synchronized-locks-examples/
http://winterbe.com/posts/2015/05/22/java8-concurrency-tutorial-atomic-concurrent-map-examples/
http://winterbe.com/posts/2015/03/25/java8-examples-string-number-math-files/
http://winterbe.com/posts/2015/03/15/avoid-null-checks-in-java/
http://winterbe.com/posts/2015/03/05/fixing-java-8-stream-gotchas-with-intellij-idea/
http://winterbe.com/posts/2014/04/07/using-backbonejs-with-nashorn/
https://twitter.com/winterbe_

Java 8 Stream Tutorial

July 31, 2014

This example-driven tutorial gives an in-depth overview about Java 8 streams. When | first
read about the stream API, | was confused about the name since it sounds similar to

InputStream and outputstream from Java I/O. But Java 8 streams are a completely
different thing. Streams are Monads, thus playing a big part in bringing functional
programming to Java:

> In functional programming, a monad is a structure that represents computations defined as
sequences of steps. A type with a monad structure defines what it means to chain
operations, or nest functions of that type together.

This guide teaches you how to work with Java 8 streams and how to use the different kind of
available stream operations. You'll learn about the processing order and how the ordering of
stream operations affect runtime performance. The more powerful stream operations

reduce , collect and flatMap are covered in detail. The tutorial ends with an in-depth
look at parallel streams.

If you're not yet familiar with Java 8 lambda expressions, functional interfaces and method
references, you probably want to read my Java 8 Tutorial first before starting with this
tutorial.

UPDATE - I'm currently working on a JavaScript implementation of the Java 8 Streams API
for the browser. If I've drawn your interest check out Stream.js on GitHub. Your Feedback is
highly appreciated.

How streams work

A stream represents a sequence of elements and supports different kind of operations to
perform computations upon those elements:

List<String> myList =
Arrays.asList("a1", "a2", "b1", "c2", "c1");

myList
.stream()
.filter(s -> s.startswith("c"))
.map(String: :toUppercCase)
.sorted()
.forEach(System.out::println);

// Cc1
// C2

http://en.wikipedia.org/wiki/Monad_%28functional_programming%29
http://winterbe.com/posts/2014/03/16/java-8-tutorial/
https://github.com/winterbe/streamjs

Stream operations are either intermediate or terminal. Intermediate operations return a
stream so we can chain multiple intermediate operations without using semicolons. Terminal
operations are either void or return a non-stream result. In the above example filter ,

map and sorted are intermediate operations whereas foreach is a terminal operation.
For a full list of all available stream operations see the Stream Javadoc. Such a chain of
stream operations as seen in the example above is also known as operation pipeline.

Most stream operations accept some kind of lambda expression parameter, a functional
interface specifying the exact behavior of the operation. Most of those operations must be
both non-interfering and stateless. What does that mean?

A function is non-interfering when it does not modify the underlying data source of the
stream, e.g. in the above example no lambda expression does modify myList by adding or
removing elements from the collection.

A function is stateless when the execution of the operation is deterministic, e.g. in the above
example no lambda expression depends on any mutable variables or states from the outer
scope which might change during execution.

Different kind of streams

Streams can be created from various data sources, especially collections. Lists and Sets
support new methods stream() and parallelstream() to either create a sequential or a
parallel stream. Parallel streams are capable of operating on multiple threads and will be
covered in a later section of this tutorial. We focus on sequential streams for now:

Arrays.asList("a1", "a2", "a3")
.stream()
.findFirst()
.ifPresent(System.out::println); // al

Calling the method stream() on a list of objects returns a regular object stream. But we
don't have to create collections in order to work with streams as we see in the next code
sample:

Stream.of("a1", "a2", "a3")
.findFirst()
.ifPresent(System.out::println); // al

Just use stream.of() to create a stream from a bunch of object references.

Besides regular object streams Java 8 ships with special kinds of streams for working with
the primitive data types int , long and double . As you might have guessed it's

IntStream , LongStream and DoubleStream

http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
http://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html#NonInterference
http://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html#Statelessness

IntStreams can replace the regular for-loop utilizing 1ntstream.range() :

IntStream.range(1, 4)
.forEach(System.out::println);

// 1
// 2
// 3

All those primitive streams work just like regular object streams with the following
differences: Primitive streams use specialized lambda expressions, €.g. IntFunction
instead of Function Or IntPredicate instead of Ppredicate . And primitive streams support
the additional terminal aggregate operations sum() and average() :

Arrays.stream(new int[] {1, 2, 3})
.map(n -> 2 * n + 1)
.average()
.ifPresent(System.out::println); // 5.0

Sometimes it's useful to transform a regular object stream to a primitive stream or vice
versa. For that purpose object streams support the special mapping operations mapToInt() ,
mapToLong() and mapToDouble :

Stream.of("a1", "a2", "a3")
.map(s -> s.substring(1))
.mapToInt(Integer::parselnt)
.max()
.ifPresent(System.out::println); // 3

Primitive streams can be transformed to object streams via mapToobj() :

IntStream.range(1, 4)
.mapToObj(i -> "a" + i)
.forEach(System.out::println);

// a1l
// a2
// a3

Here's a combined example: the stream of doubles is first mapped to an int stream and than
mapped to an object stream of strings:

Stream.of (1.0, 2.0, 3.0)
.mapToInt(Double::intValue)
.mapToObj(i -> "a" + 1)
.forEach(System.out::println);

// ail
// a2
// a3

Processing Order

Now that we've learned how to create and work with different kinds of streams, let's dive
deeper into how stream operations are processed under the hood.

An important characteristic of intermediate operations is laziness. Look at this sample where
a terminal operation is missing:

Stream.of(“dz“, "a2H, "bl", Hbs", "C")
.filter(s -> {
System.out.println("filter: " + s);
return true;

)

When executing this code snippet, nothing is printed to the console. That is because
intermediate operations will only be executed when a terminal operation is present.

Let's extend the above example by the terminal operation foreach :

Stream.of(HdZH’ "a2", "bl", Hb3", "C")
.filter(s -> {
System.out.println("filter: " + s);
return true;

1)

.forEach(s -> System.out.println("forEach: " + s));

Executing this code snippet results in the desired output on the console:

filter: d2
forEach: d2
filter: a2
forEach: a2
filter: b1l
forEach: b1l
filter: b3
forEach: b3
filter: c

forEach: ¢

The order of the result might be surprising. A naive approach would be to execute the

operations horizontally one after another on all elements of the stream. But instead each

element moves along the chain vertically. The first string "d2" passes filter then
foreach , only then the second string "a2" is processed.

This behavior can reduce the actual number of operations performed on each element, as
we see in the next example:

Stream.of(“dz“, "a2H, "bl", Hbs", "C")

.map(s -> {
System.out.println("map: " + s);
return s.toUpperCase();

1))

.anyMatch(s -> {
System.out.println("anyMatch: " + s);
return s.startswith("A");

)i
// map: d2
// anyMatch: D2
// map: a2

// anyMatch: A2

The operation anymatch returns true as soon as the predicate applies to the given input
element. This is true for the second element passed "A2". Due to the vertical execution of
the stream chain, map has only to be executed twice in this case. So instead of mapping all
elements of the stream, map will be called as few as possible.

Why order matters

The next example consists of two intermediate operations map and filter and the
terminal operation foreach . Let's once again inspect how those operations are being
executed:

Stream-of(“dz“, "a2H, "bl", Hb3", "C")

.map(s -> {
System.out.println("map: " + s);
return s.toUpperCase();

1))

.filter(s -> {
System.out.println("filter: " + s);
return s.startswith("A");

1)

.forEach(s -> System.out.println("forEach: " + s));
// map: dz2
// filter: D2
// map: a2

// filter: A2
// forEach: A2

// map: b1
// filter: B1
// map: b3
// filter: B3
// map: c

// filter: C

As you might have guessed both map and filter are called five times for every string in
the underlying collection whereas foreach is only called once.

We can greatly reduce the actual number of executions if we change the order of the
operations, moving filter to the beginning of the chain:

Stream.of("dz“, "a2H, Hbl", Hbs", "C")
.filter(s -> {
System.out.println("filter: " + s);
return s.startswWith("a");

1))
.map(s -> {
System.out.println("map: " + s);
return s.toUppercCase();
1))
.forEach(s -> System.out.println("forEach: " + s));

// filter: d2
// filter: a2
// map: a2
// forEach: A2
// filter: b1
// filter: b3
// filter: <c

Now, map is only called once so the operation pipeline performs much faster for larger
numbers of input elements. Keep that in mind when composing complex method chains.

Let's extend the above example by an additional operation, sorted :

Stream-of(“dz“, "a2", "bl", "b3", "C")

.sorted((s1, s2) -> {
System.out.printf("sort: %s; %s\n", si1, s2);
return sil.compareTo(s2);

1)

.filter(s -> {
System.out.println("filter: " + s);
return s.startswith("a");

1)
.map(s -> {
System.out.println("map: " + s);
return s.toUpperCase();
1)
.forEach(s -> System.out.println("forEach: " + s));

Sorting is a special kind of intermediate operation. It's a so called stateful operation since in
order to sort a collection of elements you have to maintain state during ordering.

Executing this example results in the following console output:

sort: az2; d2
sort: b1; a2
sort: b1; d2
sort: b1l; a2
sort: b3; b1l
sort: b3; d2
sort: c; b3
sort: c; d2
filter: a2
map: a2
forEach: A2
filter: b1
filter: b3

filter: c
filter: d2

First, the sort operation is executed on the entire input collection. In other words sorted is
executed horizontally. So in this case sorted is called eight times for multiple combinations
on every element in the input collection.

Once again we can optimize the performance by reordering the chain:

Stream.of(“dz“, "a2", Ilblll, Ilb3|l, "C")

.filter(s -> {
System.out.println("filter: " + s);
return s.startswith("a");

1)

.sorted((s1, s2) -> {
System.out.printf("sort: %s; %s\n", si1, s2);
return sil.compareTo(s2);

1)

.map(s -> {
System.out.println("map: " + s);
return s.toUppercCase();

1)

.forEach(s -> System.out.println("forEach: " + s));

// filter: d2
// filter: a2
// filter: b1
// filter: b3
// filter: <c

// map: a2
// forEach: A2

In this example sorted is never been called because filter reduces the input collection
to just one element. So the performance is greatly increased for larger input collections.

Reusing Streams

Java 8 streams cannot be reused. As soon as you call any terminal operation the stream is
closed:

Stream<String> stream =
Stream-of(”dz”, "a2", Ilblll’ IIb3I|, llcll)
.filter(s -> s.startswWith("a"));

stream.anyMatch(s -> true); // ok
stream.noneMatch(s -> true); // exception

Calling nonematch after anymatch on the same stream results in the following exception:

java.lang.IllegalStateException: stream has already been operated upon or closed
at java.util.stream.AbstractPipeline.evaluate(AbstractPipeline.java:229)
at java.util.stream.ReferencePipeline.noneMatch(ReferencePipeline.java:459)
at com.winterbe.java8.Streams5.test7(Streams5.java:38)
at com.winterbe.java8.Streams5.main(Streams5.java:28)

To overcome this limitation we have to to create a new stream chain for every terminal
operation we want to execute, e.g. we could create a stream supplier to construct a new
stream with all intermediate operations already set up:

Supplier<Stream<String>> streamSupplier =
() _> Stream.of(lldzll, I|a2ll’ llb1||, llb3ll, I|CII)
.filter(s -> s.startswith("a"));

streamSupplier.get().anyMatch(s -> true); // ok
streamSupplier.get().noneMatch(s -> true); // ok

Each callto get() constructs a new stream on which we are save to call the desired
terminal operation.

Advanced Operations

Streams support plenty of different operations. We've already learned about the most
important operations like filter or map .| leave it up to you to discover all other available
operations (see Stream Javadoc). Instead let's dive deeper into the more complex
operations collect , flatMap and reduce .

Most code samples from this section use the following list of persons for demonstration
purposes:

class Person {
String name;
int age;

Person(String name, int age) {
this.name = name;
this.age = age;

}

@Override

public String toString() {
return name;

}

}

List<Person> persons =
Arrays.asList(
new Person('"Max", 18),
new Person("Peter", 23),
new Person("Pamela", 23),
new Person("David", 12));

Collect

Collect is an extremely useful terminal operation to transform the elements of the stream into
a different kind of result, e.g. a List , set or map . Collect accepts a collector which
consists of four different operations: a supplier, an accumulator, a combiner and a finisher.

http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

This sounds super complicated at first, but the good part is Java 8 supports various built-in
collectors via the collectors class. So for the most common operations you don't have to
implement a collector yourself.

Let's start with a very common usecase:

List<Person> filtered =
persons
.stream()
.filter(p -> p.name.startswith("P"))
.collect(Collectors.toList());

System.out.println(filtered); // [Peter, Pamela]

As you can see it's very simple to construct a list from the elements of a stream. Need a set
instead of list - just use collectors.toset() .

The next example groups all persons by age:

Map<Integer, List<Person>> personsByAge = persons
.stream()
.collect(Collectors.groupingBy(p -> p.age));

personsByAge
.forEach((age, p) -> System.out.format("age %s: %s\n", age, p));

// age 18: [Max]
// age 23: [Peter, Pamela]
// age 12: [David]

Collectors are extremely versatile. You can also create aggregations on the elements of the
stream, e.g. determining the average age of all persons:

Double averageAge = persons
.stream()
.collect(Collectors.averagingInt(p -> p.age));

System.out.println(averageAge); // 19.0

If you're interested in more comprehensive statistics, the summarizing collectors return a
special built-in summary statistics object. So we can simply determine min, max and
arithmetic average age of the persons as well as the sum and count.

IntSummaryStatistics ageSummary =
persons
.stream()
.collect(Collectors.summarizingInt(p -> p.age));

System.out.println(ageSummary);
// IntSummaryStatistics{count=4, sum=76, min=12, average=19.000000, max=23}

The next example joins all persons into a single string:

String phrase = persons
.stream()
.filter(p -> p.age >= 18)
.map(p -> p.name)
.collect(Collectors.joining(" and ", "In Germany ", " are of legal age."));

System.out.println(phrase);
// In Germany Max and Peter and Pamela are of legal age.

The join collector accepts a delimiter as well as an optional prefix and suffix.

In order to transform the stream elements into a map, we have to specify how both the keys
and the values should be mapped. Keep in mind that the mapped keys must be unique,
otherwise an 1llegalstateException is thrown. You can optionally pass a merge function as
an additional parameter to bypass the exception:

Map<Integer, String> map = persons

.stream()
.collect(Collectors.toMap(
p -> p.age,
p -> p.name,
(namel, name2) -> namel + ";" + name2));

System.out.println(map);
// {18=Max, 23=Peter;Pamela, 12=David}

Now that we know some of the most powerful built-in collectors, let's try to build our own
special collector. We want to transform all persons of the stream into a single string
consisting of all names in upper letters separated by the | pipe character. In order to
achieve this we create a new collector via collector.of() . We have to pass the four
ingredients of a collector: a supplier, an accumulator, a combiner and a finisher.

Collector<Person, StringJoiner, String> personNameCollector =
Collector.of(

() -> new StringJoiner(" | "), // supplier
(j, p) -> j.add(p.name.toUpperCase()), // accumulator
(j1, j2) -> ji.merge(j2), // combiner
StringJoiner::toString); // finisher

String names = persons
.stream()
.collect(personNameCollector);

System.out.println(names); // MAX | PETER | PAMELA | DAVID

Since strings in Java are immutable, we need a helper class like stringJoiner to let the
collector construct our string. The supplier initially constructs such a StringJoiner with the
appropriate delimiter. The accumulator is used to add each persons upper-cased name to
the StringJoiner. The combiner knows how to merge two StringJoiners into one. In the last
step the finisher constructs the desired String from the StringJoiner.

FlatMap

We've already learned how to transform the objects of a stream into another type of objects
by utilizing the map operation. Map is kinda limited because every object can only be
mapped to exactly one other object. But what if we want to transform one object into multiple
others or none at all? This is where flatmap comes to the rescue.

FlatMap transforms each element of the stream into a stream of other objects. So each
object will be transformed into zero, one or multiple other objects backed by streams. The
contents of those streams will then be placed into the returned stream of the flatmap
operation.

Before we see flatmap in action we need an appropriate type hierarchy:

class Foo {
String name;
List<Bar> bars = new ArraylList<>();

Foo(String name) {
this.name = name;
}

3

class Bar {
String name;

Bar (String name) {
this.name = name;
}

Next, we utilize our knowledge about streams to instantiate a couple of objects:

List<Foo> foos = new ArraylList<>();

// create foos
IntStream
.range(1, 4)
.forEach(i -> foos.add(new Foo("Foo" + 1)));

// create bars
foos.forEach(f ->
IntStream
.range(1, 4)
.forEach(i -> f.bars.add(new Bar("Bar" + i + " <- " + f.name))));

Now we have a list of three foos each consisting of three bars.

FlatMap accepts a function which has to return a stream of objects. So in order to resolve
the bar objects of each foo, we just pass the appropriate function:

foos.stream()
.flatMap(f -> f.bars.stream())
.forEach(b -> System.out.println(b.name));

// Barl <- Fool
// Bar2 <- Fool
// Bar3 <- Fool
// Barl <- Foo2
// Bar2 <- Foo2
// Bar3 <- Foo02
// Barl <- Foo3
// Bar2 <- Foo3
// Bar3 <- Foo03

As you can see, we've successfully transformed the stream of three foo objects into a
stream of nine bar objects.

Finally, the above code example can be simplified into a single pipeline of stream
operations:

IntStream.range(1, 4)
.mapToObj(i -> new Foo("Foo" + 1))
.peek(f -> IntStream.range(1l, 4)
.mapToObj(i -> new Bar("Bar" + i + " <- " f.name))
.forEach(f.bars::add))
.flatMap(f -> f.bars.stream())
.forEach(b -> System.out.println(b.name));

FlatMap is also available for the optional class introduced in Java 8. Optionals flatMap
operation returns an optional object of another type. So it can be utilized to prevent nasty
null checks.

Think of a highly hierarchical structure like this:

class Outer {
Nested nested;
}

class Nested {
Inner inner;
}

class Inner {

String foo;
}

In order to resolve the inner string foo of an outer instance you have to add multiple null
checks to prevent possible NullPointerExceptions:

Outer outer = new Outer();

if (outer !'= null && outer.nested !'= null && outer.nested.inner != null) {
System.out.println(outer.nested.inner.foo0);

}

The same behavior can be obtained by utilizing optionals f1latmap operation:

Optional.of(new Outer())
.flatMap(o -> Optional.ofNullable(o.nested))
.flatMap(n -> Optional.ofNullable(n.inner))
.flatMap(i -> Optional.ofNullable(i.fo0))
.ifPresent(System.out::println);

Each callto filatmap returns an optional wrapping the desired object if present or nui1l if
absent.

Reduce

The reduction operation combines all elements of the stream into a single result. Java 8
supports three different kind of reduce methods. The first one reduces a stream of
elements to exactly one element of the stream. Let's see how we can use this method to
determine the oldest person:

persons
.stream()
.reduce((p1, p2) -> pl.age > p2.age ? pl : p2)
.ifPresent(System.out::println); // Pamela

The reduce method accepts a Binaryoperator accumulator function. That's actually a
BiFunction Where both operands share the same type, in that case person . BiFunctions
are like runction but accept two arguments. The example function compares both persons

ages in order to return the person with the maximum age.

The second reduce method accepts both an identity value and a Binaryoperator
accumulator. This method can be utilized to construct a new Person with the aggregated
names and ages from all other persons in the stream:

Person result =
persons
.stream()
.reduce(new Person("", 0), (p1, p2) -> {
pl.age += p2.age;
pl.name += p2.name;
return pi;

13

System.out.format("name=%s; age=%s", result.name, result.age);
// name=MaxPeterPamelaDavid; age=76

The third reduce method accepts three parameters: an identity value, a BiFunction
accumulator and a combiner function of type Binaryoperator . Since the identity values type
is not restricted to the Prerson type, we can utilize this reduction to determine the sum of
ages from all persons:

Integer ageSum = persons
.stream()
.reduce(®, (sum, p) -> sum += p.age, (suml, sum2) -> suml + sum2);

System.out.println(ageSum); // 76

As you can see the result is 76, but what's happening exactly under the hood? Let's extend
the above code by some debug output:

Integer ageSum = persons
.stream()
.reduce(0,
(sum, p) -> {
System.out.format("accumulator: sum=%s; person=%s\n'", sum, p);
return sum += p.age;
3
(sumi, sum2) -> {
System.out.format("combiner: suml=%s; sum2=%s\n", suml, sum2);
return suml + sum2;

1)

// accumulator: sum=0; person=Max

// accumulator: sum=18; person=Peter
// accumulator: sum=41; person=Pamela
// accumulator: sum=64; person=David

As you can see the accumulator function does all the work. It first get called with the initial
identity value 0 and the first person Max. In the next three steps sum continually increases
by the age of the last steps person up to a total age of 76.

Wait wat? The combiner never gets called? Executing the same stream in parallel will lift the
secret:

Integer ageSum = persons
.parallelStream()
.reduce(0,
(sum, p) -> {
System.out.format("accumulator: sum=%s; person=%s\n", sum, p);
return sum += p.age;
3
(sumli, sum2) -> {
System.out.format("combiner: suml=%s; sum2=%s\n", suml, sum2);
return suml + sum2;

5)3

// accumulator: sum=0; person=Pamela
// accumulator: sum=0; person=David
// accumulator: sum=0; person=Max

// accumulator: sum=0; person=Peter
// combiner: sum1=18; sum2=23

// combiner: sum1=23; sum2=12

// combiner: sumil=41; sum2=35

Executing this stream in parallel results in an entirely different execution behavior. Now the
combiner is actually called. Since the accumulator is called in parallel, the combiner is
needed to sum up the separate accumulated values.

Let's dive deeper into parallel streams in the next chapter.

Parallel Streams

Streams can be executed in parallel to increase runtime performance on large amount of
input elements. Parallel streams use a common ForkJoinPool available via the static

ForkJoinPool.commonPool() method. The size of the underlying thread-pool uses up to five
threads - depending on the amount of available physical CPU cores:

ForkJoinPool commonPool = ForkJoinPool.commonPool();
System.out.println(commonPool.getParallelism()); // 3

On my machine the common pool is initialized with a parallelism of 3 per default. This value
can be decreased or increased by setting the following JVM parameter:

-Djava.util.concurrent.ForkJoinPool.common.parallelism=5

Collections support the method parallelstream() to create a parallel stream of elements.
Alternatively you can call the intermediate method parallel() on a given stream to convert
a sequential stream to a parallel counterpart.

In order to understate the parallel execution behavior of a parallel stream the next example
prints information about the current thread to sout :

Arrays.asList("a1", "a2", "b1", "c2", "c1i")
.parallelStream()
.filter(s -> {
System.out.format("filter: %s [%s]\n",
s, Thread.currentThread().getName());
return true;
1))
.map(s -> {
System.out.format("map: %s [%s]\n",
s, Thread.currentThread().getName());
return s.toUpperCase();
1)
.forEach(s -> System.out.format("forEach: %s [%s]\n",
s, Thread.currentThread().getName()));

By investigating the debug output we should get a better understanding which threads are
actually used to execute the stream operations:

filter: b1l [main]
filter: a2 [ForkJoinPool.commonPool-worker-1]

map: a2 [ForkJoinPool.commonPool-worker-1]
filter: «c¢2 [ForkJoinPool.commonPool-worker-3]
map: c2 [ForkJoinPool.commonPool-worker-3]
filter: c¢1 [ForkJoinPool.commonPool-worker-2]
map: cl [ForkJoinPool.commonPool-worker-2]

forEach: C2 [ForkJoinPool.commonPool-worker-3]
forEach: A2 [ForkJoinPool.commonPool-worker-1]
map: bl [main]

forEach: B1 [main]

filter: al [ForkJoinPool.commonPool-worker-3]
map: al [ForkJoinPool.commonPool-worker-3]
forEach: Al [ForkJoinPool.commonPool-worker-3]
forEach: C1 [ForkJoinPool.commonPool-worker-2]

As you can see the parallel stream utilizes all available threads from the common
ForkJoinPool for executing the stream operations. The output may differ in consecutive
runs because the behavior which particular thread is actually used is non-deterministic.

Let's extend the example by an additional stream operation, sort :

Arrays.asList("a1", "a2", "b1", "c2", "c1")
.parallelStream()
.filter(s -> {
System.out.format("filter: %s [%s]\n",
s, Thread.currentThread().getName());
return true;
1)
.map(s -> {
System.out.format("map: %s [%s]\n",
s, Thread.currentThread().getName());
return s.toUppercCase();
1))
.sorted((s1, s2) -> {
System.out.format("sort: %s <> %s [%s]\n",
sl, s2, Thread.currentThread().getName());
return sl.compareTo(s2);
1)
.forEach(s -> System.out.format("forEach: %s [%s]\n",
s, Thread.currentThread().getName()));

The result may look strange at first:

filter:
filter:
map:
filter:
map:
filter:
map:
filter:
map:
map:
sort:
sort:
sort:
sort:
sort:
sort:

forEach:
forEach:
forEach:
forEach:
forEach:

It seems that sort is executed sequentially on the main thread only. Actually, sort ona
parallel stream uses the new Java 8 method Arrays.parallelsort() under the hood. As
stated in Javadoc this method decides on the length of the array if sorting will be performed

c2
cl
cl
a2
a2
b1l
b1l
al
al
c2
A2
B1
Cc2
C1
C1
C1
Al
Cc2
B1
A2
(ox 1

[ForkJoinPool.
[ForkJoinPool.
[ForkJoinPool.
[ForkJoinPool.
[ForkJoinPool.

[main]
[main]

[ForkJoinPool.
[ForkJoinPool.
[ForkJoinPool.

<>
<>
<>
<>
<>
<>

Al
A2
Bl
C2
B1
C2

[main]
[main]
[main]
[main]
[main]
[main]

[ForkJoinPool.
[ForkJoinPool.

[main]

[ForkJoinPool.
[ForkJoinPool.

sequentially or in parallel:

> If the length of the specified array is less than the minimum granularity, then it is sorted

commonPool-worker-3]
commonPool-worker-2]
commonPool-worker-2]
commonPool-worker-1]
commonPool-worker-1]

commonPool-worker-2]
commonPool-worker-2]
commonPool-worker-3]

commonPool-worker-1]
commonPool-worker-3]

commonPool-worker-2]
commonPool-worker-1]

using the appropriate Arrays.sort method.

Coming back to the reduce example from the last section. We already found out that the
combiner function is only called in parallel but not in sequential streams. Let's see which

threads are actually involved:

List<Person> persons =

Arrays.asList(

new Person('"Max", 18),

new Person("Peter", 23),

new Person("Pamela", 23),

new Person("David", 12));
persons

.parallelStream()

.reduce(0,

The console output reveals that both the accumulator and the combiner functions are

(sum, p) -> {

System.out.format("accumulator: sum=%s; person=%s [%s]\n",
sum, p, Thread.currentThread().getName());

return sum +=

3

(sumli, sum2) -> {
return suml +

});

p.age;

System.out.format("combiner: suml=%s; sum2=%s [%s]\n",
suml, sum2, Thread.currentThread().getName());

sum2;

executed in parallel on all available threads:

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#parallelSort-T:A-

accumulator: sum=0; person=Pamela; [main]

accumulator: sum=0; person=Max; [ForkJoinPool.commonPool-worker-3]
accumulator: sum=0; person=David; [ForkJoinPool.commonPool-worker-2]
accumulator: sum=0; person=Peter; [ForkJoinPool.commonPool-worker-1]

combiner: sum1l=18; sum2=23; [ForkJoinPool.commonPool-worker-1]
combiner: suml=23; sum2=12; [ForkJoinPool.commonPool-worker-2]
combiner: suml=41; sum2=35; [ForkJoinPool.commonPool-worker-2]

In summary, it can be stated that parallel streams can bring be a nice performance boost to
streams with a large amount of input elements. But keep in mind that some parallel stream
operations like reduce and collect need additional computations (combine operations)
which isn't needed when executed sequentially.

Furthermore we've learned that all parallel stream operations share the same JVM-wide
common ForkJoinPool . SO you probably want to avoid implementing slow blocking stream
operations since that could potentially slow down other parts of your application which rely
heavily on parallel streams.

That's it

My programming guide to Java 8 streams ends here. If you're interested in learning more
about Java 8 streams, | recommend to you the Stream Javadoc package documentation. If
you want to learn more about the underlying mechanisms, you probably want to read Martin
Fowlers article about Collection Pipelines.

If you're interested in JavaScript as well, you may want to have a look at Stream.js - a
JavaScript implementation of the Java 8 Streams API. You may also wanna read my Java 8
Tutorial and my Java 8 Nashorn Tutorial.

Hopefully this tutorial was helpful to you and you've enjoyed reading it. The full source code
of the tutorial samples is hosted on GitHub. Feel free to fork the repository or send me your
feedback via Twitter.

Happy coding!

http://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html#NonInterference
http://martinfowler.com/articles/collection-pipeline/
https://github.com/winterbe/streamjs
https://github.com/winterbe/java8-tutorial
https://github.com/winterbe/java8-tutorial/fork
https://twitter.com/winterbe_

Modern Java - A Guide to Java 8

Java 8 Nashorn Tutorial

April 05, 2014

Learn all about the Nashorn Javascript Engine with easily understood code examples. The
Nashorn Javascript Engine is part of Java SE 8 and competes with other standalone
engines like Google V8 (the engine that powers Google Chrome and Node.js). Nashorn
extends Javas capabilities by running dynamic javascript code natively on the JVM.

In the next ~15 minutes you learn how to evaluate javascript on the JVM dynamically during
runtime. The most recent Nashorn language features are demonstrated with small code
examples. You learn how to call javascript functions from java code and vice versa. At the
end you're ready to integrate dynamic scripts in your daily java business.

- (™

UPDATE - I'm currently working on a JavaScript implementation of the Java 8 Streams API
for the browser. If I've drawn your interest check out Stream.js on GitHub. Your Feedback is
highly appreciated.

Using Nashorn

The Nashorn javascript engine can either be used programmatically from java programs or
by utilizing the command line tool jjs , which is located in $JAvA_HoME/bin . If you plan to
work with jjs you might want to put a symbolic link for simple access:

Java 8 Nashorn Tutorial 39

https://code.google.com/p/v8/
http://nodejs.org/
https://github.com/winterbe/streamjs

$ cd /usr/bin

$ 1n -s $JAVA _HOME/bin/jjs jjs
$ jjs

jjs> print('Hello World');

This tutorial focuses on using nashorn from java code, so let's skip jjs for now. A simple
HelloWorld in java code looks like this:

ScriptEngine engine = new ScriptEngineManager().getEngineByName("nashorn");
engine.eval("print('Hello World!');");

In order to evaluate javascript code from java, you first create a nashorn script engine by
utilizing the javax.script package already known from Rhino (Javas legacy js engine from
Mozilla).

Javascript code can either be evaluated directly by passing javascript code as a string as
shown above. Or you can pass a file reader pointing to your .js script file:

ScriptEngine engine = new ScriptEngineManager().getEngineByName("nashorn");
engine.eval(new FileReader("script.js"));

Nashorn javascript is based on ECMAScript 5.1 but future versions of nashorn will include
support for ECMAScript 6:

> The current strategy for Nashorn is to follow the ECMAScript specification. When we
release with JDK 8 we will be aligned with ECMAScript 5.1. The follow up major release of
Nashorn will align with ECMAScript Edition 6.

Nashorn defines a lot of language and API extensions to the ECMAScript standard. But first
let's take a look at how the communication between java and javascript code works.

Invoking Javascript Functions from Java

Nashorn supports the invocation of javascript functions defined in your script files directly
from java code. You can pass java objects as function arguments and return data back from
the function to the calling java method.

The following javascript functions will later be called from the java side:

var funl = function(name) {
print('Hi there from Javascript, ' + name);
return "greetings from javascript";

i

var fun2 = function (object) {
print("JS Class Definition: " + Object.prototype.toString.call(object));

}

https://developer.mozilla.org/en-US/docs/Rhino
http://es5.github.io/
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts

In order to call a function you first have to cast the script engine to 1nvocable . The
Invocable interface is implemented by the NashornscripteEngine implementation and defines
a method invokeFunction to call a javascript function for a given name.

ScriptEngine engine = new ScriptEngineManager ().getEngineByName("nashorn");
engine.eval(new FileReader("script.js"));

Invocable invocable = (Invocable) engine;

Object result = invocable.invokeFunction("funi1", "Peter Parker");
System.out.println(result);
System.out.println(result.getClass());

// Hi there from Javascript, Peter Parker
// greetings from javascript
// class java.lang.String

Executing the code results in three lines written to the console. Calling the function print
pipes the result to system.out , SO we see the javascript message first.

Now let's call the second function by passing arbitrary java objects:

invocable.invokeFunction("fun2", new Date());
// [object java.util.Date]

invocable.invokeFunction("fun2", LocalDateTime.now());
// [object java.time.LocalDateTime]

invocable.invokeFunction("fun2", new Person());
// [object com.winterbe.java8.Person]

Java objects can be passed without loosing any type information on the javascript side.
Since the script runs natively on the JVM we can utilize the full power of the Java API or
external libraries on nashorn.

Invoking Java Methods from Javascript
Invoking java methods from javascript is quite easy. We first define a static java method:

static String funl(String name) {
System.out.format("Hi there from Java, %s'", name);
return "greetings from java";

Java classes can be referenced from javascript via the Java.type API extension. It's similar
to importing classes in java code. As soon as the java type is defined we naturally call the
static method funi() and print the result to sout . Since the method is static, we don't
have to create an instance first.

var MyJavaClass = Java.type('my.package.MyJavaClass');

var result = MyJavaClass.funi('John Doe');
print(result);

// Hi there from Java, John Doe
// greetings from java

How does Nashorn handle type conversion when calling java methods with native javascript
types? Let's find out with a simple example.

The following java method simply prints the actual class type of the method parameter:

static void fun2(Object object) {
System.out.println(object.getClass());
3

To understand how type conversations are handled under the hood, we call this method with
different javascript types:

MyJavaClass.fun2(123);
// class java.lang.Integer

MyJavaClass.fun2(49.99);
// class java.lang.Double

MyJavaClass.fun2(true);
// class java.lang.Boolean

MyJavaClass.fun2("hi there")
// class java.lang.String

MyJavaClass.fun2(new Number(23));
// class jdk.nashorn.internal.objects.NativeNumber

MyJavaClass.fun2(new Date());
// class jdk.nashorn.internal.objects.NativeDate

MyJavaClass.fun2(new RegExp());
// class jdk.nashorn.internal.objects.NativeRegExp

MyJavaClass.fun2({foo: 'bar'});
// class jdk.nashorn.internal.scripts.Jo04

Primitive javascript types are converted to the appropriate java wrapper class. Instead native
javascript objects are represented by internal adapter classes. Please keep in mind that
classes from jdk.nashorn.internal are subject to change, so you shouldn't program against
those classes in client-code:

> Anything marked internal will likely change out from underneath you.

ScriptObjectMirror

https://twitter.com/wickund/status/451322409661259776

When passing native javascript objects to java you can utilize the class scriptobjectMirror
which is actually a java representation of the underlying javascript object. ScriptObjectMirror
implements the map interface and resides inside the package jdk.nashorn.api . Classes
from this package are intended to be used in client-code.

The next sample changes the parameter type from object to scriptobjectMirror SO we
can extract some infos from the passed javascript object:

static void fun3(ScriptObjectMirror mirror) {
System.out.println(mirror.getClassName() + ": " +
Arrays.toString(mirror.getOwnKeys(true)));

When passing an object hash to this method, the properties are accessible on the java side:

MyJavaClass.fun3({
foo: 'bar',
bar: 'foo'

1)
// Object: [foo, bar]

We can also call member functions on javascript object from java. Let's first define a
javascript type Person with properties firstNname and lastName and method getFullName .

function Person(firstName, lastName) {
this.firstName = firstName;
this.lastName = lastName;
this.getFullName = function() {
return this.firstName + " " + this.lastName;
}

The javascript method getFullname can be called on the ScriptObjectMirror via

callMember()

static void fun4(ScriptObjectMirror person) {
System.out.println("Full Name is: " + person.callMember ("getFullName"));
}

When passing a new person to the java method, we see the desired result on the console:

var personl = new Person("Peter", "Parker");
MyJavaClass.fun4(personl);

// Full Name is: Peter Parker

Language Extensions

Nashorn defines various language and API extensions to the ECMAScript standard. Let's
head right into the most recent features:

Typed Arrays

Native javascript arrays are untyped. Nashorn enables you to use typed java arrays in
javascript:

var IntArray = Java.type("int[]");

var array = new IntArray(5);
array[0] ;
array[1]
array[2]
array[3]
array[4]

’
’
’

’

o mnn
R NWhA~O

r

try {

array[5] = 23;
} catch (e) {

print(e.message); // Array index out of range: 5
3

array[0] = "17";
print(array[@]); // 17

array[0] = "wrong type";
print(array[0]); // ©

array[0] = "17.3";
print(array[0]); // 17

The int[] array behaves like a real java int array. But additionally Nashorn performs
implicit type conversions under the hood when we're trying to add non-integer values to the
array. Strings will be auto-converted to int which is quite handy.

Collections and For Each

Instead of messing around with arrays we can use any java collection. First define the java
type via Java.type , then create new instances on demand.

var ArraylList = Java.type('java.util.ArraylList');
var list = new ArrayList();

list.add('a');

list.add('b");

list.add('c');

for each (var el in list) print(el); // a, b, c

In order to iterate over collections and arrays Nashorn introduces the for each statement. It
works just like the foreach loop in java.

Here's another collection foreach example, utilizing Hashmap :

var map = new java.util.HashMap();
map.put('foo', 'vall');
map.put('bar', 'val2');

for each (var e in map.keySet()) print(e); // foo, bar

for each (var e in map.values()) print(e); // vall, val2

Lambda expressions and Streams

Everyone loves lambdas and streams - so does Nashorn! Although ECMAScript 5.1 lacks
the compact arrow syntax from the Java 8 lambda expressions, we can use function literals
where ever lambda expressions are accepted.

var list2 = new java.util.ArrayList();
list2.add("ddd2");
list2.add("aaa2");
list2.add("bbb1");
list2.add("aaal");
list2.add("bbb3");
list2.add("ccc");
list2.add("bbb2");
list2.add("ddd1");

list2
.stream()
.filter(function(el) {
return el.startswith("aaa");
1)

.sorted()

.forEach(function(el) {
print(el);

1)

// aaal, aaa2

Extending classes

Java types can simply be extended with the Java.extend extension. As you can see in the
next example, you can even create multi-threaded code in your scripts:

var Runnable = Java.type('java.lang.Runnable');
var Printer = Java.extend(Runnable, {
run: function() {
print('printed from a separate thread');
}

13K

var Thread = Java.type('java.lang.Thread');
new Thread(new Printer()).start();

new Thread(function() {
print('printed from another thread');
}).start();

// printed from a separate thread
// printed from another thread

Parameter overloading

Methods and functions can either be called with the point notation or with the square braces
notation.

var System = Java.type('java.lang.System');
System.out.println(10); // 10
System.out["println"](11.0); // 11.0
System.out["println(double)"](12); // 12.0

Passing the optional parameter type printin(double) when calling a method with
overloaded parameters determines the exact method to be called.

Java Beans

Instead of explicitly working with getters and setters you can just use simple property names
both for getting or setting values from a java bean.

var Date Java.type('java.util.Date");
var date new Date();

date.year += 1900;

print(date.year); // 2014

Function Literals

For simple one line functions we can skip the curly braces:

function sqr(x) x * x;
print(sqr(3)); // 9

Binding properties
Properties from two different objects can be bound together:

var ol
var 02

{37
{ foo: 'bar'};

Object.bindProperties(ol, 02);

print(ol.foo0); // bar
ol.foo = 'BAM';
print(o2.fo0); // BAM

Trimming strings

| like my strings trimmed.

print(" hehe".trimLeft()); // hehe
print("hehe ".trimRight() + "he"); // hehehe

Whereis

In case you forget where you are:

print(__FILE_ , _ LINE_, _ DIR_);

Import Scopes

Sometimes it's useful to import many java packages at once. We can use the class
JavaImporter to be used in conjunction with the with statement. All class files from the
imported packages are accessible within the local scope of the with statement:

var imports = new JavaImporter(java.io, java.lang);
with (imports) {
var file = new File(___FILE);
System.out.println(file.getAbsolutePath());
// /path/to/my/script.js

Convert arrays

Some packages like java.util can be accessed directly without utilizing Java.type or

JavalImporter

var list = new java.util.ArrayList();
list.add("s1");
list.add("s2");
list.add("s3");

This code converts the java list to a native javascript array:

var jsArray = Java.from(list);
print(jsArray); // s1,s2,s3
print(Object.prototype.toString.call(jsArray)); // [object Array]

And the other way around:

var javaArray = Java.to([3, 5, 7, 11], "int[]");,

Calling Super

Accessing overridden members in javascript is traditionally awkward because javas super
keyword doesn't exist in ECMAScript. Luckily nashorn goes to the rescue.

First we define a super type in java code:

class SuperRunner implements Runnable {
@Override
public void run() {
System.out.println("super run");
}

Next we override superrunner from javascript. Pay attention to the extended nashorn
syntax when creating a new Rrunner instance: The syntax of overriding members is
borrowed from javas anonymous objects.

var SuperRunner = Java.type('com.winterbe.java8.SuperRunner');
var Runner = Java.extend(SuperRunner);
var runner = new Runner() {
run: function() {
Java.super(runner).run();
print('on my run');
}
}
runner.run();

// super run
// on my run

We call the overridden method superRunner.run() by utilizing the Java.super extension.

Loading scripts

Evaluating additional script files from javascript is quite easy. We can load both local or
remote scripts with the 1oad function.

I'm using Underscore.js a lot for my web front-ends, so let's reuse Underscore in Nashorn:

load('http://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.6.0/underscore-min.js');
var odds = _.filter([1, 2, 3, 4, 5, 6], function (num) {

return num % 2 == 1,

1K

print(odds); // 1, 3, 5

The external script will be evaluated in the same javascript context, so we can access the
underscore variable directly. Keep in mind that loading scripts can potentially break your own
code when variable names are overlapping each other.

This problem can be bypassed by loading script files into a new global context:

loadwithNewGlobal('script.js');

Command-line scripts

http://underscorejs.org/

If you're interested in writing command-line (shell) scripts with Java, give Nake a try. Nake is
a simplified Make for Java 8 Nashorn. You define tasks in a project-specific nakefile , then
run those tasks by typing nake -- myTask into the command line. Tasks are written in
javascript and run in Nashorns scripting mode, so you can utilize the full power of your
terminal as well as the JDK8 API and any java library.

For Java Developers writing command-line scripts is easy as never before...

That's it

| hope this guide was helpful to you and you enjoyed our journey to the Nashorn Javascript
Engine. For further information about Nashorn read here, here and here. A guide to coding
shell scripts with Nashorn can be found here.

| recently published a follow up article about how to use Backbone.js models with the
Nashorn Javascript Engine. If you want to learn more about Java 8 feel free to read my Java
8 Tutorial and my Java 8 Stream Tutorial.

The runnable source code from this Nashorn tutorial is hosted on GitHub. Feel free to fork
the repository or send me your feedback via Twitter.

Keep on coding!

https://github.com/winterbe/nake
http://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/
http://www.oracle.com/technetwork/articles/java/jf14-nashorn-2126515.html
https://wiki.openjdk.java.net/display/Nashorn/Nashorn+extensions
http://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/shell.html#sthref24
https://github.com/winterbe/java8-tutorial
https://github.com/winterbe/java8-tutorial/fork
https://twitter.com/winterbe_

Java 8 Concurrency Tutorial: Threads and
Executors

April 07, 2015

Welcome to the first part of my Java 8 Concurrency tutorial. This guide teaches you
concurrent programming in Java 8 with easily understood code examples. It's the first part
out of a series of tutorials covering the Java Concurrency API. In the next 15 min you learn
how to execute code in parallel via threads, tasks and executor services.

e Part 1: Threads and Executors
e Part 2. Synchronization and Locks
e Part 3: Atomic Variables and ConcurrentMap

The Concurrency AP| was first introduced with the release of Java 5 and then progressively
enhanced with every new Java release. The majority of concepts shown in this article also
work in older versions of Java. However my code samples focus on Java 8 and make heavy
use of lambda expressions and other new features. If you're not yet familiar with lambdas |
recommend reading my Java 8 Tutorial first.

Threads and Runnables

All modern operating systems support concurrency both via processes) and threads.
Processes are instances of programs which typically run independent to each other, e.qg. if
you start a java program the operating system spawns a new process which runs in parallel
to other programs. Inside those processes we can utilize threads to execute code
concurrently, so we can make the most out of the available cores of the CPU.

Java supports Threads since JDK 1.0. Before starting a new thread you have to specify the
code to be executed by this thread, often called the task. This is done by implementing

Runnable - a functional interface defining a single void no-args method run() as
demonstrated in the following example:

Runnable task = () -> {
String threadName = Thread.currentThread().getName();
System.out.println("Hello " + threadName);

1
task.run();

Thread thread = new Thread(task);
thread.start();

System.out.println("Done!");

http://en.wikipedia.org/wiki/Concurrent_computing
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
http://en.wikipedia.org/wiki/Process_(computing
http://en.wikipedia.org/wiki/Thread_%28computing%29
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

Since Runnable is a functional interface we can utilize Java 8 lambda expressions to print
the current threads name to the console. First we execute the runnable directly on the main
thread before starting a new thread.

The result on the console might look like this:

Hello main
Hello Thread-0
Done!

Or that:

Hello main
Done!
Hello Thread-0

Due to concurrent execution we cannot predict if the runnable will be invoked before or after
printing 'done’. The order is non-deterministic, thus making concurrent programming a
complex task in larger applications.

Threads can be put to sleep for a certain duration. This is quite handy to simulate long
running tasks in the subsequent code samples of this article:

Runnable runnable = () -> {

try {
String name = Thread.currentThread().getName();

System.out.println("Foo " + name);
TimeUnit.SECONDS.sleep(1);
System.out.println("Bar " + name);

catch (InterruptedException e) {
e.printStackTrace();
}

be

Thread thread = new Thread(runnable);
thread.start();

When you run the above code you'll notice the one second delay between the first and the
second print statement. Timeunit is a useful enum for working with units of time.
Alternatively you can achieve the same by calling Thread.sleep(1000) .

Working with the Thread class can be very tedious and error-prone. Due to that reason the
Concurrency API has been introduced back in 2004 with the release of Java 5. The APl is
located in package java.util.concurrent and contains many useful classes for handling
concurrent programming. Since that time the Concurrency API has been enhanced with
every new Java release and even Java 8 provides new classes and methods for dealing with
concurrency.

Now let's take a deeper look at one of the most important parts of the Concurrency API - the
executor services.

Executors

The Concurrency API introduces the concept of an Executorservice as a higher level
replacement for working with threads directly. Executors are capable of running
asynchronous tasks and typically manage a pool of threads, so we don't have to create new
threads manually. All threads of the internal pool will be reused under the hood for revenant
tasks, so we can run as many concurrent tasks as we want throughout the life-cycle of our
application with a single executor service.

This is how the first thread-example looks like using executors:

ExecutorService executor = Executors.newSingleThreadExecutor();
executor.submit(() -> {
String threadName = Thread.currentThread().getName();
System.out.println("Hello " + threadName);

1K

// => Hello pool-1-thread-1

The class Executors provides convenient factory methods for creating different kinds of
executor services. In this sample we use an executor with a thread pool of size one.

The result looks similar to the above sample but when running the code you'll notice an
important difference: the java process never stops! Executors have to be stopped explicitly -
otherwise they keep listening for new tasks.

An Executorservice provides two methods for that purpose: shutdown() waits for currently
running tasks to finish while shutdownnow() interrupts all running tasks and shut the
executor down immediately.

This is the preferred way how | typically shutdown executors:

try {
System.out.println("attempt to shutdown executor");

executor.shutdown();
executor.awaitTermination(5, TimeUnit.SECONDS);

catch (InterruptedException e) {
System.err.println("tasks interrupted");
}

finally {
if ('executor.isTerminated()) {
System.err.println("cancel non-finished tasks");
}

executor.shutdownNow();
System.out.println("shutdown finished");

The executor shuts down softly by waiting a certain amount of time for termination of
currently running tasks. After a maximum of five seconds the executor finally shuts down by
interrupting all running tasks.

Callables and Futures

In addition to Rrunnable executors support another kind of task named callable . Callables
are functional interfaces just like runnables but instead of being void they return a value.

This lambda expression defines a callable returning an integer after sleeping for one second:

Callable<Integer> task = () -> {

try {
TimeUnit.SECONDS.sleep(1);

return 123;

catch (InterruptedException e) {
throw new IllegalStateException("task interrupted", e);
}

¥

Callables can be submitted to executor services just like runnables. But what about the
callables result? Since submit() doesn't wait until the task completes, the executor service
cannot return the result of the callable directly. Instead the executor returns a special result
of type Future which can be used to retrieve the actual result at a later point in time.

ExecutorService executor = Executors.newFixedThreadPool(1);
Future<Integer> future = executor.submit(task);

System.out.println("future done? " + future.isDone());
Integer result = future.get();

System.out.println("future done? " + future.isDone());
System.out.print("result: " + result);

After submitting the callable to the executor we first check if the future has already been
finished execution via ispone() . I'm pretty sure this isn't the case since the above callable
sleeps for one second before returning the integer.

Calling the method get() blocks the current thread and waits until the callable completes
before returning the actual result 123 . Now the future is finally done and we see the
following result on the console:

future done? false
future done? true
result: 123

Futures are tightly coupled to the underlying executor service. Keep in mind that every non-
terminated future will throw exceptions if you shutdown the executor:

executor.shutdownNow();
future.get();

You might have noticed that the creation of the executor slightly differs from the previous
example. We use newFixedThreadPool(1) tO create an executor service backed by a thread-
pool of size one. This is equivalent to newsingleThreadexecutor() but we could later
increase the pool size by simply passing a value larger than one.

Timeouts

Any call to future.get() will block and wait until the underlying callable has been
terminated. In the worst case a callable runs forever - thus making your application
unresponsive. You can simply counteract those scenarios by passing a timeout:

ExecutorService executor = Executors.newFixedThreadPool(1);
Future<Integer> future = executor.submit(() -> {

try {
TimeUnit.SECONDS.sleep(2);

return 123,

catch (InterruptedException e) {
throw new IllegalStateException('"task interrupted", e);
}

i
future.get(1, TimeUnit.SECONDS);
Executing the above code results in a TimeoutException :

Exception in thread "main" java.util.concurrent.TimeoutException
at java.util.concurrent.FutureTask.get(FutureTask.java:205)

You might already have guessed why this exception is thrown: We specified a maximum wait
time of one second but the callable actually needs two seconds before returning the result.

InvokeAll

Executors support batch submitting of multiple callables at once via invokeal1() . This
method accepts a collection of callables and returns a list of futures.

ExecutorService executor = Executors.newWorkStealingPool();

List<Callable<String>> callables = Arrays.asList(
() -> "task1",
() -> "task2",
() -> "task3");

executor.invokeAll(callables)
.stream()
.map(future -> {

try {
return future.get();

catch (Exception e) {
throw new IllegalStateException(e);
3
1)

.forEach(System.out::println);

In this example we utilize Java 8 functional streams in order to process all futures returned
by the invocation of invokeall . We first map each future to its return value and then print
each value to the console. If you're not yet familiar with streams read my Java 8 Stream
Tutorial.

InvokeAny

Another way of batch-submitting callables is the method invokeaAny() which works slightly
different to invokeall() . Instead of returning future objects this method blocks until the first
callable terminates and returns the result of that callable.

In order to test this behavior we use this helper method to simulate callables with different
durations. The method returns a callable that sleeps for a certain amount of time until
returning the given result:

Callable<String> callable(String result, long sleepSeconds) {
return () -> {
TimeUnit.SECONDS.sleep(sleepSeconds);
return result;

i

We use this method to create a bunch of callables with different durations from one to three
seconds. Submitting those callables to an executor via invokeany() returns the string result
of the fastest callable - in that case task2:

ExecutorService executor = Executors.newWorkStealingPool();

List<Callable<String>> callables = Arrays.asList(
callable("task1", 2),
callable("task2", 1),
callable("task3", 3));

String result = executor.invokeAny(callables);
System.out.println(result);

// => task2

The above example uses yet another type of executor created via newworksStealingPool() .
This factory method is part of Java 8 and returns an executor of type ForkJoinPool which
works slightly different than normal executors. Instead of using a fixed size thread-pool
ForkJoinPools are created for a given parallelism size which per default is the number of
available cores of the hosts CPU.

ForkJoinPools exist since Java 7 and will be covered in detail in a later tutorial of this series.
Let's finish this tutorial by taking a deeper look at scheduled executors.

Scheduled Executors

We've already learned how to submit and run tasks once on an executor. In order to
periodically run common tasks multiple times, we can utilize scheduled thread pools.

A scheduledexecutorService is capable of scheduling tasks to run either periodically or once
after a certain amount of time has elapsed.

This code sample schedules a task to run after an initial delay of three seconds has passed:

ScheduledExecutorService executor = Executors.newScheduledThreadPool(1);

Runnable task = () -> System.out.println("Scheduling: " + System.nanoTime());
ScheduledFuture<?> future = executor.schedule(task, 3, TimeUnit.SECONDS);

TimeUnit.MILLISECONDS.sleep(1337);

long remainingDelay = future.getDelay(TimeUnit.MILLISECONDS);
System.out.printf("Remaining Delay: %sms", remainingDelay);

Scheduling a task produces a specialized future of type scheduledruture which - in addition
to Future - provides the method getbelay() to retrieve the remaining delay. After this
delay has elapsed the task will be executed concurrently.

In order to schedule tasks to be executed periodically, executors provide the two methods

scheduleAtFixedRate() and schedulewithFixedbelay() . The first method is capable of
executing tasks with a fixed time rate, e.g. once every second as demonstrated in this
example:

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

ScheduledExecutorService executor = Executors.newScheduledThreadPool(1);
Runnable task = () -> System.out.println("Scheduling: " + System.nanoTime());

int initialDelay = 0;
int period = 1;
executor.scheduleAtFixedRate(task, initialDelay, period, TimeUnit.SECONDS);

Additionally this method accepts an initial delay which describes the leading wait time before
the task will be executed for the first time.

Please keep in mind that scheduleAtFixedrate() doesn't take into account the actual
duration of the task. So if you specify a period of one second but the task needs 2 seconds
to be executed then the thread pool will working to capacity very soon.

In that case you should consider using schedulewithFixedbelay() instead. This method
works just like the counterpart described above. The difference is that the wait time period
applies between the end of a task and the start of the next task. For example:

ScheduledExecutorService executor = Executors.newScheduledThreadPool(1);

Runnable task = () -> {

try {
TimeUnit.SECONDS.sleep(2);
System.out.println("Scheduling: " + System.nanoTime());

catch (InterruptedException e) {
System.err.println("task interrupted");
}

be

executor.schedulewithFixedDelay(task, 0, 1, TimeUnit.SECONDS);

This example schedules a task with a fixed delay of one second between the end of an
execution and the start of the next execution. The initial delay is zero and the tasks duration
is two seconds. So we end up with an execution interval of Os, 3s, 6s, 9s and so on. As you
can see schedulewithFixedbelay() is handy if you cannot predict the duration of the
scheduled tasks.

This was the first part out of a series of concurrency tutorials. | recommend practicing the
shown code samples by your own. You find all code samples from this article on GitHub, so
feel free to fork the repo and give me star.

| hope you've enjoyed this article. If you have any further questions send me your feedback
in the comments below or via Twitter.

e Part 1: Threads and Executors
e Part 2: Synchronization and Locks
e Part 3: Atomic Variables and ConcurrentMap

https://github.com/winterbe/java8-tutorial
https://github.com/winterbe/java8-tutorial/stargazers
https://twitter.com/winterbe_

Java 8 Concurrency Tutorial: Synchronization
and Locks

April 30, 2015

Welcome to the second part of my Java 8 Concurrency Tutorial out of a series of guides
teaching multi-threaded programming in Java 8 with easily understood code examples. In
the next 15 min you learn how to synchronize access to mutable shared variables via the
synchronized keyword, locks and semaphores.

e Part 1: Threads and Executors
e Part 2: Synchronization and Locks
e Part 3: Atomic Variables and ConcurrentMap

The majority of concepts shown in this article also work in older versions of Java. However
the code samples focus on Java 8 and make heavy use of lambda expressions and new
concurrency features. If you're not yet familiar with lambdas | recommend reading my Java 8
Tutorial first.

For simplicity the code samples of this tutorial make use of the two helper methods
sleep(seconds) and stop(executor) as defined here.

Synchronized

In the previous tutorial) we've learned how to execute code in parallel via executor services.
When writing such multi-threaded code you have to pay particular attention when accessing
shared mutable variables concurrently from multiple threads. Let's just say we want to
increment an integer which is accessible simultaneously from multiple threads.

We define a field count with a method increment() to increase count by one:
int count = 0;

void increment() {
count = count + 1;
}

When calling this method concurrently from multiple threads we're in serious trouble:

https://github.com/winterbe/java8-tutorial/blob/master/src/com/winterbe/java8/samples/concurrent/ConcurrentUtils.java

ExecutorService executor = Executors.newFixedThreadPool(2);

IntStream.range(0, 10000)
.forEach(i -> executor.submit(this::increment));

stop(executor);

System.out.println(count); // 9965

Instead of seeing a constant result count of 10000 the actual result varies with every
execution of the above code. The reason is that we share a mutable variable upon different
threads without synchronizing the access to this variable which results in a race condition.

Three steps have to be performed in order to increment the number: (i) read the current
value, (ii) increase this value by one and (iii) write the new value to the variable. If two
threads perform these steps in parallel it's possible that both threads perform step 1
simultaneously thus reading the same current value. This results in lost writes so the actual
result is lower. In the above sample 35 increments got lost due to concurrent
unsynchronized access to count but you may see different results when executing the code
by yourself.

Luckily Java supports thread-synchronization since the early days via the synchronized
keyword. We can utilize synchronized to fix the above race conditions when incrementing
the count:

synchronized void incrementSync() {
count = count + 1;
}

When using incrementsync() concurrently we get the desired result count of 10000. No
race conditions occur any longer and the result is stable with every execution of the code:

ExecutorService executor = Executors.newFixedThreadPool(2);

IntStream.range(0, 10000)
.forEach(i -> executor.submit(this::incrementSync));

stop(executor);

System.out.println(count); // 10000

The synchronized keyword is also available as a block statement.

void incrementSync() {
synchronized (this) {
count = count + 1;
}

http://en.wikipedia.org/wiki/Race_condition

Internally Java uses a so called monitor also known as monitor lock or intrinsic lock in order
to manage synchronization. This monitor is bound to an object, e.g. when using
synchronized methods each method share the same monitor of the corresponding object.

All implicit monitors implement the reentrant characteristics. Reentrant means that locks are
bound to the current thread. A thread can safely acquire the same lock multiple times without
running into deadlocks (e.g. a synchronized method calls another synchronized method on
the same object).

Locks

Instead of using implicit locking via the synchronized keyword the Concurrency API
supports various explicit locks specified by the Lock interface. Locks support various
methods for finer grained lock control thus are more expressive than implicit monitors.

Multiple lock implementations are available in the standard JDK which will be demonstrated
in the following sections.

ReentrantLock

The class ReentrantLock is a mutual exclusion lock with the same basic behavior as the
implicit monitors accessed via the synchronized keyword but with extended capabilities. As
the name suggests this lock implements reentrant characteristics just as implicit monitors.

Let's see how the above sample looks like using ReentrantLock :

ReentrantLock lock = new ReentrantLock();
int count = 0;

void increment() {
lock.lock();

try {
count++;

} finally {
lock.unlock();
}

Alock is acquired via 1lock() and released via unlock() . It's important to wrap your code
intoa try/finally block to ensure unlocking in case of exceptions. This method is thread-
safe just like the synchronized counterpart. If another thread has already acquired the lock
subsequent calls to 1lock() pause the current thread until the lock has been unlocked. Only
one thread can hold the lock at any given time.

Locks support various methods for fine grained control as seen in the next sample:

https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

ExecutorService executor = Executors.newFixedThreadPool(2);
ReentrantLock lock = new ReentrantLock();

executor.submit(() -> {
lock.lock();

try {
sleep(1);
} finally {
lock.unlock();
}

1K

executor.submit(() -> {
System.out.println("Locked: " + lock.isLocked());
System.out.println("Held by me: " + lock.isHeldByCurrentThread());
boolean locked = lock.tryLock();
System.out.println("Lock acquired: " + locked);

1)

stop(executor);

While the first task holds the lock for one second the second task obtains different
information about the current state of the lock:

Locked: true
Held by me: false
Lock acquired: false

The method tryLock() as an alternative to 1ock() tries to acquire the lock without pausing
the current thread. The boolean result must be used to check if the lock has actually been
acquired before accessing any shared mutable variables.

ReadWriteLock

The interface RreadwriteLock specifies another type of lock maintaining a pair of locks for
read and write access. The idea behind read-write locks is that it's usually safe to read
mutable variables concurrently as long as nobody is writing to this variable. So the read-lock
can be held simultaneously by multiple threads as long as no threads hold the write-lock.
This can improve performance and throughput in case that reads are more frequent than
writes.

ExecutorService executor = Executors.newFixedThreadPool(2);
Map<String, String> map = new HashMap<>();
ReadWriteLock lock = new ReentrantReadwritelLock();

executor.submit(() -> {
lock.writeLock().lock();
try {
sleep(1);
map.put("foo", "bar");
} finally {
lock.writeLock().unlock();
}

¥

The above example first acquires a write-lock in order to put a new value to the map after
sleeping for one second. Before this task has finished two other tasks are being submitted
trying to read the entry from the map and sleep for one second:

Runnable readTask = () -> {
lock.readLock().lock();

try {
System.out.println(map.get("foo"));
sleep(1);

} finally {
lock.readLock().unlock();

}

};

executor.submit(readTask);
executor.submit(readTask);

stop(executor);

When you execute this code sample you'll notice that both read tasks have to wait the whole
second until the write task has finished. After the write lock has been released both read
tasks are executed in parallel and print the result simultaneously to the console. They don't
have to wait for each other to finish because read-locks can safely be acquired concurrently
as long as no write-lock is held by another thread.

StampedLock

Java 8 ships with a new kind of lock called stampedLock which also support read and write
locks just like in the example above. In contrast to ReadwriteLock the locking methods of a
stampedLock return a stamp represented by a long value. You can use these stamps to
either release a lock or to check if the lock is still valid. Additionally stamped locks support

another lock mode called optimistic locking.

Let's rewrite the last example code to use stampedLock instead of ReadwriteLock :

ExecutorService executor = Executors.newFixedThreadPool(2);
Map<String, String> map = new HashMap<>();
StampedLock lock = new StampedLock();

executor.submit(() -> {
long stamp = lock.writeLock();

try {
sleep(1);
map.put("foo", "bar");
} finally {
lock.unlockWrite(stamp);
}

1)

Runnable readTask = () -> {
long stamp = lock.readLock();

try {
System.out.println(map.get("foo"));

sleep(1);
} finally {
lock.unlockRead(stamp);
}

¥

executor.submit(readTask);
executor.submit(readTask);

stop(executor);

Obtaining a read or write lock via readLock() or writeLock() returns a stamp which is later
used for unlocking within the finally block. Keep in mind that stamped locks don't implement
reentrant characteristics. Each call to lock returns a new stamp and blocks if no lock is
available even if the same thread already holds a lock. So you have to pay particular
attention not to run into deadlocks.

Just like in the previous ReadwriteLock example both read tasks have to wait until the write
lock has been released. Then both read tasks print to the console simultaneously because
multiple reads doesn't block each other as long as no write-lock is held.

The next example demonstrates optimistic locking:

ExecutorService executor = Executors.newFixedThreadPool(2);
StampedLock lock = new StampedLock();

executor.submit(() -> {
long stamp = lock.tryOptimisticRead();

try {
System.out.println("Optimistic Lock Valid: " + lock.validate(stamp));
sleep(1);
System.out.println("Optimistic Lock Valid: " + lock.validate(stamp));
sleep(2);
System.out.println("Optimistic Lock Valid: " + lock.validate(stamp));
} finally {
lock.unlock(stamp);
}

3

executor.submit(() -> {
long stamp = lock.writeLock();

try {
System.out.println("Write Lock acquired");
sleep(2);

} finally {
lock.unlock(stamp);
System.out.println("Write done");

}
1)

stop(executor);

An optimistic read lock is acquired by calling tryoptimisticread() Which always returns a
stamp without blocking the current thread, no matter if the lock is actually available. If there's
already a write lock active the returned stamp equals zero. You can always check if a stamp
is valid by calling 1lock.validate(stamp)

Executing the above code results in the following output:

Optimistic Lock Vvalid: true
Write Lock acquired
Optimistic Lock Vvalid: false
Write done

Optimistic Lock Vvalid: false

The optimistic lock is valid right after acquiring the lock. In contrast to normal read locks an
optimistic lock doesn't prevent other threads to obtain a write lock instantaneously. After
sending the first thread to sleep for one second the second thread obtains a write lock
without waiting for the optimistic read lock to be released. From this point the optimistic read
lock is no longer valid. Even when the write lock is released the optimistic read locks stays
invalid.

So when working with optimistic locks you have to validate the lock every time after
accessing any shared mutable variable to make sure the read was still valid.

Sometimes it's useful to convert a read lock into a write lock without unlocking and locking
again. stampedLock provides the method tryconvertTowriteLock() for that purpose as seen
in the next sample:

ExecutorService executor = Executors.newFixedThreadPool(2);
StampedLock lock = new StampedLock();

executor.submit(() -> {
long stamp = lock.readLock();
try {
if (count == 0) {
stamp = lock.tryConvertToWriteLock(stamp);
if (stamp == 0L) {
System.out.println("Could not convert to write lock");
stamp = lock.writelLock();

I
count = 23;
¥
System.out.println(count);
} finally {

lock.unlock(stamp);

}
3

stop(executor);

The task first obtains a read lock and prints the current value of field count to the console.
But if the current value is zero we want to assign a new value of 23 . We first have to
convert the read lock into a write lock to not break potential concurrent access by other
threads. Calling tryconvertTowriteLock() doesn't block but may return a zero stamp
indicating that no write lock is currently available. In that case we call writeLock() to block
the current thread until a write lock is available.

Semaphores

In addition to locks the Concurrency API also supports counting semaphores. Whereas locks
usually grant exclusive access to variables or resources, a semaphore is capable of
maintaining whole sets of permits. This is useful in different scenarios where you have to
limit the amount concurrent access to certain parts of your application.

Here's an example how to limit access to a long running task simulated by sleep(s) :

ExecutorService executor = Executors.newFixedThreadPool(10);
Semaphore semaphore = new Semaphore(5);

Runnable longRunningTask = () -> {
boolean permit = false;

try {
permit = semaphore.tryAcquire(1, TimeUnit.SECONDS);

if (permit) {
System.out.println("Semaphore acquired");
sleep(5);

} else {
System.out.println("Could not acquire semaphore");

} catch (InterruptedException e) {
throw new IllegalStateException(e);
} finally {
if (permit) {
semaphore.release();
}

}

IntStream.range(0, 10)
.forEach(i -> executor.submit(longRunningTask));

stop(executor);

The executor can potentially run 10 tasks concurrently but we use a semaphore of size 5,
thus limiting concurrent access to 5. It's important to use a try/finally block to properly
release the semaphore even in case of exceptions.

Executing the above code results in the following output:

Semaphore acquired
Semaphore acquired
Semaphore acquired
Semaphore acquired
Semaphore acquired
Could not acquire semaphore
Could not acquire semaphore
Could not acquire semaphore
Could not acquire semaphore
Could not acquire semaphore

The semaphores permits access to the actual long running operation simulated by

sleep(5) up to a maximum of 5. Every subsequent call to tryacquire() elapses the
maximum wait timeout of one second, resulting in the appropriate console output that no
semaphore could be acquired.

This was the second part out of a series of concurrency tutorials. More parts will be released
in the near future, so stay tuned. As usual you find all code samples from this article on
GitHub, so feel free to fork the repo and try it by your own.

| hope you've enjoyed this article. If you have any further questions send me your feedback
in the comments below. You should also follow me on Twitter for more dev-related stuff!

https://github.com/winterbe/java8-tutorial
https://twitter.com/winterbe_

Modern Java - A Guide to Java 8

e Part 1: Threads and Executors
e Part 2: Synchronization and Locks
e Part 3: Atomic Variables and ConcurrentMap

Java 8 Concurrency Tutorial: Synchronization and Locks

67

Java 8 Concurrency Tutorial: Atomic Variables
and ConcurrentMap

May 22, 2015

Welcome to the third part of my tutorial series about multi-threaded programming in Java 8.
This tutorial covers two important parts of the Concurrency API: Atomic Variables and
Concurrent Maps. Both have been greatly improved with the introduction of lambda
expressions and functional programming in the latest Java 8 release. All those new features
are described with a bunch of easily understood code samples. Enjoy!

e Part 1: Threads and Executors
e Part 2. Synchronization and Locks
e Part 3: Atomic Variables and ConcurrentMap

For simplicity the code samples of this tutorial make use of the two helper methods
sleep(seconds) and stop(executor) as defined here.

Atomicinteger

The package java.concurrent.atomic contains many useful classes to perform atomic
operations. An operation is atomic when you can safely perform the operation in parallel on
multiple threads without using the synchronized keyword or locks as shown in my previous
tutorial.

Internally, the atomic classes make heavy use of compare-and-swap (CAS), an atomic
instruction directly supported by most modern CPUs. Those instructions usually are much
faster than synchronizing via locks. So my advice is to prefer atomic classes over locks in
case you just have to change a single mutable variable concurrently.

Now let's pick one of the atomic classes for a few examples: AtomicInteger

AtomicInteger atomicInt = new AtomicInteger(0Q);
ExecutorService executor = Executors.newFixedThreadPool(2);

IntStream.range(0, 1000)
.forEach(i -> executor.submit(atomicInt::incrementAndGet));

stop(executor);

System.out.println(atomicInt.get()); // => 1000

https://github.com/winterbe/java8-tutorial/blob/master/src/com/winterbe/java8/samples/concurrent/ConcurrentUtils.java
http://en.wikipedia.org/wiki/Compare-and-swap

By using AtomicInteger as areplacementfor integer we're able to increment the number
concurrently in a thread-safe manor without synchronizing the access to the variable. The
method incrementAndGet() is an atomic operation so we can safely call this method from

multiple threads.

Atomiclnteger supports various kinds of atomic operations. The method updateAndcet ()
accepts a lambda expression in order to perform arbitrary arithmetic operations upon the
integer:

AtomicInteger atomicInt = new AtomicInteger(0);
ExecutorService executor = Executors.newFixedThreadPool(2);

IntStream.range(0, 1000)
.forEach(i -> {
Runnable task = () ->
atomicInt.updateAndGet(n -> n + 2);
executor.submit(task);

1)
stop(executor);

System.out.println(atomicInt.get()); // => 2000

The method accumulateandeet() accepts another kind of lambda expression of type
IntBinaryoperator . We use this method to sum up all values from 0 to 1000 concurrently in
the next sample:

AtomicInteger atomicInt = new AtomicInteger(0Q);
ExecutorService executor = Executors.newFixedThreadPool(2);
IntStream.range(0, 1000)
.forEach(i -> {
Runnable task = () ->

atomicInt.accumulateAndGet(i, (n, m) ->n + m);
executor.submit(task);

1)
stop(executor);

System.out.println(atomicInt.get()); // => 499500

Other useful atomic classes are AtomicBoolean, AtomicLong and AtomicReference.

LongAdder

The class Longadder as an alternative to AtomicLong can be used to consecutively add

values to a number.

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicBoolean.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicLong.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicReference.html

ExecutorService executor = Executors.newFixedThreadPool(2);

IntStream.range(0, 1000)
.forEach(i -> executor.submit(adder::increment));

stop(executor);

System.out.println(adder.sumThenReset()); // => 1000

LongAdder provides methods add() and increment() just like the atomic number classes
and is also thread-safe. But instead of summing up a single result this class maintains a set
of variables internally to reduce contention over threads. The actual result can be retrieved

by calling sum() Or sumThenReset()

This class is usually preferable over atomic numbers when updates from multiple threads
are more common than reads. This is often the case when capturing statistical data, e.g. you
want to count the number of requests served on a web server. The drawback of LongAdder

is higher memory consumption because a set of variables is held in-memory.

LongAccumulator

LongAccumulator is a more generalized version of LongAdder. Instead of performing simple
add operations the class LongAccumulator builds around a lambda expression of type
LongBinaryoperator as demonstrated in this code sample:

LongBinaryOperator op = (X, y) -> 2 * x +vy;
LongAccumulator accumulator = new LongAccumulator(op, 1L);
ExecutorService executor = Executors.newFixedThreadPool(2);

IntStream.range(0, 10)
.forEach(i -> executor.submit(() -> accumulator.accumulate(i)));

stop(executor);

System.out.println(accumulator.getThenReset()); // => 2539

We create a LongAccumulator with the function 2 * x + y and an initial value of one. With
every call to accumulate(i) both the current result and the value i are passed as
parameters to the lambda expression.

A LongAccumulator justlike Longadder maintains a set of variables internally to reduce
contention over threads.

ConcurrentMap

The interface concurrentmap extends the map interface and defines one of the most useful
concurrent collection types. Java 8 introduces functional programming by adding new
methods to this interface.

In the next code snippets we use the following sample map to demonstrates those new
methods:

ConcurrentMap<String, String> map = new ConcurrentHashMap<>();
map.put("foo", "bar");

map.put("han", "solo");

map.put("r2", "d2");

map.put("CS", npon);

The method foreach() accepts a lambda expression of type Biconsumer with both the key
and value of the map passed as parameters. It can be used as a replacement to for-each
loops to iterate over the entries of the concurrent map. The iteration is performed
sequentially on the current thread.

map.forEach((key, value) -> System.out.printf("%s = %s\n", key, value));

The method putifabsent() puts a new value into the map only if no value exists for the
given key. At least for the concurrentHashmap implementation of this method is thread-safe
just like put() so you don't have to synchronize when accessing the map concurrently from
different threads:

String value = map.putIfAbsent("c3", "p1i");
System.out.println(value); // po

The method getorpefault() returns the value for the given key. In case no entry exists for
this key the passed default value is returned:

String value = map.getOrDefault("hi", "there");
System.out.println(value); // there

The method replaceAll() accepts alambda expression of type BiFunction . BiFunctions
take two parameters and return a single value. In this case the function is called with the key
and the value of each map entry and returns a new value to be assigned for the current key:

map.replaceAll((key, value) -> "r2".equals(key) ? "d3" : value);
System.out.println(map.get("r2")); // d3

Instead of replacing all values of the map compute() let's us transform a single entry. The
method accepts both the key to be computed and a bi-function to specify the transformation
of the value.

map.compute("foo", (key, value) -> value + value);
System.out.println(map.get("foo")); // barbar

In addition to compute() two variants exist: computeIfAbsent() and computeIfPresent() .
The functional parameters of these methods only get called if the key is absent or present
respectively.

Finally, the method merge() can be utilized to unify a new value with an existing value in
the map. Merge accepts a key, the new value to be merged into the existing entry and a bi-
function to specify the merging behavior of both values:

map.merge("foo", "boo", (oldval, newval) -> newval + " was " + oldval);
System.out.println(map.get("foo")); // boo was foo

ConcurrentHashMap

All those methods above are part of the concurrentmap interface, thereby available to all
implementations of that interface. In addition the most important implementation

concurrentHashMap has been further enhanced with a couple of new methods to perform
parallel operations upon the map.

Just like parallel streams those methods use a special ForkJoinPool available via
ForkJoinPool.commonPool() in Java 8. This pool uses a preset parallelism which depends on
the number of available cores. Four CPU cores are available on my machine which results in

a parallelism of three:

System.out.println(ForkJoinPool.getCommonPoolParallelism()); // 3

This value can be decreased or increased by setting the following JVM parameter:

-Djava.util.concurrent.ForkJoinPool.common.parallelism=5

We use the same example map for demonstrating purposes but this time we work upon the
concrete implementation concurrentHashMap instead of the interface concurrentmap , SO we
can access all public methods from this class:

ConcurrentHashMap<String, String> map = new ConcurrentHashMap<>();
map.put("foo", "bar");

map.put("han", "solo");

map.put(”rZ", ndzn);

map.put(”CS", "p@");

Java 8 introduces three kinds of parallel operations: foreach , search and reduce . Each
of those operations are available in four forms accepting functions with keys, values, entries
and key-value pair arguments.

All of those methods use a common first argument called parallelismThreshold . This
threshold indicates the minimum collection size when the operation should be executed in
parallel. E.g. if you pass a threshold of 500 and the actual size of the map is 499 the
operation will be performed sequentially on a single thread. In the next examples we use a
threshold of one to always force parallel execution for demonstrating purposes.

ForEach

The method foreach() is capable of iterating over the key-value pairs of the map in
parallel. The lambda expression of type Biconsumer is called with the key and value of the
current iteration step. In order to visualize parallel execution we print the current threads
name to the console. Keep in mind that in my case the underlying ForkJoinPool uses up to
a maximum of three threads.

map.forEach(1, (key, value) ->
System.out.printf("key: %s; value: %s; thread: %s\n",
key, value, Thread.currentThread().getName()));

// key: r2; value: d2; thread: main
// key: foo; value: bar; thread: ForkJoinPool.commonPool-worker-1
// key: han; value: solo; thread: ForkJoinPool.commonPool-worker-2
// key: c3; value: p0; thread: main

Search

The method search() accepts a BifFunction returning a non-null search result for the
current key-value pair or null if the current iteration doesn't match the desired search
criteria. As soon as a non-null result is returned further processing is suppressed. Keep in
mind that concurrentHashmMap is unordered. The search function should not depend on the
actual processing order of the map. If multiple entries of the map match the given search
function the result may be non-deterministic.

String result = map.search(1, (key, value) -> {
System.out.println(Thread.currentThread().getName());
if ("foo".equals(key)) {

return value;

return null;

¥

System.out.println("Result: " + result);

// ForkJoinPool.commonPool-worker-2
// main

// ForkJoinPool.commonPool-worker-3
// Result: bar

Here's another example searching solely on the values of the map:

String result = map.searchValues(1l, value -> {
System.out.println(Thread.currentThread().getName());
if (value.length() > 3) {

return value;
}

return null;

1)

System.out.println("Result: " + result);
// ForkJoinPool.commonPool-worker-2

// main

// main

// ForkJoinPool.commonPool-worker-1
// Result: solo

Reduce

The method reduce() already known from Java 8 Streams accepts two lambda

expressions of type BiFunction . The first function transforms each key-value pair into a

single value of any type. The second function combines all those transformed values into a

single result, ignoring any possible null values.

String result = map.reduce(1,

(key, value) -> {
System.out.println("Transform: " + Thread.currentThread().getName());
return key + "=" + value;

iy

(s1, s2) -> {
System.out.println("Reduce: " + Thread.currentThread().getName());
return s1 + ", " + s2;

)

System.out.println("Result: " + result);

Transform: ForkJoinPool.commonPool-worker-2
Transform: main

Transform: ForkJoinPool.commonPool-worker-3
Reduce: ForkJoinPool.commonPool-worker-3
Transform: main

Reduce: main

Reduce: main

Result: r2=d2, c3=p0, han=solo, foo=bar

| hope you've enjoyed reading the third part of my tutorial series about Java 8 Concurrency.

The code samples from this tutorial are hosted on GitHub along with many other Java 8

code snippets. You're welcome to fork the repo and try it by your own.

If you want to support my work, please share this tutorial with your friends. You should also

follow me on Twitter as | constantly tweet about Java and programming related stuff.

e Part 1: Threads and Executors

e Part 2: Synchronization and Locks

e Part 3: Atomic Variables and ConcurrentMap

https://github.com/winterbe/java8-tutorial
https://twitter.com/winterbe_

Java 8 API by Example: Strings, Numbers,
Math and Files

March 25, 2015

Plenty of tutorials and articles cover the most important changes in Java 8 like lambda
expressions and functional streams. But furthermore many existing classes have been
enhanced in the JDK 8 API with useful features and methods.

This article covers some of those smaller changes in the Java 8 API - each described with
easily understood code samples. Let's take a deeper look into Strings, Numbers, Math and
Files.

Slicing Strings

Two new methods are available on the String class: join and chars . The first method
joins any number of strings into a single string with the given delimiter:

String.join(":", "foobar", "foo", "bar");
// => foobar:foo:bar

The second method chars creates a stream for all characters of the string, so you can use
stream operations upon those characters:

"foobar:foo:bar"
.chars()
.distinct()
.mapToObj(c -> String.valueOf((char)c))
.sorted()
.collect(Collectors.joining());

// => :abfor

Not only strings but also regex patterns now benefit from streams. Instead of splitting strings
into streams for each character we can split strings for any pattern and create a stream to
work upon as shown in this example:

Pattern.compile(":")
.splitAsStream("foobar:foo:bar")
.filter(s -> s.contains("bar"))
.sorted()
.collect(Collectors.joining(":"));

// => bar:foobar

Additionally regex patterns can be converted into predicates. Those predicates can for
example be used to filter a stream of strings:

Pattern pattern = Pattern.compile(".*@gmail\\.com");

Stream.of ("bob@gmail.com", "alice@hotmail.com")
.filter(pattern.asPredicate())
.count();

// => 1

The above pattern accepts any string which ends with @gmail.com and is then used as a
Java 8 predicate to filter a stream of email addresses.

Crunching Numbers

Java 8 adds additional support for working with unsigned numbers. Numbers in Java had
always been signed. Let's look at 1nteger for example:

An int represents a maximum of 232 binary digits. Numbers in Java are per default signed,
so the last binary digit represents the sign (0 = positive, 1 = negative). Thus the maximum
positive signed int is 23' - 1 starting with the decimal zero.

You can access this value via 1Integer.MAX_VALUE :

System.out.println(Integer.MAX_VALUE); // 2147483647
System.out.println(Integer .MAX_VALUE + 1); // -2147483648

Java 8 adds support for parsing unsigned ints. Let's see how this works:

long maxUnsignedInt = (11 << 32) - 1,

String string = String.valueOf(maxUnsignedInt);

int unsignedInt = Integer.parseUnsignedInt(string, 10);
String string2 = Integer.toUnsignedString(unsignedInt, 10);

As you can see it's now possible to parse the maximum possible unsigned number 232 - 1
into an integer. And you can also convert this number back into a string representing the
unsigned number.

This wasn't possible before with parseint as this example demonstrates:

try {
Integer.parseInt(string, 10);

catch (NumberFormatException e) {
System.err.println("could not parse signed int of " + maxUnsignedInt);
}

The number is not parseable as a signed int because it exceeds the maximum of 23" - 1.

Do the Math

The utility class math has been enhanced by a couple of new methods for handling number
overflows. What does that mean? We've already seen that all number types have a
maximum value. So what happens when the result of an arithmetic operation doesn't fit into
its size?

System.out.println(Integer.MAX_VALUE); // 2147483647
System.out.println(Integer .MAX_VALUE + 1); // -2147483648

As you can see a so called integer overflow happens which is normally not the desired
behavior.

Java 8 adds support for strict math to handle this problem. math has been extended by a
couple of methods who all ends with exact , €.g. addexact . Those methods handle
overflows properly by throwing an Arithmeticexception when the result of the operation
doesn't fit into the number type:
try {
Math.addExact(Integer.MAX_VALUE, 1);
catch (ArithmeticException e) {

System.err.println(e.getMessage());
// => integer overflow

The same exception might be thrown when trying to convert longs to int via tointexact :
try {
Math.toIntExact(Long.MAX_VALUE);
catch (ArithmeticException e) {

System.err.println(e.getMessage());
// => integer overflow

Working with Files

The utility class riles was first introduced in Java 7 as part of Java NIO. The JDK 8 API
adds a couple of additional methods which enables us to use functional streams with files.
Let's deep-dive into a couple of code samples.

Listing files

The method Files.list streams all paths for a given directory, so we can use stream
operations like filter and sorted upon the contents of the file system.

try (Stream<Path> stream = Files.list(Paths.get(""))) {
String joined = stream
.map(String: :valueOf)
.filter(path -> !path.startswith("."))

.sorted()
.collect(Collectors.joining("; "));
System.out.println("List: " + joined);

The above example lists all files for the current working directory, then maps each path to it's
string representation. The result is then filtered, sorted and finally joined into a string. If
you're not yet familiar with functional streams you should read my Java 8 Stream Tutorial.

You might have noticed that the creation of the stream is wrapped into a try/with statement.
Streams implement Autocloseable and in this case we really have to close the stream
explicitly since it's backed by IO operations.

> The returned stream encapsulates a DirectoryStream. If timely disposal of file system
resources is required, the try-with-resources construct should be used to ensure that the
stream's close method is invoked after the stream operations are completed.

Finding files

The next example demonstrates how to find files in a directory or it's sub-directories.

Path start = Paths.get("");

int maxDepth = 5;

try (Stream<Path> stream = Files.find(start, maxDepth, (path, attr) ->
String.valueOf(path).endswWith(".js"))) {

String joined = stream

.sorted()
.map(String: :valueOf)
.collect(Collectors.joining("; ")),

System.out.println("Found: " + joined);

The method find accepts three arguments: The directory path start is the initial starting

point and maxbepth defines the maximum folder depth to be searched. The third argument

is a matching predicate and defines the search logic. In the above example we search for all
JavaScript files (filename ends with .js).

We can achieve the same behavior by utilizing the method Friles.walk . Instead of passing
a search predicate this method just walks over any file.

Path start = Paths.get("");
int maxDepth = 5;
try (Stream<Path> stream = Files.walk(start, maxDepth)) {
String joined = stream
.map(String: :valueOf)
.filter(path -> path.endsWith(".js"))
.sorted()
.collect(Collectors.joining("; "));
System.out.println("walk(): " + joined);

In this example we use the stream operation filter to achieve the same behavior as in the
previous example.

Reading and writing files

Reading text files into memory and writing strings into a text file in Java 8 is finally a simple
task. No messing around with readers and writers. The method Friles.readAllLines reads
all lines of a given file into a list of strings. You can simply modify this list and write the lines
into another file via Files.write :

List<String> lines = Files.readAllLines(Paths.get("res/nashornil.js"));
lines.add("print('foobar');");
Files.write(Paths.get("res/nashornl-modified.js"), lines);

Please keep in mind that those methods are not very memory-efficient because the whole
file will be read into memory. The larger the file the more heap-size will be used.

As an memory-efficient alternative you could use the method Files.lines . Instead of
reading all lines into memory at once, this method reads and streams each line one by one
via functional streams.

try (Stream<String> stream = Files.lines(Paths.get("res/nashornl.js"))) {
stream
.filter(line -> line.contains("print"))
.map(String::trim)
.forEach(System.out: :println);

If you need more fine-grained control you can instead construct a new buffered reader:

Path path = Paths.get("res/nashorni.js");

try (BufferedReader reader = Files.newBufferedReader(path)) {
System.out.println(reader.readLine());

}

Or in case you want to write to a file simply construct a buffered writer instead:

Path path = Paths.get("res/output.js");
try (BufferedwWriter writer = Files.newBufferedwriter(path)) {
writer.write("print('Hello World');");

}

Buffered readers also have access to functional streams. The method 1ines construct a
functional stream upon all lines denoted by the buffered reader:

Path path = Paths.get("res/nashorni.js");
try (BufferedReader reader = Files.newBufferedReader(path)) {
long countPrints = reader
.lines()
.filter(line -> line.contains("print"))
.count();
System.out.println(countPrints);

So as you can see Java 8 provides three simple ways to read the lines of a text file, making
text file handling quite convenient.

Unfortunately you have to close functional file streams explicitly with try/with statements
which makes the code samples still kinda cluttered. | would have expected that functional
streams auto-close when calling a terminal operation like count oOr collect Ssince you
cannot call terminal operations twice on the same stream anyway.

| hope you've enjoyed this article. All code samples are hosted on GitHub along with plenty
of other code snippets from all the Java 8 articles of my blog. If this post was kinda useful to
you feel free to star the repo and follow me on Twitter.

Keep on coding!

https://github.com/winterbe/java8-tutorial
https://github.com/winterbe/java8-tutorial
https://twitter.com/winterbe_

Avoiding Null Checks in Java 8

March 15, 2015

How to prevent the famous nNullpointerException in Java? This is one of the key questions
every Java beginner will ask sooner or later. But also intermediate and expert programmers
get around this error every now and then. It's by far the most prevalent kind of error in Java
and many other programming languages as well.

Tony Hoare, the inventor of the null reference apologized in 2009 and denotes this kind of
errors as his billion-dollar mistake.

> | call it my billion-dollar mistake. It was the invention of the null reference in 1965. At that
time, | was designing the first comprehensive type system for references in an object
oriented language (ALGOL W). My goal was to ensure that all use of references should be
absolutely safe, with checking performed automatically by the compiler. But | couldn't resist
the temptation to put in a null reference, simply because it was so easy to implement. This
has led to innumerable errors, vulnerabilities, and system crashes, which have probably
caused a billion dollars of pain and damage in the last forty years.

Anyways, we have to deal with it. So what can we do to prevent NullPointerExceptions at
all? Well, the obvious answer is to add null checks all around the place. Since null checks
are kinda cumbersome and painful many languages add special syntax for handling null
checks via null coalescing operators - also known as elvis operator in languages like Groovy
or Kotlin.

Unfortunately Java doesn't provide such a syntactic sugar. But luckily things get better in
Java Version 8. This post describes a couple of techniques how to prevent writing needless
null checks by utilizing new features of Java 8 like lambda expressions.

Improving Null Safety in Java 8

I've already shown in another post how we can utilize the optional type of Java 8 to
prevent null checks. Here's the example code from the original post.

Assuming we have a hierarchical class structure like this:

http://en.wikipedia.org/wiki/Tony_Hoare
http://en.wikipedia.org/wiki/Null_coalescing_operator
http://groovy-lang.org/operators.html#_elvis_operator
http://kotlinlang.org/docs/reference/null-safety.html

class Outer {
Nested nested;
Nested getNested() {
return nested;

}

class Nested {
Inner inner;
Inner getInner() {
return inner;
}

class Inner {
String foo;
String getFoo() {
return foo;
}

Resolving a deep nested path in this structure can be kinda awkward. We have to write a
bunch of null checks to make sure not to raise a NullPointerException :

Outer outer = new Outer();

if (outer != null && outer.nested != null && outer.nested.inner != null) {
System.out.println(outer.nested.inner.foo0);

3

We can get rid of all those null checks by utilizing the Java 8 optional type. The method

map accepts a lambda expression of type Function and automatically wraps each function
result into an optional . That enables us to pipe multiple map operations in a row. Null
checks are automatically handled under the hood.

Optional.of(new Outer())
.map(Outer::getNested)
.map(Nested: :getInner)
.map(Inner::getFoo)
.ifPresent(System.out::println);

An alternative way to achieve the same behavior is by utilizing a supplier function to resolve
the nested path:

Outer obj = new Outer();
resolve(() -> obj.getNested().getInner().getFoo());
.ifPresent(System.out::println);

Calling obj.getNested().getInner().getFoo()) mMightthrow a NullPointerException . In this
case the exception will be caught and the method returns optional.empty() .

public static <T> Optional<T> resolve(Supplier<T> resolver) {

try {
T result = resolver.get();

return Optional.ofNullable(result);

catch (NullPointerException e) {
return Optional.empty();

}

Please keep in mind that both solutions are probably not as performant as traditional null
checks. In most cases that shouldn't be much of an issue.

As usual the above code samples are hosted on GitHub.
Happy coding!

> UPDATE: I've updated the code samples thanks to a hint from Zukhramm on Reddit.

https://github.com/winterbe/java8-tutorial
http://www.reddit.com/user/Zukhramm

Fixing Java 8 Stream Gotchas with IntelliJ
IDEA

March 05, 2015

Java 8 has been released almost one year ago in March 2014. At Pondus we've managed to
update all of our production servers to this new version back in May 2014. Since then we've
migrated major parts of our code base to lambda expressions, streams and the new Date
API. We also use Nashorn to dynamically script parts of our application which may change
during runtime.

The most used feature besides lambdas is the new Stream API. Collection operations are all
around the place in almost any codebase I've ever seen. And Streams are a great way to
improve code readability of all those collection crunching.

But one thing about streams really bothers me: Streams only provide a few terminal
operations like reduce and findrirst directly while others are only accessible via
collect . There's a utility class Collectors, providing a bunch of convenient collectors like

toList , toSet , joining and groupingBy .

For example this code filters over a collection of strings and creates a new list:

stringCollection
.stream()
.filter(e -> e.startswith("a"))
.collect(Collectors.toList());

After migrating a project with 300k lines of code to streams | can say that toList , toset

and groupingBy are by far the most used terminal operations in our project. So | really

cannot understand the design decision not to integrate those methods directly into the
stream interface so you could just write:

stringCollection
.stream()
.filter(e -> e.startswith("a"))
.toList();

This might look like a minor imperfection at first but it gets really annoying if you have to use
this kind of stuff over and over again.

There's a method toarray() butno torist() . So | really hope some of the more
convenient collectors will make it's way into the stream interface in Java 9. Brian? [1_[]

http://www.pondus.de
https://twitter.com/briangoetz

> As a side note: Stream s is a JavaScript port of the Java 8 Streams API for the browser
and addresses the described issue nicely. All important terminal operations are directly
accessible on the stream itself for convenience. See the API doc for details.

Anyways. IntelliJ IDEA claims to be the most intelligent Java IDE. So let's see how we can
utilize IDEA to solve this problem for us.

IntelliJ IDEA to the rescue

IntelliJ IDEA comes with a handy feature called Live Templates. If you don't already know
what it is: Live Templates are shortcuts for commonly used code snippets. E.g. you type

sout + tabulator and IDEA inserts the code snippet system.out.println() . Read here to
learn more about it.

How does Live Templates help with the problem described above? Actually we can simply

create our own Live Templates for all the commonly used default Stream collectors. E.g. we

can create a Live Template with the abbreviation .toList to insert the appropriate collector
.collect(Collectors.toList()) automatically.

This is how it looks like in action:

Set up your own Live Templates

Let's see how we can set this up. First go to Settings and choose Live Templates in the
menu to the left. You can also use the handy filter input at the top left of the dialog.

https://github.com/winterbe/streamjs
https://github.com/winterbe/streamjs/blob/master/APIDOC.md#groupingbykeymapper
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/help/live-templates.html

0 Preferences

Q Editor » Live Templates

» Appearance & Behavior By default expand with | Tab
Keymap
Editor Y, plsin
RESTful Web Services
SoL
¥ Stream
¥ .groupBy
¥ .join
File and Code Templates ' tolist {.collect{Collectors.toList();)
File Encodings ¥ .toSet
Live Templates ¥ surround
File Types Web Services
Copyright V. xsl
¥ Zen CSS
¥ Zen HTML
Zen XSL

b General

» Colors & Fonts

» Code Style
Inspections

Emmet
GUI Designer
Images
Intentions
o e Abbreviation: | .tolist Description: | .collect{Collectors.toList{);
Spelling Template text:
TODO .collect(Collectors.toList())
Plugins Options
» Version Control

Expand with | Default (Tab)| v

» Build, Execution, Deployment

» Languages & Frameworks Reformat according to style

» Tools Use static import if possible
¥ Shorten FQ names

Applicable in Java.

Next we can create a new group called stream viathe + icon on the right. Next we add all
of our stream-related Live Templates to this group. I'm using the default collectors toList ,

toset , groupingBy and join quite commonly, so | create a new Live Template for each of
those methods.

This part is important: After adding a new Live Template you have to specify the applicable
context at the bottom of the dialog. You have to choose Java — Other. Afterwards you
define the abbreviation, a description and the actual template code.

// Abbreviation: .toList
.collect(Collectors.toList())

// Abbreviation: .toSet
.collect(Collectors.toSet())

// Abbreviation: .join
.collect(Collectors.joining("$ENDS$"))

// Abbreviation: .groupBy
.collect(Collectors.groupingBy(e -> END))

The special variable s$enps determines the cursors position after using the template, so you
can directly start typing at this position, e.g. to define the joining delimiter.

> Hint: You should enable the option "Add unambiguous imports on the fly" so IDEA
automatically adds an import statement to java.util.stream.Collectors . The option is
located in: Editor — General — Auto Import

Let's see those two templates in action:

Join

stringCollection
.stream()

filter(s —> s.startsWith("a"))

GroupBy

stringCollection
.stream()

filter(s —> s.startsWith("a"))

Live Templates in IntelliJ IDEA are an extremely versatile and powerful tool. You can greatly
increase your coding productivity with it. Do you know other examples where Live Templates
can save your live? Let me know!

Still not satisfied? Learn everything you ever wanted to know about Java 8 Streams in my
Streams Tutorial.

Happy coding.

Using Backbone.js with Nashorn

April 07, 2014

This example demonstrates how to use Backbone.js models with the Java 8 Nashorn
Javascript Engine. First released in March 2014 as part of Java SE 8, Nashorn extends
Javas capabilities by running javascript code natively on the JVM. For java web developers
Nashorn might be especially useful for re-using existing client-side code on the java server.
Traditionally Node.js was in a clear advantage, but Nashorns possibilities might close the
gap to the JVM.

When working with modern javascript MV C frameworks like Backbone.js for HTMLS5 front-
ends, more and more code moves from the server back-end to the web front-end. This
approach can greatly increase the user experience because you safe a lot of server-
roundtrips when using business logic from your views.

Backbone enables you to define model classes which can be bound to views (e.g. HTML
forms). Backbone keeps track of updating the model when the user interacts with the Ul and
vice versa. It also aids you by synchronizing your model with the server, e.g. by calling the
appropriate method of your REST handler on the server side. So you end up implementing
business logic in your front-end code, leaving your server model responsible for persisting
data.

Reusing backbone models on the server side is quite easy with Nashorn, as the following
example will demonstrate. Before we start make sure you're familiar with writing javascript
for the Nashorn Engine by reading my Nashorn Tutorial.

The Java Model

First, we define a domain class Pproduct in java code. This class might be used for CRUD
database operations (saving to and loading from a datasource). Keep in mind that this class
is a dumb Java Bean without any business logic applied, because we want our front-end to
be capable of executing the business logic right from the UI.

class Product {
String name;
double price;
int stock;
double valueOfGoods;

The Backbone Model

http://nodejs.org/
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://backbonejs.org/

Now we define the backbone model as the counter-part of our java bean. The backbone
model pProduct uses the same data-structure as the java bean, since this is the data we
might want to persist on the java server.

The backbone model also implements the business logic: The method getvalueofGoods
calculates the value of all products by multiplying stock with price . Each time stock or
price changes the property valueofGoods must be re-calculated.

var Product = Backbone.Model.extend({
defaults: {

name: ,
stock: O,
price: 0.0,
valueOfGoods: 0.0
i¥

initialize: function() {
this.on('change:stock change:price', function() {
var stock = this.get('stock');
var price = this.get('price');
var valueOfGoods = this.getValueOfGoods(stock, price);
this.set('valueOfGoods', valueOfGoods);

1)
1

getValueOfGoods: function(stock, price) {
return stock * price;
}

1)
Since the backbone model doesn't use any Nashorn language extensions, we can safely
use the same code both on the client (Browser) and on the server (Java) side.

Keep in mind that | deliberately chose a really simple function for demonstrating purposes
only. Real business logic should be more complex.

Putting both together

The next goal is to re-use the backbone model from Nashorn, e.g. on the java server. We
want to achieve the following behavior: bind all properties from the java bean to the
backbone model; calculate the property valueofGoods ; pass the result back to java.

First, we create a new script to be evaluated solely by Nashorn, so we can safely use
Nashorn extensions here:

load('http://cdnjs.cloudflare.com/ajax/1libs/underscore.js/1.6.0/underscore-min.js');
load('http://cdnjs.cloudflare.com/ajax/1libs/backbone.js/1.1.2/backbone-min.js"');
load('product-backbone-model.js');

var calculate = function(javaProduct) {
var model = new Product();
model.set('name', javaProduct.name);
model.set('price', javaProduct.price);
model.set('stock', javaProduct.stock);
return model.attributes;

3

The script first loads the relevant external scripts Underscore and Backbone (Underscore is
a pre-requirement for Backbone) and our Pproduct backbone model as defined above.

The function calculate accepts a Product java bean, binds all properties to a newly

created backbone rroduct and returns all attributes of the model back to the caller. By

setting the properties stock and price on the backbone model, property valueofGoods

will automatically be calculated due to the event handler registered in the models
initialize constructor function.

Finally, we call the function calculate from java:

Product product = new Product();
product.setName("Rubber");
product.setPrice(1.99);
product.setStock(1337);

ScriptObjectMirror result = (ScriptObjectMirror)
invocable.invokeFunction("calculate", product);

System.out.println(result.get("name") + ": " + result.get("valueOfGoods"));
// Rubber: 2660.63

We create a new Pproduct java bean and pass it to the javascript function. As a result the
method getvalueofGoods Will be triggered, so we can read the property valueofGoods from
the returning object.

Conclusion

Reusing existing javascript libraries on the Nashorn Engine is quite easy. Backbone is great
for building complex HTMLS5 front-ends. In my opinion Nashorn and the JVM now is a great
alternative to Node.js, since you can make use of the whole Java eco-system in your
Nashorn codebase, such as the whole JDK API and all available libraries and tools. Keep in
mind that you're not tight to the Java Language when working with Nashorn - think Scala,
Groovy, Clojure or even pure Javascript via jjs .

The runnable source code from this article is hosted on GitHub (see this file). Feel free to
fork the repository or send me your feedback via Twitter.

http://underscorejs.org/
http://backbonejs.org/
https://github.com/winterbe/java8-tutorial
https://github.com/winterbe/java8-tutorial/blob/master/res/nashorn6.js
https://github.com/winterbe/java8-tutorial/fork
https://twitter.com/winterbe_

	Introduction
	Modern Java - A Guide to Java 8
	Java 8 Stream Tutorial
	Java 8 Nashorn Tutorial
	Java 8 Concurrency Tutorial: Threads and Executors
	Java 8 Concurrency Tutorial: Synchronization and Locks
	Java 8 Concurrency Tutorial: Atomic Variables and ConcurrentMap
	Java 8 API by Example: Strings, Numbers, Math and Files
	Avoiding Null Checks in Java 8
	Fixing Java 8 Stream Gotchas with IntelliJ IDEA
	Using Backbone.js with Nashorn

