

0

1

2

3

4

5

6

7

8

9

10

Table	of	Contents
Introduction

Modern	Java	-	A	Guide	to	Java	8

Java	8	Stream	Tutorial

Java	8	Nashorn	Tutorial

Java	8	Concurrency	Tutorial:	Threads	and	Executors

Java	8	Concurrency	Tutorial:	Synchronization	and	Locks

Java	8	Concurrency	Tutorial:	Atomic	Variables	and	ConcurrentMap

Java	8	API	by	Example:	Strings,	Numbers,	Math	and	Files

Avoiding	Null	Checks	in	Java	8

Fixing	Java	8	Stream	Gotchas	with	IntelliJ	IDEA

Using	Backbone.js	with	Nashorn

Modern	Java	-	A	Guide	to	Java	8

2

Modern	Java	-	A	Guide	to	Java	8
Author:	winterbe

From:	java8-tutorial

License:	MIT	License

Modern	Java	-	A	Guide	to	Java	8

3Introduction

https://github.com/winterbe
https://github.com/winterbe/java8-tutorial
https://github.com/winterbe/java8-tutorial/blob/master/LICENSE

Modern	Java	-	A	Guide	to	Java	8
“Java	is	still	not	dead—and	people	are	starting	to	figure	that	out.”

Welcome	to	my	introduction	to	Java	8.	This	tutorial	guides	you	step	by	step	through	all	new
language	features.	Backed	by	short	and	simple	code	samples	you'll	learn	how	to	use	default
interface	methods,	lambda	expressions,	method	references	and	repeatable	annotations.	At
the	end	of	the	article	you'll	be	familiar	with	the	most	recent	API	changes	like	streams,
functional	interfaces,	map	extensions	and	the	new	Date	API.	No	walls	of	text,	just	a	bunch
of	commented	code	snippets.	Enjoy!

This	article	was	originally	posted	on	my	blog.	You	should	follow	me	on	Twitter.

Table	of	Contents
Default	Methods	for	Interfaces
Lambda	expressions
Functional	Interfaces
Method	and	Constructor	References
Lambda	Scopes

Accessing	local	variables
Accessing	fields	and	static	variables
Accessing	Default	Interface	Methods

Built-in	Functional	Interfaces
Predicates
Functions
Suppliers
Consumers
Comparators

Optionals
Streams

Filter
Sorted
Map
Match
Count
Reduce

Parallel	Streams
Sequential	Sort

Modern	Java	-	A	Guide	to	Java	8

4Modern	Java	-	A	Guide	to	Java	8

https://twitter.com/mreinhold/status/429603588525281280
https://jdk8.java.net/
http://download.java.net/jdk8/docs/api/
http://winterbe.com/posts/2014/03/16/java-8-tutorial/
https://twitter.com/winterbe_

Parallel	Sort
Maps
Date	API

Clock
Timezones
LocalTime
LocalDate
LocalDateTime

Annotations
Where	to	go	from	here?

Default	Methods	for	Interfaces
Java	8	enables	us	to	add	non-abstract	method	implementations	to	interfaces	by	utilizing	the
	default		keyword.	This	feature	is	also	known	as	virtual	extension	methods.

Here	is	our	first	example:

interface	Formula	{

				double	calculate(int	a);

				default	double	sqrt(int	a)	{

								return	Math.sqrt(a);

				}

}

Besides	the	abstract	method		calculate		the	interface		Formula		also	defines	the	default
method		sqrt	.	Concrete	classes	only	have	to	implement	the	abstract	method		calculate	.
The	default	method		sqrt		can	be	used	out	of	the	box.

Formula	formula	=	new	Formula()	{

				@Override

				public	double	calculate(int	a)	{

								return	sqrt(a	*	100);

				}

};

formula.calculate(100);					//	100.0

formula.sqrt(16);											//	4.0

The	formula	is	implemented	as	an	anonymous	object.	The	code	is	quite	verbose:	6	lines	of
code	for	such	a	simple	calculation	of		sqrt(a	*	100)	.	As	we'll	see	in	the	next	section,	there's
a	much	nicer	way	of	implementing	single	method	objects	in	Java	8.

Lambda	expressions

Modern	Java	-	A	Guide	to	Java	8

5Modern	Java	-	A	Guide	to	Java	8

http://stackoverflow.com/a/24102730

Let's	start	with	a	simple	example	of	how	to	sort	a	list	of	strings	in	prior	versions	of	Java:

List<String>	names	=	Arrays.asList("peter",	"anna",	"mike",	"xenia");

Collections.sort(names,	new	Comparator<String>()	{

				@Override

				public	int	compare(String	a,	String	b)	{

								return	b.compareTo(a);

				}

});

The	static	utility	method		Collections.sort		accepts	a	list	and	a	comparator	in	order	to	sort
the	elements	of	the	given	list.	You	often	find	yourself	creating	anonymous	comparators	and
pass	them	to	the	sort	method.

Instead	of	creating	anonymous	objects	all	day	long,	Java	8	comes	with	a	much	shorter
syntax,	lambda	expressions:

Collections.sort(names,	(String	a,	String	b)	->	{

				return	b.compareTo(a);

});

As	you	can	see	the	code	is	much	shorter	and	easier	to	read.	But	it	gets	even	shorter:

Collections.sort(names,	(String	a,	String	b)	->	b.compareTo(a));

For	one	line	method	bodies	you	can	skip	both	the	braces		{}		and	the		return		keyword.	But
it	gets	even	shorter:

names.sort((a,	b)	->	b.compareTo(a));

List	now	has	a		sort		method.	Also	the	java	compiler	is	aware	of	the	parameter	types	so	you
can	skip	them	as	well.	Let's	dive	deeper	into	how	lambda	expressions	can	be	used	in	the
wild.

Functional	Interfaces
How	does	lambda	expressions	fit	into	Java's	type	system?	Each	lambda	corresponds	to	a
given	type,	specified	by	an	interface.	A	so	called	functional	interface	must	contain	exactly
one	abstract	method	declaration.	Each	lambda	expression	of	that	type	will	be	matched	to
this	abstract	method.	Since	default	methods	are	not	abstract	you're	free	to	add	default
methods	to	your	functional	interface.

Modern	Java	-	A	Guide	to	Java	8

6Modern	Java	-	A	Guide	to	Java	8

We	can	use	arbitrary	interfaces	as	lambda	expressions	as	long	as	the	interface	only
contains	one	abstract	method.	To	ensure	that	your	interface	meet	the	requirements,	you
should	add	the		@FunctionalInterface		annotation.	The	compiler	is	aware	of	this	annotation
and	throws	a	compiler	error	as	soon	as	you	try	to	add	a	second	abstract	method	declaration
to	the	interface.

Example:

@FunctionalInterface

interface	Converter<F,	T>	{

				T	convert(F	from);

}

Converter<String,	Integer>	converter	=	(from)	->	Integer.valueOf(from);

Integer	converted	=	converter.convert("123");

System.out.println(converted);				//	123

Keep	in	mind	that	the	code	is	also	valid	if	the		@FunctionalInterface		annotation	would	be
omitted.

Method	and	Constructor	References
The	above	example	code	can	be	further	simplified	by	utilizing	static	method	references:

Converter<String,	Integer>	converter	=	Integer::valueOf;

Integer	converted	=	converter.convert("123");

System.out.println(converted);			//	123

Java	8	enables	you	to	pass	references	of	methods	or	constructors	via	the		::		keyword.	The
above	example	shows	how	to	reference	a	static	method.	But	we	can	also	reference	object
methods:

class	Something	{

				String	startsWith(String	s)	{

								return	String.valueOf(s.charAt(0));

				}

}

Something	something	=	new	Something();

Converter<String,	String>	converter	=	something::startsWith;

String	converted	=	converter.convert("Java");

System.out.println(converted);				//	"J"

Let's	see	how	the		::		keyword	works	for	constructors.	First	we	define	an	example	bean	with
different	constructors:

Modern	Java	-	A	Guide	to	Java	8

7Modern	Java	-	A	Guide	to	Java	8

class	Person	{

				String	firstName;

				String	lastName;

				Person()	{}

				Person(String	firstName,	String	lastName)	{

								this.firstName	=	firstName;

								this.lastName	=	lastName;

				}

}

Next	we	specify	a	person	factory	interface	to	be	used	for	creating	new	persons:

interface	PersonFactory<P	extends	Person>	{

				P	create(String	firstName,	String	lastName);

}

Instead	of	implementing	the	factory	manually,	we	glue	everything	together	via	constructor
references:

PersonFactory<Person>	personFactory	=	Person::new;

Person	person	=	personFactory.create("Peter",	"Parker");

We	create	a	reference	to	the	Person	constructor	via		Person::new	.	The	Java	compiler
automatically	chooses	the	right	constructor	by	matching	the	signature	of
	PersonFactory.create	.

Lambda	Scopes
Accessing	outer	scope	variables	from	lambda	expressions	is	very	similar	to	anonymous
objects.	You	can	access	final	variables	from	the	local	outer	scope	as	well	as	instance	fields
and	static	variables.

Accessing	local	variables

We	can	read	final	local	variables	from	the	outer	scope	of	lambda	expressions:

final	int	num	=	1;

Converter<Integer,	String>	stringConverter	=

								(from)	->	String.valueOf(from	+	num);

stringConverter.convert(2);					//	3

But	different	to	anonymous	objects	the	variable		num		does	not	have	to	be	declared	final.
This	code	is	also	valid:

Modern	Java	-	A	Guide	to	Java	8

8Modern	Java	-	A	Guide	to	Java	8

int	num	=	1;

Converter<Integer,	String>	stringConverter	=

								(from)	->	String.valueOf(from	+	num);

stringConverter.convert(2);					//	3

However		num		must	be	implicitly	final	for	the	code	to	compile.	The	following	code	does	not
compile:

int	num	=	1;

Converter<Integer,	String>	stringConverter	=

								(from)	->	String.valueOf(from	+	num);

num	=	3;

Writing	to		num		from	within	the	lambda	expression	is	also	prohibited.

Accessing	fields	and	static	variables

In	contrast	to	local	variables,	we	have	both	read	and	write	access	to	instance	fields	and
static	variables	from	within	lambda	expressions.	This	behaviour	is	well	known	from
anonymous	objects.

class	Lambda4	{

				static	int	outerStaticNum;

				int	outerNum;

				void	testScopes()	{

								Converter<Integer,	String>	stringConverter1	=	(from)	->	{

												outerNum	=	23;

												return	String.valueOf(from);

								};

								Converter<Integer,	String>	stringConverter2	=	(from)	->	{

												outerStaticNum	=	72;

												return	String.valueOf(from);

								};

				}

}

Accessing	Default	Interface	Methods

Remember	the	formula	example	from	the	first	section?	Interface		Formula		defines	a	default
method		sqrt		which	can	be	accessed	from	each	formula	instance	including	anonymous
objects.	This	does	not	work	with	lambda	expressions.

Default	methods	cannot	be	accessed	from	within	lambda	expressions.	The	following	code
does	not	compile:

Formula	formula	=	(a)	->	sqrt(a	*	100);

Modern	Java	-	A	Guide	to	Java	8

9Modern	Java	-	A	Guide	to	Java	8

Built-in	Functional	Interfaces
The	JDK	1.8	API	contains	many	built-in	functional	interfaces.	Some	of	them	are	well	known
from	older	versions	of	Java	like		Comparator		or		Runnable	.	Those	existing	interfaces	are
extended	to	enable	Lambda	support	via	the		@FunctionalInterface		annotation.

But	the	Java	8	API	is	also	full	of	new	functional	interfaces	to	make	your	life	easier.	Some	of
those	new	interfaces	are	well	known	from	the	Google	Guava	library.	Even	if	you're	familiar
with	this	library	you	should	keep	a	close	eye	on	how	those	interfaces	are	extended	by	some
useful	method	extensions.

Predicates

Predicates	are	boolean-valued	functions	of	one	argument.	The	interface	contains	various
default	methods	for	composing	predicates	to	complex	logical	terms	(and,	or,	negate)

Predicate<String>	predicate	=	(s)	->	s.length()	>	0;

predicate.test("foo");														//	true

predicate.negate().test("foo");					//	false

Predicate<Boolean>	nonNull	=	Objects::nonNull;

Predicate<Boolean>	isNull	=	Objects::isNull;

Predicate<String>	isEmpty	=	String::isEmpty;

Predicate<String>	isNotEmpty	=	isEmpty.negate();

Functions

Functions	accept	one	argument	and	produce	a	result.	Default	methods	can	be	used	to	chain
multiple	functions	together	(compose,	andThen).

Function<String,	Integer>	toInteger	=	Integer::valueOf;

Function<String,	String>	backToString	=	toInteger.andThen(String::valueOf);

backToString.apply("123");					//	"123"

Suppliers

Suppliers	produce	a	result	of	a	given	generic	type.	Unlike	Functions,	Suppliers	don't	accept
arguments.

Supplier<Person>	personSupplier	=	Person::new;

personSupplier.get();			//	new	Person

Consumers

Modern	Java	-	A	Guide	to	Java	8

10Modern	Java	-	A	Guide	to	Java	8

https://code.google.com/p/guava-libraries/

Consumers	represent	operations	to	be	performed	on	a	single	input	argument.

Consumer<Person>	greeter	=	(p)	->	System.out.println("Hello,	"	+	p.firstName);

greeter.accept(new	Person("Luke",	"Skywalker"));

Comparators

Comparators	are	well	known	from	older	versions	of	Java.	Java	8	adds	various	default
methods	to	the	interface.

Comparator<Person>	comparator	=	(p1,	p2)	->	p1.firstName.compareTo(p2.firstName);

Person	p1	=	new	Person("John",	"Doe");

Person	p2	=	new	Person("Alice",	"Wonderland");

comparator.compare(p1,	p2);													//	>	0

comparator.reversed().compare(p1,	p2);		//	<	0

Optionals
Optionals	are	not	functional	interfaces,	but	nifty	utilities	to	prevent		NullPointerException	.	It's
an	important	concept	for	the	next	section,	so	let's	have	a	quick	look	at	how	Optionals	work.

Optional	is	a	simple	container	for	a	value	which	may	be	null	or	non-null.	Think	of	a	method
which	may	return	a	non-null	result	but	sometimes	return	nothing.	Instead	of	returning		null	
you	return	an		Optional		in	Java	8.

Optional<String>	optional	=	Optional.of("bam");

optional.isPresent();											//	true

optional.get();																	//	"bam"

optional.orElse("fallback");				//	"bam"

optional.ifPresent((s)	->	System.out.println(s.charAt(0)));					//	"b"

Streams
A		java.util.Stream		represents	a	sequence	of	elements	on	which	one	or	more	operations
can	be	performed.	Stream	operations	are	either	intermediate	or	terminal.	While	terminal
operations	return	a	result	of	a	certain	type,	intermediate	operations	return	the	stream	itself
so	you	can	chain	multiple	method	calls	in	a	row.	Streams	are	created	on	a	source,	e.g.	a
	java.util.Collection		like	lists	or	sets	(maps	are	not	supported).	Stream	operations	can
either	be	executed	sequentially	or	parallely.

Streams	are	extremely	powerful,	so	I	wrote	a	separate	Java	8	Streams	Tutorial.	You
should	also	check	out	Stream.js,	a	JavaScript	port	of	the	Java	8	Streams	API.

Modern	Java	-	A	Guide	to	Java	8

11Modern	Java	-	A	Guide	to	Java	8

http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/
https://github.com/winterbe/streamjs

Let's	first	look	how	sequential	streams	work.	First	we	create	a	sample	source	in	form	of	a	list
of	strings:

List<String>	stringCollection	=	new	ArrayList<>();

stringCollection.add("ddd2");

stringCollection.add("aaa2");

stringCollection.add("bbb1");

stringCollection.add("aaa1");

stringCollection.add("bbb3");

stringCollection.add("ccc");

stringCollection.add("bbb2");

stringCollection.add("ddd1");

Collections	in	Java	8	are	extended	so	you	can	simply	create	streams	either	by	calling
	Collection.stream()		or		Collection.parallelStream()	.	The	following	sections	explain	the
most	common	stream	operations.

Filter

Filter	accepts	a	predicate	to	filter	all	elements	of	the	stream.	This	operation	is	intermediate
which	enables	us	to	call	another	stream	operation	(forEach)	on	the	result.	ForEach	accepts
a	consumer	to	be	executed	for	each	element	in	the	filtered	stream.	ForEach	is	a	terminal
operation.	It's		void	,	so	we	cannot	call	another	stream	operation.

stringCollection

				.stream()

				.filter((s)	->	s.startsWith("a"))

				.forEach(System.out::println);

//	"aaa2",	"aaa1"

Sorted

Sorted	is	an	intermediate	operation	which	returns	a	sorted	view	of	the	stream.	The	elements
are	sorted	in	natural	order	unless	you	pass	a	custom		Comparator	.

stringCollection

				.stream()

				.sorted()

				.filter((s)	->	s.startsWith("a"))

				.forEach(System.out::println);

//	"aaa1",	"aaa2"

Keep	in	mind	that		sorted		does	only	create	a	sorted	view	of	the	stream	without	manipulating
the	ordering	of	the	backed	collection.	The	ordering	of		stringCollection		is	untouched:

System.out.println(stringCollection);

//	ddd2,	aaa2,	bbb1,	aaa1,	bbb3,	ccc,	bbb2,	ddd1

Modern	Java	-	A	Guide	to	Java	8

12Modern	Java	-	A	Guide	to	Java	8

Map

The	intermediate	operation		map		converts	each	element	into	another	object	via	the	given
function.	The	following	example	converts	each	string	into	an	upper-cased	string.	But	you	can
also	use		map		to	transform	each	object	into	another	type.	The	generic	type	of	the	resulting
stream	depends	on	the	generic	type	of	the	function	you	pass	to		map	.

stringCollection

				.stream()

				.map(String::toUpperCase)

				.sorted((a,	b)	->	b.compareTo(a))

				.forEach(System.out::println);

//	"DDD2",	"DDD1",	"CCC",	"BBB3",	"BBB2",	"AAA2",	"AAA1"

Match

Various	matching	operations	can	be	used	to	check	whether	a	certain	predicate	matches	the
stream.	All	of	those	operations	are	terminal	and	return	a	boolean	result.

boolean	anyStartsWithA	=

				stringCollection

								.stream()

								.anyMatch((s)	->	s.startsWith("a"));

System.out.println(anyStartsWithA);						//	true

boolean	allStartsWithA	=

				stringCollection

								.stream()

								.allMatch((s)	->	s.startsWith("a"));

System.out.println(allStartsWithA);						//	false

boolean	noneStartsWithZ	=

				stringCollection

								.stream()

								.noneMatch((s)	->	s.startsWith("z"));

System.out.println(noneStartsWithZ);						//	true

Count

Count	is	a	terminal	operation	returning	the	number	of	elements	in	the	stream	as	a		long	.

long	startsWithB	=

				stringCollection

								.stream()

								.filter((s)	->	s.startsWith("b"))

								.count();

System.out.println(startsWithB);				//	3

Reduce

Modern	Java	-	A	Guide	to	Java	8

13Modern	Java	-	A	Guide	to	Java	8

This	terminal	operation	performs	a	reduction	on	the	elements	of	the	stream	with	the	given
function.	The	result	is	an		Optional		holding	the	reduced	value.

Optional<String>	reduced	=

				stringCollection

								.stream()

								.sorted()

								.reduce((s1,	s2)	->	s1	+	"#"	+	s2);

reduced.ifPresent(System.out::println);

//	"aaa1#aaa2#bbb1#bbb2#bbb3#ccc#ddd1#ddd2"

Parallel	Streams
As	mentioned	above	streams	can	be	either	sequential	or	parallel.	Operations	on	sequential
streams	are	performed	on	a	single	thread	while	operations	on	parallel	streams	are
performed	concurrently	on	multiple	threads.

The	following	example	demonstrates	how	easy	it	is	to	increase	the	performance	by	using
parallel	streams.

First	we	create	a	large	list	of	unique	elements:

int	max	=	1000000;

List<String>	values	=	new	ArrayList<>(max);

for	(int	i	=	0;	i	<	max;	i++)	{

				UUID	uuid	=	UUID.randomUUID();

				values.add(uuid.toString());

}

Now	we	measure	the	time	it	takes	to	sort	a	stream	of	this	collection.

Sequential	Sort

long	t0	=	System.nanoTime();

long	count	=	values.stream().sorted().count();

System.out.println(count);

long	t1	=	System.nanoTime();

long	millis	=	TimeUnit.NANOSECONDS.toMillis(t1	-	t0);

System.out.println(String.format("sequential	sort	took:	%d	ms",	millis));

//	sequential	sort	took:	899	ms

Parallel	Sort

Modern	Java	-	A	Guide	to	Java	8

14Modern	Java	-	A	Guide	to	Java	8

long	t0	=	System.nanoTime();

long	count	=	values.parallelStream().sorted().count();

System.out.println(count);

long	t1	=	System.nanoTime();

long	millis	=	TimeUnit.NANOSECONDS.toMillis(t1	-	t0);

System.out.println(String.format("parallel	sort	took:	%d	ms",	millis));

//	parallel	sort	took:	472	ms

As	you	can	see	both	code	snippets	are	almost	identical	but	the	parallel	sort	is	roughly	50%
faster.	All	you	have	to	do	is	change		stream()		to		parallelStream()	.

Maps
As	already	mentioned	maps	do	not	directly	support	streams.	There's	no		stream()		method
available	on	the		Map		interface	itself,	however	you	can	create	specialized	streams	upon	the
keys,	values	or	entries	of	a	map	via		map.keySet().stream()	,		map.values().stream()		and
	map.entrySet().stream()	.

Furthermore	maps	support	various	new	and	useful	methods	for	doing	common	tasks.

Map<Integer,	String>	map	=	new	HashMap<>();

for	(int	i	=	0;	i	<	10;	i++)	{

				map.putIfAbsent(i,	"val"	+	i);

}

map.forEach((id,	val)	->	System.out.println(val));

The	above	code	should	be	self-explaining:		putIfAbsent		prevents	us	from	writing	additional
if	null	checks;		forEach		accepts	a	consumer	to	perform	operations	for	each	value	of	the
map.

This	example	shows	how	to	compute	code	on	the	map	by	utilizing	functions:

map.computeIfPresent(3,	(num,	val)	->	val	+	num);

map.get(3);													//	val33

map.computeIfPresent(9,	(num,	val)	->	null);

map.containsKey(9);					//	false

map.computeIfAbsent(23,	num	->	"val"	+	num);

map.containsKey(23);				//	true

map.computeIfAbsent(3,	num	->	"bam");

map.get(3);													//	val33

Next,	we	learn	how	to	remove	entries	for	a	given	key,	only	if	it's	currently	mapped	to	a	given
value:

Modern	Java	-	A	Guide	to	Java	8

15Modern	Java	-	A	Guide	to	Java	8

map.remove(3,	"val3");

map.get(3);													//	val33

map.remove(3,	"val33");

map.get(3);													//	null

Another	helpful	method:

map.getOrDefault(42,	"not	found");		//	not	found

Merging	entries	of	a	map	is	quite	easy:

map.merge(9,	"val9",	(value,	newValue)	->	value.concat(newValue));

map.get(9);													//	val9

map.merge(9,	"concat",	(value,	newValue)	->	value.concat(newValue));

map.get(9);													//	val9concat

Merge	either	put	the	key/value	into	the	map	if	no	entry	for	the	key	exists,	or	the	merging
function	will	be	called	to	change	the	existing	value.

Date	API
Java	8	contains	a	brand	new	date	and	time	API	under	the	package		java.time	.	The	new
Date	API	is	comparable	with	the	Joda-Time	library,	however	it's	not	the	same.	The	following
examples	cover	the	most	important	parts	of	this	new	API.

Clock

Clock	provides	access	to	the	current	date	and	time.	Clocks	are	aware	of	a	timezone	and
may	be	used	instead	of		System.currentTimeMillis()		to	retrieve	the	current	time	in
milliseconds	since	Unix	EPOCH.	Such	an	instantaneous	point	on	the	time-line	is	also
represented	by	the	class		Instant	.	Instants	can	be	used	to	create	legacy		java.util.Date	
objects.

Clock	clock	=	Clock.systemDefaultZone();

long	millis	=	clock.millis();

Instant	instant	=	clock.instant();

Date	legacyDate	=	Date.from(instant);			//	legacy	java.util.Date

Timezones

Modern	Java	-	A	Guide	to	Java	8

16Modern	Java	-	A	Guide	to	Java	8

http://www.joda.org/joda-time/
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html

Timezones	are	represented	by	a		ZoneId	.	They	can	easily	be	accessed	via	static	factory
methods.	Timezones	define	the	offsets	which	are	important	to	convert	between	instants	and
local	dates	and	times.

System.out.println(ZoneId.getAvailableZoneIds());

//	prints	all	available	timezone	ids

ZoneId	zone1	=	ZoneId.of("Europe/Berlin");

ZoneId	zone2	=	ZoneId.of("Brazil/East");

System.out.println(zone1.getRules());

System.out.println(zone2.getRules());

//	ZoneRules[currentStandardOffset=+01:00]

//	ZoneRules[currentStandardOffset=-03:00]

LocalTime

LocalTime	represents	a	time	without	a	timezone,	e.g.	10pm	or	17:30:15.	The	following
example	creates	two	local	times	for	the	timezones	defined	above.	Then	we	compare	both
times	and	calculate	the	difference	in	hours	and	minutes	between	both	times.

LocalTime	now1	=	LocalTime.now(zone1);

LocalTime	now2	=	LocalTime.now(zone2);

System.out.println(now1.isBefore(now2));		//	false

long	hoursBetween	=	ChronoUnit.HOURS.between(now1,	now2);

long	minutesBetween	=	ChronoUnit.MINUTES.between(now1,	now2);

System.out.println(hoursBetween);							//	-3

System.out.println(minutesBetween);					//	-239

LocalTime	comes	with	various	factory	methods	to	simplify	the	creation	of	new	instances,
including	parsing	of	time	strings.

LocalTime	late	=	LocalTime.of(23,	59,	59);

System.out.println(late);							//	23:59:59

DateTimeFormatter	germanFormatter	=

				DateTimeFormatter

								.ofLocalizedTime(FormatStyle.SHORT)

								.withLocale(Locale.GERMAN);

LocalTime	leetTime	=	LocalTime.parse("13:37",	germanFormatter);

System.out.println(leetTime);			//	13:37

LocalDate

LocalDate	represents	a	distinct	date,	e.g.	2014-03-11.	It's	immutable	and	works	exactly
analog	to	LocalTime.	The	sample	demonstrates	how	to	calculate	new	dates	by	adding	or
subtracting	days,	months	or	years.	Keep	in	mind	that	each	manipulation	returns	a	new
instance.

Modern	Java	-	A	Guide	to	Java	8

17Modern	Java	-	A	Guide	to	Java	8

LocalDate	today	=	LocalDate.now();

LocalDate	tomorrow	=	today.plus(1,	ChronoUnit.DAYS);

LocalDate	yesterday	=	tomorrow.minusDays(2);

LocalDate	independenceDay	=	LocalDate.of(2014,	Month.JULY,	4);

DayOfWeek	dayOfWeek	=	independenceDay.getDayOfWeek();

System.out.println(dayOfWeek);				//	FRIDAY

Parsing	a	LocalDate	from	a	string	is	just	as	simple	as	parsing	a	LocalTime:

DateTimeFormatter	germanFormatter	=

				DateTimeFormatter

								.ofLocalizedDate(FormatStyle.MEDIUM)

								.withLocale(Locale.GERMAN);

LocalDate	xmas	=	LocalDate.parse("24.12.2014",	germanFormatter);

System.out.println(xmas);			//	2014-12-24

LocalDateTime

LocalDateTime	represents	a	date-time.	It	combines	date	and	time	as	seen	in	the	above
sections	into	one	instance.		LocalDateTime		is	immutable	and	works	similar	to	LocalTime	and
LocalDate.	We	can	utilize	methods	for	retrieving	certain	fields	from	a	date-time:

LocalDateTime	sylvester	=	LocalDateTime.of(2014,	Month.DECEMBER,	31,	23,	59,	59);

DayOfWeek	dayOfWeek	=	sylvester.getDayOfWeek();

System.out.println(dayOfWeek);						//	WEDNESDAY

Month	month	=	sylvester.getMonth();

System.out.println(month);										//	DECEMBER

long	minuteOfDay	=	sylvester.getLong(ChronoField.MINUTE_OF_DAY);

System.out.println(minuteOfDay);				//	1439

With	the	additional	information	of	a	timezone	it	can	be	converted	to	an	instant.	Instants	can
easily	be	converted	to	legacy	dates	of	type		java.util.Date	.

Instant	instant	=	sylvester

								.atZone(ZoneId.systemDefault())

								.toInstant();

Date	legacyDate	=	Date.from(instant);

System.out.println(legacyDate);					//	Wed	Dec	31	23:59:59	CET	2014

Formatting	date-times	works	just	like	formatting	dates	or	times.	Instead	of	using	pre-defined
formats	we	can	create	formatters	from	custom	patterns.

Modern	Java	-	A	Guide	to	Java	8

18Modern	Java	-	A	Guide	to	Java	8

DateTimeFormatter	formatter	=

				DateTimeFormatter

								.ofPattern("MMM	dd,	yyyy	-	HH:mm");

LocalDateTime	parsed	=	LocalDateTime.parse("Nov	03,	2014	-	07:13",	formatter);

String	string	=	formatter.format(parsed);

System.out.println(string);					//	Nov	03,	2014	-	07:13

Unlike		java.text.NumberFormat		the	new		DateTimeFormatter		is	immutable	and	thread-safe.

For	details	on	the	pattern	syntax	read	here.

Annotations
Annotations	in	Java	8	are	repeatable.	Let's	dive	directly	into	an	example	to	figure	that	out.

First,	we	define	a	wrapper	annotation	which	holds	an	array	of	the	actual	annotations:

@interface	Hints	{

				Hint[]	value();

}

@Repeatable(Hints.class)

@interface	Hint	{

				String	value();

}

Java	8	enables	us	to	use	multiple	annotations	of	the	same	type	by	declaring	the	annotation
	@Repeatable	.

Variant	1:	Using	the	container	annotation	(old	school)

@Hints({@Hint("hint1"),	@Hint("hint2")})

class	Person	{}

Variant	2:	Using	repeatable	annotations	(new	school)

@Hint("hint1")

@Hint("hint2")

class	Person	{}

Using	variant	2	the	java	compiler	implicitly	sets	up	the		@Hints		annotation	under	the	hood.
That's	important	for	reading	annotation	information	via	reflection.

Modern	Java	-	A	Guide	to	Java	8

19Modern	Java	-	A	Guide	to	Java	8

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

Hint	hint	=	Person.class.getAnnotation(Hint.class);

System.out.println(hint);																			//	null

Hints	hints1	=	Person.class.getAnnotation(Hints.class);

System.out.println(hints1.value().length);		//	2

Hint[]	hints2	=	Person.class.getAnnotationsByType(Hint.class);

System.out.println(hints2.length);										//	2

Although	we	never	declared	the		@Hints		annotation	on	the		Person		class,	it's	still	readable
via		getAnnotation(Hints.class)	.	However,	the	more	convenient	method	is
	getAnnotationsByType		which	grants	direct	access	to	all	annotated		@Hint		annotations.

Furthermore	the	usage	of	annotations	in	Java	8	is	expanded	to	two	new	targets:

@Target({ElementType.TYPE_PARAMETER,	ElementType.TYPE_USE})

@interface	MyAnnotation	{}

Where	to	go	from	here?
My	programming	guide	to	Java	8	ends	here.	If	you	want	to	learn	more	about	all	the	new
classes	and	features	of	the	JDK	8	API,	check	out	my	JDK8	API	Explorer.	It	helps	you
figuring	out	all	the	new	classes	and	hidden	gems	of	JDK	8,	like		Arrays.parallelSort	,
	StampedLock		and		CompletableFuture		-	just	to	name	a	few.

I've	also	published	a	bunch	of	follow-up	articles	on	my	blog	that	might	be	interesting	to	you:

Java	8	Stream	Tutorial
Java	8	Nashorn	Tutorial
Java	8	Concurrency	Tutorial:	Threads	and	Executors
Java	8	Concurrency	Tutorial:	Synchronization	and	Locks
Java	8	Concurrency	Tutorial:	Atomic	Variables	and	ConcurrentMap
Java	8	API	by	Example:	Strings,	Numbers,	Math	and	Files
Avoid	Null	Checks	in	Java	8
Fixing	Java	8	Stream	Gotchas	with	IntelliJ	IDEA
Using	Backbone.js	with	Java	8	Nashorn

You	should	follow	me	on	Twitter.	Thanks	for	reading!

Modern	Java	-	A	Guide	to	Java	8

20Modern	Java	-	A	Guide	to	Java	8

http://winterbe.com/projects/java8-explorer/
http://winterbe.com
http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/
http://winterbe.com/posts/2014/04/05/java8-nashorn-tutorial/
http://winterbe.com/posts/2015/04/07/java8-concurrency-tutorial-thread-executor-examples/
http://winterbe.com/posts/2015/04/30/java8-concurrency-tutorial-synchronized-locks-examples/
http://winterbe.com/posts/2015/05/22/java8-concurrency-tutorial-atomic-concurrent-map-examples/
http://winterbe.com/posts/2015/03/25/java8-examples-string-number-math-files/
http://winterbe.com/posts/2015/03/15/avoid-null-checks-in-java/
http://winterbe.com/posts/2015/03/05/fixing-java-8-stream-gotchas-with-intellij-idea/
http://winterbe.com/posts/2014/04/07/using-backbonejs-with-nashorn/
https://twitter.com/winterbe_

Java	8	Stream	Tutorial
July	31,	2014

This	example-driven	tutorial	gives	an	in-depth	overview	about	Java	8	streams.	When	I	first
read	about	the		Stream		API,	I	was	confused	about	the	name	since	it	sounds	similar	to
	InputStream		and		OutputStream		from	Java	I/O.	But	Java	8	streams	are	a	completely
different	thing.	Streams	are	Monads,	thus	playing	a	big	part	in	bringing	functional
programming	to	Java:

>	In	functional	programming,	a	monad	is	a	structure	that	represents	computations	defined	as
sequences	of	steps.	A	type	with	a	monad	structure	defines	what	it	means	to	chain
operations,	or	nest	functions	of	that	type	together.

This	guide	teaches	you	how	to	work	with	Java	8	streams	and	how	to	use	the	different	kind	of
available	stream	operations.	You'll	learn	about	the	processing	order	and	how	the	ordering	of
stream	operations	affect	runtime	performance.	The	more	powerful	stream	operations
	reduce	,		collect		and		flatMap		are	covered	in	detail.	The	tutorial	ends	with	an	in-depth
look	at	parallel	streams.

If	you're	not	yet	familiar	with	Java	8	lambda	expressions,	functional	interfaces	and	method
references,	you	probably	want	to	read	my	Java	8	Tutorial	first	before	starting	with	this
tutorial.

UPDATE	-	I'm	currently	working	on	a	JavaScript	implementation	of	the	Java	8	Streams	API
for	the	browser.	If	I've	drawn	your	interest	check	out	Stream.js	on	GitHub.	Your	Feedback	is
highly	appreciated.

How	streams	work

A	stream	represents	a	sequence	of	elements	and	supports	different	kind	of	operations	to
perform	computations	upon	those	elements:

List<String>	myList	=

				Arrays.asList("a1",	"a2",	"b1",	"c2",	"c1");

myList

				.stream()

				.filter(s	->	s.startsWith("c"))

				.map(String::toUpperCase)

				.sorted()

				.forEach(System.out::println);

//	C1

//	C2

Modern	Java	-	A	Guide	to	Java	8

21Java	8	Stream	Tutorial

http://en.wikipedia.org/wiki/Monad_%28functional_programming%29
http://winterbe.com/posts/2014/03/16/java-8-tutorial/
https://github.com/winterbe/streamjs

Stream	operations	are	either	intermediate	or	terminal.	Intermediate	operations	return	a
stream	so	we	can	chain	multiple	intermediate	operations	without	using	semicolons.	Terminal
operations	are	either	void	or	return	a	non-stream	result.	In	the	above	example		filter	,
	map		and		sorted		are	intermediate	operations	whereas		forEach		is	a	terminal	operation.
For	a	full	list	of	all	available	stream	operations	see	the	Stream	Javadoc.	Such	a	chain	of
stream	operations	as	seen	in	the	example	above	is	also	known	as	operation	pipeline.

Most	stream	operations	accept	some	kind	of	lambda	expression	parameter,	a	functional
interface	specifying	the	exact	behavior	of	the	operation.	Most	of	those	operations	must	be
both	non-interfering	and	stateless.	What	does	that	mean?

A	function	is	non-interfering	when	it	does	not	modify	the	underlying	data	source	of	the
stream,	e.g.	in	the	above	example	no	lambda	expression	does	modify		myList		by	adding	or
removing	elements	from	the	collection.

A	function	is	stateless	when	the	execution	of	the	operation	is	deterministic,	e.g.	in	the	above
example	no	lambda	expression	depends	on	any	mutable	variables	or	states	from	the	outer
scope	which	might	change	during	execution.

Different	kind	of	streams

Streams	can	be	created	from	various	data	sources,	especially	collections.	Lists	and	Sets
support	new	methods		stream()		and		parallelStream()		to	either	create	a	sequential	or	a
parallel	stream.	Parallel	streams	are	capable	of	operating	on	multiple	threads	and	will	be
covered	in	a	later	section	of	this	tutorial.	We	focus	on	sequential	streams	for	now:

Arrays.asList("a1",	"a2",	"a3")

				.stream()

				.findFirst()

				.ifPresent(System.out::println);		//	a1

Calling	the	method		stream()		on	a	list	of	objects	returns	a	regular	object	stream.	But	we
don't	have	to	create	collections	in	order	to	work	with	streams	as	we	see	in	the	next	code
sample:

Stream.of("a1",	"a2",	"a3")

				.findFirst()

				.ifPresent(System.out::println);		//	a1

Just	use		Stream.of()		to	create	a	stream	from	a	bunch	of	object	references.

Besides	regular	object	streams	Java	8	ships	with	special	kinds	of	streams	for	working	with
the	primitive	data	types		int	,		long		and		double	.	As	you	might	have	guessed	it's
	IntStream	,		LongStream		and		DoubleStream	.

Modern	Java	-	A	Guide	to	Java	8

22Java	8	Stream	Tutorial

http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
http://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html#NonInterference
http://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html#Statelessness

IntStreams	can	replace	the	regular	for-loop	utilizing		IntStream.range()	:

IntStream.range(1,	4)

				.forEach(System.out::println);

//	1

//	2

//	3

All	those	primitive	streams	work	just	like	regular	object	streams	with	the	following
differences:	Primitive	streams	use	specialized	lambda	expressions,	e.g.		IntFunction	
instead	of		Function		or		IntPredicate		instead	of		Predicate	.	And	primitive	streams	support
the	additional	terminal	aggregate	operations		sum()		and		average()	:

Arrays.stream(new	int[]	{1,	2,	3})

				.map(n	->	2	*	n	+	1)

				.average()

				.ifPresent(System.out::println);		//	5.0

Sometimes	it's	useful	to	transform	a	regular	object	stream	to	a	primitive	stream	or	vice
versa.	For	that	purpose	object	streams	support	the	special	mapping	operations		mapToInt()	,
	mapToLong()		and		mapToDouble	:

Stream.of("a1",	"a2",	"a3")

				.map(s	->	s.substring(1))

				.mapToInt(Integer::parseInt)

				.max()

				.ifPresent(System.out::println);		//	3

Primitive	streams	can	be	transformed	to	object	streams	via		mapToObj()	:

IntStream.range(1,	4)

				.mapToObj(i	->	"a"	+	i)

				.forEach(System.out::println);

//	a1

//	a2

//	a3

Here's	a	combined	example:	the	stream	of	doubles	is	first	mapped	to	an	int	stream	and	than
mapped	to	an	object	stream	of	strings:

Stream.of(1.0,	2.0,	3.0)

				.mapToInt(Double::intValue)

				.mapToObj(i	->	"a"	+	i)

				.forEach(System.out::println);

//	a1

//	a2

//	a3

Modern	Java	-	A	Guide	to	Java	8

23Java	8	Stream	Tutorial

Processing	Order

Now	that	we've	learned	how	to	create	and	work	with	different	kinds	of	streams,	let's	dive
deeper	into	how	stream	operations	are	processed	under	the	hood.

An	important	characteristic	of	intermediate	operations	is	laziness.	Look	at	this	sample	where
a	terminal	operation	is	missing:

Stream.of("d2",	"a2",	"b1",	"b3",	"c")

				.filter(s	->	{

								System.out.println("filter:	"	+	s);

								return	true;

				});

When	executing	this	code	snippet,	nothing	is	printed	to	the	console.	That	is	because
intermediate	operations	will	only	be	executed	when	a	terminal	operation	is	present.

Let's	extend	the	above	example	by	the	terminal	operation		forEach	:

Stream.of("d2",	"a2",	"b1",	"b3",	"c")

				.filter(s	->	{

								System.out.println("filter:	"	+	s);

								return	true;

				})

				.forEach(s	->	System.out.println("forEach:	"	+	s));

Executing	this	code	snippet	results	in	the	desired	output	on	the	console:

filter:		d2

forEach:	d2

filter:		a2

forEach:	a2

filter:		b1

forEach:	b1

filter:		b3

forEach:	b3

filter:		c

forEach:	c

The	order	of	the	result	might	be	surprising.	A	naive	approach	would	be	to	execute	the
operations	horizontally	one	after	another	on	all	elements	of	the	stream.	But	instead	each
element	moves	along	the	chain	vertically.	The	first	string	"d2"	passes		filter		then
	forEach	,	only	then	the	second	string	"a2"	is	processed.

This	behavior	can	reduce	the	actual	number	of	operations	performed	on	each	element,	as
we	see	in	the	next	example:

Modern	Java	-	A	Guide	to	Java	8

24Java	8	Stream	Tutorial

Stream.of("d2",	"a2",	"b1",	"b3",	"c")

				.map(s	->	{

								System.out.println("map:	"	+	s);

								return	s.toUpperCase();

				})

				.anyMatch(s	->	{

								System.out.println("anyMatch:	"	+	s);

								return	s.startsWith("A");

				});

//	map:						d2

//	anyMatch:	D2

//	map:						a2

//	anyMatch:	A2

The	operation		anyMatch		returns		true		as	soon	as	the	predicate	applies	to	the	given	input
element.	This	is	true	for	the	second	element	passed	"A2".	Due	to	the	vertical	execution	of
the	stream	chain,		map		has	only	to	be	executed	twice	in	this	case.	So	instead	of	mapping	all
elements	of	the	stream,		map		will	be	called	as	few	as	possible.

Why	order	matters

The	next	example	consists	of	two	intermediate	operations		map		and		filter		and	the
terminal	operation		forEach	.	Let's	once	again	inspect	how	those	operations	are	being
executed:

Stream.of("d2",	"a2",	"b1",	"b3",	"c")

				.map(s	->	{

								System.out.println("map:	"	+	s);

								return	s.toUpperCase();

				})

				.filter(s	->	{

								System.out.println("filter:	"	+	s);

								return	s.startsWith("A");

				})

				.forEach(s	->	System.out.println("forEach:	"	+	s));

//	map:					d2

//	filter:		D2

//	map:					a2

//	filter:		A2

//	forEach:	A2

//	map:					b1

//	filter:		B1

//	map:					b3

//	filter:		B3

//	map:					c

//	filter:		C

As	you	might	have	guessed	both		map		and		filter		are	called	five	times	for	every	string	in
the	underlying	collection	whereas		forEach		is	only	called	once.

We	can	greatly	reduce	the	actual	number	of	executions	if	we	change	the	order	of	the
operations,	moving		filter		to	the	beginning	of	the	chain:

Modern	Java	-	A	Guide	to	Java	8

25Java	8	Stream	Tutorial

Stream.of("d2",	"a2",	"b1",	"b3",	"c")

				.filter(s	->	{

								System.out.println("filter:	"	+	s);

								return	s.startsWith("a");

				})

				.map(s	->	{

								System.out.println("map:	"	+	s);

								return	s.toUpperCase();

				})

				.forEach(s	->	System.out.println("forEach:	"	+	s));

//	filter:		d2

//	filter:		a2

//	map:					a2

//	forEach:	A2

//	filter:		b1

//	filter:		b3

//	filter:		c

Now,		map		is	only	called	once	so	the	operation	pipeline	performs	much	faster	for	larger
numbers	of	input	elements.	Keep	that	in	mind	when	composing	complex	method	chains.

Let's	extend	the	above	example	by	an	additional	operation,		sorted	:

Stream.of("d2",	"a2",	"b1",	"b3",	"c")

				.sorted((s1,	s2)	->	{

								System.out.printf("sort:	%s;	%s\n",	s1,	s2);

								return	s1.compareTo(s2);

				})

				.filter(s	->	{

								System.out.println("filter:	"	+	s);

								return	s.startsWith("a");

				})

				.map(s	->	{

								System.out.println("map:	"	+	s);

								return	s.toUpperCase();

				})

				.forEach(s	->	System.out.println("forEach:	"	+	s));

Sorting	is	a	special	kind	of	intermediate	operation.	It's	a	so	called	stateful	operation	since	in
order	to	sort	a	collection	of	elements	you	have	to	maintain	state	during	ordering.

Executing	this	example	results	in	the	following	console	output:

sort:				a2;	d2

sort:				b1;	a2

sort:				b1;	d2

sort:				b1;	a2

sort:				b3;	b1

sort:				b3;	d2

sort:				c;	b3

sort:				c;	d2

filter:		a2

map:					a2

forEach:	A2

filter:		b1

filter:		b3

filter:		c

filter:		d2

Modern	Java	-	A	Guide	to	Java	8

26Java	8	Stream	Tutorial

First,	the	sort	operation	is	executed	on	the	entire	input	collection.	In	other	words		sorted		is
executed	horizontally.	So	in	this	case		sorted		is	called	eight	times	for	multiple	combinations
on	every	element	in	the	input	collection.

Once	again	we	can	optimize	the	performance	by	reordering	the	chain:

Stream.of("d2",	"a2",	"b1",	"b3",	"c")

				.filter(s	->	{

								System.out.println("filter:	"	+	s);

								return	s.startsWith("a");

				})

				.sorted((s1,	s2)	->	{

								System.out.printf("sort:	%s;	%s\n",	s1,	s2);

								return	s1.compareTo(s2);

				})

				.map(s	->	{

								System.out.println("map:	"	+	s);

								return	s.toUpperCase();

				})

				.forEach(s	->	System.out.println("forEach:	"	+	s));

//	filter:		d2

//	filter:		a2

//	filter:		b1

//	filter:		b3

//	filter:		c

//	map:					a2

//	forEach:	A2

In	this	example		sorted		is	never	been	called	because		filter		reduces	the	input	collection
to	just	one	element.	So	the	performance	is	greatly	increased	for	larger	input	collections.

Reusing	Streams

Java	8	streams	cannot	be	reused.	As	soon	as	you	call	any	terminal	operation	the	stream	is
closed:

Stream<String>	stream	=

				Stream.of("d2",	"a2",	"b1",	"b3",	"c")

								.filter(s	->	s.startsWith("a"));

stream.anyMatch(s	->	true);				//	ok

stream.noneMatch(s	->	true);			//	exception

Calling		noneMatch		after		anyMatch		on	the	same	stream	results	in	the	following	exception:

java.lang.IllegalStateException:	stream	has	already	been	operated	upon	or	closed

				at	java.util.stream.AbstractPipeline.evaluate(AbstractPipeline.java:229)

				at	java.util.stream.ReferencePipeline.noneMatch(ReferencePipeline.java:459)

				at	com.winterbe.java8.Streams5.test7(Streams5.java:38)

				at	com.winterbe.java8.Streams5.main(Streams5.java:28)

Modern	Java	-	A	Guide	to	Java	8

27Java	8	Stream	Tutorial

To	overcome	this	limitation	we	have	to	to	create	a	new	stream	chain	for	every	terminal
operation	we	want	to	execute,	e.g.	we	could	create	a	stream	supplier	to	construct	a	new
stream	with	all	intermediate	operations	already	set	up:

Supplier<Stream<String>>	streamSupplier	=

				()	->	Stream.of("d2",	"a2",	"b1",	"b3",	"c")

												.filter(s	->	s.startsWith("a"));

streamSupplier.get().anyMatch(s	->	true);			//	ok

streamSupplier.get().noneMatch(s	->	true);		//	ok

Each	call	to		get()		constructs	a	new	stream	on	which	we	are	save	to	call	the	desired
terminal	operation.

Advanced	Operations

Streams	support	plenty	of	different	operations.	We've	already	learned	about	the	most
important	operations	like		filter		or		map	.	I	leave	it	up	to	you	to	discover	all	other	available
operations	(see	Stream	Javadoc).	Instead	let's	dive	deeper	into	the	more	complex
operations		collect	,		flatMap		and		reduce	.

Most	code	samples	from	this	section	use	the	following	list	of	persons	for	demonstration
purposes:

class	Person	{

				String	name;

				int	age;

				Person(String	name,	int	age)	{

								this.name	=	name;

								this.age	=	age;

				}

				@Override

				public	String	toString()	{

								return	name;

				}

}

List<Person>	persons	=

				Arrays.asList(

								new	Person("Max",	18),

								new	Person("Peter",	23),

								new	Person("Pamela",	23),

								new	Person("David",	12));

Collect

Collect	is	an	extremely	useful	terminal	operation	to	transform	the	elements	of	the	stream	into
a	different	kind	of	result,	e.g.	a		List	,		Set		or		Map	.	Collect	accepts	a		Collector		which
consists	of	four	different	operations:	a	supplier,	an	accumulator,	a	combiner	and	a	finisher.

Modern	Java	-	A	Guide	to	Java	8

28Java	8	Stream	Tutorial

http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

This	sounds	super	complicated	at	first,	but	the	good	part	is	Java	8	supports	various	built-in
collectors	via	the		Collectors		class.	So	for	the	most	common	operations	you	don't	have	to
implement	a	collector	yourself.

Let's	start	with	a	very	common	usecase:

List<Person>	filtered	=

				persons

								.stream()

								.filter(p	->	p.name.startsWith("P"))

								.collect(Collectors.toList());

System.out.println(filtered);				//	[Peter,	Pamela]

As	you	can	see	it's	very	simple	to	construct	a	list	from	the	elements	of	a	stream.	Need	a	set
instead	of	list	-	just	use		Collectors.toSet()	.

The	next	example	groups	all	persons	by	age:

Map<Integer,	List<Person>>	personsByAge	=	persons

				.stream()

				.collect(Collectors.groupingBy(p	->	p.age));

personsByAge

				.forEach((age,	p)	->	System.out.format("age	%s:	%s\n",	age,	p));

//	age	18:	[Max]

//	age	23:	[Peter,	Pamela]

//	age	12:	[David]

Collectors	are	extremely	versatile.	You	can	also	create	aggregations	on	the	elements	of	the
stream,	e.g.	determining	the	average	age	of	all	persons:

Double	averageAge	=	persons

				.stream()

				.collect(Collectors.averagingInt(p	->	p.age));

System.out.println(averageAge);					//	19.0

If	you're	interested	in	more	comprehensive	statistics,	the	summarizing	collectors	return	a
special	built-in	summary	statistics	object.	So	we	can	simply	determine	min,	max	and
arithmetic	average	age	of	the	persons	as	well	as	the	sum	and	count.

IntSummaryStatistics	ageSummary	=

				persons

								.stream()

								.collect(Collectors.summarizingInt(p	->	p.age));

System.out.println(ageSummary);

//	IntSummaryStatistics{count=4,	sum=76,	min=12,	average=19.000000,	max=23}

The	next	example	joins	all	persons	into	a	single	string:

Modern	Java	-	A	Guide	to	Java	8

29Java	8	Stream	Tutorial

String	phrase	=	persons

				.stream()

				.filter(p	->	p.age	>=	18)

				.map(p	->	p.name)

				.collect(Collectors.joining("	and	",	"In	Germany	",	"	are	of	legal	age."));

System.out.println(phrase);

//	In	Germany	Max	and	Peter	and	Pamela	are	of	legal	age.

The	join	collector	accepts	a	delimiter	as	well	as	an	optional	prefix	and	suffix.

In	order	to	transform	the	stream	elements	into	a	map,	we	have	to	specify	how	both	the	keys
and	the	values	should	be	mapped.	Keep	in	mind	that	the	mapped	keys	must	be	unique,
otherwise	an		IllegalStateException		is	thrown.	You	can	optionally	pass	a	merge	function	as
an	additional	parameter	to	bypass	the	exception:

Map<Integer,	String>	map	=	persons

				.stream()

				.collect(Collectors.toMap(

								p	->	p.age,

								p	->	p.name,

								(name1,	name2)	->	name1	+	";"	+	name2));

System.out.println(map);

//	{18=Max,	23=Peter;Pamela,	12=David}

Now	that	we	know	some	of	the	most	powerful	built-in	collectors,	let's	try	to	build	our	own
special	collector.	We	want	to	transform	all	persons	of	the	stream	into	a	single	string
consisting	of	all	names	in	upper	letters	separated	by	the		|		pipe	character.	In	order	to
achieve	this	we	create	a	new	collector	via		Collector.of()	.	We	have	to	pass	the	four
ingredients	of	a	collector:	a	supplier,	an	accumulator,	a	combiner	and	a	finisher.

Collector<Person,	StringJoiner,	String>	personNameCollector	=

				Collector.of(

								()	->	new	StringJoiner("	|	"),										//	supplier

								(j,	p)	->	j.add(p.name.toUpperCase()),		//	accumulator

								(j1,	j2)	->	j1.merge(j2),															//	combiner

								StringJoiner::toString);																//	finisher

String	names	=	persons

				.stream()

				.collect(personNameCollector);

System.out.println(names);		//	MAX	|	PETER	|	PAMELA	|	DAVID

Since	strings	in	Java	are	immutable,	we	need	a	helper	class	like		StringJoiner		to	let	the
collector	construct	our	string.	The	supplier	initially	constructs	such	a	StringJoiner	with	the
appropriate	delimiter.	The	accumulator	is	used	to	add	each	persons	upper-cased	name	to
the	StringJoiner.	The	combiner	knows	how	to	merge	two	StringJoiners	into	one.	In	the	last
step	the	finisher	constructs	the	desired	String	from	the	StringJoiner.

FlatMap

Modern	Java	-	A	Guide	to	Java	8

30Java	8	Stream	Tutorial

We've	already	learned	how	to	transform	the	objects	of	a	stream	into	another	type	of	objects
by	utilizing	the		map		operation.	Map	is	kinda	limited	because	every	object	can	only	be
mapped	to	exactly	one	other	object.	But	what	if	we	want	to	transform	one	object	into	multiple
others	or	none	at	all?	This	is	where		flatMap		comes	to	the	rescue.

FlatMap	transforms	each	element	of	the	stream	into	a	stream	of	other	objects.	So	each
object	will	be	transformed	into	zero,	one	or	multiple	other	objects	backed	by	streams.	The
contents	of	those	streams	will	then	be	placed	into	the	returned	stream	of	the		flatMap	
operation.

Before	we	see		flatMap		in	action	we	need	an	appropriate	type	hierarchy:

class	Foo	{

				String	name;

				List<Bar>	bars	=	new	ArrayList<>();

				Foo(String	name)	{

								this.name	=	name;

				}

}

class	Bar	{

				String	name;

				Bar(String	name)	{

								this.name	=	name;

				}

}

Next,	we	utilize	our	knowledge	about	streams	to	instantiate	a	couple	of	objects:

List<Foo>	foos	=	new	ArrayList<>();

//	create	foos

IntStream

				.range(1,	4)

				.forEach(i	->	foos.add(new	Foo("Foo"	+	i)));

//	create	bars

foos.forEach(f	->

				IntStream

								.range(1,	4)

								.forEach(i	->	f.bars.add(new	Bar("Bar"	+	i	+	"	<-	"	+	f.name))));

Now	we	have	a	list	of	three	foos	each	consisting	of	three	bars.

FlatMap	accepts	a	function	which	has	to	return	a	stream	of	objects.	So	in	order	to	resolve
the	bar	objects	of	each	foo,	we	just	pass	the	appropriate	function:

Modern	Java	-	A	Guide	to	Java	8

31Java	8	Stream	Tutorial

foos.stream()

				.flatMap(f	->	f.bars.stream())

				.forEach(b	->	System.out.println(b.name));

//	Bar1	<-	Foo1

//	Bar2	<-	Foo1

//	Bar3	<-	Foo1

//	Bar1	<-	Foo2

//	Bar2	<-	Foo2

//	Bar3	<-	Foo2

//	Bar1	<-	Foo3

//	Bar2	<-	Foo3

//	Bar3	<-	Foo3

As	you	can	see,	we've	successfully	transformed	the	stream	of	three	foo	objects	into	a
stream	of	nine	bar	objects.

Finally,	the	above	code	example	can	be	simplified	into	a	single	pipeline	of	stream
operations:

IntStream.range(1,	4)

				.mapToObj(i	->	new	Foo("Foo"	+	i))

				.peek(f	->	IntStream.range(1,	4)

								.mapToObj(i	->	new	Bar("Bar"	+	i	+	"	<-	"	f.name))

								.forEach(f.bars::add))

				.flatMap(f	->	f.bars.stream())

				.forEach(b	->	System.out.println(b.name));

FlatMap	is	also	available	for	the		Optional		class	introduced	in	Java	8.	Optionals		flatMap	
operation	returns	an	optional	object	of	another	type.	So	it	can	be	utilized	to	prevent	nasty
	null		checks.

Think	of	a	highly	hierarchical	structure	like	this:

class	Outer	{

				Nested	nested;

}

class	Nested	{

				Inner	inner;

}

class	Inner	{

				String	foo;

}

In	order	to	resolve	the	inner	string		foo		of	an	outer	instance	you	have	to	add	multiple	null
checks	to	prevent	possible	NullPointerExceptions:

Outer	outer	=	new	Outer();

if	(outer	!=	null	&&	outer.nested	!=	null	&&	outer.nested.inner	!=	null)	{

				System.out.println(outer.nested.inner.foo);

}

The	same	behavior	can	be	obtained	by	utilizing	optionals		flatMap		operation:

Modern	Java	-	A	Guide	to	Java	8

32Java	8	Stream	Tutorial

Optional.of(new	Outer())

				.flatMap(o	->	Optional.ofNullable(o.nested))

				.flatMap(n	->	Optional.ofNullable(n.inner))

				.flatMap(i	->	Optional.ofNullable(i.foo))

				.ifPresent(System.out::println);

Each	call	to		flatMap		returns	an		Optional		wrapping	the	desired	object	if	present	or		null		if
absent.

Reduce

The	reduction	operation	combines	all	elements	of	the	stream	into	a	single	result.	Java	8
supports	three	different	kind	of		reduce		methods.	The	first	one	reduces	a	stream	of
elements	to	exactly	one	element	of	the	stream.	Let's	see	how	we	can	use	this	method	to
determine	the	oldest	person:

persons

				.stream()

				.reduce((p1,	p2)	->	p1.age	>	p2.age	?	p1	:	p2)

				.ifPresent(System.out::println);				//	Pamela

The		reduce		method	accepts	a		BinaryOperator		accumulator	function.	That's	actually	a
	BiFunction		where	both	operands	share	the	same	type,	in	that	case		Person	.	BiFunctions
are	like		Function		but	accept	two	arguments.	The	example	function	compares	both	persons
ages	in	order	to	return	the	person	with	the	maximum	age.

The	second		reduce		method	accepts	both	an	identity	value	and	a		BinaryOperator	
accumulator.	This	method	can	be	utilized	to	construct	a	new	Person	with	the	aggregated
names	and	ages	from	all	other	persons	in	the	stream:

Person	result	=

				persons

								.stream()

								.reduce(new	Person("",	0),	(p1,	p2)	->	{

												p1.age	+=	p2.age;

												p1.name	+=	p2.name;

												return	p1;

								});

System.out.format("name=%s;	age=%s",	result.name,	result.age);

//	name=MaxPeterPamelaDavid;	age=76

The	third		reduce		method	accepts	three	parameters:	an	identity	value,	a		BiFunction	
accumulator	and	a	combiner	function	of	type		BinaryOperator	.	Since	the	identity	values	type
is	not	restricted	to	the		Person		type,	we	can	utilize	this	reduction	to	determine	the	sum	of
ages	from	all	persons:

Modern	Java	-	A	Guide	to	Java	8

33Java	8	Stream	Tutorial

Integer	ageSum	=	persons

				.stream()

				.reduce(0,	(sum,	p)	->	sum	+=	p.age,	(sum1,	sum2)	->	sum1	+	sum2);

System.out.println(ageSum);		//	76

As	you	can	see	the	result	is	76,	but	what's	happening	exactly	under	the	hood?	Let's	extend
the	above	code	by	some	debug	output:

Integer	ageSum	=	persons

				.stream()

				.reduce(0,

								(sum,	p)	->	{

												System.out.format("accumulator:	sum=%s;	person=%s\n",	sum,	p);

												return	sum	+=	p.age;

								},

								(sum1,	sum2)	->	{

												System.out.format("combiner:	sum1=%s;	sum2=%s\n",	sum1,	sum2);

												return	sum1	+	sum2;

								});

//	accumulator:	sum=0;	person=Max

//	accumulator:	sum=18;	person=Peter

//	accumulator:	sum=41;	person=Pamela

//	accumulator:	sum=64;	person=David

As	you	can	see	the	accumulator	function	does	all	the	work.	It	first	get	called	with	the	initial
identity	value	0	and	the	first	person	Max.	In	the	next	three	steps		sum		continually	increases
by	the	age	of	the	last	steps	person	up	to	a	total	age	of	76.

Wait	wat?	The	combiner	never	gets	called?	Executing	the	same	stream	in	parallel	will	lift	the
secret:

Integer	ageSum	=	persons

				.parallelStream()

				.reduce(0,

								(sum,	p)	->	{

												System.out.format("accumulator:	sum=%s;	person=%s\n",	sum,	p);

												return	sum	+=	p.age;

								},

								(sum1,	sum2)	->	{

												System.out.format("combiner:	sum1=%s;	sum2=%s\n",	sum1,	sum2);

												return	sum1	+	sum2;

								});

//	accumulator:	sum=0;	person=Pamela

//	accumulator:	sum=0;	person=David

//	accumulator:	sum=0;	person=Max

//	accumulator:	sum=0;	person=Peter

//	combiner:	sum1=18;	sum2=23

//	combiner:	sum1=23;	sum2=12

//	combiner:	sum1=41;	sum2=35

Executing	this	stream	in	parallel	results	in	an	entirely	different	execution	behavior.	Now	the
combiner	is	actually	called.	Since	the	accumulator	is	called	in	parallel,	the	combiner	is
needed	to	sum	up	the	separate	accumulated	values.

Modern	Java	-	A	Guide	to	Java	8

34Java	8	Stream	Tutorial

Let's	dive	deeper	into	parallel	streams	in	the	next	chapter.

Parallel	Streams

Streams	can	be	executed	in	parallel	to	increase	runtime	performance	on	large	amount	of
input	elements.	Parallel	streams	use	a	common		ForkJoinPool		available	via	the	static
	ForkJoinPool.commonPool()		method.	The	size	of	the	underlying	thread-pool	uses	up	to	five
threads	-	depending	on	the	amount	of	available	physical	CPU	cores:

ForkJoinPool	commonPool	=	ForkJoinPool.commonPool();

System.out.println(commonPool.getParallelism());				//	3

On	my	machine	the	common	pool	is	initialized	with	a	parallelism	of	3	per	default.	This	value
can	be	decreased	or	increased	by	setting	the	following	JVM	parameter:

-Djava.util.concurrent.ForkJoinPool.common.parallelism=5

Collections	support	the	method		parallelStream()		to	create	a	parallel	stream	of	elements.
Alternatively	you	can	call	the	intermediate	method		parallel()		on	a	given	stream	to	convert
a	sequential	stream	to	a	parallel	counterpart.

In	order	to	understate	the	parallel	execution	behavior	of	a	parallel	stream	the	next	example
prints	information	about	the	current	thread	to		sout	:

Arrays.asList("a1",	"a2",	"b1",	"c2",	"c1")

				.parallelStream()

				.filter(s	->	{

								System.out.format("filter:	%s	[%s]\n",

												s,	Thread.currentThread().getName());

								return	true;

				})

				.map(s	->	{

								System.out.format("map:	%s	[%s]\n",

												s,	Thread.currentThread().getName());

								return	s.toUpperCase();

				})

				.forEach(s	->	System.out.format("forEach:	%s	[%s]\n",

								s,	Thread.currentThread().getName()));

By	investigating	the	debug	output	we	should	get	a	better	understanding	which	threads	are
actually	used	to	execute	the	stream	operations:

Modern	Java	-	A	Guide	to	Java	8

35Java	8	Stream	Tutorial

filter:		b1	[main]

filter:		a2	[ForkJoinPool.commonPool-worker-1]

map:					a2	[ForkJoinPool.commonPool-worker-1]

filter:		c2	[ForkJoinPool.commonPool-worker-3]

map:					c2	[ForkJoinPool.commonPool-worker-3]

filter:		c1	[ForkJoinPool.commonPool-worker-2]

map:					c1	[ForkJoinPool.commonPool-worker-2]

forEach:	C2	[ForkJoinPool.commonPool-worker-3]

forEach:	A2	[ForkJoinPool.commonPool-worker-1]

map:					b1	[main]

forEach:	B1	[main]

filter:		a1	[ForkJoinPool.commonPool-worker-3]

map:					a1	[ForkJoinPool.commonPool-worker-3]

forEach:	A1	[ForkJoinPool.commonPool-worker-3]

forEach:	C1	[ForkJoinPool.commonPool-worker-2]

As	you	can	see	the	parallel	stream	utilizes	all	available	threads	from	the	common
	ForkJoinPool		for	executing	the	stream	operations.	The	output	may	differ	in	consecutive
runs	because	the	behavior	which	particular	thread	is	actually	used	is	non-deterministic.

Let's	extend	the	example	by	an	additional	stream	operation,		sort	:

Arrays.asList("a1",	"a2",	"b1",	"c2",	"c1")

				.parallelStream()

				.filter(s	->	{

								System.out.format("filter:	%s	[%s]\n",

												s,	Thread.currentThread().getName());

								return	true;

				})

				.map(s	->	{

								System.out.format("map:	%s	[%s]\n",

												s,	Thread.currentThread().getName());

								return	s.toUpperCase();

				})

				.sorted((s1,	s2)	->	{

								System.out.format("sort:	%s	<>	%s	[%s]\n",

												s1,	s2,	Thread.currentThread().getName());

								return	s1.compareTo(s2);

				})

				.forEach(s	->	System.out.format("forEach:	%s	[%s]\n",

								s,	Thread.currentThread().getName()));

The	result	may	look	strange	at	first:

Modern	Java	-	A	Guide	to	Java	8

36Java	8	Stream	Tutorial

filter:		c2	[ForkJoinPool.commonPool-worker-3]

filter:		c1	[ForkJoinPool.commonPool-worker-2]

map:					c1	[ForkJoinPool.commonPool-worker-2]

filter:		a2	[ForkJoinPool.commonPool-worker-1]

map:					a2	[ForkJoinPool.commonPool-worker-1]

filter:		b1	[main]

map:					b1	[main]

filter:		a1	[ForkJoinPool.commonPool-worker-2]

map:					a1	[ForkJoinPool.commonPool-worker-2]

map:					c2	[ForkJoinPool.commonPool-worker-3]

sort:				A2	<>	A1	[main]

sort:				B1	<>	A2	[main]

sort:				C2	<>	B1	[main]

sort:				C1	<>	C2	[main]

sort:				C1	<>	B1	[main]

sort:				C1	<>	C2	[main]

forEach:	A1	[ForkJoinPool.commonPool-worker-1]

forEach:	C2	[ForkJoinPool.commonPool-worker-3]

forEach:	B1	[main]

forEach:	A2	[ForkJoinPool.commonPool-worker-2]

forEach:	C1	[ForkJoinPool.commonPool-worker-1]

It	seems	that		sort		is	executed	sequentially	on	the	main	thread	only.	Actually,		sort		on	a
parallel	stream	uses	the	new	Java	8	method		Arrays.parallelSort()		under	the	hood.	As
stated	in	Javadoc	this	method	decides	on	the	length	of	the	array	if	sorting	will	be	performed
sequentially	or	in	parallel:

>	If	the	length	of	the	specified	array	is	less	than	the	minimum	granularity,	then	it	is	sorted
using	the	appropriate	Arrays.sort	method.

Coming	back	to	the		reduce		example	from	the	last	section.	We	already	found	out	that	the
combiner	function	is	only	called	in	parallel	but	not	in	sequential	streams.	Let's	see	which
threads	are	actually	involved:

List<Person>	persons	=	Arrays.asList(

				new	Person("Max",	18),

				new	Person("Peter",	23),

				new	Person("Pamela",	23),

				new	Person("David",	12));

persons

				.parallelStream()

				.reduce(0,

								(sum,	p)	->	{

												System.out.format("accumulator:	sum=%s;	person=%s	[%s]\n",

																sum,	p,	Thread.currentThread().getName());

												return	sum	+=	p.age;

								},

								(sum1,	sum2)	->	{

												System.out.format("combiner:	sum1=%s;	sum2=%s	[%s]\n",

																sum1,	sum2,	Thread.currentThread().getName());

												return	sum1	+	sum2;

								});

The	console	output	reveals	that	both	the	accumulator	and	the	combiner	functions	are
executed	in	parallel	on	all	available	threads:

Modern	Java	-	A	Guide	to	Java	8

37Java	8	Stream	Tutorial

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#parallelSort-T:A-

accumulator:	sum=0;	person=Pamela;	[main]

accumulator:	sum=0;	person=Max;				[ForkJoinPool.commonPool-worker-3]

accumulator:	sum=0;	person=David;		[ForkJoinPool.commonPool-worker-2]

accumulator:	sum=0;	person=Peter;		[ForkJoinPool.commonPool-worker-1]

combiner:				sum1=18;	sum2=23;					[ForkJoinPool.commonPool-worker-1]

combiner:				sum1=23;	sum2=12;					[ForkJoinPool.commonPool-worker-2]

combiner:				sum1=41;	sum2=35;					[ForkJoinPool.commonPool-worker-2]

In	summary,	it	can	be	stated	that	parallel	streams	can	bring	be	a	nice	performance	boost	to
streams	with	a	large	amount	of	input	elements.	But	keep	in	mind	that	some	parallel	stream
operations	like		reduce		and		collect		need	additional	computations	(combine	operations)
which	isn't	needed	when	executed	sequentially.

Furthermore	we've	learned	that	all	parallel	stream	operations	share	the	same	JVM-wide
common		ForkJoinPool	.	So	you	probably	want	to	avoid	implementing	slow	blocking	stream
operations	since	that	could	potentially	slow	down	other	parts	of	your	application	which	rely
heavily	on	parallel	streams.

That's	it

My	programming	guide	to	Java	8	streams	ends	here.	If	you're	interested	in	learning	more
about	Java	8	streams,	I	recommend	to	you	the	Stream	Javadoc	package	documentation.	If
you	want	to	learn	more	about	the	underlying	mechanisms,	you	probably	want	to	read	Martin
Fowlers	article	about	Collection	Pipelines.

If	you're	interested	in	JavaScript	as	well,	you	may	want	to	have	a	look	at	Stream.js	-	a
JavaScript	implementation	of	the	Java	8	Streams	API.	You	may	also	wanna	read	my	Java	8
Tutorial	and	my	Java	8	Nashorn	Tutorial.

Hopefully	this	tutorial	was	helpful	to	you	and	you've	enjoyed	reading	it.	The	full	source	code
of	the	tutorial	samples	is	hosted	on	GitHub.	Feel	free	to	fork	the	repository	or	send	me	your
feedback	via	Twitter.

Happy	coding!

Modern	Java	-	A	Guide	to	Java	8

38Java	8	Stream	Tutorial

http://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html#NonInterference
http://martinfowler.com/articles/collection-pipeline/
https://github.com/winterbe/streamjs
https://github.com/winterbe/java8-tutorial
https://github.com/winterbe/java8-tutorial/fork
https://twitter.com/winterbe_

Java	8	Nashorn	Tutorial
April	05,	2014

Learn	all	about	the	Nashorn	Javascript	Engine	with	easily	understood	code	examples.	The
Nashorn	Javascript	Engine	is	part	of	Java	SE	8	and	competes	with	other	standalone
engines	like	Google	V8	(the	engine	that	powers	Google	Chrome	and	Node.js).	Nashorn
extends	Javas	capabilities	by	running	dynamic	javascript	code	natively	on	the	JVM.

In	the	next	~15	minutes	you	learn	how	to	evaluate	javascript	on	the	JVM	dynamically	during
runtime.	The	most	recent	Nashorn	language	features	are	demonstrated	with	small	code
examples.	You	learn	how	to	call	javascript	functions	from	java	code	and	vice	versa.	At	the
end	you're	ready	to	integrate	dynamic	scripts	in	your	daily	java	business.

UPDATE	-	I'm	currently	working	on	a	JavaScript	implementation	of	the	Java	8	Streams	API
for	the	browser.	If	I've	drawn	your	interest	check	out	Stream.js	on	GitHub.	Your	Feedback	is
highly	appreciated.

Using	Nashorn

The	Nashorn	javascript	engine	can	either	be	used	programmatically	from	java	programs	or
by	utilizing	the	command	line	tool		jjs	,	which	is	located	in		$JAVA_HOME/bin	.	If	you	plan	to
work	with		jjs		you	might	want	to	put	a	symbolic	link	for	simple	access:

Modern	Java	-	A	Guide	to	Java	8

39Java	8	Nashorn	Tutorial

https://code.google.com/p/v8/
http://nodejs.org/
https://github.com/winterbe/streamjs

$	cd	/usr/bin

$	ln	-s	$JAVA_HOME/bin/jjs	jjs

$	jjs

jjs>	print('Hello	World');

This	tutorial	focuses	on	using	nashorn	from	java	code,	so	let's	skip		jjs		for	now.	A	simple
HelloWorld	in	java	code	looks	like	this:

ScriptEngine	engine	=	new	ScriptEngineManager().getEngineByName("nashorn");

engine.eval("print('Hello	World!');");

In	order	to	evaluate	javascript	code	from	java,	you	first	create	a	nashorn	script	engine	by
utilizing	the		javax.script		package	already	known	from	Rhino	(Javas	legacy	js	engine	from
Mozilla).

Javascript	code	can	either	be	evaluated	directly	by	passing	javascript	code	as	a	string	as
shown	above.	Or	you	can	pass	a	file	reader	pointing	to	your	.js	script	file:

ScriptEngine	engine	=	new	ScriptEngineManager().getEngineByName("nashorn");

engine.eval(new	FileReader("script.js"));

Nashorn	javascript	is	based	on	ECMAScript	5.1	but	future	versions	of	nashorn	will	include
support	for	ECMAScript	6:

>	The	current	strategy	for	Nashorn	is	to	follow	the	ECMAScript	specification.	When	we
release	with	JDK	8	we	will	be	aligned	with	ECMAScript	5.1.	The	follow	up	major	release	of
Nashorn	will	align	with	ECMAScript	Edition	6.

Nashorn	defines	a	lot	of	language	and	API	extensions	to	the	ECMAScript	standard.	But	first
let's	take	a	look	at	how	the	communication	between	java	and	javascript	code	works.

Invoking	Javascript	Functions	from	Java

Nashorn	supports	the	invocation	of	javascript	functions	defined	in	your	script	files	directly
from	java	code.	You	can	pass	java	objects	as	function	arguments	and	return	data	back	from
the	function	to	the	calling	java	method.

The	following	javascript	functions	will	later	be	called	from	the	java	side:

var	fun1	=	function(name)	{

				print('Hi	there	from	Javascript,	'	+	name);

				return	"greetings	from	javascript";

};

var	fun2	=	function	(object)	{

				print("JS	Class	Definition:	"	+	Object.prototype.toString.call(object));

};

Modern	Java	-	A	Guide	to	Java	8

40Java	8	Nashorn	Tutorial

https://developer.mozilla.org/en-US/docs/Rhino
http://es5.github.io/
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts

In	order	to	call	a	function	you	first	have	to	cast	the	script	engine	to		Invocable	.	The
Invocable	interface	is	implemented	by	the		NashornScriptEngine		implementation	and	defines
a	method		invokeFunction		to	call	a	javascript	function	for	a	given	name.

ScriptEngine	engine	=	new	ScriptEngineManager().getEngineByName("nashorn");

engine.eval(new	FileReader("script.js"));

Invocable	invocable	=	(Invocable)	engine;

Object	result	=	invocable.invokeFunction("fun1",	"Peter	Parker");

System.out.println(result);

System.out.println(result.getClass());

//	Hi	there	from	Javascript,	Peter	Parker

//	greetings	from	javascript

//	class	java.lang.String

Executing	the	code	results	in	three	lines	written	to	the	console.	Calling	the	function		print	
pipes	the	result	to		System.out	,	so	we	see	the	javascript	message	first.

Now	let's	call	the	second	function	by	passing	arbitrary	java	objects:

invocable.invokeFunction("fun2",	new	Date());

//	[object	java.util.Date]

invocable.invokeFunction("fun2",	LocalDateTime.now());

//	[object	java.time.LocalDateTime]

invocable.invokeFunction("fun2",	new	Person());

//	[object	com.winterbe.java8.Person]

Java	objects	can	be	passed	without	loosing	any	type	information	on	the	javascript	side.
Since	the	script	runs	natively	on	the	JVM	we	can	utilize	the	full	power	of	the	Java	API	or
external	libraries	on	nashorn.

Invoking	Java	Methods	from	Javascript

Invoking	java	methods	from	javascript	is	quite	easy.	We	first	define	a	static	java	method:

static	String	fun1(String	name)	{

				System.out.format("Hi	there	from	Java,	%s",	name);

				return	"greetings	from	java";

}

Java	classes	can	be	referenced	from	javascript	via	the		Java.type		API	extension.	It's	similar
to	importing	classes	in	java	code.	As	soon	as	the	java	type	is	defined	we	naturally	call	the
static	method		fun1()		and	print	the	result	to		sout	.	Since	the	method	is	static,	we	don't
have	to	create	an	instance	first.

Modern	Java	-	A	Guide	to	Java	8

41Java	8	Nashorn	Tutorial

var	MyJavaClass	=	Java.type('my.package.MyJavaClass');

var	result	=	MyJavaClass.fun1('John	Doe');

print(result);

//	Hi	there	from	Java,	John	Doe

//	greetings	from	java

How	does	Nashorn	handle	type	conversion	when	calling	java	methods	with	native	javascript
types?	Let's	find	out	with	a	simple	example.

The	following	java	method	simply	prints	the	actual	class	type	of	the	method	parameter:

static	void	fun2(Object	object)	{

				System.out.println(object.getClass());

}

To	understand	how	type	conversations	are	handled	under	the	hood,	we	call	this	method	with
different	javascript	types:

MyJavaClass.fun2(123);

//	class	java.lang.Integer

MyJavaClass.fun2(49.99);

//	class	java.lang.Double

MyJavaClass.fun2(true);

//	class	java.lang.Boolean

MyJavaClass.fun2("hi	there")

//	class	java.lang.String

MyJavaClass.fun2(new	Number(23));

//	class	jdk.nashorn.internal.objects.NativeNumber

MyJavaClass.fun2(new	Date());

//	class	jdk.nashorn.internal.objects.NativeDate

MyJavaClass.fun2(new	RegExp());

//	class	jdk.nashorn.internal.objects.NativeRegExp

MyJavaClass.fun2({foo:	'bar'});

//	class	jdk.nashorn.internal.scripts.JO4

Primitive	javascript	types	are	converted	to	the	appropriate	java	wrapper	class.	Instead	native
javascript	objects	are	represented	by	internal	adapter	classes.	Please	keep	in	mind	that
classes	from		jdk.nashorn.internal		are	subject	to	change,	so	you	shouldn't	program	against
those	classes	in	client-code:

>	Anything	marked	internal	will	likely	change	out	from	underneath	you.

ScriptObjectMirror

Modern	Java	-	A	Guide	to	Java	8

42Java	8	Nashorn	Tutorial

https://twitter.com/wickund/status/451322409661259776

When	passing	native	javascript	objects	to	java	you	can	utilize	the	class		ScriptObjectMirror	
which	is	actually	a	java	representation	of	the	underlying	javascript	object.	ScriptObjectMirror
implements	the	map	interface	and	resides	inside	the	package		jdk.nashorn.api	.	Classes
from	this	package	are	intended	to	be	used	in	client-code.

The	next	sample	changes	the	parameter	type	from		Object		to		ScriptObjectMirror		so	we
can	extract	some	infos	from	the	passed	javascript	object:

static	void	fun3(ScriptObjectMirror	mirror)	{

				System.out.println(mirror.getClassName()	+	":	"	+

								Arrays.toString(mirror.getOwnKeys(true)));

}

When	passing	an	object	hash	to	this	method,	the	properties	are	accessible	on	the	java	side:

MyJavaClass.fun3({

				foo:	'bar',

				bar:	'foo'

});

//	Object:	[foo,	bar]

We	can	also	call	member	functions	on	javascript	object	from	java.	Let's	first	define	a
javascript	type	Person	with	properties		firstName		and		lastName		and	method		getFullName	.

function	Person(firstName,	lastName)	{

				this.firstName	=	firstName;

				this.lastName	=	lastName;

				this.getFullName	=	function()	{

								return	this.firstName	+	"	"	+	this.lastName;

				}

}

The	javascript	method		getFullName		can	be	called	on	the	ScriptObjectMirror	via
	callMember()	.

static	void	fun4(ScriptObjectMirror	person)	{

				System.out.println("Full	Name	is:	"	+	person.callMember("getFullName"));

}

When	passing	a	new	person	to	the	java	method,	we	see	the	desired	result	on	the	console:

var	person1	=	new	Person("Peter",	"Parker");

MyJavaClass.fun4(person1);

//	Full	Name	is:	Peter	Parker

Language	Extensions

Modern	Java	-	A	Guide	to	Java	8

43Java	8	Nashorn	Tutorial

Nashorn	defines	various	language	and	API	extensions	to	the	ECMAScript	standard.	Let's
head	right	into	the	most	recent	features:

Typed	Arrays

Native	javascript	arrays	are	untyped.	Nashorn	enables	you	to	use	typed	java	arrays	in
javascript:

var	IntArray	=	Java.type("int[]");

var	array	=	new	IntArray(5);

array[0]	=	5;

array[1]	=	4;

array[2]	=	3;

array[3]	=	2;

array[4]	=	1;

try	{

				array[5]	=	23;

}	catch	(e)	{

				print(e.message);		//	Array	index	out	of	range:	5

}

array[0]	=	"17";

print(array[0]);		//	17

array[0]	=	"wrong	type";

print(array[0]);		//	0

array[0]	=	"17.3";

print(array[0]);		//	17

The		int[]		array	behaves	like	a	real	java	int	array.	But	additionally	Nashorn	performs
implicit	type	conversions	under	the	hood	when	we're	trying	to	add	non-integer	values	to	the
array.	Strings	will	be	auto-converted	to	int	which	is	quite	handy.

Collections	and	For	Each

Instead	of	messing	around	with	arrays	we	can	use	any	java	collection.	First	define	the	java
type	via		Java.type	,	then	create	new	instances	on	demand.

var	ArrayList	=	Java.type('java.util.ArrayList');

var	list	=	new	ArrayList();

list.add('a');

list.add('b');

list.add('c');

for	each	(var	el	in	list)	print(el);		//	a,	b,	c

In	order	to	iterate	over	collections	and	arrays	Nashorn	introduces	the		for	each		statement.	It
works	just	like	the	foreach	loop	in	java.

Here's	another	collection	foreach	example,	utilizing		HashMap	:

Modern	Java	-	A	Guide	to	Java	8

44Java	8	Nashorn	Tutorial

var	map	=	new	java.util.HashMap();

map.put('foo',	'val1');

map.put('bar',	'val2');

for	each	(var	e	in	map.keySet())	print(e);		//	foo,	bar

for	each	(var	e	in	map.values())	print(e);		//	val1,	val2

Lambda	expressions	and	Streams

Everyone	loves	lambdas	and	streams	-	so	does	Nashorn!	Although	ECMAScript	5.1	lacks
the	compact	arrow	syntax	from	the	Java	8	lambda	expressions,	we	can	use	function	literals
where	ever	lambda	expressions	are	accepted.

var	list2	=	new	java.util.ArrayList();

list2.add("ddd2");

list2.add("aaa2");

list2.add("bbb1");

list2.add("aaa1");

list2.add("bbb3");

list2.add("ccc");

list2.add("bbb2");

list2.add("ddd1");

list2

				.stream()

				.filter(function(el)	{

								return	el.startsWith("aaa");

				})

				.sorted()

				.forEach(function(el)	{

								print(el);

				});

				//	aaa1,	aaa2

Extending	classes

Java	types	can	simply	be	extended	with	the		Java.extend		extension.	As	you	can	see	in	the
next	example,	you	can	even	create	multi-threaded	code	in	your	scripts:

var	Runnable	=	Java.type('java.lang.Runnable');

var	Printer	=	Java.extend(Runnable,	{

				run:	function()	{

								print('printed	from	a	separate	thread');

				}

});

var	Thread	=	Java.type('java.lang.Thread');

new	Thread(new	Printer()).start();

new	Thread(function()	{

				print('printed	from	another	thread');

}).start();

//	printed	from	a	separate	thread

//	printed	from	another	thread

Parameter	overloading

Modern	Java	-	A	Guide	to	Java	8

45Java	8	Nashorn	Tutorial

Methods	and	functions	can	either	be	called	with	the	point	notation	or	with	the	square	braces
notation.

var	System	=	Java.type('java.lang.System');

System.out.println(10);														//	10

System.out["println"](11.0);									//	11.0

System.out["println(double)"](12);			//	12.0

Passing	the	optional	parameter	type		println(double)		when	calling	a	method	with
overloaded	parameters	determines	the	exact	method	to	be	called.

Java	Beans

Instead	of	explicitly	working	with	getters	and	setters	you	can	just	use	simple	property	names
both	for	getting	or	setting	values	from	a	java	bean.

var	Date	=	Java.type('java.util.Date');

var	date	=	new	Date();

date.year	+=	1900;

print(date.year);		//	2014

Function	Literals

For	simple	one	line	functions	we	can	skip	the	curly	braces:

function	sqr(x)	x	*	x;

print(sqr(3));				//	9

Binding	properties

Properties	from	two	different	objects	can	be	bound	together:

var	o1	=	{};

var	o2	=	{	foo:	'bar'};

Object.bindProperties(o1,	o2);

print(o1.foo);				//	bar

o1.foo	=	'BAM';

print(o2.foo);				//	BAM

Trimming	strings

I	like	my	strings	trimmed.

print("			hehe".trimLeft());												//	hehe

print("hehe				".trimRight()	+	"he");			//	hehehe

Whereis

Modern	Java	-	A	Guide	to	Java	8

46Java	8	Nashorn	Tutorial

In	case	you	forget	where	you	are:

print(__FILE__,	__LINE__,	__DIR__);

Import	Scopes

Sometimes	it's	useful	to	import	many	java	packages	at	once.	We	can	use	the	class
	JavaImporter		to	be	used	in	conjunction	with	the		with		statement.	All	class	files	from	the
imported	packages	are	accessible	within	the	local	scope	of	the		with		statement:

var	imports	=	new	JavaImporter(java.io,	java.lang);

with	(imports)	{

				var	file	=	new	File(__FILE__);

				System.out.println(file.getAbsolutePath());

				//	/path/to/my/script.js

}

Convert	arrays

Some	packages	like		java.util		can	be	accessed	directly	without	utilizing		Java.type		or
	JavaImporter	:

var	list	=	new	java.util.ArrayList();

list.add("s1");

list.add("s2");

list.add("s3");

This	code	converts	the	java	list	to	a	native	javascript	array:

var	jsArray	=	Java.from(list);

print(jsArray);																																		//	s1,s2,s3

print(Object.prototype.toString.call(jsArray));		//	[object	Array]

And	the	other	way	around:

var	javaArray	=	Java.to([3,	5,	7,	11],	"int[]");

Calling	Super

Accessing	overridden	members	in	javascript	is	traditionally	awkward	because	javas		super	
keyword	doesn't	exist	in	ECMAScript.	Luckily	nashorn	goes	to	the	rescue.

First	we	define	a	super	type	in	java	code:

Modern	Java	-	A	Guide	to	Java	8

47Java	8	Nashorn	Tutorial

class	SuperRunner	implements	Runnable	{

				@Override

				public	void	run()	{

								System.out.println("super	run");

				}

}

Next	we	override		SuperRunner		from	javascript.	Pay	attention	to	the	extended	nashorn
syntax	when	creating	a	new		Runner		instance:	The	syntax	of	overriding	members	is
borrowed	from	javas	anonymous	objects.

var	SuperRunner	=	Java.type('com.winterbe.java8.SuperRunner');

var	Runner	=	Java.extend(SuperRunner);

var	runner	=	new	Runner()	{

				run:	function()	{

								Java.super(runner).run();

								print('on	my	run');

				}

}

runner.run();

//	super	run

//	on	my	run

We	call	the	overridden	method		SuperRunner.run()		by	utilizing	the		Java.super		extension.

Loading	scripts

Evaluating	additional	script	files	from	javascript	is	quite	easy.	We	can	load	both	local	or
remote	scripts	with	the		load		function.

I'm	using	Underscore.js	a	lot	for	my	web	front-ends,	so	let's	reuse	Underscore	in	Nashorn:

load('http://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.6.0/underscore-min.js');

var	odds	=	_.filter([1,	2,	3,	4,	5,	6],	function	(num)	{

				return	num	%	2	==	1;

});

print(odds);		//	1,	3,	5

The	external	script	will	be	evaluated	in	the	same	javascript	context,	so	we	can	access	the
underscore	variable	directly.	Keep	in	mind	that	loading	scripts	can	potentially	break	your	own
code	when	variable	names	are	overlapping	each	other.

This	problem	can	be	bypassed	by	loading	script	files	into	a	new	global	context:

loadWithNewGlobal('script.js');

Command-line	scripts

Modern	Java	-	A	Guide	to	Java	8

48Java	8	Nashorn	Tutorial

http://underscorejs.org/

If	you're	interested	in	writing	command-line	(shell)	scripts	with	Java,	give	Nake	a	try.	Nake	is
a	simplified	Make	for	Java	8	Nashorn.	You	define	tasks	in	a	project-specific		Nakefile	,	then
run	those	tasks	by	typing		nake	--	myTask		into	the	command	line.	Tasks	are	written	in
javascript	and	run	in	Nashorns	scripting	mode,	so	you	can	utilize	the	full	power	of	your
terminal	as	well	as	the	JDK8	API	and	any	java	library.

For	Java	Developers	writing	command-line	scripts	is	easy	as	never	before...

That's	it

I	hope	this	guide	was	helpful	to	you	and	you	enjoyed	our	journey	to	the	Nashorn	Javascript
Engine.	For	further	information	about	Nashorn	read	here,	here	and	here.	A	guide	to	coding
shell	scripts	with	Nashorn	can	be	found	here.

I	recently	published	a	follow	up	article	about	how	to	use	Backbone.js	models	with	the
Nashorn	Javascript	Engine.	If	you	want	to	learn	more	about	Java	8	feel	free	to	read	my	Java
8	Tutorial	and	my	Java	8	Stream	Tutorial.

The	runnable	source	code	from	this	Nashorn	tutorial	is	hosted	on	GitHub.	Feel	free	to	fork
the	repository	or	send	me	your	feedback	via	Twitter.

Keep	on	coding!

Modern	Java	-	A	Guide	to	Java	8

49Java	8	Nashorn	Tutorial

https://github.com/winterbe/nake
http://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/
http://www.oracle.com/technetwork/articles/java/jf14-nashorn-2126515.html
https://wiki.openjdk.java.net/display/Nashorn/Nashorn+extensions
http://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/shell.html#sthref24
https://github.com/winterbe/java8-tutorial
https://github.com/winterbe/java8-tutorial/fork
https://twitter.com/winterbe_

Java	8	Concurrency	Tutorial:	Threads	and
Executors
April	07,	2015

Welcome	to	the	first	part	of	my	Java	8	Concurrency	tutorial.	This	guide	teaches	you
concurrent	programming	in	Java	8	with	easily	understood	code	examples.	It's	the	first	part
out	of	a	series	of	tutorials	covering	the	Java	Concurrency	API.	In	the	next	15	min	you	learn
how	to	execute	code	in	parallel	via	threads,	tasks	and	executor	services.

Part	1:	Threads	and	Executors
Part	2:	Synchronization	and	Locks
Part	3:	Atomic	Variables	and	ConcurrentMap

The	Concurrency	API	was	first	introduced	with	the	release	of	Java	5	and	then	progressively
enhanced	with	every	new	Java	release.	The	majority	of	concepts	shown	in	this	article	also
work	in	older	versions	of	Java.	However	my	code	samples	focus	on	Java	8	and	make	heavy
use	of	lambda	expressions	and	other	new	features.	If	you're	not	yet	familiar	with	lambdas	I
recommend	reading	my	Java	8	Tutorial	first.

Threads	and	Runnables

All	modern	operating	systems	support	concurrency	both	via	processes)	and	threads.
Processes	are	instances	of	programs	which	typically	run	independent	to	each	other,	e.g.	if
you	start	a	java	program	the	operating	system	spawns	a	new	process	which	runs	in	parallel
to	other	programs.	Inside	those	processes	we	can	utilize	threads	to	execute	code
concurrently,	so	we	can	make	the	most	out	of	the	available	cores	of	the	CPU.

Java	supports	Threads	since	JDK	1.0.	Before	starting	a	new	thread	you	have	to	specify	the
code	to	be	executed	by	this	thread,	often	called	the	task.	This	is	done	by	implementing
	Runnable		-	a	functional	interface	defining	a	single	void	no-args	method		run()		as
demonstrated	in	the	following	example:

Runnable	task	=	()	->	{

				String	threadName	=	Thread.currentThread().getName();

				System.out.println("Hello	"	+	threadName);

};

task.run();

Thread	thread	=	new	Thread(task);

thread.start();

System.out.println("Done!");

Modern	Java	-	A	Guide	to	Java	8

50Java	8	Concurrency	Tutorial:	Threads	and	Executors

http://en.wikipedia.org/wiki/Concurrent_computing
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
http://en.wikipedia.org/wiki/Process_(computing
http://en.wikipedia.org/wiki/Thread_%28computing%29
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

Since		Runnable		is	a	functional	interface	we	can	utilize	Java	8	lambda	expressions	to	print
the	current	threads	name	to	the	console.	First	we	execute	the	runnable	directly	on	the	main
thread	before	starting	a	new	thread.

The	result	on	the	console	might	look	like	this:

Hello	main

Hello	Thread-0

Done!

Or	that:

Hello	main

Done!

Hello	Thread-0

Due	to	concurrent	execution	we	cannot	predict	if	the	runnable	will	be	invoked	before	or	after
printing	'done'.	The	order	is	non-deterministic,	thus	making	concurrent	programming	a
complex	task	in	larger	applications.

Threads	can	be	put	to	sleep	for	a	certain	duration.	This	is	quite	handy	to	simulate	long
running	tasks	in	the	subsequent	code	samples	of	this	article:

Runnable	runnable	=	()	->	{

				try	{

								String	name	=	Thread.currentThread().getName();

								System.out.println("Foo	"	+	name);

								TimeUnit.SECONDS.sleep(1);

								System.out.println("Bar	"	+	name);

				}

				catch	(InterruptedException	e)	{

								e.printStackTrace();

				}

};

Thread	thread	=	new	Thread(runnable);

thread.start();

When	you	run	the	above	code	you'll	notice	the	one	second	delay	between	the	first	and	the
second	print	statement.		TimeUnit		is	a	useful	enum	for	working	with	units	of	time.
Alternatively	you	can	achieve	the	same	by	calling		Thread.sleep(1000)	.

Working	with	the		Thread		class	can	be	very	tedious	and	error-prone.	Due	to	that	reason	the
Concurrency	API	has	been	introduced	back	in	2004	with	the	release	of	Java	5.	The	API	is
located	in	package		java.util.concurrent		and	contains	many	useful	classes	for	handling
concurrent	programming.	Since	that	time	the	Concurrency	API	has	been	enhanced	with
every	new	Java	release	and	even	Java	8	provides	new	classes	and	methods	for	dealing	with
concurrency.

Modern	Java	-	A	Guide	to	Java	8

51Java	8	Concurrency	Tutorial:	Threads	and	Executors

Now	let's	take	a	deeper	look	at	one	of	the	most	important	parts	of	the	Concurrency	API	-	the
executor	services.

Executors

The	Concurrency	API	introduces	the	concept	of	an		ExecutorService		as	a	higher	level
replacement	for	working	with	threads	directly.	Executors	are	capable	of	running
asynchronous	tasks	and	typically	manage	a	pool	of	threads,	so	we	don't	have	to	create	new
threads	manually.	All	threads	of	the	internal	pool	will	be	reused	under	the	hood	for	revenant
tasks,	so	we	can	run	as	many	concurrent	tasks	as	we	want	throughout	the	life-cycle	of	our
application	with	a	single	executor	service.

This	is	how	the	first	thread-example	looks	like	using	executors:

ExecutorService	executor	=	Executors.newSingleThreadExecutor();

executor.submit(()	->	{

				String	threadName	=	Thread.currentThread().getName();

				System.out.println("Hello	"	+	threadName);

});

//	=>	Hello	pool-1-thread-1

The	class		Executors		provides	convenient	factory	methods	for	creating	different	kinds	of
executor	services.	In	this	sample	we	use	an	executor	with	a	thread	pool	of	size	one.

The	result	looks	similar	to	the	above	sample	but	when	running	the	code	you'll	notice	an
important	difference:	the	java	process	never	stops!	Executors	have	to	be	stopped	explicitly	-
otherwise	they	keep	listening	for	new	tasks.

An		ExecutorService		provides	two	methods	for	that	purpose:		shutdown()		waits	for	currently
running	tasks	to	finish	while		shutdownNow()		interrupts	all	running	tasks	and	shut	the
executor	down	immediately.

This	is	the	preferred	way	how	I	typically	shutdown	executors:

try	{

				System.out.println("attempt	to	shutdown	executor");

				executor.shutdown();

				executor.awaitTermination(5,	TimeUnit.SECONDS);

}

catch	(InterruptedException	e)	{

				System.err.println("tasks	interrupted");

}

finally	{

				if	(!executor.isTerminated())	{

								System.err.println("cancel	non-finished	tasks");

				}

				executor.shutdownNow();

				System.out.println("shutdown	finished");

}

Modern	Java	-	A	Guide	to	Java	8

52Java	8	Concurrency	Tutorial:	Threads	and	Executors

The	executor	shuts	down	softly	by	waiting	a	certain	amount	of	time	for	termination	of
currently	running	tasks.	After	a	maximum	of	five	seconds	the	executor	finally	shuts	down	by
interrupting	all	running	tasks.

Callables	and	Futures

In	addition	to		Runnable		executors	support	another	kind	of	task	named		Callable	.	Callables
are	functional	interfaces	just	like	runnables	but	instead	of	being		void		they	return	a	value.

This	lambda	expression	defines	a	callable	returning	an	integer	after	sleeping	for	one	second:

Callable<Integer>	task	=	()	->	{

				try	{

								TimeUnit.SECONDS.sleep(1);

								return	123;

				}

				catch	(InterruptedException	e)	{

								throw	new	IllegalStateException("task	interrupted",	e);

				}

};

Callables	can	be	submitted	to	executor	services	just	like	runnables.	But	what	about	the
callables	result?	Since		submit()		doesn't	wait	until	the	task	completes,	the	executor	service
cannot	return	the	result	of	the	callable	directly.	Instead	the	executor	returns	a	special	result
of	type		Future		which	can	be	used	to	retrieve	the	actual	result	at	a	later	point	in	time.

ExecutorService	executor	=	Executors.newFixedThreadPool(1);

Future<Integer>	future	=	executor.submit(task);

System.out.println("future	done?	"	+	future.isDone());

Integer	result	=	future.get();

System.out.println("future	done?	"	+	future.isDone());

System.out.print("result:	"	+	result);

After	submitting	the	callable	to	the	executor	we	first	check	if	the	future	has	already	been
finished	execution	via		isDone()	.	I'm	pretty	sure	this	isn't	the	case	since	the	above	callable
sleeps	for	one	second	before	returning	the	integer.

Calling	the	method		get()		blocks	the	current	thread	and	waits	until	the	callable	completes
before	returning	the	actual	result		123	.	Now	the	future	is	finally	done	and	we	see	the
following	result	on	the	console:

future	done?	false

future	done?	true

result:	123

Futures	are	tightly	coupled	to	the	underlying	executor	service.	Keep	in	mind	that	every	non-
terminated	future	will	throw	exceptions	if	you	shutdown	the	executor:

Modern	Java	-	A	Guide	to	Java	8

53Java	8	Concurrency	Tutorial:	Threads	and	Executors

executor.shutdownNow();

future.get();

You	might	have	noticed	that	the	creation	of	the	executor	slightly	differs	from	the	previous
example.	We	use		newFixedThreadPool(1)		to	create	an	executor	service	backed	by	a	thread-
pool	of	size	one.	This	is	equivalent	to		newSingleThreadExecutor()		but	we	could	later
increase	the	pool	size	by	simply	passing	a	value	larger	than	one.

Timeouts

Any	call	to		future.get()		will	block	and	wait	until	the	underlying	callable	has	been
terminated.	In	the	worst	case	a	callable	runs	forever	-	thus	making	your	application
unresponsive.	You	can	simply	counteract	those	scenarios	by	passing	a	timeout:

ExecutorService	executor	=	Executors.newFixedThreadPool(1);

Future<Integer>	future	=	executor.submit(()	->	{

				try	{

								TimeUnit.SECONDS.sleep(2);

								return	123;

				}

				catch	(InterruptedException	e)	{

								throw	new	IllegalStateException("task	interrupted",	e);

				}

});

future.get(1,	TimeUnit.SECONDS);

Executing	the	above	code	results	in	a		TimeoutException	:

Exception	in	thread	"main"	java.util.concurrent.TimeoutException

				at	java.util.concurrent.FutureTask.get(FutureTask.java:205)

You	might	already	have	guessed	why	this	exception	is	thrown:	We	specified	a	maximum	wait
time	of	one	second	but	the	callable	actually	needs	two	seconds	before	returning	the	result.

InvokeAll

Executors	support	batch	submitting	of	multiple	callables	at	once	via		invokeAll()	.	This
method	accepts	a	collection	of	callables	and	returns	a	list	of	futures.

Modern	Java	-	A	Guide	to	Java	8

54Java	8	Concurrency	Tutorial:	Threads	and	Executors

ExecutorService	executor	=	Executors.newWorkStealingPool();

List<Callable<String>>	callables	=	Arrays.asList(

								()	->	"task1",

								()	->	"task2",

								()	->	"task3");

executor.invokeAll(callables)

				.stream()

				.map(future	->	{

								try	{

												return	future.get();

								}

								catch	(Exception	e)	{

												throw	new	IllegalStateException(e);

								}

				})

				.forEach(System.out::println);

In	this	example	we	utilize	Java	8	functional	streams	in	order	to	process	all	futures	returned
by	the	invocation	of		invokeAll	.	We	first	map	each	future	to	its	return	value	and	then	print
each	value	to	the	console.	If	you're	not	yet	familiar	with	streams	read	my	Java	8	Stream
Tutorial.

InvokeAny

Another	way	of	batch-submitting	callables	is	the	method		invokeAny()		which	works	slightly
different	to		invokeAll()	.	Instead	of	returning	future	objects	this	method	blocks	until	the	first
callable	terminates	and	returns	the	result	of	that	callable.

In	order	to	test	this	behavior	we	use	this	helper	method	to	simulate	callables	with	different
durations.	The	method	returns	a	callable	that	sleeps	for	a	certain	amount	of	time	until
returning	the	given	result:

Callable<String>	callable(String	result,	long	sleepSeconds)	{

				return	()	->	{

								TimeUnit.SECONDS.sleep(sleepSeconds);

								return	result;

				};

}

We	use	this	method	to	create	a	bunch	of	callables	with	different	durations	from	one	to	three
seconds.	Submitting	those	callables	to	an	executor	via		invokeAny()		returns	the	string	result
of	the	fastest	callable	-	in	that	case	task2:

Modern	Java	-	A	Guide	to	Java	8

55Java	8	Concurrency	Tutorial:	Threads	and	Executors

ExecutorService	executor	=	Executors.newWorkStealingPool();

List<Callable<String>>	callables	=	Arrays.asList(

				callable("task1",	2),

				callable("task2",	1),

				callable("task3",	3));

String	result	=	executor.invokeAny(callables);

System.out.println(result);

//	=>	task2

The	above	example	uses	yet	another	type	of	executor	created	via		newWorkStealingPool()	.
This	factory	method	is	part	of	Java	8	and	returns	an	executor	of	type		ForkJoinPool		which
works	slightly	different	than	normal	executors.	Instead	of	using	a	fixed	size	thread-pool
ForkJoinPools	are	created	for	a	given	parallelism	size	which	per	default	is	the	number	of
available	cores	of	the	hosts	CPU.

ForkJoinPools	exist	since	Java	7	and	will	be	covered	in	detail	in	a	later	tutorial	of	this	series.
Let's	finish	this	tutorial	by	taking	a	deeper	look	at	scheduled	executors.

Scheduled	Executors

We've	already	learned	how	to	submit	and	run	tasks	once	on	an	executor.	In	order	to
periodically	run	common	tasks	multiple	times,	we	can	utilize	scheduled	thread	pools.

A		ScheduledExecutorService		is	capable	of	scheduling	tasks	to	run	either	periodically	or	once
after	a	certain	amount	of	time	has	elapsed.

This	code	sample	schedules	a	task	to	run	after	an	initial	delay	of	three	seconds	has	passed:

ScheduledExecutorService	executor	=	Executors.newScheduledThreadPool(1);

Runnable	task	=	()	->	System.out.println("Scheduling:	"	+	System.nanoTime());

ScheduledFuture<?>	future	=	executor.schedule(task,	3,	TimeUnit.SECONDS);

TimeUnit.MILLISECONDS.sleep(1337);

long	remainingDelay	=	future.getDelay(TimeUnit.MILLISECONDS);

System.out.printf("Remaining	Delay:	%sms",	remainingDelay);

Scheduling	a	task	produces	a	specialized	future	of	type		ScheduledFuture		which	-	in	addition
to		Future		-	provides	the	method		getDelay()		to	retrieve	the	remaining	delay.	After	this
delay	has	elapsed	the	task	will	be	executed	concurrently.

In	order	to	schedule	tasks	to	be	executed	periodically,	executors	provide	the	two	methods
	scheduleAtFixedRate()		and		scheduleWithFixedDelay()	.	The	first	method	is	capable	of
executing	tasks	with	a	fixed	time	rate,	e.g.	once	every	second	as	demonstrated	in	this
example:

Modern	Java	-	A	Guide	to	Java	8

56Java	8	Concurrency	Tutorial:	Threads	and	Executors

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

ScheduledExecutorService	executor	=	Executors.newScheduledThreadPool(1);

Runnable	task	=	()	->	System.out.println("Scheduling:	"	+	System.nanoTime());

int	initialDelay	=	0;

int	period	=	1;

executor.scheduleAtFixedRate(task,	initialDelay,	period,	TimeUnit.SECONDS);

Additionally	this	method	accepts	an	initial	delay	which	describes	the	leading	wait	time	before
the	task	will	be	executed	for	the	first	time.

Please	keep	in	mind	that		scheduleAtFixedRate()		doesn't	take	into	account	the	actual
duration	of	the	task.	So	if	you	specify	a	period	of	one	second	but	the	task	needs	2	seconds
to	be	executed	then	the	thread	pool	will	working	to	capacity	very	soon.

In	that	case	you	should	consider	using		scheduleWithFixedDelay()		instead.	This	method
works	just	like	the	counterpart	described	above.	The	difference	is	that	the	wait	time	period
applies	between	the	end	of	a	task	and	the	start	of	the	next	task.	For	example:

ScheduledExecutorService	executor	=	Executors.newScheduledThreadPool(1);

Runnable	task	=	()	->	{

				try	{

								TimeUnit.SECONDS.sleep(2);

								System.out.println("Scheduling:	"	+	System.nanoTime());

				}

				catch	(InterruptedException	e)	{

								System.err.println("task	interrupted");

				}

};

executor.scheduleWithFixedDelay(task,	0,	1,	TimeUnit.SECONDS);

This	example	schedules	a	task	with	a	fixed	delay	of	one	second	between	the	end	of	an
execution	and	the	start	of	the	next	execution.	The	initial	delay	is	zero	and	the	tasks	duration
is	two	seconds.	So	we	end	up	with	an	execution	interval	of	0s,	3s,	6s,	9s	and	so	on.	As	you
can	see		scheduleWithFixedDelay()		is	handy	if	you	cannot	predict	the	duration	of	the
scheduled	tasks.

This	was	the	first	part	out	of	a	series	of	concurrency	tutorials.	I	recommend	practicing	the
shown	code	samples	by	your	own.	You	find	all	code	samples	from	this	article	on	GitHub,	so
feel	free	to	fork	the	repo	and	give	me	star.

I	hope	you've	enjoyed	this	article.	If	you	have	any	further	questions	send	me	your	feedback
in	the	comments	below	or	via	Twitter.

Part	1:	Threads	and	Executors
Part	2:	Synchronization	and	Locks
Part	3:	Atomic	Variables	and	ConcurrentMap

Modern	Java	-	A	Guide	to	Java	8

57Java	8	Concurrency	Tutorial:	Threads	and	Executors

https://github.com/winterbe/java8-tutorial
https://github.com/winterbe/java8-tutorial/stargazers
https://twitter.com/winterbe_

Java	8	Concurrency	Tutorial:	Synchronization
and	Locks
April	30,	2015

Welcome	to	the	second	part	of	my	Java	8	Concurrency	Tutorial	out	of	a	series	of	guides
teaching	multi-threaded	programming	in	Java	8	with	easily	understood	code	examples.	In
the	next	15	min	you	learn	how	to	synchronize	access	to	mutable	shared	variables	via	the
synchronized	keyword,	locks	and	semaphores.

Part	1:	Threads	and	Executors
Part	2:	Synchronization	and	Locks
Part	3:	Atomic	Variables	and	ConcurrentMap

The	majority	of	concepts	shown	in	this	article	also	work	in	older	versions	of	Java.	However
the	code	samples	focus	on	Java	8	and	make	heavy	use	of	lambda	expressions	and	new
concurrency	features.	If	you're	not	yet	familiar	with	lambdas	I	recommend	reading	my	Java	8
Tutorial	first.

For	simplicity	the	code	samples	of	this	tutorial	make	use	of	the	two	helper	methods
	sleep(seconds)		and		stop(executor)		as	defined	here.

Synchronized

In	the	previous	tutorial)	we've	learned	how	to	execute	code	in	parallel	via	executor	services.
When	writing	such	multi-threaded	code	you	have	to	pay	particular	attention	when	accessing
shared	mutable	variables	concurrently	from	multiple	threads.	Let's	just	say	we	want	to
increment	an	integer	which	is	accessible	simultaneously	from	multiple	threads.

We	define	a	field		count		with	a	method		increment()		to	increase	count	by	one:

int	count	=	0;

void	increment()	{

				count	=	count	+	1;

}

When	calling	this	method	concurrently	from	multiple	threads	we're	in	serious	trouble:

Modern	Java	-	A	Guide	to	Java	8

58Java	8	Concurrency	Tutorial:	Synchronization	and	Locks

https://github.com/winterbe/java8-tutorial/blob/master/src/com/winterbe/java8/samples/concurrent/ConcurrentUtils.java

ExecutorService	executor	=	Executors.newFixedThreadPool(2);

IntStream.range(0,	10000)

				.forEach(i	->	executor.submit(this::increment));

stop(executor);

System.out.println(count);		//	9965

Instead	of	seeing	a	constant	result	count	of	10000	the	actual	result	varies	with	every
execution	of	the	above	code.	The	reason	is	that	we	share	a	mutable	variable	upon	different
threads	without	synchronizing	the	access	to	this	variable	which	results	in	a	race	condition.

Three	steps	have	to	be	performed	in	order	to	increment	the	number:	(i)	read	the	current
value,	(ii)	increase	this	value	by	one	and	(iii)	write	the	new	value	to	the	variable.	If	two
threads	perform	these	steps	in	parallel	it's	possible	that	both	threads	perform	step	1
simultaneously	thus	reading	the	same	current	value.	This	results	in	lost	writes	so	the	actual
result	is	lower.	In	the	above	sample	35	increments	got	lost	due	to	concurrent
unsynchronized	access	to	count	but	you	may	see	different	results	when	executing	the	code
by	yourself.

Luckily	Java	supports	thread-synchronization	since	the	early	days	via	the		synchronized	
keyword.	We	can	utilize		synchronized		to	fix	the	above	race	conditions	when	incrementing
the	count:

synchronized	void	incrementSync()	{

				count	=	count	+	1;

}

When	using		incrementSync()		concurrently	we	get	the	desired	result	count	of	10000.	No
race	conditions	occur	any	longer	and	the	result	is	stable	with	every	execution	of	the	code:

ExecutorService	executor	=	Executors.newFixedThreadPool(2);

IntStream.range(0,	10000)

				.forEach(i	->	executor.submit(this::incrementSync));

stop(executor);

System.out.println(count);		//	10000

The		synchronized		keyword	is	also	available	as	a	block	statement.

void	incrementSync()	{

				synchronized	(this)	{

								count	=	count	+	1;

				}

}

Modern	Java	-	A	Guide	to	Java	8

59Java	8	Concurrency	Tutorial:	Synchronization	and	Locks

http://en.wikipedia.org/wiki/Race_condition

Internally	Java	uses	a	so	called	monitor	also	known	as	monitor	lock	or	intrinsic	lock	in	order
to	manage	synchronization.	This	monitor	is	bound	to	an	object,	e.g.	when	using
synchronized	methods	each	method	share	the	same	monitor	of	the	corresponding	object.

All	implicit	monitors	implement	the	reentrant	characteristics.	Reentrant	means	that	locks	are
bound	to	the	current	thread.	A	thread	can	safely	acquire	the	same	lock	multiple	times	without
running	into	deadlocks	(e.g.	a	synchronized	method	calls	another	synchronized	method	on
the	same	object).

Locks

Instead	of	using	implicit	locking	via	the		synchronized		keyword	the	Concurrency	API
supports	various	explicit	locks	specified	by	the		Lock		interface.	Locks	support	various
methods	for	finer	grained	lock	control	thus	are	more	expressive	than	implicit	monitors.

Multiple	lock	implementations	are	available	in	the	standard	JDK	which	will	be	demonstrated
in	the	following	sections.

ReentrantLock

The	class		ReentrantLock		is	a	mutual	exclusion	lock	with	the	same	basic	behavior	as	the
implicit	monitors	accessed	via	the		synchronized		keyword	but	with	extended	capabilities.	As
the	name	suggests	this	lock	implements	reentrant	characteristics	just	as	implicit	monitors.

Let's	see	how	the	above	sample	looks	like	using		ReentrantLock	:

ReentrantLock	lock	=	new	ReentrantLock();

int	count	=	0;

void	increment()	{

				lock.lock();

				try	{

								count++;

				}	finally	{

								lock.unlock();

				}

}

A	lock	is	acquired	via		lock()		and	released	via		unlock()	.	It's	important	to	wrap	your	code
into	a		try/finally		block	to	ensure	unlocking	in	case	of	exceptions.	This	method	is	thread-
safe	just	like	the	synchronized	counterpart.	If	another	thread	has	already	acquired	the	lock
subsequent	calls	to		lock()		pause	the	current	thread	until	the	lock	has	been	unlocked.	Only
one	thread	can	hold	the	lock	at	any	given	time.

Locks	support	various	methods	for	fine	grained	control	as	seen	in	the	next	sample:

Modern	Java	-	A	Guide	to	Java	8

60Java	8	Concurrency	Tutorial:	Synchronization	and	Locks

https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

ExecutorService	executor	=	Executors.newFixedThreadPool(2);

ReentrantLock	lock	=	new	ReentrantLock();

executor.submit(()	->	{

				lock.lock();

				try	{

								sleep(1);

				}	finally	{

								lock.unlock();

				}

});

executor.submit(()	->	{

				System.out.println("Locked:	"	+	lock.isLocked());

				System.out.println("Held	by	me:	"	+	lock.isHeldByCurrentThread());

				boolean	locked	=	lock.tryLock();

				System.out.println("Lock	acquired:	"	+	locked);

});

stop(executor);

While	the	first	task	holds	the	lock	for	one	second	the	second	task	obtains	different
information	about	the	current	state	of	the	lock:

Locked:	true

Held	by	me:	false

Lock	acquired:	false

The	method		tryLock()		as	an	alternative	to		lock()		tries	to	acquire	the	lock	without	pausing
the	current	thread.	The	boolean	result	must	be	used	to	check	if	the	lock	has	actually	been
acquired	before	accessing	any	shared	mutable	variables.

ReadWriteLock

The	interface		ReadWriteLock		specifies	another	type	of	lock	maintaining	a	pair	of	locks	for
read	and	write	access.	The	idea	behind	read-write	locks	is	that	it's	usually	safe	to	read
mutable	variables	concurrently	as	long	as	nobody	is	writing	to	this	variable.	So	the	read-lock
can	be	held	simultaneously	by	multiple	threads	as	long	as	no	threads	hold	the	write-lock.
This	can	improve	performance	and	throughput	in	case	that	reads	are	more	frequent	than
writes.

ExecutorService	executor	=	Executors.newFixedThreadPool(2);

Map<String,	String>	map	=	new	HashMap<>();

ReadWriteLock	lock	=	new	ReentrantReadWriteLock();

executor.submit(()	->	{

				lock.writeLock().lock();

				try	{

								sleep(1);

								map.put("foo",	"bar");

				}	finally	{

								lock.writeLock().unlock();

				}

});

Modern	Java	-	A	Guide	to	Java	8

61Java	8	Concurrency	Tutorial:	Synchronization	and	Locks

The	above	example	first	acquires	a	write-lock	in	order	to	put	a	new	value	to	the	map	after
sleeping	for	one	second.	Before	this	task	has	finished	two	other	tasks	are	being	submitted
trying	to	read	the	entry	from	the	map	and	sleep	for	one	second:

Runnable	readTask	=	()	->	{

				lock.readLock().lock();

				try	{

								System.out.println(map.get("foo"));

								sleep(1);

				}	finally	{

								lock.readLock().unlock();

				}

};

executor.submit(readTask);

executor.submit(readTask);

stop(executor);

When	you	execute	this	code	sample	you'll	notice	that	both	read	tasks	have	to	wait	the	whole
second	until	the	write	task	has	finished.	After	the	write	lock	has	been	released	both	read
tasks	are	executed	in	parallel	and	print	the	result	simultaneously	to	the	console.	They	don't
have	to	wait	for	each	other	to	finish	because	read-locks	can	safely	be	acquired	concurrently
as	long	as	no	write-lock	is	held	by	another	thread.

StampedLock

Java	8	ships	with	a	new	kind	of	lock	called		StampedLock		which	also	support	read	and	write
locks	just	like	in	the	example	above.	In	contrast	to		ReadWriteLock		the	locking	methods	of	a
	StampedLock		return	a	stamp	represented	by	a		long		value.	You	can	use	these	stamps	to
either	release	a	lock	or	to	check	if	the	lock	is	still	valid.	Additionally	stamped	locks	support
another	lock	mode	called	optimistic	locking.

Let's	rewrite	the	last	example	code	to	use		StampedLock		instead	of		ReadWriteLock	:

Modern	Java	-	A	Guide	to	Java	8

62Java	8	Concurrency	Tutorial:	Synchronization	and	Locks

ExecutorService	executor	=	Executors.newFixedThreadPool(2);

Map<String,	String>	map	=	new	HashMap<>();

StampedLock	lock	=	new	StampedLock();

executor.submit(()	->	{

				long	stamp	=	lock.writeLock();

				try	{

								sleep(1);

								map.put("foo",	"bar");

				}	finally	{

								lock.unlockWrite(stamp);

				}

});

Runnable	readTask	=	()	->	{

				long	stamp	=	lock.readLock();

				try	{

								System.out.println(map.get("foo"));

								sleep(1);

				}	finally	{

								lock.unlockRead(stamp);

				}

};

executor.submit(readTask);

executor.submit(readTask);

stop(executor);

Obtaining	a	read	or	write	lock	via		readLock()		or		writeLock()		returns	a	stamp	which	is	later
used	for	unlocking	within	the	finally	block.	Keep	in	mind	that	stamped	locks	don't	implement
reentrant	characteristics.	Each	call	to	lock	returns	a	new	stamp	and	blocks	if	no	lock	is
available	even	if	the	same	thread	already	holds	a	lock.	So	you	have	to	pay	particular
attention	not	to	run	into	deadlocks.

Just	like	in	the	previous		ReadWriteLock		example	both	read	tasks	have	to	wait	until	the	write
lock	has	been	released.	Then	both	read	tasks	print	to	the	console	simultaneously	because
multiple	reads	doesn't	block	each	other	as	long	as	no	write-lock	is	held.

The	next	example	demonstrates	optimistic	locking:

Modern	Java	-	A	Guide	to	Java	8

63Java	8	Concurrency	Tutorial:	Synchronization	and	Locks

ExecutorService	executor	=	Executors.newFixedThreadPool(2);

StampedLock	lock	=	new	StampedLock();

executor.submit(()	->	{

				long	stamp	=	lock.tryOptimisticRead();

				try	{

								System.out.println("Optimistic	Lock	Valid:	"	+	lock.validate(stamp));

								sleep(1);

								System.out.println("Optimistic	Lock	Valid:	"	+	lock.validate(stamp));

								sleep(2);

								System.out.println("Optimistic	Lock	Valid:	"	+	lock.validate(stamp));

				}	finally	{

								lock.unlock(stamp);

				}

});

executor.submit(()	->	{

				long	stamp	=	lock.writeLock();

				try	{

								System.out.println("Write	Lock	acquired");

								sleep(2);

				}	finally	{

								lock.unlock(stamp);

								System.out.println("Write	done");

				}

});

stop(executor);

An	optimistic	read	lock	is	acquired	by	calling		tryOptimisticRead()		which	always	returns	a
stamp	without	blocking	the	current	thread,	no	matter	if	the	lock	is	actually	available.	If	there's
already	a	write	lock	active	the	returned	stamp	equals	zero.	You	can	always	check	if	a	stamp
is	valid	by	calling		lock.validate(stamp)	.

Executing	the	above	code	results	in	the	following	output:

Optimistic	Lock	Valid:	true

Write	Lock	acquired

Optimistic	Lock	Valid:	false

Write	done

Optimistic	Lock	Valid:	false

The	optimistic	lock	is	valid	right	after	acquiring	the	lock.	In	contrast	to	normal	read	locks	an
optimistic	lock	doesn't	prevent	other	threads	to	obtain	a	write	lock	instantaneously.	After
sending	the	first	thread	to	sleep	for	one	second	the	second	thread	obtains	a	write	lock
without	waiting	for	the	optimistic	read	lock	to	be	released.	From	this	point	the	optimistic	read
lock	is	no	longer	valid.	Even	when	the	write	lock	is	released	the	optimistic	read	locks	stays
invalid.

So	when	working	with	optimistic	locks	you	have	to	validate	the	lock	every	time	after
accessing	any	shared	mutable	variable	to	make	sure	the	read	was	still	valid.

Sometimes	it's	useful	to	convert	a	read	lock	into	a	write	lock	without	unlocking	and	locking
again.		StampedLock		provides	the	method		tryConvertToWriteLock()		for	that	purpose	as	seen
in	the	next	sample:

Modern	Java	-	A	Guide	to	Java	8

64Java	8	Concurrency	Tutorial:	Synchronization	and	Locks

ExecutorService	executor	=	Executors.newFixedThreadPool(2);

StampedLock	lock	=	new	StampedLock();

executor.submit(()	->	{

				long	stamp	=	lock.readLock();

				try	{

								if	(count	==	0)	{

												stamp	=	lock.tryConvertToWriteLock(stamp);

												if	(stamp	==	0L)	{

																System.out.println("Could	not	convert	to	write	lock");

																stamp	=	lock.writeLock();

												}

												count	=	23;

								}

								System.out.println(count);

				}	finally	{

								lock.unlock(stamp);

				}

});

stop(executor);

The	task	first	obtains	a	read	lock	and	prints	the	current	value	of	field		count		to	the	console.
But	if	the	current	value	is	zero	we	want	to	assign	a	new	value	of		23	.	We	first	have	to
convert	the	read	lock	into	a	write	lock	to	not	break	potential	concurrent	access	by	other
threads.	Calling		tryConvertToWriteLock()		doesn't	block	but	may	return	a	zero	stamp
indicating	that	no	write	lock	is	currently	available.	In	that	case	we	call		writeLock()		to	block
the	current	thread	until	a	write	lock	is	available.

Semaphores

In	addition	to	locks	the	Concurrency	API	also	supports	counting	semaphores.	Whereas	locks
usually	grant	exclusive	access	to	variables	or	resources,	a	semaphore	is	capable	of
maintaining	whole	sets	of	permits.	This	is	useful	in	different	scenarios	where	you	have	to
limit	the	amount	concurrent	access	to	certain	parts	of	your	application.

Here's	an	example	how	to	limit	access	to	a	long	running	task	simulated	by		sleep(5)	:

Modern	Java	-	A	Guide	to	Java	8

65Java	8	Concurrency	Tutorial:	Synchronization	and	Locks

ExecutorService	executor	=	Executors.newFixedThreadPool(10);

Semaphore	semaphore	=	new	Semaphore(5);

Runnable	longRunningTask	=	()	->	{

				boolean	permit	=	false;

				try	{

								permit	=	semaphore.tryAcquire(1,	TimeUnit.SECONDS);

								if	(permit)	{

												System.out.println("Semaphore	acquired");

												sleep(5);

								}	else	{

												System.out.println("Could	not	acquire	semaphore");

								}

				}	catch	(InterruptedException	e)	{

								throw	new	IllegalStateException(e);

				}	finally	{

								if	(permit)	{

												semaphore.release();

								}

				}

}

IntStream.range(0,	10)

				.forEach(i	->	executor.submit(longRunningTask));

stop(executor);

The	executor	can	potentially	run	10	tasks	concurrently	but	we	use	a	semaphore	of	size	5,
thus	limiting	concurrent	access	to	5.	It's	important	to	use	a		try/finally		block	to	properly
release	the	semaphore	even	in	case	of	exceptions.

Executing	the	above	code	results	in	the	following	output:

Semaphore	acquired

Semaphore	acquired

Semaphore	acquired

Semaphore	acquired

Semaphore	acquired

Could	not	acquire	semaphore

Could	not	acquire	semaphore

Could	not	acquire	semaphore

Could	not	acquire	semaphore

Could	not	acquire	semaphore

The	semaphores	permits	access	to	the	actual	long	running	operation	simulated	by
	sleep(5)		up	to	a	maximum	of	5.	Every	subsequent	call	to		tryAcquire()		elapses	the
maximum	wait	timeout	of	one	second,	resulting	in	the	appropriate	console	output	that	no
semaphore	could	be	acquired.

This	was	the	second	part	out	of	a	series	of	concurrency	tutorials.	More	parts	will	be	released
in	the	near	future,	so	stay	tuned.	As	usual	you	find	all	code	samples	from	this	article	on
GitHub,	so	feel	free	to	fork	the	repo	and	try	it	by	your	own.

I	hope	you've	enjoyed	this	article.	If	you	have	any	further	questions	send	me	your	feedback
in	the	comments	below.	You	should	also	follow	me	on	Twitter	for	more	dev-related	stuff!

Modern	Java	-	A	Guide	to	Java	8

66Java	8	Concurrency	Tutorial:	Synchronization	and	Locks

https://github.com/winterbe/java8-tutorial
https://twitter.com/winterbe_

Part	1:	Threads	and	Executors
Part	2:	Synchronization	and	Locks
Part	3:	Atomic	Variables	and	ConcurrentMap

Modern	Java	-	A	Guide	to	Java	8

67Java	8	Concurrency	Tutorial:	Synchronization	and	Locks

Java	8	Concurrency	Tutorial:	Atomic	Variables
and	ConcurrentMap
May	22,	2015

Welcome	to	the	third	part	of	my	tutorial	series	about	multi-threaded	programming	in	Java	8.
This	tutorial	covers	two	important	parts	of	the	Concurrency	API:	Atomic	Variables	and
Concurrent	Maps.	Both	have	been	greatly	improved	with	the	introduction	of	lambda
expressions	and	functional	programming	in	the	latest	Java	8	release.	All	those	new	features
are	described	with	a	bunch	of	easily	understood	code	samples.	Enjoy!

Part	1:	Threads	and	Executors
Part	2:	Synchronization	and	Locks
Part	3:	Atomic	Variables	and	ConcurrentMap

For	simplicity	the	code	samples	of	this	tutorial	make	use	of	the	two	helper	methods
	sleep(seconds)		and		stop(executor)		as	defined	here.

AtomicInteger

The	package		java.concurrent.atomic		contains	many	useful	classes	to	perform	atomic
operations.	An	operation	is	atomic	when	you	can	safely	perform	the	operation	in	parallel	on
multiple	threads	without	using	the		synchronized		keyword	or	locks	as	shown	in	my	previous
tutorial.

Internally,	the	atomic	classes	make	heavy	use	of	compare-and-swap	(CAS),	an	atomic
instruction	directly	supported	by	most	modern	CPUs.	Those	instructions	usually	are	much
faster	than	synchronizing	via	locks.	So	my	advice	is	to	prefer	atomic	classes	over	locks	in
case	you	just	have	to	change	a	single	mutable	variable	concurrently.

Now	let's	pick	one	of	the	atomic	classes	for	a	few	examples:		AtomicInteger	

AtomicInteger	atomicInt	=	new	AtomicInteger(0);

ExecutorService	executor	=	Executors.newFixedThreadPool(2);

IntStream.range(0,	1000)

				.forEach(i	->	executor.submit(atomicInt::incrementAndGet));

stop(executor);

System.out.println(atomicInt.get());				//	=>	1000

Modern	Java	-	A	Guide	to	Java	8

68Java	8	Concurrency	Tutorial:	Atomic	Variables	and	ConcurrentMap

https://github.com/winterbe/java8-tutorial/blob/master/src/com/winterbe/java8/samples/concurrent/ConcurrentUtils.java
http://en.wikipedia.org/wiki/Compare-and-swap

By	using		AtomicInteger		as	a	replacement	for		Integer		we're	able	to	increment	the	number
concurrently	in	a	thread-safe	manor	without	synchronizing	the	access	to	the	variable.	The
method		incrementAndGet()		is	an	atomic	operation	so	we	can	safely	call	this	method	from
multiple	threads.

AtomicInteger	supports	various	kinds	of	atomic	operations.	The	method		updateAndGet()	
accepts	a	lambda	expression	in	order	to	perform	arbitrary	arithmetic	operations	upon	the
integer:

AtomicInteger	atomicInt	=	new	AtomicInteger(0);

ExecutorService	executor	=	Executors.newFixedThreadPool(2);

IntStream.range(0,	1000)

				.forEach(i	->	{

								Runnable	task	=	()	->

												atomicInt.updateAndGet(n	->	n	+	2);

								executor.submit(task);

				});

stop(executor);

System.out.println(atomicInt.get());				//	=>	2000

The	method		accumulateAndGet()		accepts	another	kind	of	lambda	expression	of	type
	IntBinaryOperator	.	We	use	this	method	to	sum	up	all	values	from	0	to	1000	concurrently	in
the	next	sample:

AtomicInteger	atomicInt	=	new	AtomicInteger(0);

ExecutorService	executor	=	Executors.newFixedThreadPool(2);

IntStream.range(0,	1000)

				.forEach(i	->	{

								Runnable	task	=	()	->

												atomicInt.accumulateAndGet(i,	(n,	m)	->	n	+	m);

								executor.submit(task);

				});

stop(executor);

System.out.println(atomicInt.get());				//	=>	499500

Other	useful	atomic	classes	are	AtomicBoolean,	AtomicLong	and	AtomicReference.

LongAdder

The	class		LongAdder		as	an	alternative	to		AtomicLong		can	be	used	to	consecutively	add
values	to	a	number.

Modern	Java	-	A	Guide	to	Java	8

69Java	8	Concurrency	Tutorial:	Atomic	Variables	and	ConcurrentMap

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicBoolean.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicLong.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicReference.html

ExecutorService	executor	=	Executors.newFixedThreadPool(2);

IntStream.range(0,	1000)

				.forEach(i	->	executor.submit(adder::increment));

stop(executor);

System.out.println(adder.sumThenReset());			//	=>	1000

LongAdder	provides	methods		add()		and		increment()		just	like	the	atomic	number	classes
and	is	also	thread-safe.	But	instead	of	summing	up	a	single	result	this	class	maintains	a	set
of	variables	internally	to	reduce	contention	over	threads.	The	actual	result	can	be	retrieved
by	calling		sum()		or		sumThenReset()	.

This	class	is	usually	preferable	over	atomic	numbers	when	updates	from	multiple	threads
are	more	common	than	reads.	This	is	often	the	case	when	capturing	statistical	data,	e.g.	you
want	to	count	the	number	of	requests	served	on	a	web	server.	The	drawback	of		LongAdder	
is	higher	memory	consumption	because	a	set	of	variables	is	held	in-memory.

LongAccumulator

LongAccumulator	is	a	more	generalized	version	of	LongAdder.	Instead	of	performing	simple
add	operations	the	class		LongAccumulator		builds	around	a	lambda	expression	of	type
	LongBinaryOperator		as	demonstrated	in	this	code	sample:

LongBinaryOperator	op	=	(x,	y)	->	2	*	x	+	y;

LongAccumulator	accumulator	=	new	LongAccumulator(op,	1L);

ExecutorService	executor	=	Executors.newFixedThreadPool(2);

IntStream.range(0,	10)

				.forEach(i	->	executor.submit(()	->	accumulator.accumulate(i)));

stop(executor);

System.out.println(accumulator.getThenReset());					//	=>	2539

We	create	a	LongAccumulator	with	the	function		2	*	x	+	y		and	an	initial	value	of	one.	With
every	call	to		accumulate(i)		both	the	current	result	and	the	value		i		are	passed	as
parameters	to	the	lambda	expression.

A		LongAccumulator		just	like		LongAdder		maintains	a	set	of	variables	internally	to	reduce
contention	over	threads.

ConcurrentMap

Modern	Java	-	A	Guide	to	Java	8

70Java	8	Concurrency	Tutorial:	Atomic	Variables	and	ConcurrentMap

The	interface		ConcurrentMap		extends	the	map	interface	and	defines	one	of	the	most	useful
concurrent	collection	types.	Java	8	introduces	functional	programming	by	adding	new
methods	to	this	interface.

In	the	next	code	snippets	we	use	the	following	sample	map	to	demonstrates	those	new
methods:

ConcurrentMap<String,	String>	map	=	new	ConcurrentHashMap<>();

map.put("foo",	"bar");

map.put("han",	"solo");

map.put("r2",	"d2");

map.put("c3",	"p0");

The	method		forEach()		accepts	a	lambda	expression	of	type		BiConsumer		with	both	the	key
and	value	of	the	map	passed	as	parameters.	It	can	be	used	as	a	replacement	to	for-each
loops	to	iterate	over	the	entries	of	the	concurrent	map.	The	iteration	is	performed
sequentially	on	the	current	thread.

map.forEach((key,	value)	->	System.out.printf("%s	=	%s\n",	key,	value));

The	method		putIfAbsent()		puts	a	new	value	into	the	map	only	if	no	value	exists	for	the
given	key.	At	least	for	the		ConcurrentHashMap		implementation	of	this	method	is	thread-safe
just	like		put()		so	you	don't	have	to	synchronize	when	accessing	the	map	concurrently	from
different	threads:

String	value	=	map.putIfAbsent("c3",	"p1");

System.out.println(value);				//	p0

The	method		getOrDefault()		returns	the	value	for	the	given	key.	In	case	no	entry	exists	for
this	key	the	passed	default	value	is	returned:

String	value	=	map.getOrDefault("hi",	"there");

System.out.println(value);				//	there

The	method		replaceAll()		accepts	a	lambda	expression	of	type		BiFunction	.	BiFunctions
take	two	parameters	and	return	a	single	value.	In	this	case	the	function	is	called	with	the	key
and	the	value	of	each	map	entry	and	returns	a	new	value	to	be	assigned	for	the	current	key:

map.replaceAll((key,	value)	->	"r2".equals(key)	?	"d3"	:	value);

System.out.println(map.get("r2"));				//	d3

Instead	of	replacing	all	values	of	the	map		compute()		let's	us	transform	a	single	entry.	The
method	accepts	both	the	key	to	be	computed	and	a	bi-function	to	specify	the	transformation
of	the	value.

Modern	Java	-	A	Guide	to	Java	8

71Java	8	Concurrency	Tutorial:	Atomic	Variables	and	ConcurrentMap

map.compute("foo",	(key,	value)	->	value	+	value);

System.out.println(map.get("foo"));			//	barbar

In	addition	to		compute()		two	variants	exist:		computeIfAbsent()		and		computeIfPresent()	.
The	functional	parameters	of	these	methods	only	get	called	if	the	key	is	absent	or	present
respectively.

Finally,	the	method		merge()		can	be	utilized	to	unify	a	new	value	with	an	existing	value	in
the	map.	Merge	accepts	a	key,	the	new	value	to	be	merged	into	the	existing	entry	and	a	bi-
function	to	specify	the	merging	behavior	of	both	values:

map.merge("foo",	"boo",	(oldVal,	newVal)	->	newVal	+	"	was	"	+	oldVal);

System.out.println(map.get("foo"));			//	boo	was	foo

ConcurrentHashMap

All	those	methods	above	are	part	of	the		ConcurrentMap		interface,	thereby	available	to	all
implementations	of	that	interface.	In	addition	the	most	important	implementation
	ConcurrentHashMap		has	been	further	enhanced	with	a	couple	of	new	methods	to	perform
parallel	operations	upon	the	map.

Just	like	parallel	streams	those	methods	use	a	special		ForkJoinPool		available	via
	ForkJoinPool.commonPool()		in	Java	8.	This	pool	uses	a	preset	parallelism	which	depends	on
the	number	of	available	cores.	Four	CPU	cores	are	available	on	my	machine	which	results	in
a	parallelism	of	three:

System.out.println(ForkJoinPool.getCommonPoolParallelism());		//	3

This	value	can	be	decreased	or	increased	by	setting	the	following	JVM	parameter:

-Djava.util.concurrent.ForkJoinPool.common.parallelism=5

We	use	the	same	example	map	for	demonstrating	purposes	but	this	time	we	work	upon	the
concrete	implementation		ConcurrentHashMap		instead	of	the	interface		ConcurrentMap	,	so	we
can	access	all	public	methods	from	this	class:

ConcurrentHashMap<String,	String>	map	=	new	ConcurrentHashMap<>();

map.put("foo",	"bar");

map.put("han",	"solo");

map.put("r2",	"d2");

map.put("c3",	"p0");

Modern	Java	-	A	Guide	to	Java	8

72Java	8	Concurrency	Tutorial:	Atomic	Variables	and	ConcurrentMap

Java	8	introduces	three	kinds	of	parallel	operations:		forEach	,		search		and		reduce	.	Each
of	those	operations	are	available	in	four	forms	accepting	functions	with	keys,	values,	entries
and	key-value	pair	arguments.

All	of	those	methods	use	a	common	first	argument	called		parallelismThreshold	.	This
threshold	indicates	the	minimum	collection	size	when	the	operation	should	be	executed	in
parallel.	E.g.	if	you	pass	a	threshold	of	500	and	the	actual	size	of	the	map	is	499	the
operation	will	be	performed	sequentially	on	a	single	thread.	In	the	next	examples	we	use	a
threshold	of	one	to	always	force	parallel	execution	for	demonstrating	purposes.

ForEach

The	method		forEach()		is	capable	of	iterating	over	the	key-value	pairs	of	the	map	in
parallel.	The	lambda	expression	of	type		BiConsumer		is	called	with	the	key	and	value	of	the
current	iteration	step.	In	order	to	visualize	parallel	execution	we	print	the	current	threads
name	to	the	console.	Keep	in	mind	that	in	my	case	the	underlying		ForkJoinPool		uses	up	to
a	maximum	of	three	threads.

map.forEach(1,	(key,	value)	->

				System.out.printf("key:	%s;	value:	%s;	thread:	%s\n",

								key,	value,	Thread.currentThread().getName()));

//	key:	r2;	value:	d2;	thread:	main

//	key:	foo;	value:	bar;	thread:	ForkJoinPool.commonPool-worker-1

//	key:	han;	value:	solo;	thread:	ForkJoinPool.commonPool-worker-2

//	key:	c3;	value:	p0;	thread:	main

Search

The	method		search()		accepts	a		BiFunction		returning	a	non-null	search	result	for	the
current	key-value	pair	or		null		if	the	current	iteration	doesn't	match	the	desired	search
criteria.	As	soon	as	a	non-null	result	is	returned	further	processing	is	suppressed.	Keep	in
mind	that		ConcurrentHashMap		is	unordered.	The	search	function	should	not	depend	on	the
actual	processing	order	of	the	map.	If	multiple	entries	of	the	map	match	the	given	search
function	the	result	may	be	non-deterministic.

String	result	=	map.search(1,	(key,	value)	->	{

				System.out.println(Thread.currentThread().getName());

				if	("foo".equals(key))	{

								return	value;

				}

				return	null;

});

System.out.println("Result:	"	+	result);

//	ForkJoinPool.commonPool-worker-2

//	main

//	ForkJoinPool.commonPool-worker-3

//	Result:	bar

Modern	Java	-	A	Guide	to	Java	8

73Java	8	Concurrency	Tutorial:	Atomic	Variables	and	ConcurrentMap

Here's	another	example	searching	solely	on	the	values	of	the	map:

String	result	=	map.searchValues(1,	value	->	{

				System.out.println(Thread.currentThread().getName());

				if	(value.length()	>	3)	{

								return	value;

				}

				return	null;

});

System.out.println("Result:	"	+	result);

//	ForkJoinPool.commonPool-worker-2

//	main

//	main

//	ForkJoinPool.commonPool-worker-1

//	Result:	solo

Reduce

The	method		reduce()		already	known	from	Java	8	Streams	accepts	two	lambda
expressions	of	type		BiFunction	.	The	first	function	transforms	each	key-value	pair	into	a
single	value	of	any	type.	The	second	function	combines	all	those	transformed	values	into	a
single	result,	ignoring	any	possible		null		values.

String	result	=	map.reduce(1,

				(key,	value)	->	{

								System.out.println("Transform:	"	+	Thread.currentThread().getName());

								return	key	+	"="	+	value;

				},

				(s1,	s2)	->	{

								System.out.println("Reduce:	"	+	Thread.currentThread().getName());

								return	s1	+	",	"	+	s2;

				});

System.out.println("Result:	"	+	result);

//	Transform:	ForkJoinPool.commonPool-worker-2

//	Transform:	main

//	Transform:	ForkJoinPool.commonPool-worker-3

//	Reduce:	ForkJoinPool.commonPool-worker-3

//	Transform:	main

//	Reduce:	main

//	Reduce:	main

//	Result:	r2=d2,	c3=p0,	han=solo,	foo=bar

I	hope	you've	enjoyed	reading	the	third	part	of	my	tutorial	series	about	Java	8	Concurrency.
The	code	samples	from	this	tutorial	are	hosted	on	GitHub	along	with	many	other	Java	8
code	snippets.	You're	welcome	to	fork	the	repo	and	try	it	by	your	own.

If	you	want	to	support	my	work,	please	share	this	tutorial	with	your	friends.	You	should	also
follow	me	on	Twitter	as	I	constantly	tweet	about	Java	and	programming	related	stuff.

Part	1:	Threads	and	Executors
Part	2:	Synchronization	and	Locks
Part	3:	Atomic	Variables	and	ConcurrentMap

Modern	Java	-	A	Guide	to	Java	8

74Java	8	Concurrency	Tutorial:	Atomic	Variables	and	ConcurrentMap

https://github.com/winterbe/java8-tutorial
https://twitter.com/winterbe_

Java	8	API	by	Example:	Strings,	Numbers,
Math	and	Files
March	25,	2015

Plenty	of	tutorials	and	articles	cover	the	most	important	changes	in	Java	8	like	lambda
expressions	and	functional	streams.	But	furthermore	many	existing	classes	have	been
enhanced	in	the	JDK	8	API	with	useful	features	and	methods.

This	article	covers	some	of	those	smaller	changes	in	the	Java	8	API	-	each	described	with
easily	understood	code	samples.	Let's	take	a	deeper	look	into	Strings,	Numbers,	Math	and
Files.

Slicing	Strings

Two	new	methods	are	available	on	the	String	class:		join		and		chars	.	The	first	method
joins	any	number	of	strings	into	a	single	string	with	the	given	delimiter:

String.join(":",	"foobar",	"foo",	"bar");

//	=>	foobar:foo:bar

The	second	method		chars		creates	a	stream	for	all	characters	of	the	string,	so	you	can	use
stream	operations	upon	those	characters:

"foobar:foo:bar"

				.chars()

				.distinct()

				.mapToObj(c	->	String.valueOf((char)c))

				.sorted()

				.collect(Collectors.joining());

//	=>	:abfor

Not	only	strings	but	also	regex	patterns	now	benefit	from	streams.	Instead	of	splitting	strings
into	streams	for	each	character	we	can	split	strings	for	any	pattern	and	create	a	stream	to
work	upon	as	shown	in	this	example:

Pattern.compile(":")

				.splitAsStream("foobar:foo:bar")

				.filter(s	->	s.contains("bar"))

				.sorted()

				.collect(Collectors.joining(":"));

//	=>	bar:foobar

Additionally	regex	patterns	can	be	converted	into	predicates.	Those	predicates	can	for
example	be	used	to	filter	a	stream	of	strings:

Modern	Java	-	A	Guide	to	Java	8

75Java	8	API	by	Example:	Strings,	Numbers,	Math	and	Files

Pattern	pattern	=	Pattern.compile(".*@gmail\\.com");

Stream.of("bob@gmail.com",	"alice@hotmail.com")

				.filter(pattern.asPredicate())

				.count();

//	=>	1

The	above	pattern	accepts	any	string	which	ends	with		@gmail.com		and	is	then	used	as	a
Java	8		Predicate		to	filter	a	stream	of	email	addresses.

Crunching	Numbers

Java	8	adds	additional	support	for	working	with	unsigned	numbers.	Numbers	in	Java	had
always	been	signed.	Let's	look	at		Integer		for	example:

An		int		represents	a	maximum	of	2³²	binary	digits.	Numbers	in	Java	are	per	default	signed,
so	the	last	binary	digit	represents	the	sign	(0	=	positive,	1	=	negative).	Thus	the	maximum
positive	signed		int		is	2³¹	-	1	starting	with	the	decimal	zero.

You	can	access	this	value	via		Integer.MAX_VALUE	:

System.out.println(Integer.MAX_VALUE);						//	2147483647

System.out.println(Integer.MAX_VALUE	+	1);		//	-2147483648

Java	8	adds	support	for	parsing	unsigned	ints.	Let's	see	how	this	works:

long	maxUnsignedInt	=	(1l	<<	32)	-	1;

String	string	=	String.valueOf(maxUnsignedInt);

int	unsignedInt	=	Integer.parseUnsignedInt(string,	10);

String	string2	=	Integer.toUnsignedString(unsignedInt,	10);

As	you	can	see	it's	now	possible	to	parse	the	maximum	possible	unsigned	number	2³²	-	1
into	an	integer.	And	you	can	also	convert	this	number	back	into	a	string	representing	the
unsigned	number.

This	wasn't	possible	before	with		parseInt		as	this	example	demonstrates:

try	{

				Integer.parseInt(string,	10);

}

catch	(NumberFormatException	e)	{

				System.err.println("could	not	parse	signed	int	of	"	+	maxUnsignedInt);

}

The	number	is	not	parseable	as	a	signed	int	because	it	exceeds	the	maximum	of	2³¹	-	1.

Do	the	Math

Modern	Java	-	A	Guide	to	Java	8

76Java	8	API	by	Example:	Strings,	Numbers,	Math	and	Files

The	utility	class		Math		has	been	enhanced	by	a	couple	of	new	methods	for	handling	number
overflows.	What	does	that	mean?	We've	already	seen	that	all	number	types	have	a
maximum	value.	So	what	happens	when	the	result	of	an	arithmetic	operation	doesn't	fit	into
its	size?

System.out.println(Integer.MAX_VALUE);						//	2147483647

System.out.println(Integer.MAX_VALUE	+	1);		//	-2147483648

As	you	can	see	a	so	called	integer	overflow	happens	which	is	normally	not	the	desired
behavior.

Java	8	adds	support	for	strict	math	to	handle	this	problem.		Math		has	been	extended	by	a
couple	of	methods	who	all	ends	with		exact	,	e.g.		addExact	.	Those	methods	handle
overflows	properly	by	throwing	an		ArithmeticException		when	the	result	of	the	operation
doesn't	fit	into	the	number	type:

try	{

				Math.addExact(Integer.MAX_VALUE,	1);

}

catch	(ArithmeticException	e)	{

				System.err.println(e.getMessage());

				//	=>	integer	overflow

}

The	same	exception	might	be	thrown	when	trying	to	convert	longs	to	int	via		toIntExact	:

try	{

				Math.toIntExact(Long.MAX_VALUE);

}

catch	(ArithmeticException	e)	{

				System.err.println(e.getMessage());

				//	=>	integer	overflow

}

Working	with	Files

The	utility	class		Files		was	first	introduced	in	Java	7	as	part	of	Java	NIO.	The	JDK	8	API
adds	a	couple	of	additional	methods	which	enables	us	to	use	functional	streams	with	files.
Let's	deep-dive	into	a	couple	of	code	samples.

Listing	files

The	method		Files.list		streams	all	paths	for	a	given	directory,	so	we	can	use	stream
operations	like		filter		and		sorted		upon	the	contents	of	the	file	system.

Modern	Java	-	A	Guide	to	Java	8

77Java	8	API	by	Example:	Strings,	Numbers,	Math	and	Files

try	(Stream<Path>	stream	=	Files.list(Paths.get("")))	{

				String	joined	=	stream

								.map(String::valueOf)

								.filter(path	->	!path.startsWith("."))

								.sorted()

								.collect(Collectors.joining(";	"));

				System.out.println("List:	"	+	joined);

}

The	above	example	lists	all	files	for	the	current	working	directory,	then	maps	each	path	to	it's
string	representation.	The	result	is	then	filtered,	sorted	and	finally	joined	into	a	string.	If
you're	not	yet	familiar	with	functional	streams	you	should	read	my	Java	8	Stream	Tutorial.

You	might	have	noticed	that	the	creation	of	the	stream	is	wrapped	into	a	try/with	statement.
Streams	implement		AutoCloseable		and	in	this	case	we	really	have	to	close	the	stream
explicitly	since	it's	backed	by	IO	operations.

>	The	returned	stream	encapsulates	a	DirectoryStream.	If	timely	disposal	of	file	system
resources	is	required,	the	try-with-resources	construct	should	be	used	to	ensure	that	the
stream's	close	method	is	invoked	after	the	stream	operations	are	completed.

Finding	files

The	next	example	demonstrates	how	to	find	files	in	a	directory	or	it's	sub-directories.

Path	start	=	Paths.get("");

int	maxDepth	=	5;

try	(Stream<Path>	stream	=	Files.find(start,	maxDepth,	(path,	attr)	->

								String.valueOf(path).endsWith(".js")))	{

				String	joined	=	stream

								.sorted()

								.map(String::valueOf)

								.collect(Collectors.joining(";	"));

				System.out.println("Found:	"	+	joined);

}

The	method		find		accepts	three	arguments:	The	directory	path		start		is	the	initial	starting
point	and		maxDepth		defines	the	maximum	folder	depth	to	be	searched.	The	third	argument
is	a	matching	predicate	and	defines	the	search	logic.	In	the	above	example	we	search	for	all
JavaScript	files	(filename	ends	with	.js).

We	can	achieve	the	same	behavior	by	utilizing	the	method		Files.walk	.	Instead	of	passing
a	search	predicate	this	method	just	walks	over	any	file.

Modern	Java	-	A	Guide	to	Java	8

78Java	8	API	by	Example:	Strings,	Numbers,	Math	and	Files

Path	start	=	Paths.get("");

int	maxDepth	=	5;

try	(Stream<Path>	stream	=	Files.walk(start,	maxDepth))	{

				String	joined	=	stream

								.map(String::valueOf)

								.filter(path	->	path.endsWith(".js"))

								.sorted()

								.collect(Collectors.joining(";	"));

				System.out.println("walk():	"	+	joined);

}

In	this	example	we	use	the	stream	operation		filter		to	achieve	the	same	behavior	as	in	the
previous	example.

Reading	and	writing	files

Reading	text	files	into	memory	and	writing	strings	into	a	text	file	in	Java	8	is	finally	a	simple
task.	No	messing	around	with	readers	and	writers.	The	method		Files.readAllLines		reads
all	lines	of	a	given	file	into	a	list	of	strings.	You	can	simply	modify	this	list	and	write	the	lines
into	another	file	via		Files.write	:

List<String>	lines	=	Files.readAllLines(Paths.get("res/nashorn1.js"));

lines.add("print('foobar');");

Files.write(Paths.get("res/nashorn1-modified.js"),	lines);

Please	keep	in	mind	that	those	methods	are	not	very	memory-efficient	because	the	whole
file	will	be	read	into	memory.	The	larger	the	file	the	more	heap-size	will	be	used.

As	an	memory-efficient	alternative	you	could	use	the	method		Files.lines	.	Instead	of
reading	all	lines	into	memory	at	once,	this	method	reads	and	streams	each	line	one	by	one
via	functional	streams.

try	(Stream<String>	stream	=	Files.lines(Paths.get("res/nashorn1.js")))	{

				stream

								.filter(line	->	line.contains("print"))

								.map(String::trim)

								.forEach(System.out::println);

}

If	you	need	more	fine-grained	control	you	can	instead	construct	a	new	buffered	reader:

Path	path	=	Paths.get("res/nashorn1.js");

try	(BufferedReader	reader	=	Files.newBufferedReader(path))	{

				System.out.println(reader.readLine());

}

Or	in	case	you	want	to	write	to	a	file	simply	construct	a	buffered	writer	instead:

Modern	Java	-	A	Guide	to	Java	8

79Java	8	API	by	Example:	Strings,	Numbers,	Math	and	Files

Path	path	=	Paths.get("res/output.js");

try	(BufferedWriter	writer	=	Files.newBufferedWriter(path))	{

				writer.write("print('Hello	World');");

}

Buffered	readers	also	have	access	to	functional	streams.	The	method		lines		construct	a
functional	stream	upon	all	lines	denoted	by	the	buffered	reader:

Path	path	=	Paths.get("res/nashorn1.js");

try	(BufferedReader	reader	=	Files.newBufferedReader(path))	{

				long	countPrints	=	reader

								.lines()

								.filter(line	->	line.contains("print"))

								.count();

				System.out.println(countPrints);

}

So	as	you	can	see	Java	8	provides	three	simple	ways	to	read	the	lines	of	a	text	file,	making
text	file	handling	quite	convenient.

Unfortunately	you	have	to	close	functional	file	streams	explicitly	with	try/with	statements
which	makes	the	code	samples	still	kinda	cluttered.	I	would	have	expected	that	functional
streams	auto-close	when	calling	a	terminal	operation	like		count		or		collect		since	you
cannot	call	terminal	operations	twice	on	the	same	stream	anyway.

I	hope	you've	enjoyed	this	article.	All	code	samples	are	hosted	on	GitHub	along	with	plenty
of	other	code	snippets	from	all	the	Java	8	articles	of	my	blog.	If	this	post	was	kinda	useful	to
you	feel	free	to	star	the	repo	and	follow	me	on	Twitter.

Keep	on	coding!

Modern	Java	-	A	Guide	to	Java	8

80Java	8	API	by	Example:	Strings,	Numbers,	Math	and	Files

https://github.com/winterbe/java8-tutorial
https://github.com/winterbe/java8-tutorial
https://twitter.com/winterbe_

Avoiding	Null	Checks	in	Java	8
March	15,	2015

How	to	prevent	the	famous		NullPointerException		in	Java?	This	is	one	of	the	key	questions
every	Java	beginner	will	ask	sooner	or	later.	But	also	intermediate	and	expert	programmers
get	around	this	error	every	now	and	then.	It's	by	far	the	most	prevalent	kind	of	error	in	Java
and	many	other	programming	languages	as	well.

Tony	Hoare,	the	inventor	of	the	null	reference	apologized	in	2009	and	denotes	this	kind	of
errors	as	his	billion-dollar	mistake.

>	I	call	it	my	billion-dollar	mistake.	It	was	the	invention	of	the	null	reference	in	1965.	At	that
time,	I	was	designing	the	first	comprehensive	type	system	for	references	in	an	object
oriented	language	(ALGOL	W).	My	goal	was	to	ensure	that	all	use	of	references	should	be
absolutely	safe,	with	checking	performed	automatically	by	the	compiler.	But	I	couldn't	resist
the	temptation	to	put	in	a	null	reference,	simply	because	it	was	so	easy	to	implement.	This
has	led	to	innumerable	errors,	vulnerabilities,	and	system	crashes,	which	have	probably
caused	a	billion	dollars	of	pain	and	damage	in	the	last	forty	years.

Anyways,	we	have	to	deal	with	it.	So	what	can	we	do	to	prevent	NullPointerExceptions	at
all?	Well,	the	obvious	answer	is	to	add	null	checks	all	around	the	place.	Since	null	checks
are	kinda	cumbersome	and	painful	many	languages	add	special	syntax	for	handling	null
checks	via	null	coalescing	operators	-	also	known	as	elvis	operator	in	languages	like	Groovy
or	Kotlin.

Unfortunately	Java	doesn't	provide	such	a	syntactic	sugar.	But	luckily	things	get	better	in
Java	Version	8.	This	post	describes	a	couple	of	techniques	how	to	prevent	writing	needless
null	checks	by	utilizing	new	features	of	Java	8	like	lambda	expressions.

Improving	Null	Safety	in	Java	8

I've	already	shown	in	another	post	how	we	can	utilize	the		Optional		type	of	Java	8	to
prevent	null	checks.	Here's	the	example	code	from	the	original	post.

Assuming	we	have	a	hierarchical	class	structure	like	this:

Modern	Java	-	A	Guide	to	Java	8

81Avoiding	Null	Checks	in	Java	8

http://en.wikipedia.org/wiki/Tony_Hoare
http://en.wikipedia.org/wiki/Null_coalescing_operator
http://groovy-lang.org/operators.html#_elvis_operator
http://kotlinlang.org/docs/reference/null-safety.html

class	Outer	{

				Nested	nested;

				Nested	getNested()	{

								return	nested;

				}

}

class	Nested	{

				Inner	inner;

				Inner	getInner()	{

								return	inner;

				}

}

class	Inner	{

				String	foo;

				String	getFoo()	{

								return	foo;

				}

}

Resolving	a	deep	nested	path	in	this	structure	can	be	kinda	awkward.	We	have	to	write	a
bunch	of	null	checks	to	make	sure	not	to	raise	a		NullPointerException	:

Outer	outer	=	new	Outer();

if	(outer	!=	null	&&	outer.nested	!=	null	&&	outer.nested.inner	!=	null)	{

				System.out.println(outer.nested.inner.foo);

}

We	can	get	rid	of	all	those	null	checks	by	utilizing	the	Java	8		Optional		type.	The	method
	map		accepts	a	lambda	expression	of	type		Function		and	automatically	wraps	each	function
result	into	an		Optional	.	That	enables	us	to	pipe	multiple		map		operations	in	a	row.	Null
checks	are	automatically	handled	under	the	hood.

Optional.of(new	Outer())

				.map(Outer::getNested)

				.map(Nested::getInner)

				.map(Inner::getFoo)

				.ifPresent(System.out::println);

An	alternative	way	to	achieve	the	same	behavior	is	by	utilizing	a	supplier	function	to	resolve
the	nested	path:

Outer	obj	=	new	Outer();

resolve(()	->	obj.getNested().getInner().getFoo());

				.ifPresent(System.out::println);

Calling		obj.getNested().getInner().getFoo())		might	throw	a		NullPointerException	.	In	this
case	the	exception	will	be	caught	and	the	method	returns		Optional.empty()	.

Modern	Java	-	A	Guide	to	Java	8

82Avoiding	Null	Checks	in	Java	8

public	static	<T>	Optional<T>	resolve(Supplier<T>	resolver)	{

				try	{

								T	result	=	resolver.get();

								return	Optional.ofNullable(result);

				}

				catch	(NullPointerException	e)	{

								return	Optional.empty();

				}

}

Please	keep	in	mind	that	both	solutions	are	probably	not	as	performant	as	traditional	null
checks.	In	most	cases	that	shouldn't	be	much	of	an	issue.

As	usual	the	above	code	samples	are	hosted	on	GitHub.

Happy	coding!

>	UPDATE:	I've	updated	the	code	samples	thanks	to	a	hint	from	Zukhramm	on	Reddit.

Modern	Java	-	A	Guide	to	Java	8

83Avoiding	Null	Checks	in	Java	8

https://github.com/winterbe/java8-tutorial
http://www.reddit.com/user/Zukhramm

Fixing	Java	8	Stream	Gotchas	with	IntelliJ
IDEA
March	05,	2015

Java	8	has	been	released	almost	one	year	ago	in	March	2014.	At	Pondus	we've	managed	to
update	all	of	our	production	servers	to	this	new	version	back	in	May	2014.	Since	then	we've
migrated	major	parts	of	our	code	base	to	lambda	expressions,	streams	and	the	new	Date
API.	We	also	use	Nashorn	to	dynamically	script	parts	of	our	application	which	may	change
during	runtime.

The	most	used	feature	besides	lambdas	is	the	new	Stream	API.	Collection	operations	are	all
around	the	place	in	almost	any	codebase	I've	ever	seen.	And	Streams	are	a	great	way	to
improve	code	readability	of	all	those	collection	crunching.

But	one	thing	about	streams	really	bothers	me:	Streams	only	provide	a	few	terminal
operations	like		reduce		and		findFirst		directly	while	others	are	only	accessible	via
	collect	.	There's	a	utility	class	Collectors,	providing	a	bunch	of	convenient	collectors	like
	toList	,		toSet	,		joining		and		groupingBy	.

For	example	this	code	filters	over	a	collection	of	strings	and	creates	a	new	list:

stringCollection

				.stream()

				.filter(e	->	e.startsWith("a"))

				.collect(Collectors.toList());

After	migrating	a	project	with	300k	lines	of	code	to	streams	I	can	say	that		toList	,		toSet	
and		groupingBy		are	by	far	the	most	used	terminal	operations	in	our	project.	So	I	really
cannot	understand	the	design	decision	not	to	integrate	those	methods	directly	into	the
	Stream		interface	so	you	could	just	write:

stringCollection

				.stream()

				.filter(e	->	e.startsWith("a"))

				.toList();

This	might	look	like	a	minor	imperfection	at	first	but	it	gets	really	annoying	if	you	have	to	use
this	kind	of	stuff	over	and	over	again.

There's	a	method		toArray()		but	no		toList()	.	So	I	really	hope	some	of	the	more
convenient	collectors	will	make	it's	way	into	the		Stream		interface	in	Java	9.	Brian?	�_�

Modern	Java	-	A	Guide	to	Java	8

84Fixing	Java	8	Stream	Gotchas	with	IntelliJ	IDEA

http://www.pondus.de
https://twitter.com/briangoetz

>	As	a	side	note:	Stream.js	is	a	JavaScript	port	of	the	Java	8	Streams	API	for	the	browser
and	addresses	the	described	issue	nicely.	All	important	terminal	operations	are	directly
accessible	on	the	stream	itself	for	convenience.	See	the	API	doc	for	details.

Anyways.	IntelliJ	IDEA	claims	to	be	the	most	intelligent	Java	IDE.	So	let's	see	how	we	can
utilize	IDEA	to	solve	this	problem	for	us.

IntelliJ	IDEA	to	the	rescue

IntelliJ	IDEA	comes	with	a	handy	feature	called	Live	Templates.	If	you	don't	already	know
what	it	is:	Live	Templates	are	shortcuts	for	commonly	used	code	snippets.	E.g.	you	type
	sout		+	tabulator	and	IDEA	inserts	the	code	snippet		System.out.println()	.	Read	here	to
learn	more	about	it.

How	does	Live	Templates	help	with	the	problem	described	above?	Actually	we	can	simply
create	our	own	Live	Templates	for	all	the	commonly	used	default	Stream	collectors.	E.g.	we
can	create	a	Live	Template	with	the	abbreviation		.toList		to	insert	the	appropriate	collector
	.collect(Collectors.toList())		automatically.

This	is	how	it	looks	like	in	action:

Set	up	your	own	Live	Templates

Let's	see	how	we	can	set	this	up.	First	go	to	Settings	and	choose	Live	Templates	in	the
menu	to	the	left.	You	can	also	use	the	handy	filter	input	at	the	top	left	of	the	dialog.

Modern	Java	-	A	Guide	to	Java	8

85Fixing	Java	8	Stream	Gotchas	with	IntelliJ	IDEA

https://github.com/winterbe/streamjs
https://github.com/winterbe/streamjs/blob/master/APIDOC.md#groupingbykeymapper
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/help/live-templates.html

Next	we	can	create	a	new	group	called		Stream		via	the		+		icon	on	the	right.	Next	we	add	all
of	our	stream-related	Live	Templates	to	this	group.	I'm	using	the	default	collectors		toList	,
	toSet	,		groupingBy		and		join		quite	commonly,	so	I	create	a	new	Live	Template	for	each	of
those	methods.

This	part	is	important:	After	adding	a	new	Live	Template	you	have	to	specify	the	applicable
context	at	the	bottom	of	the	dialog.	You	have	to	choose	Java	→	Other.	Afterwards	you
define	the	abbreviation,	a	description	and	the	actual	template	code.

//	Abbreviation:	.toList

.collect(Collectors.toList())

//	Abbreviation:	.toSet

.collect(Collectors.toSet())

//	Abbreviation:	.join

.collect(Collectors.joining("END"))

//	Abbreviation:	.groupBy

.collect(Collectors.groupingBy(e	->	END))

The	special	variable		END		determines	the	cursors	position	after	using	the	template,	so	you
can	directly	start	typing	at	this	position,	e.g.	to	define	the	joining	delimiter.

Modern	Java	-	A	Guide	to	Java	8

86Fixing	Java	8	Stream	Gotchas	with	IntelliJ	IDEA

>	Hint:	You	should	enable	the	option	"Add	unambiguous	imports	on	the	fly"	so	IDEA
automatically	adds	an	import	statement	to		java.util.stream.Collectors	.	The	option	is
located	in:	Editor	→	General	→	Auto	Import

Let's	see	those	two	templates	in	action:

Join

GroupBy

Live	Templates	in	IntelliJ	IDEA	are	an	extremely	versatile	and	powerful	tool.	You	can	greatly
increase	your	coding	productivity	with	it.	Do	you	know	other	examples	where	Live	Templates
can	save	your	live?	Let	me	know!

Still	not	satisfied?	Learn	everything	you	ever	wanted	to	know	about	Java	8	Streams	in	my
Streams	Tutorial.

Happy	coding.

Modern	Java	-	A	Guide	to	Java	8

87Fixing	Java	8	Stream	Gotchas	with	IntelliJ	IDEA

Using	Backbone.js	with	Nashorn
April	07,	2014

This	example	demonstrates	how	to	use	Backbone.js	models	with	the	Java	8	Nashorn
Javascript	Engine.	First	released	in	March	2014	as	part	of	Java	SE	8,	Nashorn	extends
Javas	capabilities	by	running	javascript	code	natively	on	the	JVM.	For	java	web	developers
Nashorn	might	be	especially	useful	for	re-using	existing	client-side	code	on	the	java	server.
Traditionally	Node.js	was	in	a	clear	advantage,	but	Nashorns	possibilities	might	close	the
gap	to	the	JVM.

When	working	with	modern	javascript	MVC	frameworks	like	Backbone.js	for	HTML5	front-
ends,	more	and	more	code	moves	from	the	server	back-end	to	the	web	front-end.	This
approach	can	greatly	increase	the	user	experience	because	you	safe	a	lot	of	server-
roundtrips	when	using	business	logic	from	your	views.

Backbone	enables	you	to	define	model	classes	which	can	be	bound	to	views	(e.g.	HTML
forms).	Backbone	keeps	track	of	updating	the	model	when	the	user	interacts	with	the	UI	and
vice	versa.	It	also	aids	you	by	synchronizing	your	model	with	the	server,	e.g.	by	calling	the
appropriate	method	of	your	REST	handler	on	the	server	side.	So	you	end	up	implementing
business	logic	in	your	front-end	code,	leaving	your	server	model	responsible	for	persisting
data.

Reusing	backbone	models	on	the	server	side	is	quite	easy	with	Nashorn,	as	the	following
example	will	demonstrate.	Before	we	start	make	sure	you're	familiar	with	writing	javascript
for	the	Nashorn	Engine	by	reading	my	Nashorn	Tutorial.

The	Java	Model

First,	we	define	a	domain	class		Product		in	java	code.	This	class	might	be	used	for	CRUD
database	operations	(saving	to	and	loading	from	a	datasource).	Keep	in	mind	that	this	class
is	a	dumb	Java	Bean	without	any	business	logic	applied,	because	we	want	our	front-end	to
be	capable	of	executing	the	business	logic	right	from	the	UI.

class	Product	{

				String	name;

				double	price;

				int	stock;

				double	valueOfGoods;

}

The	Backbone	Model

Modern	Java	-	A	Guide	to	Java	8

88Using	Backbone.js	with	Nashorn

http://nodejs.org/
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://backbonejs.org/

Now	we	define	the	backbone	model	as	the	counter-part	of	our	java	bean.	The	backbone
model		Product		uses	the	same	data-structure	as	the	java	bean,	since	this	is	the	data	we
might	want	to	persist	on	the	java	server.

The	backbone	model	also	implements	the	business	logic:	The	method		getValueOfGoods	
calculates	the	value	of	all	products	by	multiplying		stock		with		price	.	Each	time		stock		or
	price		changes	the	property		valueOfGoods		must	be	re-calculated.

var	Product	=	Backbone.Model.extend({

				defaults:	{

								name:	'',

								stock:	0,

								price:	0.0,

								valueOfGoods:	0.0

				},

				initialize:	function()	{

								this.on('change:stock	change:price',	function()	{

												var	stock	=	this.get('stock');

												var	price	=	this.get('price');

												var	valueOfGoods	=	this.getValueOfGoods(stock,	price);

												this.set('valueOfGoods',	valueOfGoods);

								});

				},

				getValueOfGoods:	function(stock,	price)	{

								return	stock	*	price;

				}

});

Since	the	backbone	model	doesn't	use	any	Nashorn	language	extensions,	we	can	safely
use	the	same	code	both	on	the	client	(Browser)	and	on	the	server	(Java)	side.

Keep	in	mind	that	I	deliberately	chose	a	really	simple	function	for	demonstrating	purposes
only.	Real	business	logic	should	be	more	complex.

Putting	both	together

The	next	goal	is	to	re-use	the	backbone	model	from	Nashorn,	e.g.	on	the	java	server.	We
want	to	achieve	the	following	behavior:	bind	all	properties	from	the	java	bean	to	the
backbone	model;	calculate	the	property		valueOfGoods	;	pass	the	result	back	to	java.

First,	we	create	a	new	script	to	be	evaluated	solely	by	Nashorn,	so	we	can	safely	use
Nashorn	extensions	here:

Modern	Java	-	A	Guide	to	Java	8

89Using	Backbone.js	with	Nashorn

load('http://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.6.0/underscore-min.js');

load('http://cdnjs.cloudflare.com/ajax/libs/backbone.js/1.1.2/backbone-min.js');

load('product-backbone-model.js');

var	calculate	=	function(javaProduct)	{

				var	model	=	new	Product();

				model.set('name',	javaProduct.name);

				model.set('price',	javaProduct.price);

				model.set('stock',	javaProduct.stock);

				return	model.attributes;

};

The	script	first	loads	the	relevant	external	scripts	Underscore	and	Backbone	(Underscore	is
a	pre-requirement	for	Backbone)	and	our		Product		backbone	model	as	defined	above.

The	function		calculate		accepts	a		Product		java	bean,	binds	all	properties	to	a	newly
created	backbone		Product		and	returns	all	attributes	of	the	model	back	to	the	caller.	By
setting	the	properties		stock		and		price		on	the	backbone	model,	property		valueOfGoods	
will	automatically	be	calculated	due	to	the	event	handler	registered	in	the	models
	initialize		constructor	function.

Finally,	we	call	the	function		calculate		from	java:

Product	product	=	new	Product();

product.setName("Rubber");

product.setPrice(1.99);

product.setStock(1337);

ScriptObjectMirror	result	=	(ScriptObjectMirror)

				invocable.invokeFunction("calculate",	product);

System.out.println(result.get("name")	+	":	"	+	result.get("valueOfGoods"));

//	Rubber:	2660.63

We	create	a	new		Product		java	bean	and	pass	it	to	the	javascript	function.	As	a	result	the
method		getValueOfGoods		will	be	triggered,	so	we	can	read	the	property		valueOfGoods		from
the	returning	object.

Conclusion

Reusing	existing	javascript	libraries	on	the	Nashorn	Engine	is	quite	easy.	Backbone	is	great
for	building	complex	HTML5	front-ends.	In	my	opinion	Nashorn	and	the	JVM	now	is	a	great
alternative	to	Node.js,	since	you	can	make	use	of	the	whole	Java	eco-system	in	your
Nashorn	codebase,	such	as	the	whole	JDK	API	and	all	available	libraries	and	tools.	Keep	in
mind	that	you're	not	tight	to	the	Java	Language	when	working	with	Nashorn	-	think	Scala,
Groovy,	Clojure	or	even	pure	Javascript	via		jjs	.

The	runnable	source	code	from	this	article	is	hosted	on	GitHub	(see	this	file).	Feel	free	to
fork	the	repository	or	send	me	your	feedback	via	Twitter.

Modern	Java	-	A	Guide	to	Java	8

90Using	Backbone.js	with	Nashorn

http://underscorejs.org/
http://backbonejs.org/
https://github.com/winterbe/java8-tutorial
https://github.com/winterbe/java8-tutorial/blob/master/res/nashorn6.js
https://github.com/winterbe/java8-tutorial/fork
https://twitter.com/winterbe_

	Introduction
	Modern Java - A Guide to Java 8
	Java 8 Stream Tutorial
	Java 8 Nashorn Tutorial
	Java 8 Concurrency Tutorial: Threads and Executors
	Java 8 Concurrency Tutorial: Synchronization and Locks
	Java 8 Concurrency Tutorial: Atomic Variables and ConcurrentMap
	Java 8 API by Example: Strings, Numbers, Math and Files
	Avoiding Null Checks in Java 8
	Fixing Java 8 Stream Gotchas with IntelliJ IDEA
	Using Backbone.js with Nashorn

