

MongoDB Administrator's Guide

Over 100 practical recipes to efficiently maintain and
administer your MongoDB solution

Cyrus Dasadia

BIRMINGHAM - MUMBAI

MongoDB Administrator's Guide

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2017

Production reference: 1241017

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78712-648-0

www.packtpub.com

http://www.packtpub.com

Credits

Author
Cyrus Dasadia

Copy Editor
Safis Editing

Reviewers
Nilap Shah
Ruben Oliva Ramos

Project Coordinator
Nidhi Joshi

Commissioning Editor
Amey Varangaonkar

Proofreader
Safis Editing

Acquisition Editor
Viraj Madhav

Indexer
Aishwarya Gangawane

Content Development Editor
Cheryl Dsa

Graphics
Tania Dutta

Technical Editor
Dinesh Pawar

Production Coordinator
Shantanu Zagade

About the Author
Cyrus Dasadia has enjoyed tinkering with open source projects since 1996. He has been
working as a Linux system administrator and part-time programmer for over a decade. He
works at InMobi, where he loves designing tools and platforms. His love for MongoDB
blossomed in 2013, when he was amazed by its ease of use and stability. Since then, almost
all of his projects have been written with MongoDB as the primary backend. Cyrus is also
the creator of an open source alert management system called CitoEngine. His spare time is
devoted to trying to reverse-engineer software, playing computer games, or increasing his
silliness quotient by watching reruns of Monty Python.

About the Reviewers
Nilap Shah is a lead software consultant with experience across various fields and
technologies. He is expert in .NET, Uipath (Robotics) and MongoDB. He is certified
MongoDB developer and DBA. He is technical writer as well as technical speaker. He is also
providing MongoDB corporate training. Currently, he is working as lead MongoDB
consultant and providing solutions with MongoDB technology (DBA and developer
projects). His LinkedIn profile can be found at https:/ /www. linkedin. com/ in/nilap- shah-
8b6780a/ and can be reachable +91-9537047334 on WhatsApp.

https://www.linkedin.com/in/nilap-shah-8b6780a/
https://www.linkedin.com/in/nilap-shah-8b6780a/
https://www.linkedin.com/in/nilap-shah-8b6780a/
https://www.linkedin.com/in/nilap-shah-8b6780a/
https://www.linkedin.com/in/nilap-shah-8b6780a/
https://www.linkedin.com/in/nilap-shah-8b6780a/
https://www.linkedin.com/in/nilap-shah-8b6780a/
https://www.linkedin.com/in/nilap-shah-8b6780a/
https://www.linkedin.com/in/nilap-shah-8b6780a/
https://www.linkedin.com/in/nilap-shah-8b6780a/
https://www.linkedin.com/in/nilap-shah-8b6780a/
https://www.linkedin.com/in/nilap-shah-8b6780a/
https://www.linkedin.com/in/nilap-shah-8b6780a/
https://www.linkedin.com/in/nilap-shah-8b6780a/
https://www.linkedin.com/in/nilap-shah-8b6780a/
https://www.linkedin.com/in/nilap-shah-8b6780a/
https://www.linkedin.com/in/nilap-shah-8b6780a/

Ruben Oliva Ramos is a computer systems engineer from Tecnologico de Leon Institute,
with a master's degree in computer and electronic systems engineering, teleinformatics, and
networking specialization from the University of Salle Bajio in Leon, Guanajuato, Mexico.
He has more than 5 years of experience in developing web applications to control and
monitor devices connected with Arduino and Raspberry Pi using web frameworks and
cloud services to build the Internet of Things applications.

He is a mechatronics teacher at the University of Salle Bajio and teaches students of the
master's degree in design and engineering of mechatronics systems. Ruben also works at
Centro de Bachillerato Tecnologico Industrial 225 in Leon, Guanajuato, Mexico, teaching
subjects such as electronics, robotics and control, automation, and microcontrollers at
Mechatronics Technician Career; he is a consultant and developer for projects in areas such
as monitoring systems and datalogger data using technologies (such as Android, iOS,
Windows Phone, HTML5, PHP, CSS, Ajax, JavaScript, Angular, and ASP.NET), databases
(such as SQlite, MongoDB, and MySQL), web servers (such as Node.js and IIS), hardware
programming (such as Arduino, Raspberry pi, Ethernet Shield, GPS, and GSM/GPRS,
ESP8266), and control and monitor systems for data acquisition and programming.

He has authored the book Internet of Things Programming with JavaScript and Advanced
Analytics with R and Tableau by Packt Publishing. He is also involved in monitoring,
controlling, and the acquisition of data with Arduino and Visual Basic .NET for Alfaomega.

I would like to thank my savior and lord, Jesus Christ, for giving me the strength and
courage to pursue this project; my dearest wife, Mayte; our two lovely sons, Ruben and
Dario; my dear father, Ruben; my dearest mom, Rosalia; my brother, Juan Tomas; and my
sister, Rosalia, whom I love, for all their support while reviewing this book, for allowing me
to pursue my dream, and tolerating not being with them after my busy day job.
I'm very grateful to Pack Publishing for giving the opportunity to collaborate as an author
and reviewer, to belong to this honest and professional team.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub. com/ mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon. com/ dp/ 178712648X.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/178712648X
https://www.amazon.com/dp/178712648X
https://www.amazon.com/dp/178712648X
https://www.amazon.com/dp/178712648X
https://www.amazon.com/dp/178712648X
https://www.amazon.com/dp/178712648X
https://www.amazon.com/dp/178712648X
https://www.amazon.com/dp/178712648X
https://www.amazon.com/dp/178712648X
https://www.amazon.com/dp/178712648X
https://www.amazon.com/dp/178712648X
https://www.amazon.com/dp/178712648X
https://www.amazon.com/dp/178712648X

Table of Contents
Preface 1

Chapter 1: Installation and Configuration 7

Introduction 7
Installing and starting MongoDB on Linux 8

Getting ready 8
How to do it… 8
How it works… 9
There's more… 10

Installing and starting MongoDB on macOS 10
Getting ready 10
How to do it... 10
How it works… 12

Binding MongoDB process to a specific network interface and port 12
Getting ready 12
How to do it... 13
How it works... 14

Enabling SSL for MongodDB 14
Getting ready 14
How to do it.. 14
How it works... 15
There's more… 16

Choosing the right MongoDB storage engine 16
WiredTiger 16
MMAPv1 17
The verdict 17

Changing storage engine 18
Getting ready 18
How to do it... 18
How it works... 20

Separating directories per database 20
Getting ready 20
How to do it... 21
How it works... 22

Customizing the MongoDB configuration file 23

[ii]

Getting ready 24
How to do it.. 24
How it works... 24
There's more... 25

Running MongoDB as a Docker container 25
Getting ready 25
How to do it... 25
How it works... 26
There's more.. 27

Chapter 2: Understanding and Managing Indexes 29

Introduction 29
Creating an index 29

Getting ready 30
How it works... 34
There's more... 35

Managing existing indexes 35
Getting ready 36
How to do it... 36
How it works... 39

How to use compound indexes 40
Getting ready 40
How to do it... 40
How it works… 44
There's more... 44

Creating background indexes 45
Getting ready 45
How to do it... 45
How it works... 48

Creating TTL-based indexes 49
Getting ready 49
How to do it... 49
How it works... 50
There's more... 50

Creating a sparse index 51
Getting ready 51
How to do it... 51
How it works... 54

Creating a partial index 54
Getting ready 54

[iii]

How to do it... 54
How it works... 58

Creating a unique index 59
Getting ready 59
How to do it... 59
How it works... 61

Chapter 3: Performance Tuning 62

Introduction 62
Configuring disks for better I/O 62

Reading and writing from disks 63
Few considerations while selecting storage devices 65

Measuring disk I/O performance with mongoperf 66
Getting ready 66
How to do it... 66
How it works... 69

Finding slow running queries and operations 71
Getting ready 71
How to do it... 71
How it works... 74
There's more... 75

Storage considerations when using Amazon EC2 76
Figuring out the size of a working set 79

There's more... 81

Chapter 4: High Availability with Replication 82

Introduction 82
Initializing a new replica set 83

Getting ready 83
How to do it... 84
How it works... 87

Adding a node to the replica set 89
Getting ready 89
How to do it... 89
How it works... 91

Removing a node from the replica set 92
Getting ready 92
How to do it... 92
How it works... 95

Working with an arbiter 96

[iv]

Getting ready 97
How to do it... 97
How it works... 99

Switching between primary and secondary nodes 100
Getting ready 100
How to do it... 100
How it works... 101

Changing replica set configuration 102
Getting ready 102
How to do it... 102
How it works.. 103

Changing priority to replica set nodes 104
Getting ready 104
How to do it... 104
How it works... 105
There's more... 105

Chapter 5: High Scalability with Sharding 106

Understanding sharding and its components 106
Components of MongoDB sharding infrastructure 107

Config server 107
The mongos query router 107
The shard server 108

Choosing the shard key 108
Setting up and configuring a sharded cluster 109

Getting ready 109
How to do it... 109
How it works... 113

Managing chunks 115
Getting ready 116
How to do it... 116
How it works... 118

Moving non-sharded collection data from one shard to another 120
Getting ready 120
How to do it... 120
How it works... 122

Removing a shard from the cluster 122
Getting ready 122
How to do it... 123
How it works... 125

[v]

Understanding tag aware sharding – zones 126
Getting ready 126
How to do it... 127
How it works... 128
See also 129

Chapter 6: Managing MongoDB Backups 130

Introduction 130
Taking backup using mongodump tool 131

Getting ready 131
How to do it... 131
How it works... 133
There's more... 134

Taking backup of a specific mongodb database or collection 134
Getting ready 134
How to do it... 134
How it works... 136

Taking backup of a small subset of documents in a collection 136
Getting ready 136
How to do it... 137
How it works... 137

Using bsondump tool to view mongodump output in human readable
form 137

Getting ready 138
How to do it... 138
How it works... 139

Creating a point in time backup of replica sets 140
Getting ready 140
How to do it... 140
How it works... 141

Using the mongoexport tool 142
Getting ready 142
How to do it... 142
How it works... 143

Creating a backup of a sharded cluster 143
Getting ready 143
How to do it... 144
How it works... 144

Chapter 7: Restoring MongoDB from Backups 145

[vi]

Introduction 145
Restoring standalone MongoDB using the mongorestore tool 145

Getting ready 146
How to do it... 146
How it works... 147

Restoring specific database or specific collection 147
Getting ready 148
How to do it... 148
How it works... 150

Restoring data from one collection or database to another 151
Getting ready 151
How to do it... 151
How it works... 153

Creating a new MongoDB replica set node using backups 154
Getting ready 154
How to do it... 154
How it works... 156

Restoring a MongoDB sharded cluster from backup 157
Getting ready 157
How to do it... 157
How it works... 158

Chapter 8: Monitoring MongoDB 159

Introduction 159
Monitoring MongoDB performance with mongostat 160

Getting ready 160
How to do it... 160
How it works... 162
See also 163

Checking replication lag of nodes in a replica set 163
Getting ready 163
How to do it... 164
How it works... 165

Monitoring and killing long running operations on MongoDB 166
Getting ready 166
How to do it... 167
How it works... 169
See also 169

Checking disk I/O usage 169
Getting ready 169

[vii]

How to do it... 170
How it works... 171

Collecting MongoDB metrics using Diamond and Graphite 172
Getting ready 172
How to do it... 172
How it works... 174
See also 174

Chapter 9: Authentication and Security in MongoDB 175

Introduction 175
Setting up authentication in MongoDB and creating a superuser
account 176

Getting ready 176
How to do it... 176
How it works... 177

Creating normal users and assigning built-in roles 178
Getting ready 178
How to do it... 179
How it works... 180
See also... 182

Creating and assigning custom roles 182
Getting ready 182
How to do it... 182
How it works... 186

Restoring access if you are locked out 187
Getting ready 187
How to do it... 187
How it works... 188

Using key files to authenticate servers in a replica set 189
Getting ready 189
How to do it... 189
How it works... 191
There's more... 192

Chapter 10: Deploying MongoDB in Production 193

Introduction 193
Configuring MongoDB for a production deployment 193

Getting ready 194
How to do it... 194

Upgrading production MongoDB to a newer version 196

[viii]

Getting ready 196
How to do it... 196
There's more... 197

Setting up and configuring TLS (SSL) 197
Getting ready 197
How to do it... 198
How it works... 198
There's more... 200

Restricting network access using firewalls 200
Getting ready 200
How to do it... 200
How it works... 201
See also 202

Index 203

Preface
MongoDB is an extremely versatile NoSQL database that offers performance, scalability,
and reliability of data. It has slowly become one of the leading NoSQL database systems
used for storing extremely large datasets. In addition to this, the fact that it is open source
makes it the perfect candidate for any project. From prototyping a minimal viable product
to storing millions of complex documents, MongoDB is clearly emerging as the go-to
database system.

This book aims to help the reader in operating and managing MongoDB systems. The
contents of this book are divided into sections covering all the core aspects of administering
MongoDB systems. The primary goal of this book is not to duplicate the MongoDB
documentation, but to gently nudge the reader towards topics that are often overlooked
when designing MongoDB systems.

What this book covers
Chapter 1, Installation and Configuration, covers the basic details of how to install MongoDB,
either from the bundled binaries or through the operating system's package managers. It
also covers configuration details, as well as how to install MongoDB in a Docker container.

Chapter 2, Understanding and Managing Indexes, gives a quick overview of the benefits of
indexes, their various types, and how to optimize database responses by choosing the
correct indexes.

Chapter 3, Performance Tuning, covers various topics that can help optimize the
infrastructure to deliver optimal database performance. We discuss disk I/O optimization,
measuring slow queries, storage considerations in AWS, and managing working sets.

Chapter 4, High Availability with Replication, shows how to achieve high availability using
MongoDB replica sets. Topics such as the configuration of replica sets, managing node
subscriptions, arbiters, and so on are covered.

Chapter 5, High Scalability with Sharding, covers MongoDB's high scalability aspects using
shards. The topics covered in this section include setting up a sharded cluster, managing
chunks, managing non-sharded data, adding and removing nodes from the cluster, and
creating a geographically distributed sharded cluster.

Preface

[2]

Chapter 6, Managing MongoDB Backups, helps the reader understand how to select an
optimum backup strategy for their MongoDB setup. It covers how to take backups of
standalone systems, replica sets, analyzing backup files, and so on.

Chapter 7, Restoring MongoDB from Backups, shows various techniques for restoring
systems from previously generated backups. Topics covered include restoring standalone
systems, specific databases, the backup of one database to another database, replica sets,
and sharded clusters.

Chapter 8, Monitoring MongoDB, illustrates various aspects of monitoring the health of a
MongoDB setup. This chapter includes recipes for using mongostat, monitoring replica set
nodes, monitoring long-running operations, checking disk I/O, fetching database metrics,
and storing them in a time-series database such as Graphite.

Chapter 9, Authentication and Security in MongoDB, looks into various aspects involved in
securing a MongoDB infrastructure. Topics covered in this chapter include creating and
managing users, implementing role-based access models, implementing SSL/TLS-based
transport mechanisms, and so on.

Chapter 10, Deploying MongoDB in Production, provides insights into deploying MongoDB
in a production environment, upgrading servers to newer versions, using configuration
management tools to deploy MongoDB, and using Docker Swarm to set up MongoDB in
containers.

What you need for this book
For the most part, this book requires only MongoDB 3.4 or higher. Although most of the
operating system commands used throughout the book are for Linux, the semantics is
generic and can be replayed on any operating system. It may be useful to have some
knowledge of how MongoDB works, but for the most part, all chapters are verbose enough
for beginners as well.

Preface

[3]

Who this book is for
This book is for database administrators or site reliability engineers who are keen on
ensuring the stability and scalability of their MongoDB systems. Database administrators
who have a basic understanding of the features of MongoDB and want to professionally
configure, deploy, and administer a MongoDB database will find this book essential. If you
are a MongoDB developer and want to get into MongoDB administration, this book will
also help you.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it…, How it works…, There's more…, and See also). To give clear instructions on how to
complete a recipe, we use these sections as follows.

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Preface

[4]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "You can
view the available command line parameters by using --help or -h."

Any command-line input or output is written as follows:

ln -s data/mongodb-linux-x86_64-ubuntu1404-3.4.4/ data/mongodb

New terms and important words are shown in bold.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

http://www.packtpub.com/authors

Preface

[5]

Downloading the example code
You can download the example code files for this book from your account at http:/ /www.
packtpub.com. If you purchased this book elsewhere, you can visit http:/ /www. packtpub.
com/support and register to have the files emailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
web page at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/MongoDB- Administrators- Guide. We also have other code bundles from
our rich catalog of books and videos available at https:/ /github. com/ PacktPublishing/ .
Check them out!

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/MongoDB-Administrators-Guide
https://github.com/PacktPublishing/MongoDB-Administrators-Guide
https://github.com/PacktPublishing/MongoDB-Administrators-Guide
https://github.com/PacktPublishing/MongoDB-Administrators-Guide
https://github.com/PacktPublishing/MongoDB-Administrators-Guide
https://github.com/PacktPublishing/MongoDB-Administrators-Guide
https://github.com/PacktPublishing/MongoDB-Administrators-Guide
https://github.com/PacktPublishing/MongoDB-Administrators-Guide
https://github.com/PacktPublishing/MongoDB-Administrators-Guide
https://github.com/PacktPublishing/MongoDB-Administrators-Guide
https://github.com/PacktPublishing/MongoDB-Administrators-Guide
https://github.com/PacktPublishing/MongoDB-Administrators-Guide
https://github.com/PacktPublishing/MongoDB-Administrators-Guide
https://github.com/PacktPublishing/MongoDB-Administrators-Guide
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ /www. packtpub. com/ submit- errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https:/ /www. packtpub. com/
books/content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Installation and Configuration

In this chapter, we will cover the following recipes:

Installing and starting MongoDB on Linux
Installing and starting MongoDB on macOS
Binding MongoDB process to a specific network interface and port
Enabling SSL for MongoDB
Choosing the right MongoDB storage engine
Changing storage engine
Separating directories per database
Customizing the MongoDB configuration file
Running MongoDB as a Docker container

Introduction
In this chapter, we will look at how to install a standalone MongoDB server. We will also
look at how to perform some useful customization to the default configuration of a
MongoDB server. Lastly, we will run a MongoDB server inside a Docker container.

MongoDB 3.4 was the latest stable release available while writing this
book. All recipes in this and the subsequent chapters assume you are
using MongoDB 3.4 or higher.

Installation and Configuration

[8]

Installing and starting MongoDB on Linux

Getting ready
You will need a machine running Ubuntu 14.04 or higher, although in theory any Red Hat
or Debian-based Linux distribution should be fine. You will also need to download the
latest stable binary tarball from https:/ /www. mongodb. com/download- center

How to do it…
Create a directory /data and untar your downloaded file into this directory so1.
that you now have a /data/mongodb-linux-x86_64-ubuntu1404-3.4.4
directory. All of MongoDB's core binaries are available in the /data/mongodb-
linux-x86_64-ubuntu1404-3.4.4/bin directory.
Create a symbolic link to the versioned file directory for a simpler naming2.
convention and also allowing us to use a generic directory name (for example, in
scripts):

ln -s /data/mongodb-linux-x86_64-ubuntu1404-3.4.4/ /data/mongodb

Create a directory for the database:3.

mkdir /data/db

Start the MongoDB server:4.

/data/mongodb/bin/mongod --dbpath /data/db

You should see output like this:5.

2017-05-14T10:07:15.247+0000 I CONTROL [initandlisten] MongoDB
starting : pid=3298 port=27017 dbpath=/data/db 64-bit host=vagrant-
ubuntu-trusty-64
 2017-05-14T10:07:15.247+0000 I CONTROL [initandlisten] db version
v3.4.4
 2017-05-14T10:07:15.248+0000 I CONTROL [initandlisten] git
version: 888390515874a9debd1b6c5d36559ca86b44babd
 2017-05-14T10:07:15.248+0000 I CONTROL [initandlisten] OpenSSL
version: OpenSSL 1.0.1f 6 Jan 2014
 2017-05-14T10:07:15.248+0000 I CONTROL [initandlisten] allocator:
tcmalloc

https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center

Installation and Configuration

[9]

 2017-05-14T10:07:15.249+0000 I CONTROL [initandlisten] modules:
none
 2017-05-14T10:07:15.249+0000 I CONTROL [initandlisten] build
environment:
 2017-05-14T10:07:15.249+0000 I CONTROL [initandlisten]
distmod: ubuntu1404
 2017-05-14T10:07:15.249+0000 I CONTROL [initandlisten]
distarch: x86_64
 2017-05-14T10:07:15.250+0000 I CONTROL [initandlisten]
target_arch: x86_64
 2017-05-14T10:07:15.250+0000 I CONTROL [initandlisten] options: {
storage: { dbPath: "/data/db" } }
 < -- snip -- >
 2017-05-14T10:07:15.313+0000 I COMMAND [initandlisten] setting
featureCompatibilityVersion to 3.4
 2017-05-14T10:07:15.313+0000 I NETWORK [thread1] waiting for
connections on port 27017

You can stop the server by pressing Ctrl + C.6.
Additionally, for convenience, we can edit the system's PATH variable to include7.
the mongodb binaries directory. This allows us to invoke the mongodb binaries
without having to type the entire path. For example, to execute the mongo client,
instead of having to type /data/mongodb/bin/mongo every time, we can
simply type mongo. This can be done by appending your ~/.bashrc or
~/.zshrc files for bash and zsh respectively, with the following lines:

PATH=/data/mongodb/bin:${PATH}
export PATH

How it works…
We downloaded a precompiled binary package and started the mongod server using the
most basic command line parameter --dbpath so that it uses a customized
directory, /data/db for storing databases. As you might have noticed, the MongoDB server
by default, starts listening on TCP port 27017 on all interfaces.

Installation and Configuration

[10]

There's more…
The mongod binary has a lot of interesting options. You can view the available command
line parameters by using --help or -h. Alternatively, you can also find a detailed reference
of available options, at https:/ / docs. mongodb. com/ master/ reference/ program/ mongod/ .

Just like most mature community projects, MongoDB also provides packages for formats
supported by Debian/Ubuntu and Red Hat/CentOS package managers. There is extensive
documentation on how to configure your operating system's package manager to
automatically download the MongoDB package and install it. For more information on how
to do so, see: https:/ / docs. mongodb. com/ master/ administration/ install- on- linux/ .

Installing and starting MongoDB on macOS
Similar to the previous recipe, Installing and starting MongoDB on Linux, we will see how to
set up MongoDB on a macOS operating system.

Getting ready
MongoDB supports macOS 10.7 (Lion) or higher, so ensure that your operating system is
upgraded. Download the binary files the latest stable binary tarball from https:/ /www.
mongodb.com/download- center.

How to do it...
In this recipe, we will be installing MongoDB in the user's home directory. Create1.
a directory ~/data/ and extract the TAR file in this directory:

tar xvf mongodb-osx-x86_64-3.4.4.tgz

All of MongoDB's core binaries are available in the ~/data/mongodb-osx-
x86_64-3.4.4/bin directory.

https://docs.mongodb.com/master/reference/program/mongod/
https://docs.mongodb.com/master/reference/program/mongod/
https://docs.mongodb.com/master/reference/program/mongod/
https://docs.mongodb.com/master/reference/program/mongod/
https://docs.mongodb.com/master/reference/program/mongod/
https://docs.mongodb.com/master/reference/program/mongod/
https://docs.mongodb.com/master/reference/program/mongod/
https://docs.mongodb.com/master/reference/program/mongod/
https://docs.mongodb.com/master/reference/program/mongod/
https://docs.mongodb.com/master/reference/program/mongod/
https://docs.mongodb.com/master/reference/program/mongod/
https://docs.mongodb.com/master/reference/program/mongod/
https://docs.mongodb.com/master/reference/program/mongod/
https://docs.mongodb.com/master/reference/program/mongod/
https://docs.mongodb.com/master/reference/program/mongod/
https://docs.mongodb.com/master/reference/program/mongod/
https://docs.mongodb.com/master/reference/program/mongod/
https://docs.mongodb.com/master/reference/program/mongod/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://docs.mongodb.com/master/administration/install-on-linux/
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center

Installation and Configuration

[11]

Create a symbolic link to the versioned file directory for simpler naming2.
conventions and also allowing us to use a generic directory name (for example, in
scripts):

cd ~/data/
ln -s mongodb-osx-x86_64-3.4.4 mongodb

Create a directory for the database:3.

mkdir ~/data/db

Start the MongoDB server:4.

~/data/mongodb/bin/mongod --dbpath ~/data/db

You should see output like this:5.

2017-05-21T15:21:20.662+0530 I CONTROL [initandlisten] MongoDB
starting : pid=960 port=27017 dbpath=/Users/cyrus.dasadia/data/db
64-bit host=foo
 2017-05-21T15:21:20.662+0530 I CONTROL [initandlisten] db version
v3.4.4
 2017-05-21T15:21:20.662+0530 I CONTROL [initandlisten] git
version: 888390515874a9debd1b6c5d36559ca86b44babd
 2017-05-21T15:21:20.662+0530 I CONTROL [initandlisten] allocator:
system
 2017-05-21T15:21:20.662+0530 I CONTROL [initandlisten] modules:
none
 2017-05-21T15:21:20.662+0530 I CONTROL [initandlisten] build
environment:
 2017-05-21T15:21:20.662+0530 I CONTROL [initandlisten]
distarch: x86_64
 2017-05-21T15:21:20.662+0530 I CONTROL [initandlisten]
target_arch: x86_64
 2017-05-21T15:21:20.662+0530 I CONTROL [initandlisten] options: {
storage: { dbPath: "/Users/cyrus.dasadia/data/db" } }
 <<--- snip -- >>
 2017-05-21T15:21:21.492+0530 I NETWORK [thread1] waiting for
connections on port 27017

You can press Ctrl + C to stop the server.6.

Installation and Configuration

[12]

Additionally, for convenience, we can edit the system's PATH variable to include7.
the MongoDB binaries directory. This allows us invoke the MongoDB binaries
without having to type the entire path. For example, to execute the mongo client,
instead of having to type ~/mongodb/bin/mongo every time we can simply type
mongo. This can be done by appending your ~/.bashrc or ~/.zshrc files for
bash and zsh respectively, with the following lines:

PATH=~/data/mongodb/bin:${PATH}
export PATH

How it works…
Similar to our first recipe, we downloaded a precompiled binary package and started the
MongoDB server using the most basic command line parameter --dbpath such that it uses
a customized directory ~/data/db for storing databases. As you might have noticed,
MongoDB server by default, starts listening on TCP 27017 on all interfaces. We also saw
how to add the MongoDB binary directory's path to our system's PATH variable for a more
convenient way to access the MongoDB binaries.

Binding MongoDB process to a specific
network interface and port
As you might have observed, after starting the MongoDB server, the mongod process binds
to all interfaces which may not be suitable for all use cases. For example, if you are using
MongoDB for development or you are running a single node instance on the same server as
your application, you probably do not wish to expose MongoDB to the entire network. You
might also have a server with multiple network interfaces and may wish to have MongoDB
server listen to a specific network interface. In this recipe, we will see how to start
MongoDB on a specific interface and port.

Getting ready
Make sure you have MongoDB installed on your system as shown in the previous recipes.

Installation and Configuration

[13]

How to do it...
Find your system's network interfaces and corresponding IP address(s) using the1.
ifconfig command. For example, let's assume your system's IP address is
192.168.1.112.
Start the mongod daemon without any special flags:2.

mongod --dbpath /data/db

This starts the mongod daemon which binds to all network interfaces on port
27017.

In a separate Terminal, connect to your MongoDB server on this IP:3.

mongo 192.168.1.112:27017

You should see a MongoDB shell.

Now stop the previously running mongod daemon (press Ctrl + C in the4.
Terminal) and start the daemon to listen to your loopback interface:

mongod --dbpath /data/db --bind_ip 127.0.0.1

In a separate Terminal, connect to your MongoDB server on this IP:5.

mongo 192.168.1.112:27017

This time the mongo client will exit with a connect failed message. Let's6.
connect to your loopback IP and it should work:

mongo 127.0.0.1:27017

Stop the mongod daemon (press Ctrl + C in the Terminal) and let's start the7.
daemon such that it binds to a different port as well:

mongod --dbpath /data/db --bind_ip 127.0.0.1 --port 27000

In a separate Terminal, connect to your MongoDB server on this IP:8.

mongo 127.0.0.1:27000

You should be connected to the server and see the mongo shell.9.

Installation and Configuration

[14]

How it works...
By default, the mongod daemon binds to all interfaces on TCP port 27017. By passing the
IP address with the --bind_ip parameter, we instructed mongod daemon to listen only on
this socket. Next we passed the --port parameter along with --bind_ip to instruct the
mongod daemon to listen to a particular port and IP. Using a non-standard port is a
common practice when one wishes to run multiple instances of mongod daemon (along
with a different --dbpath) or wish to add a little touch security by obscurity. Either way,
we will be using this practice in our later recipes to test shards and replica sets setups
running on a single server.

Enabling SSL for MongodDB
By default, connections to MongoDB server are not encrypted. If one were to intercept this
traffic, almost all the data transferred between the client and the server is visible as clear
text. If you are curious, I would encourage you to use tcpdump or wireshark to capture
packets between a mongod daemon and the client. As a result, it is highly advisable to
make sure that you encrypt all connections to your mongod set by enabling Transport
Layer Security (TLS) also commonly known as SSL.

Getting ready
Make sure you have MongoDB installed on your system as shown in the previous recipes.

The default MongoDB binaries for OS X are not compiled with SSL, you
may need to manually recompile the source code or use Homebrew:
brew install mongodb --with-openssl.

How to do it..
First, let us generate a self-signed certificate using OpenSSL, in the /data1.
directory:

openssl req -x509 -newkey rsa:4096 -nodes -keyout mongo-secure.key
-out mongo-secure.crt -days 365

Installation and Configuration

[15]

Combine the key and certificate into a single .pem file:2.

cat mongo-secure.key mongo-secure.crt > mongo-secure.pem

Start the mongod daemon, with SSL enabled and listening on the default socket3.
that is, localhost 27017:

mongod --dbpath /data/db --sslMode requireSSL --sslPEMKeyFile
/data/mongo-secure.pem

In another window, connect to this server using a mongo client:4.

mongo localhost:27017

You should see a connect failed error on the client Terminal. Switch to the5.
server's console window and you should see a log message indicating that the
connection was rejected, something like this:

2017-05-13T16:51:08.031+0000 I NETWORK [thread1] connection
accepted from 192.168.200.200:43441 #4 (1 connection now open)
2017-05-13T16:51:08.032+0000 I - [conn4] AssertionException
handling request, closing client connection: 17189 The server is
configured to only allow SSL connections
2017-05-13T16:51:08.032+0000 I - [conn4] end connection
192.168.200.200:43441 (1 connection now open)

Now, switch back to the other console window and connect to the server again6.
but this time using SSL:

mongo --ssl --sslAllowInvalidCertificates

You should be connected to the server and see the mongo shell.7.

How it works...
In step 1, we created a self-signed certificate to get us started with SSL enabled connections.
One could very well use a certificate signed by a valid Certificate Authority (CA), but for
test purposes we are good with a self-signed certificate. In all honesty, if connection security
is all you need, a self-signed certificate can also be used in a production environment as
long as you keep the keys secure. You might as well take it a step forward by creating your
own CA certificate and use it to sign your certificates.

Installation and Configuration

[16]

In step 2, we concatenate the key and the certificate file. Next, in step 3, we start the
mongod daemon with --sslMode requireSSL followed by providing the path to the
concatenated .pem file. At this point, we have a standalone MongoDB server listening to the
default port 27017, ready to accept only SSL based clients.

Next, we attempt to connect to the mongod server using the default non-SSL mode, which
is immediately rejected by the sever. Finally, in step 5 we explicitly make an SSL connection
by providing the --ssl parameter followed by --sslAllowInvalidCertificates. The
latter parameter is used because we are using a self-signed certificate on the server. If we
were using an certificate signed by a authorized CA or even a self-signed CA, we could
very well use the --sslCAFile to provide the CA certificate.

There's more…
MongoDB also supports X.509 certificate-based authentication as an option to username
and passwords. We will cover this topic in Chapter 9, Authentication and Security in
MongoDB.

Choosing the right MongoDB storage engine
Starting with MongoDB Version 3.0, a new storage engine named WiredTiger was available
and very soon it became the default storage engine in version 3.2. Up until then, MMAPv1
was used as the default storage engine. I will give you a brief rundown on the main features
of both storage engines and hopefully it should give you enough to decide which one suits
your application's requirements.

WiredTiger
WiredTiger provides the ability, for multiple clients, to perform write operations on the
same collection. This is achieved by providing document-level concurrency such that
during a given write operation, the database only locks a given document in the collection
as against its predecessors, which would lock the entire collection. This drastically improves
performance for write heavy applications. Additionally, WiredTiger provides compression
of data for indexes and collections. The current compression algorithms used by WiredTiger
are Google's Snappy and zLib. Although disabling compression is possible, one should not
immediately jump this gun unless it is truly load-tested while planning your storage
strategy.

Installation and Configuration

[17]

WiredTiger uses Multi-Version Concurrency Control (MVCC) that allows asserting point-
in-time snapshots of transactions. These finalized snapshots are written to disk which helps
create checkpoints in the database. These checkpoints eventually help determine the last
good state of data files and helps in recovery of data during abnormal shutdowns.
Additionally, journaling is also supported with WiredTiger where write-ahead transaction
logs are maintained. The combination of journaling and checkpoints increases the chance of
data recovery during failures. WiredTiger uses internal caching as well as filesystem cache
to provide faster responses on queries. With high concurrency in mind, the architecture of
WiredTiger is such that it better utilizes multi-core systems.

MMAPv1
MMAPv1 is quite mature and has proven to be quite stable over the years. One of the
storage allocation strategies used with this engine is the power of two allocation strategy.
This primarily involves storing double the amount of document space (in power of twos)
such that in-place updates of documents become highly likely without having to move the
documents during updates. Another storage strategy used with this engine is fixed sizing.
In this, the documents are padded (for example, with zeros) such that maximum data
allocation for each document is attained. This strategy is usually followed by applications
that have fewer updates.

Consistency in MMAPv1 is achieved by journaling, where writes are written to a private
view in memory which are written to the on-disk journal. Upon which the changes are then
written to a shared view that is the data files. There is no support for data compression with
MMAPv1. Lastly, MMAPv1 heavily relies on page caches and hence uses up available
memory to retain the working dataset in cache thus providing good performance.
Although, MongoDB does yield (free up) memory, used for cache, if another process
demands it. Some production deployments avoid enabling swap space to ensure these
caches are not written to disk which may deteriorate performance.

The verdict
So which storage engine should you choose? Well, with the above mentioned points, I
personally feel that you should go with WiredTiger as the document level concurrency itself
is a good marker for attaining better performance. However, as all engineering decisions go,
one should definitely not shy away from performing appropriate load testing of the
application across both storage engines.

Installation and Configuration

[18]

The enterprise MongoDB version also provides in-memory storage engine
and supports encryption at rest. These are good features to have
depending on your application's requirements.

Changing storage engine
In this recipe, we will look at how to migrate existing data onto a new storage engine.
MongoDB does not allow on the fly (live) migrations, so we will have to do it the hard way.

Getting ready
Ensure you have a MongoDB database installation ready.

How to do it...
Start the mongod daemon to explicitly use MMAPv1 storage engine:1.

/data/mongodb/bin/mongod --dbpath /data/db --storageEngine mmapv1

Start the mongo client and you should be presented with the MongoDB shell.2.
Execute the following commands in the shell:

> var status = db.serverStatus()
> status['storageEngine']
{
 "name" : "mmapv1",
 "supportsCommittedReads" : false,
 "readOnly" : false,
 "persistent" : true
}

Installation and Configuration

[19]

Now let's add some random data into it. Run the following JavaScript code to3.
insert 100 documents with random data:

> use mydb
> for(var x=0; x<100; x++){
 db.mycol.insert({
 age:(Math.round(Math.random()*100)%20)
 })
 }
> db.mycol.count()
100

Exit the shell and perform a full backup using mongodump command:4.

mkdir /data/backup
mongodump -o /data/backup --host localhost:27017

Now shutdown the mongod process.5.
Create a new data directory for the migration and start the mongod daemon with6.
a new storage engine:

mkdir /data/newdb
/data/mongodb/bin/mongod --dbpath /data/newdb --storageEngine
wiredTiger

Let's restore the previous backup to this new instance:7.

mongorestore /data/backup/

Start the mongo shell and check your data:8.

> var status = db.serverStatus()
> status['storageEngine']
{
 "name" : "wiredTiger",
 "supportsCommittedReads" : true,
 "readOnly" : false,
 "persistent" : true
}
> use mydb
switched to db mydb
> db.mycol.count()
100

Installation and Configuration

[20]

How it works...
As WiredTiger is the default storage engine for MongoDB 3.2, for this exercise, we explicitly
started a MongoDB instance with MMAPv1 storage engine in step 1. In step 2, we stored the
db.serverStatus() command's output in a temporary variable to inspect the output of
the server's storageEngine key. This helps us see which storage engine our MongoDB
instance is running on. In step 3, we switched to database mydb and ran a simple JavaScript
function to add 100 documents to a collection called mycol. Next, in step 4, we created a
backup directory /data/backup which is passed as a parameter to mongodump utility. We
will discuss more about the mongodump utility in Chapter 6, Managing MongoDB Backups.

Once we shutdown the mongod instance, in step 5, we are now ready to start a new
instance of MongoDB but this time with WiredTiger storage engine. We follow the basic
practice of covering for failure and instead of removing /data/db, we create a new path for
this instance (#AlwaysHaveABackupPlan). Our new MongoDB instance is empty, so in step 7
we import the aforementioned backup into the database using the mongorestore utility.
As the new MongoDB instance is running WiredTiger storage engine, our backup (which is
essentially BSON data) is restored and saved on disk using this storage engine. Lastly, in
step 8, we simply inspect the storageEngine key on the db.serverStatus() output and
confirm that we are indeed using WiredTiger.

As you can see, this is an overly simplistic example of how to convert MongoDB data from
one storage engine format to another. One has to keep in mind that this operation will take
a significant amount of time depending on the size of data. However, application downtime
can be averted if we were to use a replica set. More on this later.

Separating directories per database
In this recipe we will be looking at how to optimize on disk I/O by separating databases in
different directories.

Getting ready
Ensure you have a MongoDB database installation ready.

Installation and Configuration

[21]

How to do it...
Start mongod daemon with no special parameters:1.

/data/mongodb/bin/mongod --dbpath /data/db

Connect to mongo shell, create a test db and insert a sample document:2.

mongo localhost:27017
> use mydb
> db.mycol.insert({foo:1})

Inspect the /data/db directory structure, it should look something like this:3.

ls /data/db
total 244
drwxr-xr-x 4 root root 4096 May 21 08:45 .
drwxr-xr-x 10 root root 4096 May 21 08:42 ..
-rw-r--r-- 1 root root 16384 May 21 08:43
collection-0-626293768203557661.wt
-rw-r--r-- 1 root root 16384 May 21 08:43
collection-2-626293768203557661.wt
-rw-r--r-- 1 root root 16384 May 21 08:43
collection-5-626293768203557661.wt
drwxr-xr-x 2 root root 4096 May 21 08:45 diagnostic.data
-rw-r--r-- 1 root root 16384 May 21 08:43
index-1-626293768203557661.wt
-rw-r--r-- 1 root root 16384 May 21 08:43
index-3-626293768203557661.wt
-rw-r--r-- 1 root root 16384 May 21 08:43
index-4-626293768203557661.wt
-rw-r--r-- 1 root root 16384 May 21 08:43
index-6-626293768203557661.wt
drwxr-xr-x 2 root root 4096 May 21 08:42 journal
-rw-r--r-- 1 root root 16384 May 21 08:43 _mdb_catalog.wt
-rw-r--r-- 1 root root 6 May 21 08:42 mongod.lock
-rw-r--r-- 1 root root 16384 May 21 08:44 sizeStorer.wt
-rw-r--r-- 1 root root 95 May 21 08:42 storage.bson
-rw-r--r-- 1 root root 49 May 21 08:42 WiredTiger
-rw-r--r-- 1 root root 4096 May 21 08:42 WiredTigerLAS.wt
-rw-r--r-- 1 root root 21 May 21 08:42 WiredTiger.lock
-rw-r--r-- 1 root root 994 May 21 08:45 WiredTiger.turtle
-rw-r--r-- 1 root root 61440 May 21 08:45 WiredTiger.wt

Shutdown the previous mongod instance.4.

Installation and Configuration

[22]

Create a new db path and start mongod with --directoryperdb option:5.

mkdir /data/newdb
/data/mongodb/bin/mongod --dbpath /data/newdb --directoryperdb

Connect to the mongo shell, create a test db, and insert a sample document:6.

mongo localhost:27017
> use mydb
> db.mycol.insert({bar:1})

Inspect the /data/newdb directory structure, it should look something like this:7.

ls /data/newdb
total 108
drwxr-xr-x 7 root root 4096 May 21 08:42 .
drwxr-xr-x 10 root root 4096 May 21 08:42 ..
drwxr-xr-x 2 root root 4096 May 21 08:41 admin
drwxr-xr-x 2 root root 4096 May 21 08:42 diagnostic.data
drwxr-xr-x 2 root root 4096 May 21 08:41 journal
drwxr-xr-x 2 root root 4096 May 21 08:41 local
-rw-r--r-- 1 root root 16384 May 21 08:42 _mdb_catalog.wt
-rw-r--r-- 1 root root 0 May 21 08:42 mongod.lock
drwxr-xr-x 2 root root 4096 May 21 08:41 mydb
-rw-r--r-- 1 root root 16384 May 21 08:42 sizeStorer.wt
-rw-r--r-- 1 root root 95 May 21 08:41 storage.bson
-rw-r--r-- 1 root root 49 May 21 08:41 WiredTiger
-rw-r--r-- 1 root root 4096 May 21 08:42 WiredTigerLAS.wt
-rw-r--r-- 1 root root 21 May 21 08:41 WiredTiger.lock
-rw-r--r-- 1 root root 986 May 21 08:42 WiredTiger.turtle
-rw-r--r-- 1 root root 28672 May 21 08:42 WiredTiger.wt

How it works...
We start by running a mongod instance with no special parameters except for --dbpath.
In step 2, we create a new database mydb and insert a document in the collection mycol,
using the mongo shell. By doing this, the data files for this new db are created and can be
seen by inspecting the directory structure of our main database path /data/db. In that,
among other files, you can see that database files begin with collection-<number> and
its relevant index file begins with index-<number>. As we guessed, all databases and their
relevant files are within the same directory as our db path.

Installation and Configuration

[23]

If you are curious and wish to find the correlation between the files and the db, then run the
following commands in mongo shell:

> use mydb
> var curiosity = db.mycol.stats()
> curiosity['wiredTiger']['uri']
statistics:table:collection-5-626293768203557661

The last part of this string that is, collection-5-626293768203557661 corresponds to
the file in our /data/db path.

Moving on, in steps 4 and step 5, we stop the previous mongod instance, create a new path
for our data files and start a new mongod instance but this time with the --
directoryperdb parameter. As before, in step 6 we insert some random data in the mycol
collection of a new database called mydb. In step 7, we look at the directory listing of our
data path and we can see that there is a subdirectory in the data path which, as you
guessed, matches our database name mydb. If you look inside this directory that is,
/data/newdb/mydb, you should see a collection and an index file.

So one might ask, why go through all this trouble for having separate directories for
databases? Well, in certain application scenarios, if your database workloads are
significantly high, you should consider storing the database on a separate disk/volume.
Ideally, this should be a physically separate disk or a RAID volume created using separate
physical disks. This ensures the separation of disk I/O from other operations including
MongoDB journals. Additionally, this also helps you separate your fault domains. One
thing you should keep in mind is that journals are stored separately, that is, outside the
database's directory. So, using separate disks for databases allows the journals to not
content for same disk I/O path.

Customizing the MongoDB configuration file
In all the previous recipes of this chapter, we have passed command line flags to the
mongod daemon. In this recipe, we will look at how to use the config file as an alternative
to passing command line flags.

Installation and Configuration

[24]

Getting ready
Nothing special, just make sure you have a MongoDB database installation ready.

How to do it..
Start your favorite text editor and add the following in a file called mongod.conf:1.

storage:
 dbPath: /data/db
 engine: wiredTiger
 directoryPerDB: true
net:
 port: 27000
 bindIp: 127.0.0.1
 ssl:
 mode: requireSSL
 PEMKeyFile: /data/mongo-secure.pem

Start your mongod instance:2.

mongodb/bin/mongod --config /data/mongod.conf

How it works...
MongoDB allows passing command line parameters to mongod using a YAML file. In step
1, we are creating a config file called mongod.conf. We add all the previously used
command line parameters from this chapter, into this config file in YAML format. A quick
look at the file's content should make it clear that the parameters are divided into sections
and relevant subsections. Next, in step 2, we start the mongod instance, but this time with
just one parameter --config followed by the path of our config file.

As we saw in earlier recipes, although passing configuration parameters seems normal, it is
highly advisable that one should use configuration files instead. Having all parameters in a
single configuration file not only makes it easier in terms of viewing the parameters but also
helps us programmatically (YAML FTW!) inspect and manage the values of these variables.
This simplifies operations and reduces the chance of errors.

Installation and Configuration

[25]

There's more...
Do have a look at other parameters available in the configuration file https:/ /docs.
mongodb.com/manual/ reference/ configuration- options/ .

Running MongoDB as a Docker container
In this recipe, we will look at how to run MongoDB as a Docker container. I will assume
that you are familiar with the bare minimum understanding of how Docker works. If you
are not, have a look at https:/ /www. docker. com/what- container. It should help you get
acquainted with Docker's concepts.

Getting ready
Make sure you have Docker installed on your system. If you are using Linux, then it is
highly advisable to use kernel version 3.16 or higher.

How to do it...
Download the latest MongoDB Docker image:1.

docker pull mongo:3.4.4

Check that the image exists:2.

docker images

Start a container:3.

docker run -d -v /data/db:/data/db --name mymongo mongo:3.4.4

Check if the container is running successfully:4.

docker ps

https://docs.mongodb.com/manual/reference/configuration-options/
https://docs.mongodb.com/manual/reference/configuration-options/
https://docs.mongodb.com/manual/reference/configuration-options/
https://docs.mongodb.com/manual/reference/configuration-options/
https://docs.mongodb.com/manual/reference/configuration-options/
https://docs.mongodb.com/manual/reference/configuration-options/
https://docs.mongodb.com/manual/reference/configuration-options/
https://docs.mongodb.com/manual/reference/configuration-options/
https://docs.mongodb.com/manual/reference/configuration-options/
https://docs.mongodb.com/manual/reference/configuration-options/
https://docs.mongodb.com/manual/reference/configuration-options/
https://docs.mongodb.com/manual/reference/configuration-options/
https://docs.mongodb.com/manual/reference/configuration-options/
https://docs.mongodb.com/manual/reference/configuration-options/
https://docs.mongodb.com/manual/reference/configuration-options/
https://docs.mongodb.com/manual/reference/configuration-options/
https://docs.mongodb.com/manual/reference/configuration-options/
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container

Installation and Configuration

[26]

Let's connect to our mongo server using the mongo client from the container:5.

docker exec -it mymongo mongo

Stop the mongo instance and with host mode networking:6.

docker run -d -v /data/db:/data/db --name mymongo --net=host
mongo:3.4.4 --bind_ip 127.0.0.1 --port 27000

Connect to the new instance using mongo shell:7.

docker exec -it mymongo mongo localhost:27000

How it works...
In step 1, we fetched the official MongoDB image, from Docker's public repository. You can
view it at https:/ /hub. docker. com/ _/ mongo/ . While fetching the image we explicitly
mentioned the version that is, mongo:3.4.4.. Although mentioning the version (also
known as Docker image tag) is optional, it is highly advisable that when you download any
application images via Docker, always fetch them with the relevant tag. Otherwise, you
might end up fetching the latest tag and as they change often, you would end up running
different versions of you applications.

Next, in step 2, we run the docker images command which shows us a list of images
available on the server, in our case it should show you the MongoDB image with the tag
3.4.4 available for use.

In step 3, we start a container in detached (-d) mode. As all containers use ephemeral
storage and as we wish to retain the data, we mount a volume (-v) by providing it a local
path /data/db that can be mounted to the container's internal directory /data/db. This
ensures that even if the container is stopped/removed, our data on the host machine is
retained on the host's /data/db path. At this point, one could also use Docker's volumes,
but in order to keep things simplified, I prefer using a regular directory. Next, in the
command we provide a name (--name) for our container. This is followed by the Docker
image and tag that should be used to run the container, in our case it would be
mongo:3.4.4. When you enter the command, you should get a large string as a return
value, this is your new container's ID.

https://hub.docker.com/_/mongo/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/mongo/

Installation and Configuration

[27]

In step 4, we run the docker ps command which shows us a list of running containers. If,
in case your container is stopped or exited, use docker ps -a to show all containers. In the
output you can see the container's details. By default, Docker starts a container in bridge
mode that is, when Docker is installed, it creates a bridge interface on the host and the
resulting containers are run using a virtual network device attached to the bridge. This
results in complete network isolation of the container. Thus, in our case, if we wish to
connect to the container's mongod instance on 27017, we would need to explicitly expose
TCP port 27017 to the base host or bind the base host's port to that of the container thus
allowing an external MongoDB client to connect to our instance. You can read more about
Docker's networking architecture at https:/ /docs. docker. com/ engine/ userguide/
networking/.

In step 5, we execute the mongo shell command from the container to connect to the mongod
instance. The official MongoDB container image also takes in command-line flags, by
passing them in the docker run command. We do this in step 6 along with running the
container in host mode networking. Host mode networking binds the server's network
namespace onto the container thus bypassing the bridge interface. We pass the --bind_ip
and --port flags to the docker run command which instructs mongod to bind to
127.0.0.1:27000. As we are using host mode networking, the mongod daemon would
effectively bind to the base host's loopback interface. In step 7, we connect to our new
MongoDB instance but this time we explicitly provide the connection address.

There's more..
If you ever wish to debug the container, you can always run the container in the foreground
by passing the -it parameters in place of -d. Additionally, try running the following
command and check the output:

docker logs mymongo

Lastly, I would suggest you have a look at the start scripts used by this container's image to
understand how configurations are templatized. It will definitely give you some pointers
that will help when you are setting up your own MongoDB container.

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/

Installation and Configuration

[28]

With this recipe, we conclude this chapter. I hope these recipes have helped you gear up for
getting started with MongoDB. As all things go, no amount of text can replace actual
practice. So I sincerely request you to get your hands dirty and attempt these recipes
yourself.

In the next chapter, we will take a closer look at MongoDB's indexes and how they can be
leveraged to gain a tremendous performance boost in data retrieval.

2
Understanding and Managing

Indexes
In this chapter, we will be covering the following topics:

Creating an index
Managing existing indexes
How to use compound indexes
Creating background indexes
Creating TTL-based indexes
Creating a sparse index
Creating a partial index
Creating a unique index

Introduction
In this chapter, we are going to look at how to create and manage database indexes in
MongoDB. We will also look at how to view index sizes, create background indexes and
creating various forms of indexes. So let's get started!

Creating an index
In this recipe, we will be using a fairly large dataset and add it into MongoDB. Then we will
examine how a query executes in this dataset with and without an index.

Understanding and Managing Indexes

[30]

Getting ready
Assuming that you are already running a MongoDB server, we will be importing a dataset
of around 100,000 records available in the form of a CSV file called
chapter_2_mock_data.csv. You can download this file from the Packt website.

Import the sample data to the MongoDB server:1.

$mongoimport --headerline --ignoreBlanks --type=csv -d mydb -c
mockdata -h localhost chapter_2_mock_data.csv

You should see output like this:

2017-06-18T08:25:08.444+0530 connected to: localhost
2017-06-18T08:25:09.498+0530 imported 100000 documents

Connect to the MongoDB instance and open a mongo shell:2.

mongo localhost:27017

Check that the documents are in the right place:3.

use mydb
db.mockdata.count()

You should see the following result:

105000

Let's fetch a document with the explain() method:4.

> db.mockdata.find({city:'Singapore'}).explain("executionStats")

You should see the following result:

{
 "executionStats": {
 "executionStages": {
 "advanced": 1,
 "direction": "forward",
 "docsExamined": 100000,
 "executionTimeMillisEstimate": 44,
 "filter": {
 "city": {
 "$eq": "Singapore"
 }
 },

Understanding and Managing Indexes

[31]

 "invalidates": 0,
 "isEOF": 1,
 "nReturned": 1,
 "needTime": 100000,
 "needYield": 0,
 "restoreState": 783,
 "saveState": 783,
 "stage": "COLLSCAN",
 "works": 100002
 },
 "executionSuccess": true,
 "executionTimeMillis": 41,
 "nReturned": 1,
 "totalDocsExamined": 100000,
 "totalKeysExamined": 0
 },
 "ok": 1,
 "queryPlanner": {
 "indexFilterSet": false,
 "namespace": "mydb.mockdata",
 "parsedQuery": {
 "city": {
 "$eq": "Singapore"
 }
 },
 "plannerVersion": 1,
 "rejectedPlans": [],
 "winningPlan": {
 "direction": "forward",
 "filter": {
 "city": {
 "$eq": "Singapore"
 }
 },
 "stage": "COLLSCAN"
 }
 },
 "serverInfo": {
 "gitVersion":
"888390515874a9debd1b6c5d36559ca86b44babd",
 "host": "vagrant-ubuntu-trusty-64",
 "port": 27017,
 "version": "3.4.4"
 }
}

Understanding and Managing Indexes

[32]

Create an index on the city field:5.

> db.mockdata.createIndex({'city': 1})

The following result is obtained:

{
 "createdCollectionAutomatically" : false,
 "numIndexesBefore" : 1,
 "numIndexesAfter" : 2,
 "ok" : 1
}

Execute the same fetch query:6.

> db.mockdata.find({city:'Singapore'}).explain("executionStats")

{
 "executionStats": {
 "executionStages": {
 "advanced": 1,
 "alreadyHasObj": 0,
 "docsExamined": 1,
 "executionTimeMillisEstimate": 0,
 "inputStage": {
 "advanced": 1,
 "direction": "forward",
 "dupsDropped": 0,
 "dupsTested": 0,
 "executionTimeMillisEstimate": 0,
 "indexBounds": {
 "city": [
 "[\"Singapore\", \"Singapore\"]"
]
 },
 "indexName": "city_1",
 "indexVersion": 2,
 "invalidates": 0,
 "isEOF": 1,
 "isMultiKey": false,
 "isPartial": false,
 "isSparse": false,
 "isUnique": false,
 "keyPattern": {
 "city": 1
 },
 "keysExamined": 1,
 "multiKeyPaths": {

Understanding and Managing Indexes

[33]

 "city": []
 },
 "nReturned": 1,
 "needTime": 0,
 "needYield": 0,
 "restoreState": 0,
 "saveState": 0,
 "seeks": 1,
 "seenInvalidated": 0,
 "stage": "IXSCAN",
 "works": 2
 },
 "invalidates": 0,
 "isEOF": 1,
 "nReturned": 1,
 "needTime": 0,
 "needYield": 0,
 "restoreState": 0,
 "saveState": 0,
 "stage": "FETCH",
 "works": 2
 },
 "executionSuccess": true,
 "executionTimeMillis": 0,
 "nReturned": 1,
 "totalDocsExamined": 1,
 "totalKeysExamined": 1
 },
 "ok": 1,
 "queryPlanner": {
 "indexFilterSet": false,
 "namespace": "mydb.mockdata",
 "parsedQuery": {
 "city": {
 "$eq": "Singapore"
 }
 },
 "plannerVersion": 1,
 "rejectedPlans": [],
 "winningPlan": {
 "inputStage": {
 "direction": "forward",
 "indexBounds": {
 "city": [
 "[\"Singapore\", \"Singapore\"]"
]
 },
 "indexName": "city_1",

Understanding and Managing Indexes

[34]

 "indexVersion": 2,
 "isMultiKey": false,
 "isPartial": false,
 "isSparse": false,
 "isUnique": false,
 "keyPattern": {
 "city": 1
 },
 "multiKeyPaths": {
 "city": []
 },
 "stage": "IXSCAN"
 },
 "stage": "FETCH"
 }
 },
 "serverInfo": {
 "gitVersion": "888390515874a9debd1b6c5d36559ca86b44babd",
 "host": "vagrant-ubuntu-trusty-64",
 "port": 27017,
 "version": "3.4.4"
 }
}

How it works...
In step 1, we used the mongoimport utility to import our sample dataset from
chapter_2_mock_data.csv which is a comma separated file. We'll discuss more about
mongoimport in later chapters, so don't worry about it for now. Once we import the data,
we execute the mongo shell and confirm that we've indeed imported our sample dataset
(100,000 documents).

In step 4, we run a simple find() function chained with the explain() function. The
explain() function shows us all the details about the execution of our query, especially
the executionStats. In this, if you look at the value of key
executionStages['stage'], you can see it says COLLSAN. This indicates that the entire
collection was scanned, which can be confirmed by looking at the totalDocsExamined
key's value, which should say 100,000. Clearly our collection needs an index!

Understanding and Managing Indexes

[35]

In step 5, we create and index by calling db.mockdata.createIndex({'city': 1}).
In createIndex() function, we mention the city field with value of 1 which tells
MongoDB to create an ascending index on this key. You can use -1 to create a descending
index, if need be. By executing this function, MongoDB immediately begins creating an
index on the collection.

Index creation is an intensive blocking call which means database
operations will be blocked until the index is created. We will examine how
to create background indexes in later recipes, in this chapter.

In step 6, we execute the exact same find() query, as we did in step 4, and upon inspecting
the executionStats, you can observe that the value of key executionStages now
contains some more details. Especially, the value of stage key is FETCH and the
inputStages['stage'] is IXSCAN. In short, this indicates that the query was fetched from
by running an index scan. As this was a direct index hit, the value of totalDocsExamined
is 1.

There's more...
Over time, you may come across scenarios that require redesigning your indexing strategy.
This may be by adding a new feature in your application or simply by identifying a more
appropriate key that can be indexed. In either case, it is highly advisable to remove older
(unused) indexes to ensure you do not have any unnecessary overhead on the database.

In order to remove an index, you can use the
db.<collection>.dropIndex(<index_name>). If you are not sure
about your index name, use the db.<collection>.getIndexes()
function.

Managing existing indexes
In this recipe, we will be looking at some common operations we can perform on indexes
like viewing, deleting, checking index sizes, and re-indexing.

Understanding and Managing Indexes

[36]

Getting ready
For this recipe, load the sample dataset and create an index on the city field, as described
in the previous recipe.

How to do it...
We begin by connecting to the mongo shell of the server and viewing all indexes1.
on the system:

> db.mockdata.getIndexes()

The following result is obtained:

[
 {
 "v" : 2,
 "key" : {
 "_id" : 1
 },
 "name" : "_id_",
 "ns" : "mydb.mockdata"
 },
 {
 "v" : 2,
 "key" : {
 "city" : 1,
 "first_name" : 1
 },
 "name" : "city_1_first_name_1",
 "ns" : "mydb.mockdata"
 }
]

Execute a dropIndex() command to delete a particular index:2.

> db.mockdata.dropIndex('city_1_first_name_1')

You should see the following result:

{ "nIndexesWas" : 2, "ok" : 1 }

Understanding and Managing Indexes

[37]

Let's recreate the index:3.

> db.mockdata.createIndex({'city':1}, {name: 'city_index'})

{
 "createdCollectionAutomatically" : false,
 "numIndexesBefore" : 1,
 "numIndexesAfter" : 2,
 "ok" : 1
}

Run getIndexes() to fetch all indexes of the collection:4.

> db.mockdata.getIndexes()

We should see the following result:

[
 {
 "v" : 2,
 "key" : {
 "_id" : 1
 },
 "name" : "_id_",
 "ns" : "mydb.mockdata"
 },
 {
 "v" : 2,
 "key" : {
 "city" : 1
 },
 "name" : "city_index",
 "ns" : "mydb.mockdata"
 }
]

Try creating the index again on the city field:5.

> db.mockdata.createIndex({'city':1})

Understanding and Managing Indexes

[38]

You should see the following message:

{
 "createdCollectionAutomatically" : false,
 "numIndexesBefore" : 2,
 "numIndexesAfter" : 2,
 "note" : "all indexes already exist",
 "ok" : 1
}

Check the size of the index:6.

stats = db.mockdata.stats()
stats["totalIndexSize"]

It should show the following result:

1818624

Let us view the size of each index:7.

stats["indexSizes"]

This should show the following result:

{ "_id_" : 905216, "city_index" : 913408 }

Re-index city_index:8.

> db.mockdata.reIndex('city_index')

The following result is obtained:

{
 "nIndexesWas" : 2,
 "nIndexes" : 2,
 "indexes" : [
 {
 "v" : 2,
 "key" : {
 "_id" : 1
 },
 "name" : "_id_",
 "ns" : "mydb.mockdata"
 },
 {
 "v" : 2,

Understanding and Managing Indexes

[39]

 "key" : {
 "city" : 1
 },
 "name" : "city_index",
 "ns" : "mydb.mockdata"
 }
],
 "ok" : 1
}

How it works...
Most of the commands are pretty self-explanatory. In steps 1 and 2, we view and delete
index respectively. You can also use db.<collection>.dropIndexes() to delete all
indexes. In step 3, we recreate the index on the city field, but this time we provide an
additional parameter to customize the name of the index. This can be confirmed by viewing
the output of the getIndexes() command, as shown in step 3. Next, in step 4, we try to
create another index on the city field (in ascending order). However, as we already have
an index on this field, this would be redundant and hence MongoDB does not allow it. If
you change the 1 to -1 that is, change the sort order to descending, then your operation
would succeed and you'd end up with another index on the city field, but sorted in
descending order.

In step 5, we run the stats() function on the collection which can alternately be run as
db.mockdata.runCommand('collstats') and save its output in a temporary variable
called stats. If we inspect the totalIndexSizeand indexSizes keys, we can find the total
as well as index specific sizes, respectively. At this point, I would strongly suggest you have
a look at other keys in the output. It should give you a peek into the low-level internals of
how MongoDB manages each collection.

Lastly, in step 6, we re-index an existing index. In that, it drops the existing index and
rebuilds it either in the foreground or background, depending on how it was set up
initially. It is usually not necessary to rebuild the index, however, as per MongoDB's
documentation you may choose to do so if you feel that the index size may be
disproportionate or your collection has significantly grown in size.

Understanding and Managing Indexes

[40]

How to use compound indexes
The beauty of indexes is that they can be used with multiple keys. A single key index can be
thought of as a table with one column. A multi-key index or compound index can be
visualized as a multi column table where the first column is sorted first, and then the next,
and so on. In this recipe, we will look at how to create a compound index and examine how
it works.

Getting ready
Load the sample dataset and create an index on the city field, as described in the previous
recipe.

How to do it...
Assuming you have already created an index on the city field, create one by1.
executing the command db.mockdata.createIndex({'city': 1}) again.
Run a find() query:2.

 > plan = db.mockdata.find({city:'Boston', first_name:
'Sara'}).explain("executionStats")

Examine the executionStats:3.

 > plan['executionStats']

You should see the following result:

{
 "executionSuccess" : true,
 "nReturned" : 1,
 "executionTimeMillis" : 0,
 "totalKeysExamined" : 9,
 "totalDocsExamined" : 9,
 "executionStages" : {
 "stage" : "FETCH",
 "filter" : {
 "first_name" : {
 "$eq" : "Sara"
 }
 },
 "nReturned" : 1,

Understanding and Managing Indexes

[41]

 "executionTimeMillisEstimate" : 0,
 "works" : 10,
 "advanced" : 1,
 "needTime" : 8,
 "needYield" : 0,
 "saveState" : 0,
 "restoreState" : 0,
 "isEOF" : 1,
 "invalidates" : 0,
 "docsExamined" : 9,
 "alreadyHasObj" : 0,
 "inputStage" : {
 "stage" : "IXSCAN",
 "nReturned" : 9,
 "executionTimeMillisEstimate" : 0,
 "works" : 10,
 "advanced" : 9,
 "needTime" : 0,
 "needYield" : 0,
 "saveState" : 0,
 "restoreState" : 0,
 "isEOF" : 1,
 "invalidates" : 0,
 "keyPattern" : {
 "city" : 1
 },
 "indexName" : "city_1",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "city" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,
 "direction" : "forward",
 "indexBounds" : {
 "city" : [
 "[\"Boston\", \"Boston\"]"
]
 },
 "keysExamined" : 9,
 "seeks" : 1,
 "dupsTested" : 0,
 "dupsDropped" : 0,
 "seenInvalidated" : 0
 }
 }

Understanding and Managing Indexes

[42]

}

Now drop this index:4.

 > db.mockdata.dropIndex('city_1')

You should see an output similar to this:

 { "nIndexesWas" : 2, "ok" : 1 }

Create a compound index on city and name:5.

 > db.mockdata.createIndex({'city': 1, 'first_name': 1})

You should see an output similar to this:

 {
 "createdCollectionAutomatically" : false,
 "numIndexesBefore" : 1,
 "numIndexesAfter" : 2,
 "ok" : 1
 }

Let's run the same fetch query again and examine the plan:6.

> plan = db.mockdata.find({city:'Boston', first_name:
'Sara'}).explain("executionStats")

> plan['executionStats']

You should see an output similar to this:

{
 "executionSuccess": true,
 "nReturned": 1,
 "executionTimeMillis": 0,
 "totalKeysExamined": 1,
 "totalDocsExamined": 1,
 "executionStages": {
 "stage": "FETCH",
 "nReturned": 1,
 "executionTimeMillisEstimate": 0,
 "works": 2,
 "advanced": 1,
 "needTime": 0,
 "needYield": 0,
 "saveState": 0,
 "restoreState": 0,

Understanding and Managing Indexes

[43]

 "isEOF": 1,
 "invalidates": 0,
 "docsExamined": 1,
 "alreadyHasObj": 0,
 "inputStage": {
 "stage": "IXSCAN",
 "nReturned": 1,
 "executionTimeMillisEstimate": 0,
 "works": 2,
 "advanced": 1,
 "needTime": 0,
 "needYield": 0,
 "saveState": 0,
 "restoreState": 0,
 "isEOF": 1,
 "invalidates": 0,
 "keyPattern": {
 "city": 1,
 "first_name": 1
 },
 "indexName": "city_1_first_name_1",
 "isMultiKey": false,
 "multiKeyPaths": {
 "city": [],
 "first_name": []
 },
 "isUnique": false,
 "isSparse": false,
 "isPartial": false,
 "indexVersion": 2,
 "direction": "forward",
 "indexBounds": {
 "city": [
 "[\"Boston\", \"Boston\"]"
],
 "first_name": [
 "[\"Sara\", \"Sara\"]"
]
 },
 "keysExamined": 1,
 "seeks": 1,
 "dupsTested": 0,
 "dupsDropped": 0,
 "seenInvalidated": 0
 }
 }
}

Understanding and Managing Indexes

[44]

How it works…
We start with loading the sample dataset with an index on the city field. Next, we execute
a find() command on our collection chained with the explain('executionStats')
function, in steps 2 and 3 respectively. This time, we capture the output of the data in a
variable so it is easier to examine for later use.

In step 4, we specifically examine the execution stats. We can observe that nine documents
were fetched from the index in which we had one match. When we ran
db.mockdata.find({city:'Boston', first_name: 'Sara'}), MongoDB first saw
that the city field already has an index on it. So, for the remaining part of the query,
MongoDB simply searched the documents which were returned from the index and
searched on the field first_name in these documents until they matched the value Sara.

In step 5, we remove the existing index on field city and in step 6, we create a compound
index on two field names city and first_name. At this point, I would like to point, that
the sequence of the field names is extremely important. As I explained in the introduction of
this recipe, compound indexes in MongoDB are created in the order in which the field
names are mentioned. Hence, when we create a compound index with, say, {city:1,
first_name:1}, MongoDB first creates a B-tree index on the field city and an ascending
order followed by first_name in an ascending order.

In step 7, we run the same find() query and examine the executionStats. We can
observe that this time, as both keys were indexed, totalDocumentsExamined was 1 that
is, we got an exact match in our compound index.

There's more...
Compound indexes, if used smartly, can dramatically reduce your document seek times.
For example, let's assume our application had a view that only required us to show a list of
names in a city. A traditional approach would be to run a find query and get the list of
documents and send them to the application's view. However, we know that other fields in
the document are not needed for this view. Then, by having a compound index on city
and first_name with the addition of field projection, we simply send the index values
down to the application that is:

db.mockdata.find({city:'Boston', first_name:'Sara'}, {city:1, first_name:1,
_id:0})

Understanding and Managing Indexes

[45]

By doing this, not only do we leverage the speed of the index but we negate the need to
fetch the non-indexed keys. Another term used for this is a covered query and it can
improve our applications significantly!

Also, compound indexes allow us to use the index for the leftmost key. In our example, if
we were to run db.mockdata.find({city:'Boston'}), then the result would be fetched
from the index. However, if we were to search on the first_name that is,
db.mockdata.find({first_name:'Sara'}), the server would do a full collection scan
and fetch the result. I would encourage you to run the preceding queries chained with the
explain() function and see the details yourself.

Creating background indexes
In the previous recipes, whenever we've created indexes, it has always been in the
foreground that is, the database server blocks all changes to the database until the index
creation is completed. This is definitely not suitable for larger datasets where index creation
time can take a few seconds which could be application errors.

Getting ready
Load the sample dataset, as shown in the Creating an index recipe.

How to do it...
Remove all indexes:1.

 > db.mockdata.dropIndexes()

{
 "nIndexesWas" : 2,
 "msg" : "non-_id indexes dropped for collection",
 "ok" : 1
 }

Add some additional data to increase the size of our collection. Run the following2.
command string in your Terminal window:

 for x in $(seq 20); do mongoimport --headerline --type=csv -d mydb
-c mockdata -h localhost chapter_2_mock_data.csv;done

Understanding and Managing Indexes

[46]

Open two mongo shells, we will create an index in one while we do an insert3.
query in another. Ensure you've selected mydb by executing the command use
mydb in both windows.
In the first mongo shell, create an index and immediately shift to the second shell:4.

> db.mockdata.createIndex({city:1, first_name:1, last_name:1})

In the second shell window, perform a simple insert operation:5.

 > db.mockdata.insert({foo:'bar'})

Check the mongod server logs:6.

2017-06-13T03:54:26.296+0000 I INDEX [conn1] build index on:
mydb.mockdata properties: { v: 2, key: { city: 1.0, first_name:
1.0, last_name: 1.0 }, name: "city_1_first_name_1_last_name_1", ns:
"mydb.mockdata" }
2017-06-13T03:54:26.297+0000 I INDEX [conn1] building index using
bulk method; build may temporarily use up to 500 megabytes of RAM
 2017-06-13T03:54:36.575+0000 I INDEX [conn1] build index done.
scanned 2100001 total records. 10 secs
 2017-06-13T03:54:36.576+0000 I COMMAND [conn2] command
mydb.mockdata appName: "MongoDB Shell" command: insert { insert:
"mockdata", documents: [{ _id:
ObjectId('59474af356e41a7db57952b6'), foo: "bar" }], ordered: true
} ninserted:1 keysInserted:3 numYields:0 reslen:29 locks:{ Global:
{ acquireCount: { r: 1, w: 1 } }, Database: { acquireCount: { w: 1
}, acquireWaitCount: { w: 1 }, timeAcquiringMicros: { w: 9307131 }
}, Collection: { acquireCount: { w: 1 } } } protocol:op_command
9307ms
 2017-06-13T03:54:36.577+0000 I COMMAND [conn1] command mydb.$cmd
appName: "MongoDB Shell" command: createIndexes { createIndexes:
"mockdata", indexes: [{ key: { city: 1.0, first_name: 1.0,
last_name: 1.0 }, name: "city_1_first_name_1_last_name_1" }] }
numYields:0 reslen:98 locks:{ Global: { acquireCount: { r: 1, w: 1
} }, Database: { acquireCount: { W: 1 } }, Collection: {
acquireCount: { w: 1 } } } protocol:op_command 10284ms

Now drop the indexes and get ready to repeat steps 4 and step 5 again.7.
In the first mongo shell window, recreate the index. As this command will take8.
some time, switch to the second shell window:

 > db.mockdata.createIndex({city:1, first_name:1, last_name:1},
{background:1})

Understanding and Managing Indexes

[47]

In the second shell window, perform an insert operation, this time it should9.
immediately yield:

 > db.mockdata.insert({foo:'bar'})

You should see the following output:

 WriteResult({ "nInserted" : 1 })

Look at the mongod server logs:10.

2017-06-13T04:00:29.248+0000 I INDEX [conn1] build index on:
mydb.mockdata properties: { v: 2, key: { city: 1.0, first_name:
1.0, last_name: 1.0 }, name: "city_1_first_name_1_last_name_1", ns:
"mydb.mockdata", background: 1.0 }
2017-06-13T04:00:32.008+0000 I - [conn1] Index Build (background):
397400/2200004 18%
 2017-06-13T04:00:35.002+0000 I - [conn1] Index Build (background):
673800/2200005 30%
 2017-06-13T04:00:38.009+0000 I - [conn1] Index Build (background):
762300/2200005 34%
 2017-06-13T04:00:41.006+0000 I - [conn1] Index Build (background):
903400/2200005 41%
 << --- output snipped --- >>
 2123200/2200005 96%
 2017-06-13T04:02:32.021+0000 I - [conn1] Index Build (background):
2148300/2200005 97%
 2017-06-13T04:02:35.021+0000 I - [conn1] Index Build (background):
2172800/2200005 98%
 2017-06-13T04:02:38.019+0000 I - [conn1] Index Build (background):
2195800/2200005 99%
 2017-06-13T04:02:38.566+0000 I INDEX [conn1] build index done.
scanned 2100006 total records. 129 secs
 2017-06-13T04:02:38.572+0000 I COMMAND [conn1] command mydb.$cmd
appName: "MongoDB Shell" command: createIndexes { createIndexes:
"mockdata", indexes: [{ key: { city: 1.0, first_name: 1.0,
last_name: 1.0 }, name: "city_1_first_name_1_last_name_1",
background: 1.0 }] } numYields:20353 reslen:98 locks:{ Global: {
acquireCount: { r: 20354, w: 20354 } }, Database: { acquireCount: {
w: 20354, W: 2 } }, Collection: { acquireCount: { w: 20354 } } }
protocol:op_command 129326ms

Understanding and Managing Indexes

[48]

How it works...
In step 1 we remove any existing indexes. Next, in order to better simulate index creation
delays, what we do is simply keep reimporting our sample dataset about 20 times. This
should give us about 2 million records in our collection after the end of step 2. As I have the
previous recipes' sample dataset, my document count may be slightly higher so don't worry
about it.

Now, in order to test how foreground index creation hinders database operations, we need
to be able to perform two tasks simultaneously. For this, we set up two terminal windows,
preferably side by side, with mongo shells connected and ensure mydb is selected. In step 4,
we create a index on three fields city, first_name, and last_name. Again, this is
intentional to add a bit of computational overhead for our test database setup. Note that,
unlike previous runs, this command will not yield immediately. So, switch to the next
terminal windows and try inserting a simple record, as shown in step 5. If you have both
window stacked side by side, you will notice that both of them yield almost simultaneously.
If you look at mongod server logs, you can see that both operations, in this case, took
roughly 10 seconds to complete. Also, as expected, our insert query did not complete until
the index creation had released the lock on the collection.

In step 7, we delete the index again and in step 8 we recreate the index but this time with
the option {background: 1}. This tells mongod to start the index creation process in the
background. In step 9, we switch to the other terminal window and try inserting a random
document to our collection. Lo and behold, our document gets inserted immediately. Now
is a good time to switch to the mongod server logs. As shown in step 10, you can now see
that the index creation is happening in small batches. When the index creation completes,
you can see that mongod acquired about 20,354 locks for this process as opposed to 1, when
creating index in foreground. This lock and release method allowed our insert query to go
through. However, this does come with a slight trade-off. The index creation time in the
background was about 130 seconds as compared to 10 seconds, when created in the
foreground.

There you have it, a simple test to show the effectiveness of creating background indexes.
As real-world production scenarios go, it is always safe to create indexes in the background
unless you have a very strong reason otherwise.

Understanding and Managing Indexes

[49]

Creating TTL-based indexes
In this recipe, we will explore the expireAfterSeconds property of MongoDB indexes to
allow automatic deletion of documents from a collection.

Getting ready
For this recipe, all you need is a mongod instance running. We will be creating and working
on a new collection called ttlcol in the database mydb.

How to do it...
Ensure that our collection is empty:1.

db.ttlcol.drop()

Add 200 random documents:2.

for(var x=1; x<=100; x++){
 var past = new Date()
 past.setSeconds(past.getSeconds() - (x * 60))
 // Insert a document with timestamp in the past
 var doc = {
 foo: 'bar',
 timestamp: past
 }
 db.ttlcol.insert(doc)
 // Insert a document with timestamp in the future
 var future = new Date()
 future.setSeconds(future.getSeconds() + (x * 60))
 var doc = {
 foo: 'bar',
 timestamp: future
 }
 db.ttlcol.insert(doc)
}

Check that the documents were added:3.

db.ttlcol.count()

Understanding and Managing Indexes

[50]

Create an index with TTL:4.

db.ttlcol.createIndex({timestamp:1}, {expireAfterSeconds: 10})

You should see output similar to this:

{
 "createdCollectionAutomatically" : false,
 "numIndexesBefore" : 1,
 "numIndexesAfter" : 2,
 "ok" : 1
 }

Wait for about a minute and check the document count:5.

 db.ttlcol.count()

The number of documents returned should be lower than 200.

How it works...
In step 1, we emptied the ttlcol collection in mydb to ensure there is no old data. Next, in
step 2, we ran a simple JavaScript code that adds 200 records, each having a BSON Date()
field called timestamp. We added about 100 records in the past and 100 in the future each 1
minute in the past and future respectively.

Then in step 3, we created a regular index but with an additional parameter
{expireAfterSeconds: 10}. In this, we are telling the server to expire documents 10
seconds from the value of time mentioned in our timestamp field. Once this is added, you
can check that the number of documents in the collection has reduced from 200 to, in this
case, 113 and counting. What happens here is that there is a background thread in
MongoDB server that wakes up every minute and removes any document that matches our
index's condition. At this point, I would like to point out that if our field timestamp were
not a valid Date() function or an array of Date() function, then no documents would be
removed.

There's more...
If you wish to have explicit expiry times, then set the expireAfterSecond to 0. In that, the
documents would be removed as soon as they match the desired field's timestamp.

Understanding and Managing Indexes

[51]

So when would you need a TTL-based index? Well if you happen to store time sensitive
documents like user session times or documents that can be removed after a certain period
like events, logs, or transaction history, then TTL-based indexes are your best option. They
offer you more control over document retention than traditional capped collections.

Creating a sparse index
MongoDB allows you to create an index on fields that may not exist in all documents, in a
given collection. These are called sparse indexes and in this recipe, we will look at how to
create them.

Getting ready
For this recipe, load the sample dataset and create an index on the city field, as described
in the Creating an index recipe.

How to do it...
Check the total number of documents in our collection and number of documents1.
without the language field:

db.mockdata.count()

The preceding command should return 100000.

 db.mockdata.find({language: {$eq:null}}).count()

The preceding command should return 12704.

Create a sparse index on the document:2.

db.mockdata.createIndex({language:1}, {sparse: true})

Understanding and Managing Indexes

[52]

You should see output similar to this:

{
 "createdCollectionAutomatically" : false,
 "numIndexesBefore" : 1,
 "numIndexesAfter" : 2,
 "ok" : 1
 }

Check our index got created with the sparse parameter:3.

 db.mockdata.getIndexes()

The preceding command should give you output similar to this:

[
 {
 "key": {
 "_id": 1
 },
 "name": "_id_",
 "ns": "test.mockdata",
 "v": 2
 },
 {
 "key": {
 "language": 1
 },
 "name": "language_1",
 "ns": "test.mockdata",
 "sparse": true,
 "v": 2
 }
]

Run a simple find query:4.

db.mockdata.find({language:
'French'}).explain('executionStats')['executionStats']

Understanding and Managing Indexes

[53]

The preceding command should give you output similar to this:

 "executionStages": {
 "advanced": 893,
 "alreadyHasObj": 0,
 "docsExamined": 893,
 "executionTimeMillisEstimate": 0,
 "inputStage": {
 "advanced": 893,
 "direction": "forward",
 "dupsDropped": 0,
 "dupsTested": 0,
 "executionTimeMillisEstimate": 0,
 "indexBounds": {
 "language": [
 "[\"French\", \"French\"]"
]
 },
 "indexName": "language_1",
 "indexVersion": 2,
 "invalidates": 0,
 "isEOF": 1,
 "isMultiKey": false,
 "isPartial": false,
 "isSparse": true,
 "isUnique": false,
 "keyPattern": {
 "language": 1
 },
 "keysExamined": 893,
 "multiKeyPaths": {
 "language": []
 },
 "nReturned": 893,
 "needTime": 0,
 "needYield": 0,
 "restoreState": 6,
 "saveState": 6,
 "seeks": 1,
 "seenInvalidated": 0,
 "stage": "IXSCAN",
 "works": 894
 },
 "invalidates": 0,
 "isEOF": 1,
 "nReturned": 893,
 "needTime": 0,
 "needYield": 0,

Understanding and Managing Indexes

[54]

 "restoreState": 6,
 "saveState": 6,
 "stage": "FETCH",
 "works": 894
 },
 "executionSuccess": true,
 "executionTimeMillis": 1,
 "nReturned": 893,
 "totalDocsExamined": 893,
 "totalKeysExamined": 893
}

How it works...
For this example, we have picked a sparsely populated field, language, which does not
exist in all documents of our sample dataset. In step 1, we can see that around 12,000
documents do not contain this field. Next, in step 2, we create an index with the optional
parameter {sparse: true} which tells MongoDB server to create a sparse index on our
field, language. The index gets created and works just like any other index as seen in steps
3 and step 4, respectively.

Creating a partial index
Partial indexes were introduced recently, in MongoDB Version 3.2. A partial index is
slightly similar to sparse index but with the added advantage of being able to use
expressions ($eq, $gt, and so on) and operators ($and).

Getting ready
For this recipe, load the sample dataset and create an index on the city field, as described
in the Creating an index recipe.

How to do it...
Check the total number of documents in our collection and number of documents1.
without the language field:

db.mockdata.count()

Understanding and Managing Indexes

[55]

The preceding command should return 100000:

db.mockdata.find({language: {$eq:null}}).count()

The preceding command should return 12704.

Create a sparse index on the document:2.

> db.mockdata.createIndex(
 {first_name:1},
 {partialFilterExpression: { language: {$exists: true}}}
)

This should give you output similar to this:

{
 "createdCollectionAutomatically" : false,
 "numIndexesBefore" : 1,
 "numIndexesAfter" : 2,
 "ok" : 1
}

Confirm that the index was created:3.

db.mockdata.getIndexes()

The preceding command should give you output similar to this:

[
 {
 "key": {
 "_id": 1
 },
 "name": "_id_",
 "ns": "mydb.mockdata",
 "v": 2
 },
 {
 "key": {
 "first_name": 1
 },
 "name": "first_name_1",
 "ns": "mydb.mockdata",
 "partialFilterExpression": {
 "language": {
 "$exists": true
 }
 },

Understanding and Managing Indexes

[56]

 "v": 2
 }
]

Find a record without language field:4.

db.mockdata.find({first_name:
'Sara'}).explain('executionStats')['executionStats']

The preceding command should give you output similar to this:

{
 "executionStages": {
 "advanced": 7,
 "direction": "forward",
 "docsExamined": 100000,
 "executionTimeMillisEstimate": 21,
 "filter": {
 "first_name": {
 "$eq": "Sara"
 }
 },
 "invalidates": 0,
 "isEOF": 1,
 "nReturned": 7,
 "needTime": 99994,
 "needYield": 0,
 "restoreState": 782,
 "saveState": 782,
 "stage": "COLLSCAN",
 "works": 100002
 },
 "executionSuccess": true,
 "executionTimeMillis": 33,
 "nReturned": 7,
 "totalDocsExamined": 100000,
 "totalKeysExamined": 0
}

Find a record with language field:5.

db.mockdata.find({first_name: 'Sara', language:
'Spanish'}).explain('executionStats')['executionStats']

Understanding and Managing Indexes

[57]

The preceding command should give you output similar to this:

{
 "executionStages": {
 "advanced": 1,
 "alreadyHasObj": 0,
 "docsExamined": 7,
 "executionTimeMillisEstimate": 0,
 "filter": {
 "language": {
 "$eq": "Spanish"
 }
 },
 "inputStage": {
 "advanced": 7,
 "direction": "forward",
 "dupsDropped": 0,
 "dupsTested": 0,
 "executionTimeMillisEstimate": 0,
 "indexBounds": {
 "first_name": [
 "[\"Sara\", \"Sara\"]"
]
 },
 "indexName": "first_name_1",
 "indexVersion": 2,
 "invalidates": 0,
 "isEOF": 1,
 "isMultiKey": false,
 "isPartial": true,
 "isSparse": false,
 "isUnique": false,
 "keyPattern": {
 "first_name": 1
 },
 "keysExamined": 7,
 "multiKeyPaths": {
 "first_name": []
 },
 "nReturned": 7,
 "needTime": 0,
 "needYield": 0,
 "restoreState": 0,
 "saveState": 0,
 "seeks": 1,
 "seenInvalidated": 0,
 "stage": "IXSCAN",
 "works": 8

Understanding and Managing Indexes

[58]

 },
 "invalidates": 0,
 "isEOF": 1,
 "nReturned": 1,
 "needTime": 6,
 "needYield": 0,
 "restoreState": 0,
 "saveState": 0,
 "stage": "FETCH",
 "works": 8
 },
 "executionSuccess": true,
 "executionTimeMillis": 0,
 "nReturned": 1,
 "totalDocsExamined": 7,
 "totalKeysExamined": 7
}

How it works...
As in the previous recipe, we have picked a sparsely populated field, language, which
does not exist in all documents of our sample dataset. In step 1, we can see that around
12,000 documents do not contain this field.

Next, in step 2, we create an index on the field first_name with the optional parameter
partialFilterExpression. With this parameter, we have added a condition {
language: {$exists: true}}. MongoDB is instructed to create an index on
first_name only on documents which have the field language present. If we look at the
executionStats in step 4, we can observe that the index is not used if we do a simple
search on the field first_name. However, in step 5, we can see that our query is using the
MongoDB index if we add an additional parameter of the field language.

Apart from this simple example, there are tons of good variations possible if we use
expressions like $lt, $gt, and so on. You can find some more examples at https:/ /docs.
mongodb.com/manual/ core/ index- partial/ .

So why would one use a partial index? Say, for example, you have a huge dataset and wish
to have an index on a field which is sparsely spread across these documents. Traditional
indexes would cause the entire collection to be indexed and may not be optimal if we are
going to work on a subset of these documents.

https://docs.mongodb.com/manual/core/index-partial/
https://docs.mongodb.com/manual/core/index-partial/
https://docs.mongodb.com/manual/core/index-partial/
https://docs.mongodb.com/manual/core/index-partial/
https://docs.mongodb.com/manual/core/index-partial/
https://docs.mongodb.com/manual/core/index-partial/
https://docs.mongodb.com/manual/core/index-partial/
https://docs.mongodb.com/manual/core/index-partial/
https://docs.mongodb.com/manual/core/index-partial/
https://docs.mongodb.com/manual/core/index-partial/
https://docs.mongodb.com/manual/core/index-partial/
https://docs.mongodb.com/manual/core/index-partial/
https://docs.mongodb.com/manual/core/index-partial/
https://docs.mongodb.com/manual/core/index-partial/
https://docs.mongodb.com/manual/core/index-partial/
https://docs.mongodb.com/manual/core/index-partial/
https://docs.mongodb.com/manual/core/index-partial/

Understanding and Managing Indexes

[59]

Creating a unique index
MongoDB allows you to create an index on a field with the option of ensuring that it is
unique in the collection. In this recipe, we will explore how it can be done.

Getting ready
For this recipe, we only need a running mongod instance.

How to do it...
Connect to the mongo shell and insert a random document:1.

use mydb
db.testuniq.insert({foo: 'zoidberg'})

Create an index with the unique parameter:2.

db.testuniq.createIndex({foo:1}, {unique:1})

The preceding command should give you an output similar to this:

{
 "createdCollectionAutomatically": false,
 "numIndexesAfter": 2,
 "numIndexesBefore": 1,
 "ok": 1
}

Try to add another document with a duplicate value of the field:3.

db.testuniq.insert({foo: 'zoidberg'})

Understanding and Managing Indexes

[60]

The preceding command should give you an error message similar to this:

WriteResult({
 "nInserted" : 0,
 "writeError" : {
 "code" : 11000,
 "errmsg" : "E11000 duplicate key error collection:
mydb.testuniq index: foo_1 dup key: { : \"zoidberg\" }"
 }
})

Drop the index:4.

db.testuniq.dropIndexes()

Add a duplicate record:5.

db.testuniq.insert({foo: 'zoidberg'})
db.testuniq.find()

The preceding command should give you an output similar to this:

{ "_id" : ObjectId("59490cabc14da1366d83254f"), "foo" : "zoidberg"
}
{ "_id" : ObjectId("59490d20c14da1366d832551"), "foo" : "zoidberg"
}

Try creating the index again:6.

db.testuniq.createIndex({foo:1}, {unique:1})

The preceding command should give you an output similar to this:

{
 "ok" : 0,
 "errmsg" : "E11000 duplicate key error collection: mydb.testuniq
index: foo_1 dup key: { : \"zoidberg\" }",
 "code" : 11000,
 "codeName" : "DuplicateKey"
}

Understanding and Managing Indexes

[61]

How it works...
In step 1 we inserted a document in a new collection testuniq. Next, in step 2, we created
an index on the field foo with the parameter {unique: true}. In step 3, we try to add
another record with the same value of field foo as we did earlier and we receive an error as
expected.

In step 4, we drop the indexes and add a duplicate record. Next we try to create a new
unique index. This time we are not allowed because there are duplicates in our collection.

This is a simple example of how to create an index with unique constraint. Additionally, we
can also create unique indexes on fields that have an array, for example {foo: ['bar',
'baz']}. MongoDB would inspect each value of the array and against the index. Try
adding a document with the above values and see what happens.

If you insert a document where the indexed field is missing, then
MongoDB will not allow you to add another one with the indexed field
missing. The missing field is considered a null value and because of the
unique constraint to the index, only one field can be null.

3
Performance Tuning

In this chapter we will be covering the following topics:

Configuring disks for better I/O
Measuring disk I/O performance with mongoperf
Finding slow running queries and operations
Figuring out the size of a working set

Introduction
This chapter is slightly different than the previous ones in that we will be looking at
different technical aspects that should be considered to gain optimal performance from a
MongoDB setup. As you are probably aware, application performance tuning is a highly
nuanced art, hence not all aspects will be covered here. However, I will try and discuss the
most important points, which will help pave the way for more critical thinking on the
subject.

Configuring disks for better I/O
In this recipe, we will be looking at the importance of provisioning your servers for better
disk I/O.

Performance Tuning

[63]

Reading and writing from disks
Apart from CPU and memory (RAM), MongoDB, like most database applications, relies
heavily on disk operations.

To better understand this dependency, let's look at a very simple example of reading data
from a file. Suppose you have a file that contains a few thousand lines, each containing a set
of strings in no particular order. If one were to write a program that is used to search a
particular string, it would need to open the file, iterate through each line, and search the
string. Once the string is found, the program closes the file. As disks are usually much
slower than RAM, this approach of opening a file, reading, and closing it on every query, is
suboptimal.

To circumvent this, Linux (and most modern operating systems) rely heavily on the cache
buffer. The operating system kernel uses this cache to store chunks of data, in blocks, which
are frequently read from the disk. So, when a process tries to read a particular file, the
kernel first does a lookup in its cache. If the data is not cached, then the kernel reads it from
the disks and loads it in the cache. Data is evicted from the cache based on its frequency of
use, that is, less used data gets removed first to make room for more frequently accessed
data. Additionally, the kernel tries to utilize all available free memory for the cache, but it
automatically reduces the cache size if a process requires memory.

Performance Tuning

[64]

The design of this cache was to circumvent the delays inherent in reading and writing on
disks. Any application that relies on disk I/O would be greatly impacted by the speed of the
disk. RAM, on the other hand, is extremely fast. How fast, you ask? To put it in perspective,
most disk operations are in the range of milliseconds (thousands of a second), whereas for
RAM, it is in nanoseconds (billionths of a second).

MongoDB is designed quite similarly to this, in that the database server tries to keep the
index and the working set in memory. At the same time, for actual disk reads, it heavily
relies on the filesystem buffer cache. But even with everything optimized to be in memory,
at some point, MongoDB would need to either write to the disk or read from it.

Performance Tuning

[65]

Disk read/write operations are what are commonly referred to ask disk Input/Output
Operations Per Second (IOPS). As disk I/O is a blocking operation, the amount of disk
IOPS required by MongoDB would eventually determine how fast your database performs.

Few considerations while selecting storage
devices
First things first, disks are slow. Neither magnetic nor solid state disks can perform
anywhere near the speed of RAM. As MongoDB tries to store a database index in memory,
try to have workloads that utilize the benefits of indexes. It goes without saying that your
servers need to have sufficient RAM to store indexes and disk cache. While deciding the
optimal RAM capacity for your server, consider aspects such as the percentage rate of
growth of data (and indexes), sufficient size for disk buffer cache, and headroom for the
underlying operating system. A very simple example for calculating IOPS for a disk would
be 1/(average disk latency + average seek time). So, for a disk with 2 ms average latency and
3 ms average seek time, the total supported IOPS would be 1/(0.002 + 0.003) = 200 IOPS.
Again, this does not take into account a lot of other factors, such as disk degradation, ECC,
and sequential or random seeks.

With a limited cap on disk IOPS, you can substantially increase the server's IOPS capacity
by using RAID 0 (disk striping). For example, an array of four disks in RAID 0 would
theoretically give you 4 x 200 = 800 IOPS. The trade-off with RAID 0 is that you do not get
data redundancy, that is, if a disk fails, your data is lost. But this can be easily rectified by
having a MongoDB replica set. However, on the off-chance that you do decide to use any
other RAID setup, keep in mind that your write operations will be directly affected by the
RAID setup. That is, for RAID 1 or RAID 10 you would be performing two write operations
for every one actual disk write. At the same time, RAID 5 and RAID 6 would not be suitable
as they increase the additional writes even more.

Lastly, know your application requirements. I cannot stress how important it is to analyze
and monitor your applications' read and write operations. It is ideal to have, at the least, a
rough estimate on the ratio of reads to writes.

Filesystems also play a crucial role. MongoDB highly recommends using
the XFS filesystem. For more information, see https:/ /docs. mongodb.
com/manual/ administration/ production- notes/ #kernel- and-file-
systems.
We will discuss this in the recipe 'Configuring for production deployment'
in Chapter 10.

https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.com/manual/administration/production-notes/#kernel-and-file-systems

Performance Tuning

[66]

Measuring disk I/O performance with
mongoperf
By now, you should have a fair idea of the importance of disk I/O and how it directly
impacts your database performance. MongoDB provides a nifty little utility called
mongoperf that allows us to quickly measure disk I/O performance.

Getting ready
For this recipe, we only need the mongoperf utility, which is available in the bin directory
of your MongoDB installation.

How to do it...
Measure the read throughput with mmf disabled:1.

root@ubuntu:~# echo "{ recSizeKB: 8, nThreads: 12, fileSizeMB:
10000, r: true, mmf: false }" | mongoperf

You will get the following result:

mongoperf use -h for help
parsed options:
{ recSizeKB: 8, nThreads: 12, fileSizeMB: 10000, r: true, mmf:
false }
creating test file size:10000MB ...
1GB...
2GB...
3GB...
4GB...
5GB...
6GB...
7GB...
8GB...
9GB...
testing...
options:{ recSizeKB: 8, nThreads: 12, fileSizeMB: 10000, r: true,
mmf: false }
wthr 12
new thread, total running : 1
read:1 write:0
19789 ops/sec 77 MB/sec

Performance Tuning

[67]

19602 ops/sec 76 MB/sec
19173 ops/sec 74 MB/sec
19300 ops/sec 75 MB/sec
18838 ops/sec 73 MB/sec
19494 ops/sec 76 MB/sec
19579 ops/sec 76 MB/sec
19002 ops/sec 74 MB/sec
new thread, total running : 2
<---- output truncated --->
new thread, total running : 12
read:1 write:0
read:1 write:0
read:1 write:0
read:1 write:0
40544 ops/sec 158 MB/sec
40237 ops/sec 157 MB/sec
40463 ops/sec 158 MB/sec
40463 ops/sec 158 MB/sec

In another Terminal window, run iostat to confirm the disk utilization as2.
follows:

Measure the read throughput with mmf enabled and a payload larger than the3.
server's total memory shown as follows:

root@ubuntu:~# echo "{ recSizeKB: 8, nThreads: 12, fileSizeMB:
10000, r: true, mmf: true }" | mongoperf

The following result is obtained:

mongoperf
 use -h for help
 parsed options:
 { recSizeKB: 8, nThreads: 12, fileSizeMB: 10000, r: true, mmf:
true }
 creating test file size:10000MB ...
 1GB...
 2GB...

Performance Tuning

[68]

 3GB...
 4GB...
 5GB...
 6GB...
 7GB...
 8GB...
 9GB...
 testing...
 options:{ recSizeKB: 8, nThreads: 12, fileSizeMB: 10000, r: true,
mmf: true }
 wthr 12
 new thread, total running : 1
 read:1 write:0
 8107 ops/sec
 9253 ops/sec
 9258 ops/sec
 9290 ops/sec
 9088 ops/sec
 <---- output truncated --->
 new thread, total running : 12
 read:1 write:0
 read:1 write:0
 read:1 write:0
 read:1 write:0
 9430 ops/sec
 9668 ops/sec
 9804 ops/sec
 9619 ops/sec
 9371 ops/sec

Measure the read throughput with mmf enabled and a payload slightly less than4.
the systems total memory:

root@ubuntu:~# echo "{ recSizeKB: 8, nThreads: 12, fileSizeMB: 400,
r: true, mmf: true }" | mongoperf

You will see the following:

mongoperf
 use -h for help
 parsed options:
 { recSizeKB: 8, nThreads: 12, fileSizeMB: 400, r: true, mmf: true
}
 creating test file size:400MB ...
 testing...
 options:{ recSizeKB: 8, nThreads: 12, fileSizeMB: 400, r: true,
mmf: true }
 wthr 12

Performance Tuning

[69]

 new thread, total running : 1
 read:1 write:0
 2605344 ops/sec
 4918429 ops/sec
 4720891 ops/sec
 4766924 ops/sec
 4693762 ops/sec
 4810953 ops/sec
 4785765 ops/sec
 4839164 ops/sec
 <---- output truncated --->
 new thread, total running : 12
 read:1 write:0
 read:1 write:0
 read:1 write:0
 read:1 write:0
 4835022 ops/sec
 4962848 ops/sec
 4945852 ops/sec
 4945882 ops/sec
 4970441 ops/sec

How it works...
The mongoperf utility takes parameters in the form of a JSON file. We can either provide
this configuration in the form of a file or simply pipe the configuration to mongoperf's
stdin. To view the available options of mongoperf simply run mongoperf -h and obtain
the following:

usage:
 mongoperf < myjsonconfigfile
 {
 nThreads:<n>, // number of threads (default 1)
 fileSizeMB:<n>, // test file size (default 1MB)
 sleepMicros:<n>, // pause for sleepMicros/nThreads between each
operation (default 0)
 mmf:<bool>, // if true do i/o's via memory mapped files (default
false)
 r:<bool>, // do reads (default false)
 w:<bool>, // do writes (default false)
 recSizeKB:<n>, // size of each write (default 4KB)
 syncDelay:<n> // secs between fsyncs, like --syncdelay in mongod.
(default 0/never)
 }

Performance Tuning

[70]

In step 1, we pass a handful of parameters to mongoperf. Let's take a look at them:

recSizeKB: The size of each record that would be written or read from the
sample dataset. In our example, we are using an 8 KB record size.
nThreads: The number of concurrent threads performing the (read/write)
operations. In our case, it is set to 12.
fileSizeMB: The size of the file to be read or written to. We are setting this to
roughly 10 GB
r: By indicating r:true, we will only be performing read operations. You can
use w:true to test write operations or both.
mmf: It is memory mapped file format. Disabling mmf causes mongoperf to bypass
the file buffer and perform the operation directly on the disk. In order to truly test
the underlying physical I/O, we are disabling mmf by setting it to false. In the
subsequent steps, we will set it to true.

As we fire up the mongoperf utility, mongoperf first tries to create a roughly 10 GB file on
the disk. Once created, it starts one thread and slowly ramps up to 12 (nThreads). You can
clearly see the increase in read operations per second as the number of threads increases.
Depending on your disk's capabilities, you should expect to reach the maximum IOPS limit
pretty soon. This can be observed, in step 2, by running the iostat command and
observing the %util column. Once it reaches 100%, you can assume that the disk is peaking
at its maximum operating limit.

In step 3, we run the same test but this time with mmf set to true. Here, we are attempting to
test the benefits of memory mapping by not reading the data from memory and reading it
from the physical disk instead. However, you can see that the performance is not as high as
we would expect. In fact, it is drastically lower than the IOPS achieved when reading from
disk. The primary reason is that our working file is 10 GB in size, whereas my VM's
memory is only 1 GB. As the entire dataset cannot fit in memory, mongoperf has to
routinely seek data from the disk. This is more suboptimal when the reads are random, and
this can be observed in the output. In step 4, we confirm our theory by running the test
again but this time, with a fileSize of 400 MB, which is smaller than the available
memory. As you can see, the number of IOPS is drastically higher than the previous run,
confirming that it is extremely important that your working dataset fits in your system's
memory.

Performance Tuning

[71]

So there you have it, a simple way to test your system's IOPS using the mongoperf utility.
Although we only tested read operations, I would strongly urge you to test write as well as
read/write operations when testing your systems. Additionally, you should also perform
mmf enabled tests to give you an idea of what would be an adequate sized working set that
you can hold on a given server.

Finding slow running queries and operations
In this recipe, we will be looking at how to capture queries that have longer execution
times. By identifying slow running queries, you can work towards implementing
appropriate database indexes or even consider optimizing the application code.

Getting ready
Assuming that you are already running a MongoDB server, we will be importing a dataset
of around 100,000 records that are available in the form of a CSV file called
chapter_2_mock_data.csv. You can download this file from the Packt website.

How to do it...
Import the sample data into the MongoDB server:1.

mongoimport --headerline --ignoreBlanks --type=csv -d mydb -c
mockdata -h localhost chapter_2_mock_data.csv

This will give us the following result:

2017-06-23T08:12:02.122+0530 connected to: localhost
2017-06-23T08:12:03.144+0530 imported 100000 documents

Connect to the MongoDB instance and open a MongoDB shell:2.

mongo localhost

Performance Tuning

[72]

Check that the documents are in the right place:3.

> use mydb
switched to db mydb
> db.mockdata.count()
100000

Enable profiling for slow queries:4.

> db.setProfilingLevel(1, 20)
{ "was" : 0, "slowms" : 20, "ok" : 1 }

Run a simple find query as follows:5.

> db.mockdata.find({first_name: "Pam"}).count()
10

Check the profiling collection:6.

> db.system.profile.find().pretty()

The following result is obtained:

{
 "op" : "command",
 "ns" : "mydb.mockdata",
 "command" : {
 "count" : "mockdata",
 "query" : {
 "first_name" : "Pam"
 },
 "fields" : {

 }
 },
 "keysExamined" : 0,
 "docsExamined" : 100000,
 "numYield" : 781,
 "locks" : {
 "Global" : {
 "acquireCount" : {
 "r" : NumberLong(1564)
 }
 },
 "Database" : {
 "acquireCount" : {
 "r" : NumberLong(782)
 }

Performance Tuning

[73]

 },
 "Collection" : {
 "acquireCount" : {
 "r" : NumberLong(782)
 }
 }
 },
 "responseLength" : 29,
 "protocol" : "op_command",
 "millis" : 37,
 "planSummary" : "COLLSCAN",
 "execStats" : {
 "stage" : "COUNT",
 "nReturned" : 0,
 "executionTimeMillisEstimate" : 26,
 "works" : 100002,
 "advanced" : 0,
 "needTime" : 100001,
 "needYield" : 0,
 "saveState" : 781,
 "restoreState" : 781,
 "isEOF" : 1,
 "invalidates" : 0,
 "nCounted" : 10,
 "nSkipped" : 0,
 "inputStage" : {
 "stage" : "COLLSCAN",
 "filter" : {
 "first_name" : {
 "$eq" : "Pam"
 }
 },
 "nReturned" : 10,
 "executionTimeMillisEstimate" : 26,
 "works" : 100002,
 "advanced" : 10,
 "needTime" : 99991,
 "needYield" : 0,
 "saveState" : 781,
 "restoreState" : 781,
 "isEOF" : 1,
 "invalidates" : 0,
 "direction" : "forward",
 "docsExamined" : 100000
 }
 },
 "ts" : ISODate("2017-07-07T03:26:57.818Z"),
 "client" : "192.168.200.1",

Performance Tuning

[74]

 "appName" : "MongoDB Shell",
 "allUsers" : [],
 "user" : ""
 }

How it works...
We begin by importing a fairly large dataset using the mongoimport utility, as we did in
the Working with indexes recipe in Chapter 2, Understanding and Managing Indexes. Next, in
steps 2 and step 3, we start the MongoDB shell and check that our documents were inserted.

In step 4, we enable database profiling by running the db.setProfilingLevel(1, 20)
command. Database profiling is a feature available in MongoDB that allows you to log slow
queries or operations and profiling information related to the operation. MongoDB allows
three profiling levels:

Level 0: Disable database profiling
Level 1: Log slow queries
Level 2: Log slow operations

By default, profiling for all databases is set to level 0. This can be confirmed by running the
following command:

db.getProfilingStatus()
{ "was" : 0, "slowms" : 100 }

The was field indicates the current profiling level, whereas the slowms field indicates the
maximum allowed execution time (in milliseconds) for operations. All operations taking
longer than the slowms threshold will be recorded by the database profiler. In our recipe,
we set the profiling level to 1, indicating that we want the profiling level to record only slow
queries, and the second parameter, 20, indicates that any query taking longer than 20 ms
should be recorded.

In step 5, we run a simple query to count the number of documents that have first_name
= 'Pam'. As this is not an indexed collection, the server will have to scan through all
documents, which hopefully takes more than 20 ms. Once the profiler's threshold is crossed
(in our case, 20 ms), the data is stored in the system.profile collection.

Performance Tuning

[75]

In step 6, we query the system.profile collection to find all operations captured by the
profiling database. Each document in this collection captures a lot of information regarding
the query. A few of them are as follows:

client: The IP address of the connecting client.
appName: This is a string passed by the MongoDB driver that can help identify
the connecting app. It's extremely helpful if you have multiple applications
talking to the same database. In our example, this string was "MongoDB Shell",
which was set by mongo-shell.
user: The authenticated user who ran the operation. This can be empty if no
authentication was used.
millis: The time taken, in milliseconds, for the entire operation to finish.
command: The command for the given operation.
ns: The namespace on which the command was run. Its format is
<database>.<collection>, so in our example it was run on the mydb
database's mockdata collection.

An exhaustive list can be found in MongoDB's official documentation, https:/ /docs.
mongodb.com/manual/ reference/ database- profiler/ .
Considering the wealth of information collected by the database profiler, it should be very
easy not only to debug slow queries but even monitor the collection to alert on patterns
(more on this in Chapter 8, Monitoring MongoDB).

There's more...
If, due to sheer boredom or just curiosity, you happened to inspect the system.profile
collection, you will note that it is a capped collection with a size of 1 MB:

db.system.profile.stats()

The result is as follows:

{
 "ns" : "mydb.system.profile",
 "size" : 0,
 "count" : 0,
 "numExtents" : 1,
 "storageSize" : 1048576,
 "lastExtentSize" : 1048576,
 "paddingFactor" : 1,
 "paddingFactorNote" : "paddingFactor is unused and unmaintained in

https://docs.mongodb.com/manual/reference/database-profiler/
https://docs.mongodb.com/manual/reference/database-profiler/
https://docs.mongodb.com/manual/reference/database-profiler/
https://docs.mongodb.com/manual/reference/database-profiler/
https://docs.mongodb.com/manual/reference/database-profiler/
https://docs.mongodb.com/manual/reference/database-profiler/
https://docs.mongodb.com/manual/reference/database-profiler/
https://docs.mongodb.com/manual/reference/database-profiler/
https://docs.mongodb.com/manual/reference/database-profiler/
https://docs.mongodb.com/manual/reference/database-profiler/
https://docs.mongodb.com/manual/reference/database-profiler/
https://docs.mongodb.com/manual/reference/database-profiler/
https://docs.mongodb.com/manual/reference/database-profiler/
https://docs.mongodb.com/manual/reference/database-profiler/
https://docs.mongodb.com/manual/reference/database-profiler/
https://docs.mongodb.com/manual/reference/database-profiler/
https://docs.mongodb.com/manual/reference/database-profiler/

Performance Tuning

[76]

3.0. It remains hard coded to 1.0 for compatibility only.",
 "userFlags" : 1,
 "capped" : true,
 "max" : NumberLong("9223372036854775807"),
 "maxSize" : 1048576,
 "nindexes" : 0,
 "totalIndexSize" : 0,
 "indexSizes" : {
 },
 "ok" : 1
 }

This size may be sufficient for most cases, but if you need to increase the size of this
collection, here is how to do it.

First, we disable profiling:

> db.setProfilingLevel(0)
{ "was" : 1, "slowms" : 100, "ok" : 1 }

Next, we drop the system.profile collection and create a new capped collection with a
size of 10 MB:

> db.createCollection('system.profile', {capped: true, size: 10485760})
{ "ok" : 1 }

Finally, enable profiling:

> db.setProfilingLevel(1,20)
{ "was" : 0, "slowms" : 100, "ok" : 1 }

That's it! Your system.profile collection's size is now 10 MB.

Storage considerations when using Amazon
EC2
Amazon Web Services (AWS) provides a variety of instances in their Elastic Compute
Cloud (EC2) offerings. With each type of EC2 instance, there are two distinct ways to store
data: instance store and Elastic Block Storage (EBS).

Performance Tuning

[77]

Instance store refers to an ephemeral disk that is available as a block device to the instance
and is physically present on the host of the instance. By being available on the same host,
these disks provide extremely high throughput. However, instance stores are ephemeral
and thus provide no guarantees of data retention if an instance is terminated, stopped, or
the disk fails. This is clearly not suitable for a single node MongoDB instance, as you might
lose your data any time the instance goes down. Not all hope is lost, though. We can use a
three or more node replica set and ensure the redundancy of data. For a more robust
deployment, we can consider having an extra node in the replica set cluster that uses EBS
and has a priority set to zero. This ensures that the node is always in sync with the data and
at the same time is not used for serving actual queries.

EBS is network-attached storage that can be used as a block device and can be attached to
any AWS instance. EBS volumes provide data persistence and can be reattached to any
instance running in the same availability zone of the AWS region. There are various forms
of EBS volume available, such as standard general purpose SSDs, Provisioned IOPS
(PIOPS), and high throughput magnetic disks. As magnetic disks are more focused on
high-throughput data streams mostly performing sequential reads on large files, they are
not appropriate for MongoDB.

General purpose SSDs provide submillisecond latencies with a minimum baseline of 100
IOPS. It also provides the ability to burst up to 10,000 IOPS depending on the volume type
and has a rather unique 3 IOPS per GB burst bucket system, and I would rather not go into
too much detail. PIOPS is another EBS offering, in that you can choose a minimum
guaranteed IOPS and are billed accordingly. For most small to medium sized workloads,
general purpose SSDs should do the trick. However, when provisioning EBS volumes, we
need to keep in mind the network utilization.

As EBS volumes are accessed over the network, they tend to share the same network link as
that of the instance. This may not be ideal for a database, as the application traffic to the
instance would then be contending with that of the EBS volumes. AWS does provide EBS
optimized EC2 instances that use a different network path so that your instance traffic does
not affect your disk throughput.

Performance Tuning

[78]

Another significant optimization technique is to use multiple EBS volumes for different
parts of your MongoDB data. For instance, we can have separate EBS volumes for the actual
data, the database journal, the logs, and the backups. This separation of EBS volumes would
ensure that journals, logs, and backup operations do not impinge on the throughput of the
actual data.

Lastly, striping volumes over EBS (RAID 0) may prove to increase your overall volume's
IOPS capacity. Although the official MongoDB documentation does not recommend using
RAID 0 over EBS, I suggest testing your workload against RAID 0 EBS volumes to
determine if this suits your needs.

Performance Tuning

[79]

More on EBS can be found here: http:/ / docs.aws. amazon. com/AWSEC2/ latest/ UserGuide/
EBSVolumeTypes.html.

Figuring out the size of a working set
In this recipe, we will be looking at what a working set is, why is it important, and how to
calculate it.

As you probably know, MongoDB relies heavily on caching objects and indexes in RAM.
The primary reason to do so is to leverage the speed at which data can be retrieved from
RAM as compared to physical disks. Theoretically, a working set is the amount of data
accessed by your clients. For performance reasons, it is highly recommended that the server
should have sufficient RAM to fit the entire working set while keeping sufficient room for
other operations and services running on the same server.

At a high level, the working set comprises the most frequently accessed data and indexes.
To get an idea of your database's size, you can run the db.stats() command on the
MongoDB shell:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html

Performance Tuning

[80]

db.stats()

You will get the following result:

{
 "db" : "mydb",
 "collections" : 5,
 "views" : 0,
 "objects" : 100009,
 "avgObjSize" : 239.83617474427302,
 "dataSize" : 23985776,
 "storageSize" : 48304128,
 "numExtents" : 12,
 "indexes" : 2,
 "indexSize" : 3270400,
 "fileSize" : 67108864,
 "nsSizeMB" : 16,
 "extentFreeList" : {
 "num" : 1,
 "totalSize" : 1048576
 },
 "dataFileVersion" : {
 "major" : 4,
 "minor" : 22
 },
 "ok" : 1
 }

In the output, dataSize represents the size of entire (uncompressed) data, of the given
database and indexSize represents the total size of all indexes in the database. In theory,
we want to have enough RAM to fit all the data and indexes. This would result in the
fewest seeks from the physical storage and provide an optimal read performance. However,
for all practical purposes, this scenario may not be true in all cases. Say, for example, you
have 24 GB of data and about 2 GB of indexes; it is recommended that you go with a server
that has 32 GB RAM. But what if your application usage is such that you barely access
about 4 GB of data? In this case, having an over provisioned server may not be an ideal
choice. Similarly, if you have a smaller working set, say 6 GB, and you host it on an server
with 8 GB RAM, if the rate at which the working set increases is considerably fast, you may
soon run out of memory to fit the working set. My point is, while understanding the size of
a working set is an absolutely must, you should not underestimate the importance of
monitoring the actual usage of the data.

MongoDB maintains a thread per connection that consumes 1 MB of RAM.
Make sure you factor this in when doing capacity planning for your
database server.

Performance Tuning

[81]

There's more...
From version 3.0, MongoDB has provided detailed statistics of the WiredTiger storage
engine, especially the cache. Here is the output of a production system that has 16 GB of
memory. The approximate size of the working set is 600 MB and the index size is 3 MB:

> db.serverStatus().wiredTiger.cache
{
 "tracked dirty bytes in the cache" : 0,
 "tracked bytes belonging to internal pages in the cache" : 299485,
 "bytes currently in the cache" : 641133907,
 "tracked bytes belonging to leaf pages in the cache" : 7515893283,
 "maximum bytes configured" : 7516192768,
 "tracked bytes belonging to overflow pages in the cache" : 0,
 "bytes read into cache" : 583725713,
 "bytes written from cache" : 711362477,
 <-- output truncated -->
 "tracked dirty pages in the cache" : 0,
 "pages currently held in the cache" : 3674,
 "pages read into cache" : 3784,
 "pages written from cache" : 117710
 }

By default, WiredTiger uses 50% of RAM (minus 1 GB) or 256 MB for its internal cache. In
the preceding output, this can be seen in the value of maximum bytes configured, which
is roughly 7 GB on a 16 GB RAM server. This parameter can be changed by setting the
wiredTiger.engineConfig.cacheSizeGB parameter in the MongoDB configuration file,
or by setting wiredTigerEngineRuntimeConfig.

You should keep an eye on tracked dirty bytes in the cache. If this increases
consistently to a high number, you may need to look at changing the cache size. Here's a
simple rule of thumb:

tracked dirty bytes in the cache < bytes currently in the cache < maximum
bytes configured

4
High Availability with

Replication
In this chapter, we will cover the following topics:

Initializing a new replica set
Adding a node to the replica set
Removing a node from the replica set
Working with an arbiter
Switching between primary and secondary nodes
Changing replica set configuration
Changing priority to replica set nodes

Introduction
This chapter aims to get you started with MongoDB replica sets. A replica set is essentially a
group of MongoDB servers that form a quorum and replicate data across all nodes. Such a
setup not only provides a high availability cluster but also allows the distribution of
database reads across multiple nodes. A replica consists of a single primary node along
with secondary nodes.

High Availability with Replication

[83]

The primary node accepts all writes to the database, and each write operation is replicated
to the secondary nodes through replication of operation logs, which are also known as
oplogs.

A node is determined as primary by way of an election between the nodes in the replica set.
Thus, any node within the cluster can become a primary node at any point. It is important
to have an odd number of nodes in the replica set to ensure that the election process does
not result in a tie. If you choose to have an even number of nodes in the replica set,
MongoDB provides a non-resource intensive arbiter server that can perform heartbeats and
take part in the election process.

In this chapter, we will be looking at various aspects of setting up and managing replica
sets.

Initializing a new replica set
In this recipe, we will be setting up the first node of a three node replica set on a single
server. In a production setup, this should be on three physically separate servers.

Getting ready
By now, I am assuming you are familiar with installing MongoDB and have it ready.
Additionally, we will create individual directories for each MongoDB instance:

mkdir -p /data/server{1,2,3}/{conf,logs,db}

High Availability with Replication

[84]

This should create three parent directories: /data/server1, /data/server2, and
/data/server3, each containing subdirectories named conf, logs, and db. We will be
using this directory format throughout the chapter.

How to do it...
Start the first node in the replica set:1.

mongod --dbpath /data/server1/db --replSet MyReplicaSet

Open a new Terminal window, connect to the replica set node using the2.
MongoDB shell, and check the replica set's status:

rs.status()
{
 "info" : "run rs.initiate(...) if not yet done for the set",
 "ok" : 0,
 "errmsg" : "no replset config has been received",
 "code" : 94,
 "codeName" : "NotYetInitialized"
}

Initialize the replica set:3.

rs.initiate()
{
 "info2" : "no configuration specified. Using a default
configuration for the set",
 "me" : "vagrant-ubuntu-trusty-64:27017",
 "ok" : 1
}

Check the replica set's status again:4.

rs.status()
{
 "set" : "MyReplicaSet",
 "date" : ISODate("2017-08-20T05:28:26.827Z"),
 "myState" : 1,
 "term" : NumberLong(1),
 "heartbeatIntervalMillis" : NumberLong(2000),
 "optimes" : {
 "lastCommittedOpTime" : {
 "ts" : Timestamp(1503206903, 1),
 "t" : NumberLong(1)

High Availability with Replication

[85]

 },
 "appliedOpTime" : {
 "ts" : Timestamp(1503206903, 1),
 "t" : NumberLong(1)
 },
 "durableOpTime" : {
 "ts" : Timestamp(1503206903, 1),
 "t" : NumberLong(1)
 }
 },
 "members" : [
 {
 "_id" : 0,
 "name" : "vagrant-ubuntu-trusty-64:27017",
 "health" : 1,
 "state" : 1,
 "stateStr" : "PRIMARY",
 "uptime" : 35,
 "optime" : {
 "ts" : Timestamp(1503206903, 1),
 "t" : NumberLong(1)
 },
 "optimeDate" : ISODate("2017-08-20T05:28:23Z"),
 "infoMessage" : "could not find member to sync from",
 "electionTime" : Timestamp(1503206902, 2),
 "electionDate" : ISODate("2017-08-20T05:28:22Z"),
 "configVersion" : 1,
 "self" : true
 }
],
 "ok" : 1
 }

Switch back to the mongod Terminal window and inspect the server logs:5.

2017-08-20T05:28:16.928+0000 I NETWORK [thread1] connection
accepted from 192.168.200.1:55765 #1 (1 connection now open)
 2017-08-20T05:28:16.929+0000 I NETWORK [conn1] received client
metadata from 192.168.200.1:55765 conn1: { application: { name:
"MongoDB Shell" }, driver: { name: "MongoDB Internal Client",
version: "3.4.4" }, os: { type: "Darwin", name: "Mac OS X",
architecture: "x86_64", version: "14.5.0" } }
 2017-08-20T05:28:22.625+0000 I COMMAND [conn1] initiate : no
configuration specified. Using a default configuration for the set
 2017-08-20T05:28:22.625+0000 I COMMAND [conn1] created this
configuration for initiation : { _id: "MyReplicaSet", version: 1,
members: [{ _id: 0, host: "vagrant-ubuntu-trusty-64:27017" }] }
 2017-08-20T05:28:22.625+0000 I REPL [conn1] replSetInitiate admin

High Availability with Replication

[86]

command received from client
 2017-08-20T05:28:22.625+0000 I REPL [conn1] replSetInitiate config
object with 1 members parses ok
 2017-08-20T05:28:22.625+0000 I REPL [conn1] ******
 2017-08-20T05:28:22.625+0000 I REPL [conn1] creating replication
oplog of size: 1628MB...
 2017-08-20T05:28:22.628+0000 I STORAGE [conn1] Starting
WiredTigerRecordStoreThread local.oplog.rs
 2017-08-20T05:28:22.628+0000 I STORAGE [conn1] The size storer
reports that the oplog contains 0 records totaling to 0 bytes
 2017-08-20T05:28:22.628+0000 I STORAGE [conn1] Scanning the oplog
to determine where to place markers for truncation
 2017-08-20T05:28:22.634+0000 I REPL [conn1] ******
 2017-08-20T05:28:22.646+0000 I INDEX [conn1] build index on:
admin.system.version properties: { v: 2, key: { version: 1 }, name:
"incompatible_with_version_32", ns: "admin.system.version" }
 2017-08-20T05:28:22.646+0000 I INDEX [conn1] building index using
bulk method; build may temporarily use up to 500 megabytes of RAM
 2017-08-20T05:28:22.646+0000 I INDEX [conn1] build index done.
scanned 0 total records. 0 secs
 2017-08-20T05:28:22.646+0000 I COMMAND [conn1] setting
featureCompatibilityVersion to 3.4
 2017-08-20T05:28:22.647+0000 I REPL [conn1] New replica set config
in use: { _id: "MyReplicaSet", version: 1, protocolVersion: 1,
members: [{ _id: 0, host: "vagrant-ubuntu-trusty-64:27017",
arbiterOnly: false, buildIndexes: true, hidden: false, priority:
1.0, tags: {}, slaveDelay: 0, votes: 1 }], settings: {
chainingAllowed: true, heartbeatIntervalMillis: 2000,
heartbeatTimeoutSecs: 10, electionTimeoutMillis: 10000,
catchUpTimeoutMillis: 60000, getLastErrorModes: {},
getLastErrorDefaults: { w: 1, wtimeout: 0 }, replicaSetId:
ObjectId('59991df64db063a571ae8680') } }
 2017-08-20T05:28:22.647+0000 I REPL [conn1] This node is vagrant-
ubuntu-trusty-64:27017 in the config
 2017-08-20T05:28:22.647+0000 I REPL [conn1] transition to STARTUP2
 2017-08-20T05:28:22.647+0000 I REPL [conn1] Starting replication
storage threads
 2017-08-20T05:28:22.647+0000 I REPL [conn1] Starting replication
fetcher thread
 2017-08-20T05:28:22.647+0000 I REPL [conn1] Starting replication
applier thread
 2017-08-20T05:28:22.647+0000 I REPL [conn1] Starting replication
reporter thread
 2017-08-20T05:28:22.647+0000 I REPL [rsSync] transition to
RECOVERING
 2017-08-20T05:28:22.648+0000 I REPL [rsSync] transition to
SECONDARY
 2017-08-20T05:28:22.648+0000 I REPL [rsSync] conducting a dry run

High Availability with Replication

[87]

election to see if we could be elected
 2017-08-20T05:28:22.648+0000 I REPL [ReplicationExecutor] dry
election run succeeded, running for election
 2017-08-20T05:28:22.654+0000 I REPL [ReplicationExecutor] election
succeeded, assuming primary role in term 1
 2017-08-20T05:28:22.654+0000 I REPL [ReplicationExecutor]
transition to PRIMARY
 2017-08-20T05:28:22.654+0000 I REPL [ReplicationExecutor] Entering
primary catch-up mode.
 2017-08-20T05:28:22.654+0000 I REPL [ReplicationExecutor] Exited
primary catch-up mode.
 2017-08-20T05:28:23.649+0000 I REPL [rsSync] transition to primary
complete; database writes are now permitted

How it works...
In step 1, we begin by starting the mongod process with the two parameters. First, we
provide the database path with --dbpath, which is quite standard with all mongod
processes. Next, we provide the --replSet parameter with the value MyReplicaSet. This
parameter starts the mongod process with the explicit instruction that it will be running a
replica set node and the unique name for this replica set is MyReplicaSet. MongoDB uses
naming constructs to identify a replica set cluster. This can be changed in the future but
would require you to shut down all the nodes within the cluster.

In step 2, we open a different Terminal window and start the mongo shell that is connected
to our aforementioned node. We check the replica set's status by running the rs.status()
command. If you ever happen to work with replica sets, rs.status() will become the
most frequent command you will use for eons to come. I would also like to point out that all
major replica set operations are available in the rs.<command> format. To view your
options, type rs. (with the trailing dot) and press the Tab key twice.

OK, coming back to the output of rs.status(), we can see that MongoDB is indicating
that our replica set has not been initialized. We do so by running the rs.initiate()
command in step 3. At this point, if you keep pressing the Enter key (without any
parameters), you can see your mongo shell show the transition of starting the node as a
SECONDARY and then PRIMARY:

rs.initiate()
{
 "info2" : "no configuration specified. Using a default configuration for
the set",
 "me" : "vagrant-ubuntu-trusty-64:27017",
 "ok" : 1

High Availability with Replication

[88]

 }
 MyReplicaSet:SECONDARY>
 MyReplicaSet:PRIMARY>
 MyReplicaSet:PRIMARY>

From now on, every time you connect to this node, you will see the replica set name
followed by the node's status. Next, we run the rs.status() command again and this
time get the detailed status of the replica set's configuration. Let's go through some of the
key values of the output:

set: This indicates the name of the replica set.
myState: This indicates the status of the current node in the replica set. The most
common states you will encounter are as follows:

State
number

State Decription

0 STARTUP The node is parsing configuration and is starting up

1 PRIMARY The node is the primary member of the cluster

2 SECONDARY The node is a secondary member of the cluster

3 RECOVERING The node is completing either rollback or resync after starting
up

7 ARBITER The node is an arbiter, it does not store any data

8 DOWN The node is marked as DOWN usually when it is unreachable

10 REMOVED The node has been removed from the replica set configuration

There are more MongoDB replica set states; they can be found at https:/ /
docs. mongodb. com/ manual/ reference/ replica- states/ .

heartbeatIntervalMillis: This indicates the frequency of health checks
between nodes in milliseconds.
members: An array containing a list of members currently in the replica set. Each
member entry is accompanied by details about the member, such as its name,
state, up time, and an information message showing its current state. We will be
looking at them more closely in future recipes in this chapter. For now, I just
want you to get acquainted with this format.

https://docs.mongodb.com/manual/reference/replica-states/
https://docs.mongodb.com/manual/reference/replica-states/
https://docs.mongodb.com/manual/reference/replica-states/
https://docs.mongodb.com/manual/reference/replica-states/
https://docs.mongodb.com/manual/reference/replica-states/
https://docs.mongodb.com/manual/reference/replica-states/
https://docs.mongodb.com/manual/reference/replica-states/
https://docs.mongodb.com/manual/reference/replica-states/
https://docs.mongodb.com/manual/reference/replica-states/
https://docs.mongodb.com/manual/reference/replica-states/
https://docs.mongodb.com/manual/reference/replica-states/
https://docs.mongodb.com/manual/reference/replica-states/
https://docs.mongodb.com/manual/reference/replica-states/
https://docs.mongodb.com/manual/reference/replica-states/
https://docs.mongodb.com/manual/reference/replica-states/
https://docs.mongodb.com/manual/reference/replica-states/
https://docs.mongodb.com/manual/reference/replica-states/

High Availability with Replication

[89]

Once we execute the rs.initiate() command, MongoDB attempts to figure out any
configuration parameters associated with this replica set (in the form of a config file or
mongod command-line flags) and initialized the replica set. In our case, we only mentioned
the name of the replica set MyReplicaSet as a mongod parameter.

In step 5, by looking at the mongod process logs, we can observe the various stages the
application goes through, while trying to bring up a node in a replica set. The information is
pretty verbose, so I will not go into detail.

Adding a node to the replica set
In this recipe, we will be looking at how to add a node to an existing replica set.

Getting ready
Ensure that you have a single node replica set running as mentioned in the first recipe of
this chapter.

How to do it...
Assuming you have the node from the previous recipe already running, open a1.
new Terminal and start a new replica set node:

mongod --dbpath /data/server2/db --replSet MyReplicaSet --port
27018

In another Terminal window, connect to the primary server using mongo shell2.
(replace the IP with that of your server's):

mongo mongodb://192.168.200.200:27017

Check the number of members in the replica set:3.

rs.status()['members']
 [
 {
 "_id" : 0,
 "name" : "vagrant-ubuntu-trusty-64:27017",
 "health" : 1,
 "state" : 1,

High Availability with Replication

[90]

 "stateStr" : "PRIMARY",
 "uptime" : 36,
 "optime" : {
 "ts" : Timestamp(1503664489, 1),
 "t" : NumberLong(3)
 },
 "optimeDate" : ISODate("2017-08-25T12:34:49Z"),
 "infoMessage" : "could not find member to sync from",
 "electionTime" : Timestamp(1503664458, 1),
 "electionDate" : ISODate("2017-08-25T12:34:18Z"),
 "configVersion" : 1,
 "self" : true
 }
]

Add the new node to the replica set:4.

rs.add('192.168.200.200:27018')

Once again, check the members in the replica set:5.

{ "_id" : 0,
 "name" : "vagrant-ubuntu-trusty-64:27017",
 "health" : 1,
 "state" : 1,
 "stateStr" : "PRIMARY",
 "uptime" : 71,
 "optime" : {
 "ts" : Timestamp(1503664527, 1),
 "t" : NumberLong(3)
 },
 "optimeDate" : ISODate("2017-08-25T12:35:27Z"),
 "infoMessage" : "could not find member to sync from",
 "electionTime" : Timestamp(1503664458, 1),
 "electionDate" : ISODate("2017-08-25T12:34:18Z"),
 "configVersion" : 2,
 "self" : true
},
{
 "_id" : 1,
 "name" : "192.168.200.200:27018",
 "health" : 1,
 "state" : 0,
 "stateStr" : "STARTUP",
 "uptime" : 1,
 "optime" : {
 "ts" : Timestamp(0, 0),
 "t" : NumberLong(-1)

High Availability with Replication

[91]

 },
 "optimeDurable" : {
 "ts" : Timestamp(0, 0),
 "t" : NumberLong(-1)
 },
 "optimeDate" : ISODate("1970-01-01T00:00:00Z"),
 "optimeDurableDate" : ISODate("1970-01-01T00:00:00Z"),
 "lastHeartbeat" : ISODate("2017-08- 5T12:35:27.327Z"),
 "lastHeartbeatRecv" : ISODate("2017-08-5T12:35:27.378Z"),
 "pingMs" : NumberLong(0),
 "configVersion" : -2
}

How it works...
As mentioned earlier, this recipe assumes that you are already running the first (primary)
node in your replica set, as show in the previous recipe. In step 1, we start another instance
of mongod listening on a different port (27018). I just want to reiterate that as this is a test
setup we will be running all instances of mongod on the same server, but in a production
setup all replica set members should be running on separate servers.

In step 2, we look at the output of the rs.status() command, more importantly the
members array. As of now, although we have started a new instance, the primary replica set
node is not aware of its existence. Therefore, the list of members would only show one
member. Let's fix this.

In step 3, we run rs.add('192.168.200.200:27018') in the mongo shell, which is
connected to the primary node. The rs.add() method is a wrapper around the actual
replSetReconfig command in that it adds a node to the members array and reconfigures
the replica set. We will look into replica set reconfiguration in future recipes. Next, we look
again at the output of the rs.status() command. If you inspect the members array, you
will find our second member. If you have run the command soon after rs.add(...), you
may be able to see the following:

"_id" : 1,
"name" : "192.168.200.200:27018",
"health" : 1,
"state" : 0,
"stateStr" : "STARTUP",

The "state" : 0 string indicates that the member is parsing its configuration and starting
up. If you run the rs.status() command again, this should change to "state" : 2,
indicating that the node is a secondary node.

High Availability with Replication

[92]

Keep an eye on the configVersion key of each member. Every change in
the replica set's configuration increments the value of configVersion by
one. This can be handy for a members's current configuration state.

To finish off this recipe, I would like you to start another instance of mongod on port 27019
and add it to the cluster.

Removing a node from the replica set
In this recipe, we will be looking at how to remove a member from a replica set. If you have
done the previous two recipes in this chapter, this should be a breeze.

Getting ready
For this recipe, we will need a three node replica set. If you don’t have one ready, I suggest
referring to the first two recipes of this chapter.

How to do it...
Open the mongo shell and log in to one of the nodes. Run rs.status() to find1.
the primary node:

rs.status()['members']
[
 {
 "_id" : 0,
 "name" : "vagrant-ubuntu-trusty-64:27017",
 "health" : 1,
 "state" : 1,
 "stateStr" : "PRIMARY",
 "uptime" : 57933,
 "optime" : {
 "ts" : Timestamp(1503722389, 1),
 "t" : NumberLong(5)
 },
 "optimeDate" : ISODate("2017-08-26T04:39:49Z"),
 "electionTime" : Timestamp(1503721808, 1),
 "electionDate" : ISODate("2017-08-26T04:30:08Z"),
 "configVersion" : 3,

High Availability with Replication

[93]

 "self" : true
 },
 {
 "_id" : 1,
 "name" : "192.168.200.200:27018",
 "health" : 1,
 "state" : 2,
 "stateStr" : "SECONDARY",
 "uptime" : 51609,
 "optime" : {
 "ts" : Timestamp(1503722389, 1),
 "t" : NumberLong(5)
 },
 "optimeDurable" : {
 "ts" : Timestamp(1503722389, 1),
 "t" : NumberLong(5)
 },
 "optimeDate" : ISODate("2017-08-26T04:39:49Z"),
 "optimeDurableDate" : ISODate("2017-08-26T04:39:49Z"),
 "lastHeartbeat" : ISODate("2017-08-26T04:39:51.239Z"),
 "lastHeartbeatRecv" : ISODate("2017-08-
6T04:39:51.240Z"),
 "pingMs" : NumberLong(0),
 "syncingTo" : "vagrant-ubuntu-trusty-64:27017",
 "configVersion" : 3
 },
 {
 "_id" : 2,
 "name" : "192.168.200.200:27019",
 "health" : 1,
 "state" : 2,
 "stateStr" : "SECONDARY",
 "uptime" : 84,
 "optime" : {
 "ts" : Timestamp(1503722389, 1),
 "t" : NumberLong(5)
 },
 "optimeDurable" : {
 "ts" : Timestamp(1503722389, 1),
 "t" : NumberLong(5)
 },
 "optimeDate" : ISODate("2017-08-26T04:39:49Z"),
 "optimeDurableDate" : ISODate("2017-08-26T04:39:49Z"),
 "lastHeartbeat" : ISODate("2017-08-26T04:39:51.240Z"),
 "lastHeartbeatRecv" : ISODate("2017-08-
6T04:39:51.307Z"),
 "pingMs" : NumberLong(0),
 "syncingTo" : "192.168.200.200:27018",

High Availability with Replication

[94]

 "configVersion" : 3
 }
]

Run rs.remove() to remove the last node in the replica set:2.

rs.remove('192.168.200.200:27019')

Check the status of the replica set:3.

rs.status()['members']
[
 {
 "_id" : 0,
 "name" : "vagrant-ubuntu-trusty-64:27017",
 "health" : 1,
 "state" : 1,
 "stateStr" : "PRIMARY",
 "uptime" : 57998,
 "optime" : {
 "ts" : Timestamp(1503722449, 2),
 "t" : NumberLong(5)
 },
 "optimeDate" : ISODate("2017-08-26T04:40:49Z"),
 "electionTime" : Timestamp(1503721808, 1),
 "electionDate" : ISODate("2017-08-26T04:30:08Z"),
 "configVersion" : 4,
 "self" : true
 },
 {
 "_id" : 1,
 "name" : "192.168.200.200:27018",
 "health" : 1,
 "state" : 2,
 "stateStr" : "SECONDARY",
 "uptime" : 51673,
 "optime" : {
 "ts" : Timestamp(1503722449, 2),
 "t" : NumberLong(5)
 },
 "optimeDurable" : {
 "ts" : Timestamp(1503722449, 2),
 "t" : NumberLong(5)
 },
 "optimeDate" : ISODate("2017-08-26T04:40:49Z"),
 "optimeDurableDate" : ISODate("2017-08-26T04:40:49Z"),
 "lastHeartbeat" : ISODate("2017-08-26T04:40:55.956Z"),
 "lastHeartbeatRecv" : ISODate("2017-08-

High Availability with Replication

[95]

6T04:40:55.956Z"),
 "pingMs" : NumberLong(0),
 "syncingTo" : "vagrant-ubuntu-trusty-64:27017",
 "configVersion" : 4
 }
]

Connect to the third replica set node, which we removed, and check4.
rs.status():

rs.status()
{
 "state" : 10,
 "stateStr" : "REMOVED",
 "uptime" : 338,
> "optime" : {
 "ts" : Timestamp(1503722619, 1),
 "t" : NumberLong(5)
 },
 "optimeDate" : ISODate("2017-08-26T04:43:39Z"),
 "ok" : 0,
 "errmsg" : "Our replica set config is invalid or we are not a
member of it",
 "code" : 93,
 "codeName" : "InvalidReplicaSetConfig"
 }
 MyReplicaSet:OTHER>

How it works...
In step 1, we connect to one of the three replica set members and check the replica set status.
We want to ensure two things: one, that the connected node is primary, and that the node
that we want to remove is secondary.

You cannot remove a primary node from the replica set. You need to force
it into becoming secondary and then remove it. We will look more closely
at how to do this in the Switching between primary and secondary nodes recipe
in this chapter.

Now that we've determined that we are connected to the primary node, in step 2, we
remove one node from the replica set. By using rs.remove() with the IP and port of the
node, we remove the node from the replica set.

High Availability with Replication

[96]

In step 3, we confirm that the node is removed by running rs.status() to get the list of
configured nodes in the cluster. Finally, in step 4, we connect to the mongo shell of the node
that we just removed. As soon as you log in, you can observe that the console prompt
shows OTHER instead of PRIMARY or SECONDARY. Also, the rs.status() command's
output confirms that the node is in state 10 (REMOVED), indicating that this node is no longer
in the replica set cluster. At this point, I would also like you to go through the mongod logs
of this node and observe the sequence of events that occur when we run rs.remove():

2017-08-26T04:40:51.338+0000 I REPL [ReplicationExecutor] Cannot find
self in new replica set configuration; I must be removed; NodeNotFound: No
host described in new configuration 4 for replica set MyReplicaSet maps to
this node
2017-08-26T04:40:51.339+0000 I REPL [ReplicationExecutor] New replica
set config in use: { _id: "MyReplicaSet", version: 4, protocolVersion: 1,
members: [{ _id: 0, host: "vagrant-ubuntu-trusty-64:27017", arbiterOnly:
false, buildIndexes: true, hidden: false, priority: 1.0, tags: {},
slaveDelay: 0, votes: 1 }, { _id: 1, host: "192.168.200.200:27018",
arbiterOnly: false, buildIndexes: true, hidden:
false, priority: 1.0, tags: {}, slaveDelay: 0, votes: 1 }], settings: {
chainingAllowed: true, heartbeatIntervalMillis: 2000, heartbeatTimeoutSecs:
10, electionTimeoutMillis: 10000, catchUpTimeoutMillis: 60000,
getLastErrorModes: {}, getLastErrorDefaults: { w: 1, wtimeout: 0 },
replicaSetId: ObjectId('59991df64db063a571ae8680') } }
2017-08-26T04:40:51.339+0000 I REPL [ReplicationExecutor] This node is
not a member of the config
2017-08-26T04:40:51.339+0000 I REPL [ReplicationExecutor] transition to
REMOVED

As we ran rs.remove('192.168.200.200:27019') on the primary node, a new
configuration was generated. This configuration is sent to all new or existing nodes of the
replica set and the relevant changes are implemented. In the log output shown previously,
you can see that the replica set node got the new configuration and figured out that it had
been removed from the replica set cluster. It then reconfigured itself and transitioned to the
REMOVED state.

Working with an arbiter
In MongoDB, nodes within replica sets perform elections to select a primary node. To
ensure there is always a majority in the number of nodes, you can add an arbiter to the
replica set. An arbiter is a mongod instance that does not store data but is only involved in
voting during an election process. This can prove very useful, especially during network
partitions that result in conflicting votes.

High Availability with Replication

[97]

Getting ready
We can continue on from the previous recipe, in that all we need is a two node replica set.

How to do it...
Create directories for the arbiter process:1.

mkdir -p /data/arbiter/db

Start the arbiter process:2.

mongod --dbpath /data/arbiter/db --replSet MyReplicaSet --port
30000

Open a new Terminal window and connect to the primary node:3.

mongo mongodb://192.168.200.200:27017

Add the arbiter:4.

rs.addArb('192.168.200.200:30000')

Check the members of the replica set:5.

rs.status()['member']
[
{
 "_id" : 0,
 "name" : "vagrant-ubuntu-trusty-64:27017",
 "health" : 1,
 "state" : 1,
 "stateStr" : "PRIMARY",
 "uptime" : 61635,
 "optime" : {
 "ts" : Timestamp(1503726090, 1),
 "t" : NumberLong(8)
 },
 "optimeDate" : ISODate("2017-08-26T05:41:30Z"),
 "electionTime" : Timestamp(1503725438, 1),
 "electionDate" : ISODate("2017-08-26T05:30:38Z"),
 "configVersion" : 5,
 "self" : true
 },
 {

High Availability with Replication

[98]

 "_id" : 1,
 "name" : "192.168.200.200:27018",
 "health" : 1,
 "state" : 2,
 "stateStr" : "SECONDARY",
 "uptime" : 1214,
 "optime" : {
 "ts" : Timestamp(1503726090, 1),
 "t" : NumberLong(8)
 },
 "optimeDurable" : {
 "ts" : Timestamp(1503726090, 1),
 "t" : NumberLong(8)
 },
 "optimeDate" : ISODate("2017-08-26T05:41:30Z"),
 "optimeDurableDate" : ISODate("2017-08-26T05:41:30Z"),
 "lastHeartbeat" : ISODate("2017-08-26T05:41:32.024Z"),
 "lastHeartbeatRecv" :
ISODate("2017-08-26T05:41:30.034Z"),
 "pingMs" : NumberLong(0),
 "configVersion" : 5
 },
 {
 "_id" : 2,
 "name" : "192.168.200.200:30000",
 "health" : 1,
 "state" : 7,
 "stateStr" : "ARBITER",
 "uptime" : 3,
 "lastHeartbeat" : ISODate("2017-08-26T05:41:32.025Z"),
 "lastHeartbeatRecv" :
ISODate("2017-08-26T05:41:30.034Z"),
 "pingMs" : NumberLong(0),
 "configVersion" : 5
 }
]

High Availability with Replication

[99]

How it works...
We begin by creating the directories for the arbiter process. As mentioned in the beginning
of this recipe, an arbiter is nothing but a mongod process that will not store any data.
However, it does need to store some metadata about itself and hence a minimal amount of
state has to be maintained.

For this purpose, in step 2, we provide the --dbpath parameter with a location to store its
data along with an arbitrary port 30000.

In step 3, we connect to the primary node of our replica set, and in step 4, we use the
rs.addArb() wrapper to add the new arbiter.

High Availability with Replication

[100]

Next, in step 4, we check the status of the replica set; lo and behold, the mighty arbiter is
added to the replica set. If you look at the state and stateStr keys, you will see that this
member is set state to 7, which confirms it is an arbiter.

Switching between primary and secondary
nodes
In this recipe, we will be looking at how to force a primary node to become secondary and
vice versa. Let’s get to it then.

Getting ready
We need a three node replica set, preferably without an arbiter. If you have followed the
previous recipes, we should have three mongod instances running on the same instance on
three different ports, 27017, 27018, and 27019. In order to keep things simple, we will call
them node 1, node 2, and node 3 respectively. Here, we assume that node 1 is primary,
whereas node 2 and node 3 are secondary. In the first part of this recipe, we will force node
1 to become secondary. Assuming that node 3 gets elected as primary, in the second part of
the recipe, we will try to make node 1 primary.

How to do it...
Connect to the primary member (node 1) of the replica set:1.

mongo mongodb://192.168.200.200:27017

Force it to become secondary:2.

rs.stepDown()

Confirm the member is now secondary:3.

rs.isMaster()['ismaster']

High Availability with Replication

[101]

Log in to node 2, assuming it is secondary, and prevent it from getting elected:4.

mongo mongodb://192.168.200.200:27018
rs.freeze(120)

Log in to the newly elected primary node (node 3) of the replica set:5.

mongo mongodb://192.168.200.200:27019
rs.stepDown()

Force it to become secondary and prevent it from getting elected:6.

rs.freeze(120)

Check that the desired node (node 1) is now primary:7.

mongo mongodb://192.168.200.200:27017
rs.isMaster()['ismaster']

How it works...
Forcing a primary node to step down is a fairly straightforward process. As shown in steps
1 and step 2, we just need to log in to the primary node and run the rs.stepDown()
command. This forces the node to become secondary and initiates an election in the replica
set. Within a few seconds (or less), one of the secondary nodes would be elected as the new
primary node. In this recipe, we assume that node 3 got elected as the new primary node.

In step 3, we run another neat little helper, rs.isMaster(), and look for the value of the
ismaster key. If its value is set to true, then the current node is a primary. Otherwise, it is a
secondary.

For the next part, we work towards converting a particular secondary node to a primary
node. This involves a new command called rs.freeze(). This wrapper executes the
replSetFreeze command, which prevents the member from seeking election. So, our
strategy is to prevent all nodes from seeking election, except for the one that we want to
become the primary.

We do exactly the same in step 4. Here, we log in to node 2 and run rs.freeze(120),
which prevents it from seeking election for the next 120 seconds.

High Availability with Replication

[102]

Next, in step 5, we log in to our newly elected primary, node 3, and make it step down as
primary. Finally, in step 6, we run rs.freeze(120), which prevents it from seeking
election for the next 120 seconds.

Once done, we confirm that node 1 is now our primary, as expected. All hail Cthulhu!

Changing replica set configuration
Up until now, we were performing replica set modifications using helper functions like
rs.add(), rs.remove(), and so on. As mentioned earlier, these functions are wrappers
which modify the replica set configuration. In this recipe, we will be looking at how to fetch
and change the replica set configuration. This can be helpful for various operations like
setting priorities, delayed nodes, changing member hostnames, and so on.

Getting ready
For this recipe, you will need a three node replica set.

How to do it...
Connect to the primary member of the replica set using the mongo shell:1.

mongo mongodb://192.168.200.200:27017

Fetch the configuration:2.

 conf = rs.conf()

Remove the third member of the replica set:3.

 conf['members'].pop(2)

Reconfigure the replica set:4.

 rs.reconfig(conf)

High Availability with Replication

[103]

Confirm that the third node was removed by inspecting the output of5.
rs.status():

 rs.status()['members']

Add the third node back to the replica set:6.

 member = {"_id": 2, "host": "192.168.200.200:27019"}
 conf['members'].push(member)

Reconfigure the replica set:7.

 rs.reconfig(conf)

Confirm that the addition was successful:8.

 rs.status()['members']

How it works..
Like our previous recipes, replica set configuration operations can only be performed on the
primary node. Once we connect to the primary node, we fetch the running configuration of
the replica set using rs.conf(). In step 2, we are storing the value of rs.conf() in a
variable called conf. The replica set configuration is a JavaScript object, and therefore we
can modify it within the mongo shell.

The configuration contains an array of members. So, in order to remove a member, we
simply have to remove its entry from the array and reload the configuration with the new
values. In step 3, we use the JavaScript native pop() method to remove an entry from the
members array. By running conf['members'].pop(2) we are removing the third entry
from the array (note that array indexes start from zero). Next, in step 4, we simply run the
rs.reconfig() function while providing it the modified configuration. This function
reloads the configuration, and in step 5, we can confirm that the node was indeed removed.

In step 6, we create an object that contains the _id and host entry for the node that we wish
to add. Next, we append the configuration's members array and add this entry to it. Finally,
in step 7, we reload the configuration again and confirm that the node was added back to
the replica set.

High Availability with Replication

[104]

Changing priority to replica set nodes
By now, you would have noticed the priority keyword in the rs.status() output.
Replica set members with higher priorities are more likely to be elected as primaries. The
value of a priority can range from 0 to 1000, where 0 indicates a non-voting member. A
non-voting member functions as a regular member of a replica set but cannot vote in
elections nor get elected as a primary.

Getting ready
For this recipe, we need a three node replica set.

How to do it...
Connect to the primary member of the replica set using the mongo shell:1.

mongo mongodb://192.168.200.200:27017

Fetch the configuration:2.

conf = rs.conf()

Change the priorities of all members:3.

conf['members'][0].priority = 5
conf['members'][1].priority = 2
conf['members'][2].priority = 2

Reconfigure the replica set:4.

rs.reconfig(conf)

Check the new configuration:5.

rs.conf()['members']

High Availability with Replication

[105]

How it works...
Like our previous recipe, we connect to the primary node and fetch the replica set
configuration object. Next, in step 3, we modify the value of the priority key of each
member in the members array. In step 4, we reconfigure the replica set configuration. Lastly,
in step 5, we can confirm that the changes have taken effect by inspecting the output of the
rs.conf() command.

So, why would you need to set priorities in the first place? Well, there can be various
circumstances when you would need to have control over which member gets elected as a
leader. As a simple example, you need to perform sequential maintenance on your replica
set members. You can control which node becomes primary if an election kicks in during
the maintenance.

There's more...
Along with priority, we can also set delayed sync and hidden members in replica sets. We
will be looking closely at how to set these up later in the book in Chapter 7, Restoring
MongoDB from Backups.

5
High Scalability with Sharding

In this chapter, we will cover the following recipes:

Setting up and configuring a shard cluster
Managing chunks
Moving non-sharded collection data from one shard to another
Removing a shard from the cluster
Understanding tag aware sharding – zones

Understanding sharding and its components
In the previous chapter, we saw how MongoDB provides high availability using replica
sets. Replica sets also allow distributing read queries across slaves, thus providing a fair bit
of load distribution across a cluster of nodes. We have also seen that MongoDB performs
most optimally if its working datasets can fit in memory with minimal disk operations.
However, as databases grow, it becomes harder to provision servers that can effectively fit
the entire working set in memory. This is one of the most common scalability problems
faced by most growing organizations.

High Scalability with Sharding

[107]

To address this, MongoDB provides sharding of collections. Sharding allows dividing the
data into smaller chunks and distributing it across multiple machines.

Components of MongoDB sharding infrastructure
Unlike replica sets, a sharded MongoDB cluster consists of multiple components.

Config server
The config server is used to store metadata about the sharded cluster. It contains details
about authorizations, as well as admin and config databases. The metadata stored in the
config server is read by mongos and shards, making its role extremely important during the
operation of the sharded cluster. Thus, it is highly recommended that the config server is
setup as a replica set, with appropriate backup and monitoring configured.

The mongos query router
MongoDB's mongos server acts as an interface between the application and the sharded
cluster. First, it gathers information (metadata) about the sharded cluster from the config
server (described later). Once it has the relevant information about the sharded cluster, it
acts as a proxy for all the read and write operations on the cluster. In that, applications only
talk to the mongos server and never talks directly to a shard.

High Scalability with Sharding

[108]

More information on how mongos routes queries can be seen at: https:/ / docs. mongodb.
com/manual/core/ sharded- cluster- query- router/ .

The shard server
The shard server is nothing but a mongod instance and is executed with the --shardsvr
switch. The config server delegates chunks to each shard server based on the shard key
used for the collection. All queries, executed on the shard, have to originate through the
mongos query router. Applications should never directly communicate with a standalone
shard.

Choosing the shard key
In order to partition data across multiple shards, MongoDB uses a shard key. This is an
immutable key that can be used to identify a document within a sharded collection. Based
on boundaries of the shard key, the data is then divided into chunks and spread across
multiple shards within a cluster. It is important to note that MongoDB provides sharding at
the collection level and a sharded collection can have only one shard key. As shard keys are
immutable, we cannot change a key once it is set. It is extremely important to properly plan
shard keys before setting up a sharded cluster.

MongoDB provides two sharding strategies—a hashed shard key and ranged shard key.

In hashed shard keys, MongoDB computes and indexes on the hash of the shard key. The
data is then evenly distributed across the cluster. So at the expense of a broadcast query, we
can achieve even distribution of data across all shards.

A ranged shard key is the default shard key strategy used by MongoDB. In this strategy,
MongoDB splits the ranges into chunks and distributes these chunks accordingly. This
increases the chance of documents, which have a close proximity to the key value, to be
stored on the same shard. In such cases, queries would not be broadcast to all the shards
and DB operations would become faster. However, this can also lead to shards getting
overloaded on a certain type of keys.

For example, if we do a ranged key on language and keep adding a high number of
documents for English speaking users, then the shard holding the key would get all the
documents. So there is a good chance that document distribution would be uneven.

So it is extremely important to plan out your sharding strategy far in advance. All aspects of
your applications must be thoroughly understood before choosing a shard key strategy.

https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
https://docs.mongodb.com/manual/core/sharded-cluster-query-router/

High Scalability with Sharding

[109]

More information about shard key specifications can be found at: https:/ /docs. mongodb.
com/manual/core/ sharding- shard- key.

Setting up and configuring a sharded cluster
In this recipe, we will look at how to set up a sharded cluster in MongoDB. The cluster
includes config servers, shards, and mongos servers. As this is a test setup, we will be
running all relevant binaries from a single virtual machine; however, in production, they
should be located on separate nodes. Next, we will look at how to enable sharding on a
database, followed by sharding an actual collection. Once the sharded cluster is ready, we
will import some data to the cluster and execute queries that would give us a glimpse of
how the data is partitioned across the shards. Much fun awaits, let's get started!

Getting ready
There are no additional components required besides standard MongoDB binaries. Create
the following directories in advance for the config server as well as the shards:

mkdir -p /data/{cfgserver1,shard1,shard2,shard3}/data

How to do it...
Start the config server:1.

mongod --configsvr --dbpath /data/cfgserver1/data --port 27019 --
replSet MyConfigRepl

Initialize the config server replica set:2.

mongo localhost:27019
rs.initiate()

{
 "info2" : "no configuration specified. Using a default
configuration for the set",
 "me" : "vagrant-ubuntu-trusty-64:27019",
 "ok" : 1
 }

https://docs.mongodb.com/manual/core/sharding-shard-key
https://docs.mongodb.com/manual/core/sharding-shard-key
https://docs.mongodb.com/manual/core/sharding-shard-key
https://docs.mongodb.com/manual/core/sharding-shard-key
https://docs.mongodb.com/manual/core/sharding-shard-key
https://docs.mongodb.com/manual/core/sharding-shard-key
https://docs.mongodb.com/manual/core/sharding-shard-key
https://docs.mongodb.com/manual/core/sharding-shard-key
https://docs.mongodb.com/manual/core/sharding-shard-key
https://docs.mongodb.com/manual/core/sharding-shard-key
https://docs.mongodb.com/manual/core/sharding-shard-key
https://docs.mongodb.com/manual/core/sharding-shard-key
https://docs.mongodb.com/manual/core/sharding-shard-key
https://docs.mongodb.com/manual/core/sharding-shard-key
https://docs.mongodb.com/manual/core/sharding-shard-key
https://docs.mongodb.com/manual/core/sharding-shard-key
https://docs.mongodb.com/manual/core/sharding-shard-key
https://docs.mongodb.com/manual/core/sharding-shard-key

High Scalability with Sharding

[110]

rs.status()['configsvr']

true

Start three shard servers:3.

mongod --shardsvr --dbpath /data/shard1/data --port 27027
mongod --shardsvr --dbpath /data/shard2/data --port 27028
mongod --shardsvr --dbpath /data/shard3/data --port 27029

Start the mongos query router:4.

mongos --configdb MyConfigRepl/192.168.200.200:27019

Connect to the mongos server and add the shard mongo5.
mongodb://127.0.0.1:27017. Then add the shards to the cluster:

sh.addShard('192.168.200.200:27027')

{ "shardAdded" : "shard0000", "ok" : 1 }

sh.addShard('192.168.200.200:27028')

{ "shardAdded" : "shard0001", "ok" : 1 }

sh.addShard('192.168.200.200:27029')

{ "shardAdded" : "shard0002", "ok" : 1 }

sh.status()

--- Sharding Status ---
 sharding version: {
 "_id" : 1,
 "minCompatibleVersion" : 5,
 "currentVersion" : 6,
 "clusterId" : ObjectId("59c7950c9be3cff24816915a")
 }
 shards:
 { "_id" : "shard0000", "host" : "192.168.200.200:27027", "state" :
1 }
 { "_id" : "shard0001", "host" : "192.168.200.200:27028", "state" :
1 }
 { "_id" : "shard0002", "host" : "192.168.200.200:27029", "state" :
1 }
 <-- output truncated -->

High Scalability with Sharding

[111]

Enable sharding for a database:6.

sh.enableSharding('myShardedDB')
{ "ok" : 1 }
sh.status()

--- Sharding Status ---
 <--output truncated-->
 databases:
 { "_id" : "myShardedDB", "primary" : "shard0001", "partitioned" :
true }

Shard a collection:7.

sh.shardCollection('myShardedDB.people', {language: 1})
{ "collectionsharded" : "myShardedDB.people", "ok" : 1 }

sh.status()

--- Sharding Status ---
 sharding version: {
 "_id" : 1,
 "minCompatibleVersion" : 5,
 "currentVersion" : 6,
 "clusterId" : ObjectId("59c7950c9be3cff24816915a")
 }
 shards:
 { "_id" : "shard0000", "host" : "192.168.200.200:27027", "state" :
1 }
 { "_id" : "shard0001", "host" : "192.168.200.200:27028", "state" :
1 }
 { "_id" : "shard0002", "host" : "192.168.200.200:27029", "state" :
1 }
 <-- output truncated -->
 databases:
 { "_id" : "myShardedDB", "primary" : "shard0001", "partitioned" :
true }
 myShardedDB.people
 shard key: { "language" : 1 }
 unique: false
 balancing: true
 chunks:
 shard0001 1
 { "language" : { "$minKey" : 1 } } -->> { "language" : { "$maxKey"
: 1 } } on : shard0001 Timestamp(1, 0)

High Scalability with Sharding

[112]

Add some data to our database:8.

mongoimport -h 192.168.200.200 --type csv --headerline -d
myShardedDB -c people chapter_2_mock_data.csv

Inspect the data distribution:9.

sh.status()

--- Sharding Status ---
--- <output truncated> ---
 { "_id" : "myShardedDB", "primary" : "shard0001", "partitioned" :
true }
 myShardedDB.people
 shard key: { "language" : 1 }
 unique: false
 balancing: true
 chunks:
 shard0000 1
 shard0001 2
 shard0002 1
 { "language" : { "$minKey" : 1 } } -->> { "language" : "" } on :
shard0000 Timestamp(2, 0)
 { "language" : "" } -->> { "language" : "Irish Gaelic" } on :
shard0002 Timestamp(3, 0)
 { "language" : "Irish Gaelic" } -->> { "language" : "Norwegian" }
on : shard0001 Timestamp(3, 1)
 { "language" : "Norwegian" } -->> { "language" : { "$maxKey" : 1 }
} on : shard0001 Timestamp(1, 4)

Fetch some records from a single shard:10.

db.people.find({ "language" : "Norwegian" }).explain()

{
 "queryPlanner" : {
 "mongosPlannerVersion" : 1,
 "winningPlan" : {
 "stage" : "SINGLE_SHARD",
 "shards" : [
 {
 "shardName" : "shard0001",
 "connectionString" : "192.168.200.200:27028",
 <--output truncated -->

High Scalability with Sharding

[113]

Fetch records from multiple shards:11.

db.people.find({ "language": {"$in": ["Norwegian", "Arabic"]}
}).explain()

{
 "queryPlanner" : {
 "mongosPlannerVersion" : 1,
 "winningPlan" : {
 "stage" : "SHARD_MERGE",
 "shards" : [
 {
 "shardName" : "shard0001",
 <-- output truncated -->
 "shardName" : "shard0002",
 <-- output truncated -->

How it works...
We begin setting up the sharded cluster by starting a single instance of the config server in
step 1. As of MongoDB 3.4, it is required that the config server is set up as a replica set.
However, for demonstration purposes, we are only going to run one config server in this
replica set. The service runs through the mongod binary with the --configsvr parameter
and takes in --dbpath as well as --port. As the config server contains metadata, including
authorization details, it does make sense to run it as a replica set while ensuring we
maintain optimal backups and monitoring. We will cover more on the latter in future
chapters.

In step 2, we connect to the config server using mongo shell and initiate the replica set. This
is a pretty straightforward operation, as we have seen previously in Chapter 2,
Understanding and Managing Indexes. The only point I've highlighted here is that if you run
rs.status() on a config server, you should see a key which says 'configsvr' : true.
This key should be verified to confirm that the replica set is indeed for your config server.

In step 3, we start three instances of mongod shards, each pointing to a separate --dbpath
and --port. Up until this point, the shards are not configured, and hence, they are simply
waiting for information from the config server.

High Scalability with Sharding

[114]

In step 4, we start the mongos service and explicitly point it to the config server replica set
using the --configdb switch. You will note that the connection string takes the name of
the config server replica set as its prefix and is followed by the IP/hostname of the config
server; for example,

ReplicaSetName/host1:port1,host2:port2,...hostN:portN

At this point, our sharded cluster not contains a config server and a query router (mongos).
We now need to add the shard servers to the cluster. To begin, we connect to the mongos
service (in step 5) and use the sh.addShard() function to add each shard:

sh.addShard('192.168.200.200:27027')
{ "shardAdded" : "shard0000", "ok" : 1 }

All shard management commands have helper functions within the
sh.<function-name> namespace. For example, sh.status(),
sh.addShard(), and so on.

The string shard0000 is a unique ID of this shard. By running sh.status(), we can
confirm that all three shards have been added, each with a unique ID. Additionally, you can
also observe that at this point the databases section, in the sh.status() output, is empty
(this is expected).

In step 6, we enable sharding for the database myShardedDB by using the command
sh.enableSharding('myShardedDB'). If you run the sh.status() command, you will
observe that the databases section now shows the following:

{ "_id" : "myShardedDB", "primary" : "shard0001", "partitioned" : true }

Here, MongoDB has assigned shard with ID shard001 as the primary shard for the
database (chances are that your setup may have chosen a different ID, and that's okay).
There is a good chance that you would have more than one collection in your database.
Hence, MongoDB selects a primary shard to store data of non-sharded collections.

Now comes the most important part of this whole exercise—selecting the shard key. As
shards store data in chunks, distribution of chunks is determined by the type of sharding
key used. As discussed in the previous section of this chapter, by default, MongoDB uses
ranged keys. We will use this key type in our example setup as well.

In step 7, we shard the collection named people on the field language. This creates a
ranged sharding key on the language field in ascending order. Run sh.status() and
view the databases section in the command output.

High Scalability with Sharding

[115]

As we have no data in the collection, you should see there is exactly one chunk, on
shard0001, and it covers the entire range of the field, that is, from $minKey to $maxKey.

In step 8, we import some sample data in our newly sharded collection. The data imported
is available in the file chapter_2_mock_data.csv, which can be downloaded from the
Packt website.

Now that we have the data imported, let's have a look at the status of the shard. In step 9,
we run sh.status() and inspect the databases section of the output. You can see that,
based on the index created in the field language, MongoDB has partitioned the data in four
chunks across all three shards. As we have used a ranged shard key, the partitions are
performed on string values of the language key. For example, shard0001 has two chunks:
one contains all the documents of the language field, ranging from Irish Gaelic to
Norwegian, and the other chunk contains all values from Norwegian to $maxKey (end of
index).

With this information in mind, we now know that all records for {language:
"Norwegian"} would reside on one shard, that is shard0001. This can be confirmed by
running a find() operation, as seen in step 10. The winning plan indicates that the result
was obtained from a single shard.

In step 11, we run a similar query, but this time the range spreads across multiple shards. In
that, mongos would make a query to two shards (shard0001 and shard0002), and await
their response. Then, mongos would merge the results and present it to the application (in
our case, mongo shell).

As an exercise, I would suggest you re-create the cluster, but with hashed key type, and
observe how the chunks are created.

Managing chunks
By now, you should be familiar with the notion of chunks in a MongoDB sharded cluster. In
this recipe, we will look at how to split chunks and migrate them across shards.

High Scalability with Sharding

[116]

Getting ready
Ensure you have a sharded cluster ready. If you are reusing the setup from the previous
recipe, ensure that you drop the database, as such:

use myShardedDB
db.dropDatabase()

Before we import the mock data, enable sharding:

sh.enableSharding('myShardedDB')
 sh.shardCollection('myShardedDB.users', {age: 1})

Finally, we need to import the mock data using the mongoimport utility:

mongoimport -h 192.168.200.200 --type csv --headerline -d myShardedDB -c
users chapter_5_mock_data.csv

How to do it...
Connect to the mongos service and inspect the chunks:1.

sh.status()

--- Sharding Status ---
 sharding version: {
 <-- output truncated -- >
 databases:
 { "_id" : "myShardedDB", "primary" : "shard0002", "partitioned" :
true }
 myShardedDB.users
 shard key: { "age" : 1 }
 unique: false
 balancing: true
 chunks:
 shard0000 1
 shard0001 1
 shard0002 2
 { "age" : { "$minKey" : 1 } } -->> { "age" : 18 } on : shard0000
Timestamp(2, 0)
 { "age" : 18 } -->> { "age" : 54 } on : shard0001 Timestamp(3, 0)
 { "age" : 54 } -->> { "age" : 73 } on : shard0002 Timestamp(3, 1)
 { "age" : 73 } -->> { "age" : { "$maxKey" : 1 } } on : shard0002
Timestamp(1, 4)

High Scalability with Sharding

[117]

Disable the balancer:2.

sh.stopBalancer()

Select the admin database and split the chunk:3.

use admin

db.runCommand({split: 'myShardedDB.users', middle: {age: 50}})

Inspect the chunks again:4.

sh.status()

--- Sharding Status ---
 <-- output truncated -->
 databases:
 { "_id" : "myShardedDB", "primary" : "shard0002", "partitioned" :
true }
 myShardedDB.users
 shard key: { "age" : 1 }
 unique: false
 balancing: true
 chunks:
 shard0000 1
 shard0001 2
 shard0002 2
 { "age" : { "$minKey" : 1 } } -->> { "age" : 18 } on : shard0000
Timestamp(2, 0)
 { "age" : 18 } -->> { "age" : 50 } on : shard0001 Timestamp(3, 2)
 { "age" : 50 } -->> { "age" : 54 } on : shard0001 Timestamp(3, 3)
 { "age" : 54 } -->> { "age" : 73 } on : shard0002 Timestamp(3, 1)
 { "age" : 73 } -->> { "age" : { "$maxKey" : 1 } } on : shard0002
Timestamp(1, 4)

Migrate a chunk from shard0001 to shard0000:5.

sh.moveChunk('myShardedDB.users', {age: 52}, "shard0000")

{ "millis" : 177, "ok" : 1 }

High Scalability with Sharding

[118]

Enable the balancer and inspect the chunks:6.

sh.startBalancer()

{ "ok" : 1 }

sh.status()

--- Sharding Status ---
 <-- output truncated -->
 databases:
 { "_id" : "myShardedDB", "primary" : "shard0002", "partitioned" :
true }
 myShardedDB.users
 shard key: { "age" : 1 }
 unique: false
 balancing: true
 chunks:
 shard0000 2
 shard0001 1
 shard0002 2
 { "age" : { "$minKey" : 1 } } -->> { "age" : 18 } on : shard0000
Timestamp(2, 0)
 { "age" : 18 } -->> { "age" : 50 } on : shard0001 Timestamp(4, 1)
 { "age" : 50 } -->> { "age" : 54 } on : shard0000 Timestamp(4, 0)
 { "age" : 54 } -->> { "age" : 73 } on : shard0002 Timestamp(3, 1)
 { "age" : 73 } -->> { "age" : { "$maxKey" : 1 } } on : shard0002
Timestamp(1, 4)

How it works...
For this recipe, we've intentionally used a dataset that can help us work with ranged shard
keys. In our mock data, we are going to shard on the age field, as it is always going to be
numeric.

In step 1, we connect to the mongos service and inspect the shards and their corresponding
chunks. In this example output, you can see that the data is partitioned into four chunks,
ranging from $minKey to 18, 18 to 54, 54 to 73, and 73 to $maxKey.

High Scalability with Sharding

[119]

You can also observe that shard0002 has two chunks whereas the other two shards have
one chunk each.

This distribution of chunks is carried out by MongoDB's balancer service. This is a
background process that runs on the config server and performs chunk migrations,
ensuring chunks are evenly distributed across the shards. As chunk migration has
implications on performance, the balancer ensures that a shard only performs one migration
at a time. Additionally, the number of chunks that should be held by a shard is determined
by the maximum migration threshold, as described at:
https://docs.mongodb. com/ manual/ core/ sharding- balancer- administration/
#sharding-migration- thresholds.

Next, in step 2, we stop the balancer process before we proceed to split the chunks. In step
3, we select the admin database and perform a chunk split on the range, midway to {age:
50}. In step 4, we inspect the sh.status() output and confirm that the chunk has been
split. In step 5, we wish to move a chunk from shard0001 to shard0000. In order to do
that, we run the sh.moveChunk() command with the collection name, the value of the key
in the chunk which we wish to migrate, and the target shard ID. Finally, we start the
balancer process and view the sh.status() output. We can observe that the chunk has
been migrated to shard0000, as expected.

https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharding-migration-thresholds

High Scalability with Sharding

[120]

There are a lot of nuances when working with chunk migrations and it is highly
recommended that you go through data partitioning guidelines mentioned at: https:/ /
docs.mongodb.com/ manual/ core/ sharding- data- partitioning/ .

Moving non-sharded collection data from
one shard to another
In this recipe, we will look at how to migrate non-sharded data to another shard.

Getting ready
We need a sharded cluster, preferably the one we created in the previous recipe.

How to do it...
Connect to the mongos service and inspect the shard status:1.

use myShardedDB

sh.status()

--- Sharding Status ---
 <-- output truncated -->
 databases:
 { "_id" : "myShardedDB", "primary" : "shard0002", "partitioned" :
true }
 <-- output truncated -->

Insert a document in the new (non-sharded) collection of the sharded database:2.

db.my_col.insert({foo: 'bar'})

Confirm that the document was stored on the primary shard by fetching the3.
document:

db.my_col.find({foo:
'bar'}).explain()['queryPlanner']['winningPlan']

{
 "stage" : "SINGLE_SHARD",

https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
https://docs.mongodb.com/manual/core/sharding-data-partitioning/

High Scalability with Sharding

[121]

 "shards" : [
 {
 "shardName" : "shard0002",
 "<--output truncated-->

Switch the primary to a different shard:4.

use admin

mongos> db.runCommand({ movePrimary: 'myShardedDB', to:
'shard0000' })

{ "primary" : "shard0000:192.168.200.200:27027", "ok" : 1 }

Check that the migration has completed and the (non-sharded) collection is now5.
on the new primary:

sh.status()

--- Sharding Status ---

<-- output truncated -->

databases:

{ "_id" : "myShardedDB", "primary" : "shard0000", "partitioned" :
true }

<-- output truncated -->

use myShardedDB

db.my_col.find({foo:
'bar'}).explain()['queryPlanner']['winningPlan']
{
"stage" : "SINGLE_SHARD",
"shards" : [
{
"shardName" : "shard0000",
<-- output truncated -->

High Scalability with Sharding

[122]

How it works...
In a sharded cluster, MongoDB selects one node as the primary shard. Any data that is not
part of the sharded collection is stored on the primary shard. In step 1, we connect to the
mongos service running on the sharded cluster and inspect the shard status by running the
sh.status() command. In the given sample output of this command, we can observe that
the current primary shard is shard0002. Next, in step 2, we insert a document in the
my_col collection of myShardedDB.

As this collection does not exist, a new collection is created on the primary shard
(shard0002) and the document is inserted into it. This can be confirmed in step 3, when we
run the find() command, followed by the explain() command.

In step 4, we select the admin database and issue the movePrimary command. In that, we
provide the database name and the target shard which should become the new primary.
Once this command is executed, MongoDB makes shard0000 (in our example) the primary
shard and begins copying the data to this new node. In step 5, we can confirm this by
running the sh.status() command, as well as running the find() command.

In a production environment, there is a high chance that you will have multiple collections.
It is imperative to plan the primary shard such that it can hold the additional (non-sharded)
collections along with the chunks of the sharded collections. It is advisable to have the
primary shard (or its replica set) run on servers that have additional resources to regular
shards, such that the query overhead of non-sharded collections can be accommodated
without any negative performance impact.

Removing a shard from the cluster
In this recipe, we will look at how to remove a shard from an existing cluster.

Getting ready
We need a sharded cluster, preferably the one we created in the Managing chunks recipe of
this chapter.

High Scalability with Sharding

[123]

How to do it...
Connect to the cluster's mongos service and view the current shards and their1.
respective chunks:

sh.status()

--- Sharding Status ---

 sharding version: {
 "_id" : 1,
 "minCompatibleVersion" : 5,
 "currentVersion" : 6,
 "clusterId" : ObjectId("59c7950c9be3cff24816915a")
}

 shards:
 { "_id" : "shard0000", "host" : "192.168.200.200:27027",
"state" : 1 }
 { "_id" : "shard0001", "host" : "192.168.200.200:27028",
"state" : 1 }
 { "_id" : "shard0002", "host" : "192.168.200.200:27029",
"state" : 1 }

<-- output truncated -->

 databases:
 shard0000 2
 shard0001 1
 shard0002 2
 { "age" : { "$minKey" : 1 } } -->> { "age" :
18 } on : shard0000 Timestamp(2, 0)
 { "age" : 18 } -->> { "age" : 50 } on :
shard0001 Timestamp(4, 1)
 { "age" : 50 } -->> { "age" : 54 } on :
shard0000 Timestamp(4, 0)
 { "age" : 54 } -->> { "age" : 73 } on :
shard0002 Timestamp(3, 1)
 { "age" : 73 } -->> { "age" : { "$maxKey" :
1 } } on : shard0002 Timestamp(1, 4)

High Scalability with Sharding

[124]

Switch to the admin database and run the removeShard command:2.

db.adminCommand({removeShard: 'shard0002'})

{
 "msg" : "draining started successfully",
 "state" : "started",
 "shard" : "shard0002",
 "note" : "you need to drop or movePrimary these databases",
 "dbsToMove" : [],
 "ok" : 1
 }

Check the status of removal:3.

db.adminCommand({removeShard: 'shard0002'})

{
 "msg" : "draining ongoing",
 "state" : "ongoing",
 "remaining" : {
 "chunks" : NumberLong(1),
 "dbs" : NumberLong(0)
 },
 "note" : "you need to drop or movePrimary these databases",
 "dbsToMove" : [],
 "ok" : 1
 }

db.adminCommand({removeShard: 'shard0002'})

{
 "msg" : "removeshard completed successfully",
 "state" : "completed",
 "shard" : "shard0002",
 "ok" : 1
 }

High Scalability with Sharding

[125]

Confirm that the shard was removed and chunks migrated:4.

sh.status()

--- Sharding Status ---
 sharding version: {
 "_id" : 1,
 "minCompatibleVersion" : 5,
 "currentVersion" : 6,
 "clusterId" : ObjectId("59c7950c9be3cff24816915a")
 }
 shards:
 { "_id" : "shard0000", "host" : "192.168.200.200:27027", "state" :
1 }
 { "_id" : "shard0001", "host" : "192.168.200.200:27028", "state" :
1 }
 <-- output truncated -->
 chunks:
 shard0000 3
 shard0001 2
 { "age" : { "$minKey" : 1 } } -->> { "age" : 18 } on : shard0000
Timestamp(2, 0)
 { "age" : 18 } -->> { "age" : 50 } on : shard0001 Timestamp(4, 1)
 { "age" : 50 } -->> { "age" : 54 } on : shard0000 Timestamp(4, 0)
 { "age" : 54 } -->> { "age" : 73 } on : shard0001 Timestamp(5, 0)
 { "age" : 73 } -->> { "age" : { "$maxKey" : 1 } } on : shard0000
Timestamp(6, 0)

How it works...
Removing a shard is a fairly straightforward operation. We begin by connecting to the
cluster and inspecting the list of shards. In the sample output, we can observe that there are
three shards in the cluster, each with one or more chunks assigned to it. In step 2, we switch
to the ‘admin’ database and run the removeShard command, followed by the ID of the
shard which we wish to remove. As soon as this command is entered, the balancer process
immediately starts migrating the chunks to new shards. We can confirm this by the output
of the command, in that, MongoDB gives a verbose message draining started
successfully. This process would lock the collection and begin migrating the chunks to
neighboring shards. In step 3, we run the same command again to view the status of the
migration.

High Scalability with Sharding

[126]

Depending on various factors, such as server resources and network bandwidth, the chunk
migration can take time. In our case, you can observe that when we run the command for
the second time, the status message says draining ongoing, and if we run it again (after a
while), the message indicates that removeshard completed successfully. The latter
message indicates that the chunks were migrated and the shard was successfully removed.
In step 4, we can confirm this by observing the output of sh.status(), which indicates
that the shard is no longer listed in the shards section and there are only two shards in the
cluster. The two chunks on shard0002 have been migrated to other shards.

In case you wish to remove the primary shard, you first need to migrate
chunks and non-sharded data off the primary by running the
movePrimary command. Once completed, you can execute the
removeShard command to remove the shard.

Understanding tag aware sharding – zones
In this recipe, we will be looking at MongoDB's shard zones. A zone is essentially a group
of shards based on a specific set of tags. Zones can help the distribution of chunks based on
tags, across shards. All reads and writes, pertaining to documents within a zone, are
performed on shards matching that zone. There can be various scenarios where zone based
sharded clusters can prove to be highly useful. For example:

An application that is geographically distributed would require that the frontend,
as well as the data store, is close to the user

The application has a multi-tier hardware architecture such that certain records
are fetched from a higher tier (low latency) hardware whereas others could be
fetched from a low tier (high latency inducing) hardware

If a document does not match any configured zone, MongoDB will write it
to any chunk in the cluster.

Getting ready
We need a sharded cluster, preferably the one we created in the Managing chunk recipe of
this chapter.

High Scalability with Sharding

[127]

How to do it...
Connect to the sharded cluster's mongos service and view the current shard1.
status:

sh.status()

--- Sharding Status ---
<-- output truncated -->

chunks:

shard0000 2
shard0001 2
shard0002 1

{ "age" : { "$minKey" : 1 } } -->> { "age" : 18 } on : shard0002
Timestamp(7, 0)
{ "age" : 18 } -->> { "age" : 50 } on : shard0001 Timestamp(4, 1)
{ "age" : 50 } -->> { "age" : 54 } on : shard0000 Timestamp(7, 1)
{ "age" : 54 } -->> { "age" : 73 } on : shard0001 Timestamp(5, 0)
{ "age" : 73 } -->> { "age" : { "$maxKey" : 1 } } on : shard0000
Timestamp(6, 0)

Create new tags:2.

sh.addShardTag('shard0000', 'Zone-A')
sh.addShardTag('shard0001', 'Zone-B')
sh.addShardTag('shard0002', 'Zone-C')

Assign ranges to tags:3.

sh.addTagRange('myShardedDB.users', {age: MinKey}, {age: 50},
'Zone-A')
sh.addTagRange('myShardedDB.users', {age: 50}, {age: 54}, 'Zone-B')
sh.addTagRange('myShardedDB.users', {age: 54}, {age: MaxKey},
'Zone-C')

View the shard status:4.

sh.status()

<-- output truncated -->

chunks:

shard0000 2

High Scalability with Sharding

[128]

shard0001 1
shard0002 2

{ "age" : { "$minKey" : 1 } } -->> { "age" : 18 } on : shard0000
Timestamp(11, 1)
{ "age" : 18 } -->> { "age" : 50 } on : shard0000 Timestamp(8, 0)
{ "age" : 50 } -->> { "age" : 54 } on : shard0001 Timestamp(12, 1)
{ "age" : 54 } -->> { "age" : 73 } on : shard0002 Timestamp(12, 0)
{ "age" : 73 } -->> { "age" : { "$maxKey" : 1 } } on : shard0002

Timestamp(11, 0)

tag: Zone-A { "age" : { "$minKey" : 1 } } -->> { "age" : 50 }
tag: Zone-B { "age" : 50 } -->> { "age" : 54 }
tag: Zone-C { "age" : 54 } -->> { "age" : { "$maxKey" : 1 } }

How it works...
To begin, in step 1 we connect to the mongos instance of our sharded cluster and view the
current distribution of chunks across the shards.

Next, in step 2, we create three tags: Zone-A, Zone-B, and Zone-C, and simultaneously add
them to shard0000, shard0001, and shard0002 respectively. At this point, only the tag is
created and associated with each individual node. We now need to associate a shard key
range with these tags. In step 3, we use the sh.addTagRange() command to associate the
range to a tag.

High Scalability with Sharding

[129]

The command's first parameter is the collection name, followed by the minimum and
maximum value of the shard key's range. Finally, it takes the name of the tag. The
keywords MinKey and MaxKey are reserved MongoDB keywords, used to denote the lowest
and the uppermost bounds of a range key.

Finally, in step 4, we rerun the sh.status() command, and by looking at the databases
section of the output, we can confirm that the zones were indeed created with appropriate
ranges assigned to them.

See also
For more examples, do have a look at MongoDBR17's official documentation at: https:/ /
docs.mongodb.com/ manual/ core/ zone- sharding/ .

This brings us to the end of the chapter. I will be extensively covering backup and
monitoring of MongoDB shards in later chapters.

https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/

6
Managing MongoDB Backups

In this chapter, we will cover the following recipes:

Taking backup using mongodump tool
Taking backup of a specific MongoDB database or collection
Taking backup of a small subset of documents in a collection
Using bsondump tool to view mongodump output in human readable form
Creating a point in time backup of replica sets
Using the mongoexport tool
Creating a backup of a sharded cluster

Introduction
Two core traits of a well designed database system are consistency of data and ability to
restore data from a known good state. In MongoDB, the former part is mostly managed by
the underlying server software. For example, using features like write concerns can also
help ensure that writes received by the cluster are acknowledged under the predefined
conditions. However, the ability to restore data is, for the most part, still a system that
heavily relies on backup and restore strategies designed by database administrators. In this
chapter, we will be looking at various tools and techniques that would hopefully help you
in designing your optimal backup strategy.

Managing MongoDB Backups

[131]

Taking backup using mongodump tool
In this recipe, we will be looking at how to take MongoDB backups using mongodump
utility. This utility is a part of the MongoDB binary package and is usually available in the
bin directory of the binary package. If you have installed MongoDB using a package
management tool, like Ubuntu's apt or Red Hats yum, then the utility can simply be
invoked by typing mongodump in the console.

Getting ready
You need a single node MongoDB installation, preferably with some data in it. Refer to the
recipe Creating an index in Chapter 2, Understanding and Managing Indexes, to learn how to
import sample data into a MongoDB instance.

How to do it...
Create a directory to store the backups:1.

mkdir /backups/

Switch to the directory and execute the mongodump utility:2.

cd /backups/

Execute the command:3.

mongodump

Your output should be similar to this:4.

2017-10-04T03:26:34.251+0000 writing mydb.mockdata
2017-10-04T03:26:34.459+0000 done dumping mydb.mockdata (100000
documents)

Examine the dump directory:5.

ls -al dump/

You should see an output similar to this:6.

drwxr-xr-x 2 root root 4096 Oct 4 03:29 mydb

Managing MongoDB Backups

[132]

Inspect the subdirectory:7.

ls -ahl dump/mydb/

You should see an output similar to this:8.

-rw-r--r-- 1 root root 13M Oct 4 03:27 mockdata.bson
-rw-r--r-- 1 root root 85 Oct 4 03:27 mockdata.metadata.json

Remove the dump directory:9.

rm -rf /backups/dump

Execute mongodump utility again with compression enabled:10.

mongodump --gzip --out /backups/dump

You should see an output similar to this:11.

2017-10-04T03:32:52.203+0000 writing mydb.mockdata
2017-10-04T03:32:53.036+0000 done dumping mydb.mockdata (100000
documents)

Examine the directory:12.

ls -alh /backups/dump/mydb/

You should see an output similar to this:13.

-rw-r--r-- 1 root root 2.8M Oct 4 03:44 mockdata.bson.gz
-rw-r--r-- 1 root root 100 Oct 4 03:44 mockdata.metadata.json.gz

Execute mongodump utility to create an archive with compression enabled:14.

mongodump --gzip --archive=/backups/mydb.archive

You should see an output similar to this:15.

2017-10-04T03:45:54.976+0000 writing mydb.mockdata to archive
'/backups/mydb.archive'
2017-10-04T03:45:55.705+0000 done dumping mydb.mockdata (100000
documents)

Examine the archive:16.

ls -alh /backups

Managing MongoDB Backups

[133]

You should see an output similar to this:17.

-rw-r--r-- 1 root root 2.8M Oct 4 03:45 mydb.archive

How it works...
The mongodump utility primarily connects to the mongod or mongos instance and dumps
all data (except the local database) in BSON format.

In step 1, we create a common directory to store our backups and in step 2, we switch to
that directory and execute the mongodump utility without any parameters.

By default, if no parameters are specified to the utility, mongodump creates a directory called
dump in the current working directory. Additionally, for every database on the server, it
creates a subdirectory with the name of the database and, within this subdirectory, it creates
a BSON file for every collection within the database. We can observe this by inspecting the
directories, as shown in step 3.

In addition to BSON files, mongodump also creates metadata files corresponding to the
collection. If you inspect the file /backups/dump/mydb/mockdata.metadata.json, you
should see the additional metadata (in this case, the index details) of this collection:

{"options":{},"indexes":[{"v":1,"key":{"_id":1},"name":"_id_","ns":"mydb.mo
ckdata"}]}

Next, in step 4, we empty the directory and in step 5, we execute the mongodump utility with
two command line parameters. The --gzip option enables compression and --out allows
us to explicitly mention the path where the dump directory should be created.

In step 6, by examining the directory /backups/dump/mydb/, we can observe that the files
are now compressed and have a .gz extension. If you compare the file size from the
previous output, you can observe a substantial reduction in size. It goes without saying that
compression of backups can greatly reduce the disk utilization of backups, as well as
reducing transfer times when copying backups to remote location. However, if the dataset
is too large, compression will incur a CPU overhead in addition to disk I/O. It is highly
recommended to keep this in mind when you are planning your backup strategy. You may
want to have a dedicated disk to store your backups.

Lastly, in step 7, we use the --archive flag, followed by the absolute filename of the
archive. Starting with MongoDB Version 3.2, the mongodump utility supports creation of
single file archives instead of directory based backups (as seen earlier).

Managing MongoDB Backups

[134]

As per the official documentation, archives have a slight benefit over directories, in that the
restoration process is faster due to the contiguous nature of data in the file. Additionally, by
adding the --gzip flag with --archive, we can ensure that the resulting archive file is
compressed. This can be observed by examining the /backups/ directory in step 8.

There's more...
The mongodump utility also supports printing the data in standard out (STDOUT) device.
This allows additional possibilities, like using an alternate compression utility or
transferring data to a remote server.

For example, the following command would create an archive and pipe it to xz
compression utility. The latter would then create a xz compressed file.

mongodump --archive=- | xz --stdout > mydb.archive.xz

Another use case would be to transfer the archive over the wire to a remote location. An
overly simple example is one in which you wish to take a backup on Server-A and copy it
over to Server-B. You can run the following command on Server-A:

mongodump --gzip --archive=- | xz --stdout | ssh user@Server-B 'cat >
/backups/mydb.archive.xz’

Taking backup of a specific mongodb
database or collection
In this recipe, we will be using mongodump utility to take backups for a specific database
and/or collection.

Getting ready
You need a single node MongoDB installation, preferably with some data in it. Refer to the
recipe Creating an index in Chapter 2, Understanding and Managing Indexes, for instructions
on how to import sample data into a MongoDB instance.

Managing MongoDB Backups

[135]

How to do it...
Open a mongo shell and examine the database:1.

use mydb

show collections

You should see the following output:2.

mockdata
system.indexes
system.profile

Insert data into a random collection:3.

db.tmpcol.insert({foo:1})

Use mongodump to take backup of specific database:4.

mongodump --gzip -d mydb

You should see an output similar to this:5.

2017-10-04T12:05:24.352+0000 writing mydb.mockdata
2017-10-04T12:05:24.353+0000 writing mydb.tmpcol
2017-10-04T12:05:24.361+0000 done dumping mydb.tmpcol (1 document)
2017-10-04T12:05:25.098+0000 done dumping mydb.mockdata (100000
documents)

Use mongodump to take backup of specific collection:6.

mongodump --gzip -d mydb -c mockdata

You should see an output similar to this:7.

2017-10-04T11:56:37.357+0000 writing mydb.mockdata
2017-10-04T11:56:38.082+0000 done dumping mydb.mockdata (100000
documents)

Take backup of the entire database, excluding a collection:8.

mongodump --gzip -d mydb --excludeCollection=mockdata

Managing MongoDB Backups

[136]

You should see an output similar to this:9.

2017-10-04T12:06:03.787+0000 writing mydb.tmpcol
2017-10-04T12:06:03.788+0000 done dumping mydb.tmpcol (1 document)

How it works...
This recipe should be pretty straightforward to understand. Assuming you have loaded the
sample data as mentioned in the Getting ready section, you should have a database called
mydb with one collection called mockdata. In step 1, we create another collection in mydb,
called tmpcol and insert a document in it.

Next, in step 2, we execute the mongodump utility with the -d parameter, followed by the
name of the database we wish to backup. In step 3, we take a more specific backup by
adding an additional flag -c, followed by the name of the collection which we wish to
backup.

Finally, in step 4, we use --excludeCollection to backup the entire database, except for
the collection mentioned with this parameter. This can be a handy switch when we want to
exclude a particular collection when taking a backup.

Additionally, mongodump also comes with another flag, --
excludeCollectionsWithPrefix. This flag can be used to exclude all collections which
start with the string specified in its value.

Taking backup of a small subset of
documents in a collection
In the previous recipe, we saw how to backup certain databases and their collections. In this
recipe, we will look at how to use the mongodump utility to backup specific documents
within a collection.

Getting ready
You need a single node MongoDB installation, preferably with some data in it. Refer to the
recipe Creating an index in Chapter 2, Understanding and Managing Indexes, on how to import
sample data into a MongoDB instance.

Managing MongoDB Backups

[137]

How to do it...
Open the mongo shell and check all documents for a specific language:1.

use mydb

db.mockdata.count({language:"Thai"})

You should see the following output:2.

892

Add the following to query.json:3.

{language: 'Thai'}

Execute the mongodump utility with a specific query:4.

mongodump -d mydb -c mockdata --queryFile query.json

You should see the following output:5.

2017-10-04T12:17:28.559+0000 writing mydb.mockdata
2017-10-04T12:17:28.596+0000 done dumping mydb.mockdata (892
documents)

How it works...
By now, these steps should be quite verbose in explaining what they do. We begin by
examining how many records are present in our mockdata collection for
{language:"Thai"}. Next, we create a new JSON file called query.json and add the
query line in it. In step 3, we execute the mongodump utility and specify the --queryFile
parameter with the name of the file containing the query. As a query always has to run
against a collection, we have to specify the database and the collection name as the values
for the -d and -c flags, respectively.

Instead of using a query file, you can also provide the query inline by using the --query
parameter. Here, the command, used in step 3, would look like:

mongodump -d mydb -c mockdata --query "{language: 'Thai'}"

Managing MongoDB Backups

[138]

Using bsondump tool to view mongodump
output in human readable form
In this recipe, we will be using bsondump tool to examine the BSON files created by
mongodump utility.

Getting ready
You need a single node MongoDB installation, preferably with some data in it. Refer to the
recipe Creating an index in Chapter 2, Understanding and Managing Indexes, for instructions
on how to import sample data into a MongoDB instance.

How to do it...
Take a backup of the mockdata collection:1.

mongodump --gzip -d mydb -c mockdata --out /backups/dump

This should give the following output:2.

2017-10-04T12:50:37.000+0000 writing mydb.mockdata
2017-10-04T12:50:37.737+0000 done dumping mydb.mockdata (100000
documents)

Examine the backup directory:3.

ls -al dump/mydb/

This should give the following output:4.

-rw-r--r-- 1 root root 2836312 Oct 4 12:50 mockdata.bson.gz
-rw-r--r-- 1 root root 100 Oct 4 12:50 mockdata.metadata.json.gz

Execute the bsondump utility to view the contents of the BSON file:5.

zcat /backups/dump/mydb/mockdata.bson.gz | bsondump --pretty

Managing MongoDB Backups

[139]

This should give the following output:6.

<-- output truncated -->
{
 "_id": {
 "$oid": "59913879d574be2148cf8294"
 },
 "first_name": "Helenka",
 "last_name": "Gorries",
 "gender": "Female",
 "city": "Colcabamba",
 "language": "Quechua"
}
{
 "_id": {
 "$oid": "59913879d574be2148cf8296"
 },
 "first_name": "Derward",
 "last_name": "Sabbatier",
 "gender": "Male",
 "city": "Tindog",
 "language": "Maltese"
}
 <-- output truncated -->

How it works...
The bsondump utility is a handy tool bundled with all MongoDB packages. It is very useful
to parse the binary BSON files and output them in human readable format. In step 1, we
begin by taking a backup of the mockdata collection. As expected, in step 2, we can see that
the collection's data was dumped into two files, namely, mockdata.bson.gz and
mockdata.metadata.json.gz. The former contains the actual data in BSON format while
the latter contains metadata (index information) of the collection.

At this stage, I would like to point out two limitations of the bsondump tool. First, it cannot
read a compressed file, not even .gzip. Second, it cannot read a mongodump archive either.
It can literally only read raw BSON files. So, in step 3, in order to conform to its
requirements, we will use Linux's zcat utility, which prints a .gzip file, and pipe its
output to bsondump. The additional --pretty flag is used to prettify the JSON output, so
that it is easier to read. If you plan to run it through any scripts, you can omit this flag.

Managing MongoDB Backups

[140]

Creating a point in time backup of replica
sets
MongoDB replica sets maintain operations log using a capped collection called oplog. The
oplog is what is shared between the replica set nodes to maintain consistency. In this recipe,
we will look at how to create point in time backups of replica sets using oplog.

Getting ready
You need a three node MongoDB replica set installation, preferably with some data in it.
Refer to the recipes Initializing a new replica set, in Chapter 4, High Availability with
Replication, for instructions on how to create a replica set, and Creating an index in Chapter
2, Understanding and Managing Indexes, for instructions on how to import sample data into a
MongoDB instance.

How to do it...
First, we connect to the primary replica set node and insert about 100,000 random1.
documents:

for(var x=0; x<100000; x++){
db.mycol.insert({age:(Math.round(Math.random()*100)%20) }) }

Immediately switch to a different Terminal and take the backup:2.

mongodump --oplog --out /backups/dump/

You should see an output similar to this:3.

2017-10-04T15:02:53.921+0000 writing admin.system.version
2017-10-04T15:02:53.928+0000 done dumping admin.system.version (1
document)
2017-10-04T15:02:53.929+0000 writing mydb.mockdata
2017-10-04T15:02:53.934+0000 writing mydb.mycol
2017-10-04T15:02:53.986+0000 done dumping mydb.mycol (5922
documents)
2017-10-04T15:02:54.662+0000 done dumping mydb.mockdata (100000
documents)
2017-10-04T15:02:54.667+0000 writing captured oplog
2017-10-04T15:02:55.025+0000 dumped 941 oplog entries

Managing MongoDB Backups

[141]

Inspect the backup directory:4.

ls -al /backups/dump/

You should see an output similar to this:5.

drwxr-xr-x 2 root root 4096 Oct 4 14:37 admin
drwxr-xr-x 2 root root 4096 Oct 4 14:37 mydb
-rw-r--r-- 1 root root 106333 Oct 4 15:02 oplog.bson

Inspect the oplog.bson file:6.

bsondump /backups/dump/oplog.bson

You should see an output similar to this:7.

<-- output truncated -->
{"ts":{"$timestamp":{"t":1507129375,"i":5}},"t":{"$numberLong":"104
"},"h":{"$numberLong":"-6696408951828346681"},"v":2,"op":"i","ns":"
mydb.mycol","o":{"_id":{"$oid":"59d4f81f1cfc955658fc1275"},"age":15
.0}}
{"ts":{"$timestamp":{"t":1507129375,"i":6}},"t":{"$numberLong":"104
"},"h":{"$numberLong":"-2383386998191081659"},"v":2,"op":"i","ns":"
mydb.mycol","o":{"_id":{"$oid":"59d4f81f1cfc955658fc1276"},"age":9.
0}}
2017-10-04T15:05:10.721+0000 941 objects found

How it works...
The point of this recipe is to demonstrate a scenario where a database backup is being taken
while there are operations still being performed on the server. In order to simulate this, we
begin by opening two terminal windows. In step 1, we open a mongo shell (in the first
Terminal window) and run a simple JavaScript code snippet, which would insert about
100,000 documents. As soon as you initiate this code, immediately switch to the other
Terminal window and execute the mongodump utility as shown in step 2. We explicitly
mention the --oplog flag to ensure we capture the point in time oplog entries of operations
that are being performed during the backup operation. This will create a file called
oplog.bson in the top level directory, as shown in the output in step 3.

Managing MongoDB Backups

[142]

Finally, if you feel industrious, you can explore the oplog.bson file using the bsondump
utility, as shown in step 4.

When attempting to restore a backup using mongorestore utility, which
contains oplogs, ensure you use the --oplogReplay flag.

Using the mongoexport tool
In this recipe, we will be looking at mongoexport, a utility provided to export MongoDB
data in JSON and CSV format.

Getting ready
You need a single node MongoDB installation, preferably with some data in it. Refer to the
recipe Creating an index in Chapter 2, Understanding and Managing Indexes, for instructions
on how to import sample data into a MongoDB instance.

How to do it...
Execute the mongoexport utility with the following options:1.

mongoexport -d mydb -c mockdata --fields
first_name,last_name,language --query '{language: "English"}' --
type csv > my_data.csv

Your output should be similar to this:2.

2017-10-04T16:15:51.939+0000 connected to: localhost
2017-10-04T16:15:51.981+0000 exported 866 records

Managing MongoDB Backups

[143]

Examine the contents file my_data.csv:3.

first_name,last_name,language
Gareth,Mott,English
Pace,Goodram,English
Valaree,Dickinson,English
Nickola,Messer,English
Ellene,Wardlaw,English
Caryn,Petruk,English
Alta,Major,English
Sonya,Ritchman,English
Howie,MacHostie,English

How it works...
The mongoexport utility is not really the ideal tool to use for performing backups on
production databases. However, it can be used as a very nifty tool to quickly extract data
for generating reports or (if you are confident) maybe a quick backup in JSON or CSV
format.

In step 1, we execute the mongoexport utility with some options similar to mongodump
utility. The flags are -d for the name of the database, -c for the name of the collection, --
fields for the name of the fields which should be returned, --query for the query to
perform on the collection, and lastly, --type for the output type. We pipe the output to a
file called my_data.csv and, upon its inspection, we can observe that the tool has created a
comma-separated CSV file with its first line containing the name of the fields representing
the output.

Creating a backup of a sharded cluster
In this recipe, we will be looking at how to take a backup of a sharded MongoDB cluster.
We will be looking at how to backup the config server and the relevant shards which
contain the actual data.

Getting ready
You will need a sharded MongoDB cluster, with a minimum of a config server replica set
(CSRS) and one shard. Refer to the recipe Setting up and configuring a sharded cluster in
Chapter 5, High Scalability with Sharding, on how to create a sharded cluster.

Managing MongoDB Backups

[144]

How to do it...
Connect to the mongos server and stop the balancer:1.

use config

sh.stopBalancer()

Take a backup of the config server:2.

mongodump -h localhost -p 27019 -d config --out /backups/configbkp

Take backup from the shard:3.

mongodump -h localhost -p 27027 -d myShardedDB --out
/backups/shard1bkp

Connect back to the mongos server and enable the balancer:4.

use config

sh.startBalancer()

How it works...
Taking backups of a sharded cluster is a bit nuanced, as it involves ensuring certain steps
are considered before planning a backup strategy. For starters, we need to stop the balancer.
We begin by connecting to mongos server and stopping the balancer, as shown in step 1.
Next, in step 2, we use mongodump to take a backup of the config server. In a production
environment, prior to executing a mongodump, it is suggested to connect to the config server
replica set secondary, issue a db.fsyncLock() and rs.slaveOk(). This ensures that there
are no writes to the config database, of the given replica set and we are able to read from it.
Next, in step 3, we connect to each shard (our example only has one shard member) and
execute the mongodump utility to take the database backup from that shard. Lastly, we
connect back to the mongos instance and start the balancer by running the
sh.startBalancer() command.

7
Restoring MongoDB from

Backups
In this chapter, we will cover the following recipes:

Restoring standalone MongoDB databases using the mongorestore tool
Restoring specific database or specific collection
Restoring data from one collection or database to another
Creating a new MongoDB replica set node using backups
Restoring a MongoDB sharded cluster from backup

Introduction
In the previous chapter, we saw various tools and techniques used to back up MongoDB
data. Continuing from that trail, this chapter should help you understand how to restore
data from a given backup. For most restoration use cases, we will use the mongorestore
utility that comes bundled with the MongoDB installation. Additionally, we will cover
different types of MongoDB setups, ranging from standalone servers and replica sets to
sharded databases. So, let's get started!

Restoring standalone MongoDB using the
mongorestore tool
In this recipe, we will be looking at how to use the mongorestore tool to restore a
previously generated backup.

Restoring MongoDB from Backups

[146]

Getting ready
You need a single-node MongoDB installation, preferably with some data in it. Refer to
the Creating an index recipe in Chapter 2, Understanding and Managing Indexes, on how to
import sample data into a MongoDB instance.

How to do it...
Connect to the MongoDB server via mongo shell, and insert about 1,000 random1.
documents:

for(var x=0; x<1000; x++){
db.mycol.insert({age:(Math.round(Math.random()*100)%20) }) }

Immediately switch to a different Terminal, and take the backup:2.

mongodump --out /backups/dump/

You should see output similar to this:3.

2017-10-06T08:02:38.082+0000 writing admin.system.version
2017-10-06T08:02:38.083+0000 done dumping admin.system.version (1
document)
2017-10-06T08:02:38.083+0000 writing mydb.mockdata to
2017-10-06T08:02:38.084+0000 writing mydb.mycol to
2017-10-06T08:02:38.095+0000 done dumping mydb.mycol (1000
documents)
2017-10-06T08:02:38.279+0000 done dumping mydb.mockdata (100000
documents

Switch back to the operating system's Terminal window, and execute the4.
mongorestore utility:

mongorestore --drop --dir /backups/dump/

You should see output similar to this:5.

2017-10-06T08:29:10.775+0000 preparing collections to restore from
2017-10-06T08:29:10.782+0000 reading metadata for mydb.mockdata
from /backups/dump/mydb/mockdata.metadata.json
2017-10-06T08:29:10.786+0000 reading metadata for mydb.mycol from
/backups/dump/mydb/mycol.metadata.json
2017-10-06T08:29:10.795+0000 restoring mydb.mycol from
/backups/dump/mydb/mycol.bson

Restoring MongoDB from Backups

[147]

2017-10-06T08:29:10.809+0000 restoring mydb.mockdata from
/backups/dump/mydb/mockdata.bson
2017-10-06T08:29:10.861+0000 no indexes to restore
2017-10-06T08:29:10.861+0000 finished restoring mydb.mycol (1000
documents)
2017-10-06T08:29:13.772+0000 [#################.......]
mydb.mockdata 8.62MB/12.2MB (71.0%)
2017-10-06T08:29:15.211+0000 [########################]
mydb.mockdata 12.2MB/12.2MB (100.0%)
2017-10-06T08:29:15.211+0000 no indexes to restore
2017-10-06T08:29:15.211+0000 finished restoring mydb.mockdata
(100000 documents)
2017-10-06T08:29:15.211+0000 done

How it works...
We begin simply by adding another collection to the existing mydb database, just to increase
the sample dataset for verbosity. In step 2, we take a database backup by executing the
mongodump utility with no special parameters other than the output directory. Next, in step
3, we execute the mongorestore utility with two parameters. The --drop parameter is
used to drop the collection before importing. We are using it primarily to avoid duplicate
key errors, which would occur because the backup contains the _id fields. As the _id field
is unique, the database restoration process would yield duplicate key errors. In a real-world
scenario, you should be extremely careful when adding a --drop collection flag. The
mongorestore utility is also provided with the --dir flag, which points to the directory
containing the backup files. The utility will go through each subdirectory within the
supplied directory, read the files present in that directory, and restore the respective
collections. Any indexes taken during the backup are also restored. If you had provided a -
-gzip option when executing mongodump, you can provide the same flag with
the mongorestore utility, allowing it to recognize the backup as a set of GZIP compressed
files. Likewise, if you are restoring from an archive, you can use the --archive file instead
of the --dir parameter.

Last but not least, if you are ever in doubt, you can always use the --dryRun option which
provides extra verbose output like this:

mongorestore --dryRun -vvv --dir /backups/dump

The preceding command executes the entire process of database restoration without
actually restoring the data. This can prove extremely useful when you wish to double-check
the integrity of your data and the restoration parameters.

Restoring MongoDB from Backups

[148]

Restoring specific database or specific
collection
In this recipe, we will explore the options of mongorestore utility that allow us to restore
backups for a specific database or collection. We will also look at how to exclude certain
collections or databases during restoration.

Getting ready
You need a single-node MongoDB installation, preferably with some data in it. Refer to
the Creating an index recipe in Chapter 2, Understanding and Managing Indexes, on how to
import sample data into a MongoDB instance.

How to do it...
Connect to the MongoDB server via mongo shell, and insert about 1,000 random1.
documents:

for(var x=0; x<1000; x++){
db.mycol.insert({age:(Math.round(Math.random()*100)%20) }) }

Immediately switch to a different Terminal, and take the backup:2.

mongodump --out /backups/dump/

You should see output similar to this:3.

2017-10-06T08:02:38.082+0000 writing admin.system.version
2017-10-06T08:02:38.083+0000 done dumping admin.system.version (1
document)
2017-10-06T08:02:38.083+0000 writing mydb.mockdata to
2017-10-06T08:02:38.084+0000 writing mydb.mycol to
2017-10-06T08:02:38.095+0000 done dumping mydb.mycol (1000
documents)
2017-10-06T08:02:38.279+0000 done dumping mydb.mockdata (100000
documents

Restoring MongoDB from Backups

[149]

Switch back to the operating system's Terminal window, and execute the4.
mongorestore utility to only restore a single collection:

mongorestore --drop -v --dir /backups/dump --nsInclude
'mydb.mockdata'

You should see output similar to this:5.

2017-10-08T10:45:43.108+0000 using --dir flag instead of arguments
2017-10-08T10:45:43.113+0000 using write concern: w='majority',
j=false, fsync=false, wtimeout=0
2017-10-08T10:45:43.114+0000 preparing collections to restore from
2017-10-08T10:45:43.115+0000 found collection mydb.mockdata bson to
restore to mydb.mockdata
2017-10-08T10:45:43.116+0000 found collection metadata from
mydb.mockdata to restore to mydb.mockdata
2017-10-08T10:45:43.117+0000 dropping collection mydb.mockdata
before restoring
2017-10-08T10:45:43.121+0000 reading metadata for mydb.mockdata
from /backups/dump/mydb/mockdata.metadata.json
2017-10-08T10:45:43.126+0000 creating collection mydb.mockdata
using options from metadata
2017-10-08T10:45:43.134+0000 restoring mydb.mockdata from
/backups/dump/mydb/mockdata.bson
2017-10-08T10:45:46.110+0000 [##################......]
mydb.mockdata 9.23MB/12.2MB (76.0%)
2017-10-08T10:45:47.083+0000 [########################]
mydb.mockdata 12.2MB/12.2MB (100.0%)
2017-10-08T10:45:47.083+0000 no indexes to restore
2017-10-08T10:45:47.083+0000 finished restoring mydb.mockdata
(100000 documents)
2017-10-08T10:45:47.083+0000 done

Execute mongorestore to exclude a collection during restoration:6.

mongorestore -v --drop --dir /backups/dump --nsExclude
'mydb.mockdata'

You should see output similar to this:7.

2017-10-08T10:47:00.053+0000 using --dir flag instead of arguments
2017-10-08T10:47:00.059+0000 using write concern: w='majority',
j=false, fsync=false, wtimeout=0
2017-10-08T10:47:00.060+0000 preparing collections to restore from
2017-10-08T10:47:00.061+0000 found collection admin.system.version
bson to restore to admin.system.version
2017-10-08T10:47:00.062+0000 found collection metadata from

Restoring MongoDB from Backups

[150]

admin.system.version to restore to admin.system.version
2017-10-08T10:47:00.063+0000 found collection mydb.mycol bson to
restore to mydb.mycol
2017-10-08T10:47:00.064+0000 found collection metadata from
mydb.mycol to restore to mydb.mycol
2017-10-08T10:47:00.065+0000 dropping collection mydb.mycol before
restoring
2017-10-08T10:47:00.069+0000 reading metadata for mydb.mycol from
/backups/dump/mydb/mycol.metadata.json
2017-10-08T10:47:00.076+0000 creating collection mydb.mycol using
options from metadata
2017-10-08T10:47:00.082+0000 restoring mydb.mycol from
/backups/dump/mydb/mycol.bson
2017-10-08T10:47:00.120+0000 no indexes to restore
2017-10-08T10:47:00.120+0000 finished restoring mydb.mycol (1000
documents)
2017-10-08T10:47:00.120+0000 done

How it works...
We begin simply by adding another collection to the existing mydb database, just to increase
the sample dataset for verbosity. In step 2, we take a database backup by executing the
mongodump utility with no special parameters other than the output directory.

Now comes the interesting bit. If you recall from Chapter 6, Managing MongoDB Backups,
you saw the use of the mongodump utility with the -d and -c flags, which correspond to
database and collection, respectively. As of MongoDB 3.4, the mongorestore utility uses
the namespace flags instead. A namespace is a dot (.) separated tuple of two words, first
being the database name and the other, the collection or index name. For example,
mydb.mockdata would denote the namespace for the mockdata collection in
the mydb database. This nomenclature allows a slightly more usable denotation of a parent-
child type of relationship between a database and its subobjects. In step 3, we use the --
nsInclude flag to explicitly specify the namespace that we wish to restore. In our case, it is
mydb.mockdata as the namespace that denotes the database and collection names.

In step 4, we use the --nsExclude flag to explicitly exclude a given collection while
restoring data.

Namespaces can contain wildcards as well, for example, you can use
the mydb.m* namespace to restore all collections within the
mydb database that start with the letter m.

Restoring MongoDB from Backups

[151]

Restoring data from one collection or
database to another
In this recipe, we will look at how to use the mongorestore utility to restore data from one
collection to another.

Getting ready
You need a single-node MongoDB installation, preferably with some data in it. Refer to
the Creating an index recipe in Chapter 2, Understanding and Managing Indexes, on how to
import sample data into a MongoDB instance.

How to do it...
Connect to the MongoDB server via mongo shell, and insert about 1,000 random1.
documents:

for(var x=0; x<1000; x++){
db.mycol.insert({age:(Math.round(Math.random()*100)%20) }) }

Immediately switch to a different Terminal, and take the backup:2.

mongodump --out /backups/dump/

You should see output similar to this:3.

2017-10-06T08:02:38.082+0000 writing admin.system.version to
2017-10-06T08:02:38.083+0000 done dumping admin.system.version (1
document)
2017-10-06T08:02:38.083+0000 writing mydb.mockdata to
2017-10-06T08:02:38.084+0000 writing mydb.mycol to
2017-10-06T08:02:38.095+0000 done dumping mydb.mycol (1000
documents)
2017-10-06T08:02:38.279+0000 done dumping mydb.mockdata (100000
documents)

Switch back to the operating system's Terminal window, and execute the4.
mongorestore utility to restore data from one collection to another:

mongorestore -v --dir /backups/dump --nsInclude 'mydb.mockdata' --
nsFrom 'mydb.mockdata' --nsTo 'newdb.mockdata'

Restoring MongoDB from Backups

[152]

You should see output similar to this:5.

2017-10-08T12:25:18.460+0000 using --dir flag instead of arguments
2017-10-08T12:25:18.466+0000 using write concern: w='majority',
j=false, fsync=false, wtimeout=0
2017-10-08T12:25:18.467+0000 preparing collections to restore from
2017-10-08T12:25:18.468+0000 found collection mydb.mockdata bson to
restore to newdb.mockdata
2017-10-08T12:25:18.468+0000 found collection metadata from
mydb.mockdata to restore to newdb.mockdata
2017-10-08T12:25:18.469+0000 reading metadata for newdb.mockdata
from /backups/dump/mydb/mockdata.metadata.json
2017-10-08T12:25:18.470+0000 creating collection newdb.mockdata
using options from metadata
2017-10-08T12:25:18.476+0000 restoring newdb.mockdata from
/backups/dump/mydb/mockdata.bson
2017-10-08T12:25:21.462+0000 [################........]
newdb.mockdata 8.38MB/12.2MB (69.0%)
2017-10-08T12:25:22.856+0000 [########################]
newdb.mockdata 12.2MB/12.2MB (100.0%)
2017-10-08T12:25:22.857+0000 no indexes to restore
2017-10-08T12:25:22.858+0000 finished restoring newdb.mockdata
(100000 documents)
2017-10-08T12:25:22.859+0000 done

Execute the mongorestore utility to restore data from multiple collections'6.
backups to a new collection:

mongorestore -v --dir /backups/dump --nsInclude 'mydb.mockdata' --
nsFrom 'mydb.$colname$' --nsTo 'mydb.copyof_$colname$'

You should see output similar to this:7.

2017-10-08T12:26:29.037+0000 using --dir flag instead of arguments
2017-10-08T12:26:29.048+0000 using write concern: w='majority',
j=false, fsync=false, wtimeout=0
2017-10-08T12:26:29.049+0000 preparing collections to restore from
2017-10-08T12:26:29.050+0000 found collection mydb.mockdata bson to
restore to mydb.copyof_mockdata
2017-10-08T12:26:29.051+0000 found collection metadata from
mydb.mockdata to restore to mydb.copyof_mockdata
2017-10-08T12:26:29.053+0000 reading metadata for
mydb.copyof_mockdata from /backups/dump/mydb/mockdata.metadata.json
2017-10-08T12:26:29.054+0000 creating collection
mydb.copyof_mockdata using options from metadata
2017-10-08T12:26:29.070+0000 restoring mydb.copyof_mockdata from
/backups/dump/mydb/mockdata.bson

Restoring MongoDB from Backups

[153]

2017-10-08T12:26:32.045+0000 [##################......]
mydb.copyof_mockdata 9.23MB/12.2MB (76.0%)
2017-10-08T12:26:32.725+0000 [########################]
mydb.copyof_mockdata 12.2MB/12.2MB (100.0%)
2017-10-08T12:26:32.725+0000 no indexes to restore
2017-10-08T12:26:32.725+0000 finished restoring
mydb.copyof_mockdata (100000 documents)
2017-10-08T12:26:32.725+0000 done

How it works...
We begin simply by adding another collection to the existing mydb database, just to increase
the sample dataset for verbosity. In step 2, we take a database backup by executing the
mongodump utility with no special parameters other than the output directory.

In step 3, we use two new parameters-- --nsFrom and --nsTo. The value of the --
nsFrom parameter indicates the namespace from which the restoration is supposed to be
renamed, and the value of --nsTo indicates the target namespace. In our example, we are
restoring the backup of data from mydb.mockdata to a new database newdb.mockdata.
You may have noticed that I am still using the --nsInclude flag with
the mydb.mockdata value. This ensures that the mongorestore utility is only considering
the mydb.mockdata namespace and no other databases or collections. In the absence of
these parameters, the mongodrestore utility will restore all the backups in the --dir path.
So to restrict its scope to only the relevant database and collection, we have to use the --
nsInclude flag.

Finally, in step 4, we use the utility's feature of allowing variable substitution in renaming
namespaces. Let's break down the flags and their values used in this step:

Flag Value Effect

--nsInclude mydb.mockdata Restrict match to database mydb and collection
mockdata.

--nsFrom mydb.$colname$ For each collection matched by --nsInclude,
match for database mydb and store the collection
name in a variable called $colname$.

Restoring MongoDB from Backups

[154]

--nsTo mydb.copyof_$colname$ For each collection returned by --nsFrom,
restore data to the namespace
mydb.copyof_$colname$, where the variable
$colname$ is replaced by its value.
For example, mydb.mockdata would get
restored as mydb.copyof_mockdata.

This little trick can be very useful in the following scenarios:

You need to test index behavior without affecting the actual data
Set up a copy of your data on the same server in a development environment

Creating a new MongoDB replica set node
using backups
In this recipe, we will look at how to set up a new replica set using a previously generated
backup.

Getting ready
All you need is a MongoDB backup, preferably one generated in the Taking backup using
mongodump tool recipe of Chapter 6, Managing MongoDB Backups. For this example, we will
assume the database backup is present in /backups/dump/. Additionally, we will create
individual directories for each mongod instance:

mkdir -p /data/server{1,2,3}/db

How to do it...
Start a single-node replica set:1.

mongod --dbpath /data/server1/db --replSet MyReplicaSet --port
27017

Restoring MongoDB from Backups

[155]

Connect to the replica set and initiate the database:2.

rs.initiate()

You should see output similar to this:3.

{
 "info2" : "no configuration specified. Using a default
configuration for the set",
 "me" : "192.168.200.200:27017",
 "ok" : 1
}

Use the mongorestore utility to restore the database:4.

mongorestore --dir /backups/dump/

You should see output similar to this:5.

2017-10-08T13:25:17.215+0000 preparing collections to restore from
2017-10-08T13:25:17.216+0000 reading metadata for mydb.mockdata
from /backups/dump/mydb/mockdata.metadata.json
2017-10-08T13:25:17.226+0000 restoring mydb.mockdata from
/backups/dump/mydb/mockdata.bson
2017-10-08T13:25:17.252+0000 no indexes to restore
2017-10-08T13:25:18.385+0000 finished restoring mydb.mockdata
(100000 documents)
2017-10-08T13:25:18.385+0000 done

Connect to the primary node using mongo shell, and shut down the replica set6.
node:

use admin

db.shutdownServer({force: true})

Copy the data of the primary node to the --dbpath of the secondary nodes:7.

cp -Rpf /data/server1/db/* /data/server2/db/

cp -Rpf /data/server1/db/* /data/server3/db/

Restoring MongoDB from Backups

[156]

Start all three replica set nodes:8.

mongod --dbpath /data/server1/db --replSet MyReplicaSet --port
27017

mongod --dbpath /data/server2/db --replSet MyReplicaSet --port
27018

mongod --dbpath /data/server3/db --replSet MyReplicaSet --port
27019

Connect to the primary node using mongo shell and add the secondary nodes,9.
one at a time:

rs.add('192.168.200.200:27018')

rs.add('192.168.200.200:27019')

Check that the nodes in the replica set are now in sync:10.

rs.status()

How it works...
We begin by starting a single-node replica set running on port 27017. Next, in step 2, we
connect to this replica set instance and initialize the replica set using the rs.initiate()
command. For step 3, we switch to a different console window and restore the database
backup using the mongorestore utility. In step 4, we switch back to the mongo shell,
which is connected to our replica set node, and shut down the server using the
db.shutdownServer({force: true}) command. By default, a replica set with no nodes
will not shut down, so we use the force:true parameter to force it into bending the knee.
In step 5, we copy the data from the primary instance's --dbpath to the respective paths for
the other two instances. Next, in step 6, we start all three replica set instances with their
respective --dbpath and --port parameters. In step 7, we connect to the primary replica
set instance and add the other two instances. Lastly, we can check that the other two nodes
have been added and are in sync using the rs.status() command.

Restoring MongoDB from Backups

[157]

Clearly, this is an overly simplified example of how to create a replica set from an existing
backup. An alternate method would be to restore the backup on a single node, start the
secondary nodes with no data in them, and simply add them to the replica set using the
rs.add() command. As this method initiates an on-the-fly sync of data between the nodes,
you should add the nodes one by one.

In a production environment, if the dataset is too large, it is rather preferred to do an initial
sync using the data files and then let the nodes catch up with the primary node, once they
are added.

Restoring a MongoDB sharded cluster from
backup
In this recipe, we will be looking at how to restore a sharded cluster from a previously
generated backup.

Getting ready
You will need a sharded cluster, with a minimum of a config server replica set (CSRS) and
one shard. Refer to the Setting up and configuring a sharded cluster recipe in Chapter 5, High
Scalability with Sharding, on how to create a sharded cluster.

Additionally, we will also need a previously generated backup from a sharded cluster; you
can refer to the Creating a backup of a sharded cluster recipe in Chapter 6, Managing MogoDB
Backups.

How to do it...
Shut down the mongos server.1.
Restore the shards one by one:2.

mongorestore -h 192.168.200.200 -p 27027 --drop --dir
/backups/shard1bkp/

Restoring MongoDB from Backups

[158]

Shut down the shards.3.
Restore the config server:4.

mongorestore -h 192.168.200.200 -p 27019 --drop --dir
/backups/configbkp/

Start the shards and the mongos servers.5.

How it works...
We begin by initializing the shard cluster, wherein first we ensure that the CSRS is created
and initialized. Next, we start the shard servers and the mongos instances. Once the cluster
is initialized, we shut down the mongos server to ensure no data is accidentally written to
the cluster. We then restore data on each shard, on one instance as shown in step 2.

Next, in step 3, we stop the MongoDB shards, and in step 4, we restore the config server's
data. Finally, once the data is restored, we start the shards and mongos instances. Once the
entire cluster is up and running, we can connect to the mongos instance and run the
db.printShardingStatus() command to confirm the health of the cluster.

Even the best backup strategies fail until data recovery is tested. In the
next chapter, we will look at a recipe called Monitoring MongoDB backups,
in which we will be looking at automated mechanisms to test backups and
their restoration.

8
Monitoring MongoDB

The following recipes are included in this chapter:

Monitoring MongoDB performance with mongostat
Checking replication lag of nodes in a replica set
Monitoring and killing long running operations on MongoDB
Checking disk I/O usage
Collecting MongoDB metrics using Diamond and Graphite

Introduction
Monitoring is perhaps one of the most crucial components of any production system.
Keeping a close watch on the important metrics and signals emitted by a system can help
gain wonderful insights into the system's usage and behavior. It can help you debug issues,
identify and optimize bottlenecks, and avoid catastrophic failures. Thankfully, MongoDB
comes bundled with useful tools and commands that help us monitor its health and take
appropriate measures to ensure its optimal utilization. In this chapter, we will look at
various tools such as mongostat and mongotop, work with database commands that give
extremely useful metrics, monitor operating system subsystems, and monitor backups.

Let's get started!

Monitoring MongoDB

[160]

Monitoring MongoDB performance with
mongostat
In this recipe, we will take a look at the mongostat utility, which is bundled with standard
MongoDB binary distributions. This tool gives good insights into MongoDB utilization and
is also capable of being used programmatically.

Getting ready
For this recipe, at a minimum, you need a single-node MongoDB setup.

How to do it...
Connect to you mongod instance and run a bunch of inserts, updates, and1.
deletes:

use mydb

for(var x=0; x<20000; x++){
 db.mycol.insert({age:(Math.round(Math.random()*100)%20)});
 db.mycol.findAndModify({query: {age:
(Math.round(Math.random()*100)%20)}, update:{$inc: {age: 2}}});
 db.mycol.remove({age:(Math.round(Math.random()*100)%20)});
}

In a separate Terminal, execute the mongostat command. You should see output2.
similar to this:

Monitoring MongoDB

[161]

Execute mongostat to only give the insert rate and count:3.

mongostat -o
'host,metrics.document.inserted.rate()=insert_rate,metrics.document
.inserted=inserted_count'

You should see output similar to this:4.

Execute mongostat to run once and give output in JSON:5.

mongostat -n 1 --json | python -m json.tool

You should see output similar to this:6.

{
 "localhost:27017": {
 "arw": "0|0",
 "command": "2|0",
 "conn": "2",
 "delete": "*0",
 "faults": "0",
 "flushes": "0",
 "getmore": "0",
 "insert": "*0",
 "mapped": "",
 "net_in": "158b",
 "net_out": "27.1k",
 "qrw": "0|0",
 "query": "*0",
 "res": "218M",
 "time": "13:29:41",
 "update": "*0",
 "vsize": "2.99G"
 }
}

Monitoring MongoDB

[162]

How it works...
We begin by connecting to the MongoDB instance using the mongo shell. In order to
simulate operations, we execute a JavaScript code snippet that will insert a 100,000
documents in the database. This should give us a few seconds to switch to another terminal
window and see mongostat in action.

In step 2, we execute the mongostat utility with no command-line parameters. The default
output is pretty detailed and will execute indefinitely until you hit Ctrl + C. In the sample
output, each column represents a particular metric, explained as follows:

Metric Description

insert, query, update,
and delete

This denotes the rate of query type per second

getmore This is the rate of cursor batch fetches per second

command This denotes the number of commands per second

flushes For MMAPv1, this represents the number of fsyncs per second,
whereas for WiredTiger Engine, it represents the rate of
checkpoints per polling interval

mapped This is the size of total data mapped for the MMAPv1 storage
engine

vsize and res This is the virtual and resident memory size of the
mongod/mongos process

faults For MMAPv1 only, this represents the number of page faults
per second

qr and qw This denotes the queue length of active clients waiting for reads
and writes respectively

ar and aw This is the current number of active clients performing read and
write operations

Monitoring MongoDB

[163]

The mongostat utility also allows customization of the fields in its output. In step 3, we
execute mongostat with the -o option along with the list of fields that need to be displayed
in the output. Note that we are adding the rate() function at the end of the insert
metrics. This function shows the rate per second of the given metric. Additionally,
mongostat also provides a diff() function that can show the difference between the
current and the previous values of the given metric.

When using the -o or -O option, make sure you do not have spaces
between the comma separated fields otherwise you will end up in a
debugging rabbit hole.

Lastly, in step 4, we take an overly simplistic example to show how mongostat can also
generate output in JSON format. It can be an extremely handy tool to fetch metrics in a
serialized format and parse it to a script.

See also
For more comprehensive list of mongostat's parameters, refer to the official
manual at https:/ / docs. mongodb. com/ manual/ reference/ program/ mongostat

Checking replication lag of nodes in a
replica set
The most ideal state for a replica set is when all nodes within the cluster are in sync. In this
recipe, we will look at how to check the replication lag of nodes in a replica set.

Getting ready
We will need at least a multinode replica set cluster. You can refer to the Adding a node in a
replica set recipe in Chapter 4, High Availability with Replication, for more details.

https://docs.mongodb.com/manual/reference/program/mongostat
https://docs.mongodb.com/manual/reference/program/mongostat
https://docs.mongodb.com/manual/reference/program/mongostat
https://docs.mongodb.com/manual/reference/program/mongostat
https://docs.mongodb.com/manual/reference/program/mongostat
https://docs.mongodb.com/manual/reference/program/mongostat
https://docs.mongodb.com/manual/reference/program/mongostat
https://docs.mongodb.com/manual/reference/program/mongostat
https://docs.mongodb.com/manual/reference/program/mongostat
https://docs.mongodb.com/manual/reference/program/mongostat
https://docs.mongodb.com/manual/reference/program/mongostat
https://docs.mongodb.com/manual/reference/program/mongostat
https://docs.mongodb.com/manual/reference/program/mongostat
https://docs.mongodb.com/manual/reference/program/mongostat
https://docs.mongodb.com/manual/reference/program/mongostat
https://docs.mongodb.com/manual/reference/program/mongostat
https://docs.mongodb.com/manual/reference/program/mongostat

Monitoring MongoDB

[164]

How to do it...
Ensure all nodes are up and connect to the primary node of the replica set using1.
mongo shell.
Fetch the current replication information:2.

rs.printReplicationInfo()

You should see output similar to this:3.

configured oplog size: 1578.62548828125MB
log length start to end: 142363secs (39.55hrs)
oplog first event time: Sun Oct 08 2017 18:54:12 GMT+0530 (IST)
oplog last event time: Tue Oct 10 2017 10:26:55 GMT+0530 (IST)
now: Tue Oct 10 2017 10:26:59 GMT+0530 (IST)

Check the current replication information:4.

rs.printSlaveReplicationInfo()

You should see output similar to this:5.

source: 192.168.200.200:27018
syncedTo: Tue Oct 10 2017 10:28:35 GMT+0530 (IST)
 0 secs (0 hrs) behind the primary
source: 192.168.200.200:27019
 syncedTo: Tue Oct 10 2017 10:28:35 GMT+0530 (IST)
 0 secs (0 hrs) behind the primary

Shut down one of the secondary replica set nodes, and execute the following6.
query on the primary node:

use mydb

for(var x=0; x<100000; x++){
 db.mycol.insert({age:(Math.round(Math.random()*100)%20)});
 db.mycol.findAndModify({query: {age:
(Math.round(Math.random()*100)%20)}, update:{$inc: {age: 2}}});
 db.mycol.remove({age:(Math.round(Math.random()*100)%20)});
}

Monitoring MongoDB

[165]

Start the replica set secondary, and immediately check the slave replication7.
information:

rs.printSlaveReplicationInfo()

You should see output similar to this:8.

source: 192.168.200.200:27018
 syncedTo: Tue Oct 10 2017 10:30:11 GMT+0530 (IST)
 0 secs (0 hrs) behind the primary
source: 192.168.200.200:27019
 syncedTo: Tue Oct 10 2017 10:29:45 GMT+0530 (IST)
 26 secs (0.01 hrs) behind the primary

How it works...
We begin by bringing up a multinode replica set cluster. In step 2, while connected to the
primary instance of the replica set, we execute the rs.printReplicationInfo()
command. This command prints out the details pertaining to oplog. Oplogs, or operation
logs, are database operations performed on the primary node of a replica set. They are
stored in a capped collection and are replayed on the secondary nodes within a replica set.
This is the core mechanism of how nodes within a replica set are synchronized. Coming
back to the rs.printReplicationInfo() command's output, we can see the details of the
current size of the oplog when it started and the timestamps of the first and last events. This
can be a good reference point to know the current state of replication in the cluster.

In step 3, we execute the rs.printSlaveReplicationInfo() command, which prints the
point in time status of the last event in the respective replica set nodes. Each oplog entry has
a timestamp associated with it; hence, by knowing the last event's timestamp, MongoDB
can determine the lag between the secondary and the primary nodes of the replica set. The
rs.printSlaveReplicationInfo() command does exactly this. If you type
rs.printSlaveReplicationInfo (without the parenthesis), you can view the source of
this command, and it will help you understand how this command simply iterates through
each member of the replica set and calculates the difference between the timestamps. In our
sample output, you can see that we have two secondary nodes in the replica set, and both
are in sync with the primary.

Monitoring MongoDB

[166]

In step 4, we run a simple JavaScript snippet that will help us simulate some traffic, and at
the same time, we ensure that one of the replica set secondary nodes is turned off. As this
snippet takes a few seconds to execute, we attempt to bring this secondary node online with
the aim to create an artificial lag between it and the primary node. Immediately, switch to
the primary node's mongo shell and execute the
rs.printSlaveReplicationInfo() command. As shown in the sample output, the
secondary node is now catching up to the primary, and hence, it is lagging behind by 26
seconds.

In a production environment, replication lags are pretty common. Factors such as network
congestion, disk I/O limitations, memory limitations, and so on can be some of the causes
for a node to start lagging. It is one of the most important metrics of a replica set that should
always be monitored.

There is a very good Nagios plugin project that can be a good starting point to set up a
monitor for a replica log. Even if you are not using the Nagios monitoring system, this
plugin can still be used as a standalone monitoring script. Source code is available at:
https://github.com/ mzupan/ nagios- plugin- mongodb.

Monitoring and killing long running
operations on MongoDB
In this recipe, we will look at how to find and monitor operations on MongoDB. This can
help us keep an eye on any anomalous behavior or catch suboptimal queries.

Getting ready
All you need is a single-node MongoDB instance. Additionally, in order to simulate a busy
production system, you may need to add a collection with a couple of million documents. If
you are lazy like me, simply run the following:

for x in $(seq 30); do mongoimport -h 192.168.200.200 --type csv --
headerline -d mydb-c mycol chapter_2_mock_data.csv;done

https://github.com/mzupan/nagios-plugin-mongodb
https://github.com/mzupan/nagios-plugin-mongodb
https://github.com/mzupan/nagios-plugin-mongodb
https://github.com/mzupan/nagios-plugin-mongodb
https://github.com/mzupan/nagios-plugin-mongodb
https://github.com/mzupan/nagios-plugin-mongodb
https://github.com/mzupan/nagios-plugin-mongodb
https://github.com/mzupan/nagios-plugin-mongodb
https://github.com/mzupan/nagios-plugin-mongodb
https://github.com/mzupan/nagios-plugin-mongodb
https://github.com/mzupan/nagios-plugin-mongodb
https://github.com/mzupan/nagios-plugin-mongodb
https://github.com/mzupan/nagios-plugin-mongodb
https://github.com/mzupan/nagios-plugin-mongodb
https://github.com/mzupan/nagios-plugin-mongodb

Monitoring MongoDB

[167]

How to do it...
In one Terminal window, connect to the mongod instance using mongo shell and1.
run a find() query for a string that does not exist in the database:

db.people.find({name: 'Foobar'})

In another Terminal window, connect to the mongod instance using mongo shell2.
and run db.currentOp():

use mydb

db.currentOp()

You should see output similar to this:3.

{
 "inprog" : [
 {
 "desc" : "conn11",
 "threadId" : "139774219482880",
 "connectionId" : 11,
 "client" : "127.0.0.1:33822",
 "appName" : "MongoDB Shell",
 "clientMetadata" : {
 "application" : {
 "name" : "MongoDB Shell"
 },
 "driver" : {
 "name" : "MongoDB Internal Client",
 "version" : "3.4.6"
 },
 "os" : {
 "type" : "Linux",
 "name" : "Ubuntu",
 "architecture" : "x86_64",
 "version" : "14.04"
 }
 },
 "active" : true,
 "opid" : 348294,
 "secs_running" : 0,
 "microsecs_running" : NumberLong(543337),
 "op" : "query",
 "ns" : "mydb.people",
 "query" : {

Monitoring MongoDB

[168]

 "find" : "people",
 "filter" : {
 "name" : "Fubar"
 }
 },
 "planSummary" : "COLLSCAN",
 "numYields" : 7447,
 "locks" : {
 "Global" : "r",
 "MMAPV1Journal" : "r",
 "Database" : "r",
 "Collection" : "R"
 },
 "waitingForLock" : false,
 "lockStats" : {
 "Global" : {
 "acquireCount" : {
 "r" : NumberLong(14896)
 }
 },
 "MMAPV1Journal" : {
 "acquireCount" : {
 "r" : NumberLong(7448)
 }
 },
 "Database" : {
 "acquireCount" : {
 "r" : NumberLong(7448)
 }
 },
 "Collection" : {
 "acquireCount" : {
 "R" : NumberLong(7448)
 }
 }
 }
 },
<-- output truncated -->

Monitoring MongoDB

[169]

How it works...
In step 1, assuming we have a good number of records, we run a query for a document that
does not exist. Hoping this query should run for a couple of seconds, in step 2, we open a
second Terminal window and execute the db.currentOp() command. If you are
unsuccessful on the first attempt, increase your dataset and try again.

The db.currentOp() command gives out a list of all running operations on the database.
These can be server-initiated operations as well as client-run operations. Each operation
comes with its own operation ID, which is represented as the opid key. This is a unique
integer that can be used with the db.killOp() command if you wish to kill the operation.

There are a lot of variations to the command. For example, if you want to find all update
operations for a particular database that are taking more than one second to execute, you
can run the following command:

db.currentOp({
 "active" : true,
 "secs_running" : { "$gt" : 1 },
 "op": "update",
 "ns": /^mydb\./
 })

See also
For more information about the flags used in db.currentOp(), refer to this
manual: https:/ / docs. mongodb. com/ manual/ reference/ method/ db.currentOp

Checking disk I/O usage
As explained in Chapter 2, Understanding and Managing Indexes, MongoDB's performance is
greatly dependent on the system's available memory and disk type. In this recipe, we will
look at a few tools and MongoDB commands that can help us identify disk I/O utilization.

Getting ready
You need a single-node MongoDB instance.

https://docs.mongodb.com/manual/reference/method/db.currentOp
https://docs.mongodb.com/manual/reference/method/db.currentOp
https://docs.mongodb.com/manual/reference/method/db.currentOp
https://docs.mongodb.com/manual/reference/method/db.currentOp
https://docs.mongodb.com/manual/reference/method/db.currentOp
https://docs.mongodb.com/manual/reference/method/db.currentOp
https://docs.mongodb.com/manual/reference/method/db.currentOp
https://docs.mongodb.com/manual/reference/method/db.currentOp
https://docs.mongodb.com/manual/reference/method/db.currentOp
https://docs.mongodb.com/manual/reference/method/db.currentOp
https://docs.mongodb.com/manual/reference/method/db.currentOp
https://docs.mongodb.com/manual/reference/method/db.currentOp
https://docs.mongodb.com/manual/reference/method/db.currentOp
https://docs.mongodb.com/manual/reference/method/db.currentOp
https://docs.mongodb.com/manual/reference/method/db.currentOp
https://docs.mongodb.com/manual/reference/method/db.currentOp
https://docs.mongodb.com/manual/reference/method/db.currentOp
https://docs.mongodb.com/manual/reference/method/db.currentOp
https://docs.mongodb.com/manual/reference/method/db.currentOp

Monitoring MongoDB

[170]

How to do it...
In a mongo shell, execute the db.serverStatus() command:1.

db.serverStatus()

You should see output similar to this:2.

{
 "host" : "vagrant-ubuntu-trusty-64",
 "version" : "3.4.6",
 "process" : "mongod",
 "pid" : NumberLong(20657),
 "uptime" : 5626,
 "uptimeMillis" : NumberLong(5625427),
 "uptimeEstimate" : NumberLong(5625),
 "localTime" : ISODate("2017-10-10T10:02:49.306Z"),
 "asserts" : {
 "regular" : 0,
 "warning" : 0,
 "msg" : 0,
 "user" : 0,
 "rollovers" : 0
 },
 "backgroundFlushing" : {
 "flushes" : 93,
 "total_ms" : 457,
 "average_ms" : 4.913978494623656,
 "last_ms" : 4,
 "last_finished" : ISODate("2017-10-10T10:02:04.054Z")
 },
 "connections" : {
 "current" : 2,
 "available" : 51198,
 "totalCreated" : 41
 },
 <-- output truncated -->

Monitoring MongoDB

[171]

How it works...
The db.serverStatus() command gives an exhaustive list of metrics, each having its
own merit. However, for this exercise, we will only concentrate on the ones that provide
insights into the server's disk I/O:

extra_info.page_faults: This is a counter that shows the total number of
page faults in the system. If you see a sporadic increase in the number of page
faults, then chances are that your system's memory is not sufficient to hold the
entire working and is falling back to disk reads.
wiredTiger.cache.bytes currently in the cache: This value indicates
the current utilization of WiredTiger's in-memory cache. Ideally, it should never
exceed the maximum value of the cache size.
wiredTiger.cache.pages read into cache and
wiredTiger.cache.pages written from cache: These two metrics indicate
the pages read and written to and from cache, respectively. A high fluctuation in
this metric indicates higher utilization of disk I/O. It can be a good indicator of
whether to consider optimizing the working set and/or server resources.

In addition to MongoDB's internal metrics, it is extremely important to monitor the
operating system's disk I/O metrics. Tools such as iostat should give a detailed view of the
current disk utilization and help you identify bottlenecks.

For example, to view the disk I/O of /dev/sda at an interval of 2 seconds, run the following
command:

iostat -x sda 2

This should give an output similar to this:

Monitoring MongoDB

[172]

Collecting MongoDB metrics using Diamond
and Graphite
In this recipe, we will look at how to fetch metrics using Diamond metrics collector and
send it to Graphite, a tool to store and view time series data.

Getting ready
You need a single-node MongoDB instance.

How to do it...
Assuming you are using a Ubuntu/Debian system, install Diamond:1.

sudo apt install python-pip

sudo pip install diamond

Create required directories and the Diamond configuration file:2.

mkdir /etc/diamond

mkdir /var/log/diamond

Download the Graphite docker image, and start the container:3.

 docker run -d\
 --name graphite\
 --restart=always\
 -p 80:80\
 -p 2003-2004:2003-2004\
 -p 2023-2024:2023-2024\
 -p 8125:8125/udp\
 -p 8126:8126\
 graphiteapp/graphite-statsd

Start the Diamond collector:4.

/usr/local/bin/diamond -f

Monitoring MongoDB

[173]

Check the Diamond log file (/var/log/diamond/diamond.log) and ensure5.
metrics are being collected.
Check the Graphite web UI. You should see your metrics as shown in the6.
following sample:

Monitoring MongoDB

[174]

How it works...
Diamond is an open source tool that was built to collect metrics and transfer them to
handlers. Graphite is another open source suite that can be used to collect time series data
and plot graphs against it.

In step 1, we download the Diamond application using the Python pip installer. Once
downloaded, we copy the diamond.conf file supplied with this book to
the /etc/diamond directory. If you are industrious, you can copy the sample configuration
file available in the Diamond's git repository listed at the end of this recipe.

Next in step 3, we fetch the Graphite Docker image and start a container that initiates the
Graphite UI as well as its carbon metrics collector.

In step 4, we start the Diamond server in the foreground, and in another Terminal window,
we monitor the Diamond collector's log file to ensure it is able to emit metrics to the
Graphite server. If all goes well, you should see the Graphite UI on your server's TCP port
80 with a screen similar to the preceding screenshot.

See also
For more information on the tools used, refer to these links: for Diamond:
https:// diamond. readthedocs. io and for Graphite: http:/ /graphite.
readthedocs. io</ a>

https://diamond.readthedocs.io
https://diamond.readthedocs.io
https://diamond.readthedocs.io
https://diamond.readthedocs.io
https://diamond.readthedocs.io
https://diamond.readthedocs.io
https://diamond.readthedocs.io
https://diamond.readthedocs.io
https://diamond.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io
http://graphite.readthedocs.io

9
Authentication and Security in

MongoDB
In this chapter, we will cover the following recipes:

Setting up authentication in MongoDB and creating a superuser account
Creating normal users and assigning built-in roles
Creating and assigning custom roles
Restoring access if you are locked out
Using key files to authenticate servers in a replica set

Introduction
Databases are notoriously overlooked when it comes to security. Many a times, engineers
assume that, because their application abstracts the underlying database, the actual
database systems are untouchable to the outside world. However, if you were to think of
the first principles, you have to make sure your database systems are completely locked
down, not only to the outside world but also within your infrastructure. Every application,
user, or server that needs to communicate with the database system should do so through a
well-established access control list (ACL) mechanism. Thankfully, MongoDB provides a
great deal of features that can help facilitate robust authentication and authorization
models. In this chapter, we will look at how to implement various authentication and
authorization rules to ensure that your production systems are secure. We will begin by
creating a superuser and enabling authentication in MongoDB. Lastly, we will look at
various role-based access models, creating custom roles, and managing passwords.

Authentication and Security in MongoDB

[176]

Setting up authentication in MongoDB and
creating a superuser account
In this recipe, we will look at how to create a superuser account in MongoDB and force
MongoDB to use authentication.

Getting ready
You need a standard MongoDB installation.

How to do it...
Assuming you already have mongod running, connect to the mongod instance1.
using the mongo shell and switch to the admin database:

use admin

Create a superuser account:2.

db.createUser(
 {
 user: "superadmin",
 pwd: "supasecret",
 roles: [{role: "root", db: "admin"}]
 }
)

You should see an output similar to this:3.

Successfully added user: {
"user" : "superadmin",
 "roles" : [
 {
 "role" : "root",
 "db" : "admin"
 }
]
}

Authentication and Security in MongoDB

[177]

Restart the mongod instance with auth enabled:4.

mongod --dbpath /data/db --auth

Connect to the mongod instance and attempt any regular operation:5.

show dbs

You should see an output similar to this:6.

2017-10-12T11:21:09.966+0000 E QUERY [thread1] Error: listDatabases
failed:{
 "ok" : 0,
 "errmsg" : "not authorized on admin to execute command {
listDatabases: 1.0 }",
 "code" : 13,
 "codeName" : "Unauthorized"
}

Authenticate the mongod instance:7.

use admin

db.auth('superadmin', 'supasecret')

Try any database operation again:8.

show dbs

db.mydb.foo.insert({a:1})

How it works...
We begin by connecting to a standard mongod instance and switch to the admin database.
All users and roles are stored in the system.users and system.roles collections,
respectively. These collections are stored in the admin database.

In a sharded cluster, the admin database is located on the config server.

Authentication and Security in MongoDB

[178]

In step 2, we use the db.addUser() command to add a user with the options for its
username, password, and the role. The roles field is an array that can be used to grant
multiple roles, specific to a particular operation on a particular namespace. In our case, we
create a user called superuser with password as supasecret. Additionally, we grant this
user the role of root to the admin database. The role of root is pretty much the highest level
role and it allows almost all operations to the system. By granting this role in the admin
database, we ensure that this user has the administrative privileges to manage all users,
databases, and clusters as well as restoration and backup privileges. We will look into the
details of the roles in the next recipe.

Next, in step 4, we restart the mongod instance, but this time with an additional flag of --
auth. This flag forces mongod to prevent any attempted operation until the client (user) is
authenticated. We can see in step 4 that even the simplest of operations such as show dbs
will not work until the user is authenticated.

In order to authenticate, we use the db.auth() command after selecting the admin
database. This command accepts a username and password as its parameters and returns 1
if successful. Once a user is authenticated, you can do pretty much anything with this new
superuser!

Creating normal users and assigning built-in
roles
In this recipe, we will look at how to use built-in roles provided by MongoDB and assign
them to users.

Getting ready
You should have a MongoDB instance with authentication enabled and an administrator
account created. Refer to the first recipe of this chapter for more details.

Authentication and Security in MongoDB

[179]

How to do it...
Connect to the mongod instance using the mongo shell and authenticate1.
as superadmin:

use admin

db.auth('superadmin', 'supasecret')

Create a new user and assign it a built-in role:2.

use mydb

db.createUser(
 {
 user: "mydb_user",
 pwd: "secret",
 roles: [{role: "read", db: "mydb"}]
 }
)

You should see that an output similar to this:3.

Successfully added user: {
 "user" : "mydb_user",
 "roles" : [
 {
 "role" : "read",
 "db" : "mydb"
 }
]
}

Connect to the mongod instance and authenticate.4.

use mydb

db.auth('mydb_user', 'secret')

Execute a count() command:5.

db.mockdata.count()

You should see an output similar to this6.

100000

Authentication and Security in MongoDB

[180]

Now try to insert a document7.

db.foo.insert({bar:1})

You should see an output similar to this:8.

WriteResult({
 "writeError" : {
 "code" : 13,
 "errmsg" : "not authorized on mydb to execute command {
insert: \"foo\", documents: [{ _id:
ObjectId('59df6b03a535375680f37358'), bar: 1.0 }], ordered: true
}"
 }
})

How it works...
We begin by connecting to the mongod instance, switching to the admin database, and
authenticating with the superadmin account. This is the same account we created in the
first recipe of this chapter; it has root privileges. Next, in step 2, we switch to the mydb
database and use the db.createUser() command to add a user. By doing so, we ensure
that the user created is scoped to the mydb database. In the roles field, we add the built-in
role read, limited to the mydb database. The read role is a MongoDB built-in role that
grants access to a certain set of commands to any non-system database mentioned in the db
field. MongoDB built-in roles are further classified into database-specific user roles,
database-specific admin roles, backup and restoration roles, cluster management roles, and
so on.

The following list of roles is available for database-specific user roles:

Role name Commands available in the role

read • collStats
• dbHash</kbd>
• dbStats
• find
• killCursors
• listIndexes
• listCollections

Authentication and Security in MongoDB

[181]

readWrite • collStats
• convertToCapped
• createCollection
• dbHash
• dbStats
• dropCollection
• createIndex
• dropIndex
• find
• insert
• killCursors
• listIndexes
• listCollections
• remove
• renameCollectionSameDB
• update

In step 4, we disconnect from the mongo shell and reconnect back. We switch to the mydb
database and authenticate using the newly created user, mydb_user. Once authenticated,
we can run only specific queries (as listed in the preceding table) and any other operations
field. This can be seen in the sample output, where a find() command works perfectly fine
but an insert() query is denied.

If you wish to see the users and corresponding roles of a database, you can run the
db.getUsers() command. The output would be an array of users associated with the
database and their roles:

[
 {
 "_id" : "mydb.foo",
 "user" : "foo",
 "db" : "mydb",
 "roles" : []
 },
 {
 "_id" : "mydb.mydb_user",
 "user" : "mydb_user",
 "db" : "mydb",
 "roles" : [
 {
 "role" : "read",
 "db" : "mydb"
 }

Authentication and Security in MongoDB

[182]

]
 }
]

See also...
For more information about other types of built-in roles, go through the following
documentation: https:/ /docs. mongodb. com/ manual/ reference/ built- in- roles.

Creating and assigning custom roles
In this recipe, we will look at how to create a custom role and assign it to users. We will also
have a quick look at how to add roles to and revoke roles from a user.

Getting ready
You will need a standard MongoDB installation. Additionally, we will continue from the
previous recipe, where we had created a database user and assigned it a built-in role.

How to do it...
Connect to the mongod instance using the mongo shell and authenticate as1.
superuser:

use admin

db.auth('superadmin', 'supasecret')

Switch to mydb and create a new role:2.

use mydb

db.createRole(
 {
 role: "InsertAndReadOnly",
 privileges: [
 {
 actions: ["find", "insert"],

https://docs.mongodb.com/manual/reference/built-in-roles
https://docs.mongodb.com/manual/reference/built-in-roles
https://docs.mongodb.com/manual/reference/built-in-roles
https://docs.mongodb.com/manual/reference/built-in-roles
https://docs.mongodb.com/manual/reference/built-in-roles
https://docs.mongodb.com/manual/reference/built-in-roles
https://docs.mongodb.com/manual/reference/built-in-roles
https://docs.mongodb.com/manual/reference/built-in-roles
https://docs.mongodb.com/manual/reference/built-in-roles
https://docs.mongodb.com/manual/reference/built-in-roles
https://docs.mongodb.com/manual/reference/built-in-roles
https://docs.mongodb.com/manual/reference/built-in-roles
https://docs.mongodb.com/manual/reference/built-in-roles
https://docs.mongodb.com/manual/reference/built-in-roles
https://docs.mongodb.com/manual/reference/built-in-roles
https://docs.mongodb.com/manual/reference/built-in-roles
https://docs.mongodb.com/manual/reference/built-in-roles
https://docs.mongodb.com/manual/reference/built-in-roles
https://docs.mongodb.com/manual/reference/built-in-roles

Authentication and Security in MongoDB

[183]

 resource: { db: "mydb", collection: "mockdata" }
 }
],
 roles: []
 }
)

Use the db.getRole() command to view the newly created role:3.

db.getRole('InsertAndReadOnly' , { showPrivileges: true })

You should see an output similar to this:4.

{
 "role" : "InsertAndReadOnly",
 "db" : "mydb",
 "isBuiltin" : false,
 "roles" : [],
 "inheritedRoles" : [],
 "privileges" : [
 {
 "resource" : {
 "db" : "mydb",
 "collection" : "mockdata"
 },
 "actions" : [
 "find",
 "insert"
]
 }
],
 "inheritedPrivileges" : [
 {
 "resource" : {
 "db" : "mydb",
 "collection" : "mockdata"
 },
 "actions" : [
 "find",
 "insert"
]
 }
]
}

Fetch the list of roles assigned to the user mydb_user:5.

db.getUser('mydb_user')

Authentication and Security in MongoDB

[184]

You should see an output similar to this:6.

{
 "_id" : "mydb.mydb_user",
 "user" : "mydb_user",
 "db" : "mydb",
 "roles" : [
 {
 "role" : "read",
 "db" : "mydb"
 }
]
}

Remove the previously assigned role from mydb_user:7.

db.revokeRolesFromUser(
 "mydb_user",
 [
 { role: "read", db: "mydb" }
]
)

If you check the roles for mydb_user again, the value should be empty:8.

db.getUser('mydb_user')

You should see the roles key is empty:9.

{
 "_id" : "mydb.mydb_user",
 "user" : "mydb_user",
 "db" : "mydb",
 "roles" : []
}

Assign the newly created role to mydb_user:10.

db.grantRolesToUser(
 "mydb_user",
 [
 { role: "InsertAndReadOnly", db: "mydb" }
]
)

Authentication and Security in MongoDB

[185]

Check the roles for mydb_user again:11.

db.getUser('mydb_user')

The role should now show the InsertAndReadOnly value:12.

{
 "_id" : "mydb.mydb_user",
 "user" : "mydb_user",
 "db" : "mydb",
 "roles" : [
 {
 "role" : "InsertAndReadOnly",
 "db" : "mydb"
 }
]
}

Test the role by inserting a document and then removing the document:13.

db.mockdata.insert({foo:'bar'})

The preceding command should work with the following output:14.

WriteResult({ "nInserted" : 1 })

Attempt to remove a record:15.

db.mockdata.remove({foo:'bar'})

This command should give you an error message similar to this:16.

WriteResult({
 "writeError" : {
 "code" : 13,
 "errmsg" : "not authorized on mydb to execute command {
delete: \"mockdata\", deletes: [{ q: { foo: \"bar\" }, limit: 0.0
}], ordered: true }"
 }
})

Authentication and Security in MongoDB

[186]

How it works...
We begin by authenticating as the superadmin user previously created. In step 2, we switch
to the database where we want to create the new role. By using the db.createRole()
command, we create a new role called InsertAndReadOnly in the mydb database. Roles
are defined as a tuple of actions and resources in which we grant a set of actions as an array
of command names against a set of resources. The latter is a document that consists of the
database name and the name of the collection. I would also like to point out that roles can
inherit from other roles. This can be achieved by adding another key called roles in the
db.createRole() command.

For example:

db.createRole(
 {
 role: "InsertAndReadOnly",
 privileges: [
 {
 actions: ["find", "insert"],
 resource: { db: "mydb", collection: "mockdata" }
 }
],
 roles: [{role: "<role>", db: "<database>"}]
 }
)

The preceding command would create a new role with specified privileges as well as inherit
the privileges from <role> and apply it to <database>.

Once the custom role is created, in step 3, we use the db.getRole() command to fetch the
details of a given role. In step 5, we fetch the details of mydb_user by executing
the db.getUser() command. This command lists the details for the given user, including
the roles assigned to it. In our example, this user already has a built-in role, read, assigned
to mydb. Let's change that.

In step 5, we revoke the user's roles by executing the db.revokeRolesFromUser()
command and specifying the username as well as role(s) that need to be removed. We
confirm that the role was revoked by executing db.getUser('mydb_user').

Next, in step 7, we add a role to the user by executing db.grantRolesToUser(). This
command appends a role to the list of roles for a given user, so you need not worry about
overwriting any previously assigned roles.

Authentication and Security in MongoDB

[187]

Lastly, we test the scope of the role by successfully inserting a document in the collection
and, at the same time, not being able to remove a document from the collection.

When running database systems, people usually tend to only rely on authentication and
forget to limit the scope of a given user's access. Roles can be an extremely useful aspect of
authorization. By assigning roles and limiting the scope of a user's access to the databases,
production database systems can be made more secure.

Restoring access if you are locked out
In this recipe, we will look at how to restore the password for a super administrator user.

Getting ready
You should have a MongoDB instance with authentication enabled and an administrator
account created. Refer to the Setting up authentication in MongoDB and creating a superuser
account recipe of this chapter.

How to do it...
Shut down the mongod instance.1.
Start the mongod instance without the --auth parameter:2.

mongod --dbpath /data/db

Switch to the admin database:3.

use admin

Find the administrative user:4.

db.system.users.find({'roles.role': "root"})

You should see an output similar to this:5.

{
 "_id" : "admin.superadmin",
 "user" : "superadmin",
 "db" : "admin",
 "credentials" : {

Authentication and Security in MongoDB

[188]

 "SCRAM-SHA-1" : {
 "iterationCount" : 10000,
 "salt" : "X3IUy53syah8GEZozwwCPA==",
 "storedKey" : "nzGTHW7yeKUjGxYWEJNkCkzcQZU=",
 "serverKey" : "HiUfRvoW4MyiOQvtWk3FbLy4bvg="
 }
 },
 "roles" : [
 {
 "role" : "root",
 "db" : "admin"
 }
]
}

Change the password for the administrative user:6.

db.changeUserPassword("superadmin", "Correct Horse Battery Staple")

Start the mongod instance with the --auth parameter:7.

mongod --dbpath /data/db --auth

Test the account:8.

use admin

db.auth("superadmin", "Correct Horse Battery Staple")

The preceding command should give you an output of 1.9.

How it works...
This is a fairly straightforward recipe. We begin by shutting down the mongod instance and
starting it again without the --auth parameter. By doing so, we start the mongod instance
without authentication support. Next, in step 3, we switch to the admin database and, in
step 4, we execute a find() query to search for any users who already have the root built-
in role assigned to them.

In step 6, we execute the db.changeUserPassword() command with the target username
and its new password. Once we are done, we can stop and start the mongod instance again,
this time with the --auth parameter to ensure that authentication is enabled.

Authentication and Security in MongoDB

[189]

On a running system, if you already have an administrative user, you can change any user's
password using the db.changeUserPassword() command. You do not need to shut down
the mongod instance.

There are other methods to further secure a MongoDB system using
firewalls and TLS certificates. We will look at these aspects in the next
chapter.

Using key files to authenticate servers in a
replica set
For the most part in this chapter, we have discussed how to authenticate and authorize
users in MongoDB. However, it is also equally important to ensure that unwanted servers
do not get attached to a closed system like replica sets.

In this recipe, we will look at how to achieve inter-server authentication within a MongoDB
replica set using key files.

Getting ready
You only need standard MongoDB binaries.

How to do it...
We begin by creating a key file using the openssl utility:1.

openssl rand -base64 756 > /data/keyfile

Change the file permissions for the key file:2.

chmod 400 /data/keyfile

Start the mongod replica set instances:3.

mongod --dbpath /data/server1/db --replSet MyReplicaSet --port
27017 --keyFile /data/keyfile
mongod --dbpath /data/server2/db --replSet MyReplicaSet --port
27018 --keyFile /data/keyfile

Authentication and Security in MongoDB

[190]

mongod --dbpath /data/server3/db --replSet MyReplicaSet --port
27019 --keyFile /data/keyfile

Connect to the primary instance:4.

mongo localhost:27017

Initiate the replica set:5.

rs.initiate()

You should see an output similar to this:6.

{
 "info2" : "no configuration specified. Using a default
configuration for the set",
 "me" : "vagrant-ubuntu-trusty-64:27017",
 "ok" : 1
}

Add the remaining replica set instances to the cluster:7.

rs.add('192.168.200.200:27018')
rs.add('192.168.200.200:27019')

For both of the preceding commands, you should see an output similar to this:8.

{ "ok" : 1 }

Create a superuser account:9.

admin = db.getSiblingDB("admin")
admin.createUser(
 {
 user: "myadmin",
 pwd: "supasecret",
 roles: [{ role: "root", db: "admin" }]
 }
)

Authentication and Security in MongoDB

[191]

Test the account using mongo shell:10.

mongo 192.168.200.200:27017
use admin
db.auth('myadmin','supasecret')

How it works...
A key file is nothing but a regular file that contains a secret. MongoDB allows a key file to
contain 6 to 1,024 characters. In our example, we begin by creating a key file using the
openssl utility; in that, we use the parameters rand -base64 756 to generate a set of
random sequence of 1,024 Base64 characters.

Next, in step 2, we use the chmod utility available in Unix to ensure that this newly created
key file is not globally readable. The command chmod 400 <filename> strips all
permissions from the file except read-only to the file owner.

In step 3, we start three instances of MongoDB replica set nodes, each listening on a
different port and using a different --dbpath. In a more realistic scenario, you would
probably be running each instance on a single node. For more information on how to
manage replica sets, refer to Chapter 2, Understanding and Managing Indexes. In addition to
the standard parameters, we use the --keyFile parameter to mention that we will be
using key-file-based internal authentication. The value of this parameter should be the
location of the key file; in our example, it is /data/keyfile.

Once the replica set nodes are running, as shown in step 4, we connect to one of the nodes
using the mongo shell from the same host as that of the mongod instance. It is extremely
important that you connect from the same host; we will cover that in a moment.

In step 4, we initiate the replica set using the rs.initiate() command, followed by
adding the other two nodes to the replica set using the rs.add() command.

Coming back to the point on why we connected using localhost... MongoDB provides a
feature known as localhost exception. In it, MongoDB allows you to create the first user and
role (optional) when none exist. This is extremely useful when you've enabled
authentication mechanism but don't have an initial user to authenticate with. By using the -
-keyFile parameter, we enable not only internal authentication between MongoDB replica
set nodes but also client authentication. Hence, if you enable key-file-based authentication,
your clients (such as mongo shell) will not work unless they are first authenticated with a
valid user.

Authentication and Security in MongoDB

[192]

So in step 7, we create the first superuser using the db.createUser() command and
assign it the built-in role root on the admin database. This user should be able to do pretty
much any operation on the cluster. We can confirm that the authentication works in step 8,
when we attempt to connect to the primary node from an external system and authenticate
using the newly created superuser.

There's more...
In this recipe, we saw how to start a new replica set using key files. If you already have a
replica set, you can still enable key-file-based authorization but you'll have to carefully
sequence your steps, like so:

First, add a superuser account as shown previously.1.
Next, create the relevant client accounts that would be used by your applications.2.
Ensure that the applications are using the newly created user accounts.3.
Stop one of the secondaries and start with the parameter --transitionToAuth4.
along with --keyFile.
One by one, restart all secondary nodes with the parameter --5.
transitionToAuth along with --keyFile.
Bring down the primary using rs.stepDown(), and once a new primary node is6.
elected, start this instance too, with --transitionToAuth along with --
keyFile.
Once all the instances are up, you will have successfully switched to key-file-7.
based authentication. All that remains is to remove the --transitionToAuth
parameter. This can be done by repeating step 4 to step 6 but without --
transitionToAuth.

10
Deploying MongoDB in

Production
This chapter contains the following recipes:

Configuring MongoDB for a production deployment
Upgrading production MongoDB to a newer version
Setting up and configuring TLS (SSL)
Restricting network access using firewalls

Introduction
Like all user-friendly applications, MongoDB is extremely easy to set up and run out of the
box. The default settings provided by MongoDB may not be optimal for all workloads and
this can prove expensive post deployment. Hence, it becomes extremely important to
consider the nuances that are involved in setting up a robust MongoDB infrastructure from
the get-go.

The aim of this chapter is to highlight the key points that one must consider when
deploying and running MongoDB systems in a production environment. We will look at the
aspects of configuring MongoDB, operating system settings, and selecting upgrade
strategies. Furthermore, we will look at how to encrypt server-to-server communication
using TLS certificates. We will also learn how to ensure that selective firewall rules are
implemented to restrict access to MongoDB.

Deploying MongoDB in Production

[194]

Configuring MongoDB for a production
deployment
In this recipe, we will look at important factors that should be configured when setting up a
MongoDB instance. These include MongoDB as well as operating system parameters.

Getting ready
You will need MongoDB binaries and a Linux operating system.

How to do it...
It is highly recommended by MongoDB that you choose the XFS filesystem over Ext4,
especially when using the WiredTiger storage engine. It provides concurrent disk I/O, as
well as extends (reduced fragmentation-based allocation of data), which provide significant
performance improvement over Ext4. To create an XFS-based volume, simply do the
following:

Install XFS tools:1.

apt-get install xfsprogs

Create the XFS filesystem:2.

mkfs.xfs /dev/<device-name>

Always choose an SSD over a mechanical disk. Additionally, make sure you3.
measure the disk's performance using either the mongoperf utility, as shown in
the Measuring disk I/O performance with mongoperf recipe in Chapter 3, Performance
Tuning, or by using the dd command, as shown here:

dd if=/dev/zero of=/dev/<disk> bs=1M count=1024

The preceding command writes 1 GB of data to the disk and gives you an4.
estimated throughput of the operation. For example:

1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 1.3648 s, 787 MB/s

Deploying MongoDB in Production

[195]

Disable Transparent Huge Pages (THP). THP is a feature of the Linux kernel that5.
allows dynamically sized pages to map memory on systems with a large amounts
of memory. As with most databases, including MongoDB, the data allocated in
memory is non-contiguous, and hence THP can often cause performance
implications. To disable THP, ensure that you add the following two lines to your
system's init script (prior to starting MongoDB):

echo 'never' > /sys/kernel/mm/transparent_hugepage/enabled
echo 'never' > /sys/kernel/mm/transparent_hugepage/defrag

Ensure that ulimit is set to an optimal number. To check ulimits, execute the6.
following command:

ulimits -a

The folks at MongoDB recommend the following limits:7.

-f (file size): unlimited
-t (cpu time): unlimited
-v (virtual memory): unlimited
-n (open files): 64000
-m (memory size): unlimited
-u (processes/threads): 64000

Use a configuration file and avoid using command-line parameters when8.
running mongod/mongos instances. I would highly recommend using a revision
control system such as Git or Mercurial to manage changes in these configuration
files.
Always shut down MongoDB instances elegantly. You can use either the mongo9.
shell or the kill command with SIGINT:

Shutting down mongod using the mongo shell:1.

use admin
db.shutdownServer()

Shutting down using the kill command:2.

kill -2 <mongod pid>

Deploying MongoDB in Production

[196]

It is always recommended to not run application servers using a privileged user10.
account such as root. The default MongoDB installation done through a package
manager such as apt or yum creates a user called mongodb in the system. The
mongod init scripts ensure that the processes are run against this username.
However, if you are using custom initialization scripts, please ensure that you
always use a low-privileged user.

Upgrading production MongoDB to a newer
version
In this recipe, we will look at how to upgrade MongoDB binaries in a replica set. This recipe
holds true even for config and shard servers.

Getting ready
We will assume you have a three-node MongoDB replica set.

How to do it...
Before even touching a system, go through the release notes carefully. There are1.
serious implications when upgrading binaries that have backward-incompatible
changes or variance in operational parameters.
Take a full backup of your entire system.2.
If you have installed MongoDB binaries using the operating system's package3.
manager, such as apt (Ubuntu) or yum (Red Hat/CentOS), the upgrade process
might trigger a service restart. Hence, do not install new packages until the
service is manually shut down.
Log in to one of the secondary nodes in the replica set and shut it down:4.

use admin
db.shutdownServer()

Once the mongod/mongos instance is shut down, install the upgraded package5.
on the system and start the service.

Deploying MongoDB in Production

[197]

Log in to the mongo shell of the instance and ensure that it has caught up with6.
the primary node using the rs.status() command.
Repeat steps 3 and 5 for the other secondary node.7.
Finally, log in to the primary node and force it to step down:8.

rs.stepDown()

Check with the rs.status() command to ensure that a new primary is elected9.
and all nodes are now syncing with this newly elected primary node. This
process may take anywhere from a few seconds to a couple of minutes.
Once you have repeated steps 3 and 5 for this node, your cluster should be fully10.
upgraded.

There's more...
When upgrading a sharded cluster, your sequence of steps should be as follows:

Log in to the mongos shell and stop the balancer using1.
the sh.stopBalancer() command.
First upgrade the config server replica set.2.
Upgrade each shard individually.3.
Upgrade the mongos query routers.4.
Finally, connect the mongos shell and start the balancer using5.
the sh.startBalancer() command.

Setting up and configuring TLS (SSL)
In this recipe, we will look at how to use X.509 certificates to encrypt traffic sent to
MongoDB servers. Although TLS is the actual term used to denote Transport Layer
Security (TLS), for legacy naming reasons, it is many a times still referred to as SSL.

Getting ready
You need the standard MongoDB binaries.

Deploying MongoDB in Production

[198]

How to do it...
We will begin by creating our own Certificate Authority (CA) to generate self-1.
signed certificates:

openssl genrsa -des3 -out ca.key 4096
openssl req -new -x509 -days 365 -key ca.key -out ca.crt

Create the key for the server:2.

openssl genrsa -out server1.key 2048

Create the Certificate Signing Request (CSR) for the server:3.

openssl req -new -subj "/CN=server1.foo.com/O=ACME/C=AU" -key
server1.key -out server1.csr

Then create the certificate for the server, signed by the CA:4.

openssl x509 -req -days 365 -in server1.csr -CA ca.crt -CAkey
ca.key -set_serial 01 -out server1.crt

Generate the .pem file for the server by concatenating the .key and .crt files5.
into one:

cat server1.key server1.crt > server1.pem

Start the mongod instance with the newly created certificate:6.

mongod --dbpath /data/db --sslPEMKeyFile server1.pem --sslMode
requireSSL

Connect to the mongo shell using SSL:7.

mongo --ssl --sslCAFile ca.crt server1.foo.com:27017

How it works...
Although explaining how an SSL/TLS connection works would be out of the scope of this
book, I will still try to give a short description of what we are trying to accomplish here. We
begin by creating a CA public (ca.crt) and private key (ca.key). The private key will be
used to sign any subsequent SSL certificates and can be verified by the CA's public key. In
step 1, we use the openssl command to create our own CA key and certificate.

Deploying MongoDB in Production

[199]

Creating self-signed certificates to be used by servers and clients using this CA is a three-
step process. First, as shown in step 2, we generate a private key for our server, where we
are going to start the mongod instance. Next, as shown in step 3, we create a CSR, also
known as the CSR for this server. As you can see, the CN field has to match the hostname of
the server; otherwise, your clients fail on hostname validation when attempting to connect
to this server. Lastly in step 4, using this CSR, we generate a certificate for the server; it is
signed by the private key of our CA.

That's it! You now have a fully functional self-signed SSL certificate to be used on this
server. As MongoDB uses a .pem file, we concatenate the .key and .crt files, as shown in
step 5. Note that the order of concatenation is important; that is, first the server1.key file
and then the server1.crt file. This way, when the application reads the .pem file, it will
read the certificate part first and then look for the key used to generate the certificate.

In step 6, we start the mongod instance and provide the path to the pem using the --
sslPEMKeyFile parameter. Additionally, we have to mention the SSL mode using the --
sslMode flag. The valid options for this flag are as follows:

disabled: Do not use SSL.
allowSSL: Connections between servers do not use TLS/SSL. For incoming
connections, the server accepts both TLS/SSL and non-TLS/non-SSL.
preferSSL: Connections between servers use TLS/SSL. For incoming
connections, the server accepts both TLS/SSL and non-TLS/non-SSL.
requireSSL: The server uses and accepts only TLS/SSL encrypted connections.

In our case, we use requireSSL to force all connections to use only SSL mode.

Once the server is started, we can connect to it using the mongo client, while passing it the -
-ssl option. We also have to provide it with the CA file to validate the certificate presented
by the server; this is done using the --sslCAFile flag.
There you have it! A simple yet robust method to encrypt all communications to your
MongoDB service.

It is extremely important that the file permissions and ownership of the key files are kept
secure. Assuming you are using mongodb as the username, change the ownership of the
certificate and keys to user mongodb and file permissions to owner read-only, like so:

chown mongodb server1.key
chmod 600 server1.key

Deploying MongoDB in Production

[200]

There's more...
In addition to protocol encryption, MongoDB also allows server/client authentication using
a certificate. In that, the server/client must present a valid certificate signed by the CA
presented with the --sslCAFile file.

Restricting network access using firewalls
In this recipe, we will take a quick look at how to use Linux IPTables to add firewall rules
that can restrict unwanted access to MongoDB processes.

Getting ready
You need standard MongoDB binaries on a Linux operating system. We are going to use
Uncomplicated Firewall (UFW) tools, which is a handy wrapper built on top of IPTables.
We assume that you have a three-node replica set running on the following hosts:

Hostname IP

server1.foo.com 10.1.1.1

server2.foo.com 10.1.1.2

server3.foo.com 10.1.1.3

How to do it...
Most Linux distributions come with a kernel that supports net filters, the network1.
filter API on top of which IPTables is built. We will install UFW, a set of tools that
help simplify IPTables configuration:

apt-get install ufw

Enable the UFW service:2.

ufw enable

Deploying MongoDB in Production

[201]

Add the firewall rules to allow all traffic on port 27017 from known IPs:3.

ufw allow from 10.1.1.1 to any port 27017
ufw allow from 10.1.1.2 to any port 27017
ufw allow from 10.1.1.3 to any port 27017

Deny all other incoming requests to port 27017:4.

ufw deny from any to any port 27017

Check the firewall rules:5.

 ufw status numbered

You should see an output similar to this:6.

How it works...
In the previous chapter, we looked at various methods to implementing authentication and
authorization on MongoDB instances. As an avid believer in security by obscurity, I feel
application servers should also have access restrictions in place, such that unwanted
systems cannot simply connect to the application. In our overly simple example, we looked
at how to restrict access to a three-node MongoDB replica set by only allowing access from
their IPs to their respective ports (27017) and denying access to anyone else connecting to
port 27017.

We began by installing Ubuntu's ufw package, in step 1. Next, in step 2, we enabled the
UFW service. In step 3, we added three specific rules that allow access from the mentioned
IP to any protocol/destination on port 27017. Finally, in step 4, we denied any incoming
connection to port 27017.

Deploying MongoDB in Production

[202]

How does this work? The firewall creates a list of rules, starting from the three allow rules
and ending with the deny rule at the bottom. For any incoming connection to port 27017, if
the IP of the client machine matches that in our rules, the connection is let through and any
other connection is simply dropped. We can see the sequence of these rules by running the
ufw status numbered command.

Once this simple firewall rule set is in place, you can further add the IPs of your application
servers that will be connecting to the database.

See also
For more details on how UFW works, refer to https:/ /help. ubuntu. com/
community/ UFW.

https://help.ubuntu.com/community/UFW
https://help.ubuntu.com/community/UFW
https://help.ubuntu.com/community/UFW
https://help.ubuntu.com/community/UFW
https://help.ubuntu.com/community/UFW
https://help.ubuntu.com/community/UFW
https://help.ubuntu.com/community/UFW
https://help.ubuntu.com/community/UFW
https://help.ubuntu.com/community/UFW
https://help.ubuntu.com/community/UFW
https://help.ubuntu.com/community/UFW
https://help.ubuntu.com/community/UFW

Index

A
access control (ACL) 175
access
 restoring 187, 188
Amazon EC2
 storage considerations 76
Amazon Web Services (AWS) 76
arbiter
 working with 96, 100
authentication
 setting up 176, 178

B
background indexes
 creating 45, 48
bsondump tool
 using, to view mongodump output in human

readable form 138, 139
built-in roles
 assigning 178, 181
 URL 182

C
Certificate Authority (CA) 15, 198
chunks
 managing 115, 119
 references 120
cluster
 shard, removing 122, 126
collection
 backing up 134, 136
 data, restoring 151
 restoring 148, 150
 slow running collection, searching 76
 subset document, backing up 136, 137
compound indexes

 using 40, 45
config server replica set (CSRS) 143, 157
configuration file
 customizing 23, 24
 URL 25
custom roles
 assigning 182, 187
 creating 182, 187

D
data
 restoring, from collection 151
database
 backing up 134, 136
 data, restoring 151
 restoring 148, 150
db.currentOp()
 reference link 169
db.serverStatus() command
 metrics 171
Diamond
 reference link 174
 used, for collecting MongoDB metrics 172, 174
directories
 separating, per database 20, 23
disk I/O performance
 measuring, with mongoperf 66, 71
disk I/O usage
 checking 169, 171
disks
 configuring, for better I/O 62
 considerations, for selecting storage devices 65
 reading 63
 writing 63
Docker container
 MongoDB, executing 25, 27

[204]

E
Elastic Block Storage (EBS)
 about 76
 URL 79
Elastic Compute Cloud (EC2) 76

F
firewalls
 used, for restricting network access 200, 202

G
Graphite
 reference link 174
 used, for collecting MongoDB metrics 172, 174

I
indexes
 creating 29, 35
 managing 35, 39
Input/Output Operations Per Second (IOPS) 65

K
key files
 using, to authenticate servers in replica set 189,

192

L
Linux
 MongoDB, beginning 8
 MongoDB, installing 8

M
macOS
 MongoDB, beginning 10, 12
 MongoDB, installing 10, 12
MongoDB Community Edition
 URL 10
MongoDB storage engine
 MMAPv1 17
 selecting 16
 verdict 17
 WiredTiger 16
MongoDB's official documentation

 URL 75
MongoDB
 beginning, on Linux 8
 beginning, on macOS 10, 12
 configuring, for production deployment 194
 executing, as Docker container 25
 installing, on Linux 8
 installing, on macOS 10, 12
 metrics 162
 metrics, collecting with Diamond 172, 174
 metrics, collecting with Graphite 172, 174
 operations, killing 166, 169
 operations, monitoring 166, 169
 performance, monitoring with mongostat 160,

162

 process, binding to network interface 12
 process, binding to network port 12
 production, upgrading 196
 SSL, enabling 14, 16
 URL 8, 10, 26
MongoDBR17's official documentation
 URL 129
mongodump output
 viewing, in human readable form 138, 139
mongodump tool
 used, for backing up 131, 134
mongoexport tool
 using 142, 143
mongoperf
 disk I/O performance, measuring 66, 71
mongorestore tool
 used, for restoring standalone MongoDB 145,

147

mongos routes queries
 URL 108
mongostat's parameters
 reference link 163
mongostat
 used, for monitoring MongoDB performance 160,

162

monitoring 159
Multi-Version Concurrency Control (MVCC) 17

N
Nagios plugin

[205]

 reference link 166
NMAPv1 17
non-sharded collection data
 moving 120

O
operations
 slow running operations, searching 71

P
partial index
 creating 54, 58
 reference 58
primary node
 and secondary node, switching between 100
Provisioned IOPS (PIOPS) 77

Q
queries
 slow running queries, searching 71, 76

R
replica set nodes
 creating, with backups 154
 priority, modifying 104, 166
replica sets
 about 82
 configuration, modifying 102, 103
 initializing 83, 89
 node, adding 89, 92
 node, removing 92, 96
 point, creating in time backup 140
 reference link 88
 replication lag of nodes, verifying 163, 166
 servers, authenticating with key files 189, 192
replication lag of nodes
 verifying, in replication set 163

S
secondary node
 and primary node, switching between 100
shard key
 URL 109
shard

 removing, from cluster 122, 126
sharded cluster
 backup, creating 143
 configuring 109
 restoring, from backup 157
 setting up 109
sharding
 about 106
 components 106
 config server 107
 mongos query router 107
 shard key, selecting 108
 shard server 108
sparse index
 creating 51, 52, 53
standalone MongoDB
 restoring, with mongorestore tool 145, 147
storage engine
 modifying 18, 20
superuser account
 creating 176, 178

T
time backup
 point, creating of replica sets 140
Transport Layer Security (TLS)
 configuring 197
 enabling, for MongoDB 14, 16
 setting up 197
TTL-based indexes
 creating 49, 50, 51

U
Uncomplicated Firewall (UFW)
 about 200
 URL 202
unique index
 creating 59, 60, 61
users
 creating 178, 181

W
WiredTiger 16, 17
working set
 size, determining 79

X
XFS filesystem
 URL 65

Z
zones 126
 about 129

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Installation and Configuration
	Introduction
	Installing and starting MongoDB on Linux
	Getting ready
	How to do it…
	How it works…
	There's more…

	Installing and starting MongoDB on macOS
	Getting ready
	How to do it...
	How it works…

	Binding MongoDB process to a specific network interface and port
	Getting ready
	How to do it...
	How it works...

	Enabling SSL for MongodDB
	Getting ready
	How to do it..
	How it works...
	There's more…

	Choosing the right MongoDB storage engine
	WiredTiger
	MMAPv1
	The verdict

	Changing storage engine
	Getting ready
	How to do it...
	How it works...

	Separating directories per database
	Getting ready
	How to do it...
	How it works...

	Customizing the MongoDB configuration file
	Getting ready
	How to do it..
	How it works...
	There's more...

	Running MongoDB as a Docker container
	Getting ready
	How to do it...
	How it works...
	There's more..

	Chapter 2: Understanding and Managing Indexes
	Introduction
	Creating an index
	Getting ready
	How it works...
	There's more...

	Managing existing indexes
	Getting ready
	How to do it...
	How it works...

	How to use compound indexes
	Getting ready
	How to do it...
	How it works…
	There's more...

	Creating background indexes
	Getting ready
	How to do it...
	How it works...

	Creating TTL-based indexes
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a sparse index
	Getting ready
	How to do it...
	How it works...

	Creating a partial index
	Getting ready
	How to do it...
	How it works...

	Creating a unique index
	Getting ready
	How to do it...
	How it works...

	Chapter 3: Performance Tuning
	Introduction
	Configuring disks for better I/O
	Reading and writing from disks
	Few considerations while selecting storage devices

	Measuring disk I/O performance with mongoperf
	Getting ready
	How to do it...
	How it works...

	Finding slow running queries and operations
	Getting ready
	How to do it...
	How it works...
	There's more...

	Storage considerations when using Amazon EC2
	Figuring out the size of a working set
	There's more...

	Chapter 4: High Availability with Replication
	Introduction
	Initializing a new replica set
	Getting ready
	How to do it...
	How it works...

	Adding a node to the replica set
	Getting ready
	How to do it...
	How it works...

	Removing a node from the replica set
	Getting ready
	How to do it...
	How it works...

	Working with an arbiter
	Getting ready
	How to do it...
	How it works...

	Switching between primary and secondary nodes
	Getting ready
	How to do it...
	How it works...

	Changing replica set configuration
	Getting ready
	How to do it...
	How it works..

	Changing priority to replica set nodes
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 5: High Scalability with Sharding
	Understanding sharding and its components
	Components of MongoDB sharding infrastructure
	Config server
	The mongos query router
	The shard server

	Choosing the shard key

	Setting up and configuring a sharded cluster
	Getting ready
	How to do it...
	How it works...

	Managing chunks
	Getting ready
	How to do it...
	How it works...

	Moving non-sharded collection data from one shard to another
	Getting ready
	How to do it...
	How it works...

	Removing a shard from the cluster
	Getting ready
	How to do it...
	How it works...

	Understanding tag aware sharding – zones
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 6: Managing MongoDB Backups
	Introduction
	Taking backup using mongodump tool
	Getting ready
	How to do it...
	How it works...
	There's more...

	Taking backup of a specific mongodb database or collection
	Getting ready
	How to do it...
	How it works...

	Taking backup of a small subset of documents in a collection
	Getting ready
	How to do it...
	How it works...

	Using bsondump tool to view mongodump output in human readable form
	Getting ready
	How to do it...
	How it works...

	Creating a point in time backup of replica sets
	Getting ready
	How to do it...
	How it works...

	Using the mongoexport tool
	Getting ready
	How to do it...
	How it works...

	Creating a backup of a sharded cluster
	Getting ready
	How to do it...
	How it works...

	Chapter 7: Restoring MongoDB from Backups
	Introduction
	Restoring standalone MongoDB using the mongorestore tool
	Getting ready
	How to do it...
	How it works...

	Restoring specific database or specific collection
	Getting ready
	How to do it...
	How it works...

	Restoring data from one collection or database to another
	Getting ready
	How to do it...
	How it works...

	Creating a new MongoDB replica set node using backups
	Getting ready
	How to do it...
	How it works...

	Restoring a MongoDB sharded cluster from backup
	Getting ready
	How to do it...
	How it works...

	Chapter 8: Monitoring MongoDB
	Introduction
	Monitoring MongoDB performance with mongostat
	Getting ready
	How to do it...
	How it works...
	See also

	Checking replication lag of nodes in a replica set
	Getting ready
	How to do it...
	How it works...

	Monitoring and killing long running operations on MongoDB
	Getting ready
	How to do it...
	How it works...
	See also

	Checking disk I/O usage
	Getting ready
	How to do it...
	How it works...

	Collecting MongoDB metrics using Diamond and Graphite
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 9: Authentication and Security in MongoDB
	Introduction
	Setting up authentication in MongoDB and creating a superuser account
	Getting ready
	How to do it...
	How it works...

	Creating normal users and assigning built-in roles
	Getting ready
	How to do it...
	How it works...
	See also...

	Creating and assigning custom roles
	Getting ready
	How to do it...
	How it works...

	Restoring access if you are locked out
	Getting ready
	How to do it...
	How it works...

	Using key files to authenticate servers in a replica set
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 10: Deploying MongoDB in Production
	Introduction
	Configuring MongoDB for a production deployment
	Getting ready
	How to do it...

	Upgrading production MongoDB to a newer version
	Getting ready
	How to do it...
	There's more...

	Setting up and configuring TLS (SSL)
	Getting ready
	How to do it...
	How it works...
	There's more...

	Restricting network access using firewalls
	Getting ready
	How to do it...
	How it works...
	See also

	Index

