
MongoDB Architecture Guide
MongoDB 3.6 & 4.0 Preview
May 2018

A MongoDB White Paper

Table of Contents
Introduction

The Best Way to Work with Data: The Document Model
Easy: A Natural, Intuitive Data Model
Flexibile: Dynamically Adapting to Changes
Fast: Great Performance
Versatile: Various Data Models and Access Patterns
MongoDB Stitch

Put Data Where you Need It: Intelligent Distributed
Systems Architecture

Relational Database Challenges
MongoDB Distributed Systems Architecture
Data Security

Freedom to Run Anywhere
MongoDB Atlas
MongoDB Ops Manager
Cloud Adoption Stages

Conclusion and Next Steps

We Can Help

Resources

Introduction

The success of every business rests on its ability to use

technology, and in particular software and data, to create a

competitive advantage. Companies want to quickly develop

new digital products and services to drive expansion of

revenue streams, improve customer experience by

engaging them in more meaningful ways, and identify

opportunities to reduce the risk and cost of doing business.

Organizations turn to various strategies to enable these

technology transformations:

• Aligning behind new IT models and processes, such as

Agile and DevOps methodologies.

• Adopting new architectures and platforms by taking a

mobile-first approach, moving to microservices patterns,

and shifting underlying infrastructure to the cloud.

• Exploiting emerging technologies including AI and

machine learning, IoT, and blockchain.

Despite these new strategies for tackling IT initiatives,

transformation continues to be complex and slow.

Research from a 2017 survey by Harvey Nash and KPMG1

revealed that 88% of CIOs believe they have yet to benefit

from their digital strategy.

Why is this the case? Data is at the heart of every

application, and from our experience in working with

organizations ranging from startups to many Fortune 100

companies, realizing its full potential is still a significant

challenge:

• Demands for higher developer productivity and faster

time to market with release cycles compressed to days

and weeks are being held back by traditional rigid

relational data models and waterfall development.

• The inability to manage massive increases in new,

rapidly changing data types – structured,

semi-structured, and polymorphic data generated by

new classes of web, mobile, social, and IoT applications.

• Difficulty in exploiting the wholesale shift to distributed

systems and cloud computing that enable developers to

access on-demand, highly scalable compute and

storage infrastructure, while meeting a whole new set of

regulatory demands for data sovereignty.

1. https://home.kpmg.com/xx/en/home/insights/2017/05/harvey-nash-kpmg-cio-survey-2017.html

1

MongoDB responded to these challenges by creating a

technology foundation that enables development teams

through:

1. The document data model – presenting them the bestthe best

way to work with datway to work with dataa.

2. A distributed systems design – allowing them to

intelligently put datintelligently put data whera where they want ite they want it.

3. A unified experience that gives them the frfreedom toeedom to

run anywherrun anywheree – allowing them to future-proof their

work and eliminate vendor lock-in.

With these capabilities, we allow you to build an Intelligent

Operational Data Platform, underpinned by MongoDB. In

this Guide, we dive deeper into each of the three

technology foundations above.

The Best Way to Work with
Data: The Document Model

Relational databases have a long-standing position in most

organizations. This made them the default way to think

about storing, using, and enriching data. But enterprises

are increasingly encountering limitations of this technology.

Modern applications present new challenges that stretch

the limits of what’s possible with a relational database.

As organizations seek to build these modern applications,

they find that the key differentiator for success is their

development teams. Developers are on the front lines of

digital transformation, and enabling them to work faster

produces compounding benefits for the organization. To

realize the full potential of data and software, developers

turn to technologies that enable rather than hinder them.

Through strategies such as Agile and DevOps,

microservices, cloud replatforming and more, many

organizations have made significant progress in refactoring

and evolving application tier code to respond faster to

changing business requirements. But they then find

themselves hampered by the rigidity and complexity of

relational databases.

Organizations need a fresh way to work with data. In order

to handle the complex data of modern applications and

simultaneously increase development velocity, the key is a

platform that is:

• EasyEasy, letting them work with data in a natural, intuitive

way

• FlexibleFlexible, so that they can adapt and make changes

quickly

• FFastast, delivering great performance with less code

• VVersatileersatile, supporting a wide variety of data models,

relationships, and queries

MongoDB’s document model delivers these benefits for

developers, making it the best way to work with data.

Easy: A Natural, Intuitive Data Model

Relational databases use a tabular data model, storing data

across many tables. An application of any complexity easily

requires hundreds or even thousands of tables. This sprawl

occurs because of the way the tabular model treats data.

The conceptual model of application code typically

resembles the real world. That is, objects in application

code, including their associated data, usually correspond to

real-world entities: customers or users, products, and so on.

Relational databases, however, require a different structure.

Because of the need to normalize data, a logical entity is

typically represented in many separate parent-child tables

linked by foreign keys. This data model doesn’t resemble

the entity in the real world, or how that entity is expressed

as an object in application code.

This difference makes it difficult for developers to reason

about the underlying data model while writing code,

slowing down application development; this is sometimes

referred to as object-relational impedance mismatch. One

workaround for this is to employ an object-relational

mapping layer (ORM). But this creates its own challenges,

including managing the middleware and revising the

mapping whenever either the application code or the

database schema changes.

In contrast to this tabular model, MongoDB uses a

documentdocument data model. Documents are a much more

natural way to describe data. They present a single data

structure, with related data embedded as sub-documents

and arrays. This allows documents to be closely aligned to

2

FigurFigure 1:e 1: Modeling a customer with the relational database: data is split across multiple tables

the structure of objects in the programming language. As a

result, it’s simpler and faster for developers to model how

data in the application will map to data stored in the

database. It also significantly reduces the barrier-to-entry

for new developers who begin working on a project – for

example, adding new microservices to an existing app. This

JSON document demonstrates how a customer object is

modeled in a single, rich document structure with nested

arrays and sub-documents.

{
"_id":

ObjectId("5ad88534e3632e1a35a58d00"),
"name": {

"first": "John",
"last": "Doe" },

"address": [
{ "location": "work",

"address": {
"street": "16 Hatfields",
"city": "London",
"postal_code": "SE1 8DJ"},

"geo": { "type": "Point", "coord": [
51.5065752,-0.109081]}},

+ {...}
],
"phone": [

{ "location": "work",
"number": "+44-1234567890"},

+ {...}
],
"dob": ISODate("1977-04-01T05:00:00Z"),
"retirement_fund":

NumberDecimal("1292815.75")
}

MongoDB stores data as JSON (JavaScript Object

Notation) documents in a binary representation called

BSON (Binary JSON). Unlike other databases that store

JSON data as simple strings and numbers, the BSON

encoding extends the JSON representation to include

3

additional types such as int, long, date, floating point, and

decimal128 – the latter is especially important for high

precision, lossless financial and scientific calculations. This

makes it much easier for developers to process, sort, and

compare data. BSON documents contain one or more

fields, and each field contains a value of a specific data

type, including arrays, binary data, and sub-documents.

MongoDB provides native drivers for all popular

programming languages and frameworks to make

development easy and natural. Supported drivers include

Java, Javascript, C#/.NET, Python, Perl, PHP, Scala and

others, in addition to 30+ community-developed drivers.

MongoDB drivers are designed to be idiomatic for the

given programming language.

MongoDB Compass, the GUI for MongoDB, makes it easy

to explore and manipulate your data. Visualize the structure

of data in MongoDB, run ad hoc queries and evaluate their

performance, view and create indexes, build data validation

rules, and more. Compass provides an intuitive interface for

working with MongoDB.

Flexibile: Dynamically Adapting to
Changes

The tabular data model is rigid. It was built for structured

data, where each record in a table has identical columns.

While it’s possible to handle polymorphism and

semi-structured or unstructured data, it's clumsy, and

working around the basic data limitations of the tabular

model takes up development time. Furthermore, the tabular

model demands that the schema be pre-defined, with any

changes requiring schema migrations. Practically, this

means that developers need to plan their data structure

well in advance, and imposes friction to the development

process when adding features or making application

updates that require schema changes. This is a poor match

for agile, iterative development models.

MongoDB documents are polymorphic – fields can vary

from document to document within a single collection

(analogous to table in a tabular database). For example, all

documents that describe customers might contain the

customer ID and the last date they purchased a product or

service, but only some of these documents might contain

the user’s social media handle, or location data from a

mobile app. There is no need to declare the structure of

documents to the system – documents are self-describing.

If a new field needs to be added to a document, the field

can be created without affecting all other documents in the

system, without updating a central system catalog, and

without taking the database offline.

Developers can start writing code and persist objects as

they are created. And when they need to add more

features, MongoDB continues to store the updated objects

without the need to perform costly ALTER TABLE

operations – or worse, having to redesign the schema from

scratch. Even trivial changes to an existing relational data

model result in a complex dependency chain – from

updating ORM class-table mappings to programming

language classes that have to be recompiled and code

changed accordingly.

Schema Governance

While MongoDB’s flexible schema is a powerful feature,

there are situations where strict guarantees on the

schema’s data structure and content are required. Unlike

NoSQL databases that push enforcement of these controls

back into application code, MongoDB provides schema

validation within the database via syntax derived from the

proposed IETF JSON Schema standard.

Using schema validation, DevOps and DBA teams can

define a prescribed document structure for each collection,

with the database rejecting any documents that do not

conform to it. Administrators have the flexibility to tune

schema validation according to use case – for example, if a

document fails to comply with the defined structure, it can

be either be rejected or written to the collection while

logging a warning message. Structure can be imposed on

just a subset of fields – for example, requiring a valid

customer name and address, while other fields can be

freeform.

With schema validation, DBAs can apply data governance

standards to their schema, while developers maintain the

benefits of a flexible document model.

4

https://www.mongodb.com/products/compass
http://json-schema.org/

Fast: Great Performance

The normalization of data in the tabular model means that

accessing data for an entity, such as our customer example

earlier, typically requires JOINing multiple tables together.

JOINs entail a performance penalty, even when optimized

– which takes time, effort, and advanced SQL skills.

In MongoDB, a document is a single place for the database

to read and write data for an entity. The complete

document can be accessed in a single database operation

that avoids the need internally to pull data from many

different tables and rows. For most queries, there’s no need

to JOIN multiple records. Should your application access

patterns require it, MongoDB does provide the equivalent

of a JOIN, the ability to $lookup2 between multiple

collections. This is very useful for analytics workloads, but

is generally not required for operational use cases.

This also simplifies query development and optimization.

There’s no need to write complex code to manipulate text

and values into SQL and work with multiple tables. Figure

2 illustrates the difference between using the MongoDB

query language3 and SQL4 to insert a single user record,

where users have multiple properties including name, all of

their addresses, phone numbers, interests, and more.

2. https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/index.html

3. https://git.io/vpnxX

4. https://git.io/vpnpG

5

FigurFigure 2:e 2: Comparison of SQL and MongoDB code to insert a single user

6

Creating Real-Time Data Pipelines with Change
Streams

Further building on the “speed” theme change streams5

enable developers to build reactive and real-time apps for

web, mobile, and IoT that can view, filter, and act on data

changes as they occur in the database. Change streams

enable fast and seamless data movement across

distributed database and application estates, making it

simple to stream data changes and trigger actions

wherever they are needed, using a fully reactive

programming style. Use cases enabled by MongoDB

change streams include:

• Powering trading applications that need to be updated

in real time as stock prices rise and fall.

• Refreshing scoreboards in multiplayer games.

• Updating dashboards, analytics systems, and search

engines as operational data changes.

• Creating powerful IoT data pipelines that can react

whenever the state of physical objects change.

• Synchronizing updates across serverless and

microservice architectures by triggering an API call

when a document is inserted or modified.

Versatile: Various Data Models and
Access Patterns

Building upon the ease, flexibility, and speed of the

document model, MongoDB enables developers to satisfy

a range of application requirements, both in the way data is

modeled and how it is queried.

The flexibility and rich data types of documents make it

possible to model data in many different structures,

representative of entities in the real world. The embedding

of arrays and sub-documents makes documents very

powerful at modeling complex relationships and

hierarchical data, with the ability to manipulate deeply

nested data without the need to rewrite the entire

document. But documents can also do much more: they

can be used to model flat, table-like structures, simple

key-value pairs, text, geospatial data, the nodes and edges

used in graph processing, and more.

With an expressive query language documents can be

queried in many ways (see Table 1) – from simple lookups

and range queries to creating sophisticated processing

pipelines for data analytics and transformations, through to

faceted search, JOINs, geospatial processing, and graph

traversals. This is in contrast to most distributed databases,

which offer little more than simple key-value access to your

data.

The MongoDB query model is also implemented as

methods or functions within the API of a specific

programming language, as opposed to a completely

separate language like SQL. This, coupled with the affinity

between MongoDB’s JSON document model and the data

structures used in object-oriented programming, further

speeds developer productivity. For a complete list of drivers

see the MongoDB Drivers documentation.

5. https://docs.mongodb.com/manual/changeStreams/index.html

7

http://docs.mongodb.org/ecosystem/drivers/

ExprExpressive Queriesessive Queries
• Find anyone with phone # “1-212…”
• Check if the person with number “555…” is on the “do not call” list

GeospatialGeospatial • Find the best offer for the customer at geo coordinates of 42nd St. and 6th Ave

TText Searext Searcchh • Find all tweets that mention the firm within the last 2 days

FFaceted Navigationaceted Navigation • Filter results to show only products <$50, size large, and manufactured by ExampleCo

AggrAggregationegation • Count and sort number of customers by city, compute min, max, and average spend

Native Binary JNative Binary JSONSON
SupportSupport

• Add an additional phone number to Mark Smith’s record without rewriting the
document at the client

• Update just 2 phone numbers out of 10
• Sort on the modified date

Fine-grained ArrayFine-grained Array
OperationsOperations

• In Mark Smith’s array of test scores, update every score <70 to be 0

JOIJOIN ($lookup)N ($lookup)
• Query for all San Francisco residences, lookup their transactions, and sum the amount
by person

Graph QueriesGraph Queries
($graphL($graphLookup)ookup)

• Query for all people within 3 degrees of separation from Mark

TTable 1:able 1: MongoDB’s rich query functionality

MongoDB’s versatility is further supported by its indexing

capabilities. Queries can be performed quickly and

efficiently with an appropriate indexing strategy. MongoDB

permits secondary indexes to be declared on any field,

including field within arrays. Indexes can be created and

dropped at any time to easily support changing application

requirements and query patterns. Index types include

compound indexes, text indexes, geospatial indexes, and

more. Further, indexes can be created with special

properties to enforce data rules or support certain

workloads – for example, to expire data according to

retention policies or guarantee uniqueness of the indexed

field within a collection. Table 2 summarizes the indexes

available with MongoDB.

Index TIndex Typesypes Index FIndex Featureatureses

Primary IndexPrimary Index: Every Collection has a primary key
index

TTTL IndexesTL Indexes: Single Field indexes, when expired delete the
document

Compound IndexCompound Index: Index against multiple keys in the
document

Unique IndexesUnique Indexes: Ensures value is not duplicated

MultiKMultiKey Indexey Index: Index into arrays Partial IndexesPartial Indexes: Expression based indexes, allowing indexes on
subsets of data

TText Indexesext Indexes: Support for text searches Case Insensitive IndexesCase Insensitive Indexes: supports text search using case
insensitive search

GeoSpatial IndexesGeoSpatial Indexes: 2d & 2dSphere indexes for
spatial geometries

Sparse IndexesSparse Indexes: Only index documents which have the given
field

Hashed IndexesHashed Indexes: Hashed based values for sharding

TTable 2:able 2: MongoDB offers fully-featured secondary indexes

8

Data Consistency Guarantees

MongoDB’s versatility also extends to data consistency

requirements. As a distributed system, MongoDB handles

the complexity of maintaining multiple copies of data via

replication (see the Availability section below). Read and

write operations are directed to the primary replica by

default for strong consistency, but users can choose to

read from secondary replicas for reduced network latency,

especially when users are geographically dispersed, or for

isolating operational and analytical workloads running in a

single cluster. When reading data from any cluster member,

users can tune MongoDB’s consistency model to match

application requirements, down to the level of individual

queries within an app. When a situation mandates the

strictest linearizable or causal consistency, MongoDB will

enforce it; if an application needs to only read data that has

been committed to a majority of nodes (and therefore can’t

be rolled back in the event of a primary election) or even

just to a single replica, MongoDB can be configured for

this. By providing this level of tunability, MongoDB can

satisfy the full range of consistency, performance, and

geo-locality requirements of modern apps.

When writing data, MongoDB similarly offers tunable

configurations for durability requirements, discussed

further in the Availability section.

Transactional Model

Because documents can bring together related data that

would otherwise be modelled across separate parent-child

tables in a tabular schema, MongoDB’s atomic

single-document operations provide transaction semantics

that meet the data integrity needs of the majority of

applications. One or more fields may be written in a single

operation, including updates to multiple sub-documents

and elements of an array. The guarantees provided by

MongoDB ensure complete isolation as a document is

updated; any errors cause the operation to roll back so that

clients receive a consistent view of the document.

The addition of multi-document transactions, scheduled for

MongoDB 4.06, makes it even easier for developers to

address more use cases with MongoDB. They feel just like

the transactions developers are familiar with from relational

databases – multi-statement, similar syntax, and easy to

add to any application. Through snapshot isolation,

transactions provide a globally consistent view of data,

enforce all-or-nothing execution, and will not impact

performance for workloads that do not require them. Learn

more and take them for a spin.

MongoDB Stitch

MongoDB Stitch, Serverless for data-driven applications.

Stitch streamlines application development with simple,

secure access to data and services from the client –

getting your apps to market faster while reducing

operational costs. Stitch provides full access to your

MongoDB database, in addition to public cloud services –

all through an intuitive SDK. Add business logic to your

backend using Stitch's hosted functions. Take advantage of

Stitch's HTTP service and Webhooks to integrate with your

microservices and provide secure APIs. Stitch secures

access to data, services, and functions through powerful,

declarative rules – putting you in control.

Stitch represents the next stage in the industry's migration

to a more streamlined, managed infrastructure. Virtual

Machines running in public clouds (notably AWS EC2) led

the way, followed by hosted containers, and serverless

offerings such as AWS Lambda and Google Cloud

Functions. That still required backend developers to

implement and manage access controls and REST APIs to

provide access to microservices, public cloud services, and

of course data. Frontend developers were held back by

needing to work with APIs that weren't suited to rich data

queries.

Put Data Where you Need It:
Intelligent Distributed Systems
Architecture

Mobile, web, IoT, and cloud apps have significantly changed

user expectations. Once, applications were designed to

serve a finite audience – typically internal business

6. Safe HarbSafe Harbour Stour Statementatement: The development, release, and timing of any features or functionality described for our products remains at our sole

discretion. This information is merely intended to outline our general product direction and it should not be relied on in making a purchasing decision nor is

this a commitment, promise, or legal obligation to deliver any material, code, or functionality.

9

https://www.mongodb.com/transactions
https://www.mongodb.com/transactions

departments – in a single head office location. Now, users

demand modern app experiences that must be always-on,

accessible from any device, consistently scaled with the

same low-latency responsiveness wherever they are while

meeting the data sovereignty requirements demanded by

new data privacy regulations.

To address these needs, MongoDB is built around an

intelligent distributed systems architecture that enables

developers to place data where their apps and users need

it. MongoDB can be run within and across geographically

distributed data centers and cloud regions, providing levels

of availability, workload isolation, scalability, and data

locality unmatched by relational databases. Before diving

further into MongoDB’s distributed systems design, let's

first examine the challenges of meeting modern app needs

with traditional relational databases.

Relational Database Challenges

Relational databases are monolithic systems, designed to

run on a single server, typically with shared storage.

Attempting to introduce distributed system properties to

relational databases results in significantly higher

developer and operations complexity and cost, slowing the

pace of delivering new apps, and evolving them in line with

user requirements.

Availability

For redundancy, most relational databases support

replication to mirror the database across multiple nodes,

but they lack the integrated mechanisms for automatic

failover and recovery between database replicas. As a

result, users need to layer 3rd-party clustering frameworks

and agents (sometimes called “brokers”) to monitor the

database and its host platform, initiating failover in the

event something goes wrong (i.e., the database crashes or

the underlying server stops responding). What are the

downsides of this approach?:

• Failover events need to be coordinated by the clustering

software across the database, replication mechanism,

storage, network, clients, and hosts. As a result, it can

take multiple minutes to recover service to the

application, during which time, the app is unavailable to

users.

• Clustering frameworks are often external to the

database, so developers face the complexity of

integrating and managing separate pieces of

technology and processes, sometimes backed by

different vendors. In some cases, these clustering

frameworks are independently licensed from the

database itself, adding cost.

• It also means additional complexity in coordinating the

implementation, testing, and ongoing database

maintenance across multiple teams – developers,

DBAs, network administrators, and system

administrators – each with their own specific areas of

responsibility.

Scale-Out and Data Locality

Attempting to accommodate increasing data volumes and

user populations with a database running on a single

server means developers can rapidly hit a scalability wall,

necessitating significant application redesign and custom

engineering work. While it can be possible to use

replication to scale read operations across replicas of the

data – with potential risks to data consistency – relational

databases have no native mechanisms to partition (shard)

the database across a cluster of nodes when they need to

scale writes. So developers are confronted with two

options:

1. Manually partition the database at the application level,

which adds significant development complexity, and

inhibits the ability to elastically expand and contract the

cluster as workloads dictate, or as the app scales

beyond the original capacity predictions.

2. Integrate a separate sharding framework for the

database. Like the HA frameworks discussed above,

these sharding layers are developed independently from

the database, so the user has the added complexity of

integrating and managing multiple, distinct pieces of

technology in order to provide a complete solution.

Whatever approach is taken, developers will typically lose

key relational capabilities that are at the heart of traditional

RDBMS application logic: ACID transactions, referential

integrity, JOINs, and full SQL expressivity for any

operations that span shards. As a result, they will need to

recreate this functionality back at the application tier.

10

MongoDB Distributed Systems
Architecture

As a distributed data platform, MongoDB gives developers

four essential capabilities in meeting modern application

needs:

• Availability

• Workload isolation

• Scalability

• Data locality

Each is discussed in turn below.

Availability

MongoDB maintains multiple copies of data using replica

sets (Figure 3). Unlike relational databases, replica sets are

self-healing as failover and recovery are fully automated, so

it is not necessary to manually intervene to restore a

system in the event of a failure, or to add additional

clustering frameworks and agents. Replica sets also

provide operational flexibility by providing a way to perform

systems maintenance (i.e. upgrading underlying hardware

and software) using rolling replica restarts that preserve

service continuity.

FigurFigure 3:e 3: Self-healing MongoDB replica sets for
continuous availability

A replica set consists of multiple database replicas. To

maintain strong data consistency, one member assumes

the role of the primary replica against which all write

operations are applied (as discussed later, MongoDB

automatically shards the data set across multiple nodes to

scale write operations beyond a single primary node). The

other members of the replica set act as secondaries,

replicating all data changes from the oplog (operations

log). The oplog contains an ordered set of idempotent

operations that are replayed on the secondaries.

If the primary replica set member suffers an outage (e.g., a

power failure, hardware fault, network partition), one of the

secondary members is automatically elected to primary,

typically within several seconds, and the client connections

automatically failover to that new primary. Any writes that

could not be serviced during the election can be

automatically retried by the drivers once a new primary is

established, with the MongoDB server enforcing

exactly-once processing semantics. Retryable writes

enable MongoDB to ensure write availability, without

sacrificing data consistency.

11

https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/core/replica-set-oplog/index.html
https://docs.mongodb.com/manual/core/retryable-writes/index.html

The replica set election process is controlled by

sophisticated algorithms based on an extended

implementation of the Raft consensus protocol. Not only

does this allow fast failover to maximize service availability,

the algorithm ensures that only the most suitable

secondary members are evaluated for election to primary

and reduces the risk of unnecessary failovers (also known

as "false positives"). Before a secondary replica is

promoted, the election algorithms evaluate a range of

parameters including:

• Analysis of election identifiers, timestamps, and journal

persistence to identify those replica set members that

have applied the most recent updates from the primary

member.

• Heartbeat and connectivity status with the majority of

other replica set members.

• User-defined priorities assigned to replica set members.

For example, administrators can configure all replicas

located in a remote region to be candidates for election

only if the entire primary region fails.

Once the election process has determined the new primary,

the secondary members automatically start replicating from

it. When the original primary comes back online, it will

recognize its change in state and automatically assume the

role of a secondary, applying all write operations that have

occurred during its outage.

The number of replicas in a MongoDB replica set is

configurable, with a larger number of replica members

providing increased data durability and protection against

database downtime (e.g., in case of multiple machine and

regional failures, network partitions), or to isolate

operational and analytical workloads running on the same

cluster. Up to 50 members can be configured per replica

set, providing operational flexibility and wide data

distribution across multiple geographic sites, co-locating

data in close proximity to remote users.

Extending flexibility, developers can configure replica sets

to provide tunable, multi-node durability, and geographic

awareness. For example, they can:

• Ensure write operations propagate to specific members

of a replica set, deployed locally and in remote regions.

MongoDB’s write concern can be configured in such a

way that writes are only acknowledged once specific

policies have been fulfilled, such as writing to at least

two replica set members in one region and at least one

replica in a second region. This reduces the risk of data

loss in the event of a complete data center outage.

• Ensure that specific members of a replica set respond

to queries – for example, based on their physical

location. The nearest read preference allows the client

to read from the lowest-latency members of a replica

set. This is typically used to route queries to a local data

center, thus reducing the effects of geographic latency,

while being able to immediately fallback to the next

nearest if the closest node goes down. Tags can also be

used to ensure that reads are always routed to a

specific node or subset of nodes.

Workload Isolation

Beyond using replication for redundancy and availability,

replica sets also provide a foundation for combining

different classes of workload on the same MongoDB

cluster, each operating against its own copy of the data.

With workload isolation, business analysts can run

exploratory queries and generate reports, and data

scientists can build machine learning models without

impacting operational applications.

Within a replica set, one set of nodes can be provisioned to

serve operational applications, replicating data in real time

to other nodes dedicated to serving analytic workloads. By

using MongoDB’s native replication to move data in real

time between the different node types, developers avoid

lengthy and fragile ETL cycles, while analysts can improve

both the speed and quality of insights and decision making

by working with fresh, rather than aged and potentially

stale data.

With the operational and analytic workloads isolated from

one another on different replica set nodes, they never

contend for resources. Replica set tags allow read

operations to be directed to specific nodes within the

cluster, providing physical isolation between analytics and

operational queries. Different indexes can even be created

for the analytics nodes, allowing developers to optimize for

multiple query patterns. Data is exposed through

MongoDB’s rich query language, along with the Connector

12

https://raft.github.io/
http://docs.mongodb.org/manual/core/write-concern/
http://docs.mongodb.org/manual/reference/read-preference/#nearest
https://docs.mongodb.com/manual/core/read-preference/#replica-set-read-preference-tag-sets
https://www.mongodb.com/products/bi-connector

FigurFigure 4:e 4: Replica sets enable global data distribution

FigurFigure 5:e 5: Combining operational and analytics workloads on a single data platform

for BI and Connector for Spark to support real-time

analytics and data visualization.

Scalability

To meet the needs of apps with large data sets and high

throughput requirements, MongoDB provides horizontal

scale-out for databases on low-cost, commodity hardware

or cloud infrastructure using a technique called sharding.

Sharding automatically partitions and distributes data

across multiple physical instances called shards. Each

shard is backed by a replica set to provide always-on

availability and workload isolation. Sharding allows

developers to seamlessly scale the database as their apps

grow beyond the hardware limits of a single server, and it

does this without adding complexity to the application. To

respond to workload demand, nodes can be added or

removed from the cluster in real time, and MongoDB will

13

https://www.mongodb.com/products/bi-connector
https://www.mongodb.com/products/spark-connector
https://docs.mongodb.org/manual/core/sharding-introduction/

automatically rebalance the data accordingly, without

manual intervention.

Sharding is transparent to applications; whether there is

one or a thousand shards, the application code for querying

MongoDB remains the same. Applications issue queries to

a query router that dispatches the query to the appropriate

shards. For key-value queries that are based on the shard

key, the query router will dispatch the query to the shard

that manages the document with the requested key. When

using range-based sharding, queries that specify ranges on

the shard key are only dispatched to shards that contain

documents with values within the range. For queries that

don’t use the shard key, the query router will broadcast the

query to all shards, aggregating and sorting the results as

appropriate. Multiple query routers can be used within a

MongoDB cluster, with the appropriate number governed

by the performance and availability requirements of the

application.

FigurFigure 6:e 6: Automatic sharding for horizontal scale-out

Unlike relational databases, MongoDB sharding is

automatic and built into the database. Developers don't

face the complexity of building sharding logic into their

application code, which then needs to be updated as data

is migrated across shards. They don't need to integrate

additional clustering software or expensive shared-disk

infrastructure to manage process and data distribution, or

failure recovery.

By simply hashing a primary key value, many distributed

databases randomly spray data across a cluster of nodes,

imposing performance penalties when data is queried, or

adding complexity when data needs to be localized to

specific nodes. By exposing multiple sharding policies to

developers, MongoDB offers a better approach. Data can

be distributed according to query patterns or data

placement requirements, giving developers much higher

scalability across a diverse et of workloads:

• Ranged SharRanged Shardingding. Documents are partitioned across

shards according to the shard key value. Documents

with shard key values close to one another are likely to

be co-located on the same shard. This approach is well

suited for applications that need to optimize range

based queries, such as co-locating data for all

customers in a specific region on a specific shard.

• Hashed SharHashed Shardingding. Documents are distributed

according to an MD5 hash of the shard key value. This

approach guarantees a uniform distribution of writes

across shards, which is often optimal for ingesting

streams of time-series and event data.

• Zoned SharZoned Shardingding. Provides the ability for developers to

define specific rules governing data placement in a

sharded cluster. Zones are discussed in more detail in

the following Data Locality section of the guide.

Thousands of organizations use MongoDB to build

high-performance systems at scale. You can read more

about them on the MongoDB scaling page.

Data Locality

MongoDB zoned sharding allows precise control over

where data is physically stored in a cluster. This allows

developers to accommodate a range of application needs –

for example controlling data placement by geographic

region for latency and governance requirements, or by

hardware configuration and application feature to meet a

specific class of service. Data placement rules can be

continuously refined by modifying shard key ranges, and

MongoDB will automatically migrate the data to its new

zone.

The most popular use cases for MongoDB zones include

the following:

Geographic Data Placement

MongoDB gives developers the ability to create zones in

multiple geographic regions. Each zone is part of the same,

single cluster and can be queried globally, but data is

14

https://docs.mongodb.com/manual/core/sharded-cluster-query-router/
http://www.mongodb.com/mongodb-scale
https://docs.mongodb.com/master/core/zone-sharding/

pinned to shards in specific regions based on data locality

requirements. Developers simply name a shard by region,

tag their documents by region in the shard key, and

MongoDB does the rest.

By associating data to shards based on regional policies,

developers can create global, always-on, write-everywhere

clusters, with each shard serving operations local to it –

enabling the database to serve distributed, write-heavy

workloads with low latency. This design brings the benefits

of “multi-master” database, without introducing the

complexity of eventual consistency or data loss caused by

conflicting writes.

Zoned sharding also enables developers to keep user data

within specific regions to meet governance requirements

for data sovereignty, such as the EU’s GDPR. To illustrate

further, an application may have users in North America,

Europe, and China. The developer can assign each shard to

a zone representing the physical location (North America,

Europe, or China) of that shard's servers, and then map all

documents to the correct zone based on its region field.

Any number of shards can be associated with each zone,

and each zone can be scaled independently of the others –

for instance, accommodating faster user growth in China

than North America.

Learn more by reviewing our tutorial on creating

geographically distributed clusters with MongoDB zoned

sharding.

Class of Service

Data for a specific application feature or customer can be

associated with specific zones. For instance, a company

offering Software-as-a-Service (SaaS) may assign users

on its free usage tier to shards provisioned on lower

specified hardware, while paying customers are allocated

to premium infrastructure. The SaaS provider has the

flexibility to scale parts of the cluster differently for free

users and paying customers. For example, the free tier can

be allocated just a few shards, while paying customers can

be assigned to dozens of shards.

Learn more by reviewing our tutorial on configuring

application affinity with MongoDB zoned sharding.

Building upon application features, zoned sharding also

enables deployment patterns such as tiered, or

multi-temperature storage. Different subsets of data often

have different response time requirements, usually based

on access frequency and age of the data. For example, IoT

applications or social media services handling time-series

data will demand that users experience the lowest latency

when accessing the latest data. This data can be pinned to

the highest performance hardware with fast CPUs and

SSDs. Meanwhile, aged data sets that are read less

frequently typically have relaxed latency SLAs, so can be

moved onto slower, less expensive hardware based on

conventional, high capacity spinning disks. By including a

timestamp in the shard key, the MongoDB cluster balancer

can migrate data based on age from the high-performance

tier to the active archive tier.

FigurFigure 7:e 7: Implementing tiered storage with MongoDB
zoned sharding

Learn more by reviewing our tutorial on configuring tiered

storage with MongoDB zoned sharding

Data Security

Having the freedom to put data where it’s needed enables

developers to build powerful new classes of application.

However, they must also be confident that their data is

secure, wherever it is stored. Rather than build security

controls back in the application, they should be able to rely

on the database to implement the mechanisms needed to

protect sensitive data and meet the needs of apps in

regulated industries.

MongoDB features extensive capabilities to defend, detect,

and control access to data:

• AuthenticAuthentication.ation. Simplifying access control to the

database, MongoDB offers integration with external

security mechanisms including LDAP, Windows Active

15

https://www.mongodb.com/collateral/gdpr-impact-to-your-data-management-landscape
https://docs.mongodb.com/master/tutorial/sharding-segmenting-data-by-location/
https://docs.mongodb.com/master/tutorial/sharding-segmenting-data-by-location/
https://docs.mongodb.com/master/tutorial/sharding-segmenting-data-by-location/
https://docs.mongodb.com/master/tutorial/sharding-segmenting-shards/
https://docs.mongodb.com/master/tutorial/sharding-segmenting-shards/
https://docs.mongodb.com/master/tutorial/sharding-tiered-hardware-for-varying-slas/
https://docs.mongodb.com/master/tutorial/sharding-tiered-hardware-for-varying-slas/

Directory, Kerberos, and x.509 certificates. In addition,

IP whitelisting allows DevOps teams to configure

MongoDB to only accept external connections from

approved IP addresses.

• AuthorizationAuthorization. Role-Based Access Controls (RBAC)

enable DevOps teams to configure granular

permissions for a user or an application based on the

privileges they need to do their job. These can be

defined in MongoDB, or centrally within an LDAP server.

Additionally, developers can define views that expose

only a subset of data from an underlying collection, i.e. a

view that filters or masks specific fields, such as

Personally Identifiable Information (PII) from customer

data or health records. Views can also be created to

only expose aggregated data.

• Auditing.Auditing. For regulatory compliance, security

administrators can use MongoDB's native audit log to

track any database operations – whether DML or DDL.

• Encryption.Encryption. MongoDB data can be encrypted on the

network, on disk and in backups. With the Encrypted

storage engine , protection of data-at-rest is an integral

feature within the database. By natively encrypting

database files on disk, developers eliminate both the

management and performance overhead of external

encryption mechanisms. Only those staff who have the

appropriate database authorization credentials can

access the encrypted data, providing additional levels of

defense.

To learn more, download the MongoDB Security Reference

Architecture Whitepaper.

Freedom to Run Anywhere

An increasing number of companies are moving to the

public cloud to not only reduce the operational overhead of

managing infrastructure, but also provide their teams with

on-demand services that make it easier to build and run an

application backend. This move from building IT to

consuming IT as a service is well aligned with a parallel

organizational shift happening across companies

prioritizing productivity and getting to market faster — a

move from specialized and often siloed groups to more

cross-functional, DevOps teams that are able to make

many of their own technology decisions. The result is often

a far more nimble and focused organization that is able to

rapidly deliver new digital products using agile

methodologies and modern application architectures, such

as microservices.

However, relational databases that have been designed to

run on a single server are architecturally misaligned with

modern cloud platforms, which are built from low-cost

commodity hardware and designed to scale out as more

capacity is needed. For example, cloud applications with

uneven usage or spikes during certain periods require

built-in elasticity and scalability across the supporting

technology stack. Legacy relational databases do not

natively support these capabilities requiring teams to try

and introduce distributed systems properties through

approaches such as application-level sharding.

It’s for this reason that modern, non-tabular databases

delivered as a service are growing in popularity amongst

organizations moving into the cloud. But many of these

database services run exclusively in a single cloud platform,

which increases business risk. For the past decade,

companies have increasingly adopted open source

technologies to reduce lock-in with proprietary vendors.

Choosing to build applications on a proprietary cloud

database re-introduces the risk of lock-in to cloud vendor

APIs and technologies that only run in a single

environment.

To reduce the likelihood of cloud lock-in, teams should

build their applications on distributed databases that will

deliver a consistent experience across any environment. As

an open source database, MongoDB can be deployed

anywhere — from mainframes to a private cloud to the

public cloud. The developer experience is entirely

unaffected by the deployment model; similarly, teams

responsible for standing up databases, maintaining them,

and optimizing performance can also leverage a unified set

of tools that deliver the same experience across different

environments.

MongoDB allows organizations to adopt cloud at their own

pace by moving select workloads as needed. For example,

they may run the same workload in a hybrid environment to

manage sudden peaks in demand, or use the cloud to

launch services in regions where they lack a physical data

center presence.

16

https://docs.mongodb.com/manual/core/security-encryption-at-rest/index.html#encrypted-storage-engine
https://docs.mongodb.com/manual/core/security-encryption-at-rest/index.html#encrypted-storage-engine
https://www.mongodb.com/collateral/mongodb-security-architecture
https://www.mongodb.com/collateral/mongodb-security-architecture

MongoDB Atlas

Similar to the way MongoDB and Stitch dramatically

improve developer productivity, MongoDB offers a fully

managed, on-demand and elastic service, called MongoDB

Atlas , in the public cloud. Atlas enables customers to

deploy, operate, and scale MongoDB databases on AWS,

Azure, or GCP in just a few clicks or programmatic API

calls. Atlas allows customers to adopt a more agile,

on-demand approach to IT rather than underutilizing cloud

as merely a hosted infrastructure platform and replicating

many of the same operational, administrative, and

time-to-market challenges with running on-premises.

Built-in automation and proven best practices reduce the

likelihood of human error and minimize operational

overhead. Key features of MongoDB Atlas include:

Automation and elasticityAutomation and elasticity.. MongoDB Atlas automates

infrastructure provisioning, setup, and deployment so

teams can get the database resources they need, when

they need them. Patches and minor version upgrades are

applied automatically. Database modifications — whether

it’s to scale out or perform an upgrade — can be executed

in a few clicks or an API call with no downtime window

required.

High availability and durabilityHigh availability and durability.. MongoDB Atlas

automatically creates self-healing, geographically

distributed clusters with a minimum of 3 nodes to ensure

no single point of failure. Even better availability

guarantees are possible by enabling cross-region

replication to achieve multi-region fault tolerance.

MongoDB Atlas also includes powerful features to

enhance reliability for mission-critical production

databases, such as continuous, incremental backups with

point-in-time recovery and queryable snapshots, which

allow customers to restore granular data sets in a fraction

of the time it would take to restore an entire snapshot.

SecurSecure by default.e by default. MongoDB Atlas makes it easy for

organizations to control access to their managed

databases by automatically incorporating many of the

security features mentioned earlier in this architecture

guide. For example, a customer’s database instances are

deployed with robust access controls and end-to-end

encryption. Other security features include network

isolation, IP whitelisting, VPC peering, always-on

authentication, and much more.

ComprComprehensive monitoring and performanceehensive monitoring and performance

optimization.optimization. MongoDB Atlas includes an integrated set

of features that simplify database monitoring and

performance optimization. Developers can get deep

visibility into their clusters using optimized charts tracking

dozens of key metrics, and easily customize and send

alerts to channels such as Slack, Datadog, and PagerDuty.

MongoDB Atlas also allows customers to see what’s

happening in their clusters as it happens with the

Real-Time Performance Panel, and allows them to take

advantage of automatically generated index suggestions

via the built-in Performance Advisor to improve query

performance. Finally, the built-in Data Explorer lets

operations teams run queries to review document structure

and database schema, view collection metadata, and

inspect index usage statistics.

Live migration.Live migration. MongoDB Atlas makes it easy to migrate

live data from MongoDB deployments running in any other

environment. Atlas will perform an initial sync between the

migration destination and the source database, and use the

oplog to keep the two database in sync until teams are

prepared to perform the cutover process. Live migration

supports importing data from replica sets, sharded clusters,

and any deployment running MongoDB 2.6 or higher.

WWidespridespread coverage on the major cloud platforms.ead coverage on the major cloud platforms.

MongoDB Atlas is available in over 50 cloud regions

across Amazon Web Services, Microsoft Azure, and Google

Cloud Platform. Organizations with a global user base can

use MongoDB Atlas to automatically replicate data to any

number of regions of their choice to deliver fast, responsive

access to data wherever their users are located.

Furthermore, unlike other open source database services

which vary in terms of feature-support and optimizations

from cloud provider to cloud provider, MongoDB Atlas

delivers a consistent experience across each of the cloud

platforms, ensuring developers can deploy wherever they

need to, without compromising critical functionality.

You can learn about MongoDB Atlas and all of the features

discussed above in the documentation. And you can take

Atlas for a spin at no cost on the free tier.

17

https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://docs.atlas.mongodb.com/

MongoDB Ops Manager

For organizations that need to run the database on their

own infrastructure for business or regulatory requirements,

MongoDB offers SaaS or on-premises management tools

available that enable customers to build their own

MongoDB service for internal development teams.

MongoDB Ops Manager is the simplest way to run

MongoDB on premises or in a private cloud, making it easy

for operations teams to deploy, monitor, backup, and scale

MongoDB. The capabilities of Ops Manager are also

available in the MongoDB Cloud Manager tool, delivered as

SaaS in the cloud.

Deployments and upgrades.Deployments and upgrades. Whereas MongoDB Atlas is

a fully managed database as a service platform, Ops

Manager provides a powerful suite of tools that enable

operations teams to implement and automate MongoDB

deployment and maintenance tasks in accordance with

their policies and best practices. Ops Manager coordinates

critical operational tasks across the servers in a MongoDB

system. It communicates with the infrastructure through

agents installed on each server. The servers can reside in

the public cloud or a private data center. Ops Manager

reliably orchestrates the tasks that administrators have

traditionally performed manually – deploying a new cluster,

performing upgrades, creating point-in-time backups, and

many other operational activities.

Ops Manager also makes it possible to dynamically resize

capacity by adding shards and replica set members. Other

maintenance tasks such as upgrading MongoDB, building

new indexes across replica sets or resizing the oplog can

be reduced from dozens or hundreds of manual steps to

the click of a button, all with zero downtime. Administrators

can use the Ops Manager interface directly, or invoke the

Ops Manager RESTful API from existing enterprise tools.

Ops Manager features such as server pooling make it

easier to build a database as a service within a private

cloud environment. Ops Manager will maintain a pool of

globally provisioned servers that have agents already

installed. When users want to create a new MongoDB

deployment, they can request servers from this pool to host

the MongoDB cluster. Administrators can even associate

certain properties with the servers in the pool and expose

server properties as selectable options when a user

initiates a request for new instances.

ComprComprehensive monitoring and performanceehensive monitoring and performance

optimizationoptimization The monitoring, alerting, and performance

optimization capabilities of Ops Manager and Cloud

Manager are similar to what’s available with MongoDB

Atlas. Integration with existing monitoring tools is

straightforward via the Ops Manager and Cloud Manager

RESTful API, and with packaged integrations to leading

Application Performance Management (APM) platforms,

such as New Relic. These integrations allow MongoDB

status to be consolidated and monitored alongside the rest

of your application infrastructure, all from a single pane of

glass.

Disaster Recovery: BacDisaster Recovery: Backups & point-in-time rkups & point-in-time recoveryecovery

Similar to how backups are handled in MongoDB Atlas,

Ops Manager and Cloud Manager backups are maintained

continuously, just a few seconds behind the operational

system. Because Ops Manager reads the oplog used for

replication, the ongoing performance impact is minimal –

similar to that of adding an additional replica to a replica

set. If the MongoDB cluster experiences a failure, the most

recent backup is only moments behind, minimizing

exposure to data loss. Ops Manager and Cloud Manager

both also offer point-in-time backup of replica sets and

cluster-wide snapshots of sharded clusters. Users can

restore to precisely the moment they need, quickly and

safely. Automation-driven restores allows a fully configured

cluster to be re-deployed directly from the database

snapshots in a just few clicks. Similar to MongoDB Atlas,

Ops Manager and Cloud Manager also provide the ability to

query backup snapshots.

Ops Manager can also be deployed to control backups to a

local data center or AWS S3. If using Cloud Manager,

customers receive a fully managed backup solution with a

pay-as-you-go model. Dedicated MongoDB engineers

monitor user backups on a 24x365 basis, alerting

operations teams if problems arise.

Cloud Adoption Stages

By building on a database that runs the same across any

environment and using an integrated set of management

tooling that delivers a consistent experience across the

18

https://www.mongodb.com/products/ops-manager
https://www.mongodb.com/products/cloud-manager
https://docs.opsmanager.mongodb.com/current/reference/api/

board, organizations can ensure a seamless journey from

on-premises to the public cloud.:

• Teams dipping their toe into the cloud can start with

MongoDB on premises and optimize ongoing

management using Ops Manager. Through integration

with OpenShift and Cloud Foundry, Ops Manager can

be used as a foundation for your own private cloud

database service.

• As their level of comfort with the public cloud increases,

they can migrate a few deployments and self-manage

using Cloud Manager or try the fully managed,

on-demand, as-a-service approach with MongoDB

Atlas.

• Cloud-first organizations interested in exploiting the

benefits of a multi-cloud strategy can use MongoDB

Atlas to easily spin up clusters and replicate data across

regions and cloud providers, all without worrying about

operations or platform lock-in.

Conclusion and Next Steps

Every industry is being transformed by data and digital

technologies. As you build or remake your company for a

digital world, speed mattersspeed matters – measured by how fast you

build apps, how fast you scale them, and how fast you can

gain insights from the data they generate. These are the

keys to applications that provide better customer

experiences, enable deeper, data-driven insights or make

new products or business models possible.

With its intelligent operational data platform, MongoDB

enables developers through:

FigurFigure 8:e 8: MongoDB provides you the freedom to run anywhere

1. The document data model – presenting the best waythe best way

to work with datto work with dataa.

2. A distributed systems design – allowing them to

intelligently put datintelligently put data whera where they want ite they want it.

3. A unified experience that gives them the frfreedom toeedom to

run anywherrun anywheree – allowing them to future-proof their

work and eliminative vendor lock-in.

In this guide we have explored the fundamental concepts

that underpin the architecture of MongoDB. Other guides

on topics such as performance, operations, and security

best practices can be found at mongodb.com.

You can get started now with MongoDB by:

1. Spinning up a fully managed MongoDB instance on the

Atlas free tier

2. Downloading MongoDB for your own environment

3. Reviewing the MongoDB manuals and tutorials on our

documentation page

We Can Help

We are the MongoDB experts. Over 5,700 organizations

rely on our commercial products. We offer software and

services to make your life easier:

MongoDB Enterprise Advanced is the best way to run

MongoDB in your data center. It's a finely-tuned package

of advanced software, support, certifications, and other

services designed for the way you do business.

MongoDB Atlas is a database as a service for MongoDB,

letting you focus on apps instead of ops. With MongoDB

19

http://www.mongodb.com/white-papers
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/download-center?#community
https://docs.mongodb.com/
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/atlas

Atlas, you only pay for what you use with a convenient

hourly billing model. With the click of a button, you can

scale up and down when you need to, with no downtime,

full security, and high performance.

MongoDB Stitch is a backend as a service (BaaS), giving

developers full access to MongoDB, declarative read/write

controls, and integration with their choice of services.

MongoDB Cloud Manager is a cloud-based tool that helps

you manage MongoDB on your own infrastructure. With

automated provisioning, fine-grained monitoring, and

continuous backups, you get a full management suite that

reduces operational overhead, while maintaining full control

over your databases.

MongoDB Consulting packages get you to production

faster, help you tune performance in production, help you

scale, and free you up to focus on your next release.

MongoDB Training helps you become a MongoDB expert,

from design to operating mission-critical systems at scale.

Whether you're a developer, DBA, or architect, we can

make you better at MongoDB.

Resources

For more information, please visit mongodb.com or contact

us at sales@mongodb.com.

Case Studies (mongodb.com/customers)

Presentations (mongodb.com/presentations)

Free Online Training (university.mongodb.com)

Webinars and Events (mongodb.com/events)

Documentation (docs.mongodb.com)

MongoDB Enterprise Download (mongodb.com/download)

MongoDB Atlas database as a service for MongoDB

(mongodb.com/cloud)

MongoDB Stitch backend as a service (mongodb.com/

cloud/stitch)

US 866-237-8815 • INTL +1-650-440-4474 • info@mongodb.com
© 2018 MongoDB, Inc. All rights reserved.

20

https://www.mongodb.com/cloud/stitch
https://www.mongodb.com/products/cloud-manager
https://www.mongodb.com/products/consulting
https://university.mongodb.com/private_training
http://www.mongodb.com
mailto:sales@mongodb.com
http://mongodb.com/customers
http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.com
http://mongodb.com/download
https://www.mongodb.com/cloud
https://www.mongodb.com/cloud/stitch
https://www.mongodb.com/cloud/stitch

	Table of Contents
	Introduction
	The Best Way to Work with Data: The Document Model
	Easy: A Natural, Intuitive Data Model
	Flexibile: Dynamically Adapting to Changes
	Fast: Great Performance
	Versatile: Various Data Models and Access Patterns
	MongoDB Stitch

	Put Data Where you Need It: Intelligent Distributed Systems Architecture
	Relational Database Challenges
	MongoDB Distributed Systems Architecture
	Data Security

	Freedom to Run Anywhere
	MongoDB Atlas
	MongoDB Ops Manager
	Cloud Adoption Stages

	Conclusion and Next Steps
	We Can Help
	Resources
	Introduction
	The Best Way to Work with Data: The Document Model
	Easy: A Natural, Intuitive Data Model
	Flexibile: Dynamically Adapting to Changes
	Schema Governance

	Fast: Great Performance
	Creating Real-Time Data Pipelines with Change Streams

	Versatile: Various Data Models and Access Patterns
	Data Consistency Guarantees
	Transactional Model

	MongoDB Stitch

	Put Data Where you Need It: Intelligent Distributed Systems Architecture
	Relational Database Challenges
	Availability
	Scale-Out and Data Locality

	MongoDB Distributed Systems Architecture
	Availability
	Workload Isolation
	Scalability
	Data Locality
	Geographic Data Placement
	Class of Service

	Data Security

	Freedom to Run Anywhere
	MongoDB Atlas
	MongoDB Ops Manager
	Cloud Adoption Stages

	Conclusion and Next Steps
	We Can Help
	Resources

