
1.1

1.2

1.2.1

1.2.2

1.3

1.3.1

1.3.2

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

1.7

1.7.1

1.7.2

1.7.3

1.7.4

Table	of	Contents
Introduction

Chapter	01:	What	Ever	Are	We	Doing?

Introductions

A	Brief	Encounter

Chapter	02:	First	Class	Functions

A	Quick	Review

Why	Favor	First	Class?

Chapter	03:	Pure	Happiness	with	Pure	Functions

Oh	to	Be	Pure	Again

Side	Effects	May	Include...

8th	Grade	Math

The	Case	for	Purity

In	Summary

Chapter	04:	Currying

Can't	Live	If	Livin'	Is	without	You

More	Than	a	Pun	/	Special	Sauce

In	Summary

Exercises

Chapter	05:	Coding	by	Composing

Functional	Husbandry

Pointfree

Debugging

Category	Theory

In	Summary

Exercises

Chapter	06:	Example	Application

Declarative	Coding

A	Flickr	of	Functional	Programming

A	Principled	Refactor

In	Summary

1

1.8

1.8.1

1.8.2

1.8.3

1.8.4

1.8.5

1.8.6

1.9

1.9.1

1.9.2

1.9.3

1.9.4

1.9.5

1.9.6

1.9.7

1.9.8

1.9.9

1.9.10

1.9.11

1.10

1.10.1

1.10.2

1.10.3

1.10.4

1.10.5

1.10.6

1.10.7

1.11

1.11.1

1.11.2

1.11.3

1.11.4

1.11.5

1.11.6

Chapter	07:	Hindley-Milner	and	Me

What's	Your	Type?

Tales	from	the	Cryptic

Narrowing	the	Possibility

Free	as	in	Theorem

Constraints

In	Summary

Chapter	08:	Tupperware

The	Mighty	Container

My	First	Functor

Schrödinger's	Maybe

Use	Cases

Releasing	the	Value

Pure	Error	Handling

Old	McDonald	Had	Effects...

Asynchronous	Tasks

A	Spot	of	Theory

In	Summary

Exercises

Chapter	09:	Monadic	Onions

Pointy	Functor	Factory

Mixing	Metaphors

My	Chain	Hits	My	Chest

Power	Trip

Theory

In	Summary

Exercises

Chapter	10:	Applicative	Functors

Applying	Applicatives

Ships	in	Bottles

Coordination	Motivation

Bro,	Do	You	Even	Lift?

Operators

Free	Can	Openers

2

1.11.7

1.11.8

1.11.9

1.12

1.12.1

1.12.2

1.12.3

1.12.4

1.12.5

1.12.6

1.12.7

1.12.8

1.12.9

1.12.10

1.13

1.13.1

1.13.2

1.13.3

1.13.4

1.13.5

1.13.6

1.13.7

1.14

1.14.1

1.14.2

1.14.3

1.14.4

1.14.5

1.14.6

1.14.7

1.14.8

1.14.9

1.14.10

Laws

In	Summary

Exercises

Chapter	11:	Transform	Again,	Naturally

Curse	This	Nest

A	Situational	Comedy

All	Natural

Principled	Type	Conversions

Feature	Envy

Isomorphic	JavaScript

A	Broader	Definition

One	Nesting	Solution

In	Summary

Exercises

Chapter	12:	Traversing	the	Stone

Types	n'	Types

Type	Feng	Shui

Effect	Assortment

Waltz	of	the	Types

No	Law	and	Order

In	Summary

Exercises

Appendix	A:	Essential	Functions	Support

always

compose

curry

either

identity

inspect

left

liftA*

maybe

nothing

3

1.14.11

1.15

1.15.1

1.15.2

1.15.3

1.15.4

1.15.5

1.15.6

1.15.7

1.15.8

1.16

1.16.1

1.16.2

1.16.3

1.16.4

1.16.5

1.16.6

1.16.7

1.16.8

1.16.9

1.16.10

1.16.11

1.16.12

1.16.13

1.16.14

1.16.15

1.16.16

1.16.17

1.16.18

1.16.19

1.16.20

1.16.21

1.16.22

1.16.23

reject

Appendix	B:	Algebraic	Structures	Support

Compose

Either

Identity

IO

List

Map

Maybe

Task

Appendix	C:	Pointfree	Utilities

add

chain

concat

eq

filter

flip

forEach

head

intercalate

join

last

map

match

prop

reduce

replace

safeHead

safeLast

safeProp

sequence

sortBy

split

take

4

1.16.24

1.16.25

1.16.26

1.16.27

1.16.28

toLowerCase

toString

toUpperCase

traverse

unsafePerformIO

5

About	this	book
This	is	a	book	on	the	functional	paradigm	in	general.	We'll	use	the	world's	most	popular
functional	programming	language:	JavaScript.	Some	may	feel	this	is	a	poor	choice	as	it's
against	the	grain	of	the	current	culture	which,	at	the	moment,	feels	predominately
imperative.	However,	I	believe	it	is	the	best	way	to	learn	FP	for	several	reasons:

You	likely	use	it	every	day	at	work.

This	makes	it	possible	to	practice	and	apply	your	acquired	knowledge	each	day	on	real
world	programs	rather	than	pet	projects	on	nights	and	weekends	in	an	esoteric	FP
language.

Introduction

6

We	don't	have	to	learn	everything	up	front	to	start	writing	programs.

In	a	pure	functional	language,	you	cannot	log	a	variable	or	read	a	DOM	node	without
using	monads.	Here	we	can	cheat	a	little	as	we	learn	to	purify	our	codebase.	It's	also
easier	to	get	started	in	this	language	since	it's	mixed	paradigm	and	you	can	fall	back	on
your	current	practices	while	there	are	gaps	in	your	knowledge.

The	language	is	fully	capable	of	writing	top	notch	functional	code.

We	have	all	the	features	we	need	to	mimic	a	language	like	Scala	or	Haskell	with	the
help	of	a	tiny	library	or	two.	Object-oriented	programming	currently	dominates	the
industry,	but	it's	clearly	awkward	in	JavaScript.	It's	akin	to	camping	off	of	a	highway	or
tap	dancing	in	galoshes.	We	have	to		bind		all	over	the	place	lest		this		change	out
from	under	us,	we	don't	have	classes	(yet),	we	have	various	work	arounds	for	the	quirky
behavior	when	the		new		keyword	is	forgotten,	private	members	are	only	available	via
closures.	To	a	lot	of	us,	FP	feels	more	natural	anyways.

That	said,	typed	functional	languages	will,	without	a	doubt,	be	the	best	place	to	code	in	the
style	presented	by	this	book.	JavaScript	will	be	our	means	of	learning	a	paradigm,	where
you	apply	it	is	up	to	you.	Luckily,	the	interfaces	are	mathematical	and,	as	such,	ubiquitous.
You'll	find	yourself	at	home	with	Swiftz,	Scalaz,	Haskell,	PureScript,	and	other
mathematically	inclined	environments.

Read	it	Online
For	a	best	reading	experience,	read	it	online	via	Gitbook.

Quick-access	side-bar
In-browser	exercises
In-depth	examples

Download	it
Download	PDF
Download	EPUB
Download	Mobi	(Kindle)

Do	it	yourself

Introduction

7

https://mostly-adequate.gitbooks.io/mostly-adequate-guide/
https://www.gitbook.com/download/pdf/book/mostly-adequate/mostly-adequate-guide
https://www.gitbook.com/download/epub/book/mostly-adequate/mostly-adequate-guide
https://www.gitbook.com/download/mobi/book/mostly-adequate/mostly-adequate-guide

git	clone	https://github.com/MostlyAdequate/mostly-adequate-guide.git

cd	mostly-adequate-guide/

npm	install

npm	run	setup

gitbook	pdf

Table	of	Contents
See	SUMMARY.md

Contributing

See	CONTRIBUTING.md

Translations

See	TRANSLATIONS.md

FAQ

See	FAQ.md

Plans	for	the	future
Part	1	(chapters	1-7)	is	a	guide	to	the	basics.	I'm	updating	as	I	find	errors	since	this	is
the	initial	draft.	Feel	free	to	help!
Part	2	(chapters	8-10)	will	address	type	classes	like	functors	and	monads	all	the	way
through	to	traversable.	I	hope	to	squeeze	in	transformers	and	a	pure	application.
Part	3	(chapters	11+)	will	start	to	dance	the	fine	line	between	practical	programming
and	academic	absurdity.	We'll	look	at	comonads,	f-algebras,	free	monads,	yoneda,	and
other	categorical	constructs.

	
This	work	is	licensed	under	a	Creative	Commons	Attribution-ShareAlike	4.0	International

License.

Introduction

8

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Introduction

9

Chapter	01:	What	Ever	Are	We	Doing?

Introductions
Hi	there!	I'm	Professor	Franklin	Frisby.	Pleased	to	make	your	acquaintance.	We'll	be
spending	some	time	together,	as	I'm	supposed	to	teach	you	a	bit	about	functional
programming.	But	enough	about	me,	what	about	you?	I'm	hoping	that	you're	at	least	a	bit
familiar	with	the	JavaScript	language,	have	a	teensy	bit	of	Object-Oriented	experience,	and
fancy	yourself	a	working	class	programmer.	You	don't	need	to	have	a	PhD	in	Entomology,
you	just	need	to	know	how	to	find	and	kill	some	bugs.

I	won't	assume	that	you	have	any	previous	functional	programming	knowledge,	because	we
both	know	what	happens	when	you	assume.	I	will,	however,	expect	you	to	have	run	into
some	of	the	unfavorable	situations	that	arise	when	working	with	mutable	state,	unrestricted
side	effects,	and	unprincipled	design.	Now	that	we've	been	properly	introduced,	let's	get	on
with	it.

The	purpose	of	this	chapter	is	to	give	you	a	feel	for	what	we're	after	when	we	write	functional
programs.	In	order	to	be	able	to	understand	the	following	chapters,	we	must	have	some	idea
about	what	makes	a	program	functional.	Otherwise	we'll	find	ourselves	scribbling	aimlessly,
avoiding	objects	at	all	costs	-	a	clumsy	endeavor	indeed.	We	need	a	clear	bullseye	to	hurl
our	code	at,	some	celestial	compass	for	when	the	waters	get	rough.

Now,	there	are	some	general	programming	principles	-	various	acronymic	credos	that	guide
us	through	the	dark	tunnels	of	any	application:	DRY	(don't	repeat	yourself),	YAGNI	(ya	ain't
gonna	need	it),	loose	coupling	high	cohesion,	the	principle	of	least	surprise,	single
responsibility,	and	so	on.

I	won't	belabor	you	by	listing	each	and	every	guideline	I've	heard	throughout	the	years...	The
point	of	the	matter	is	that	they	hold	up	in	a	functional	setting,	although	they're	merely
tangential	to	our	ultimate	goal.	What	I'd	like	you	to	get	a	feel	for	now,	before	we	get	any
further,	is	our	intention	when	we	poke	and	prod	at	the	keyboard;	our	functional	Xanadu.

A	Brief	Encounter
Let's	start	with	a	touch	of	insanity.	Here	is	a	seagull	application.	When	flocks	conjoin	they
become	a	larger	flock,	and	when	they	breed,	they	increase	by	the	number	of	seagulls	with
whom	they're	breeding.	Now,	this	is	not	intended	to	be	good	Object-Oriented	code,	mind
you,	it	is	here	to	highlight	the	perils	of	our	modern,	assignment	based	approach.	Behold:

Chapter	01:	What	Ever	Are	We	Doing?

10

class	Flock	{

		constructor(n)	{

				this.seagulls	=	n;

		}

		conjoin(other)	{

				this.seagulls	+=	other.seagulls;

				return	this;

		}

		breed(other)	{

				this.seagulls	=	this.seagulls	*	other.seagulls;

				return	this;

		}

}

const	flockA	=	new	Flock(4);

const	flockB	=	new	Flock(2);

const	flockC	=	new	Flock(0);

const	result	=	flockA

		.conjoin(flockC)

		.breed(flockB)

		.conjoin(flockA.breed(flockB))

		.seagulls;

//	32

Who	on	earth	would	craft	such	a	ghastly	abomination?	It	is	unreasonably	difficult	to	keep
track	of	the	mutating	internal	state.	And,	good	heavens,	the	answer	is	even	incorrect!	It
should	have	been		16	,	but		flockA		wound	up	permanently	altered	in	the	process.	Poor
	flockA	.	This	is	anarchy	in	the	I.T.!	This	is	wild	animal	arithmetic!

If	you	don't	understand	this	program,	it's	okay,	neither	do	I.	The	point	to	remember	here	is
that	state	and	mutable	values	are	hard	to	follow,	even	in	such	a	small	example.

Let's	try	again,	this	time	using	a	more	functional	approach:

const	conjoin	=	(flockX,	flockY)	=>	flockX	+	flockY;

const	breed	=	(flockX,	flockY)	=>	flockX	*	flockY;

const	flockA	=	4;

const	flockB	=	2;

const	flockC	=	0;

const	result	=

				conjoin(breed(flockB,	conjoin(flockA,	flockC)),	breed(flockA,	flockB));

//	16

Chapter	01:	What	Ever	Are	We	Doing?

11

Well,	this	time	we	got	the	right	answer.	With	much	less	code.	The	function	nesting	is	a	tad
confusing...	(we'll	remedy	this	situation	in	ch5).	It's	better,	but	let's	dig	a	little	bit	deeper.
There	are	benefits	to	calling	a	spade	a	spade.	Had	we	scrutinized	our	custom	functions
more	closely,	we	would	have	discovered	that	we're	just	working	with	simple	addition
(conjoin)	and	multiplication	(breed).

There's	really	nothing	special	at	all	about	these	two	functions	other	than	their	names.	Let's
rename	our	custom	functions	to		multiply		and		add		in	order	to	reveal	their	true	identities.

const	add	=	(x,	y)	=>	x	+	y;

const	multiply	=	(x,	y)	=>	x	*	y;

const	flockA	=	4;

const	flockB	=	2;

const	flockC	=	0;

const	result	=

				add(multiply(flockB,	add(flockA,	flockC)),	multiply(flockA,	flockB));

//	16

And	with	that,	we	gain	the	knowledge	of	the	ancients:

//	associative

add(add(x,	y),	z)	===	add(x,	add(y,	z));

//	commutative

add(x,	y)	===	add(y,	x);

//	identity

add(x,	0)	===	x;

//	distributive

multiply(x,	add(y,z))	===	add(multiply(x,	y),	multiply(x,	z));

Ah	yes,	those	old	faithful	mathematical	properties	should	come	in	handy.	Don't	worry	if	you
didn't	know	them	right	off	the	top	of	your	head.	For	a	lot	of	us,	it's	been	a	while	since	we
learned	about	these	laws	of	arithmetic.	Let's	see	if	we	can	use	these	properties	to	simplify
our	little	seagull	program.

Chapter	01:	What	Ever	Are	We	Doing?

12

//	Original	line

add(multiply(flockB,	add(flockA,	flockC)),	multiply(flockA,	flockB));

//	Apply	the	identity	property	to	remove	the	extra	add

//	(add(flockA,	flockC)	==	flockA)

add(multiply(flockB,	flockA),	multiply(flockA,	flockB));

//	Apply	distributive	property	to	achieve	our	result

multiply(flockB,	add(flockA,	flockA));

Brilliant!	We	didn't	have	to	write	a	lick	of	custom	code	other	than	our	calling	function.	We
include		add		and		multiply		definitions	here	for	completeness,	but	there	is	really	no	need	to
write	them	-	we	surely	have	an		add		and		multiply		provided	by	some	existing	library.

You	may	be	thinking	"how	very	strawman	of	you	to	put	such	a	mathy	example	up	front".	Or
"real	programs	are	not	this	simple	and	cannot	be	reasoned	about	in	such	a	way."	I've	chosen
this	example	because	most	of	us	already	know	about	addition	and	multiplication,	so	it's	easy
to	see	how	math	is	very	useful	for	us	here.

Don't	despair	-	throughout	this	book,	we'll	sprinkle	in	some	category	theory,	set	theory,	and
lambda	calculus	and	write	real	world	examples	that	achieve	the	same	elegant	simplicity	and
results	as	our	flock	of	seagulls	example.	You	needn't	be	a	mathematician	either.	It	will	feel
natural	and	easy,	just	like	you	were	using	a	"normal"	framework	or	API.

It	may	come	as	a	surprise	to	hear	that	we	can	write	full,	everyday	applications	along	the
lines	of	the	functional	analog	above.	Programs	that	have	sound	properties.	Programs	that
are	terse,	yet	easy	to	reason	about.	Programs	that	don't	reinvent	the	wheel	at	every	turn.
Lawlessness	is	good	if	you're	a	criminal,	but	in	this	book,	we'll	want	to	acknowledge	and
obey	the	laws	of	math.

We'll	want	to	use	a	theory	where	every	piece	tends	to	fit	together	so	politely.	We'll	want	to
represent	our	specific	problem	in	terms	of	generic,	composable	bits	and	then	exploit	their
properties	for	our	own	selfish	benefit.	It	will	take	a	bit	more	discipline	than	the	"anything
goes"	approach	of	imperative	programming	(we'll	go	over	the	precise	definition	of
"imperative"	later	in	the	book,	but	for	now	consider	it	anything	other	than	functional
programming).	The	payoff	of	working	within	a	principled,	mathematical	framework	will	truly
astound	you.

We've	seen	a	flicker	of	our	functional	northern	star,	but	there	are	a	few	concrete	concepts	to
grasp	before	we	can	really	begin	our	journey.

Chapter	02:	First	Class	Functions

Chapter	01:	What	Ever	Are	We	Doing?

13

Chapter	01:	What	Ever	Are	We	Doing?

14

Chapter	02:	First	Class	Functions

A	Quick	Review
When	we	say	functions	are	"first	class",	we	mean	they	are	just	like	everyone	else...	so	in
other	words	a	normal	class.	We	can	treat	functions	like	any	other	data	type	and	there	is
nothing	particularly	special	about	them	-	they	may	be	stored	in	arrays,	passed	around	as
function	parameters,	assigned	to	variables,	and	what	have	you.

That	is	JavaScript	101,	but	worth	mentioning	since	a	quick	code	search	on	github	will	reveal
the	collective	evasion,	or	perhaps	widespread	ignorance	of	this	concept.	Shall	we	go	for	a
feigned	example?	We	shall.

const	hi	=	name	=>	`Hi	${name}`;

const	greeting	=	name	=>	hi(name);

Here,	the	function	wrapper	around		hi		in		greeting		is	completely	redundant.	Why?
Because	functions	are	callable	in	JavaScript.	When		hi		has	the		()		at	the	end	it	will	run
and	return	a	value.	When	it	does	not,	it	simply	returns	the	function	stored	in	the	variable.
Just	to	be	sure,	have	a	look	yourself:

hi;	//	name	=>	`Hi	${name}`

hi("jonas");	//	"Hi	jonas"

Since		greeting		is	merely	in	turn	calling		hi		with	the	very	same	argument,	we	could	simply
write:

const	greeting	=	hi;

greeting("times");	//	"Hi	times"

In	other	words,		hi		is	already	a	function	that	expects	one	argument,	why	place	another
function	around	it	that	simply	calls		hi		with	the	same	bloody	argument?	It	doesn't	make	any
damn	sense.	It's	like	donning	your	heaviest	parka	in	the	dead	of	July	just	to	blast	the	air	and
demand	an	ice	lolly.

It	is	obnoxiously	verbose	and,	as	it	happens,	bad	practice	to	surround	a	function	with
another	function	merely	to	delay	evaluation	(we'll	see	why	in	a	moment,	but	it	has	to	do	with
maintenance)

Chapter	02:	First	Class	Functions

15

A	solid	understanding	of	this	is	critical	before	moving	on,	so	let's	examine	a	few	more	fun
examples	excavated	from	the	library	of	npm	packages.

//	ignorant

const	getServerStuff	=	callback	=>	ajaxCall(json	=>	callback(json));

//	enlightened

const	getServerStuff	=	ajaxCall;

The	world	is	littered	with	ajax	code	exactly	like	this.	Here	is	the	reason	both	are	equivalent:

//	this	line

ajaxCall(json	=>	callback(json));

//	is	the	same	as	this	line

ajaxCall(callback);

//	so	refactor	getServerStuff

const	getServerStuff	=	callback	=>	ajaxCall(callback);

//	...which	is	equivalent	to	this

const	getServerStuff	=	ajaxCall;	//	<--	look	mum,	no	()'s

And	that,	folks,	is	how	it	is	done.	Once	more	so	that	we	understand	why	I'm	being	so
persistent.

const	BlogController	=	{

		index(posts)	{	return	Views.index(posts);	},

		show(post)	{	return	Views.show(post);	},

		create(attrs)	{	return	Db.create(attrs);	},

		update(post,	attrs)	{	return	Db.update(post,	attrs);	},

		destroy(post)	{	return	Db.destroy(post);	},

};

This	ridiculous	controller	is	99%	fluff.	We	could	either	rewrite	it	as:

const	BlogController	=	{

		index:	Views.index,

		show:	Views.show,

		create:	Db.create,

		update:	Db.update,

		destroy:	Db.destroy,

};

...	or	scrap	it	altogether	since	it	does	nothing	more	than	just	bundle	our	Views	and	Db
together.

Chapter	02:	First	Class	Functions

16

Why	Favor	First	Class?
Okay,	let's	get	down	to	the	reasons	to	favor	first	class	functions.	As	we	saw	in	the
	getServerStuff		and		BlogController		examples,	it's	easy	to	add	layers	of	indirection	that
provide	no	added	value	and	only	increase	the	amount	of	redundant	code	to	maintain	and
search	through.

In	addition,	if	such	a	needlessly	wrapped	function	must	be	changed,	we	must	also	need	to
change	our	wrapper	function	as	well.

httpGet('/post/2',	json	=>	renderPost(json));

If		httpGet		were	to	change	to	send	a	possible		err	,	we	would	need	to	go	back	and	change
the	"glue".

//	go	back	to	every	httpGet	call	in	the	application	and	explicitly	pass	err	along.

httpGet('/post/2',	(json,	err)	=>	renderPost(json,	err));

Had	we	written	it	as	a	first	class	function,	much	less	would	need	to	change:

//	renderPost	is	called	from	within	httpGet	with	however	many	arguments	it	wants

httpGet('/post/2',	renderPost);

Besides	the	removal	of	unnecessary	functions,	we	must	name	and	reference	arguments.
Names	are	a	bit	of	an	issue,	you	see.	We	have	potential	misnomers	-	especially	as	the
codebase	ages	and	requirements	change.

Having	multiple	names	for	the	same	concept	is	a	common	source	of	confusion	in	projects.
There	is	also	the	issue	of	generic	code.	For	instance,	these	two	functions	do	exactly	the
same	thing,	but	one	feels	infinitely	more	general	and	reusable:

//	specific	to	our	current	blog

const	validArticles	=	articles	=>

		articles.filter(article	=>	article	!==	null	&&	article	!==	undefined),

//	vastly	more	relevant	for	future	projects

const	compact	=	xs	=>	xs.filter(x	=>	x	!==	null	&&	x	!==	undefined);

By	using	specific	naming,	we've	seemingly	tied	ourselves	to	specific	data	(in	this	case
	articles).	This	happens	quite	a	bit	and	is	a	source	of	much	reinvention.

Chapter	02:	First	Class	Functions

17

I	must	mention	that,	just	like	with	Object-Oriented	code,	you	must	be	aware	of		this		coming
to	bite	you	in	the	jugular.	If	an	underlying	function	uses		this		and	we	call	it	first	class,	we
are	subject	to	this	leaky	abstraction's	wrath.

const	fs	=	require('fs');

//	scary

fs.readFile('freaky_friday.txt',	Db.save);

//	less	so

fs.readFile('freaky_friday.txt',	Db.save.bind(Db));

Having	been	bound	to	itself,	the		Db		is	free	to	access	its	prototypical	garbage	code.	I	avoid
using		this		like	a	dirty	nappy.	There's	really	no	need	when	writing	functional	code.
However,	when	interfacing	with	other	libraries,	you	might	have	to	acquiesce	to	the	mad
world	around	us.

Some	will	argue	that		this		is	necessary	for	optimizing	speed.	If	you	are	the	micro-
optimization	sort,	please	close	this	book.	If	you	cannot	get	your	money	back,	perhaps	you
can	exchange	it	for	something	more	fiddly.

And	with	that,	we're	ready	to	move	on.

Chapter	03:	Pure	Happiness	with	Pure	Functions

Chapter	02:	First	Class	Functions

18

Chapter	03:	Pure	Happiness	with	Pure
Functions

Oh	to	Be	Pure	Again
One	thing	we	need	to	get	straight	is	the	idea	of	a	pure	function.

A	pure	function	is	a	function	that,	given	the	same	input,	will	always	return	the	same
output	and	does	not	have	any	observable	side	effect.

Take		slice		and		splice	.	They	are	two	functions	that	do	the	exact	same	thing	-	in	a	vastly
different	way,	mind	you,	but	the	same	thing	nonetheless.	We	say		slice		is	pure	because	it
returns	the	same	output	per	input	every	time,	guaranteed.		splice	,	however,	will	chew	up	its
array	and	spit	it	back	out	forever	changed	which	is	an	observable	effect.

const	xs	=	[1,2,3,4,5];

//	pure

xs.slice(0,3);	//	[1,2,3]

xs.slice(0,3);	//	[1,2,3]

xs.slice(0,3);	//	[1,2,3]

//	impure

xs.splice(0,3);	//	[1,2,3]

xs.splice(0,3);	//	[4,5]

xs.splice(0,3);	//	[]

In	functional	programming,	we	dislike	unwieldy	functions	like		splice		that	mutate	data.	This
will	never	do	as	we're	striving	for	reliable	functions	that	return	the	same	result	every	time,
not	functions	that	leave	a	mess	in	their	wake	like		splice	.

Let's	look	at	another	example.

Chapter	03:	Pure	Happiness	with	Pure	Functions

19

//	impure

const	minimum	=	21;

const	checkAge	=	age	=>	age	>=	minimum;

//	pure

const	checkAge	=	(age)	=>	{

		const	minimum	=	21;

		return	age	>=	minimum;

};

In	the	impure	portion,		checkAge		depends	on	the	mutable	variable		minimum		to	determine	the
result.	In	other	words,	it	depends	on	system	state	which	is	disappointing	because	it
increases	the	cognitive	load	by	introducing	an	external	environment.

It	might	not	seem	like	a	lot	in	this	example,	but	this	reliance	upon	state	is	one	of	the	largest
contributors	to	system	complexity
(http://www.curtclifton.net/storage/papers/MoseleyMarks06a.pdf).	This		checkAge		may	return
different	results	depending	on	factors	external	to	input,	which	not	only	disqualifies	it	from
being	pure,	but	also	puts	our	minds	through	the	ringer	each	time	we're	reasoning	about	the
software.

Its	pure	form,	on	the	other	hand,	is	completely	self	sufficient.	We	can	also	make		minimum	
immutable,	which	preserves	the	purity	as	the	state	will	never	change.	To	do	this,	we	must
create	an	object	to	freeze.

const	immutableState	=	Object.freeze({	minimum:	21	});

Side	Effects	May	Include...
Let's	look	more	at	these	"side	effects"	to	improve	our	intuition.	So	what	is	this	undoubtedly
nefarious	side	effect	mentioned	in	the	definition	of	pure	function?	We'll	be	referring	to	effect
as	anything	that	occurs	in	our	computation	other	than	the	calculation	of	a	result.

There's	nothing	intrinsically	bad	about	effects	and	we'll	be	using	them	all	over	the	place	in
the	chapters	to	come.	It's	that	side	part	that	bears	the	negative	connotation.	Water	alone	is
not	an	inherent	larvae	incubator,	it's	the	stagnant	part	that	yields	the	swarms,	and	I	assure
you,	side	effects	are	a	similar	breeding	ground	in	your	own	programs.

A	side	effect	is	a	change	of	system	state	or	observable	interaction	with	the	outside
world	that	occurs	during	the	calculation	of	a	result.

Side	effects	may	include,	but	are	not	limited	to

Chapter	03:	Pure	Happiness	with	Pure	Functions

20

http://en.wikipedia.org/wiki/Cognitive_load
http://www.curtclifton.net/storage/papers/MoseleyMarks06a.pdf

changing	the	file	system
inserting	a	record	into	a	database
making	an	http	call
mutations
printing	to	the	screen	/	logging
obtaining	user	input
querying	the	DOM
accessing	system	state

And	the	list	goes	on	and	on.	Any	interaction	with	the	world	outside	of	a	function	is	a	side
effect,	which	is	a	fact	that	may	prompt	you	to	suspect	the	practicality	of	programming	without
them.	The	philosophy	of	functional	programming	postulates	that	side	effects	are	a	primary
cause	of	incorrect	behavior.

It	is	not	that	we're	forbidden	to	use	them,	rather	we	want	to	contain	them	and	run	them	in	a
controlled	way.	We'll	learn	how	to	do	this	when	we	get	to	functors	and	monads	in	later
chapters,	but	for	now,	let's	try	to	keep	these	insidious	functions	separate	from	our	pure	ones.

Side	effects	disqualify	a	function	from	being	pure.	And	it	makes	sense:	pure	functions,	by
definition,	must	always	return	the	same	output	given	the	same	input,	which	is	not	possible	to
guarantee	when	dealing	with	matters	outside	our	local	function.

Let's	take	a	closer	look	at	why	we	insist	on	the	same	output	per	input.	Pop	your	collars,
we're	going	to	look	at	some	8th	grade	math.

8th	Grade	Math
From	mathisfun.com:

A	function	is	a	special	relationship	between	values:	Each	of	its	input	values	gives	back
exactly	one	output	value.

In	other	words,	it's	just	a	relation	between	two	values:	the	input	and	the	output.	Though	each
input	has	exactly	one	output,	that	output	doesn't	necessarily	have	to	be	unique	per	input.
Below	shows	a	diagram	of	a	perfectly	valid	function	from		x		to		y	;

(http://www.mathsisfun.com/sets/function.html)

Chapter	03:	Pure	Happiness	with	Pure	Functions

21

http://www.mathsisfun.com/sets/function.html

To	contrast,	the	following	diagram	shows	a	relation	that	is	not	a	function	since	the	input
value		5		points	to	several	outputs:

(http://www.mathsisfun.com/sets/function.html)

Functions	can	be	described	as	a	set	of	pairs	with	the	position	(input,	output):		[(1,2),	(3,6),
(5,10)]		(It	appears	this	function	doubles	its	input).

Or	perhaps	a	table:

Input Output

1 2

2 4

3 6

Or	even	as	a	graph	with		x		as	the	input	and		y		as	the	output:

There's	no	need	for	implementation	details	if	the	input	dictates	the	output.	Since	functions
are	simply	mappings	of	input	to	output,	one	could	simply	jot	down	object	literals	and	run
them	with		[]		instead	of		()	.

Chapter	03:	Pure	Happiness	with	Pure	Functions

22

http://www.mathsisfun.com/sets/function.html

const	toLowerCase	=	{

		A:	'a',

		B:	'b',

		C:	'c',

		D:	'd',

		E:	'e',

		F:	'f',

};

toLowerCase['C'];	//	'c'

const	isPrime	=	{

		1:	false,

		2:	true,

		3:	true,

		4:	false,

		5:	true,

		6:	false,

};

isPrime[3];	//	true

Of	course,	you	might	want	to	calculate	instead	of	hand	writing	things	out,	but	this	illustrates	a
different	way	to	think	about	functions.	(You	may	be	thinking	"what	about	functions	with
multiple	arguments?".	Indeed,	that	presents	a	bit	of	an	inconvenience	when	thinking	in	terms
of	mathematics.	For	now,	we	can	bundle	them	up	in	an	array	or	just	think	of	the		arguments	
object	as	the	input.	When	we	learn	about	currying,	we'll	see	how	we	can	directly	model	the
mathematical	definition	of	a	function.)

Here	comes	the	dramatic	reveal:	Pure	functions	are	mathematical	functions	and	they're	what
functional	programming	is	all	about.	Programming	with	these	little	angels	can	provide	huge
benefits.	Let's	look	at	some	reasons	why	we're	willing	to	go	to	great	lengths	to	preserve
purity.

The	Case	for	Purity

Cacheable

For	starters,	pure	functions	can	always	be	cached	by	input.	This	is	typically	done	using	a
technique	called	memoization:

Chapter	03:	Pure	Happiness	with	Pure	Functions

23

const	squareNumber	=	memoize(x	=>	x	*	x);

squareNumber(4);	//	16

squareNumber(4);	//	16,	returns	cache	for	input	4

squareNumber(5);	//	25

squareNumber(5);	//	25,	returns	cache	for	input	5

Here	is	a	simplified	implementation,	though	there	are	plenty	of	more	robust	versions
available.

const	memoize	=	(f)	=>	{

		const	cache	=	{};

		return	(...args)	=>	{

				const	argStr	=	JSON.stringify(args);

				cache[argStr]	=	cache[argStr]	||	f(...args);

				return	cache[argStr];

		};

};

Something	to	note	is	that	you	can	transform	some	impure	functions	into	pure	ones	by
delaying	evaluation:

const	pureHttpCall	=	memoize((url,	params)	=>	()	=>	$.getJSON(url,	params));

The	interesting	thing	here	is	that	we	don't	actually	make	the	http	call	-	we	instead	return	a
function	that	will	do	so	when	called.	This	function	is	pure	because	it	will	always	return	the
same	output	given	the	same	input:	the	function	that	will	make	the	particular	http	call	given
the		url		and		params	.

Our		memoize		function	works	just	fine,	though	it	doesn't	cache	the	results	of	the	http	call,
rather	it	caches	the	generated	function.

This	is	not	very	useful	yet,	but	we'll	soon	learn	some	tricks	that	will	make	it	so.	The	takeaway
is	that	we	can	cache	every	function	no	matter	how	destructive	they	seem.

Portable	/	Self-documenting

Pure	functions	are	completely	self	contained.	Everything	the	function	needs	is	handed	to	it
on	a	silver	platter.	Ponder	this	for	a	moment...	How	might	this	be	beneficial?	For	starters,	a
function's	dependencies	are	explicit	and	therefore	easier	to	see	and	understand	-	no	funny

Chapter	03:	Pure	Happiness	with	Pure	Functions

24

business	going	on	under	the	hood.

//	impure

const	signUp	=	(attrs)	=>	{

		const	user	=	saveUser(attrs);

		welcomeUser(user);

};

//	pure

const	signUp	=	(Db,	Email,	attrs)	=>	()	=>	{

		const	user	=	saveUser(Db,	attrs);

		welcomeUser(Email,	user);

};

The	example	here	demonstrates	that	the	pure	function	must	be	honest	about	its
dependencies	and,	as	such,	tell	us	exactly	what	it's	up	to.	Just	from	its	signature,	we	know
that	it	will	use	a		Db	,		Email	,	and		attrs		which	should	be	telling	to	say	the	least.

We'll	learn	how	to	make	functions	like	this	pure	without	merely	deferring	evaluation,	but	the
point	should	be	clear	that	the	pure	form	is	much	more	informative	than	its	sneaky	impure
counterpart	which	is	up	to	who	knows	what.

Something	else	to	notice	is	that	we're	forced	to	"inject"	dependencies,	or	pass	them	in	as
arguments,	which	makes	our	app	much	more	flexible	because	we've	parameterized	our
database	or	mail	client	or	what	have	you	(don't	worry,	we'll	see	a	way	to	make	this	less
tedious	than	it	sounds).	Should	we	choose	to	use	a	different	Db	we	need	only	to	call	our
function	with	it.	Should	we	find	ourselves	writing	a	new	application	in	which	we'd	like	to
reuse	this	reliable	function,	we	simply	give	this	function	whatever		Db		and		Email		we	have
at	the	time.

In	a	JavaScript	setting,	portability	could	mean	serializing	and	sending	functions	over	a
socket.	It	could	mean	running	all	our	app	code	in	web	workers.	Portability	is	a	powerful	trait.

Contrary	to	"typical"	methods	and	procedures	in	imperative	programming	rooted	deep	in
their	environment	via	state,	dependencies,	and	available	effects,	pure	functions	can	be	run
anywhere	our	hearts	desire.

When	was	the	last	time	you	copied	a	method	into	a	new	app?	One	of	my	favorite	quotes
comes	from	Erlang	creator,	Joe	Armstrong:	"The	problem	with	object-oriented	languages	is
they’ve	got	all	this	implicit	environment	that	they	carry	around	with	them.	You	wanted	a
banana	but	what	you	got	was	a	gorilla	holding	the	banana...	and	the	entire	jungle".

Testable

Chapter	03:	Pure	Happiness	with	Pure	Functions

25

Next,	we	come	to	realize	pure	functions	make	testing	much	easier.	We	don't	have	to	mock	a
"real"	payment	gateway	or	setup	and	assert	the	state	of	the	world	after	each	test.	We	simply
give	the	function	input	and	assert	output.

In	fact,	we	find	the	functional	community	pioneering	new	test	tools	that	can	blast	our
functions	with	generated	input	and	assert	that	properties	hold	on	the	output.	It's	beyond	the
scope	of	this	book,	but	I	strongly	encourage	you	to	search	for	and	try	Quickcheck	-	a	testing
tool	that	is	tailored	for	a	purely	functional	environment.

Reasonable

Many	believe	the	biggest	win	when	working	with	pure	functions	is	referential	transparency.	A
spot	of	code	is	referentially	transparent	when	it	can	be	substituted	for	its	evaluated	value
without	changing	the	behavior	of	the	program.

Since	pure	functions	always	return	the	same	output	given	the	same	input,	we	can	rely	on
them	to	always	return	the	same	results	and	thus	preserve	referential	transparency.	Let's	see
an	example.

const	{	Map	}	=	require('immutable');

//	Aliases:	p	=	player,	a	=	attacker,	t	=	target

const	jobe	=	Map({	name:	'Jobe',	hp:	20,	team:	'red'	});

const	michael	=	Map({	name:	'Michael',	hp:	20,	team:	'green'	});

const	decrementHP	=	p	=>	p.set('hp',	p.get('hp')	-	1);

const	isSameTeam	=	(p1,	p2)	=>	p1.get('team')	===	p2.get('team');

const	punch	=	(a,	t)	=>	(isSameTeam(a,	t)	?	t	:	decrementHP(t));

punch(jobe,	michael);	//	Map({name:'Michael',	hp:19,	team:	'green'})

	decrementHP	,		isSameTeam		and		punch		are	all	pure	and	therefore	referentially	transparent.
We	can	use	a	technique	called	equational	reasoning	wherein	one	substitutes	"equals	for
equals"	to	reason	about	code.	It's	a	bit	like	manually	evaluating	the	code	without	taking	into
account	the	quirks	of	programmatic	evaluation.	Using	referential	transparency,	let's	play	with
this	code	a	bit.

First	we'll	inline	the	function		isSameTeam	.

const	punch	=	(a,	t)	=>	(a.get('team')	===	t.get('team')	?	t	:	decrementHP(t));

Since	our	data	is	immutable,	we	can	simply	replace	the	teams	with	their	actual	value

const	punch	=	(a,	t)	=>	('red'	===	'green'	?	t	:	decrementHP(t));

Chapter	03:	Pure	Happiness	with	Pure	Functions

26

We	see	that	it	is	false	in	this	case	so	we	can	remove	the	entire	if	branch

const	punch	=	(a,	t)	=>	decrementHP(t);

And	if	we	inline		decrementHP	,	we	see	that,	in	this	case,	punch	becomes	a	call	to	decrement
the		hp		by	1.

const	punch	=	(a,	t)	=>	t.set('hp',	t.get('hp')	-	1);

This	ability	to	reason	about	code	is	terrific	for	refactoring	and	understanding	code	in	general.
In	fact,	we	used	this	technique	to	refactor	our	flock	of	seagulls	program.	We	used	equational
reasoning	to	harness	the	properties	of	addition	and	multiplication.	Indeed,	we'll	be	using
these	techniques	throughout	the	book.

Parallel	Code

Finally,	and	here's	the	coup	de	grâce,	we	can	run	any	pure	function	in	parallel	since	it	does
not	need	access	to	shared	memory	and	it	cannot,	by	definition,	have	a	race	condition	due	to
some	side	effect.

This	is	very	much	possible	in	a	server	side	js	environment	with	threads	as	well	as	in	the
browser	with	web	workers	though	current	culture	seems	to	avoid	it	due	to	complexity	when
dealing	with	impure	functions.

In	Summary
We've	seen	what	pure	functions	are	and	why	we,	as	functional	programmers,	believe	they
are	the	cat's	evening	wear.	From	this	point	on,	we'll	strive	to	write	all	our	functions	in	a	pure
way.	We'll	require	some	extra	tools	to	help	us	do	so,	but	in	the	meantime,	we'll	try	to
separate	the	impure	functions	from	the	rest	of	the	pure	code.

Writing	programs	with	pure	functions	is	a	tad	laborious	without	some	extra	tools	in	our	belt.
We	have	to	juggle	data	by	passing	arguments	all	over	the	place,	we're	forbidden	to	use
state,	not	to	mention	effects.	How	does	one	go	about	writing	these	masochistic	programs?
Let's	acquire	a	new	tool	called	curry.

Chapter	04:	Currying

Chapter	03:	Pure	Happiness	with	Pure	Functions

27

Chapter	04:	Currying

Can't	Live	If	Livin'	Is	without	You
My	Dad	once	explained	how	there	are	certain	things	one	can	live	without	until	one	acquires
them.	A	microwave	is	one	such	thing.	Smart	phones,	another.	The	older	folks	among	us	will
remember	a	fulfilling	life	sans	internet.	For	me,	currying	is	on	this	list.

The	concept	is	simple:	You	can	call	a	function	with	fewer	arguments	than	it	expects.	It
returns	a	function	that	takes	the	remaining	arguments.

You	can	choose	to	call	it	all	at	once	or	simply	feed	in	each	argument	piecemeal.

const	add	=	x	=>	y	=>	x	+	y;

const	increment	=	add(1);

const	addTen	=	add(10);

increment(2);	//	3

addTen(2);	//	12

Here	we've	made	a	function		add		that	takes	one	argument	and	returns	a	function.	By	calling
it,	the	returned	function	remembers	the	first	argument	from	then	on	via	the	closure.	Calling	it
with	both	arguments	all	at	once	is	a	bit	of	a	pain,	however,	so	we	can	use	a	special	helper
function	called		curry		to	make	defining	and	calling	functions	like	this	easier.

Let's	set	up	a	few	curried	functions	for	our	enjoyment.	From	now	on,	we'll	summon	our
	curry		function	defined	in	the	Appendix	A	-	Essential	Function	Support.

const	match	=	curry((what,	s)	=>	s.match(what));

const	replace	=	curry((what,	replacement,	s)	=>	s.replace(what,	replacement));

const	filter	=	curry((f,	xs)	=>	xs.filter(f));

const	map	=	curry((f,	xs)	=>	xs.map(f));

The	pattern	I've	followed	is	a	simple,	but	important	one.	I've	strategically	positioned	the	data
we're	operating	on	(String,	Array)	as	the	last	argument.	It	will	become	clear	as	to	why	upon
use.

(The	syntax		/r/g		is	a	regular	expression	that	means	match	every	letter	'r'.	Read	more
about	regular	expressions	if	you	like.)

Chapter	04:	Currying

28

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

match(/r/g,	'hello	world');	//	['r']

const	hasLetterR	=	match(/r/g);	//	x	=>	x.match(/r/g)

hasLetterR('hello	world');	//	['r']

hasLetterR('just	j	and	s	and	t	etc');	//	null

filter(hasLetterR,	['rock	and	roll',	'smooth	jazz']);	//	['rock	and	roll']

const	removeStringsWithoutRs	=	filter(hasLetterR);	//	xs	=>	xs.filter(x	=>	x.match(/r/

g))

removeStringsWithoutRs(['rock	and	roll',	'smooth	jazz',	'drum	circle']);	//	['rock	and

	roll',	'drum	circle']

const	noVowels	=	replace(/[aeiou]/ig);	//	(r,x)	=>	x.replace(/[aeiou]/ig,	r)

const	censored	=	noVowels('*');	//	x	=>	x.replace(/[aeiou]/ig,	'*')

censored('Chocolate	Rain');	//	'Ch*c*l*t*	R**n'

What's	demonstrated	here	is	the	ability	to	"pre-load"	a	function	with	an	argument	or	two	in
order	to	receive	a	new	function	that	remembers	those	arguments.

I	encourage	you	to	clone	the	Mostly	Adequate	repository	(git	clone
https://github.com/MostlyAdequate/mostly-adequate-guide.git),	copy	the	code	above	and
have	a	go	at	it	in	the	REPL.	The	curry	function	(and	actually	anything	defined	in	the
appendixes)	has	been	made	available	from	the		exercises/support.js		module.

More	Than	a	Pun	/	Special	Sauce
Currying	is	useful	for	many	things.	We	can	make	new	functions	just	by	giving	our	base
functions	some	arguments	as	seen	in		hasLetterR	,		removeStringsWithoutRs	,	and		censored	.

We	also	have	the	ability	to	transform	any	function	that	works	on	single	elements	into	a
function	that	works	on	arrays	simply	by	wrapping	it	with		map	:

const	getChildren	=	x	=>	x.childNodes;

const	allTheChildren	=	map(getChildren);

Giving	a	function	fewer	arguments	than	it	expects	is	typically	called	partial	application.
Partially	applying	a	function	can	remove	a	lot	of	boiler	plate	code.	Consider	what	the	above
	allTheChildren		function	would	be	with	the	uncurried		map		from	lodash	(note	the	arguments
are	in	a	different	order):

const	allTheChildren	=	elements	=>	map(elements,	getChildren);

Chapter	04:	Currying

29

We	typically	don't	define	functions	that	work	on	arrays,	because	we	can	just	call
	map(getChildren)		inline.	Same	with		sort	,		filter	,	and	other	higher	order	functions	(a
higher	order	function	is	a	function	that	takes	or	returns	a	function).

When	we	spoke	about	pure	functions,	we	said	they	take	1	input	to	1	output.	Currying	does
exactly	this:	each	single	argument	returns	a	new	function	expecting	the	remaining
arguments.	That,	old	sport,	is	1	input	to	1	output.

No	matter	if	the	output	is	another	function	-	it	qualifies	as	pure.	We	do	allow	more	than	one
argument	at	a	time,	but	this	is	seen	as	merely	removing	the	extra		()	's	for	convenience.

In	Summary
Currying	is	handy	and	I	very	much	enjoy	working	with	curried	functions	on	a	daily	basis.	It	is
a	tool	for	the	belt	that	makes	functional	programming	less	verbose	and	tedious.

We	can	make	new,	useful	functions	on	the	fly	simply	by	passing	in	a	few	arguments	and	as
a	bonus,	we've	retained	the	mathematical	function	definition	despite	multiple	arguments.

Let's	acquire	another	essential	tool	called		compose	.

Chapter	05:	Coding	by	Composing

Exercises

Note	about	Exercises

Throughout	the	book,	you	might	encounter	an	'Exercises'	section	like	this	one.	Exercises
can	be	done	directly	in-browser	provided	you're	reading	from	gitbook	(recommended).

Note	that,	for	all	exercises	of	the	book,	you	always	have	a	handful	of	helper	functions
available	in	the	global	scope.	Hence,	anything	that	is	defined	in	Appendix	A,	Appendix	B	and
Appendix	C	is	available	for	you!	And,	as	if	it	wasn't	enough,	some	exercises	will	also	define
functions	specific	to	the	problem	they	present;	as	a	matter	of	fact,	consider	them	available
as	well.

Hint:	you	can	submit	your	solution	by	doing		Ctrl	+	Enter		in	the	embedded	editor!

Running	Exercises	on	Your	Machine	(optional)

Should	you	prefer	to	do	exercises	directly	in	files	using	your	own	editor:

clone	the	repository	(git	clone	git@github.com/MostlyAdequate/mostly-adequate-

Chapter	04:	Currying

30

https://mostly-adequate.gitbooks.io/mostly-adequate-guide

guide.git)
go	in	the	exercises	section	(cd	mostly-adequate-guide/exercises)
install	the	necessary	plumbing	using	npm	(npm	install)
complete	answers	by	modifying	the	files	named	exercises_*	in	the	corresponding
chapter's	folder
run	the	correction	with	npm	(e.g.		npm	run	ch04)

Unit	tests	will	run	against	your	answers	and	provide	hints	in	case	of	mistake.	By	the	by,	the
answers	to	the	exercises	are	available	in	files	named	answers_*.

Let's	Practice!

Exercise

Refactor	to	remove	all	arguments	by	partially	applying	the	function.

//	words	::	String	->	[String]

const	words	=	str	=>	split('	',	str);

Exercise

Refactor	to	remove	all	arguments	by	partially	applying	the	functions.

//	filterQs	::	[String]	->	[String]

const	filterQs	=	xs	=>	filter(x	=>	x.match(/q/i),	xs);

Considering	the	following	function:

const	keepHighest	=	(x,	y)	=>	(x	>=	y	?	x	:	y);

Exercise

Refactor	`max`	to	not	reference	any	arguments	using	the	helper	function	`keepHighest`.

//	max	::	[Number]	->	Number

const	max	=	xs	=>	reduce((acc,	x)	=>	(x	>=	acc	?	x	:	acc),	-Infinity,	xs);

Chapter	04:	Currying

31

https://docs.npmjs.com/getting-started/installing-node

Chapter	04:	Currying

32

Chapter	05:	Coding	by	Composing

Functional	Husbandry
Here's		compose	:

const	compose	=	(f,	g)	=>	x	=>	f(g(x));

	f		and		g		are	functions	and		x		is	the	value	being	"piped"	through	them.

Composition	feels	like	function	husbandry.	You,	breeder	of	functions,	select	two	with	traits
you'd	like	to	combine	and	mash	them	together	to	spawn	a	brand	new	one.	Usage	is	as
follows:

const	toUpperCase	=	x	=>	x.toUpperCase();

const	exclaim	=	x	=>	`${x}!`;

const	shout	=	compose(exclaim,	toUpperCase);

shout('send	in	the	clowns');	//	"SEND	IN	THE	CLOWNS!"

The	composition	of	two	functions	returns	a	new	function.	This	makes	perfect	sense:
composing	two	units	of	some	type	(in	this	case	function)	should	yield	a	new	unit	of	that	very
type.	You	don't	plug	two	legos	together	and	get	a	lincoln	log.	There	is	a	theory	here,	some
underlying	law	that	we	will	discover	in	due	time.

In	our	definition	of		compose	,	the		g		will	run	before	the		f	,	creating	a	right	to	left	flow	of
data.	This	is	much	more	readable	than	nesting	a	bunch	of	function	calls.	Without	compose,
the	above	would	read:

const	shout	=	x	=>	exclaim(toUpperCase(x));

Instead	of	inside	to	outside,	we	run	right	to	left,	which	I	suppose	is	a	step	in	the	left	direction
(boo!).	Let's	look	at	an	example	where	sequence	matters:

const	head	=	x	=>	x[0];

const	reverse	=	reduce((acc,	x)	=>	[x].concat(acc),	[]);

const	last	=	compose(head,	reverse);

last(['jumpkick',	'roundhouse',	'uppercut']);	//	'uppercut'

Chapter	05:	Coding	by	Composing

33

	reverse		will	turn	the	list	around	while		head		grabs	the	initial	item.	This	results	in	an
effective,	albeit	inefficient,		last		function.	The	sequence	of	functions	in	the	composition
should	be	apparent	here.	We	could	define	a	left	to	right	version,	however,	we	mirror	the
mathematical	version	much	more	closely	as	it	stands.	That's	right,	composition	is	straight
from	the	math	books.	In	fact,	perhaps	it's	time	to	look	at	a	property	that	holds	for	any
composition.

//	associativity

compose(f,	compose(g,	h))	===	compose(compose(f,	g),	h);

Composition	is	associative,	meaning	it	doesn't	matter	how	you	group	two	of	them.	So,
should	we	choose	to	uppercase	the	string,	we	can	write:

compose(toUpperCase,	compose(head,	reverse));

//	or

compose(compose(toUpperCase,	head),	reverse);

Since	it	doesn't	matter	how	we	group	our	calls	to		compose	,	the	result	will	be	the	same.	That
allows	us	to	write	a	variadic	compose	and	use	it	as	follows:

//	previously	we'd	have	to	write	two	composes,	but	since	it's	associative,	

//	we	can	give	compose	as	many	fn's	as	we	like	and	let	it	decide	how	to	group	them.

const	arg	=	['jumpkick',	'roundhouse',	'uppercut'];

const	lastUpper	=	compose(toUpperCase,	head,	reverse);

const	loudLastUpper	=	compose(exclaim,	toUpperCase,	head,	reverse);

lastUpper(arg);	//	'UPPERCUT'

loudLastUpper(arg);	//	'UPPERCUT!'

Applying	the	associative	property	gives	us	this	flexibility	and	peace	of	mind	that	the	result
will	be	equivalent.	The	slightly	more	complicated	variadic	definition	is	included	with	the
support	libraries	for	this	book	and	is	the	normal	definition	you'll	find	in	libraries	like	lodash,
underscore,	and	ramda.

One	pleasant	benefit	of	associativity	is	that	any	group	of	functions	can	be	extracted	and
bundled	together	in	their	very	own	composition.	Let's	play	with	refactoring	our	previous
example:

Chapter	05:	Coding	by	Composing

34

https://lodash.com/
http://underscorejs.org/
http://ramdajs.com/

const	loudLastUpper	=	compose(exclaim,	toUpperCase,	head,	reverse);

//	--	or	---

const	last	=	compose(head,	reverse);

const	loudLastUpper	=	compose(exclaim,	toUpperCase,	last);

//	--	or	---

const	last	=	compose(head,	reverse);

const	angry	=	compose(exclaim,	toUpperCase);

const	loudLastUpper	=	compose(angry,	last);

//	more	variations...

There's	no	right	or	wrong	answers	-	we're	just	plugging	our	legos	together	in	whatever	way
we	please.	Usually	it's	best	to	group	things	in	a	reusable	way	like		last		and		angry	.	If
familiar	with	Fowler's	"Refactoring",	one	might	recognize	this	process	as	"extract
method"...except	without	all	the	object	state	to	worry	about.

Pointfree
Pointfree	style	means	never	having	to	say	your	data.	Excuse	me.	It	means	functions	that
never	mention	the	data	upon	which	they	operate.	First	class	functions,	currying,	and
composition	all	play	well	together	to	create	this	style.

Hint:	Pointfree	versions	of		replace		&		toLowerCase		are	defined	in	the	Appendix	C	-
Pointfree	Utilities.	Do	not	hesitate	to	have	a	peek!

//	not	pointfree	because	we	mention	the	data:	word

const	snakeCase	=	word	=>	word.toLowerCase().replace(/\s+/ig,	'_');

//	pointfree

const	snakeCase	=	compose(replace(/\s+/ig,	'_'),	toLowerCase);

See	how	we	partially	applied		replace	?	What	we're	doing	is	piping	our	data	through	each
function	of	1	argument.	Currying	allows	us	to	prepare	each	function	to	just	take	its	data,
operate	on	it,	and	pass	it	along.	Something	else	to	notice	is	how	we	don't	need	the	data	to
construct	our	function	in	the	pointfree	version,	whereas	in	the	pointful	one,	we	must	have	our
	word		available	before	anything	else.

Let's	look	at	another	example.

Chapter	05:	Coding	by	Composing

35

http://martinfowler.com/books/refactoring.html
http://refactoring.com/catalog/extractMethod.html

//	not	pointfree	because	we	mention	the	data:	name

const	initials	=	name	=>	name.split('	').map(compose(toUpperCase,	head)).join('.	');

//	pointfree

const	initials	=	compose(join('.	'),	map(compose(toUpperCase,	head)),	split('	'));

initials('hunter	stockton	thompson');	//	'H.	S.	T'

Pointfree	code	can	again,	help	us	remove	needless	names	and	keep	us	concise	and
generic.	Pointfree	is	a	good	litmus	test	for	functional	code	as	it	lets	us	know	we've	got	small
functions	that	take	input	to	output.	One	can't	compose	a	while	loop,	for	instance.	Be	warned,
however,	pointfree	is	a	double-edged	sword	and	can	sometimes	obfuscate	intention.	Not	all
functional	code	is	pointfree	and	that	is	O.K.	We'll	shoot	for	it	where	we	can	and	stick	with
normal	functions	otherwise.

Debugging
A	common	mistake	is	to	compose	something	like		map	,	a	function	of	two	arguments,	without
first	partially	applying	it.

//	wrong	-	we	end	up	giving	angry	an	array	and	we	partially	applied	map	with	who	knows

	what.

const	latin	=	compose(map,	angry,	reverse);

latin(['frog',	'eyes']);	//	error

//	right	-	each	function	expects	1	argument.

const	latin	=	compose(map(angry),	reverse);

latin(['frog',	'eyes']);	//	['EYES!',	'FROG!'])

If	you	are	having	trouble	debugging	a	composition,	we	can	use	this	helpful,	but	impure	trace
function	to	see	what's	going	on.

Chapter	05:	Coding	by	Composing

36

const	trace	=	curry((tag,	x)	=>	{

		console.log(tag,	x);

		return	x;

});

const	dasherize	=	compose(

		join('-'),

		toLower,

		split('	'),

		replace(/\s{2,}/ig,	'	'),

);

dasherize('The	world	is	a	vampire');

//	TypeError:	Cannot	read	property	'apply'	of	undefined

Something	is	wrong	here,	let's		trace	

const	dasherize	=	compose(

		join('-'),

		toLower,

		trace('after	split'),

		split('	'),

		replace(/\s{2,}/ig,	'	'),

);

dasherize('The	world	is	a	vampire');

//	after	split	['The',	'world',	'is',	'a',	'vampire']

Ah!	We	need	to		map		this		toLower		since	it's	working	on	an	array.

const	dasherize	=	compose(

		join('-'),

		map(toLower),

		split('	'),

		replace(/\s{2,}/ig,	'	'),

);

dasherize('The	world	is	a	vampire');	//	'the-world-is-a-vampire'

The		trace		function	allows	us	to	view	the	data	at	a	certain	point	for	debugging	purposes.
Languages	like	Haskell	and	PureScript	have	similar	functions	for	ease	of	development.

Composition	will	be	our	tool	for	constructing	programs	and,	as	luck	would	have	it,	is	backed
by	a	powerful	theory	that	ensures	things	will	work	out	for	us.	Let's	examine	this	theory.

Category	Theory

Chapter	05:	Coding	by	Composing

37

Category	theory	is	an	abstract	branch	of	mathematics	that	can	formalize	concepts	from
several	different	branches	such	as	set	theory,	type	theory,	group	theory,	logic,	and	more.	It
primarily	deals	with	objects,	morphisms,	and	transformations,	which	mirrors	programming
quite	closely.	Here	is	a	chart	of	the	same	concepts	as	viewed	from	each	separate	theory.

Sorry,	I	didn't	mean	to	frighten	you.	I	don't	expect	you	to	be	intimately	familiar	with	all	these
concepts.	My	point	is	to	show	you	how	much	duplication	we	have	so	you	can	see	why
category	theory	aims	to	unify	these	things.

In	category	theory,	we	have	something	called...	a	category.	It	is	defined	as	a	collection	with
the	following	components:

A	collection	of	objects
A	collection	of	morphisms
A	notion	of	composition	on	the	morphisms
A	distinguished	morphism	called	identity

Category	theory	is	abstract	enough	to	model	many	things,	but	let's	apply	this	to	types	and
functions,	which	is	what	we	care	about	at	the	moment.

A	collection	of	objects	The	objects	will	be	data	types.	For	instance,		String	,		Boolean	,
	Number	,		Object	,	etc.	We	often	view	data	types	as	sets	of	all	the	possible	values.	One
could	look	at		Boolean		as	the	set	of		[true,	false]		and		Number		as	the	set	of	all	possible
numeric	values.	Treating	types	as	sets	is	useful	because	we	can	use	set	theory	to	work	with
them.

A	collection	of	morphisms	The	morphisms	will	be	our	standard	every	day	pure	functions.

Chapter	05:	Coding	by	Composing

38

A	notion	of	composition	on	the	morphisms	This,	as	you	may	have	guessed,	is	our	brand
new	toy	-		compose	.	We've	discussed	that	our		compose		function	is	associative	which	is	no
coincidence	as	it	is	a	property	that	must	hold	for	any	composition	in	category	theory.

Here	is	an	image	demonstrating	composition:

Here	is	a	concrete	example	in	code:

const	g	=	x	=>	x.length;

const	f	=	x	=>	x	===	4;

const	isFourLetterWord	=	compose(f,	g);

A	distinguished	morphism	called	identity	Let's	introduce	a	useful	function	called		id	.
This	function	simply	takes	some	input	and	spits	it	back	at	you.	Take	a	look:

const	id	=	x	=>	x;

You	might	ask	yourself	"What	in	the	bloody	hell	is	that	useful	for?".	We'll	make	extensive	use
of	this	function	in	the	following	chapters,	but	for	now	think	of	it	as	a	function	that	can	stand	in
for	our	value	-	a	function	masquerading	as	every	day	data.

	id		must	play	nicely	with	compose.	Here	is	a	property	that	always	holds	for	every	unary
(unary:	a	one-argument	function)	function	f:

//	identity

compose(id,	f)	===	compose(f,	id)	===	f;

//	true

Chapter	05:	Coding	by	Composing

39

Hey,	it's	just	like	the	identity	property	on	numbers!	If	that's	not	immediately	clear,	take	some
time	with	it.	Understand	the	futility.	We'll	be	seeing		id		used	all	over	the	place	soon,	but	for
now	we	see	it's	a	function	that	acts	as	a	stand	in	for	a	given	value.	This	is	quite	useful	when
writing	pointfree	code.

So	there	you	have	it,	a	category	of	types	and	functions.	If	this	is	your	first	introduction,	I
imagine	you're	still	a	little	fuzzy	on	what	a	category	is	and	why	it's	useful.	We	will	build	upon
this	knowledge	throughout	the	book.	As	of	right	now,	in	this	chapter,	on	this	line,	you	can	at
least	see	it	as	providing	us	with	some	wisdom	regarding	composition	-	namely,	the
associativity	and	identity	properties.

What	are	some	other	categories,	you	ask?	Well,	we	can	define	one	for	directed	graphs	with
nodes	being	objects,	edges	being	morphisms,	and	composition	just	being	path
concatenation.	We	can	define	with	Numbers	as	objects	and		>=		as	morphisms	(actually	any
partial	or	total	order	can	be	a	category).	There	are	heaps	of	categories,	but	for	the	purposes
of	this	book,	we'll	only	concern	ourselves	with	the	one	defined	above.	We	have	sufficiently
skimmed	the	surface	and	must	move	on.

In	Summary
Composition	connects	our	functions	together	like	a	series	of	pipes.	Data	will	flow	through	our
application	as	it	must	-	pure	functions	are	input	to	output	after	all,	so	breaking	this	chain
would	disregard	output,	rendering	our	software	useless.

We	hold	composition	as	a	design	principle	above	all	others.	This	is	because	it	keeps	our	app
simple	and	reasonable.	Category	theory	will	play	a	big	part	in	app	architecture,	modelling
side	effects,	and	ensuring	correctness.

We	are	now	at	a	point	where	it	would	serve	us	well	to	see	some	of	this	in	practice.	Let's
make	an	example	application.

Chapter	06:	Example	Application

Exercises
In	each	following	exercise,	we'll	consider	Car	objects	with	the	following	shape:

Chapter	05:	Coding	by	Composing

40

{

		name:	'Aston	Martin	One-77',

		horsepower:	750,

		dollar_value:	1850000,

		in_stock:	true,

}

Exercise

Use	`compose()`	to	rewrite	the	function	below.

//	isLastInStock	::	[Car]	->	Boolean

const	isLastInStock	=	(cars)	=>	{

		const	lastCar	=	last(cars);

		return	prop('in_stock',	lastCar);

};

Considering	the	following	function:

const	average	=	xs	=>	reduce(add,	0,	xs)	/	xs.length;

Exercise

Use	the	helper	function	`average`	to	refactor	`averageDollarValue`	as	a	composition.

//	averageDollarValue	::	[Car]	->	Int

const	averageDollarValue	=	(cars)	=>	{

		const	dollarValues	=	map(c	=>	c.dollar_value,	cars);

		return	average(dollarValues);

};

Exercise

Refactor	`fastestCar`	using	`compose()`	and	other	functions	in	pointfree-style.	Hint,	the
`flip`	function	may	come	in	handy.

Chapter	05:	Coding	by	Composing

41

//	fastestCar	::	[Car]	->	String

const	fastestCar	=	(cars)	=>	{

		const	sorted	=	sortBy(car	=>	car.horsepower,	cars);

		const	fastest	=	last(sorted);

		return	concat(fastest.name,	'	is	the	fastest');

};

Chapter	05:	Coding	by	Composing

42

Chapter	06:	Example	Application

Declarative	Coding
We	are	going	to	switch	our	mindset.	From	here	on	out,	we'll	stop	telling	the	computer	how	to
do	its	job	and	instead	write	a	specification	of	what	we'd	like	as	a	result.	I'm	sure	you'll	find	it
much	less	stressful	than	trying	to	micromanage	everything	all	the	time.

Declarative,	as	opposed	to	imperative,	means	that	we	will	write	expressions,	as	opposed	to
step	by	step	instructions.

Think	of	SQL.	There	is	no	"first	do	this,	then	do	that".	There	is	one	expression	that	specifies
what	we'd	like	from	the	database.	We	don't	decide	how	to	do	the	work,	it	does.	When	the
database	is	upgraded	and	the	SQL	engine	optimized,	we	don't	have	to	change	our	query.
This	is	because	there	are	many	ways	to	interpret	our	specification	and	achieve	the	same
result.

For	some	folks,	myself	included,	it's	hard	to	grasp	the	concept	of	declarative	coding	at	first
so	let's	point	out	a	few	examples	to	get	a	feel	for	it.

//	imperative

const	makes	=	[];

for	(let	i	=	0;	i	<	cars.length;	i	+=	1)	{

		makes.push(cars[i].make);

}

//	declarative

const	makes	=	cars.map(car	=>	car.make);

The	imperative	loop	must	first	instantiate	the	array.	The	interpreter	must	evaluate	this
statement	before	moving	on.	Then	it	directly	iterates	through	the	list	of	cars,	manually
increasing	a	counter	and	showing	its	bits	and	pieces	to	us	in	a	vulgar	display	of	explicit
iteration.

The		map		version	is	one	expression.	It	does	not	require	any	order	of	evaluation.	There	is
much	freedom	here	for	how	the	map	function	iterates	and	how	the	returned	array	may	be
assembled.	It	specifies	what,	not	how.	Thus,	it	wears	the	shiny	declarative	sash.

In	addition	to	being	clearer	and	more	concise,	the	map	function	may	be	optimized	at	will	and
our	precious	application	code	needn't	change.

Chapter	06:	Example	Application

43

For	those	of	you	who	are	thinking	"Yes,	but	it's	much	faster	to	do	the	imperative	loop",	I
suggest	you	educate	yourself	on	how	the	JIT	optimizes	your	code.	Here's	a	terrific	video	that
may	shed	some	light

Here	is	another	example.

//	imperative

const	authenticate	=	(form)	=>	{

		const	user	=	toUser(form);

		return	logIn(user);

};

//	declarative

const	authenticate	=	compose(logIn,	toUser);

Though	there's	nothing	necessarily	wrong	with	the	imperative	version,	there	is	still	an
encoded	step-by-step	evaluation	baked	in.	The		compose		expression	simply	states	a	fact:
Authentication	is	the	composition	of		toUser		and		logIn	.	Again,	this	leaves	wiggle	room	for
support	code	changes	and	results	in	our	application	code	being	a	high	level	specification.

In	the	example	above,	the	order	of	evaluation	is	specified	(toUser		must	be	called	before
	logIn),	but	there	are	many	scenarios	where	the	order	is	not	important,	and	this	is	easily
specified	with	declarative	coding	(more	on	this	later).

Because	we	don't	have	to	encode	the	order	of	evaluation,	declarative	coding	lends	itself	to
parallel	computing.	This	coupled	with	pure	functions	is	why	FP	is	a	good	option	for	the
parallel	future	-	we	don't	really	need	to	do	anything	special	to	achieve	parallel/concurrent
systems.

A	Flickr	of	Functional	Programming
We	will	now	build	an	example	application	in	a	declarative,	composable	way.	We'll	still	cheat
and	use	side	effects	for	now,	but	we'll	keep	them	minimal	and	separate	from	our	pure
codebase.	We	are	going	to	build	a	browser	widget	that	sucks	in	flickr	images	and	displays
them.	Let's	start	by	scaffolding	the	app.	Here's	the	html:

Chapter	06:	Example	Application

44

https://www.youtube.com/watch?v=g0ek4vV7nEA

<!doctype	html>

<html	lang="en">

		<head>

				<meta	charset="utf-8">

				<title>Flickr	App</title>

		</head>

		<body>

				<main	id="js-main"	class="main"></main>

				<script	src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.2.0/require.min.j

s"></script>

				<script	src="main.js"></script>

		</body>

</html>

And	here's	the	main.js	skeleton:

const	CDN	=	s	=>	`https://cdnjs.cloudflare.com/ajax/libs/${s}`;

const	ramda	=	CDN('ramda/0.21.0/ramda.min');

const	jquery	=	CDN('jquery/3.0.0-rc1/jquery.min');

requirejs.config({	paths:	{	ramda,	jquery	}	});

require(['jquery',	'ramda'],	($,	{	compose,	curry,	map,	prop	})	=>	{

		//	app	goes	here

});

We're	pulling	in	ramda	instead	of	lodash	or	some	other	utility	library.	It	includes		compose	,
	curry	,	and	more.	I've	used	requirejs,	which	may	seem	like	overkill,	but	we'll	be	using	it
throughout	the	book	and	consistency	is	key.

Now	that	that's	out	of	the	way,	on	to	the	spec.	Our	app	will	do	4	things.

1.	 Construct	a	url	for	our	particular	search	term
2.	 Make	the	flickr	api	call
3.	 Transform	the	resulting	json	into	html	images
4.	 Place	them	on	the	screen

There	are	2	impure	actions	mentioned	above.	Do	you	see	them?	Those	bits	about	getting
data	from	the	flickr	api	and	placing	it	on	the	screen.	Let's	define	those	first	so	we	can
quarantine	them.	Also,	I'll	add	our	nice		trace		function	for	easy	debugging.

const	Impure	=	{

		getJSON:	curry((callback,	url)	=>	$.getJSON(url,	callback)),

		setHtml:	curry((sel,	html)	=>	$(sel).html(html)),

		trace:	curry((tag,	x)	=>	{	console.log(tag,	x);	return	x;	}),

};

Chapter	06:	Example	Application

45

http://ramdajs.com

Here	we've	simply	wrapped	jQuery's	methods	to	be	curried	and	we've	swapped	the
arguments	to	a	more	favorable	position.	I've	namespaced	them	with		Impure		so	we	know
these	are	dangerous	functions.	In	a	future	example,	we	will	make	these	two	functions	pure.

Next	we	must	construct	a	url	to	pass	to	our		Impure.getJSON		function.

const	host	=	'api.flickr.com';

const	path	=	'/services/feeds/photos_public.gne';

const	query	=	t	=>	`?tags=${t}&format=json&jsoncallback=?`;

const	url	=	t	=>	`https://${host}${path}${query(t)}`;

There	are	fancy	and	overly	complex	ways	of	writing		url		pointfree	using	monoids(we'll	learn
about	these	later)	or	combinators.	We've	chosen	to	stick	with	a	readable	version	and
assemble	this	string	in	the	normal	pointful	fashion.

Let's	write	an	app	function	that	makes	the	call	and	places	the	contents	on	the	screen.

const	app	=	compose(Impure.getJSON(Impure.trace('response')),	url);

app('cats');

This	calls	our		url		function,	then	passes	the	string	to	our		getJSON		function,	which	has
been	partially	applied	with		trace	.	Loading	the	app	will	show	the	response	from	the	api	call
in	the	console.

We'd	like	to	construct	images	out	of	this	json.	It	looks	like	the		mediaUrls		are	buried	in
	items		then	each		media	's		m		property.

Chapter	06:	Example	Application

46

Anyhow,	to	get	at	these	nested	properties	we	can	use	a	nice	universal	getter	function	from
ramda	called		prop	.	Here's	a	homegrown	version	so	you	can	see	what's	happening:

const	prop	=	curry((property,	object)	=>	object[property]);

It's	quite	dull	actually.	We	just	use		[]		syntax	to	access	a	property	on	whatever	object.	Let's
use	this	to	get	at	our		mediaUrls	.

const	mediaUrl	=	compose(prop('m'),	prop('media'));

const	mediaUrls	=	compose(map(mediaUrl),	prop('items'));

Once	we	gather	the		items	,	we	must		map		over	them	to	extract	each	media	url.	This	results
in	a	nice	array	of		mediaUrls	.	Let's	hook	this	up	to	our	app	and	print	them	on	the	screen.

const	render	=	compose(Impure.setHtml('#js-main'),	mediaUrls);

const	app	=	compose(Impure.getJSON(render),	url);

All	we've	done	is	make	a	new	composition	that	will	call	our		mediaUrls		and	set	the		<main>	
html	with	them.	We've	replaced	the		trace		call	with		render		now	that	we	have	something	to
render	besides	raw	json.	This	will	crudely	display	our		mediaUrls		within	the	body.

Our	final	step	is	to	turn	these		mediaUrls		into	bonafide		images	.	In	a	bigger	application,	we'd
use	a	template/dom	library	like	Handlebars	or	React.	For	this	application	though,	we	only
need	an	img	tag	so	let's	stick	with	jQuery.

const	img	=	src	=>	$('',	{	src	});

jQuery's		html		method	will	accept	an	array	of	tags.	We	only	have	to	transform	our
mediaUrls	into	images	and	send	them	along	to		setHtml	.

const	images	=	compose(map(img),	mediaUrls);

const	render	=	compose(Impure.setHtml('#js-main'),	images);

const	app	=	compose(Impure.getJSON(render),	url);

And	we're	done!

Chapter	06:	Example	Application

47

Here	is	the	finished	script:

Chapter	06:	Example	Application

48

const	CDN	=	s	=>	`https://cdnjs.cloudflare.com/ajax/libs/${s}`;

const	ramda	=	CDN('ramda/0.21.0/ramda.min');

const	jquery	=	CDN('jquery/3.0.0-rc1/jquery.min');

requirejs.config({	paths:	{	ramda,	jquery	}	});

require(['jquery',	'ramda'],	($,	{	compose,	curry,	map,	prop	})	=>	{

		//	--	Utils	--

		const	Impure	=	{

				trace:	curry((tag,	x)	=>	{	console.log(tag,	x);	return	x;	}),	//	eslint-disable-li

ne	no-console

				getJSON:	curry((callback,	url)	=>	$.getJSON(url,	callback)),

				setHtml:	curry((sel,	html)	=>	$(sel).html(html)),

		};

		//	--	Pure	---

		const	host	=	'api.flickr.com';

		const	path	=	'/services/feeds/photos_public.gne';

		const	query	=	t	=>	`?tags=${t}&format=json&jsoncallback=?`;

		const	url	=	t	=>	`https://${host}${path}${query(t)}`;

		const	img	=	src	=>	$('',	{	src	});

		const	mediaUrl	=	compose(prop('m'),	prop('media'));

		const	mediaUrls	=	compose(map(mediaUrl),	prop('items'));

		const	images	=	compose(map(img),	mediaUrls);

		//	--	Impure	---

		const	render	=	compose(Impure.setHtml('#js-main'),	images);

		const	app	=	compose(Impure.getJSON(render),	url);

		app('cats');

});

Now	look	at	that.	A	beautifully	declarative	specification	of	what	things	are,	not	how	they
come	to	be.	We	now	view	each	line	as	an	equation	with	properties	that	hold.	We	can	use
these	properties	to	reason	about	our	application	and	refactor.

A	Principled	Refactor
There	is	an	optimization	available	-	we	map	over	each	item	to	turn	it	into	a	media	url,	then
we	map	again	over	those	mediaUrls	to	turn	them	into	img	tags.	There	is	a	law	regarding
map	and	composition:

//	map's	composition	law

compose(map(f),	map(g))	===	map(compose(f,	g));

We	can	use	this	property	to	optimize	our	code.	Let's	have	a	principled	refactor.

Chapter	06:	Example	Application

49

//	original	code

const	mediaUrl	=	compose(prop('m'),	prop('media'));

const	mediaUrls	=	compose(map(mediaUrl),	prop('items'));

const	images	=	compose(map(img),	mediaUrls);

Let's	line	up	our	maps.	We	can	inline	the	call	to		mediaUrls		in		images		thanks	to	equational
reasoning	and	purity.

const	mediaUrl	=	compose(prop('m'),	prop('media'));

const	images	=	compose(map(img),	map(mediaUrl),	prop('items'));

Now	that	we've	lined	up	our		map	s	we	can	apply	the	composition	law.

/*

compose(map(f),	map(g))	===	map(compose(f,	g));

compose(map(img),	map(mediaUrl))	===	map(compose(img,	mediaUrl));

*/

const	mediaUrl	=	compose(prop('m'),	prop('media'));

const	images	=	compose(map(compose(img,	mediaUrl)),	prop('items'));

Now	the	bugger	will	only	loop	once	while	turning	each	item	into	an	img.	Let's	just	make	it	a
little	more	readable	by	extracting	the	function	out.

const	mediaUrl	=	compose(prop('m'),	prop('media'));

const	mediaToImg	=	compose(img,	mediaUrl);

const	images	=	compose(map(mediaToImg),	prop('items'));

In	Summary
We	have	seen	how	to	put	our	new	skills	into	use	with	a	small,	but	real	world	app.	We've
used	our	mathematical	framework	to	reason	about	and	refactor	our	code.	But	what	about
error	handling	and	code	branching?	How	can	we	make	the	whole	application	pure	instead	of
merely	namespacing	destructive	functions?	How	can	we	make	our	app	safer	and	more
expressive?	These	are	the	questions	we	will	tackle	in	part	2.

Chapter	07:	Hindley-Milner	and	Me

Chapter	06:	Example	Application

50

Chapter	07:	Hindley-Milner	and	Me

What's	Your	Type?
If	you're	new	to	the	functional	world,	it	won't	be	long	before	you	find	yourself	knee	deep	in
type	signatures.	Types	are	the	meta	language	that	enables	people	from	all	different
backgrounds	to	communicate	succinctly	and	effectively.	For	the	most	part,	they're	written
with	a	system	called	"Hindley-Milner",	which	we'll	be	examining	together	in	this	chapter.

When	working	with	pure	functions,	type	signatures	have	an	expressive	power	to	which	the
English	language	cannot	hold	a	candle.	These	signatures	whisper	in	your	ear	the	intimate
secrets	of	a	function.	In	a	single,	compact	line,	they	expose	behaviour	and	intention.	We	can
derive	"free	theorems"	from	them.	Types	can	be	inferred	so	there's	no	need	for	explicit	type
annotations.	They	can	be	tuned	to	fine	point	precision	or	left	general	and	abstract.	They	are
not	only	useful	for	compile	time	checks,	but	also	turn	out	to	be	the	best	possible
documentation	available.	Type	signatures	thus	play	an	important	part	in	functional
programming	-	much	more	than	you	might	first	expect.

JavaScript	is	a	dynamic	language,	but	that	does	not	mean	we	avoid	types	all	together.	We're
still	working	with	strings,	numbers,	booleans,	and	so	on.	It's	just	that	there	isn't	any	language
level	integration	so	we	hold	this	information	in	our	heads.	Not	to	worry,	since	we're	using
signatures	for	documentation,	we	can	use	comments	to	serve	our	purpose.

There	are	type	checking	tools	available	for	JavaScript	such	as	Flow	or	the	typed	dialect,
TypeScript.	The	aim	of	this	book	is	to	equip	one	with	the	tools	to	write	functional	code	so
we'll	stick	with	the	standard	type	system	used	across	FP	languages.

Tales	from	the	Cryptic
From	the	dusty	pages	of	math	books,	across	the	vast	sea	of	white	papers,	amongst	casual
Saturday	morning	blog	posts,	down	into	the	source	code	itself,	we	find	Hindley-Milner	type
signatures.	The	system	is	quite	simple,	but	warrants	a	quick	explanation	and	some	practice
to	fully	absorb	the	little	language.

//	capitalize	::	String	->	String

const	capitalize	=	s	=>	toUpperCase(head(s))	+	toLowerCase(tail(s));

capitalize('smurf');	//	'Smurf'

Chapter	07:	Hindley-Milner	and	Me

51

http://flowtype.org/
http://www.typescriptlang.org/

Here,		capitalize		takes	a		String		and	returns	a		String	.	Never	mind	the	implementation,
it's	the	type	signature	we're	interested	in.

In	HM,	functions	are	written	as		a	->	b		where		a		and		b		are	variables	for	any	type.	So	the
signatures	for		capitalize		can	be	read	as	"a	function	from		String		to		String	".	In	other
words,	it	takes	a		String		as	its	input	and	returns	a		String		as	its	output.

Let's	look	at	some	more	function	signatures:

//	strLength	::	String	->	Number

const	strLength	=	s	=>	s.length;

//	join	::	String	->	[String]	->	String

const	join	=	curry((what,	xs)	=>	xs.join(what));

//	match	::	Regex	->	String	->	[String]

const	match	=	curry((reg,	s)	=>	s.match(reg));

//	replace	::	Regex	->	String	->	String	->	String

const	replace	=	curry((reg,	sub,	s)	=>	s.replace(reg,	sub));

	strLength		is	the	same	idea	as	before:	we	take	a		String		and	return	you	a		Number	.

The	others	might	perplex	you	at	first	glance.	Without	fully	understanding	the	details,	you
could	always	just	view	the	last	type	as	the	return	value.	So	for		match		you	can	interpret	as:	It
takes	a		Regex		and	a		String		and	returns	you		[String]	.	But	an	interesting	thing	is	going
on	here	that	I'd	like	to	take	a	moment	to	explain	if	I	may.

For		match		we	are	free	to	group	the	signature	like	so:

//	match	::	Regex	->	(String	->	[String])

const	match	=	curry((reg,	s)	=>	s.match(reg));

Ah	yes,	grouping	the	last	part	in	parenthesis	reveals	more	information.	Now	it	is	seen	as	a
function	that	takes	a		Regex		and	returns	us	a	function	from		String		to		[String]	.	Because
of	currying,	this	is	indeed	the	case:	give	it	a		Regex		and	we	get	a	function	back	waiting	for	its
	String		argument.	Of	course,	we	don't	have	to	think	of	it	this	way,	but	it	is	good	to
understand	why	the	last	type	is	the	one	returned.

//	match	::	Regex	->	(String	->	[String])

//	onHoliday	::	String	->	[String]

const	onHoliday	=	match(/holiday/ig);

Each	argument	pops	one	type	off	the	front	of	the	signature.		onHoliday		is		match		that
already	has	a		Regex	.

Chapter	07:	Hindley-Milner	and	Me

52

//	replace	::	Regex	->	(String	->	(String	->	String))

const	replace	=	curry((reg,	sub,	s)	=>	s.replace(reg,	sub));

As	you	can	see	with	the	full	parenthesis	on		replace	,	the	extra	notation	can	get	a	little	noisy
and	redundant	so	we	simply	omit	them.	We	can	give	all	the	arguments	at	once	if	we	choose
so	it's	easier	to	just	think	of	it	as:		replace		takes	a		Regex	,	a		String	,	another		String		and
returns	you	a		String	.

A	few	last	things	here:

//	id	::	a	->	a

const	id	=	x	=>	x;

//	map	::	(a	->	b)	->	[a]	->	[b]

const	map	=	curry((f,	xs)	=>	xs.map(f));

The		id		function	takes	any	old	type		a		and	returns	something	of	the	same	type		a	.	We're
able	to	use	variables	in	types	just	like	in	code.	Variable	names	like		a		and		b		are
convention,	but	they	are	arbitrary	and	can	be	replaced	with	whatever	name	you'd	like.	If	they
are	the	same	variable,	they	have	to	be	the	same	type.	That's	an	important	rule	so	let's
reiterate:		a	->	b		can	be	any	type		a		to	any	type		b	,	but		a	->	a		means	it	has	to	be	the
same	type.	For	example,		id		may	be		String	->	String		or		Number	->	Number	,	but	not
	String	->	Bool	.

	map		similarly	uses	type	variables,	but	this	time	we	introduce		b		which	may	or	may	not	be
the	same	type	as		a	.	We	can	read	it	as:		map		takes	a	function	from	any	type		a		to	the
same	or	different	type		b	,	then	takes	an	array	of		a	's	and	results	in	an	array	of		b	's.

Hopefully,	you've	been	overcome	by	the	expressive	beauty	in	this	type	signature.	It	literally
tells	us	what	the	function	does	almost	word	for	word.	It's	given	a	function	from		a		to		b	,	an
array	of		a	,	and	it	delivers	us	an	array	of		b	.	The	only	sensible	thing	for	it	to	do	is	call	the
bloody	function	on	each		a	.	Anything	else	would	be	a	bold	face	lie.

Being	able	to	reason	about	types	and	their	implications	is	a	skill	that	will	take	you	far	in	the
functional	world.	Not	only	will	papers,	blogs,	docs,	etc,	become	more	digestible,	but	the
signature	itself	will	practically	lecture	you	on	its	functionality.	It	takes	practice	to	become	a
fluent	reader,	but	if	you	stick	with	it,	heaps	of	information	will	become	available	to	you	sans
RTFMing.

Here's	a	few	more	just	to	see	if	you	can	decipher	them	on	your	own.

Chapter	07:	Hindley-Milner	and	Me

53

//	head	::	[a]	->	a

const	head	=	xs	=>	xs[0];

//	filter	::	(a	->	Bool)	->	[a]	->	[a]

const	filter	=	curry((f,	xs)	=>	xs.filter(f));

//	reduce	::	(b	->	a	->	b)	->	b	->	[a]	->	b

const	reduce	=	curry((f,	x,	xs)	=>	xs.reduce(f,	x));

	reduce		is	perhaps,	the	most	expressive	of	all.	It's	a	tricky	one,	however,	so	don't	feel
inadequate	should	you	struggle	with	it.	For	the	curious,	I'll	try	to	explain	in	English	though
working	through	the	signature	on	your	own	is	much	more	instructive.

Ahem,	here	goes	nothing....looking	at	the	signature,	we	see	the	first	argument	is	a	function
that	expects	a		b	,	an		a	,	and	produces	a		b	.	Where	might	it	get	these		a	s	and		b	s?	Well,
the	following	arguments	in	the	signature	are	a		b		and	an	array	of		a	s	so	we	can	only
assume	that	the		b		and	each	of	those		a	s	will	be	fed	in.	We	also	see	that	the	result	of	the
function	is	a		b		so	the	thinking	here	is	our	final	incantation	of	the	passed	in	function	will	be
our	output	value.	Knowing	what	reduce	does,	we	can	state	that	the	above	investigation	is
accurate.

Narrowing	the	Possibility
Once	a	type	variable	is	introduced,	there	emerges	a	curious	property	called	parametricity.
This	property	states	that	a	function	will	act	on	all	types	in	a	uniform	manner.	Let's
investigate:

//	head	::	[a]	->	a

Looking	at		head	,	we	see	that	it	takes		[a]		to		a	.	Besides	the	concrete	type		array	,	it	has
no	other	information	available	and,	therefore,	its	functionality	is	limited	to	working	on	the
array	alone.	What	could	it	possibly	do	with	the	variable		a		if	it	knows	nothing	about	it?	In
other	words,		a		says	it	cannot	be	a	specific	type,	which	means	it	can	be	any	type,	which
leaves	us	with	a	function	that	must	work	uniformly	for	every	conceivable	type.	This	is	what
parametricity	is	all	about.	Guessing	at	the	implementation,	the	only	reasonable	assumptions
are	that	it	takes	the	first,	last,	or	a	random	element	from	that	array.	The	name		head		should
tip	us	off.

Here's	another	one:

//	reverse	::	[a]	->	[a]

Chapter	07:	Hindley-Milner	and	Me

54

https://en.wikipedia.org/wiki/Parametricity

From	the	type	signature	alone,	what	could		reverse		possibly	be	up	to?	Again,	it	cannot	do
anything	specific	to		a	.	It	cannot	change		a		to	a	different	type	or	we'd	introduce	a		b	.	Can
it	sort?	Well,	no,	it	wouldn't	have	enough	information	to	sort	every	possible	type.	Can	it	re-
arrange?	Yes,	I	suppose	it	can	do	that,	but	it	has	to	do	so	in	exactly	the	same	predictable
way.	Another	possibility	is	that	it	may	decide	to	remove	or	duplicate	an	element.	In	any	case,
the	point	is,	the	possible	behaviour	is	massively	narrowed	by	its	polymorphic	type.

This	narrowing	of	possibility	allows	us	to	use	type	signature	search	engines	like	Hoogle	to
find	a	function	we're	after.	The	information	packed	tightly	into	a	signature	is	quite	powerful
indeed.

Free	as	in	Theorem
Besides	deducing	implementation	possibilities,	this	sort	of	reasoning	gains	us	free	theorems.
What	follows	are	a	few	random	example	theorems	lifted	directly	from	Wadler's	paper	on	the
subject.

//	head	::	[a]	->	a

compose(f,	head)	===	compose(head,	map(f));

//	filter	::	(a	->	Bool)	->	[a]	->	[a]

compose(map(f),	filter(compose(p,	f)))	===	compose(filter(p),	map(f));

You	don't	need	any	code	to	get	these	theorems,	they	follow	directly	from	the	types.	The	first
one	says	that	if	we	get	the		head		of	our	array,	then	run	some	function		f		on	it,	that	is
equivalent	to,	and	incidentally,	much	faster	than,	if	we	first		map(f)		over	every	element	then
take	the		head		of	the	result.

You	might	think,	well	that's	just	common	sense.	But	last	I	checked,	computers	don't	have
common	sense.	Indeed,	they	must	have	a	formal	way	to	automate	these	kind	of	code
optimizations.	Maths	has	a	way	of	formalizing	the	intuitive,	which	is	helpful	amidst	the	rigid
terrain	of	computer	logic.

The		filter		theorem	is	similar.	It	says	that	if	we	compose		f		and		p		to	check	which	should
be	filtered,	then	actually	apply	the		f		via		map		(remember	filter,	will	not	transform	the
elements	-	its	signature	enforces	that		a		will	not	be	touched),	it	will	always	be	equivalent	to
mapping	our		f		then	filtering	the	result	with	the		p		predicate.

These	are	just	two	examples,	but	you	can	apply	this	reasoning	to	any	polymorphic	type
signature	and	it	will	always	hold.	In	JavaScript,	there	are	some	tools	available	to	declare
rewrite	rules.	One	might	also	do	this	via	the		compose		function	itself.	The	fruit	is	low	hanging
and	the	possibilities	are	endless.

Chapter	07:	Hindley-Milner	and	Me

55

https://www.haskell.org/hoogle
http://ttic.uchicago.edu/~dreyer/course/papers/wadler.pdf

Constraints
One	last	thing	to	note	is	that	we	can	constrain	types	to	an	interface.

//	sort	::	Ord	a	=>	[a]	->	[a]

What	we	see	on	the	left	side	of	our	fat	arrow	here	is	the	statement	of	a	fact:		a		must	be	an
	Ord	.	Or	in	other	words,		a		must	implement	the		Ord		interface.	What	is		Ord		and	where
did	it	come	from?	In	a	typed	language	it	would	be	a	defined	interface	that	says	we	can	order
the	values.	This	not	only	tells	us	more	about	the		a		and	what	our		sort		function	is	up	to,
but	also	restricts	the	domain.	We	call	these	interface	declarations	type	constraints.

//	assertEqual	::	(Eq	a,	Show	a)	=>	a	->	a	->	Assertion

Here,	we	have	two	constraints:		Eq		and		Show	.	Those	will	ensure	that	we	can	check
equality	of	our		a	s	and	print	the	difference	if	they	are	not	equal.

We'll	see	more	examples	of	constraints	and	the	idea	should	take	more	shape	in	later
chapters.

In	Summary
Hindley-Milner	type	signatures	are	ubiquitous	in	the	functional	world.	Though	they	are	simple
to	read	and	write,	it	takes	time	to	master	the	technique	of	understanding	programs	through
signatures	alone.	We	will	add	type	signatures	to	each	line	of	code	from	here	on	out.

Chapter	08:	Tupperware

Chapter	07:	Hindley-Milner	and	Me

56

Chapter	08:	Tupperware

The	Mighty	Container

We've	seen	how	to	write	programs	which	pipe	data	through	a	series	of	pure	functions.	They
are	declarative	specifications	of	behaviour.	But	what	about	control	flow,	error	handling,
asynchronous	actions,	state	and,	dare	I	say,	effects?!	In	this	chapter,	we	will	discover	the
foundation	upon	which	all	of	these	helpful	abstractions	are	built.

First	we	will	create	a	container.	This	container	must	hold	any	type	of	value;	a	ziplock	that
holds	only	tapioca	pudding	is	rarely	useful.	It	will	be	an	object,	but	we	will	not	give	it
properties	and	methods	in	the	OO	sense.	No,	we	will	treat	it	like	a	treasure	chest	-	a	special
box	that	cradles	our	valuable	data.

Chapter	08:	Tupperware

57

class	Container	{

		constructor(x)	{

				this.$value	=	x;

		}

		static	of(x)	{

				return	new	Container(x);

		}

}

Here	is	our	first	container.	We've	thoughtfully	named	it		Container	.	We	will	use
	Container.of		as	a	constructor	which	saves	us	from	having	to	write	that	awful		new		keyword
all	over	the	place.	There's	more	to	the		of		function	than	meets	the	eye,	but	for	now,	think	of
it	as	the	proper	way	to	place	values	into	our	container.

Let's	examine	our	brand	new	box...

Container.of(3);

//	Container(3)

Container.of('hotdogs');

//	Container("hotdogs")

Container.of(Container.of({	name:	'yoda'	}));

//	Container(Container({	name:	'yoda'	}))

If	you	are	using	node,	you	will	see		{$value:	x}		even	though	we've	got	ourselves	a
	Container(x)	.	Chrome	will	output	the	type	properly,	but	no	matter;	as	long	as	we
understand	what	a		Container		looks	like,	we'll	be	fine.	In	some	environments	you	can
overwrite	the		inspect		method	if	you'd	like,	but	we	will	not	be	so	thorough.	For	this	book,	we
will	write	the	conceptual	output	as	if	we'd	overwritten		inspect		as	it's	much	more	instructive
than		{$value:	x}		for	pedagogical	as	well	as	aesthetic	reasons.

Let's	make	a	few	things	clear	before	we	move	on:

	Container		is	an	object	with	one	property.	Lots	of	containers	just	hold	one	thing,	though
they	aren't	limited	to	one.	We've	arbitrarily	named	its	property		$value	.

The		$value		cannot	be	one	specific	type	or	our		Container		would	hardly	live	up	to	the
name.

Once	data	goes	into	the		Container		it	stays	there.	We	could	get	it	out	by	using
	.$value	,	but	that	would	defeat	the	purpose.

The	reasons	we're	doing	this	will	become	clear	as	a	mason	jar,	but	for	now,	bear	with	me.

Chapter	08:	Tupperware

58

My	First	Functor
Once	our	value,	whatever	it	may	be,	is	in	the	container,	we'll	need	a	way	to	run	functions	on
it.

//	(a	->	b)	->	Container	a	->	Container	b

Container.prototype.map	=	function	(f)	{

		return	Container.of(f(this.$value));

};

Why,	it's	just	like	Array's	famous		map	,	except	we	have		Container	a		instead	of		[a]	.	And	it
works	essentially	the	same	way:

Container.of(2).map(two	=>	two	+	2);	

//	Container(4)

Container.of('flamethrowers').map(s	=>	s.toUpperCase());	

//	Container('FLAMETHROWERS')

Container.of('bombs').map(concat('	away')).map(prop('length'));	

//	Container(10)

We	can	work	with	our	value	without	ever	having	to	leave	the		Container	.	This	is	a
remarkable	thing.	Our	value	in	the		Container		is	handed	to	the		map		function	so	we	can	fuss
with	it	and	afterward,	returned	to	its		Container		for	safe	keeping.	As	a	result	of	never	leaving
the		Container	,	we	can	continue	to		map		away,	running	functions	as	we	please.	We	can
even	change	the	type	as	we	go	along	as	demonstrated	in	the	latter	of	the	three	examples.

Wait	a	minute,	if	we	keep	calling		map	,	it	appears	to	be	some	sort	of	composition!	What
mathematical	magic	is	at	work	here?	Well	chaps,	we've	just	discovered	Functors.

A	Functor	is	a	type	that	implements		map		and	obeys	some	laws

Yes,	Functor	is	simply	an	interface	with	a	contract.	We	could	have	just	as	easily	named	it
Mappable,	but	now,	where's	the	fun	in	that?	Functors	come	from	category	theory	and	we'll
look	at	the	maths	in	detail	toward	the	end	of	the	chapter,	but	for	now,	let's	work	on	intuition
and	practical	uses	for	this	bizarrely	named	interface.

What	reason	could	we	possibly	have	for	bottling	up	a	value	and	using		map		to	get	at	it?	The
answer	reveals	itself	if	we	choose	a	better	question:	What	do	we	gain	from	asking	our
container	to	apply	functions	for	us?	Well,	abstraction	of	function	application.	When	we		map	
a	function,	we	ask	the	container	type	to	run	it	for	us.	This	is	a	very	powerful	concept,	indeed.

Chapter	08:	Tupperware

59

Schrödinger's	Maybe

	Container		is	fairly	boring.	In	fact,	it	is	usually	called		Identity		and	has	about	the	same
impact	as	our		id		function	(again	there	is	a	mathematical	connection	we'll	look	at	when	the
time	is	right).	However,	there	are	other	functors,	that	is,	container-like	types	that	have	a
proper		map		function,	which	can	provide	useful	behaviour	whilst	mapping.	Let's	define	one
now.

A	complete	implementation	is	given	in	the	Appendix	B

class	Maybe	{

		static	of(x)	{

				return	new	Maybe(x);

		}

		get	isNothing()	{

				return	this.$value	===	null	||	this.$value	===	undefined;

		}

		constructor(x)	{

				this.$value	=	x;

		}

		map(fn)	{

				return	this.isNothing	?	this	:	Maybe.of(fn(this.$value));

		}

		inspect()	{

				return	this.isNothing	?	'Nothing'	:	`Just(${inspect(this.$value)})`;

		}

}

Now,		Maybe		looks	a	lot	like		Container		with	one	minor	change:	it	will	first	check	to	see	if	it
has	a	value	before	calling	the	supplied	function.	This	has	the	effect	of	side	stepping	those
pesky	nulls	as	we		map	(Note	that	this	implementation	is	simplied	for	teaching).

Chapter	08:	Tupperware

60

Maybe.of('Malkovich	Malkovich').map(match(/a/ig));

//	Just(['a',	'a'])

Maybe.of(null).map(match(/a/ig));

//	Nothing

Maybe.of({	name:	'Boris'	}).map(prop('age')).map(add(10));

//	Nothing

Maybe.of({	name:	'Dinah',	age:	14	}).map(prop('age')).map(add(10));

//	Just(24)

Notice	our	app	doesn't	explode	with	errors	as	we	map	functions	over	our	null	values.	This	is
because		Maybe		will	take	care	to	check	for	a	value	each	and	every	time	it	applies	a	function.

This	dot	syntax	is	perfectly	fine	and	functional,	but	for	reasons	mentioned	in	Part	1,	we'd	like
to	maintain	our	pointfree	style.	As	it	happens,		map		is	fully	equipped	to	delegate	to	whatever
functor	it	receives:

//	map	::	Functor	f	=>	(a	->	b)	->	f	a	->	f	b

const	map	=	curry((f,	anyFunctor)	=>	anyFunctor.map(f));

This	is	delightful	as	we	can	carry	on	with	composition	per	usual	and		map		will	work	as
expected.	This	is	the	case	with	ramda's		map		as	well.	We'll	use	dot	notation	when	it's
instructive	and	the	pointfree	version	when	it's	convenient.	Did	you	notice	that?	I've	sneakily
introduced	extra	notation	into	our	type	signature.	The		Functor	f	=>		tells	us	that		f		must	be
a	Functor.	Not	that	difficult,	but	I	felt	I	should	mention	it.

Use	Cases
In	the	wild,	we'll	typically	see		Maybe		used	in	functions	which	might	fail	to	return	a	result.

//	safeHead	::	[a]	->	Maybe(a)

const	safeHead	=	xs	=>	Maybe.of(xs[0]);

//	streetName	::	Object	->	Maybe	String

const	streetName	=	compose(map(prop('street')),	safeHead,	prop('addresses'));

streetName({	addresses:	[]	});

//	Nothing

streetName({	addresses:	[{	street:	'Shady	Ln.',	number:	4201	}]	});

//	Just('Shady	Ln.')

Chapter	08:	Tupperware

61

	safeHead		is	like	our	normal		head	,	but	with	added	type	safety.	A	curious	thing	happens
when		Maybe		is	introduced	into	our	code;	we	are	forced	to	deal	with	those	sneaky		null	
values.	The		safeHead		function	is	honest	and	up	front	about	its	possible	failure	-	there's
really	nothing	to	be	ashamed	of	-	and	so	it	returns	a		Maybe		to	inform	us	of	this	matter.	We
are	more	than	merely	informed,	however,	because	we	are	forced	to		map		to	get	at	the	value
we	want	since	it	is	tucked	away	inside	the		Maybe		object.	Essentially,	this	is	a		null		check
enforced	by	the		safeHead		function	itself.	We	can	now	sleep	better	at	night	knowing	a		null	
value	won't	rear	its	ugly,	decapitated	head	when	we	least	expect	it.	APIs	like	this	will
upgrade	a	flimsy	application	from	paper	and	tacks	to	wood	and	nails.	They	will	guarantee
safer	software.

Sometimes	a	function	might	return	a		Nothing		explicitly	to	signal	failure.	For	instance:

//	withdraw	::	Number	->	Account	->	Maybe(Account)

const	withdraw	=	curry((amount,	{	balance	})	=>

		Maybe.of(balance	>=	amount	?	{	balance:	balance	-	amount	}	:	null));

//	This	function	is	hypothetical,	not	implemented	here...	nor	anywhere	else.

//	updateLedger	::	Account	->	Account	

const	updateLedger	=	account	=>	account;

//	remainingBalance	::	Account	->	String

const	remainingBalance	=	({	balance	})	=>	`Your	balance	is	$${balance}`;

//	finishTransaction	::	Account	->	String

const	finishTransaction	=	compose(remainingBalance,	updateLedger);

//	getTwenty	::	Account	->	Maybe(String)

const	getTwenty	=	compose(map(finishTransaction),	withdraw(20));

getTwenty({	balance:	200.00	});	

//	Just('Your	balance	is	$180')

getTwenty({	balance:	10.00	});

//	Nothing

	withdraw		will	tip	its	nose	at	us	and	return		Nothing		if	we're	short	on	cash.	This	function	also
communicates	its	fickleness	and	leaves	us	no	choice,	but	to		map		everything	afterwards.
The	difference	is	that	the		null		was	intentional	here.	Instead	of	a		Just('..')	,	we	get	the
	Nothing		back	to	signal	failure	and	our	application	effectively	halts	in	its	tracks.	This	is
important	to	note:	if	the		withdraw		fails,	then		map		will	sever	the	rest	of	our	computation
since	it	doesn't	ever	run	the	mapped	functions,	namely		finishTransaction	.	This	is	precisely
the	intended	behaviour	as	we'd	prefer	not	to	update	our	ledger	or	show	a	new	balance	if	we
hadn't	successfully	withdrawn	funds.

Chapter	08:	Tupperware

62

Releasing	the	Value
One	thing	people	often	miss	is	that	there	will	always	be	an	end	of	the	line;	some	effecting
function	that	sends	JSON	along,	or	prints	to	the	screen,	or	alters	our	filesystem,	or	what
have	you.	We	cannot	deliver	the	output	with		return	,	we	must	run	some	function	or	another
to	send	it	out	into	the	world.	We	can	phrase	it	like	a	Zen	Buddhist	koan:	"If	a	program	has	no
observable	effect,	does	it	even	run?".	Does	it	run	correctly	for	its	own	satisfaction?	I	suspect
it	merely	burns	some	cycles	and	goes	back	to	sleep...

Our	application's	job	is	to	retrieve,	transform,	and	carry	that	data	along	until	it's	time	to	say
goodbye	and	the	function	which	does	so	may	be	mapped,	thus	the	value	needn't	leave	the
warm	womb	of	its	container.	Indeed,	a	common	error	is	to	try	to	remove	the	value	from	our
	Maybe		one	way	or	another	as	if	the	possible	value	inside	will	suddenly	materialize	and	all
will	be	forgiven.	We	must	understand	it	may	be	a	branch	of	code	where	our	value	is	not
around	to	live	up	to	its	destiny.	Our	code,	much	like	Schrödinger's	cat,	is	in	two	states	at
once	and	should	maintain	that	fact	until	the	final	function.	This	gives	our	code	a	linear	flow
despite	the	logical	branching.

There	is,	however,	an	escape	hatch.	If	we	would	rather	return	a	custom	value	and	continue
on,	we	can	use	a	little	helper	called		maybe	.

//	maybe	::	b	->	(a	->	b)	->	Maybe	a	->	b

const	maybe	=	curry((v,	f,	m)	=>	{

		if	(m.isNothing)	{

				return	v;

		}

		return	f(m.$value);

});

//	getTwenty	::	Account	->	String

const	getTwenty	=	compose(maybe('You\'re	broke!',	finishTransaction),	withdraw(20));

getTwenty({	balance:	200.00	});	

//	'Your	balance	is	$180.00'

getTwenty({	balance:	10.00	});	

//	'You\'re	broke!'

We	will	now	either	return	a	static	value	(of	the	same	type	that		finishTransaction		returns)	or
continue	on	merrily	finishing	up	the	transaction	sans		Maybe	.	With		maybe	,	we	are	witnessing
the	equivalent	of	an		if/else		statement	whereas	with		map	,	the	imperative	analog	would
be:		if	(x	!==	null)	{	return	f(x)	}	.

Chapter	08:	Tupperware

63

The	introduction	of		Maybe		can	cause	some	initial	discomfort.	Users	of	Swift	and	Scala	will
know	what	I	mean	as	it's	baked	right	into	the	core	libraries	under	the	guise	of		Option(al)	.
When	pushed	to	deal	with		null		checks	all	the	time	(and	there	are	times	we	know	with
absolute	certainty	the	value	exists),	most	people	can't	help	but	feel	it's	a	tad	laborious.
However,	with	time,	it	will	become	second	nature	and	you'll	likely	appreciate	the	safety.	After
all,	most	of	the	time	it	will	prevent	cut	corners	and	save	our	hides.

Writing	unsafe	software	is	like	taking	care	to	paint	each	egg	with	pastels	before	hurling	it	into
traffic;	like	building	a	retirement	home	with	materials	warned	against	by	three	little	pigs.	It	will
do	us	well	to	put	some	safety	into	our	functions	and		Maybe		helps	us	do	just	that.

I'd	be	remiss	if	I	didn't	mention	that	the	"real"	implementation	will	split		Maybe		into	two	types:
one	for	something	and	the	other	for	nothing.	This	allows	us	to	obey	parametricity	in		map		so
values	like		null		and		undefined		can	still	be	mapped	over	and	the	universal	qualification	of
the	value	in	a	functor	will	be	respected.	You'll	often	see	types	like		Some(x)	/	None		or
	Just(x)	/	Nothing		instead	of	a		Maybe		that	does	a		null		check	on	its	value.

Pure	Error	Handling

It	may	come	as	a	shock,	but		throw/catch		is	not	very	pure.	When	an	error	is	thrown,	instead
of	returning	an	output	value,	we	sound	the	alarms!	The	function	attacks,	spewing	thousands
of	0s	and	1s	like	shields	and	spears	in	an	electric	battle	against	our	intruding	input.	With	our
new	friend		Either	,	we	can	do	better	than	to	declare	war	on	input,	we	can	respond	with	a
polite	message.	Let's	take	a	look:

A	complete	implementation	is	given	in	the	Appendix	B

Chapter	08:	Tupperware

64

class	Either	{

		static	of(x)	{

				return	new	Right(x);

		}

		constructor(x)	{

				this.$value	=	x;

		}

}

class	Left	extends	Either	{

		map(f)	{

				return	this;

		}

		inspect()	{

				return	`Left(${inspect(this.$value)})`;

		}

}

class	Right	extends	Either	{

		map(f)	{

				return	Either.of(f(this.$value));

		}

		inspect()	{

				return	`Right(${inspect(this.$value)})`;

		}

}

const	left	=	x	=>	new	Left(x);

	Left		and		Right		are	two	subclasses	of	an	abstract	type	we	call		Either	.	I've	skipped	the
ceremony	of	creating	the		Either		superclass	as	we	won't	ever	use	it,	but	it's	good	to	be
aware.	Now	then,	there's	nothing	new	here	besides	the	two	types.	Let's	see	how	they	act:

Either.of('rain').map(str	=>	`b${str}`);	

//	Right('brain')

left('rain').map(str	=>	`It's	gonna	${str},	better	bring	your	umbrella!`);	

//	Left('rain')

Either.of({	host:	'localhost',	port:	80	}).map(prop('host'));

//	Right('localhost')

left('rolls	eyes...').map(prop('host'));

//	Left('rolls	eyes...')

Chapter	08:	Tupperware

65

	Left		is	the	teenagery	sort	and	ignores	our	request	to		map		over	it.		Right		will	work	just	like
	Container		(a.k.a	Identity).	The	power	comes	from	the	ability	to	embed	an	error	message
within	the		Left	.

Suppose	we	have	a	function	that	might	not	succeed.	How	about	we	calculate	an	age	from	a
birth	date.	We	could	use		Nothing		to	signal	failure	and	branch	our	program,	however,	that
doesn't	tell	us	much.	Perhaps,	we'd	like	to	know	why	it	failed.	Let's	write	this	using		Either	.

const	moment	=	require('moment');

//	getAge	::	Date	->	User	->	Either(String,	Number)

const	getAge	=	curry((now,	user)	=>	{

		const	birthDate	=	moment(user.birthDate,	'YYYY-MM-DD');

		return	birthDate.isValid()

				?	Either.of(now.diff(birthDate,	'years'))

				:	left('Birth	date	could	not	be	parsed');

});

getAge(moment(),	{	birthDate:	'2005-12-12'	});

//	Right(9)

getAge(moment(),	{	birthDate:	'July	4,	2001'	});

//	Left('Birth	date	could	not	be	parsed')

Now,	just	like		Nothing	,	we	are	short-circuiting	our	app	when	we	return	a		Left	.	The
difference,	is	now	we	have	a	clue	as	to	why	our	program	has	derailed.	Something	to	notice
is	that	we	return		Either(String,	Number)	,	which	holds	a		String		as	its	left	value	and	a
	Number		as	its		Right	.	This	type	signature	is	a	bit	informal	as	we	haven't	taken	the	time	to
define	an	actual		Either		superclass,	however,	we	learn	a	lot	from	the	type.	It	informs	us	that
we're	either	getting	an	error	message	or	the	age	back.

//	fortune	::	Number	->	String

const	fortune	=	compose(concat('If	you	survive,	you	will	be	'),	toString,	add(1));

//	zoltar	::	User	->	Either(String,	_)

const	zoltar	=	compose(map(console.log),	map(fortune),	getAge(moment()));

zoltar({	birthDate:	'2005-12-12'	});

//	'If	you	survive,	you	will	be	10'

//	Right(undefined)

zoltar({	birthDate:	'balloons!'	});

//	Left('Birth	date	could	not	be	parsed')

Chapter	08:	Tupperware

66

When	the		birthDate		is	valid,	the	program	outputs	its	mystical	fortune	to	the	screen	for	us	to
behold.	Otherwise,	we	are	handed	a		Left		with	the	error	message	plain	as	day	though	still
tucked	away	in	its	container.	That	acts	just	as	if	we'd	thrown	an	error,	but	in	a	calm,	mild
manner	fashion	as	opposed	to	losing	its	temper	and	screaming	like	a	child	when	something
goes	wrong.

In	this	example,	we	are	logically	branching	our	control	flow	depending	on	the	validity	of	the
birth	date,	yet	it	reads	as	one	linear	motion	from	right	to	left	rather	than	climbing	through	the
curly	braces	of	a	conditional	statement.	Usually,	we'd	move	the		console.log		out	of	our
	zoltar		function	and		map		it	at	the	time	of	calling,	but	it's	helpful	to	see	how	the		Right	
branch	differs.	We	use		_		in	the	right	branch's	type	signature	to	indicate	it's	a	value	that
should	be	ignored	(In	some	browsers	you	have	to	use		console.log.bind(console)		to	use	it
first	class).

I'd	like	to	take	this	opportunity	to	point	out	something	you	may	have	missed:		fortune	,
despite	its	use	with		Either		in	this	example,	is	completely	ignorant	of	any	functors	milling
about.	This	was	also	the	case	with		finishTransaction		in	the	previous	example.	At	the	time
of	calling,	a	function	can	be	surrounded	by		map	,	which	transforms	it	from	a	non-functory
function	to	a	functory	one,	in	informal	terms.	We	call	this	process	lifting.	Functions	tend	to	be
better	off	working	with	normal	data	types	rather	than	container	types,	then	lifted	into	the	right
container	as	deemed	necessary.	This	leads	to	simpler,	more	reusable	functions	that	can	be
altered	to	work	with	any	functor	on	demand.

	Either		is	great	for	casual	errors	like	validation	as	well	as	more	serious,	stop	the	show
errors	like	missing	files	or	broken	sockets.	Try	replacing	some	of	the		Maybe		examples	with
	Either		to	give	better	feedback.

Now,	I	can't	help	but	feel	I've	done		Either		a	disservice	by	introducing	it	as	merely	a
container	for	error	messages.	It	captures	logical	disjunction	(a.k.a		||)	in	a	type.	It	also
encodes	the	idea	of	a	Coproduct	from	category	theory,	which	won't	be	touched	on	in	this
book,	but	is	well	worth	reading	up	on	as	there's	properties	to	be	exploited.	It	is	the	canonical
sum	type	(or	disjoint	union	of	sets)	because	its	amount	of	possible	inhabitants	is	the	sum	of
the	two	contained	types	(I	know	that's	a	bit	hand	wavy	so	here's	a	great	article).	There	are
many	things		Either		can	be,	but	as	a	functor,	it	is	used	for	its	error	handling.

Just	like	with		Maybe	,	we	have	little		either	,	which	behaves	similarly,	but	takes	two
functions	instead	of	one	and	a	static	value.	Each	function	should	return	the	same	type:

Chapter	08:	Tupperware

67

https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/sum-types

//	either	::	(a	->	c)	->	(b	->	c)	->	Either	a	b	->	c

const	either	=	curry((f,	g,	e)	=>	{

		let	result;

		switch	(e.constructor)	{

				case	Left:

						result	=	f(e.$value);

						break;

				case	Right:

						result	=	g(e.$value);

						break;

				//	No	Default

		}

		return	result;

});

//	zoltar	::	User	->	_

const	zoltar	=	compose(console.log,	either(id,	fortune),	getAge(moment()));

zoltar({	birthDate:	'2005-12-12'	});

//	'If	you	survive,	you	will	be	10'

//	undefined

zoltar({	birthDate:	'balloons!'	});

//	'Birth	date	could	not	be	parsed'

//	undefined

Finally,	a	use	for	that	mysterious		id		function.	It	simply	parrots	back	the	value	in	the		Left	
to	pass	the	error	message	to		console.log	.	We've	made	our	fortune-telling	app	more	robust
by	enforcing	error	handling	from	within		getAge	.	We	either	slap	the	user	with	a	hard	truth	like
a	high	five	from	a	palm	reader	or	we	carry	on	with	our	process.	And	with	that,	we're	ready	to
move	on	to	an	entirely	different	type	of	functor.

Old	McDonald	Had	Effects...

Chapter	08:	Tupperware

68

In	our	chapter	about	purity	we	saw	a	peculiar	example	of	a	pure	function.	This	function
contained	a	side-effect,	but	we	dubbed	it	pure	by	wrapping	its	action	in	another	function.
Here's	another	example	of	this:

//	getFromStorage	::	String	->	(_	->	String)

const	getFromStorage	=	key	=>	()	=>	localStorage[key];

Had	we	not	surrounded	its	guts	in	another	function,		getFromStorage		would	vary	its	output
depending	on	external	circumstance.	With	the	sturdy	wrapper	in	place,	we	will	always	get
the	same	output	per	input:	a	function	that,	when	called,	will	retrieve	a	particular	item	from
	localStorage	.	And	just	like	that	(maybe	throw	in	a	few	Hail	Mary's)	we've	cleared	our
conscience	and	all	is	forgiven.

Except,	this	isn't	particularly	useful	now	is	it.	Like	a	collectible	action	figure	in	its	original
packaging,	we	can't	actually	play	with	it.	If	only	there	were	a	way	to	reach	inside	of	the
container	and	get	at	its	contents...	Enter		IO	.

Chapter	08:	Tupperware

69

class	IO	{

		static	of(x)	{

				return	new	IO(()	=>	x);

		}

		constructor(fn)	{

				this.$value	=	fn;

		}

		map(fn)	{

				return	new	IO(compose(fn,	this.$value));

		}

		inspect()	{

				return	`IO(${inspect(this.$value)})`;

		}

}

	IO		differs	from	the	previous	functors	in	that	the		$value		is	always	a	function.	We	don't	think
of	its		$value		as	a	function,	however	-	that	is	an	implementation	detail	and	we	best	ignore	it.
What	is	happening	is	exactly	what	we	saw	with	the		getFromStorage		example:		IO		delays
the	impure	action	by	capturing	it	in	a	function	wrapper.	As	such,	we	think	of		IO		as
containing	the	return	value	of	the	wrapped	action	and	not	the	wrapper	itself.	This	is	apparent
in	the		of		function:	we	have	an		IO(x)	,	the		IO(()	=>	x)		is	just	necessary	to	avoid
evaluation.	Note	that,	to	simplify	reading,	we'll	show	the	hypothetical	value	contained	in	the
	IO		as	result;	however	in	practice,	you	can't	tell	what	this	value	is	until	you've	actually
unleashed	the	effects!

Let's	see	it	in	use:

//	ioWindow	::	IO	Window

const	ioWindow	=	new	IO(()	=>	window);

ioWindow.map(win	=>	win.innerWidth);

//	IO(1430)

ioWindow

		.map(prop('location'))

		.map(prop('href'))

		.map(split('/'));

//	IO(['http:',	'',	'localhost:8000',	'blog',	'posts'])

//	$::	String	->	IO	[DOM]

const	$	=	selector	=>	new	IO(()	=>	document.querySelectorAll(selector));

$('#myDiv').map(head).map(div	=>	div.innerHTML);

//	IO('I	am	some	inner	html')

Chapter	08:	Tupperware

70

Here,		ioWindow		is	an	actual		IO		that	we	can		map		over	straight	away,	whereas		$		is	a
function	that	returns	an		IO		after	it's	called.	I've	written	out	the	conceptual	return	values	to
better	express	the		IO	,	though,	in	reality,	it	will	always	be		{	$value:	[Function]	}	.	When
we		map		over	our		IO	,	we	stick	that	function	at	the	end	of	a	composition	which,	in	turn,
becomes	the	new		$value		and	so	on.	Our	mapped	functions	do	not	run,	they	get	tacked	on
the	end	of	a	computation	we're	building	up,	function	by	function,	like	carefully	placing
dominoes	that	we	don't	dare	tip	over.	The	result	is	reminiscent	of	Gang	of	Four's	command
pattern	or	a	queue.

Take	a	moment	to	channel	your	functor	intuition.	If	we	see	past	the	implementation	details,
we	should	feel	right	at	home	mapping	over	any	container	no	matter	its	quirks	or
idiosyncrasies.	We	have	the	functor	laws,	which	we	will	explore	toward	the	end	of	the
chapter,	to	thank	for	this	pseudo-psychic	power.	At	any	rate,	we	can	finally	play	with	impure
values	without	sacrificing	our	precious	purity.

Now,	we've	caged	the	beast,	but	we'll	still	have	to	set	it	free	at	some	point.	Mapping	over	our
	IO		has	built	up	a	mighty	impure	computation	and	running	it	is	surely	going	to	disturb	the
peace.	So	where	and	when	can	we	pull	the	trigger?	Is	it	even	possible	to	run	our		IO		and
still	wear	white	at	our	wedding?	The	answer	is	yes,	if	we	put	the	onus	on	the	calling	code.
Our	pure	code,	despite	the	nefarious	plotting	and	scheming,	maintains	its	innocence	and	it's
the	caller	who	gets	burdened	with	the	responsibility	of	actually	running	the	effects.	Let's	see
an	example	to	make	this	concrete.

//	url	::	IO	String

const	url	=	new	IO(()	=>	window.location.href);

//	toPairs	::	String	->	[[String]]

const	toPairs	=	compose(map(split('=')),	split('&'));

//	params	::	String	->	[[String]]

const	params	=	compose(toPairs,	last,	split('?'));

//	findParam	::	String	->	IO	Maybe	[String]

const	findParam	=	key	=>	map(compose(Maybe.of,	filter(compose(eq(key),	head)),	params)

,	url);

//	--	Impure	calling	code	--

//	run	it	by	calling	$value()!

findParam('searchTerm').$value();

//	Just([['searchTerm',	'wafflehouse']])

Our	library	keeps	its	hands	clean	by	wrapping		url		in	an		IO		and	passing	the	buck	to	the
caller.	You	might	have	also	noticed	that	we	have	stacked	our	containers;	it's	perfectly
reasonable	to	have	a		IO(Maybe([x]))	,	which	is	three	functors	deep	(Array		is	most

Chapter	08:	Tupperware

71

definitely	a	mappable	container	type)	and	exceptionally	expressive.

There's	something	that's	been	bothering	me	and	we	should	rectify	it	immediately:		IO	's
	$value		isn't	really	its	contained	value,	nor	is	it	a	private	property.	It	is	the	pin	in	the	grenade
and	it	is	meant	to	be	pulled	by	a	caller	in	the	most	public	of	ways.	Let's	rename	this	property
to		unsafePerformIO		to	remind	our	users	of	its	volatility.

class	IO	{

		constructor(io)	{

				this.unsafePerformIO	=	io;

		}

		map(fn)	{

				return	new	IO(compose(fn,	this.unsafePerformIO));

		}

}

There,	much	better.	Now	our	calling	code	becomes
	findParam('searchTerm').unsafePerformIO()	,	which	is	clear	as	day	to	users	(and	readers)	of
the	application.

	IO		will	be	a	loyal	companion,	helping	us	tame	those	feral	impure	actions.	Next,	we'll	see	a
type	similar	in	spirit,	but	has	a	drastically	different	use	case.

Asynchronous	Tasks
Callbacks	are	the	narrowing	spiral	staircase	to	hell.	They	are	control	flow	as	designed	by
M.C.	Escher.	With	each	nested	callback	squeezed	in	between	the	jungle	gym	of	curly	braces
and	parenthesis,	they	feel	like	limbo	in	an	oubliette	(how	low	can	we	go?!).	I'm	getting
claustrophobic	chills	just	thinking	about	them.	Not	to	worry,	we	have	a	much	better	way	of
dealing	with	asynchronous	code	and	it	starts	with	an	"F".

The	internals	are	a	bit	too	complicated	to	spill	out	all	over	the	page	here	so	we	will	use
	Data.Task		(previously		Data.Future)	from	Quildreen	Motta's	fantastic	Folktale.	Behold
some	example	usage:

Chapter	08:	Tupperware

72

http://folktale.origamitower.com/

//	--	Node	readFile	example	--

const	fs	=	require('fs');

//	readFile	::	String	->	Task	Error	String

const	readFile	=	filename	=>	new	Task((reject,	result)	=>	{

		fs.readFile(filename,	(err,	data)	=>	(err	?	reject(err)	:	result(data)));

});

readFile('metamorphosis').map(split('\n')).map(head);

//	Task('One	morning,	as	Gregor	Samsa	was	waking	up	from	anxious	dreams,	he	discovered

	that

//	in	bed	he	had	been	changed	into	a	monstrous	verminous	bug.')

//	--	jQuery	getJSON	example	---

//	getJSON	::	String	->	{}	->	Task	Error	JSON

const	getJSON	=	curry((url,	params)	=>	new	Task((reject,	result)	=>	{

		$.getJSON(url,	params,	result).fail(reject);

}));

getJSON('/video',	{	id:	10	}).map(prop('title'));

//	Task('Family	Matters	ep	15')

//	--	Default	Minimal	Context	--

//	We	can	put	normal,	non	futuristic	values	inside	as	well

Task.of(3).map(three	=>	three	+	1);

//	Task(4)

The	functions	I'm	calling		reject		and		result		are	our	error	and	success	callbacks,
respectively.	As	you	can	see,	we	simply		map		over	the		Task		to	work	on	the	future	value	as
if	it	was	right	there	in	our	grasp.	By	now		map		should	be	old	hat.

If	you're	familiar	with	promises,	you	might	recognize	the	function		map		as		then		with		Task	
playing	the	role	of	our	promise.	Don't	fret	if	you	aren't	familiar	with	promises,	we	won't	be
using	them	anyhow	because	they	are	not	pure,	but	the	analogy	holds	nonetheless.

Like		IO	,		Task		will	patiently	wait	for	us	to	give	it	the	green	light	before	running.	In	fact,
because	it	waits	for	our	command,		IO		is	effectively	subsumed	by		Task		for	all	things
asynchronous;		readFile		and		getJSON		don't	require	an	extra		IO		container	to	be	pure.
What's	more,		Task		works	in	a	similar	fashion	when	we		map		over	it:	we're	placing
instructions	for	the	future	like	a	chore	chart	in	a	time	capsule	-	an	act	of	sophisticated
technological	procrastination.

Chapter	08:	Tupperware

73

To	run	our		Task	,	we	must	call	the	method		fork	.	This	works	like		unsafePerformIO	,	but	as
the	name	suggests,	it	will	fork	our	process	and	evaluation	continues	on	without	blocking	our
thread.	This	can	be	implemented	in	numerous	ways	with	threads	and	such,	but	here	it	acts
as	a	normal	async	call	would	and	the	big	wheel	of	the	event	loop	keeps	on	turning.	Let's
look	at		fork	:

//	--	Pure	application	---

//	blogPage	::	Posts	->	HTML

const	blogPage	=	Handlebars.compile(blogTemplate);

//	renderPage	::	Posts	->	HTML

const	renderPage	=	compose(blogPage,	sortBy('date'));

//	blog	::	Params	->	Task	Error	HTML

const	blog	=	compose(map(renderPage),	getJSON('/posts'));

//	--	Impure	calling	code	--

blog({}).fork(

		error	=>	$('#error').html(error.message),

		page	=>	$('#main').html(page),

);

$('#spinner').show();

Upon	calling		fork	,	the		Task		hurries	off	to	find	some	posts	and	render	the	page.
Meanwhile,	we	show	a	spinner	since		fork		does	not	wait	for	a	response.	Finally,	we	will
either	display	an	error	or	render	the	page	onto	the	screen	depending	if	the		getJSON		call
succeeded	or	not.

Take	a	moment	to	consider	how	linear	the	control	flow	is	here.	We	just	read	bottom	to	top,
right	to	left	even	though	the	program	will	actually	jump	around	a	bit	during	execution.	This
makes	reading	and	reasoning	about	our	application	simpler	than	having	to	bounce	between
callbacks	and	error	handling	blocks.

Goodness,	would	you	look	at	that,		Task		has	also	swallowed	up		Either	!	It	must	do	so	in
order	to	handle	futuristic	failures	since	our	normal	control	flow	does	not	apply	in	the	async
world.	This	is	all	well	and	good	as	it	provides	sufficient	and	pure	error	handling	out	of	the
box.

Even	with		Task	,	our		IO		and		Either		functors	are	not	out	of	a	job.	Bear	with	me	on	a	quick
example	that	leans	toward	the	more	complex	and	hypothetical	side,	but	is	useful	for
illustrative	purposes.

Chapter	08:	Tupperware

74

//	Postgres.connect	::	Url	->	IO	DbConnection

//	runQuery	::	DbConnection	->	ResultSet

//	readFile	::	String	->	Task	Error	String

//	--	Pure	application	---

//	dbUrl	::	Config	->	Either	Error	Url

const	dbUrl	=	({	uname,	pass,	db	})	=>	{

		if	(uname	&&	pass	&&	host	&&	db)	{

				return	Either.of(`db:pg://${uname}:${pass}@${host}5432/${db}`);

		}

		return	left(Error('Invalid	config!'));

};

//	connectDb	::	Config	->	Either	Error	(IO	DbConnection)

const	connectDb	=	compose(map(Postgres.connect),	dbUrl);

//	getConfig	::	Filename	->	Task	Error	(Either	Error	(IO	DbConnection))

const	getConfig	=	compose(map(compose(connectDb,	JSON.parse)),	readFile);

//	--	Impure	calling	code	--

getConfig('db.json').fork(

		logErr('couldn\'t	read	file'),

		either(console.log,	map(runQuery)),

);

In	this	example,	we	still	make	use	of		Either		and		IO		from	within	the	success	branch	of
	readFile	.		Task		takes	care	of	the	impurities	of	reading	a	file	asynchronously,	but	we	still
deal	with	validating	the	config	with		Either		and	wrangling	the	db	connection	with		IO	.	So
you	see,	we're	still	in	business	for	all	things	synchronous.

I	could	go	on,	but	that's	all	there	is	to	it.	Simple	as		map	.

In	practice,	you'll	likely	have	multiple	asynchronous	tasks	in	one	workflow	and	we	haven't	yet
acquired	the	full	container	apis	to	tackle	this	scenario.	Not	to	worry,	we'll	look	at	monads	and
such	soon,	but	first,	we	must	examine	the	maths	that	make	this	all	possible.

A	Spot	of	Theory
As	mentioned	before,	functors	come	from	category	theory	and	satisfy	a	few	laws.	Let's	first
explore	these	useful	properties.

Chapter	08:	Tupperware

75

//	identity

map(id)	===	id;

//	composition

compose(map(f),	map(g))	===	map(compose(f,	g));

The	identity	law	is	simple,	but	important.	These	laws	are	runnable	bits	of	code	so	we	can	try
them	on	our	own	functors	to	validate	their	legitimacy.

const	idLaw1	=	map(id);

const	idLaw2	=	id;

idLaw1(Container.of(2));	//	Container(2)

idLaw2(Container.of(2));	//	Container(2)

You	see,	they	are	equal.	Next	let's	look	at	composition.

const	compLaw1	=	compose(map(concat('	world')),	map(concat('	cruel')));

const	compLaw2	=	map(compose(concat('	world'),	concat('	cruel')));

compLaw1(Container.of('Goodbye'));	//	Container('	world	cruelGoodbye')

compLaw2(Container.of('Goodbye'));	//	Container('	world	cruelGoodbye')

In	category	theory,	functors	take	the	objects	and	morphisms	of	a	category	and	map	them	to
a	different	category.	By	definition,	this	new	category	must	have	an	identity	and	the	ability	to
compose	morphisms,	but	we	needn't	check	because	the	aforementioned	laws	ensure	these
are	preserved.

Perhaps	our	definition	of	a	category	is	still	a	bit	fuzzy.	You	can	think	of	a	category	as	a
network	of	objects	with	morphisms	that	connect	them.	So	a	functor	would	map	the	one
category	to	the	other	without	breaking	the	network.	If	an	object		a		is	in	our	source	category
	C	,	when	we	map	it	to	category		D		with	functor		F	,	we	refer	to	that	object	as		F	a		(If	you
put	it	together	what	does	that	spell?!).	Perhaps,	it's	better	to	look	at	a	diagram:

Chapter	08:	Tupperware

76

For	instance,		Maybe		maps	our	category	of	types	and	functions	to	a	category	where	each
object	may	not	exist	and	each	morphism	has	a		null		check.	We	accomplish	this	in	code	by
surrounding	each	function	with		map		and	each	type	with	our	functor.	We	know	that	each	of
our	normal	types	and	functions	will	continue	to	compose	in	this	new	world.	Technically,	each
functor	in	our	code	maps	to	a	sub	category	of	types	and	functions	which	makes	all	functors	a
particular	brand	called	endofunctors,	but	for	our	purposes,	we'll	think	of	it	as	a	different
category.

We	can	also	visualize	the	mapping	of	a	morphism	and	its	corresponding	objects	with	this
diagram:

In	addition	to	visualizing	the	mapped	morphism	from	one	category	to	another	under	the
functor		F	,	we	see	that	the	diagram	commutes,	which	is	to	say,	if	you	follow	the	arrows	each
route	produces	the	same	result.	The	different	routes	mean	different	behavior,	but	we	always
end	at	the	same	type.	This	formalism	gives	us	principled	ways	to	reason	about	our	code	-
we	can	boldly	apply	formulas	without	having	to	parse	and	examine	each	individual	scenario.
Let's	take	a	concrete	example.

Chapter	08:	Tupperware

77

//	topRoute	::	String	->	Maybe	String

const	topRoute	=	compose(Maybe.of,	reverse);

//	bottomRoute	::	String	->	Maybe	String

const	bottomRoute	=	compose(map(reverse),	Maybe.of);

topRoute('hi');	//	Just('ih')

bottomRoute('hi');	//	Just('ih')

Or	visually:

We	can	instantly	see	and	refactor	code	based	on	properties	held	by	all	functors.

Functors	can	stack:

const	nested	=	Task.of([Either.of('pillows'),	left('no	sleep	for	you')]);

map(map(map(toUpperCase)),	nested);

//	Task([Right('PILLOWS'),	Left('no	sleep	for	you')])

What	we	have	here	with		nested		is	a	future	array	of	elements	that	might	be	errors.	We		map	
to	peel	back	each	layer	and	run	our	function	on	the	elements.	We	see	no	callbacks,	if/else's,
or	for	loops;	just	an	explicit	context.	We	do,	however,	have	to		map(map(map(f)))	.	We	can
instead	compose	functors.	You	heard	me	correctly:

Chapter	08:	Tupperware

78

class	Compose	{

		constructor(fgx)	{

				this.getCompose	=	fgx;

		}

		static	of(fgx)	{

				return	new	Compose(fgx);

		}

		map(fn)	{

				return	new	Compose(map(map(fn),	this.getCompose));

		}

}

const	tmd	=	Task.of(Maybe.of(',	rock	on,	Chicago'));

const	ctmd	=	Compose.of(tmd);

map(concat('Rock	over	London'),	ctmd);

//	Compose(Task(Just('Rock	over	London,	rock	on,	Chicago')))

ctmd.getCompose;

//	Task(Just('Rock	over	London,	rock	on,	Chicago'))

There,	one		map	.	Functor	composition	is	associative	and	earlier,	we	defined		Container	,
which	is	actually	called	the		Identity		functor.	If	we	have	identity	and	associative
composition	we	have	a	category.	This	particular	category	has	categories	as	objects	and
functors	as	morphisms,	which	is	enough	to	make	one's	brain	perspire.	We	won't	delve	too
far	into	this,	but	it's	nice	to	appreciate	the	architectural	implications	or	even	just	the	simple
abstract	beauty	in	the	pattern.

In	Summary
We've	seen	a	few	different	functors,	but	there	are	infinitely	many.	Some	notable	omissions
are	iterable	data	structures	like	trees,	lists,	maps,	pairs,	you	name	it.	Event	streams	and
observables	are	both	functors.	Others	can	be	for	encapsulation	or	even	just	type	modelling.
Functors	are	all	around	us	and	we'll	use	them	extensively	throughout	the	book.

What	about	calling	a	function	with	multiple	functor	arguments?	How	about	working	with	an
order	sequence	of	impure	or	async	actions?	We	haven't	yet	acquired	the	full	tool	set	for
working	in	this	boxed	up	world.	Next,	we'll	cut	right	to	the	chase	and	look	at	monads.

Chapter	09:	Monadic	Onions

Chapter	08:	Tupperware

79

Exercises

Exercise

Use	`add`	and	`map`	to	make	a	function	that	increments	a	value	inside	a	functor.

//	incrF	::	Functor	f	=>	f	Int	->	f	Int

const	incrF	=	undefined;

Given	the	following	User	object:

const	user	=	{	id:	2,	name:	'Albert',	active:	true	};

Exercise

Use	`safeProp`	and	`head`	to	find	the	first	initial	of	the	user.

//	initial	::	User	->	Maybe	String

const	initial	=	undefined;

Given	the	following	helper	functions:

//	showWelcome	::	User	->	String

const	showWelcome	=	compose(concat('Welcome	'),	prop('name'));

//	checkActive	::	User	->	Either	String	User

const	checkActive	=	function	checkActive(user)	{

		return	user.active

				?	Either.of(user)

				:	left('Your	account	is	not	active');

};

Exercise

Write	a	function	that	uses	`checkActive`	and	`showWelcome`	to	grant	access	or	return
the	error.

//	eitherWelcome	::	User	->	Either	String	String

const	eitherWelcome	=	undefined;

Chapter	08:	Tupperware

80

We	now	consider	the	following	functions:

//	validateUser	::	(User	->	Either	String	())	->	User	->	Either	String	User

const	validateUser	=	curry((validate,	user)	=>	validate(user).map(_	=>	user));

//	save	::	User	->	IO	User

const	save	=	user	=>	new	IO(()	=>	({	...user,	saved:	true	}));

Exercise

Write	a	function	`validateName`	which	checks	whether	a	user	has	a	name	longer	than	3
characters	or	return	an	error	message.	Then	use	`either`,	`showWelcome`	and	`save`	to
write	a	`register`	function	to	signup	and	welcome	a	user	when	the	validation	is	ok.
Remember	either's	two	arguments	must	return	the	same	type.

//	validateName	::	User	->	Either	String	()

const	validateName	=	undefined;

//	register	::	User	->	IO	String

const	register	=	compose(undefined,	validateUser(validateName));

Chapter	08:	Tupperware

81

Chapter	09:	Monadic	Onions

Pointy	Functor	Factory
Before	we	go	any	further,	I	have	a	confession	to	make:	I	haven't	been	fully	honest	about	that
	of		method	we've	placed	on	each	of	our	types.	Turns	out,	it	is	not	there	to	avoid	the		new	
keyword,	but	rather	to	place	values	in	what's	called	a	default	minimal	context.	Yes,		of		does
not	actually	take	the	place	of	a	constructor	-	it	is	part	of	an	important	interface	we	call
Pointed.

A	pointed	functor	is	a	functor	with	an		of		method

What's	important	here	is	the	ability	to	drop	any	value	in	our	type	and	start	mapping	away.

IO.of('tetris').map(concat('	master'));

//	IO('tetris	master')

Maybe.of(1336).map(add(1));

//	Maybe(1337)

Task.of([{	id:	2	},	{	id:	3	}]).map(map(prop('id')));

//	Task([2,3])

Either.of('The	past,	present	and	future	walk	into	a	bar...').map(concat('it	was	tense.'

));

//	Right('The	past,	present	and	future	walk	into	a	bar...it	was	tense.')

If	you	recall,		IO		and		Task	's	constructors	expect	a	function	as	their	argument,	but		Maybe	
and		Either		do	not.	The	motivation	for	this	interface	is	a	common,	consistent	way	to	place	a
value	into	our	functor	without	the	complexities	and	specific	demands	of	constructors.	The
term	"default	minimal	context"	lacks	precision,	yet	captures	the	idea	well:	we'd	like	to	lift	any
value	in	our	type	and		map		away	per	usual	with	the	expected	behaviour	of	whichever
functor.

One	important	correction	I	must	make	at	this	point,	pun	intended,	is	that		Left.of		doesn't
make	any	sense.	Each	functor	must	have	one	way	to	place	a	value	inside	it	and	with
	Either	,	that's		new	Right(x)	.	We	define		of		using		Right		because	if	our	type	can		map	,	it
should		map	.	Looking	at	the	examples	above,	we	should	have	an	intuition	about	how		of	
will	usually	work	and		Left		breaks	that	mold.

Chapter	09:	Monadic	Onions

82

You	may	have	heard	of	functions	such	as		pure	,		point	,		unit	,	and		return	.	These	are
various	monikers	for	our		of		method,	international	function	of	mystery.		of		will	become
important	when	we	start	using	monads	because,	as	we	will	see,	it's	our	responsibility	to
place	values	back	into	the	type	manually.

To	avoid	the		new		keyword,	there	are	several	standard	JavaScript	tricks	or	libraries	so	let's
use	them	and	use		of		like	a	responsible	adult	from	here	on	out.	I	recommend	using	functor
instances	from		folktale	,		ramda		or		fantasy-land		as	they	provide	the	correct		of		method
as	well	as	nice	constructors	that	don't	rely	on		new	.

Mixing	Metaphors

You	see,	in	addition	to	space	burritos	(if	you've	heard	the	rumors),	monads	are	like	onions.
Allow	me	to	demonstrate	with	a	common	situation:

Chapter	09:	Monadic	Onions

83

const	fs	=	require('fs');

//	readFile	::	String	->	IO	String

const	readFile	=	filename	=>	new	IO(()	=>	fs.readFileSync(filename,	'utf-8'));

//	print	::	String	->	IO	String

const	print	=	x	=>	new	IO(()	=>	{

		console.log(x);

		return	x;

});

//	cat	::	String	->	IO	(IO	String)

const	cat	=	compose(map(print),	readFile);

cat('.git/config');

//	IO(IO('[core]\nrepositoryformatversion	=	0\n'))

What	we've	got	here	is	an		IO		trapped	inside	another		IO		because		print		introduced	a
second		IO		during	our		map	.	To	continue	working	with	our	string,	we	must		map(map(f))		and
to	observe	the	effect,	we	must		unsafePerformIO().unsafePerformIO()	.

//	cat	::	String	->	IO	(IO	String)

const	cat	=	compose(map(print),	readFile);

//	catFirstChar	::	String	->	IO	(IO	String)

const	catFirstChar	=	compose(map(map(head)),	cat);

catFirstChar('.git/config');

//	IO(IO('['))

While	it	is	nice	to	see	that	we	have	two	effects	packaged	up	and	ready	to	go	in	our
application,	it	feels	a	bit	like	working	in	two	hazmat	suits	and	we	end	up	with	an
uncomfortably	awkward	API.	Let's	look	at	another	situation:

Chapter	09:	Monadic	Onions

84

//	safeProp	::	Key	->	{Key:	a}	->	Maybe	a

const	safeProp	=	curry((x,	obj)	=>	Maybe.of(obj[x]));

//	safeHead	::	[a]	->	Maybe	a

const	safeHead	=	safeProp(0);

//	firstAddressStreet	::	User	->	Maybe	(Maybe	(Maybe	Street))

const	firstAddressStreet	=	compose(

		map(map(safeProp('street'))),

		map(safeHead),

		safeProp('addresses'),

);

firstAddressStreet({

		addresses:	[{	street:	{	name:	'Mulburry',	number:	8402	},	postcode:	'WC2N'	}],

});

//	Maybe(Maybe(Maybe({name:	'Mulburry',	number:	8402})))

Again,	we	see	this	nested	functor	situation	where	it's	neat	to	see	there	are	three	possible
failures	in	our	function,	but	it's	a	little	presumptuous	to	expect	a	caller	to		map		three	times	to
get	at	the	value	-	we'd	only	just	met.	This	pattern	will	arise	time	and	time	again	and	it	is	the
primary	situation	where	we'll	need	to	shine	the	mighty	monad	symbol	into	the	night	sky.

I	said	monads	are	like	onions	because	tears	well	up	as	we	peel	back	each	layer	of	the
nested	functor	with		map		to	get	at	the	inner	value.	We	can	dry	our	eyes,	take	a	deep	breath,
and	use	a	method	called		join	.

const	mmo	=	Maybe.of(Maybe.of('nunchucks'));

//	Maybe(Maybe('nunchucks'))

mmo.join();

//	Maybe('nunchucks')

const	ioio	=	IO.of(IO.of('pizza'));

//	IO(IO('pizza'))

ioio.join();

//	IO('pizza')

const	ttt	=	Task.of(Task.of(Task.of('sewers')));

//	Task(Task(Task('sewers')));

ttt.join();

//	Task(Task('sewers'))

If	we	have	two	layers	of	the	same	type,	we	can	smash	them	together	with		join	.	This	ability
to	join	together,	this	functor	matrimony,	is	what	makes	a	monad	a	monad.	Let's	inch	toward
the	full	definition	with	something	a	little	more	accurate:

Chapter	09:	Monadic	Onions

85

Monads	are	pointed	functors	that	can	flatten

Any	functor	which	defines	a		join		method,	has	an		of		method,	and	obeys	a	few	laws	is	a
monad.	Defining		join		is	not	too	difficult	so	let's	do	so	for		Maybe	:

Maybe.prototype.join	=	function	join()	{

		return	this.isNothing()	?	Maybe.of(null)	:	this.$value;

};

There,	simple	as	consuming	one's	twin	in	the	womb.	If	we	have	a		Maybe(Maybe(x))		then
	.$value		will	just	remove	the	unnecessary	extra	layer	and	we	can	safely		map		from	there.
Otherwise,	we'll	just	have	the	one		Maybe		as	nothing	would	have	been	mapped	in	the	first
place.

Now	that	we	have	a		join		method,	let's	sprinkle	some	magic	monad	dust	over	the
	firstAddressStreet		example	and	see	it	in	action:

//	join	::	Monad	m	=>	m	(m	a)	->	m	a

const	join	=	mma	=>	mma.join();

//	firstAddressStreet	::	User	->	Maybe	Street

const	firstAddressStreet	=	compose(

		join,

		map(safeProp('street')),

		join,

		map(safeHead),	safeProp('addresses'),

);

firstAddressStreet({

		addresses:	[{	street:	{	name:	'Mulburry',	number:	8402	},	postcode:	'WC2N'	}],

});

//	Maybe({name:	'Mulburry',	number:	8402})

We	added		join		wherever	we	encountered	the	nested		Maybe	's	to	keep	them	from	getting
out	of	hand.	Let's	do	the	same	with		IO		to	give	us	a	feel	for	that.

IO.prototype.join	=	()	=>	this.unsafePerformIO();

Again,	we	simply	remove	one	layer.	Mind	you,	we	have	not	thrown	out	purity,	but	merely
removed	one	layer	of	excess	shrink	wrap.

Chapter	09:	Monadic	Onions

86

//	log	::	a	->	IO	a

const	log	=	x	=>	IO.of(()	=>	{

		console.log(x);

		return	x;

});

//	setStyle	::	Selector	->	CSSProps	->	IO	DOM

const	setStyle	=

		curry((sel,	props)	=>	new	IO(()	=>	jQuery(sel).css(props)));

//	getItem	::	String	->	IO	String

const	getItem	=	key	=>	new	IO(()	=>	localStorage.getItem(key));

//	applyPreferences	::	String	->	IO	DOM

const	applyPreferences	=	compose(

		join,

		map(setStyle('#main')),

		join,

		map(log),

		map(JSON.parse),

		getItem,

);

applyPreferences('preferences').unsafePerformIO();

//	Object	{backgroundColor:	"green"}

//	<div	style="background-color:	'green'"/>

	getItem		returns	an		IO	String		so	we		map		to	parse	it.	Both		log		and		setStyle		return
	IO	's	themselves	so	we	must		join		to	keep	our	nesting	under	control.

My	Chain	Hits	My	Chest

Chapter	09:	Monadic	Onions

87

You	might	have	noticed	a	pattern.	We	often	end	up	calling		join		right	after	a		map	.	Let's
abstract	this	into	a	function	called		chain	.

//	chain	::	Monad	m	=>	(a	->	m	b)	->	m	a	->	m	b

const	chain	=	curry((f,	m)	=>	m.map(f).join());

//	or

//	chain	::	Monad	m	=>	(a	->	m	b)	->	m	a	->	m	b

const	chain	=	f	=>	compose(join,	map(f));

We'll	just	bundle	up	this	map/join	combo	into	a	single	function.	If	you've	read	about	monads
previously,	you	might	have	seen		chain		called		>>=		(pronounced	bind)	or		flatMap		which
are	all	aliases	for	the	same	concept.	I	personally	think		flatMap		is	the	most	accurate	name,
but	we'll	stick	with		chain		as	it's	the	widely	accepted	name	in	JS.	Let's	refactor	the	two
examples	above	with		chain	:

Chapter	09:	Monadic	Onions

88

//	map/join

const	firstAddressStreet	=	compose(

		join,

		map(safeProp('street')),

		join,

		map(safeHead),

		safeProp('addresses'),

);

//	chain

const	firstAddressStreet	=	compose(

		chain(safeProp('street')),

		chain(safeHead),

		safeProp('addresses'),

);

//	map/join

const	applyPreferences	=	compose(

		join,

		map(setStyle('#main')),

		join,

		map(log),

		map(JSON.parse),

		getItem,

);

//	chain

const	applyPreferences	=	compose(

		chain(setStyle('#main')),

		chain(log),

		map(JSON.parse),

		getItem,

);

I	swapped	out	any		map/join		with	our	new		chain		function	to	tidy	things	up	a	bit.
Cleanliness	is	nice	and	all,	but	there's	more	to		chain		than	meets	the	eye	-	it's	more	of	a
tornado	than	a	vacuum.	Because		chain		effortlessly	nests	effects,	we	can	capture	both
sequence	and	variable	assignment	in	a	purely	functional	way.

Chapter	09:	Monadic	Onions

89

//	getJSON	::	Url	->	Params	->	Task	JSON

getJSON('/authenticate',	{	username:	'stale',	password:	'crackers'	})

		.chain(user	=>	getJSON('/friends',	{	user_id:	user.id	}));

//	Task([{name:	'Seimith',	id:	14},	{name:	'Ric',	id:	39}]);

//	querySelector	::	Selector	->	IO	DOM

querySelector('input.username')

		.chain(({	value:	uname	})	=>	querySelector('input.email')

		.chain(({	value:	email	})	=>	IO.of(`Welcome	${uname}	prepare	for	spam	at	${email}`))

);

//	IO('Welcome	Olivia	prepare	for	spam	at	olivia@tremorcontrol.net');

Maybe.of(3)

		.chain(three	=>	Maybe.of(2).map(add(three)));

//	Maybe(5);

Maybe.of(null)

		.chain(safeProp('address'))

		.chain(safeProp('street'));

//	Maybe(null);

We	could	have	written	these	examples	with		compose	,	but	we'd	need	a	few	helper	functions
and	this	style	lends	itself	to	explicit	variable	assignment	via	closure	anyhow.	Instead	we're
using	the	infix	version	of		chain		which,	incidentally,	can	be	derived	from		map		and		join		for
any	type	automatically:		t.prototype.chain	=	function(f)	{	return	this.map(f).join();	}	.
We	can	also	define		chain		manually	if	we'd	like	a	false	sense	of	performance,	though	we
must	take	care	to	maintain	the	correct	functionality	-	that	is,	it	must	equal		map		followed	by
	join	.	An	interesting	fact	is	that	we	can	derive		map		for	free	if	we've	created		chain		simply
by	bottling	the	value	back	up	when	we're	finished	with		of	.	With		chain	,	we	can	also	define
	join		as		chain(id)	.	It	may	feel	like	playing	Texas	Hold	em'	with	a	rhinestone	magician	in
that	I'm	just	pulling	things	out	of	my	behind,	but,	as	with	most	mathematics,	all	of	these
principled	constructs	are	interrelated.	Lots	of	these	derivations	are	mentioned	in	the
fantasyland	repo,	which	is	the	official	specification	for	algebraic	data	types	in	JavaScript.

Anyways,	let's	get	to	the	examples	above.	In	the	first	example,	we	see	two		Task	's	chained
in	a	sequence	of	asynchronous	actions	-	first	it	retrieves	the		user	,	then	it	finds	the	friends
with	that	user's	id.	We	use		chain		to	avoid	a		Task(Task([Friend]))		situation.

Next,	we	use		querySelector		to	find	a	few	different	inputs	and	create	a	welcoming	message.
Notice	how	we	have	access	to	both		uname		and		email		at	the	innermost	function	-	this	is
functional	variable	assignment	at	its	finest.	Since		IO		is	graciously	lending	us	its	value,	we
are	in	charge	of	putting	it	back	how	we	found	it	-	we	wouldn't	want	to	break	its	trust	(and	our
program).		IO.of		is	the	perfect	tool	for	the	job	and	it's	why	Pointed	is	an	important
prerequisite	to	the	Monad	interface.	However,	we	could	choose	to		map		as	that	would	also
return	the	correct	type:

Chapter	09:	Monadic	Onions

90

https://github.com/fantasyland/fantasy-land

querySelector('input.username').chain(({	value:	uname	})	=>

		querySelector('input.email').map(({	value:	email	})	=>

				`Welcome	${uname}	prepare	for	spam	at	${email}`));

//	IO('Welcome	Olivia	prepare	for	spam	at	olivia@tremorcontrol.net');

Finally,	we	have	two	examples	using		Maybe	.	Since		chain		is	mapping	under	the	hood,	if
any	value	is		null	,	we	stop	the	computation	dead	in	its	tracks.

Don't	worry	if	these	examples	are	hard	to	grasp	at	first.	Play	with	them.	Poke	them	with	a
stick.	Smash	them	to	bits	and	reassemble.	Remember	to		map		when	returning	a	"normal"
value	and		chain		when	we're	returning	another	functor.	In	the	next	chapter,	we'll	approach
	Applicatives		and	see	nice	tricks	to	make	this	kind	of	expressions	nicer	and	highly
readable.

As	a	reminder,	this	does	not	work	with	two	different	nested	types.	Functor	composition	and
later,	monad	transformers,	can	help	us	in	that	situation.

Power	Trip
Container	style	programming	can	be	confusing	at	times.	We	sometimes	find	ourselves
struggling	to	understand	how	many	containers	deep	a	value	is	or	if	we	need		map		or		chain	
(soon	we'll	see	more	container	methods).	We	can	greatly	improve	debugging	with	tricks	like
implementing		inspect		and	we'll	learn	how	to	create	a	"stack"	that	can	handle	whatever
effects	we	throw	at	it,	but	there	are	times	when	we	question	if	it's	worth	the	hassle.

I'd	like	to	swing	the	fiery	monadic	sword	for	a	moment	to	exhibit	the	power	of	programming
this	way.

Let's	read	a	file,	then	upload	it	directly	afterward:

//	readFile	::	Filename	->	Either	String	(Task	Error	String)

//	httpPost	::	String	->	Task	Error	JSON

//	upload	::	String	->	Either	String	(Task	Error	JSON)

const	upload	=	compose(map(chain(httpPost('/uploads'))),	readFile);

Here,	we	are	branching	our	code	several	times.	Looking	at	the	type	signatures	I	can	see	that
we	protect	against	3	errors	-		readFile		uses		Either		to	validate	the	input	(perhaps	ensuring
the	filename	is	present),		readFile		may	error	when	accessing	the	file	as	expressed	in	the
first	type	parameter	of		Task	,	and	the	upload	may	fail	for	whatever	reason	which	is
expressed	by	the		Error		in		httpPost	.	We	casually	pull	off	two	nested,	sequential
asynchronous	actions	with		chain	.

Chapter	09:	Monadic	Onions

91

All	of	this	is	achieved	in	one	linear	left	to	right	flow.	This	is	all	pure	and	declarative.	It	holds
equational	reasoning	and	reliable	properties.	We	aren't	forced	to	add	needless	and
confusing	variable	names.	Our		upload		function	is	written	against	generic	interfaces	and	not
specific	one-off	apis.	It's	one	bloody	line	for	goodness	sake.

For	contrast,	let's	look	at	the	standard	imperative	way	to	pull	this	off:

//	upload	::	String	->	(String	->	a)	->	Void

const	upload	=	(filename,	callback)	=>	{

		if	(!filename)	{

				throw	new	Error('You	need	a	filename!');

		}	else	{

				readFile(filename,	(errF,	contents)	=>	{

						if	(errF)	throw	err;

						httpPost(contents,	(errH,	json)	=>	{

								if	(errH)	throw	errH;

								callback(json);

						});

				});

		}

};

Well	isn't	that	the	devil's	arithmetic.	We're	pinballed	through	a	volatile	maze	of	madness.
Imagine	if	it	were	a	typical	app	that	also	mutated	variables	along	the	way!	We'd	be	in	the	tar
pit	indeed.

Theory
The	first	law	we'll	look	at	is	associativity,	but	perhaps	not	in	the	way	you're	used	to	it.

//	associativity

compose(join,	map(join))	===	compose(join,	join);

These	laws	get	at	the	nested	nature	of	monads	so	associativity	focuses	on	joining	the	inner
or	outer	types	first	to	achieve	the	same	result.	A	picture	might	be	more	instructive:

Chapter	09:	Monadic	Onions

92

Starting	with	the	top	left	moving	downward,	we	can		join		the	outer	two		M	's	of		M(M(M	a))	
first	then	cruise	over	to	our	desired		M	a		with	another		join	.	Alternatively,	we	can	pop	the
hood	and	flatten	the	inner	two		M	's	with		map(join)	.	We	end	up	with	the	same		M	a	
regardless	of	if	we	join	the	inner	or	outer		M	's	first	and	that's	what	associativity	is	all	about.
It's	worth	noting	that		map(join)	!=	join	.	The	intermediate	steps	can	vary	in	value,	but	the
end	result	of	the	last		join		will	be	the	same.

The	second	law	is	similar:

//	identity	for	all	(M	a)

compose(join,	of)	===	compose(join,	map(of))	===	id;

It	states	that,	for	any	monad		M	,		of		and		join		amounts	to		id	.	We	can	also		map(of)		and
attack	it	from	the	inside	out.	We	call	this	"triangle	identity"	because	it	makes	such	a	shape
when	visualized:

If	we	start	at	the	top	left	heading	right,	we	can	see	that		of		does	indeed	drop	our		M	a		in
another		M		container.	Then	if	we	move	downward	and		join		it,	we	get	the	same	as	if	we
just	called		id		in	the	first	place.	Moving	right	to	left,	we	see	that	if	we	sneak	under	the
covers	with		map		and	call		of		of	the	plain		a	,	we'll	still	end	up	with		M	(M	a)		and		join	ing
will	bring	us	back	to	square	one.

Chapter	09:	Monadic	Onions

93

I	should	mention	that	I've	just	written		of	,	however,	it	must	be	the	specific		M.of		for
whatever	monad	we're	using.

Now,	I've	seen	these	laws,	identity	and	associativity,	somewhere	before...	Hold	on,	I'm
thinking...Yes	of	course!	They	are	the	laws	for	a	category.	But	that	would	mean	we	need	a
composition	function	to	complete	the	definition.	Behold:

const	mcompose	=	(f,	g)	=>	compose(chain(f),	g);

//	left	identity

mcompose(M,	f)	===	f;

//	right	identity

mcompose(f,	M)	===	f;

//	associativity

mcompose(mcompose(f,	g),	h)	===	mcompose(f,	mcompose(g,	h));

They	are	the	category	laws	after	all.	Monads	form	a	category	called	the	"Kleisli	category"
where	all	objects	are	monads	and	morphisms	are	chained	functions.	I	don't	mean	to	taunt
you	with	bits	and	bobs	of	category	theory	without	much	explanation	of	how	the	jigsaw	fits
together.	The	intention	is	to	scratch	the	surface	enough	to	show	the	relevance	and	spark
some	interest	while	focusing	on	the	practical	properties	we	can	use	each	day.

In	Summary
Monads	let	us	drill	downward	into	nested	computations.	We	can	assign	variables,	run
sequential	effects,	perform	asynchronous	tasks,	all	without	laying	one	brick	in	a	pyramid	of
doom.	They	come	to	the	rescue	when	a	value	finds	itself	jailed	in	multiple	layers	of	the	same
type.	With	the	help	of	the	trusty	sidekick	"pointed",	monads	are	able	to	lend	us	an	unboxed
value	and	know	we'll	be	able	to	place	it	back	in	when	we're	done.

Yes,	monads	are	very	powerful,	yet	we	still	find	ourselves	needing	some	extra	container
functions.	For	instance,	what	if	we	wanted	to	run	a	list	of	api	calls	at	once,	then	gather	the
results?	We	can	accomplish	this	task	with	monads,	but	we'd	have	to	wait	for	each	one	to
finish	before	calling	the	next.	What	about	combining	several	validations?	We'd	like	to
continue	validating	to	gather	the	list	of	errors,	but	monads	would	stop	the	show	after	the	first
	Left		entered	the	picture.

In	the	next	chapter,	we'll	see	how	applicative	functors	fit	into	the	container	world	and	why	we
prefer	them	to	monads	in	many	cases.

Chapter	10:	Applicative	Functors

Chapter	09:	Monadic	Onions

94

Exercises
Considering	a	User	object	as	follow:

const	user	=	{		

		id:	1,		

		name:	'Albert',		

		address:	{		

				street:	{		

						number:	22,		

						name:	'Walnut	St',		

				},		

		},		

};

Exercise

Use	`safeProp`	and	`map/join`	or	`chain`	to	safely	get	the	street	name	when	given	a	user

//	getStreetName	::	User	->	Maybe	String

const	getStreetName	=	undefined;

We	now	consider	the	following	functions

//	getFile	::	()	->	IO	String

const	getFile	=	()	=>	IO.of('/home/mostly-adequate/ch9.md');

//	pureLog	::	String	->	IO	()

const	pureLog	=	str	=>	new	IO(()	=>	console.log(str));

Exercise

Use	getFile	to	get	the	filepath,	remove	the	directory	and	keep	only	the	basename,	then
purely	log	it.	Hint:	you	may	want	to	use	`split`	and	`last`	to	obtain	the	basename	from	a
filepath.

//	logFilename	::	IO	()

const	logFilename	=	undefined;

Chapter	09:	Monadic	Onions

95

For	this	exercise,	we	consider	helpers	with	the	following	signatures:

//	validateEmail	::	Email	->	Either	String	Email

//	addToMailingList	::	Email	->	IO([Email])

//	emailBlast	::	[Email]	->	IO	()

Exercise

Use	`validateEmail`,	`addToMailingList`	and	`emailBlast`	to	create	a	function	which	adds
a	new	email	to	the	mailing	list	if	valid,	and	then	notify	the	whole	list.

//	joinMailingList	::	Email	->	Either	String	(IO	())

const	joinMailingList	=	undefined;

Chapter	09:	Monadic	Onions

96

Chapter	10:	Applicative	Functors

Applying	Applicatives
The	name	applicative	functor	is	pleasantly	descriptive	given	its	functional	origins.
Functional	programmers	are	notorious	for	coming	up	with	names	like		mappend		or		liftA4	,
which	seem	perfectly	natural	when	viewed	in	the	math	lab,	but	hold	the	clarity	of	an
indecisive	Darth	Vader	at	the	drive	thru	in	any	other	context.

Anyhow,	the	name	should	spill	the	beans	on	what	this	interface	gives	us:	the	ability	to	apply
functors	to	each	other.

Now,	why	would	a	normal,	rational	person	such	as	yourself	want	such	a	thing?	What	does	it
even	mean	to	apply	one	functor	to	another?

To	answer	these	questions,	we'll	start	with	a	situation	you	may	have	already	encountered	in
your	functional	travels.	Let's	say,	hypothetically,	that	we	have	two	functors	(of	the	same	type)
and	we'd	like	to	call	a	function	with	both	of	their	values	as	arguments.	Something	simple	like
adding	the	values	of	two		Container	s.

//	We	can't	do	this	because	the	numbers	are	bottled	up.

add(Container.of(2),	Container.of(3));

//	NaN

//	Let's	use	our	trusty	map

const	containerOfAdd2	=	map(add,	Container.of(2));

//	Container(add(2))

We	have	ourselves	a		Container		with	a	partially	applied	function	inside.	More	specifically,
we	have	a		Container(add(2))		and	we'd	like	to	apply	its		add(2)		to	the		3		in		Container(3)	
to	complete	the	call.	In	other	words,	we'd	like	to	apply	one	functor	to	another.

Now,	it	just	so	happens	that	we	already	have	the	tools	to	accomplish	this	task.	We	can
	chain		and	then		map		the	partially	applied		add(2)		like	so:

Container.of(2).chain(two	=>	Container.of(3).map(add(two)));

The	issue	here	is	that	we	are	stuck	in	the	sequential	world	of	monads	wherein	nothing	may
be	evaluated	until	the	previous	monad	has	finished	its	business.	We	have	ourselves	two
strong,	independent	values	and	I	should	think	it	unnecessary	to	delay	the	creation	of

Chapter	10:	Applicative	Functors

97

	Container(3)		merely	to	satisfy	the	monad's	sequential	demands.

In	fact,	it	would	be	lovely	if	we	could	succinctly	apply	one	functor's	contents	to	another's
value	without	these	needless	functions	and	variables	should	we	find	ourselves	in	this	pickle
jar.

Ships	in	Bottles

	ap		is	a	function	that	can	apply	the	function	contents	of	one	functor	to	the	value	contents	of
another.	Say	that	five	times	fast.

Container.of(add(2)).ap(Container.of(3));

//	Container(5)

//	all	together	now

Container.of(2).map(add).ap(Container.of(3));

//	Container(5)

There	we	are,	nice	and	neat.	Good	news	for		Container(3)		as	it's	been	set	free	from	the	jail
of	the	nested	monadic	function.	It's	worth	mentioning	again	that		add	,	in	this	case,	gets
partially	applied	during	the	first		map		so	this	only	works	when		add		is	curried.

We	can	define		ap		like	so:

Container.prototype.ap	=	function	(otherContainer)	{

		return	otherContainer.map(this.$value);

};

Chapter	10:	Applicative	Functors

98

Remember,		this.$value		will	be	a	function	and	we'll	be	accepting	another	functor	so	we
need	only		map		it.	And	with	that	we	have	our	interface	definition:

An	applicative	functor	is	a	pointed	functor	with	an		ap		method

Note	the	dependence	on	pointed.	The	pointed	interface	is	crucial	here	as	we'll	see
throughout	the	following	examples.

Now,	I	sense	your	skepticism	(or	perhaps	confusion	and	horror),	but	keep	an	open	mind;	this
	ap		character	will	prove	useful.	Before	we	get	into	it,	let's	explore	a	nice	property.

F.of(x).map(f)	===	F.of(f).ap(F.of(x));

In	proper	English,	mapping		f		is	equivalent	to		ap	ing	a	functor	of		f	.	Or	in	properer
English,	we	can	place		x		into	our	container	and		map(f)		OR	we	can	lift	both		f		and		x		into
our	container	and		ap		them.	This	allows	us	to	write	in	a	left-to-right	fashion:

Maybe.of(add).ap(Maybe.of(2)).ap(Maybe.of(3));

//	Maybe(5)

Task.of(add).ap(Task.of(2)).ap(Task.of(3));

//	Task(5)

One	might	even	recognise	the	vague	shape	of	a	normal	function	call	if	viewed	mid	squint.
We'll	look	at	the	pointfree	version	later	in	the	chapter,	but	for	now,	this	is	the	preferred	way	to
write	such	code.	Using		of	,	each	value	gets	transported	to	the	magical	land	of	containers,
this	parallel	universe	where	each	application	can	be	async	or	null	or	what	have	you	and		ap	
will	apply	functions	within	this	fantastical	place.	It's	like	building	a	ship	in	a	bottle.

Did	you	see	there?	We	used		Task		in	our	example.	This	is	a	prime	situation	where
applicative	functors	pull	their	weight.	Let's	look	at	a	more	in-depth	example.

Coordination	Motivation
Say	we're	building	a	travel	site	and	we'd	like	to	retrieve	both	a	list	of	tourist	destinations	and
local	events.	Each	of	these	are	separate,	stand-alone	api	calls.

//	Http.get	::	String	->	Task	Error	HTML

const	renderPage	=	curry((destinations,	events)	=>	{	/*	render	page	*/	});

Task.of(renderPage).ap(Http.get('/destinations')).ap(Http.get('/events'));

//	Task("<div>some	page	with	dest	and	events</div>")

Chapter	10:	Applicative	Functors

99

Both		Http		calls	will	happen	instantly	and		renderPage		will	be	called	when	both	are
resolved.	Contrast	this	with	the	monadic	version	where	one		Task		must	finish	before	the
next	fires	off.	Since	we	don't	need	the	destinations	to	retrieve	events,	we	are	free	from
sequential	evaluation.

Again,	because	we're	using	partial	application	to	achieve	this	result,	we	must	ensure
	renderPage		is	curried	or	it	will	not	wait	for	both		Tasks		to	finish.	Incidentally,	if	you've	ever
had	to	do	such	a	thing	manually,	you'll	appreciate	the	astonishing	simplicity	of	this	interface.
This	is	the	kind	of	beautiful	code	that	takes	us	one	step	closer	to	the	singularity.

Let's	look	at	another	example.

//	$::	String	->	IO	DOM

const	$	=	selector	=>	new	IO(()	=>	document.querySelector(selector));

//	getVal	::	String	->	IO	String

const	getVal	=	compose(map(prop('value')),	$);

//	signIn	::	String	->	String	->	Bool	->	User

const	signIn	=	curry((username,	password,	rememberMe)	=>	{	/*	signing	in	*/	});

IO.of(signIn).ap(getVal('#email')).ap(getVal('#password')).ap(IO.of(false));

//	IO({	id:	3,	email:	'gg@allin.com'	})

	signIn		is	a	curried	function	of	3	arguments	so	we	have	to		ap		accordingly.	With	each		ap	,
	signIn		receives	one	more	argument	until	it	is	complete	and	runs.	We	can	continue	this
pattern	with	as	many	arguments	as	necessary.	Another	thing	to	note	is	that	two	arguments
end	up	naturally	in		IO		whereas	the	last	one	needs	a	little	help	from		of		to	lift	it	into		IO	
since		ap		expects	the	function	and	all	its	arguments	to	be	in	the	same	type.

Bro,	Do	You	Even	Lift?
Let's	examine	a	pointfree	way	to	write	these	applicative	calls.	Since	we	know		map		is	equal
to		of/ap	,	we	can	write	generic	functions	that	will		ap		as	many	times	as	we	specify:

const	liftA2	=	curry((g,	f1,	f2)	=>	f1.map(g).ap(f2));

const	liftA3	=	curry((g,	f1,	f2,	f3)	=>	f1.map(g).ap(f2).ap(f3));

//	liftA4,	etc

Chapter	10:	Applicative	Functors

100

	liftA2		is	a	strange	name.	It	sounds	like	one	of	the	finicky	freight	elevators	in	a	rundown
factory	or	a	vanity	plate	for	a	cheap	limo	company.	Once	enlightened,	however,	it's	self
explanatory:	lift	these	pieces	into	the	applicative	functor	world.

When	I	first	saw	this	2-3-4	nonsense	it	struck	me	as	ugly	and	unnecessary.	After	all,	we	can
check	the	arity	of	functions	in	JavaScript	and	build	this	up	dynamically.	However,	it	is	often
useful	to	partially	apply		liftA(N)		itself,	so	it	cannot	vary	in	argument	length.

Let's	see	this	in	use:

//	checkEmail	::	User	->	Either	String	Email

//	checkName	::	User	->	Either	String	String

const	user	=	{

		name:	'John	Doe',

		email:	'blurp_blurp',

};

//		createUser	::	Email	->	String	->	IO	User

const	createUser	=	curry((email,	name)	=>	{	/*	creating...	*/	});

Either.of(createUser).ap(checkEmail(user)).ap(checkName(user));

//	Left('invalid	email')

liftA2(createUser,	checkEmail(user),	checkName(user));

//	Left('invalid	email')

Since		createUser		takes	two	arguments,	we	use	the	corresponding		liftA2	.	The	two
statements	are	equivalent,	but	the		liftA2		version	has	no	mention	of		Either	.	This	makes
it	more	generic	and	flexible	since	we	are	no	longer	married	to	a	specific	type.

Let's	see	the	previous	examples	written	this	way:

liftA2(add,	Maybe.of(2),	Maybe.of(3));

//	Maybe(5)

liftA2(renderPage,	Http.get('/destinations'),	Http.get('/events'));

//	Task('<div>some	page	with	dest	and	events</div>')

liftA3(signIn,	getVal('#email'),	getVal('#password'),	IO.of(false));

//	IO({	id:	3,	email:	'gg@allin.com'	})

Operators
In	languages	like	Haskell,	Scala,	PureScript,	and	Swift,	where	it	is	possible	to	create	your
own	infix	operators	you	may	see	syntax	like	this:

Chapter	10:	Applicative	Functors

101

--	Haskell	/	PureScript

add	<$>	Right	2	<*>	Right	3

//	JavaScript

map(add,	Right(2)).ap(Right(3));

It's	helpful	to	know	that		<$>		is		map		(aka		fmap)	and		<*>		is	just		ap	.	This	allows	for	a
more	natural	function	application	style	and	can	help	remove	some	parenthesis.

Free	Can	Openers

We	haven't	spoken	much	about	derived	functions.	Seeing	as	all	of	these	interfaces	are	built
off	of	each	other	and	obey	a	set	of	laws,	we	can	define	some	weaker	interfaces	in	terms	of
the	stronger	ones.

For	instance,	we	know	that	an	applicative	is	first	a	functor,	so	if	we	have	an	applicative
instance,	surely	we	can	define	a	functor	for	our	type.

This	kind	of	perfect	computational	harmony	is	possible	because	we're	working	within	a
mathematical	framework.	Mozart	couldn't	have	done	better	even	if	he	had	torrented	Ableton
as	a	child.

I	mentioned	earlier	that		of/ap		is	equivalent	to		map	.	We	can	use	this	knowledge	to	define
	map		for	free:

Chapter	10:	Applicative	Functors

102

//	map	derived	from	of/ap

X.prototype.map	=	function	map(f)	{

		return	this.constructor.of(f).ap(this);

};

Monads	are	at	the	top	of	the	food	chain,	so	to	speak,	so	if	we	have		chain	,	we	get	functor
and	applicative	for	free:

//	map	derived	from	chain

X.prototype.map	=	function	map(f)	{

		return	this.chain(a	=>	this.constructor.of(f(a)));

};

//	ap	derived	from	chain/map

X.prototype.ap	=	function	ap(other)	{

		return	this.chain(f	=>	other.map(f));

};

If	we	can	define	a	monad,	we	can	define	both	the	applicative	and	functor	interfaces.	This	is
quite	remarkable	as	we	get	all	of	these	can	openers	for	free.	We	can	even	examine	a	type
and	automate	this	process.

It	should	be	pointed	out	that	part	of		ap	's	appeal	is	the	ability	to	run	things	concurrently	so
defining	it	via		chain		is	missing	out	on	that	optimization.	Despite	that,	it's	good	to	have	an
immediate	working	interface	while	one	works	out	the	best	possible	implementation.

Why	not	just	use	monads	and	be	done	with	it,	you	ask?	It's	good	practice	to	work	with	the
level	of	power	you	need,	no	more,	no	less.	This	keeps	cognitive	load	to	a	minimum	by	ruling
out	possible	functionality.	For	this	reason,	it's	good	to	favor	applicatives	over	monads.

Monads	have	the	unique	ability	to	sequence	computation,	assign	variables,	and	halt	further
execution	all	thanks	to	the	downward	nesting	structure.	When	one	sees	applicatives	in	use,
they	needn't	concern	themselves	with	any	of	that	business.

Now,	on	to	the	legalities	...

Laws
Like	the	other	mathematical	constructs	we've	explored,	applicative	functors	hold	some
useful	properties	for	us	to	rely	on	in	our	daily	code.	First	off,	you	should	know	that
applicatives	are	"closed	under	composition",	meaning		ap		will	never	change	container	types

Chapter	10:	Applicative	Functors

103

on	us	(yet	another	reason	to	favor	over	monads).	That's	not	to	say	we	cannot	have	multiple
different	effects	-	we	can	stack	our	types	knowing	that	they	will	remain	the	same	during	the
entirety	of	our	application.

To	demonstrate:

const	tOfM	=	compose(Task.of,	Maybe.of);

liftA2(liftA2(concat),	tOfM('Rainy	Days	and	Mondays'),	tOfM('	always	get	me	down'));

//	Task(Maybe(Rainy	Days	and	Mondays	always	get	me	down))

See,	no	need	to	worry	about	different	types	getting	in	the	mix.

Time	to	look	at	our	favorite	categorical	law:	identity:

Identity

//	identity

A.of(id).ap(v)	===	v;

Right,	so	applying		id		all	from	within	a	functor	shouldn't	alter	the	value	in		v	.	For	example:

const	v	=	Identity.of('Pillow	Pets');

Identity.of(id).ap(v)	===	v;

	Identity.of(id)		makes	me	chuckle	at	its	futility.	Anyway,	what's	interesting	is	that,	as	we've
already	established,		of/ap		is	the	same	as		map		so	this	law	follows	directly	from	functor
identity:		map(id)	==	id	.

The	beauty	in	using	these	laws	is	that,	like	a	militant	kindergarten	gym	coach,	they	force	all
of	our	interfaces	to	play	well	together.

Homomorphism

//	homomorphism

A.of(f).ap(A.of(x))	===	A.of(f(x));

A	homomorphism	is	just	a	structure	preserving	map.	In	fact,	a	functor	is	just	a
homomorphism	between	categories	as	it	preserves	the	original	category's	structure	under
the	mapping.

Chapter	10:	Applicative	Functors

104

We're	really	just	stuffing	our	normal	functions	and	values	into	a	container	and	running	the
computation	in	there	so	it	should	come	as	no	surprise	that	we	will	end	up	with	the	same
result	if	we	apply	the	whole	thing	inside	the	container	(left	side	of	the	equation)	or	apply	it
outside,	then	place	it	in	there	(right	side).

A	quick	example:

Either.of(toUpperCase).ap(Either.of('oreos'))	===	Either.of(toUpperCase('oreos'));

Interchange

The	interchange	law	states	that	it	doesn't	matter	if	we	choose	to	lift	our	function	into	the	left
or	right	side	of		ap	.

//	interchange

v.ap(A.of(x))	===	A.of(f	=>	f(x)).ap(v);

Here	is	an	example:

const	v	=	Task.of(reverse);

const	x	=	'Sparklehorse';

v.ap(Task.of(x))	===	Task.of(f	=>	f(x)).ap(v);

Composition

And	finally	composition	which	is	just	a	way	to	check	that	our	standard	function	composition
holds	when	applying	inside	of	containers.

//	composition

A.of(compose).ap(u).ap(v).ap(w)	===	u.ap(v.ap(w));

const	u	=	IO.of(toUpperCase);

const	v	=	IO.of(concat('&	beyond'));

const	w	=	IO.of('blood	bath	');

IO.of(compose).ap(u).ap(v).ap(w)	===	u.ap(v.ap(w));

In	Summary

Chapter	10:	Applicative	Functors

105

A	good	use	case	for	applicatives	is	when	one	has	multiple	functor	arguments.	They	give	us
the	ability	to	apply	functions	to	arguments	all	within	the	functor	world.	Though	we	could
already	do	so	with	monads,	we	should	prefer	applicative	functors	when	we	aren't	in	need	of
monadic	specific	functionality.

We're	almost	finished	with	container	apis.	We've	learned	how	to		map	,		chain	,	and	now		ap	
functions.	In	the	next	chapter,	we'll	learn	how	to	work	better	with	multiple	functors	and
disassemble	them	in	a	principled	way.

Chapter	11:	Transformation	Again,	Naturally

Exercises

Exercise

Write	a	function	that	adds	two	possibly	null	numbers	together	using	`Maybe`	and	`ap`.

//	safeAdd	::	Maybe	Number	->	Maybe	Number	->	Maybe	Number

const	safeAdd	=	undefined;

Exercise

Rewrite	`safeAdd`	from	exercise_b	to	use	`liftA2`	instead	of	`ap`.

//	safeAdd	::	Maybe	Number	->	Maybe	Number	->	Maybe	Number

const	safeAdd	=	undefined;

For	the	next	exercise,	we	consider	the	following	helpers:

const	localStorage	=	{		

		player1:	{	id:1,	name:	'Albert'	},		

		player2:	{	id:2,	name:	'Theresa'	},		

};		

//	getFromCache	::	String	->	IO	User		

const	getFromCache	=	x	=>	new	IO(()	=>	localStorage[x]);		

//	game	::	User	->	User	->	String		

const	game	=	curry((p1,	p2)	=>	`${p1.name}	vs	${p2.name}`);

Chapter	10:	Applicative	Functors

106

Exercise

Write	an	IO	that	gets	both	player1	and	player2	from	the	cache	and	starts	the	game.

//	startGame	::	IO	String

const	startGame	=	undefined;

Chapter	10:	Applicative	Functors

107

Chapter	11:	Transform	Again,	Naturally
We	are	about	to	discuss	natural	transformations	in	the	context	of	practical	utility	in	every	day
code.	It	just	so	happens	they	are	a	pillar	of	category	theory	and	absolutely	indispensable
when	applying	mathematics	to	reason	about	and	refactor	our	code.	As	such,	I	believe	it	is
my	duty	to	inform	you	about	the	lamentable	injustice	you	are	about	to	witness	undoubtedly
due	to	my	limited	scope.	Let's	begin.

Curse	This	Nest
I'd	like	to	address	the	issue	of	nesting.	Not	the	instinctive	urge	felt	by	soon	to	be	mothers
wherein	they	tidy	and	rearrange	with	obsessive	compulsion,	but	the...well	actually,	come	to
think	of	it,	that	isn't	far	from	the	mark	as	we'll	see	in	the	coming	chapters...	In	any	case,	what
I	mean	by	nesting	is	to	have	two	or	more	different	types	all	huddled	together	around	a	value,
cradling	it	like	a	newborn,	as	it	were.

Right(Maybe('b'));

IO(Task(IO(1000)));

[Identity('bee	thousand')];

Until	now,	we've	managed	to	evade	this	common	scenario	with	carefully	crafted	examples,
but	in	practice,	as	one	codes,	types	tend	to	tangle	themselves	up	like	earbuds	in	an
exorcism.	If	we	don't	meticulously	keep	our	types	organized	as	we	go	along,	our	code	will
read	hairier	than	a	beatnik	in	a	cat	café.

A	Situational	Comedy

Chapter	11:	Transform	Again,	Naturally

108

//	getValue	::	Selector	->	Task	Error	(Maybe	String)

//	postComment	::	String	->	Task	Error	Comment

//	validate	::	String	->	Either	ValidationError	String

//	saveComment	::	()	->	Task	Error	(Maybe	(Either	ValidationError	(Task	Error	Comment)

))

const	saveComment	=	compose(

		map(map(map(postComment))),

		map(map(validate)),

		getValue('#comment'),

);

The	gang	is	all	here,	much	to	our	type	signature's	dismay.	Allow	me	to	briefly	explain	the
code.	We	start	by	getting	the	user	input	with		getValue('#comment')		which	is	an	action	which
retrieves	text	on	an	element.	Now,	it	might	error	finding	the	element	or	the	value	string	may
not	exist	so	it	returns		Task	Error	(Maybe	String)	.	After	that,	we	must		map		over	both	the
	Task		and	the		Maybe		to	pass	our	text	to		validate	,	which	in	turn,	gives	us	back		Either		a
	ValidationError		or	our		String	.	Then	onto	mapping	for	days	to	send	the		String		in	our
current		Task	Error	(Maybe	(Either	ValidationError	String))		into		postComment		which
returns	our	resulting		Task	.

What	a	frightful	mess.	A	collage	of	abstract	types,	amateur	type	expressionism,	polymorphic
Pollock,	monolithic	Mondrian.	There	are	many	solutions	to	this	common	issue.	We	can
compose	the	types	into	one	monstrous	container,	sort	and		join		a	few,	homogenize	them,
deconstruct	them,	and	so	on.	In	this	chapter,	we'll	focus	on	homogenizing	them	via	natural
transformations.

All	Natural
A	Natural	Transformation	is	a	"morphism	between	functors",	that	is,	a	function	which
operates	on	the	containers	themselves.	Typewise,	it	is	a	function		(Functor	f,	Functor	g)	=>
f	a	->	g	a	.	What	makes	it	special	is	that	we	cannot,	for	any	reason,	peek	at	the	contents	of
our	functor.	Think	of	it	as	an	exchange	of	highly	classified	information	-	the	two	parties
oblivious	to	what's	in	the	sealed	manila	envelope	stamped	"top	secret".	This	is	a	structural
operation.	A	functorial	costume	change.	Formally,	a	natural	transformation	is	any	function	for
which	the	following	holds:

Chapter	11:	Transform	Again,	Naturally

109

or	in	code:

//	nt	::	(Functor	f,	Functor	g)	=>	f	a	->	g	a

compose(map(f),	nt)	===	compose(nt,	map(f));

Both	the	diagram	and	the	code	say	the	same	thing:	We	can	run	our	natural	transformation
then		map		or		map		then	run	our	natural	transformation	and	get	the	same	result.	Incidentally,
that	follows	from	a	free	theorem	though	natural	transformations	(and	functors)	are	not	limited
to	functions	on	types.

Principled	Type	Conversions
As	programmers	we	are	familiar	with	type	conversions.	We	transform	types	like		Strings	
into		Booleans		and		Integers		into		Floats		(though	JavaScript	only	has		Numbers).	The
difference	here	is	simply	that	we're	working	with	algebraic	containers	and	we	have	some
theory	at	our	disposal.

Let's	look	at	some	of	these	as	examples:

Chapter	11:	Transform	Again,	Naturally

110

//	idToMaybe	::	Identity	a	->	Maybe	a

const	idToMaybe	=	x	=>	Maybe.of(x.$value);

//	idToIO	::	Identity	a	->	IO	a

const	idToIO	=	x	=>	IO.of(x.$value);

//	eitherToTask	::	Either	a	b	->	Task	a	b

const	eitherToTask	=	either(Task.rejected,	Task.of);

//	ioToTask	::	IO	a	->	Task	()	a

const	ioToTask	=	x	=>	new	Task((reject,	resolve)	=>	resolve(x.unsafePerform()));

//	maybeToTask	::	Maybe	a	->	Task	()	a

const	maybeToTask	=	x	=>	(x.isNothing	?	Task.rejected()	:	Task.of(x.$value));

//	arrayToMaybe	::	[a]	->	Maybe	a

const	arrayToMaybe	=	x	=>	Maybe.of(x[0]);

See	the	idea?	We're	just	changing	one	functor	to	another.	We	are	permitted	to	lose
information	along	the	way	so	long	as	the	value	we'll		map		doesn't	get	lost	in	the	shape	shift
shuffle.	That	is	the	whole	point:		map		must	carry	on,	according	to	our	definition,	even	after
the	transformation.

One	way	to	look	at	it	is	that	we	are	transforming	our	effects.	In	that	light,	we	can	view
	ioToTask		as	converting	synchronous	to	asynchronous	or		arrayToMaybe		from
nondeterminism	to	possible	failure.	Note	that	we	cannot	convert	asynchronous	to
synchronous	in	JavaScript	so	we	cannot	write		taskToIO		-	that	would	be	a	supernatural
transformation.

Feature	Envy
Suppose	we'd	like	to	use	some	features	from	another	type	like		sortBy		on	a		List	.	Natural
transformations	provide	a	nice	way	to	convert	to	the	target	type	knowing	our		map		will	be
sound.

//	arrayToList	::	[a]	->	List	a

const	arrayToList	=	List.of;

const	doListyThings	=	compose(sortBy(h),	filter(g),	arrayToList,	map(f));

const	doListyThings_	=	compose(sortBy(h),	filter(g),	map(f),	arrayToList);	//	law	appl

ied

A	wiggle	of	our	nose,	three	taps	of	our	wand,	drop	in		arrayToList	,	and	voilà!	Our		[a]		is	a
	List	a		and	we	can		sortBy		if	we	please.

Chapter	11:	Transform	Again,	Naturally

111

Also,	it	becomes	easier	to	optimize	/	fuse	operations	by	moving		map(f)		to	the	left	of	natural
transformation	as	shown	in		doListyThings_	.

Isomorphic	JavaScript
When	we	can	completely	go	back	and	forth	without	losing	any	information,	that	is	considered
an	isomorphism.	That's	just	a	fancy	word	for	"holds	the	same	data".	We	say	that	two	types
are	isomorphic	if	we	can	provide	the	"to"	and	"from"	natural	transformations	as	proof:

//	promiseToTask	::	Promise	a	b	->	Task	a	b

const	promiseToTask	=	x	=>	new	Task((reject,	resolve)	=>	x.then(resolve).catch(reject)

);

//	taskToPromise	::	Task	a	b	->	Promise	a	b

const	taskToPromise	=	x	=>	new	Promise((resolve,	reject)	=>	x.fork(reject,	resolve));

const	x	=	Promise.resolve('ring');

taskToPromise(promiseToTask(x))	===	x;

const	y	=	Task.of('rabbit');

promiseToTask(taskToPromise(y))	===	y;

Q.E.D.		Promise		and		Task		are	isomorphic.	We	can	also	write	a		listToArray		to
complement	our		arrayToList		and	show	that	they	are	too.	As	a	counter	example,
	arrayToMaybe		is	not	an	isomorphism	since	it	loses	information:

//	maybeToArray	::	Maybe	a	->	[a]

const	maybeToArray	=	x	=>	(x.isNothing	?	[]	:	[x.$value]);

//	arrayToMaybe	::	[a]	->	Maybe	a

const	arrayToMaybe	=	x	=>	Maybe.of(x[0]);

const	x	=	['elvis	costello',	'the	attractions'];

//	not	isomorphic

maybeToArray(arrayToMaybe(x));	//	['elvis	costello']

//	but	is	a	natural	transformation

compose(arrayToMaybe,	map(replace('elvis',	'lou')))(x);	//	Just('lou	costello')

//	==

compose(map(replace('elvis',	'lou'),	arrayToMaybe))(x);	//	Just('lou	costello')

They	are	indeed	natural	transformations,	however,	since		map		on	either	side	yields	the	same
result.	I	mention	isomorphisms	here,	mid-chapter	while	we're	on	the	subject,	but	don't	let
that	fool	you,	they	are	an	enormously	powerful	and	pervasive	concept.	Anyways,	let's	move

Chapter	11:	Transform	Again,	Naturally

112

on.

A	Broader	Definition
These	structural	functions	aren't	limited	to	type	conversions	by	any	means.

Here	are	a	few	different	ones:

reverse	::	[a]	->	[a]

join	::	(Monad	m)	=>	m	(m	a)	->	m	a

head	::	[a]	->	a

of	::	a	->	f	a

The	natural	transformation	laws	hold	for	these	functions	too.	One	thing	that	might	trip	you	up
is	that		head	::	[a]	->	a		can	be	viewed	as		head	::	[a]	->	Identity	a	.	We	are	free	to
insert		Identity		wherever	we	please	whilst	proving	laws	since	we	can,	in	turn,	prove	that
	a		is	isomorphic	to		Identity	a		(see,	I	told	you	isomorphisms	were	pervasive).

One	Nesting	Solution
Back	to	our	comedic	type	signature.	We	can	sprinkle	in	some	natural	transformations
throughout	the	calling	code	to	coerce	each	varying	type	so	they	are	uniform	and,	therefore,
	join	able.

//	getValue	::	Selector	->	Task	Error	(Maybe	String)

//	postComment	::	String	->	Task	Error	Comment

//	validate	::	String	->	Either	ValidationError	String

//	saveComment	::	()	->	Task	Error	Comment

const	saveComment	=	compose(

		chain(postComment),

		chain(eitherToTask),

		map(validate),

		chain(maybeToTask),

		getValue('#comment'),

);

So	what	do	we	have	here?	We've	simply	added		chain(maybeToTask)		and
	chain(eitherToTask)	.	Both	have	the	same	effect;	they	naturally	transform	the	functor	our
	Task		is	holding	into	another		Task		then		join		the	two.	Like	pigeon	spikes	on	a	window

Chapter	11:	Transform	Again,	Naturally

113

ledge,	we	avoid	nesting	right	at	the	source.	As	they	say	in	the	city	of	light,	"Mieux	vaut
prévenir	que	guérir"	-	an	ounce	of	prevention	is	worth	a	pound	of	cure.

In	Summary
Natural	transformations	are	functions	on	our	functors	themselves.	They	are	an	extremely
important	concept	in	category	theory	and	will	start	to	appear	everywhere	once	more
abstractions	are	adopted,	but	for	now,	we've	scoped	them	to	a	few	concrete	applications.	As
we	saw,	we	can	achieve	different	effects	by	converting	types	with	the	guarantee	that	our
composition	will	hold.	They	can	also	help	us	with	nested	types,	although	they	have	the
general	effect	of	homogenizing	our	functors	to	the	lowest	common	denominator,	which	in
practice,	is	the	functor	with	the	most	volatile	effects	(Task		in	most	cases).

This	continual	and	tedious	sorting	of	types	is	the	price	we	pay	for	having	materialized	them	-
summoned	them	from	the	ether.	Of	course,	implicit	effects	are	much	more	insidious	and	so
here	we	are	fighting	the	good	fight.	We'll	need	a	few	more	tools	in	our	tackle	before	we	can
reel	in	the	larger	type	amalgamations.	Next	up,	we'll	look	at	reordering	our	types	with
Traversable.

Chapter	12:	Traversing	the	Stone

Exercises

Exercise

Write	a	natural	transformation	that	converts	`Either	b	a`	to	`Maybe	a`

//	eitherToMaybe	::	Either	b	a	->	Maybe	a

const	eitherToMaybe	=	undefined;

//	eitherToTask	::	Either	a	b	->	Task	a	b

const	eitherToTask	=	either(Task.rejected,	Task.of);

Exercise

Using	`eitherToTask`,	simplify	`findNameById`	to	remove	the	nested	`Either`.

Chapter	11:	Transform	Again,	Naturally

114

//	findNameById	::	Number	->	Task	Error	(Either	Error	User)

const	findNameById	=	compose(map(map(prop('name'))),	findUserById);

As	a	reminder,	the	following	functions	are	available	in	the	exercise's	context:

split	::	String	->	String	->	[String]

intercalate	::	String	->	[String]	->	String

Exercise

Write	the	isomorphisms	between	String	and	[Char].

//	strToList	::	String	->	[Char]

const	strToList	=	undefined;

//	listToStr	::	[Char]	->	String

const	listToStr	=	undefined;

Chapter	11:	Transform	Again,	Naturally

115

Chapter	12:	Traversing	the	Stone
So	far,	in	our	cirque	du	conteneur,	you've	seen	us	tame	the	ferocious	functor,	bending	it	to
our	will	to	perform	any	operation	that	strikes	our	fancy.	You've	been	dazzled	by	the	juggling
of	many	dangerous	effects	at	once	using	function	application	to	collect	the	results.	Sat	there
in	amazement	as	containers	vanished	in	thin	air	by	joining	them	together.	At	the	side	effect
sideshow,	we've	seen	them	composed	into	one.	And	most	recently,	we've	ventured	beyond
what's	natural	and	transformed	one	type	into	another	before	your	very	eyes.

And	now	for	our	next	trick,	we'll	look	at	traversals.	We'll	watch	types	soar	over	one	another
as	if	they	were	trapeze	artists	holding	our	value	intact.	We'll	reorder	effects	like	the	trolleys	in
a	tilt-a-whirl.	When	our	containers	get	intertwined	like	the	limbs	of	a	contortionist,	we	can	use
this	interface	to	straighten	things	out.	We'll	witness	different	effects	with	different	orderings.
Fetch	me	my	pantaloons	and	slide	whistle,	let's	get	started.

Types	n'	Types
Let's	get	weird:

//	readFile	::	FileName	->	Task	Error	String

//	firstWords	::	String	->	String

const	firstWords	=	compose(join('	'),	take(3),	split('	'));

//	tldr	::	FileName	->	Task	Error	String

const	tldr	=	compose(map(firstWords),	readFile);

map(tldr,	['file1',	'file2']);

//	[Task('hail	the	monarchy'),	Task('smash	the	patriarchy')]

Here	we	read	a	bunch	of	files	and	end	up	with	a	useless	array	of	tasks.	How	might	we	fork
each	one	of	these?	It	would	be	most	agreeable	if	we	could	switch	the	types	around	to	have
	Task	Error	[String]		instead	of		[Task	Error	String]	.	That	way,	we'd	have	one	future	value
holding	all	the	results,	which	is	much	more	amenable	to	our	async	needs	than	several	future
values	arriving	at	their	leisure.

Here's	one	last	example	of	a	sticky	situation:

Chapter	12:	Traversing	the	Stone

116

//	getAttribute	::	String	->	Node	->	Maybe	String

//	$::	Selector	->	IO	Node

//	getControlNode	::	IO	(Maybe	(IO	Node))

const	getControlNode	=	compose(map(map($)),	map(getAttribute('aria-controls')),	$);

Look	at	those		IO	s	longing	to	be	together.	It'd	be	just	lovely	to		join		them,	let	them	dance
cheek	to	cheek,	but	alas	a		Maybe		stands	between	them	like	a	chaperone	at	prom.	Our	best
move	here	would	be	to	shift	their	positions	next	to	one	another,	that	way	each	type	can	be
together	at	last	and	our	signature	can	be	simplified	to		IO	(Maybe	Node)	.

Type	Feng	Shui
The	Traversable	interface	consists	of	two	glorious	functions:		sequence		and		traverse	.

Let's	rearrange	our	types	using		sequence	:

sequence(List.of,	Maybe.of(['the	facts']));	//	[Just('the	facts')]

sequence(Task.of,	new	Map({	a:	Task.of(1),	b:	Task.of(2)	}));	//	Task(Map({	a:	1,	b:	2

	}))

sequence(IO.of,	Either.of(IO.of('buckle	my	shoe')));	//	IO(Right('buckle	my	shoe'))

sequence(Either.of,	[Either.of('wing')]);	//	Right(['wing'])

sequence(Task.of,	left('wing'));	//	Task(Left('wing'))

See	what	has	happened	here?	Our	nested	type	gets	turned	inside	out	like	a	pair	of	leather
trousers	on	a	humid	summer	night.	The	inner	functor	is	shifted	to	the	outside	and	vice	versa.
It	should	be	known	that		sequence		is	bit	particular	about	its	arguments.	It	looks	like	this:

//	sequence	::	(Traversable	t,	Applicative	f)	=>	(a	->	f	a)	->	t	(f	a)	->	f	(t	a)

const	sequence	=	curry((of,	x)	=>	x.sequence(of));

Let's	start	with	the	second	argument.	It	must	be	a	Traversable	holding	an	Applicative,	which
sounds	quite	restrictive,	but	just	so	happens	to	be	the	case	more	often	than	not.	It	is	the		t
(f	a)		which	gets	turned	into	a		f	(t	a)	.	Isn't	that	expressive?	It's	clear	as	day	the	two
types	do-si-do	around	each	other.	That	first	argument	there	is	merely	a	crutch	and	only
necessary	in	an	untyped	language.	It	is	a	type	constructor	(our	of)	provided	so	that	we	can
invert	map-reluctant	types	like		Left		-	more	on	that	in	a	minute.

Using		sequence	,	we	can	shift	types	around	with	the	precision	of	a	sidewalk	thimblerigger.
But	how	does	it	work?	Let's	look	at	how	a	type,	say		Either	,	would	implement	it:

Chapter	12:	Traversing	the	Stone

117

class	Right	extends	Either	{

		//	...

		sequence(of)	{

				return	this.$value.map(Either.of);

		}

}

Ah	yes,	if	our		$value		is	a	functor	(it	must	be	an	applicative,	in	fact),	we	can	simply		map		our
constructor	to	leap	frog	the	type.

You	may	have	noticed	that	we've	ignored	the		of		entirely.	It	is	passed	in	for	the	occasion
where	mapping	is	futile,	as	is	the	case	with		Left	:

class	Left	extends	Either	{

		//	...

		sequence(of)	{

				return	of(this);

		}

}

We'd	like	the	types	to	always	end	up	in	the	same	arrangement,	therefore	it	is	necessary	for
types	like		Left		who	don't	actually	hold	our	inner	applicative	to	get	a	little	help	in	doing	so.
The	Applicative	interface	requires	that	we	first	have	a	Pointed	Functor	so	we'll	always	have
a		of		to	pass	in.	In	a	language	with	a	type	system,	the	outer	type	can	be	inferred	from	the
signature	and	does	not	need	to	be	explicitly	given.

Effect	Assortment
Different	orders	have	different	outcomes	where	our	containers	are	concerned.	If	I	have
	[Maybe	a]	,	that's	a	collection	of	possible	values	whereas	if	I	have	a		Maybe	[a]	,	that's	a
possible	collection	of	values.	The	former	indicates	we'll	be	forgiving	and	keep	"the	good
ones",	while	the	latter	means	it's	an	"all	or	nothing"	type	of	situation.	Likewise,		Either	Error
(Task	Error	a)		could	represent	a	client	side	validation	and		Task	Error	(Either	Error	a)	
could	be	a	server	side	one.	Types	can	be	swapped	to	give	us	different	effects.

//	fromPredicate	::	(a	->	Bool)	->	a	->	Either	a	a

//	partition	::	(a	->	Bool)	->	[a]	->	[Either	a	a]

const	partition	=	f	=>	map(fromPredicate(f));

//	validate	::	(a	->	Bool)	->	[a]	->	Either	a	[a]

const	validate	=	f	=>	traverse(Either.of,	fromPredicate(f));

Chapter	12:	Traversing	the	Stone

118

Here	we	have	two	different	functions	based	on	if	we		map		or		traverse	.	The	first,
	partition		will	give	us	an	array	of		Left	s	and		Right	s	according	to	the	predicate	function.
This	is	useful	to	keep	precious	data	around	for	future	use	rather	than	filtering	it	out	with	the
bathwater.		validate		instead	will	only	move	forward	if	everything	is	hunky	dory.	By	choosing
a	different	type	order,	we	get	different	behavior.

Waltz	of	the	Types
Time	to	revisit	and	clean	our	initial	examples.

//	readFile	::	FileName	->	Task	Error	String

//	firstWords	::	String	->	String

const	firstWords	=	compose(join('	'),	take(3),	split('	'));

//	tldr	::	FileName	->	Task	Error	String

const	tldr	=	compose(map(firstWords),	readFile);

traverse(Task.of,	tldr,	['file1',	'file2']);

//	Task(['hail	the	monarchy',	'smash	the	patriarchy']);

Using		traverse		instead	of		map	,	we've	successfully	herded	those	unruly		Task	s	into	a	nice
coordinated	array	of	results.	This	is	like		Promise.all()	,	if	you're	familiar,	except	it	isn't	just	a
one-off,	custom	function,	no,	this	works	for	any	traversable	type.	These	mathematical	apis
tend	to	capture	most	things	we'd	like	to	do	in	an	interoperable,	reusable	way,	rather	than
each	library	reinventing	these	functions	for	a	single	type.

Let's	clean	up	the	last	example	for	closure	(no,	not	that	kind):

//	getAttribute	::	String	->	Node	->	Maybe	String

//	$::	Selector	->	IO	Node

//	getControlNode	::	IO	(Maybe	Node)

const	getControlNode	=	compose(chain(traverse(IO.of,	$)),	map(getAttribute('aria-contr

ols')),	$);

Instead	of		map(map($))		we	have		chain(traverse(IO.of,	$))		which	inverts	our	types	as	it
maps	then	flattens	the	two		IO	s	via		chain	.

No	Law	and	Order

Chapter	12:	Traversing	the	Stone

119

Well	now,	before	you	get	all	judgemental	and	bang	the	backspace	button	like	a	gavel	to
retreat	from	the	chapter,	take	a	moment	to	recognize	that	these	laws	are	useful	code
guarantees.	'Tis	my	conjecture	that	the	goal	of	most	program	architecture	is	an	attempt	to
place	useful	restrictions	on	our	code	to	narrow	the	possibilities,	to	guide	us	into	the	answers
as	designers	and	readers.

An	interface	without	laws	is	merely	indirection.	Like	any	other	mathematical	structure,	we
must	expose	properties	for	our	own	sanity.	This	has	a	similar	effect	as	encapsulation	since	it
protects	the	data,	enabling	us	to	swap	out	the	interface	with	another	law	abiding	citizen.

Come	along	now,	we've	got	some	laws	to	suss	out.

Identity

const	identity1	=	compose(sequence(Identity.of),	map(Identity.of));

const	identity2	=	Identity.of;

//	test	it	out	with	Right

identity1(Either.of('stuff'));

//	Identity(Right('stuff'))

identity2(Either.of('stuff'));

//	Identity(Right('stuff'))

This	should	be	straightforward.	If	we	place	an		Identity		in	our	functor,	then	turn	it	inside	out
with		sequence		that's	the	same	as	just	placing	it	on	the	outside	to	begin	with.	We	chose
	Right		as	our	guinea	pig	as	it	is	easy	to	try	the	law	and	inspect.	An	arbitrary	functor	there	is
normal,	however,	the	use	of	a	concrete	functor	here,	namely		Identity		in	the	law	itself	might
raise	some	eyebrows.	Remember	a	category	is	defined	by	morphisms	between	its	objects
that	have	associative	composition	and	identity.	When	dealing	with	the	category	of	functors,
natural	transformations	are	the	morphisms	and		Identity		is,	well	identity.	The		Identity	
functor	is	as	fundamental	in	demonstrating	laws	as	our		compose		function.	In	fact,	we	should
give	up	the	ghost	and	follow	suit	with	our	Compose	type:

Composition

Chapter	12:	Traversing	the	Stone

120

const	comp1	=	compose(sequence(Compose.of),	map(Compose.of));

const	comp2	=	(Fof,	Gof)	=>	compose(Compose.of,	map(sequence(Gof)),	sequence(Fof));

//	Test	it	out	with	some	types	we	have	lying	around

comp1(Identity(Right([true])));

//	Compose(Right([Identity(true)]))

comp2(Either.of,	Array)(Identity(Right([true])));

//	Compose(Right([Identity(true)]))

This	law	preserves	composition	as	one	would	expect:	if	we	swap	compositions	of	functors,
we	shouldn't	see	any	surprises	since	the	composition	is	a	functor	itself.	We	arbitrarily	chose
	true	,		Right	,		Identity	,	and		Array		to	test	it	out.	Libraries	like	quickcheck	or	jsverify	can
help	us	test	the	law	by	fuzz	testing	the	inputs.

As	a	natural	consequence	of	the	above	law,	we	get	the	ability	to	fuse	traversals,	which	is
nice	from	a	performance	standpoint.

Naturality

const	natLaw1	=	(of,	nt)	=>	compose(nt,	sequence(of));

const	natLaw2	=	(of,	nt)	=>	compose(sequence(of),	map(nt));

//	test	with	a	random	natural	transformation	and	our	friendly	Identity/Right	functors.

//	maybeToEither	::	Maybe	a	->	Either	()	a

const	maybeToEither	=	x	=>	(x.$value	?	new	Right(x.$value)	:	new	Left());

natLaw1(Maybe.of,	maybeToEither)(Identity.of(Maybe.of('barlow	one')));

//	Right(Identity('barlow	one'))

natLaw2(Either.of,	maybeToEither)(Identity.of(Maybe.of('barlow	one')));

//	Right(Identity('barlow	one'))

This	is	similar	to	our	identity	law.	If	we	first	swing	the	types	around	then	run	a	natural
transformation	on	the	outside,	that	should	equal	mapping	a	natural	transformation,	then
flipping	the	types.

A	natural	consequence	of	this	law	is:

traverse(A.of,	A.of)	===	A.of;

Which,	again,	is	nice	from	a	performance	standpoint.

Chapter	12:	Traversing	the	Stone

121

https://hackage.haskell.org/package/QuickCheck
http://jsverify.github.io/
https://www.cs.ox.ac.uk/jeremy.gibbons/publications/iterator.pdf

In	Summary
Traversable	is	a	powerful	interface	that	gives	us	the	ability	to	rearrange	our	types	with	the
ease	of	a	telekinetic	interior	decorator.	We	can	achieve	different	effects	with	different	orders
as	well	as	iron	out	those	nasty	type	wrinkles	that	keep	us	from		join	ing	them	down.	Next,
we'll	take	a	bit	of	a	detour	to	see	one	of	the	most	powerful	interfaces	of	functional
programming	and	perhaps	even	algebra	itself:	Monoids	bring	it	all	together

Exercises
Considering	the	following	elements:

//	httpGet	::	Route	->	Task	Error	JSON

//	routes	::	Map	Route	Route

const	routes	=	new	Map({	'/':	'/',	'/about':	'/about'	});

Exercise

Use	the	traversable	interface	to	change	the	type	signature	of	`getJsons`	to	Map	Route
Route	→	Task	Error	(Map	Route	JSON)

//	getRoutes	::	Map	Route	Route	->	Map	Route	(Task	Error	JSON)

const	getJsons	=	map(httpGet);

We	now	define	the	following	validation	function:

//	validate	::	Player	->	Either	String	Player

const	validate	=	player	=>	(player.name	?	Either.of(player)	:	left('must	have	name'));

Exercise

Using	traversable,	and	the	`validate`	function,	update	`startGame`	(and	its	signature)	to
only	start	the	game	if	all	players	are	valid

//	startGame	::	[Player]	->	[Either	Error	String]

const	startGame	=	compose(map(always('game	started!')),	map(validate));

Chapter	12:	Traversing	the	Stone

122

Finally,	we	consider	some	file-system	helpers:

//	readfile	::	String	->	Task	Error	String

//	readdir	::	String	->	Task	Error	[String]

Exercise

Use	traversable	to	rearrange	and	flatten	the	nested	Tasks	&	Maybe

//	readFirst	::	String	->	Task	Error	(Task	Error	(Maybe	String))

const	readFirst	=	compose(map(map(readfile('utf-8'))),	map(safeHead),	readdir);

Chapter	12:	Traversing	the	Stone

123

Appendix	A:	Essential	Functions	Support
In	this	appendix,	you'll	find	some	basic	JavaScript	implementations	of	various	functions
described	in	the	book.	Keep	in	mind	that	these	implementations	may	not	be	the	fastest	or
the	most	efficient	implementation	out	there;	they	solely	serve	an	educational	purpose.

In	order	to	find	functions	that	are	more	production-ready,	have	a	peak	at	ramda,	lodash,	or
folktale.

Note	that	some	functions	also	refer	to	algebraic	structures	defined	in	the	Appendix	B

always

//	always	::	a	->	b	->	a

const	always	=	curry((a,	b)	=>	a);

compose

//	compose	::	((a	->	b),	(b	->	c),		...,	(y	->	z))	->	a	->	z

function	compose(...fns)	{

		const	n	=	fns.length;

		return	function	$compose(...args)	{

				let	$args	=	args;

				for	(let	i	=	n	-	1;	i	>=	0;	i	-=	1)	{

						$args	=	[fns[i].call(null,	...$args)];

				}

				return	$args[0];

		};

}

curry

Appendix	A:	Essential	Functions	Support

124

http://ramdajs.com/
https://lodash.com/
http://folktale.github.io/

//	curry	::	((a,	b,	...)	->	c)	->	a	->	b	->	...	->	c

function	curry(fn)	{

		const	arity	=	fn.length;

		return	function	$curry(...args)	{

				if	(args.length	<	arity)	{

						return	$curry.bind(null,	...args);

				}

				return	fn.call(null,	...args);

		};

}

either

//	either	::	(a	->	c)	->	(b	->	c)	->	Either	a	b	->	c

const	either	=	curry((f,	g,	e)	=>	{

		if	(e.isLeft)	{

				return	f(e.$value);

		}

		return	g(e.$value);

});

identity

//	identity	::	x	->	x

const	identity	=	x	=>	x;

inspect

Appendix	A:	Essential	Functions	Support

125

//	inspect	::	a	->	String

function	inspect(x)	{

		if	(x	&&	typeof	x.inspect	===	'function')	{

				return	x.inspect();

		}

		function	inspectFn(f)	{

				return	f.name	?	f.name	:	f.toString();

		}

		function	inspectTerm(t)	{

				switch	(typeof	t)	{

						case	'string':

								return	`'${t}'`;

						case	'object':	{

								const	ts	=	Object.keys(t).map(k	=>	[k,	inspect(t[k])]);

								return	`{${ts.map(kv	=>	kv.join(':	')).join(',	')}}`;

						}

						default:

								return	String(t);

				}

		}

		function	inspectArgs(args)	{

				return	Array.isArray(args)	?	`[${args.map(inspect).join(',	')}]`	:	inspectTerm(arg

s);

		}

		return	(typeof	x	===	'function')	?	inspectFn(x)	:	inspectArgs(x);

}

left

//	left	::	a	->	Either	a	b

const	left	=	a	=>	new	Left(a);

liftA*

//	liftA2	::	(Applicative	f)	=>	(a1	->	a2	->	b)	->	f	a1	->	f	a2	->	f	b

const	liftA2	=	curry((fn,	a1,	a2)	=>	a1.map(fn).ap(a2));

//	liftA3	::	(Applicative	f)	=>	(a1	->	a2	->	a3	->	b)	->	f	a1	->	f	a2	->	f	a3	->	f	b

const	liftA3	=	curry((fn,	a1,	a2,	a3)	=>	a1.map(fn).ap(a2).ap(a3));

Appendix	A:	Essential	Functions	Support

126

maybe

//	maybe	::	b	->	(a	->	b)	->	Maybe	a	->	b

const	maybe	=	curry((v,	f,	m)	=>	{

		if	(m.isNothing)	{

				return	v;

		}

		return	f(m.$value);

});

nothing

//	nothing	::	()	->	Maybe	a

const	nothing	=	()	=>	Maybe.of(null);

reject

//	reject	::	a	->	Task	a	b

const	reject	=	a	=>	Task.rejected(a);

Appendix	A:	Essential	Functions	Support

127

Appendix	B:	Algebraic	Structures	Support
In	this	appendix,	you'll	find	some	basic	JavaScript	implementations	of	various	algebraic
structures	described	in	the	book.	Keep	in	mind	that	these	implementations	may	not	be	the
fastest	or	the	most	efficient	implementation	out	there;	they	solely	serve	an	educational
purpose.

In	order	to	find	structures	that	are	more	production-ready,	have	a	peak	at	folktale	or	fantasy-
land.

Note	that	some	methods	also	refer	to	functions	defined	in	the	Appendix	A

Compose

const	createCompose	=	curry((F,	G)	=>	class	Compose	{

		constructor(x)	{

				this.$value	=	x;

		}

		inspect()	{

				return	`Compose(${inspect(this.$value)})`;

		}

		//	-----	Pointed	(Compose	F	G)

		static	of(x)	{

				return	new	Compose(F(G(x)));

		}

		//	-----	Functor	(Compose	F	G)

		map(fn)	{

				return	new	Compose(this.$value.map(x	=>	x.map(fn)));

		}

		//	-----	Applicative	(Compose	F	G)

		ap(f)	{

				return	f.map(this.$value);

		}

});

Either

class	Either	{

Appendix	B:	Algebraic	Structures	Support

128

http://folktale.github.io/
https://github.com/fantasyland

		constructor(x)	{

				this.$value	=	x;

		}

		//	-----	Pointed	(Either	a)

		static	of(x)	{

				return	new	Right(x);

		}

}

class	Left	extends	Either	{

		get	isLeft()	{

				return	true;

		}

		get	isRight()	{

				return	false;

		}

		static	of(x)	{

				throw	new	Error('`of`	called	on	class	Left	(value)	instead	of	Either	(type)');

		}

		inspect()	{

				return	`Left(${inspect(this.$value)})`;

		}

		//	-----	Functor	(Either	a)

		map()	{

				return	this;

		}

		//	-----	Applicative	(Either	a)

		ap()	{

				return	this;

		}

		//	-----	Monad	(Either	a)

		chain()	{

				return	this;

		}

		join()	{

				return	this;

		}

		//	-----	Traversable	(Either	a)

		sequence(of)	{

				return	of(this);

		}

		traverse(of,	fn)	{

				return	of(this);

Appendix	B:	Algebraic	Structures	Support

129

		}

}

class	Right	extends	Either	{

		get	isLeft()	{

				return	false;

		}

		get	isRight()	{

				return	true;

		}

		static	of(x)	{

				throw	new	Error('`of`	called	on	class	Right	(value)	instead	of	Either	(type)');

		}

		inspect()	{

				return	`Right(${inspect(this.$value)})`;

		}

		//	-----	Functor	(Either	a)

		map(fn)	{

				return	Either.of(fn(this.$value));

		}

		//	-----	Applicative	(Either	a)

		ap(f)	{

				return	f.map(this.$value);

		}

		//	-----	Monad	(Either	a)

		chain(fn)	{

				return	fn(this.$value);

		}

		join()	{

				return	this.$value;

		}

		//	-----	Traversable	(Either	a)

		sequence(of)	{

				return	this.traverse(of,	identity);

		}

		traverse(of,	fn)	{

				fn(this.$value).map(Either.of);

		}

}

Identity

Appendix	B:	Algebraic	Structures	Support

130

class	Identity	{

		constructor(x)	{

				this.$value	=	x;

		}

		inspect()	{

				return	`Identity(${inspect(this.$value)})`;

		}

		//	-----	Pointed	Identity

		static	of(x)	{

				return	new	Identity(x);

		}

		//	-----	Functor	Identity

		map(fn)	{

				return	Identity.of(fn(this.$value));

		}

		//	-----	Applicative	Identity

		ap(f)	{

				return	f.map(this.$value);

		}

		//	-----	Monad	Identity

		chain(fn)	{

				return	this.map(fn).join();

		}

		join()	{

				return	this.$value;

		}

		//	-----	Traversable	Identity

		sequence(of)	{

				return	this.traverse(of,	identity);

		}

		traverse(of,	fn)	{

				return	fn(this.$value).map(Identity.of);

		}

}

IO

Appendix	B:	Algebraic	Structures	Support

131

class	IO	{

		constructor(fn)	{

				this.unsafePerformIO	=	fn;

		}

		inspect()	{

				return	`IO(?)`;

		}

		//	-----	Pointed	IO

		static	of(x)	{

				return	new	IO(()	=>	x);

		}

		//	-----	Functor	IO

		map(fn)	{

				return	new	IO(compose(fn,	this.unsafePerformIO));

		}

		//	-----	Applicative	IO

		ap(f)	{

				return	this.chain(fn	=>	f.map(fn));

		}

		//	-----	Monad	IO

		chain(fn)	{

				return	this.map(fn).join();

		}

		join()	{

				return	this.unsafePerformIO();

		}

}

List

Appendix	B:	Algebraic	Structures	Support

132

class	List	{

		constructor(xs)	{

				this.$value	=	xs;

		}

		inspect()	{

				return	`List(${inspect(this.$value)})`;

		}

		concat(x)	{

				return	new	List(this.$value.concat(x));

		}

		//	-----	Pointed	List

		static	of(x)	{

				return	new	List([x]);

		}

		//	-----	Functor	List

		map(fn)	{

				return	new	List(this.$value.map(fn));

		}

		//	-----	Traversable	List

		sequence(of)	{

				return	this.traverse(of,	identity);

		}

		traverse(of,	fn)	{

				return	this.$value.reduce(

						(f,	a)	=>	fn(a).map(b	=>	bs	=>	bs.concat(b)).ap(f),

						of(new	List([])),

);

		}

}

Map

Appendix	B:	Algebraic	Structures	Support

133

class	Map	{

		constructor(x)	{

				this.$value	=	x;

		}

		inspect()	{

				return	`Map(${inspect(this.$value)})`;

		}

		insert(k,	v)	{

				const	singleton	=	{};

				singleton[k]	=	v;

				return	Map.of(Object.assign({},	this.$value,	singleton));

		}

		reduceWithKeys(fn,	zero)	{

				return	Object.keys(this.$value)

						.reduce((acc,	k)	=>	fn(acc,	this.$value[k],	k),	zero);

		}

		//	-----	Functor	(Map	a)

		map(fn)	{

				return	this.reduceWithKeys(

						(m,	v,	k)	=>	m.insert(k,	fn(v)),

						new	Map({}),

);

		}

		//	-----	Traversable	(Map	a)

		sequence(of)	{

				return	this.traverse(of,	identity);

		}

		traverse(of,	fn)	{

				return	this.reduceWithKeys(

						(f,	a,	k)	=>	fn(a).map(b	=>	m	=>	m.insert(k,	b)).ap(f),

						of(new	Map({})),

);

		}

}

Maybe
Note	that		Maybe		could	also	be	defined	in	a	similar	fashion	as	we	did	for		Either		with
two	child	classes		Just		and		Nothing	.	This	is	simply	a	different	flavor.

Appendix	B:	Algebraic	Structures	Support

134

class	Maybe	{

		get	isNothing()	{

				return	this.$value	===	null	||	this.$value	===	undefined;

		}

		get	isJust()	{

				return	!this.isNothing;

		}

		constructor(x)	{

				this.$value	=	x;

		}

		inspect()	{

				return	`Maybe(${inspect(this.$value)})`;

		}

		//	-----	Pointed	Maybe

		static	of(x)	{

				return	new	Maybe(x);

		}

		//	-----	Functor	Maybe

		map(fn)	{

				return	this.isNothing	?	this	:	Maybe.of(fn(this.$value));

		}

		//	-----	Applicative	Maybe

		ap(f)	{

				return	this.isNothing	?	this	:	f.map(this.$value);

		}

		//	-----	Monad	Maybe

		chain(fn)	{

				return	this.map(fn).join();

		}

		join()	{

				return	this.isNothing	?	this	:	this.$value;

		}

		//	-----	Traversable	Maybe

		sequence(of)	{

				this.traverse(of,	identity);

		}

		traverse(of,	fn)	{

				return	this.isNothing	?	of(this)	:	fn(this.$value).map(Maybe.of);

		}

}

Appendix	B:	Algebraic	Structures	Support

135

Task

class	Task	{

		constructor(fork)	{

				this.fork	=	fork;

		}

		inspect()	{

				return	'Task(?)';

		}

		static	rejected(x)	{

				return	new	Task((reject,	_)	=>	reject(x));

		}

		//	-----	Pointed	(Task	a)

		static	of(x)	{

				return	new	Task((_,	resolve)	=>	resolve(x));

		}

		//	-----	Functor	(Task	a)

		map(fn)	{

				return	new	Task((reject,	resolve)	=>	this.fork(reject,	compose(resolve,	fn)));

		}

		//	-----	Applicative	(Task	a)

		ap(f)	{

				return	this.chain(fn	=>	f.map(fn));

		}

		//	-----	Monad	(Task	a)

		chain(fn)	{

				return	new	Task((reject,	resolve)	=>	this.fork(reject,	x	=>	fn(x).fork(reject,	res

olve)));

		}

		join()	{

				return	this.chain(identity);

		}

}

Appendix	B:	Algebraic	Structures	Support

136

Appendix	C:	Pointfree	Utilities
In	this	appendix,	you'll	find	pointfree	versions	of	rather	classic	JavaScript	functions
described	in	the	book.	All	of	the	following	functions	are	seemingly	available	in	exercises,	as
part	of	the	global	context.	Keep	in	mind	that	these	implementations	may	not	be	the	fastest	or
the	most	efficient	implementation	out	there;	they	solely	serve	an	educational	purpose.

In	order	to	find	functions	that	are	more	production-ready,	have	a	peak	at	ramda,	lodash,	or
folktale.

Note	that	functions	refer	to	the		curry		&		compose		functions	defined	in	Appendix	A

add

//	add	::	Number	->	Number	->	Number

const	add	=	curry((a,	b)	=>	a	+	b);

chain

//	chain	::	Monad	m	=>	(a	->	m	b)	->	m	a	->	m	b

const	chain	=	curry((fn,	m)	=>	m.chain(fn));

concat

//	concat	::	String	->	String	->	String

const	concat	=	curry((a,	b)	=>	a.concat(b));

eq

//	eq	::	Eq	a	=>	a	->	a	->	Boolean

const	eq	=	curry((a,	b)	=>	a	===	b);

filter

Appendix	C:	Pointfree	Utilities

137

http://ramdajs.com/
https://lodash.com/
http://folktale.origamitower.com/

//	filter	::	(a	->	Boolean)	->	[a]	->	[a]

const	filter	=	curry((fn,	xs)	=>	xs.filter(fn));

flip

//	flip	::	(a	->	b)	->	(b	->	a)

const	flip	=	curry((fn,	a,	b)	=>	fn(b,	a));

forEach

//	forEach	::	(a	->	())	->	[a]	->	()

const	forEach	=	curry((fn,	xs)	=>	xs.forEach(fn));

head

//	head	::	[a]	->	a

const	head	=	xs	=>	xs[0];

intercalate

//	intercalate	::	String	->	[String]	->	String

const	intercalate	=	curry((str,	xs)	=>	xs.join(str));

join

//	join	::	Monad	m	=>	m	(m	a)	->	m	a

const	join	=	m	=>	m.join();

last

//	last	::	[a]	->	a

const	last	=	xs	=>	xs[xs.length	-	1];

Appendix	C:	Pointfree	Utilities

138

map

//	map	::	Functor	f	=>	(a	->	b)	->	f	a	->	f	b

const	map	=	curry((fn,	f)	=>	f.map(fn));

match

//	match	::	RegExp	->	String	->	Boolean

const	match	=	curry((re,	str)	=>	re.test(str));

prop

//	prop	::	String	->	Object	->	a

const	prop	=	curry((p,	obj)	=>	obj[p]);

reduce

//	reduce	::	(b	->	a	->	b)	->	b	->	[a]	->	b

const	reduce	=	curry((fn,	zero,	xs)	=>	xs.reduce(fn,	zero));

replace

//	replace	::	RegExp	->	String	->	String	->	String

const	replace	=	curry((re,	rpl,	str)	=>	str.replace(re,	rpl));

reverse

//	reverse	::	[a]	->	[a]

const	reverse	=	x	=>	Array.isArray(x)	?	x.reverse()	:	x.split('').reverse().join('');

safeHead

Appendix	C:	Pointfree	Utilities

139

//	safeHead	::	[a]	->	Maybe	a

const	safeHead	=	compose(Maybe.of,	head);

safeLast

//	safeLast	::	[a]	->	Maybe	a

const	safeLast	=	compose(Maybe.of,	last);

safeProp

//	safeProp	::	String	->	Object	->	Maybe	a

const	safeProp	=	curry((p,	obj)	=>	compose(Maybe.of,	prop(p))(obj));

sequence

//	sequence	::	(Applicative	f,	Traversable	t)	=>	(a	->	f	a)	->	t	(f	a)	->	f	(t	a)

const	sequence	=	curry((of,	f)	=>	f.sequence(of));

sortBy

//	sortBy	::	Ord	b	=>	(a	->	b)	->	[a]	->	[a]

const	sortBy	=	curry((fn,	xs)	=>	{

		return	xs.sort((a,	b)	=>	{

				if	(fn(a)	===	fn(b))	{

						return	0;

				}

				return	fn(a)	>	fn(b)	?	1	:	-1;

		});

});

split

//	split	::	String	->	String	->	[String]

const	split	=	curry((sep,	str)	=>	str.split(sep));

Appendix	C:	Pointfree	Utilities

140

take

//	take	::	Number	->	[a]	->	[a]

const	take	=	curry((n,	xs)	=>	xs.slice(0,	n));

toLowerCase

//	toLowerCase	::	String	->	String

const	toLowerCase	=	s	=>	s.toLowerCase();

toString

//	toString	::	a	->	String

const	toString	=	String;

toUpperCase

//	toUpperCase	::	String	->	String

const	toUpperCase	=	s	=>	s.toUpperCase();

traverse

//	traverse	::	(Applicative	f,	Traversable	t)	=>	(a	->	f	a)	->	(a	->	f	b)	->	t	a	->	f	

(t	b)

const	traverse	=	curry((of,	fn,	f)	=>	f.traverse(of,	fn));

unsafePerformIO

//	unsafePerformIO	::	IO	a	->	a

const	unsafePerformIO	=	io	=>	io.unsafePerformIO();

Appendix	C:	Pointfree	Utilities

141

Appendix	C:	Pointfree	Utilities

142

	Introduction
	Chapter 01: What Ever Are We Doing?
	Chapter 02: First Class Functions
	Chapter 03: Pure Happiness with Pure Functions
	Chapter 04: Currying
	Chapter 05: Coding by Composing
	Chapter 06: Example Application
	Chapter 07: Hindley-Milner and Me
	Chapter 08: Tupperware
	Chapter 09: Monadic Onions
	Chapter 10: Applicative Functors
	Chapter 11: Transform Again, Naturally
	Chapter 12: Traversing the Stone
	Appendix A: Essential Functions Support
	Appendix B: Algebraic Structures Support
	Appendix C: Pointfree Utilities

