MYBATIS - QUICK GUIDE

MYBATIS - OVERVIEW

MyBatis is an open source, lightweight, persistence framework. It is an alternative to JDBC and
Hibernate. It automates the mapping between SQL databases and objects in Java, .NET, and Ruby
on Rails. The mappings are decoupled from the application logic by packaging the SQL statements
in XML configuration files.

It abstracts almost all of the]DBC code, and reduces the burden of setting of parameters manually
and retrieving the results. It provides a simple API to interact with the database. It also provides
support for custom SQL, stored procedures and advanced mappings.

It was formerly known as IBATIS, which was started by Clinton Begin in 2002. MyBatis 3 is the
latest version. It is a total makeover of IBATIS.

A significant difference between MyBatis and other persistence frameworks is that MyBatis
emphasizes the use of SQL, while other frameworks such as Hibernate typically uses a custom

query language i.e. the Hibernate Query Language HQL or Enterprise JavaBeans Query Language
EJBQL.

MYBATIS Design Features
MyBatis comes with the following design philosophies —

e Simplicity — MyBatis is widely regarded as one of the simplest persistence frameworks
available today.

o Fast Development — MyBatis does all it can to facilitate hyper-fast development.

¢ Portability — MyBatis can be implemented for nearly any language or platform such as
Java, Ruby, and C# for Microsoft .NET.

¢ Independent Interfaces — MyBatis provides database-independent interfaces and APIs that
help the rest of the application remain independent of any persistence-related resources.

e Open source— MyBatis is free and an open source software.
Advantages of MYBATIS

MYBATIS offers the following advantages —

e Supports stored procedures — MyBatis encapsulates SQL in the form of stored procedures
so that business logic can be kept out of the database, and the application is more portable
and easier to deploy and test.

¢ Supports inline SQL — No pre-compiler is needed, and you can have the full access to all of
the features of SQL.

¢ Supports dynamic SQL — MyBatis provides features for dynamic building SQL queries
based on parameters.

e Supports O/RM — MyBatis supports many of the same features as an O/RM tool, such as
lazy loading, join fetching, caching, runtime code generation, and inheritance.

Supports

stored
procedures

http://www.tutorialspoint.com/mybatis/mybatis_quick_guide.htm

Supports Advantages Supports
O/RM of MyBatis inline SQL

Supports
dynamic
SQL

MyBatis uses JAVA programming language while developing database oriented application. Before
proceeding further, make sure that you understand the basics of procedural and object-oriented
programming — control structures, data structures and variables, classes, objects, etc.

To understand JAVA in detail you can go through our JAVA Tutorial.

MYBATIS - ENVIRONMENT

You would have to set up a proper environment for MyBatis before starting off with the actual
development work. This chapter explains how to set up a working environment for MyBatis.

MyBatis Installation
Carry out the following simple steps to install MyBatis on your machine —

e Download the latest version of MyBatis from Download MYBATIS.

e Download the latest version of mysglconnector from Download MySQL Connector.

¢ Unzip the downloaded files to extract .jar files and keep them in appropriate
folders/directory.

o Set CLASSPATH variable for the extracted .jar files appropriately.

Database Setup

Create an EMPLOYEE table in any MySQL database using the following syntax —

mysql> DROP TABLE IF EXISTS details.student;
CREATE TABLE details.student(

ID int(10) NOT NULL AUTO_INCREMENT,

NAME varchar (100) NOT NULL,

BRANCH varchar (255) NOT NULL,

PERCENTAGE int(3) NOT NULL,

PHONE int(10) NOT NULL,

EMAIL varchar(255) NOT NULL,

PRIMARY KEY (ID)

)

MyBatis Eclipse Setup

If you want to develop MyBatis Application using eclipse, carry out the following steps —

/java/index.htm
http://www.java2s.com/Code/Jar/m/Downloadmybatis302jar.htm
http://dev.mysql.com/downloads/connector/j/

Step 1: Open eclipse and create an enterprise
application project

Step 2: Configure it as maven project

Step 3: Copy the content given below in the
pom.xml

<project xmlns = "http://maven.apache.org/POM/4.0.0" xmlns:xsi =
"http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>mybatisfinalexamples</groupId>
<artifactId>mybatisfinalexamples</artifactId>
<version>0.0.1-SNAPSHOT</version>

<build>
<sourceDirectory>src</sourceDirectory>

<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
</plugins>

</build>
<dependencies>

<dependency>
<groupId>org.mybatis</groupId>
<artifactId>mybatis</artifactId>
<version>3.3.0</version>
</dependency>

<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.6</version>
</dependency>
</dependencies>

</project>

MYBATIS - CONFIGURATION XML

In the previous chapter, we have seen how to install MyBatis. This chapter discusses how to
configure MyBatis using XML file.

Since we are communicating with the database, we have to configure the details of the database.
Configuration XML is the file used for the XML-based configuration. By using this file, you can
configure various elements.

The following programing is a typical structure of MyBatis configuration file.

<configuration>
<typeAliases>
<typeAlias alias = '"class alias Name" type = "absolute clas Name"/>
</typeAliases>
<environments default = "default environment _name">
<environment id = "environment_id">
<transactionManager type = "JDBC/MANAGED"/>

<dataSource type = "UNPOOLED/POOLED/JNDI">
<property name "driver" value = "database_driver_class name"/>
<property name "url" value = "database_url"/>
<property name "username" value "database_user_name"/>
<property name "password" value "database_password" />
</dataSource>

</environment>
</environments>

<mappers>
<mapper resource = "path of the configuration XML file"/>
</mappers>

</configuration>

Let us discuss the important elements tags of the configuration XML file one by one.

environments tag

Within the environments element, we configure the environment of the database that we use in
our application. In MyBatis, you can connect to multiple databases by configuring multiple
environment elements. To configure the environment, we are provided with two sub tags namely
transactionManager and dataSource.

transactionManager tag

MyBatis supports two transaction managers namely JDBC and MANAGED

¢ If we use the transaction manager of type JDBC, the application is responsible for the
transaction management operations, such as, commit, roll-back, etc...

¢ If we use the transaction manager of type MANAGED, the application server is responsible
to manage the connection life cycle. It is generally used with the Web Applications.

dataSource tag

Itis used to configure the connection properties of the database, such as driver-name, url, user-
name, and password of the database that we want to connect. It is of three types namely —

¢ UNPOOLED — For the dataSource type UNPOOLED, MyBatis simply opens and closes a
connection for every database operation. It is a bit slower and generally used for the simple
applications.

e POOLED - For the dataSource type POOLED, MyBatis will maintain a database connection
pool. And, for every database operation, MyBatis uses one of these connections, and returns
them to the pool after the completion of the operation. It reduces the initial connection and
authentication time that required to create a new connection.

e JNDI — For the dataSource type JNDI, MyBatis will get the connection from the JNDI
dataSource.

Here is how you can use an environment tag in practice —

<environments default = "development">
<environment id = "development'>
<transactionManager type = "JDBC"/>
<dataSource type = "POOLED">

<property name = "driver" value = "com.mysql.jdbc.Driver"/>
<property name = "url" value = "jdbc:mysql://localhost:3306/details"/>
<property name = "username'" value = "root"/>
<property name = "password" value = "password"/>
</dataSource>
</environment>
</environments>

typeAliases tag

Instead of specifying the absolute class name everywhere, we can use typeAliases, a shorter name
for a Java type. Suppose, we have a class Student in Student.java file within the package named
tutorials_point.com.mybatis_ examples, then the absolute class name will be
tutorials_point.com.mybatis examples.Student. Instead of using this name to address the class
every time, you can declare an alias to that class as shown below —

<typeAliases>
<typeAlias alias = "Student" type = "mybatis.Student"/>
</typeAliases>

mappers tag

Mapper XML file is the important file, which contains the mapped SQL statements. Mapper’s
elementis used to configure the location of these mappers xml files in the configuration file of
MyBatis thiselementcontainsfourattributesnamelyresources, url, class, andname.

For example, the name of the mapper xml file is Student.xml and it resides in the package
named as mybatis,, then you can configure the mapper tag as shown below.

<mappers>
<mapper resource = "mybatis/Student.xml"/>
</mappers>

¢ The attribute resource points to the classpath of the XML file.
¢ The attribute url points to the fully qualified path of the xml file.

¢ We can use mapper interfaces instead of xml file, the attribute class points to the class-path
of the mapper interface.

e The attribute name points to the package name of the mapper interface. In the example
provided in this chapter, we have specified the class path of the mapper XML using the
resource attribute.

In addition to these, there are other elements that can be used in the configuration file of MyBatis
documentation. Refer MyBatis documentation for the complete details.

MyBatis with MySQL database

MySQL is one of the most popular open-source database systems available today. Let us create a
SqlMapConfig.xml configuration file to connect to mysql database. The example given below are
the dataSource properties driver — name, url, user — name, andpassword for MySQL database —

Sr.No. Property Name value
1 driver com.mysql.jdbc.Driver
2 url jdbc:mysql://localhost:3306/details assume database is

"details"

https://mybatis.github.io/mybatis-3/configuration.html

3 username root

4 password password

We use the transaction manager of type JDBC, means we have to perform the operations, such as
commit and roll-back manually, within the application.

We use the dataSource of type UNPOOLED, which means new connection is created for each

database operation. Therefore, itis recommended to close the connection manually after the
completion of database operations.

SqlMapConfig.xml

Below given is the XML configuration for the examples used in this tutorial. Copy the content given
below in a text file and save it as SqlMapConfig.xml. We are going to use this file in all the
examples given in this tutorial.

<configuration>
<environments default = "development">
<environment id = "development'">
<transactionManager type = "JDBC"/>

<dataSource type = "POOLED">

<property name = "driver" value = "com.mysql.jdbc.Driver"/>
<property name = "url" value = "jdbc:mysql://localhost:3306/details"/>
<property name = "username'" value = "root"/>
<property name = "password" value = "password"/>
</dataSource>
</environment>
</environments>
<mappers>
<mapper resource = "mybatis/Student.xml"/>
</mappers>
</configuration>

MYBATIS - MAPPER XML

In the previous chapter, we have seen how to configure MyBatis using an XML file. This chapter
discusses the Mapper XML file and various mapped SQL statements provided by it.

Before proceeding to mapped statements, assume that the following table named Student exists
in the MYSQL database —

foocoocoo Foococoocooo Foccococoocoocooo Poococooooos Pfooccoccoococooosoo +
| ID | NAME | BRANCH | PERCENTAGE | PHONE | EMAIL |
focoodiacocoos Pocooocooo Pocoocoocoooo Pocoocoocooo focooccoocoocooao +
| 1 | Shyam | it | 80 | 954788457 | mail@mail.com |
focoodacoasaa Poccocooa Pococcoooooas Pocooocoocooo focoocoocooocoooo +

Also assume that POJO class also exists named Student with respect to the above table as shown
below —

public class Student {
private int id;
private String name;
private String branch;
private int percentage;
private int phone;
private String email;

//Setters and getters
}

Mapped Statements

Mapper XML is an important file in MyBatis, which contains a set of statements to configure various
SQL statements such as select, insert, update, and delete. These statements are known as
Mapped Statements or Mapped SQL Statements.

¢ All the statements have unique id. To execute any of these statements you just need to pass
the appropriate id to the methods in Java Application.

e mapper XML file prevents the burden of writing SQL statements repeatedly in the application.
In comparison to JDBC, almost 95% of the code is reduced using Mapper XML file in MyBatis.

e All these Mapped SQL statements are resided within the element named<mapper>. This
element contains an attribute called ‘namespace’.

<mapper namespace = "Student">
//mapped statements and result maps
<mapper>

All the Mapped SQL statements are discussed below with examples.
Insert

In MyBatis, to insert values into the table, we have to configure the insert mapped query. MyBatis
provides various attributes for insert mapper, but largely we use id and parameter type.

id is unique identifier used to identify the insert statement. On the other hand, parametertype is
the class name or the alias of the parameter that will be passed into the statement. Below given is
an example of insert mapped query —

<insert id = "insert" parameterType = "Student">
INSERT INTO STUDENT1 (NAME, BRANCH, PERCENTAGE, PHONE, EMAIL)
VALUES (#{name}, #{branch}, #{percentage}, #{phone}, #{email});
</insert>

In the given example, we use the parameter of type Student . The class studentis a POJO
class, which represents the Student record with name, branch, percentage, phone, and email as
parameters.

You can invoke the ‘insert” mapped query using Java APl as shown below —

//Assume session is an SglSession object.
session.insert("Student.insert", student);

Update

To update values of an existing record using MyBatis, the mapped query update is configured. The
attributes of update mapped query are same as the insert mapped query. Following is the example
of the update mapped query —

<update id = "update" parameterType = "Student'">

UPDATE STUDENT SET EMAIL = #{email}, NAME = #{name}, BRANCH = #{branch}, PERCENTAGE
= #{percentage}, PHONE = #{phone} WHERE ID = #{id};
</update>

To invoke the update query, instantiate Student class, set the values for the variables representing
columns which need to be updated, and pass this object as parameter to update method. You can
invoke the update mapped query using Java APl as shown below —

//Assume session is an SglSession object.
session.update("Student.update", student);

Delete

To delete the values of an existing record using MyBatis, the mapped query ‘delete’ is configured.
The attributes of ‘delete’ mapped query are same as the insert and update mapped queries.
Following is the example of the delete mapped query —

<delete id = "deleteById" parameterType = "int">
DELETE from STUDENT WHERE ID = #{id};
</delete>

You can invoke the delete mapped query using the delete method of SqlSession interface
provided by MyBatis Java APl as shown below —

//Assume session is an SglSession object.
session.delete("Student.deleteById", 18);

Select

To retrieve data, ‘select’ mapper statement is used. Following is the example of select mapped
query to retrieve all the records in a table —

<select id = "getAll" resultMap = "result">
SELECT * FROM STUDENT;
</select>

You can retrieve the data returned by the select query using the method selectList. This method
returns the data of the selected record in the form of List as shown below —

List<Student> list = session.selectList("Student.getAll");

resultMaps

Itis the most important and powerful elements in MyBatis. The results of SQL SELECT statements
are mapped to Java objects beans/POJO. Once the result map is defined, we can refer these from
several SELECT statements. Following is the example of result Map query; it maps the results of the
select queries to the Student class —

<result property
<result property

"phone" column = "PHONE"/>
"email" column = "EMAIL"/>

<resultMap id = "result" type = "Student">
<result property = "id" column = "ID"/>
<result property = "name" column = "NAME"/>
<result property = "branch" column = "BRANCH"/>
<result property = "percentage" column = "PERCENTAGE"/>

</resultMap>

<select id = "getAll" resultMap = "result">
SELECT * FROM STUDENT;

</select>

<select id = "getById" parameterType = "int" resultMap = "result">
SELECT * FROM STUDENT WHERE ID = #{id};

</select>

Note — Itis not mandatory to write the column attribute of the resultMap if both the property and
the column name of the table are same.

MYBATIS - CREATE OPERATION

To perform any Create, Read, Update, and Delete CRUD operation using MyBATIS, you would need
to create a Plain Old Java Objects POJO class corresponding to the table. This class describes the
objects that will "model" database table rows.

The POJO class would have implementation for all the methods required to perform desired
operations.

Create the STUDENT table in MySQL database as shown below —

mysql> CREATE TABLE details.student(
-> ID int(10) NOT NULL AUTO_INCREMENT,
= NAME varchar (100) NOT NULL,
-> BRANCH varchar (255) NOT NULL,
-> PERCENTAGE int(3) NOT NULL,
-> PHONE int(11) NOT NULL,
-> EMAIL varchar(255) NOT NULL,
-> PRIMARY KEY ("ID)
->

);

Query OK, O rows affected (0.37 sec)

Student POJO Class

Create a STUDENT class in STUDENT .java file as

public class Student {
private int id;
private String name;
private String branch;
private int percentage;
private int phone;
private String email;

public Student(String name, String branch, int percentage, int phone, String email) {
super ();
this.name = name;
this.branch = branch;
this.percentage = percentage;
this.phone = phone;
this.email = email;

}

You can define methods to set individual fields in the table. The next chapter explains how to get
the values of individual fields.

Student.xml File

To define SQL mapping statement using MyBatis, we would use <insert> tag. Inside this tag
definition, we would define an "id." Further, the ‘id” will be used in the mybatisinsert.java file for
executing SQL INSERT query on database. Create student.xml file as shown below —

<?xml version = "1.0" encoding = "UTF-8"?>

<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
"http://mybatis.org/dtd/mybatis-3-mapper.dtd">

<mapper namespace = "Student">

<insert id = "insert" parameterType = "Student">
INSERT INTO STUDENT (NAME, BRANCH, PERCENTAGE, PHONE, EMAIL) VALUES (#{name},
#{branch}, #{percentage}, #{phone}, #{email});

<selectKey keyProperty = "id" resultType = "int" order = "AFTER">
select last_insert_id() as id
</selectKey>

</insert>

</mapper>

Here, parameteType — could take a value as string, int, float, double, or any class object based
on requirement. In this example, we would pass Student object as a parameter, while calling insert
method of SqlSession class.

If your database table uses an IDENTITY, AUTO_INCREMENT, or SERIAL column, or you have
defined a SEQUENCE/GENERATOR, you can use the <selectKey> elementin an <insert>
statement to use or return that database-generated value.

mybatisinsert.java File

This file would have application level logic to insert records in the Student table. Create and save
mybatislnsert.java file as shown below —

import java.io.IOException;
import java.io.Reader;

import org.apache.ibatis.io.Resources;

import org.apache.ibatis.session.SqlSession;

import org.apache.ibatis.session.SqlSessionFactory;

import org.apache.ibatis.session.SqlSessionFactoryBuilder;

public class mybatisInsert {
public static void main(String args[]) throws IOException{

Reader reader = Resources.getResourceAsReader ("SglMapConfig.xml1l");
SglSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(reader);
SglSession session = sqglSessionFactory.openSession();

//Create a new student object
Student student = new Student("Mohammad", "It", 80, 984803322, "Mohammad@gmail.com"

)

//Insert student data
session.insert("Student.insert", student);
System.out.println("record inserted successfully");
session.commit();

session.close();

b
Kl | [

Compilation and Execution

Here are the steps to compile and run the mybatisinsert.java file. Make sure, you have set PATH
and CLASSPATH appropriately before proceeding for compilation and execution.

e Create Student.xml as shown above.

e Create SqlMapConfig.xml as shown in the MYBATIS - Configuration XML chapter of this
tutorial.

¢ Create Student.java as shown above and compile it.
¢ Create mybatisinsert.java as shown above and compile it.
e Execute mybatisinsert binary to run the program.

You would get the following result, and a record would be created in the STUDENT table.

/mybatis/mybatis_configuration_xml.htm

$java mybatisInsert
Record Inserted Successfully

If you check the STUDENT table, it should display the following result —

mysgl> select * from student;

Foocoodfoocooooooo Focoooooo Focooocooocooos Pococoocoooocoa Focoocccoocooocooooooso +
| ID | NAME | BRANCH | PERCENTAGE | PHONE | EMAIL |
toocooffoooooooooa Foccooooo Foccoocoocooooo Pococococoooos Pococcocoooooooooooooo +
| 1 | Mohammad | It [80 | 984803322 | Mohammad@gmail.com |
oS S e T S S e oo oo S S e e e e R e e e S R e e e e S e +

1 row in set (0.00 sec)

MYBATIS - READ OPERATION

We discussed in the last chapter, how to insert values into the STUDENT table using MyBatis by
performing CREATE operation. This chapter explains how to read the data in a table using MyBatis.

We have the following STUDENT table in MySQL —

CREATE TABLE details.student(
ID int(10) NOT NULL AUTO_INCREMENT,
NAME varchar (100) NOT NULL,
BRANCH varchar (255) NOT NULL,
PERCENTAGE int(3) NOT NULL,
PHONE int(11) NOT NULL,
EMAIL varchar(255) NOT NULL,
PRIMARY KEY ("ID)

)

Assume, this table has two record as —

toocooffoooooooooa Foccooooo Foccoocoocooooo Pococococoooos Pococcocoooooooooooooo +
| ID | NAME | BRANCH | PERCENTAGE | PHONE | EMAIL |
oS S e T S S e oo oo S S e e e e R e e e S R e e e e S e +
| 1 | Mohammad | It | 80 | 984803322 | Mohammad@gmail.com |
| 2 | shyam | It | 75 | 984800000 | shyam@gmail.com |
Foocoofoocooooooo Focoooooo Focooocoooooos Focooocoooooo Focoococoococooooooooooo +

Student POJO Class

To perform read operation, we would modify the Student class in Student.java as —

public class Student {
private int id;
private String name;
private String branch;
private int percentage;
private int phone;
private String email;

public Student(int id, String name, String branch, int percentage, int phone, String

email) {

super ();

this.id = id;

this.name = name;

this.branch = branch;

this.percentage = percentage;

this.phone = phone;

this.email = email;

¥
public Student() {}

public int getId() {
return id;

}

public String getName() {
return name;
}

public int getPhone() {
return phone;
}

public String getEmail() {
return email;
}

public String getBranch() {
return branch;
}

public int getPercentage() {
return percentage;
}

}

Student.xml File

To define SQL mapping statement using MyBatis, we would add <select> tag in Student.xml file
and inside this tag definition, we would define an "id" which will be used in mybatisRead.java file
for executing SQL SELECT query on database. While reading the records, we can get all the
records at once or we can get a particular record using the where clause. In the XML given below,
you can observe both the queries.

To retrieve a particular record, we need a unique key to represent that record. Therefore, we have
also defined the resultmap "id" unique key of type Student to map the result of the select query
with the variable of Student class.

<?xml version = "1.0" encoding = "UTF-8"7?>

<IDOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
"http://mybatis.org/dtd/mybatis-3-mapper.dtd">

<mapper namespace = "Student">
<resultMap id = "result" type = "Student">
<result property = "id" column = "ID"/>
</resultMap>
<select id = "getAll" resultMap = "result">
SELECT * FROM STUDENT;
</select>
<select id = "getById" parameterType = "int" resultMap = "result">
SELECT * FROM STUDENT WHERE ID = #{id};
</select>
</mapper>

mybatisRead ALL.java File

This file has application level logic to read all the records from the Student table. Create and save
mybatisRead_ALL.java file as shown below —

import java.io.IOException;
import java.io.Reader;
import java.util.List;

import org.apache.ibatis.io.Resources;

import org.apache.ibatis.session.SqlSession;
import org.apache.ibatis.session.SqglSessionFactory;
import org.apache.ibatis.session.SqlSessionFactoryBuilder;

public class mybatisRead_ALL {

public static void main(String args[]) throws IOException{

Reader reader

= Resources.getResourceAsReader ("SqlMapConfig.xml1l");

SglSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(reader);
SglSession session = sglSessionFactory.openSession();

//select contact all contacts
List<Student> student =

for(Student st : student

System
System
System

System
System
}

.out
.out
.out
System.
.out
.out

out

.println(st
.println(st
.println(st
.println(st
.println(st
.println(st

session.selectList("Student.getAll");

)R
.getId());
.getName());
.getBranch());
.getPercentage());
.getEmail());
.getPhone());

System.out.println("Records Read Successfully ");
session.commit();
session.close();

}

]

Compilation and Execution

Here are the steps to compile and run the mybatisRead_ALL file. Make sure, you have set PATH
and CLASSPATH appropriately before proceeding for compilation and execution.

You would get all the record of the student table as —

++++++++++++++ details of the student who's id is

1
Mohammad
It

80

Mohammad@gmail.com

984803322

++++++++++++++ details of the student who's id is

bt

2

shyam

It

75
shyam@gmail.com
984800000

Records Read Successfully

Create Student.xml as shown above.

Reading a Particular Record

Create Student.java as shown above and compile it.
Create mybatisRead_ALL.java as shown above and compile it.

Execute mybatisRead_ALL binary to run the program.

I

12

Copy and save the following program with the name mybatisRead_byID —

import java.io.IOException;

import java.io.Reader;

import org.apache.ibatis.io.Resources;

import org.apache.ibatis.session.SqlSession;

import org.apache.ibatis.session.SqlSessionFactory;

import org.apache.ibatis.session.SqlSessionFactoryBuilder;

public class mybatisRead_byID {
public static void main(String args[]) throws IOException{

int i = 1;

Reader reader = Resources.getResourceAsReader ("SglMapConfig.xml1l");
SglSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(reader);
SglSession session = sglSessionFactory.openSession();

//select a particular student by id
Student student = (Student) session.selectOne("Student.getById", 2);

//Print the student details
System.out.println(student.getId());
System.out.println(student.getName());
System.out.println(student.getBranch());
System.out.println(student.getPercentage());
System.out.println(student.getEmail());
System.out.println(student.getPhone());

session.commit();
session.close();

}

Kl | [v]

Compilation and Execution

Here are the steps to compile and run the mybatisRead_bylID file. Make sure, you have set PATH
and CLASSPATH appropriately before proceeding for compilation and execution.

e Create Student.xml as shown above.

e Create SqlMapConfig.xml as shown in the MYBATIS - Configuration XML chapter of this
tutorial.

e Create Student.java as shown above and compile it.
¢ Create mybatisRead_bylID.java as shown above and compile it.
e Execute mybatisRead byID binary to run the program.

You would get the following result, and a record would be read from the Student table as —

2

shyam

It

75
shyam@gmail.com
984800000

MYBATIS - UPDATE OPERATION

We discussed, in the last chapter, how to perform READ operation on a table using MyBatis. This
chapter explains how you can update records in a table using it.

We have the following STUDENT table in MySQL —

/mybatis/mybatis_configuration_xml.htm

CREATE TABLE details.student(

)

ID int(10) NOT NULL AUTO_INCREMENT,
NAME varchar (100) NOT NULL,

BRANCH varchar (255) NOT NULL,
PERCENTAGE int(3) NOT NULL,

PHONE int(11) NOT NULL,

EMAIL varchar(255) NOT NULL,
PRIMARY KEY ("ID")

Assume this table has two record as follows —

mysql> select * from STUDENT;

foocodhocoocoocoooo Foococoocooo Foccococoocoocooo Poococooooos foococcoccoccocoocoocooooo +
| ID | NAME | BRANCH | PERCENTAGE | PHONE | EMAIL |
focoodicocacoaoos Pocooocooo Pocoocoocoooo Pocoocoocooo fococcoccocccooocooooo +
| 1 | Mohammad | It | 80 | 984803322 | Mohammad@gmail.com |
| 2 | shyam | It | 75 | 984800000 | shyam@gmail.com |
Poccodoscancasas Pocccasoa Poocccoscosoas Pocccoscosoa Pocccccccscconoanoase +

Student POJO Class

To perform update operation, you would need to modify Student.java file as —

public class Student {

private int id;

private String name;
private String branch;
private int percentage;
private int phone;
private String email;

public Student(int id, String name,

email) {

super ();

this.id = id;

this.name = name;
this.setBranch(branch);
this.setPercentage(percentage);
this.phone = phone;

this.email = email;

}

public Student() {}
public int getId() {

return id;
}

public void setId(int id) {
this.id = id;
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public int getPhone() {
return phone;
}

public void setPhone(int phone) {
this.phone = phone;

String branch,

int percentage,

int phone,

String

}

public String getEmail() {
return email;
}

public void setEmail(String email) {
this.email = email;
}

public String getBranch() {
return branch;
}

public void setBranch(String branch) {
this.branch = branch;
}

public int getPercentage() {
return percentage;
}

public void setPercentage(int percentage) {
this.percentage = percentage;
}

public String toString(){
StringBuilder sb = new StringBuilder();

sb.append("Id = ").append(id).append(" - ");
sb.append("Name = ").append(name).append(" - ");
sb.append("Branch = ").append(branch).append(" - ");
sb.append("Percentage = ").append(percentage).append(" - ");
sb.append("Phone = ").append(phone).append(" - ");

sb.append("Email = ").append(email);

return sb.toString();

}

Student.xml File

To define SQL mapping statement using MyBatis, we would add <update> tag in Student.xml and
inside this tag definition, we would define an "id" which will be used in mybatisUpdate.java file for
executing SQL UPDATE query on database.

<?xml version = "1.0" encoding = "UTF-8"?>

<IDOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
"http://mybatis.org/dtd/mybatis-3-mapper.dtd">

<mapper namespace = "Student">
<resultMap id = "result" type = "Student">
<result property = "id" column = "ID"/>

"name" column = "NAME"/>

"branch" column = "BRANCH"/>
"percentage" column = "PERCENTAGE"/>
"phone" column = "PHONE"/>

"email" column = "EMAIL"/>

<result property
<result property
<result property
<result property
<result property

</resultMap>

<select id = "getById" parameterType = "int" resultMap = "result">
SELECT * FROM STUDENT WHERE ID = #{id};

</select>

<update id = "update" parameterType = "Student'">
UPDATE STUDENT SET NAME = #{name},

BRANCH = #{branch},
PERCENTAGE = #{percentage},

PHONE = #{phone},
EMAIL = #{email}
WHERE ID = #{id};
</update>
</mapper>

mybatisUpdate.java File

This file has application level logic to update records into the Student table —

import java.io.IOException;
import java.io.Reader;

import org.apache.ibatis.io.Resources;

import org.apache.ibatis.session.SqlSession;

import org.apache.ibatis.session.SqlSessionFactory;

import org.apache.ibatis.session.SqlSessionFactoryBuilder;

public class mybatisUpdate {
public static void main(String args[]) throws IOException{

Reader reader = Resources.getResourceAsReader ("SqglMapConfig.xml1l");
SglSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(reader);
SglSession session = sglSessionFactory.openSession();

//select a particular student using id

Student student = (Student) session.selectOne("Student.getById", 1);
System.out.println("Current details of the student are");
System.out.println(student.toString());

//Set new values to the mail and phone number of the student
student.setEmail("mohamad123@yahoo.com");
student.setPhone (90000000);

//Update the student record
session.update("Student.update", student);
System.out.println("Record updated successfully");
session.commit();

session.close();

//verifying the record

Student std = (Student) session.selectOne("Student.getById", 1);
System.out.println("Details of the student after update operation");
System.out.println(std.toString());

session.commit();

session.close();

}

Kl [0

Compilation and Run

Here are the steps to compile and run mybatisUpdate.java. Make sure, you have set PATH and
CLASSPATH appropriately before proceeding for compilation and execution.

e Create Student.xml as shown above.

¢ Create SglMapConfig.xml as shown in the MYBATIS - Configuration XML chapter of this
tutorial.

e Create Student.java as shown above and compile it.

e Create mybatisUpdate.java as shown above and compile it.

/mybatis/mybatis_configuration_xml.htm

e Execute mybatisUpdate binary to run the program.

You would get following result. You can see the details of a particular record initially, and that
record would be updated in STUDENT table and later, you can also see the updated record.

Current details of the student are

Id = 1 - Name = Mohammad - Branch = It - Percentage = 80 - Phone = 984802233 - Email =
mohammad@gmail.com

Record updated successfully

Details of the student after update operation

Id = 1 - Name = Mohammad - Branch = It - Percentage = 80 - Phone = 90000000 - Email =

mohamad123@yahoo .com

If you check the STUDENT table, it should display the following result —

mysgl> select * from student;

foocodhocoocoocoooo Foococoocooo Foccococoocoocooo Poococooooos foococcocococococoocooooo +
| ID | NAME | BRANCH | PERCENTAGE | PHONE | EMAIL |
focoodicocacoaoos Pocooocooo Pocoocoocoooo Pocoocoocooo fococcoccoccocooocoocoooo +
| 1 | Mohammad | It | 80 | 90000000 | mohamadl23@yahoo.com |
| 2 | shyam | It | 75 | 984800000 | shyam@gmail.com |
Poccodoscancasas Pocccasoa Poocccoscosoas Pocccoscosoa Pocccccccoscccccancanoas +

2 rows in set (0.00 sec)

MYBATIS - DELETE OPERATION

This chapter describes how to delete records from a table using MyBatis.

We have the following STUDENT table in MySQL —

CREATE TABLE details.student(
ID int(10) NOT NULL AUTO_INCREMENT,
NAME varchar (100) NOT NULL,
BRANCH varchar (255) NOT NULL,
PERCENTAGE int(3) NOT NULL,
PHONE int(11) NOT NULL,
EMAIL varchar(255) NOT NULL,
PRIMARY KEY ("ID)

)
Assume, this table has two records as —

mysgl> select * from STUDENT;

focoodscoacsaanas Poccocooa Pococcoooooas Pocooocoocooo fococcoococccoconoonoan +
| ID | NAME | BRANCH | PERCENTAGE | PHONE | EMAIL |
S S oo —imm o oo oo oo SR P +
| 1 | Mohammad | It | 80 | 900000000 | mohamadl23@yahoo.com |
| 2 | shyam | It | 75 | 984800000 | shyam@gmail.com |
Pooocofocococoooo Fooocooooo Fooccococoocooo Pooccococooos Poccoccoccocococoocoocoocooooo +

2 rows in set (0.00 sec)

STUDENT POJO Class

To perform delete operation, you do not need to modify Student.java file. Let us keep itas it was in
the last chapter.

public class Student {

private int id;

private String name;
private String branch;
private int percentage;
private int phone;
private String email;

public Student(int id, String name, String branch, int percentage, int phone, String

email) {

super ();

this.id = id;

this.name = name;

this.setBranch(branch);

this.setPercentage(percentage);

this.phone = phone;

this.email = email;

}

public Student() {}
public int getId() {

return id;
}

public void setId(int id) {
this.id = id;
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public int getPhone() {
return phone;
}

public void setPhone(int phone) {
this.phone = phone;
}

public String getEmail() {
return email;
}

public void setEmail(String email) {
this.email = email;
}

public String getBranch() {
return branch;
}

public void setBranch(String branch) {
this.branch = branch;
}

public int getPercentage() {
return percentage;
}

public void setPercentage(int percentage) {
this.percentage = percentage;
}

public String toString(){
StringBuilder sb = new StringBuilder();

sb.append("Id = ").append(id).append(" - ");

sb.append("Name = ").append(name).append(" - ");
sb.append("Branch = ").append(branch).append(" - ");
sb.append("Percentage = ").append(percentage).append(" - ");

sb.append("Phone = ").append(phone).append(" - "),

sb.append("Email = ").append(email);

return sb.toString();

}

Student.xml File

To define SQL mapping statement using MyBatis, we would use <delete> tag in Student.xml and

inside this tag definition, we would define an "id" which will be used in mybatisDelete.java file for
executing SQL DELETE query on database.

<?xml version = "1.0" encoding = "UTF-8"?>

<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
"http://mybatis.org/dtd/mybatis-3-mapper.dtd">

<mapper namespace = "Student">
<resultMap id = "result" type = "Student">
<result property = "id" column = "ID"/>
</resultMap>
<delete id = "deleteById" parameterType = "int">
DELETE from STUDENT WHERE ID = #{id};
</delete>
</mapper>

MyBatisDelete.java File

This file has application level logic to delete records from the Student table —

import java.io.IOException;
import java.io.Reader;

import org.apache.ibatis.io.Resources;

import org.apache.ibatis.session.SqlSession;

import org.apache.ibatis.session.SqlSessionFactory;

import org.apache.ibatis.session.SqglSessionFactoryBuilder;

public class mybatisDelete {
public static void main(String args[]) throws IOException{

Reader reader = Resources.getResourceAsReader ("SqlMapConfig.xml");
SglSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(reader)
SglSession session = sqlSessionFactory.openSession();

//Delete operation
session.delete("Student.deleteById", 2);
session.commit();

session.close();

System.out.println("Record deleted successfully");

b
(4]]

4

Compilation and Run

Here are the steps to compile and run mybatisDelete.java. Make sure, you have set PATH and
CLASSPATH appropriately before proceeding for compilation and execution.

e Create Student.xml as shown above.

¢ Create SglMapConfig.xml as shown in the MYBATIS - Configuration XML chapter of this
tutorial.

e Create Student.java as shown above and compile it.
e Create mybatisDelete.java as shown above and compile it.
¢ Execute mybatisDelete binary to run the program.

You would get the following result, and a record with ID = 1 would be deleted from the STUDENT.

Records Read Successfully

If you check the STUDENT table, it should display the following result —

mysql> select * from student;

toocoolffoooooooooa Focoooooo focococoooooao Pococcoooooo Pococoooooooooooooooooo +
| ID | NAME | BRANCH | PERCENTAGE | PHONE | EMAIL |
o et e m o - - . T C o e e e e e e e e e mo---- +
| 1 | Mohammad | It | 80 | 90000000 | mohamadl123@yahoo.com |
Foocoofoocooooooo Focoooooo Focooocoooooos Focooocooooo FocoocooooooooooooooD oo +

1 row in set (0.00 sec)

MYBATIS - ANNOTATIONS

In the previous chapters, we have seen how to perform curd operations using MyBatis. There we
used a Mapper XML file to store mapped SQL statements and a configuration XML file to configure
MyBatis.

To map SQL statements, MyBatis also provides annotations. So, this chapter discusses how to use
MyBatis annotations.

While working with annotations, instead of configuration XML file, we can use a java mapper
interface to map and execute SQL queries.

Assume, we have the following employee table in MySQL —

CREATE TABLE details.student(
ID int(10) NOT NULL AUTO_INCREMENT,
NAME varchar (100) NOT NULL,
BRANCH varchar (255) NOT NULL,
PERCENTAGE int(3) NOT NULL,
PHONE int(11) NOT NULL,
EMAIL varchar(255) NOT NULL,
PRIMARY KEY ("ID")

);

Query OK, 0 rows affected (0.37 sec)

Assume this table has two records as —

mysgl> select * from STUDENT;

focoodscoacsaanas Poccocooa Pococcoooooas Pocooocoocooo fococcoccocccooonoooo +
| ID | NAME | BRANCH | PERCENTAGE | PHONE | EMAIL |
S S oo —imm o oo oo oo SR e +
| 1 | Mohammad | It | 80 | 984803322 | Mohammad@gmail.com |
| 2 | Shyam | It | 75 | 984800000 | shyam@gmail.com |
Pooocofocococoooo Fooocooooo Fooccococoocooo Pooccococooos Poccoccoccoccoocoocoocooooo +

Student POJO Class

The POJO class would have implementation for all the methods required to perform desired
operations.

Create a Student class in Student.java file as —

/mybatis/mybatis_configuration_xml.htm

public class Student {
private int id;
private String name;
private String branch;
private int percentage;
private int phone;
private String email;

public Student(int id, String name, String branch, int percentage, int phone, String

email) {

super ();

this.id = id;

this.name = name;

this.branch = branch;

this.percentage = percentage;

this.phone = phone;

this.email = email;

}

public Student() {}
public int getId() {

return id;
}

public void setId(int id) {
this.id = id;
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public int getPhone() {
return phone;
}

public void setPhone(int phone) {
this.phone = phone;
}

public String getEmail() {
return email;
}

public void setEmail(String email) {
this.email = email;
}

public String getBranch() {
return branch;
}

public void setBranch(String branch) {
this.branch = branch;
}

public int getPercentage() {
return percentage;
}

public void setPercentage(int percentage) {
this.percentage = percentage;
}

}

Student_mapper.java

This is the file, which contains the mapper interface where we declare the mapped statements
using annotations instead of XML tags. For almost all of the XML-based mapper elements, MyBatis
provides annotations. The following file named Student mapper.java, contains a mapper interface.
Within this file, you can see the annotations to perform CURD operations on the STUDENT table.

import java.util.List;
import org.apache.ibatis.annotations.*;
public interface Student_mapper {

final String getAll = "SELECT * FROM STUDENT";

final String getById = "SELECT * FROM STUDENT WHERE ID = #{id}";

final String deleteById = "DELETE from STUDENT WHERE ID = #{id}";

final String insert = "INSERT INTO STUDENT (NAME, BRANCH, PERCENTAGE, PHONE, EMAIL)
VALUES (#{name}, #{branch}, #{percentage}, #{phone}, #{email})";

final String update = "UPDATE STUDENT SET EMAIL = #{email}, NAME = #{name}, BRANCH =
#{branch}, PERCENTAGE = #{percentage}, PHONE = #{phone} WHERE ID = #{id}";

@Select(getAll)

@Results(value = {
@Result(property = "id", column = "ID"),
@Result(property = "name", column = "NAME"),
@Result(property = "branch", column = "BRANCH"),
@Result(property = "percentage", column = "PERCENTAGE"),
@Result(property = "phone", column = "PHONE"),
@Result(property = "email", column = "EMAIL")

1)

List getAll();

@Select(getById)

@Results(value = {
@Result(property = "id", column = "ID"),
@Result(property = "name", column = "NAME"),
@Result(property = "branch", column = "BRANCH"),
@Result(property = "percentage", column = "PERCENTAGE"),
@Result(property = "phone", column = "PHONE"),
@Result(property = "email", column = "EMAIL")

1)

Student getById(int id);

@Update (update)
void update(Student student);

@Delete(deleteById)
void delete(int id);

@Insert(insert)

@Options(useGeneratedKeys = true, keyProperty = "id")
void insert(Student student);

}

Annotations_Example.java File

This file would have application level logic to insert records in the Student table. Create and save
mybatisinsert.java file as shown below —

import java.io.IOException;
import java.io.Reader;

import org.apache.ibatis.io.Resources;

imp
imp
imp

ort org.apache.ibatis.session.SqglSession;
ort org.apache.ibatis.session.SqlSessionFactory;
ort org.apache.ibatis.session.SqglSessionFactoryBuilder;

public class Annotations_Example {

}

public static void main(String args[]) throws IOException{

Reader reader = Resources.getResourceAsReader ("SglMapConfig.xml1l");
SglSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(reader);
SglSession session = sglSessionFactory.openSession();
session.getConfiguration().addMapper (Student_mapper.class);

Student_mapper mapper = session.getMapper (Student_mapper.class);

//Create a new student object
Student student = new Student();

//Set the values
student.setName('"zara");
student.setBranch("EEE");
student.setEmail("zara@gmail.com");
student.setPercentage(90));
student.setPhone (123412341);

//Insert student data

mapper .insert(student);

System.out.println("record inserted successfully");
session.commit();

session.close();

L

D

Compilation and Execution

Here are the steps to compile and run the Annotations Example.java file. Make sure, you have set
PATH and CLASSPATH appropriately before proceeding for compilation and execution.

Create Student_mapper.java file as shown above and compile it.

Create SglMapConfig.xml as shown in the MYBATIS - Configuration XML chapter of this
tutorial.

Create Student.java as shown above and compile it.
Create Annotations_Example.java as shown above and compile it.

Execute Annotations_Example binary to run the program.

You would get the following result, and a record would be created in the STUDENT table.
$java Annotations_Example
Record Inserted Successfully
If you check the STUDENT table, it should display the following result —
mysgl> select * from student;
foococodhocoocoocoooo Foccoocooo foccococoocooooo foccoccocooos fooccoccoccococococoocooooo +
| ID | NAME | BRANCH | PERCENTAGE | PHONE | EMAIL |
Pooocofocococoooo Fooocooooo Fooccococoocooo Pooccococooos Poccoccoccocococoocoocoocooooo +
1	Mohammad	It	80	900000000	mohamadl23@yahoo.com
2	Shyam	It	75	984800000	shyam@gmail.com
3	zara	EEE	90	123412341	zara@gmail.com
Poccodoscancasas Pocccasoa Poocccoscosoas Pocccoscosoa Pocccccccoscccccancanoas +
3 rows in set (0.08 sec)

/mybatis/mybatis_configuration_xml.htm

In the same way, we can perform update, delete, and read operations using annotations by
replacing the content of Annotations_ Example.java with the respective snippets mentioned below

Update

public static void main(String args[]) throws IOException{

Reader reader = Resources.getResourceAsReader ("SglMapConfig.xml1l");
SglSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(reader);
SglSession session = sglSessionFactory.openSession();
session.getConfiguration().addMapper (Student_mapper.class);

Student_mapper mapper = session.getMapper (Student_mapper.class);

//select a particular student using id
Student student = mapper.getById(2);
System.out.println("Current details of the student are "+student.toString());

//Set new values to the mail and phone number of the student
student.setEmail("Shyam123@yahoo.com");
student.setPhone (984802233);

//Update the student record

mapper .update(student);

System.out.println("Record updated successfully");
session.commit();

session.close();

Read

public static void main(String args[]) throws IOException{

Reader reader = Resources.getResourceAsReader ("SqglMapConfig.xml1l");
SglSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(reader);
SglSession session = sglSessionFactory.openSession();
session.getConfiguration().addMapper (Student_mapper.class);

Student_mapper mapper = session.getMapper (Student_mapper.class);

//Get the student details

Student student = mapper.getById(2);
System.out.println(student.getBranch());
System.out.println(student.getEmail());
System.out.println(student.getId());
System.out.println(student.getName());
System.out.println(student.getPercentage());
System.out.println(student.getPhone());
session.commit();

session.close();

Delete

public static void main(String args[]) throws IOException{

Reader reader = Resources.getResourceAsReader ("SqlMapConfig.xml");
SglSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(reader);
SglSession session = sqlSessionFactory.openSession();
session.getConfiguration().addMapper (Student_mapper.class);

Student_mapper mapper = session.getMapper (Student_mapper.class);
mapper .delete(2);

System.out.println("record deleted successfully");
session.commit();
session.close();

MYBATIS - STORED PROCEDURES

You can call a stored procedure using MyBatis. First of all, let us understand how to create a stored
procedure in MySQL.

We have the following EMPLOYEE table in MySQL —

CREATE TABLE details.student(
ID int(10) NOT NULL AUTO_INCREMENT,
NAME varchar (100) NOT NULL,
BRANCH varchar (255) NOT NULL,
PERCENTAGE int(3) NOT NULL,
PHONE int(11) NOT NULL,
EMAIL varchar(255) NOT NULL,
PRIMARY KEY (“ID‘)

);
Let us create the following stored procedure in MySQL database —

DELIMITER //
DROP PROCEDURE IF EXISTS details.read_recordById //
CREATE PROCEDURE details.read_recordById (IN emp_id INT)
BEGIN
SELECT * FROM STUDENT WHERE ID = emp_id;
END//

DELIMITER

Assume the table named STUDENT has two records as —

mysql> select * from STUDENT;

foococodhocoocoocoooo focoooooo foccococoocooooo foccoccocooos fooccoccoccococococoocooooo +
| ID | NAME | BRANCH | PERCENTAGE | PHONE | EMAIL |
Pooocofocococoooo focoooooo Fooccococoocooo Pooccococooos Poccoccoccocococoocoocoocooooo +
| 1 | Mohammad | It | 80 | 900000000 | mohamadl23@yahoo.com |
| 2 | Shyam | It | 75 | 984800000 | shyam@gmail.com |
focoodscoacsaanas fPocccoaoo Pococcoooooas Pocooocoocooo fococcoococccoconoonoan +

2 rows in set (0.00 sec)

STUDENT POJO Class

To use stored procedure, you do not need to modify the Student.java file. Let us keep itas it was in
the last chapter.

public class Student {

private int id;

private String name;
private String branch;
private int percentage;
private int phone;
private String email;

public Student(int id, String name, String branch, int percentage, int phone, String
email) {
super ();
this.id = id;
this.name = name;

this.setBranch(branch);
this.setPercentage(percentage);
this.phone = phone;

this.email = email;

}

public Student() {}
public int getId() {

return id;
}

public void setId(int id) {
this.id = id;
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public int getPhone() {
return phone;
}

public void setPhone(int phone) {
this.phone = phone;
}

public String getEmail() {
return email;
}

public void setEmail(String email) {
this.email = email;
}

public String getBranch() {
return branch;
}

public void setBranch(String branch) {
this.branch = branch;
}

public int getPercentage() {
return percentage;
}

public void setPercentage(int percentage) {
this.percentage = percentage;
}

public String toString(){
StringBuilder sb = new StringBuilder();

sb.append("Id = ").append(id).append(" - ");

sb.append("Name = ").append(name).append(" - ");
sb.append("Branch = ").append(branch).append(" - ");
sb.append("Percentage = ").append(percentage).append(" - ");
sb.append("Phone = ").append(phone).append(" - ");

sb.append("Email = ").append(email);

return sb.toString();

Student.xml File

Unlike IBATIS, there is no <procedure> tag in MyBatis. To map the results of the procedures, we
have created a resultmap named Student and to call the stored procedure named

read _recordByld. We have defined a select tag with id callByld, and we use the same id in the
application to call the procedure.

<?xml version = "1.0" encoding = "UTF-8"?>
<!IDOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
"http://mybatis.org/dtd/mybatis-3-mapper.dtd">

<mapper namespace = "Student">
<resultMap id = "result" type = "Student">
<result property "id" column = "ID"/>
<result property "name" column = "NAME"/>

"branch" column = "BRANCH"/>
"percentage" column = "PERCENTAGE"/>
"phone" column = "PHONE"/>

"email" column = "EMAIL"/>

<result property
<result property
<result property
<result property
</resultMap>

<select id = "callById" resultMap = "result" parameterType = "Student" statementType
= "CALLABLE">
{call read_record_byid(#{id, jdbcType = INTEGER, mode = IN})}
</select>

</mapper>

mybatisSP.java File

This file has application level logic to read the names of the employees from the Employee table
using ResultMap —

import java.io.IOException;
import java.io.Reader;

import org.apache.ibatis.io.Resources;

import org.apache.ibatis.session.SqlSession;

import org.apache.ibatis.session.SglSessionFactory;

import org.apache.ibatis.session.SqlSessionFactoryBuilder;

public class getRecords {
public static void main(String args[]) throws IOException{

Reader reader = Resources.getResourceAsReader ('"SqlMapConfig.xml");
SglSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(reader);
SglSession session = sqglSessionFactory.openSession();

//select a particular student by id
Student student = (Student) session.selectOne("Student.callById", 3);

//Print the student details

System.out.println("Details of the student are:: ");
System.out.println("Id :"+student.getId());
System.out.println("Name :"+student.getName());
System.out.println("Branch :"+student.getBranch());
System.out.println("Percentage :"+student.getPercentage());
System.out.println("Email :"+student.getEmail());
System.out.println("Phone :"+student.getPhone());
session.commit();

session.close();

}

4 4

Compilation and Run

Here are the steps to compile and run the getRecords program. Make sure, you have set PATH and
CLASSPATH appropriately before proceeding for compilation and execution.

Create Student.xml as shown above.

Create Student.java as shown above and compile it.

Create getRecords.java as shown above and compile it.

Execute getRecords binary to run the program.

You will get the following result —

Details of the student are::

Id :2
Name :Shyam
Branch :It

Percentage :75
Email :shyam@gmail.com
Phone :984800000

MYBATIS - DYNAMIC SQL

Dynamic SQL is a very powerful feature of MyBatis. It enables programmers to build queries based
on the scenario dynamically. For example, if you want to search the Student data base, based on
the name of the student in MyBatis, you have to write the query using the dynamic SQL.

MyBatis uses a powerful Dynamic SQL language that can be used within any mapped SQL
statement. Following are the OGNL based Dynamic SQL expressions provided by MyBatis.

o if

choose

trim

foreach

The if Statement

The most common thing to do in dynamic SQL is conditionally include a part of a where clause. For
example —

<select id = "getRecByName" parameterType = "Student" resultType = "Student">

SELECT * FROM STUDENT
<if test = "name !'= null">
WHERE name LIKE #{name}
</if>
</select>

This statement provides an optional text search type of functionality. If you pass in no name, then
all active records will be returned. But if you do pass in a name, it will look for a name with the
given like condition.

You can include multiple if conditions as —

<select id = "getRecByName_Id" parameterType = "Student" resultType = "Student">

SELECT * FROM STUDENT
<if test = "name != null">
WHERE name LIKE #{name}

</if>

<if test = "id != null">
AND id LIKE #{id}
</if>
</select>

The choose, when, and otherwise Statements

MyBatis offers a choose element, which is similar to Java's switch statement. It helps to choose
only one case among many options.

The following example will search only by name if it is provided, and if the name is not given, then
only by id —

<select id = "getRecByName_Id_phone" parameterType = "Student" resultType = "Student">
SELECT * FROM Student WHERE id !'= 0

<choose>
<when test = "name != null">
AND name LIKE #{name}
</when>
<when test = "phone != null">
AND phone LIKE #{phone}
</when>
</choose>
</select>

The where Statement

Take a look at our previous examples to see what happens if none of the conditions are met. You
would end up with an SQL that looks like this —

SELECT * FROM Student
WHERE

This would fail, but MyBatis has a simple solution with one simple change, everything works fine —

<select id = "getName_Id_phone" parameterType = "Student" resultType = "Student">
SELECT * FROM STUDENT
<where>
<if test = "id != null">
id = #{id}
</if>
<if test = "name != null">
AND name LIKE #{name}
</if>
</where>
</select>

The where element inserts a WHERE only when the containing tags return any content.
Furthermore, if that content begins with AND or OR, it knows to strip it off.

The foreach Statement

The foreach element allows you to specify a collection and declare item and index variables that
can be used inside the body of the element.

It also allows you to specify opening and closing strings, and add a separator to place in between
iterations. You can build an IN condition as follows —

<select id = "selectPostIn" resultType = "domain.blog.Post">
SELECT *
FROM POST P
WHERE ID in

<foreach item = "item" index = "index" collection = "list"
open = "(" separator = "," close = ")">
#{item}

</foreach>

</select>

Dynamic SQL Example
This is an example if using dynamic SQL. Consider, we have the following Student table in MySQL —

CREATE TABLE details.student(
ID int(10) NOT NULL AUTO_INCREMENT,
NAME varchar (100) NOT NULL,
BRANCH varchar (255) NOT NULL,
PERCENTAGE int(3) NOT NULL,
PHONE int(11) NOT NULL,
EMAIL varchar(255) NOT NULL,
PRIMARY KEY ("ID)

);

Query OK, 0 rows affected (0.37 sec)

Let's assume this table has two records as —

mysgl> select * from student;

foocodhocoocoocoooo focoocoooo Foccococoocoocooo Poococooooos foococcocococococoocooooo +
| ID | NAME | BRANCH | PERCENTAGE | PHONE | EMAIL |
focoodicocacoaoos foocooooo Pocoocoocoooo Pocoocoocooo fococcoccoccocooocoocoooo +
| 1 | Mohammad | It | 80 | 900000000 | mohamadl23@yahoo.com |
| 2 | Shyam | It | 75 | 984800000 | shyam@gmail.com |
Poccodoscancasas Pocascase Poocccoscosoas Pocccoscosoa Pocccccccoscccccancanoas +

2 rows in set (0.00 sec)

Student POJO Class
To perform read operation, let us have a Student class in Student.java as —

public class Student {
private int id;
private String name;
private String branch;
private int percentage;
private int phone;
private String email;

public Student(int id, String name, String branch, int percentage, int phone, String

email) {

super ();

this.id = id;

this.name = name;

this.branch = branch;

this.percentage = percentage;

this.phone = phone;

this.email = email;

}

public Student() {}

public int getId() {
return id;
}

public void setId(int id) {
this.id = id;
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public int getPhone() {
return phone;
}

public void setPhone(int phone) {
this.phone = phone;
}

public String getEmail() {
return email;
}

public void setEmail(String email) {
this.email = email;
}

public String getBranch() {
return branch;
}

public void setBranch(String branch) {
this.branch = branch;
}

public int getPercentage() {
return percentage;
}

public void setPercentage(int percentage) {
this.percentage = percentage;
}

}

Student.xml File

This file contains the result map named Student, to map the results of the SELECT Query. We will
define an "id" which will be used in mybatisRead.java for executing Dynamic SQL SELECT query on
database.

<?xml version = "1.0" encoding = "UTF-8"?>

&1;t!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
"http://mybatis.org/dtd/mybatis-3-mapper.dtd">

<mapper namespace = "Student">

<resultMap id = "result" type = "Student">

<result property = "id" column = "ID"/>

<result property "name" column = "NAME"/>

<result property "branch" column = "BRANCH"/>

<result property "percentage" column = "PERCENTAGE"/>

<result property "phone" column = "PHONE"/>

<result property "email" column = "EMAIL"/>
</resultMap>

<select id = "getRecByName" parameterType = "Student" resultType = "Student">
SELECT * FROM STUDENT

<if test = "name != null">
WHERE name LIKE #{name}
</if>
</select>
</mapper>

GetRecordByName.java File

This file has application level logic to read conditional records from the Student table —

import java.io.IOException;
import java.io.Reader;
import java.util.List;

import org.apache.ibatis.io.Resources;

import org.apache.ibatis.session.SqlSession;

import org.apache.ibatis.session.SqlSessionFactory;

import org.apache.ibatis.session.SqlSessionFactoryBuilder;

public class GetRecordByName {
public static void main(String args[]) throws IOException{

String reg_name = '"Mohammad";

Reader reader = Resources.getResourceAsReader ("SqlMapConfig.xml");
SglSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(reader);
SglSession session = sqlSessionFactory.openSession();

Student stud = new Student();

stud.setName(reqg_name);

//select contact all contacts
//List<Student> student = session.selectList("getRecByName", stud);

stud.setId(1);
List<Student> student = session.selectlList("getRecByName_Id", stud);

for(Student st : student){

System.out.println(" ++++++++++++++details of the student named Mohammad are
" b)

System.out.println("Id : "+st.getId());
System.out.println("Name : '"+st.getName());
System.out.println("Branch : "+st.getBranch());
System.out.println("Percentage : "+st.getPercentage());
System.out.println("Email : "+st.getEmail());
System.out.println("Phone : '"+st.getPhone());

}
System.out.println("Records Read Successfully ");

session.commit();
session.close();

}

1

Compilation and Run

Here are the steps to compile and run the above mentioned software. Make sure, you have set
PATH and CLASSPATH appropriately before proceeding for compilation and execution.

e Create Student.xml as shown above.

e Create Student.java as shown above and compile it.
¢ Create GetRecordByName.java as shown above and compile it.

e Execute GetRecordByName binary to run the program.

You would get the following result, and a record would be read from the Student table.

++++++++++++++details of the student named Mohammad are +++++++++++++++++++
Id : 1

Name : Mohammad

Branch : It

Percentage : 80

Email : mohamad123@yahoo.com

Phone : 90000000
Records Read Successfully

MYBATIS - HIBERNATE

There are major differences between MyBatis and Hibernate. Both the technologies work well,
given their specific domain. MyBatis is suggested in case —

e You want to create your own SQL's and you are willing to maintain them.
e Your environmentis driven by relational data model.

¢ You have to work on existing and complex schemas.

Use Hibernate, if the environment is driven by object model and needs to generate SQL
automatically.

Difference between MyBatis and Hibernate

Both Hibernate and MyBatis are open source Object Relational Mapping tools available in the
industry. Use of each of these tools depends on the context you are using them.

The following table highlights the differences between MyBatis and Hibernate —

MyBatis Hibernate

Itis simpler. It comes in a much smaller package Hibernate generates SQL for you, which
size. means you don't have to spend time on
generating SQL.

Itis flexible, offers faster development time. Itis highly scalable, provides a much more
advanced cache.

It uses SQL, which could be database dependent. It uses HQL, which is relatively independent
of databases. Itis easier to change db into
Hibernate.

It maps the ResultSet from JDBC API to your POJO Hibernate maps your Java POJO objects to

Objects, so you don’'t have to care about table the Database tables.

structures.

Itis quite easy to use stored procedure in Use of stored procedures is a little difficult in
MyBatis. Hibernate.

Hibernate and MyBatis both are compatible with the SPRING framework, so it should not be a

nrahlam tn ~Fhnanca one Of them.
Processing math: 29%

