nanDECK Manual

by Andrea “Nand” Nini

Program version 1.24.1 — 2018-10-05



Index

YN VLT VA T3 AR 6
Lo T (o] g oTo] 0] 0= 410 9
GEELINE STATLEA. . . ..evviviie ittt bttt b b h b b h e oo R e bt e E e e b e E e e s et e e et E e b e b e et e s e e e er e r b r e 11
RANGES ...t bbb bt bt R R R R R R R R R R Rt n e r e r bR 15
(0] (0] ¢ TR TR 16
LADEIS BNU SEOUEICES. ... ettt ettt t ettt b et b et b et b e bbb e bt b e bt e bt b e h e e b b e st e bt b e b e e b e b e b e e bt b e bt b e e b e st et b e st et 19
[0 1o <] I 0T g 1o (1) TSR 25
AAUTOLABEL ..ottt ettt ettt e et e et e et e e st e e s bt e s ateesateesateesateesateesateesateesabeesabeessbaesaseessteesaneesres 25
F O IO 2 ¥ A 1N 25
L0 N S I 2 11 25
(010110 ST 26
(010110 1 ST 26
LOL0 10 1= N 1V | 26
COOFRAMES ...t ettt ettt e st e e st e e st e e sateesateesateesateesateesateesateesaseesateesateesatesssteesabessssaesanessans 26
DIRFILES. ... coeeeceeee ettt et ettt et e e et e e at e e s e et e eat e e s aaeeeaeeesaeeesaeeeseeeesaseeseeeesaseesaeeessteesseeesateesaeeeseseesaenessteesaenesenas 26
ENVIRONMENT ... ettt e et e et e e e ettt e et e e ettt e ea et e eaeeeseeeeeaeeeseeeeaseeeeaeeeseseesaeeessteenseeesseeesaeeeseeesssesesreeeaneeenres 27
BNV AL .ottt ettt et e e e te e ——e et e e —te e ——e e —eeaate i —eer—tea—teroeea—ees tei—te s tereteeaiaeeiteeneraenres 27
EXPAND ..ottt ettt ettt et et e et e et e et e et e et e et e et e et e e tee e ate e teea—te e —eer e eateea—te i —ter i terteearaeerteesirnennes 27
FILTER .ottt ettt et et e e e et e et e e et e et eseteeeaeeeee et e eaeeeseeeeeaeeeseseeseseeseeeeeaseesaaeeesteeneeaeseaeeseeeesereenaeerareesrnenanes 27
GRADIENTSEQ ...ttt ittt sttt ettt st e st e e teese e e e st e besbeatease e s e e s e e s e teabe et e eseeseeee b e seesbe et e eReenseeeseneeneestenseaneas 29
L1010 ] TR 29
N L@ ] | R 30
L@ ]| 11 R 30
(AN = R YN (L] TR 30
LABELSTRING ....oii ittt ettt ettt et e st e bt e s bt e e bt s s s bee s bt s e sbeesbe e e sbeesabesebe e e b b e e sbee et beebessbasebasebassabasebasabesebeas 31
LABELSWUB. ... oottt ettt ettt e et e et e et e st e eateeseeeeeateeseaeeeateereae e et e e et e et tee e et e et e naee st e nanerteenraenanes 31
LEN G T H .ottt ettt et et e e e et e et e et e et e st e eateesaeeeeaeeeseaeesateeseeeeeaeeeeaaeeatteeaeeeeeateerreerteenanerteenreenanes 32
PRODUCT .ttt ettt ettt et et e et e et e e st e e e et eeseteeeesee s et e saseeseeeeasee s et e eeaeesetteearee st e e eateeeatteaareeerreeeaeeeareeeaeeeie 32
RAINGEADD ..ottt et e e et e et e et e et e ea e e eae e e eaeeeeaeeeeeeeeaseeeeeeeeeseeeeaeeeesteeaaee e ettt eaeeereeeeereeeareeeaeeeares 32
RANGE C OUNT ettt ettt ettt et ettt e e sttt e s seateeeseateeesssbeeesaseeeessbaaesaabbeeesseeeessabesessstbesesbeteessbbeaesssbbeeeins 33
RN N = 1Y L 1 SRR 33
RANGEREM ..ottt ettt et ettt ettt e bt e e e h e e e s b e e e bt e e ebee e bt s e ebee e bt e e ebeeesbe s e ebesesbeeebesesbesesbesesbesebesebasaabesebeas 33
RAINGESUB ... .ottt ettt sttt e e e s h et e ettt e shte e eate e sheeesbteesbeeesbbeesheeeebesesheeebteesbeeesbbeesaeessbteesbesesbbeesbenesaeas 33
L I O TR 34
(RO 11 5 TR 34
N I = TR 34
STRINGLABEL ...t et e e e e e et e et e et e e e e et e e e e et e e e e et e sae e s e eseee e e e e senee s e eseenerneens 34
TOKENIZE ..o e e et e et e et e e ettt e e e e et e e e e et e e e e e e e e e e e et e e e e et e nee e e e e neeennes 34
TOKENIZESEQ ...ttt ettt ettt ettt et et e et e e teeteeteeteese et e testeeteeaeeseeseentesteateeteateeteeneesseseetestestestesreereenes 35
TRAIN S L AT E ..ot e e et e et e et e e et e e et e e et e et e e e e e e et e e e e e s et e e aeee e et e e e e e e e e e e e e e e e aaeeanees 35
[ 21 TN 36
[ 0 L 10T 0] TSR 40
FRAIMEBAR ...ttt ettt ettt ettt ettt ettt e bt e e e bt e e e bt e e ebe e e bt s e sbee e bt s e ebeeeabt e e ebee e st e s e ebesesbeeeabeseabeseebesesbeeebesesbasaabesebeas 40
FRAIMEBEZIER.......coo ittt ettt ettt ettt e bt ettt e e bt e bt e e e bt e e bt e e ebee e bt e e ebe e e bt e e ebee et teeebesesbesesbasesbeeebesesbesanbesebeas 40
RNV =1 210 ) TR 40
FRAIMECLOCK ...ttt ettt ettt ettt e bt e tte e e bt e e bt e e eb e e e bt e e ebee e bt e e ebe e e bt e e ebee et teeebe s e besesbasesbesebesebasaabesebeas 41
FRAIMECOUNT ...ttt ettt ettt ettt ettt et et e e bt e e eh e e e bt s e ebee e bt e e ebee e btseebeeeabeseesee e b tseebee e b teeebeeesbeeebasesbesebasssbasaabeserens 42
FRAIMEDISK ... .ottt ettt ettt ettt et e et et e eat e e eh e e e eat e e ebeeeebeeeebee e bt s e ebeeeabteeebeeesbeseebeseabeseabesssbesesbesesbesebesebasaabesereas 42
FRAIMEHEX ..ottt et et e e et et e et e et e et e et e et e ee e e em et e e e e ene e e e e e er e eaneeeere e e et e eneeeanee e et e eneeennes 42
FRAIMELINE ..ottt et e et et e et e e e et e et e et e e e e et e ee e e eme e e e e e ene e e e e e eseeeaneeeeneeeeeeenneeeareeeereeaaeeennes 43
FR A M E L ST ettt ettt e et oot e et e et e et e et e eme e e eeeeeemeeeeeeeeen et e e e e ene e e et e et e et e et e et e aeeaaeeateeaeeans 43
FRAIMEMELD ...ttt oot ettt et e et e et e et e et e et e ee e e em e e e e e ene e e e e e ee e eameeeeneeeeee e e e eaneeeeneeeneeennes 44
FRAIMEMOSAIC ... oottt e e e e e et e et e et e et e et e et e eee e e e e e et e e e e eee e ennee e et eeneeeneeeaneeeeneeeaeeennees 44
FRAIMENET ...ttt ettt et ettt s a et e ett e e s a et e ett e e saeeeebeeesheeesbteesbeeeaateesbeeeeseeesaeeebeeesbeeesbteesaeessbbeesbenesbbeesaenesreas 45
RN =] o I OO TR 45
LR RN = o = TR 46
RN =] = O ISR 46
FRAIMESUB ...ttt ettt et e e ettt e ettt e s et e e ettt e s 2 teeeat e e saeeeeateesheeeabteesbeeeebeeesheeebteesbeeesbbeesaeeesabeesbenesbbeesaeneseeas 46
FRAIMETRANS ..ottt ettt ettt ettt e ettt e e b e e eh e e e ebe e s bt s e sbeeebeeeesee et teeebee e s bseebee et teeabesesbesesbaeesbesebesesbesaabesereas 46
FRAIMET R .ottt ettt et e e et e et e et e et e e e e et e ee e e et e e e e et e neeaeeeeneee e et e neneesreeneneenneenereennes 47



T 0] (=ESTS) o] SR 48

L070] 10101 1=] 01 SRS RURUU PR UR TP 49
SCIIPE TISTS ..ttt bbb kbbb bbb s b b st E e E e E e E R R bbb R bR R bbb bbbt 50
(O3 (T 1 (=3 D L SRRSO P RS UTRRPRTO 51
SBVE TGS ... ettt ettt ettt btttk b bbbt b b h £ s b b h b E R E bR R R SRR R AR R R £ e R R b b e Rt h Rt b bt 52
CONVEIT @ PDF 10 IMBGES ... cveiteteteete ettt ettt ekttt bbb bbbt bbb bt bt e bbb st b et h e bt n bbbt n et 52
COMMANG-TINE PATAMELEIS ... ettt bbbt b et b b st b bbb bbb e bt bbbt bbbt et b et 53
LYo (0 AT 2 o [ 54
[T o o oL =T 1] (o OO OO OO SOOI 56
A LR U o] OSSPSR PRSP 57
A AL LI To 1) o] SO RTSS PRSP 59
(@001 1T [V T 11T ] o PSSR 61
(000 T o T o GOSN 64
IS 010 (o1 | OSSPSR 65
LR L =T To0 SO 65
N OSSR 65
[T £ (=TSO PR P 67
NS = AN N ] ST SR 67
[N I PSSR 67
BEZIER ..ottt et ettt bt R R e R R e Rt R R Rt R R R e R bRt Ee R e R e R bRt Rt e b bt e 68
BEZIERS ...ttt ettt ettt b bRt R e R R e R e R R e Rt R R e R e Rt e Rt Ee R e R e b b e Rt bt ne et b ne e 69
BLEED ....oeite ettt ettt bR bt bRt R e R e R e R £ e Re SRR e R e R R e R e e R b e Rt Re R e Rt b b e Re bt ne b beneeee 70
BORDER ... .ottt sttt etttk bRt R h Rt R e bRt Re R R SR e Rt SRR e R e AR R e R e Rt e Rt Re R Rt Rt e Rt bt ene bt eneaee 70
BRUSH ..ottt et ettt b et R e bt e bt ket e b e e be e e R e e b e e e R e e b e e Rt e R e e R e R b e Rt R R e R e b b e Rt R e ne et b neaee 71
[ I 1 PSSR 73
L@ AN N LY AN S SPRTR 74
L@ AN N LY AN 1 ] 74 SRR 75
L@ A N LY NS VAT @ ] TSP 75
L@ AN I 1 RS SPRTR 75
(O AN I ] 4 S OPRPR 75
(07 ] OSSOSO USOPPSSURPRRPN 76
CASEELSE ..ottt ettt ettt s bbb s E e E AR e R AR R AR e bR e e R e R Rt Re e Rt e Eeebe e ebeebe e ebenbe e ere s 76
CHROMAKEY ...ttt ettt sttt sttt sbe st e b e be st et e e be st et e e be s e e R e e ke s e e R e e ke et e R e e be st e bt e be b ebe e ke s e beebe st es e e be st e st abenenentns 76
(010 ] 10 OSSOSO UST PSSRSO 77
COLORCHANGE ..ottt ettt sttt st ettt st et e ket e b e e ket e s e e be st e st e Ee e b e Rt ek st e st e ke s b e st et st e s e e be st e st abe b rent e 78
COLORS ...ttt ettt ettt b ekt s e be et e st ekt e 4 e st ek e e b e s e e b e b e Rt e R e e E e Rt e Re AR R e R e AR e Rt e R e R e Rt e R e e Re e eEeebe e ebeebe e etenbeeereas 78
L@ 11,11V TS SPSPPR 79
L@ 1V, AN TS OPSPPR 79
(010 TSP PSPPSR 80
LG0T 0 N 5 LSRR 81
L@ 1 4 = O I 1 ] SRR 81
(010 18 | 1 I 1 OSSP PTPSSPRPPRN 82
D] 1 OO 82
3] OO 83
D 1] A OO OO UPSOPRRT 83
D@ 1YY @ AN OO SOPTSOTSPR 84
3] OO OO 84
DL SRR 84
0 I PSR 85
3 ] =SSR 85
o I ] PSSR 87
] RSO SPRR 88
IS = | SRS 88
1N 0 OSSP 88
ENDFRAIME ..ottt ettt a8ttt e stk e b e Rtk e b e st E e b e Rt e Re b e st e b e b e s e e b e et e st e Re ek b e s e et et ene e bt ne b 88
EINDIF .ottt ettt ettt e b et e Re Rt Ee R et e R e Re R e Rt Re e e Re Rt e Rt Rt e Re R b e Rt e Re R e Re Rt e Rt e R teneeEe b neane 88
ENDLAYER. ..o oottt ettt ettt sttt st e st e ket e s e e be b e Rt e ke et e Re ekt e R e e b et e R e e ket e Re e b e b e R e e Rt e Rt e Rt e ne bt neene 89
| I OSSOSO 89
ENDSECTION ..ottt ittt ettt ettt e st e e sk et e stk e e e s £ e b e s e e Ee b e st e b e ke st e b et e s s e Ee sk b e s e e be b eneebenbeneati e 89
N |1 = I TSR 90
N | =10 18] =\ 1 TSR 90
N | A4 1] O A SR 90



FOLDER. ...ttt h bR E e h R R R R R bR R R s e e r e r e ar e 91
O T et E R R R R R R R bR R Rt s e e r e R e 92
FONTALIAS ..o s et bR b e bt h e b b e E R e AR e E e b et e eh e Rt e b e b e e e e e e an e bbb e e 93
FONTOCHANGE ... bbb h R e R b e e e b e e e bRt bt b e e e e e e en e b bt er e e 94
FONTRANGE ..ot bbbttt b e E R RS E b e et e s Rt e bt bt e e e nn e n e b b er e e 94
FOOTER. ... e bbb E oo E R AR R e b e e b s e s b e bRt e b e e Rt b e e s e e e r e b sb e b e eennen e 95
F O R e 96
FRAME ..o e 97
G e 97
GRID Lo e 98
HEADER ... 99
HEXGRID ..o s 100
HTIMLFILE oot e bR E R bt e e e b se bbb e e n e en bbb 101
HT ML ONT ot e b bbbt E e R R R e b e b e e e b se e Rt bt b et e b e sn e nr b b 102
HTIMLIIMAGE ...t b et e b h R R bbb e et ne bt bt b e e e sn e n b en s 103
HTIMLEKEY L bbb e bR bbbt r Rt b e e Rt e e e an bbb e e 103
HTIMLIMARGINS ...t b e e bt bt e h et e b e et bbbt b e e e b e an b b en s 104
H T M L T EXT et bttt e e E bR R st e h et E e e E e R R bt e bt e s et ne Rt bt b e e e n e enenr e ab e n s 105
TCON bbb e e E bR R R e e 106
TCOINS L. bbb e bbb bR e R R 107
LT TP TP PP PP TP P PRPRORO 108
IMAGE .. s 110
IMAGEFILTER ..ot bbb bbb e bbb sb e e ebe s 113
IMAGESIZE ...t E Rt E R e e h e R R R Rt r e r e r e ene s 113
INCLUDE ...ttt bbb bbb e R e h Rt AR R e R e h e e s e e bRt e R e R e b e e bt e e e n e b r e b e bt n e e enn s 113
INPUTCHOICE ...t b bbb et Rt Rt b e et e e Rt Rt b e b e e b e e s et e n e b e an e b e nneene s 115
INPUTLIST .ottt e h bRt h et Rt Rt E e R e b e e h e e e s bt e R e e b e e st es e e e n e bt an e b e nneene s 116
INPUTNUMBER ..ottt et bbbt e e e bRt bRt e e s et n e b nn e b e et ene s 117
INPUTTEXT ottt bt s b e E bt b s e b e R e R AR e e R e b e e h s e s e e Rt e Rt e R e et es e et n e b e en e b e b e ene s 118
LAYER e s 119
LAYERDRAW ..ot bbb bbb 119
LIV e bbb oo b h bbb R 120
LN E e 121
LINERECT L bbb bbbt s e bbb et b bbb 122
LI K e e E e 123
LINKCOLOR ...ttt h ket e b bRt h s et b e AR R bt bt e b e et ne e Rt bt bt et e b e nn e bt b eneenes 124
LINKENCCSV ...ttt bkttt e b bR b bt h e bR R b bt h ettt ee e Rt e bt b et e b e nnenn bt eneenes 124
LINKENGCODE. ...ttt sttt h ket r b bt E bt h e s et b e Rt Rt bt bt e s e s e bt en e Rt e bt eh et e b e e nn b b eneenes 124
LEINKFILTER ..ttt b bbb e R bbbttt ne Rt b e eh et e e e enenr e b b enes 125
LINKIMULDIS .t h bbb h bbbt ne e bbb et e e nn e n b eneenes 125
LEINKIMULT oo e b bbb bbb b et et b e sb bbb 126
LEINKINEW ... e bbb bbb e bbb e e 127
LINKRANDOM ...ttt e bbb bbb bbb bbb e et sb bbb 127
LEINKSEP ... e bbb 127
LINKSTYLES . oot b bbb bbb b et sb e bbb 128
LINKTRIM e bbb e b bbb bbb b s bbb sa e sb bbb n e 128
LENKUNIL ettt e bbbt h et e e R RS b b e st et s e Rt e b e ekt et e et en bt sbe b e e 128
LLOG ettt R R R R R R R RS R e E e R R R R R Ao R R Rt Rt n R R Rt b e 128
IMACRO .. .ttt bbbt s e et bbb e b A h R E SRR e Rt E R R R e E Rt E bt b e 130
IMARGINS .ot h bbbt h et et e E AR AR eh e b e st e s bt e e bt e bt e R et e e e e bt bbb 131
IMIOSAIC ..ttt bbbt h bbb e b e st e E e R b eh e b e e st e st E e Rt bR e R e e Rt bbb 131
NANDECK ...ttt r bttt s bbb e b e h e s et e e e bR e b e b e e s b e st e et Rt bt e R e he bbbt bbb 132
N =5 I T T T TP TP U T T TP PSP 132
ORIGIN <o bbbt E bR e bbbt et e e s b e bt b e bbb e e e e b e bbb e 132
OVERSAMPLE ... e bbb bR bt bt e b e r e Rt 133
PAGE ... bbbt 133
PAGEFONT ... b bbb bbb e bbbt e e b bR b e b e e st e e e en b b r e 134
PAGEIMAGE ... ..ottt b bbbt e e b bR bbb r e 134
PATTERN ..ottt bbbt e h bbbt H Rt e s e s e bt AR e R e AR £ eh e e s e b e bt e bt e Rt e b e e bt e e e n e b bt e b e eenr e 136
o =TT T TP PP PSS UTT P VRTPRPRPRORIN 137
POLY GON L.ttt b bbb e bbbt bRt h e s e e s e bt A R e AR e AR e Rt e s e e bR e R R R e ekt e e n Rt R R s 138



(@] 2 O(0 ] B ] OSSR 139
RO I N T I TSR 140
L N = TR 141
(R (0111 26 LTS 142
(RO 10 NI BT O TSR 143
[ I L TR 144
L I LI =2 IR 145
7 AN 146
Y AN YA =L € | = R 147
Y AN YA =L N ] TR 147
Y AN YA = 5 147
] =L I 10 ]\ 148
] I = O LT 148
SEQUENCE ...ttt e et e et e e st e eae e e te e be e beesbeessesReesheesbeesbeenbeeabeeaseebeesba e baenbeeseesreeaneeareennas 149
] [T 150
R o O I ISR 150
XL I = TR 151
Y IO L TSR 152
Y = U 152
7 C 2 152
B =5, 154
B =5, 1 5O ]\ N P 156
B =5, L1 156
THREADS ... oottt ettt ettt e e ettt e e ettt e e s eateeessabaeesaaeeeeseatesesasseeesaaseseesasteeeaabbeeeseabaaeeseabeaesaateeeesbaneesarbeneaas 157
B IO L= TP 157
BN O SRR 158
YO S = O T 159
TRIANGLE ...ttt e et e e e ettt e e s et et e e sbaeeeeatbeeesaabeeeesateeeessbeeeesabessesaatesesssbbeeesasbesessabeeessnbenes 160
L1111 TP 161
Y L0 1O ] 161
Y 110 7 U 162
740 10 1Y, 162
(OTaTo Lo =)= T o] o] [T USSR 163
Ao LT oo U] 1 T PP UPRP 163
(DT Tot=l (T U1 L YRR 164
1oL (< 1 - o1 TSR 165
BOGGIE TICE ...ttt bbb bbb b e R bbbt E bbb bbb ne e 166
O 1 r= 1 1 T o TSRO T P U R PS SO P U PRTPRPRPRORPTIN 167
(01 [0 103 GO RTT TR 168
[ [ 010 L-T (o TR 169
LI E= T | L= 0 o PSS 170
(O 0 LTIl o101 (o RPN 171
B AN L0 172
[ e (=L - (o R 173
0032010 ) U 174
(L0 T 02T AT 1= SR 175
THIPPIES THIES ..t b et bbb b st b bt e bt e bbbt s b s e bt bRt ekt eb et ekt bttt na e ebenres 176
[ 1L IR ] T=T TSRO TSRTTTRRRRPPRRRO 177
(000 01 oY [T o] 4 KT TRRR 178
) =T [0 10 I Yo [=Tod r o}l er- 1 (o T TP 179



An overview

nanDECK is a program capable of creating graphic elements from scripts: every line of a script contains a command,
for rendering texts, rectangles and other graphic elements. The program was made for creating cards, but it can be used
for many other graphic objects; each card is treated like a different page, in which you can draw different graphical
elements. At the start, you can write the script in the large edit box in the center of the window:;

Il nanDECK - Ver. 1.24.1 - X
Add new tab

1[FoNT = A

2 TEXT = 1,"S

El

4 FONT = A

Hewdeck | wiz

2, B, #0000FF

", 0, 0, 100%, 100%, center, center
Open deck
#FF0000

F", 0, 0, 100%, 100%, center, center
#000000

0, 0, 100%, 100%, center, center

0, 0, 100%, 100%, $FFEFFF$000000$FFFFEFE30, empty, 1 SEER

Exit program

Yadate deck

7] Link first 1 FPreview
Print deck [ Link dis Gotosad | []Auto buid
[ Highlight Highliaht | [ Partial

] - > >

Card preview Canv
GlIFa TIFF

Wisual Editer Comp

Pt seript Seipt fist Edit
Insert >
Table
Linked deta

The Game Crafter

Find 1pl | FONT="font name", font size, style B/L/U/S/T/N/C/RH/Q/E/Z/FIV/P/O/D/G, himl color | him aradient, iimi color [ himl gradient, autkne x, outine y, step x, steo y 5| [7] [&] [Copy scrit | [Copp 0 BGE

Validat o~ |[ 810k ~

Add | Com | Rem €] Circulsr

HelpIF1] (F2)

T N)No cip 0

Config | Irfo |Deck buit (300011 B Hoon [ ] arcek [ |
o
at

Deck size: 52 MBytes (Cache: 0 MBytes)

You can load a script with the “Open deck” button, save it with “Save” and “as” buttons, and create the deck with the
buttons “Validate deck” and “Build deck”.

Tip: You can do both if you right-click the “Validate deck” button.

All commands start with a keyword, an equal sign (=) and a list of parameters; for many commands, the 1t parameter is
a range of “cards” in which the command will be executed. The commands without a range will be evaluated only once
(for example the BORDER directive to draw a border on all cards, or the CARDS directive for setting the number of the
cards in the deck), or for every card (like the FONT directive); in other words, the program creates the 1% card in the
deck, and executes all the script on it, then it switches on the 2™ card, and executes all the script and so on; each ranged
directive is executed only if the range match.

Note: the CARDS directive is no longer needed, now the program creates automatically a deck using the information
from all the directives in the script. For example, if you have a 10-30 range, the deck will be created with 30 cards.

For example, in a game of Werewolf, I need a card with a word “SEER”, three “WEREWOLF” and thirteen
“VILLAGER”. The first card will be:

FONT Arial, 32, B, #0000FF
TEXT = 1,"SEER", 0, 0, 100%, 100%, center, center

With the 1% line, | choose a font: Arial 32, bold, and blue (the #0000FF parameter); with the 2™ line | draw the word
“SEER” in the center of the whole card #1 (starting from 0,0 — top left of the card, 100% width and 100% height). The
other cards will be drawn with these lines:

FONT Arial, 24, B, #FF0000
TEXT = 2-4, "WEREWOLF", 0, 0, 100%, 100%, center, center




FONT Arial, 28, B, #000000
TEXT = 5-18, "VILLAGER", 0, 0, 100%, 100%, center, center

Note the range 2-4 and 5-18, for three and thirteen cards. Other elements can be added, for example a rectangle:
RECTANGLE = 1-18, 0, 0, 100%, 100%, #FFFFFEF#000000#FFFFFF@90, empty, 1

The rectangle is on all the cards (range 1-18), from 0,0 — top left, 100% width and 100% height, with a gradient starting
from white (#FFFFFF), to black (#000000), again to white, rotated 90°; not filled (empty parameter) and with a border
thickness of 1”.

The flexibility of the program is that an element can be added on one or more than one card, changing only the range
parameter. If you want to add an image on all the cards, you can add a line like this:

IMAGE = 1-18, "Logo.png", 0, 0, 20%, 20%, 0, TP

In the left bar in the main window you can use these command buttons:

New deck: creates a new script.

wiz: creates a new script selecting some options.

Open deck: open a saved script.

Reopen deck: open a saved script, picking one from a list of the last accessed.
Save: save the current script.

as: save the current script with another name.

Exit program: close the program.

Validate deck: the program check the syntax of the script.

Build deck: the program builds the deck of cards.

Print deck: the program print the deck of cards.

Save images: the program saves the images of each card of the deck, see page 52.
MT: the program can launch several instances of itself, each with a range of the deck.
PDF: the program creates a PDF file with all the cards’ images, see page 51.

CP: the program creates one image from each page of a PDF, see page 52.

GIFa: with this option, you can save the current deck into an animated GIF image (you can choose the delay between
images and select an optimized palette).

TIFF: with this option, you can save a multi-page TIFF image (with RGB or CMYK color space).
Print script: print the current script.

Insert >: this button open a menu, where you can insert a color, a font, an image, a symbol, a gradient, an include file, a
linked file, a label, a frame or a folder.

Linked data: you can edit the data from a linked csv file, see page 56.
Find: find a string in the script editor.

rpl: find and replace a string in the script editor.



Add (CTRL+R): the program adds a comment in the current line / selected block of the script.

Com (CTRL+E): the program toggles a comment in the current line / selected block of the script.

Rem (CTRL+U): the program removes a comment in the current line / selected block of the script.

Help (F1): the program shows a help page for the current directive.

(F2): the program shows a window for modifying the current directive.

Config: the configuration options, see page 61.

Info: info about the author.

In the right bar, you can use these command buttons:

Link first: if you check this option, only the first line from a data file (csv or spreadsheet) is read, for testing purpose.

Link dis.: if you check this option, the data file (csv or spreadsheet) is not read, and are shown only the fields’ names,
for testing purpose.

Preview: remove the check in this option if you want to hide the card preview (the rendering is faster).
Goto card: click to select a card from the deck to be viewed.
Auto build: check this option if you want to see in real time the script’s changes in the preview.

Highlight (checkbox): check this option to highlight with colors each line of the editor and each graphic element of the
preview.

Highlight (button): click to highlight the graphic element of the preview corresponding to the current line of the editor.
Partial: the program renders the current card only until the position of the cursor in the editor.

Arrow buttons: with these buttons, you move between the cards of the deck (first, prior, next, and last).

Card preview: this button shows you an enlarged view of the current card.

Canv: this button shows you the canvas (the “zero” card).

Visual Editor: the program opens the visual editor window, see page 59.

Comp: this button shows a window for comparing different decks of cards.

Script list: in this window, you can execute several scripts, in a batch mode, see page 50.

Edit: in this window, you can edit the content of a linked spreadsheet file.

Table: the program opens the virtual table window, see page 57.

The Game Crafter: in this window, you can upload a deck of card directly to the website
http://www.thegamecrafter.com for printing and/or publishing your game.

All deck: this button selects all the cards in the deck to be rendered (the start-end range is in the two edit box to the left
and right of this button).


http://www.thegamecrafter.com/

Editor commands

CTRL+X
CTRL+C
CTRL+V

CTRL+A
CTRL+B
CTRL+I

CTRL+O
CTRL+P
CTRL+R
CTRL+U
CTRL+E

SHIFT+CTRL+I
SHIFT+CTRL+U
SHIFT+ALT+UP
SHIFT+ALT+DOWN

CTRL+D
SHIFT +CTRL+D
CTRL+M
CTRL+N
CTRL+T
CTRL+Y
SHIFT+CTRL+Y
CTRL+Z
SHIFT+CTRL+Z

CTRL+0...9
SHIFT+CTRL+0...9

SHIFT+CTRL+C
SHIFT+CTRL+L
SHIFT+CTRL+N
SHIFT+CTRL+B

CTRL+F
CTRL+H
CTRL+G

F1
CTRL+F1
F2
CTRL+F2
F3
CTRL+F3
F4

F5

F6

F7
CTRL+F7
F8
CTRL+F8
F9
CTRL+F9
F10

Cut

Copy
Paste

Select all

Validate and build the current card

Insert card’s number (character 8)

Insert frame’s number (character °)

Insert frame’s number (character 1)

Comment current line/selected text

Remove comment from current line/selected text
Toggle comment on/off in current line/selected text

Block indent

Block un-indent

Move block up one line
Move block down one line

Add new tab with a new version
Duplicate current line

Line break

Add new tab (empty)

Show windows side by side
Delete line

Delete EOL

Undo

Redo

Go to marker 0...9
Set/remove marker 0...9

Set columns selection
Set lines selection
Set standard selection
Match bracket

Find
Replace
Go to line

Help (current line directive)

Auto layout (white on black)

Modify (current line directive)

Auto layout (color)

Modify (current line directive, visual mode)
Auto layout (black on white)

Visual editor

Auto build switch

Go to card

Highlight current line

Highlight all lines switch

Insert label

Insert frame

Insert color

Insert gradient

Partial build switch (build source until current line)

Tip: You can copy the current card’s image if you press CTRL+C after a click on the card image.




| Tip: You can validate and build the current card’s image if you right-click on the card image.

| Tip: You can validate and build the whole deck if you right-click on the “Validate deck” button.

Tip: You can edit more than one script simultaneously, right click on the tab on the upper side of the screen and choose
the voice “Add new tab” to add another tab to the editor.

Tip: You can move between cards using the mouse wheel.

10



Getting started...

This is a simple yet complete tutorial about how to create a deck of cards starting from a spreadsheet file.

First, | wrote some data, and save them as Data.xIsx:

A B c D E F G ]
1 Mame Desc Img lcons Value Mum
A desert is a barren area of land where
little precipitation occurs and conseguently living
2 |Desert conditions are hostile for plant and animal life. desert.jpg EF 8 1
A lighthouse is a tower, building, or other type of
structure designed to emit light from a system of lamps
and lenses and used as a navigational aid for maritime
3 |Lighthouse pilots at sea or on inland waterways. lighthouse jpg EW 10 2
Jellyfish are typified as free-swimming marine animals
consisting of a gelatinous umbrella-shaped bell and
Jellyfish  trailing tentacles. ellyfish_jpg AW 5 3

L =

Note: each column will be identified with the name in the first line (each must be different).
| start nanDECK, and as first line | link that file:

LINK = Data.xlsx

Then I save the script, as tut01.txt, in the same folder with the Excel file (if | want to save it in a different folder, in the
LINK line I must specify also the path, for example c:\users\nand\desktop\data\data.xIs).

I want to put the title in the top of the card, then | select a font with the line:

FONT = Arial, 24, , #000000

Font name for the 1%t parameter, size for the 2™, and color for the 4. The 3" is empty, this is the place for flags like B
(bold), I (italic), U (underline) and so on (among others, if you want to shrink the font size to fit the space, use a N flag,
if you don’t want to see the text background, use a T flag). If you use more than one flag, put them all in this parameter
(for example: BTN).

And add the title with this line:

TEXT = 1-3, [name], 0, 0, 100%, 20%

The 1% parameter is the range, and | want to put this text on three cards (from 1 to 3, then the syntax is 1-3), the 2"
parameter is the column name from the Excel file (enclosed in square brackets), the others are the position (0, 0 is top

left), width (100% of the card’s width) and height (20% is a fifth of the card’s height).

Note: I can use also values in cm, and | can specify 0, 0, 6, 1.8 (for a default card of 6 x 9 cm), but with percent values |
can change the size of the card without having to change every size of every element.

With a click on “Validate deck” button, “Build deck” button, the deck is created with three (ugly) cards:

Desert Lighthouse Jellyfish

Let’s add some images:

11



IMAGE = 1-3, [img], 0, 20%, 100%, 40%, 0, P

The 0 in the 7™ parameter is the angle of rotation for the image, and the P is for proportionally resize the image, if you
have transparent PNGs, add a N flag in the same parameter (i.e. PN).

I’ve added the images’ files in the same folder with the spreadsheet and the script, and this is the result after Validate +
Build:

Desert Lighthouse Jellyfish

These lines are for the description:

FONT = Arial, 10, , #000000
TEXT = 1-3, [desc], 5%, 65%, 90%, 30%, left, wordwrap

I choose a smaller font, and since the description is more than one line, | add left as horizontal alignment and wordwrap
as vertical. This is the result:

Desert Lighthouse Jellyfish

[ —

These lines are for the value column:

FONT Arial, 32, T, #FF0000
TEXT = 1-3, [value], 0, 20%, 20%, 40%

To make the number readable on every background, | can add an outlined text:

FONT = Arial, 32, T, #FFFFFF
TEXT = 1-3, [value], 0, 20%, 20%, 40%, center, center, 0, 100, 0.1

The <0, 100, 0.1” are respectively for angle, transparency and outline width.

Note that these lines must be added before, because every element in a script is drawn accordingly to its position: first
are drawn elements in the first lines, the last drawn are those in the bottom lines.

Desert Lighthouse Jellyfish

I have four icons (one for each element), each identified with a letter in my Excel file (and on each card, there may be
more than one icon). | add these lines in the script:

ICON = 1-3, A, air.png

ICON = 1-3, E, earth.png
ICON = 1-3, F, fire.png
ICON = 1-3, W, water.png

ICONS = 1-3, [icons], 80%, 20%, 20%, 40%, 20%, 10%, 0, PN

12



In the last line, T specify the icons’ area (80%, 20%, 20%, 40%), the size of each icon (20%, 10%), the angle of rotation
(0) and to use proportional resize (P) and PNG transparency (N).

I’ve added the four png files in the same folder. And this is the result:

Desert Lighthouse Jellyfish

A

Finally, | want to duplicate each card for the number specified in the “num” column, then | add, as first line (before the
LINK), this directive:

LINKMULTI = num

I must also change every range 1-3 into 1-7. This is the result page:

Desert Desert Lighthouse

JR——— — —

8 8

A desert is a barren area of land A desert is a barren area of land A lighthouse is a tower, building, or

where little precipitation occurs where little precipitation occurs other type of structure designed to

and consequently living conditions and consequently living conditions emit light from a system of lamps

are hostile for plant and animal are hostile for plant and animal and lenses and used as

life. life. a navigational aid for maritime
pilots at sea or on inland
waterwavs.

Lighthouse Jellyfish Jellyfish

—

A lighthouse is a tower, building, or Jellyfish are typified as Jellyfish are typified as

other type of structure designed to free-swimming marine animals free-swimming marine animals
emit light from a system of lamps consisting of a consisting of a

and lenses and used as gelatinous umbrella-shaped bell gelatinous umbrella-shaped bell
a navigational aid for maritime and trailing tentacles. and trailing tentacles.

pilots at sea or on inland

waterwavs.

Jellyfish

Jellyfish are typified as
free-swimming marine animals
consisting of a

gelatinous umbrella-shaped bell
and trailing tentacles.

This is a more compact version of the script, here the 1% parameter (the range) is empty for most directives because |
want to put the text/images on all the cards, and if I leave the 1 parameter empty, nanDECK uses as a default 1-n,
where n is the number of lines in the Excel file.

13



LINKMULTI =

LINK

FONT =

TEXT

IMAGE

FONT =

TEXT

FONT =
TEXT =

FONT
TEXT

ICON
ICON
ICON
ICON

ICONS

num
Data.xlsx

24, , #
0, 0O

Arial,
, [name],

, [img], 0, 2

Arial, 10, , #
, [desc], 5%,
Arial, 32,
, [value],
Arial, 32,
, [value],

~ ~

O H o+

~

air.png
earth.png
fire.png
water.png

~

~

= oEo

~

, [icons], 80

000000

, 100%, 20%

0%, 100%, 40%, 0, P

000000

65%, 90%, 30%, left, wordwrap
#FFFEFF

20%, 20%, 40%, center, center, O,
#FF0000

20%, 20%, 40%

%, 20%, 20%, 40%, 20%, 10%, 0, PN

14

100,

0.



Ranges

Many directives (like IMAGE or TEXT) have a parameter for specifying for which cards will be executed that
directive. A card in a range may be specified directly with a number, a list of cards with a list of numbers separated by a

comma “,” and a range of cards with the first and last cards separated with a dash “-” or the first card and a number,
separated with a number sign “#”.

Examples:

RECTANGLE = 1, 0, O, 6, 9, #0000FF
RECTANGLE "1,3,5,7", 0, 0, 6, 9, #O000OFF
RECTANGLE 1-10, 0, 0, 6, 9, #000OFF
RECTANGLE = 10#5, 0, 0, 6, 9, #0000FF

Note: in the 2" line the range must be enclosed in quote for the presence of commas, however, you can always enclose
all ranges in quotes.

You can mix the two methods, and use a complex range, like:
RECTANGLE = "1-10,12,15,19-20,35#3", 0, 0, 6, 9, #0000FF

A number in a range can be the result of an expression (see page 40), and must be enclosed between “{” and “}. For
example:

RECTANGLE = 1-{2*5}, 0, 0, 6, 9, #0000FF

Usually, the order doesn’t matter (1-10 is equal to 10-1) but for one command, COPYCARD, the order is important,
because the source range is uses as specified, these two rows are different:

COPYCARD = 11-20, 1-10
COPYCARD = 11-20, 10-1

The 1% row gives as result this sequence of cards:
1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10

The 2™ row gives as result this sequence of cards:
1,2,3,4,5,6,7,8,9,10,10,9,8,7,6,5,4,3,2,1

There is a syntax that can be used to change that behavior, useful, for example, to invert sub-ranges of cards (for
printing front-back). For example:

COPYCARD = 10-18, 1-9$abc>cba

The first group of characters is the start pattern, the second group is the destination pattern, reversed in groups of three
cards. You can obtain the same result manually writing:

COPYCARD = 10-18, "3-1,6-4,9-7"

This syntax is useful also if you want to specify a “hollow” range, for example, if you want a rectangle only on even
cards:

RECTANGLE = 1-10%Sab>a, 1, 1, 4, 4, #FF0000

Note: the $abc>cba syntax works only when the card number is defined using a CARDS command.

See also: Labels and sequences chapter (page 19), AUTORANGE label function (page 25), and BASERANGE
directive (page 67) about the interaction between ranges and sequences.

15



Colors

In this program, the colors will be defined by a string of seven characters, starting with a number sign “#” and six
hexadecimal digits (using the HTML syntax), two for each component (red-green-blue), for example:

White #FFFFFF
Black #000000
Red #FF0000
Green #00FF00
Blue #0000FF
Cyan #00FFFF

Magenta #FFOOFF

Yellow #FFFFOO

Tip: if you use the wizard for a new deck (the “wiz” button, to the right of “New deck” button), you can check the
“Include labels for HTML colors” to obtain a set of 140 label definition for many colors.

| Tip: you can choose a color from a color picker, clicking on the button “Insert” and choosing the menu voice “Color”.

‘T Choose a color

= ' Cancel
]
127 '
]
I
HFF7FO0 E—
Orange [Color wheel] w | Saturation [ |
Brighthess ' .
Confirm

If instead of a hexadecimal digit you specify a letter “H”, you obtain a random value from 0 to 15. For example, if you
want a complete random color, with this syntax you can use #HHHHHH, instead for a random hue of blue, you can use
#0000HH, and so on. The letter “L” stands for the last color used, then #LLLLLL is the last color, instead #0000LL is
the last blue component used.

You can concatenate more than one color to obtain a gradient, followed by a “@” to specify the angle. If you use these
special values for the angle, you obtain a special gradient:

360 Radial gradient
361 Elliptical gradient
362 Square gradient
363 Star gradient

These are some examples:

16



From black to white, horizontal #FFFFFF#000000Q0

From red to blue, vertical #0000FF#FF0000Q@90

From cyan to magenta, radial #FFOOFF#00FFFFQR360

From cyan to magenta, elliptical #FFOOFF#00FFFFQR361

From teal to yellow, square #FFFF004#008080@362

From orange to purple, star #4000804#FFA5000@363

From red, to green, to blue, horizontal #0000FF#00FFO0#FF0O000R0

If you omit the “@”, the colors are randomized (and smoothed); specifying a "%" and a number, you set a threshold for
the 2" color, for example:

Blue and red, randomized #0000FF#FF0000

Blue and red, randomized 50% #0000FF#FF0000%50

Red and blue, randomized 50% #FF0000#0000FF%50

Blue, green, and red, randomized #0000FF#00FFO0#FF0000

Specifying a $ and a number, the colors are smoothed that number of times (without specifying it, the color is smoothed
only one time), for example:

Blue and red #0000FF#FF0000 -
Blue and red, no smoothing #0000FF#FF0000$0
Red and blue, two smoothing #FFOO00#0000FF$2

If you add a & and a number in the color, the pattern is created with a Perlin Noise algorithm, with a number of
iteration equal to the numeric parameter, for example:

Blue and red, eight iterations #0000FF#FF0000&8
Blue and red, six iterations #0000FF#FF0000&6
Blue and red, three iterations #0000FF#FF0000&3

If you add a ¢ in the color, the random pattern is made of stripes (and you can use more ¢ to make the stripes longer),
for example:

17



Blue and red, randomized #0000FF#FF0000

Blue and red, striped #0000FF#FF0000¢

Blue and red, striped x 2 #0000FF#FF0000cc -

Tip: you can choose a gradient from a visual form, clicking on the button “Insert” and choosing the menu voice
“Gradient”.

A Insert gradient -

Apngle Lirear

(®) Gradient Radial

() Randam
Square
HFFOOO0 Reverze ROOOOFF i Star
T =

Add p i a Cancel

Remove Do a =

18




Labels and sequences

A label is used as a variable value in a script, and may be initialized and used several times in the code. It can be
initialized with this syntax:

[name] = wvalue

And used specifying its name (always delimited with “[”” and “]”). This is an example:

[alpha] = "This is a text"
FONT = Arial, 32, , #000000
TEXT = 1-10, [alpha]l, 0, 0, 6, 9, center

A sequence is a list of values used as a parameter in a directive. Each value is separated using the character pipe “|”. For
each card in the directive’s range the program uses a different element in a sequence (restarting from the first if the
sequence’ size isn’t enough to fill the range), for example, if you want ten cards, half with the word “odd” and half with
the word “even”, you can use the TEXT directive, with a range 1-10 and a sequence of the two words as text parameter
(“oddleven”).

FONT Arial, 32, , #000000
TEXT = 1-10, "odd|even", 0, 0, 6, 9, center

Sequences may be very long, you can manipulate them in a clearer manner if you use them in labels. Usually a
sequence must be on a single line, but you can split a long sequence into multiple lines, starting the first line with a “{”
and ending the last line with a “}”. For example:

{[long] = "one|

two |

three|

four|

five|

six|

seven |

eight|

nine |

ten"}

FONT = Arial, 32, , #000000
TEXT = 1-10, [long]l, O, 0, 6, 9, center

Tip: The split-line syntax with “{” and “}” can be used not only for sequences, but with every command.

If the label contains a sequence (like in the above example), you can obtain the number of elements contained using the
syntax “(name)”. It can be used directly as a parameter or in an expression. For example:

[alpha] = oneltwo]|three

FONT = Arial, 32, , #000000

TEXT = 1-{ (alpha)*2}, [alpha], 0, 0, 6, 9, center

The result deck will be composed of six cards, with the word sequence one-two-three-one-two-three.

When you define a label, there are some characters you can use as prefix or postfix for the [name] to obtain special
behavior.

[name] number = value

The resulting value is the original value repeated number times. Instead, with these letters as a prefix, you can use this
program as a combinatorial engine:

C combination
P permutation
E derangement (permutation with no element in its original position)

19



F circular shift (right)

B circular shift (left)

CR combination with repetitions

PR permutation with repetitions

ER derangement with repetitions

n extracts only a random sample of n elements instead of the full set

C[name]number = objectl|object2..0bjectN
P[name] number objectl|object2..0bjectN
E[name]number = objectl|object2..0bjectN
Fl ]
B[ ]

name ] number objectl]|object2..0bjectN
name]number = objectl|object2..0bjectN

These syntaxes create two labels with a combination and a permutation of number objects from the sequences, for
example:

C[labell]2 = A|B|C
P[label2]2 = A|B|C
E[label3]2 = A|B|C
F[labeld]2 = A|B|C
B[label5]2 = A|B|C

these labels will be translated into:

[labell] = AB|AC|BC
[label2] = AB|AC|BA|BC|CA|CB
[label3] = BA|BC|CA
[labeld4] = AB|BC|CA
[label5] = AB|CA|BC

With repetitions

CR[labell]2 = A|B|C
PR[label2]2 = A|B|C
ER[label3]2 = A|B|C

the result will be:

[labell] AA|AB|AC|BB|BC|CC
[label2] = AA|AB|AC|BA|BB|BC|CA|CB|CC
[label3] BA|BC|CA|CC

A sample of three elements:
CRT3[labell]2 = A|B|C
one of the possible result could be:
[labell] = BC|AA|CC
Special flags:

remove duplicate elements

remove “rotated” elements

remove elements with the same “structure”
randomize elements

sort elements in ascending order

sort elements in descending order

keep only crossing paths

keep only paths that doesn’t cross themselves

O~"N>»ZWwX0O

The “D” flag is useful when you have multiple elements in combinations/repetitions, for example:

20



C[labell]2 = A|B|CIC

will be evaluated as:

[labell] = AB|AC|AC|BC|BC|CC

If you don’t want repetitions, you can add the “D” flag (as a prefix) and the result will be:
[labell] = AB|AC|BC]|CC

The “X” flag need a longer explanation. Let’s say, you need to create tiles with 4 quadrants, with all the combination of
three elements (plains, woods and mountains), this is the starting script:

CARDSIZE = 4, 4

[QUARTER1] 0, 0, 2, 2, 0, 4
[QUARTER2] = 0, 0, 4, 0, 2, 2
[QUARTER3] = 4, 0, 4, 4, 2, 2
[QUARTER4] = 0, 4, 2, 2, 4, 4

PR[SCHEMA]4 = P|F|M
[ALL] = 1-{ (SCHEMA) }

[COLOR_P] = #00FF00
[COLOR_F] = #008000
[COLOR_M] = #C0CO0CO
TRIANGLE = [ALL], [QUARTER1], [COLOR [SCHEMA:1,1]]
TRIANGLE = [ALL], [QUARTER2], [COLOR [SCHEMA:2,1]]
TRIANGLE = [ALL], [QUARTER3], [COLOR [SCHEMA:3,1]]
TRIANGLE = [ALL], [QUARTER4], [COLOR [SCHEMA:4,1]]

This is the result (4 pages of 81 tiles):

The tiles are all different, but not if you rotate them, for example, PFPF is equal to FPFP (rotated 90°). To eliminate
them, you can use the “X” prefix. This is the result (1 page of 24 tiles):

The “X” flag can be used more than once, to specify that not all the “rotations” will be considered as equals; for
example, with only one “X”, the sequence 0102 is equal to:

1020

0201

21



2010

In a square token with a number on each side, this is equal to 90° rotations. Instead, with “XX”, the sequence 0102 is
equal only to 0201 (in a square token, this is equal to considering only rotations of 180°, or rather, that rotations of 90°
aren’t considered).

The “S” flag remove elements with the same structure: for example, the sequence 0102 has the same structure of the
sequence 1210. In the previous example, from the 24 tiles, only six have a different structure:

w<

The “N” flag will be used if you want to randomize the sequence, if you write, for example:

N[elements] = alphalbeta|gamma|delta

it will be randomly evaluated each time you validate the deck, for example as:

[elements] = betalgamma|deltalalpha

If you want to analyze only a sub-string from the result of the permutation/combination engine or an external linked
file, you can use the “:” syntax to extract a sub-string, the syntax is [label:start,number] where start is the starting
character and number is the length of the sub-string in characters. For example, in the script about tiles in the previous
page, every line extracts only a character from the label (composed of four characters), and associates it with another
label:

TRIANGLE = [ALL], [QUARTER1], [COLOR [SCHEMA:1,1]]
TRIANGLE = [ALL], [QUARTER2], [COLOR [SCHEMA:2,1]]
TRIANGLE = [ALL], [QUARTER3], [COLOR [SCHEMA:3,1]]
TRIANGLE = [ALL], [QUARTER4], [COLOR [SCHEMA:4,1]]

If the label [SCHEMA] was, as an example, “PFPM”, these lines will be evaluated as:

TRIANGLE = [ALL], [QUARTERL], [COLOR P]
TRIANGLE = [ALL], [QUARTER2], [COLOR F]
TRIANGLE = [ALL], [QUARTER3], [COLOR P]
TRIANGLE = [ALL], [QUARTER4], [COLOR M]

Tip: you can view a list of labels, their contents, and choose one of them from a list, clicking on the button “Insert” and
choosing the menu voice “Label”.

You can extract a single element in a sequence using the ? operator in an expression (delimited with curly brackets {
and }). If you omit the number, it’s used the current card (i.e. is the same to use ? or ?78).

For example, this script will print the letter “c”:
[ALPHA] = alblcldle

FONT = ARIAL, 32, , #000000

TEXT = 1, {ALPHA?3}, 0, 0, 100%, 100%

There is also a syntax for creating labels with a condition and with a for...next cycle (note that you can’t define a label
between standard IF...ENDIF or FOR...NEXT blocks):

[label]l%[condition], variable, start, end, step = value

The [condition] parameter must be a label, it cannot be written directly because a condition is too complex to be
evaluated correctly in a single line. This is an example:

[checkl]=[a]=
[check2]=[a 1<>1
[color]%[checkl]=#FF0000

22




[color] % [check2]=#0000FF

In this example, if [a] is 1, the label [color] is red (#FF0000), if [a] isn’t 1, the label [color] is blue (#0000FF).

The condition can be omitted, in this case the label is defined only if it doesn’t already exist. In this example, the label
[alpha] is red, and the label [beta] is blue:

[alphal=#FF0000

[alpha

]1%=#0000FF
[beta] $=#0

000FF

The label creation can be repeated in a for...next cycle, for example, if you want to define ten labels, with powers of
two, you can write:

[lab (count) ]%, (count),1,9 = {(count)”"2}

Note that the condition parameter is empty (the comma after the % symbol), and that if the step parameter is omitted,
its value is assumed equal to one. The variable (count) can be anything (the parentheses aren’t really needed). The result
is equal to write this code:

An alternate syntax for the definitions of labels in a loop is this:

[label]%[condition], variable, [sequence] = value

In this syntax, a step in the loop is executed for each value of the sequence (value that is replaced in the variable), for
example:

[seq] = alphalbeta|gamma
[lab_(var)]%, (var), [seq] = test (var)

The result is equal to this code:

[lab_alpha]=test alpha
[lab beta]=test beta
[lab _gamma]=test gamma

Note that the interaction between ranges and sequences is based on the extraction of the Nth element from a sequence
when is rendered the Nth card in the range, i.e. if you have a range that doesn't starts with the 1% card of the deck, the
elements from the sequence are apparently extracted wrongly. Example:

[ALPHA] = alb]cl|d]le
FONT = ARIAL, 32, , #000000
TEXT 3-5, [ALPHA], 0, 0, 100%, 100%

In the 3™ card (the 1°t of the range) shows the letter a (the 1%t of the sequence). If you instead want to show the letter ¢
you must add a BASERANGE directive:

BASERANGE = 1-5, ON

[ALPHA] = alblcldle

FONT ARIAL, 32, , #000000

TEXT 3-5, [ALPHA], 0, 0, 100%, 100%

23



With the BASERANGE directive (see page 67), nanDECK uses the position of the Nth card from all the deck (and not
from the range) to evaluate what element to extract from the sequence, and therefore in the 3™ card it goes the 3™
element (i.e. the letter c).

24



Label functions

AUTOLABEL

This function creates a label containing a sequence of numbers. This is the syntax:

[name] = AUTOLABEL (start, end, step, separator, padding)

For example, this line:

[a] = AUTOLABEL (1, 10, 2)

will be evaluated as:

[a] = 1|3[5]719111

The standard separator is the pipe (the character), if you want a different separator, you can specify it as the 4™

parameter. If you specify a number in the 51 parameter, the result number is padded to the left with zeroes until the
length of the number reach that parameter.

AUTORANGE

“|”

This function calculates a range starting from the previous AUTORANGE (or card 1, if it was the first), the only
parameter is a number of cards. This is the syntax:

[name] = AUTORANGE (number)

For example, these rows:

[a] = AUTORANGE (10)
[b] = AUTORANGE (5)
[c] = AUTORANGE (8)

will be evaluated as:

[a] = 1-10
[b] = 11-15
[c] = 16-23

You can reset the counter, using a negative number as parameter. For example, these rows:

= AUTORANGE (10)
[b] = AUTORANGE (-5)
= AUTORANGE (8)

©
|

Q
|

will be evaluated as:

[a] = 1-10
[b] = 1-5
[c] = 6-13
CASESTRING

This function modifies the capitalization of a string, this is the syntax:
[label] = CASESTRING(string, flagqg)
You can choose one of these flags:

U the string changes to uppercase

25



L the string changes to lowercase
F every first character in a string is changed to uppercase, the others to lowercase

If the flag is not specified, the string is changed to uppercase.

CONCAT

This function creates a label concatenating different strings, this is the syntax:

[name] = CONCAT (parameterl, repeatl, parameter?2, repeat2, ..parameterN, repeatN)
Each parameter is repeated a humber of times equal to the next parameter. This is an example:

[test] = CONCAT (#000000, 3, #FFFFFF, 2)

Will be evaluated as:

[test] = #000000#000000#000000#FFFFFF#FFFFFF

CONCAT1

This function is equivalent to CONCAT, with a repetition of each parameter of one, this is the syntax:

[name] = CONCAT (parameterl, parameter2, ..parameterN)

COOFRAME

This function outputs the four coordinates of a frame (see page 36); instead of using the standard <frame> syntax, that
is evaluated in the Validate step, this function is evaluated later, in the Build step. This is the syntax:

[name] = COOFRAME (frame)

COOFRAMES

This function is similar to COOFRAME, and is used when there are more than one frame that can be selected. The 1%
parameter is the number of the frame, selected from all that have the name specified in the 2" parameter (you can use
also wildcard characters like * and ?):

[name] = COOFRAMES (number, frame)

DIRFILES

This function creates a sequence label using names of files from a folder (and subfolders), this is the syntax:
[name] = DIRFILES (path, extension)

The extension can be a sequence of extensions, like jpg|bmp|gif.

This is an example:

[img] = DIRFILES ("c:\images\", Jpg)

and it will be evaluated as:

[img] = "c:\images\one.jpgl|c:\images\two.Jjpg|c:\images\three.jpg"

Instead of an extension, you can specify in the 2" parameter a file mask (with * and ? as wildcards). For example:

[img] = DIRFILES ("c:\images\", "img*.jpg")

26



You can also combine the two parameters in one. For example:

[img] = DIRFILES ("c:\images\img*.jpg")

ENVIRONMENT

This function reads an environment variable from the operating system, this is the syntax:
[name] = ENVIRONMENT (variable)
For example, this reads the path for the user folder:

[folder] = ENVIRONMENT (userprofile)

EVAL

This function creates a sequence with the results of the evaluation of another sequence, this is the syntax:
[name] = EVAL (sequence)
This is an example:

[alpha]l = {1+1}]{2*3} {373}
[beta] = EVAL([alphal)

These two lines are equivalent to:
[betal = 21627
Note: you obtain the same result with a single line:

[beta] = EVAL({1+1}[{2*3}]{3"3})

EXPAND

This function creates a sequence replicating itself numseq times, with each element replicated numele times (this
parameter is option, if not specified is treated equal to one):

[name] = EXPAND (sequence, numseq, numele)
This is an example:

[alpha]l = alblc
[beta] = EXPAND ([alphal, 2, 3)

These two lines are equivalent to:

[beta] = alalalblblbl|clclclalalalblblblc|c]c

FILTER

This function creates a sequence taking elements from another sequence, filtering and grouping them using some rules.
The basic syntax is:

[name] = FILTER([name], filterl, filter2 ..filterN)
In the filterN parameters you can use wildcards: ? for any character, * for any characters, and use ranges of characters

within parenthesis (as an example, 1(0-9) matches a number from 10 to 19). For example, this script will print only
elements that start with a zero (four elements on eight):

27



[ALPHA] = 000/0011010]011(100(101(1101111
[BETA] = FILTER([ALPHA], 0%*)

FONT = ARIAL, 32, , #000000

TEXT = 1-{(BETA)}, [BETA], 0, 0, 100%, 100%

In the 1% parameter you can specify these additional flags:

the sorted/added elements are used to create the new sequence

(multiple, header) sort characters from an element in ascending order before comparing it to the filters
(multiple, header) sort characters from an element in descending order before comparing it to the filters
(multiple, header) add numbers from an element before comparing it to the filters

keep only the characters specified after this flag

discard all the characters specified after this flag

(multiple, header) counts the maximum occurrences of a character(s) in the same element

(multiple, header) counts the maximum occurrences of specific character(s) in all positions on the previous
accepted elements

(header) counts all the occurrences of specific character(s) in all positions on the previous accepted elements
(multiple, header) counts the maximum occurrences of specific character(s) in the same position on the
previous accepted elements

£ (header) counts the maximum occurrence of a straight of characters

° set the rule for evaluating a straight (if not specified, is used the ASCII sequence of letters/numbers)

% (multiple) replace a character(s) with another(s), all the couples are specified after this flag

! counts the distance (in characters) between two copies of the same characters, specified after this flag

& (header) the element is evaluated from his position within the sequence, starting from one

- the condition (for including or not an element) is reversed (for inserting the symbol, type ALT + 0172)

if an element is not included, a null string is added in its position

¢ the result isn’t padded with zeroes to the length of the longest element

(multiple, header) the starting characters in each element are permutated

>69¢t@+/\v<m

l

You can combine multiple flags, and use a space if you want to mix two similar functions, for example, a $ followed by
$$ can be coded as “$ $3$”. The flags marked with header must be specified before the sequence, not after.

For example, this script will print only elements that contains a zero and two ones (three elements on eight):

[ALPHA] = 0000011010011 ]100]101|110111
[BETA] = FILTER(>[ALPHA], 011)

FONT = ARIAL, 32, , #000000

TEXT = "1-{(BETA)}", [BETA], 0, 0, 100%, 100%

The flags marked with (multiple) in the above list (i.e.: > <+ $ ~ = 9% .) can be repeated, when you must consider
elements not as single characters, but as strings composed with more than one character. For example, the element
“0123” gives these results:

+ 6
++ 24
> 0123
>> 0123
< 3210
<< 2301

This is as example for utilization of “$” flag. First, a label is created with all the permutations (with repetitions) of four
elements from a set of five (a, b, ¢, d, and e), then, another label is created filtering only the occurrence of a three-of-a-
kind and four-of-a-kind:

prlald4d = alblcl|d]|e

[b] = FILTER(S[al, 3, 4)

FONT = ARIAL, 64, , #000000

TEXT = 1-{(b)}, [b], O, 0, 100%, 100%

In this example, the same sequence is filtered to get only the labels that contains one or less repetitions of the same
character in the same position:

28



prlal4 = alblcldle

[b] = FILTER(=[a], 0, 1)

FONT = ARIAL, 64, , #000000

TEXT = 1-{(b)}, [bl, 0, 0, 100%, 100%

In this example of the replacement option (with the % option), the characters “a”, “d”, and “g” are replaced with the
numbers “17, “2”, and “3”:

[test_a] = abcldef|ghi
[test b] = FILTER(S[test al%ald2g3)

The result sequence [test_b] is equal to:
lbc|2ef|3hi

Usually the strings found and replaced with the % option are the same length, but you can specify a null character using
a ¢ symbol (for inserting it, type ALT + 0162). Example:

[test_a] = abcldef|ghi
[test D] FILTER (Sc[test _a]%%abxc¢dece)

Note the ¢ symbol added to disable the padding; the result sequence [test_b] is equal to:

xc|f|lghi

You can create a sequence of parameters with a “FOR=" keyword, for example, if you want ten numbers, instead of
adding all of them you can use a single parameter like “1-10FOR=-" (the 2" minus symbol is the position of the counter
in the result.

Instead of a parameter used as a filter, you can specify a “mask™ (with the prefix “MASK="), that is used to apply the
filter only to some characters of the elements from the sequence; you specify a character that you want to consider with
a “1”, and a character to ignore with a “0”. For example, if you want to apply the rules only to the even characters of a

ten-character string, use this parameter: MASK=0101010101

If there are more than one rule in the 1% parameter, and if you specify a number before the mask keyword, that mask is
applied only to a single rule (1 for the 1% rule, 2 for the 2", and so on).

GRADIENTSEQ
This function creates a sequence of gradients, splitting one into several sections, the syntax is:
[name] = GRADIENTSEQ (gradient, number, element)

For example, with this line the program creates a sequence of three gradients:
[gradient] = GRADIENTSEQ (#000000#FF0000@0, 3)

If you don’t specify the 3 parameter, the sequence contains number element; instead it contains only the Nth
parameter, where N is the 3 parameter.

GROUP

This function takes all the elements in a sequence and removes all the duplicate elements, optionally, it can return a
count of all the elements adding the keyword COUNT in the 2" parameter. The syntax is

[name] = GROUP (sequence, function)
For example:

[alpha] = alblalelclclclalblfldle
[beta] = GROUP ([alphal)

29



[gamma] = GROUP ([alpha], COUNT)

The two resulting sequences contain these values:

[beta] alblcldlelf
[gamma] = 3]2|311]2]1

JOIN

This function uses alternatively the elements from two (or more) sequences for building a new sequence, the syntax is:

[name] = JOIN (sequencel, sequence?2, ..sequenceNl)

The length of the new sequence is equal to the longest source sequence. This is an example:

[labell] = A|B
[label2] = 112134
[label3] = JOIN([labell], [label2])

The 3 label will be evaluated as:

[label3] = Al |B2|A3|B4

JOINIF

This function add elements to a sequence using a condition to choose from two other sequences, the syntax is:

[name] = JOINIF (sequence, valuel, condition, wvalue2, sequence true, sequence
false)

Every parameter can be a single value or a sequence. The condition can be one of this symbol:

= equal

<> different

> major

< minor

>= major or equal
<= minor or equal
@ contained

# not contained

This is an example:
[label] = JOINIF(A|B|C, 1]2|3, <=, 2, DI|E|F, X)
The label will be evaluated as:

[label] = AD|BE|CX

LABELRANGE

This function creates a range, using elements from a sequence. The syntax for this function is:

[name] = LABELRANGE (sequence, value, offset)

If you specify the optional value parameter, the range is created with only the cards matching the value parameter

position (wildcards * and ? are accepted). If you don’t specify the value parameter, the default element from a sequence
is considered “1”. The offset parameter, if specified, will be added to every card of the range.

30



For example:

[sequence] = 0]1]1|0]0|1

[label] = LABELRANGE ([sequence])
Result:

[label] = "2,3,6"

The item parameter can also accept these operators (in the format operatorvalue):

= the item’s position from the sequence is included if it’s equal to the value (this operator can be omitted)
<> the item’s position from the sequence is included if it’s different from the value

> the item’s position from the sequence is included if it’s greater than the value

< the item’s position from the sequence is included if it’s smaller than the value

>= the item’s position from the sequence is included if it’s greater or equal to the value

<= the item’s position from the sequence is included if it’s smaller or equal to the value

@ the item’s position from the sequence is included if the value is contained in it

# the item’s position from the sequence is included if the value isn’t contained in it

For example:

[sequence] = 1|21314|5]/6]71819]10
[label] = LABELRANGE ([sequence], >=5)
Result:

[label] = "5,6,7,8,9,10"

LABELSTRING

This function creates a string with elements taken from a sequence. The syntax for this function is:

[name] = LABELSTRING (sequence, number)

Without the optional number parameter, the result is a single string, taken from concatenating every element of the
sequence. If you specify a number as 2" parameter, for every n element a new element of the sequence is created. For
example:

[sequence] = A|B|IC|DI|E|F
[label] = LABELSTRING ([sequence])

These two lines are equivalent to:

[label] = ABCDEF

Another example:

[sequence] = A|B|IC|D|E|F
[label] = LABELSTRING ([sequence], 2)

Result:

[label] = AB|CD|EF

LABELSUB

This function extracts a sequence from another, taken only the elements in a range, the syntax is:

[name] = LABELSUB (sequence, "range")

31



For example:

[sequence] = LABELSUB (alphal|betalgamma|delta, "1,3-4")
Result:

[sequence] = alpha|gamma|delta

LENGTH

This function creates a new sequence with the lengths of the elements of the sequence in the 1% (and only) parameter,
the syntax is:

[name] = LENGTH (sequence)

For example:

[sequence] = ABC|DE|F|GH|IJK|LMNO
[label] = LENGTH ([sequence])
Result:

[label] = 321112314
PRODUCT

This function combines two (or more) sequences, in the result every element of the first sequence is combined with
every element of the second sequence (and so on), the syntax is:

[name] = PRODUCT (sequencel, sequence2, ..sequenceN)

The length of the new sequence is equal to the product of the length of all source sequences. This is an example:

[labell] = A|B
[label2] = 112134
[label3] = PRODUCT ([labell], [label2])

The 3" label will be evaluated as:

[label3] = A1l|A2|A3|A4|B1|B2|B3|B4
RANGEADD

This function combines several ranges in one, the syntax is:
[range] = RANGEADD ("rangel", "range2", .."rangeN'")
For example:

[rangel] = "1-3"

[range2] = "2-4"

[range3] = "8-10"

[range] = RANGEADD ([rangel], [range2], [range3])
Result:

[range] = "1-4,8-10"

32



RANGECOUNT

This function returns the number of cards in a range, the syntax is:

[number] = RANGECOUNT ("range")

For example:

[number] = RANGECOUNT ("1,4-6,10-15")
Result:

[number] = 10

RANGEMUL

This function creates a new range from pairs of range/number of repetition of that range:

[range] = RANGEMUL ("rangel", numl, "range2", num2, .."rangeN'", numN)
For example:

[range] = RANGEMUL(1,2,3,4)

Result:

[range] = "1,1,3,3,3,3"

RANGEREM

This function extracts a sub-range from another range, this is the syntax:
[range] = RANGEREM ("rangel", "range2", .."rangeN")

This directive removes the ranges range2, ... rangeN from rangel.

For example:

[rangel] = "1-10"

[range2] = "3,4"

[range3] = "7-9"

[range] = RANGEREM([rangel], [range2], [range3])
Result:

[range] = "1-2,5-6,10"

RANGESUB

This function extracts a sub-range from another range, this is the syntax:

[range] = RANGESUB ("range", start, number)

The sub-range starts from the element specified by the start parameter, and is composed of number elements. If the
number parameter is missing (or equal to zero) the sub-range goes to the end of the initial range; if the start parameter is
equal to zero, the sub-range starts from the last element taken with another RANGESUB function (or from the start of
the initial range), in a behavior like that implemented with AUTORANGE function.

For example:

33



[rangel] = "1-10"

[range] = RANGESUB([rangel], 3, 4)
Result:

[range] = "3-6"

REPLACE

This function replaces in a string (or a sequence) all instances of a substring with another. The syntax for this function
is:

[name] = REPLACE ("string", "from", "to")

ROUND

This function returns the 1%t parameter rounded, the 2" parameter specify the number of decimal digits (if not specified,
it is zero, if it’s a negative number, the rounding is by power of tens), the 3™ parameter is a keyword that specify if the
rounding is UP, or DOWN (if you don't specify it, the rounding is down when the rounded digit is 4 or less, and up if
it's 5 or more). The syntax is:

[name] = ROUND (value, precision, keyword)

SAVELABEL

This function saves the content of a label (or more than one label) into a CSV text file or a spreadsheet file (if the
extension of the filename is .xlIs or .xlIsx). The syntax for this function is:

[name] = SAVELABEL ("filename", labell , label2, ..labelN)

The result label [name] contains the filename. Note: do not use the [ ] in the label parameters.

STRINGLABEL
This function creates a sequence label with elements taken from a string. The syntax for this function is:
[name] = STRINGLABEL ("string", length)

The optional length parameter sets the number of characters taken for each element of the sequence. If omitted, the
length is one character. For example, these two lines are equivalent:

[label] = STRINGLABEL ("This is a test")
[label]l = "T|hlil|s| |ils| lal Itlels|t"
TOKENIZE

This function extracts a substring from a string, using a separator that slices the string into several tokens, and a number
that specify the single token extracted. The syntax for this function is:

[name] = TOKENIZE ("string", number, separator)

If the separator is not specified, is assumed to be equal to “|” (pipe), note that is the same separator for the elements in a
sequence. For example:

[result] = TOKENIZE ("Alpha-Beta-Gamma", 2, -)

The [result] label would be equal to “Beta”

34



TOKENIZESEQ

This function extracts a sequence from another sequence, using a separator that slices each element of that sequence
into several tokens, and a number that specify which tokens are extracted; all the tokens are concatenated in the result
sequence. The syntax for this function is:

[name] = TOKENIZE ("string", number, separator)
For example:
[result] = TOKENIZE ("Alpha-Beta-Gamma|Delta-Epsilon-Zeta|Eta-Theta-Iota", 2, -)

The [result] label would be equal to “Beta|Epsilon|Theta”
TRANSLATE

This function replaces in a sequence (specified in the 1%t parameter) all the elements found in another sequence
(specified in the 2" parameter) with elements taken from another sequence (specified in the 3" parameter). The syntax
is:

[label] = TRANSLATE (sequence, sequence key, sequence value)

For example, this script:

[test] = x|ylIx|wlx|ylylz

[from] = x|yl|z

[to] = alblc

[result] = TRANSLATE ([test], [from], [to])

Gives this sequence as a result:

[result] = alblallalblblc

35



Frames

A frame is a special label, used when you need to identify a rectangular area used for placing a graphical content. A
frame is defined used this syntax:

<name> = position x, position y, width, height
And can be used for example with a RECTANGLE directive:

RECTANGLE = 1, <name>, #000000

This is a behavior that can be done also with a label, but in a frame, you can add an alignment and a specific size, with
this syntax:

<name, alignment, width, height>

The “alignment” can be a flag from this list:

TL top-left
TC top-center
TR top-right

CL center-left
CcC center-center
CR center-right
BL bottom-left
BC bottom-center
BR bottom-right

An example with all these nine alignments:
<frame> =1, 1, 4, 7

FONT = Arial, 16, , #FFFFFF, #0000FF
RECTANGLE = 1, <frame>, #CCCCFF

TEXT = 1, "TL", <frame, TL, 1, 1>, CENTER, CENTER

TEXT = 1, "TC", <frame, TC, 1, 1>, CENTER, CENTER
TEXT = 1, "TR", <frame, TR, 1, 1>, CENTER, CENTER

TEXT = 1, "CL", <frame, CL, 1, 1>, CENTER, CENTER

TEXT = 1, "CC", <frame, CC, 1, 1>, CENTER, CENTER OE@
TEXT = 1, "CR", <frame, CR, 1, 1>, CENTER, CENTER

TEXT = 1, "BL", <frame, BL, 1, 1>, CENTER, CENTER Image 1
TEXT = 1, "BC", <frame, BC, 1, 1>, CENTER, CENTER

TEXT = 1, "BR", <frame, BR, 1, 1>, CENTER, CENTER

Result: Image 1

One between width and height can be expanded to the full extent of frame’s width or height, using this syntax and one
of these alignments for width:

<name, alignment, height>

T™W top align_ed, full Width

BW  botiom ahgned. full width
Example:
<frame> =1, 1, 4, 7 Image 2

FONT = Arial, 16, , #FFFFFF, #0000FF

RECTANGLE = 1, <frame>, #CCCCFF

TEXT = 1, "TW", <frame, TW, 1>, CENTER, CENTER
TEXT = 1, "CW", <frame, CW, 1>, CENTER, CENTER

TEXT = 1, "BW", <frame, BW, 1>, CENTER, CENTER
Result: Image 2

36



This syntax and these alignments are used for a full height:

<name, alignment, width>

HL full height, left aligned
HC full height, center aligned
HR full height, right aligned

<frame> =1, 1, 4, 7 HL BHCBHR
FONT = Arial, 16, , #FFFFFF, #0000FF

RECTANGLE = 1, <frame>, #CCCCFF

TEXT = 1, "HL", <frame, HL, 1>, CENTER, CENTER

TEXT = 1, "HC", <frame, HC, 1>, CENTER, CENTER

TEXT = 1, "HR", <frame, HR, 1>, CENTER, CENTER Image 3
Result: Image 3

Another type of syntax can be used to extract only a position (useful with lines):

<name, alignment>

PTL  top-left

PTC  top-center
PTR  top-right
PCL  center-left
PCC  center-center
PCR  center-right

PBL bottom-left Image 4
PBC bottom-center
PBR  bottom-right

<frame> =1, 1, 4, 7
RECTANGLE = 1, <frame>, #CCCCFF
LINE = 1, <frame, PTL>, <frame, PBR>, #FF000O,

LINE = 1, <frame, PTR>, <frame, PBL>, #FF000O,
Result: Image 4

0.2
0.2

Instead of using two frames, you can also combine two alignment of this type in a single frame, for example, with this
script the result is the same of the Image 4:

<frame> =1, 1, 4, 7

RECTANGLE = 1, <frame>, #CCCCFF

LINE = 1, <frame, PTL, PBR>, #FF0000, 0.2

LINE = 1, <frame, PTR, PBL>, #FF0000, 0.2

Instead of using a size (width or height) in cm, you can use a fraction of the whole frame size, using a
number followed by “%%” (instead, a single “%” gives you a size equal to a fraction of the whole

card). For example: L=

<frame> =1, 1, 4, 7

FONT = Arial, 16, , #FFFFFF, #0000FF

RECTANGLE = 1, <frame>, #CCCCFF

TEXT = 1, "TL", <frame, TL, 50%%, 50%%>, CENTER, CENTER

Result: Image 5 Image 5

Tip: you can view a list of frames, their contents, and choose one of them from a list, clicking on the button “Insert”
and choosing the menu voice “Frame”.

With these syntaxes, you can align a sub-frame starting from the last sub-frame, in the four directions:

TS top aligned, full width
BS bottom aligned, full width

37




SL left aligned, full height
SR right aligned, full height

<frame> =1, 1, 4, 7

FONT = Arial, 16, , #FFFFFF, #0000FF

TEXT = 1, TS1l, <frame, TS, 1>, CENTER, CENTER
FONT = Arial, 16, , #FFFFFF, #O00FF0O

TEXT = 1, TS2, <frame, TS, 1>, CENTER, CENTER
FONT = Arial, 16, , #FFFFFF, #FF0000

TEXT = 1, TS3, <frame, TS, 1>, CENTER, CENTER
FONT = Arial, 16, , #000000, #FFFFOO

TEXT = 1, TS4, <frame, TS, 0>, CENTER, CENTER
Result: Image 6

In this example, the first frame can also be referenced with TW, and the result didn’t change.
If you specify a zero as the width/height of the element, it fills all the available space (the 4™ frame

in this example).

TS4

Image 6

With these flags, the program extracts three coordinates from the four of a frame, useful when using the TRIANGLE

directive (see page 160), for a shape that fills half of the frame:

HTL  top left, top right, and bottom left
HTR  top left, top right, and bottom right
HBL  top left, bottom left, and bottom right
HBR  top right, bottom left, and bottom right

For example:

<frame> =1, 1, 4, 7

RECTANGLE = 1, <frame>, #CCCCFF
TRIANGLE = 1, <frame, HTL>, #FF000O0
Result: Image 7

These flags give also three coordinates:

TTL  anarrowhead with the point to the top-left corner of the frame

TTC  anarrowhead with the point to the center of the top side of the frame
TTL  anarrowhead with the point to the top-right corner of the frame

TCL  anarrowhead with the point to the center of the left side of the frame
TCR  an arrowhead with the point to the center of the right side of the frame
TBL  anarrowhead with the point to the bottom-left corner of the frame

TBC  anarrowhead with the point to the center of the bottom side of the frame
TBR  anarrowhead with the point to the bottom-right corner of the frame

For example:
<frame> =1, 1, 4, 7

RECTANGLE 1, <frame>, #CCCCFF

TRIANGLE = 1, <frame, TTC>, #FF0000
Result: Image 8

38

Image 7

Image 8



With several functions, you can create groups of frames, and referencing them with wildcards (the list is after this
chapter):

* a group of any characters,

? any one character,

~ a random frame from a group,

! the first frame from a group, the frame is then deleted from the frame group (instead of the first frame, a
random frame is selected if used with the “~” symbol),

/ normally, the frames created with a function are added to the existing ones; with this

character in the frames’ name, the definition rewrites the previous frames (the name is

considered without /),

this is not a wildcard used in a frame name, but instead is used when the frame number is

needed in a standard expression (with “{” and “}” delimiters),

Il this is not a wildcard used in a frame name, but instead is used when the frame name is
needed in a text (without “{” and “}” delimiters).

Finally, in a frame name with ! or ~ wildcards, you can specify more than one frame adding a
number before the symbol. For example, if you want three random green box from a grid, three
blue and three red you can write:

Image 9
[base] = FRAMEBOX (0, 0, 6, 9, 1, 1, E)
RECTANGLE = 1, <3!~base*>, #00FF0O0
RECTANGLE = 1, <3!~base*>, #0000FF
RECTANGLE = 1, <3!~base*>, #FF0000
GRID = 1, 0, 0, 6, 9, #000000, 0.1, 6, 9

Result: Image 9
Note: without the “!”” symbol, the randomized frames may overlay themselves. Instead, without ?

the “~” symbol, the frames are extracted from the start of the group. For example, with this script:

[base] = FRAMEBOX (0, 0, 6, 9, 1, 1, E)
RECTANGLE = 1, <3!base*>, #00FF00
RECTANGLE = 1, <3!base*>, #0000FF
RECTANGLE = 1, <3!base*>, #FF0000

GRID = 1, 0, 0, 6, 9, #000000, 0.1, 6, 9
Result: Image 10

Image 10

39



Frame functions

FRAMEBAR

This function creates a list of frames (see page 36) arranged in a line. The syntax for this function is:

[name] = FRAMEBAR (pos x1, pos yl, pos x2, pos y2, frame width, frame height,
number, zoom)

The frames are created with a name composed from the [name] and a number, the number goes from “1” to the 7™
parameter.

Example:
[bar] = FRAMEBAR(O, O, 6, 6, 1, 1, 5)

You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (~)
symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use, and
referencing the current frame’s number with the degree (°) symbol (in an expression) or the current frame’s name with
the micro () symbol (in a text).

The zoom optional parameter is used if you want to resize the frame of a percent (100 is equal to no change).

FRAMEBEZIER

This function creates a list of frames (see page 36) arranged in a Bezier curve. The syntax for this function is:

[name] = FRAMEBEZIER (pos x1, pos yl, handle x1, handle yl, handle x2, handle y2,
pos x2, pos y2, frame width, frame height, number, zoom)

The frames are created with a name composed from the [name] and a number, the number goes from “1” to the 111
parameter.

Example:
[bezier] = FRAMEBEZIER(O, O, 3, O, 3, 6, 6, 6, 1, 1, 10)

You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (~)
symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use, and
referencing the current frame’s number with the degree (°) symbol (in an expression) or the current frame’s name with
the micro () symbol (in a text).

The zoom optional parameter is used if you want to resize the frame of a percent (100 is equal to no change).

FRAMEBOX

This function creates a list of frames (see page 36), based on a rectangular grid. The syntax for this function is:

[name] = FRAMEBOX (pos x, pos y, width, height, frame width, frame height, flags,
zoom x, zoom y)

The last parameters (zoom x and zoom y) are optional, if not specified are equal to 100 (no zoom); if you want half
sized frames, you can specify 50, if you want double sized frames, the value is 200, and so on. The zoom can be
different between horizontal and vertical values.

The frames are created with a name composed from the [name] and the flag in the 7™ parameter. You can use these
flags:

letters

numbers

zero-padded numbers

coordinates

coordinates with letters and numbers

moO v zZzr

40



R coordinates with letters and numbers (numbers are reversed)
. dot separator for C flag

- minus separator for C flag

underscore separator for C flag

add only “white” squares in a chessboard

add only “black” squares in a chessboard

W=

With these flags, coordinates are added to each frame name:

A,B,C,D...

1,2,3,4...

01,02, 03, 04...
0101,0102,0103...0201,0202,0203. ..
Al1,A2,A3...B1,B2,B3...
1.1,12,13..2.1,2.22.3...

- 1-1,1-2,1-3...2-1,2-2,2-3..

11,1 2,1 3..2.12.22 3...

ocoomovovzr

If you didn’t specify any flag, the frames are created with the same name.
Example:
[box] = FRAMEBOX (O, O, 4, 3, 1, 1, C)

The resulting frames will be:

<BOX1 1> =0, 0, 1, 1
<BOX1 2> =0, 1, 1, 1
<BOX1 3> =10, 2, 1, 1
<BOX2 1> =1, 0, 1, 1
<BOX2 2> =1, 1, 1, 1
<BOX2 3> =1, 2, 1, 1
<BOX3 1> =2, 0, 1, 1
<BOX3 2> =12, 1, 1, 1
<BOX3 3> =12, 2, 1, 1
<BOX4 1> =3, 0, 1, 1
<BOX4 2> =3, 1, 1, 1
<BOX4 3> =3, 2, 1, 1

~
~
~

You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (~)
symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use, and
referencing the current frame’s number with the degree (°) symbol (in an expression), or the current frame’s name with
the micro () symbol (in a text). For example, if you want to split an image into 4 images (in a 2 x 2 pattern) and save
them, you can use this script:

[a] = FRAMEBOX (0, 0, 6, 9, 3, 4.5, N)

IMAGE = 1, "c:\my images\earth.jpg", 0, 0, 6, 9, 0
SAVE = 1, "c:\my images\earth {°}.jpg", <a*>

FRAMECLOCK

This function creates a list of frames (see page 36) arranged in a circle (like a clock’s quadrant). The syntax for this
function is:

[name] = FRAMECLOCK (pos x, pos vy, width, height, frame width, frame height,
number, angle, zoom, start, end, factor)

The frames are created with a name composed from the [name] and a number, the number goes from “1” to the 7™
parameter.

Example:

41



[clock] = FRAMECLOCK(O, O, 4, 4, 1, 1, 8)

You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (~)
symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use, and
referencing the current frame’s number with the degree (°) symbol (in an expression) or the current frame’s name with
the micro (W) symbol (in a text).

The angle optional parameter is used if you want to rotate all the frames of a precise degree.

The zoom optional parameter is used if you want to resize the frame of a percent (100 is equal to no change).

The start and end optional parameters are used if you want to draw only an arc instead of full circle (both are degrees).
The factor optional parameter, if not zero, creates a spiral of frames, instead of a circle (positive for clockwise spirals,
negative for anti-clockwise spirals).

FRAMECOUNT

This function creates a label with the number of frames from a single frame name, or a list of frame names. The syntax
for this function is:

[name] = FRAMECOUNT (framel, frame2, ..frameN)

In the [name] parameter you can use wildcards (? for any one character, * for a group of any characters).

FRAMEDISK

With this function, you can define a group of frames, specifying two frames, and including all the frames in the circle
drawn used the first frame as a center and the latter as a radius. It works with frames created from FRAMEBOX and
FRAMEHEX functions. The syntax is:

[diskgroup] = FRAMEDISK (frame center, frame radius)

For example:

CARDSIZE = 18, 20

HEXGRID = 1, 0, O, 18, 20, 1,, #000000, EMPTY, 0.1
[base] = FRAMEHEX (0O, 0, 18, 20, 1, E)

[diskgroup] = FRAMEDISK (basee6, baseed)

POLYGON = 1, <diskgroup>, 6, 90, #FF0000

FRAMEHEX

This function creates a list of frames (see page 36), based on a hexagonal grid. The syntax for this function is:

[name] = FRAMEHEX (pos x, pos Yy, width, height, hex size, flags, zoom x, zoom y)

The last parameters (zoom x and zoom y) are optional, if not specified are equal to 100 (no zoom); if you want half
sized frames, you can specify 50, if you want double sized frames, the value is 200, and so on. The zoom can be
different between horizontal and vertical values.

The frames are created with a name composed from the [name] and the flag in the 6™ parameter. You can use these
flags:

letters

numbers

zero-padded numbers

coordinates

coordinate with letters + numbers

dot separator for C flag

minus separator for C flag

underscore separator for C flag

outer frame (the default, it creates a frame suitable for drawing a circle outside the hex)
inner frame (it creates a frame suitable for drawing a circle inside the hex)

moO ovZzr

42



X uses a pattern for obtaining “easy to cut” hexagons (“trihexagonal” tiling)
A the hexes are arranged in horizontal lines instead of vertical
S the line (or the column, if the A flag is specified) starts with a shifted hex

With these flags, coordinates are added to each frame name:

A,B,C,D...

1,2,3,4...

01, 02, 03, 04...
0101,0102,0103...0201,0202,0203. .
Al,A2,A3...B1,B2,B3...
1.1,1.2,1.3..2.12.22.3...

- 1-1,1-2,1-3...2-1,2-2,2-3...

1 1,1 2,1 3..2.12 22 3...

ocoomovovzr

If you didn’t specify any flag, the frames are created with the same name.

You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (~)
symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use and
referencing the current frame with the degree (°) symbol (in an expression) or the current frame’s name with the micro
(1) symbol (in a text). For example, this script draws a circle on a random hex of the first column of a grid:

CARDSIZE = 18, 20

HEXGRID = 1, 0, 0, 18, 20, 1, , #000000, EMPTY, 0.1
[base] = FRAMEHEX(O, 0, 18, 20, 1, E)

ELLIPSE = 1, <~basea*>, #FF0000

FRAMELINE

With this function, you can define a group of frames, specifying a first frame, a last frame, and including all the frames
in the shortest path between the two. It works with frames created from FRAMEBOX and FRAMEHEX functions. The
syntax is:

[linegroup] = FRAMELINE (frame start, frame end)

For example:

CARDSIZE = 18, 20

HEXGRID =1, 0, 0, 18, 20, 1,, #000000, EMPTY, 0.1
[base] = FRAMEHEX (O, 0, 18, 20, 1, E)

[linegroup] = FRAMELINE (baseal, baseh9)
POLYGON = 1, <linegroup>, 6, 90, #FF0000

FRAMELIST

With this function, you can define a group of frames, and use a single command on all of them. The syntax is:

[group] = FRAMELIST (framel, frame2, ..frameN)

You can specify a single frame for parameter, or use another group of frames, or specify a range of frames using the
syntax frameX..frameY (to add every frame with that name and numbered between X and Y). Before the name of the
frame you can use these flags:

£ the frames are reversed on each line (from top to bottom, from right to left)

$ the frames are in bidirectional order (from left to right in the first row, from right to left in the next row, and so
on...)

% the frames are listed in vertical order (from left to right, from top to bottom)

%E the frames are reversed on each vertical line (from left to right, from bottom to top)

%$ the frames are in bidirectional vertical order (from top to bottom in the first column, from bottom to top in the
next column, and so on...)

- the order with the frames in a group are added is completely reversed (it can be added to each of the above
combinations

43



After the name of the frame you can specify how many frames are skipped with the syntax frame&N where N is the
number of the frames to skip.
For example, this script draws three circles on the first three hexes in the top-left corner of a grid:

CARDSIZE = 18, 20
HEXGRID = 1, 0, O, 18, 20, 1,, #000000, EMPTY, 0.1
[base] = FRAMEHEX (0, 0, 18, 20, 1, E)

[group] = FRAMELIST (baseal, basea?, basebl)
ELLIPSE = 1, <group>, #FF0000

FRAMEMELD

With this function, you create a new frame, merging several others. The syntax is

[newframe] = FRAMEMELD (framel, frame2, ..frameN)

For example:

CARDSIZE = 18, 20
HEXGRID = 1, 0, 0, 18, 20, 1,, #000000, EMPTY, 0.1

[base] = FRAMEHEX (0, 0, 18, 20, 1, E)
[group] = FRAMEDISK (basef3, basefl)
POLYGON = 1, <group>, 6, 90, #FF000O0
[meld] = FRAMEMELD (basedl, basehb)

ELLIPSE = 1, <meld>, #0000FF, EMPTY, 0.2

FRAMEMOSAIC

This function reads all the images in a folder, arrange them in a rectangle, and creates a new group of frames, one for
each image. If the images fill more than one instance of that rectangle, you can use a page parameter to specify which
rectangle is drawn from all the possible choices. The frames are created with a name composed from the [name] and a
number, the number starts from “1”. The syntax for this function is:

[newframe] = FRAMEMOSAIC ("folder", pos x, pos vy, width, height, page, flags,
zoom)

Parameters:

"folder": a folder to search, eventually with a file pattern,
position x: horizontal position (in cm),

position y: vertical position (in cm),

width: width of the rectangle (in cm),

height: height of the rectangle (in cm),

page: if not specified, is equal to 1,

flags: one or more of these flags

H the schema is mirrored horizontally
\ the schema is mirrored vertically
S the images are read also in the subfolders

zoom: if not specified, is equal to 100

This function creates also a label named namePAGES (where name is the frames’ prefix) with a value equal to the
number of pages resulting.

44



FRAMENET

This function creates a new group of frames, composed with all possible couple from two groups of frames, eventually
including only these contained with a range of distances. The syntax is:

[newframe] = FRAMENET (frame group 1, frame group 2, min dist, max dist, flags)

In the flags parameter, you can use one or more of these flags:

L the frame(s) added is from the center of the starting frame to the center of the ending frame (it can be used for
drawing lines), this is the default option,

the frame(s) added is the ending frame,

the frame(s) added are only from the 1% quadrant (top-right),

the frame(s) added are only from the 2" quadrant (bottom-right),

the frame(s) added are only from the 3™ quadrant (bottom-left),

the frame(s) added are only from the 4™ quadrant (top-left).

BOWN R =

If you didn’t specify any of flags 1234, the frames are taken from all the starting lists.

For example, this is a net from all the points in a rectangular grid, with a maximum distance of four units:
[net0] = FRAMEBOX (0, O, 6, 9, 1, 1, L)

[netl] = FRAMENET (net0*, netO*, 0, 4)

LINERECT = 1, <netl>, #000000

Another example, this is a “star map”, connecting ten random “planets” in a hexagonal grid with a distance from two to
four units:

[map0] = FRAMEHEX (O, O, 6, 9, 0.1, L, 50%)
[mapl] = FRAMELIST(10!~map0¥*)
[map2] = FRAMENET (mapl, mapl, 2, 4)

LINERECT = 1, <map2>, #000000
ELLIPSE = 1, <mapl>, #0000FF

FRAMEPATH

With this function, you can define a group of frames, specifying a first frame, a last frame, and including all the frames
in the shortest path between the two, and optionally remove a list of frames (specified in the 4" parameter) from the
result. It works with frames created from FRAMEBOX. The syntax is:

[pathgroup] = FRAMEPATH (frame start, frame end, flags, exclusions)
In the flags parameter, you can use one or more of these flags:

add framel to the result group

add framez2 to the result group

delete the frames used for the path

delete the frame used as 1% parameter (start frame)
delete the frame used as 2™ parameter (end frame)
use the shortest path

Imwungr

For example:

[grid] = FRAMEBOX (0, 0, 6, 9, 0.5, 0.5, C
[pathl] = FRAMEPATH (grid0203, gridllle, D
[path2] = FRAMEPATH (grid0203, gridllle, D
[path3] = FRAMEPATH (grid0203, gridllle, D
RECTANGLE = 1, <grid*>, #0000FF, #FF0000, 0.1
ELLIPSE = 1, <pathl>, #AAAAAA, #00FF00, 0.05
ELLIPSE = 1, <path2>, #AAAAAA, #0000FF, 0.05
ELLIPSE 1, <path3>, #AAAAAA, #FF0000, 0.05

—_ — — —

45



FRAMEPER

This function creates a new group of frames, adding for each starting frame the four frames from its sides (the starting
frame is considered rectangular). The syntax is:

[newframe] = FRAMEPER (frame group, width, flags, margin)

The width parameter specifies the width of the left and right frames, and the height of top and bottom frames. In the
flags parameter, you can use one or more of these flags:

a frame for the top side of the rectangular frame is added to the result,

a frame for the right side of the rectangular frame is added to the result,

a frame for the bottom side of the rectangular frame is added to the result,

a frame for the left side of the rectangular frame is added to the result,

with this flag the frames are created in vertical order (instead of a horizontal order).

<P POwWNPE

If you didn’t specify any of flags 1234, all the four frames are added. The margin parameter specifies how much space
is added to the left and to the right (for horizontal sides) and to the top and to the bottom (for vertical sides) of the
frame.

FRAMERECT

With this function, you can define a group of frames, specifying two frames, and including all the frames in the
rectangle drawn used the first frame as top-left and the latter as bottom-right. It works with frames created from
FRAMEBOX and FRAMEHEX functions. The syntax is:

[rectgroup] = FRAMERECT (frame start, frame end)

For example:

CARDSIZE = 18, 20

HEXGRID = 1, 0, 0, 18, 20, 1,, #000000, EMPTY, 0.1
[base] = FRAMEHEX (O, 0, 18, 20, 1, E)

[rectgroup] = FRAMERECT (baseb3, baseio®)

POLYGON = 1, <rectgroup>, 6, 90, #FF0000

FRAMESUB

With this function, you can define a new frame from another frame (1% parameter), removing items from a third frame
(2" parameter). The syntax is:

[group] = FRAMESUB (framel, frame2)

For example, this script uses two square group of frames for creating a third hollow group of frames (subtracting the
second from the first):

[grp al] = FRAMEBOX (O, 0, 6, 6, 1, 1, C)
[grp b] = FRAMEBOX(1, 1, 4, 4, 1, 1, C)
[grp _c] = FRAMESUB (grp a*, grp b*)
ELLIPSE = 1, <grp c*>, #00FF0O0
FRAMETRANS

This function creates a new group of frames, taking all the frames from a group, and applying to them a horizontal and a
vertical offset, and optionally a change in width and height. The syntax is:

[newframe] = FRAMETRANS (frame group, x offset, y offset, width change, height
change)

46



For example, this line takes all frames from group test, and creates a group test_trans shifted right of 0.5:

[test trans] = FRAMETRANS (test, 0.5, 0)

FRAMETRI

With this function, you can define a group of frames, specifying three frames, and including all the frames in the
triangle drawn used the frames as vertexes. It works with frames created from FRAMEBOX and FRAMEHEX
functions. The syntax is:

[trianglegroup] = FRAMETRI (framel, frame2, frame3, flags)
You can use these flags in the 41" parameter:

O = doesn’t include the outer frames
I = doesn’t include the inner frames

For example:

CARDSIZE = 18, 20

HEXGRID = 1, 0, O, 18, 20, 1,, #000000, EMPTY, 0.1
[base] = FRAMEHEX (0, 0, 18, 20, 1, E)
[trianglegroup] = FRAMETRI (baseb3, basei6, baseclO)
POLYGON = 1, <trianglegroup>, 6, 90, #FF0000

47



Expressions

Expressions may be used to calculate numeric parameters or numbers in TEXT parameters, these delimited with “{”

731

and “}”. You can use numbers (integer and decimal separated with a dot “.”), parenthesis and these operators:

+

addition
subtraction
multiplication
division
exponentiation
modulus
integer division

th &+ >~ % !

For changing the order of operations, you can use “(*, “)”, “{” and “}”, these are treated like the same. You can’t use
“I”” and “]” (used for labels).

For example, these are valid expressions:
RECTANGLE = 1, 0, 0, (1+2)*2, (1+2)"2, #FF0000
TEXT = 1, "Result {(2+2)*2}", 0, 0, 6, 9, center

This is a special variable: the paragraph character (8) gives you the current card number; for example, that script creates
ten cards, each with a number from 1 to 10:

FONT = Arial, 32, , #000000
TEXT 1-10, "{s}", 0, O, 6, 9, center

That script creates ten cards, each with a random number from 1 to 100:

FONT Arial, 32, , #000000
TEXT = 1-10, "{1dio00}", O, O, 6, 9, center

Counters are variables, that can be used in expressions; there are two kind of counter, these are used for integer values:
ABCDEFGHTIUJ

And these are used for floating-point values:

AA BB CC DD EE FF GG HH II JJ

A counter can be initialized with COUNTER directive:

COUNTER = 1, A, 1

and later re-used in an expression:

RECTANGLE = 1, 0, 0, A, A, #00FFO0O

A counter can be auto-incremented with a pre- and/or a post- number. If A has a value of 10, this command:

TEXT = 1, "{1a2}", 0, 0, 3, 3, center

will give an output of 11, and A will have a value of 13 after that line.

The counter D is a special case, it has been changed for default into a dice (see DICE keyword, page 83), to give a
random value, the syntax is ndf, where n is the number of dice, each with f faces. If not specified, n is set to one, and f is

set to six.

These are special symbols:

48



Z Format
X Repeat

The “Z” symbol may be used when you need to format a decimal value with a fixed number of digits. The syntax is
valueZmask, where the mask is a sequence characters for the integer part, a dot (“.””) and a sequence characters for the
decimal part. The characters that can be used for the mask are:

0 a digit taken from the number, if there isn’t a digit in that position, a zero (“0”) is written instead.
# a digit taken from the number, if there isn’t a digit in that position, a space (““ ) is written instead.
For example:

FONT = Arial, 32, , #000000

TEXT = 1, "{4/3z00.00}", 0, 0, 6, 9, center, center
The result will be a “01.33” printed on the card.

The syntax for the “X” symbol is textXnumber, and duplicates the text for a number of times. For example:

FONT = Arial, 32, , #000000
TEXT = 1-5, "{*Xs}", 0, 0, 6, 9, center, center

Will output an asterisk on the 1%t card, two asterisks on the 2" card, three on the 3 and so on.

Comments

Comments can be inserted in scripts, marking them with a character on the start of the line. The character can be an
apostrophe (“) or a semicolon (;) or a custom character selected from the “Config” window.

Example:

CARDS = 52
‘This is a standard deck

From the “Config” window you can also check the “Use in-line comments marked by ...” option, and after that you can
use a syntax like that:

CARDS = 52 ‘' This is a standard deck

If you use a custom character, and open your script on another computer (with a different configuration) your comments
will not be evaluated as such. To avoid this problem, you must include a COMMENT directive at the start of your script
(see page 77).

You can apply or remove the current comment’s character in a block of selected text with two buttons on the right side
of the main window: “+Com” for apply comments and “-Com” for removing comments.

49



Script lists

If you must work on multiple scripts, you can create a list for manipulating them. You can activate this option clicking

on the button “Script list™:

|

Cutput Filenarme number
() Default printer (@) BMP file () GIF file () Mo output (® Use card number
() PDF file () JPEG file () TIFF file

() PDF /8 file () PMEG file () TIFF file [CMYE] (O Use card count

O x

hew list
Open list
Save list
Save list az
Add zcript
Femaove zcript
Sort list
Open script
Open all zoripts
Create list editor

Eragze zcript

Close

With the buttons on the right side you can create a new list, open an old list, save the current list (with the current name
or specifying another), add another script to the list, remove a script and sort the list. You can also open the selected
script, or open all of them (in multiple tabs), create a list from all the current scripts and erase the selected script.

With the button “Run list” you can launch a “Validate and build” task on all the scripts listed in this window, choosing
the output for them with the “Output” box: you can print the result, create PDF, and save the images in bmp, jpg, png or
tiff format (the latter with standard and CMYK color space). With the “Filename number” box you can choose if the
filename must be chosen from card number or card count: it can be different if you use a PRINT directive (see page

139) in your scripts.

50



Create PDF

The button “PDF” in the main window opens this form:

‘T Save deck as a PDF file Y

FDF filename |tEEt.|:":|f | Browse. ..
FOF author | |

CIFDF A
|1z JPEG Compreszion for images
[ ]Use scaled images

PDF compression level

() Maone
() Low
(@) Default
(I Max
[ ]5ave a copy with a CMYK. colorspace
Browze. .
Browze. .
MHone
Caricel Save az BMP Save

With this form, you can specify a filename and an author for the PDF file.
PDF/A: with this option, the PDF file is saved in this format.

Use JPEG Compression form images: with this option enabled all the images in the PDF file are internally stored in
JPEG format.

Use scaled images: with this option enabled, the program uses a high image compression for the PDF file, reducing its
size (and its quality).

PDF compression level: you can choose between four standard compression level for the images (None, Low, Default
and Max).

Save a copy with a CMYK color space: if you have installed Ghostscript (http://www.ghostscript.com) you can also
save it with CMYK color space (instead of RGB), specifying the path for the executable (Gswin32c.exe), and use an
ICC color profile.

51


http://www.ghostscript.com/

Save images

The button “MT” in the main window opens this form:

1l Save images - multi threaded e
Fath: | Browse. ..
Image format
(®) BMP (I PNG ITIF () PDF
I JPG (IGIF (ITIF [CMYE] () PDF A&
Threads: 2 '

' Cancel
Qverzamp.: 1
Save

With this form, you can specify a path for saving the cards’ images, the file format, the number of threads to be used,
the DPI (see page 84) and oversampling (see page 132) values.

| Note: every thread uses a separate memory pool, thus it’s possible to use more than 4GBytes of memory.

Convert a PDF to images

The button “CP” in the main window opens this form:

Al Convert PDF to images pe
Gawind2e. exe | | Browse...
POF fileniarme | | Browse...
Image filelz] | | % =pagen’
DFI: 300

Cancel Corvert

If you have installed Ghostscript (http://www.ghostscript.com) you can convert PDF files into images. The first field is
for the Ghostscript’s executable; the second is the name of the PDF file, the third is for the resulting images (you can
use the § character for the page number); the fourth field is for the DPI resolution of the final images.

52


http://www.ghostscript.com/

Command-line parameters

You can run nanDECK from the command line (if you want to execute a script in a batch, for example). The syntax is:

nanDECK <script file> <action>

The action parameter can be one of the following:

[createbmp

[createjpg

[createpng the program creates all the cards and saves them in bmp/jpg/png/gif/tif formats (also with CMYK
[creategif color space), one file for each card

[createtif

[createtifcmyk

[creategifa

[createpdf the program creates all the cards and saves them in one single file in animated-gif or pdf format
[createpdfa

[print the program creates all the cards and prints them with the default printer

lexec the program runs the script (useful when using SAVE directive)

/range= the program creates only a range of the card, with the syntax start-end (for example /range=1-10)
/output= this is the path for the resulting files

/dpi= you can specify a different DPI value (the value in the script isn’t used)

/oversample= you can specify an oversample value (the value in the script isn’t used)

/name= the program uses a label for the name of the card when saved as individual images

[/[label]=value the program adds a label with that name and that value

For example, to save all images obtained with script “c:\my scripts\testO1.txt” in png files, you can write:
nanDECK “c:\my scripts\test0l.txt” /createpng

To create a pdf with all the cards, you can write:

nanDECK “c:\my scripts\test0l.txt” /createpdf

The images are created in the same folder for the script, and for multiple images, a number will be added to the end of
the filename. In the 1%t example, the images will be named:

c:\my scripts\test0l 01.png
c:\my scripts\test0l 02.png
c:\my scripts\test0l 03.png
In the 2™ example, the file will be named:

c:\my scripts\test0l.pdf

If you leave the action parameter empty, the program will only load the script specified in the 2™ parameter.

53



Keyword wizards

In this program, you can use a wizard for inserting keywords (and specifying all the parameters). In the main editor, if
you want to insert a directive, right click on an empty row and a menu appears, with all the keywords, if you click on
one entry, the corresponding wizard form will be showed:

Al nanDECK - Ver. 1.24.1

Addnew lab
Newdeck || wiz

L FONT = Arial, 32, B,

#0000FF

2 TEXT = 1,"SEER", 0, 0, 100%, 100%, center, center
DOpen deck §
4 FONT = Arial, 24, B, #FF0000
S TEXT = 2-4, "WEREWOLE", 0, O, 1008, 100%, center, center
Fleopen deck & FONT = Arial, 28, B, 000000
7 TEXT = 5-18, "VILLAGER", 0, 0, 100%, 100%, center, center
s
Save || as 3 RECTANGLE = 1-18, 0, 0, 100%, 100%, $FFFFFF$000000#FFFFFF@G0, empty, 1
9 BASERANGE DECK FOOTER LAYERDRAW PAGEFONT TAG
— BATCH DICE FOR umMIT PAGEIMAGE TEXT
BEZIER DISPLAY FRAME LINE PATTERN TEXTFONT
BEZIERS DOWNLOAD GAP LINERECT PIE TEXTLIMIT
BLEED opI GRID LINK POLVGON THREADS
BORDER DRAW HEADER LINKCOLOR PRINT TOKEN
Validete deck BRUSH DUPLEX HEXGRID LINKENCCSV ‘QRCODE TRACK
- BUTTON EDGE HTMLFILE LINKENCODE RECTANGLE TRACKRECT
CANVAS ELLIPSE HTMLFONT LINKFILTER RENDER TRIANGLE
Buid deck CANVASSIZE ELSE HTMLIMAGE LINKMULDIS RHOMBUS. UNIT
CANVASWORK ELSEIF HTMLKEY LINKMULTI ROUNDRECT VECTOR
CARDS ENDFRAME HTMLMARGINS LINKNEW RTFFILE VISUAL
Pt deck. CARDSIZE ENDIF HTMLTEXT LINKRANDOM RTFTEXT Z0oMm
CASE ENDLAYER ICON LINKSEP SAVE
Save inages| MT CASEELSE ENDLINK ICONS LINKSTVLES SAVEGIFA
CHROMAKEY ENDSECTION IF LINKTRIM SAVEPAGES
COLOR ENDSELECT IMAGE LINKUNI SAVEPDF
FOE (5 COLORCHANGE ENDSEQUENCE IMAGEFILTER 106G SECTION
COLORS ENDVISUAL IMAGESIZE MARGINS. SELECT
GFa | TIFF COMMENT FILL INCLUDE MOSAIC SEQUENCE
COMPARE FOLDER INPUTCHOICE NANDECK SET
copy FONT INPUTLIST NEXT SPECIAL
COPYCARD FONTALIAS INPUTNUMBER ORIGIN STAR
CORRECTION FONTCHANGE INPUTTEXT OVERSAMPLE STORE
Rz COUNTER FONTRANGE LAYER PAGE TABLE
Insert >
Linked data

Find ipl | FONT="font name", font size, style B/1/U/S/T/N/C/R/H/Q/E/Z/F N PIO/D/G, himl color | html radient, /stm/ cobr | htm{ gradient, outine x, outine y, step x, step y

®

Copy scipt

SEER

[ Link first 1 Previen
[ Link dis Gotocard | [] Auto buid
[ Highight Highlight | (] Partial

™ “ [ "
Card preview Canv
isual Editor Comp
Scrptfit Edit

Teble

The Game Ciafter
Copy to BGG

[V aidaling labels step 1]
Labels OF.
Add Com | Rem | ing inclaces,
[Vaidating inks [step 2)

aldaling labels [siep 7}
Hep(F1) | F2) [Labels OK

D eck valid

Buiding deck.
Config | Info |Deck b (000001

~

Al deck

L

Deck size: 52 MBytes (Cache: 0 MBytes)

For every keyword, a different wizard form appears, with all the parameters (obligatory and optional). The same
window appears if you press “F2” (modify) key on a pre-existent row (or right-click on the same pre-existent row). For

example, this is the RECTANGLE wizard form:

1l RECTANGLE

Range | |

O o

Setrange

Pick a color
Color
Pick a gradient
Pick a color
Lk Pick a aradient
EMPTY

Help (F1)

Cancel

54

Pick rect.

RECTANGLE="range", pos_x, pos_y, width, height, html_color({, html_color | EMPTY, thidkness)




Optional parameters are in italic (like Thickness in the above form). A hint for the syntax is show in the bottom of the
form, with the “Confirm”, “Help” (it points to the RECTANGLE help page) and “Cancel” buttons. For some

parameters, there are buttons for inserting specific values (like colors and gradients). For position and size there is a
specific form (“Pick rect.” Button, in the above form):

Al Pick a rectangle - m} b4

Confirm

X =000.0
¥ =000.0
i = 0500
H =050.0

Full card

Half left | Half gt

Half top

Half bottom

T

Etmleft  Bimrgt

L TC TR
CL CC |CR
BL BC | ER
Shrink.  Enlarge

[ Show card

Cancel

The rectangle can be moved and resized, dragging it with the mouse; you can use the rightmost buttons to change the
rectangle size or position into some standard values.

Tip: you can go directly to this form, pressing the key F3 (or clicking the “Visual edit” button) where you are on a line
with a graphic directive.

In the wizard form, if you double click in a field, you can choose a label name from a list (you can see also the label’s
value):

10 Insert label (1)

[CH&R1]
[CH&RZ]

FOS_BL

[PO5_5IG]
[FOS_TL]
[FOS_TR]
[POS_WAL]
[SEQ]

- [m] X

456153

Cancel Show s lit

Tip: in every field, you can use the mouse wheel to increase / decrease a numeric value.

55




Linked data editor

If you use a LINK directive (see page 123) to use a CSV data file, you can edit directly this file using the “Linked data”
button. If you click on it, the program shows you a list of linked files. If you choose one of this, a window opens itself,
showing you a table with the file content. For example:

A0 Edit link file — O X
° nation type combat movement comi # — g
YW alidate deck » it 3 3 0 neert recar
Build deck — fre cay 2 5 o Delete record
m fre arm 4 4 i}
Enable row _|fre arm 5 4 0 Add colurnn
a fre hg 1 4 3
Dizable row o= i ] 3 0 Delete calumn
qer inf 3 3 i}
Enable all rows | | Rename column
_|aer arrn E 5 i}
Disable all rows | | — 9! am a 4 a Lpdate lists
_|3er hq 1 5 3
Enable anly curr. Hide editar
Set rahge cum. RTF Editar
Auto build
W
< >
= o * - - Claze

You can modify directly a cell clicking on it (there is a larger edit box on the bottom of the window), you can also
change the table’ sorting with a click on the column (one click sets an ascending order, another click sets a descending
order, it doesn’t work for larger fields). With the buttons on the right you can do some tasks, like insert or delete a
record, add, delete or rename a column (a field), update the lists of data (in the drop-down menu in each field), hide or
show the editor, open an external RTF editor (for the current field) or close the window.

The two buttons “Validate deck” and “Build deck” on the left are replicated from the main window. With the other
buttons on the left you enable or disable the current row (putting a ¢ in front of it), or enable or disable all the rows. You
can also enable only the current row, or setting the range for the deck building. With the buttons on the lower side of the
window (under the edit box) you can move the current record (first, previous, next and last), add (+), delete (-), edit (the
triangle), confirm (the check sign) or discard (X) the changes in a record.

All the change made in this window to the linked file will be saved if you save the main script file.

| Tip: you can instantly build a single card with a double click on one row of data.

| Tip: you can instantly open the external RTF editor with a double click on the lower editor.

| Tip: you can select the external RTF in the “Config” button from the main window.

56



Virtual table

The “Virtual table” option is a desktop in which you can put the result of card rendering, you can use it for saving
images for a manual or play test the drawing of cards from a deck. Without modifying your script, you can view the
Virtual table clicking on the button “Table” after building a deck. Then you can see a window with your deck in the
center of the screen, and you can use these commands:

Mouse commands on decks

click select deck

double click draw a card face up

shift double click draw a card face down

right click rotate deck 90°

resize resize deck image

shift resize resize deck image without keeping size ratio
ctrl resize resize deck image from the center

Mouse commands on cards

click select card

double click turn card face down/face up

right click rotate card 90°

resize resize card image

shift resize resize card image without keeping size ratio

ctrl resize resize card image from the center

ctrl click pick all the cards and the decks under the cursor and create a new deck
mouse wheel zoom table

In the bottom line of the window you can read the number of cards in the selected deck. On the right panel, you have
these controls:

Reset table this button reset to the initial state all the decks and the elements on the table
Reset deck this button reset to the initial state the selected deck
Display deck this button draws all cards in the deck, and position them left to right, top to bottom in the table

57



Select a card this button lets you to select a single card from a deck

Delete this button deletes the selected object (deck, card, or token)

Draw (humber) the number of cards specified is drawn each time you double click on a deck
Position the card drawn from the deck is placed to this position, relative to its deck
Rotate after a card is draw, the position is moved to the next

Position +- the card drawn is placed in a slightly random direction

Position slider the amount of the offset of the position when the last option is enabled
Align to Grid the card drawn is placed in a grid of the same size of the card

Zoom slider this slider enlarges or reduce the table size

1:1 button this button reset the zoom

Card preview this button show the current card, enlarged

Show canvas the canvas is shown as a background image

Auto select the elements of the table are selected automatically when the mouse pass over them
Show tags the tags (see page 152) are shown in the four quadrants of the table

Bring to front an object clicked is pushed to the front, before all the other objects

Move stacks when you move a card, all the other cards on top of it are also moved

Save image the table is saved as a bmp file

Close you close this window

This is the window that the program shows you to select a single card from a deck:

10 Select  card (20) - O X

A A 2 2 3 3 4 4 6 6
L] LI LIt LIt LI L3
* LY
* b
* & * s LT
& LX)
L L. L L L. %
Y Y 4 4 € € ¥ ¥ 9 9
9 9/ |10 10 |J J Q Q K K
L] LI LIt LIt LI L3
LT
LT Py
LT T Sk
LT T Sk
4 L. LI LI L. L
6 6] 0 0l r r o] O ™ A
2 2 3 3 4 4 5 5 7 7
A A A LI LI A A L)
AN
A LY
A LY A

There are two directives that you can use in your script to customize the Virtual table: the DECK directive splits the
cards in more than one deck, and the TOKEN directive creates some elements to be used on the table, with a fixed text
or a randomized value, in the latter case you can “roll” the token with a double click on it.

Example:

DECK = "1-26", "Red", #FF0000, 30%

DECK = "27-52", "Black", #0000FF, 30%

TOKEN = "{1dé6}", 50, 50, #FFFFFF, #0000FF, 1
TOKEN = "{1de6}", 50, 50, #FFFFFF, #FF0000, 1
TOKEN = "s$", 100, 50, #FFFFFF, #00FFO00, 10

58



Visual editor

You can open the Visual Editor with a click on the “Visual editor” button, or pressing F4 on the keyboard, or by a
middle button (or wheel) click on the mouse, this is the main form:

I Visual editor - X

Brush Button 1 : < > >l Addeard

i Del card

Edge Elipse

Enclayer Font

HTMLFile HTMLFont.

HTMLImage HTMLKey

HTMLMargins HTMLText

[+ Ruler v Ruler
[Cshe id 0 & a Modify object
oW gri =
Delete object
Msnaptogrid 45 7 -
Duplicate object
MAsizetoord | Toggle 50% Feoe
[ ] Modify name, lock, groun
L1
Lock Unlock
Left| Down| | Up | Rignt ] e | ®w
onfim ]

Cancel ™ — (| © ox xC

The visual directives are a subset of the standard ones, and are loaded from a section of the source delimited with
VISUAL / ENDVISUAL directives, for example:

VISUAL
ELLIPSE = 1, 0, 0, 100%, 100%, #O0OOOFF
ENDVISUAL

With this script, when you press the “Visual Editor” button, the program loads the lines between VISUAL /
ENDVISUAL in the visual GUI, and you can modify them, or add new directives (with the toolbox on the left of the
window).

When you press the “Confirm” button, all the objects are inserted in the source, between VISUAL / ENDVISUAL, so
there is a two-way interaction between source and GUI (but only in a section of the source). Non-visual directives are
not allowed in this section (the program gives an error in the validation step).

If the VISUAL / ENDVISUAL section is not present, the program shows you an empty GUI (but you can add new
objects) and when you return to the source, a visual section is added to the end of it.

You can see at the right of the GUI window a list of directives, that will go to the source if confirmed, that are layered
from the top (first, to the rear) to the bottom (last, to the front). They can be drag and dropped across the list to change
their layer position (the result is shown immediately in the main panel).

At the top right of the window there are some buttons to navigate through the deck (and add or delete cards), a combo
box for choosing a label / sequence to be inserted in directives like TEXT or IMAGE and another combo box for
choosing a sequence to be used with a LABELRANGE function to choose a range (the object is shown only when the
item of the sequence is equal to “1”).

The last combo box is when you want to link the object to a frame (only frames defined within VISUAL /
ENDVISUAL section are shown); these frames are shown by clicking on the “Frames” tab (all other objects are
locked); in this tab, you can also enable only a group of frames: to define a group you can create frames with a
group/name syntax (for example: groupl/framel, groupl/frame2, etc.). If you enable the option “Change objects’

59



frames”, when you choose a group the program will move all the objects that has frames with compatible names to the
new frames.

In the bottom left of the windows there are the controls for showing h/v rulers, a grid (with the number of horizontal and
vertical steps) and snap/size to the grid, a slider for zooming in and out the card, a button “Toggle 50%” to toggle on/off
50% transparency to the current object (useful to see what lies beneath), and a button “1:1” for restoring a 100% zoom
and four buttons to move the selected object in the four directions (these buttons are linked to the arrows keys on the
keyboard).

In the bottom right there are nine buttons, to move the selected element to these positions. If you use the right mouse,
the element instead of being moved is resized (for example, the CC button resize it to the whole card). The last two
buttons, “Cx” and “xC” centers the element vertically and horizontally, respectively.

Mouse controls:
double click (on the command, to the right of the screen): modify comment, lock and group of an object,

¢ right click (on the object and the command): modify the parameters utilized for rendering,
e use mouse wheel for zooming the card’s image,
e use CTRL + mouse wheel to move between cards.

Shortcuts:

F2 modify current element

Del delete current element

CTRL+D  duplicate the current object,

CTRL+L  lock the position of the current object,
CTRL+U unlock the position of the current object,
CTRL+H  toggle 50% transparency on/off,

LEFT move the current object one pixel to the left,
DOWN move the current object down one pixel,

UpP move the current object up one pixel,

RIGHT move the current object one pixel to the right.

60



Configuration

The “Config” button on the main window brings you to the configuration window:

"l Configuration X

Deack file location Edior ATF [H:\Programmitwindows NT Acoessor\WORDPAD EXE|

O on disk [slaw, for large decks) ! 24 change this
setting, pou must et Default Browse...
(® on RAM [Fast, for small decks]  restart the program

Inkscape exe | |
Walidate & Build buttons

(®) Two buttons Reload last work' session at startup
[ Check at startup for a new program wersion [online]

Erowse...

DT Check for malching parenthesis on “Validate deck”
Dfauit for deck fle’s extension [ Auitorsave script on "Build deck” command
o Don't show script after validation
. [Jwiite log ta file <nandeck.log>
O .nde Open PDF after creation
[] Use ADO for Excel files
Default comment char [ Use %TEMP; folder for HTML/RTF work files
[OF Conwert S to " . [IDPI = 75 for “duto build” feature
0. Convert'to - g;;;'%;:'ézl::' Use placeholders for missing image files
caloreae s [ Stap build when enors are found in the script
() Custom | ¥ [ Ainaps shows kint panel
Use fast rotation library [Windows only)
Use inline comment marked by Use tabs in editor Spaces: (2 %
E ditor text color Choose. Show label/color/image previsw D efault

Load font files in program's folder st start
Editor background calor | Choose.. [ Use alder facter far shadaws and autlines in HTML
Cache images
[ Create & mew tab for New and Open commands
Editar structures calor Chaose... Enable auto-increment/ auto-decrement of counters

Editor highlighter calor Choose.

B Tag e E— mees Editor sulo-complele [based on previous lines)
[ Awtomatic: addition of closing parenthesis

Editor backaround emor Choose.. BATCH diective

Brackets test Choose.. (®) Disabled

Brackets backaround Thamss (O Enabled [with confirmation]

Editor text size o @

Precisian visual -> script |3 Enable Internet Explorer 11 for HTMLTERT / HTMLFILE

Handle size [visual editor] 10

MO || ]| |

Handle size [table] 5

Cancel

Deck file location: the program can run in two modes, the default “on RAM?” setting uses RAM for the card rendering,
it is fast, but if you have many high-resolution cards it can slow down the whole computer (when the RAM is full).
Instead the “on disk” setting is slower, but it can render many high-resolution cards without slowing down your PC. The
same is true if you have very large decks (thousands of cards).

Validate & Build buttons: usually “Validate” and “Build” are two distinct buttons in the main window. With this
option, you can have one single button “Validate & Build”; if you click it, the script will be first validated, and if valid,

the deck will be built next.

Default for deck file’s extension: with this option, you can choose the default extension between “.txt” and “.nde” (and
assigning these files to the nanDECK program, and open them with a double click).

Default comment char: with this option, you can choose the character used for commenting lines, and changing all of
them from one to another, you can also use a custom character (instead of the default ¢ and ;).

Use in-line comment marked by ;;: if you enable this option, you can use a double comment char for inserting
comments on the same line used for commands. For example (with the default *“;” comment char):

CARDSIZE = 6, 9 ;; default card size

Editor text color, Editor background color, Editor highlighter color, Editor structures color, Editor text error,
Editor background error, Brackets text, Brackets background: with these buttons, you can change the default
colors for the editor text, background, highlighted line, lines that contain special directives, text and background for
lines that contain errors and brackets (and re-setting them to the default values by pressing the Default button).

Editor text size: this number sets the size of the font for the editor’s character (the default is 10).

Precision visual - script: this is the number of digits for fractional values that the software uses when an object in
visual editor is converted to a script line.

Handle size (visual editor): this is the size (in pixels) of the eight white squares that you can use to resize an object in
the visual editor.

61



Handle size (table): this is the size (in pixels) of the eight white squares that you can use to resize an object in the
virtual table.

Editor RTF: this is the path to the executable file called when you want to edit a field text in a linked file with an
external RTF editor. You can also choose the default executable linked with an “.rtf” file extension.

Inkscape exe: this is the path to the executable file for Inkscape, used with the VECTOR directive (see page 161) when
you want to use it for the rendering, instead of the internal engine (the default, less accurate).

Reload last work’ session at startup: with this option enabled, at the start the program loads the file(s) opened in the
last session.

Check at startup for a new program version (online): with this option enabled, at the start the program checks online
if a new release is available for the download, and warns you in the window’s title.

Check for matching parenthesis on “Validate deck”: with this option enabled, the program checks if the parenthesis
match in all your script.

Auto-save script on “Build deck” command: with this option enabled, the program always saves the script when you
click on the “Build deck” button.

Don’t show script after validation: usually the program, after the validation procedure, writes the script in the lower
box in the main window. With this option enabled, the script is not written (speeding up the validation process).

Write log to file <nandeck.log>: with this option enable, you can save the program log (all the text shown in the lower
box in the main window) in a text file.

Open PDF after creation: with this option enabled, after a PDF is created, the program opens it, using the default
application associated with “.pdf” extension.

Use ADO for Excel files: with this option for loading files from Excel is used an ADO library, is slower than the
internal method, but you can open files that are concurrently open in Excel.

Use % TEMP% folder for RTF/HTML work files: these directives create a temporary file, if you enable this option
that file will be create in the temporary folder, if you disable this option it will be created in the current folder. Note that
if you have projects in folder linked to a cloud service (like Dropbox™) you should enable this option.

DPI = 75 for “Auto build” feature: if you have enabled the “Auto build” option, if this option is enabled, the preview
is done at a lower resolution (useful for slow PC).

Use placeholders for missing image files: if you specify file images that doesn’t exists, the program creates them (a
random color bitmap with the name of the file repeated on it) and shows you in a window the list of the missing files.

Stop build when errors are found in the script: with this option enabled, the validate procedure is stopped when an
error is found in the editor, if it is disabled, the line with errors are highlighted and the validation is completed.

Always shows hint panel: with this option enabled the bottom panel with the keyword’s help is shown always, and not
only when a keyword is present in the current editor line.

Use fast rotation library (Windows only): use an alternative rotation library that uses routines available only on
Windows (when the program is executed for the first time on Wine, this option is unchecked).

Use tabs in editor: if you enable this option, each tab key is converted to the specified number of spaces.
Show label/color/image preview: with this option enabled, when the caret is on a label, its content (text, color, or
image) is shown in the lower part of the main window (the Default button resets the standard widths of these resizable

panels).

Load font files in program’s folder at start: if this option is enabled, nanDECK, when it’s started, loads all the font
files that are found in the same folder with its executable.

62



Use older factor for shadows and outlines in HTML.: when they were first implemented, shadows and outlines with
HTMLFONT use a value for size that wasn't correct; now it’s fixed, but if you want to use the older routines, check this
option.

Cache images: with this option enabled, all the files loaded with an IMAGE directive are stored in RAM, for a faster
reload; if you need more RAM for your deck, uncheck this option.

Create a new tab for New and Open commands: if this option is enabled, when you create a new script or load an
existing one, a new editor tab is created, instead of executing that command in the existing editor tab.

Enable auto-increment/auto-decrement of counters: with this option enabled, you can use numbers before or after
counters to add/subtract a number from them (if before, the number is added/subtracted before using the counter, if
after, the addition/subtraction occurs after having used the counter).

Editor auto-complete (based on previous lines): if this option is enabled, when you digit some characters, if an
existing line is already present in the editor, that starts with these characters, is proposed as selected text.

Automatic addition of closing parenthesis: if this option is enabled, when you digit an open parenthesis (standard,
square, or curly) the corresponding closing parenthesis is automatically added.

BATCH directive: for security reason the BATCH directive (see page 67) must be enabled before use, selecting an
option from “Disabled”, “Enabled (with confirmation)”, and “Enabled”.

Enable Internet Explorer 11 for HTMLTEXT / HTMLFILE: as a default a program can’t use Internet Explorer

features beyond version 6, until there is a specific entry in Windows’ Regedit; by using this button the program writes
that correct entry.

63



Compare decks

When you have loaded more than one deck (adding another tab with CTRL+N) you can view them side to side by
clicking on the “Comp” button in the right side of the main window:

Ml Compare decks - O x

Linked + - Close

You can browse the decks with the arrow buttons (linked by default, but you can remove this feature with the “Linked”
checkbox) and you can zoom in or out with the two buttons “+” and “-”.

64



Shortcuts

At the start, nanDECK reads a shortcuts.txt file from the same folder, and creates shortcuts for every line read (or
combinations of lines). You can recall these clips of text with combinations of keys like Ctrl + Alt + letter or Ctrl +
Alt + Shift + letter. The lines associated with the letter character, lower of uppercase, (identified before a “:” colon) are
inserted in the main editor (in the current edit position).

For example, if you have this shortcuts.txt file (created with Notepad or another text editor):
r:RECTANGLE = 1, 0, 0, 100%, 100%, #OOOOFF

T:FONT = ARIAL, 32, , #000000

TEXT = 1, "Test", 0, 0, 100%, 100%

You can press Ctrl + Alt + r for the RECTANGLE line or Ctrl + Alt + Shift + t for the FONT + TEXT lines.

References

E-mail nand@libero.it

Website http://www.nandeck.com

Yahoo! Group http://tech.groups.yahoo.com/group/nandeck

BoardGameGeek Guild http://www.boardgamegeek.com/quild/454

FA.Q.

1)  When I must use quotes (*)?

This program uses an interpreter for the evaluation of all parameters, this code separates them using commas (,). So, if a
parameter has a comma in it, you must enclose the parameter in quotes. Otherwise, if a parameter has no commas, the
quotes are optional (the program will accept the parameter with or without quote), but for some parameter quotes are an
error (for numeric parameters, for example).

Correct examples:

IMAGE = "1-10", "c:\my images\earth.jpg", 0, 0, 6, 9, 0
IMAGE = 1-10, c:\my images\earth.jpg, 0, 0, 6, 9, 0

TEXT = 1-10, "This, is a test", 0, 0, 6, 9

Note: quotes in ranges aren’t needed.

Wrong example:

TEXT = 1-10, This, is a test, 0, 0, 6, 9

The 2" parameter will be split into “This” for 2" parameter and “is a test” for 3.
2) How I can insert quotes (or another character) in a text?

You can use \n\ syntax to insert a character in a text, with n being the ASCII code of that character, for example, if you
want to enclose a text in quotes (ASCII 34) or add a new line (ASCII 13):

FONT
TEXT

Arial, 32, , #000000
1, "I say \34\Hello\34\", 0, 0, 6, 9, center, center

Note that \13\ works with TEXT directive, instead with HTMLTEXT you must use the HTML tag <br>.
3)  Why this program uses so much memory?

65


http://www.boardgamegeek.com/guild/454

This program has two settings for storing cards during creation: RAM or disk. The default setting is in RAM, and you
can change that in the “Config” window, remember that RAM is faster (and you can run multiple instances of the
program) but the computer may slow down when it starts using swap space; on disk is slower (can you can’t run
multiple instances) but the speed remains the same even with very large decks (or higher DPI settings).

4)  Why there is option (X) if you can use (Y)?

When writing this program, | tried to maintain backward compatibility with previous version, so you can do the same
thing in more than one way. For example: WWTOP option for vertical alignment in TEXT command is equal to
CENTER, for backward compatibility.

5) Thereis a Linux version?

No, but if you install Wine you can run the same nanDECK version for Windows on your Linux, with all the major
features; also, if you want better compatibility, you can download and install the “Microsoft core fonts”.

Wine http://www.winehg.org/
Microsoft core fonts  http://sourceforge.net/projects/corefonts/files/the%20fonts/

Note: with a recent update, nanDECK uses a DLL (FONTSUB.DLL) that is not present in every distribution, if this is
the case the program won’t start, you must download a zip that includes this file from here:

http://www.nand.it/nandeck/nandeck wine.zip

6) Thereis a Mac version?

No, but if you install Winebottler (and XQuartz) you can run the same nanDECK version for Windows on your OSX,
with all the major features. You can use also an emulator like Virtual Box (free) or Parallels (commercial software).

Winebottler http://winebottler.kronenberg.org/
XQuartz http://xquartz.macosforge.org/

Note: with a recent update, nanDECK uses a DLL (FONTSUB.DLL) that is not present in every distribution, if this is
the case the program won’t start, you must download a zip that includes this file from here:

http://www.nand.it/nandeck/nandeck wine.zip

66


http://www.winehq.org/
http://sourceforge.net/projects/corefonts/files/the%20fonts/
http://www.nand.it/nandeck/nandeck_wine.zip
http://winebottler.kronenberg.org/
http://xquartz.macosforge.org/
http://www.nand.it/nandeck/nandeck_wine.zip

Directives

BASERANGE

For each card in a range an element is extracted from a sequence, and as a default the first element from the sequence is
paired from the first card in the range. The only exception is when you have a LABELRANGE function (see page 30):
in this case, the n" element from the sequence is paired with the n™ card from the deck. With this directive, you can
change this behavior.

Syntax:

BASERANGE = “range”, switch

Parameters:

“range”: a range of cards,

switch: values accepted are:

ON the n™ element from the sequence is paired with the n" card from the deck
OFF  the n™ element from the sequence is paired with the n' card from the range

BATCH

This directive executes an external batch script (a text file with a “.bat.” extension). For security reasons, you must
enable the relative option in the Configuration form: here you can choose between “Disabled”, “Enabled (with
confirmation)”, and “Enabled”.

Syntax:

BATCH = “batch file”

Parameters:

“batch file”: path and name for a batch file.

Example:

BATCH = "c:\bat\copy files.bat"

67



BEZIER

This directive draws a Bezier curve from a starting point (x1, y1) to an ending point (x2, y2), using two “handles” (hl
and h2).

Syntax:

BEZIER = “range”, pos X1, pos y1, handle x1, handle y1, handle x2, handle y2, pos x2, pos y2, html color, thickness,
end arrow, start arrow

Parameters:

“range”: a set of cards,

pos x1, pos y1: coordinates of starting point (in cm),

handle x1, handle y1: coordinates of handle for starting point (in cm),

handle x2, handle y2: coordinates of handle for ending point (in cm),

pos X2, pos y2: coordinates of ending point (in cm),

html color: color of the curve, in the same format used for HTML. You can also specify a gradient,
thickness: thickness of the curve (in cm), if omitted, the curve is 1 pixel wide,

end arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the end of the curve,

start arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the start of the curve.

Example:

BEZIER = 1, 1.5, 0, 1.5, 4.5, 4.5, 4.5, 4.5, 9, #0000FF, 0.15

BEZIER = 1, 4.5, 0, 4.5, 4.5, 1.5, 4.5, 1.5, 9, #0000FF, 0.15

BEZIER = 1, O, 3, 3, 3, 3, 6, 6, 6, #FF0000, 0.15 Image 11
BEZIER = 1, O, 6, 3, 6, 3, 3, 6, 3, #FF0000, 0.15

Result: Image 11

68



BEZIERS

This directive draws a Bezier curve from a starting point (from the last BEZIERS directive) to an ending point (X, y),
using two “handles” (one from the last directive and one from parameter h). The first directive sets only the starting
point, for each subsequent directive a curve is drawn (the starting point for the next curve is the ending point of the
last). For restarting the process, you can specify a BEZIERS with only the range parameter.

Syntax:

BEZIERS = “range”, pos X, pos y, handle x, handle y, html color, thickness, end arrow, start arrow

Parameters:

“range”: a set of cards,

pos X, pos Y: coordinates of starting/ending point (in cm),

handle x, handle y: coordinates of handle for starting/ending point (in cm),

html color: color of the curve, in the same format used for HTML. You can also specify a gradient,

thickness: thickness of the curve (in cm), if omitted, the curve is 1 pixel wide,

end arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the end of the curve,

start arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the start of the

curve. )
Example: <

BEZIERS = 1, 0, 0, 3, 0, #000000, 0.1
BEZIERS = 1, 0, 3, 3, 3, #FF0000, 0.1, 0.5
BEZIERS = 1, 0, 6, 3, 6, #00FF00, 0.1, 0.5
BEZIERS = 1, 0, 9, 3, 9, #0000FF, 0.1, 0.5
Result: Image 12

Image 12

69



BLEED

This directive fills the space beyond a rectangle with the colors from the border of the rectangle, if you don't specify the
size of the outer rectangle, this directive fills the whole card.

Syntax:

BLEED = “range”, pos X1, pos y1, widthl, heightl, pos_x2, pos_y2, width2, height2
Parameters:

“range”: a set of cards

pos x1: horizontal position (in cm)

pos y1: vertical position (in cm)

widthl: width of the rectangle (in cm)

heightl: height of the rectangle (in cm)

pos x2: horizontal position (in cm) of the outer rectangle
pos y2: vertical position (in cm) of the outer rectangle
width2: width of the outer rectangle (in cm)

height2: height of the outer rectangle (in cm)

Examples:

BLEED = "1-10", 1, 1, 4, 7

BLEED = "1-10", 1, 1, 4, 7, 0.5, 0.5, 5, 6
BORDER

This directive draws a border around all the cards.

Syntax:

BORDER = type, html color, thickness, guidelines, guide color, mark size, hor. guide offset, ver. guide offset
Parameters:

type: the type of border can be chosen between:

RECTANGLE draws a rectangle

ROUNDED draws a rectangle with rounded corners
MARK draws cut marks
NONE no border

html color: color of the border, in the same format used for HTML, black if not specified,

Note: if you want a different border color on each card, use instead RECTANGLE or ROUNDRECT

thickness: thickness of the border (in cm), if omitted, it is 1 pixel wide,

Note: the thickness of the border is measured on two cards; if you use a thickness of 1 cm, for example, on each card
the border is 0.5 cm wide.

70




guidelines: this is for drawing lines beyond the card’s boundaries (over the page’s margins). You can choose between:

NONE
DOTTED
SOLID
MARK
MARKDOT

no guidelines (the default)

dotted lines

solid lines

draws cut marks only (solid lines)
draws cut marks only (dotted lines)

guide color: color of the guidelines, in the same format used for HTML, black if not specified,

mark size: length of the cut marks (in cm) for MARK border type,

hor. guide offset: horizontal guides are displaced of an offset (in cm), zero if not specified,

ver. guide offset: vertical guides are displaced of an offset (in cm), equal to horizontal offset if not specified.

Examples:

BORDER

BORDER

BRUSH

RECTANGLE

ROUNDED, #0000FF, 0.5

This directive changes the style used for filling the shapes in these directives:

ELLIPSE
FILL
HEXGRID
PIE
POLYGON
RECTANGLE
RHOMBUS
ROUNDRECT
STAR
TRIANGLE

Syntax:

BRUSH="range", type, “image file”, width, height

Parameters:

“range”: a set of cards,

type: you can choose a type between these options:

SOLID
DIAGLEFT
DIAGRIGHT
SQUARE
CROSS

HORIZONTAL

VERTICAL
CUSTOM

draws a solid fill (the default),

fills with lines, drawn diagonally from top right to bottom left,
fills with lines, drawn diagonally from top left to bottom right,
fills with squares,

fills with squares, rotated 45°,

fills with lines, drawn horizontally,

fills with lines, drawn vertically,

fills with an image

“image file”: the image file used for filling the shapes

width: width of the image, in cm

71



height: height of the image, in cm

Examples:
BRUSH="1-10",

BRUSH="1-10",

SQUARE

CUSTOM,

"dots.gif",

5%,

5

o

72



BUTTON

This directive draws a 3D rectangle over a set of cards. This directive works only if you have previously drawn
something in the specified area.

Syntax:

BUTTON = “range”, pos x, pos y, width, height, depth, flags

Parameters:

“range”: a set of cards,

pos X: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the rectangle (in cm), I—
height: height of the rectangle (in cm),

depth: width of the 3D border, |

flags: one or more of the following flags:

Image 13
I fromout to in
@] from in to out
G gradient effect
Example:
RECTANGLE = 1, 1, 1, 4, 3, #00FFFF
RECTANGLE = 1, 1, 5, 4, 3, #00FFFF
BUTTON =1, 1, 1, 4, 3, 0.3, I
BUTTON = 1, 1, 5, 4, 3, 0.3, O

Result: Image 13

73



CANVAS

With this directive, the program splits the canvas (card 0) onto a range of cards. The canvas’ size can be decided with a
CANVASSIZE directive (see page 75).

Syntax:
CANVAS = “range”
Parameters:

“range”: a set of cards.

Tip: You can view the content of the canvas bitmap with a click on the button “Canv” (to the right of the “Card
preview” button). You can reduce/enlarge it with a double-click on the image.

For example, if you must draw a large circle, to be split onto six cards, you can use the CANVASSIZE/CANVAS
directives, like in this script:

BORDER = MARK
CANVASSIZE = 18, 18

CANVAS = 1-6

ELLIPSE = 0, 0, 0, 18, 18, #0O0OOFF#FF0000@360
FONT = Arial, 48, , #000000

TEXT= 1-9, {S}, 0, 0, 2, 2, CENTER, CENTER

This is the resulting printed page (I’ve added a number in the top-left corner of each card for helping identify them):

74




CANVASSIZE

This directive sets the size of the canvas (card number 0). If omitted, is considered to be 6 cm x 9 cm. The card O is a
card that isn’t printed with the deck, is can have a different size than the standard card and can be used in two ways: as a
drawing board to realize special effects, and to draw a larger card that must be split onto several standard cards, using
the CANVAS directive (see page 74).

Syntax:

CANVASSIZE = width, height

Example:

CANVASSIZE = 12, 18

CANVASWORK

This directive tells the program to draw the canvas (card 0) after drawing the range of cards specified in the parameter.
Syntax:

CANVASWORK = “range”

Parameters:

“range”: a set of cards.

CARDS

This directive can be used to specify the total number of cards that compose the current deck.
Syntax:
CARDS = number

This directive is somehow obsolete, if you don’t specify it, the total number of cards is deducted from the other
directives. For example, in that script the total number of cards is set to 20:

RECTANGLE = "1-5,15-20", 0O, 0, 6, 9, #0O0FFO0O

But, if you specify also a CARDS directive, the cards’ number is forced. For example, in that script the total number of
cards is set to 15 (and the extra cards specified in RECTANGLE are ignored):

CARDS = 15
RECTANGLE = "1-5,15-20", 0O, 0, 6, 9, #0O0FFO0O

CARDSIZE

This directive sets the size of cards (in cm). If omitted, is considered to be 6 cm x 9 cm.
Syntax:

CARDSIZE = width, height

Examples:
CARDSIZE = 5, 10
CARDSIZE = 2.5, 2.5

75



CASE

This directive is used in a structure SELECT... ENDSELECT to specify a code that must be executed when the value in
the SELECT is equal to a specific value (see page 148).

Syntax:
CASE = value
Parameters:

value: a string, number, label or expression that can be evaluated.

CASEELSE

This directive is used in a structure SELECT...ENDSELECT to specify a code that must be executed only if all the
CASEs directives are not executed (see page 148).

Syntax:
CASEELSE
Parameters:

None

CHROMAKEY

This directive sets the color to be treated as transparent during image loading (with IMAGE directive, see page 110).
The default transparent color, if CHROMAKEY was not used, is the color in the top-left pixel of the image.

Syntax:

CHROMAKEY = html color | corner type, level

Parameters:

corner type: the color will be picked from one of the four corners:
TOPLEFT

TOPRIGHT

BOTTOMLEFT

BOTTOMRIGHT

level: if specified, are treated as transparent also the colors within a level of difference from the base transparent color
(calculated as a distance in CIELab space).

Examples:
CHROMAKEY = #FFFFFF
CHROMAKEY = TOPLEFT

76



COLOR

This directive modifies the colors, brightness, contrast and saturation of images (and text) being rendered on a range of
cards. See directives IMAGE (page 110), ICONS (page 107), PATTERN (page 136) and TEXT (page 152).

Syntax:
COLOR = “range”, html color, bri-con-sat

Parameters:

“range”: a set of cards,

html color: color used for rendering the image, in the same format used for HTML. If you want to Image 14
maintain the original colors, you must use a median gray (#¥808080).

bri-con-sat: a triplet of brightness, contrast and saturation value, used for rendering the image, written
in hexadecimal format (like an html color), starting with an ampersand (&) character. If you want to
maintain some of the original values, use the median value (hexadecimal 80). If this parameter is
omitted, are used three neutral values (&808080).

Examples:
COLOR = 1, #O0O0FFO0O
IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 9, 0, P Image 15

Result: Image 14
COLOR = 1, #808080, &FF8080

IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 9, 0, P
Result: Image 15

77



COLORCHANGE

This directive changes one color into another, in a rectangle area of a range of cards.
Syntax:

COLORCHANGE = “range”, pos x, pos y, width, height, html color source, html color destination, level
Parameters:

“range”: a set of cards,

pos X: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the rectangle (in cm),

height: height of the rectangle (in cm),

html color source: a color value, in HTML format

html color destination: a color value, in HTML format

level: if zero, the source color is exactly the one specified in the 61 parameter, otherwise are taken also colors that differ
from that source a value equal this parameter in one, two, or three RGB components.

COLORS

This directive writes from one to four colors into as many variables, that can be used instead of a color value.
Syntax:

COLORS = “range”, html color1, html color2 , html color3 , html color4, html color5

Parameters:

“range”: a set of cards,

html colorl: a color value, in HTML format, that is stored into variable #7227277

html color2: a color value, in HTML format, that is stored into variable #YYYYYY

html color3: a color value, in HTML format, that is stored into variable #XxxXXxX

html color4: a color value, in HTML format, that is stored into variable #WWWWWw

html color5: a color value, in HTML format, that is stored into variable #vvvvvv

Instead of a color, you can use another variable, or the syntax #Xc¢Y to read a color located at position X, Y of the
current card (you can use also % with each value, for example: #50%¢50%0).

With the syntax #X1¢Y1¢X2¢Y2 you can read the most used color in an image, (the image starts from X1, Y1 and end
to X2, Y2).

With the syntax #X1¢Y1¢X2¢Y2¢MingMax you can read the most used color in an image, (the image starts from X1,
Y1 and end to X2, Y2), excluding colors with percent brightness lower than Min and higher than Max.

With the syntax #AAAAAA>#BBBBBB<#CCCCCC you can select between two color: if the brightness of color #A is
more or equal to 50%, the variable is set to color #B, if the brightness is less than 50%, the variable is set to color #C.

78



Every color can be also modified adding a value for saturation and a value for brightness change (in percent), with the
syntax #000000+saturation+brightness (the values for saturation and brightness can also be negatives).

Example:
COLORS = 1, #FF0000
COLORS = 2, #00FFO0O

COLORS = 3, #0000FF
RECTANGLE = 1-3, 0, 0, 100%, 100%, #ZZZZZZ

COMMENT

This directive sets the character used for comments, and eventually activate the in-line comments. The utilization of this
directive is equivalent to the settings in the "Config" section of the program.

Syntax:

COMMENT = char, INLINE

Parameters:

char: the character used for comments, it must be the first character of the line,
INLINE: the same character (doubled) will be used for in-line comments.
Examples:

COMMENT = &
& This is a comment

COMMENT = !, INLINE
RECTANGLE=1, 0, 0, 6, 9, #00FFO0O0 !! This is another comment

COMPARE

This directive compares the cards built with the current script with those built with the filename specified as a parameter
and creates a range (to be used with PRINT=COMPARE) with only the cards which are different.

Syntax:

COMPARE = “filename”

Parameter:

“filename”: the filename to be compared with the current script.
Example:

COMPARE="script verl.txt"
PRINT=COMPARE

79



COPY

This directive does a copy-and-paste of a section of a card into another position on the same card. If you want to copy a
section of a card onto another card, you must use the SAVE and IMAGE directives (see page 146).

Syntax:

COPY = “range”, pos X1, pos y1, width1, height1, pos x2, pos y2, width2, height2, angle, flags
Parameters:

“range”: a set of cards,

pos x1: starting horizontal position (in cm) of the image,
pos y1: starting vertical position (in cm) of the image,
width1: starting width of the image (in cm),

height1: starting height of the image (in cm),

pos x2: ending horizontal position (in cm) of the image,
pos y2: ending vertical position (in cm) of the image,
width2: ending width of the image (in cm),

height2: ending height of the image (in cm),

angle: angle of image rotation, can be 0 for no rotation,

flags: in this parameter, you can specify a special behavior for the image, possible values are:

H Horizontal mirror
Vv Vertical mirror
Example: Image 16

IMAGE = 1, " c:\images\earth.jpg", 0, 0, 3, 3.5, 0, P
FONT = Arial, 16, , #FFFFFF, #00000

TEXT = 1, "Earth", 0, 3.5, 3, 1, CENTER, CENTER
copy = 1, 0, 0, 3, 4.5, 3, 0, 3, 4.5, 0, H

COoPY =1, 0, 0, 3, 4.5, 0, 4.5, 3, 4.5, 0, V
COPY =1, 0, 0, 3, 4.5, 3, 4.5, 3, 4.5, 0, HV

Result: Image 16

80



COPYCARD

This directive duplicates cards from a source range to a destination range. Both source and destination ranges can be
single cards.

Syntax:

COPYCARD = “destination range”, “source range”
Parameters:

“destination range”: a set of cards,
“source range”: a set of cards.
Example:

COPYCARD = "5-8", "1-2"
This is the deck, before the directive:
CARD 1

CARD 2

CARD 3

CARD 4

This is the deck, after the directive:
CARD 1

CARD 2

CARD 3

CARD 4

CARD 1

CARD 2

CARD 1
CARD 2

CORRECTION

This directive enables/disables the pixel correction. If enabled, one pixel is added to width and heights of ELLIPSE,
RECTANGLE, ROUNDRECT, and RHOMBUS directives. The correction default is ON.

Syntax:

CORRECTION = “range”, switch
Parameters:

“range”: a range of cards,
switch: values accepted are:

ON Pixel correction enabled
OFF Pixel correction disabled

Example:

CORRECTION = 1, OFF

81



COUNTER

This directive sets a counter to a value. A counter is a variable that can be used in expressions (see page 48). This
directive can be used with a dice (see DICE directive, page 83) to revert it into a counter. Note: after the build a warning
is issued if one counter is used in an expression without being initialized.

Syntax:

COUNTER = “range”, counter hame, counter value

Parameters:

“range”: a set of cards,

counter name: a counter letter(s)

counter value: a value, it can be a fixed number or an expression.

Valid counters for integer values:

ABCDEFGHTIJ

Valid counters for floating values:

AA BB CC DD EE FF GG HH II JJ

Examples:

COUNTER = "1", A, 100
COUNTER = "1-10", B, 2D6
DECK

This directive prepares a deck of cards to be used in the “Virtual table” option (see page 57). If you don’t use this
directive, the program prepares a deck to be used in the virtual table with all the cards.

Syntax:

DECK = “range”, “deck name”, html color, height, flag, back range, pos x, posy
Parameters:

“range”: a set of cards,

“deck name”: the name of the deck,

html color: deck color in the same format used for HTML,

height: height of the deck (in pixels), you can also specify a % of the screen’s height. The deck’s width is proportional
to the height.

flag: you can specify these options:

R the deck is shuffled (the default)
N the deck is not shuffled (the order of the cards is that one specified in “range” parameter)

back range: if you specify a number for this parameter, for the deck image (back of cards) is used that card (taken from
the deck) instead of a color. You can also use a range of cards for this parameter,

pos x: horizontal position for the deck (in pixels), you can also specify a % of the screen’s width,

82



pos y: vertical position for the deck (in pixels), you can also specify a % of the screen’s height.
Example:

DECK = 1-13, "Hearts", #FF0000, 50%

DICE

This directive converts one counter into a dice (it can be used later in expressions).

Syntax:

DICE = “range”, counter, “dice range”, dice number, flags, defaultl, default2

Parameters:

“range”: a set of cards,

counter name: valid counters are:

ABCDEFGHTIJ

“dice range”: a range of values, from which is taken the result of the dice roll,

dice number: the number of dice rolled,

flags: the syntax for this parameter is fng, where f is the flag that specify how the dice are grouped, n is a number that
specify how much dice are used, and g is the flag that specify how the dice to be grouped are chosen from the main

pool.

The 1% flag can be chosen between:

+ sum (the default, if not specified)
* multiply

- subtract

# absolute value after subtracting

£ concatenate

N

concatenate without duplicates

The 2" flag can be chosen between:

+ upper dice (the default, if not specified)

- lower dice

defaultl: the value to be used if the number before the dice is missing,
default2: the value to be used if the number after the dice is missing,

Example, for rolling four dice (with values from one to six) and sum the upper three:

DICE = 1, A, "1-6", 4, +3+

DISPLAY

This directive draws a list of cards to the canvas (card 0), resizing it accordingly, and save it with a filename (if
specified). If the range is omitted, all the deck is drawn and saved. The width parameter is the number of cards in
horizontal, if omitted, is chosen the maximum number from the factors of the total number of the cards.

Instead of specifying starting and ending card, you can use a range as 5th parameter (leave the other at zero).

Syntax:

83



DISPLAY = "filename”, first card, last card, width, “range”

Example:
DISPLAY = "c:\deck.png", 1, 10
DOWNLOAD

This directive downloads a file from Internet, if the file doesn’t already exist in the specified path.
Syntax:

DOWNLOAD = URL, “filename”

Parameters:

URL.: the URL for a file, it must start with http:// or https://,

“filename”; the path and filename for the downloaded file, if omitted, the path is the current folder, and the name is
taken from the URL parameter.

Example:

DOWNLOAD = http://game-icons.net/icons/delapouite/originals/png/sheep.png

You can also use two sequences, one for the URLs and one for the filenames.

DPI

This directive sets the resolution of cards (in Dots Per Inch). If omitted, is considered to be 300 (the default for
printing); if you want to show the cards on screen, you can use a value of 150.

Syntax:
DPI = dpi number

Note that with a value too high, the time of rendering can be very long, and the program uses more memory (or disk
space).

Example:

DPI = 150

DRAW

This directive draws a number of cards from a deck in the “Virtual table” option (see page 57). If you don’t use this
directive, the program prepares a deck to be used in the virtual table with all the cards. If you specify a new name, a
deck is created with the card drawn, if you leave the 2" parameter empty, the cards drawn are shown into the table as
separated objects.

Syntax:

DRAW = “deck name”, “deck name new”, number, flag, pos x, pos y

Parameters:

“deck name”: the name of the deck from which the cards are drawn,

“deck name new”: the name of the deck created with the cards drawn,

84


http://game-icons.net/icons/delapouite/originals/png/sheep.png

number: the number of cards drawn,
flag: you can specify these options:

U the cards are drawn face up
D the cards are drawn face down (the default)

pos X: horizontal position for the cards/deck drawn (in pixels), you can also specify a % of the screen’s width,

pos y: vertical position for the cards/deck drawn (in pixels), you can also specify a % of the screen’s height.

Example:
DRAW = "standard", "new", 10, U
DUPLEX

This directive copies a card (or a range of cards) to another position (or range) calculated automatically by the software,
it is useful to manage duplicates or synchronize the front and back of cards for a duplex printing. See also PRINT
directive (see page 139).

Syntax:

DUPLEX = “range front”, “range back”, number

Parameters:

“range front”: a card or a range of card to be copied,

“range back”: a card or a range of card to be copied, front-to-back with the card(s) specified in the 1% parameter,
number: if specified, the card is replicated a number of times; if not specified, it is treated like one copy.
Example:

DUPLEX = 1-10, 11
DUPLEX = 12-21, 22, 2

EDGE

This directive changes the style used for drawing the lines / boundaries with these directives:

BEZIER
BEZIERS
ELLIPSE
HEXGRID
LINE
LINERECT
GRID

PIE
POLYGON
RECTANGLE
RHOMBUS
ROUNDRECT
STAR
TRACK
TRACKRECT
TRIANGLE

Syntax:

85



EDGE = “range”, type, pattern
Parameters:
“range”: a set of cards,

type: you can choose a type between these options:

SOLID draws a solid line (the default),

DASH draws a dashed line,

DOT draws a dotted line,

DASHDOT draws a line alternating a dash and a dot,
DASHDOTDOT  draws a line alternating a dash and two dots,
CUSTOM draws a line using a custom pattern

pattern: a pattern for the custom style, this pattern can be composed of:

@] dot
D dash
S space

These letters can be repeated, for example “OSDSOS” is a valid pattern.

86



ELLIPSE

This directive draws an ellipse (or a circle) in a set of cards.
Syntax:
ELLIPSE = “range”, pos X, pos Yy, width, height, html color, html color, thickness

Parameters:

“range”: a set of cards, Image 17
pos x: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the ellipse (in cm),

height: height of the ellipse (in cm),

html color: border color of the ellipse, in the same format used for HTML. You can also specify a
gradient. Image 18

html color: inner color of the ellipse, in the same format used for HTML, if not specified the inner
color is the same of border color. You can also specify “EMPTY” for a hollow ellipse or a gradient.

thickness: thickness of the border of the ellipse (in cm), if omitted, the ellipse’s border is 1 pixel wide.
Examples:

ELLIPSE = 1, 1, 1, 4, 7, #00FFO0O
Result: Image 17

Image 19

ELLIPSE = 1, 1, 1, 4, 7, #FFOOFF, EMPTY, 0.1
Result: Image 18

ELLIPSE = 1, 1, 1, 4, 7, #FF0000#0000FF@90
Result: Image 19

87



ELSE

This directive is used in a structure IF...ENDIF to specify a code that must be executed only if the test in the IF
directive is not true (see page 108).

Syntax:
ELSE
Parameters:

none

ELSEIF

This directive is used in a structure IF...ENDIF to specify a code that must be executed only if the test in this line is
true and the test in the first IF directive is false (see page 108).

Syntax:
ELSEIF = valuel oper. value2

Parameters:
value: a string, number, label or expression that can be evaluated,

oper.: the condition is evaluated using the two values and this operator, you can use one operator from the same listed
for the IF directive.

END

This directive is used to close a MACRO...END structure (see page 130).
Syntax:

END

Parameters:

none

ENDFRAME

This directive closes a FRAME...ENDFRAME definition (see page 97).
Syntax:

ENDFRAME

Parameters:

none

ENDIF

This directive is used to close an IF...ENDIF structure (see page 108).

88



Syntax:
ENDIF
Parameters:

none

ENDLAYER

This directive closes a LAYER...ENDLAYER definition (see page 119).
Syntax:

ENDLAYER

Parameters:

none

ENDLINK

This directive closes a LINK...ENDLINK definition (see page 119).
Syntax:

ENDLINK

Parameters:

none

Example:

linkmulti=num

link=

num, string

1,alpha

2,beta

3, gamma

endlink

[all]="1-{ (num) }"
font=Arial, 48, ,#000000

text=[all], [num],0,0,100%,50%
text=[all], [string],0,50%,100%,50%

ENDSECTION

This directive closes a SECTION...ENDSECTION definition (see page 147).
Syntax:

ENDSECTION

Parameters:

none

89



ENDSELECT

This directive is used to close a SELECT...ENDSELECT structure (see page 148).
Syntax:

ENDSELECT

Parameters:

none

ENDSEQUENCE

This directive is used to close a SEQUENCE...ENDSEQUENCE structure (see page 149).
Syntax:

ENDSEQUENCE

Parameters:

none

ENDVISUAL

This directive closes a VISUAL...ENDVISUAL definition (see page 59).
Syntax:

ENDVISUAL

Parameters:

none

90



FILL

This directive fills a region with a color (the region is delimited by another color).
Syntax:

FILL = “range”, pos X, pos y, html fill color, html border color, flags
Parameters:

“range”: a set of cards,

pos X: horizontal initial position (in cm) of the fill,

pos y: vertical initial position (in cm) of the fill,

html fill color: color of the fill. You can also specify a gradient,

html border color: this is the area color (or boundary color) for the fill,

flags: one of the following flags

A the 5™ parameter is the color of the area to be filled

B the 5™ parameter is the color of the boundary that enclose the area to be filled )
/

If you don’t specify a flag, it’s considered B as default. Image 20

Example:

LINE = 1, 0, 1, 6, 1, #0000FF, 0.1

LINE = 1, O, 8, 6, 8, #0000FF, 0.1

LINE = 1, 1, 0, 1, 9, #0000FF, 0.1

LINE = 1, 5, 0, 5, 9, #0000FF, 0.1

LINE = 1, 0, 9, 6, 0, #0000FF, 0.1

FILL = 1, 2, 2, #FFFFOO#FF8000Q@Q0, #OOOOFF

FILL = 1, 2, 7, #FF8000#FFFF00@O, #O0O0OOOFF

Result: Image 20

FOLDER

This directive sets the current working directory (if you don't specify it, it will be used the folder where the script is
located).

Syntax:

FOLDER = “folder”

Parameters:

“folder”: the folder to be used as current working directory.
Example:

FOLDER = "c:\projects\test"

91



FONT

This directive sets the font for any following TEXT command (see page 154). Note that there isn’t any reference to a
range of cards. If you want a ranged command, you can use FONTRANGE instead (see page 93).

Syntax:

FONT = “font name”, font size, style, html color, html color, outline x, outline y, step x, step y
Parameters:

“font name”: character font name (string),

font size: character font size, in typographical points (1 point = 1/72 of an inch),

style: character font style and flag used for visualization, values accepted are:

bold

italic

underline

strikeout Image 21
transparent font background

do not clip text at the boundary

circular text

circular text, reversed

circular text, half circumference

circular text, one quarter circumference

circular text, three quarter circumference

the text follows the curve drawn with the last BEZIER directive

the size is reduced until the text fits in the rectangle specified by TEXT directive (this value is stored in TF var)
vertical text

do not clip text area beyond the rectangle

transparent font text (flag T is ignored)

the text is placed in the rectangle’s diagonal (from top-left to bottom-right)

the text is placed in the rectangle’s diagonal (from top-right to bottom-left)

OO0 TUTKLKTNMOIITOZ-1»w C—W

html color: character color, in the same format used for HTML. You can also specify a gradient,
html color: background color, in the same format used for HTML. You can also specify a gradient.

This parameter can be omitted (it will be used the last background color used, or white if none was specified), if you
specified T as a style flag, the background color will not be used.

Tip: you can choose the font with a Windows standard dialog, clicking on the button “Insert” and choosing the menu
voice “Font”.

Examples (the difference was in the T flag in the 2 FONT command):

RECTANGLE = 1, 0, 0, 6, 4, #FF000O0

FONT = "Arial", 32, B, #FFFFFF, #0000FF
TEXT = 1, "TesT", 0, 1, 6, 2, center
Result: Image 21

RECTANGLE = 1, 0, 0, 6, 4, #FF000O

FONT = "Arial", 32, BT, #FFFFFF, #0000FF
TEXT = 1, "TesT", 0, 1, 6, 2, center
Result: Image 22

outline x: horizontal expansion in cm, with that parameter the text will be replicated horizontally from Image 22
—X 10 +X,

92



outline y: vertical expansion in cm, with that parameter the text will be replicated vertically from —y to +y.

step x: the number of times the text is printed horizontally.

step y: the number of times the text is printed vertically. m

Example:
FONT = "Arial", 32, B, #FFFFFF, #0000FF, 0.1, 0.1

TEXT = 1, "TEST", 0, 1, 6, 2, center
Result: Image 23

FONTALIAS

Image 23

This directive enables/disables the font anti-aliasing, using the Operating System’s routines. It’s useful to remove
colored pixels in the text’s boundaries, especially when using HTMLTEXT (see page 102) or RTFTEXT (see page 145)
directives with transparent background.

Syntax:

FONTALIAS = “range”, switch
Parameters:

“range”: a range of cards,
switch: values accepted are:

ON Font anti-aliasing enabled
OFF  Font anti-aliasing disabled

Example:

{[html on]="<style type='text/css'>p {font-size: 32px}</style><p>
ANTIALIASING ON</p>"}

{[html off]="<style type='text/css'>p {font-size: 32px}</style><p>
ANTIALIASING OFF</p>"}

ELLIPSE = 1, 0, 0, 6, 3, #FF0000

ELLIPSE = 1, 0, 3, 6, 3, #FF0000

FONTALIAS = 1, ON

HTMLTEXT = 1, [html on], 0, 0, 6, 3, #FFFFFF, 0, T

FONTALIAS = 1, OFF

HTMLTEXT = 1, [html off], 0, 3, 6, 3, #FFFFFF, 0, T Image 24
Result: Image 24

93



FONTCHANGE

This directive changes a font in the script with another. It’s useful when you want to test a script on a computer that
doesn’t have a font, and you didn’t want to change all the occurrences (or use a label).

Syntax:

FONTCHANGE = “old font”, “new font”
Parameters:

“old font”: the font that you want to be changed,
“new font”: the font that you want to use instead.

Example:

FONTCHANGE = “Calibri”, “Times New Roman”

FONTRANGE

This command is equivalent to FONT (see page 92) but is applied to a range of cards (specified by the 1%t parameter).
Syntax:

FONT = “range”, “font name”, font size, style, html color, html color, outline x, outline y, step x, step y

Parameters:

“range”: a range of cards,

“font name”: character font name (string),

size: character font size, in typographical points (1 point = 1/72 of an inch),

style: character font style and flag used for visualization, values accepted are:

bold

italic

underline

strikeout

transparent font background

do not clip text at the boundary

circular text

circular text, reversed

circular text, half circumference

circular text, one quarter circumference

circular text, three quarter circumference

the text follows the curve drawn with the last BEZIER directive

the size is reduced until the text fits in the rectangle specified by TEXT directive
vertical text

do not clip text area beyond the rectangle

transparent font text (flag T is ignored)

the text is placed in the rectangle’s diagonal (from top-left to bottom-right)
the text is placed in the rectangle’s diagonal (from top-right to bottom-left)

QOO TUTKKTTNMOITTOZAunwC—W

html color: character color, in the same format used for HTML. You can also specify a gradient,
html color: background color, in the same format used for HTML. You can also specify a gradient,
outline x: horizontal expansion in cm, with that parameter the text will be replicated horizontally from —x to +x,

94



outline y: vertical expansion in cm, with that parameter the text will be replicated vertically from —y to +y.
step x: the number of times the text is printed horizontally.

step y: the number of times the text is printed vertically.

Tip: you can choose the font with a Windows standard dialog, clicking on the button “Insert” and choosing the menu
voice “Font”.

FOOTER

This directive prints a text in the page’s footer specified by a page range (with a syntax like cards’ range).
Syntax:

FOOTER = “page range”, “text”, horizontal alignment

Parameters:

“page range”: a set of pages, if empty the text is printed onto all the pages,

“text”: the text to be printed, you can also use four variables:

{P} page number

{N} total page number

{D} date

{T} time

horizontal alignment: the text’s horizontal alignment in the page, values accepted are:
LEFT left aligned

CENTER  centered

RIGHT right aligned

if not specified, the text is centered.

Examples:
FOOTER = "1-3", "Deck 1", CENTER
FOOTER = "", "printed {D} {T}", RIGHT

95




FOR

This directive executes the code between a FOR row and a NEXT row (see page 132), exiting when the counter value
is equal to end value, starting from start value and adding a step value at each loop.

Syntax:

FOR = counter name, start, end, step

Parameters:

counter name: the variable counter storing the value, can be chosen between ABCEFGH | J,
start: starting value for the counter,

end: ending value for the counter,

step: increment for counter at each loop, if not specified is assumed to be 1.

Example:

FOR = A, 1, 4 Image 25
FOR = B, 1, 7
RECTANGLE = 1, A, B, 1, 1, #FF0000, #0000FF
NEXT

NEXT
Result: Image 25

96



FRAME

This directive is used in a FRAME...ENDFRAME structure to define frames using characters in rectangular patterns,
for example, if you want to define three frames, one for the card, one for an image and one for the text below, you can
write these lines:

FRAME

AAAAAA

ABBBBA

ABBBBA

ABBBBA

ACCCCA

ACCCCA

AAAAAA

ENDFRAME

The result is equal to these lines:

<A>=0%,0%,100%,100%

<B>=16.7%,14.3%,66.7%,42.9%

<C>=16.7%,57.1%,66.7%,28.6%

With this method, you can create 36 frames (one for each letter/number), the names are case-insensitive.

Syntax:

FRAME = list split frames

Parameters:

list split frames: if you add here some frames, these frames are treated individually, and are not merged in a single

frame. In the last example, if you specify B as a parameter, instead of one frame, the program creates twelve frames (all
named B).

GAP

This directive sets a space between cards in printed pages. If the directive GAP is not specified, there will be no gap
between cards.

Syntax:

GAP = horizontal gap, vertical gap, switch
Parameters:
horizontal gap: horizontal space (in cm),
vertical gap: vertical spaces (in cm).
switch: values accepted are:

ON: to enable a guideline in the mid of the gap
OFF: to disable it (the default)

If the directive GAP is not specified, there is no gap between cards.
Example:

GAP = 1, 1

97



GRID

This directive draws a grid in a set of cards.

Syntax:

GRID = "range", pos X, pos Yy, width, height, html color, thickness, horiz. cells, vert. cells, pattern
Parameters:

“range”: a set of cards,

pos X: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the rectangle (in cm),

height: height of the rectangle (in cm),

html color: border color of the grid, in the same format used for HTML. You can also specify a gradient,
thickness: thickness of the grid (in cm), if set to zero, the grid’s border will be 1 pixel wide,
horiz. cells: number of horizontal cells,

vert. cells: number of vertical cells,

pattern: a pattern for the line used to draw the grid, this pattern can be composed of:

@] dot
D dash
S space

These letters can be repeated, for example “OSDSOS” is a valid pattern.

Example:

GRID = 1, 1, 1, 4, 4, #FF0000#0000FF@90, 0.1, 3, 3
Result: Image 26

98

Image 26




HEADER

This directive prints a text in the page’s header specified by a page range (with a syntax like cards’ range).
Syntax:

HEADER = “page range”, “text”, horizontal alignment

Parameters:

“page range”: a set of pages, if empty the text is printed onto all the pages,

“text”: the text to be printed, you can also use four variables:

{P} page number

{N} total page number

{D} date

{T} time

horizontal alignment: the text’s horizontal alignment in the page, values accepted are:
LEFT left aligned

CENTER  centered

RIGHT right aligned

if not specified, the text is centered.

Examples:
HEADER = "1-3", "Deck 1", CENTER
HEADER = "", "printed {D} {T}", RIGHT

99



HEXGRID

This directive draws a hexagonal grid in a set of cards.

Syntax:

HEXGRID = “range”, pos X, pos Yy, width, height, hex side, flags, html color, html color, thickness
Parameters:

“range”: a set of cards,

pos X: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the rectangle (in cm),

height: height of the rectangle (in cm),

hex side: length of the hexagon’ side (in cm),

flags: you can use the following flags:

add a dot in the center of the hexagon

add a letter in each hexagon (A, B, C...)

add a number in each hexagon (1, 2, 3...)

add a zero-padded number in each hexagon (01, 02, 03...)

add two numbers in each hexagon (11, 12, 13...21, 22, 23...)

add a letter and a number in each hexagon (A1, A2, A3...B1, B2, B3...)
add a dot as a separator for C flag

add a minus as a separator for C flag

_ add an underscore as a separator for C flag
X doesn’t draws the grid (useful if you want only a dot or a label)

moOoVvzZzro

html color: border color of the grid, in the same format used for HTML. You can also specify a gradient,

html color: inner color of the hexagons, in the same format used for HTML, if not specified the inner color is the same
of border color. You can also specify “EMPTY” for a hollow (and transparent) hexagon or a gradient,

thickness: thickness of the grid (in cm), if omitted, the grid’s border is 1 pixel wide.
Example:
FONT = ARIAL, 10, , #000000

HEXGRID = 1, 0, O, 6, 9, 1, N, #000000, #OOFFOO
Result: Image 27

Image 27

100



HTMLFILE

This directive prints the HTML text loaded from a filename in the cards specified by a range.
Syntax:

HTMLFILE = “range”, “html file”, pos x, pos y, width, height, html color, angle, flags, alpha
Parameters:

“range”: a set of cards,

“html file”: the HTML filename for text to be printed (eventually with a pathname),

pos X: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the text’s rectangle (in cm),

height: height of the text’s rectangle (in cm),

html color: background color for text,

angle: angle of text rotation, you must specify 0 for no rotation,

flags: you can specify one or more flags, chosen between:

Transparent background for text

Horizontal mirror

Vertical mirror

HTML rendering with internal engine

HTML rendering with Explorer

Render a x2 image (don’t use if you already have an OVERSAMPLE directive)
Render a x4 image (don’t use if you already have an OVERSAMPLE directive)
Render a x8 image (don’t use if you already have an OVERSAMPLE directive)
Vertical text

Transparent background, better rendering of png, works only with E flag (MS Explorer)
Wait 100 msec

Replace tags also between < and >

Clear page after rendering (MS Explorer)
Use always a new instance (MS Explorer)

ZOOSWOHOANM— T

alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full
solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of
transparency is the starting level, ending with 0 (full transparent).

Example:

HTMLFILE = 1, "c:\test.html", 0, 0, 6, 9, #FFFFFF, 0, T
Result: Image 28

Image 28

101



HTMLFONT

This directive creates a tag that can be used for recalling a font in an HTMLTEXT directive (see page 105). If you
create a tag with name example, in HTML you can assign these characteristics in an HTML text delimited with
<example> and </example> tags. Note that for default the text in HTMLTEXT is word-wrapped, so there isn’t a flag to
enable it.

There are three special tags: th, tr, and td, that are used with the HTML tags of the same names (i.e. in tables).
Syntax:

HTMLFONT = tag, “font name”, font size, style, html color, alignment, shadow x, shadow y, shadow blur, shadow
color, outline color, outline width, indent, highlight color

Parameters:

tag: a name used for referencing the font,

“font name”: character font name (string),

font size: character font size, in typographical points (1 point = 1/72 of an inch),
style: character font style and flag used for visualization, values accepted are:

bold

italic

underline

strikeout

shadow over outline (the default is outline over shadow)

do not resize this font when using F flag in HTMLTEXT (see page 105)
the outline of the font is done in a more refined way

break lines at every character

the HTML syntax is formatted for table cells

small caps

multiple shadows (use sequences for parameters from 7t to 10™)
keep decimals in the font size calculation

round down to integers the font size calculation

roZI>»—"10x3Z2Z0wnC—w

html color: character color, in the same format used for HTML,
alignment: the text’s horizontal alignment, values accepted are:
left left aligned

center centered

right  right aligned

justify the text is justified

The horizontal alignment is optional, if omitted is considered to be equal to left,

shadow X: the horizontal offset for a shadow drawn under the text. Note: all the shadow’s parameters work only with
flag E, and Internet Explorer must be version 11 or more,

shadow y: the vertical offset for a shadow drawn under the text,

shadow blur: if you specify this parameter, the shadow is blurred,

shadow color: the color for the text’ shadow, in the same format used for HTML,
outline color: the color for the text’s outline, in the same format used for HTML,

outline width: the width for the text’s outline,

102



indent: the indentation in cm of the first line (you can specify a negative number for hanging indentation),
highlight color: color for the background of the text, in the same format used for HTML.

Note: if an alignment is omitted, the program use a <span> tag with the font info, otherwise, the 7, test
program uses a <div> tag. In other words, if you want to use different font on the same line, it’s
possible only with a <span> tag, and you must omit the alignment parameter.

Example:

HTMLFONT = alpha, Arial, 32, , #000000

HTMLFONT = beta, "Times New Roman", 18, I, #0000FF

HTMLTEXT = 1, "<beta>This is a </beta><alpha>test</alpha>", 0, O,
100%, 100%

Result: Image 29

HTMLIMAGE

Image 29

To simplify insertion of images in HTMLTEXT directives (see page 105), you can specify a name with this directive,
associated with a filename, width and height. When an HTMLTEXT is rendered, the name is substituted with an HTML
tag for the image, with the correct size.

Syntax:

HTMLIMAGE = “range”, key, “image file”, width, height, flags

“range”: a set of cards,

key: the name associated to the image (replaced in HTML),

“image file”: the filename for the image,

width: width of the image (in cm),

height: height of the image (in cm),

flags: you can specify one or more flags, chosen between:

P Proportional

T Image alignment to the top of text (only with Explorer)

M Image alignment to the middle of text (only with Explorer)

B Image alignment to the bottom of text (only with Explorer)

L Image alignment to the left of the rectangle, text flushing right (only with Explorer)

R Image alignment to the right of the rectangle, text flushing left (only with Explorer)

E Image alignment to the left (under other images with L flag), text flushing right (only with Explorer)
I Image alignment to the right (under other images with R flag), text flushing left (only with Explorer)
Example:

HTMLIMAGE = 1, "(one)", "image.bmp", 1, 1, P
HTMLTEXT = 1, "<p>Test (one)</p>", 0, 0, 6, 9, #FFFFFF, 0, T

HTMLKEY

With this directive, you can create words that are replaced by longer texts in HTMLTEXT directive (see page 105).
Syntax:

HTMLKEY = “range”, key, “text”, htmlfont

103



“range”: a set of cards,

key: a string that is searched and replaced with text parameter,

“text”: a string that replaces the key parameter,

htmlfont: add start and end tags for a font defined by an HTMLFONT directive (see page 102)
Example:

HTMLKEY = 1, "(one)", "only <b>one</b> word"
HTMLTEXT = 1, "<p>Test (one)</p>", 0, 0, 6, 9, #FFFFFF, 0, T

HTMLMARGINS

This directive adds the settings for margins and vertical alignment to an existing tag (that was created with
HTMLFONT directive, see page 102) to be used in HTMLTEXT directive (see page 105); this directive works only
with E flag in HTMLTEXT (MS Explorer).

Syntax:

HTMLMARGINS = “html tag”, margin top, margin left, margin right, margin bottom, paragraph alignment, line
spacing, cell width, cell height

Parameters:

“html tag”: a name used for referencing the font,
margin top: the size of the top margin, in cm,
margin left: the size of the left margin, in cm,
margin right: the size of the right margin, in cm,
margin bottom: the size of the bottom margin, in cm,

paragraph alignment: the text’s vertical alignment, values accepted are:

top top aligned
center centered
bottom bottom aligned

line spacing: the text’s line spacing in %, the default is 100 is for a single line,

cell width: the width of a table cell, in cm (it works only when T flag is used in HTMLFONT),
cell height: the height of a table cell, in cm (it works only when T flag is used in HTMLFONT).
Example:

HTMLFONT = alpha, Arial, 32, , #000000

HTMLMARGINS = alpha, 0.5, 1, 1
HTMLTEXT = 1, "<alpha>test</alpha>", 0, 0, 100%, 100%, #FFFFFF, 0, E

Note: using 100 as line spacing gives a different result from leaving that parameter empty, it’s a behavior of HTML.

104



HTMLTEXT

This directive prints a text, using HTML format, in the cards specified by a range. This directive is useful if you want to
print a text with multiple size, font, attributes, colors and so on. For expressions, you must include them in double curly
parentheses {{ ... }}. You can add also one or more images, using a keyword(s), coded with the HTMLIMAGE
directive (see page 103).

Syntax:

HTMLTEXT = “range”, “text”, pos X, pos y, width, height, html color, angle, flags, alpha, htmlfont
Parameters:

“range”: a set of cards,

“text”: the HTML text to be printed,

pos x: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the text’s rectangle (in cm),

height: height of the text’s rectangle (in cm),

html color: background color for text,

angle: angle of text rotation, you must specify 0 for no rotation,
flags: you can specify one or more flags, chosen between:

Transparent background for text

Horizontal mirror

Vertical mirror

HTML rendering with internal engine

HTML rendering with MS Explorer

Render a x2 image (don’t use if you already have an OVERSAMPLE directive)

Render a x4 image (don’t use if you already have an OVERSAMPLE directive)

Render a x8 image (don’t use if you already have an OVERSAMPLE directive)
Vertical text

Transparent background, better rendering of png, works only with E flag (MS Explorer)
The text is resized to fit the rectangle (MS Explorer)

The text is resized to fit the rectangle and the size is saved for the next cards (MS Explorer)
The images are resized with the text (only if using F flag, MS Explorer)

TEXTLIMIT variables are calculated more accurately (MS Explorer)

Replace tags also between < and >

Clear page after rendering (MS Explorer)

Use always a new instance (MS Explorer)

ZOOrFZOVOTMWITOENM— T

alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is
set to 100 (full solid). You can also specify an angle for the transparency, with the format
level@angle; in this case, the level of transparency is the starting level, ending with 0 (full
transparent).

Image 30

htmlfont: add start and end tags for a font defined by an HTMLFONT directive (see page 102)

105



Example:

{[html]="<p><b>Text</b> example</p>
<p><b>Image</b> example</p>

<img src='c:\earth.jpg'>"}

HTMLTEXT = 1, [html], 0, 0, 6, 9, #FFFFFF, 0, T
Result: Image 30

ICON

This directive assigns one or more characters (a “key”) to an image, to be used later with an ICONS directive (see page
101).

Syntax:

ICON = “range”, key, “image file”

Parameters:

“range”: a set of cards,

key: one or more characters used to identify the image (like “A” or “001”),

“image file”: an existent image file (eventually with a path), formats allowed are bmp, gif, png, jpg, and tif.

Example:

ICON "1-10", A, "c:\images\imagel.jpg"
ICON = "1-10", B, "c:\images\image2.jpg"
ICON "1-10", C, "c:\images\image3.jpg"

106



ICONS

This directive prints a number of images in a rectangular area, like a multi-image PATTERN directive (see page 136),
the “keys” parameter identifies the images used, defined before with some ICON directives (see page 101). For
example, if you write:

ICON = "1-10", A, "c:\images\imagel.Jjpg"
ICON = "1-10", B, "c:\images\image2.]jpg"
ICON = "1-10", C, "c:\images\image3.jpg"

Later you can use a key of “ABC” to print the three images all together in a rectangular area. This directive is useful
when you must convert to images an output from the combination/permutation engine. You can also use the “<” special
character to add a backspace and draw two images in the same place; for example, a key like “P<2” means that the
image assigned to “2” is printed over the image assigned to “P”.

Syntax:

ICONS = “range”, keys, pos x, pos y, width, height, obj width, obj height, angle, flags, horizontal alignment, vertical
alignment, alpha, key length, width factor, height factor

Parameters:

“range”: a set of cards,

keys: a string, composed by characters assigned to images with ICON directives,

pos x: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the rectangle in which the images are printed (in cm),

height: height of the rectangle in which the images are printed (in cm),

obj width: width of the single image to be printed (in cm),

obj height: height of the single image to be printed (in cm),

angle: angle of image rotation, if not specified it is assumed to be 0 (for no rotation),
flags: in this parameter, you can specify a special behavior for images, possible values are:
Transparent

Anti-aliasing

Reverse, reversing the filling order of pattern’s elements (from bottom to top)
Use PNG transparency

Proportional
Vertical pattern

<TzZzX>-

horizontal alignment: the images’ horizontal alignment in the rectangle, values accepted are:

LEFT left aligned
CENTER centered (the default)
RIGHT right aligned

vertical alignment: the images’ vertical alignment in the rectangle, values accepted are:

TOP top aligned
CENTER centered (the default)
BOTTOM bottom aligned

107



alpha: level of transparency of image, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full
solid),

key length: the default length of the character string utilized for key is one character, but a
different length can be specified here, the "keys" parameter length must be a multiple,

width factor: the width of the image is adjusted with this factor, adding space if more than 100, removing space if less
than 100 (if not specified, the width factor of the image is 100),

height factor: the height of the image is adjusted with this factor, adding space if more than 100, removing space if less
than 100 (if not specified, the height factor of the image is 100).

Example:

RECTANGLE = 1, 0, 0, 6, 6, #0000FF
ICON = 1, A, "c:\images\dot red.gif"
ICON = 1, B, "c:\images\dot blue.gif"
ICON = 1, C, "c:\images\dot black.gif"

4
ICONS = 1, BAC, O, O, 6, 6, 2, 2, 0, T, CENTER, CENTER
Result: Image 31

= Image 31

The IF...ENDIF structure can be used to create sections of code that must be executed only if are verified some
conditions.

Syntax:

IF = valuel oper. value2

ELSEIF = value3 oper. valued

ELSEIF = valueb oper. value6

ELSE

ENDIF

Parameters:

value: a string, number, label or expression that can be evaluated,

oper.: the condition is evaluated using the two values and this operator, you can use one operator from this list:

valuel and value2 are equal

> valuel is major than value2

< valuel is minor than value2

>= valuel is major or equal than value2
<= valuel is minor or equal than value2
<> valuel and value 2 are different

@ valuel is contained into value2

# valuel is not contained into value2

More than one test can be combined using Boolean logic, every test must be enclosed in parenthesis, and these are the
accepted keywords:

_TRUE
_FALSE
_NOT _
_AND

108



OR

If in an expression there are more than one logic operator, they are evaluated with these priorities (if they have the same
priorities, they are evaluated from left to right):

1) NOT_
2) _AND
3) OR_
Examples:

; choose a value between R, E and T

[check] = R

IF = [check] = R
RECTANGLE = 1

ELSEIF = [check

, 0, 0, 6, 9, #0000FF
]

ELLIPSE = 1, 0, O
]

6, 9, #00FFO0O

ELSEIF = [check] =T

TRIANGLE = 1, 3, 0, 6, 9, 0, 9, #FF000O0
ELSE

RECTANGLE = 1, 0, 0, 6, 9, #000000
ENDIF

; complex logic
if=([a]=1) AND_ NOT_  ([b]=3)

; in this example, the AND operator is evaluated first
if=([a]l=1) OR_([b]=1) AND ([c]=1)

; in this example, the OR_operator is evaluated first
if=((lal=1) _OR_ ([bl=1)) _AND ([c]=1)

Note: if you want to use a sequence as argument for the IF directive, you must extract an element using the ? operator
(and § for the number of the current card) inside an expression (with curly brackets). For example:

IF = {sequence?§} = element

109



IMAGE

This directive can be used to add an external image to a range of cards.
Syntax:

IMAGE = range, image file, pos x, pos y, width, height, angle, flag, alpha, texture width, texture height, skew x, skew y,
img width, img height, loc x, loc y, copy X, copy y

Parameters:

range: a set of cards (the standards rules about ranges will be applied),

image file: an existent image file (eventually with a path), formats allowed are bmp, gif, png, jpg, and tif,
pos X: horizontal position (in cm),

posi y: vertical position (in cm),

width: width of the image (in cm),

height: height of the image (in cm),

angle: angle of image rotation, can be 0 for no rotation.

These are the required parameters. This directive can be used for a background on all your cards, or a
logo on top-right, or a centered image. Simply specify range, image, position and angle. For example:

IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 9, O
Result: Image 32

Note that the image will fill the destination rectangle, the standard behavior of this command is
resizing the original image and altering the aspect ratio for width and height. If you want to maintain
the original aspect you must use a flag, as additional parameter.

RECTANGLE = 1, 0, 0, 6, 9, #0000FF
IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 9, 0, P

Result: Image 33

flag: in this parameter you can specify any, some or all of these letters:

Image 33

Proportional

Anti-aliasing

Grayscale

Horizontal mirror

Vertical mirror

Transparent

Texture

Use PNG transparency

Don’t adjust size for rotated images

Use DPI from image file

Extends the image cropping the borders

Align the image to the upper boundary of the rectangle (with P/C flag)
Align the image to the right boundary of the rectangle (with P/C flag)
Align the image to the lower boundary of the rectangle (with P/C flag)
Align the image to the left boundary of the rectangle (with P/C flag)

SVUMCOUIIZXA<KIO»DT

With the “P” flag, the image will be resized maintaining the original aspect ratio. The previous background remains
unchanged in the zone not occupied by the image.

With the “A” flag, to the image will be applied a smoothing filter. There aren’t other settings related to that parameter.

110



With the “G” flag, the image will be reduced to tones of gray (256 levels maximum). There aren’t other settings related
to that parameter.

With the “H” or “V” flags, the image will be mirrored in the corresponding direction (these flags may be used both with
the same image).

If the “T” flag is used, the image will be rendered with a transparent color. If the CHROMAKEY directive was not used
before, the transparent color is assumed to be the first pixel of the image (top left pixel). With the CHROMAKEY
directive (see relative entry, page 76), you can specify a pixel from another corner, or directly a color.

With the “X” flag, the image is used to fill the destination space (see texture width/height parameters).
With the “N” flag, the image is loaded reading the transparency information (only PNG format).

Without the “R” flag, a rotated image is stretched to be fully included in the destination rectangle, with this flag, the
directive maintains the original size for the rotated image.

With the “D” flag, the size of the image is adjusted reading the DPI from the file (only with BMP, PNG, and JPG
formats).

With the “U”, “E”, “S”, and “W” flags (to be used with P/C flag), the image is aligned to the relative
boundaries of the rectangle (if not specified, the image is centered).

alpha: level of transparency of image, from 0 (full transparent) to 100 (full solid). If omitted, the level
is set to 100 (full solid). You can also specify an angle for the transparency, with the format
level@angle; in this case, the level of transparency is the starting level, ending with 0 (full
transparent), for example:

RECTANGLE = 1, 0, 0, 6, 9, #0000FF Image 34
IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 9, 0, P, 100@90
Result: Image 34

texture width: width of the texture (in cm), used only with “X” flag, if omitted the default is the
image’s width,

texture height: height of the texture (in cm), used only with “X” flag, if omitted the default is the
image’s height.

This is an example of using a texture to fill a space on a card (note, the alpha-channel is specified
because you can’t leave the parameter empty), with texture size 1x1 cm (remember, the card is 6x9
cm):

PNNNOOOOO
646969 69 69 60 64 69 69
6469 69 69 60 64 64 69 6

IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 9, 0, X, 100, 1, 1
Result: Image 35

skew x: draw the image shifted horizontally (to the right for positive number, to the left for negative),
the value 1 is the image’s width (you can use a decimal value),

skew y: draw the image shifted vertically (to the bottom for positive number, to the top for negative),
the value 1 is the image’s height (you can use a decimal value).

This is an example for the skew effect (horizontal, value 0.5), note that the second image was vertically
mirrored and printed with an alpha-channel value of 60. Image 36

RECTANGLE = 1, 0, 0, 6, 9, #000000

IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 6, O

IMAGE = 1, "c:\images\earth.jpg", 0, 6, 6, 3, 0, VvV, 60, 0, 0, 0.5, O
Result: Image 36

img width: if this parameter is specified, the image isn’t enlarged to the whole rectangle, but instead is drawn with this
width (in cm),

111



img height: if this parameter is specified, the image isn’t enlarged to the whole rectangle, but instead is drawn with this
width (in cm),

loc x: if this parameter is a positive value, the image is positioned at that % of width, with a width equal to the
parameter image width; if this parameter is a negative one, the image is split horizontally at that % of his width, and the
two halves are positioned at the edge of the rectangle,

loc y: if this parameter is a positive value, the image is positioned at that % of height, with a height equal to the
parameter image height; if this parameter is a negative one, the image is split vertically at that % of his height, and the
two halves are positioned at the edge of the rectangle,

copy x: if the image is split horizontally, the empty gap between the two halves is filled with a % of the image, starting
from the cut point,

copy y: if the image is split vertically, the empty gap between the two halves is filled with a % of the image, starting
from the cut point.

Tip: you can choose a name (and path) from a Windows standard dialog, clicking on the button “Insert” and choosing
the menu voice “Image”.

Tip: if you drag and drop an image file in nanDECK s window, an IMAGE line is added with the path and filename of
the image.

112




IMAGEFILTER

This directive sets the filter using when images are loaded and resized in a card (with IMAGE, ICONS, PATTERN,
HTMLTEXT/HTMLFILE, RTFTEXT/RTFFILE, and OVERSAMPLE directives). If not specified, the default filter is
LINEAR.

Syntax:

IMAGEFILTER = filter name

Parameter:

filter name: the filter may be one of the following:

NEAREST

DRAFT

LINEAR

COSINE

SPLINE

LANCZOS

MITCHELL

Example:

IMAGEFILTER=LANCZOS

IMAGESIZE

This directive reads an image and writes in two variables the image’s width and height (in pixel).
Syntax:

IMAGESIZE = “range”, “image file”

The variables are:

W image’s width
IH image’s height

Parameters:

“range”: a set of cards,

“image file”: an existent image file (eventually with a path), formats allowed are bmp, gif, png and jpg.
Example:

IMAGESIZE = 1, "c:\images\earth.jpg"

IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 6, 0, P

FONT = Arial, 16, , #000000
TEXT = 1, "width={Iw}" ,0 ,7 ,6 ,1 ,left, center

TEXT = 1, "Height={IH}" ,0 ,8 ,6 ,1 ,left, center Width=3000
Result: Image 37 Height=3002

Image 37
INCLUDE

This directive includes another script file in the current script, as if it was copied and pasted. You can omit the path if
the included file is in the same directory of the including script.

Syntax:

113



INCLUDE = “filename”
Examples:
INCLUDE = "c:\test\alpha.txt"

INCLUDE = beta.txt

Tip: you can choose a name (and path) from a Windows standard dialog, clicking on the button “Insert” and choosing
the menu voice “Include”.

114




INPUTCHOICE

With this directive, the user can input a variable text that can be used as a label value, this text can be chosen between
the values from a sequence. The text confirmed is stored to a file with the same name of the script and “ini” for
extension, or can be saved to a specific configuration file, to be loaded in a subsequent execution.

Syntax:

INPUTCHOICE = “label”, “description”, “default”, “values”

Parameters:

“label”: the label for storing input text,

“description”: a text shown before the input box,

“default”: starting value for the label,

“values”: a sequence with the available choices.

Example:

INPUTCHOICE = "color", "Choose a color, please:", "Red", "Red|Green|Blue"

This is the resulting input form:

Al Input data O =
Choose a color, please: ® Red
b |m ) Green
Blue
Confirm + Build Load... Save... Cancel

115



INPUTLIST

With this directive, the user can input a variable text that can be used as a label value, this text can be chosen between
the values from a sequence. The text confirmed is stored to a file with the same name of the script and “ini” for
extension, or can be saved to a specific configuration file, to be loaded in a subsequent execution.

Syntax:

INPUTLIST = “label”, “description”, “default”, “values”

Parameters:

“label”: the label for storing input text,

“description”: a text showed before the input box,

“default”: starting value for the label,

“values”: a sequence with the available choices.

Example:

INPUTLIST = "color", "Choose a color, please:", "Red", "Red|Green|Blue"

This is the resulting input form:

Al Input data O =

Choose a color, please: Red

Confirm + Build Load... Save... Cancel

116



INPUTNUMBER

With this directive, the user can input a variable integer number that can be used as a label value, this number can be
chosen between a minimum and a maximum value. The number confirmed is stored to a file with the same name of the
script and “ini” for extension, or can be saved to a specific configuration file, to be loaded in a subsequent execution.
Syntax:

INPUTNUMBER = “label”, “description”, default, min, max

Parameters:

“label”: the label for storing input number,

“description”: a text shown before the input box,

default: starting value for the number,

min: minimum value for the number,

max: maximum value for the number.

Example:
INPUTNUMBER = "name", "Choose a number, please:", 5, 1, 10
Al Input data O =
L
Choose a number, please: |
Confirm + Build Load... Save... Cancel

117



INPUTTEXT

With this directive, the user can input a variable text that can be used as a label value. The text confirmed is stored to a
file with the same name of the script and “ini” for extension, or can be saved to a specific configuration file, to be
loaded in a subsequent execution.

Syntax:

INPUTTEXT = “label”, “description”, “default”, flags

Parameters:

“label”: the label for storing input text,

“description”: a text showed before the input box,

“default”: starting value for the label.

flags: in this parameter, you can add a flag for a special effect, like:

F The program shows a button for browsing a file (to be added in the text field),
G The program shows a button for browsing a graphical file (to be added in the text field),
C The program shows a button for selecting a color,
R The program shows a button for selecting a color gradient.
Example:
INPUTTEXT = "name", "Input you name, please:", "John"
Al Input data O =
Input you name, please: |
Confirm + Build Load... Save... Cancel

118



LAYER

The directives between a structure LAYER...ENDLAYER are drawn in a separate card, then printed on the main card
(or stored for a later use). Since the drawing directives like the RECTANGLE doesn’t support alpha transparency, they
can be drawn in this mode with a LAYER structure. If you specify the 5th parameter the layer is stored in memory
(using that parameter as a name) and drawn later with a LAYERDRAW directive, if the name is not specified, the layer
is drawn immediately.

Syntax:

LAYER = alpha, offset x, offset y, angle, name

Parameters:

alpha: level of transparency of the layer, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100
(full solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of
transparency is the starting level, ending with O (full transparent).

offset x: the horizontal offset of layer

offset y: the vertical offset of layer

angle: the angle of rotation of layer

name: the name of the layer

Example:

LAYER = 50

RECTANGLE = 1, 3, 0.5, 3, 8, #FF0000
FONT = Arial, 24, T, #000000

TEXT = 1, Alpha, 3, 5, 3, 5
ENDLAYER

LAYERDRAW

The directives draws a layer in a range of cards. The layer drawn is specified using its name (defined by the parameter
in the ENDLAYER directive, see page 89), and it must have been created before with a LAYER...ENDLAYER
structure. You can also specify a list of layers, separated by commas.

Syntax:

LAYER = “range”, name, alpha, offset x, offset y, angle

Parameters:

“range”: a set of cards,

name: the name of the layer(s),

alpha: level of transparency of the layer, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100
(full solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of
transparency is the starting level, ending with 0 (full transparent),

offset x: the horizontal offset of layer,

offset y: the vertical offset of layer,

angle: the angle of rotation of layer.

119



LIMIT

This directive fills four variables with the coordinates of latest drawn object’s boundaries (in cm), from various
command (*). You can use these variables in other commands.

Syntax:
LIMIT = “range”

The four variables are:

PL (left)
PR (right)
PT (top)

PB (bottom)
Parameters:
“range”: a set of cards

(*) This directive works with this list of directives:

BEZIER
BEZIERS
BUTTON
COPY
ELLIPSE
GRID
HEXGRID
HTMLFILE
HTMLTEXT
ICONS
IMAGE
LINE
LINERECT
PATTERN
PIE
POLYGON
RECTANGLE
RHOMBUS
ROUNDRECT
RTFFILE
RTEFTEXT
STAR

TEXT
TRACK
TRACKRECT
TRIANGLE

120



LINE

This directive draws a line from a point (x1, y1) to another point (x2, y2).

Syntax:

LINE = “range”, pos X1, pos y1, pos X2, pos y2, html color, thickness, pattern, end arrow, start arrow

Parameters:

“range”: a set of cards,

pos X1, pos y1: coordinates of first point (in cm),

pos X2, pos y2: coordinates of second point (in cm),

html color: color of the line, in the same format used for HTML (black, if not specified). You can also use a gradient,
thickness: thickness of the line (in cm), if omitted, the line is 1 pixel wide,

pattern: a pattern for the line, this pattern can be composed of:

) dot
D dash
S space

These letters can be repeated, for example “OSDSOS” is a valid pattern,
end arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the end of the line,

start arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the start of the line.

Example:

LINE = 1, 1, 1, 5, 1, #0000FF#FF0000QO

LINE = 1, 1, 2, 5, 2, #0000FF#FF0000Q@0, 0.05 —
LINE = 1, 1, 3, 5, 3, #0000FF#FF0000@0, 0.1 —
LINE = 1, 1, 4, 5, 4, #0000FF#FF0000@0, 0.15 —
LINE = 1, 1, 5, 5, 5, #0000FF#FF0000Q0, 0.2 camosmme
LINE =1, 1, 6, 5, 6, #0000FF#FF0000@0, 0.25 Image 38

LINE =1, 1, 7, 5, 7, #0000FF#FF0000@O0, 0.3

LINE = 1, 1, 8, 5, 8, #0O0OFF#FF0000Q@0, 0.35, 0OSDSOS

Result: Image 38

121



LINERECT

This directive draws a line from a vertex of a rectangle to the opposite vertex.

Syntax:

LINERECT = “range”, pos X, pos Yy, width, height, html color, thickness, pattern, end arrow, start arrow, flags
Parameters:

“range”: a set of cards,

pos X: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the rectangle (in cm),

height: height of the rectangle (in cm),

html color: color of the line, in the same format used for HTML (black if not specified). You can also use a gradient,
thickness: thickness of the line (in cm), if omitted, the line is 1 pixel wide,

pattern: a pattern for the line, this pattern can be composed of:

O dot
D dash
S space

These letters can be repeated, for example “OSDSOS” is a valid pattern,

end arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the end of the line,
start arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the start of the line.
flags: you can specify one or more of these flags to choose which lines to draw

top side

right side

bottom side

left side

diagonal from top-left to bottom-right
diagonal from top-right to bottom-left

OOrw=x-

If you don’t specify a flag, the default is top-left to bottom-right diagonal.

Example:

LINERECT = 1, 1, 1, 4, 0, #0000FF#FF0000QO

LINERECT =1, 1, 2, 4, 0, #0000FF#FF0000@0, 0.05 —
LINERECT = 1, 1, 3, 4, 0, #0000FF#FF0000@0, 0.1 —
LINERECT = 1, 1, 4, 4, 0, #0000FF#FF0000@Q0, 0.15 —
LINERECT =1, 1, 5, 4, 0, #0000FF#FF0000@0, 0.2 ceamocoame
LINERECT =1, 1, 6, 4, 0, #0000FF#FF0000Q0, 0.25 Image 39
LINERECT =1, 1, 7, 4, 0, #0000FF#FF0000@0, 0.3

LINERECT = 1, 1, 8, 4, 0, #0000FF#FF0000@0, 0.35, 0OSDSOS

Result: Image 39

122



LINK

This directive is used to link data, written as a text file (CSV format) or a spreadsheet (with xls, xlsx, or extensions),
with the current script. The data linked are referenced in the script as sequences. If the fields’ names are omitted, the
fields are referenced using the names contained in the first row of the file.

For text files, the character used to separate fields’ data can be changed using the LINKSEP directive (see page 127).
See also the LINKMULT!I directive (page 125) if you need to duplicate the data rows, and the “Linked data editor”
chapter (page 56).

Syntax for text files:

LINK = “filename”, “field1”, “field2”, ... “fieldN”

If you omit the “filename” parameter, the program reads the data directly from the script file, until it reads a ENDLINK
directive (see page 89).

Syntax for Excel files:

LINK = “filename!sheet”, “field1”, “field2”, ... “fieldN”

If you didn’t specify the sheet’s name, the program reads the 1% sheet in the file (for example, “sheetl”).

Tip: you can choose a name (and path) from a Windows standard dialog, clicking on the button “Insert” and choosing
the menu voice “Link”.

Tip: if you drag and drop a spreadsheet file in nanDECK’s window, a LINK line is added with the path and filename of
the spreadsheet.

If the spreadsheet file doesn’t exist, the program asks if you want to create it (with the names of the fields specified in
the line as the parameters fieldl, field2, etc.

Examples:

LINK = "c:\test\dataOl.txt"

LINK = "c:\test\data02.txt", size, speed, weight
LINK = "c:\test\dataO0l.xls"

LINK = "c:\test\dataOl.xls!sheet2"

With the 2" example, in the script these fields are referenced as [size], [speed] and [weight].

Example of file “data02.txt”:

, 12

The program will translate the data file in these sequences:
[size]l=11417|10

[speed]=2]5]8]|11

[weight]=31619]12

You can also link a Google Sheet document, using the ID of the file instead of “filename” parameter, but you must
share it first, following these steps:

123




o select the file in Google Drive web page,

o click the Share icon (the icon with the “little man” in top-right button bar),

e click the dropdown menu below “Link sharing on” in the window,

o select a link sharing option, one of the “Anyone with the link...” option.
Now Google shows you a link like this:
https://docs.google.com/spreadsheets/d/1s_plgcL2BBO_zYle v8bADjWzFtcOhh_eY8DIw8OPTY /edit?usp=sharing
The ID of the sheet is the bold part, copy it and paste it in a nanDECK line like this:
LINK=1s plgcL2BBO zYIe v8bADjWzFtcOhh eY8DIwWSOPLY
You can also select one of the sheets, with this syntax:

LINK=ID!Sheet name

But you must enable the web sharing, with these steps:
e open the spreadsheet in a browser,
o select from menu File = Publish to the Web,

e click on “Publish” button.

LINKCOLOR

This directive is used to create a sequence with the colors from spreadsheet’s cells; it must be used before the LINK
directive (see page 123).

Syntax:

LINKCOLOR = label, “field”, flag

Parameters:

label: is the name of the sequence

“field”: is the name of the field from the spreadsheet

flag: it specifies if the color read is from the background or the font, if not specified is read from the background

F font
B background

LINKENCCSV

This directive is used to specify which characters are replaced with \n\ encoding (where n is the ASCII code) when read
from a csv file with the LINK directive (see page 123). As default, there aren’t characters encoded.

Syntax:

LINKENCCSV = string

LINKENCODE

This directive is used to specify which characters are replaced with \n\ encoding (where n is the ASCII code) when read
from a spreadsheet file with the LINK directive (see page 123). As default, characters encoded are [ 1 { }-

124



Syntax:

LINKENCODE = string

LINKFILTER

This directive is used to filter the rows in a linked file. You can specify more than one LINKFILTER directive for a
linked file, and must be used before the LINK directive (see page 123).

Syntax:

LINKFILTER = CLEAR | field oper. value
Parameters:

field_name: is the name of the field for the filter

operator: these are the possible operators used for the filter

= equal

> major

< minor

>= major or equal

<= minor or equal

< different

@ contained into

# not contained into

value: is the value used for the filter
Example:

Linked file:

Name, count

Alpha, 1

Beta, 2
Gamma, 3

With this script line:

LINKFILTER = count < 3
LINK = linked.csv

The resulting linked file will be:
Name, count

Alpha, 1
Beta, 2

If you want to clear all filter, you can use this directive with “CLEAR” parameter:

LINKFILTER = CLEAR

LINKMULDIS

When a linked file is used with a LINKMULT] directive (see page 126), you can specify with this directive one or more
fields that aren't replicated; instead of a replica, a single element in a sequence field is taken for each record. It must be
used before the LINK directive (see page 123).

Syntax:

125



LINKMULDIS = “field1”, “field2”, ... “fieldN”
For example, if this is a linked file:

name, count, data
Alpha, 1, a

Beta, 2, blc
Gamma, 3, dle

And you add these lines to your script:

LINKMULTI = count
LINKMULDIS = data
LINK = linked.csv

The resulting linked file will be:

name, count, data
Alpha, 1, a
Beta, 2, b
Beta, 2, c
Gamma, 3
Gamma, 3
Gamma, 3

, d
e
d

4
4

Note: if a sequence is smaller than the requested number of replicated rows, it’s extended (like the d|e sequence in the
example, extended to d|e|d for the three rows).

Note: if you use the § symbol in the linked field, it gives you a count starting from one on each new row multiplied by
LINKMULTI.

LINKMULTI

This directive is used to specify a field, used for identifying a multiplier for a line in a linked file. It must be used before
the LINK directive (see page 123) and it must refer an existing field in the linked file (or a field specified in the LINK
directive).

Syntax:
LINKMULTI = field

The field must contain a number. For example, if this is a linked file:

Name, count
Alpha, 1
Beta, 2
Gamma, 3

And you add these lines to your script:

LINKMULTI = count
LINK = linked.csv

The resulting linked file will be:

Name, count
Alpha, 1
Beta, 2
Beta, 2
Gamma, 3

126




Gamma, 3
Gamma, 3

LINKNEW

This directive is used to specify a string, used in substitution for a carriage return read from a spreadsheet file with the
LINK directive (see page 123). If you don’t specify a LINKNEW directive in your script file, every carriage return read
is replaced by \13\.

Syntax:

LINKNEW = string

If you want to use a linked file with an HTMLTEXT directive, you should convert all the carriage returns with the
corresponding HTML code, i.e.:

LINKNEW = <br>

LINKRANDOM

This directive enables/disables the randomization of lines read with a LINK directive (see page 123). It must be used
before the LINK directive (see page 123).

Syntax:

LINKRANDOM = switch
Parameter:

switch: values accepted are:

ON To enable randomization
OFF  To disable randomization (the default)

Example:

LINKRANDOM = ON
LINK = linked.csv

LINKSEP

This directive is used to specify the character used in a link file to separate fields. It must be used before the LINK
directive (see page 123).

[73E2)

If this command is omitted, is used the default separator, a comma “,”.

Syntax:

LINKSEP = separator

You can also specify a special character with the syntax \n\. For example, for a tab you can use this line:

LINKSEP

\ 9\
Example:

LINKSEP = ;
LINK = linked.csv

127



LINKSTYLES

This directive is used to specify alternatives for HTML tags when reading formats from a spreadsheet files. It must be
used before the LINK directive (see page 123).

If this command is omitted, the standard HTML tags are used instead.
Syntax:

LINKSTYLES = bold on, bold off, italic on, italic off, strikeout on, strikeout off, underline on, underline off, superscript
on, superscript off, subscript on, subscript off

LINKTRIM

This directive enables/disables the deletion of empty rows at the end of a spreadsheet file; this directive must be used
before the LINK command (see page 123).

Syntax:

LINKTRIM = switch
Parameter:

switch: values accepted are:

ON to enable the deletion of empty rows (the default)
OFF  to disable the deletion of empty rows

LINKUNI

This directive enables/disables the conversion of Unicode characters when read from a spreadsheet file (to be used with
an HTMLTEXT directive, see page 105); this directive must be used before the LINK command (see page 123).

Syntax:

LINKUNI = switch
Parameter:

switch: values accepted are:

ON to enable the Unicode conversion (the default)
OFF  to disable the Unicode conversion

LOG

This directive appends a string in a text file, if the file doesn't exist, it will be created. If you don’t specify a value, the
file is deleted instead.

Syntax:

LOG = “range”, “filename”, “string”
Parameters:

“range”: a set of cards,

“filename”: name of the file,

“string”: the string that will be written in the text file

128



Example:

1L0G = 1-10, "log.txt", "Card n° {S}"

129



MACRO

With this directive, you can create new procedures, to be used like other directives. The END directive marks the end of
the new procedure, and you can specify a list of parameters, delimited with parenthesis, to be reused in the script block.
You can also specify a default value for each parameter, then if you didn’t use a parameter when you call a macro, the
default value is used instead. In a macro, you can recall another macro, but you can’t create recursive macros.

Syntax:

MACRO = name, (parameterl)valuel, (parameter2)value2, ...

END

Example:
[black] = #000000
[red] = #FFO000O
[blue] = #0000FF
MACRO = dot, (rng), (x), (y), (r)
ELLIPSE = (rng), (x)-(r), (y)-(r), (r)*2, (r)*2, [red][blue]@O
END
MACRO = shadow, (rng), (x), (y), (w), (h), (txt), (col)
FONTRANGE = (rng), Arial, 20, B, [black]
TEXT = (rng), "(txt)", (x)+0.08, (y)+0.08, (w), (h), CENTER, CENTER,
FONTRANGE = (rng), Arial, 20, BT, (col)
TEXT = (rng), "(txt)", (x), (y), (w), (h), CENTER
END
MACRO = card, (rng), (txt), (x), (y), (w), (h), (col)
shadow = (rng), (x), (y), (w), (h), (txt), (col)
dot = (rng), (x), (y), 0.5
dot = (rng), (x)+(w), (y), 0.5
dot = (rng), (x), (y)+(h) ,0.5
dot = (rng), (x)+(w), (y)+(h), 0.5
END
card = 1, "Testl"™, 1, 1, 4, 3, [red][blue]@0
card = 1, "Test2", 1, 6, 2, 2, [red][blue]@0

Result: Image 40

130

0, 50

® 0
Test2
® 0

Image 40



MARGINS

This directive sets the page’s margins. If the directive MARGINS is not specified, the standard margins are 1 cm (each).
Syntax:

MARGINS = left margin, right margin, top margin, bottom margin, odd horiz, odd vert., even horiz., even vert.
Parameters:

left margin: left margin (in cm),

right margin: right margin (in cm),

top margin: top margin (in cm),

bottom margin: bottom margin (in cm),

odd horiz.: horizontal margins offset in odd pages (in cm),

odd vert.: vertical margins offset in odd pages (in cm),

even horiz.: horizontal margins offset in even pages (in cm),

even vert.: vertical margins offset in even pages (in cm).

Example:

MARGINS = 2, 2, 1, 1

MOSAIC

This directive reads all the images in a folder, and arrange them in a rectangle. If the images fill more than one instance
of that rectangle, you can use a page parameter to specify which rectangle is drawn from all the possible choices.

Syntax:

MOSAIC = “range”, “folder”, pos x, pos y, width, height, page, flags, zoom
Parameters:

“range”: a set of cards,

“folder”: a folder to search, eventually with a file pattern,

pos x: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the rectangle (in cm),

height: height of the rectangle (in cm),

page: if not specified, is equal to 1,

flags: one or more of these flags

H the schema is mirrored horizontally
\ the schema is mirrored vertically
S the images are read also in the subfolders

131



zoom: if not specified, is equal to 100
Example:

MOSAIC = 1, "images\*.png", 0, 0, 0, 100%
NANDECK

This directive executes another instance of the program, loads a script, render all the cards and saves them to disk. Then
the execution continues with the next line. This directive is executed only one time with each run of the script.

Syntax:

NANDECK = “source”, output, “path”, dpi, oversample, “range”

Parameters:

“source”: another nanDECK script,

output: this flag specifies the format of the saved images, you can choose between:

BMP

JPG

PNG

GIF

GIFA

TIF

PDF

“path”: the path for the saved images, if isn't specified, the images are saved in the save folder of the source,
dpi: the resolution for the images (see page 84), the default is 300,

oversample: the value for the oversample (see page 132), the default is 1 (no oversample),
“range”: you can specify a range if you don't want to render all the deck.

Example:

NANDECK = "c:\scripts\test.txt", PNG, "c:\output"

NEXT

This directive closes a FOR...NEXT loop (see page 96).
Syntax:

NEXT

Parameters:

none

ORIGIN

With this directive you can specify values to be added to the horizontal and vertical coordinates of all graphic directives
in a range of cards.

Syntax:

132



ORIGIN = range, pos X, pos y

Parameters:

“range”: a set of cards,

pos x: the offset value for all horizontal coordinates,
pos y: the offset value for all vertical coordinates.
Example:

ORIGIN = 1-10, 0.5, 0.5

OVERSAMPLE

If you specify a parameter greater than one, the program works with cards 2x, 3x, or greater than the size specified, and
then resize them to the original size, using the filter specified with IMAGEFILTER directive (see page 113). It’s useful
to smooth every element of the cards, especially with small size one.

Syntax:

OVERSAMPLE = number

Example:

OVERSAMPLE = 2

With this directive, the memory required (and the rendering time) is much more than usual.

PAGE

This directive sets the paper’ size and orientation (for printing and PDF creation).
Syntax:

PAGE = width, height, orientation, flags, html color, “no border range”
Parameters:

width: page width (in cm)

height: page height (in cm)

orientation: the orientation can be chosen between:

LANDSCAPE horizontal
PORTRAIT vertical

flags: in this parameter, you can specify a special behavior for pages, possible values are:

the cards are horizontally centered
the cards are vertically centered
guides are not printed on even pages
guides are not printed on odd pages

om< T

html color: paper color, in the same format used for HTML; you can also use a sequence of two or more colors, if you
want a different color on each page.

no border range: if a range is specified, the border isn’t printed on these cards.

133



If the directive PAGE is not specified, the standard is 21 x 29.7 (A4), portrait, no flags.
Example:

PAGE = 21, 29.7, LANDSCAPE

PAGEFONT

This directive changes the font’s characteristics for page’s headers (see page 99) and footers (see page 95). If you don’t
specify this directive in your script, it will be used Arial 10, black.

Syntax:

PAGEFONT = “font name”, font size, style, html color

Parameters:

“font name”: character’s name (string),

font size: character’s size (integer), in typographical points = 1/72 of an inch,
style: character’ style, values accepted are:

bold

italic

underline
strikeout

nwcCc—w

html color: character’s color, in the same format used for HTML.

Examples:

PAGEFONT = Arial, 10, B, #000000

PAGEFONT = "Times new roman", 16, IU, #FF0000
PAGEIMAGE

This directive draws an image centered on all the printed pages (like a watermark).
Syntax:

PAGEIMAGE = “image file”, flags

Parameters:

“image file”: the image to be printed,

flag: one or more of the following flags:

P proportional

E don’t print on even pages
@] don’t print on odd pages
Example:

PAGEIMAGE = watermark.png, P

Note: use only .bmp or .png images

134



135



PATTERN

This directive prints repeated images in a rectangular area. If you want to print different images instead, you can use the
ICON directive (see page 101).

Syntax:

PATTERN = “range”, “image file”, repetition, pos X, pos y, width, height, obj width, obj height, angle, flags, horizontal
alignment, vertical alignment, alpha

Parameters:

“range”: a set of cards,
“image file”: an existent image file (eventually with a path), formats allowed are bmp, gif, png, jpg, and tif,
repetition: the number of images printed (you can also use a sequence here),

pos x: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the rectangle in which the images are printed (in cm),

height: height of the rectangle in which the images are printed (in cm),

obj width: width of the single image to be printed (in cm),

obj height: height of the single image to be printed (in cm),

angle: angle of image rotation, if not specified it is assumed to be 0 (for no rotation),
flags: in this parameter, you can specify a special behavior for images, possible values are:
Transparent

Anti-aliasing

Reverse, reversing the filling order of pattern’s elements (from bottom to top)
Use PNG transparency

Proportional
Vertical pattern

<TzZzx> -

horizontal alignment: the images’ horizontal alignment in the rectangle, values accepted are:
LEFT left aligned

CENTER centered (the default)

RIGHT right aligned

vertical alignment: the images’ vertical alignment in the rectangle, values accepted are: Image 41
TOP top aligned

CENTER centered (the default)

BOTTOM bottom aligned

alpha: level of transparency of image, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full
solid).

Examples:
[img] = "c:\images\dot red.gif"
RECTANGLE = 1, 0, 0, 6, 5, #0000FF

PATTERN = 1, [img], 5, O, 1, 6, 3, 1.5, 1.5, 0, T, CENTER, CENTER
Result: Image 41

136



PIE

This directive draws a pie slice in a set of cards.

Syntax:

PIE = “range”, pos X, pos y, width, height, start angle, end angle, html color, html color, thickness
Parameters:

“range”: a set of cards,

pos X: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the pie (in cm), U
height: height of the pie (in cm),

start angle: start angle of pie (O=north, 90=east, 180=south, 270=west) Image 43
end angle: end angle of pie (O=north, 90=east, 180=south, 270=west)

html color: border color of the pie, in the same format used for HTML. You can also specify a
gradient.

html color: inner color of the pie, in the same format used for HTML, if not specified the inner color is
the same of border color. You can also specify “EMPTY” for a hollow pie or a gradient.

thickness: thickness of the border of the pie (in cm), if omitted, the pie’s border is 1 pixel wide. Image 44

Examples:

PIE =1, 1, 3, 4, 4, 0, 90, #00FFO0O
Result: Image 42

PIE =1, 1, 3, 4, 4, 90, 270, #FFOOFF, EMPTY, 0.1
Result: Image 43

PIE =1, 1, 3, 4, 4, 0, 270, #FFOOOO#0000FFR90
Result: Image 44

137



POLYGON

This directive draws a polygon in a set of cards.
Syntax:

POLYGON = “range”, pos X, pos y, width, height, num sides, angle, html color, html color, thickness,
start side, end side

Parameters:
“range”: a set of cards,
Image 45
pos X: horizontal position (in cm),
pos y: vertical position (in cm),
width: width of the polygon (in cm),
height: height of the polygon (in cm),
num sides: number of sides (3 = triangle, 4 = square, 5 = pentagon, and so on...),
Image 46

angle: angle of rotation (in degrees),

html color: border color of the polygon, in the same format used for HTML. You can also specify a
gradient,

html color: inner color of the polygon, in the same format used for HTML, if not specified the inner
color is the same of border color. You can also specify “EMPTY” for a hollow polygon or a gradient,

thickness: thickness of the border of the polygon (in cm), if omitted, the polygon’s border is 1 pixel
wide, Image 47

start side: the polygon is drawn starting from this side, it omitted is equal to 1,
end side: the polygon is drawn until this side, if omitted is equal to num sides.
Examples:

POLYGON = 1, 1, 1, 4, 7, 3, 45, #00FFO0O
Result: Image 45

POLYGON =1, 1, 1, 4, 7, 4, 0, #FFOOFF, EMPTY, 0.1
Result: Image 46

POLYGON =1, 1, 1, 4, 7, 5, 0, #FFOOOO#0000FF@90
Result: Image 47

138



PRINT

This directive restricts the deck creation to the specified cards.

Syntax:

PRINT = “range” | DUPLEX | COMPARE

Parameters:

“range”: a range of cards. If you specify the “DUPLEX” parameter, the range is built using information from the
DUPLEX directive (see page 84), if you specify the “COMPARE” parameter, is used the range created with a
COMPARE directive (see page 79).

Examples:

PRINT = "1-3, 8, 10-12"
PRINT = DUPLEX

QRCODE

This directive draws a QRCode (useful to be read with a smartphone) in a set of cards.
Syntax:

QRCODE = “range”, “text”, pos X, pos y, width, height, html color, html color
Parameters:

“range”: a set of cards,

“text”: the text written in the QRCode,

pos x: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the QRCode (in cm),

height: height of the QRCode (in cm),

html color: color of the QRCode, in the same format used for HTML, black if not specified. You can also specify a
gradient,

html color: color of the background, in the same format used for HTML, white if not specified. You can also specify a
gradient.

Example:

QRCODE = "1-10", "http://www.nandeck.com", 1, 1, 4, 4

139



RECTANGLE

This directive draws a rectangle in a set of cards.

Syntax:

RECTANGLE = “range”, pos x, pos y, width, height, html color, html color, thickness
Parameters:

“range”: a set of cards,

pos X: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the rectangle (in cm),

height: height of the rectangle (in cm),

html color: border color of the rectangle, in the same format used for HTML. You can also specify a
gradient.

html color: inner color of the rectangle, in the same format used for HTML, if not specified the inner
color is the same of border color. You can also specify “EMPTY” for a hollow rectangle or a gradient.

thickness: thickness of the border of the rectangle (in cm), if omitted, the rectangle’s border is 1 pixel
wide.

Examples:

RECTANGLE
Result: Image 48

Il
—
N
—
N
—
N

4, 7, #00FFO0O

RECTANGLE
Result: Image 49

Il

-
~

-
~

-
~

N
~

7, #FFOOFF, EMPTY, 0.1

RECTANGLE =1, 1, 1, 4, 7, #FFOOOO#0000FFQ90
Result: Image 50

140

Image 48

Image 49

Image 50




RENDER

With this directive, the program renders only a range of cards. If omitted, all the deck is rendered. If a name is
specified, the range is associated with this string, and can be selected on a window, for a faster switch on multiple
ranges.

Syntax:

RENDER = first card, last card, name

Examples:

RENDER

Il
-
o

~

20

RENDER = 1, 10, "full deck"
RENDER 5, "first half"
RENDER = 6, 10, "second half"

I
=
~

141



RHOMBUS

This directive draws a rhombus in a set of cards.

Syntax:

RHOMBUS = “range”, pos x, pos y, width, height, html color, html color, thickness

Parameters:

“range”: a set of cards,

pos X: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the rhombus (in cm),

height: height of the rhombus (in cm),

html color: border color of the rhombus, in the same format used for HTML. You can also specify a gradient.

html color: inner color of the rhombus, in the same format used for HTML, if not specified the inner color is the same
of border color. You can also specify “EMPTY” for a hollow rhombus or a gradient.

thickness: thickness of the border of the rhombus (in cm), if omitted, the rectangle’s border is 1 pixel wide.
Examples:

RHOMBUS = 1, 1, 1, 4, 7, #00FF0O
Result: Image 51

Image 51

142



ROUNDRECT

This directive draws a rounded rectangle in a set of cards.

Syntax:

RECTANGLE = “range”, pos x, pos y, width, height, html color, html color, thickness, round width, round height
Parameters:

“range”: a set of cards,

pos X: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the rounded rectangle (in cm),

height: height of the rounded rectangle (in cm),

html color: border color of the rounded rectangle, in the same format used for HTML. You can also specify a gradient.

html color: inner color of the rounded rectangle, in the same format used for HTML, if not specified the inner color is
the same of border color. You can also specify “EMPTY” for a hollow rounded rectangle or a gradient.

thickness: thickness of the border of the rounded rectangle (in cm), if omitted, the rectangle’s border is
1 pixel wide.

round width: rounding horizontal factor for the rectangle (1 for a circle), if omitted the default is 5.

round height: rounding vertical factor for the rectangle (1 for a circle), if omitted the default is equal
to horizontal factor parameter (or 5, if the latter is missing).

Note that if you want rounded corners with the same aspect, the horizontal/vertical factors must have a ratio
proportional to the width/height of the rectangle.

Examples:

ROUNDRECT
Result: Image 52

Il
—
N
—
N
—
N

4, 7, #00FFO0O

ROUNDRECT = 1, 1, 1, 4, 7, #FFOOFF, EMPTY, 0.1, 2

Result: Image 53

ROUNDRECT = 1, 1, 1, 4, 7, #FF0000#0000FF@90

Result: Image 54 Image 53

Image 54

143



RTFFILE

This directive prints the RTF text loaded from a filename in the cards specified by a range. This directive is useful if
you want to print a text from a document written using a word-processor (every program has the option to save a file in

RTF format).

Syntax:

RTFFILE = “range”, “rtf file”, pos x, pos Yy, width, height, html color , angle, flags, alpha
Parameters:

“range”: a set of cards,

“rtf file”: the RTF filename for text to be printed (eventually with a pathname),
pos x: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the text’s rectangle (in cm),

height: height of the text’s rectangle (in cm),

html color: background color for text,

angle: angle of text rotation, you must specify 0 for no rotation,

flags: you can specify one or more flags, chosen between:

T Transparent background for text
H Horizontal mirror
Vv Vertical mirror

alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full
solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of

transparency is the starting level, ending with 0 (full transparent).
Example:

RTFFILE = 1, "c:\temp\document.rtf", 0, 0, 6, 8, #FFFF80, O
Result: Image 55

144

Lorem ipsum dolor sit amet,
ronsectetuer adipiscing elit. Lorem
jpsum dolor sit amet, consectetuer
adipiscing elit. Lorem ipsum dolor
sit amet, consectetuer adipiscing
glit. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Lorem
ipsum dolor sit amat, consectetuer
adipiscing elit. Lorem ipsum dolor
sit amet, consectetuer adipiscing
elit.

oo

Image 55



RTFTEXT

This directive prints a text, using RTF format, in the cards specified by a range. This directive is useful if you want to
print a text with multiple size, font, attributes, colors and so on. For expression, you must include them in double curly
parentheses {{ ... }}.

Syntax:

RTFTEXT = “range”, “text”, pos x, pos y, width, height, html color , angle, flags, alpha

Parameters:

“range”: a set of cards,

“text”: the RTF text to be printed,

pos x: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the text’s rectangle (in cm),

height: height of the text’s rectangle (in cm),

html color: background color for text,

angle: angle of text rotation, you must specify 0 for no rotation,

flags: you can specify one or more flags, chosen between:

T Transparent background for text
H Horizontal mirror
Vv Vertical mirror

alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full
solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of
transparency is the starting level, ending with 0 (full transparent).

Example:

RTFTEXT = 1, "{\rtf normall\par{\b bold}\par{\i italic}\par{\ul underline}}", O,
0, 6, 6, #FFFF80, O

Result: Image 56 el

jtalic
underiine

Image 56

145



SAVE

This directive saves the full or partial image(s) of card(s) specified by a range in a file(s). You can use expressions like
{8} to specify different filenames for different cards in the range. The image can also be loaded in another card with
IMAGE directive (see page 110). The formats you can use for the image are BMP, JPG, PNG and GIF, if you didn’t
specify an extension for the filename, the default is BMP. If you didn’t specify a size, the default is all the card.

Syntax:

SAVE = “range”, “image file”, pos X, pos y, width, height, transparent color, “zipfile”, “image file”

Parameters:

“range”: a set of cards,

“filename”: the name of the file created (.bmp extension),

pos X: horizontal start of saved area (in cm),

pos y: vertical start of saved area (in cm),

width: width of the saved area (in cm),

height: height of the saved area (in cm),

transparent color: for PNG and GIF, if this parameter is specified, the file is save with this color as transparent, for
PNG files you can also specify more than one color (for example #0000FF#00FF00 for two colors) and add also a level
of transparency, in the format #xxyyyyyy, where xx = transparency level (from 00 = full transparent to FF = full solid)

and yy = color,

“zipfile”: if this parameter is specified, the image file is added to this zip file,

“image file”: if this parameter is specified (a PNG image), is used as transparency mask for the saved
image.

Examples:

SAVE = 1-3, "card{$§}.bmp", 0, 0, 6, 9

RECTANGLE 1, 1, 4, 7, #0000FF#FF0000@90

RECTANGLE = 1, 0, 0, 6, 9, #000000, EMPTY, 0.5

SAVE = 1, "temp.bmp", 0, 0, 6, 9

IMAGE = 1, "temp.bmp", 3, 0, 3, 4.5, 0, A Image 57
Result: Image 57

Il
—
~

146



SAVEGIFA

This directive saves the full deck of cards in an animated GIF file specified in “filename” parameter.
Syntax:

SAVEGIFA = “filename”, msec, flags, transparent color

Parameters:

“filename”; the name of the file to be created (.gif extension)

msec: the delay between each frame (the default is 1000 = 1 second)

flags: one of the following flags

@] all the images use a single color palette,
P the color palette(s) are packed,
T the frames of the image are saved with a transparent color, specified in the 4" parameter

transparent color: the transparent color in HTML format (if not specified, is set to white) to be used with the T flag.
Example:

SAVEGIFA = deck.gif

Note: there isn’t a “range” parameter because only the final deck can be printed (and then exported in an animated
GIF file). If you want a partial deck, add a RENDER directive.

SAVEPAGES

This directive saves the full deck of cards in one or more image files (one for each page), with names specified in
“filename” parameter, adding a progressive number for each page. The file formats accepted are BMP, JPG (or JPEG),
and PNG.

Syntax:

SAVEPAGE = “filename”

Parameters:

“filename”: the name of the file(s) to be created

Example:

SAVEPAGES = page.png

Note: there isn’t a “range” parameter because only the final deck can be printed (and then exported in one or more
image files). If you want a partial deck, add a RENDER directive.

SAVEPDF

This directive saves the full deck of cards in a PDF file specified in “filename” parameter.
Syntax:
SAVEPDF = “pdf file”

Parameters:

147




“pdf file”: the name of the file to be created (.pdf extension)
Example:

SAVEPDF = deck.pdf

Note: there isn’t a “range” parameter because only the final deck can be printed (and then exported in a PDF file). If
you want a partial deck, add a RENDER directive.

SECTION

The directives contained between SECTION and ENDSECTION directives are associated with the parameter “text”,
and can be activated or deactivated (using the switch parameter), this option can be selected on a window, for a faster
activation/deactivation for multiple names. In this window, there are three buttons: one for enabling all the sections, one
for disabling all the sections, and one (named “Cycle build”) that validates and builds in sequence all the sections
(enabling only one at each cycle).

Syntax:

SECTION = “text”, switch

The parameter switch can be set equal to:

ON to enable the section
OFF to disable the section

Example:
SECTION = "Border", ON

BORDER = RECTANGLE
ENDSECTION

SELECT

The SELECT...ENDSELECT structure can be used to create sections of code that must be executed only if are verified
some conditions. In the default mode, a value is evaluated and only the CASE code with the same value is executed;
you can also add an operator to be used for the test evaluation.

Syntax:

SELECT = value

CASE = valuel

CASE = value2

CASEELSE
ENDSELECT
Parameters:

value: a string, number, label or expression that can be evaluated.

Example:

CARDS = 4

[TEST] = 112|314
SELECT = [TEST]
CASE =1

148




RECTANGLE = 1-4, 0, 0, 100%, 100%, #FF0000

CASE = <4

ELLIPSE = 1-4, 0, 0, 100%, 100%, #000OFF
CASEELSE

RHOMBUS = 1-4, 0, 0, 100%, 100%, #OOFFOO
ENDSELECT
SEQUENCE

This directive is used to start a SEQUENCE...ENDSEQUENCE structure, for creating one or more sequences.
Syntax:

SEQUENCE = label name

Parameters:

label name: the name of the label

Each line in this structure is added to the sequence with the name specified as a parameter.
Example:

SEQUENCE = Title

Earth

Moon

Mars

Venus

Jupiter
ENDSEQUENCE

There is an alternative syntax, for creating multiple sequences. Each line in this structure must contains the name of the
sequence and a value, separated with a pipe | character. For example, this script creates five sequences of two elements
each:

SEQUENCE =

Title |Earth

Image |[Earth.jpg

Description |[Earth is the third planet from the Sun.
Radius [6.371

Orbital Period|365

Title | Moon

Image |Moon. jpg

Description | The Moon is Earth's only natural satellite.
Radius [1.737

Orbital Period|26
ENDSEQUENCE

That script is equivalent to this:

[Title] Earth|Moon

[Image] = Earth.Jjpg|Moon.jpg

[Description] = Earth is the third planet from the Sun.| The Moon is Earth's
only natural satellite.

[Radius] = 6.371[11.737

[

Orbital Period] = 365]|26

149



SET

This directive sets a label with a value. Note: since the syntax [label] is replaced in the validations step, if you want to
read a value memorized with a SET directive, you must use the {label?n} syntax, where n is the index of the sequence
(use 1 if it’s a single value).

Syntax:

SET = “range”, label name, label value

Parameters:

“range”: a set of cards,

label name: the name of the label to be changed (or added, if not exists)

label value: the value of the label

SPECIAL

This directive is used to change the special symbols used for some variables.
Syntax:

SPECIAL = char cardnum, char framenum, char framename

Parameters:

char cardnum: the character used for the number of the current card (default 8).
char framenum: the character used for the number of the current frame (default °).
char framename: the character used for the name of the current frame (default ).
Example:

SPECIAL = $, ~, ?

150



STAR

This directive draws a star in a set of cards.
Syntax:

STAR = “range”, pos X, pos y, width, height, num points, angle, factor, html color, html color,
thickness

Parameters: Image 58
“range”: a set of cards,

pos X: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the star (in cm),

height: height of the star (in cm), Image 59
num points: number of points,

angle: angle of rotation (in degrees),

factor: from O (very pointy star) to 100 (polygon),

html color: border color of the star, in the same format used for HTML. You can also specify a
gradient.

Image 60
html color: inner color of the star, in the same format used for HTML, if not specified the inner color
is the same of border color. You can also specify “EMPTY” for a hollow star or a gradient.

thickness: thickness of the border of the star (in cm), if omitted, the star’s border is 1 pixel wide.
Examples:

STAR =1, 1, 1, 4, 7, 3, 0, 20, #00FFO0O
Result: Image 58

STAR =1, 1, 1, 4, 7, 5, 0, 50, #FFOOFF, EMPTY, 0.1
Result: Image 59

STAR =1, 1, 1, 4, 7, 6, 90, 80, #FFOOOO#00OOFF@S0
Result: Image 60

151



STORE

This directive enables/disables the storing of cards to the deck. The default behavior is that the program memorizes the
images of the cards, but it can be disabled, useful when you don't want to print them or create a PDF, but need only the
images, to be saved with a SAVE directive (see page 146).

Syntax:

STORE = “range”, switch

Parameters:

“range”: a range of cards,

switch: values accepted are:

ON to enable the storing of cards (the default)
OFF  to disable the storing of cards

TABLE

This directive open the virtual table (see page 57) at the end of the building process.
Syntax:

TABLE = num draw, flags

Parameters:

num draw: the number of cards drawn when you double click a deck,

flags: you can choose these flags:

R the drawn card is placed at the right of the deck
L the drawn card is placed at the left of the deck
U the drawn card is placed at the top of the deck
B the drawn card is placed at the bottom of the deck
0] the drawn position is rotated

P the drawn position is randomized

A enable the alignment to grid

C show the canvas as a background image

S automatic selection of object

T show the tags

F bring the selected object to the front

M move complete stacks of cards

TAG

This directive assign a label and a numeric value to a card (or a range of cards). This tag is shown in the Virtual Table
(see page 57) when a card is put in a specific location of the table (if more than one card is in one location, the values of
all the tags with the same name are summed up).

Syntax:

TAG = “range”, tag, number

Parameters:

“range”: a set of cards,

152



tag: the name of the tag,

number: the value of the tag (it can be a sequence of values).
Examples:

TAG = 1-10, card, 1

TAG = 1-20, value, 1]2[3/4/5

153



TEXT

This directive writes a text on a range of cards. The font used is specified using FONT (see page 92) or FONTRANGE
(see page 93) command.

Syntax:

TEXT = “range”, “text”, pos x, pos y, width, height, horizontal alignment, vertical alignment, angle, alpha, outline
width, circle offset, circle angle

Parameters:

“range”: a set of cards,

“text”: the text to be printed,

pos x: horizontal position (in cm),
pos y: vertical position (in cm),

width: width of the rectangle used to draw the text (in cm), you can specify a negative number for a text mirrored
horizontally,

height: height of the rectangle used to draw the text (in cm), you can specify a negative number for a text mirrored
vertically,

horizontal alignment: the text’s horizontal alignment in the rectangle, values accepted are:
left left aligned

center centered

right  right aligned

The horizontal alignment is optional, if omitted is equal to center.

vertical alignment: the text’s vertical alignment in the rectangle, values accepted are:

top top aligned

center centered

bottom bottom aligned

wordwrap  the text is top aligned and word-wrapped in the rectangle
wwtop the text is top aligned and word-wrapped in the rectangle

wwcenter  the text is center aligned and word-wrapped in the rectangle

wwhottom  the text is bottom aligned and word-wrapped in the rectangle

charwrap the text is centered, spaced and word-wrapped (every character) in a pattern

The vertical alignment is optional, if omitted is equal to center.

angle: angle of text rotation, if omitted is 0 (no rotation),

alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full
solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of
transparency is the starting level, ending with 0 (full transparent),

outline width: if you specify a number, the font is drawn as outlined, with this number as line's width.

circle offset: if you specify a number, this is the offset for a circular text (from 0 to 100), the default is 25.

circle angle: if you specify a number, this is the angle of each letter in a circular text, the default is 0.

154



If you want a more flexible command for text, you can use RTFTEXT (or RTFFILE). With these commands, you can
use multiple fonts, size, colors, size and more (justified alignment, tab settings), anything you can write with an RTF
editor.

Tip: you can choose a single specific symbol or character from a visual form, clicking on the button “Insert” and
choosing the menu voice “Symbol”.

Bl Insert symbol g@@
& oA & 2 W’ [ = @ E E & @ & =
Font: |'Wingdings v
[} = E E o E H & B -} = = = a @ &
[ Down ]
= “ L e S T | > e 9 B & @ R
= > o . = 5 3 + S = ¢ & = 8 Y ¥
o Lr] & ] o m 2 Ve o # g & . o] ] [m]
=] a a * i i = ® 2 L “ " o
& @ & & & & & &= & & & & & e & @
(-] &= & & & L & &= & & Ea bl & & UD
o o @ @ 2 m) A + * * - - =
& - < = @ & e o @ & & @ o] ] = @
@ o o F &% & £ &« H F 3 ¥ E\ B W
g & o 7 7B B o< » A v < 2 0 0 < © Symbal
> o~ ¥ R Ed 3 N € 3 72 ¥ B A ok 3 =
= & o = & = z 2 & = x v = = ex) (&) A5CI code

Examples:

RECTANGLE = 1, 1, 1, 4, 7, #0000FF

FONT = Arial, 16, T, #FFFFFF

TEXT 1, "center-top", 1, 1, 4, 2, center, top
TEXT 1, "center-center", 1, 3, 4, 3, center, center D

TEXT = 1, "center-bottom", 1, 6, 4, 2, center, bottom
Result: Image 61

center-top

center-bottom

RECTANGLE = 1, 1, 1, 4, 7, #0000FF
FONT Arial, 16, T, #FFFFFF Image 61 Image 62
TEXT = 1, "left-top", 1, 1, 4, 2, left, top

TEXT = 1, "left-center", 1, 3, 4, 3, left, center

TEXT = 1, "left-bottom", 1, 6, 4, 2, left, bottom T
Result: Image 62 sit amel,

onsectetuer
di|

RECTANGLE = 1, 1, 1, 4, 7, #0000FF
FONT = Arial, 16, T, #FFFFFF

right -cente

TEXT = 1, "right-top", 1, 1, 4, 2, right, top
TEXT = 1, "right-center", 1, 3, 4, 3, right, center
TEXT = 1, "right-bottom", 1, 6, 4, 2, right, bottom

Result: Image 63 Image 63 Image 64

[test] = "Lorem ipsum dolor sit amet, consectetuer

adipiscing elit. Aenean fermentum ipsum eu sapien."”
RECTANGLE = 1, 1, 1, 4, 7, #0000FF

FONT = Arial, 12, T, #FFFFFF o e
TEXT = 1, [test], 1, 1, 4, 7, left, wwtop s

Result: Image 64

Lorem ipsum dolof
ipsum eu sapien sit amet |

[test] = "Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Aenean fermentum ipsum eu sapien.” ipsum eu sapien.
RECTANGLE = 1, 1, 1, 4, 7, #0000FF  Image 65 Image 66

FONT = Arial, 12, T, #FFFFFF
TEXT = 1, [test], 1, 1, 4, 7, center, wwcenter

Result: Image 65
[test] = "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean

fermentum ipsum eu sapien."

155



RECTANGLE = 1, 1, 1, 4,

TEXT = 1, [test], 1, 1,
Result: Image 66

TEXTFONT

7, #0000FF
FONT = Arial, 12, T, #FFFFFF
4, 7, right,

wwbottom

This directive writes a text on a range of cards, it uses the parameters both from TEXT (see page 154) and FONT (see

page 92) directives.

Syntax:

TEXTFONT = “range”, “text”, pos x, pos y, width, height, horizontal alignment, vertical alignment, angle, alpha, “font

name”, font size, style, html color font, html color background, outline width, circle offset, circle angle

TEXTLIMIT

This directive fills four variables with the coordinates of latest drawn text’s boundaries (in cm), from TEXT command

(see page 154). You can use these variables in other commands.

Syntax:
TEXTLIMIT = “range”

The four variables are:

TL (left)
TR (right)
TT (top)

B (bottom)
Parameters:
“range”: a set of cards

Example:

FONT = Arial, 16, , #000000

TEXT = 1, "This is a test", 0, O,

TEXTLIMIT = 1

LINE = 1, TL, O, TL, 2,
LINE = 1, TR, 0, TR, 2,
LINE = 1, 0, TT, 6, TT,
LINE = 1, 0, TB, 6, TB,
Result: Image 67

#000000,
#000000,
#000000,
#000000,

6,

0.
0.
0.
0.

05
05
05
05

center,

156

[This is a iesi

Image 67



THREADS

When the deck is built, if you specify a number different from one, nanDECK executes n copies of itself that render a
section of the current deck. The main program waits until all the sections are complete, and loads them in the current
deck. With a multithreaded CPU, the result is a shorter time for building a deck.

Syntax:

THREADS = number

Parameter:

number: the number of threads that must be used.

Example:

THREADS = 4

Note: this method works if the cards are made independently each other, it can't be used if in the script there are
keywords like COPYCARD or DUPLEX.

TOKEN

This directive prepares a token to be used in the “Virtual table” option (see page 57). A token in the Virtual table can be
a simple counter with a text that can be moved or stacked, or a dice that can be rolled to obtain random values.

Syntax:
TOKEN = “formula”, width, height, font color, back color, number, pos x, pos y
Parameters:

“formula”: the text visualized in the token, can be an empty string or it can be used an expression. If you use an
expression with a “d” for a random value, it can be rolled like a die with a double-click of the mouse on the token itself,

width: width of the token (in pixels), you can also specify a % of the screen width,

height: height of the token (in pixels), you can also specify a % of the screen height,

font color: font color in the same format used for HTML,

back color: background color in the same format used for HTML,

number: the number of tokens (one, if not specified), if more than one the tokens are stacked together on the table,
pos X: horizontal position for the token (in pixels), you can also specify a % of the screen’s width,

pos y: vertical position for the token (in pixels), you can also specify a % of the screen’s height.

Examples:
TOKEN = "{1dé6}", 50, 50, #FFFFFF, #0000FF
TOKEN = "$", 100, 50, #FFFFFF, #00FF0O0, 10

157




TRACK

This directive draws a racetrack section from a point (x1, y1) to another point (x2, y2).
Syntax:

TRACK = “range”, pos X1, pos y1, pos X2, pos y2, track width, html color, num lanes, num spaces, flags, thickness, left
factor, right factor, pattern

Parameters:

“range”: a set of cards,

pos x1, pos y1: coordinates of first point (in cm),

pos X2, pos y2: coordinates of second point (in cm),

track width: width of the track (in cm),

html color: color of the track, in the same format used for HTML. You can also specify a gradient,
num lanes: the number of the lanes that compose the track, the minimum is one.
num spaces: the number of spaces long the track, the minimum is one.

flags: you can choose these flags:

the track section is closed at the start

the track section is closed at the end

even lanes are drawn forward one half space

the track is linked, using a line, to the last track drawn on the same card
the track is linked, using a curve, to the last track drawn on the same card

don't draw external right link
don't draw external left link

MmO Imwm

thickness: thickness of the track’s line (in cm), if omitted, the line is 1 pixel wide,
left factor: for curved link, this parameter set the width of the curve, for the left side of the track,
left factor: for curved link, this parameter set the width of the curve, for the right side of the track,

pattern: a pattern for the track’s line, this pattern can be composed of:

@) dot
D dash
S space

These letters can be repeated, for example “OSDSOS” is a valid pattern.
Example:

TRACK = 1, 1, 8, 5, 1, 1, #000000, 3, 4, SE, 0.1 Image 68
Result: Image 68

158



TRACKRECT

This directive draws a racetrack section from a vertex of a rectangle to the opposite vertex.
Syntax:

TRACK = “range”, pos X, pos y, width, height, track width, html color, num lanes, num spaces, flags, thickness, left
factor, right factor, pattern

Parameters:

“range”: a set of cards,

pos X: horizontal position (in cm),

pos y: vertical position (in cm),

width: width of the rectangle (in cm),

height: height of the rectangle (in cm),

track width: width of the track (in cm),

html color: color of the track, in the same format used for HTML. You can also specify a gradient,
num lanes: the number of the lanes that compose the track, the minimum is one.
num spaces: the number of spaces long the track, the minimum is one.

flags: you can choose these flags:

the track section is closed at the start

the track section is closed at the end

even lanes are drawn forward one half space

the track is linked, using a line, to the last track drawn on the same card
the track is linked, using a curve, to the last track drawn on the same card

don't draw external right link
don't draw external left link

mMoxOrImwm

thickness: thickness of the track’s line (in cm), if omitted, the line is 1 pixel wide,
left factor: for curved link, this parameter set the width of the curve, for the left side of the track,
left factor: for curved link, this parameter set the width of the curve, for the right side of the track,

pattern: a pattern for the track’s line, this pattern can be composed of:

] dot
D dash
S space

These letters can be repeated, for example “OSDSOS” is a valid pattern.

159



TRIANGLE

This directive draws a triangle in a set of cards.
Syntax:

TRIANGLE = “range”, pos X1, pos yl, pos X2, pos y2, pos x3, pos y3, html color, html color,
thickness

Parameters:

Image 69

“range”: a set of cards,
pos x1, pos y1: coordinates of 1% point (in cm),
pos X2, pos y2: coordinates of 2" point (in cm),

pos x3, pos y3: coordinates of 3 point (in cm),

html color: border color of the triangle, in the same format used for HTML. You can also specify a Image 70
gradient.

html color: inner color of the triangle, in the same format used for HTML, if not specified the inner
color is the same of border color. You can also specify “EMPTY” for a hollow triangle or a gradient.

thickness: thickness of the border of the triangle (in cm), if omitted, the triangle’s border is 1 pixel
wide.

Examples:

Image 71

TRIANGLE = 1, 1, 8, 3, 1, 5, 8, #00FFO0O
Result: Image 69

TRIANGLE = 1, 1, 8, 3, 1, 5, 8, #FFOOFF, EMPTY, 0.1
Result: Image 70

TRIANGLE = 1, 1, 8, 3, 1, 5, 8, #FFOOOO#0000FF@90
Result: Image 71

160



UNIT

This directive chooses a unit to be used with all the numeric size in the script. For a correct use, it’s better to include it
in the first line of the script. The default size unit, if UNIT is not used, is the “cm”.

Syntax:

UNIT = type

Parameters:

type: the type of unit can be chosen between:
CM

MM

INCH

Example:

UNIT = inch

Tip: instead of using absolute values, you can always specify a size (in every directive) as a fraction of the whole card,
using number followed by the percentage “%".

VECTOR

This directive draws a SVG file in a set of cards.

Syntax:

VECTOR = “range”, “image file”, pos X, pos y, width, height, angle, alpha, flags
Parameters:

“range”: a set of cards

“image file”: an existent .svg image file (eventually with a path)
pos x: horizontal position (in cm)

pos y: vertical position (in cm)

width: width of the image (in cm)

height: height of the image (in cm)

angle: angle of image rotation, can be O for no rotation

alpha: level of transparency of image, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full
solid)

flags: you can choose these flags:

I use the internal engine (default)
E use Inkscape for image’s rendering (you must specify the path in the Config window)

Example:

IMAGE=1-10, test.svg, 0, 0, 4, 4

161




Note: with the internal engine, the SVG file specifications aren’t fully implemented, some issues exist (for example, in
gradient fill).

VISUAL

This directive is used to open a VISUAL...ENDVISUAL structure (see “Visual editor”, page 59).
Syntax:

VISUAL = flags, horizontal steps, vertical steps

Parameters:

flags: you can choose these flags:

show the horizontal ruler

show the vertical ruler

show the grid

snap to the grid when you move an object
snap to the grid when you resize an object

wWIUOI

horizontal steps: number of horizontal steps for the grid,

vertical steps: number of vertical steps for the grid.

ZOOM

This directive changes the size of cards (all elements, FONT included). Useful to change the final result without having
to modify all the data. If omitted, is considered to be 100 (and there is no change in size). You can specify a 2™
parameter for vertical zoom, if it’s different from horizontal one.

Syntax:

ZOOM = width, height

Examples:

;half size
Z00M = 50

;double size
ZO00OM = 200

162




Code examples

Wargame counters

cardsize=2,2
dpi=600
linkmulti=number
link=data.txt

[back ger]=#C0COCO
[front ger]=#000000
[out ger]=#808080

[back fre]=#8ADDF4
[front fre]=#000000
[out fre]=#808080

macro=outline, (rangel), (textl), (frame), (fontl), (sizel), (coll), (col2), (col3)
font=(fontl), (sizel),, (col3), (col2),0.01,0.01
text=(rangel), (textl), (frame)
font=(fontl), (sizel), T, (coll), (col2)
text=(rangel), (textl), (frame)
end

[all]=1-{ (number) }

<cnt_all>=0,0,2,2

<val 1ft>=0.25,1.25,0.5,0.75

<val cnt>=0.75,1.25,0.5,0.75

<val rgt>=1.25,1.25,0.5,0.75

<val i1d>=0.25,0,1.5,0.25

<img cnt>=0.45,0.3,1.1,0.9

<img ¢cnt2>=0.6,0.5,0.8,0.5
rectangle=[all],0,0,2,2, [back [nation]]

outline=[all], [combat],<val 1ft>,Arial,16, [front [nation]], [back [nation]], [out [nation]]
outline=[all], [movement],<val rgt>,Arial, 16, [front [nation]], [back [nation]], [out [nation]]
if=[command]<>0

outline=[all], [command],<val_cnt>,Arial, 16, [front [nation]], [back [nation]], [out [nation]]
endif
outline=[all], [id],<val id>,Arial,7, [front [nation]], [back [nation]], [out [nation]]
if=[typel=inf

line=[all],<img_cnt, PTL>,<img_cnt, PBR>, [front [nation]],0.04

line=[all],<img_cnt, PBL>,<img_cnt, PTR>, [front [nation]],0.04

line=[all],<img cnt, PTL>,<img cnt, PBR>, [out [nation]],0.02

line=[all],<img cnt, PBL>,<img cnt, PTR>, [out [nation]],0.02
endif

if=[typel=cav
line=[all],<img cnt, PBL>,<img cnt, PTR>, [front [nation]],0.04
line=[all],<img cnt, PBL>,<img cnt, PTR>, [out [nation]],0.02

endif

if=[typel=arm
ellipse=[all],<img cnt2>, [front [nation]],EMPTY,0.04
ellipse=[all],<img cnt2>, [out [nation]],EMPTY,0.02

endif

if=[typel=hq
outline=[all],HQ,<img cnt>,Arial, 16, [front [nation]], [back [nation]], [out [nation]]

endif

rectangle=[all],<img cnt>, [front [nation]],"empty",0.05

rectangle=[all],<img cnt>, [out [nation]],"empty",0.02

Data file (data.txt):

nation, type, combat, movement, command, id, number
fre,inf,3,3,0, XXX, 2

fre,cav,2,5,0,XX,2 "
fre,arm,4,4,0,XXX, 2 L
fre,arm,5,4,0,XXX, 2 &

fre,hq,1,4,3,"De Gaulle",1

Ol
Ol
Ol

X
En

De Gautle

HQ

w
w
w
N
(53}
N
(6}

ger,inf, 3,3,0,XXX, 2

A
A
o
A
o
a»

134

Jw

ger,inf, 3,3,0,XXXX, 2

ger,arm, 6,5,0, XXX, 2
ger,arm,5,4,0,XXX, 2

HQ

ger,hq,1,5,3,Rommel, 1

Xk

e

Xk
-0k . [OF
° [0k

Ol

Ok

w
w
w
w
w
w
w
w
o
o
o
S
o
F =N

163

135




Dice results

cardsize=18,3

border=rectangle
zoom=50
[all]=1-36

<d4>=0,0,3,3
<d6>=3,0,3,3
<d8>=6,0,3,3
<d10>=9,0,3,3
<d12>=12,0,3,3
<d20>=15,0,3,3

[col]l=#000000
font=Arial, 32, T, [col]

polygon=[all],<d4>,3,0, [col],EMPTY,0.1
text=[all]l,"{1d4}",<d4>

polygon=[all],<d6>,4,45, [col],EMPTY, 0.1
text=[all],"{1lde6}",<d6>

polygon=[all],<d8>,4,0, [col],EMPTY,0.1
text=[all]l,"{1d8}",<d8>

VWVWEVVVWWV??WV}WVVVW

line=[all],9,1,10.5,0, [col],0.1
line=[all],10.5,0,12,1, [col],0.1
line=[all],12,1,10.5,3, [col],0.1
line=[all],10.5,3,9,1, [col],0.1
text=[all]l,"{1d10}",<d10>

polygon=[all],<d1l2>,5,0, [col],EMPTY,0.1
text=[all],"{1d12}",<d12>

polygon=[all],<d20>,3,90, [col],EMPTY, 0.1
text=[all],"{1d20}",<d20>

164



Score track

unit=inch
canvassize=15,15

[side a]=framebox(0,0,14,1,1,1,C)
[side b]=framebox(14,0,1,14,1,1,C)
[side c]=framebox(1,14,14,1,1,1,C)
[side d]=framebox(0,1,1,14,1,1,C)

rectangle=0,<side*>, #000000, empty

font=arial,16,T,#000000
text=0,"{°-1}",<side a*>
text=0,"{13+°}",<side b*>,center, center, 90

text=0,"{26+16-°}",<side c*>,center, center, 180
text=0,"{40+16-°}",<side d*>,center,center,270

save=0, "board.png"0,0,15,15

165



Boggle dice

[a]=01102]103104105/06107]108|09(110111112|13114]15]16

N
[range]l=1-{(a)}
[d01]=LRYTTE
[d02]=VTHRWE
[d03]=EGHWNE
[d04]=SEOTIS
[d05]1=ANAEEG
[d06]=IDSYTT
[d07]=0ATTOW
[d08]=MTOICU
[d09]=AFPKFS
[d10]=XLDERI
[d11]=HCPOAS
[d12]=ENSIEU
[d13]=YLDEVR
[d14]=7NRNHL
[d15]=NMIQHU

[d16]=0BBA0OJ

CARDSIZE = 4.5, 4.5

FONT = Arial, 96, , #000000

TEXT = [range], [[d[a]]l:d6,1], O, 0, 100%, 100%

RECTANGLE = [range], 0, 0, 100%, 100%, #0000FF, EMPTY, 10%

166

—|mM<|Z
—|O|0O|»
T|n|<|>T
mimjrr|O




Catan map

canvassize=35, 35
[sea]=framehex (0,0, 35,35,3,C)
[map]=framedisk (sead3, seadl)

'sea
polygon=0,<sea*>,6,90,#000000, #0000FF, 0.1
'field
polygon=0,<4~!map*>,6,90,#000000, #CEC90B, 0.1
'forest
polygon=0,<4~!map*>,6,90,#000000,#008000,0.1
'pasture
polygon=0,<4~!map*>,6,90,#000000, #80FF00,0.1
'mountain
polygon=0,<3~!map*>,6,90,#000000, #C0C0CO0,0.1
'hill
polygon=0,<3~!map*>,6,90,#000000, #800000,0.1
'desert
polygon=0,<~!map*>,6,90,#000000, #FFFF80, 0.1

save=0, "catan.jpg",0,0,35,35

167



Clock

cardsize =
[clock] =
ellipse =
font = Ari
text = 1,
layer = 50
;hours
[hour] = £
line = 1,
;minutes
line = 1,
endlayer

10,10
frameclock (1,
1, <clock*>,
al, 32, T,
"%y,

1, 8,

#Cccccece
#000000
<clock*>,

ameclock (2, 2, 6, 6

r
5, 5, <hour4,

5, 5, <clock2,

PCC>,

PCC>,

center,

8, 2, 2, 12)

center, °*360/12

1,1, 12)

#FF0000, 0.6

#0000FF, 0.4

168




Hex board

page=21.59,27.94,portrait, hv
cardsize=16,24
border=none

[base]=framehex (0,0,16,24,0.85,C)
hex0l]=frameline

[
[
[
[
[
[
[
[
[
[
[

polygon=1,<hex*>,6,90,#000000,EMPTY, 0.1

hex02
hex03
hex04
hex05
hex06
hex07
hex08
hex09
hex10

]
]
]
]
]
]
]
]
]

=frameline
=frameline
=frameline
=frameline
=frameline
=frameline
=frameline
=frameline
=frameline

~ o~~~ o~~~ o~~~

base0101,
base0201,
base0302,
base0402,
base0503,
base0603,
base0704,
base0804,
base0905,
basel005,

hexll]=frameline (basellO6,

base0111)
base0211)
base0312)
base0412)
base0513)
base0613)
base0714)
base0814)
base0915)
basel015)
baselllo)

169




Triangle map

canvassize=21,27

[h]=framehex (0,0,21,27,1,C)
star=0,<h*>,6,90,1,4#000000,EMPTY, 0.05
hexgrid=0,0,0,21,27,1,,#000000, EMPTY, 0.05
save=0,"triangle.png",0,0,21,27

170

AVANYAVANRY AVANEN AVANRVAVANY AVANRVAVA
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV/
AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
WAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV
AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV/
JAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY
WAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV/
AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA'
AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV
JAVAVAVAVAVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAN
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV
JAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY
AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV
JAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV/
JAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAS
AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV
JAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY
WVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV/
JAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY
SONANNANNINNNINININININNNINNINS
JAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV
JAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY
\WAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV/
JAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY
\VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV
JAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY
‘Eﬁllﬂﬂllﬂﬂﬂﬂﬁﬁmtlﬂﬁﬁﬂﬁﬁﬂk‘jw




Chess board

With font “Chess Cases”. Link: http://www.enpassant.dk/chess/fonteng.htm#CASES

canvassize=18,18

[ch]=framebox(1,1,16,16,2,2,E)

{[ch_white]=framelist (chal,chcl,chel,chgl,chb2,chd2,chf2,chh2,cha3,chc3,che3,chg3,chb4,chd4,chf4,chhd,
cha5,chc5, che5, chg5, chb6, chd6,chf6,chh6,cha’7,chc7,che7,chg7,chb8,chd8,chf8, chh8) }
{[ch_black]=framelist (chbl,chdl,chfl,chhl,cha2,chc2,che2, chg2,chb3,chd3,chf3,chh3,cha4,chc4,che4,chg4,
chb5, chd5, chf5, chh5, cha6, chc6,che6,chg6,chb7,chd7,chf7,chh7,cha8,chc8, che8, chg8) }

rectangle=0,<ch white>, #EEEEEE
rectangle=0,<ch black>, #BBBBBB
tt]=framebox(1,0,16,1,2,1,N)

=framebox(1,17,16,1,2,1,N)

]
]=framelist (ttl, tbl)
]=framelist (tt2,tb2)
]=framelist (tt3, tb3)
J=framelist (tt4, tb4)
J=framelist (tt5, tb5)
]=framelist (tt6,tbo6)
]=framelist (tt7,tb7)
]=framelist (tt8, tb8)
]
]
]=framelist (sll,srl)
]=framelist (sl2,sr2)
]=framelist (sl3,sr3)
]=framelist (sl4,sr4)
]=framelist (sl5,sr5)
]=framelist (sl6,sr6)
]=framelist (sl7,sr7)
[s8]=framelist (s18,sr8)
font=arial, 16,,#000000
text=0,a,<tl>
text=0,b, <t2>
text=0,c,<t3>
text=0,d,<t4d>
text=0,e,<t5>
text=0, £, <t6>
text=0,g,<t7>
text=0,h,<t8>
text=0,8,<sl>
text=0,7,<s2>
text=0,6,<s3>
text=0,5,<s4>
text=0,4,<s5>
text=0,3,<s6>
text=0,2,<s7>
text=0,1,<s8>

font="chess cases",48,T,#000000

[wpa]=p
[wkn]=n
[wbi]=Db
[wrol=r
[wqul=q
[wki]=k
[bpal=o0
[bkn]=m
[bbil=v
[bro]=t
[bqul=w
[bki]=1
text=0, [wpa],<ch?7>
text=0, [wro], <cha8>
text=0, [wkn], <chb8>
text=0, [wbi], <chc8>
text=0, [wqu], <chd8>
text=0, [wki], <che8>
text=0, [wbi], <chf8>
text=0, [wkn], <chg8>
text=0, [wro],<chh8>
text=0, [bpa],<ch?2>
text=0, [bro],<chal>
text=0, [bkn], <chbl>
text=0, [bbi], <chcl>
text=0, [bqgu], <chdl>
text=0, [bki], <chel>
text=0, [bbi],<chfl>
text=0, [bkn],<chgl>
text=0, [bro], <chhl>

save=0, chessboard2.png,0,0,18,18

=framebox (0,1,1,16,1,2,N)
=framebox (17,1,1,16,1,2,N)

171


http://www.enpassant.dk/chess/fonteng.htm#CASES

Trivia cards

linkmulti=num

link="qg&a.txt"

[all]="1-{(id)}"

[card id]=join("Card #", [id])
[background]=#D0OD0ODO

[ink]=#000000

[col g]=#FFFF80

[col a]l=#80FF80

rectangle=[all],0,0,100%,100%, [background]
font=arial,1l6,, [ink], [background]

text=[all], [card id],0,0,100%,20%, center, center
roundrect=[all],5%,20%,90%,35%,#000000, [col g],0.1
font=arial,1l2,, [ink], [col g]

text=[all]l, [question],10%,22%,80%,31%,left,wordwrap
roundrect=[all],5%,60%,90%,35%,#000000, [col a],0.1 Card #1
font=arial,12,, [ink], [col a]

text=[all], [answer],10%,62%,80%,31%,left,wordwrap ) -
This is question #1

Data file (q&a.txt):

d, num, question, answer
,"This is question #1","This is answer #1"

\

,"This is question #2","This is answer #2" .
,"This is question #3","This is answer #3"

..
,"This is question #4","This is answer #4" This is answer #1
,"This is question #5","This is answer #5"
,"This is question #6","This is answer #6"
,"This is question #7","This is answer #7"
,"This is question #8","This is answer #8"
"This is question #9","This is answer #9" N

e el el

i
1,
2,
3,
4,
5,
6,
7,
8,
9
1

}_\~

14
0,1,"This is question #10","This is answer #10"

172




Hex racetrack

canvassize=42,44

[hexa]=framehex (0,0,42,44,1,C)
[hexb]=framedisk (hexald4l2,hexa011l2)
[hexc]=framedisk (hexaldl2,hexa0912)
[hexd]=framesub (hexb*, hexc¥*)
polygon=0,<hexd*>, 6,90, #000000, EMPTY, 0.1
save=0, "track.png",0,0,42,44

173



Tuckbox

[imgl]=none

[img2]=none

INPUTTEXT="wid", "Width (cm)","6"

INPUTTEXT="hei", "Height (cm)","9"

INPUTTEXT="dep", "Depth (cm)","3"
INPUTCHOICE="extra","Add extra lines","Yes","Yes|No"

INPUTTEXT="imgl", "Box image (front)","",G

INPUTTEXT="img2", "Box image (rear)","",G

[fla]=[dep]/2

[ide]l=[fla]l/2

[coll]=#000000

[col2]=EMPTY

[thi]=0.1 (

'Uncomment the following line for A4 paper
PAGE=21,29.7, PORTRAIT, HV

'Uncomment the following line for Letter paper
'PAGE=21.59,27.94, PORTRAIT, HV

BORDER=NONE
CARDSIZE=[fla]+[dep]+[hei]l+[dep]+[fla]l, [dep]+[wid]+[dep]+[wid]+[fla]

IF=[imgl]=none
ELSE

IMAGE=1, [imgl], [fla]+([dep], [dep], [hei], [wid], 90, P
ENDIF

IF=[img2]=none
ELSE

IMAGE=1, [img2], [fla]+[dep], [dep]+[wid]+[dep], [hei], [wid],90,P
ENDIF

RECTANGLE=1, [fla]+[dep] ,0 , [hei], [dep], [coll], [col2], [thi]
RECTANGLE=1, [fla] , [dep] , [dep], [wid], [coll], [col2], [thi]

RECTANGLE=1, [fla]+[dep] , [dep] , [hei], [wid], [coll], [col2], [thi]
RECTANGLE:l,[fla]+[dep]+[hei],[dep] , [depl, [wid], [coll], [col2], [thi]
RECTANGLE=1, [fla]+[dep] , [dep]l+[wid] , [heil, [dep], [coll], [col2], [thi]
RECTANGLE=1, [fla]+[dep] , [depl+[wid]+[dep], [hei], [wid], [coll], [col2], [thi]

LINE=1, [flal+[dep] ,0 ,[fla]+[dep]l-[flal, [ide] , [coll], [thi]
LINE=1, [flal+[dep]l-[fla]l, [ide] , [flal+[dep]-[fla], [dep]-[ide], [coll], [thi]
LINE=1, [fla]+[dep]-[flal, [dep]l-[ide], [flal+[dep] , [dep] , [coll]l, [thi]

LINE=1, [fla]l+[dep]l+[hei] ,0 ,[flal+[depl+[heil+[fla], [ide] , [coll], [thi]
LINE=1, [fla]+[dep]+[hei]l+[fla], [ide] ,[flal+[depl+[hei]l+[fla], [dep]l-[ide], [coll], [thi]
LINE=1, [fla]l+[dep]l+[heil+[fla], [dep]-[ide], [flal+[dep]+[hei] , [dep] , [coll], [thi]

LINE=1, [fla] , [dep] , [flal-[fla], [depl+[ide] , [coll], [thi]
LINE=1, [fla]-[fla], [dep]l+[ide] ,[flal-[fla], [dep]+[wid]-[ide], [coll], [thi]
LINE=1, [fla]-[fla], [dep]l+[wid]-[ide], [fla] , [dep]l+[wid] , [coll], [thi]

LINE=1, [fla]+[dep]+[hei]+[dep] , [dep] , [flal+[dep]+[hei]l+[dep]+[fla], [depl+[ide] , [coll], [thi]
LINE=1, [fla]+[depl+[heil+[depl+[flal, [depl+[ide] , [flal+[depl+[hei]+[depl+[fla]l, [dep]l+[wid]-[ide], [coll], [thi]
LINE=1, [fla]+[dep]+[hei]l+[depl+[flal, [depl+[wid]-[ide], [flal+[dep]+[hei]+[dep] , [dep]+[wid] , [coll], [thi]

LINE=1, [fla]+[dep] , [dep]l+[wid] , [fla]l+[dep]-[fla], [dep]+[wid]+[ide] , [coll], [thi]
LINE=1, [fla]+[dep]-[fla], [dep]l+[wid]+[ide] , [fla]+[dep]-[fla], [dep]+[wid]+[dep]-[ide], [coll], [thi]
LINE=1, [fla]l+[dep]-[flal, [dep]l+[wid]+[dep]l-[ide], [fla]l+[dep] , [dep]l+[wid]+[dep] , [coll], [thi]

LINE=1, [fla]+[dep]+[hei] , [dep]l+[wid] ,[fla]+[dep]+[hei]+[fla], [dep]+[wid]+[ide], [coll], [thi]
LINE=1, [fla]+[dep]+[hei]+[fla], [dep]l+[wid]+[ide] , [fla]+[dep]+[hei]+[fla], [dep]+[wid]+[dep]-[ide], [coll], [thi]
LINE=1, [fla]+[dep]+[hei]l+[fla], [dep]+[wid]+[dep]-[ide], [flal+[dep]+[hei], [dep]+[wid]+[dep] , [coll], [thi]

LINE=1, [fla]+[dep] , [dep]l+[wid]+[dep]+[wid] ,[fla]l+[depl+[ide] , [dep]l+[wid]+[dep]l+[wid]+[flal, [coll], [thi]
LINE=1, [fla]+[dep]+[ide], [dep]l+[wid]+[dep]l+[wid]l+[flal, [flal+[dep]+[hei]-[ide],
[dep]+[wid]+[dep]+[wid]+[£fla], [coll], [thi]

LINE=1, [fla]+[dep]+[hei]-[ide], [dep]+[wid]+[dep]l+[wid]l+[fla], [fla]+[dep]+[hei],
[dep]+[wid]+[dep]+[wid], [coll], [thi]

IF=[extral]=Yes
LINE=1, [fla]+[depl+[heil-[fla], [dep], [fla]+[dep]+[hei]l-[fla], [dep]+[wid], [coll], [thi],DSS
{

BEZIER=1,
[flal+[dep]l+[hei], [depl+[wid]+[dep]+[wid]/2-[ide],
[fla]l+[dep]l+[hei]l-[ide], [dep]l+[wid]+[dep]+[wid]/2- el,
[flal+[depl+[hei]-[ide], [dep]l+[wid]+[dep]+[wid] /2+ el,
[flal+[dep]l+[hei], [depl+[wid]+[dep]+[wid]/2+[ide],
[coll], [thi]}

ENDIF

174



Number wheel

[size]=3.5

[numbers]=45

unit=inch

cardsize=[size], [size]
[num]=frameclock(0.1,0.1, [size]-0.2, [size]-0.2,0.3,0.3, [numbers])
[green]=framelist (numl..numlb5)

[yellow]=framelist (numl6..num30)

[red]=framelist (num31..numé4b)
font=arial,12,T,#000000

ellipse=1,<green>, #00FF00

ellipse=1,<yellow>, #FFFF00

ellipse=1,<red>, #FF0000
text=1,{°-1},<num*>, center, center, °*360/ [numbers]-90
ellipse=1,0,0,100%,100%,#000000, empty, 0.01
ellipse=1,48%,48%,4%,4%,#000000, empty, 0.01

save=1, "wheel col.png",0,0,100%,100%

175



Tripples tiles

cardsize=2,2

'draw and save an image

line=0,1 ,0.2,1 ,1

line=0,1 ,0.2,1.2,0.
line=0,1.2,0.4,0.8,0.
line=0,0.8,0.4,1 ,0.

save=0,"arrow.bmp", 0,

'create all the permutations

priperm]8=0]1

'takes only the tiles with three

(an arrow)
,#000000,0.15
4,#0000FF,0.15
4,#0000FF,0.15
2,#0000FF,0.15
0,2,2

(256)

BN

[tiles]=filter (+[perm], 3)

[all]=1-{(tiles)}
'draws a dot
ellipse=[all],0.95,0.

05,0.1,0.1,#000000

'draws the eight arrows

if=[tiles:8,1]=1
image=[all],"arrow.
endif
if=[tiles:7,1]=1
image=[all],"arrow
endif
if=[tiles:6,1]=1
image=[all],"arrow
endif
if=[tiles:5,1]=1
image=[all],"arrow
endif
if=[tiles:4,1]=1
image=[all],"arrow
endif
if=[tiles:3,1]=1
image=[all],"arrow
endif
if=[tiles:2,1]=1
image=[all],"arrow
endif
if=[tiles:1,1]=1
image=[all],"arrow
endif

bmp",0,0,2,2,0,T

.bmp",-0.5,-0.5,3,3,45,T

.bmp",0,0,2,2,90,T

.bmp",-0.5,-0.5,3,3,135,T

.bmp",0,0,2,2,180,T

.bmp",-0.5,-0.5,3,3,225,T

.bmp",0,0,2,2,270,T

.bmp",-0.5,-0.5,3,3,315,T

of two elements

(0 and 1)

taken eight times

& 0% L ey

P8 ] S
T DA e

176

Ol i R R

TR EdP v




Path tiles

oversample=2

macro=tile, (range), (key), (char), (color), (width)

beziers=(range)
if=[(key):1,1]1=(char)

beziers=(range),1,0,1,1, (color), (width)

endif
if=[(key):2,1]=(char)

beziers=(range),2,0,2,1, (color), (width)

endif
if=[(key) :3,1]=(char)

beziers=(range),3,1,2,1, (color), (width)

endif
if=[(key) :4,1]=(char)

beziers=(range),3,2,2,2, (color), (width)

endif
if=[(key) :5,1]=(char)

beziers=(range),2,3,2,2, (color), (width)

endif
if=[(key) :6,1]=(char)

beziers=(range),1,3,1,2, (color), (width)

endif
if=[(key):7,1]=(char)

beziers=(range),0,2,1,2, (color), (width)

endif
if=[(key) :8,1]=(char)

beziers=(range),0,1,1,1, (color), (width)

endif
end

cardsize=3,3
pxxs[list]8=alalblblclcldld

[range]=1-{ (list)}

tile=[range], [1list],a,#000000,0.
tile=[range], [list],a, #FFFFFF, 0.
tile=[range], [1list],b,#000000,0.
tile=[range], [list],b, #FFFFFF, 0.
tile=[range], [1list],c,#000000,0.
tile=[range], [list],c, #FFFFFF, 0.
tile=[range], [1list],d,#000000,0.
tile=[range], [list],d, #FFFFFF, 0.

rectangle=[range],0,0,3,3,#000000,EMPTY, 0.1

P NENE NN

177

VI IVIVU |V ]|V I[V
P PN PRT R
A\U/\U( S AY) %
EEEEEEN R
XXR% 3n ||_—W\“ \??

i

%

%

U ) UL B
\I\ M\[\U} )&*%%
e ==




Combinations

ellipse=0,0,0,6,6, #FFO000#FFFFFF@360
save=0,a.png,0,0,6,6
ellipse=0,0,0,6,6,#00FFO0#FFFFFF@360
save=0,b.png,0,0,6,6
ellipse=0,0,0,6,6,#0000FF#FFFFFF@360
save=0,c.png,0,0,6,6
ellipse=0,0,0,6,6, #FFOOFF#FFFFFFE@360
save=0,d.png,0,0,6,6
ellipse=0,0,0,6,6, #FFFFO0#FFFFFF@360
save=0,e.png,0,0,6,6
ellipse=0,0,0,6,6, #00FFFF#FFFFFFE@360
save=0,f.png,0,0,6,6
ellipse=0,0,0,6,6,#000000#FFFFFF@360
save=0,g.png,0,0,6,6

clcomb]3=alblcldlelflg
[all]=1-{ (comb) }
icon=[all],a,a.png
icon=[all],b,b.png
icon=[all],c,c.png
icon=[all],d,d.png
icon=[all],e,e.png
icon=[all], f, f.png
icon=[alll,g,g.png

icons=[all], [comb],1.5,1.5,3,6,3,3,0,P

178




Standard 52-deck of cards

sequence:number

O o Jo Ul WwN

10
endsequence

sequence=face
J

Q

K

endsequence

sequence=
suit [\169\

suit fnt|Symbol
suit col |[#FF0000

suit [\168\
suit fnt|Symbol
suit col [#FF0000

suit [\167\
suit fnt|Symbol
suit col|[#000000

suit I\N170\
suit fnt|Symbol
suit col|[#000000
endsequence

<cornerl a>=0,0,15%,10%
<cornerl b>=0,10%,15%,10%
<cornerl>=0,0,15%,20%
<corner2>=85%,0,15%,20%
<corner3>=0,80%,15%,20%
<corner4>=85%,80%,15%,20%
<core>=15%,20%,70%,60%

cards={ (suit) * ( (number) + (face) ) +1}
for=a,1, { (suit) }
for=b, 1, { (number) }
font=Arial,24,, {suit_col?a}
text={b+((a)-1)* ((number) + (face) ) }
font={suit fnt?a},32,, {suit col?a}
text={b+((a)-1)* ( (number) + (face) ) }

copy={b+((a)-1)* ( (number) + (face) ) }
copy={b+ ((a)-1)* ( (number) + (face)) }
copy={b+ ((a)-1)* ( (number) + (face)) }
text={b+((a)-1)* ((number) + (face) ) }
next
next

for=a,1l, { (suit) }
for=b,1, { (face)}
font=Arial,24,, {suit_col?a}
text={b+((a)-1)* ((number)+ (face))+
font={suit fnt?a},32,, {suit col?a}
text={b+((a)-1)* ( (number) + (face) ) +
copy={b+((a)-1)* ((number) + (face) ) +
copy={b+ ((a)-1)* ( (number) + (face) ) +
copy={b+((a)-1)* ((number) + (face) ) +
font=Arial, 128,, {suit _col?a}
text={b+((a)-1)* ( (number) + (face) ) +
next
next

rectangle={ (suit) * ( (number) + (face) ) +1}
font=arial, 48, TN, #FFFFFF

text={ (suit) * ( (number)+ (face))+1}, "nanDECK",0,0,100%,100%, center,center,-56.31

<€ >

< ®»

, {number?b}, <cornerl a>

,{suit?a},<cornerl b>
,<cornerl>,<corner2>,0
<cornerl>,<corner3>,180
<cornerl>,<cornerd4>, 180

, {{suit?a}Xb},<core>, center,charwrap

’
’

(number) }, {face?b},<cornerl a>

(number) }, {suit?a},<cornerl b>
(number) },<cornerl>,<corner2>,0
(number) },<cornerl>,<corner3>, 180
(number) },<cornerl>,<cornerd4>, 180

(number) }, {face?b}, <core>

,0,0,100%,100%, #FFO0O00#0000FF@90

179

<>

<P




