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An overview 

nanDECK is a program capable of creating graphic elements from scripts: every line of a script contains a command, 

for rendering texts, rectangles and other graphic elements. The program was made for creating cards, but it can be used 

for many other graphic objects; each card is treated like a different page, in which you can draw different graphical 

elements. At the start, you can write the script in the large edit box in the center of the window: 

 

 
 

You can load a script with the “Open deck” button, save it with “Save” and “as” buttons, and create the deck with the 

buttons “Validate deck” and “Build deck”. 

 

Tip: You can do both if you right-click the “Validate deck” button. 

 

All commands start with a keyword, an equal sign (=) and a list of parameters; for many commands, the 1st parameter is 

a range of “cards” in which the command will be executed. The commands without a range will be evaluated only once 

(for example the BORDER directive to draw a border on all cards, or the CARDS directive for setting the number of the 

cards in the deck), or for every card (like the FONT directive); in other words, the program creates the 1 st card in the 

deck, and executes all the script on it, then it switches on the 2nd card, and executes all the script and so on; each ranged 

directive is executed only if the range match. 

 

Note: the CARDS directive is no longer needed, now the program creates automatically a deck using the information 

from all the directives in the script. For example, if you have a 10-30 range, the deck will be created with 30 cards. 

 

For example, in a game of Werewolf, I need a card with a word “SEER”, three “WEREWOLF” and thirteen 

“VILLAGER”. The first card will be: 

 
FONT = Arial, 32, B, #0000FF 

TEXT = 1,"SEER", 0, 0, 100%, 100%, center, center 

 

With the 1st line, I choose a font: Arial 32, bold, and blue (the #0000FF parameter); with the 2nd line I draw the word 

“SEER” in the center of the whole card #1 (starting from 0,0 – top left of the card, 100% width and 100% height). The 

other cards will be drawn with these lines: 

 
FONT = Arial, 24, B, #FF0000 

TEXT = 2-4, "WEREWOLF", 0, 0, 100%, 100%, center, center 
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FONT = Arial, 28, B, #000000 

TEXT = 5-18, "VILLAGER", 0, 0, 100%, 100%, center, center 

 

Note the range 2-4 and 5-18, for three and thirteen cards. Other elements can be added, for example a rectangle: 

 
RECTANGLE = 1-18, 0, 0, 100%, 100%, #FFFFFF#000000#FFFFFF@90, empty, 1 

 

The rectangle is on all the cards (range 1-18), from 0,0 – top left, 100% width and 100% height, with a gradient starting 

from white (#FFFFFF), to black (#000000), again to white, rotated 90°; not filled (empty parameter) and with a border 

thickness of 1”. 

 

The flexibility of the program is that an element can be added on one or more than one card, changing only the range 

parameter. If you want to add an image on all the cards, you can add a line like this: 

 
IMAGE = 1-18, "Logo.png", 0, 0, 20%, 20%, 0, TP 

 

In the left bar in the main window you can use these command buttons: 

 

New deck: creates a new script. 

 

wiz: creates a new script selecting some options. 

 

Open deck: open a saved script. 

 

Reopen deck: open a saved script, picking one from a list of the last accessed. 

 

Save: save the current script. 

 

as: save the current script with another name. 

 

Exit program: close the program. 

 

Validate deck: the program check the syntax of the script. 

 

Build deck: the program builds the deck of cards. 

 

Print deck: the program print the deck of cards. 

 

Save images: the program saves the images of each card of the deck, see page 52. 

 

MT: the program can launch several instances of itself, each with a range of the deck. 

 

PDF: the program creates a PDF file with all the cards’ images, see page 51. 

 

CP: the program creates one image from each page of a PDF, see page 52. 

 

GIFa: with this option, you can save the current deck into an animated GIF image (you can choose the delay between 

images and select an optimized palette). 

 

TIFF: with this option, you can save a multi-page TIFF image (with RGB or CMYK color space). 

 

Print script: print the current script. 

 

Insert >: this button open a menu, where you can insert a color, a font, an image, a symbol, a gradient, an include file, a 

linked file, a label, a frame or a folder. 

 

Linked data: you can edit the data from a linked csv file, see page 56. 

 

Find: find a string in the script editor. 

 

rpl: find and replace a string in the script editor. 
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Add (CTRL+R): the program adds a comment in the current line / selected block of the script. 

 

Com (CTRL+E): the program toggles a comment in the current line / selected block of the script. 

 

Rem (CTRL+U): the program removes a comment in the current line / selected block of the script. 

 

Help (F1): the program shows a help page for the current directive. 

 

(F2): the program shows a window for modifying the current directive. 

 

Config: the configuration options, see page 61. 

 

Info: info about the author. 

 

In the right bar, you can use these command buttons: 

 

Link first: if you check this option, only the first line from a data file (csv or spreadsheet) is read, for testing purpose. 

 

Link dis.: if you check this option, the data file (csv or spreadsheet) is not read, and are shown only the fields’ names, 

for testing purpose. 

 

Preview: remove the check in this option if you want to hide the card preview (the rendering is faster). 

 

Goto card: click to select a card from the deck to be viewed. 

 

Auto build: check this option if you want to see in real time the script’s changes in the preview. 

 

Highlight (checkbox): check this option to highlight with colors each line of the editor and each graphic element of the 

preview. 

 

Highlight (button): click to highlight the graphic element of the preview corresponding to the current line of the editor. 

 

Partial: the program renders the current card only until the position of the cursor in the editor. 

 

Arrow buttons: with these buttons, you move between the cards of the deck (first, prior, next, and last). 

 

Card preview: this button shows you an enlarged view of the current card. 

 

Canv: this button shows you the canvas (the “zero” card). 

 

Visual Editor: the program opens the visual editor window, see page 59. 

 

Comp: this button shows a window for comparing different decks of cards. 

 

Script list: in this window, you can execute several scripts, in a batch mode, see page 50. 

 

Edit: in this window, you can edit the content of a linked spreadsheet file. 

 

Table: the program opens the virtual table window, see page 57. 

 

The Game Crafter: in this window, you can upload a deck of card directly to the website 

http://www.thegamecrafter.com for printing and/or publishing your game. 

 

All deck: this button selects all the cards in the deck to be rendered (the start-end range is in the two edit box to the left 

and right of this button). 

 

http://www.thegamecrafter.com/
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Editor commands 

CTRL+X Cut 

CTRL+C Copy 

CTRL+V Paste 

 

CTRL+A Select all 

CTRL+B Validate and build the current card 

CTRL+I Insert card’s number (character §) 

CTRL+O Insert frame’s number (character °) 

CTRL+P Insert frame’s number (character µ) 

CTRL+R Comment current line/selected text 

CTRL+U Remove comment from current line/selected text 

CTRL+E Toggle comment on/off in current line/selected text 

 

SHIFT+CTRL+I Block indent 

SHIFT+CTRL+U Block un-indent 

SHIFT+ALT+UP Move block up one line 

SHIFT+ALT+DOWN Move block down one line 

 

CTRL+D Add new tab with a new version 

SHIFT +CTRL+D Duplicate current line 

CTRL+M Line break 

CTRL+N Add new tab (empty) 

CTRL+T Show windows side by side 

CTRL+Y Delete line 

SHIFT+CTRL+Y Delete EOL 

CTRL+Z Undo 

SHIFT+CTRL+Z Redo 

 

CTRL+0…9 Go to marker 0…9 

SHIFT+CTRL+0…9 Set/remove marker 0…9 

 

SHIFT+CTRL+C Set columns selection 

SHIFT+CTRL+L Set lines selection 

SHIFT+CTRL+N Set standard selection  

SHIFT+CTRL+B Match bracket 

 

CTRL+F Find 

CTRL+H Replace 

CTRL+G Go to line 

 

F1 Help (current line directive) 

CTRL+F1 Auto layout (white on black) 

F2 Modify (current line directive) 

CTRL+F2 Auto layout (color) 

F3 Modify (current line directive, visual mode) 

CTRL+F3 Auto layout (black on white) 

F4 Visual editor 

F5 Auto build switch 

F6 Go to card 

F7 Highlight current line 

CTRL+F7 Highlight all lines switch 

F8 Insert label 

CTRL+F8 Insert frame 

F9 Insert color 

CTRL+F9 Insert gradient 

F10 Partial build switch (build source until current line) 

 

Tip: You can copy the current card’s image if you press CTRL+C after a click on the card image. 
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Tip: You can validate and build the current card’s image if you right-click on the card image. 

 

Tip: You can validate and build the whole deck if you right-click on the “Validate deck” button. 

 

Tip: You can edit more than one script simultaneously, right click on the tab on the upper side of the screen and choose 

the voice “Add new tab” to add another tab to the editor. 

 

Tip: You can move between cards using the mouse wheel. 
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Getting started… 

This is a simple yet complete tutorial about how to create a deck of cards starting from a spreadsheet file. 

 

First, I wrote some data, and save them as Data.xlsx: 

 

 
 

Note: each column will be identified with the name in the first line (each must be different). 

 

I start nanDECK, and as first line I link that file: 

 
LINK = Data.xlsx 

 

Then I save the script, as tut01.txt, in the same folder with the Excel file (if I want to save it in a different folder, in the 

LINK line I must specify also the path, for example c:\users\nand\desktop\data\data.xls). 

 

I want to put the title in the top of the card, then I select a font with the line: 

 
FONT = Arial, 24, , #000000 

 

Font name for the 1st parameter, size for the 2nd, and color for the 4th. The 3rd is empty, this is the place for flags like B 

(bold), I (italic), U (underline) and so on (among others, if you want to shrink the font size to fit the space, use a N flag, 

if you don’t want to see the text background, use a T flag). If you use more than one flag, put them all in this parameter 

(for example: BTN). 

 

And add the title with this line: 

 
TEXT = 1-3, [name], 0, 0, 100%, 20% 

 

The 1st parameter is the range, and I want to put this text on three cards (from 1 to 3, then the syntax is 1-3), the 2nd 

parameter is the column name from the Excel file (enclosed in square brackets), the others are the position (0, 0 is top 

left), width (100% of the card’s width) and height (20% is a fifth of the card’s height). 

 

Note: I can use also values in cm, and I can specify 0, 0, 6, 1.8 (for a default card of 6 x 9 cm), but with percent values I 

can change the size of the card without having to change every size of every element. 

 

With a click on “Validate deck” button, “Build deck” button, the deck is created with three (ugly) cards: 

 

 
 

Let’s add some images: 
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IMAGE = 1-3, [img], 0, 20%, 100%, 40%, 0, P 

 

The 0 in the 7th parameter is the angle of rotation for the image, and the P is for proportionally resize the image, if you 

have transparent PNGs, add a N flag in the same parameter (i.e. PN). 

 

I’ve added the images’ files in the same folder with the spreadsheet and the script, and this is the result after Validate + 

Build: 

 

 
 

These lines are for the description: 

 
FONT = Arial, 10, , #000000 

TEXT = 1-3, [desc], 5%, 65%, 90%, 30%, left, wordwrap 

 

I choose a smaller font, and since the description is more than one line, I add left as horizontal alignment and wordwrap 

as vertical. This is the result: 

 

 
 

These lines are for the value column: 

 
FONT = Arial, 32, T, #FF0000 

TEXT = 1-3, [value], 0, 20%, 20%, 40% 

 

To make the number readable on every background, I can add an outlined text: 

 
FONT = Arial, 32, T, #FFFFFF 

TEXT = 1-3, [value], 0, 20%, 20%, 40%, center, center, 0, 100, 0.1 

 

The “0, 100, 0.1” are respectively for angle, transparency and outline width. 

 

Note that these lines must be added before, because every element in a script is drawn accordingly to its position: first 

are drawn elements in the first lines, the last drawn are those in the bottom lines. 

 

 
 

I have four icons (one for each element), each identified with a letter in my Excel file (and on each card, there may be 

more than one icon). I add these lines in the script: 

 
ICON = 1-3, A, air.png 

ICON = 1-3, E, earth.png 

ICON = 1-3, F, fire.png 

ICON = 1-3, W, water.png 

 

ICONS = 1-3, [icons], 80%, 20%, 20%, 40%, 20%, 10%, 0, PN 
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In the last line, I specify the icons’ area (80%, 20%, 20%, 40%), the size of each icon (20%, 10%), the angle of rotation 

(0) and to use proportional resize (P) and PNG transparency (N). 

 

I’ve added the four png files in the same folder. And this is the result: 

 

   
 

Finally, I want to duplicate each card for the number specified in the “num” column, then I add, as first line (before the 

LINK), this directive: 

 
LINKMULTI = num 

 

I must also change every range 1-3 into 1-7. This is the result page: 

 

 
 

This is a more compact version of the script, here the 1st parameter (the range) is empty for most directives because I 

want to put the text/images on all the cards, and if I leave the 1st parameter empty, nanDECK uses as a default 1-n, 

where n is the number of lines in the Excel file. 
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LINKMULTI = num 

LINK = Data.xlsx 

 

FONT = Arial, 24, , #000000 

TEXT = , [name], 0, 0, 100%, 20% 

 

IMAGE = , [img], 0, 20%, 100%, 40%, 0, P 

 

FONT = Arial, 10, , #000000 

TEXT = , [desc], 5%, 65%, 90%, 30%, left, wordwrap 

 

FONT = Arial, 32, T, #FFFFFF 

TEXT = , [value], 0, 20%, 20%, 40%, center, center, 0, 100, 0.1 

FONT = Arial, 32, T, #FF0000 

TEXT = , [value], 0, 20%, 20%, 40% 

 

ICON = , A, air.png 

ICON = , E, earth.png 

ICON = , F, fire.png 

ICON = , W, water.png 

 

ICONS = , [icons], 80%, 20%, 20%, 40%, 20%, 10%, 0, PN 
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Ranges 

Many directives (like IMAGE or TEXT) have a parameter for specifying for which cards will be executed that 

directive. A card in a range may be specified directly with a number, a list of cards with a list of numbers separated by a 

comma “,” and a range of cards with the first and last cards separated with a dash “-” or the first card and a number, 

separated with a number sign “#”. 

 

Examples: 

 
RECTANGLE = 1, 0, 0, 6, 9, #0000FF 

RECTANGLE = "1,3,5,7", 0, 0, 6, 9, #0000FF 

RECTANGLE = 1-10, 0, 0, 6, 9, #0000FF 

RECTANGLE = 10#5, 0, 0, 6, 9, #0000FF 

 

Note: in the 2nd line the range must be enclosed in quote for the presence of commas, however, you can always enclose 

all ranges in quotes. 

 

You can mix the two methods, and use a complex range, like: 

 
RECTANGLE = "1-10,12,15,19-20,35#3", 0, 0, 6, 9, #0000FF 

 

A number in a range can be the result of an expression (see page 40), and must be enclosed between “{” and “}. For 

example: 

 
RECTANGLE = 1-{2*5}, 0, 0, 6, 9, #0000FF 

 

Usually, the order doesn’t matter (1-10 is equal to 10-1) but for one command, COPYCARD, the order is important, 

because the source range is uses as specified, these two rows are different: 

 
COPYCARD = 11-20, 1-10 

COPYCARD = 11-20, 10-1 

 

The 1st row gives as result this sequence of cards: 

1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10 

 

The 2nd row gives as result this sequence of cards: 

1,2,3,4,5,6,7,8,9,10,10,9,8,7,6,5,4,3,2,1 

 

There is a syntax that can be used to change that behavior, useful, for example, to invert sub-ranges of cards (for 

printing front-back). For example: 

 
COPYCARD = 10-18, 1-9$abc>cba 

 

The first group of characters is the start pattern, the second group is the destination pattern, reversed in groups of three 

cards. You can obtain the same result manually writing: 

 
COPYCARD = 10-18, "3-1,6-4,9-7" 

 

This syntax is useful also if you want to specify a “hollow” range, for example, if you want a rectangle only on even 

cards: 

 
RECTANGLE = 1-10$ab>a, 1, 1, 4, 4, #FF0000 

 

Note: the $abc>cba syntax works only when the card number is defined using a CARDS command. 

 

See also: Labels and sequences chapter (page 19), AUTORANGE label function (page 25), and BASERANGE 

directive (page 67) about the interaction between ranges and sequences. 
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Colors 

In this program, the colors will be defined by a string of seven characters, starting with a number sign “#” and six 

hexadecimal digits (using the HTML syntax), two for each component (red-green-blue), for example:  

 

White #FFFFFF 

 

Black #000000 

 

Red #FF0000 

 

Green #00FF00 

 

Blue #0000FF 

 

Cyan #00FFFF 

 

Magenta #FF00FF 

 

Yellow #FFFF00 

 

Tip: if you use the wizard for a new deck (the “wiz” button, to the right of “New deck” button), you can check the 

“Include labels for HTML colors” to obtain a set of 140 label definition for many colors. 

 

Tip: you can choose a color from a color picker, clicking on the button “Insert” and choosing the menu voice “Color”. 

 

 
 

If instead of a hexadecimal digit you specify a letter “H”, you obtain a random value from 0 to 15. For example, if you 

want a complete random color, with this syntax you can use #HHHHHH, instead for a random hue of blue, you can use 

#0000HH, and so on. The letter “L” stands for the last color used, then #LLLLLL is the last color, instead #0000LL is 

the last blue component used. 

 

You can concatenate more than one color to obtain a gradient, followed by a “@” to specify the angle. If you use these 

special values for the angle, you obtain a special gradient: 

 

360 Radial gradient 

361 Elliptical gradient 

362 Square gradient 

363 Star gradient 

 

These are some examples: 
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From black to white, horizontal #FFFFFF#000000@0 

 

From red to blue, vertical #0000FF#FF0000@90 

 

From cyan to magenta, radial #FF00FF#00FFFF@360 

 

From cyan to magenta, elliptical #FF00FF#00FFFF@361 

 

From teal to yellow, square #FFFF00#008080@362 

 

From orange to purple, star #400080#FFA500@363 

 

From red, to green, to blue, horizontal #0000FF#00FF00#FF0000@0 

 
 

If you omit the “@”, the colors are randomized (and smoothed); specifying a "%" and a number, you set a threshold for 

the 2nd color, for example: 

 

Blue and red, randomized #0000FF#FF0000 

 

Blue and red, randomized 50% #0000FF#FF0000%50 

 

Red and blue, randomized 50% #FF0000#0000FF%50 

 

Blue, green, and red, randomized #0000FF#00FF00#FF0000 

 
 

Specifying a $ and a number, the colors are smoothed that number of times (without specifying it, the color is smoothed 

only one time), for example: 

 

Blue and red #0000FF#FF0000 

 

Blue and red, no smoothing #0000FF#FF0000$0 

 
 

Red and blue, two smoothing #FF0000#0000FF$2 

 
 

If you add a & and a number in the color, the pattern is created with a Perlin Noise algorithm, with a number of 

iteration equal to the numeric parameter, for example: 

 

Blue and red, eight iterations #0000FF#FF0000&8 

 

Blue and red, six iterations #0000FF#FF0000&6 

 

Blue and red, three iterations #0000FF#FF0000&3 

 
 

If you add a ç in the color, the random pattern is made of stripes (and you can use more ç to make the stripes longer), 

for example: 
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Blue and red, randomized #0000FF#FF0000 

 

Blue and red, striped #0000FF#FF0000ç 

 

Blue and red, striped x 2 #0000FF#FF0000çç 

 
 

Tip: you can choose a gradient from a visual form, clicking on the button “Insert” and choosing the menu voice 

“Gradient”. 
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Labels and sequences 

A label is used as a variable value in a script, and may be initialized and used several times in the code. It can be 

initialized with this syntax: 

 
[name] = value 

 

And used specifying its name (always delimited with “[” and “]”). This is an example: 

 
[alpha] = "This is a text" 

FONT = Arial, 32, , #000000 

TEXT = 1-10, [alpha], 0, 0, 6, 9, center 

 

A sequence is a list of values used as a parameter in a directive. Each value is separated using the character pipe “|”. For 

each card in the directive’s range the program uses a different element in a sequence (restarting from the first if the 

sequence’ size isn’t enough to fill the range), for example, if you want ten cards, half with the word “odd” and half with 

the word “even”, you can use the TEXT directive, with a range 1-10 and a sequence of the two words as text parameter 

(“odd|even”). 

 
FONT = Arial, 32, , #000000 

TEXT = 1-10, "odd|even", 0, 0, 6, 9, center 

 

Sequences may be very long, you can manipulate them in a clearer manner if you use them in labels. Usually a 

sequence must be on a single line, but you can split a long sequence into multiple lines, starting the first line with a “{” 

and ending the last line with a “}”. For example: 

 
{[long] = "one| 

two| 

three| 

four| 

five| 

six| 

seven| 

eight| 

nine| 

ten"} 

FONT = Arial, 32, , #000000 

TEXT = 1-10, [long], 0, 0, 6, 9, center 

 

Tip: The split-line syntax with “{” and “}” can be used not only for sequences, but with every command. 

 

If the label contains a sequence (like in the above example), you can obtain the number of elements contained using the 

syntax “(name)”. It can be used directly as a parameter or in an expression. For example: 

 
[alpha] = one|two|three 

FONT = Arial, 32, , #000000 

TEXT = 1-{(alpha)*2}, [alpha], 0, 0, 6, 9, center 

 

The result deck will be composed of six cards, with the word sequence one-two-three-one-two-three. 

 

When you define a label, there are some characters you can use as prefix or postfix for the [name] to obtain special 

behavior. 

 
[name]number = value 

 

The resulting value is the original value repeated number times. Instead, with these letters as a prefix, you can use this 

program as a combinatorial engine: 

 

C combination 

P permutation 

E derangement (permutation with no element in its original position) 
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F circular shift (right) 

B circular shift (left) 

CR combination with repetitions 

PR permutation with repetitions 

ER derangement with repetitions 

Tn extracts only a random sample of n elements instead of the full set 

 
C[name]number = object1|object2…objectN 

P[name]number = object1|object2…objectN 

E[name]number = object1|object2…objectN 

F[name]number = object1|object2…objectN 

B[name]number = object1|object2…objectN 

 

These syntaxes create two labels with a combination and a permutation of number objects from the sequences, for 

example: 

 
C[label1]2 = A|B|C 

P[label2]2 = A|B|C 

E[label3]2 = A|B|C 

F[label4]2 = A|B|C 

B[label5]2 = A|B|C 

 

these labels will be translated into: 

 
[label1] = AB|AC|BC 

[label2] = AB|AC|BA|BC|CA|CB 

[label3] = BA|BC|CA 

[label4] = AB|BC|CA 

[label5] = AB|CA|BC 

 

With repetitions: 

 
CR[label1]2 = A|B|C 

PR[label2]2 = A|B|C 

ER[label3]2 = A|B|C 

 

the result will be: 

 
[label1] = AA|AB|AC|BB|BC|CC 

[label2] = AA|AB|AC|BA|BB|BC|CA|CB|CC 

[label3] = BA|BC|CA|CC 

 

A sample of three elements: 

 
CRT3[label1]2 = A|B|C 

 

one of the possible result could be: 

 
[label1] = BC|AA|CC 

 

Special flags: 

 

D remove duplicate elements 

X remove “rotated” elements 

S remove elements with the same “structure” 

N randomize elements 

A sort elements in ascending order 

Z sort elements in descending order 

I keep only crossing paths 

O keep only paths that doesn’t cross themselves 

 

The “D” flag is useful when you have multiple elements in combinations/repetitions, for example: 
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C[label1]2 = A|B|C|C 

 

will be evaluated as: 

 
[label1] = AB|AC|AC|BC|BC|CC 

 

If you don’t want repetitions, you can add the “D” flag (as a prefix) and the result will be: 

 
[label1] = AB|AC|BC|CC 

 

The “X” flag need a longer explanation. Let’s say, you need to create tiles with 4 quadrants, with all the combination of 

three elements (plains, woods and mountains), this is the starting script: 

 
CARDSIZE = 4, 4 

[QUARTER1] = 0, 0, 2, 2, 0, 4 

[QUARTER2] = 0, 0, 4, 0, 2, 2 

[QUARTER3] = 4, 0, 4, 4, 2, 2 

[QUARTER4] = 0, 4, 2, 2, 4, 4 

 

PR[SCHEMA]4 = P|F|M 

[ALL] = 1-{(SCHEMA)} 

 

[COLOR_P] = #00FF00 

[COLOR_F] = #008000 

[COLOR_M] = #C0C0C0 

 

TRIANGLE = [ALL], [QUARTER1], [COLOR_[SCHEMA:1,1]] 

TRIANGLE = [ALL], [QUARTER2], [COLOR_[SCHEMA:2,1]] 

TRIANGLE = [ALL], [QUARTER3], [COLOR_[SCHEMA:3,1]] 

TRIANGLE = [ALL], [QUARTER4], [COLOR_[SCHEMA:4,1]] 

 

This is the result (4 pages of 81 tiles): 

 

    
 

The tiles are all different, but not if you rotate them, for example, PFPF is equal to FPFP (rotated 90°). To eliminate 

them, you can use the “X” prefix. This is the result (1 page of 24 tiles): 

 

 
 

The “X” flag can be used more than once, to specify that not all the “rotations” will be considered as equals; for 

example, with only one “X”, the sequence 0102 is equal to: 
1020 

0201 
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2010 

In a square token with a number on each side, this is equal to 90° rotations. Instead, with “XX”, the sequence 0102 is 

equal only to 0201 (in a square token, this is equal to considering only rotations of 180°, or rather, that rotations of 90° 

aren’t considered). 

 

The “S” flag remove elements with the same structure: for example, the sequence 0102 has the same structure of the 

sequence 1210. In the previous example, from the 24 tiles, only six have a different structure: 

 

 
 

The “N” flag will be used if you want to randomize the sequence, if you write, for example: 

 
N[elements] = alpha|beta|gamma|delta 

 

it will be randomly evaluated each time you validate the deck, for example as: 

 
[elements] = beta|gamma|delta|alpha 

 

If you want to analyze only a sub-string from the result of the permutation/combination engine or an external linked 

file, you can use the “:” syntax to extract a sub-string, the syntax is [label:start,number] where start is the starting 

character and number is the length of the sub-string in characters. For example, in the script about tiles in the previous 

page, every line extracts only a character from the label (composed of four characters), and associates it with another 

label: 

 
TRIANGLE = [ALL], [QUARTER1], [COLOR_[SCHEMA:1,1]] 

TRIANGLE = [ALL], [QUARTER2], [COLOR_[SCHEMA:2,1]] 

TRIANGLE = [ALL], [QUARTER3], [COLOR_[SCHEMA:3,1]] 

TRIANGLE = [ALL], [QUARTER4], [COLOR_[SCHEMA:4,1]] 

 

If the label [SCHEMA] was, as an example, “PFPM”, these lines will be evaluated as: 

 
TRIANGLE = [ALL], [QUARTER1], [COLOR_P] 

TRIANGLE = [ALL], [QUARTER2], [COLOR_F] 

TRIANGLE = [ALL], [QUARTER3], [COLOR_P] 

TRIANGLE = [ALL], [QUARTER4], [COLOR_M] 

 

Tip: you can view a list of labels, their contents, and choose one of them from a list, clicking on the button “Insert” and 

choosing the menu voice “Label”. 

 

You can extract a single element in a sequence using the ? operator in an expression (delimited with curly brackets { 

and }). If you omit the number, it’s used the current card (i.e. is the same to use ? or ?§). 

 

For example, this script will print the letter “c”: 

 
[ALPHA] = a|b|c|d|e 

FONT = ARIAL, 32, , #000000 

TEXT = 1, {ALPHA?3}, 0, 0, 100%, 100% 

 

There is also a syntax for creating labels with a condition and with a for…next cycle (note that you can’t define a label 

between standard IF…ENDIF or FOR…NEXT blocks): 

 
[label]%[condition], variable, start, end, step = value 

 

The [condition] parameter must be a label, it cannot be written directly because a condition is too complex to be 

evaluated correctly in a single line. This is an example: 

 
[check1]=[a]=1 

[check2]=[a]<>1 

[color]%[check1]=#FF0000 
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[color]%[check2]=#0000FF 

 

In this example, if [a] is 1, the label [color] is red (#FF0000), if [a] isn’t 1, the label [color] is blue (#0000FF). 

 

The condition can be omitted, in this case the label is defined only if it doesn’t already exist. In this example, the label 

[alpha] is red, and the label [beta] is blue: 

 
[alpha]=#FF0000 

 

[alpha]%=#0000FF 

[beta]%=#0000FF 

 

The label creation can be repeated in a for…next cycle, for example, if you want to define ten labels, with powers of 

two, you can write: 

 
[lab(count)]%,(count),1,9 = {(count)^2} 

 

Note that the condition parameter is empty (the comma after the % symbol), and that if the step parameter is omitted, 

its value is assumed equal to one. The variable (count) can be anything (the parentheses aren’t really needed). The result 

is equal to write this code: 

 
[lab1]=1 

[lab2]=4 

[lab3]=9 

[lab4]=16 

[lab5]=25 

[lab6]=36 

[lab7]=49 

[lab8]=64 

[lab9]=81 

 

An alternate syntax for the definitions of labels in a loop is this: 

 
[label]%[condition], variable, [sequence] = value 

 

In this syntax, a step in the loop is executed for each value of the sequence (value that is replaced in the variable), for 

example: 

 
[seq] = alpha|beta|gamma 

[lab_(var)]%, (var), [seq] = test_(var) 

 

The result is equal to this code: 

 
[lab_alpha]=test_alpha 

[lab_beta]=test_beta 

[lab_gamma]=test_gamma 

 

Note that the interaction between ranges and sequences is based on the extraction of the Nth element from a sequence 

when is rendered the Nth card in the range, i.e. if you have a range that doesn't starts with the 1st card of the deck, the 

elements from the sequence are apparently extracted wrongly. Example: 

 
[ALPHA] = a|b|c|d|e 

FONT = ARIAL, 32, , #000000 

TEXT = 3-5, [ALPHA], 0, 0, 100%, 100% 

 

In the 3rd card (the 1st of the range) shows the letter a (the 1st of the sequence). If you instead want to show the letter c 

you must add a BASERANGE directive: 

 
BASERANGE = 1-5, ON 

[ALPHA] = a|b|c|d|e 

FONT = ARIAL, 32, , #000000 

TEXT = 3-5, [ALPHA], 0, 0, 100%, 100% 
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With the BASERANGE directive (see page 67), nanDECK uses the position of the Nth card from all the deck (and not 

from the range) to evaluate what element to extract from the sequence, and therefore in the 3rd card it goes the 3rd 

element (i.e. the letter c). 
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Label functions 

AUTOLABEL 

This function creates a label containing a sequence of numbers. This is the syntax:  

 
[name] = AUTOLABEL(start, end, step, separator, padding) 

 

For example, this line: 

 
[a] = AUTOLABEL(1, 10, 2) 

 

will be evaluated as: 

 
[a] = 1|3|5|7|9|11 

 

The standard separator is the pipe (the “|” character), if you want a different separator, you can specify it as the 4 th 

parameter. If you specify a number in the 5th parameter, the result number is padded to the left with zeroes until the 

length of the number reach that parameter. 

 

AUTORANGE 

This function calculates a range starting from the previous AUTORANGE (or card 1, if it was the first), the only 

parameter is a number of cards. This is the syntax:  

 
[name] = AUTORANGE(number) 

 

For example, these rows: 

 
[a] = AUTORANGE(10) 

[b] = AUTORANGE(5) 

[c] = AUTORANGE(8) 

 

will be evaluated as: 

 
[a] = 1-10 

[b] = 11-15 

[c] = 16-23 

 

You can reset the counter, using a negative number as parameter. For example, these rows: 

 
[a] = AUTORANGE(10) 

[b] = AUTORANGE(-5) 

[c] = AUTORANGE(8) 

 

will be evaluated as: 

 
[a] = 1-10 

[b] = 1-5 

[c] = 6-13 

 

CASESTRING 

This function modifies the capitalization of a string, this is the syntax: 

 
[label] = CASESTRING(string, flag) 

 

You can choose one of these flags: 

 

U the string changes to uppercase 
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L the string changes to lowercase 

F every first character in a string is changed to uppercase, the others to lowercase 

 

If the flag is not specified, the string is changed to uppercase. 
 

CONCAT 

This function creates a label concatenating different strings, this is the syntax: 

 
[name] = CONCAT(parameter1, repeat1, parameter2, repeat2, …parameterN, repeatN) 

 

Each parameter is repeated a number of times equal to the next parameter. This is an example: 

 
[test] = CONCAT(#000000, 3, #FFFFFF, 2) 

 

Will be evaluated as: 

 
[test] = #000000#000000#000000#FFFFFF#FFFFFF 

 

CONCAT1 

This function is equivalent to CONCAT, with a repetition of each parameter of one, this is the syntax: 

 
[name] = CONCAT(parameter1, parameter2, …parameterN) 

 

COOFRAME 

This function outputs the four coordinates of a frame (see page 36); instead of using the standard <frame> syntax, that 

is evaluated in the Validate step, this function is evaluated later, in the Build step. This is the syntax: 

 
[name] = COOFRAME(frame) 

 

COOFRAMES 

This function is similar to COOFRAME, and is used when there are more than one frame that can be selected. The 1st 

parameter is the number of the frame, selected from all that have the name specified in the 2nd parameter (you can use 

also wildcard characters like * and ?): 

 
[name] = COOFRAMES(number, frame) 

 

DIRFILES 

This function creates a sequence label using names of files from a folder (and subfolders), this is the syntax: 

 
[name] = DIRFILES(path, extension) 

 

The extension can be a sequence of extensions, like jpg|bmp|gif. 

 

This is an example: 

 
[img] = DIRFILES("c:\images\", jpg) 

 

and it will be evaluated as: 

 
[img] = "c:\images\one.jpg|c:\images\two.jpg|c:\images\three.jpg" 

 

Instead of an extension, you can specify in the 2nd parameter a file mask (with * and ? as wildcards). For example: 
 

[img] = DIRFILES("c:\images\", "img*.jpg") 
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You can also combine the two parameters in one. For example: 
 

[img] = DIRFILES("c:\images\img*.jpg") 

 

ENVIRONMENT 

This function reads an environment variable from the operating system, this is the syntax: 

 
[name] = ENVIRONMENT(variable) 

 

For example, this reads the path for the user folder: 

 
[folder] = ENVIRONMENT(userprofile) 

 

EVAL 

This function creates a sequence with the results of the evaluation of another sequence, this is the syntax: 

 
[name] = EVAL(sequence) 

 

This is an example: 

 
[alpha] = {1+1}|{2*3}|{3^3} 

[beta] = EVAL([alpha]) 

 

These two lines are equivalent to: 

 
[beta] = 2|6|27 

 

Note: you obtain the same result with a single line: 

 
[beta] = EVAL({1+1}|{2*3}|{3^3}) 

 

EXPAND 

This function creates a sequence replicating itself numseq times, with each element replicated numele times (this 

parameter is option, if not specified is treated equal to one): 

 
[name] = EXPAND(sequence, numseq, numele) 

 

This is an example: 

 
[alpha] = a|b|c 

[beta] = EXPAND([alpha], 2, 3) 

 

These two lines are equivalent to: 

 
[beta] = a|a|a|b|b|b|c|c|c|a|a|a|b|b|b|c|c|c 

 

FILTER 

This function creates a sequence taking elements from another sequence, filtering and grouping them using some rules. 

The basic syntax is: 

 
[name] = FILTER([name], filter1, filter2 …filterN) 

 

In the filterN parameters you can use wildcards: ? for any character, * for any characters, and use ranges of characters 

within parenthesis (as an example, 1(0-9) matches a number from 10 to 19). For example, this script will print only 

elements that start with a zero (four elements on eight): 
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[ALPHA] = 000|001|010|011|100|101|110|111 

[BETA] = FILTER([ALPHA], 0*) 

FONT = ARIAL, 32, , #000000 

TEXT = 1-{(BETA)}, [BETA], 0, 0, 100%, 100%  

 

In the 1st parameter you can specify these additional flags: 

 

§ the sorted/added elements are used to create the new sequence 

> (multiple, header) sort characters from an element in ascending order before comparing it to the filters 

< (multiple, header) sort characters from an element in descending order before comparing it to the filters 

+ (multiple, header) add numbers from an element before comparing it to the filters 

@ keep only the characters specified after this flag 

# discard all the characters specified after this flag 

$ (multiple, header) counts the maximum occurrences of a character(s) in the same element 

^ (multiple, header) counts the maximum occurrences of specific character(s) in all positions on the previous 

accepted elements 

~ (header) counts all the occurrences of specific character(s) in all positions on the previous accepted elements 

= (multiple, header) counts the maximum occurrences of specific character(s) in the same position on the 

previous accepted elements 

£ (header) counts the maximum occurrence of a straight of characters 

° set the rule for evaluating a straight (if not specified, is used the ASCII sequence of letters/numbers) 

% (multiple) replace a character(s) with another(s), all the couples are specified after this flag 

! counts the distance (in characters) between two copies of the same characters, specified after this flag 

& (header) the element is evaluated from his position within the sequence, starting from one 

¬ the condition (for including or not an element) is reversed (for inserting the symbol, type ALT + 0172) 

_ if an element is not included, a null string is added in its position 

ç the result isn’t padded with zeroes to the length of the longest element 

. (multiple, header) the starting characters in each element are permutated 

 

You can combine multiple flags, and use a space if you want to mix two similar functions, for example, a $ followed by 

$$ can be coded as “$ $$”. The flags marked with header must be specified before the sequence, not after. 

 

For example, this script will print only elements that contains a zero and two ones (three elements on eight): 
 

[ALPHA] = 000|001|010|011|100|101|110|111 

[BETA] = FILTER(>[ALPHA], 011) 

FONT = ARIAL, 32, , #000000 

TEXT = "1-{(BETA)}", [BETA], 0, 0, 100%, 100%  

 

The flags marked with (multiple) in the above list (i.e.: > < + $ ^ = % .) can be repeated, when you must consider 

elements not as single characters, but as strings composed with more than one character. For example, the element 

“0123” gives these results: 

 

+ 6 

++ 24 

> 0123 

>> 0123 

< 3210 

<< 2301 

 

This is as example for utilization of “$” flag. First, a label is created with all the permutations (with repetitions) of four 

elements from a set of five (a, b, c, d, and e), then, another label is created filtering only the occurrence of a three-of-a-

kind and four-of-a-kind: 

 
pr[a]4 = a|b|c|d|e 

[b] = FILTER($[a], 3, 4) 

FONT = ARIAL, 64, , #000000 

TEXT = 1-{(b)}, [b], 0, 0, 100%, 100% 

 

In this example, the same sequence is filtered to get only the labels that contains one or less repetitions of the same 

character in the same position: 

 



 29 

pr[a]4 = a|b|c|d|e 

[b] = FILTER(=[a], 0, 1) 

FONT = ARIAL, 64, , #000000 

TEXT = 1-{(b)}, [b], 0, 0, 100%, 100% 

 

In this example of the replacement option (with the % option), the characters “a”, “d”, and “g” are replaced with the 

numbers “1”, “2”, and “3”: 

 
[test_a] = abc|def|ghi 

[test_b] = FILTER(§[test_a]%a1d2g3) 

 

The result sequence [test_b] is equal to: 

 
1bc|2ef|3hi 

 

Usually the strings found and replaced with the % option are the same length, but you can specify a null character using 

a ¢ symbol (for inserting it, type ALT + 0162). Example: 

 
[test_a] = abc|def|ghi 

[test_b] = FILTER(§ç[test_a]%%abx¢de¢¢) 

 

Note the ç symbol added to disable the padding; the result sequence [test_b] is equal to: 

 
xc|f|ghi 

 

You can create a sequence of parameters with a “FOR=” keyword, for example, if you want ten numbers, instead of 

adding all of them you can use a single parameter like “1-10FOR=-” (the 2nd minus symbol is the position of the counter 

in the result. 

 

Instead of a parameter used as a filter, you can specify a “mask” (with the prefix “MASK=”), that is used to apply the 

filter only to some characters of the elements from the sequence; you specify a character that you want to consider with 

a “1”, and a character to ignore with a “0”. For example, if you want to apply the rules only to the even characters of a 

ten-character string, use this parameter: MASK=0101010101 

 

If there are more than one rule in the 1st parameter, and if you specify a number before the mask keyword, that mask is 

applied only to a single rule (1 for the 1st rule, 2 for the 2nd, and so on). 

 

GRADIENTSEQ 

This function creates a sequence of gradients, splitting one into several sections, the syntax is: 

 
[name] = GRADIENTSEQ(gradient, number, element) 

 

For example, with this line the program creates a sequence of three gradients: 

 
[gradient] = GRADIENTSEQ(#000000#FF0000@0, 3) 

 

If you don’t specify the 3rd parameter, the sequence contains number element; instead it contains only the Nth 

parameter, where N is the 3rd parameter. 
 

GROUP 

This function takes all the elements in a sequence and removes all the duplicate elements, optionally, it can return a 

count of all the elements adding the keyword COUNT in the 2nd parameter. The syntax is 

 
[name] = GROUP(sequence, function) 

 

For example: 

 
[alpha] = a|b|a|e|c|c|c|a|b|f|d|e 

[beta] = GROUP([alpha]) 
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[gamma] = GROUP([alpha], COUNT) 

 

The two resulting sequences contain these values: 

 
[beta] = a|b|c|d|e|f 

[gamma] = 3|2|3|1|2|1 

 

 

 

JOIN 

This function uses alternatively the elements from two (or more) sequences for building a new sequence, the syntax is: 

 
[name] = JOIN(sequence1, sequence2, …sequenceN) 

 

The length of the new sequence is equal to the longest source sequence. This is an example: 

 
[label1] = A|B 

[label2] = 1|2|3|4 

[label3] = JOIN([label1], [label2]) 

 

The 3rd label will be evaluated as: 

 
[label3] = A1|B2|A3|B4 

 

JOINIF 

This function add elements to a sequence using a condition to choose from two other sequences, the syntax is: 
 

[name] = JOINIF(sequence, value1, condition, value2, sequence true, sequence 

false) 

 

Every parameter can be a single value or a sequence. The condition can be one of this symbol: 

 

= equal 

<> different 

> major 

< minor 

>= major or equal 

<= minor or equal 

@ contained 

# not contained 

 

This is an example: 
 

[label] = JOINIF(A|B|C, 1|2|3, <=, 2, D|E|F, X) 

 

The label will be evaluated as: 
 

[label] = AD|BE|CX 

 

LABELRANGE 

This function creates a range, using elements from a sequence. The syntax for this function is: 

 
[name] = LABELRANGE(sequence, value, offset) 

 

If you specify the optional value parameter, the range is created with only the cards matching the value parameter 

position (wildcards * and ? are accepted). If you don’t specify the value parameter, the default element from a sequence 

is considered “1”. The offset parameter, if specified, will be added to every card of the range. 
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For example: 

 
[sequence] = 0|1|1|0|0|1 

[label] = LABELRANGE([sequence]) 

 

Result: 

 
[label] = "2,3,6" 

  

The item parameter can also accept these operators (in the format operatorvalue): 

 

= the item’s position from the sequence is included if it’s equal to the value (this operator can be omitted) 

<> the item’s position from the sequence is included if it’s different from the value 

> the item’s position from the sequence is included if it’s greater than the value 

< the item’s position from the sequence is included if it’s smaller than the value 

>= the item’s position from the sequence is included if it’s greater or equal to the value 

<= the item’s position from the sequence is included if it’s smaller or equal to the value 

@ the item’s position from the sequence is included if the value is contained in it 

# the item’s position from the sequence is included if the value isn’t contained in it 

 

For example: 

 
[sequence] = 1|2|3|4|5|6|7|8|9|10 

[label] = LABELRANGE([sequence], >=5) 

 

Result: 

 
[label] = "5,6,7,8,9,10" 

 

LABELSTRING 

This function creates a string with elements taken from a sequence. The syntax for this function is: 

 
[name] = LABELSTRING(sequence, number) 

 

Without the optional number parameter, the result is a single string, taken from concatenating every element of the 

sequence. If you specify a number as 2nd parameter, for every nth element a new element of the sequence is created. For 

example: 

 
[sequence] = A|B|C|D|E|F 

[label] = LABELSTRING([sequence]) 

 

These two lines are equivalent to: 

 
[label] = ABCDEF 

 

Another example: 

 
[sequence] = A|B|C|D|E|F 

[label] = LABELSTRING([sequence], 2) 

 

Result: 

 
[label] = AB|CD|EF 

 

LABELSUB 

This function extracts a sequence from another, taken only the elements in a range, the syntax is: 

 
[name] = LABELSUB(sequence, "range") 
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For example: 

 
[sequence] = LABELSUB(alpha|beta|gamma|delta, "1,3-4") 

 

Result: 

 
[sequence] = alpha|gamma|delta 

 

LENGTH 

This function creates a new sequence with the lengths of the elements of the sequence in the 1st (and only) parameter, 

the syntax is: 
 

[name] = LENGTH(sequence) 

 

For example: 

 
[sequence] = ABC|DE|F|GH|IJK|LMNO 

[label] = LENGTH([sequence]) 

 

Result: 

 
[label] = 3|2|1|2|3|4 

 

PRODUCT 

This function combines two (or more) sequences, in the result every element of the first sequence is combined with 

every element of the second sequence (and so on), the syntax is: 
 

[name] = PRODUCT(sequence1, sequence2, …sequenceN) 

 

The length of the new sequence is equal to the product of the length of all source sequences. This is an example: 

 
[label1] = A|B 

[label2] = 1|2|3|4 

[label3] = PRODUCT([label1], [label2]) 

 

The 3rd label will be evaluated as: 

 
[label3] = A1|A2|A3|A4|B1|B2|B3|B4 

 

RANGEADD 

This function combines several ranges in one, the syntax is: 

 
[range] = RANGEADD("range1", "range2", …"rangeN") 

 

For example: 

 
[range1] = "1-3" 

[range2] = "2-4" 

[range3] = "8-10" 

[range] = RANGEADD([range1],[range2],[range3]) 

 

Result: 

 
[range] = "1-4,8-10" 

 



 33 

RANGECOUNT 

This function returns the number of cards in a range, the syntax is: 

 
[number] = RANGECOUNT("range") 

 

For example: 

 
[number] = RANGECOUNT("1,4-6,10-15") 

 

Result: 

 
[number] = 10 

 

RANGEMUL 

This function creates a new range from pairs of range/number of repetition of that range: 

 
[range] = RANGEMUL("range1", num1, "range2", num2, …"rangeN", numN) 

 

For example: 

 
[range] = RANGEMUL(1,2,3,4) 

 

Result: 

 
[range] = "1,1,3,3,3,3" 

 

RANGEREM 

This function extracts a sub-range from another range, this is the syntax: 

 
[range] = RANGEREM("range1", "range2", …"rangeN") 

 

This directive removes the ranges range2, ... rangeN from range1.  

 

For example: 

 
[range1] = "1-10" 

[range2] = "3,4" 

[range3] = "7-9" 

[range] = RANGEREM([range1], [range2], [range3]) 

 

Result: 

 
[range] = "1-2,5-6,10" 

 

RANGESUB 

This function extracts a sub-range from another range, this is the syntax: 

 
[range] = RANGESUB("range", start, number) 

 

The sub-range starts from the element specified by the start parameter, and is composed of number elements. If the 

number parameter is missing (or equal to zero) the sub-range goes to the end of the initial range; if the start parameter is 

equal to zero, the sub-range starts from the last element taken with another RANGESUB function (or from the start of 

the initial range), in a behavior like that implemented with AUTORANGE function. 

 

For example: 
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[range1] = "1-10" 

[range] = RANGESUB([range1], 3, 4)  

 

Result: 

 
[range] = "3-6" 

 

REPLACE 

This function replaces in a string (or a sequence) all instances of a substring with another. The syntax for this function 

is: 

 
[name] = REPLACE("string", "from", "to") 

 

ROUND 

This function returns the 1st parameter rounded, the 2nd parameter specify the number of decimal digits (if not specified, 

it is zero, if it’s a negative number, the rounding is by power of tens), the 3rd parameter is a keyword that specify if the 

rounding is UP, or DOWN (if you don't specify it, the rounding is down when the rounded digit is 4 or less, and up if 

it's 5 or more). The syntax is: 

 
[name] = ROUND(value, precision, keyword) 

 

SAVELABEL 

This function saves the content of a label (or more than one label) into a CSV text file or a spreadsheet file (if the 

extension of the filename is .xls or .xlsx). The syntax for this function is: 

 
[name] = SAVELABEL("filename", label1 , label2, …labelN) 

 

The result label [name] contains the filename. Note: do not use the [ ] in the label parameters. 
 

STRINGLABEL 

This function creates a sequence label with elements taken from a string. The syntax for this function is: 

 
[name] = STRINGLABEL("string", length) 

 

The optional length parameter sets the number of characters taken for each element of the sequence. If omitted, the 

length is one character. For example, these two lines are equivalent: 

 
[label] = STRINGLABEL("This is a test") 

 
[label] = "T|h|i|s| |i|s| |a| |t|e|s|t" 

 

TOKENIZE 

This function extracts a substring from a string, using a separator that slices the string into several tokens, and a number 

that specify the single token extracted. The syntax for this function is: 

 
[name] = TOKENIZE("string", number, separator) 

 

If the separator is not specified, is assumed to be equal to “|” (pipe), note that is the same separator for the elements in a 

sequence. For example: 

 
[result] = TOKENIZE("Alpha-Beta-Gamma", 2, -) 

 

The [result] label would be equal to “Beta” 
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TOKENIZESEQ 

This function extracts a sequence from another sequence, using a separator that slices each element of that sequence 

into several tokens, and a number that specify which tokens are extracted; all the tokens are concatenated in the result 

sequence. The syntax for this function is: 

 
[name] = TOKENIZE("string", number, separator) 

 

For example: 

 
[result] = TOKENIZE("Alpha-Beta-Gamma|Delta-Epsilon-Zeta|Eta-Theta-Iota", 2, -) 

 

The [result] label would be equal to “Beta|Epsilon|Theta” 

 

TRANSLATE 

This function replaces in a sequence (specified in the 1st parameter) all the elements found in another sequence 

(specified in the 2nd parameter) with elements taken from another sequence (specified in the 3rd parameter). The syntax 

is: 

 
[label] = TRANSLATE(sequence, sequence key, sequence value) 

 

For example, this script: 

 
[test] = x|y|x|w|x|y|y|z 

[from] = x|y|z 

[to] = a|b|c 

[result] = TRANSLATE([test],[from],[to]) 

 

Gives this sequence as a result: 

 
[result] = a|b|a||a|b|b|c 
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Frames 

A frame is a special label, used when you need to identify a rectangular area used for placing a graphical content. A 

frame is defined used this syntax: 

 
<name> = position x, position y, width, height 

 

And can be used for example with a RECTANGLE directive: 

 
RECTANGLE = 1, <name>, #000000 

 

This is a behavior that can be done also with a label, but in a frame, you can add an alignment and a specific size, with 

this syntax: 

 
<name, alignment, width, height> 

 

The “alignment” can be a flag from this list: 

 

TL top-left 

TC top-center 

TR top-right 

CL center-left 

CC center-center 

CR center-right 

BL bottom-left 

BC bottom-center 

BR bottom-right 

 

An example with all these nine alignments: 

 
<frame> = 1, 1, 4, 7 

FONT = Arial, 16, , #FFFFFF, #0000FF 

RECTANGLE = 1, <frame>, #CCCCFF 

TEXT = 1, "TL", <frame, TL, 1, 1>, CENTER, CENTER 

TEXT = 1, "TC", <frame, TC, 1, 1>, CENTER, CENTER 

TEXT = 1, "TR", <frame, TR, 1, 1>, CENTER, CENTER 

TEXT = 1, "CL", <frame, CL, 1, 1>, CENTER, CENTER 

TEXT = 1, "CC", <frame, CC, 1, 1>, CENTER, CENTER 

TEXT = 1, "CR", <frame, CR, 1, 1>, CENTER, CENTER 

TEXT = 1, "BL", <frame, BL, 1, 1>, CENTER, CENTER 

TEXT = 1, "BC", <frame, BC, 1, 1>, CENTER, CENTER 

TEXT = 1, "BR", <frame, BR, 1, 1>, CENTER, CENTER 
Result: Image 1 

 

One between width and height can be expanded to the full extent of frame’s width or height, using this syntax and one 

of these alignments for width: 

 
<name, alignment, height> 

 

TW top aligned, full width 

CW center aligned, full width 

BW bottom aligned, full width 

 

Example: 

 
<frame> = 1, 1, 4, 7 

FONT = Arial, 16, , #FFFFFF, #0000FF 

RECTANGLE = 1, <frame>, #CCCCFF 

TEXT = 1, "TW", <frame, TW, 1>, CENTER, CENTER 

TEXT = 1, "CW", <frame, CW, 1>, CENTER, CENTER 

TEXT = 1, "BW", <frame, BW, 1>, CENTER, CENTER 
Result: Image 2 

Image 1 

Image 2 
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This syntax and these alignments are used for a full height: 

 
<name, alignment, width> 

 

HL full height, left aligned 

HC full height, center aligned 

HR full height, right aligned 

 
<frame> = 1, 1, 4, 7 

FONT = Arial, 16, , #FFFFFF, #0000FF 

RECTANGLE = 1, <frame>, #CCCCFF 

TEXT = 1, "HL", <frame, HL, 1>, CENTER, CENTER 

TEXT = 1, "HC", <frame, HC, 1>, CENTER, CENTER 

TEXT = 1, "HR", <frame, HR, 1>, CENTER, CENTER 
Result: Image 3 

 

Another type of syntax can be used to extract only a position (useful with lines): 

 
<name, alignment> 

 

PTL top-left 

PTC top-center 

PTR top-right 

PCL center-left 

PCC center-center 

PCR center-right 

PBL bottom-left 

PBC bottom-center 

PBR bottom-right 

 
<frame> = 1, 1, 4, 7 

RECTANGLE = 1, <frame>, #CCCCFF 

LINE = 1, <frame, PTL>, <frame, PBR>, #FF0000, 0.2 

LINE = 1, <frame, PTR>, <frame, PBL>, #FF0000, 0.2 
Result: Image 4 

 

Instead of using two frames, you can also combine two alignment of this type in a single frame, for example, with this 

script the result is the same of the Image 4: 

 
<frame> = 1, 1, 4, 7 

RECTANGLE = 1, <frame>, #CCCCFF 

LINE = 1, <frame, PTL, PBR>, #FF0000, 0.2 

LINE = 1, <frame, PTR, PBL>, #FF0000, 0.2 

 

Instead of using a size (width or height) in cm, you can use a fraction of the whole frame size, using a 

number followed by “%%” (instead, a single “%” gives you a size equal to a fraction of the whole 

card). For example: 

 
<frame> = 1, 1, 4, 7 

FONT = Arial, 16, , #FFFFFF, #0000FF 

RECTANGLE = 1, <frame>, #CCCCFF 

TEXT = 1, "TL", <frame, TL, 50%%, 50%%>, CENTER, CENTER 

Result: Image 5 

 

Tip: you can view a list of frames, their contents, and choose one of them from a list, clicking on the button “Insert” 

and choosing the menu voice “Frame”. 

 

With these syntaxes, you can align a sub-frame starting from the last sub-frame, in the four directions: 

 

TS top aligned, full width 

BS bottom aligned, full width 

Image 3 

Image 4 

Image 5 
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SL left aligned, full height 

SR right aligned, full height 

 
<frame> = 1, 1, 4, 7 

FONT = Arial, 16, , #FFFFFF, #0000FF 

TEXT = 1, TS1, <frame, TS, 1>, CENTER, CENTER 

FONT = Arial, 16, , #FFFFFF, #00FF00 

TEXT = 1, TS2, <frame, TS, 1>, CENTER, CENTER 

FONT = Arial, 16, , #FFFFFF, #FF0000 

TEXT = 1, TS3, <frame, TS, 1>, CENTER, CENTER 

FONT = Arial, 16, , #000000, #FFFF00 

TEXT = 1, TS4, <frame, TS, 0>, CENTER, CENTER 
Result: Image 6 

 

In this example, the first frame can also be referenced with TW, and the result didn’t change. 

If you specify a zero as the width/height of the element, it fills all the available space (the 4th frame 

in this example). 

 

With these flags, the program extracts three coordinates from the four of a frame, useful when using the TRIANGLE 

directive (see page 160), for a shape that fills half of the frame: 

 

HTL top left, top right, and bottom left 

HTR top left, top right, and bottom right 

HBL top left, bottom left, and bottom right 

HBR top right, bottom left, and bottom right 

 

For example: 

 
<frame> = 1, 1, 4, 7 

RECTANGLE = 1, <frame>, #CCCCFF  

TRIANGLE = 1, <frame, HTL>, #FF0000 

Result: Image 7 

 

These flags give also three coordinates: 

 

TTL an arrowhead with the point to the top-left corner of the frame 

TTC  an arrowhead with the point to the center of the top side of the frame 

TTL an arrowhead with the point to the top-right corner of the frame 

TCL an arrowhead with the point to the center of the left side of the frame 

TCR an arrowhead with the point to the center of the right side of the frame 

TBL an arrowhead with the point to the bottom-left corner of the frame 

TBC an arrowhead with the point to the center of the bottom side of the frame 

TBR  an arrowhead with the point to the bottom-right corner of the frame 

 

For example: 

 
<frame> = 1, 1, 4, 7 

RECTANGLE = 1, <frame>, #CCCCFF  

TRIANGLE = 1, <frame, TTC>, #FF0000 
Result: Image 8 

Image 6 

Image 7 

 Image 8 
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With several functions, you can create groups of frames, and referencing them with wildcards (the list is after this 

chapter): 

 

* a group of any characters, 

? any one character, 

~ a random frame from a group, 

! the first frame from a group, the frame is then deleted from the frame group (instead of the first frame, a 

random frame is selected if used with the “~” symbol), 

/ normally, the frames created with a function are added to the existing ones; with this 

character in the frames’ name, the definition rewrites the previous frames (the name is 

considered without “/”), 

° this is not a wildcard used in a frame name, but instead is used when the frame number is 

needed in a standard expression (with “{” and “}” delimiters), 

µ this is not a wildcard used in a frame name, but instead is used when the frame name is 

needed in a text (without “{” and “}” delimiters). 

 

Finally, in a frame name with ! or ~ wildcards, you can specify more than one frame adding a 

number before the symbol. For example, if you want three random green box from a grid, three 

blue and three red you can write: 
 

[base] = FRAMEBOX(0, 0, 6, 9, 1, 1, E) 

RECTANGLE = 1, <3!~base*>, #00FF00 

RECTANGLE = 1, <3!~base*>, #0000FF 

RECTANGLE = 1, <3!~base*>, #FF0000 

GRID = 1, 0, 0, 6, 9, #000000, 0.1, 6, 9 
Result: Image 9 

 

Note: without the “!” symbol, the randomized frames may overlay themselves. Instead, without 

the “~” symbol, the frames are extracted from the start of the group. For example, with this script: 

 
[base] = FRAMEBOX(0, 0, 6, 9, 1, 1, E) 

RECTANGLE = 1, <3!base*>, #00FF00 

RECTANGLE = 1, <3!base*>, #0000FF 

RECTANGLE = 1, <3!base*>, #FF0000 

GRID = 1, 0, 0, 6, 9, #000000, 0.1, 6, 9 
Result: Image 10 

Image 9 

Image 10 



 40 

Frame functions 

FRAMEBAR 

This function creates a list of frames (see page 36) arranged in a line. The syntax for this function is: 

 
[name] = FRAMEBAR(pos x1, pos y1, pos x2, pos y2, frame width, frame height, 

number, zoom) 

 

The frames are created with a name composed from the [name] and a number, the number goes from “1” to the 7th 

parameter.  

 

Example: 

 
[bar] = FRAMEBAR(0, 0, 6, 6, 1, 1, 5) 

 

You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (~) 

symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use, and 

referencing the current frame’s number with the degree (°) symbol (in an expression) or the current frame’s name with 

the micro (µ) symbol (in a text). 

The zoom optional parameter is used if you want to resize the frame of a percent (100 is equal to no change). 

 

FRAMEBEZIER 

This function creates a list of frames (see page 36) arranged in a Bezier curve. The syntax for this function is: 

 
[name] = FRAMEBEZIER(pos x1, pos y1, handle x1, handle y1, handle x2, handle y2, 

pos x2, pos y2, frame width, frame height, number, zoom) 

 

The frames are created with a name composed from the [name] and a number, the number goes from “1” to the 11th 

parameter.  

 

Example: 

 
[bezier] = FRAMEBEZIER(0, 0, 3, 0, 3, 6, 6, 6, 1, 1, 10) 

 

You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (~) 

symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use, and 

referencing the current frame’s number with the degree (°) symbol (in an expression) or the current frame’s name with 

the micro (µ) symbol (in a text). 

The zoom optional parameter is used if you want to resize the frame of a percent (100 is equal to no change). 

 

FRAMEBOX 

This function creates a list of frames (see page 36), based on a rectangular grid. The syntax for this function is: 

 
[name] = FRAMEBOX(pos x, pos y, width, height, frame width, frame height, flags, 

zoom x, zoom y) 

 

The last parameters (zoom x and zoom y) are optional, if not specified are equal to 100 (no zoom); if you want half 

sized frames, you can specify 50, if you want double sized frames, the value is 200, and so on. The zoom can be 

different between horizontal and vertical values. 

The frames are created with a name composed from the [name] and the flag in the 7th parameter. You can use these 

flags: 

 

L letters 

N numbers 

P zero-padded numbers 

C coordinates 

E coordinates with letters and numbers 
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R coordinates with letters and numbers (numbers are reversed) 

. dot separator for C flag 

- minus separator for C flag 

_ underscore separator for C flag 

W add only “white” squares in a chessboard 

B add only “black” squares in a chessboard 

 

With these flags, coordinates are added to each frame name: 

 

L A, B, C, D… 

N 1, 2, 3, 4… 

P 01, 02, 03, 04… 

C 0101,0102,0103…0201,0202,0203… 

E A1,A2,A3…B1,B2,B3… 

C. 1.1,1.2,1.3…2.1,2.2,2.3… 

C- 1-1,1-2,1-3…2-1,2-2,2-3… 

C_ 1_1,1_2,1_3…2_1,2_2,2_3… 

 

If you didn’t specify any flag, the frames are created with the same name. 

 

Example: 

 
[box] = FRAMEBOX(0, 0, 4, 3, 1, 1, C_) 

 

The resulting frames will be: 

 
<BOX1_1> = 0, 0, 1, 1 

<BOX1_2> = 0, 1, 1, 1 

<BOX1_3> = 0, 2, 1, 1 

<BOX2_1> = 1, 0, 1, 1 

<BOX2_2> = 1, 1, 1, 1 

<BOX2_3> = 1, 2, 1, 1 

<BOX3_1> = 2, 0, 1, 1 

<BOX3_2> = 2, 1, 1, 1 

<BOX3_3> = 2, 2, 1, 1 

<BOX4_1> = 3, 0, 1, 1 

<BOX4_2> = 3, 1, 1, 1 

<BOX4_3> = 3, 2, 1, 1 

 

You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (~) 

symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use, and 

referencing the current frame’s number with the degree (°) symbol (in an expression), or the current frame’s name with 

the micro (µ) symbol (in a text). For example, if you want to split an image into 4 images (in a 2 x 2 pattern) and save 

them, you can use this script: 

 
[a] = FRAMEBOX(0, 0, 6, 9, 3, 4.5, N) 

IMAGE = 1, "c:\my images\earth.jpg", 0, 0, 6, 9, 0 

SAVE = 1, "c:\my images\earth _{°}.jpg", <a*> 

 

FRAMECLOCK 

This function creates a list of frames (see page 36) arranged in a circle (like a clock’s quadrant). The syntax for this 

function is: 

 
[name] = FRAMECLOCK(pos x, pos y, width, height, frame width, frame height, 

number, angle, zoom, start, end, factor) 

 

The frames are created with a name composed from the [name] and a number, the number goes from “1” to the 7th 

parameter.  

 

Example: 
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[clock] = FRAMECLOCK(0, 0, 4, 4, 1, 1, 8) 

 

You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (~) 

symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use, and 

referencing the current frame’s number with the degree (°) symbol (in an expression) or the current frame’s name with 

the micro (µ) symbol (in a text). 

The angle optional parameter is used if you want to rotate all the frames of a precise degree. 

The zoom optional parameter is used if you want to resize the frame of a percent (100 is equal to no change). 

The start and end optional parameters are used if you want to draw only an arc instead of full circle (both are degrees). 

The factor optional parameter, if not zero, creates a spiral of frames, instead of a circle (positive for clockwise spirals, 

negative for anti-clockwise spirals). 

 

FRAMECOUNT 

This function creates a label with the number of frames from a single frame name, or a list of frame names. The syntax 

for this function is: 

 
[name] = FRAMECOUNT(frame1, frame2, …frameN) 

 

In the [name] parameter you can use wildcards (? for any one character, * for a group of any characters). 

 

FRAMEDISK 

With this function, you can define a group of frames, specifying two frames, and including all the frames in the circle 

drawn used the first frame as a center and the latter as a radius. It works with frames created from FRAMEBOX and 

FRAMEHEX functions. The syntax is: 

 
[diskgroup] = FRAMEDISK(frame center, frame radius) 

 

For example: 

 
CARDSIZE = 18, 20 

HEXGRID = 1, 0, 0, 18, 20, 1,, #000000, EMPTY, 0.1 

[base] = FRAMEHEX(0, 0, 18, 20, 1, E) 

[diskgroup] = FRAMEDISK(basee6, basee4) 

POLYGON = 1, <diskgroup>, 6, 90, #FF0000 

 

FRAMEHEX 

This function creates a list of frames (see page 36), based on a hexagonal grid. The syntax for this function is: 

 
[name] = FRAMEHEX(pos x, pos y, width, height, hex size, flags, zoom x, zoom y) 

 

The last parameters (zoom x and zoom y) are optional, if not specified are equal to 100 (no zoom); if you want half 

sized frames, you can specify 50, if you want double sized frames, the value is 200, and so on. The zoom can be 

different between horizontal and vertical values. 

The frames are created with a name composed from the [name] and the flag in the 6th parameter. You can use these 

flags: 

 

L letters 

N numbers 

P zero-padded numbers 

C coordinates 

E coordinate with letters + numbers 

. dot separator for C flag 

- minus separator for C flag 

_ underscore separator for C flag 

O outer frame (the default, it creates a frame suitable for drawing a circle outside the hex) 

I inner frame (it creates a frame suitable for drawing a circle inside the hex) 
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X uses a pattern for obtaining “easy to cut” hexagons (“trihexagonal” tiling) 

A the hexes are arranged in horizontal lines instead of vertical 

S the line (or the column, if the A flag is specified) starts with a shifted hex 

 

With these flags, coordinates are added to each frame name: 

 

L A, B, C, D… 

N 1, 2, 3, 4… 

P 01, 02, 03, 04… 

C 0101,0102,0103…0201,0202,0203… 

E A1,A2,A3…B1,B2,B3… 

C. 1.1,1.2,1.3…2.1,2.2,2.3… 

C- 1-1,1-2,1-3…2-1,2-2,2-3… 

C_ 1_1,1_2,1_3…2_1,2_2,2_3… 

 

If you didn’t specify any flag, the frames are created with the same name. 

 

You can use frames with wildcards (? for any one character, * for a group of any characters), can use the tilde (~) 

symbol as a flag for addressing a random frame, the exclamation mark (!) as a flag for deleting the frame after use and 

referencing the current frame with the degree (°) symbol (in an expression) or the current frame’s name with the micro 

(µ) symbol (in a text). For example, this script draws a circle on a random hex of the first column of a grid: 

 
CARDSIZE = 18, 20 

HEXGRID = 1, 0, 0, 18, 20, 1, , #000000, EMPTY, 0.1 

[base] = FRAMEHEX(0, 0, 18, 20, 1, E) 

ELLIPSE = 1, <~basea*>, #FF0000 

 

FRAMELINE 

With this function, you can define a group of frames, specifying a first frame, a last frame, and including all the frames 

in the shortest path between the two. It works with frames created from FRAMEBOX and FRAMEHEX functions. The 

syntax is: 

 
[linegroup] = FRAMELINE(frame start, frame end) 

 

For example: 

 
CARDSIZE = 18, 20 

HEXGRID = 1, 0, 0, 18, 20, 1,, #000000, EMPTY, 0.1 

[base] = FRAMEHEX(0, 0, 18, 20, 1, E) 

[linegroup] = FRAMELINE(basea1, baseh9) 

POLYGON = 1, <linegroup>, 6, 90, #FF0000 

 

FRAMELIST 

With this function, you can define a group of frames, and use a single command on all of them. The syntax is: 

 
[group] = FRAMELIST(frame1, frame2, …frameN) 

 

You can specify a single frame for parameter, or use another group of frames, or specify a range of frames using the 

syntax frameX..frameY (to add every frame with that name and numbered between X and Y). Before the name of the 

frame you can use these flags: 

£ the frames are reversed on each line (from top to bottom, from right to left) 

$ the frames are in bidirectional order (from left to right in the first row, from right to left in the next row, and so 

on…) 

% the frames are listed in vertical order (from left to right, from top to bottom) 

%£ the frames are reversed on each vertical line (from left to right, from bottom to top) 

%$ the frames are in bidirectional vertical order (from top to bottom in the first column, from bottom to top in the 

next column, and so on…) 

- the order with the frames in a group are added is completely reversed (it can be added to each of the above 

combinations 
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After the name of the frame you can specify how many frames are skipped with the syntax frame&N where N is the 

number of the frames to skip. 

For example, this script draws three circles on the first three hexes in the top-left corner of a grid: 

 
CARDSIZE = 18, 20 

HEXGRID = 1, 0, 0, 18, 20, 1,, #000000, EMPTY, 0.1 

[base] = FRAMEHEX(0, 0, 18, 20, 1, E) 

[group] = FRAMELIST(basea1, basea2, baseb1) 

ELLIPSE = 1, <group>, #FF0000 

 

FRAMEMELD 

With this function, you create a new frame, merging several others. The syntax is 

 
[newframe] = FRAMEMELD(frame1, frame2, …frameN) 

 

For example: 

 
CARDSIZE = 18, 20 

HEXGRID = 1, 0, 0, 18, 20, 1,, #000000, EMPTY, 0.1 

[base] = FRAMEHEX(0, 0, 18, 20, 1, E) 

[group] = FRAMEDISK(basef3, basef1) 

POLYGON = 1, <group>, 6, 90, #FF0000 

[meld] = FRAMEMELD(based1, baseh5) 

ELLIPSE = 1, <meld>, #0000FF, EMPTY, 0.2 

 

FRAMEMOSAIC 

This function reads all the images in a folder, arrange them in a rectangle, and creates a new group of frames, one for 

each image. If the images fill more than one instance of that rectangle, you can use a page parameter to specify which 

rectangle is drawn from all the possible choices. The frames are created with a name composed from the [name] and a 

number, the number starts from “1”. The syntax for this function is: 

 
[newframe] = FRAMEMOSAIC("folder", pos x, pos y, width, height, page, flags, 

zoom) 

 

Parameters: 

 

"folder": a folder to search, eventually with a file pattern, 

 

position x: horizontal position (in cm), 

 

position y: vertical position (in cm), 

 

width: width of the rectangle (in cm), 

 

height: height of the rectangle (in cm), 

 

page: if not specified, is equal to 1, 

 

flags: one or more of these flags 

 

H the schema is mirrored horizontally 

V the schema is mirrored vertically 

S the images are read also in the subfolders 

 

zoom: if not specified, is equal to 100 

 

This function creates also a label named namePAGES (where name is the frames’ prefix) with a value equal to the 

number of pages resulting. 
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FRAMENET 

This function creates a new group of frames, composed with all possible couple from two groups of frames, eventually 

including only these contained with a range of distances. The syntax is: 

 
[newframe] = FRAMENET(frame group 1, frame group 2, min dist, max dist, flags) 

 

In the flags parameter, you can use one or more of these flags: 

 

L the frame(s) added is from the center of the starting frame to the center of the ending frame (it can be used for 

drawing lines), this is the default option, 

N the frame(s) added is the ending frame, 

1 the frame(s) added are only from the 1st quadrant (top-right), 

2  the frame(s) added are only from the 2nd quadrant (bottom-right), 

3  the frame(s) added are only from the 3rd quadrant (bottom-left), 

4  the frame(s) added are only from the 4th quadrant (top-left). 

 

If you didn’t specify any of flags 1234, the frames are taken from all the starting lists. 

 

For example, this is a net from all the points in a rectangular grid, with a maximum distance of four units: 

 
[net0] = FRAMEBOX(0, 0, 6, 9, 1, 1, L) 

[net1] = FRAMENET(net0*, net0*, 0, 4) 

LINERECT = 1, <net1>, #000000 

 

Another example, this is a “star map”, connecting ten random “planets” in a hexagonal grid with a distance from two to 

four units: 
 

[map0] = FRAMEHEX(0, 0, 6, 9, 0.1, L, 50%) 

[map1] = FRAMELIST(10!~map0*) 

[map2] = FRAMENET(map1, map1, 2, 4) 

LINERECT = 1, <map2>, #000000 

ELLIPSE = 1, <map1>, #0000FF 

 

FRAMEPATH 

With this function, you can define a group of frames, specifying a first frame, a last frame, and including all the frames 

in the shortest path between the two, and optionally remove a list of frames (specified in the 4th parameter) from the 

result. It works with frames created from FRAMEBOX. The syntax is: 

 
[pathgroup] = FRAMEPATH(frame start, frame end, flags, exclusions) 

 

In the flags parameter, you can use one or more of these flags: 

 

F add frame1 to the result group 

L add frame2 to the result group 

D delete the frames used for the path  

S delete the frame used as 1st parameter (start frame) 

E delete the frame used as 2nd parameter (end frame) 

T use the shortest path 

 

For example: 

 
[grid] = FRAMEBOX(0, 0, 6, 9, 0.5, 0.5, C) 

[path1] = FRAMEPATH(grid0203, grid1116, D) 

[path2] = FRAMEPATH(grid0203, grid1116, D) 

[path3] = FRAMEPATH(grid0203, grid1116, D) 

RECTANGLE = 1, <grid*>, #0000FF, #FF0000, 0.1 

ELLIPSE = 1, <path1>, #AAAAAA, #00FF00, 0.05 

ELLIPSE = 1, <path2>, #AAAAAA, #0000FF, 0.05 

ELLIPSE = 1, <path3>, #AAAAAA, #FF0000, 0.05 
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FRAMEPER 

This function creates a new group of frames, adding for each starting frame the four frames from its sides (the starting 

frame is considered rectangular). The syntax is: 

 
[newframe] = FRAMEPER(frame group, width, flags, margin) 

 

The width parameter specifies the width of the left and right frames, and the height of top and bottom frames. In the 

flags parameter, you can use one or more of these flags: 

 

1 a frame for the top side of the rectangular frame is added to the result, 

2  a frame for the right side of the rectangular frame is added to the result, 

3  a frame for the bottom side of the rectangular frame is added to the result, 

4  a frame for the left side of the rectangular frame is added to the result, 

V with this flag the frames are created in vertical order (instead of a horizontal order). 

 

If you didn’t specify any of flags 1234, all the four frames are added. The margin parameter specifies how much space 

is added to the left and to the right (for horizontal sides) and to the top and to the bottom (for vertical sides) of the 

frame. 

 

FRAMERECT 

With this function, you can define a group of frames, specifying two frames, and including all the frames in the 

rectangle drawn used the first frame as top-left and the latter as bottom-right. It works with frames created from 

FRAMEBOX and FRAMEHEX functions. The syntax is: 

 
[rectgroup] = FRAMERECT(frame start, frame end) 

 

For example: 

 
CARDSIZE = 18, 20 

HEXGRID = 1, 0, 0, 18, 20, 1,, #000000, EMPTY, 0.1 

[base] = FRAMEHEX(0, 0, 18, 20, 1, E) 

[rectgroup] = FRAMERECT(baseb3, basei6) 

POLYGON = 1, <rectgroup>, 6, 90, #FF0000 

 

FRAMESUB 

With this function, you can define a new frame from another frame (1st parameter), removing items from a third frame 

(2nd parameter). The syntax is: 

 
[group] = FRAMESUB(frame1, frame2) 

 

For example, this script uses two square group of frames for creating a third hollow group of frames (subtracting the 

second from the first): 

 
[grp_a] = FRAMEBOX(0, 0, 6, 6, 1, 1, C) 

[grp_b] = FRAMEBOX(1, 1, 4, 4, 1, 1, C) 

[grp_c] = FRAMESUB(grp_a*, grp_b*) 

ELLIPSE = 1, <grp_c*>, #00FF00 

 

FRAMETRANS 

This function creates a new group of frames, taking all the frames from a group, and applying to them a horizontal and a 

vertical offset, and optionally a change in width and height. The syntax is: 

 
[newframe] = FRAMETRANS(frame group, x offset, y offset, width change, height 

change) 
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For example, this line takes all frames from group test, and creates a group test_trans shifted right of 0.5: 

 
[test_trans] = FRAMETRANS(test, 0.5, 0) 

 

FRAMETRI 

With this function, you can define a group of frames, specifying three frames, and including all the frames in the 

triangle drawn used the frames as vertexes. It works with frames created from FRAMEBOX and FRAMEHEX 

functions. The syntax is: 

 
[trianglegroup] = FRAMETRI(frame1, frame2, frame3, flags) 

 

You can use these flags in the 4th parameter: 

 

O = doesn’t include the outer frames 

I = doesn’t include the inner frames 

 

For example: 

 
CARDSIZE = 18, 20 

HEXGRID = 1, 0, 0, 18, 20, 1,, #000000, EMPTY, 0.1 

[base] = FRAMEHEX(0, 0, 18, 20, 1, E) 

[trianglegroup] = FRAMETRI(baseb3, basei6, basec10) 

POLYGON = 1, <trianglegroup>, 6, 90, #FF0000 
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Expressions 

Expressions may be used to calculate numeric parameters or numbers in TEXT parameters, these delimited with “{” 

and “}”. You can use numbers (integer and decimal separated with a dot “.”), parenthesis and these operators: 

 

+ addition 

- subtraction 

* multiplication 

/ division 

^ exponentiation 

# modulus 

£ integer division 

 

For changing the order of operations, you can use “(“, “)”, “{” and “}”, these are treated like the same. You can’t use 

“[” and “]” (used for labels). 

 

For example, these are valid expressions: 

 
RECTANGLE = 1, 0, 0, (1+2)*2, (1+2)^2, #FF0000 

 
TEXT = 1, "Result {(2+2)^2}", 0, 0, 6, 9, center 

 

This is a special variable: the paragraph character (§) gives you the current card number; for example, that script creates 

ten cards, each with a number from 1 to 10: 

 
FONT = Arial, 32, , #000000 

TEXT = 1-10, "{§}", 0, 0, 6, 9, center 

 

That script creates ten cards, each with a random number from 1 to 100: 

 
FONT = Arial, 32, , #000000 

TEXT = 1-10, "{1d100}", 0, 0, 6, 9, center 

 

Counters are variables, that can be used in expressions; there are two kind of counter, these are used for integer values: 

 
A B C D E F G H I J 

 

And these are used for floating-point values: 
 

AA BB CC DD EE FF GG HH II JJ 

 

A counter can be initialized with COUNTER directive: 

 
COUNTER = 1, A, 1 

 

and later re-used in an expression: 

 
RECTANGLE = 1, 0, 0, A, A, #00FF00 

 

A counter can be auto-incremented with a pre- and/or a post- number. If A has a value of 10, this command: 

 
TEXT = 1, "{1A2}", 0, 0, 3, 3, center 

 

will give an output of 11, and A will have a value of 13 after that line. 

 

The counter D is a special case, it has been changed for default into a dice (see DICE keyword, page 83), to give a 

random value, the syntax is ndf, where n is the number of dice, each with f faces. If not specified, n is set to one, and f is 

set to six. 

 

These are special symbols: 
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Z Format 

X Repeat 

 

The “Z” symbol may be used when you need to format a decimal value with a fixed number of digits. The syntax is 

valueZmask, where the mask is a sequence characters for the integer part, a dot (“.”) and a sequence characters for the 

decimal part. The characters that can be used for the mask are: 

 

0 a digit taken from the number, if there isn’t a digit in that position, a zero (“0”) is written instead. 

# a digit taken from the number, if there isn’t a digit in that position, a space (“ ”) is written instead. 

 

For example: 

 
FONT = Arial, 32, , #000000 

TEXT = 1, "{4/3Z00.00}", 0, 0, 6, 9, center, center 

 

The result will be a “01.33” printed on the card. 

 

The syntax for the “X” symbol is textXnumber, and duplicates the text for a number of times. For example: 

 
FONT = Arial, 32, , #000000 

TEXT = 1-5, "{*X§}", 0, 0, 6, 9, center, center 

 

Will output an asterisk on the 1st card, two asterisks on the 2nd card, three on the 3rd and so on. 

 

Comments 

Comments can be inserted in scripts, marking them with a character on the start of the line. The character can be an 

apostrophe (‘) or a semicolon (;) or a custom character selected from the “Config” window. 

 

Example: 

 
CARDS = 52 

‘This is a standard deck 

 

From the “Config” window you can also check the “Use in-line comments marked by …” option, and after that you can 

use a syntax like that: 

 
CARDS = 52 ‘‘ This is a standard deck 

 

If you use a custom character, and open your script on another computer (with a different configuration) your comments 

will not be evaluated as such. To avoid this problem, you must include a COMMENT directive at the start of your script 

(see page 77). 

 

You can apply or remove the current comment’s character in a block of selected text with two buttons on the right side 

of the main window: “+Com” for apply comments and “-Com” for removing comments. 
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Script lists 

If you must work on multiple scripts, you can create a list for manipulating them. You can activate this option clicking 

on the button “Script list”: 

 

 
 

With the buttons on the right side you can create a new list, open an old list, save the current list (with the current name 

or specifying another), add another script to the list, remove a script and sort the list. You can also open the selected 

script, or open all of them (in multiple tabs), create a list from all the current scripts and erase the selected script. 

With the button “Run list” you can launch a “Validate and build” task on all the scripts listed in this window, choosing 

the output for them with the “Output” box: you can print the result, create PDF, and save the images in bmp, jpg, png or 

tiff format (the latter with standard and CMYK color space). With the “Filename number” box you can choose if the 

filename must be chosen from card number or card count: it can be different if you use a PRINT directive (see page 

139) in your scripts. 
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Create PDF 

The button “PDF” in the main window opens this form: 

 

 
 

With this form, you can specify a filename and an author for the PDF file. 

 

PDF/A: with this option, the PDF file is saved in this format. 

 

Use JPEG Compression form images: with this option enabled all the images in the PDF file are internally stored in 

JPEG format. 

 

Use scaled images: with this option enabled, the program uses a high image compression for the PDF file, reducing its 

size (and its quality). 

 

PDF compression level: you can choose between four standard compression level for the images (None, Low, Default 

and Max). 

 

Save a copy with a CMYK color space: if you have installed Ghostscript (http://www.ghostscript.com) you can also 

save it with CMYK color space (instead of RGB), specifying the path for the executable (Gswin32c.exe), and use an 

ICC color profile. 

 

http://www.ghostscript.com/
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Save images 

The button “MT” in the main window opens this form: 

 

 
 

With this form, you can specify a path for saving the cards’ images, the file format, the number of threads to be used, 

the DPI (see page 84) and oversampling (see page 132) values. 

 

Note: every thread uses a separate memory pool, thus it’s possible to use more than 4GBytes of memory. 

 

 

Convert a PDF to images 

The button “CP” in the main window opens this form: 

 

 
 

If you have installed Ghostscript (http://www.ghostscript.com) you can convert PDF files into images. The first field is 

for the Ghostscript’s executable; the second is the name of the PDF file, the third is for the resulting images (you can 

use the § character for the page number); the fourth field is for the DPI resolution of the final images. 

http://www.ghostscript.com/
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Command-line parameters 

You can run nanDECK from the command line (if you want to execute a script in a batch, for example). The syntax is: 

 
nanDECK <script file> <action> 

 

The action parameter can be one of the following: 

 

/createbmp 

the program creates all the cards and saves them in bmp/jpg/png/gif/tif formats (also with CMYK 

color space), one file for each card 

/createjpg 

/createpng 

/creategif 

/createtif 

/createtifcmyk 

  

/creategifa  

the program creates all the cards and saves them in one single file in animated-gif or pdf format /createpdf 

/createpdfa 

  

/print the program creates all the cards and prints them with the default printer 

  

/exec the program runs the script (useful when using SAVE directive) 

  

/range= the program creates only a range of the card, with the syntax start-end (for example /range=1-10) 

/output= this is the path for the resulting files 

/dpi= you can specify a different DPI value (the value in the script isn’t used) 

/oversample= you can specify an oversample value (the value in the script isn’t used) 

/name= the program uses a label for the name of the card when saved as individual images 

/[label]=value the program adds a label with that name and that value 

 

For example, to save all images obtained with script “c:\my scripts\test01.txt” in png files, you can write: 

 
nanDECK “c:\my scripts\test01.txt” /createpng 

 

To create a pdf with all the cards, you can write: 

 
nanDECK “c:\my scripts\test01.txt” /createpdf 

 

The images are created in the same folder for the script, and for multiple images, a number will be added to the end of 

the filename. In the 1st example, the images will be named: 

 
c:\my scripts\test01_01.png 

c:\my scripts\test01_02.png 

c:\my scripts\test01_03.png 

… 

 

In the 2nd example, the file will be named: 

 
c:\my scripts\test01.pdf 

 

If you leave the action parameter empty, the program will only load the script specified in the 2nd parameter. 
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Keyword wizards 

In this program, you can use a wizard for inserting keywords (and specifying all the parameters). In the main editor, if 

you want to insert a directive, right click on an empty row and a menu appears, with all the keywords, if you click on 

one entry, the corresponding wizard form will be showed: 

 

 
 

For every keyword, a different wizard form appears, with all the parameters (obligatory and optional). The same 

window appears if you press “F2” (modify) key on a pre-existent row (or right-click on the same pre-existent row). For 

example, this is the RECTANGLE wizard form: 
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Optional parameters are in italic (like Thickness in the above form). A hint for the syntax is show in the bottom of the 

form, with the “Confirm”, “Help” (it points to the RECTANGLE help page) and “Cancel” buttons. For some 

parameters, there are buttons for inserting specific values (like colors and gradients). For position and size there is a 

specific form (“Pick rect.” Button, in the above form): 

 

 
 

The rectangle can be moved and resized, dragging it with the mouse; you can use the rightmost buttons to change the 

rectangle size or position into some standard values. 

 

Tip: you can go directly to this form, pressing the key F3 (or clicking the “Visual edit” button) where you are on a line 

with a graphic directive. 

 

In the wizard form, if you double click in a field, you can choose a label name from a list (you can see also the label’s 

value): 

 

 
 

Tip: in every field, you can use the mouse wheel to increase / decrease a numeric value. 
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Linked data editor 

If you use a LINK directive (see page 123) to use a CSV data file, you can edit directly this file using the “Linked data” 

button. If you click on it, the program shows you a list of linked files. If you choose one of this, a window opens itself, 

showing you a table with the file content. For example: 

 

 
 

You can modify directly a cell clicking on it (there is a larger edit box on the bottom of the window), you can also 

change the table’ sorting with a click on the column (one click sets an ascending order, another click sets a descending 

order, it doesn’t work for larger fields). With the buttons on the right you can do some tasks, like insert or delete a 

record, add, delete or rename a column (a field), update the lists of data (in the drop-down menu in each field), hide or 

show the editor, open an external RTF editor (for the current field) or close the window. 

 

The two buttons “Validate deck” and “Build deck” on the left are replicated from the main window. With the other 

buttons on the left you enable or disable the current row (putting a ‘ in front of it), or enable or disable all the rows. You 

can also enable only the current row, or setting the range for the deck building. With the buttons on the lower side of the 

window (under the edit box) you can move the current record (first, previous, next and last), add (+), delete (-), edit (the 

triangle), confirm (the check sign) or discard (X) the changes in a record. 

 

All the change made in this window to the linked file will be saved if you save the main script file. 

 

Tip: you can instantly build a single card with a double click on one row of data. 

 

Tip: you can instantly open the external RTF editor with a double click on the lower editor. 

 

Tip: you can select the external RTF in the “Config” button from the main window. 
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Virtual table 

The “Virtual table” option is a desktop in which you can put the result of card rendering, you can use it for saving 

images for a manual or play test the drawing of cards from a deck. Without modifying your script, you can view the 

Virtual table clicking on the button “Table” after building a deck. Then you can see a window with your deck in the 

center of the screen, and you can use these commands: 

 

Mouse commands on decks 

 

click select deck 

double click draw a card face up 

shift double click draw a card face down 

right click rotate deck 90° 

resize resize deck image 

shift resize resize deck image without keeping size ratio 

ctrl resize resize deck image from the center 

 

Mouse commands on cards 

 

click select card 

double click turn card face down/face up 

right click rotate card 90° 

resize resize card image 

shift resize resize card image without keeping size ratio 

ctrl resize resize card image from the center 

 

ctrl click pick all the cards and the decks under the cursor and create a new deck 

mouse wheel zoom table 

 

 
 

In the bottom line of the window you can read the number of cards in the selected deck. On the right panel, you have 

these controls: 

 

Reset table this button reset to the initial state all the decks and the elements on the table 

Reset deck this button reset to the initial state the selected deck 

Display deck this button draws all cards in the deck, and position them left to right, top to bottom in the table 
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Select a card this button lets you to select a single card from a deck 

Delete this button deletes the selected object (deck, card, or token) 

Draw (number) the number of cards specified is drawn each time you double click on a deck  

Position the card drawn from the deck is placed to this position, relative to its deck 

Rotate after a card is draw, the position is moved to the next 

Position +- the card drawn is placed in a slightly random direction 

Position slider the amount of the offset of the position when the last option is enabled 

Align to Grid the card drawn is placed in a grid of the same size of the card 

Zoom slider this slider enlarges or reduce the table size 

1:1 button this button reset the zoom 

Card preview this button show the current card, enlarged 

Show canvas the canvas is shown as a background image 

Auto select the elements of the table are selected automatically when the mouse pass over them 

Show tags the tags (see page 152) are shown in the four quadrants of the table 

Bring to front an object clicked is pushed to the front, before all the other objects 

Move stacks when you move a card, all the other cards on top of it are also moved 

Save image the table is saved as a bmp file 

Close you close this window 

 

This is the window that the program shows you to select a single card from a deck: 

 

 
 

 

There are two directives that you can use in your script to customize the Virtual table: the DECK directive splits the 

cards in more than one deck, and the TOKEN directive creates some elements to be used on the table, with a fixed text 

or a randomized value, in the latter case you can “roll” the token with a double click on it. 

 

Example: 

 
… 

DECK = "1-26", "Red", #FF0000, 30% 

DECK = "27-52", "Black", #0000FF, 30% 

TOKEN = "{1d6}", 50, 50, #FFFFFF, #0000FF, 1 

TOKEN = "{1d6}", 50, 50, #FFFFFF, #FF0000, 1 

TOKEN = "$", 100, 50, #FFFFFF, #00FF00, 10 
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Visual editor 

You can open the Visual Editor with a click on the “Visual editor” button, or pressing F4 on the keyboard, or by a 

middle button (or wheel) click on the mouse, this is the main form: 

 

 
 

The visual directives are a subset of the standard ones, and are loaded from a section of the source delimited with 

VISUAL / ENDVISUAL directives, for example: 

  
VISUAL 

ELLIPSE = 1, 0, 0, 100%, 100%, #0000FF 

ENDVISUAL 

 

With this script, when you press the “Visual Editor” button, the program loads the lines between VISUAL / 

ENDVISUAL in the visual GUI, and you can modify them, or add new directives (with the toolbox on the left of the 

window). 

 

When you press the “Confirm” button, all the objects are inserted in the source, between VISUAL / ENDVISUAL, so 

there is a two-way interaction between source and GUI (but only in a section of the source). Non-visual directives are 

not allowed in this section (the program gives an error in the validation step). 

 

If the VISUAL / ENDVISUAL section is not present, the program shows you an empty GUI (but you can add new 

objects) and when you return to the source, a visual section is added to the end of it. 

 

You can see at the right of the GUI window a list of directives, that will go to the source if confirmed, that are layered 

from the top (first, to the rear) to the bottom (last, to the front). They can be drag and dropped across the list to change 

their layer position (the result is shown immediately in the main panel). 

 

At the top right of the window there are some buttons to navigate through the deck (and add or delete cards), a combo 

box for choosing a label / sequence to be inserted in directives like TEXT or IMAGE and another combo box for 

choosing a sequence to be used with a LABELRANGE function to choose a range (the object is shown only when the 

item of the sequence is equal to “1”). 

The last combo box is when you want to link the object to a frame (only frames defined within VISUAL / 

ENDVISUAL section are shown); these frames are shown by clicking on the “Frames” tab (all other objects are 

locked); in this tab, you can also enable only a group of frames: to define a group you can create frames with a 

group/name syntax (for example: group1/frame1, group1/frame2, etc.). If you enable the option “Change objects’ 
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frames”, when you choose a group the program will move all the objects that has frames with compatible names to the 

new frames. 

 

In the bottom left of the windows there are the controls for showing h/v rulers, a grid (with the number of horizontal and 

vertical steps) and snap/size to the grid, a slider for zooming in and out the card, a button “Toggle 50%” to toggle on/off 

50% transparency to the current object (useful to see what lies beneath), and a button “1:1” for restoring a 100% zoom 

and four buttons to move the selected object in the four directions (these buttons are linked to the arrows keys on the 

keyboard). 

 

In the bottom right there are nine buttons, to move the selected element to these positions. If you use the right mouse, 

the element instead of being moved is resized (for example, the CC button resize it to the whole card). The last two 

buttons, “Cx” and “xC” centers the element vertically and horizontally, respectively. 

 

Mouse controls: 

• double click (on the command, to the right of the screen): modify comment, lock and group of an object, 

• right click (on the object and the command): modify the parameters utilized for rendering, 

• use mouse wheel for zooming the card’s image, 

• use CTRL + mouse wheel to move between cards. 

 

Shortcuts: 

F2 modify current element 

Del delete current element 

CTRL+D duplicate the current object, 

CTRL+L lock the position of the current object, 

CTRL+U unlock the position of the current object, 

CTRL+H toggle 50% transparency on/off, 

LEFT move the current object one pixel to the left, 

DOWN move the current object down one pixel, 

UP move the current object up one pixel, 

RIGHT move the current object one pixel to the right. 
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Configuration 

The “Config” button on the main window brings you to the configuration window: 

 

 
 

Deck file location: the program can run in two modes, the default “on RAM” setting uses RAM for the card rendering, 

it is fast, but if you have many high-resolution cards it can slow down the whole computer (when the RAM is full). 

Instead the “on disk” setting is slower, but it can render many high-resolution cards without slowing down your PC. The 

same is true if you have very large decks (thousands of cards). 

 

Validate & Build buttons: usually “Validate” and “Build” are two distinct buttons in the main window. With this 

option, you can have one single button “Validate & Build”; if you click it, the script will be first validated, and if valid, 

the deck will be built next. 

 

Default for deck file’s extension: with this option, you can choose the default extension between “.txt” and “.nde” (and 

assigning these files to the nanDECK program, and open them with a double click). 

 

Default comment char: with this option, you can choose the character used for commenting lines, and changing all of 

them from one to another, you can also use a custom character (instead of the default ‘ and ;). 

 

Use in-line comment marked by ;;: if you enable this option, you can use a double comment char for inserting 

comments on the same line used for commands. For example (with the default “;” comment char): 

 
CARDSIZE = 6, 9 ;; default card size 

 

Editor text color, Editor background color, Editor highlighter color, Editor structures color, Editor text error, 

Editor background error, Brackets text, Brackets background: with these buttons, you can change the default 

colors for the editor text, background, highlighted line, lines that contain special directives, text and background for 

lines that contain errors and brackets (and re-setting them to the default values by pressing the Default button). 

 

Editor text size: this number sets the size of the font for the editor’s character (the default is 10). 

 

Precision visual → script: this is the number of digits for fractional values that the software uses when an object in 

visual editor is converted to a script line. 

 

Handle size (visual editor): this is the size (in pixels) of the eight white squares that you can use to resize an object in 

the visual editor. 
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Handle size (table): this is the size (in pixels) of the eight white squares that you can use to resize an object in the 

virtual table. 

 

Editor RTF: this is the path to the executable file called when you want to edit a field text in a linked file with an 

external RTF editor. You can also choose the default executable linked with an “.rtf” file extension. 

 

Inkscape exe: this is the path to the executable file for Inkscape, used with the VECTOR directive (see page 161) when 

you want to use it for the rendering, instead of the internal engine (the default, less accurate). 

 

Reload last work’ session at startup: with this option enabled, at the start the program loads the file(s) opened in the 

last session. 

 

Check at startup for a new program version (online): with this option enabled, at the start the program checks online 

if a new release is available for the download, and warns you in the window’s title. 

 

Check for matching parenthesis on “Validate deck”: with this option enabled, the program checks if the parenthesis 

match in all your script. 

 

Auto-save script on “Build deck” command: with this option enabled, the program always saves the script when you 

click on the “Build deck” button. 

 

Don’t show script after validation: usually the program, after the validation procedure, writes the script in the lower 

box in the main window. With this option enabled, the script is not written (speeding up the validation process). 

 

Write log to file <nandeck.log>: with this option enable, you can save the program log (all the text shown in the lower 

box in the main window) in a text file. 

 

Open PDF after creation: with this option enabled, after a PDF is created, the program opens it, using the default 

application associated with “.pdf” extension. 

 

Use ADO for Excel files: with this option for loading files from Excel is used an ADO library, is slower than the 

internal method, but you can open files that are concurrently open in Excel. 

 

Use %TEMP% folder for RTF/HTML work files: these directives create a temporary file, if you enable this option 

that file will be create in the temporary folder, if you disable this option it will be created in the current folder. Note that 

if you have projects in folder linked to a cloud service (like Dropbox™) you should enable this option. 

 

DPI = 75 for “Auto build” feature: if you have enabled the “Auto build” option, if this option is enabled, the preview 

is done at a lower resolution (useful for slow PC). 

 

Use placeholders for missing image files: if you specify file images that doesn’t exists, the program creates them (a 

random color bitmap with the name of the file repeated on it) and shows you in a window the list of the missing files. 

 

Stop build when errors are found in the script: with this option enabled, the validate procedure is stopped when an 

error is found in the editor, if it is disabled, the line with errors are highlighted and the validation is completed. 

 

Always shows hint panel: with this option enabled the bottom panel with the keyword’s help is shown always, and not 

only when a keyword is present in the current editor line. 

 

Use fast rotation library (Windows only): use an alternative rotation library that uses routines available only on 

Windows (when the program is executed for the first time on Wine, this option is unchecked). 

 

Use tabs in editor: if you enable this option, each tab key is converted to the specified number of spaces. 

 

Show label/color/image preview: with this option enabled, when the caret is on a label, its content (text, color, or 

image) is shown in the lower part of the main window (the Default button resets the standard widths of these resizable 

panels). 

 

Load font files in program’s folder at start: if this option is enabled, nanDECK, when it’s started, loads all the font 

files that are found in the same folder with its executable. 
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Use older factor for shadows and outlines in HTML: when they were first implemented, shadows and outlines with 

HTMLFONT use a value for size that wasn't correct; now it’s fixed, but if you want to use the older routines, check this 

option. 

 

Cache images: with this option enabled, all the files loaded with an IMAGE directive are stored in RAM, for a faster 

reload; if you need more RAM for your deck, uncheck this option. 

 

Create a new tab for New and Open commands: if this option is enabled, when you create a new script or load an 

existing one, a new editor tab is created, instead of executing that command in the existing editor tab. 

 

Enable auto-increment/auto-decrement of counters: with this option enabled, you can use numbers before or after 

counters to add/subtract a number from them (if before, the number is added/subtracted before using the counter, if 

after, the addition/subtraction occurs after having used the counter). 

 

Editor auto-complete (based on previous lines): if this option is enabled, when you digit some characters, if an 

existing line is already present in the editor, that starts with these characters, is proposed as selected text. 

 

Automatic addition of closing parenthesis: if this option is enabled, when you digit an open parenthesis (standard, 

square, or curly) the corresponding closing parenthesis is automatically added. 

 

BATCH directive: for security reason the BATCH directive (see page 67) must be enabled before use, selecting an 

option from “Disabled”, “Enabled (with confirmation)”, and “Enabled”. 

 

Enable Internet Explorer 11 for HTMLTEXT / HTMLFILE: as a default a program can’t use Internet Explorer 

features beyond version 6, until there is a specific entry in Windows’ Regedit; by using this button the program writes 

that correct entry. 
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Compare decks 

When you have loaded more than one deck (adding another tab with CTRL+N) you can view them side to side by 

clicking on the “Comp” button in the right side of the main window: 

 

 
 

You can browse the decks with the arrow buttons (linked by default, but you can remove this feature with the “Linked” 

checkbox) and you can zoom in or out with the two buttons “+” and “-”. 
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Shortcuts 

At the start, nanDECK reads a shortcuts.txt file from the same folder, and creates shortcuts for every line read (or 

combinations of lines). You can recall these clips of text with combinations of keys like Ctrl + Alt + letter or Ctrl + 

Alt + Shift + letter. The lines associated with the letter character, lower of uppercase, (identified before a “:” colon) are 

inserted in the main editor (in the current edit position). 

 

For example, if you have this shortcuts.txt file (created with Notepad or another text editor): 

 
r:RECTANGLE = 1, 0, 0, 100%, 100%, #0000FF 

T:FONT = ARIAL, 32, , #000000 

TEXT = 1, "Test", 0, 0, 100%, 100% 

 

You can press Ctrl + Alt + r for the RECTANGLE line or Ctrl + Alt + Shift + t for the FONT + TEXT lines. 

 

References 

E-mail nand@libero.it 

 

Website http://www.nandeck.com 

 

Yahoo! Group http://tech.groups.yahoo.com/group/nandeck 

 

BoardGameGeek Guild http://www.boardgamegeek.com/guild/454 

 

F.A.Q. 

1) When I must use quotes (“)? 

This program uses an interpreter for the evaluation of all parameters, this code separates them using commas (,). So, if a 

parameter has a comma in it, you must enclose the parameter in quotes. Otherwise, if a parameter has no commas, the 

quotes are optional (the program will accept the parameter with or without quote), but for some parameter quotes are an 

error (for numeric parameters, for example). 

 

Correct examples: 

 
IMAGE = "1-10", "c:\my images\earth.jpg", 0, 0, 6, 9, 0 

IMAGE = 1-10, c:\my images\earth.jpg, 0, 0, 6, 9, 0 

  

TEXT = 1-10, "This, is a test", 0, 0, 6, 9 

 

Note: quotes in ranges aren’t needed. 

 

Wrong example: 

 
TEXT = 1-10, This, is a test, 0, 0, 6, 9 

 

The 2nd parameter will be split into “This” for 2nd parameter and “is a test” for 3th. 

 

2) How I can insert quotes (or another character) in a text? 

You can use \n\ syntax to insert a character in a text, with n being the ASCII code of that character, for example, if you 

want to enclose a text in quotes (ASCII 34) or add a new line (ASCII 13): 

 
FONT = Arial, 32, , #000000 

TEXT = 1, "I say \34\Hello\34\", 0, 0, 6, 9, center, center 

 

Note that \13\ works with TEXT directive, instead with HTMLTEXT you must use the HTML tag <br>. 

 

3) Why this program uses so much memory? 

http://www.boardgamegeek.com/guild/454
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This program has two settings for storing cards during creation: RAM or disk. The default setting is in RAM, and you 

can change that in the “Config” window, remember that RAM is faster (and you can run multiple instances of the 

program) but the computer may slow down when it starts using swap space; on disk is slower (can you can’t run 

multiple instances) but the speed remains the same even with very large decks (or higher DPI settings). 

 

4) Why there is option (X) if you can use (Y)? 

When writing this program, I tried to maintain backward compatibility with previous version, so you can do the same 

thing in more than one way. For example: WWTOP option for vertical alignment in TEXT command is equal to 

CENTER, for backward compatibility. 

 

5) There is a Linux version? 

No, but if you install Wine you can run the same nanDECK version for Windows on your Linux, with all the major 

features; also, if you want better compatibility, you can download and install the “Microsoft core fonts”. 

 

Wine http://www.winehq.org/ 

Microsoft core fonts http://sourceforge.net/projects/corefonts/files/the%20fonts/ 

 

Note: with a recent update, nanDECK uses a DLL (FONTSUB.DLL) that is not present in every distribution, if this is 

the case the program won’t start, you must download a zip that includes this file from here: 

 

http://www.nand.it/nandeck/nandeck_wine.zip 

 

6) There is a Mac version? 

No, but if you install Winebottler (and XQuartz) you can run the same nanDECK version for Windows on your OSX, 

with all the major features. You can use also an emulator like Virtual Box (free) or Parallels (commercial software). 

 

Winebottler http://winebottler.kronenberg.org/ 

XQuartz http://xquartz.macosforge.org/ 

 

Note: with a recent update, nanDECK uses a DLL (FONTSUB.DLL) that is not present in every distribution, if this is 

the case the program won’t start, you must download a zip that includes this file from here: 

 

http://www.nand.it/nandeck/nandeck_wine.zip 

 

http://www.winehq.org/
http://sourceforge.net/projects/corefonts/files/the%20fonts/
http://www.nand.it/nandeck/nandeck_wine.zip
http://winebottler.kronenberg.org/
http://xquartz.macosforge.org/
http://www.nand.it/nandeck/nandeck_wine.zip
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Directives 

BASERANGE 

For each card in a range an element is extracted from a sequence, and as a default the first element from the sequence is 

paired from the first card in the range. The only exception is when you have a LABELRANGE function (see page 30): 

in this case, the nth element from the sequence is paired with the nth card from the deck. With this directive, you can 

change this behavior.  

 

Syntax: 

 

BASERANGE = “range”, switch 

 

Parameters: 

 

“range”: a range of cards, 

 

switch: values accepted are: 

 

ON the nth element from the sequence is paired with the nth card from the deck 

OFF the nth element from the sequence is paired with the nth card from the range 

 

BATCH 

This directive executes an external batch script (a text file with a “.bat.” extension). For security reasons, you must 

enable the relative option in the Configuration form: here you can choose between “Disabled”, “Enabled (with 

confirmation)”, and “Enabled”. 

 

Syntax: 

 

BATCH = “batch file” 

 

Parameters: 

 

“batch file”: path and name for a batch file. 

 

Example: 

 
BATCH = "c:\bat\copy_files.bat" 
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BEZIER 

This directive draws a Bezier curve from a starting point (x1, y1) to an ending point (x2, y2), using two “handles” (h1 

and h2). 

 

Syntax: 

 

BEZIER = “range”, pos x1, pos y1, handle x1, handle y1, handle x2, handle y2, pos x2, pos y2, html color, thickness, 

end arrow, start arrow 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x1, pos y1: coordinates of starting point (in cm), 

 

handle x1, handle y1: coordinates of handle for starting point (in cm), 

 

handle x2, handle y2: coordinates of handle for ending point (in cm), 

 

pos x2, pos y2: coordinates of ending point (in cm), 

 

html color: color of the curve, in the same format used for HTML. You can also specify a gradient, 

 

thickness: thickness of the curve (in cm), if omitted, the curve is 1 pixel wide, 

 

end arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the end of the curve, 

 

start arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the start of the curve. 

 

Example: 

 
BEZIER = 1, 1.5, 0, 1.5, 4.5, 4.5, 4.5, 4.5, 9, #0000FF, 0.15 

BEZIER = 1, 4.5, 0, 4.5, 4.5, 1.5, 4.5, 1.5, 9, #0000FF, 0.15 

BEZIER = 1, 0, 3, 3, 3, 3, 6, 6, 6, #FF0000, 0.15 

BEZIER = 1, 0, 6, 3, 6, 3, 3, 6, 3, #FF0000, 0.15 
Result: Image 11 

 

Image 11 
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BEZIERS 

This directive draws a Bezier curve from a starting point (from the last BEZIERS directive) to an ending point (x, y), 

using two “handles” (one from the last directive and one from parameter h). The first directive sets only the starting 

point, for each subsequent directive a curve is drawn (the starting point for the next curve is the ending point of the 

last). For restarting the process, you can specify a BEZIERS with only the range parameter. 

 

Syntax: 

 

BEZIERS = “range”, pos x, pos y, handle x, handle y, html color, thickness, end arrow, start arrow 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x, pos y: coordinates of starting/ending point (in cm), 

 

handle x, handle y: coordinates of handle for starting/ending point (in cm), 

 

html color: color of the curve, in the same format used for HTML. You can also specify a gradient, 

 

thickness: thickness of the curve (in cm), if omitted, the curve is 1 pixel wide, 

 

end arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the end of the curve, 

 

start arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the start of the 

curve. 

 

Example: 

 
BEZIERS = 1, 0, 0, 3, 0, #000000, 0.1 

BEZIERS = 1, 0, 3, 3, 3, #FF0000, 0.1, 0.5 

BEZIERS = 1, 0, 6, 3, 6, #00FF00, 0.1, 0.5 

BEZIERS = 1, 0, 9, 3, 9, #0000FF, 0.1, 0.5 
Result: Image 12 

 
Image 12 
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BLEED 

This directive fills the space beyond a rectangle with the colors from the border of the rectangle, if you don't specify the 

size of the outer rectangle, this directive fills the whole card. 

 

Syntax: 

 

BLEED = “range”, pos x1, pos y1, width1, height1, pos_x2, pos_y2, width2, height2 

 

Parameters: 

 

“range”: a set of cards 

 

pos x1: horizontal position (in cm) 

 

pos y1: vertical position (in cm) 

 

width1: width of the rectangle (in cm) 

 

height1: height of the rectangle (in cm) 

 

pos x2: horizontal position (in cm) of the outer rectangle 

 

pos y2: vertical position (in cm) of the outer rectangle 

 

width2: width of the outer rectangle (in cm) 

 

height2: height of the outer rectangle (in cm) 

 

Examples: 

 
BLEED = "1-10", 1, 1, 4, 7 

 

BLEED = "1-10", 1, 1, 4, 7, 0.5, 0.5, 5, 6 

 

BORDER 

This directive draws a border around all the cards. 

 

Syntax: 

 

BORDER = type, html color, thickness, guidelines, guide color, mark size, hor. guide offset, ver. guide offset 

 

Parameters: 

 

type: the type of border can be chosen between: 

 

RECTANGLE draws a rectangle 

ROUNDED draws a rectangle with rounded corners 

MARK draws cut marks 

NONE no border 

 

html color: color of the border, in the same format used for HTML, black if not specified, 

 

Note: if you want a different border color on each card, use instead RECTANGLE or ROUNDRECT 

 

thickness: thickness of the border (in cm), if omitted, it is 1 pixel wide, 

 

Note: the thickness of the border is measured on two cards; if you use a thickness of 1 cm, for example, on each card 

the border is 0.5 cm wide.  
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guidelines: this is for drawing lines beyond the card’s boundaries (over the page’s margins). You can choose between: 

 

NONE no guidelines (the default) 

DOTTED dotted lines 

SOLID solid lines 

MARK draws cut marks only (solid lines) 

MARKDOT draws cut marks only (dotted lines) 

 

guide color: color of the guidelines, in the same format used for HTML, black if not specified, 

 

mark size: length of the cut marks (in cm) for MARK border type, 

 

hor. guide offset: horizontal guides are displaced of an offset (in cm), zero if not specified, 

 

ver. guide offset: vertical guides are displaced of an offset (in cm), equal to horizontal offset if not specified. 

 

Examples: 

 
BORDER = RECTANGLE 

 

BORDER = ROUNDED, #0000FF, 0.5 

 

BRUSH 

This directive changes the style used for filling the shapes in these directives: 

 
ELLIPSE 

FILL 

HEXGRID 

PIE 

POLYGON 

RECTANGLE 

RHOMBUS 

ROUNDRECT 

STAR 

TRIANGLE 

 

Syntax: 

 

BRUSH="range", type, “image file”, width, height 

 

Parameters: 
 

“range”: a set of cards, 

 

type: you can choose a type between these options: 

 

SOLID draws a solid fill (the default), 

DIAGLEFT fills with lines, drawn diagonally from top right to bottom left, 

DIAGRIGHT fills with lines, drawn diagonally from top left to bottom right, 

SQUARE fills with squares, 

CROSS fills with squares, rotated 45°, 

HORIZONTAL fills with lines, drawn horizontally, 

VERTICAL fills with lines, drawn vertically, 

CUSTOM fills with an image 

 

“image file”: the image file used for filling the shapes 

 

width: width of the image, in cm 
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height: height of the image, in cm 

 

Examples: 

 
BRUSH="1-10", SQUARE 

 

BRUSH="1-10", CUSTOM, "dots.gif", 5%, 5% 
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BUTTON 

This directive draws a 3D rectangle over a set of cards. This directive works only if you have previously drawn 

something in the specified area. 

 

Syntax: 

 

BUTTON = “range”, pos x, pos y, width, height, depth, flags 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the rectangle (in cm), 

 

height: height of the rectangle (in cm), 

 

depth: width of the 3D border, 

 

flags: one or more of the following flags: 

 

I from out to in 

O from in to out 

G gradient effect 

 

Example: 

 
RECTANGLE = 1, 1, 1, 4, 3, #00FFFF 

RECTANGLE = 1, 1, 5, 4, 3, #00FFFF 

BUTTON = 1, 1, 1, 4, 3, 0.3, I 

BUTTON = 1, 1, 5, 4, 3, 0.3, O 
Result: Image 13 

 

Image 13 
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CANVAS 

With this directive, the program splits the canvas (card 0) onto a range of cards. The canvas’ size can be decided with a 

CANVASSIZE directive (see page 75). 

 

Syntax: 

 

CANVAS = “range” 

 

Parameters: 

 

“range”: a set of cards. 

 

Tip: You can view the content of the canvas bitmap with a click on the button “Canv” (to the right of the “Card 

preview” button). You can reduce/enlarge it with a double-click on the image. 

 

For example, if you must draw a large circle, to be split onto six cards, you can use the CANVASSIZE/CANVAS 

directives, like in this script: 

 
BORDER = MARK 

CANVASSIZE = 18, 18 

CANVAS = 1-6 

ELLIPSE = 0, 0, 0, 18, 18, #0000FF#FF0000@360 

FONT = Arial, 48, , #000000 

TEXT= 1-9, {§}, 0, 0, 2, 2, CENTER, CENTER 

 

This is the resulting printed page (I’ve added a number in the top-left corner of each card for helping identify them): 
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CANVASSIZE 

This directive sets the size of the canvas (card number 0). If omitted, is considered to be 6 cm x 9 cm. The card 0 is a 

card that isn’t printed with the deck, is can have a different size than the standard card and can be used in two ways: as a 

drawing board to realize special effects, and to draw a larger card that must be split onto several standard cards, using 

the CANVAS directive (see page 74). 

 

Syntax: 

 

CANVASSIZE = width, height 

 

Example: 

 
CANVASSIZE = 12, 18 

 

CANVASWORK 

This directive tells the program to draw the canvas (card 0) after drawing the range of cards specified in the parameter. 

 

Syntax: 

 

CANVASWORK = “range” 

 

Parameters: 

 

“range”: a set of cards. 

 

CARDS 

This directive can be used to specify the total number of cards that compose the current deck. 

 

Syntax: 

 

CARDS = number 

 

This directive is somehow obsolete, if you don’t specify it, the total number of cards is deducted from the other 

directives. For example, in that script the total number of cards is set to 20: 

 
RECTANGLE = "1-5,15-20", 0, 0, 6, 9, #00FF00 

 

But, if you specify also a CARDS directive, the cards’ number is forced. For example, in that script the total number of 

cards is set to 15 (and the extra cards specified in RECTANGLE are ignored): 

 
CARDS = 15 

RECTANGLE = "1-5,15-20", 0, 0, 6, 9, #00FF00 

 

CARDSIZE 

This directive sets the size of cards (in cm). If omitted, is considered to be 6 cm x 9 cm. 

 

Syntax: 

 

CARDSIZE = width, height 

 

Examples: 

 
CARDSIZE = 5, 10 

 
CARDSIZE = 2.5, 2.5 
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CASE 

This directive is used in a structure SELECT…ENDSELECT to specify a code that must be executed when the value in 

the SELECT is equal to a specific value (see page 148). 

 

Syntax: 

 

CASE = value 

 

Parameters: 

 

value: a string, number, label or expression that can be evaluated. 

 

CASEELSE 

This directive is used in a structure SELECT…ENDSELECT to specify a code that must be executed only if all the 

CASEs directives are not executed (see page 148). 

 

Syntax: 

 

CASEELSE 

 

Parameters: 

 

None 

 

CHROMAKEY 

This directive sets the color to be treated as transparent during image loading (with IMAGE directive, see page 110). 

The default transparent color, if CHROMAKEY was not used, is the color in the top-left pixel of the image. 

 

Syntax: 

 

CHROMAKEY = html color | corner type, level 

 

Parameters: 

 

corner type: the color will be picked from one of the four corners: 

 

TOPLEFT 

TOPRIGHT 

BOTTOMLEFT 

BOTTOMRIGHT 

 

level: if specified, are treated as transparent also the colors within a level of difference from the base transparent color 

(calculated as a distance in CIELab space). 

 

Examples: 

 
CHROMAKEY = #FFFFFF 

 
CHROMAKEY = TOPLEFT 
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COLOR 

This directive modifies the colors, brightness, contrast and saturation of images (and text) being rendered on a range of 

cards. See directives IMAGE (page 110), ICONS (page 107), PATTERN (page 136) and TEXT (page 152). 

 

Syntax: 

 

COLOR = “range”, html color, bri-con-sat 

 

Parameters: 

 

“range”: a set of cards, 

 

html color: color used for rendering the image, in the same format used for HTML. If you want to 

maintain the original colors, you must use a median gray (#808080). 

 

bri-con-sat: a triplet of brightness, contrast and saturation value, used for rendering the image, written 

in hexadecimal format (like an html color), starting with an ampersand (&) character. If you want to 

maintain some of the original values, use the median value (hexadecimal 80). If this parameter is 

omitted, are used three neutral values (&808080). 

 

Examples: 

 
COLOR = 1, #00FF00 

IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 9, 0, P 
Result: Image 14 

 

COLOR = 1, #808080, &FF8080 

IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 9, 0, P 
Result: Image 15 

 

Image 14 

Image 15 
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COLORCHANGE 

This directive changes one color into another, in a rectangle area of a range of cards. 

 

Syntax: 

 

COLORCHANGE = “range”, pos x, pos y, width, height, html color source, html color destination, level 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the rectangle (in cm), 

 

height: height of the rectangle (in cm), 

 

html color source: a color value, in HTML format 

 

html color destination: a color value, in HTML format 

 

level: if zero, the source color is exactly the one specified in the 6th parameter, otherwise are taken also colors that differ 

from that source a value equal this parameter in one, two, or three RGB components. 

 

COLORS 

This directive writes from one to four colors into as many variables, that can be used instead of a color value. 

 

Syntax: 

 

COLORS = “range”, html color1, html color2 , html color3 , html color4, html color5 

 

Parameters: 

 

“range”: a set of cards, 

 

html color1: a color value, in HTML format, that is stored into variable #ZZZZZZ 

 

html color2: a color value, in HTML format, that is stored into variable #YYYYYY 

 

html color3: a color value, in HTML format, that is stored into variable #XXXXXX 

 

html color4: a color value, in HTML format, that is stored into variable #WWWWWW 

 

html color5: a color value, in HTML format, that is stored into variable #VVVVVV 

 

Instead of a color, you can use another variable, or the syntax #XçY to read a color located at position X, Y of the 

current card (you can use also % with each value, for example: #50%ç50%). 

 

With the syntax #X1çY1çX2çY2 you can read the most used color in an image, (the image starts from X1, Y1 and end 

to X2, Y2). 

 

With the syntax #X1çY1çX2çY2çMinçMax you can read the most used color in an image, (the image starts from X1, 

Y1 and end to X2, Y2), excluding colors with percent brightness lower than Min and higher than Max. 

 

With the syntax #AAAAAA>#BBBBBB<#CCCCCC you can select between two color: if the brightness of color #A is 

more or equal to 50%, the variable is set to color #B, if the brightness is less than 50%, the variable is set to color #C. 
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Every color can be also modified adding a value for saturation and a value for brightness change (in percent), with the 

syntax #000000+saturation+brightness (the values for saturation and brightness can also be negatives). 

 

Example: 

 
COLORS = 1, #FF0000 

COLORS = 2, #00FF00 

COLORS = 3, #0000FF 

RECTANGLE = 1-3, 0, 0, 100%, 100%, #ZZZZZZ 

 

COMMENT 

This directive sets the character used for comments, and eventually activate the in-line comments. The utilization of this 

directive is equivalent to the settings in the "Config" section of the program. 

 

Syntax: 

 

COMMENT = char, INLINE 

 

Parameters: 

 

char: the character used for comments, it must be the first character of the line, 

 

INLINE: the same character (doubled) will be used for in-line comments. 

 

Examples: 

 
COMMENT = & 

& This is a comment 

 

COMMENT = !, INLINE 

RECTANGLE=1, 0, 0, 6, 9, #00FF00 !! This is another comment 

 

COMPARE 

This directive compares the cards built with the current script with those built with the filename specified as a parameter 

and creates a range (to be used with PRINT=COMPARE) with only the cards which are different. 

 

Syntax: 

 

COMPARE = “filename” 

 

Parameter: 

 

“filename”: the filename to be compared with the current script. 

 

Example: 

 
COMPARE="script_ver1.txt" 

PRINT=COMPARE 
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COPY 

This directive does a copy-and-paste of a section of a card into another position on the same card. If you want to copy a 

section of a card onto another card, you must use the SAVE and IMAGE directives (see page 146). 

 

Syntax: 

 

COPY = “range”, pos x1, pos y1, width1, height1, pos x2, pos y2, width2, height2, angle, flags 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x1: starting horizontal position (in cm) of the image, 

 

pos y1: starting vertical position (in cm) of the image, 

 

width1: starting width of the image (in cm), 

 

height1: starting height of the image (in cm), 

 

pos x2: ending horizontal position (in cm) of the image, 

 

pos y2: ending vertical position (in cm) of the image, 

 

width2: ending width of the image (in cm), 

 

height2: ending height of the image (in cm), 

 

angle: angle of image rotation, can be 0 for no rotation, 

 

flags: in this parameter, you can specify a special behavior for the image, possible values are: 

 

H Horizontal mirror 

V Vertical mirror 

 

Example: 

 
IMAGE = 1, " c:\images\earth.jpg", 0, 0, 3, 3.5, 0, P 

FONT = Arial, 16, , #FFFFFF, #00000  

TEXT = 1, "Earth", 0, 3.5, 3, 1, CENTER, CENTER 

COPY = 1, 0, 0, 3, 4.5, 3, 0, 3, 4.5, 0, H 

COPY = 1, 0, 0, 3, 4.5, 0, 4.5, 3, 4.5, 0, V 

COPY = 1, 0, 0, 3, 4.5, 3, 4.5, 3, 4.5, 0, HV 
Result: Image 16 

 

Image 16 
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COPYCARD 

This directive duplicates cards from a source range to a destination range. Both source and destination ranges can be 

single cards. 

 

Syntax: 

 

COPYCARD = “destination range”, “source range” 

 

Parameters: 

 

“destination range”: a set of cards, 

 

“source range”: a set of cards. 

 

Example: 

 
COPYCARD = "5-8", "1-2" 

 

This is the deck, before the directive: 

 

CARD 1 

CARD 2 

CARD 3 

CARD 4 

 

This is the deck, after the directive: 

 

CARD 1 

CARD 2 

CARD 3 

CARD 4 

CARD 1 

CARD 2 

CARD 1 

CARD 2 

 

CORRECTION 

This directive enables/disables the pixel correction. If enabled, one pixel is added to width and heights of ELLIPSE, 

RECTANGLE, ROUNDRECT, and RHOMBUS directives. The correction default is ON.  

 

Syntax: 

 

CORRECTION = “range”, switch 

 

Parameters: 

 

“range”: a range of cards, 

 

switch: values accepted are: 

 

ON Pixel correction enabled 

OFF Pixel correction disabled 

 

Example: 

 
CORRECTION = 1, OFF 
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COUNTER 

This directive sets a counter to a value. A counter is a variable that can be used in expressions (see page 48). This 

directive can be used with a dice (see DICE directive, page 83) to revert it into a counter. Note: after the build a warning 

is issued if one counter is used in an expression without being initialized. 

 

Syntax: 

 

COUNTER = “range”, counter name, counter value 

 

Parameters: 

 

“range”: a set of cards, 

 

counter name: a counter letter(s) 

 

counter value: a value, it can be a fixed number or an expression. 

 

Valid counters for integer values: 

 
A B C D E F G H I J 

 

Valid counters for floating values: 
 

AA BB CC DD EE FF GG HH II JJ 

 

Examples: 

 
COUNTER = "1", A, 100 

 

COUNTER = "1-10", B, 2D6 

 

DECK 

This directive prepares a deck of cards to be used in the “Virtual table” option (see page 57). If you don’t use this 

directive, the program prepares a deck to be used in the virtual table with all the cards. 

 

Syntax: 

 

DECK = “range”, “deck name”, html color, height, flag, back range, pos x, pos y 

 

Parameters: 

 

“range”: a set of cards, 

 

“deck name”: the name of the deck, 

 

html color: deck color in the same format used for HTML, 

 

height: height of the deck (in pixels), you can also specify a % of the screen’s height. The deck’s width is proportional 

to the height. 

 

flag: you can specify these options: 

 

R the deck is shuffled (the default) 

N the deck is not shuffled (the order of the cards is that one specified in “range” parameter) 

 

back range: if you specify a number for this parameter, for the deck image (back of cards) is used that card (taken from 

the deck) instead of a color. You can also use a range of cards for this parameter, 

 

pos x: horizontal position for the deck (in pixels), you can also specify a % of the screen’s width, 
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pos y: vertical position for the deck (in pixels), you can also specify a % of the screen’s height. 

 

Example: 

 
DECK = 1-13, "Hearts", #FF0000, 50% 

 

DICE 

This directive converts one counter into a dice (it can be used later in expressions). 

 

Syntax: 

 

DICE = “range”, counter, “dice range”, dice number, flags, default1, default2 

 

Parameters: 

 

“range”: a set of cards, 

 

counter name: valid counters are: 

 
A B C D E F G H I J 

 

“dice range”: a range of values, from which is taken the result of the dice roll, 

 

dice number: the number of dice rolled, 

 

flags: the syntax for this parameter is fng, where f is the flag that specify how the dice are grouped, n is a number that 

specify how much dice are used, and g is the flag that specify how the dice to be grouped are chosen from the main 

pool. 

 

The 1st flag can be chosen between: 

+ sum (the default, if not specified) 

* multiply 

- subtract 

# absolute value after subtracting 

£ concatenate 

^ concatenate without duplicates 

 

The 2nd flag can be chosen between: 

+ upper dice (the default, if not specified) 

- lower dice 

 

default1: the value to be used if the number before the dice is missing, 

 

default2: the value to be used if the number after the dice is missing, 

 

Example, for rolling four dice (with values from one to six) and sum the upper three: 

 
DICE = 1, A, "1-6", 4, +3+ 

 

DISPLAY 

This directive draws a list of cards to the canvas (card 0), resizing it accordingly, and save it with a filename (if 

specified). If the range is omitted, all the deck is drawn and saved. The width parameter is the number of cards in 

horizontal, if omitted, is chosen the maximum number from the factors of the total number of the cards. 

 

Instead of specifying starting and ending card, you can use a range as 5th parameter (leave the other at zero). 

 

Syntax: 

 



 84 

DISPLAY = ”filename”, first card, last card, width, “range” 

 

Example: 

 
DISPLAY = "c:\deck.png", 1, 10 

 

DOWNLOAD 

This directive downloads a file from Internet, if the file doesn’t already exist in the specified path. 

 

Syntax: 

 

DOWNLOAD = URL, “filename” 

 

Parameters: 

 

URL: the URL for a file, it must start with http:// or https://, 

 

“filename”: the path and filename for the downloaded file, if omitted, the path is the current folder, and the name is 

taken from the URL parameter.  

 

Example: 

 
DOWNLOAD = http://game-icons.net/icons/delapouite/originals/png/sheep.png 

 

You can also use two sequences, one for the URLs and one for the filenames. 

 

DPI 

This directive sets the resolution of cards (in Dots Per Inch). If omitted, is considered to be 300 (the default for 

printing); if you want to show the cards on screen, you can use a value of 150. 

 

Syntax: 

 

DPI = dpi number 

 

Note that with a value too high, the time of rendering can be very long, and the program uses more memory (or disk 

space). 

 

Example: 

 
DPI = 150 

 

DRAW 

This directive draws a number of cards from a deck in the “Virtual table” option (see page 57). If you don’t use this 

directive, the program prepares a deck to be used in the virtual table with all the cards. If you specify a new name, a 

deck is created with the card drawn, if you leave the 2nd parameter empty, the cards drawn are shown into the table as 

separated objects. 

 

Syntax: 

 

DRAW = “deck name”, “deck name new”, number, flag, pos x, pos y 

 

Parameters: 

 

“deck name”: the name of the deck from which the cards are drawn, 

 

“deck name new”: the name of the deck created with the cards drawn, 

 

http://game-icons.net/icons/delapouite/originals/png/sheep.png


 85 

number: the number of cards drawn, 

 

flag: you can specify these options: 

 

U the cards are drawn face up 

D the cards are drawn face down (the default) 

 

pos x: horizontal position for the cards/deck drawn (in pixels), you can also specify a % of the screen’s width, 

 

pos y: vertical position for the cards/deck drawn (in pixels), you can also specify a % of the screen’s height. 

 

Example: 

 
DRAW = "standard", "new", 10, U 

 

DUPLEX 

This directive copies a card (or a range of cards) to another position (or range) calculated automatically by the software, 

it is useful to manage duplicates or synchronize the front and back of cards for a duplex printing. See also PRINT 

directive (see page 139). 

 

Syntax: 

 

DUPLEX = “range front”, “range back”, number 

 

Parameters: 

 

“range front”: a card or a range of card to be copied, 

 

“range back”: a card or a range of card to be copied, front-to-back with the card(s) specified in the 1st parameter,  

 

number: if specified, the card is replicated a number of times; if not specified, it is treated like one copy. 

 

Example: 

 
DUPLEX = 1-10, 11 

DUPLEX = 12-21, 22, 2 

 

EDGE 

This directive changes the style used for drawing the lines / boundaries with these directives: 

 
BEZIER 

BEZIERS 

ELLIPSE 

HEXGRID 

LINE 

LINERECT 

GRID 

PIE 

POLYGON 

RECTANGLE 

RHOMBUS 

ROUNDRECT 

STAR 

TRACK 

TRACKRECT 

TRIANGLE 

 

Syntax: 

 



 86 

EDGE = “range”, type, pattern 

 

Parameters: 

 

“range”: a set of cards, 

 

type: you can choose a type between these options: 

 

SOLID draws a solid line (the default), 

DASH draws a dashed line, 

DOT draws a dotted line, 

DASHDOT draws a line alternating a dash and a dot, 

DASHDOTDOT draws a line alternating a dash and two dots, 

CUSTOM draws a line using a custom pattern 

 

pattern: a pattern for the custom style, this pattern can be composed of: 

 

O dot 

D dash 

S space 

 

These letters can be repeated, for example “OSDSOS” is a valid pattern. 
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ELLIPSE 

This directive draws an ellipse (or a circle) in a set of cards. 

 

Syntax: 

 

ELLIPSE = “range”, pos x, pos y, width, height, html color, html color, thickness 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the ellipse (in cm), 

 

height: height of the ellipse (in cm), 

 

html color: border color of the ellipse, in the same format used for HTML. You can also specify a 

gradient. 

 

html color: inner color of the ellipse, in the same format used for HTML, if not specified the inner 

color is the same of border color. You can also specify “EMPTY” for a hollow ellipse or a gradient. 

 

thickness: thickness of the border of the ellipse (in cm), if omitted, the ellipse’s border is 1 pixel wide. 

 

Examples:  

 
ELLIPSE = 1, 1, 1, 4, 7, #00FF00  
Result: Image 17 

 
ELLIPSE = 1, 1, 1, 4, 7, #FF00FF, EMPTY, 0.1 
Result: Image 18 

 
ELLIPSE = 1, 1, 1, 4, 7, #FF0000#0000FF@90 
Result: Image 19 

 

Image 17 

Image 18 

Image 19 
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ELSE 

This directive is used in a structure IF…ENDIF to specify a code that must be executed only if the test in the IF 

directive is not true (see page 108). 

 

Syntax: 

 

ELSE 

 

Parameters: 

 

none 

 

ELSEIF 

This directive is used in a structure IF…ENDIF to specify a code that must be executed only if the test in this line is 

true and the test in the first IF directive is false (see page 108). 

 

Syntax: 

 

… 

ELSEIF = value1 oper. value2 

… 

 

Parameters: 

 

value: a string, number, label or expression that can be evaluated, 

 

oper.: the condition is evaluated using the two values and this operator, you can use one operator from the same listed 

for the IF directive. 

 

END 

This directive is used to close a MACRO…END structure (see page 130). 

 

Syntax: 

 

END 

 

Parameters: 

 

none 

 

ENDFRAME 

This directive closes a FRAME…ENDFRAME definition (see page 97). 

 

Syntax: 

 

ENDFRAME 

 

Parameters: 

 

none 

 

ENDIF 

This directive is used to close an IF…ENDIF structure (see page 108). 
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Syntax: 

 

ENDIF 

 

Parameters: 

 

none 

 

ENDLAYER 

This directive closes a LAYER…ENDLAYER definition (see page 119). 

 

Syntax: 

 

ENDLAYER 

 

Parameters: 

 

none 

 

ENDLINK 

This directive closes a LINK…ENDLINK definition (see page 119). 

  

Syntax: 

 

ENDLINK 

 

Parameters: 

 

none 

 

Example: 

 
linkmulti=num 

link= 

num,string 

1,alpha 

2,beta 

3,gamma 

endlink 

[all]="1-{(num)}" 

font=Arial,48,,#000000 

text=[all],[num],0,0,100%,50% 

text=[all],[string],0,50%,100%,50% 

 

ENDSECTION 

This directive closes a SECTION…ENDSECTION definition (see page 147). 

 

Syntax: 

 

ENDSECTION 

 

Parameters: 

 

none 
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ENDSELECT 

This directive is used to close a SELECT…ENDSELECT structure (see page 148). 

 

Syntax: 

 

ENDSELECT 

 

Parameters: 

 

none 

 

ENDSEQUENCE 

This directive is used to close a SEQUENCE…ENDSEQUENCE structure (see page 149). 

 

Syntax: 

 

ENDSEQUENCE 

 

Parameters: 

 

none 

 

ENDVISUAL 

This directive closes a VISUAL…ENDVISUAL definition (see page 59). 

 

Syntax: 

 

ENDVISUAL 

 

Parameters: 

 

none 
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FILL 

This directive fills a region with a color (the region is delimited by another color). 

 

Syntax: 

 

FILL = “range”, pos x, pos y,  html fill color,  html border color, flags 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x: horizontal initial position (in cm) of the fill, 

 

pos y: vertical initial position (in cm) of the fill, 

 

html fill color: color of the fill. You can also specify a gradient, 

 

html border color: this is the area color (or boundary color) for the fill, 

 

flags: one of the following flags 

 

A the 5th parameter is the color of the area to be filled 

B the 5th parameter is the color of the boundary that enclose the area to be filled 

 

If you don’t specify a flag, it’s considered B as default. 

 

Example: 

 
LINE = 1, 0, 1, 6, 1, #0000FF, 0.1 

LINE = 1, 0, 8, 6, 8, #0000FF, 0.1 

LINE = 1, 1, 0, 1, 9, #0000FF, 0.1 

LINE = 1, 5, 0, 5, 9, #0000FF, 0.1 

LINE = 1, 0, 9, 6, 0, #0000FF, 0.1 

FILL = 1, 2, 2, #FFFF00#FF8000@0, #0000FF 

FILL = 1, 2, 7, #FF8000#FFFF00@0, #0000FF 
Result: Image 20 

 

FOLDER 

This directive sets the current working directory (if you don't specify it, it will be used the folder where the script is 

located). 

 

Syntax: 

 

FOLDER = “folder” 

 

Parameters: 

 

“folder”: the folder to be used as current working directory. 

 
Example: 

 
FOLDER = "c:\projects\test" 

 

Image 20 
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FONT 

This directive sets the font for any following TEXT command (see page 154). Note that there isn’t any reference to a 

range of cards. If you want a ranged command, you can use FONTRANGE instead (see page 93). 

 

Syntax: 

 

FONT = “font name”, font size, style, html color, html color, outline x, outline y, step x, step y 

 

Parameters: 

 

“font name”: character font name (string), 

 

font size: character font size, in typographical points (1 point = 1/72 of an inch), 

 

style: character font style and flag used for visualization, values accepted are: 

 

B bold 

I italic 

U underline 

S strikeout 

T transparent font background 

N do not clip text at the boundary 

C circular text 

R circular text, reversed 

H circular text, half circumference 

Q circular text, one quarter circumference 

E circular text, three quarter circumference 

Z the text follows the curve drawn with the last BEZIER directive 

F the size is reduced until the text fits in the rectangle specified by TEXT directive (this value is stored in TF var) 

V vertical text 

P do not clip text area beyond the rectangle 

O transparent font text (flag T is ignored) 

D the text is placed in the rectangle’s diagonal (from top-left to bottom-right) 

G the text is placed in the rectangle’s diagonal (from top-right to bottom-left) 

 

html color: character color, in the same format used for HTML. You can also specify a gradient, 

 

html color: background color, in the same format used for HTML. You can also specify a gradient. 

 

This parameter can be omitted (it will be used the last background color used, or white if none was specified), if you 

specified T as a style flag, the background color will not be used. 

 

Tip: you can choose the font with a Windows standard dialog, clicking on the button “Insert” and choosing the menu 

voice “Font”. 

 

 

Examples (the difference was in the T flag in the 2nd FONT command): 

 
RECTANGLE = 1, 0, 0, 6, 4, #FF0000 

FONT = "Arial", 32, B, #FFFFFF, #0000FF 

TEXT = 1, "TEST", 0, 1, 6, 2, center 
Result: Image 21 

 
RECTANGLE = 1, 0, 0, 6, 4, #FF0000 

FONT = "Arial", 32, BT, #FFFFFF, #0000FF 

TEXT = 1, "TEST", 0, 1, 6, 2, center 
Result: Image 22 

 

outline x: horizontal expansion in cm, with that parameter the text will be replicated horizontally from 

–x to +x, 

Image 21 

Image 22 
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outline y: vertical expansion in cm, with that parameter the text will be replicated vertically from –y to +y. 

 

step x: the number of times the text is printed horizontally. 

 

step y: the number of times the text is printed vertically. 

 

Example: 

 
FONT = "Arial", 32, B, #FFFFFF, #0000FF, 0.1, 0.1 

TEXT = 1, "TEST", 0, 1, 6, 2, center 
Result: Image 23 

 

FONTALIAS 

This directive enables/disables the font anti-aliasing, using the Operating System’s routines. It’s useful to remove 

colored pixels in the text’s boundaries, especially when using HTMLTEXT (see page 102) or RTFTEXT (see page 145) 

directives with transparent background. 

 

Syntax: 

 

FONTALIAS = “range”, switch 

 

Parameters: 

 

“range”: a range of cards, 

 

switch: values accepted are: 

 

ON Font anti-aliasing enabled 

OFF Font anti-aliasing disabled 

 

Example: 

 
{[html_on]="<style type='text/css'>p {font-size: 32px}</style><p> 

ANTIALIASING ON</p>"} 

{[html_off]="<style type='text/css'>p {font-size: 32px}</style><p> 

ANTIALIASING OFF</p>"} 

ELLIPSE = 1, 0, 0, 6, 3, #FF0000 

ELLIPSE = 1, 0, 3, 6, 3, #FF0000 

FONTALIAS = 1, ON 

HTMLTEXT = 1, [html_on], 0, 0, 6, 3, #FFFFFF, 0, T 

FONTALIAS = 1, OFF 

HTMLTEXT = 1, [html_off], 0, 3, 6, 3, #FFFFFF, 0, T 
Result: Image 24 

 

Image 23 

Image 24 
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FONTCHANGE 

This directive changes a font in the script with another. It’s useful when you want to test a script on a computer that 

doesn’t have a font, and you didn’t want to change all the occurrences (or use a label). 

 

Syntax: 

 

FONTCHANGE = “old font”, “new font” 

 

Parameters: 

 

“old font”: the font that you want to be changed, 

 

“new font”: the font that you want to use instead. 

 

Example: 

 
FONTCHANGE = “Calibri”, “Times New Roman” 

 

FONTRANGE 

This command is equivalent to FONT (see page 92) but is applied to a range of cards (specified by the 1st parameter). 

 

Syntax: 

 

FONT = “range”, “font name”, font size, style, html color, html color, outline x, outline y, step x, step y 

 

Parameters: 

 

“range”: a range of cards, 

 

“font name”: character font name (string), 

 

size: character font size, in typographical points (1 point = 1/72 of an inch), 

 

style: character font style and flag used for visualization, values accepted are: 

 

B bold 

I italic 

U underline 

S strikeout 

T transparent font background 

N do not clip text at the boundary 

C circular text 

R circular text, reversed 

H circular text, half  circumference 

Q circular text, one quarter circumference 

E circular text, three quarter circumference 

Z the text follows the curve drawn with the last BEZIER directive 

F the size is reduced until the text fits in the rectangle specified by TEXT directive 

V vertical text 

P do not clip text area beyond the rectangle 

O transparent font text (flag T is ignored) 

D the text is placed in the rectangle’s diagonal (from top-left to bottom-right) 

G the text is placed in the rectangle’s diagonal (from top-right to bottom-left) 

 

html color: character color, in the same format used for HTML. You can also specify a gradient, 

 

html color: background color, in the same format used for HTML. You can also specify a gradient, 

 

outline x: horizontal expansion in cm, with that parameter the text will be replicated horizontally from –x to +x, 
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outline y: vertical expansion in cm, with that parameter the text will be replicated vertically from –y to +y. 

 

step x: the number of times the text is printed horizontally. 

 

step y: the number of times the text is printed vertically. 

 

Tip: you can choose the font with a Windows standard dialog, clicking on the button “Insert” and choosing the menu 

voice “Font”. 

 

FOOTER 

This directive prints a text in the page’s footer specified by a page range (with a syntax like cards’ range). 

 

Syntax: 

 

FOOTER = “page range”, “text”, horizontal alignment 

 

Parameters: 

 

“page range”: a set of pages, if empty the text is printed onto all the pages, 

 

“text”: the text to be printed, you can also use four variables: 

 

{P} page number 

{N} total page number 

{D} date 

{T} time 

 

horizontal alignment: the text’s horizontal alignment in the page, values accepted are: 

 

LEFT left aligned 

CENTER centered 

RIGHT right aligned 

 

if not specified, the text is centered. 

 

Examples: 

 
FOOTER = "1-3", "Deck 1", CENTER 

 

FOOTER = "", "printed {D} {T}", RIGHT 
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FOR 

This directive executes the code between a FOR row and a NEXT row (see page 132), exiting when the counter value 

is equal to end value, starting from start value and adding a step value at each loop. 

 

Syntax: 

 

FOR = counter name, start, end, step 

 

Parameters: 

 

counter name: the variable counter storing the value, can be chosen between A B C E F G H I J, 

 

start: starting value for the counter, 

 

end: ending value for the counter, 

 

step: increment for counter at each loop, if not specified is assumed to be 1. 

 

Example: 

 

FOR = A, 1, 4 

  FOR = B, 1, 7 

    RECTANGLE = 1, A, B, 1, 1, #FF0000, #0000FF 

  NEXT 

NEXT 
Result: Image 25 

 

Image 25 
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FRAME 

This directive is used in a FRAME…ENDFRAME structure to define frames using characters in rectangular patterns, 

for example, if you want to define three frames, one for the card, one for an image and one for the text below, you can 

write these lines: 

 
FRAME 

AAAAAA 

ABBBBA 

ABBBBA 

ABBBBA 

ACCCCA 

ACCCCA 

AAAAAA 

ENDFRAME 

 

The result is equal to these lines: 

 
<A>=0%,0%,100%,100% 

<B>=16.7%,14.3%,66.7%,42.9% 

<C>=16.7%,57.1%,66.7%,28.6% 

 

With this method, you can create 36 frames (one for each letter/number), the names are case-insensitive. 

 

Syntax: 

 

FRAME = list split frames 

 

Parameters: 

 

list split frames: if you add here some frames, these frames are treated individually, and are not merged in a single 

frame. In the last example, if you specify B as a parameter, instead of one frame, the program creates twelve frames (all 

named B). 

 

GAP 

This directive sets a space between cards in printed pages. If the directive GAP is not specified, there will be no gap 

between cards. 

 

Syntax: 

 

GAP = horizontal gap, vertical gap, switch 

 

Parameters: 

 

horizontal gap: horizontal space (in cm), 

 

vertical gap: vertical spaces (in cm). 

 

switch: values accepted are: 

 

ON: to enable a guideline in the mid of the gap 

OFF: to disable it (the default) 

 

If the directive GAP is not specified, there is no gap between cards. 

 

Example: 

 
GAP = 1, 1 
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GRID 

This directive draws a grid in a set of cards. 

 

Syntax: 

 

GRID = "range", pos x, pos y, width, height, html color, thickness, horiz. cells, vert. cells, pattern 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the rectangle (in cm), 

 

height: height of the rectangle (in cm), 

 

html color: border color of the grid, in the same format used for HTML. You can also specify a gradient, 

 

thickness: thickness of the grid (in cm), if set to zero, the grid’s border will be 1 pixel wide, 

 

horiz. cells: number of horizontal cells, 

 

vert. cells: number of vertical cells, 

 

pattern: a pattern for the line used to draw the grid, this pattern can be composed of: 

 

O dot 

D dash 

S space 

 

These letters can be repeated, for example “OSDSOS” is a valid pattern. 

 

Example: 

 
GRID = 1, 1, 1, 4, 4, #FF0000#0000FF@90, 0.1, 3, 3 
Result: Image 26 

 Image 26 
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HEADER 

This directive prints a text in the page’s header specified by a page range (with a syntax like cards’ range). 

 

Syntax: 

 

HEADER = “page range”, “text”, horizontal alignment 

 

Parameters: 

 

“page range”: a set of pages, if empty the text is printed onto all the pages, 

 

“text”: the text to be printed, you can also use four variables: 

 

{P} page number 

{N} total page number 

{D} date 

{T} time 

 

horizontal alignment: the text’s horizontal alignment in the page, values accepted are: 

 

LEFT left aligned 

CENTER centered 

RIGHT right aligned 

 

if not specified, the text is centered. 

 

Examples: 

 
HEADER = "1-3", "Deck 1", CENTER 

 

HEADER = "", "printed {D} {T}", RIGHT 
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HEXGRID 

This directive draws a hexagonal grid in a set of cards. 

 

Syntax: 

 

HEXGRID = “range”, pos x, pos y, width, height, hex side, flags, html color, html color, thickness 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the rectangle (in cm), 

 

height: height of the rectangle (in cm), 

 

hex side: length of the hexagon’ side (in cm), 

 

flags: you can use the following flags: 

 

D add a dot in the center of the hexagon 

L add a letter in each hexagon (A, B, C…) 

N add a number in each hexagon (1, 2, 3…) 

P add a zero-padded number in each hexagon (01, 02, 03…) 

C add two numbers in each hexagon (11, 12, 13…21, 22, 23…) 

E add a letter and a number in each hexagon (A1, A2, A3…B1, B2, B3…) 

. add a dot as a separator for C flag 

- add a minus as a separator for C flag 

_ add an underscore as a separator for C flag 

X doesn’t draws the grid (useful if you want only a dot or a label) 

 

html color: border color of the grid, in the same format used for HTML. You can also specify a gradient, 

 

html color: inner color of the hexagons, in the same format used for HTML, if not specified the inner color is the same 

of border color. You can also specify “EMPTY” for a hollow (and transparent) hexagon or a gradient, 

 

thickness: thickness of the grid (in cm), if omitted, the grid’s border is 1 pixel wide. 

 

Example: 

 
FONT = ARIAL, 10, , #000000 

HEXGRID = 1, 0, 0, 6, 9, 1, N, #000000, #00FF00 
Result: Image 27 

 

Image 27 
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HTMLFILE 

This directive prints the HTML text loaded from a filename in the cards specified by a range. 

 

Syntax: 

 

HTMLFILE = “range”, “html file”, pos x, pos y, width, height, html color, angle, flags, alpha 

 

Parameters: 

 

“range”: a set of cards, 

 

“html file”: the HTML filename for text to be printed (eventually with a pathname), 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the text’s rectangle (in cm), 

 

height: height of the text’s rectangle (in cm), 

 

html color: background color for text, 

 

angle: angle of text rotation, you must specify 0 for no rotation, 

 

flags: you can specify one or more flags, chosen between: 

 

T Transparent background for text 

H Horizontal mirror 

V Vertical mirror 

I HTML rendering with internal engine 

E HTML rendering with Explorer 

2 Render a x2 image (don’t use if you already have an OVERSAMPLE directive) 

4 Render a x4 image (don’t use if you already have an OVERSAMPLE directive) 

8 Render a x8 image (don’t use if you already have an OVERSAMPLE directive) 

R Vertical text 

B Transparent background, better rendering of png, works only with E flag (MS Explorer) 

W Wait 100 msec 

O Replace tags also between < and > 

C Clear page after rendering (MS Explorer) 

N Use always a new instance (MS Explorer) 

 

alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full 

solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of 

transparency is the starting level, ending with 0 (full transparent). 

 

Example: 

 
HTMLFILE = 1, "c:\test.html", 0, 0, 6, 9, #FFFFFF, 0, T 
Result: Image 28 

 

Image 28 
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HTMLFONT 

This directive creates a tag that can be used for recalling a font in an HTMLTEXT directive (see page 105). If you 

create a tag with name example, in HTML you can assign these characteristics in an HTML text delimited with 

<example> and </example> tags. Note that for default the text in HTMLTEXT is word-wrapped, so there isn’t a flag to 

enable it. 

 

There are three special tags: th, tr, and td, that are used with the HTML tags of the same names (i.e. in tables). 

 

Syntax: 

 

HTMLFONT = tag, “font name”, font size, style, html color, alignment, shadow x, shadow y, shadow blur, shadow 

color, outline color, outline width, indent, highlight color 

 

Parameters: 

 

tag: a name used for referencing the font, 

 

“font name”: character font name (string), 

 

font size: character font size, in typographical points (1 point = 1/72 of an inch), 

 

style: character font style and flag used for visualization, values accepted are: 

 

B bold 

I italic 

U underline 

S strikeout 

O shadow over outline (the default is outline over shadow) 

N do not resize this font when using F flag in HTMLTEXT (see page 105) 

R the outline of the font is done in a more refined way 

C break lines at every character 

T the HTML syntax is formatted for table cells 

A small caps 

M multiple shadows (use sequences for parameters from 7th to 10th) 

D keep decimals in the font size calculation 

L round down to integers the font size calculation 

 

html color: character color, in the same format used for HTML, 

 

alignment: the text’s horizontal alignment, values accepted are: 

 

left left aligned 

center centered 

right right aligned 

justify the text is justified 

 

The horizontal alignment is optional, if omitted is considered to be equal to left, 

 

shadow x: the horizontal offset for a shadow drawn under the text. Note: all the shadow’s parameters work only with 

flag E, and Internet Explorer must be version 11 or more, 

 

shadow y: the vertical offset for a shadow drawn under the text, 

 

shadow blur: if you specify this parameter, the shadow is blurred, 

 

shadow color: the color for the text’ shadow, in the same format used for HTML, 

 

outline color: the color for the text’s outline, in the same format used for HTML, 

 

outline width: the width for the text’s outline, 
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indent: the indentation in cm of the first line (you can specify a negative number for hanging indentation), 

 

highlight color: color for the background of the text, in the same format used for HTML. 

 

Note: if an alignment is omitted, the program use a <span> tag with the font info, otherwise, the 

program uses a <div> tag. In other words, if you want to use different font on the same line, it’s 

possible only with a <span> tag, and you must omit the alignment parameter. 

 

Example: 

 
HTMLFONT = alpha, Arial, 32, , #000000 

HTMLFONT = beta, "Times New Roman", 18, I, #0000FF 

HTMLTEXT = 1, "<beta>This is a </beta><alpha>test</alpha>", 0, 0, 

100%, 100% 
Result: Image 29 

 

HTMLIMAGE 

To simplify insertion of images in HTMLTEXT directives (see page 105), you can specify a name with this directive, 

associated with a filename, width and height. When an HTMLTEXT is rendered, the name is substituted with an HTML 

tag for the image, with the correct size. 

 

Syntax: 

 

HTMLIMAGE = “range”, key, “image file”, width, height, flags 

 

“range”: a set of cards, 

 

key: the name associated to the image (replaced in HTML), 

 

“image file”: the filename for the image, 

 

width: width of the image (in cm), 

 

height: height of the image (in cm), 

 

flags: you can specify one or more flags, chosen between: 

 

P Proportional 

T Image alignment to the top of text (only with Explorer) 

M Image alignment to the middle of text (only with Explorer) 

B Image alignment to the bottom of text (only with Explorer) 

L Image alignment to the left of the rectangle, text flushing right (only with Explorer) 

R Image alignment to the right of the rectangle, text flushing left (only with Explorer) 

E Image alignment to the left (under other images with L flag), text flushing right (only with Explorer) 

I Image alignment to the right (under other images with R flag), text flushing left (only with Explorer) 

 

Example: 

 
HTMLIMAGE = 1, "(one)", "image.bmp", 1, 1, P 

HTMLTEXT = 1, "<p>Test (one)</p>", 0, 0, 6, 9, #FFFFFF, 0, T 

 

HTMLKEY 

With this directive, you can create words that are replaced by longer texts in HTMLTEXT directive (see page 105). 

 

Syntax: 

 

HTMLKEY = “range”, key, “text”, htmlfont 

 

Image 29 
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“range”: a set of cards, 

 

key: a string that is searched and replaced with text parameter, 

 

“text”: a string that replaces the key parameter, 

 

htmlfont: add start and end tags for a font defined by an HTMLFONT directive (see page 102) 

 

Example: 

 
HTMLKEY = 1, "(one)", "only <b>one</b> word" 

HTMLTEXT = 1, "<p>Test (one)</p>", 0, 0, 6, 9, #FFFFFF, 0, T 

 

HTMLMARGINS 

This directive adds the settings for margins and vertical alignment to an existing tag (that was created with 

HTMLFONT directive, see page 102) to be used in HTMLTEXT directive (see page 105); this directive works only 

with E flag in HTMLTEXT (MS Explorer). 

 

Syntax: 

 

HTMLMARGINS = “html tag”, margin top, margin left, margin right, margin bottom, paragraph alignment, line 

spacing, cell width, cell height 

 

Parameters: 

 

“html tag”: a name used for referencing the font, 

 

margin top: the size of the top margin, in cm, 

 

margin left: the size of the left margin, in cm, 

 

margin right: the size of the right margin, in cm, 

 

margin bottom: the size of the bottom margin, in cm, 

 

paragraph alignment: the text’s vertical alignment, values accepted are: 

 

top top aligned 

center centered 

bottom bottom aligned 

 

line spacing: the text’s line spacing in %, the default is 100 is for a single line, 

 

cell width: the width of a table cell, in cm (it works only when T flag is used in HTMLFONT), 

 

cell height: the height of a table cell, in cm (it works only when T flag is used in HTMLFONT). 

 

Example: 

 
HTMLFONT = alpha, Arial, 32, , #000000 

HTMLMARGINS = alpha, 0.5, 1, 1 

HTMLTEXT = 1, "<alpha>test</alpha>", 0, 0, 100%, 100%, #FFFFFF, 0, E 

 

Note: using 100 as line spacing gives a different result from leaving that parameter empty, it’s a behavior of HTML. 
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HTMLTEXT 

This directive prints a text, using HTML format, in the cards specified by a range. This directive is useful if you want to 

print a text with multiple size, font, attributes, colors and so on. For expressions, you must include them in double curly 

parentheses {{ … }}. You can add also one or more images, using a keyword(s), coded with the HTMLIMAGE 

directive (see page 103). 

 

Syntax: 

 

HTMLTEXT = “range”, “text”, pos x, pos y, width, height, html color, angle, flags, alpha, htmlfont 

 

Parameters: 

 

“range”: a set of cards, 

 

“text”: the HTML text to be printed, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the text’s rectangle (in cm), 

 

height: height of the text’s rectangle (in cm), 

 

html color: background color for text, 

 

angle: angle of text rotation, you must specify 0 for no rotation, 

 

flags: you can specify one or more flags, chosen between: 

 

T Transparent background for text 

H Horizontal mirror 

V Vertical mirror 

I HTML rendering with internal engine 

E HTML rendering with MS Explorer 

2 Render a x2 image (don’t use if you already have an OVERSAMPLE directive) 

4 Render a x4 image (don’t use if you already have an OVERSAMPLE directive) 

8 Render a x8 image (don’t use if you already have an OVERSAMPLE directive) 

R Vertical text 

B Transparent background, better rendering of png, works only with E flag (MS Explorer) 

F The text is resized to fit the rectangle (MS Explorer) 

S The text is resized to fit the rectangle and the size is saved for the next cards (MS Explorer) 

M The images are resized with the text (only if using F flag, MS Explorer) 

L TEXTLIMIT variables are calculated more accurately (MS Explorer) 

O Replace tags also between < and > 

C Clear page after rendering  (MS Explorer) 

N Use always a new instance (MS Explorer) 

 

alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is 

set to 100 (full solid). You can also specify an angle for the transparency, with the format 

level@angle; in this case, the level of transparency is the starting level, ending with 0 (full 

transparent). 

 

htmlfont: add start and end tags for a font defined by an HTMLFONT directive (see page 102) 
Image 30 
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Example: 

 
{[html]="<p><b>Text</b> example</p> 

<p><b>Image</b> example</p> 

<img src='c:\earth.jpg'>"} 

HTMLTEXT = 1, [html], 0, 0, 6, 9, #FFFFFF, 0, T 
Result: Image 30 

 

ICON 

This directive assigns one or more characters (a “key”) to an image, to be used later with an ICONS directive (see page 

101). 

 

Syntax: 

 

ICON = “range”, key, “image file” 

 

Parameters: 

 

“range”: a set of cards, 

 

key: one or more characters used to identify the image (like “A” or “001”), 

 

“image file”: an existent image file (eventually with a path), formats allowed are bmp, gif, png, jpg, and tif. 

 

Example: 

 
ICON = "1-10", A, "c:\images\image1.jpg" 

ICON = "1-10", B, "c:\images\image2.jpg" 

ICON = "1-10", C, "c:\images\image3.jpg" 
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ICONS 

This directive prints a number of images in a rectangular area, like a multi-image PATTERN directive (see page 136), 

the “keys” parameter identifies the images used, defined before with some ICON directives (see page 101). For 

example, if you write: 

 
ICON = "1-10", A, "c:\images\image1.jpg" 

ICON = "1-10", B, "c:\images\image2.jpg" 

ICON = "1-10", C, "c:\images\image3.jpg" 

 

Later you can use a key of “ABC” to print the three images all together in a rectangular area. This directive is useful 

when you must convert to images an output from the combination/permutation engine. You can also use the “<” special 

character to add a backspace and draw two images in the same place; for example, a key like “P<2” means that the 

image assigned to “2” is printed over the image assigned to “P”. 

 

Syntax: 

 

ICONS = “range”, keys, pos x, pos y, width, height, obj width, obj height, angle, flags, horizontal alignment, vertical 

alignment, alpha, key length, width factor, height factor 

 

Parameters: 

 

“range”: a set of cards, 

 

keys: a string, composed by characters assigned to images with ICON directives, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the rectangle in which the images are printed (in cm), 

 

height: height of the rectangle in which the images are printed (in cm), 

 

obj width: width of the single image to be printed (in cm), 

 

obj height: height of the single image to be printed (in cm), 

 

angle: angle of image rotation, if not specified it is assumed to be 0 (for no rotation), 

 

flags: in this parameter, you can specify a special behavior for images, possible values are: 

 

T Transparent 

A Anti-aliasing 

R Reverse, reversing the filling order of pattern’s elements (from bottom to top) 

N Use PNG transparency 

P Proportional 

V Vertical pattern 

 

horizontal alignment: the images’ horizontal alignment in the rectangle, values accepted are: 

 

LEFT left aligned 

CENTER centered (the default) 

RIGHT right aligned 

 

vertical alignment: the images’ vertical alignment in the rectangle, values accepted are: 

 

TOP top aligned 

CENTER centered (the default) 

BOTTOM bottom aligned 
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alpha: level of transparency of image, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full 

solid), 

 

key length: the default length of the character string utilized for key is one character, but a  

different length can be specified here, the "keys" parameter length must be a multiple, 

 

width factor: the width of the image is adjusted with this factor, adding space if more than 100, removing space if less 

than 100 (if not specified, the width factor of the image is 100), 

 

height factor: the height of the image is adjusted with this factor, adding space if more than 100, removing space if less 

than 100 (if not specified, the height factor of the image is 100). 

 

Example: 

 
RECTANGLE = 1, 0, 0, 6, 6, #0000FF 

ICON = 1, A, "c:\images\dot_red.gif" 

ICON = 1, B, "c:\images\dot_blue.gif" 

ICON = 1, C, "c:\images\dot_black.gif" 

ICONS = 1, BAC, 0, 0, 6, 6, 2, 2, 0, T, CENTER, CENTER 
Result: Image 31 

 

IF 

The IF…ENDIF structure can be used to create sections of code that must be executed only if are verified some 

conditions. 

 

Syntax: 

 

IF = value1 oper. value2 

… 

ELSEIF = value3 oper. value4 

… 

ELSEIF = value5 oper. value6 

… 

… 

ELSE 

… 

ENDIF 

 

Parameters: 

 

value: a string, number, label or expression that can be evaluated, 

 

oper.: the condition is evaluated using the two values and this operator, you can use one operator from this list: 

 

= value1 and value2 are equal 

> value1 is major than value2 

< value1 is minor than value2 

>= value1 is major or equal than value2 

<= value1 is minor or equal than value2 

<> value1 and value 2 are different 

@ value1 is contained into value2 

# value1 is not contained into value2 

 

More than one test can be combined using Boolean logic, every test must be enclosed in parenthesis, and these are the 

accepted keywords: 

 
_TRUE_ 

_FALSE_ 

_NOT_ 

_AND_ 

Image 31 
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_OR_ 

 

If in an expression there are more than one logic operator, they are evaluated with these priorities (if they have the same 

priorities, they are evaluated from left to right): 

 
1) _NOT_ 

2) _AND_ 

3) _OR_ 

 

Examples: 

 
; choose a value between R, E and T 

[check] = R 

IF = [check] = R 

  RECTANGLE = 1, 0, 0, 6, 9, #0000FF 

ELSEIF = [check] = E 

  ELLIPSE = 1, 0, 0, 6, 9, #00FF00 

ELSEIF = [check] = T 

  TRIANGLE = 1, 3, 0, 6, 9, 0, 9, #FF0000 

ELSE 

  RECTANGLE = 1, 0, 0, 6, 9, #000000 

ENDIF 

 

; complex logic 

if=([a]=1) _AND_ _NOT_ ([b]=3) 

 

; in this example, the _AND_ operator is evaluated first 

if=([a]=1) _OR_ ([b]=1) _AND_ ([c]=1) 

 

; in this example, the _OR_ operator is evaluated first 

if=(([a]=1) _OR_ ([b]=1)) _AND_ ([c]=1) 

 

Note: if you want to use a sequence as argument for the IF directive, you must extract an element using the ? operator 

(and § for the number of the current card) inside an expression (with curly brackets). For example: 

 
IF = {sequence?§} = element 
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IMAGE 

This directive can be used to add an external image to a range of cards.  

 

Syntax: 

 

IMAGE = range, image file, pos x, pos y, width, height, angle, flag, alpha, texture width, texture height, skew x, skew y, 

img width, img height, loc x, loc y, copy x, copy y 

 

Parameters: 

 

range: a set of cards (the standards rules about ranges will be applied), 

 

image file: an existent image file (eventually with a path), formats allowed are bmp, gif, png, jpg, and tif, 

 

pos x: horizontal position (in cm), 

 

posi y: vertical position (in cm), 

 

width: width of the image (in cm), 

 

height: height of the image (in cm), 

 

angle: angle of image rotation, can be 0 for no rotation. 

 

These are the required parameters. This directive can be used for a background on all your cards, or a 

logo on top-right, or a centered image. Simply specify range, image, position and angle. For example: 

 
IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 9, 0 

Result: Image 32 

 

Note that the image will fill the destination rectangle, the standard behavior of this command is 

resizing the original image and altering the aspect ratio for width and height. If you want to maintain 

the original aspect you must use a flag, as additional parameter. 

 
RECTANGLE = 1, 0, 0, 6, 9, #0000FF 

IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 9, 0, P 
Result: Image 33 

 

flag: in this parameter you can specify any, some or all of these letters: 

 

P Proportional 

A Anti-aliasing 

G Grayscale 

H Horizontal mirror 

V Vertical mirror 

T Transparent 

X Texture 

N Use PNG transparency 

R Don’t adjust size for rotated images 

D Use DPI from image file 

C Extends the image cropping the borders 

U Align the image to the upper boundary of the rectangle (with P/C flag) 

E Align the image to the right boundary of the rectangle (with P/C flag) 

S Align the image to the lower boundary of the rectangle (with P/C flag) 

W Align the image to the left boundary of the rectangle (with P/C flag) 

 

With the “P” flag, the image will be resized maintaining the original aspect ratio. The previous background remains 

unchanged in the zone not occupied by the image. 

 

With the “A” flag, to the image will be applied a smoothing filter. There aren’t other settings related to that parameter. 

Image 32 

Image 33 
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With the “G” flag, the image will be reduced to tones of gray (256 levels maximum). There aren’t other settings related 

to that parameter. 

 

With the “H” or “V” flags, the image will be mirrored in the corresponding direction (these flags may be used both with 

the same image). 

 

If the “T” flag is used, the image will be rendered with a transparent color. If the CHROMAKEY directive was not used 

before, the transparent color is assumed to be the first pixel of the image (top left pixel). With the CHROMAKEY 

directive (see relative entry, page 76), you can specify a pixel from another corner, or directly a color. 

 

With the “X” flag, the image is used to fill the destination space (see texture width/height parameters). 

 

With the “N” flag, the image is loaded reading the transparency information (only PNG format). 

 

Without the “R” flag, a rotated image is stretched to be fully included in the destination rectangle, with this flag, the 

directive maintains the original size for the rotated image. 

 

With the “D” flag, the size of the image is adjusted reading the DPI from the file (only with BMP, PNG, and JPG 

formats). 

 

With the “U”, “E”, “S”, and “W” flags (to be used with P/C flag), the image is aligned to the relative 

boundaries of the rectangle (if not specified, the image is centered). 

 

alpha: level of transparency of image, from 0 (full transparent) to 100 (full solid). If omitted, the level 

is set to 100 (full solid). You can also specify an angle for the transparency, with the format 

level@angle; in this case, the level of transparency is the starting level, ending with 0 (full 

transparent), for example: 

 
RECTANGLE = 1, 0, 0, 6, 9, #0000FF 

IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 9, 0, P, 100@90 
Result: Image 34 

 

texture width: width of the texture (in cm), used only with “X” flag, if omitted the default is the 

image’s width, 

 

texture height: height of the texture (in cm), used only with “X” flag, if omitted the default is the 

image’s height. 

 

This is an example of using a texture to fill a space on a card (note, the alpha-channel is specified 

because you can’t leave the parameter empty), with texture size 1x1 cm (remember, the card is 6x9 

cm): 

 
IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 9, 0, X, 100, 1, 1 
Result: Image 35 

 

skew x: draw the image shifted horizontally (to the right for positive number, to the left for negative), 

the value 1 is the image’s width (you can use a decimal value), 

 

skew y: draw the image shifted vertically (to the bottom for positive number, to the top for negative), 

the value 1 is the image’s height (you can use a decimal value). 

 

This is an example for the skew effect (horizontal, value 0.5), note that the second image was vertically 

mirrored and printed with an alpha-channel value of 60.  

 
RECTANGLE = 1, 0, 0, 6, 9, #000000 

IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 6, 0 

IMAGE = 1, "c:\images\earth.jpg", 0, 6, 6, 3, 0, V, 60, 0, 0, 0.5, 0 
Result: Image 36 

 

img width: if this parameter is specified, the image isn’t enlarged to the whole rectangle, but instead is drawn with this 

width (in cm), 

Image 34 

Image 35 

Image 36 
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img height: if this parameter is specified, the image isn’t enlarged to the whole rectangle, but instead is drawn with this 

width (in cm), 

 

loc x: if this parameter is a positive value, the image is positioned at that % of width, with a width equal to the 

parameter image width; if this parameter is a negative one, the image is split horizontally at that % of his width, and the 

two halves are positioned at the edge of the rectangle, 

 

loc y: if this parameter is a positive value, the image is positioned at that % of height, with a height equal to the 

parameter image height; if this parameter is a negative one, the image is split vertically at that % of his height, and the 

two halves are positioned at the edge of the rectangle, 

 

copy x: if the image is split horizontally, the empty gap between the two halves is filled with a % of the image, starting 

from the cut point, 

 

copy y: if the image is split vertically, the empty gap between the two halves is filled with a % of the image, starting 

from the cut point. 

 

Tip: you can choose a name (and path) from a Windows standard dialog, clicking on the button “Insert” and choosing 

the menu voice “Image”. 

 

Tip: if you drag and drop an image file in nanDECK’s window, an IMAGE line is added with the path and filename of 

the image. 
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IMAGEFILTER 

This directive sets the filter using when images are loaded and resized in a card (with IMAGE, ICONS, PATTERN, 

HTMLTEXT/HTMLFILE, RTFTEXT/RTFFILE, and OVERSAMPLE directives). If not specified, the default filter is 

LINEAR. 

 

Syntax: 

 

IMAGEFILTER = filter name 

 

Parameter: 

 

filter name: the filter may be one of the following: 

 

NEAREST 

DRAFT 

LINEAR 

COSINE 

SPLINE 

LANCZOS 

MITCHELL 

 

Example: 

 
IMAGEFILTER=LANCZOS 

 

IMAGESIZE 

This directive reads an image and writes in two variables the image’s width and height (in pixel). 

 

Syntax: 

 

IMAGESIZE = “range”, “image file” 

 

The variables are: 

 

IW image’s width 

IH image’s height 

 

Parameters: 

 

“range”: a set of cards, 

 

“image file”: an existent image file (eventually with a path), formats allowed are bmp, gif, png and jpg. 

 

Example: 

 
IMAGESIZE = 1, "c:\images\earth.jpg" 

IMAGE = 1, "c:\images\earth.jpg", 0, 0, 6, 6, 0, P 

FONT = Arial, 16, , #000000 

TEXT = 1, "Width={IW}" ,0 ,7 ,6 ,1 ,left, center 

TEXT = 1, "Height={IH}" ,0 ,8 ,6 ,1 ,left, center 
Result: Image 37 

 

INCLUDE 

This directive includes another script file in the current script, as if it was copied and pasted. You can omit the path if 

the included file is in the same directory of the including script. 

 

Syntax: 

 

Image 37 
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INCLUDE = “filename” 

 

Examples: 

 
INCLUDE = "c:\test\alpha.txt" 

 

INCLUDE = beta.txt 

 

Tip: you can choose a name (and path) from a Windows standard dialog, clicking on the button “Insert” and choosing 

the menu voice “Include”. 
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INPUTCHOICE 

With this directive, the user can input a variable text that can be used as a label value, this text can be chosen between 

the values from a sequence. The text confirmed is stored to a file with the same name of the script and “ini” for 

extension, or can be saved to a specific configuration file, to be loaded in a subsequent execution. 

 

Syntax: 

 

INPUTCHOICE = “label”, “description”, “default”, “values” 

 

Parameters: 

 

“label”: the label for storing input text, 

 

“description”: a text shown before the input box, 

 

“default”: starting value for the label, 

 

“values”: a sequence with the available choices. 

 

Example: 

 
INPUTCHOICE = "color", "Choose a color, please:", "Red", "Red|Green|Blue" 

 

This is the resulting input form: 
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INPUTLIST 

With this directive, the user can input a variable text that can be used as a label value, this text can be chosen between 

the values from a sequence. The text confirmed is stored to a file with the same name of the script and “ini” for 

extension, or can be saved to a specific configuration file, to be loaded in a subsequent execution. 

 

Syntax: 

 

INPUTLIST = “label”, “description”, “default”, “values” 

 

Parameters: 

 

“label”: the label for storing input text, 

 

“description”: a text showed before the input box, 

 

“default”: starting value for the label, 

 

“values”: a sequence with the available choices. 

 

Example: 

 
INPUTLIST = "color", "Choose a color, please:", "Red", "Red|Green|Blue" 

 

This is the resulting input form: 
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INPUTNUMBER 

With this directive, the user can input a variable integer number that can be used as a label value, this number can be 

chosen between a minimum and a maximum value. The number confirmed is stored to a file with the same name of the 

script and “ini” for extension, or can be saved to a specific configuration file, to be loaded in a subsequent execution. 

 

Syntax: 

 

INPUTNUMBER = “label”, “description”, default, min, max 

 

Parameters: 

 

“label”: the label for storing input number, 

 

“description”: a text shown before the input box, 

 

default: starting value for the number, 

 

min: minimum value for the number, 

 

max: maximum value for the number. 

 

Example: 

 
INPUTNUMBER = "name", "Choose a number, please:", 5, 1, 10 
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INPUTTEXT 

With this directive, the user can input a variable text that can be used as a label value. The text confirmed is stored to a 

file with the same name of the script and “ini” for extension, or can be saved to a specific configuration file, to be 

loaded in a subsequent execution. 

 

Syntax: 

 

INPUTTEXT = “label”, “description”, “default”, flags  

 

Parameters: 

 

“label”: the label for storing input text, 

 

“description”: a text showed before the input box, 

 

“default”: starting value for the label. 

 

flags: in this parameter, you can add a flag for a special effect, like: 

 

F The program shows a button for browsing a file (to be added in the text field), 

G The program shows a button for browsing a graphical file (to be added in the text field), 

C The program shows a button for selecting a color, 

R The program shows a button for selecting a color gradient. 

 

Example: 

 
INPUTTEXT = "name", "Input you name, please:", "John" 
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LAYER 

The directives between a structure LAYER…ENDLAYER are drawn in a separate card, then printed on the main card 

(or stored for a later use). Since the drawing directives like the RECTANGLE doesn’t support alpha transparency, they 

can be drawn in this mode with a LAYER structure. If you specify the 5th parameter the layer is stored in memory 

(using that parameter as a name) and drawn later with a LAYERDRAW directive, if the name is not specified, the layer 

is drawn immediately. 

 

Syntax: 

 

LAYER = alpha, offset x, offset y, angle, name 

 

Parameters: 

 

alpha: level of transparency of the layer, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 

(full solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of 

transparency is the starting level, ending with 0 (full transparent). 

 

offset x: the horizontal offset of layer 

 

offset y: the vertical offset of layer 

  

angle: the angle of rotation of layer 

 

name: the name of the layer 

 

Example: 

 
LAYER = 50 

RECTANGLE = 1, 3, 0.5, 3, 8, #FF0000 

FONT = Arial, 24, T, #000000 

TEXT = 1, Alpha, 3, 5, 3, 5 

ENDLAYER 

 

LAYERDRAW 

The directives draws a layer in a range of cards. The layer drawn is specified using its name (defined by the parameter 

in the ENDLAYER directive, see page 89), and it must have been created before with a LAYER…ENDLAYER 

structure. You can also specify a list of layers, separated by commas. 

 

Syntax: 

 

LAYER = “range”, name, alpha, offset x, offset y, angle 

 

Parameters: 

 

“range”: a set of cards, 

 

name: the name of the layer(s), 

 

alpha: level of transparency of the layer, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 

(full solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of 

transparency is the starting level, ending with 0 (full transparent), 

 

offset x: the horizontal offset of layer, 

 

offset y: the vertical offset of layer, 

 

angle: the angle of rotation of layer. 
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LIMIT 

This directive fills four variables with the coordinates of latest drawn object’s boundaries (in cm), from various 

command (*). You can use these variables in other commands. 

 

Syntax: 

 

LIMIT = “range” 

 

The four variables are: 

 

PL (left) 

PR (right) 

PT (top) 

PB (bottom) 

 

Parameters: 

 

“range”: a set of cards 

 

(*) This directive works with this list of directives: 

 
BEZIER 

BEZIERS 

BUTTON 

COPY 

ELLIPSE 

GRID 

HEXGRID 

HTMLFILE 

HTMLTEXT 

ICONS 

IMAGE 

LINE 

LINERECT 

PATTERN 

PIE 

POLYGON 

RECTANGLE 

RHOMBUS 

ROUNDRECT 

RTFFILE 

RTFTEXT 

STAR 

TEXT 

TRACK 

TRACKRECT 

TRIANGLE 
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LINE 

This directive draws a line from a point (x1, y1) to another point (x2, y2). 

 

Syntax: 

 

LINE = “range”, pos x1, pos y1, pos x2, pos y2, html color, thickness, pattern, end arrow, start arrow 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x1, pos y1: coordinates of first point (in cm), 

 

pos x2, pos y2: coordinates of second point (in cm), 

 

html color: color of the line, in the same format used for HTML (black, if not specified). You can also use a gradient, 

 

thickness: thickness of the line (in cm), if omitted, the line is 1 pixel wide, 

 

pattern: a pattern for the line, this pattern can be composed of: 

 

O dot 

D dash 

S space 

 

These letters can be repeated, for example “OSDSOS” is a valid pattern, 

 

end arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the end of the line, 

 

start arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the start of the line. 

 

Example: 

 
LINE = 1, 1, 1, 5, 1, #0000FF#FF0000@0 

LINE = 1, 1, 2, 5, 2, #0000FF#FF0000@0, 0.05 

LINE = 1, 1, 3, 5, 3, #0000FF#FF0000@0, 0.1 

LINE = 1, 1, 4, 5, 4, #0000FF#FF0000@0, 0.15 

LINE = 1, 1, 5, 5, 5, #0000FF#FF0000@0, 0.2 

LINE = 1, 1, 6, 5, 6, #0000FF#FF0000@0, 0.25 

LINE = 1, 1, 7, 5, 7, #0000FF#FF0000@0, 0.3 

LINE = 1, 1, 8, 5, 8, #0000FF#FF0000@0, 0.35, OSDSOS 
Result: Image 38 

 

Image 38 
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LINERECT 

This directive draws a line from a vertex of a rectangle to the opposite vertex. 

 

Syntax: 

 

LINERECT = “range”, pos x, pos y, width, height, html color, thickness, pattern, end arrow, start arrow, flags 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the rectangle (in cm), 

 

height: height of the rectangle (in cm), 

 

html color: color of the line, in the same format used for HTML (black if not specified). You can also use a gradient, 

 

thickness: thickness of the line (in cm), if omitted, the line is 1 pixel wide, 

 

pattern: a pattern for the line, this pattern can be composed of: 

 

O dot 

D dash 

S space 

 

These letters can be repeated, for example “OSDSOS” is a valid pattern, 

 

end arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the end of the line, 

 

start arrow: width of the arrow (in cm), if omitted (or zero) there is no arrow at the start of the line. 

 

flags: you can specify one or more of these flags to choose which lines to draw 

 

T top side 

R right side 

B bottom side 

L left side 

D diagonal from top-left to bottom-right 

G diagonal from top-right to bottom-left 

 

If you don’t specify a flag, the default is top-left to bottom-right diagonal. 

 

Example: 

 
LINERECT = 1, 1, 1, 4, 0, #0000FF#FF0000@0 

LINERECT = 1, 1, 2, 4, 0, #0000FF#FF0000@0, 0.05 

LINERECT = 1, 1, 3, 4, 0, #0000FF#FF0000@0, 0.1 

LINERECT = 1, 1, 4, 4, 0, #0000FF#FF0000@0, 0.15 

LINERECT = 1, 1, 5, 4, 0, #0000FF#FF0000@0, 0.2 

LINERECT = 1, 1, 6, 4, 0, #0000FF#FF0000@0, 0.25 

LINERECT = 1, 1, 7, 4, 0, #0000FF#FF0000@0, 0.3 

LINERECT = 1, 1, 8, 4, 0, #0000FF#FF0000@0, 0.35, OSDSOS 
Result: Image 39 

Image 39 
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LINK 

This directive is used to link data, written as a text file (CSV format) or a spreadsheet (with xls, xlsx, or extensions), 

with the current script. The data linked are referenced in the script as sequences. If the fields’ names are omitted, the 

fields are referenced using the names contained in the first row of the file. 

 

For text files, the character used to separate fields’ data can be changed using the LINKSEP directive (see page 127). 

See also the LINKMULTI directive (page 125) if you need to duplicate the data rows, and the “Linked data editor” 

chapter (page 56). 

 

Syntax for text files: 

 

LINK = “filename”, “field1”, “field2”, …“fieldN” 

 

If you omit the “filename” parameter, the program reads the data directly from the script file, until it reads a ENDLINK 

directive (see page 89). 

 

Syntax for Excel files: 

 

LINK = “filename!sheet”, “field1”, “field2”, …“fieldN” 

 

If you didn’t specify the sheet’s name, the program reads the 1st sheet in the file (for example, “sheet1”). 

 

Tip: you can choose a name (and path) from a Windows standard dialog, clicking on the button “Insert” and choosing 

the menu voice “Link”. 

 

Tip: if you drag and drop a spreadsheet file in nanDECK’s window, a LINK line is added with the path and filename of 

the spreadsheet. 

 

If the spreadsheet file doesn’t exist, the program asks if you want to create it (with the names of the fields specified in 

the line as the parameters field1, field2, etc. 

 

Examples: 

 
LINK = "c:\test\data01.txt" 

 

LINK = "c:\test\data02.txt", size, speed, weight 

 

LINK = "c:\test\data01.xls" 

 

LINK = "c:\test\data01.xls!sheet2" 

 

With the 2nd example, in the script these fields are referenced as [size], [speed] and [weight]. 

 

Example of file “data02.txt”: 

 
1,2,3 

4,5,6 

7,8,9 

10,11,12 

 

The program will translate the data file in these sequences: 

 
[size]=1|4|7|10 

[speed]=2|5|8|11 

[weight]=3|6|9|12 

 

You can also link a Google Sheet document, using the ID of the file instead of “filename” parameter, but you must 

share it first, following these steps: 
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• select the file in Google Drive web page, 

 

• click the Share icon (the icon with the “little man” in top-right button bar), 

 

• click the dropdown menu below “Link sharing on” in the window, 

 

• select a link sharing option, one of the “Anyone with the link…” option. 

 

Now Google shows you a link like this: 

 

https://docs.google.com/spreadsheets/d/1s_p1gcL2BBO_zYIe_v8bADjWzFtc0hh_eY8DIw8OPfY/edit?usp=sharing 

 

The ID of the sheet is the bold part, copy it and paste it in a nanDECK line like this: 

 
LINK=1s_p1gcL2BBO_zYIe_v8bADjWzFtc0hh_eY8DIw8OPfY 

 

You can also select one of the sheets, with this syntax: 

 
LINK=ID!Sheet_name 

 

But you must enable the web sharing, with these steps: 

 

• open the spreadsheet in a browser, 

 

• select from menu File → Publish to the Web, 

 

• click on “Publish” button. 

 

LINKCOLOR 

This directive is used to create a sequence with the colors from spreadsheet’s cells; it must be used before the LINK 

directive (see page 123). 

 

Syntax: 

 

LINKCOLOR = label, “field”, flag 

 

Parameters: 

 

label: is the name of the sequence 

 

“field”: is the name of the field from the spreadsheet 

 

flag: it specifies if the color read is from the background or the font, if not specified is read from the background 

F font 

B background 

 

LINKENCCSV 

This directive is used to specify which characters are replaced with \n\ encoding (where n is the ASCII code) when read 

from a csv file with the LINK directive (see page 123). As default, there aren’t characters encoded. 

 

Syntax: 

 

LINKENCCSV = string 

 

LINKENCODE 

This directive is used to specify which characters are replaced with \n\ encoding (where n is the ASCII code) when read 

from a spreadsheet file with the LINK directive (see page 123). As default, characters encoded are [ ] { }. 
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Syntax: 

 

LINKENCODE = string 

 

LINKFILTER 

This directive is used to filter the rows in a linked file. You can specify more than one LINKFILTER directive for a 

linked file, and must be used before the LINK directive (see page 123). 

 

Syntax: 

 

LINKFILTER = CLEAR | field oper. value 

 

Parameters: 

 

field_name: is the name of the field for the filter 

 

operator: these are the possible operators used for the filter 

= equal 

> major 

< minor 

>= major or equal 

<= minor or equal 

<> different 

@ contained into 

# not contained into 

 

value: is the value used for the filter 

 

Example: 

 

Linked file: 

 
Name, count 

Alpha, 1 

Beta, 2 

Gamma, 3 

 

With this script line: 

 
LINKFILTER = count < 3 

LINK = linked.csv 

 

The resulting linked file will be: 

 
Name, count 

Alpha, 1 

Beta, 2 

 

If you want to clear all filter, you can use this directive with “CLEAR” parameter: 

 
LINKFILTER = CLEAR 

 

LINKMULDIS 

When a linked file is used with a LINKMULTI directive (see page 126), you can specify with this directive one or more 

fields that aren't replicated; instead of a replica, a single element in a sequence field is taken for each record. It must be 

used before the LINK directive (see page 123). 

 

Syntax: 
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LINKMULDIS = “field1”, “field2”, …“fieldN” 

 

For example, if this is a linked file: 

 
name, count, data 

Alpha, 1, a 

Beta, 2, b|c 

Gamma, 3, d|e 

 

And you add these lines to your script: 

 
LINKMULTI = count 

LINKMULDIS = data 

LINK = linked.csv 

 

The resulting linked file will be: 

 
name, count, data 

Alpha, 1, a 

Beta, 2, b 

Beta, 2, c 

Gamma, 3, d 

Gamma, 3, e 

Gamma, 3, d 

 

Note: if a sequence is smaller than the requested number of replicated rows, it’s extended (like the d|e sequence in the 

example, extended to d|e|d for the three rows). 

 

Note: if you use the § symbol in the linked field, it gives you a count starting from one on each new row multiplied by 

LINKMULTI. 

 

LINKMULTI 

This directive is used to specify a field, used for identifying a multiplier for a line in a linked file. It must be used before 

the LINK directive (see page 123) and it must refer an existing field in the linked file (or a field specified in the LINK 

directive). 

 

Syntax: 

 

LINKMULTI = field 

 

The field must contain a number. For example, if this is a linked file: 

 
Name, count 

Alpha, 1 

Beta, 2 

Gamma, 3 

 

And you add these lines to your script: 

 
LINKMULTI = count 

LINK = linked.csv 

 

The resulting linked file will be: 

 
Name, count 

Alpha, 1 

Beta, 2 

Beta, 2 

Gamma, 3 
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Gamma, 3 

Gamma, 3 

 

LINKNEW 

This directive is used to specify a string, used in substitution for a carriage return read from a spreadsheet file with the 

LINK directive (see page 123). If you don’t specify a LINKNEW directive in your script file, every carriage return read 

is replaced by \13\. 

 

Syntax: 

 

LINKNEW = string 

 

If you want to use a linked file with an HTMLTEXT directive, you should convert all the carriage returns with the 

corresponding HTML code, i.e.: 

 
LINKNEW = <br> 

 

LINKRANDOM 

This directive enables/disables the randomization of lines read with a LINK directive (see page 123). It must be used 

before the LINK directive (see page 123). 

 

Syntax: 

 

LINKRANDOM = switch 

 

Parameter: 

 

switch: values accepted are: 

 

ON To enable randomization 

OFF To disable randomization (the default) 

  

Example: 

 
LINKRANDOM = ON 

LINK = linked.csv 

 

LINKSEP 

This directive is used to specify the character used in a link file to separate fields. It must be used before the LINK 

directive (see page 123). 

 

If this command is omitted, is used the default separator, a comma “,”. 

 

Syntax: 

 

LINKSEP = separator 

 

You can also specify a special character with the syntax \n\. For example, for a tab you can use this line: 

 
LINKSEP = \9\ 

  

Example: 

 
LINKSEP = ; 

LINK = linked.csv 
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LINKSTYLES 

This directive is used to specify alternatives for HTML tags when reading formats from a spreadsheet files. It must be 

used before the LINK directive (see page 123). 

 

If this command is omitted, the standard HTML tags are used instead. 

 

Syntax: 

 

LINKSTYLES = bold on, bold off, italic on, italic off, strikeout on, strikeout off, underline on, underline off, superscript 

on, superscript off, subscript on, subscript off 

 

LINKTRIM 

This directive enables/disables the deletion of empty rows at the end of a spreadsheet file; this directive must be used 

before the LINK command (see page 123). 

 

Syntax: 

 

LINKTRIM = switch 

 

Parameter: 

 

switch: values accepted are: 

 

ON to enable the deletion of empty rows (the default) 

OFF to disable the deletion of empty rows 

 

LINKUNI 

This directive enables/disables the conversion of Unicode characters when read from a spreadsheet file (to be used with 

an HTMLTEXT directive, see page 105); this directive must be used before the LINK command (see page 123). 

 

Syntax: 

 

LINKUNI = switch 

 

Parameter: 

 

switch: values accepted are: 

 

ON to enable the Unicode conversion (the default) 

OFF to disable the Unicode conversion 

 

LOG 

This directive appends a string in a text file, if the file doesn't exist, it will be created. If you don’t specify a value, the 

file is deleted instead. 

 

Syntax: 

 

LOG = “range”, “filename”, “string” 

 

Parameters: 

 

“range”: a set of cards, 

 

“filename”: name of the file, 

 

“string”: the string that will be written in the text file 
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Example: 

 
LOG = 1-10, "log.txt", "Card n° {§}" 
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MACRO 

With this directive, you can create new procedures, to be used like other directives. The END directive marks the end of 

the new procedure, and you can specify a list of parameters, delimited with parenthesis, to be reused in the script block. 

You can also specify a default value for each parameter, then if you didn’t use a parameter when you call a macro, the 

default value is used instead. In a macro, you can recall another macro, but you can’t create recursive macros. 

 

Syntax: 

 

MACRO = name, (parameter1)value1, (parameter2)value2, … 

… 

END 

 

Example: 

 
[black] = #000000 

[red] = #FF0000 

[blue] = #0000FF 

; 

MACRO = dot, (rng), (x), (y), (r) 

  ELLIPSE = (rng), (x)-(r), (y)-(r), (r)*2, (r)*2, [red][blue]@0 

END 

; 

MACRO = shadow, (rng), (x), (y), (w), (h), (txt), (col) 

  FONTRANGE = (rng), Arial, 20, B, [black] 

  TEXT = (rng), "(txt)", (x)+0.08, (y)+0.08, (w), (h), CENTER, CENTER, 0, 50 

  FONTRANGE = (rng), Arial, 20, BT, (col) 

  TEXT = (rng), "(txt)", (x), (y), (w), (h), CENTER 

END 

; 

MACRO = card, (rng), (txt), (x), (y), (w), (h), (col) 

  shadow = (rng), (x), (y), (w), (h), (txt), (col) 

  dot = (rng), (x), (y), 0.5 

  dot = (rng), (x)+(w), (y), 0.5 

  dot = (rng), (x), (y)+(h) ,0.5 

  dot = (rng), (x)+(w), (y)+(h), 0.5 

END 

; 

card = 1, "Test1", 1, 1, 4, 3, [red][blue]@0 

card = 1, "Test2", 1, 6, 2, 2, [red][blue]@0 
Result: Image 40 

 

Image 40 
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MARGINS 

This directive sets the page’s margins. If the directive MARGINS is not specified, the standard margins are 1 cm (each). 

 

Syntax: 

 

MARGINS = left margin, right margin, top margin, bottom margin, odd horiz, odd vert., even horiz., even vert. 

 

Parameters: 

 

left margin: left margin (in cm), 

 

right margin: right margin (in cm), 

 

top margin: top margin (in cm), 

 

bottom margin: bottom margin (in cm), 

 

odd horiz.: horizontal margins offset in odd pages (in cm), 

 

odd vert.: vertical margins offset in odd pages (in cm), 

 

even horiz.: horizontal margins offset in even pages (in cm), 

 

even vert.: vertical margins offset in even pages (in cm). 

 

Example: 

 
MARGINS = 2, 2, 1, 1 

 

MOSAIC 

This directive reads all the images in a folder, and arrange them in a rectangle. If the images fill more than one instance 

of that rectangle, you can use a page parameter to specify which rectangle is drawn from all the possible choices. 

 

Syntax: 

 

MOSAIC = “range”, “folder”, pos x, pos y, width, height, page, flags, zoom 

 

Parameters: 

 

“range”: a set of cards, 

 

“folder”: a folder to search, eventually with a file pattern, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the rectangle (in cm), 

 

height: height of the rectangle (in cm), 

 

page: if not specified, is equal to 1, 

 

flags: one or more of these flags 

 

H the schema is mirrored horizontally 

V the schema is mirrored vertically 

S the images are read also in the subfolders 
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zoom: if not specified, is equal to 100 

 

Example: 

 
MOSAIC = 1, "images\*.png", 0, 0, 0, 100% 

 

NANDECK 

This directive executes another instance of the program, loads a script, render all the cards and saves them to disk. Then 

the execution continues with the next line. This directive is executed only one time with each run of the script. 

 

Syntax: 

 

NANDECK = “source”, output, “path”, dpi, oversample, “range” 

 

Parameters: 

 

“source”: another nanDECK script, 

 

output: this flag specifies the format of the saved images, you can choose between: 

 

BMP 

JPG 

PNG 

GIF 

GIFA 

TIF 

PDF 

 

“path”: the path for the saved images, if isn't specified, the images are saved in the save folder of the source, 

 

dpi: the resolution for the images (see page 84), the default is 300, 

 

oversample: the value for the oversample (see page 132), the default is 1 (no oversample), 

 

“range”: you can specify a range if you don't want to render all the deck. 

 

Example: 

 
NANDECK = "c:\scripts\test.txt", PNG, "c:\output" 

 

NEXT 

This directive closes a FOR…NEXT loop (see page 96). 

 

Syntax: 

 

NEXT 

 

Parameters: 

 

none 

 

ORIGIN 

With this directive you can specify values to be added to the horizontal and vertical coordinates of all graphic directives 

in a range of cards. 

 

Syntax: 
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ORIGIN = range, pos x, pos y 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x: the offset value for all horizontal coordinates, 

 

pos y: the offset value for all vertical coordinates. 

 

Example: 

 
ORIGIN = 1-10, 0.5, 0.5 

 

OVERSAMPLE 

If you specify a parameter greater than one, the program works with cards 2x, 3x, or greater than the size specified, and 

then resize them to the original size, using the filter specified with IMAGEFILTER directive (see page 113). It’s useful 

to smooth every element of the cards, especially with small size one. 

 

Syntax: 

 

OVERSAMPLE = number 

 

Example: 

 
OVERSAMPLE = 2 

 

With this directive, the memory required (and the rendering time) is much more than usual. 

 

PAGE 

This directive sets the paper’ size and orientation (for printing and PDF creation). 

 

Syntax: 

 

PAGE = width, height, orientation, flags, html color, “no border range” 

 

Parameters: 

 

width: page width (in cm) 

 

height: page height (in cm) 

 

orientation: the orientation can be chosen between: 

 

LANDSCAPE horizontal 

PORTRAIT vertical 

 

flags: in this parameter, you can specify a special behavior for pages, possible values are: 

 

H the cards are horizontally centered 

V the cards are vertically centered 

E guides are not printed on even pages 

O guides are not printed on odd pages 

 

html color: paper color, in the same format used for HTML; you can also use a sequence of two or more colors, if you 

want a different color on each page. 

 

no border range: if a range is specified, the border isn’t printed on these cards. 
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If the directive PAGE is not specified, the standard is 21 x 29.7 (A4), portrait, no flags. 

 

Example: 

 
PAGE = 21, 29.7, LANDSCAPE 

 

PAGEFONT 

This directive changes the font’s characteristics for page’s headers (see page 99) and footers (see page 95). If you don’t 

specify this directive in your script, it will be used Arial 10, black. 

 

Syntax: 

 

PAGEFONT = “font name”, font size, style, html color 

 

Parameters: 

 

“font name”: character’s name (string), 

 

font size: character’s size (integer), in typographical points = 1/72 of an inch, 

 

style: character’ style, values accepted are: 

 

B bold 

I italic 

U underline 

S strikeout 

 

html color: character’s color, in the same format used for HTML. 

 

Examples: 

 
PAGEFONT = Arial, 10, B, #000000 

 

PAGEFONT = "Times new roman", 16, IU, #FF0000 

 

 

PAGEIMAGE 

This directive draws an image centered on all the printed pages (like a watermark). 

 

Syntax: 

 

PAGEIMAGE = “image file”, flags 

 

Parameters: 

 

“image file”: the image to be printed, 

 

flag: one or more of the following flags: 

 

P proportional 

E don’t print on even pages 

O don’t print on odd pages 

 

Example: 

 
PAGEIMAGE = watermark.png, P 

 

Note: use only .bmp or .png images 
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PATTERN 

This directive prints repeated images in a rectangular area. If you want to print different images instead, you can use the 

ICON directive (see page 101). 

 

Syntax: 

 

PATTERN = “range”, “image file”, repetition, pos x, pos y, width, height, obj width, obj height, angle, flags, horizontal 

alignment, vertical alignment, alpha 

 

Parameters: 

 

“range”: a set of cards, 

 

“image file”: an existent image file (eventually with a path), formats allowed are bmp, gif, png, jpg, and tif, 

 

repetition: the number of images printed (you can also use a sequence here), 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the rectangle in which the images are printed (in cm), 

 

height: height of the rectangle in which the images are printed (in cm), 

 

obj width: width of the single image to be printed (in cm), 

 

obj height: height of the single image to be printed (in cm), 

 

angle: angle of image rotation, if not specified it is assumed to be 0 (for no rotation), 

 

flags: in this parameter, you can specify a special behavior for images, possible values are: 

 

T Transparent 

A Anti-aliasing 

R Reverse, reversing the filling order of pattern’s elements (from bottom to top) 

N Use PNG transparency 

P Proportional 

V Vertical pattern 

 

horizontal alignment: the images’ horizontal alignment in the rectangle, values accepted are: 

LEFT left aligned 

CENTER centered (the default) 

RIGHT right aligned 

 

vertical alignment: the images’ vertical alignment in the rectangle, values accepted are: 

TOP top aligned 

CENTER centered (the default) 

BOTTOM bottom aligned 

 

alpha: level of transparency of image, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full 

solid). 

 

Examples: 

 
[img] = "c:\images\dot_red.gif" 

RECTANGLE = 1, 0, 0, 6, 5, #0000FF 

PATTERN = 1, [img], 5, 0, 1, 6, 3, 1.5, 1.5, 0, T, CENTER, CENTER 
Result: Image 41 

 

Image 41 
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PIE 

This directive draws a pie slice in a set of cards. 

 

Syntax: 

 

PIE = “range”, pos x, pos y, width, height, start angle, end angle, html color, html color, thickness 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the pie (in cm), 

 

height: height of the pie (in cm), 

 

start angle: start angle of pie (0=north, 90=east, 180=south, 270=west) 

 

end angle: end angle of pie (0=north, 90=east, 180=south, 270=west) 

 

html color: border color of the pie, in the same format used for HTML. You can also specify a 

gradient. 

 

html color: inner color of the pie, in the same format used for HTML, if not specified the inner color is 

the same of border color. You can also specify “EMPTY” for a hollow pie or a gradient. 

 

thickness: thickness of the border of the pie (in cm), if omitted, the pie’s border is 1 pixel wide. 

 

Examples:  

 
PIE = 1, 1, 3, 4, 4, 0, 90, #00FF00 
Result: Image 42 

 
PIE = 1, 1, 3, 4, 4, 90, 270, #FF00FF, EMPTY, 0.1 
Result: Image 43 

 
PIE = 1, 1, 3, 4, 4, 0, 270, #FF0000#0000FF@90 
Result: Image 44 

 

Image 42 

Image 43 

Image 44 
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POLYGON 

This directive draws a polygon in a set of cards. 

 

Syntax: 

 

POLYGON = “range”, pos x, pos y, width, height, num sides, angle, html color, html color, thickness, 

start side, end side 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the polygon (in cm), 

 

height: height of the polygon (in cm), 

 

num sides: number of sides (3 = triangle, 4 = square, 5 = pentagon, and so on…), 

 

angle: angle of rotation (in degrees), 

 

html color: border color of the polygon, in the same format used for HTML. You can also specify a 

gradient, 

 

html color: inner color of the polygon, in the same format used for HTML, if not specified the inner 

color is the same of border color. You can also specify “EMPTY” for a hollow polygon or a gradient, 

 

thickness: thickness of the border of the polygon (in cm), if omitted, the polygon’s border is 1 pixel 

wide, 

 

start side: the polygon is drawn starting from this side, it omitted is equal to 1, 

 

end side: the polygon is drawn until this side, if omitted is equal to num sides. 

 

Examples:  

 
POLYGON = 1, 1, 1, 4, 7, 3, 45, #00FF00 
Result: Image 45 

 
POLYGON = 1, 1, 1, 4, 7, 4, 0, #FF00FF, EMPTY, 0.1 
Result: Image 46 

 
POLYGON = 1, 1, 1, 4, 7, 5, 0, #FF0000#0000FF@90 
Result: Image 47 

 

Image 45 

Image 46 

Image 47 
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PRINT 

This directive restricts the deck creation to the specified cards. 

 

Syntax: 

 

PRINT = “range” | DUPLEX | COMPARE 

 

Parameters: 

 

“range”: a range of cards. If you specify the “DUPLEX” parameter, the range is built using information from the 

DUPLEX directive (see page 84), if you specify the “COMPARE” parameter, is used the range created with a 

COMPARE directive (see page 79). 

 

Examples: 

 
PRINT = "1-3, 8, 10-12" 

PRINT = DUPLEX 

 

QRCODE 

This directive draws a QRCode (useful to be read with a smartphone) in a set of cards. 

 

Syntax: 

 

QRCODE = “range”, “text”, pos x, pos y, width, height, html color, html color 

 

Parameters: 

 

“range”: a set of cards, 

 

“text”: the text written in the QRCode, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the QRCode (in cm), 

 

height: height of the QRCode (in cm), 

 

html color: color of the QRCode, in the same format used for HTML, black if not specified. You can also specify a 

gradient, 

 

html color: color of the background, in the same format used for HTML, white if not specified. You can also specify a 

gradient. 

 

Example: 

 
QRCODE = "1-10", "http://www.nandeck.com", 1, 1, 4, 4 
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RECTANGLE 

This directive draws a rectangle in a set of cards. 

 

Syntax: 

 

RECTANGLE = “range”, pos x, pos y, width, height, html color, html color, thickness 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the rectangle (in cm), 

 

height: height of the rectangle (in cm), 

 

html color: border color of the rectangle, in the same format used for HTML. You can also specify a 

gradient. 

 

html color: inner color of the rectangle, in the same format used for HTML, if not specified the inner 

color is the same of border color. You can also specify “EMPTY” for a hollow rectangle or a gradient. 

 

thickness: thickness of the border of the rectangle (in cm), if omitted, the rectangle’s border is 1 pixel 

wide. 

 

Examples:  

 
RECTANGLE = 1, 1, 1, 4, 7, #00FF00 
Result: Image 48 

 
RECTANGLE = 1, 1, 1, 4, 7, #FF00FF, EMPTY, 0.1 
Result: Image 49 

 
RECTANGLE = 1, 1, 1, 4, 7, #FF0000#0000FF@90 
Result: Image 50 

 

Image 48 

Image 49 

Image 50 
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RENDER 

With this directive, the program renders only a range of cards. If omitted, all the deck is rendered. If a name is 

specified, the range is associated with this string, and can be selected on a window, for a faster switch on multiple 

ranges. 

 

Syntax: 

 

RENDER = first card, last card, name 

 

Examples: 

 
RENDER = 10, 20 

 

RENDER = 1, 10, "full deck" 

RENDER = 1, 5, "first half" 

RENDER = 6, 10, "second half" 
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RHOMBUS 

This directive draws a rhombus in a set of cards. 

 

Syntax: 

 

RHOMBUS = “range”, pos x, pos y, width, height, html color, html color, thickness 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the rhombus (in cm), 

 

height: height of the rhombus (in cm), 

 

html color: border color of the rhombus, in the same format used for HTML. You can also specify a gradient. 

 

html color: inner color of the rhombus, in the same format used for HTML, if not specified the inner color is the same 

of border color. You can also specify “EMPTY” for a hollow rhombus or a gradient. 

 

thickness: thickness of the border of the rhombus (in cm), if omitted, the rectangle’s border is 1 pixel wide. 

 

Examples:  

 
RHOMBUS = 1, 1, 1, 4, 7, #00FF00 
Result: Image 51 

 

Image 51 
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ROUNDRECT 

This directive draws a rounded rectangle in a set of cards. 

 

Syntax: 

 

RECTANGLE = “range”, pos x, pos y, width, height, html color, html color, thickness, round width, round height 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the rounded rectangle (in cm), 

 

height: height of the rounded rectangle (in cm), 

 

html color: border color of the rounded rectangle, in the same format used for HTML. You can also specify a gradient. 

 

html color: inner color of the rounded rectangle, in the same format used for HTML, if not specified the inner color is 

the same of border color. You can also specify “EMPTY” for a hollow rounded rectangle or a gradient. 

 

thickness: thickness of the border of the rounded rectangle (in cm), if omitted, the rectangle’s border is 

1 pixel wide. 

 

round width: rounding horizontal factor for the rectangle (1 for a circle), if omitted the default is 5. 

 

round height: rounding vertical factor for the rectangle (1 for a circle), if omitted the default is equal 

to horizontal factor parameter (or 5, if the latter is missing). 

 

Note that if you want rounded corners with the same aspect, the horizontal/vertical factors must have a ratio 

proportional to the width/height of the rectangle. 

 

Examples:  

 
ROUNDRECT = 1, 1, 1, 4, 7, #00FF00 
Result: Image 52 

 
ROUNDRECT = 1, 1, 1, 4, 7, #FF00FF, EMPTY, 0.1, 2 
Result: Image 53 

 
ROUNDRECT = 1, 1, 1, 4, 7, #FF0000#0000FF@90 
Result: Image 54 

 

Image 52 

Image 53 

Image 54 
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RTFFILE 

This directive prints the RTF text loaded from a filename in the cards specified by a range. This directive is useful if 

you want to print a text from a document written using a word-processor (every program has the option to save a file in 

RTF format). 

 

Syntax: 

 

RTFFILE = “range”, “rtf file”, pos x, pos y, width, height,  html color , angle, flags, alpha 

 

Parameters: 

 

“range”: a set of cards, 

 

“rtf file”: the RTF filename for text to be printed (eventually with a pathname), 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the text’s rectangle (in cm), 

 

height: height of the text’s rectangle (in cm), 

 

html color: background color for text, 

 

angle: angle of text rotation, you must specify 0 for no rotation, 

 

flags: you can specify one or more flags, chosen between: 

 

T Transparent background for text 

H Horizontal mirror 

V Vertical mirror 

 

alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full 

solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of 

transparency is the starting level, ending with 0 (full transparent). 

 

Example: 

 
RTFFILE = 1, "c:\temp\document.rtf", 0, 0, 6, 8, #FFFF80, 0 
Result: Image 55 

 

Image 55 
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RTFTEXT 

This directive prints a text, using RTF format, in the cards specified by a range. This directive is useful if you want to 

print a text with multiple size, font, attributes, colors and so on. For expression, you must include them in double curly 

parentheses {{ … }}. 

 

Syntax: 

 

RTFTEXT = “range”, “text”, pos x, pos y, width, height,  html color , angle, flags, alpha 

 

Parameters: 

 

“range”: a set of cards, 

 

“text”: the RTF text to be printed, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the text’s rectangle (in cm), 

 

height: height of the text’s rectangle (in cm), 

 

html color: background color for text, 

 

angle: angle of text rotation, you must specify 0 for no rotation, 

 

flags: you can specify one or more flags, chosen between: 

 

T Transparent background for text 

H Horizontal mirror 

V Vertical mirror 

 

alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full 

solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of 

transparency is the starting level, ending with 0 (full transparent). 

 

Example: 

 
RTFTEXT = 1, "{\rtf normal\par{\b bold}\par{\i italic}\par{\ul underline}}", 0, 

0, 6, 6, #FFFF80, 0 
Result: Image 56 

 

Image 56 
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SAVE 

This directive saves the full or partial image(s) of card(s) specified by a range in a file(s). You can use expressions like 

{§} to specify different filenames for different cards in the range. The image can also be loaded in another card with 

IMAGE directive (see page 110). The formats you can use for the image are BMP, JPG, PNG and GIF, if you didn’t 

specify an extension for the filename, the default is BMP. If you didn’t specify a size, the default is all the card. 

 

Syntax: 

 

SAVE = “range”, “image file”, pos x, pos y, width, height, transparent color, “zipfile”, “image file” 

 

Parameters: 

 

“range”: a set of cards, 

 

“filename”: the name of the file created (.bmp extension), 

 

pos x: horizontal start of saved area (in cm), 

 

pos y: vertical start of saved area (in cm), 

 

width: width of the saved area (in cm), 

 

height: height of the saved area (in cm), 

 

transparent color: for PNG and GIF, if this parameter is specified, the file is save with this color as transparent, for 

PNG files you can also specify more than one color (for example #0000FF#00FF00 for two colors) and add also a level 

of transparency, in the format #xxyyyyyy, where xx = transparency level (from 00 = full transparent to FF = full solid) 

and yy = color, 

 

“zipfile”: if this parameter is specified, the image file is added to this zip file, 

 

“image file”: if this parameter is specified (a PNG image), is used as transparency mask for the saved 

image. 

 

Examples: 

 
SAVE = 1-3, "card{§}.bmp", 0, 0, 6, 9 

 

RECTANGLE = 1, 1, 1, 4, 7, #0000FF#FF0000@90 

RECTANGLE = 1, 0, 0, 6, 9, #000000, EMPTY, 0.5 

SAVE = 1, "temp.bmp", 0, 0, 6, 9 

IMAGE = 1, "temp.bmp", 3, 0, 3, 4.5, 0, A 
Result: Image 57 

 

Image 57 
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SAVEGIFA 

This directive saves the full deck of cards in an animated GIF file specified in “filename” parameter. 

 

Syntax: 

 

SAVEGIFA = “filename”, msec, flags, transparent color 

 

Parameters: 

 

“filename”: the name of the file to be created (.gif extension) 

 

msec: the delay between each frame (the default is 1000 = 1 second) 

 

flags: one of the following flags 

 

O all the images use a single color palette, 

P the color palette(s) are packed, 

T the frames of the image are saved with a transparent color, specified in the 4th parameter 

 

transparent color: the transparent color in HTML format (if not specified, is set to white) to be used with the T flag. 

 

Example: 

 
SAVEGIFA = deck.gif 

 

Note: there isn’t a “range” parameter because only the final deck can be printed (and then exported in an animated 

GIF file). If you want a partial deck, add a RENDER directive. 

 

SAVEPAGES 

This directive saves the full deck of cards in one or more image files (one for each page), with names specified in 

“filename” parameter, adding a progressive number for each page. The file formats accepted are BMP, JPG (or JPEG), 

and PNG. 

 

Syntax: 

 

SAVEPAGE = “filename” 

 

Parameters: 

 

“filename”: the name of the file(s) to be created 

 

Example: 

 
SAVEPAGES = page.png 

 

Note: there isn’t a “range” parameter because only the final deck can be printed (and then exported in one or more 

image files). If you want a partial deck, add  a RENDER directive. 

 

SAVEPDF 

This directive saves the full deck of cards in a PDF file specified in “filename” parameter. 

 

Syntax: 

 

SAVEPDF = “pdf file” 

 

Parameters: 
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“pdf file”: the name of the file to be created (.pdf extension) 

 

Example: 

 
SAVEPDF = deck.pdf 

 

Note: there isn’t a “range” parameter because only the final deck can be printed (and then exported in a PDF file). If 

you want a partial deck, add a RENDER directive. 

 

SECTION 

The directives contained between SECTION and ENDSECTION directives are associated with the parameter “text”, 

and can be activated or deactivated (using the switch parameter), this option can be selected on a window, for a faster 

activation/deactivation for multiple names. In this window, there are three buttons: one for enabling all the sections, one 

for disabling all the sections, and one (named “Cycle build”) that validates and builds in sequence all the sections 

(enabling only one at each cycle). 

 

Syntax: 

 

SECTION = “text”, switch 

 

The parameter switch can be set equal to: 

 

ON to enable the section 

OFF to disable the section 

 

Example: 

 
SECTION = "Border", ON 

  BORDER = RECTANGLE 

ENDSECTION 

 

SELECT 

The SELECT…ENDSELECT structure can be used to create sections of code that must be executed only if are verified 

some conditions. In the default mode, a value is evaluated and only the CASE code with the same value is executed; 

you can also add an operator to be used for the test evaluation. 

 

Syntax: 

 

SELECT = value 

… 

CASE = value1 

… 

CASE = value2 

… 

… 

CASEELSE 

… 

ENDSELECT 

 

Parameters: 

 

value: a string, number, label or expression that can be evaluated. 

 

Example: 

 
CARDS = 4 

[TEST] = 1|2|3|4 

SELECT = [TEST] 

CASE = 1 
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  RECTANGLE = 1-4, 0, 0, 100%, 100%, #FF0000 

CASE = <4 

  ELLIPSE = 1-4, 0, 0, 100%, 100%, #0000FF 

CASEELSE 

  RHOMBUS = 1-4, 0, 0, 100%, 100%, #00FF00 

ENDSELECT 

 

SEQUENCE 

This directive is used to start a SEQUENCE…ENDSEQUENCE structure, for creating one or more sequences. 

 

Syntax: 

 

SEQUENCE = label name 

 

Parameters: 

 

label name: the name of the label 

 

Each line in this structure is added to the sequence with the name specified as a parameter. 

 

Example: 

 
SEQUENCE = Title 

Earth 

Moon 

Mars 

Venus 

Jupiter 

ENDSEQUENCE 

 

There is an alternative syntax, for creating multiple sequences. Each line in this structure must contains the name of the 

sequence and a value, separated with a pipe | character. For example, this script creates five sequences of two elements 

each: 

 
SEQUENCE = 

 

Title         |Earth 

Image         |Earth.jpg 

Description   |Earth is the third planet from the Sun. 

Radius        |6.371 

Orbital Period|365 

 

Title         |Moon 

Image         |Moon.jpg 

Description   |The Moon is Earth's only natural satellite. 

Radius        |1.737 

Orbital Period|26 

 

ENDSEQUENCE 

 

That script is equivalent to this: 

 
[Title] = Earth|Moon 

[Image] = Earth.jpg|Moon.jpg 

[Description] = Earth is the third planet from the Sun.| The Moon is Earth's 

only natural satellite. 

[Radius] = 6.371|1.737 

[Orbital Period] = 365|26 
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SET 

This directive sets a label with a value. Note: since the syntax [label] is replaced in the validations step, if you want to 

read a value memorized with a SET directive, you must use the {label?n} syntax, where n is the index of the sequence 

(use 1 if it’s a single value). 

 

Syntax: 

 

SET = “range”, label name, label value 

 

Parameters: 

 

“range”: a set of cards, 

 

label name: the name of the label to be changed (or added, if not exists) 

 

label value: the value of the label 

 

SPECIAL 

This directive is used to change the special symbols used for some variables. 

 

Syntax: 

 

SPECIAL = char cardnum, char framenum, char framename 

 

Parameters: 

 

char cardnum: the character used for the number of the current card (default §). 

 

char framenum: the character used for the number of the current frame (default °). 

 

char framename: the character used for the name of the current frame (default µ). 

 

Example: 

 
SPECIAL = $, ^, ? 
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STAR 

This directive draws a star in a set of cards. 

 

Syntax: 

 

STAR = “range”, pos x, pos y, width, height, num points, angle, factor, html color, html color, 

thickness 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the star (in cm), 

 

height: height of the star (in cm), 

 

num points: number of points, 

 

angle: angle of rotation (in degrees), 

 

factor: from 0 (very pointy star) to 100 (polygon), 

 

html color: border color of the star, in the same format used for HTML. You can also specify a 

gradient. 

 

html color: inner color of the star, in the same format used for HTML, if not specified the inner color 

is the same of border color. You can also specify “EMPTY” for a hollow star or a gradient. 

 

thickness: thickness of the border of the star (in cm), if omitted, the star’s border is 1 pixel wide. 

 

Examples:  

 
STAR = 1, 1, 1, 4, 7, 3, 0, 20, #00FF00 
Result: Image 58 

 
STAR = 1, 1, 1, 4, 7, 5, 0, 50, #FF00FF, EMPTY, 0.1 
Result: Image 59 

 
STAR = 1, 1, 1, 4, 7, 6, 90, 80, #FF0000#0000FF@90 
Result: Image 60 

 

Image 58 

Image 59 

Image 60 
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STORE 

This directive enables/disables the storing of cards to the deck. The default behavior is that the program memorizes the 

images of the cards, but it can be disabled, useful when you don't want to print them or create a PDF, but need only the 

images, to be saved with a SAVE directive (see page 146). 

 

Syntax: 

 

STORE = “range”, switch 

 

Parameters: 

 

“range”: a range of cards, 

 

switch: values accepted are: 

 

ON to enable the storing of cards (the default) 

OFF to disable the storing of cards 

 

TABLE 

This directive open the virtual table (see page 57) at the end of the building process. 

 

Syntax: 

 

TABLE = num draw, flags 

 

Parameters: 

 

num draw: the number of cards drawn when you double click a deck, 

 

flags: you can choose these flags: 

 

R the drawn card is placed at the right of the deck 

L the drawn card is placed at the left of the deck 

U the drawn card is placed at the top of the deck 

B the drawn card is placed at the bottom of the deck 

O the drawn position is rotated 

P the drawn position is randomized 

A enable the alignment to grid 

C show the canvas as a background image 

S automatic selection of object 

T show the tags 

F bring the selected object to the front 

M move complete stacks of cards 

 

TAG 

This directive assign a label and a numeric value to a card (or a range of cards). This tag is shown in the Virtual Table 

(see page 57) when a card is put in a specific location of the table (if more than one card is in one location, the values of 

all the tags with the same name are summed up). 

 

Syntax: 

 

TAG = “range”, tag, number 

 

Parameters: 

 

“range”: a set of cards, 
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tag: the name of the tag, 

 

number: the value of the tag (it can be a sequence of values). 

 

Examples: 

 

TAG = 1-10, card, 1 

 

TAG = 1-20, value, 1|2|3|4|5 
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TEXT 

This directive writes a text on a range of cards. The font used is specified using FONT (see page 92) or FONTRANGE 

(see page 93) command. 

 

Syntax: 

 

TEXT = “range”, “text”, pos x, pos y, width, height, horizontal alignment, vertical alignment, angle, alpha, outline 

width, circle offset, circle angle 

 

Parameters: 

 

“range”: a set of cards, 

 

“text”: the text to be printed, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the rectangle used to draw the text (in cm), you can specify a negative number for a text mirrored 

horizontally, 

 

height: height of the rectangle used to draw the text (in cm), you can specify a negative number for a text mirrored 

vertically, 

 

horizontal alignment: the text’s horizontal alignment in the rectangle, values accepted are: 

 

left left aligned 

center centered 

right right aligned 

 

The horizontal alignment is optional, if omitted is equal to center. 

 

vertical alignment: the text’s vertical alignment in the rectangle, values accepted are: 

 

top top aligned 

center centered 

bottom bottom aligned 

wordwrap the text is top aligned and word-wrapped in the rectangle 

wwtop the text is top aligned and word-wrapped in the rectangle 

wwcenter the text is center aligned and word-wrapped in the rectangle 

wwbottom the text is bottom aligned and word-wrapped in the rectangle 

charwrap the text is centered, spaced and word-wrapped (every character) in a pattern 

 

The vertical alignment is optional, if omitted is equal to center. 

 

angle: angle of text rotation, if omitted is 0 (no rotation), 

 

alpha: level of transparency of text, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full 

solid). You can also specify an angle for the transparency, with the format level@angle; in this case, the level of 

transparency is the starting level, ending with 0 (full transparent), 

 

outline width: if you specify a number, the font is drawn as outlined, with this number as line's width. 

 

circle offset: if you specify a number, this is the offset for a circular text (from 0 to 100), the default is 25. 

 

circle angle: if you specify a number, this is the angle of each letter in a circular text, the default is 0. 
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If you want a more flexible command for text, you can use RTFTEXT (or RTFFILE). With these commands, you can 

use multiple fonts, size, colors, size and more (justified alignment, tab settings), anything you can write with an RTF 

editor. 

 

Tip: you can choose a single specific symbol or character from a visual form, clicking on the button “Insert” and 

choosing the menu voice “Symbol”. 

 

 
 

Examples: 

 
RECTANGLE = 1, 1, 1, 4, 7, #0000FF 

FONT = Arial, 16, T, #FFFFFF 

TEXT = 1, "center-top", 1, 1, 4, 2, center, top 

TEXT = 1, "center-center", 1, 3, 4, 3, center, center 

TEXT = 1, "center-bottom", 1, 6, 4, 2, center, bottom 
Result: Image 61 

 
RECTANGLE = 1, 1, 1, 4, 7, #0000FF 

FONT = Arial, 16, T, #FFFFFF 

TEXT = 1, "left-top", 1, 1, 4, 2, left, top 

TEXT = 1, "left-center", 1, 3, 4, 3, left, center 

TEXT = 1, "left-bottom", 1, 6, 4, 2, left, bottom 
Result: Image 62 

 
RECTANGLE = 1, 1, 1, 4, 7, #0000FF 

FONT = Arial, 16, T, #FFFFFF 

TEXT = 1, "right-top", 1, 1, 4, 2, right, top 

TEXT = 1, "right-center", 1, 3, 4, 3, right, center 

TEXT = 1, "right-bottom", 1, 6, 4, 2, right, bottom 

Result: Image 63 

 
[test] = "Lorem ipsum dolor sit amet, consectetuer 

adipiscing elit. Aenean fermentum ipsum eu sapien." 

RECTANGLE = 1, 1, 1, 4, 7, #0000FF 

FONT = Arial, 12, T, #FFFFFF 

TEXT = 1, [test], 1, 1, 4, 7, left, wwtop 
Result: Image 64 

 
[test] = "Lorem ipsum dolor sit amet, consectetuer 

adipiscing elit. Aenean fermentum ipsum eu sapien." 

RECTANGLE = 1, 1, 1, 4, 7, #0000FF 

FONT = Arial, 12, T, #FFFFFF 

TEXT = 1, [test], 1, 1, 4, 7, center, wwcenter 
Result: Image 65 

 
[test] = "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean 

fermentum ipsum eu sapien." 

Image 61 Image 62 

Image 63 Image 64 

Image 65 Image 66 
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RECTANGLE = 1, 1, 1, 4, 7, #0000FF 

FONT = Arial, 12, T, #FFFFFF 

TEXT = 1, [test], 1, 1, 4, 7, right, wwbottom 
Result: Image 66 

 

TEXTFONT 

This directive writes a text on a range of cards, it uses the parameters both from TEXT (see page 154) and FONT (see 

page 92) directives. 

 

Syntax: 

 

TEXTFONT = “range”, “text”, pos x, pos y, width, height, horizontal alignment, vertical alignment, angle, alpha, “font 

name”, font size, style, html color font, html color background, outline width, circle offset, circle angle 

 

TEXTLIMIT 

This directive fills four variables with the coordinates of latest drawn text’s boundaries (in cm), from TEXT command 

(see page 154). You can use these variables in other commands. 

 

Syntax: 

 

TEXTLIMIT = “range” 

 

The four variables are: 

 

TL (left) 

TR (right) 

TT (top) 

TB (bottom) 

 

Parameters: 

 

“range”: a set of cards 

 

Example: 

 
FONT = Arial, 16, , #000000 

TEXT = 1, "This is a test", 0, 0, 6, 2, center, center 

TEXTLIMIT = 1 

LINE = 1, TL, 0, TL, 2, #000000, 0.05 

LINE = 1, TR, 0, TR, 2, #000000, 0.05 

LINE = 1, 0, TT, 6, TT, #000000, 0.05 

LINE = 1, 0, TB, 6, TB, #000000, 0.05 
Result: Image 67 

 

Image 67 
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THREADS 

When the deck is built, if you specify a number different from one, nanDECK executes n copies of itself that render a 

section of the current deck. The main program waits until all the sections are complete, and loads them in the current 

deck. With a multithreaded CPU, the result is a shorter time for building a deck. 

 

Syntax: 

 

THREADS = number 

 

Parameter: 

 

number: the number of threads that must be used. 

 

Example: 

 
THREADS = 4 

 

Note: this method works if the cards are made independently each other, it can't be used if in the script there are 

keywords like COPYCARD or DUPLEX. 

 

TOKEN 

This directive prepares a token to be used in the “Virtual table” option (see page 57). A token in the Virtual table can be 

a simple counter with a text that can be moved or stacked, or a dice that can be rolled to obtain random values. 

 

Syntax: 

 

TOKEN = “formula”, width, height, font color, back color, number, pos x, pos y 

 

Parameters: 

 

“formula”: the text visualized in the token, can be an empty string or it can be used an expression. If you use an 

expression with a “d” for a random value, it can be rolled like a die with a double-click of the mouse on the token itself, 

 

width: width of the token (in pixels), you can also specify a % of the screen width, 

 

height: height of the token (in pixels), you can also specify a % of the screen height, 

 

font color: font color in the same format used for HTML, 

 

back color: background color in the same format used for HTML, 

 

number: the number of tokens (one, if not specified), if more than one the tokens are stacked together on the table, 

 

pos x: horizontal position for the token (in pixels), you can also specify a % of the screen’s width, 

 

pos y: vertical position for the token (in pixels), you can also specify a % of the screen’s height. 

 

Examples: 

 
TOKEN = "{1d6}", 50, 50, #FFFFFF, #0000FF 

 

TOKEN = "$", 100, 50, #FFFFFF, #00FF00, 10 
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TRACK 

This directive draws a racetrack section from a point (x1, y1) to another point (x2, y2). 

 

Syntax: 

 

TRACK = “range”, pos x1, pos y1, pos x2, pos y2, track width, html color, num lanes, num spaces, flags, thickness, left 

factor, right factor, pattern 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x1, pos y1: coordinates of first point (in cm), 

 

pos x2, pos y2: coordinates of second point (in cm), 

 

track width: width of the track (in cm), 

 

html color: color of the track, in the same format used for HTML. You can also specify a gradient, 

 

num lanes: the number of the lanes that compose the track, the minimum is one. 

 

num spaces: the number of spaces long the track, the minimum is one. 

 

flags: you can choose these flags: 

 

S the track section is closed at the start 

E the track section is closed at the end 

H even lanes are drawn forward one half space 

L the track is linked, using a line, to the last track drawn on the same card 

C the track is linked, using a curve, to the last track drawn on the same card 

R don't draw external right link 

F don't draw external left link 

 

thickness: thickness of the track’s line (in cm), if omitted, the line is 1 pixel wide, 

 

left factor: for curved link, this parameter set the width of the curve, for the left side of the track, 

 

left factor: for curved link, this parameter set the width of the curve, for the right side of the track, 

 

pattern: a pattern for the track’s line, this pattern can be composed of: 

 

O dot 

D dash 

S space 

 

These letters can be repeated, for example “OSDSOS” is a valid pattern. 

 

Example: 

 
TRACK = 1, 1, 8, 5, 1, 1, #000000, 3, 4, SE, 0.1 
Result: Image 68  

 

Image 68 
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TRACKRECT 

This directive draws a racetrack section from a vertex of a rectangle to the opposite vertex. 

 

Syntax: 

 

TRACK = “range”, pos x, pos y, width, height, track width, html color, num lanes, num spaces, flags, thickness, left 

factor, right factor, pattern 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x: horizontal position (in cm), 

 

pos y: vertical position (in cm), 

 

width: width of the rectangle (in cm), 

 

height: height of the rectangle (in cm), 

 

track width: width of the track (in cm), 

 

html color: color of the track, in the same format used for HTML. You can also specify a gradient, 

 

num lanes: the number of the lanes that compose the track, the minimum is one. 

 

num spaces: the number of spaces long the track, the minimum is one. 

 

flags: you can choose these flags: 

 

S the track section is closed at the start 

E the track section is closed at the end 

H even lanes are drawn forward one half space 

L the track is linked, using a line, to the last track drawn on the same card 

C the track is linked, using a curve, to the last track drawn on the same card 

R don't draw external right link 

F don't draw external left link 

 

thickness: thickness of the track’s line (in cm), if omitted, the line is 1 pixel wide, 

 

left factor: for curved link, this parameter set the width of the curve, for the left side of the track, 

 

left factor: for curved link, this parameter set the width of the curve, for the right side of the track, 

 

pattern: a pattern for the track’s line, this pattern can be composed of: 

 

O dot 

D dash 

S space 

 

These letters can be repeated, for example “OSDSOS” is a valid pattern. 
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TRIANGLE 

This directive draws a triangle in a set of cards. 

 

Syntax: 

 

TRIANGLE = “range”, pos x1, pos y1, pos x2, pos y2, pos x3, pos y3, html color, html color, 

thickness 

 

Parameters: 

 

“range”: a set of cards, 

 

pos x1, pos y1: coordinates of 1st point (in cm), 

 

pos x2, pos y2: coordinates of 2nd point (in cm), 

 

pos x3, pos y3: coordinates of 3rd point (in cm), 

 

html color: border color of the triangle, in the same format used for HTML. You can also specify a 

gradient. 

 

html color: inner color of the triangle, in the same format used for HTML, if not specified the inner 

color is the same of border color. You can also specify “EMPTY” for a hollow triangle or a gradient. 

 

thickness: thickness of the border of the triangle (in cm), if omitted, the triangle’s border is 1 pixel 

wide. 

 

Examples:  

 
TRIANGLE = 1, 1, 8, 3, 1, 5, 8, #00FF00 
Result: Image 69 

 
TRIANGLE = 1, 1, 8, 3, 1, 5, 8, #FF00FF, EMPTY, 0.1 
Result: Image 70 

 
TRIANGLE = 1, 1, 8, 3, 1, 5, 8, #FF0000#0000FF@90 
Result: Image 71  

 

Image 69 

Image 70 

Image 71 
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UNIT 

This directive chooses a unit to be used with all the numeric size in the script. For a correct use, it’s better to include it 

in the first line of the script. The default size unit, if UNIT is not used, is the “cm”. 

 

Syntax: 

 

UNIT = type 

 

Parameters: 

 

type: the type of unit can be chosen between: 

 

CM 

MM 

INCH 

 

Example: 

 
UNIT = inch 

 

Tip: instead of using absolute values, you can always specify a size (in every directive) as a fraction of the whole card, 

using number followed by the percentage “%”. 

 

VECTOR 

This directive draws a SVG file in a set of cards. 

 

Syntax: 

 

VECTOR = “range”, “image file”, pos x, pos y, width, height, angle, alpha, flags 

 

Parameters: 

 

“range”: a set of cards 

 

“image file”: an existent .svg image file (eventually with a path) 

 

pos x: horizontal position (in cm) 

 

pos y: vertical position (in cm) 

 

width: width of the image (in cm) 

 

height: height of the image (in cm) 

 

angle: angle of image rotation, can be 0 for no rotation 

 

alpha: level of transparency of image, from 0 (full transparent) to 100 (full solid). If omitted, the level is set to 100 (full 

solid) 

 

flags: you can choose these flags: 

 

I use the internal engine (default) 

E use Inkscape for image’s rendering (you must specify the path in the Config window) 

 

Example: 

 
IMAGE=1-10, test.svg, 0, 0, 4, 4 
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Note: with the internal engine, the SVG file specifications aren’t fully implemented, some issues exist (for example, in 

gradient fill). 

 

VISUAL 

This directive is used to open a VISUAL…ENDVISUAL structure (see “Visual editor”, page 59). 

 

Syntax: 

 

VISUAL = flags, horizontal steps, vertical steps 

 

Parameters: 

 

flags: you can choose these flags: 

 

H show the horizontal ruler 

V show the vertical ruler 

G show the grid 

P snap to the grid when you move an object 

S snap to the grid when you resize an object 

 

horizontal steps: number of horizontal steps for the grid, 

 

vertical steps: number of vertical steps for the grid. 

 

ZOOM 

This directive changes the size of cards (all elements, FONT included). Useful to change the final result without having 

to modify all the data. If omitted, is considered to be 100 (and there is no change in size). You can specify a 2nd 

parameter for vertical zoom, if it’s different from horizontal one. 

 

Syntax: 

 

ZOOM = width, height 

 

Examples: 

 
;half size 

ZOOM = 50 

 
;double size 

ZOOM = 200 
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Code examples 

Wargame counters 

cardsize=2,2 

dpi=600 

linkmulti=number 

link=data.txt 

 

[back_ger]=#C0C0C0 

[front_ger]=#000000 

[out_ger]=#808080 

 

[back_fre]=#8ADDF4 

[front_fre]=#000000 

[out_fre]=#808080 

 

macro=outline,(range1),(text1),(frame),(font1),(size1),(col1),(col2),(col3) 

  font=(font1),(size1),,(col3),(col2),0.01,0.01 

  text=(range1),(text1),(frame) 

  font=(font1),(size1),T,(col1),(col2) 

  text=(range1),(text1),(frame) 

end 

 

[all]=1-{(number)} 

<cnt_all>=0,0,2,2 

<val_lft>=0.25,1.25,0.5,0.75 

<val_cnt>=0.75,1.25,0.5,0.75 

<val_rgt>=1.25,1.25,0.5,0.75 

<val_id>=0.25,0,1.5,0.25 

<img_cnt>=0.45,0.3,1.1,0.9 

<img_cnt2>=0.6,0.5,0.8,0.5 

rectangle=[all],0,0,2,2,[back_[nation]] 

 

outline=[all],[combat],<val_lft>,Arial,16,[front_[nation]],[back_[nation]],[out_[nation]] 

outline=[all],[movement],<val_rgt>,Arial,16,[front_[nation]],[back_[nation]],[out_[nation]] 

if=[command]<>0 

  outline=[all],[command],<val_cnt>,Arial,16,[front_[nation]],[back_[nation]],[out_[nation]] 

endif 

outline=[all],[id],<val_id>,Arial,7,[front_[nation]],[back_[nation]],[out_[nation]] 

if=[type]=inf 

  line=[all],<img_cnt,PTL>,<img_cnt,PBR>,[front_[nation]],0.04 

  line=[all],<img_cnt,PBL>,<img_cnt,PTR>,[front_[nation]],0.04 

  line=[all],<img_cnt,PTL>,<img_cnt,PBR>,[out_[nation]],0.02 

  line=[all],<img_cnt,PBL>,<img_cnt,PTR>,[out_[nation]],0.02 

endif 

if=[type]=cav 

  line=[all],<img_cnt,PBL>,<img_cnt,PTR>,[front_[nation]],0.04 

  line=[all],<img_cnt,PBL>,<img_cnt,PTR>,[out_[nation]],0.02 

endif 

if=[type]=arm 

  ellipse=[all],<img_cnt2>,[front_[nation]],EMPTY,0.04 

  ellipse=[all],<img_cnt2>,[out_[nation]],EMPTY,0.02 

endif 

if=[type]=hq 

  outline=[all],HQ,<img_cnt>,Arial,16,[front_[nation]],[back_[nation]],[out_[nation]] 

endif 

rectangle=[all],<img_cnt>,[front_[nation]],"empty",0.05 

rectangle=[all],<img_cnt>,[out_[nation]],"empty",0.02 

 

Data file (data.txt): 

 
nation,type,combat,movement,command,id,number 

fre,inf,3,3,0,XXX,2 

fre,cav,2,5,0,XX,2 

fre,arm,4,4,0,XXX,2 

fre,arm,5,4,0,XXX,2 

fre,hq,1,4,3,"De Gaulle",1 

ger,inf,3,3,0,XXX,2 

ger,inf,3,3,0,XXXX,2 

ger,arm,6,5,0,XXX,2 

ger,arm,5,4,0,XXX,2 

ger,hq,1,5,3,Rommel,1 
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Dice results 

cardsize=18,3 

border=rectangle 

zoom=50 

[all]=1-36 

 

<d4>=0,0,3,3 

<d6>=3,0,3,3 

<d8>=6,0,3,3 

<d10>=9,0,3,3 

<d12>=12,0,3,3 

<d20>=15,0,3,3 

 

[col]=#000000 

 

font=Arial,32,T,[col] 

 

polygon=[all],<d4>,3,0,[col],EMPTY,0.1 

text=[all],"{1d4}",<d4> 

 

polygon=[all],<d6>,4,45,[col],EMPTY,0.1 

text=[all],"{1d6}",<d6> 

 

polygon=[all],<d8>,4,0,[col],EMPTY,0.1 

text=[all],"{1d8}",<d8> 

 

line=[all],9,1,10.5,0,[col],0.1 

line=[all],10.5,0,12,1,[col],0.1 

line=[all],12,1,10.5,3,[col],0.1 

line=[all],10.5,3,9,1,[col],0.1 

text=[all],"{1d10}",<d10> 

 

polygon=[all],<d12>,5,0,[col],EMPTY,0.1 

text=[all],"{1d12}",<d12> 

 

polygon=[all],<d20>,3,90,[col],EMPTY,0.1 

text=[all],"{1d20}",<d20> 
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Score track 

unit=inch 

canvassize=15,15 

 

[side_a]=framebox(0,0,14,1,1,1,C) 

[side_b]=framebox(14,0,1,14,1,1,C) 

[side_c]=framebox(1,14,14,1,1,1,C) 

[side_d]=framebox(0,1,1,14,1,1,C) 

 

rectangle=0,<side*>,#000000,empty 

 

font=arial,16,T,#000000 

text=0,"{°-1}",<side_a*> 

text=0,"{13+°}",<side_b*>,center,center,90 

text=0,"{26+16-°}",<side_c*>,center,center,180 

text=0,"{40+16-°}",<side_d*>,center,center,270 

 

save=0,"board.png"0,0,15,15 
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Boggle dice 

N[a]=01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16 

[range]=1-{(a)} 

[d01]=LRYTTE 

[d02]=VTHRWE 

[d03]=EGHWNE 

[d04]=SEOTIS 

[d05]=ANAEEG 

[d06]=IDSYTT 

[d07]=OATTOW 

[d08]=MTOICU 

[d09]=AFPKFS 

[d10]=XLDERI 

[d11]=HCPOAS 

[d12]=ENSIEU 

[d13]=YLDEVR 

[d14]=ZNRNHL 

[d15]=NMIQHU 

[d16]=OBBAOJ 

CARDSIZE = 4.5, 4.5 

FONT = Arial, 96, , #000000 

TEXT = [range], [[d[a]]:d6,1], 0, 0, 100%, 100% 

RECTANGLE = [range], 0, 0, 100%, 100%, #0000FF, EMPTY, 10% 
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Catan map 

canvassize=35,35 

[sea]=framehex(0,0,35,35,3,C) 

[map]=framedisk(sea43,sea41) 

'sea 

polygon=0,<sea*>,6,90,#000000,#0000FF,0.1 

'field 

polygon=0,<4~!map*>,6,90,#000000,#CEC90B,0.1 

'forest 

polygon=0,<4~!map*>,6,90,#000000,#008000,0.1 

'pasture  

polygon=0,<4~!map*>,6,90,#000000,#80FF00,0.1 

'mountain 

polygon=0,<3~!map*>,6,90,#000000,#C0C0C0,0.1 

'hill 

polygon=0,<3~!map*>,6,90,#000000,#800000,0.1 

'desert 

polygon=0,<~!map*>,6,90,#000000,#FFFF80,0.1 

 

save=0,"catan.jpg",0,0,35,35 
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Clock 

cardsize = 10,10 

[clock] = frameclock(1, 1, 8, 8, 2, 2, 12) 

ellipse = 1, <clock*>, #CCCCCC 

font = Arial, 32, T, #000000 

text = 1, "{°}", <clock*>, center, center, °*360/12 

 

layer = 50 

;hours 

[hour] = frameclock(2, 2, 6, 6, 1, 1, 12) 

line = 1, 5, 5, <hour4, PCC>, #FF0000, 0.6 

 

;minutes 

line = 1, 5, 5, <clock2, PCC>, #0000FF, 0.4 

endlayer  
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Hex board 

page=21.59,27.94,portrait,hv 

cardsize=16,24 

border=none 

[base]=framehex(0,0,16,24,0.85,C) 

[hex01]=frameline(base0101,base0111) 

[hex02]=frameline(base0201,base0211) 

[hex03]=frameline(base0302,base0312) 

[hex04]=frameline(base0402,base0412) 

[hex05]=frameline(base0503,base0513) 

[hex06]=frameline(base0603,base0613) 

[hex07]=frameline(base0704,base0714) 

[hex08]=frameline(base0804,base0814) 

[hex09]=frameline(base0905,base0915) 

[hex10]=frameline(base1005,base1015) 

[hex11]=frameline(base1106,base1116) 

polygon=1,<hex*>,6,90,#000000,EMPTY,0.1 
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Triangle map 

canvassize=21,27 
[h]=framehex(0,0,21,27,1,C) 

star=0,<h*>,6,90,1,#000000,EMPTY,0.05 

hexgrid=0,0,0,21,27,1,,#000000,EMPTY,0.05 

save=0,"triangle.png",0,0,21,27 
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Chess board 

With font “Chess Cases”. Link: http://www.enpassant.dk/chess/fonteng.htm#CASES 

   
canvassize=18,18 

[ch]=framebox(1,1,16,16,2,2,E) 

{[ch_white]=framelist(cha1,chc1,che1,chg1,chb2,chd2,chf2,chh2,cha3,chc3,che3,chg3,chb4,chd4,chf4,chh4, 

cha5,chc5,che5,chg5,chb6,chd6,chf6,chh6,cha7,chc7,che7,chg7,chb8,chd8,chf8,chh8)} 

{[ch_black]=framelist(chb1,chd1,chf1,chh1,cha2,chc2,che2,chg2,chb3,chd3,chf3,chh3,cha4,chc4,che4,chg4, 

chb5,chd5,chf5,chh5,cha6,chc6,che6,chg6,chb7,chd7,chf7,chh7,cha8,chc8,che8,chg8)} 

rectangle=0,<ch_white>,#EEEEEE 

rectangle=0,<ch_black>,#BBBBBB 

[tt]=framebox(1,0,16,1,2,1,N) 

[tb]=framebox(1,17,16,1,2,1,N) 

[t1]=framelist(tt1,tb1) 

[t2]=framelist(tt2,tb2) 

[t3]=framelist(tt3,tb3) 

[t4]=framelist(tt4,tb4) 

[t5]=framelist(tt5,tb5) 

[t6]=framelist(tt6,tb6) 

[t7]=framelist(tt7,tb7) 

[t8]=framelist(tt8,tb8) 

[sl]=framebox(0,1,1,16,1,2,N) 

[sr]=framebox(17,1,1,16,1,2,N) 

[s1]=framelist(sl1,sr1) 

[s2]=framelist(sl2,sr2) 

[s3]=framelist(sl3,sr3) 

[s4]=framelist(sl4,sr4) 

[s5]=framelist(sl5,sr5) 

[s6]=framelist(sl6,sr6) 

[s7]=framelist(sl7,sr7) 

[s8]=framelist(sl8,sr8) 

font=arial,16,,#000000 

text=0,a,<t1> 

text=0,b,<t2> 

text=0,c,<t3> 

text=0,d,<t4> 

text=0,e,<t5> 

text=0,f,<t6> 

text=0,g,<t7> 

text=0,h,<t8> 

text=0,8,<s1> 

text=0,7,<s2> 

text=0,6,<s3> 

text=0,5,<s4> 

text=0,4,<s5> 

text=0,3,<s6> 

text=0,2,<s7> 

text=0,1,<s8> 

font="chess cases",48,T,#000000 

[wpa]=p 

[wkn]=n 

[wbi]=b 

[wro]=r 

[wqu]=q 

[wki]=k 

[bpa]=o 

[bkn]=m 

[bbi]=v 

[bro]=t 

[bqu]=w 

[bki]=l 

text=0,[wpa],<ch?7> 

text=0,[wro],<cha8> 

text=0,[wkn],<chb8> 

text=0,[wbi],<chc8> 

text=0,[wqu],<chd8> 

text=0,[wki],<che8> 

text=0,[wbi],<chf8> 

text=0,[wkn],<chg8> 

text=0,[wro],<chh8> 

text=0,[bpa],<ch?2> 

text=0,[bro],<cha1> 

text=0,[bkn],<chb1> 

text=0,[bbi],<chc1> 

text=0,[bqu],<chd1> 

text=0,[bki],<che1> 

text=0,[bbi],<chf1> 

text=0,[bkn],<chg1> 

text=0,[bro],<chh1> 

save=0,chessboard2.png,0,0,18,18 

http://www.enpassant.dk/chess/fonteng.htm#CASES
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Trivia cards 

linkmulti=num 

link="q&a.txt" 

[all]="1-{(id)}" 

[card_id]=join("Card #",[id]) 

[background]=#D0D0D0 

[ink]=#000000 

[col_q]=#FFFF80 

[col_a]=#80FF80 

rectangle=[all],0,0,100%,100%,[background] 

font=arial,16,,[ink],[background] 

text=[all],[card_id],0,0,100%,20%,center,center 

roundrect=[all],5%,20%,90%,35%,#000000,[col_q],0.1 

font=arial,12,,[ink],[col_q] 

text=[all],[question],10%,22%,80%,31%,left,wordwrap 

roundrect=[all],5%,60%,90%,35%,#000000,[col_a],0.1 

font=arial,12,,[ink],[col_a] 

text=[all],[answer],10%,62%,80%,31%,left,wordwrap 

 

Data file (q&a.txt): 

 
id,num,question,answer 

1,1,"This is question #1","This is answer #1" 

2,1,"This is question #2","This is answer #2" 

3,1,"This is question #3","This is answer #3" 

4,1,"This is question #4","This is answer #4" 

5,1,"This is question #5","This is answer #5" 

6,1,"This is question #6","This is answer #6" 

7,1,"This is question #7","This is answer #7" 

8,1,"This is question #8","This is answer #8" 

9,1,"This is question #9","This is answer #9" 

10,1,"This is question #10","This is answer #10" 
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Hex racetrack 

canvassize=42,44 

[hexa]=framehex(0,0,42,44,1,C) 

[hexb]=framedisk(hexa1412,hexa0112) 

[hexc]=framedisk(hexa1412,hexa0912) 

[hexd]=framesub(hexb*,hexc*) 

polygon=0,<hexd*>,6,90,#000000,EMPTY,0.1 

save=0,"track.png",0,0,42,44 
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Tuckbox 

[img1]=none 

[img2]=none 

INPUTTEXT="wid","Width (cm)","6" 

INPUTTEXT="hei","Height (cm)","9" 

INPUTTEXT="dep","Depth (cm)","3" 

INPUTCHOICE="extra","Add extra lines","Yes","Yes|No" 

INPUTTEXT="img1","Box image (front)","",G 

INPUTTEXT="img2","Box image (rear)","",G 

 

[fla]=[dep]/2 

[ide]=[fla]/2 

[col1]=#000000 

[col2]=EMPTY 

[thi]=0.1 

 

'Uncomment the following line for A4 paper 

PAGE=21,29.7,PORTRAIT,HV 

 

'Uncomment the following line for Letter paper 

'PAGE=21.59,27.94,PORTRAIT,HV 

 

BORDER=NONE 

CARDSIZE=[fla]+[dep]+[hei]+[dep]+[fla],[dep]+[wid]+[dep]+[wid]+[fla] 

 

IF=[img1]=none 

ELSE 

  IMAGE=1,[img1],[fla]+[dep],[dep],[hei],[wid],90,P 

ENDIF 

 

IF=[img2]=none 

ELSE 

  IMAGE=1,[img2],[fla]+[dep],[dep]+[wid]+[dep],[hei],[wid],90,P 

ENDIF 

 

RECTANGLE=1,[fla]+[dep] ,0 ,[hei],[dep],[col1],[col2],[thi] 

RECTANGLE=1,[fla] ,[dep] ,[dep],[wid],[col1],[col2],[thi] 

RECTANGLE=1,[fla]+[dep] ,[dep] ,[hei],[wid],[col1],[col2],[thi] 

RECTANGLE=1,[fla]+[dep]+[hei],[dep] ,[dep],[wid],[col1],[col2],[thi] 

RECTANGLE=1,[fla]+[dep] ,[dep]+[wid] ,[hei],[dep],[col1],[col2],[thi] 

RECTANGLE=1,[fla]+[dep] ,[dep]+[wid]+[dep],[hei],[wid],[col1],[col2],[thi] 

 

LINE=1,[fla]+[dep] ,0 ,[fla]+[dep]-[fla],[ide] ,[col1],[thi] 

LINE=1,[fla]+[dep]-[fla],[ide] ,[fla]+[dep]-[fla],[dep]-[ide],[col1],[thi] 

LINE=1,[fla]+[dep]-[fla],[dep]-[ide],[fla]+[dep] ,[dep] ,[col1],[thi] 

 

LINE=1,[fla]+[dep]+[hei] ,0 ,[fla]+[dep]+[hei]+[fla],[ide] ,[col1],[thi] 

LINE=1,[fla]+[dep]+[hei]+[fla],[ide] ,[fla]+[dep]+[hei]+[fla],[dep]-[ide],[col1],[thi] 

LINE=1,[fla]+[dep]+[hei]+[fla],[dep]-[ide],[fla]+[dep]+[hei] ,[dep] ,[col1],[thi] 

 

LINE=1,[fla] ,[dep] ,[fla]-[fla],[dep]+[ide] ,[col1],[thi] 

LINE=1,[fla]-[fla],[dep]+[ide] ,[fla]-[fla],[dep]+[wid]-[ide],[col1],[thi] 

LINE=1,[fla]-[fla],[dep]+[wid]-[ide],[fla] ,[dep]+[wid] ,[col1],[thi] 

 

LINE=1,[fla]+[dep]+[hei]+[dep] ,[dep] ,[fla]+[dep]+[hei]+[dep]+[fla],[dep]+[ide] ,[col1],[thi] 

LINE=1,[fla]+[dep]+[hei]+[dep]+[fla],[dep]+[ide] ,[fla]+[dep]+[hei]+[dep]+[fla],[dep]+[wid]-[ide],[col1],[thi] 

LINE=1,[fla]+[dep]+[hei]+[dep]+[fla],[dep]+[wid]-[ide],[fla]+[dep]+[hei]+[dep] ,[dep]+[wid] ,[col1],[thi] 

 

LINE=1,[fla]+[dep] ,[dep]+[wid] ,[fla]+[dep]-[fla],[dep]+[wid]+[ide] ,[col1],[thi] 

LINE=1,[fla]+[dep]-[fla],[dep]+[wid]+[ide] ,[fla]+[dep]-[fla],[dep]+[wid]+[dep]-[ide],[col1],[thi] 

LINE=1,[fla]+[dep]-[fla],[dep]+[wid]+[dep]-[ide],[fla]+[dep] ,[dep]+[wid]+[dep] ,[col1],[thi] 

 

LINE=1,[fla]+[dep]+[hei] ,[dep]+[wid] ,[fla]+[dep]+[hei]+[fla],[dep]+[wid]+[ide],[col1],[thi] 

LINE=1,[fla]+[dep]+[hei]+[fla],[dep]+[wid]+[ide] ,[fla]+[dep]+[hei]+[fla],[dep]+[wid]+[dep]-[ide],[col1],[thi] 

LINE=1,[fla]+[dep]+[hei]+[fla],[dep]+[wid]+[dep]-[ide],[fla]+[dep]+[hei],[dep]+[wid]+[dep] ,[col1],[thi] 

 

LINE=1,[fla]+[dep] ,[dep]+[wid]+[dep]+[wid] ,[fla]+[dep]+[ide] ,[dep]+[wid]+[dep]+[wid]+[fla],[col1],[thi] 

LINE=1,[fla]+[dep]+[ide],[dep]+[wid]+[dep]+[wid]+[fla],[fla]+[dep]+[hei]-[ide], 

[dep]+[wid]+[dep]+[wid]+[fla],[col1],[thi] 

LINE=1,[fla]+[dep]+[hei]-[ide],[dep]+[wid]+[dep]+[wid]+[fla],[fla]+[dep]+[hei], 

[dep]+[wid]+[dep]+[wid],[col1],[thi] 

 

IF=[extra]=Yes 

  LINE=1,[fla]+[dep]+[hei]-[fla],[dep],[fla]+[dep]+[hei]-[fla],[dep]+[wid],[col1],[thi],DSS 

  { 

  BEZIER=1, 

  [fla]+[dep]+[hei],[dep]+[wid]+[dep]+[wid]/2-[ide], 

  [fla]+[dep]+[hei]-[ide],[dep]+[wid]+[dep]+[wid]/2-[ide], 

  [fla]+[dep]+[hei]-[ide],[dep]+[wid]+[dep]+[wid]/2+[ide], 

  [fla]+[dep]+[hei],[dep]+[wid]+[dep]+[wid]/2+[ide], 

  [col1],[thi]} 

ENDIF 
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Number wheel 

[size]=3.5 

[numbers]=45 

unit=inch 

cardsize=[size],[size] 

[num]=frameclock(0.1,0.1,[size]-0.2,[size]-0.2,0.3,0.3,[numbers]) 

[green]=framelist(num1..num15) 

[yellow]=framelist(num16..num30) 

[red]=framelist(num31..num45) 

font=arial,12,T,#000000 

ellipse=1,<green>,#00FF00 

ellipse=1,<yellow>,#FFFF00 

ellipse=1,<red>,#FF0000 

text=1,{°-1},<num*>,center,center,°*360/[numbers]-90 

ellipse=1,0,0,100%,100%,#000000,empty,0.01 

ellipse=1,48%,48%,4%,4%,#000000,empty,0.01 

save=1,"wheel_col.png",0,0,100%,100% 
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Tripples tiles 

cardsize=2,2 

 

'draw and save an image (an arrow) 

line=0,1  ,0.2,1  ,1  ,#000000,0.15 

line=0,1  ,0.2,1.2,0.4,#0000FF,0.15 

line=0,1.2,0.4,0.8,0.4,#0000FF,0.15 

line=0,0.8,0.4,1  ,0.2,#0000FF,0.15 

save=0,"arrow.bmp",0,0,2,2 

 

'create all the permutations (256) of two elements (0 and 1) taken eight times 

pr[perm]8=0|1 

'takes only the tiles with three '1' 

[tiles]=filter(+[perm],3) 

 

[all]=1-{(tiles)} 

'draws a dot 

ellipse=[all],0.95,0.05,0.1,0.1,#000000 

'draws the eight arrows 

if=[tiles:8,1]=1 

  image=[all],"arrow.bmp",0,0,2,2,0,T 

endif 

if=[tiles:7,1]=1 

  image=[all],"arrow.bmp",-0.5,-0.5,3,3,45,T 

endif 

if=[tiles:6,1]=1 

  image=[all],"arrow.bmp",0,0,2,2,90,T 

endif 

if=[tiles:5,1]=1 

  image=[all],"arrow.bmp",-0.5,-0.5,3,3,135,T 

endif 

if=[tiles:4,1]=1 

  image=[all],"arrow.bmp",0,0,2,2,180,T 

endif 

if=[tiles:3,1]=1 

  image=[all],"arrow.bmp",-0.5,-0.5,3,3,225,T 

endif 

if=[tiles:2,1]=1 

  image=[all],"arrow.bmp",0,0,2,2,270,T 

endif 

if=[tiles:1,1]=1 

  image=[all],"arrow.bmp",-0.5,-0.5,3,3,315,T 

endif 
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Path tiles 

oversample=2 

macro=tile,(range),(key),(char),(color),(width) 

  beziers=(range) 

  if=[(key):1,1]=(char) 

    beziers=(range),1,0,1,1,(color),(width) 

  endif 

  if=[(key):2,1]=(char)              

    beziers=(range),2,0,2,1,(color),(width) 

  endif 

  if=[(key):3,1]=(char) 

    beziers=(range),3,1,2,1,(color),(width) 

  endif 

  if=[(key):4,1]=(char) 

    beziers=(range),3,2,2,2,(color),(width) 

  endif 

  if=[(key):5,1]=(char) 

    beziers=(range),2,3,2,2,(color),(width) 

  endif 

  if=[(key):6,1]=(char) 

    beziers=(range),1,3,1,2,(color),(width) 

  endif 

  if=[(key):7,1]=(char) 

    beziers=(range),0,2,1,2,(color),(width) 

  endif 

  if=[(key):8,1]=(char) 

    beziers=(range),0,1,1,1,(color),(width) 

  endif 

end 

 

cardsize=3,3 

 

pxxs[list]8=a|a|b|b|c|c|d|d 

 

[range]=1-{(list)} 

 

tile=[range],[list],a,#000000,0.2 

tile=[range],[list],a,#FFFFFF,0.1 

tile=[range],[list],b,#000000,0.2 

tile=[range],[list],b,#FFFFFF,0.1 

tile=[range],[list],c,#000000,0.2 

tile=[range],[list],c,#FFFFFF,0.1 

tile=[range],[list],d,#000000,0.2 

tile=[range],[list],d,#FFFFFF,0.1 

 

rectangle=[range],0,0,3,3,#000000,EMPTY,0.1 
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Combinations 

ellipse=0,0,0,6,6,#FF0000#FFFFFF@360  

save=0,a.png,0,0,6,6 

ellipse=0,0,0,6,6,#00FF00#FFFFFF@360 

save=0,b.png,0,0,6,6 

ellipse=0,0,0,6,6,#0000FF#FFFFFF@360 

save=0,c.png,0,0,6,6 

ellipse=0,0,0,6,6,#FF00FF#FFFFFF@360 

save=0,d.png,0,0,6,6 

ellipse=0,0,0,6,6,#FFFF00#FFFFFF@360 

save=0,e.png,0,0,6,6 

ellipse=0,0,0,6,6,#00FFFF#FFFFFF@360 

save=0,f.png,0,0,6,6 

ellipse=0,0,0,6,6,#000000#FFFFFF@360 

save=0,g.png,0,0,6,6 

 

c[comb]3=a|b|c|d|e|f|g 

[all]=1-{(comb)} 

icon=[all],a,a.png 

icon=[all],b,b.png 

icon=[all],c,c.png 

icon=[all],d,d.png 

icon=[all],e,e.png 

icon=[all],f,f.png 

icon=[all],g,g.png 

icons=[all],[comb],1.5,1.5,3,6,3,3,0,P 
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Standard 52-deck of cards 

sequence=number 

A 

2 

3 

4 

5 

6 

7 

8 

9 

10 

endsequence 

 

sequence=face 

J 

Q 

K 

endsequence 

 

sequence= 

suit    |\169\ 

suit_fnt|Symbol 

suit_col|#FF0000 

 

suit    |\168\ 

suit_fnt|Symbol 

suit_col|#FF0000 

 

suit    |\167\ 

suit_fnt|Symbol 

suit_col|#000000 

 

suit    |\170\ 

suit_fnt|Symbol 

suit_col|#000000 

endsequence 

 

<corner1_a>=0,0,15%,10% 

<corner1_b>=0,10%,15%,10% 

<corner1>=0,0,15%,20% 

<corner2>=85%,0,15%,20% 

<corner3>=0,80%,15%,20% 

<corner4>=85%,80%,15%,20% 

<core>=15%,20%,70%,60% 

 

cards={(suit)*((number)+(face))+1} 

for=a,1,{(suit)} 

  for=b,1,{(number)} 

    font=Arial,24,,{suit_col?a} 

    text={b+((a)-1)*((number)+(face))},{number?b},<corner1_a> 

    font={suit_fnt?a},32,,{suit_col?a} 

    text={b+((a)-1)*((number)+(face))},{suit?a},<corner1_b> 

    copy={b+((a)-1)*((number)+(face))},<corner1>,<corner2>,0 

    copy={b+((a)-1)*((number)+(face))},<corner1>,<corner3>,180 

    copy={b+((a)-1)*((number)+(face))},<corner1>,<corner4>,180 

    text={b+((a)-1)*((number)+(face))},{{suit?a}Xb},<core>,center,charwrap 

  next 

next 

for=a,1,{(suit)} 

  for=b,1,{(face)} 

    font=Arial,24,,{suit_col?a} 

    text={b+((a)-1)*((number)+(face))+(number)},{face?b},<corner1_a> 

    font={suit_fnt?a},32,,{suit_col?a} 

    text={b+((a)-1)*((number)+(face))+(number)},{suit?a},<corner1_b> 

    copy={b+((a)-1)*((number)+(face))+(number)},<corner1>,<corner2>,0 

    copy={b+((a)-1)*((number)+(face))+(number)},<corner1>,<corner3>,180 

    copy={b+((a)-1)*((number)+(face))+(number)},<corner1>,<corner4>,180 

    font=Arial,128,,{suit_col?a} 

    text={b+((a)-1)*((number)+(face))+(number)},{face?b},<core> 

  next 

next 

 

rectangle={(suit)*((number)+(face))+1},0,0,100%,100%,#FF0000#0000FF@90 

font=arial,48,TN,#FFFFFF 

text={(suit)*((number)+(face))+1},"nanDECK",0,0,100%,100%,center,center,-56.31 


