
Nanopass Framework Users Guide1

Andrew W. Keep

January 22, 2015

1This documentation is largely extracted from Chapter 2 of my dissertation [?]. The user guide has been updated
to reflect recent updates the nanopass framework. Several example passes and languages have also been replaced
with a more recent, publicly available example compiler.

2

Chapter 1

Introduction

The nanopass framework is an embedded DSL for writing compilers. The framework provides two main
syntactic forms: define-language and define-pass. The define-language form specifies the grammar of
an intermediate language. The define-pass form specifies a pass that operates over an input language and
produces another, possibly different, output language.

1.1 A Little Nanopass Framework History

The idea of writing a compiler as a series of small, single-purpose passes grew out of a course on compiler
construction taught by Dan Friedman in 1999 at Indiana University. The following year, R. Kent Dybvig and
Oscar Waddell joined Friedman to refine the idea of the micropass compiler into a set of assignments that
could be used in a single semester to construct a compiler for a subset of Scheme. The micropass compiler
uses an S-expression pattern matcher developed by Friedman to simplify the matching and rebuilding of
language terms. Erik Hilsdale added a support for catamorphisms [?] that provides a more succinct syntax
for recurring into sub-terms of the language, which further simplified pass development.

Passes in a micropass compiler are easy to understand, as each pass is responsible for just one transformation.
The compiler is easier to debug when compared with a traditional compiler composed of a few, multi-
task passes. The output from each pass can be inspected to ensure that it meets grammatical and extra-
grammatical constraints. The output from each pass can also be tested in the host Scheme system to ensure
that the output of each pass evaluates to the value of the initial expression. This makes it easier to isolate
broken passes and identify bugs. The compiler is more flexible than a compiler composed of a few, multi-task
passes. New passes can easily be added between existing passes, which allows experimentation with new
optimizations. In an academic setting, writing compilers composed of many, single-task passes is useful for
assigning extra compiler passes to advanced students who take the course.

Micropass compilers are not without drawbacks. First, efficiency can be a problem due to pattern-matching
overhead and the need to rebuild large S-expressions. Second, passes often contain boilerplate code to recur
through otherwise unchanging language forms. For instance, in a pass to remove one-armed if expressions,
where only the if form changes, other forms in the language must be handled explicitly to locate embedded
if expressions. Third, the representation lacks formal structure. The grammar of each intermediate language
can be documented in comments, but the structure is not enforced.

The define-language and define-pass syntactic forms are used by the nanopass framework to address
these problems. A define-language form formally specifies the grammar of an intermediate language. A
define-pass form defines a pass that operates on one language and produces output in a possibly different
language. Formally specifying the grammar of an intermediate language and writing passes based on these
intermediate languages allows the nanopass framework to use a record-based representation of language terms

3

丁乐华�
微pass的缺点：�

丁乐华�
nanopass可以
消除这些缺点：�

丁乐华�

丁乐华�

丁乐华�

丁乐华�

4 CHAPTER 1. INTRODUCTION

that is more efficient than the S-expression representation, autogenerate boilerplate code to recur through
otherwise unchanging language forms, and generate checks to verify that the output of each pass adheres to
the output-language grammar.

The summer after Dybvig, Waddell, and Friedman taught their course, Jordan Johnson implemented an
initial prototype of the nanopass framework to support the construction of micropass compilers. In 2004,
Dipanwita Sarkar, Oscar Waddell, and R. Kent Dybvig developed a more complete prototype nanopass
framework for compiler construction and submitted a paper on it to ICFP [?]. The initial paper focused on
the nanopass framework as a tool capable of developing both academic and commercial quality compilers.
The paper was accepted but on the condition that it be refocused only on academic uses. The reviewers were
not convinced that the framework or nanopass construction method was capable of supporting a commercial
compiler. In retrospect, the reviewers were right. Sarkar implemented only a few of the passes from the
compiler used in the course on compilers. This implementation showed that the nanopass framework was
viable, but it did not support the claim that the nanopass framework could be used for a commercial compiler.
In fact, because the class compiler was started but never completed, it is unclear whether the prototype was
even up to the task of writing the full class compiler.

The nanopass framework described in this guide improves on the prototype developed by Sarkar. In this
framework, language definitions are no longer restricted to top-level definitions. Additionally, passes can
accept more than one argument and return zero or more values. Passes can be defined that operate on a subset
of a language instead of being restricted to starting from the entry-point nonterminal of the language. Passes
can also autogenerate nonterminal transformers not supplied by the compiler writer. The new nanopass
framework also defines two new syntactic forms, nanopass-case and with-output-language, that allow
language terms to be matched and constructed outside the context of a pass.

1.2 The Nanopass Framework Today

Although the nanopass framework defines just two primary syntactic forms, the macros that implement
them are complex, with approximately 4600 lines of code. In both the prototype and the new version of the
nanopass framework, the define-language macro parses a language definition and stores a representation
of it in the compile-time environment. This representation can be used to guide the definition of derived
languages and the construction of passes. Both also create a set of record types used to represent language
terms at run time, along with an unparser for translating the record representation to an S-expression
representation. Finally, both create meta-parsers to parse S-expression patterns and templates. An S-
expression to record-form parser can also be created from the language using define-parser.1

The define-pass form, in both versions of the framework, operates over an input-language term and pro-
duces an output-language term. The input-language meta-parser generates code to match the specified
pattern as records, as well as a set of bindings for the variables named in the pattern. The output-language
meta-parser generates record constructors and grammar-checking code. Within a pass definition, a trans-
former is used to define a translation from an input nonterminal to an output nonterminal. Each transformer
has a set of clauses that match an input-language term and construct an output-language term. The pattern
matching also supports catamorphisms [?] for recurring into language sub-terms.

1.3 Examples using the Nanopass Framework

There are two, publicly available examples of the nanopass framework. The first is in the tests sub-directory
of the nanopass framework git repository at github.com/akeep/nanopass-framework. This is part of a student
compiler, originally included with the prototype nanopass framework developed by Sarkar et al. and updated
to conform with the changes that have been made in the updated nanopass framework.

1In the prototype, this was part of the functionality of define-language, but in a commercial compiler we do not frequently
need an S-expression parser, so we no longer autogenerate one.

https://github.com/akeep/nanopass-framework/
丁乐华�

丁乐华�
遵守�

丁乐华�

丁乐华�

丁乐华�
事后来看�

丁乐华�

丁乐华�
切实可行的�

丁乐华�

丁乐华�
出类拔萃的�

丁乐华�

丁乐华�

丁乐华�
定语修饰transformer羅

1.4. OTHER USES OF THE NANOPASS FRAMEOWRK 5

The second example is available in the github.com/akeep/scheme-to-c repository. This compiler is better
documented and provides a complete compiler example targeting fairly low-level C from a simplified Scheme
dialect. It was developed to be presented at Clojure Conj 2013, just days before the Conj started, and
compiles a small subset of Scheme to C. It is similar to the included example, but has the advantage of
being a complete end-to-end compiler that can be run from a Scheme REPL. It uses gcc, targeting a 64-bit
platform as the back-end, but I hope can be modified to target other platforms without too much trouble,
or even moved off of C to target JavaScript, LLVM, or other back ends.

1.4 Other Uses of the Nanopass Frameowrk

The nanopass framework was used to replace the original Chez Scheme compiler [?] with a nanopass version
of the compiler. The nanopass version has officially been released as Chez Scheme version 9.0. Chez Scheme
is a closed-source commercial compiler.

The nanopass framework is also being used as part of the Harlan compiler. Harlan is a general purpose
language for developing programs for running on the GPU. Harlan uses an S-expression format that is
compiled into C++ using OpenCL to run computational kernels on the GPU. The source code for Harlan is
publicly available at github.com/eholk/harlan.

https://github.com/akeep/scheme-to-c/
https://clojure-conj.org
https://github.com/eholk/harlan
https://github.com/eholk/harlan

6 CHAPTER 1. INTRODUCTION

Chapter 2

Defining Languages and Passes

The nanopass framework builds on the prototype, originally developed by Sarkar et al. The examples in this
section are pulled from the Scheme to C compiler available at github.com/akeep/scheme-to-c.

2.1 Defining languages

The nanopass framework operates over a set of compiler-writer-defined languages. Languages defined in this
way are similar to context-free grammars, in that they are composed of a set of terminals, a set of nonterminal
symbols, a set of productions for each nonterminal, and a start symbol from the set of nonterminal symbols.
We refer to the start symbol as the entry nonterminal of the language. An intermediate language definition
for a simple variant of the Scheme programming language, post macro expansion, might look like:

(define-language Lsrc

(terminals

(symbol (x))

(primitive (pr))

(constant (c))

(datum (d)))

(Expr (e body)

pr

x

c

(quote d)

(if e0 e1)

(if e0 e1 e2)

(or e* ...)
(and e* ...)
(not e)

(begin e* ... e)

(lambda (x* ...) body* ... body)

(let ([x* e*] ...) body* ... body)

(letrec ([x* e*] ...) body* ... body)

(set! x e)

(e e* ...)))

The Lsrc language defines a subset of Scheme suitable for our example compiler. It is the output language
of a more general “parser” that parses S-expressions into Lsrc language forms. The Lsrc language consists
of a set of terminals (listed in the terminals form) and a single nonterminal Expr. The terminals of the

7

https://github.com/akeep/scheme-to-c
丁乐华�

丁乐华�
缺少�

丁乐华�

8 CHAPTER 2. DEFINING LANGUAGES AND PASSES

language are

• symbol (for variables),

• primitive (for the subset of Scheme primitives support by this language),

• constant (for the subset of Scheme constants, and

• datum (for the subset of Scheme datum supported by this language).

The compiler writer must supply a predicate corresponding to each terminal, lexically visible where the
language is defined. The nanopass framework derives the predicate name from the terminal name by adding
a ? to the terminal name. In this case, the nanopass framework expects symbol?, primitive?, constant?,
and datum? to be lexically visible where Lsrc is defined.

Each terminal clause lists one or more meta-variables, used to refer to the terminal in nonterminal pro-
ductions. Here, x refers to a symbol, pr refers to a primitive, c refers to a constant, and d refers to a
datum.

For our example compiler, the host Scheme system’s symbol? is used to determine when an item is a variable.

The example compiler also selects a subset of primitives from Scheme and represents these primitives as
symbols. A primitive? predicate like the following can be used to specify this terminal.1

(define primitive?

(lambda (x)

(memq x

’(cons make-vector box car cdr vector-ref vector-length unbox

+ - * / pair? null? boolean? vector? box? = < <= > >= eq?

vector-set! set-box!))))

Our example compiler also limits the constants that can be expressed to a subset of those allowed by Scheme.
The constant? predicate limits these to booleans (#t and #f), null (()), and appropriately sized integers
(between −260 and 260 − 1).

(define target-fixnum?

(lambda (x)

(and (and (integer? x) (exact? x))

(<= (- (expt 2 60)) x (- (expt 2 60) 1)))))

(define constant?

(lambda (x)

(or (target-fixnum? x) (boolean? x) (null? x))))

The example compiler limits the Scheme datum that can be represented to constants, pairs, vectors, and
boxes. The datum? predicate can be defined as follows:

(define datum?

(lambda (x)

(or (constant? x)

(and (box? x) (datum? (unbox x)))

(and (pair? x) (datum? (car x)) (datum? (cdr x)))

(and (vector? x)

(let loop ([i (vector-length x)])

(or (fx=? i 0)

1In the example compiler, the primitives are specified in separate association lists to capture the arity of each primitive
and the place in the compiler is handled as it goes through the compiler process. This complexity has been eliminated for the
dicussion here. Please reference the source code for a more complete discussion of primitive handling in the example compiler.

2.1. DEFINING LANGUAGES 9

(let ([i (fx- i 1)])

(and (datum? (vector-ref x i))

(loop i)))))))))

The Lsrc language also defines the nonterminal Expr. Nonterminals start with a name, followed by a list of
meta-variables and a set of grammar productions. In this case, the name is Expr, and two meta-variables,
e and body, are specified. Just like the meta-variables named in the terminals clause, nonterminal meta-
variables are used to represent the nonterminal in nonterminal productions. Each production follows one
of three forms. It is a single meta-variable, an S-expression that starts with a keyword, or an S-expression
that does not start with a keyword (referred to as an implicit production). The S-expression forms cannot
include keywords past the initial starting keyword. In Lsrc, the x, c, and pr productions are the single
meta-variable productions and indicate that a stand-alone symbol, constant, or primitive are valid Exprs.
The only implicit S-expression production is the (e e* . . .) production, and it indicates a call that takes
zero or more Exprs as arguments. (The * suffix on e is used by convention to indicate plurality and does not
have any semantic meaning: It is the . . . that indicates that the field can take zero or more Exprs.) The
rest of the productions are S-expression productions with keywords that correspond to the Scheme syntax
that they represent.

In addition to the star, *, suffix mentioned earlier in the call productions, meta-variable references can also
use a numeric suffix (as in the productions for if), a question mark (?), or a caret (^). The ? suffix is
intended for use with maybe meta-variables, and the ^ is used when expressing meta-variables with a more
mathematical syntax than the numeric suffixes provide. Suffixes can also be used in combination. References
to meta-variables in a production must be unique, and the suffixes allow the same root name to be used
more than once.

Language definitions can also include more than one nonterminal, as the following language illustrates:

(define-language L8

(terminals

(symbol (x a))

(constant (c))

(void+primitive (pr)))

(entry Expr)

(Expr (e body)

x

le

(quote c)

(if e0 e1 e2)

(begin e* ... e)

(set! x e)

(let ([x* e*] ...) abody)

(letrec ([x* le*] ...) body)

(primcall pr e* ...)
(e e* ...))

(AssignedBody (abody)

(assigned (a* ...) body) => body)

(LambdaExpr (le)

(lambda (x* ...) abody)))

This language has three nonterminals, Expr, AssignedBody, and LambdaExpr. When more than one nonter-
minal is specified, one must be selected as the entry point. In language L8, the Expr nonterminal is selected
as the entry nonterminal by the (entry Expr) clause. When the entry clause is not specified, the first
nonterminal listed is implicitly selected as the entry point.

The L8 language uses a single terminal meta-variable production, x, to indicate that a stand-alone symbol

丁乐华�

丁乐华�

丁乐华�

丁乐华�
除了�

丁乐华�

丁乐华�

丁乐华�
多个�

丁乐华�
这句话的意思是：
S表达式除了开头可以是
关键字，其他位置不能
是关键字�

丁乐华�

10 CHAPTER 2. DEFINING LANGUAGES AND PASSES

is a valid Expr. In addition, the L8 language uses a single nonterminal meta-variable production, le, to
indicate that any LambdaExpr production is also a valid Expr. The LambdaExpr is separated from Expr

because the letrec production is now limited to binding symbols to LambdaExprs.

The assigned production of the AssignedBody nonterminal utilizes a the => syntax to indicate a pretty
unparsing form. This allows the unparser that is automatically produced by define-language to generate
an S-expression that can be evaluated in the host Scheme system. In this case, the assigned from is not
a valid Scheme form, so we simply eliminated the assigned wrapper and list of assigned variables when
unparsing.2

In addition to the nanopass framework providing a syntax for specifying list structures in a language produc-
tion, it is also possible to indicate that a field of a language production might not contain a (useful) value.
The following language has an example of this:

(define-language Lopt

(terminals

(uvar (x))

(label (l))

(constant (c))

(primitive (pr)))

(Expr (e body)

x

(quote c)

(begin e* ... e)

(lambda (x* ...) body)

(let ([x* e*] ...) body)

(letrec ([x* le*] ...) body)

(pr e* ...)
(call (maybe l) (maybe e) e* ...))

(LambdaExpr (le)

(lambda (x* ...) body)))

The (maybe l) field indicates that either a label, l, or #f will be provided. Here, #f is a stand-in for bottom,
indicating that the value is not specified. The (maybe e) field indicates that either an Expr or #f will be
provided.

Instead of using (maybe l) to indicate a label that might be provided, a maybe-label terminal that serves
the same purpose could be added. It is also possible to eliminate the (maybe e) form, although it requires
the creation of a separate nonterminal that has both an e production and a production to represent ⊥, when
no Expr is available.

2.2 Extending languages

The first “pass” of the example compiler is a simple expander that produces Lsrc language forms from
S-expressions. The next pass takes the Lsrc language and removes the one-armed-if expressions, replacing
them with a two-armed-if that results in the void value being produced by the expression when the test
clause is false. code appropriate to construct these constants. The output grammar of this pass changes just
one production of the language, exchanging potentially complex quoted datum with quoted constants and
making explicit the code to build the constant pairs and vectors when the program begins execution.

The compiler writer could specify the new language by rewriting the Lsrc language and replacing the
appropriate terminal forms. Rewriting each language in its full form, however, can result in verbose source
code, particularly in a compiler like the class compiler, which has nearly 30 different intermediate languages.

2Unparsers can also produce the non-pretty from by passing both the language form to be unparsed and a #f to indicate
the pretty form should not be used.

丁乐华�

丁乐华�

丁乐华�

2.2. EXTENDING LANGUAGES 11

Instead, the nanopass framework supports a language extension form. The output language can be specified
as follows:

(define-language L1

(extends Lsrc)

(terminals

(- (primitive (pr)))

(+ (void+primitive (pr))))

(Expr (e body)

(- (if e0 e1))))

The L1 language removes the primitive terminal and replaces it with the void+primitive terminal. It also
removes the (if e0 e1) production. A language extension form is indicated by including the extends clause,
in this case (extends Lsrc), that indicates that this is an extension of the given base language. In a language
extension, the terminals form now contains subtraction clauses, in this case (- (primitive (pr))), and
addition clauses, in this case (+ (void+primitive (pr))). These addition and subtraction clauses can
contain one or more terminal specifiers. The nonterminal syntax is similarly modified, with the subtraction
clause, in this case (- (if e0 e1)), that indicates productions to be removed and an addition clause that
indicates productions to be added, in this case no productions are added.

The list of meta-variables indicated for the nonterminal form is also updated to use the set in the extension
language. It is important to include not only the meta-variables named in the language extension but also
those for terminal and nonterminal forms that will be maintained from the base language. Otherwise, these
meta-variables will be unbound in the extension language, leading to errors.

Nonterminals can be removed in an extended language by removing all of the productions of the nonterminal.
New nonterminals can be added in an extended language by adding the productions of the new nonterminal.
For instance, language L15 removes the x, (qoute c), and (label l) productions from the Expr nonterminal
and adds the SimpleExpr nonterminal.

(define-language L15

(extends L14)

(Expr (e body)

(- x

(quote c)

(label l)

(primcall pr e* ...)
(e e* ...))

(+ se

(primcall pr se* ...) => (pr se* ...)
(se se* ...)))

(SimpleExpr (se)

(+ x

(label l)

(quote c))))

2.2.1 The define-language form

The define-language syntax has two related forms. The first form fully specifies a new language. The
second form uses the extends clause to indicate that the language is an extension of an existing base
language.

Both forms of define-language start with the same basic syntax:

(define-language language-name clause ...)

丁乐华�

丁乐华�
也就是说Lsrc中使用到的
meta变量也要在L1中声
明一遍

丁乐华�

丁乐华�
这里怎么没看到移除
nonterminal的情况呢？�

12 CHAPTER 2. DEFINING LANGUAGES AND PASSES

where clause is an extension clause, an entry clause, a terminals clause, or a nonterminal clause.

Extension clause. The extension clause indicates that the new language is an extension of an existing lan-
guage. This clause slightly changes the syntax of the define-language form and is described in Section ??.

Entry clause. The entry clause specifies which nonterminal is the starting point for this language. This
information is used when generating passes to determine which nonterminal should be expected first by the
pass. This default can be overridden in a pass definition, as described in Section ??. The entry clause has
the following form:

(entry nonterminal-name)

where nonterminal-name corresponds to one of the nonterminals specified in this language. Only one entry
clause can be specified in a language definition.

Terminals clause. The terminals clause specifies one or more terminals used by the language. For instance,
in the Lsrc example language, the terminals clause specifies three terminal types: uvar, primitive, and
datum. The terminals clause has the following form:

(terminals terminal-clause ...)

where terminal-clause has one of the following forms:

(terminal-name (meta-var ...))
(=> (terminal-name (meta-var ...)) prettifier)
(terminal-name (meta-var ...)) => prettifier

Here,

• terminal-name is the name of the terminal, and a corresponding terminal-name? predicate function
exists to determine whether a Scheme object is of this type when checking the output of a pass,

• meta-var is the name of a meta-variable used for referring to this terminal type in language and pass
definitions, and

• prettifier is a procedure expression of one argument used when the language unparser is called in
“pretty” mode to produce a pretty, S-expression representation.

The final form is syntactic sugar for the form above it. When the prettifier is omitted, no processing is done
on the terminal when the unparser runs.

Nonterminal clause. A nonterminal clause specifies the valid productions in a language. Each nonterminal
clause has a name, a set of meta-variables, and a set of productions. A nonterminal clause has the following
form:

(nonterminal-name (meta-var ...)
production-clause
...)

where nonterminal-name is an identifier that names the nonterminal, meta-var is the name of a meta-variable
used when referring to this nonterminal in language and pass definitions, and production-clause has one of
the following forms:

terminal-meta-var
nonterminal-meta-var
production-s-expression
(keyword . production-s-expression)

2.2. EXTENDING LANGUAGES 13

Here,

• terminal-meta-var is a terminal meta-variable that is a stand-alone production for this nonterminal,

• nonterminal-meta-var is a nonterminal meta-variable that indicates that any form allowed by the
specified nonterminal is also allowed by this nonterminal,

• keyword is an identifier that must be matched exactly when parsing an S-expression representation,
language input pattern, or language output template, and

• production-s-expression is an S-expression that represents a pattern for production and has the following
form:

meta-variable
(maybe meta-variable)
(production-s-expression ellipsis)
(production-s-expression ellipsis production-s-expression production-s-expression)
(production-s-expression . production-s-expression)
()

Here,

• meta-variable is any terminal or nonterminal meta-variable extended with an arbitrary number of
digits, followed by an arbitrary combination of *, ?, or ^ characters; for example, if the meta-variable
is e, then e1, e*, e?, and e4*? are all valid meta-variable expressions;

• (maybe meta-variable) indicates that an element in the production is either of the type of the meta-
variable or bottom (represented by #f); and

• ellipsis is the literal . . . and indicates that a list of the production-s-expression that proceeds it is
expected.

Thus, a Scheme language form such as let can be represented as a language production as:

(let ([x* e*] ...) body* ... body)

where let is the keyword , x* is a meta-variable that indicates a list of variables, e* and body* are meta-
variables that each indicate a list of expressions, and body is a meta-variable that indicates a single expression.

Using the maybe form, something similar to the named-let form could be represented as follows:

(let (maybe x) ([x* e*] ...) body* ... body)

although this would be slightly different from the normal named-let form, in that the non-named form would
then need an explicit #f to indicate that no name was specified.

2.2.2 Extensions with the define-language form

A language defined as an extension of an existing language has a slightly modified syntax to indicate what
should be added to or removed from the base language to create the new language. A compiler writer
indicates that a language is an extension by using an extension clause.

Extension clause. The extension clause has the following form:

(extends language-name)

丁乐华�

14 CHAPTER 2. DEFINING LANGUAGES AND PASSES

where language-name is the name of an already defined language. Only one extension clause can be specified
in a language definition.

Entry clause. The entry clause does not change syntactically in an extended language. It can, however,
name a nonterminal from the base language that is retained in the extended language.

Terminals clause. When a language derives from a base language, the terminals clause has the following
form:

(terminals extended-terminal-clause ...)

where extended-terminal-clause has one of the following forms:

(+ terminal-clause ...)
(- terminal-clause ...)

where the terminal-clause uses the syntax for terminals specified in the non-extended terminals form. The
+ form indicates terminals that should be added to the new language. The - form indicates terminals that
should be removed from the list in the old language when producing the new language. Terminals not
mentioned in a terminals clause will be copied unchanged into the new language. Note that adding and
removing meta-vars from a terminal currently requires removing the terminal type and re-adding it. This
can be done in the same step with a terminals clause, similar to the following:

(terminals

(- (variable (x)))

(+ (variable (x y))))

Nonterminal clause. When a language extends from a base language, a nonterminal clause has the
following form:

(nonterminal-name (meta-var ...)
extended-production-clause
...)

where extended-production-clause has one of the following forms:

(+ production-clause ...)
(- production-clause ...)

The + form indicates nonterminal productions that should be added to the nonterminal in the new language.
The - form indicates nonterminal productions that should not be copied from the list of productions for
this nonterminal in the base language when producing the new language. Productions not mentioned in a
nonterminal clause will be copied unchanged into the nonterminal in the new language. If a nonterminal
has all of its productions removed in a new language, the nonterminal will be dropped in the new language.
Conversely, new nonterminals can be added by naming the new nonterminal and using the + form to specify
the productions of the new nonterminal.

2.2.3 Products of define-language

The define-language form produces the following user-visible bindings:

• a language definition, bound to the specified language-name;

• an unparser (named unparse-language-name) that can be used to unparse a record-based representa-
tion back into an S-expression representation; and

丁乐华�

丁乐华�

2.2. EXTENDING LANGUAGES 15

• a set of predicates that can be used to identify a term of the language or a term from a specified
nonterminal in the language.

It also produces the following internal bindings:

• a meta-parser that can be used by the define-pass macro to parse the patterns and templates used
in passes and

• a set of record definitions that will be used to represent the language forms.

The Lsrc language, for example, will bind the identifier Lsrc to the language definition, produce an unparser
named unparse-Lsrc, and create two predicates, Lsrc? and Lsrc-Expr?. The language definition is used
when the language-name is specified as the base of a new language definition and in the definition of a pass.

The define-parser form can also be used to create a simple parser for parsing S-expressions into language
forms as follows:

(define-parser parser-name language-name)

The parser does not support backtracking; thus, grammars must be specified, either by specifying a keyword
or by having different length S-expressions so that the productions are unique.

For instance, the following language definition cannot be parsed because all four of the set! forms have the
same keyword and are S-expressions of the same length:

(define-language Lunparsable

(terminals

(variable (x))

(binop (binop))

(integer-32 (int32))

(integer-64 (int64)))

(Program (prog)

(begin stmt* ... stmt))

(Statement (stmt)

(set! x0 int64)

(set! x0 x1)

(set! x0 (binop x1 int32))

(set! x0 (binop x1 x2))))

Instead, the Statement nonterminal must be broken into multiple nonterminals, as in the following language:

(define-language Lparsable

(terminals

(variable (x))

(binop (binop))

(integer-32 (int32))

(integer-64 (int64)))

(Program (prog)

(begin stmt* ... stmt))

(Statement (stmt)

(set! x rhs))

(Rhs (rhs)

x

int64

(binop x arg))

(Argument (arg)

x

int32))

丁乐华�

16 CHAPTER 2. DEFINING LANGUAGES AND PASSES

2.3 Defining passes

Passes are used to specify transformations over languages defined by using define-language. Before going
into the formal details of defining passes, we need to take a look at a simple pass to convert an input program
from the Lsrc intermediate language to the L1 intermediate language. This pass removes the one-armed-if
by making the result of the if expression explicit when the predicate is false.

We define a pass called remove-one-armed-if to accomplish this task, without using any of the catamor-
phism [?] or autogeneration features of the nanopass framework. Below, we can see how this feature helps
eliminate boilerplate code.

(define-pass remove-one-armed-if : Lsrc (e) -> L1 ()

(Expr : Expr (e) -> Expr ()

[(if ,e0 ,e1) ‘(if ,(Expr e0) ,(Expr e1) (void))]

[,pr pr]

[,x x]

[,c c]

[(quote ,d) ‘(quote ,d)]

[(if ,e0 ,e1 ,e2) ‘(if ,(Expr e0) ,(Expr e1) ,(Expr e2))]

[(or ,e* ...) ‘(or ,(map Expr e*) ...)]
[(and ,e* ...) ‘(and ,(map Expr e*) ...)]
[(not ,e) ‘(not ,(Expr e))]

[(begin ,e* ... ,e) ‘(begin ,(map Expr e*) ... ,(Expr e))]

[(lambda (,x* ...) ,body* ... ,body)

‘(lambda (,x* ...) ,(map Expr body*) ... ,(Expr body))]

[(let ([,x* ,e*] ...) ,body* ... ,body)

‘(let ([,x* ,(map Expr e*)] ...)
,(map Expr body*) ... ,(Expr body))]

[(letrec ([,x* ,e*] ...) ,body* ... body)

‘(letrec ([,x* ,(map Expr e*)] ...)
,(map Expr body*) ... ,(Expr body))]

[(set! ,x ,e) ‘(set! ,x ,(Expr e))]

[(,e ,e* ...) ‘(,(Expr e) ,(map Expr e*) ...)])
(Expr e))

The pass definition starts with a name (in this case, remove-one-armed-if) and a signature. The signature
starts with an input-language specifier (e.g. Lsrc), along with a list of formals. Here, there is just one
formal, e, for the input-language term. The second part of the signature has an output-language specifier
(in this case, L1), as well as a list of extra return values (in this case, empty).

Following the name and signature, is an optional definitions clause, not used in this pass. The definitions

clause can contain any Scheme expression valid in a definition context.

Next, a transformer from the input nonterminal Expr to the output nonterminal Expr is defined. The
transformer is named Expr and has a signature similar to that of the pass, with an input-language nonterminal
and list of formals followed by the output-language nonterminal and list of extra-return-value expressions.

The transformer has a clause that processes each production of the Expr nonterminal. Each clause consists
of an input pattern, an optional guard clause, and one or more expressions that specify zero or more return
values based on the signature. The input pattern is derived from the S-expression productions specified in
the input language. Each variable in the pattern is denoted by unquote (,). For instance, the clause for the
set! production matches the pattern (set! ,x ,e), binds x to the symbol specified by the set! and e to
the Expr specified by the set!.

The variable names used in pattern bindings are based on the meta-variables listed in the language definition.
This allows the pattern to be further restricted. For instance, if we wanted to match only set! forms that
had a variable reference as the RHS, we could specify our pattern as (set! ,x0 ,x1), which would be
equivalent of using our original pattern with the guard clause: (guard (symbol? e)).

2.3. DEFINING PASSES 17

The output-language expression is constructed using the ‘(set! ,x ,(Expr e)) quasiquoted template.
Here, quasiquote, (‘), is rebound to a form that can construct language forms based on the template, and
unquote (,), is used to escape back into Scheme. The ,(Expr e) thus puts the result of the recursive call of
Expr into the output-language (set! x e) form.

Following the Expr transformer is the body of the pass, which calls Expr to transform the Lsrc Expr term
into an L1 Expr term and wraps the result in a let expression if any structured quoted datum are found in
the program that is being compiled.

In place of the explicit recursive calls to Expr, the compiler writer can use the catamorphism syntax to
indicate the recurrence, as in the following version of the pass.

(define-pass remove-one-armed-if : Lsrc (e) -> L1 ()

(Expr : Expr (e) -> Expr ()

[(if ,[e0] ,[e1]) ‘(if ,e0 ,e1 (void))]

[,pr pr]

[,x x]

[,c c]

[(quote ,d) ‘(quote ,d)]

[(if ,[e0] ,[e1] ,[e2]) ‘(if ,e0 ,e1 ,e2)]

[(or ,[e*] ...) ‘(or ,e* ...)]
[(and ,[e*] ...) ‘(and ,e* ...)]
[(not ,[e]) ‘(not ,e)]

[(begin ,[e*] ... ,[e]) ‘(begin ,e* ... ,e)]

[(lambda (,x* ...) ,[body*] ... ,[body])

‘(lambda (,x* ...) ,body* ... ,body)]

[(let ([,x* ,[e*]] ...) ,[body*] ... ,[body])

‘(let ([,x* ,e*] ...)
,body* ... ,body)]

[(letrec ([,x* ,[e*]] ...) ,[body*] ... ,[body])

‘(letrec ([,x* ,e*] ...)
,body* ... ,body)]

[(set! ,x ,[e]) ‘(set! ,x ,e)]

[(,[e] ,[e*] ...) ‘(,e ,e* ...)])
(Expr e))

Here, the square brackets that wrap the unquoted variable expression in a pattern indicate that a catamor-
phism should be applied. For instance, in the set! clause, the ,e from the previous pass becomes ,[e].
When the catamorphism is included on an element that is followed by an ellipsis, map is used to process the
elements of the list and to construct the output list.

Using a catamorphism changes, slightly, the meaning of the meta-variables used in the pattern matcher.
Instead of indicatinng a input language restriction that must be met, it indicates an output type that is
expected. In the set! clause example, we use e for both, because our input language and output language
both use e to refer to their Expr nonterminal. The nanopass framwork uses the input type and the output
type, along with any additional input values and extra expected return values to determine which transformer
should be called. In some cases, specifically where a single input nonterminal form is transformed into an
equivalent output nonterminal form, these transformers can be autogenerated by the framework.

Using catamorphisms helps to make the pass more succinct, but there is still boilerplate code in the pass that
the framework can fill in for the compiler writer. Several clauses simply match the input-language production
and generate a matching output-language production (modulo the catamorphisms for nested Expr forms).
Because the input and output languages are defined, the define-pass macro can automatically generate
these clauses. Thus, the same functionality can be expressed as follows:

(define-pass remove-one-armed-if : Lsrc (e) -> L1 ()

(Expr : Expr (e) -> Expr ()

[(if ,[e0] ,[e1]) ‘(if ,e0 ,e1 (void))]))

丁乐华�

18 CHAPTER 2. DEFINING LANGUAGES AND PASSES

In this version of the pass, only the one-armed-if form is explicitly processed. The define-pass form
automatically generates the other clauses. Although all three versions of this pass perform the same task,
the final form is the closest to the initial intention of replacing just the one-armed-if form with a two-armed-if.

In addition to define-pass autogenerating the clauses of a transformer, define-pass can also autogenerate
the transformers for nonterminals that must be traversed but are otherwise unchanged in a pass. For instance,
one of the passes in the class compiler removes complex expressions from the right-hand side of the set!

form. At this point in the compiler, the language has several nonterminals:

(define-language L18

(entry Program)

(terminals

(integer-64 (i))

(effect+internal-primitive (epr))

(non-alloc-value-primitive (vpr))

(symbol (x l))

(predicate-primitive (ppr))

(constant (c)))

(Program (prog)

(labels ([l* le*] ...) l))

(SimpleExpr (se)

x

(label l)

(quote c))

(Value (v body)

(alloc i se)

se

(if p0 v1 v2)

(begin e* ... v)

(primcall vpr se* ...)
(se se* ...))

(Effect (e)

(set! x v)

(nop)

(if p0 e1 e2)

(begin e* ... e)

(primcall epr se* ...)
(se se* ...))

(Predicate (p)

(true)

(false)

(if p0 p1 p2)

(begin e* ... p)

(primcall ppr se* ...))
(LocalsBody (lbody)

(locals (x* ...) body))

(LambdaExpr (le)

(lambda (x* ...) lbody)))

The pass, however, is only interested in the set! form and the Value form in the right-hand-side position
of the set! form. Relying on the autogeneration of transformers, this pass can be written as:

(define-pass flatten-set! : L18 (e) -> L19 ()

(SimpleExpr : SimpleExpr (se) -> SimpleExpr ())

(Effect : Effect (e) -> Effect ()

[(set! ,x ,v) (flatten v x)])

(flatten : Value (v x) -> Effect ()

[,se ‘(set! ,x ,(SimpleExpr se))]

2.3. DEFINING PASSES 19

[(primcall ,vpr ,[se*] ...) ‘(set! ,x (primcall ,vpr ,se* ...))]
[(alloc ,i ,[se]) ‘(set! ,x (alloc ,i ,se))]

[(,[se] ,[se*] ...) ‘(set! ,x (,se ,se* ...))]))

Here, the Effect transformer has just one clause for matching the set! form. The flatten transformer
is called to produce the final Effect form. The flatten transformer, in turn, pushes the set! form into
the if and begin forms and processes the contents of these forms, which produces a final Effect form.
Note that the if and begin forms do not need to be provided by the compiler writer. This is because
the input and output language provide enough structure that the nanopass framework can automatically
generate the appropriate clauses. In the case of begin it will push the set! form into the final, value
producing, expression of the begin form. In the case of the if it will push the set! form into both the
consquent and alternative of the if form, setting the variable at the final, value producing expression on both
possible execution paths. The define-pass macro autogenerates transformers for Program, LambdaExpr,
LocalsBody, Value, and Predicate that recur through the input-language forms and produce the output-
language forms. The SimpleExpr transformer only needs to be written to give a name to the transformer so
that it can be called by flatten.

It is sometimes necessary to pass more information than just the language term to a transformer. The
transformer syntax allows extra formals to be named to support passing this information. For example, in
the pass from the scheme to C compiler that converts the closures form into explicit calls to procedure
primitives, the closure pointer, cp, and the list of free variables, free*, are passed to the Expr transformer.

(define-pass expose-closure-prims : L12 (e) -> L13 ()

(Expr : Expr (e [cp #f] [free* ’()]) -> Expr ()

(definitions

(define handle-closure-ref

(lambda (x cp free*)

(let loop ([free* free*] [i 0])

(cond

[(null? free*) x]

[(eq? x (car free*)) ‘(primcall closure-ref ,cp (quote ,i))]

[else (loop (cdr free*) (fx+ i 1))]))))

(define build-closure-set*

(lambda (x* l* f** cp free*)

(fold-left

(lambda (e* x l f*)

(let loop ([f* f*] [i 0] [e* e*])

(if (null? f*)

(cons ‘(primcall closure-code-set! ,x (label ,l)) e*)

(loop (cdr f*) (fx+ i 1)

(cons ‘(primcall closure-data-set! ,x (quote ,i)

,(handle-closure-ref (car f*) cp free*))

e*)))))

’()

x* l* f**))))

[(closures ([,x* ,l* ,f** ...] ...)
(labels ([,l2* ,[le*]] ...) ,[body]))

(let ([size* (map length f**)])

‘(let ([,x* (primcall make-closure (quote ,size*))] ...)
(labels ([,l2* ,le*] ...)
(begin

,(build-closure-set* x* l* f** cp free*) ...
,body))))]

[,x (handle-closure-ref x cp free*)]

[((label ,l) ,[e*] ...) ‘((label ,l) ,e* ...)]
[(,[e] ,[e*] ...) ‘((primcall closure-code ,e) ,e* ...)])

(LabelsBody : LabelsBody (lbody) -> Expr ())

丁乐华�

20 CHAPTER 2. DEFINING LANGUAGES AND PASSES

(LambdaExpr : LambdaExpr (le) -> LambdaExpr ()

[(lambda (,x ,x* ...) (free (,f* ...) ,[body x f* -> body]))

‘(lambda (,x ,x* ...) ,body)]))

The catamorphism and clause autogeneration facilities are also aware of the extra formals expected by trans-
formers. In a catamorphism, this means that extra arguments need not be specified in the catamorphism,
if the formals are available in the transformer. For instance, in the Expr transformer, the catamorphism
specifies only the binding of the output Expr form, and define-pass matches the name of the formal to the
transformer with the expected argument. In the LambdaExpr transformer, the extra arguments need to be
specified, both because they are not available as a formal of the transformer and because the values change
at the LambdaExpr boundary. Autogenerated clauses in Expr also call the Expr transformer with the extra
arguments from the formals.

The expose-closure-prims pass also specifies default values for the extra arguments passed to the Expr

transformer. It defaults the cp variable to #f and the free* variable to the empty list. The default values
will only be used in calls to the Expr transformer when the no other value is available. In this case, this
happen only when the Expr transformer is first called in the body of the pass. This is consistent with the
body of the program, which cannot contain any free variables and hence does not need a closure pointer.
Once we begin processing within the body of a lambda we then have a closure pointer, with the list of free
variables, if any.

Sometimes it is also necessary for a pass to return more than one value. The nanopass framework relies
upon Scheme’s built-in functionality for dealing with returning of multiple return values. To inform the
nanopass framework that a given transformer is returning more than one value, we use the signature to tell
the framework both how many values we are expecting to return, and what the default values should be
when a clause is autogenerated. For instance, the uncover-free pass returns two values, the language form
and the list of free variables.

(define-pass uncover-free : L10 (e) -> L11 ()

(Expr : Expr (e) -> Expr (free*)

[(quote ,c) (values ‘(quote ,c) ’())]

[,x (values x (list x))]

[(let ([,x* ,[e* free**]] ...) ,[e free*])

(values ‘(let ([,x* ,e*] ...) ,e)

(apply union (difference free* x*) free**))]

[(letrec ([,x* ,[le* free**]] ...) ,[body free*])

(values ‘(letrec ([,x* ,le*] ...) ,body)

(difference (apply union free* free**) x*))]

[(if ,[e0 free0*] ,[e1 free1*] ,[e2 free2*])

(values ‘(if ,e0 ,e1 ,e2) (union free0* free1* free2*))]

[(begin ,[e* free**] ... ,[e free*])

(values ‘(begin ,e* ... ,e) (apply union free* free**))]

[(primcall ,pr ,[e* free**]...)
(values ‘(primcall ,pr ,e* ...) (apply union free**))]

[(,[e free*] ,[e* free**] ...)
(values ‘(,e ,e* ...) (apply union free* free**))])

(LambdaExpr : LambdaExpr (le) -> LambdaExpr (free*)

[(lambda (,x* ...) ,[body free*])

(let ([free* (difference free* x*)])

(values ‘(lambda (,x* ...) (free (,free* ...) ,body)) free*))])

(let-values ([(e free*) (Expr e)])

(unless (null? free*) (error who "found unbound variables" free*))

e))

Transformers can also be written that handle terminals instead of nonterminals. Because terminals have no
structure, the body of such transformers is simply a Scheme expression. The Scheme to C compiler does not
make use of this feature, but we could imagine a pass where references to variables are replaced with already

2.3. DEFINING PASSES 21

specified locations, such as the following pass:

(define-pass replace-variable-refereces : L23 (x) -> L24 ()

(uvar-reg-fv : symbol (x env) -> location ()

(cond [(and (uvar? x) (assq x env)) => cdr] [else x]))

(SimpleExpr : SimpleExpr (x env) -> Triv ())

(Rhs : Rhs (x env) -> Rhs ())

(Pred : Pred (x env) -> Pred ())

(Effect : Effect (x env) -> Effect ())

(Value : Value (x env) -> Value ())

(LocalsBody : LocalsBody (x) -> Value ()

[(finished ([,x* ,loc*] ...) ,vbody) (Value vbody (map cons x* loc*))]))

The two interesting parts of this pass are the LocalsBody transformer that creates the environment that maps
variables to locations and the uvar-reg-fv transformer that replaces variables with the appropriate location.
In this pass, transformers cannot be autogenerated because extra arguments are needed, and the nanopass
framework only autogenerates transformers without extra arguments or return values. The autogeneration is
limited to help reign in some of the unpredictable behavior that can result from autogenerated transformers.

Passes can also be written that do not take a language form but that produce a language form. The initial
parser for the Scheme to C compiler is a good example of this. It expects an S-expression that conforms to
an input grammar for the subset of Scheme supported by the compiler.

(define-pass parse-and-rename : * (e) -> Lsrc ()

(definitions

(define process-body

(lambda (who env body* f)

(when (null? body*) (error who "invalid empty body"))

(let loop ([body (car body*)] [body* (cdr body*)] [rbody* ’()])

(if (null? body*)

(f (reverse rbody*) (Expr body env))

(loop (car body*) (cdr body*)

(cons (Expr body env) rbody*))))))

(define vars-unique?

(lambda (fmls)

(let loop ([fmls fmls])

(or (null? fmls)

(and (not (memq (car fmls) (cdr fmls)))

(loop (cdr fmls)))))))

(define unique-vars

(lambda (env fmls f)

(unless (vars-unique? fmls)

(error ’unique-vars "invalid formals" fmls))

(let loop ([fmls fmls] [env env] [rufmls ’()])

(if (null? fmls)

(f env (reverse rufmls))

(let* ([fml (car fmls)] [ufml (unique-var fml)])

(loop (cdr fmls) (cons (cons fml ufml) env)

(cons ufml rufmls)))))))

(define process-bindings

(lambda (rec? env bindings f)

(let loop ([bindings bindings] [rfml* ’()] [re* ’()])

(if (null? bindings)

(unique-vars env rfml*

(lambda (new-env rufml*)

(let ([env (if rec? new-env env)])

(let loop ([rufml* rufml*]

[re* re*]

22 CHAPTER 2. DEFINING LANGUAGES AND PASSES

[ufml* ’()]

[e* ’()])

(if (null? rufml*)

(f new-env ufml* e*)

(loop (cdr rufml*) (cdr re*)

(cons (car rufml*) ufml*)

(cons (Expr (car re*) env) e*)))))))

(let ([binding (car bindings)])

(loop (cdr bindings) (cons (car binding) rfml*)

(cons (cadr binding) re*)))))))

(define Expr*

(lambda (e* env)

(map (lambda (e) (Expr e env)) e*)))

(with-output-language (Lsrc Expr)

(define build-primitive

(lambda (as)

(let ([name (car as)] [argc (cdr as)])

(cons name

(if (< argc 0)

(error who

"primitives with arbitrary counts are not currently supported"

name)

(lambda (env . e*)

(if (= (length e*) argc)

‘(,name ,(Expr* e* env) ...)
(error name "invalid argument count"

(cons name e*)))))))))

(define initial-env

(cons*

(cons ’quote (lambda (env d)

(unless (datum? d)

(error ’quote "invalid datum" d))

‘(quote ,d)))

(cons ’if (case-lambda

[(env e0 e1) ‘(if ,(Expr e0 env) ,(Expr e1 env))]

[(env e0 e1 e2)

‘(if ,(Expr e0 env) ,(Expr e1 env) ,(Expr e2 env))]

[x (error ’if (if (< (length x) 3)

"too few arguments"

"too many arguments")

x)]))

(cons ’or (lambda (env . e*) ‘(or ,(Expr* e* env) ...)))
(cons ’and (lambda (env . e*) ‘(and ,(Expr* e* env) ...)))
(cons ’not (lambda (env e) ‘(not ,(Expr e env))))

(cons ’begin (lambda (env . e*)

(process-body env e*

(lambda (e* e)

‘(begin ,e* ... ,e)))))

(cons ’lambda (lambda (env fmls . body*)

(unique-vars env fmls

(lambda (env fmls)

(process-body ’lambda env body*

(lambda (body* body)

‘(lambda (,fmls ...)
,body* ... ,body)))))))

(cons ’let (lambda (env bindings . body*)

(process-bindings #f env bindings

(lambda (env x* e*)

2.3. DEFINING PASSES 23

(process-body ’let env body*

(lambda (body* body)

‘(let ([,x* ,e*] ...) ,body* ... ,body)))))))

(cons ’letrec (lambda (env bindings . body*)

(process-bindings #t env bindings

(lambda (env x* e*)

(process-body ’letrec env body*

(lambda (body* body)

‘(letrec ([,x* ,e*] ...)
,body* ... ,body)))))))

(cons ’set! (lambda (env x e)

(cond

[(assq x env) =>

(lambda (as)

(let ([v (cdr as)])

(if (symbol? v)

‘(set! ,v ,(Expr e env))

(error ’set! "invalid syntax"

(list ’set! x e)))))]

[else (error ’set! "set to unbound variable"

(list ’set! x e))])))

(map build-primitive user-prims)))

;;; App - helper for handling applications.
(define App

(lambda (e env)

(let ([e (car e)] [e* (cdr e)])

‘(,(Expr e env) ,(Expr* e* env) ...))))))
(Expr : * (e env) -> Expr ()

(cond

[(pair? e)

(cond

[(assq (car e) env) =>

(lambda (as)

(let ([v (cdr as)])

(if (procedure? v)

(apply v env (cdr e))

(App e env))))]

[else (App e env)])]

[(symbol? e)

(cond

[(assq e env) =>

(lambda (as)

(let ([v (cdr as)])

(cond

[(symbol? v) v]

[(primitive? e) e]

[else (error who "invalid syntax" e)])))]

[else (error who "unbound variable" e)])]

[(constant? e) e]

[else (error who "invalid expression" e)]))

(Expr e initial-env))

The parse-and-rename pass is structured similarly to a simple expander with keywords and primitives.3 It
also performs syntax checking to ensure that the input grammar conforms to the expected input grammar.
Finally, it produces an Lsrc language term that represents the Scheme program to be compiled.

3It could easily be extended to handle simple macros, in this case, just the fixed and macro, or macro, and not macro would
be available.

24 CHAPTER 2. DEFINING LANGUAGES AND PASSES

In the pass syntax, the * in place of the input-language name indicates that no input-language term should
be expected. The Expr and Application transformers do not have pattern matching clauses, as the input
could be of any form. The quasiquote is, however, rebound because an output language is specified.

It can also be useful to create passes without an output language. The final pass of the Scheme to C compiler
is the code generator that emits C code.

(define-pass generate-c : L22 (e) -> * ()

(definitions

(define string-join

(lambda (str* jstr)

(cond

[(null? str*) ""]

[(null? (cdr str*)) (car str*)]

[else (string-append (car str*) jstr (string-join (cdr str*) jstr))])))

(define symbol->c-id

(lambda (sym)

(let ([ls (string->list (symbol->string sym))])

(if (null? ls)

" "

(let ([fst (car ls)])

(list->string

(cons

(if (char-alphabetic? fst) fst #\)

(map (lambda (c)

(if (or (char-alphabetic? c)

(char-numeric? c))

c

#\))

(cdr ls)))))))))

(define format-function-header

(lambda (l x*)

(format "ptr ˜a(˜a)" l

(string-join

(map

(lambda (x)

(format "ptr ˜a" (symbol->c-id x)))

x*)

", "))))

(define format-label-call

(lambda (l se*)

(format " ˜a(˜a)" (symbol->c-id l)

(string-join

(map (lambda (se)

(format "(ptr)˜a" (format-simple-expr se)))

se*)

", "))))

(define format-general-call

(lambda (se se*)

(format "((ptr (*)(˜a))˜a)(˜a)"
(string-join (make-list (length se*) "ptr") ", ")

(format-simple-expr se)

(string-join

(map (lambda (se)

(format "(ptr)˜a" (format-simple-expr se)))

se*)

", "))))

(define format-binop

2.3. DEFINING PASSES 25

(lambda (op se0 se1)

(format "((long)˜a ˜a (long)˜a)"
(format-simple-expr se0)

op

(format-simple-expr se1))))

(define format-set!

(lambda (x rhs)

(format "˜a = (ptr)˜a" (symbol->c-id x) (format-rhs rhs)))))

(emit-function-decl : LambdaExpr (le l) -> * ()

[(lambda (,x* ...) ,lbody)

(printf "˜a;˜%" (format-function-header l x*))])

(emit-function-def : LambdaExpr (le l) -> * ()

[(lambda (,x* ...) ,lbody)

(printf "˜a {˜%" (format-function-header l x*))

(emit-function-body lbody)

(printf "}˜%˜%")])
(emit-function-body : LocalsBody (lbody) -> * ()

[(locals (,x* ...) ,body)

(for-each (lambda (x) (printf " ptr ˜a;˜%" (symbol->c-id x))) x*)

(emit-value body x*)])

(emit-value : Value (v locals*) -> * ()

[(if ,p0 ,v1 ,v2)

(printf " if (˜a) {˜%" (format-predicate p0))

(emit-value v1 locals*)

(printf " } else {˜%")
(emit-value v2 locals*)

(printf " }˜%")]
[(begin ,e* ... ,v)

(for-each emit-effect e*)

(emit-value v locals*)]

[,rhs (printf " return (ptr)˜a;\n" (format-rhs rhs))])

(format-predicate : Predicate (p) -> * (str)

[(if ,p0 ,p1 ,p2)

(format "((˜a) ? (˜a) : (˜a))"
(format-predicate p0)

(format-predicate p1)

(format-predicate p2))]

[(<= ,se0 ,se1) (format-binop "<=" se0 se1)]

[(< ,se0 ,se1) (format-binop "<" se0 se1)]

[(= ,se0 ,se1) (format-binop "==" se0 se1)]

[(true) "1"]

[(false) "0"]

[(begin ,e* ... ,p)

(string-join

(fold-right (lambda (e s*) (cons (format-effect e) s*))

(list (format-predicate p)) e*)

", ")])

(format-effect : Effect (e) -> * (str)

[(if ,p0 ,e1 ,e2)

(format "((˜a) ? (˜a) : (˜a))"
(format-predicate p0)

(format-effect e1)

(format-effect e2))]

[((label ,l) ,se* ...) (format-label-call l se*)]

[(,se ,se* ...) (format-general-call se se*)]

[(set! ,x ,rhs) (format-set! x rhs)]

[(nop) "0"]

[(begin ,e* ... ,e)

26 CHAPTER 2. DEFINING LANGUAGES AND PASSES

(string-join

(fold-right (lambda (e s*) (cons (format-effect e) s*))

(list (format-effect e)) e*)

", ")]

[(mset! ,se0 ,se1? ,i ,se2)

(if se1?

(format "((*((ptr*)((long)˜a + (long)˜a + ˜d))) = (ptr)˜a)"
(format-simple-expr se0) (format-simple-expr se1?)

i (format-simple-expr se2))

(format "((*((ptr*)((long)˜a + ˜d))) = (ptr)˜a)"
(format-simple-expr se0) i (format-simple-expr se2)))])

(format-simple-expr : SimpleExpr (se) -> * (str)

[,x (symbol->c-id x)]

[,i (number->string i)]

[(label ,l) (format "(*˜a)" (symbol->c-id l))]

[(logand ,se0 ,se1) (format-binop "&" se0 se1)]

[(shift-right ,se0 ,se1) (format-binop ">>" se0 se1)]

[(shift-left ,se0 ,se1) (format-binop "<<" se0 se1)]

[(divide ,se0 ,se1) (format-binop "/" se0 se1)]

[(multiply ,se0 ,se1) (format-binop "*" se0 se1)]

[(subtract ,se0 ,se1) (format-binop "-" se0 se1)]

[(add ,se0 ,se1) (format-binop "+" se0 se1)]

[(mref ,se0 ,se1? ,i)

(if se1?

(format "(*((ptr)((long)˜a + (long)˜a + ˜d)))"
(format-simple-expr se0)

(format-simple-expr se1?) i)

(format "(*((ptr)((long)˜a + ˜d)))" (format-simple-expr se0) i))])

;; prints expressions in effect position into C statements

(emit-effect : Effect (e) -> * ()

[(if ,p0 ,e1 ,e2)

(printf " if (˜a) {˜%" (format-predicate p0))

(emit-effect e1)

(printf " } else {˜%")
(emit-effect e2)

(printf " }˜%")]
[((label ,l) ,se* ...) (printf " ˜a;\n" (format-label-call l se*))]

[(,se ,se* ...) (printf " ˜a;\n" (format-general-call se se*))]

[(set! ,x ,rhs) (printf " ˜a;\n" (format-set! x rhs))]

[(nop) (if #f #f)]

[(begin ,e* ... ,e)

(for-each emit-effect e*)

(emit-effect e)]

[(mset! ,se0 ,se1? ,i ,se2)

(if se1?

(printf "(*((ptr*)((long)˜a + (long)˜a + ˜d))) = (ptr)˜a;\n"
(format-simple-expr se0) (format-simple-expr se1?)

i (format-simple-expr se2))

(printf "(*((ptr*)((long)˜a + ˜d))) = (ptr)˜a;\n"
(format-simple-expr se0) i (format-simple-expr se2)))])

;; formats the right-hand side of a set! into a C expression

(format-rhs : Rhs (rhs) -> * (str)

[((label ,l) ,se* ...) (format-label-call l se*)]

[(,se ,se* ...) (format-general-call se se*)]

[(alloc ,i ,se)

(if (use-boehm?)

(format "(ptr)((long)GC MALLOC(˜a) + ˜dl)"
(format-simple-expr se) i)

2.3. DEFINING PASSES 27

(format "(ptr)((long)malloc(˜a) + ˜dl)"
(format-simple-expr se) i))]

[,se (format-simple-expr se)])

;; emits a C program for our progam expression

(Program : Program (p) -> * ()

[(labels ([,l* ,le*] ...) ,l)

(let ([l (symbol->c-id l)] [l* (map symbol->c-id l*)])

(define-syntax emit-include

(syntax-rules ()

[(name) (printf "#include <˜s>\n" ’name)]))

(define-syntax emit-predicate

(syntax-rules ()

[(PRED P mask tag)

(emit-c-macro PRED P (x) "(((long)x & ˜d) == ˜d)" mask tag)]))

(define-syntax emit-eq-predicate

(syntax-rules ()

[(PRED P rep)

(emit-c-macro PRED P (x) "((long)x == ˜d)" rep)]))

(define-syntax emit-c-macro

(lambda (x)

(syntax-case x()

[(NAME (x* ...) fmt args ...)
#’(printf "#define ˜s(˜a) ˜a\n" ’NAME

(string-join (map symbol->string ’(x* ...)) ", ")

(format fmt args ...))])))
;; the following printfs output the tiny C runtime we are using

;; to wrap the result of our compiled Scheme program.
(emit-include stdio.h)
(if (use-boehm?)

(emit-include gc.h)
(emit-include stdlib.h))

(emit-predicate FIXNUM P fixnum-mask fixnum-tag)

(emit-predicate PAIR P pair-mask pair-tag)

(emit-predicate BOX P box-mask box-tag)

(emit-predicate VECTOR P vector-mask vector-tag)

(emit-predicate PROCEDURE P closure-mask closure-tag)

(emit-eq-predicate TRUE P true-rep)

(emit-eq-predicate FALSE P false-rep)

(emit-eq-predicate NULL P null-rep)

(emit-eq-predicate VOID P void-rep)

(printf "typedef long* ptr;\n")

(emit-c-macro FIX (x) "((long)x << ˜d)" fixnum-shift)

(emit-c-macro UNFIX (x) "((long)x >> ˜d)" fixnum-shift)

(emit-c-macro UNBOX (x) "((ptr)*((ptr)((long)x - ˜d)))" box-tag)

(emit-c-macro VECTOR LENGTH S (x) "((ptr)*((ptr)((long)x - ˜d)))" vector-tag)

(emit-c-macro VECTOR LENGTH C (x) "UNFIX(VECTOR LENGTH S(x))")

(emit-c-macro VECTOR REF (x i) "((ptr)*((ptr)((long)x - ˜d + ((i+1) * ˜d))))"
vector-tag word-size)

(emit-c-macro CAR (x) "((ptr)*((ptr)((long)x - ˜d)))" pair-tag)

(emit-c-macro CDR (x) "((ptr)*((ptr)((long)x - ˜d + ˜d)))" pair-tag word-size)

(printf "void print scheme value(ptr x) {\n")
(printf " long i, veclen;\n")

(printf " ptr p;\n")

(printf " if (TRUE P(x)) {\n")
(printf " printf(\"#t\");\n")

(printf " } else if (FALSE P(x)) {\n")
(printf " printf(\"#f\");\n")

(printf " } else if (NULL P(x)) {\n")

28 CHAPTER 2. DEFINING LANGUAGES AND PASSES

(printf " printf(\"()\");\n")

(printf " } else if (VOID P(x)) {\n")
(printf " printf(\"(void)\");\n")

(printf " } else if (FIXNUM P(x)) {\n")
(printf " printf(\"%ld\", UNFIX(x));\n")

(printf " } else if (PAIR P(x)) {\n")
(printf " printf(\"(\");\n")

(printf " for (p = x; PAIR P(p); p = CDR(p)) {\n")
(printf " print scheme value(CAR(p));\n")

(printf " if (PAIR P(CDR(p))) { printf(\" \"); }\n")
(printf " }\n")
(printf " if (NULL P(p)) {\n")
(printf " printf(\")\");\n")

(printf " } else {\n")
(printf " printf(\" . \");\n")

(printf " print scheme value(p);\n")

(printf " printf(\")\");\n")

(printf " }\n")
(printf " } else if (BOX P(x)) {\n")
(printf " printf(\"#(box \");\n")

(printf " print scheme value(UNBOX(x));\n")

(printf " printf(\")\");\n")

(printf " } else if (VECTOR P(x)) {\n")
(printf " veclen = VECTOR LENGTH C(x);\n")

(printf " printf(\"#(\");\n")

(printf " for (i = 0; i < veclen; i += 1) {\n")
(printf " print scheme value(VECTOR REF(x,i));\n")

(printf " if (i < veclen) { printf(\" \"); } \n")

(printf " }\n")
(printf " printf(\")\");\n")

(printf " } else if (PROCEDURE P(x)) {\n")
(printf " printf(\"#(procedure)\");\n")

(printf " }\n")
(printf "}\n")
(map emit-function-decl le* l*)

(map emit-function-def le* l*)

(printf "int main(int argc, char * argv[]) {\n")
(printf " print scheme value(˜a());\n" l)

(printf " printf(\"\\n\");\n")

(printf " return 0;\n")

(printf "}\n"))]))

Again, a * is used to indicate that there is no language form in this case for the output language. The C
code is printed to the standard output port. Thus, there is no need for any return value from this pass.

Passes can also return a value that is not a language form. For instance, we could write the simple?

predicate from purify-letrec pass as its own pass, rather than using the nanopass-case form. It would
look something like the following:

(define-pass simple? : (L8 Expr) (e bound* assigned*) -> * (bool)

(simple? : Expr (e) -> * (bool)

[(quote ,c) #t]

[,x (not (or (memq x bound*) (memq x assigned*)))]

[(primcall ,pr ,e* ...)
(and (effect-free-prim? pr) (for-all simple? e*))]

[(begin ,e* ... ,e) (and (for-all simple? e*) (simple? e))]

[(if ,e0 ,e1 ,e2) (and (simple? e0) (simple? e1) (simple? e2))]

[else #f])

2.3. DEFINING PASSES 29

(simple? e))

Here, the extra return value is indicated as bool. The bool here is used to indicate to define-pass that an
extra value is being returned. Any expression can be used in this position. In this case, the bool identifier
will simply be an unbound variable if it is ever manifested. It is not manifested in this case, however, because
the body is explicitly specified; thus, no code will be autogenerated for the body of the pass.

2.3.1 The define-pass syntactic form

The define-pass form has the following syntax.

(define-pass name : lang-specifier (fml ...) -> lang-specifier (extra-return-val-expr ...)
definitions-clause
transformer-clause ...
body-expr ...)

where name is an identifier to use as the name for the procedure definition. The lang-specifier has one of
the following forms:

*

lang-name
(lang-name nonterminal-name)

where

• lang-name refers to a language defined with the define-language form, and

• nonterminal-name refers to a nonterminal named within the language definition.

When the * form is used as the input lang-specifier , it indicates that the pass does not expect an input-
language term. When there is no input language, the transformers within the pass do not have clauses
with pattern matches because, without an input language, the define-pass macro does not know what the
structure of the input term will be. When the * form is used as the output lang-specifier , it indicates that
the pass does not produce an output-language term and should not be checked. When there is no output
language, the transformers within the pass do not bind quasiquote, and there are no templates on the
right-hand side of the transformer matches. It is possible to use the * specifier for both the input and output
lang-specifier . This effectively turns the pass, and the transformers contained within it, into an ordinary
Scheme function.

When the lang-name form is used as the input lang-specifier , it indicates that the pass expects an input-
language term that is one of the productions from the entry nonterminal. When the lang-name form is used
as the output lang-specifier , it indicates that the pass expects that an output-language term will be produced
and checked to be one of the records that represents a production of the entry nonterminal.

When the (lang-name nonterminal-name) form is used as the input-language specifier, it indicates that the
input-language term will be a production from the specified nonterminal in the specified input language.
When the (lang-name nonterminal-name) form is used as the output-language specifier, it indicates that the
pass will produce an output production from the specified nonterminal of the specified output language.

The fml is a Scheme identifier, and if the input lang-specifier is not *, the first fml refers to the input-language
term.

The extra-return-val-expr is any valid Scheme expression that is valid in value context. These expressions
are scoped within the binding of the identifiers named as fmls.

The optional definitions-clause has the following form:

30 CHAPTER 2. DEFINING LANGUAGES AND PASSES

(definitions scheme-definition ...)

where scheme-definition is any Scheme expression that can be used in definition context. Definitions in the
definitions-clause are in the same lexical scope as the transformers, which means that procedures and macros
defined in the definitions-clause can refer to any transformer named in a transformer-clause.

The definitions-clause is followed by zero or more transformer-clausess of the following form:

(name : nt-specifier (fml-expr ...) -> nt-specifier (extra-return-val-expr ...)
definitions-clause?
transformer-body)

where name is a Scheme identifier that can be used to refer to the transformer within the pass. The input
nt-specifier is one of the following two forms:

*

nonterminal-name

When the * form is used as the input nonterminal, it indicates that no input nonterminal form is expected
and that the body of the transformer-body will not contain pattern matching clauses. When the * form is
used as the output nonterminal, quasiquote will not be rebound, and no output-language templates are
available. When both the input and output nt-specifier are *, the transformer is effectively an ordinary
Scheme procedure.

The fml-expr has one of the following two forms:

fml
[fml default-val-expr]

where fml is a Scheme identifier and default-val-expr is a Scheme expression. The default-val-expr is used
when an argument is not specified in a catamorphism or when a matching fml is not available in the calling
transformer. All arguments must be explicitly provided when the transformer is called as an ordinary Scheme
procedure. Using the catamorphism syntax, the arguments can be explicitly supplied, using the syntax
discussed on page ??. It can also be specified implicitly. Arguments are filled in implicitly in catamorphisms
that do not explicitly provide the arguments and in autogenerated clauses when the nonterminal elements
of a production are processed. These implicitly supplied formals are handled by looking for a formal in the
calling transformer that has the same name as the formal expected by the target transformer. If no matching
formal is found, and the target transformer specifies a default value, the default value will be used in the
call; otherwise, another target transformer must be found, a new transformer must be autogenerated, or an
exception must be raised to indicate that no transformer was found and none can be autogenerated.

The extra-return-val-expr can be any Scheme expression. These expressions are scoped within the fmls
bound by the transformer. This allows an input formal to be returned as an extra return value, implicitly
in the autogenerated clauses. This can be useful for threading values through a transformer.

The optional definitions-clause can include any Scheme expression that can be placed in a definition con-
text. These definitions are scoped within the transformer. When an output nonterminal is specified, the
quasiquote is also bound within the body of the definitions clause to allow language term templates to
be included in the body of the definitions.

When the input nt-specifier is not *, the transformer-body has one of the following forms:

[pattern guard-clause body* ... body]
[pattern body* ... body]
[else body* ... body]

where the else clause must be the last one listed in a transformer and prevents autogeneration of missing

2.3. DEFINING PASSES 31

clauses (because the else clause is used in place of the autogenerated clauses). The pattern is an S-expression
pattern, based on the S-expression productions used in the language definition. Patterns can be arbitrarily
nested. Variables bound by the pattern are preceded by an unquote and are named based on the meta-
variables named in the language definition. The variable name can be used to restrict the pattern by using
a meta-variable that is more specific than the one specified in the language definition. The pattern can also
contain catamorphisms that have one of the following forms:

[Proc-expr : input-fml arg ... -> output-fml extra-rv-fml ...]
[Transformer-name : output-fml extra-rv-fml ...]
[input-fml arg ... -> output-fml extra-rv-fml ...]
[output-fml extra-rv-fml ...]

In the first form, the Proc-expr is an explicitly specified procedure expression, the input-fml and all argu-
ments to the procedure are explicitly specified, and the results of calling the Proc-expr are bound by the
output-fml and extra-rv-fmls. Note that the Proc-expr may be a Transformer-name. In the second form,
the Transformer-name is an identifier that refers to a transformer named in this pass. The define-pass

macro determines, based on the signature of the transformer referred to by the Transformer-name, what
arguments should be supplied to the transformer. In the last two forms, the transformer is determined
automatically. In the third form, the nonterminal type associated with the input-fml , the args, the output
nonterminal type based on the output-fml , and the extra-rv-fmls are used to determine the transformer to
call. In the final form, the nonterminal type for the field within the production, along with the formals
to the calling transformer, the output nonterminal type based on the output-fml , and the extra-rv-fmls are
used to determine the transformer to call. In the two forms where the transformer is not explicitly named,
a new transformer can be autogenerated when no args and no extra-rv-fmls are specified. This limitation is
in place to avoid creating a transformer with extra formals whose use is unspecified and extra return values
with potentially dubious return-value expressions.

The input-fml is a Scheme identifier with a name based on the meta-variables named in the input-language
definition. The specification of a more restrictive meta-variable name can be used to further restrict the
pattern. The output-fml is a Scheme identifier with a name based on the meta-variables named in the
output-language definition. The extra-rv-fml is a Scheme identifier. The input-fmls named in the fields of a
pattern must be unique. The output-fmls and extra-rv-fmls must also be unique, although they can overlap
with the input-fmls that are shadowed in the body by the output-fml or extra-rv-fml with the same name.

Only the input-fmls are visible within the optional guard-clause. This is because the guard-clause is evaluated
before the catamorphisms recur on the fields of a production. The guard-clause has the following form:

(guard guard-expr ...)

where guard-expr is a Scheme expression. The guard-clause has the same semantics as and.

The body* and body are any Scheme expression. When the output nt-specifier is not *, quasiquote is
rebound to a macro that interprets quasiquote expressions as templates for productions in the output
nonterminal. Additionally, in-context is a macro that can be used to rebind quasiquote to a different
nonterminal. Templates are specified as S-expressions based on the productions specified by the output
language. In templates, unquote is used to indicate that the expression in the unquote should be used
to fill in the given field of the production. Within an unquote expression, quasiquote is rebound to the
appropriate nonterminal based on the expected type of the field in the production. If the template includes
items that are not unquoted where a field value is expected, the expression found there is automatically
quoted. This allows self-evaluating items such as symbols, booleans, and numbers to be more easily specified
in templates. A list of items can be specified in a field that expects a list, using an ellipsis.

Although the syntax of a language production is specified as an S-expression, the record representation
used for the language term separates each variable specified into a separate field. This means that the
template syntax expects a separate value or list of values for each field in the record. For instance, in the
(letrec ([x* e*] . . .) body) production, a template of the form (letrec (,bindings . . .) ,body) can-

32 CHAPTER 2. DEFINING LANGUAGES AND PASSES

not be used because the nanopass framework will not attempt to break up the bindings list into its x* and e*

component parts. The template (letrec ([,(map car bindings) ,(map cadr bindings)] . . .) ,body)

accomplishes the same goal, explicitly separating the variables from the expressions. It is possible that the
nanopass framework could be extended to perform the task of splitting up the binding* list automatically,
but it is not done currently, partially to avoid hiding the cost of deconstructing the binding* list and
constructing the x* and e* lists.

The in-context expression within the body has the following form:

(in-context nonterminal-name body* ... body)

The in-context form rebinds the quasiquote to allow productions from the named nonterminal to be
constructed in a context where they are not otherwise expected.

Chapter 3

Working with language forms

3.1 Constructing language forms outside of a pass

In addition to creating language forms using a parser defined with define-parser or through a pass de-
fined with define-pass, language forms can also be created using the with-output-language form. The
with-output-language form binds the in-context transformer for the language specified and, if a nonter-
minal is also specified, binds the quasiquote form. This allows the same template syntax used in the body
of a transformer to be used outside of the context of a pass. In a commercial compiler, such as Chez Scheme,
it is often convenient to use functional abstraction to centralize the creation of a language term.

For instance, in the convert-assignments pass, the with-output-languge form is wrapped around the
make-boxes and build-let procedures. This is done so that primitive calls to box along with the let form
of the L10 language can be constructed with quasiquoted expressions.

(with-output-language (L10 Expr)

(define make-boxes

(lambda (t*)

(map (lambda (t) ‘(primcall box ,t)) t*)))

(define build-let

(lambda (x* e* body)

(if (null? x*)

body

‘(let ([,x* ,e*] ...) ,body)))))

This rebinds both the quasiquote keyword and the in-context keyword.

The with-output-language form has one of the following forms:

(with-output-language lang-name expr* ... expr)
(with-output-language (lang-name nonterminal-name) expr* ... expr)

In the first form, the in-context form is bound and can be used to specify a nonterminal-name, as described
at the end of Section ??. In the second form, both in-context and quasiquote are bound. The quasiquote
form is bound in the context of the specified nonterminal-name, and templates can be defined just as they
are on the right-hand side of a transformer clause.

The with-output-language form is a splicing form, similar to begin or let-syntax, allowing multiple
definitions or expressions that are all at the same scoping level as the with-output-language form to be
contained within the form. This is convenient when writing a set of definitions that all construct some piece
of a language term from the same nonterminal. This flexibility means that the with-output-language form

33

34 CHAPTER 3. WORKING WITH LANGUAGE FORMS

cannot be defined as syntactic sugar for the define-pass form.

3.2 Matching language forms outside of a pass

In addition to the define-pass form, it is possible to match a language term using the nanopass-case

form. This can be useful when creating functional abstractions, such as predicates that ask a question based
on matching a language form. For instance, suppose we write a lambda? predicate for the L8 language as
follows:

(define lambda?

(lambda (e)

(nanopass-case (L8 Expr) e

[(lambda (,x* ...) ,abody) #t]

[else #f])))

The nanopass-case form has the following syntax:

(nanopass-case (lang-name nonterminal-name) expr
matching-clause ...)

where matching-clause has one of the following forms:

[pattern guard-clause expr* ... expr]
[pattern expr* ... expr]
[else expr* ... expr]

where the pattern and guard-clause forms have the same syntax as in the transformer-body of a pass.

Similar to with-output-language, nanopass-case provides a more succinct syntax for matching a language
form than does the general define-pass form. Unlike the with-output-language form, however, the
nanopass-case form can be implemented in terms of the define-pass form. For example, the lambda?

predicate also could have been written as:

(define-pass lambda? : (L8 Expr) (e) -> * (bool)

(Expr : Expr (e) -> * (bool)

[(lambda (,x* ...) ,abody) #t]

[else #f])

(Expr e))

This is, in fact, how the nanopass-case macro is implemented.

Chapter 4

Working with languages

4.1 Displaying languages

The language->s-expression form can be used to print the full definition of a language by supplying it
the language name to be printed. This can be helpful when working with extended languages, such as in the
case of L1:

(language->s-expression L1)

which returns:

(define-language L1

(entry Expr)

(terminals

(void+primitive (pr))

(symbol (x))

(constant (c))

(datum (d)))

(Expr (e body)

pr

x

c

(quote d)

(if e0 e1 e2)

(or e* ...)
(and e* ...)
(not e)

(begin e* ... e)

(lambda (x* ...) body* ... body)

(let ([x* e*] ...) body* ... body)

(letrec ([x* e*] ...) body* ... body)

(set! x e)

(e e* ...)))

4.2 Differencing languages

The extension form can also be derived between any two languages by using the diff-languages form. For
instance, we can get the differences between the Lsrc and L1 language (giving us back the extension) with:

35

36 CHAPTER 4. WORKING WITH LANGUAGES

(diff-languages Lsrc L1)

which returns:

(define-language L1

(extends Lsrc)

(entry Expr)

(terminals

(- (primitive (pr)))

(+ (void+primitive (pr))))

(Expr (e body)

(- (if e0 e1))))

4.3 Viewing the expansion of passes and transformers

The define-pass form autogenerates both transformers and clauses within transformers. In simple passes,
these are generally straightforward to reason about, but in more complex passes, particularly those that
make use of different arguments for different transformers or include extra return values, it can become
more difficult to determine what code will be generated. In particular, the experience of developing a full
commercial compiler has shown that the define-pass form can autogenerate transformers that shadow
those defined by the compiler writer. To help the compiler writer determine what code is being generated,
there is a variation of the define-pass form, called echo-define-pass, that will echo the expansion of
define-pass.

For instance, we can echo the remove-one-armed-if pass to get the following:

(echo-define-pass remove-one-armed-if : Lsrc (e) -> L1 ()

(Expr : Expr (e) -> Expr ()

[(if ,[e0] ,[e1]) ‘(if ,e0 ,e1 (void))]))

⇒

pass remove-one-armed-if expanded into:

(define remove-one-armed-if

(lambda (e)

(define who ’remove-one-armed-if)

(define-nanopass-record)

(define Expr

(lambda (e)

(let ([g221.159 e])

(let-syntax ([quasiquote ’#<procedure tmp>]

[in-context ’#<procedure>])

(begin

(let ([rhs.160 (lambda (e0 e1) ‘(if ,e0 ,e1 (void)))])

(cond

[(primitive? g221.159) g221.159]
[(symbol? g221.159) g221.159]
[(constant? g221.159) g221.159]
[else

(let ([tag (nanopass-record-tag g221.159)])
(cond

[(eqv? tag 4)

(let* ([g222.161 (Lsrc:if:Expr.387-e0 g221.159)]
[g223.162 (Lsrc:if:Expr.387-e1 g221.159)])

(let-values ([(e0) (Expr g222.161)]
[(e1) (Expr g223.162)])

4.3. VIEWING THE EXPANSION OF PASSES AND TRANSFORMERS 37

(rhs.160 e0 e1)))]

[(eqv? tag 2)

(make-L1:quote:Expr.400
’remove-one-armed-if

(Lsrc:quote:Expr.386-d g221.159)
"d")]

[(eqv? tag 6)

(make-L1:if:Expr.401 ’remove-one-armed-if

(Expr (Lsrc:if:Expr.388-e0 g221.159))
(Expr (Lsrc:if:Expr.388-e1 g221.159))
(Expr (Lsrc:if:Expr.388-e2 g221.159)) "e0" "e1"

"e2")]

[(eqv? tag 8)

(make-L1:or:Expr.402
’remove-one-armed-if

(map (lambda (m) (Expr m))

(Lsrc:or:Expr.389-e* g221.159))
"e*")]

[(eqv? tag 10)

(make-L1:and:Expr.403
’remove-one-armed-if

(map (lambda (m) (Expr m))

(Lsrc:and:Expr.390-e* g221.159))
"e*")]

[(eqv? tag 12)

(make-L1:not:Expr.404
’remove-one-armed-if

(Expr (Lsrc:not:Expr.391-e g221.159))
"e")]

[(eqv? tag 14)

(make-L1:begin:Expr.405 ’remove-one-armed-if

(map (lambda (m) (Expr m))

(Lsrc:begin:Expr.392-e* g221.159))
(Expr (Lsrc:begin:Expr.392-e g221.159)) "e*"

"e")]

[(eqv? tag 16)

(make-L1:lambda:Expr.406 ’remove-one-armed-if

(Lsrc:lambda:Expr.393-x* g221.159)
(map (lambda (m) (Expr m))

(Lsrc:lambda:Expr.393-body* g221.159))
(Expr (Lsrc:lambda:Expr.393-body g221.159)) "x*"

"body*" "body")]

[(eqv? tag 18)

(make-L1:let:Expr.407 ’remove-one-armed-if

(Lsrc:let:Expr.394-x* g221.159)
(map (lambda (m) (Expr m))

(Lsrc:let:Expr.394-e* g221.159))
(map (lambda (m) (Expr m))

(Lsrc:let:Expr.394-body* g221.159))
(Expr (Lsrc:let:Expr.394-body g221.159)) "x*"

"e*" "body*" "body")]

[(eqv? tag 20)

(make-L1:letrec:Expr.408 ’remove-one-armed-if

(Lsrc:letrec:Expr.395-x* g221.159)
(map (lambda (m) (Expr m))

(Lsrc:letrec:Expr.395-e* g221.159))
(map (lambda (m) (Expr m))

(Lsrc:letrec:Expr.395-body* g221.159))

38 CHAPTER 4. WORKING WITH LANGUAGES

(Expr (Lsrc:letrec:Expr.395-body g221.159)) "x*"

"e*" "body*" "body")]

[(eqv? tag 22)

(make-L1:set!:Expr.409 ’remove-one-armed-if

(Lsrc:set!:Expr.396-x g221.159)
(Expr (Lsrc:set!:Expr.396-e g221.159)) "x" "e")]

[(eqv? tag 24)

(make-L1:e:Expr.410 ’remove-one-armed-if

(Expr (Lsrc:e:Expr.397-e g221.159))
(map (lambda (m) (Expr m))

(Lsrc:e:Expr.397-e* g221.159))
"e" "e*")]

[else

(error ’remove-one-armed-if

"unexpected Expr"

g221.159)]))])))))))
(let ([x (Expr e)])

(unless ((lambda (x)

(or (L1:Expr.399? x)

(constant? x)

(symbol? x)

(void+primitive? x)))

x)

(error ’remove-one-armed-if

(format "expected ˜s but got ˜s" ’Expr x)))

x)))

This exposes the code generated by define-pass but does not expand the language form construction
templates. The autogenerated clauses, such as the one that handles set!, have a form like the following:

[(eqv? tag 7)

(make-L1:set!:Expr.18
(Lsrc:set!:Expr.8-x g0.14)
(Expr (Lsrc:set!:Expr.8-e g0.14)))]

Here, the tag of the record is checked and a new output-language record constructed, after recurring to the
Expr transformer on the e field.

The body code also changes slightly, so that the output of the pass can be checked to make sure that it is a
valid L1 Expr.

In addition to echoing the output of the entire pass, it is also possible to echo just the expansion of a single
transformer by prefixing the transformer with the echo keyword.

(define-pass remove-one-armed-if : Lsrc (e) -> L1 ()

(echo Expr : Expr (e) -> Expr ()

[(if ,[e0] ,[e1]) ‘(if ,e0 ,e1 (void))]))

⇒

Expr in pass remove-one-armed-if expanded into:

(define Expr

(lambda (e)

(let ([g442.303 e])

(let-syntax ([quasiquote ’#<procedure tmp>]

[in-context ’#<procedure>])

(begin

(let ([rhs.304 (lambda (e0 e1) ‘(if ,e0 ,e1 (void)))])

(cond

4.3. VIEWING THE EXPANSION OF PASSES AND TRANSFORMERS 39

[(primitive? g442.303) g442.303]
[(symbol? g442.303) g442.303]
[(constant? g442.303) g442.303]
[else

(let ([tag (nanopass-record-tag g442.303)])
(cond

[(eqv? tag 4)

(let* ([g443.305 (Lsrc:if:Expr.770-e0 g442.303)]
[g444.306 (Lsrc:if:Expr.770-e1 g442.303)])

(let-values ([(e0) (Expr g443.305)]
[(e1) (Expr g444.306)])

(rhs.304 e0 e1)))]

[(eqv? tag 2)

(make-L1:quote:Expr.783
’remove-one-armed-if

(Lsrc:quote:Expr.769-d g442.303)
"d")]

[(eqv? tag 6)

(make-L1:if:Expr.784 ’remove-one-armed-if

(Expr (Lsrc:if:Expr.771-e0 g442.303))
(Expr (Lsrc:if:Expr.771-e1 g442.303))
(Expr (Lsrc:if:Expr.771-e2 g442.303)) "e0" "e1"

"e2")]

[(eqv? tag 8)

(make-L1:or:Expr.785
’remove-one-armed-if

(map (lambda (m) (Expr m))

(Lsrc:or:Expr.772-e* g442.303))
"e*")]

[(eqv? tag 10)

(make-L1:and:Expr.786
’remove-one-armed-if

(map (lambda (m) (Expr m))

(Lsrc:and:Expr.773-e* g442.303))
"e*")]

[(eqv? tag 12)

(make-L1:not:Expr.787
’remove-one-armed-if

(Expr (Lsrc:not:Expr.774-e g442.303))
"e")]

[(eqv? tag 14)

(make-L1:begin:Expr.788 ’remove-one-armed-if

(map (lambda (m) (Expr m))

(Lsrc:begin:Expr.775-e* g442.303))
(Expr (Lsrc:begin:Expr.775-e g442.303)) "e*" "e")]

[(eqv? tag 16)

(make-L1:lambda:Expr.789 ’remove-one-armed-if

(Lsrc:lambda:Expr.776-x* g442.303)
(map (lambda (m) (Expr m))

(Lsrc:lambda:Expr.776-body* g442.303))
(Expr (Lsrc:lambda:Expr.776-body g442.303)) "x*"

"body*" "body")]

[(eqv? tag 18)

(make-L1:let:Expr.790 ’remove-one-armed-if (Lsrc:let:Expr.777-x* g442.303)
(map (lambda (m) (Expr m))

(Lsrc:let:Expr.777-e* g442.303))
(map (lambda (m) (Expr m))

(Lsrc:let:Expr.777-body* g442.303))

40 CHAPTER 4. WORKING WITH LANGUAGES

(Expr (Lsrc:let:Expr.777-body g442.303)) "x*" "e*"

"body*" "body")]

[(eqv? tag 20)

(make-L1:letrec:Expr.791 ’remove-one-armed-if

(Lsrc:letrec:Expr.778-x* g442.303)
(map (lambda (m) (Expr m))

(Lsrc:letrec:Expr.778-e* g442.303))
(map (lambda (m) (Expr m))

(Lsrc:letrec:Expr.778-body* g442.303))
(Expr (Lsrc:letrec:Expr.778-body g442.303)) "x*" "e*"

"body*" "body")]

[(eqv? tag 22)

(make-L1:set!:Expr.792 ’remove-one-armed-if (Lsrc:set!:Expr.779-x g442.303)
(Expr (Lsrc:set!:Expr.779-e g442.303)) "x" "e")]

[(eqv? tag 24)

(make-L1:e:Expr.793 ’remove-one-armed-if

(Expr (Lsrc:e:Expr.780-e g442.303))
(map (lambda (m) (Expr m))

(Lsrc:e:Expr.780-e* g442.303))
"e" "e*")]

[else

(error ’remove-one-armed-if

"unexpected Expr"

g442.303)]))])))))))

4.4 Tracing passes and transformers

Echoing the code generated by define-pass can help compiler writers to understand what is happening
at expansion time, but it does not help in determining what is happening at run time. To facilitate this
type of debugging, passes and transformers can be traced at run time. The tracing system, similar to Chez
Scheme’s trace-define-syntax, unparses the input-language term and output-language term of the pass
using the language unparsers to provide the S-expression representation of the language term that is being
transformed.

The trace-define-pass form works just like the define-pass form but adds tracing for the input-language
term and output-language term of the pass. For instance, if we want to trace the processing of the input:

(let ([x 10])

(if (= (* (/ x 2) 2) x) (set! x (/ x 2)))

(* x 3))

the pass can be defined as a tracing pass, as follows:

(trace-define-pass remove-one-armed-if : Lsrc (e) -> L1 ()

(Expr : Expr (e) -> Expr ()

[(if ,[e0] ,[e1]) ‘(if ,e0 ,e1 (void))]))

Running the class compiler with remove-one-armed-if traced produces the following:

> (my-tiny-compile

’(let ([x 10])

(if (= (* (/ x 2) 2) x) (set! x (/ x 2)))

(* x 3)))

|(remove-one-armed-if

(let ([x.12 10])

(if (= (* (/ x.12 2) 2) x.12) (set! x.12 (/ x.12 2)))

4.4. TRACING PASSES AND TRANSFORMERS 41

(* x.12 3)))

|(let ([x.12 10])

(if (= (* (/ x.12 2) 2) x.12) (set! x.12 (/ x.12 2)) (void))

(* x.12 3))

15

The tracer prints the pretty (i.e., S-expression) form of the language, rather than the record representation,
to allow the compiler writer to read the terms more easily. This does not trace the internal transformations
that happen within the transformers of the pass. Transformers can be traced by adding the trace keyword
in front of the transformer definition. We can run the same test with a remove-one-armed-if that traces
the Expr transformer, as follows:

> (my-tiny-compile

’(let ([x 10])

(if (= (* (/ x 2) 2) x) (set! x (/ x 2)))

(* x 3)))

|(Expr

(let ([x.0 10]) (if (= (* (/ x.0 2) 2) x.0) (set! x.0 (/ x.0 2))) (* x.0 3)))

| (Expr (* x.0 3))

| |(Expr x.0)
| |x.0
| |(Expr 3)

| |3

| |(Expr *)

| |*

| (* x.0 3)

| (Expr (if (= (* (/ x.0 2) 2) x.0) (set! x.0 (/ x.0 2))))

| |(Expr (= (* (/ x.0 2) 2) x.0))
| | (Expr (* (/ x.0 2) 2))

| | |(Expr (/ x.0 2))

| | | (Expr x.0)
| | | x.0
| | | (Expr 2)

| | | 2

| | | (Expr /)

| | | /

| | |(/ x.0 2)

| | |(Expr 2)

| | |2

| | |(Expr *)

| | |*

| | (* (/ x.0 2) 2)

| | (Expr x.0)
| | x.0
| | (Expr =)

| | =

| |(= (* (/ x.0 2) 2) x.0)
| |(Expr (set! x.0 (/ x.0 2)))

| | (Expr (/ x.0 2))

| | |(Expr x.0)
| | |x.0
| | |(Expr 2)

| | |2

| | |(Expr /)

| | |/

| | (/ x.0 2)

| |(set! x.0 (/ x.0 2))

| (if (= (* (/ x.0 2) 2) x.0) (set! x.0 (/ x.0 2)) (void))

42 CHAPTER 4. WORKING WITH LANGUAGES

| (Expr 10)

| 10

|(let ([x.0 10])

(if (= (* (/ x.0 2) 2) x.0) (set! x.0 (/ x.0 2)) (void))

(* x.0 3))

15

Here, too, the traced forms are the pretty representation and not the record representation.

