
The Nexus User Guide

By Jaron T. Krogel

22 May 2013

Contents

Contents ii

1 Using this document 1

2 Overview of Nexus 2
2.1 What Nexus is . 2
2.2 What Nexus can do . 2
2.3 How Nexus is used . 2

3 Nexus Installation 4

4 Complete Examples 6
4.1 Simple QMC Calculations . 7

5 Nexus User Reference 23
5.1 Reading what you wrote . 23
5.2 Nexus settings: global state and user-specific information 23

6 QMC Practice
in a Nutshell 25
6.1 VMC and DMC in the abstract . 25
6.2 From expectation values to random walks 26
6.3 Quality orbitals: planewaves, cutoffs, splines, and meshes 26
6.4 Quality Jastrows: less variance = more efficient 27
6.5 Finite size effects: k-points, supercells, and corrections 28
6.6 Imaginary time discretization: the DMC timestep 29
6.7 Population control bias: safety in numbers 29
6.8 The fixed node/phase approximation: varying the nodes/phase 30
6.9 Pseudopotentials: theoretical dissonance, the locality approximation, and

T-moves . 31
6.10 Other approximations: what else is missing? 32

7 Recommended Reading 33
7.1 Helpful Links for Installing Python Modules 33
7.2 Helpful Links for Installing Electronic Structure Codes 33
7.3 Brushing Up On Python . 34

ii

CONTENTS iii

7.4 Quantum Monte Carlo: Theory and Practice 35

Index 36

1 Using this document

The Nexus User Guide provides an overview of Nexus (2), instructions on how to install it
(3), complete examples of electronic structure calculations using it (4), a complete reference
section (5), a brief overview of Quantum Monte Carlo (QMC) from an applied perspective
(6), and directions on where to go to learn more (7). If you are new to QMC, consider
reading the “QMC Practice in a Nutshell” section (6) and the review articles and online
resources listed under “Quantum Monte Carlo: Theory and Practice” (7.4) before pro-
ceeding to the overview (2) and the examples (4). For those more experienced in QMC,
or the impatient, quickly visit “Nexus Installation” (3) and see the examples section (4)
for template calculations to begin using Nexus immediately. For fine-grained information
about Nexus’s many features, consult the “Nexus User Reference” (5). If you cannot find
what you need in this document, contact the main developer of Nexus (Jaron Krogel), at
krogeljt@ornl.gov (but please make a thorough search first!).

1

2 Overview of Nexus

2.1 What Nexus is

Nexus is a collection of tools, written in Python, to perform complex electronic structure
calculations and analyze the results. The main focus is currently on performing arbitrary
Quantum Monte Carlo (QMC) calculations with QMCPACK. A single QMC calculation
typically requires several previous calculations with other codes to produce a starting guess
for the many-body wavefunction and convert it into a form that QMCPACK understands.
Managing the resulting array of calculations, and the flow of information between them,
quickly becomes unweildy to the researcher, demands a great deal of human time, and
increases the potential for human error. Nexus reduces both the human time required and
potential for error by automating the total simulation process.

2.2 What Nexus can do

The capabilities of Nexus currently include crystal structure generation, standalone Den-
sity Functional Theory (DFT) calculations with PWSCF, Hartree-Fock (HF) calculations of
atoms with the SQD code (packaged with QMCPACK), complete QMC calculations with
QMCPACK (including wavefunction optimization, Variational Monte Carlo (VMC), and
Diffusion Monte Carlo (DMC) in periodic or open boundary conditions), automated job
management on workstations (by acting as a virtual queue) and clusters/supercomputers
(such as OIC5, Edison, Blue Waters, with Titan coming) including handling of dependen-
cies between calculations and bundling of jobs, and extraction of results from completed
calculations for analysis. The integration of these capabilities permits the user to focus on
the high-level tasks of problem formulation and interpretation of the results without (in
principle) becoming too involved in the time-consuming, lower level details.

2.3 How Nexus is used

Use of Nexus currently involves writing a short Python script describing the calculations
to be performed. This small script formed by the user closely resembles an input file for
electronic structure codes. A key difference is that this “input file” represents executable
code, and so variables are easily defined for use in expressions and more complicated sim-
ulation workflows (e.g. an equation of state) can be constructed with if/else logic and for
loops. Knowledge of the Python programming language is helpful to perform complex cal-

2

CHAPTER 2. OVERVIEW OF NEXUS 3

culations, but not essential for use of Nexus. Starting from working “input files” such as
those covered in the “Complete Examples” section (4) is a good way to proceed.

3 Nexus Installation

Installation of Nexus can be accomplished by a single download with Subversion (SVN)
and setting a single environment variable provided a working python environment exists.
Follow the example below to download Nexus:

cd /your_download_path

svn co https://subversion.assembla.com/svn/qmcdev/trunk/nexus

If you do not have access to the Assembla SVN repository, please make an account on as-
sembla.com and email the lead developer of QMCPACK (Jeongnim Kim) at jnkim@ornl.gov
to obtain access.

To make your Python installation (must be Python 2.x as 3.x is not supported) aware
of Nexus, simply set the PYTHONPATH environment variable. For example, in bash this
would look like:

export PYTHONPATH=/your_download_path/nexus/library

If you want to use the command line tools, add them to your path:

export PATH=/your_download_path/nexus/executables:$PATH

Add these to e.g. your .bashrc file to make Nexus available to future sessions.
In addition to the standard Python installation, the numpy module must be installed

for Nexus to function at a basic level. To realize the full range of functionality available,
it is recommended that the scipy, matplotlib, and h5py modules be installed as well.
Many of these packages are already available in various supercomputing environments. On
a debian-based Linux system, such as Ubuntu, installation of these python modules is easily
accomplished by invoking the following at the command line:

4

CHAPTER 3. NEXUS INSTALLATION 5

sudo apt-get install python-numpy

sudo apt-get install python-scipy python-matplotlib python-h5py

For installing the Python modules on other platforms, please see “Helpful Links for
Installing Python Modules” (section 7.1).

Of course, to run full calculations, the simulation codes and converters involved must be
installed as well. These include a modified version of Quantum Espresso (pw.x, pw2qmcpack.x,
optionally pw2casino.x), QMCPACK (qmcapp, qmcapp complex), SQD (sqd, packaged
with QMCPACK), and, optionally, wfconvert. Complete coverage of this task is beyond
the scope of the current document, but please see “Helpful Links for Installing Electronic
Structure Codes” (section 7.2).

4 Complete Examples

Disclaimer: Please note that the examples given here do not generally qualify as production
calculations because the supercell size, optimization process, DMC timestep and other key
parameters may not be converged. Pseudopotentials are provided “as is” and should not
be trusted without explicit validation.

Complete examples of calculations performed with Nexus are provided in the following
sections. These examples are intended to highlight basic features of Nexus and act as
templates for future calculations. A complete description of the available features can be
found in “Nexus User Reference” (section 5). If there is an example you would like to
contribute, or if you feel an example on a particular topic is needed, please contact the
developer at krogeljt@ornl.gov to discuss the possibilities.

To perform the example calculations yourself, consult the examples directory in your
Nexus installation:

/your_download_path/nexus/examples

The examples assume that you have working versions of pw.x, pw2qmcpack.x, qmcapp
(real version), and qmcapp complex (complex version) installed and in your PATH. A brief
description of each example is given below.

Graphene Sheet DMC
A representative bulk calculation. The total DMC energy of a graphene “sheet” con-
sisting of 8 atoms is computed. DFT is performed with PWSCF on the primitive cell
followed by Jastrow optimization by QMCPACK and finally a supercell VMC+DMC
calculation by QMCPACK.

C 20 Molecule DMC
A representative molecular calculation. The total DMC energy of an ideal C 20
molecule is computed. DFT is performed with PWSCF on a periodic cell with some
vacuum surrounding the molecule. QMCPACK optimization and VMC+DMC follow
on the system with open boundary conditions.

(Note that without the crystal field splitting afforded by the initial artificial period-
icity, the Kohn-Sham HOMO would be degenerate, and so a production calculation
would likely require more care in appropriately setting up the wavefunction.)

6

CHAPTER 4. COMPLETE EXAMPLES 7

4.1 Simple QMC Calculations

The simplest QMC calculations that can be performed with Nexus involve five main stages:

Configure Nexus settings
The settings function allows you to specify where pseudopotentials are located,
whether to generate input files without running jobs, details of the machine you are
on, and how often to have Nexus check on the status of running jobs.

Describe the physical system
Generate a crystal structure with the generate physical system convenience func-
tion (see “Graphene Sheet DMC” 4.1), or load an XYZ file into a Structure object
(see “C 20 Molecule DMC” 4.1). This is where information about k-points, net system
charge, or net system spin are recorded.

Describe the calculations
Use the standard qmc (see “Graphene Sheet DMC” 4.1) or basic qmc (see “C 20
Molecule DMC” 4.1) convenience functions to select specific pseudopotentials, specify
PWSCF and QMCPACK input parameters, and job details, like how many nodes/cores/threads
to use.

Run the simulations
Pass simulation objects created by standard qmc/basic qmc to the ProjectManager

and run the jobs by calling the run project function.

Collect simulation results
Load results of simulation objects using the load analyzer image function. This
gives you access to several/most (PWSCF/QMCPACK) physical results produced by
the simulation with statistical analysis already performed (though the responsibility
is still yours to verify absolute correctness).

For more information about the functions/objects mentioned above, consider the exam-
ples in the following sections or consult “Nexus User Reference” (section 5).

CHAPTER 4. COMPLETE EXAMPLES 8

Example: Graphene Sheet DMC

The files for this example are found in:

/your_download_path/nexus/examples/simple_qmc/graphene_example

Take a moment to study the “input file” script (graphene example.py) and the atten-
dant comments (prefixed with #). The five stages listed in section 4.1 should be apparent.

#! /usr/bin/env python

from nexus import settings,ProjectManager,Job

from nexus import generate_physical_system

from nexus import loop,linear,vmc,dmc

from qmcpack_calculations import standard_qmc

#general settings for Nexus

settings(

pseudo_dir = ’./pseudopotentials’,# directory with all pseudopotentials

sleep = 3, # check on runs every ’sleep’ seconds

generate_only = 0, # only make input files

status_only = 0, # only show status of runs

machine = ’node16’, # local machine is 16 core workstation

)

#generate the graphene physical system

graphene = generate_physical_system(

structure = ’graphite_aa’, # graphite keyword

cell = ’hex’, # hexagonal cell shape

tiling = (2,2,1), # tiling of primitive cell

constants = (2.462,10.0), # a,c constants

units = ’A’, # in Angstrom

kgrid = (1,1,1), # Monkhorst-Pack grid

kshift = (.5,.5,.5), # and shift

C = 4 # C has 4 valence electrons

)

#generate the simulations for the qmc workflow

CHAPTER 4. COMPLETE EXAMPLES 9

qsims = standard_qmc(

subdirectory of runs

directory = ’graphene_test’,

description of the physical system

system = graphene,

pseudos = [’C.BFD.upf’, # pwscf PP file

’C.BFD.xml’], # qmcpack PP file

job parameters

scfjob = Job(cores=16), # cores to run scf

nscfjob = Job(cores=16), # cores to run non-scf

optjob = Job(cores=16), # cores for optimization

qmcjob = Job(cores=16), # cores for qmc

dft parameters (pwscf)

functional = ’lda’, # dft functional

ecut = 150 , # planewave energy cutoff (Ry)

conv_thr = 1e-6, # scf convergence threshold (Ry)

mixing_beta = .7, # charge mixing factor

scf_kgrid = (8,8,8), # MP grid of primitive cell

scf_kshift = (1,1,1), # to converge charge density

qmc wavefunction parameters (qmcpack)

meshfactor = 1.0, # bspline grid spacing, larger is finer

jastrows = [

dict(type = ’J1’, # 1-body

function = ’bspline’, # bspline jastrow

size = 8), # with 8 knots

dict(type = ’J2’, # 2-body

function = ’bspline’, # bspline jastrow

size = 8) # with 8 knots

],

opt parameters (qmcpack)

perform_opt = True, # produce optimal jastrows

block_opt = False, # if true, ignores opt and qmc

skip_submit_opt = False, # if true, writes input files, does not run opt

opt_kpoint = ’L’, # supercell k-point for the optimization

opt_calcs = [# qmcpack input parameters for opt

loop(max = 4, # No. of loop iterations

qmc = linear(# linearized optimization method

energy = 0.0, # cost function

unreweightedvariance = 1.0, # is all unreweighted variance

reweightedvariance = 0.0, # no energy or r.w. var.

timestep = 0.5, # vmc timestep (1/Ha)

warmupsteps = 100, # MC steps before data collected

samples = 16000,# samples used for cost function

stepsbetweensamples = 10, # steps between uncorr. samples

blocks = 10, # ignore this

minwalkers = 0.1,# and this

CHAPTER 4. COMPLETE EXAMPLES 10

bigchange = 15.0,# and this

alloweddifference = 1e-4 # and this, for now

)

),

loop(max = 4,

qmc = linear(# same as above, except

energy = 0.5, # cost function

unreweightedvariance = 0.0, # is 50/50 energy and r.w. var.

reweightedvariance = 0.5,

timestep = 0.5,

warmupsteps = 100,

samples = 64000,# and there are more samples

stepsbetweensamples = 10,

blocks = 10,

minwalkers = 0.1,

bigchange = 15.0,

alloweddifference = 1.0e-4

)

)

],

qmc parameters (qmcpack)

block_qmc = False, # if true, ignores qmc

skip_submit_qmc = False, # if true, writes input file, does not run qmc

qmc_calcs = [# qmcpack input parameters for qmc

vmc(# vmc parameters

timestep = 0.5, # vmc timestep (1/Ha)

warmupsteps = 100, # No. of MC steps before data is collected

blocks = 200, # No. of data blocks recorded in scalar.dat

steps = 10, # No. of steps per block

substeps = 3, # MC steps taken w/o computing E_local

samplesperthread = 40 # No. of dmc walkers per thread

),

dmc(# dmc parameters

timestep = 0.01, # dmc timestep (1/Ha)

warmupsteps = 50, # No. of MC steps before data is collected

blocks = 400, # No. of data blocks recorded in scalar.dat

steps = 5, # No. of steps per block

nonlocalmoves = True # use Casula’s T-moves

), # (retains variational principle for NLPP’s)

],

return a list or object containing simulations

return_list = False

)

#the project manager monitors all runs

CHAPTER 4. COMPLETE EXAMPLES 11

pm = ProjectManager()

give it the simulation objects

pm.add_simulations(qsims.list())

run all the simulations

pm.run_project()

print out the total energy

performed_runs = not settings.generate_only and not settings.status_only

if performed_runs:

get the qmcpack analyzer object

it contains all of the statistically analyzed data from the run

qa = qsims.qmc.load_analyzer_image()

get the local energy from dmc.dat

le = qa.dmc[1].dmc.LocalEnergy # dmc series 1, dmc.dat, local energy

print the total energy for the 8 atom system

print ’The DMC ground state energy for graphene is:’

print ’ {0} +/- {1} Ha’.format(le.mean,le.error)

#end if

To run the example, navigate to the example directory and type

./graphene_example.py

or, alternatively,

python ./graphene_example.py

You should see output like this (without the added # comments):

Pseudopotentials # reading pseudopotential files

reading pp: ./pseudopotentials/C.BFD.upf

reading pp: ./pseudopotentials/C.BFD.xml

Project starting

CHAPTER 4. COMPLETE EXAMPLES 12

checking for file collisions # ensure created files don’t overlap

loading cascade images # load previous simulation state

cascade 0 checking in

checking cascade dependencies # ensure sim.’s have needed dep.’s

all simulation dependencies satisfied

starting runs: # start submitting jobs

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

poll 0 memory 56.28 MB

Entering ./runs/graphene_test/scf 0 # scf job

writing input files 0 scf # input file written

Entering ./runs/graphene_test/scf 0

sending required files 0 scf # PP files copied

submitting job 0 scf # job is in virtual queue

Entering ./runs/graphene_test/scf 0

Executing: # job executed on workstation

export OMP_NUM_THREADS=1

mpirun -np 16 pw.x -input scf.in

poll 1 memory 56.30 MB # waiting for job to finish

poll 2 memory 56.30 MB

poll 3 memory 56.30 MB

poll 4 memory 56.30 MB

Entering ./runs/graphene_test/scf 0

copying results 0 scf # job is finished, copy results

Entering ./runs/graphene_test/scf 0

analyzing 0 scf # analyze output data

# now do the same for

# nscf job for Jastrow opt

# single k-point

# nscf job for VMC/DMC

# multiple k-points

poll 5 memory 56.31 MB

Entering ./runs/graphene_test/nscf 1 # nscf dmc

writing input files 1 nscf

...

Entering ./runs/graphene_test/nscfopt 4 # nscf opt

writing input files 4 nscf

...

# now convert KS orbitals

# from planewave to bspline



CHAPTER 4. COMPLETE EXAMPLES 13

# with pw2qmcpack.x

# for nscf opt & nscf dmc

poll 7 memory 56.32 MB

Entering ./runs/graphene_test/nscf 2 # convert dmc orbitals

sending required files 2 p2q

...

Entering ./runs/graphene_test/nscfopt 4 # convert opt orbitals

copying results 4 nscf

...

poll 10 memory 56.32 MB

Entering ./runs/graphene_test/opt 6 # submit jastrow opt

writing input files 6 opt # write input file

Entering ./runs/graphene_test/opt 6

sending required files 6 opt # copy PP files

submitting job 6 opt # job is in virtual queue

Entering ./runs/graphene_test/opt 6

Executing: # run qmcpack

export OMP_NUM_THREADS=1 # w/ complex arithmetic

mpirun -np 16 qmcapp_complex opt.in.xml

poll 11 memory 56.32 MB

poll 12 memory 56.32 MB

poll 13 memory 56.32 MB

...

...

...

poll 793 memory 56.32 MB # qmcpack opt finishes

poll 794 memory 56.32 MB # nearly an hour later

poll 795 memory 56.32 MB

Entering ./runs/graphene_test/opt 6

copying results 6 opt # copy output files

Entering ./runs/graphene_test/opt 6

analyzing 6 opt # analyze the results

poll 796 memory 56.41 MB

Entering ./runs/graphene_test/qmc 3 # submit dmc

writing input files 3 qmc # write input file

Entering ./runs/graphene_test/qmc 3

sending required files 3 qmc # copy PP files

submitting job 3 qmc # job is in virtual queue

Entering ./runs/graphene_test/qmc 3

Executing: # run qmcpack



CHAPTER 4. COMPLETE EXAMPLES 14

export OMP_NUM_THREADS=1

mpirun -np 16 qmcapp_complex qmc.in.xml

poll 797 memory 57.31 MB

poll 798 memory 57.31 MB

poll 799 memory 57.31 MB

...

...

...

poll 1041 memory 57.31 MB # qmcpack dmc finishes

poll 1042 memory 57.31 MB # about 15 minutes later

poll 1043 memory 57.31 MB

Entering ./runs/graphene_test/qmc 3

copying results 3 qmc # copy output files

Entering ./runs/graphene_test/qmc 3

analyzing 3 qmc # analyze the results

Project finished # all jobs are finished

The DMC ground state energy for graphene is:

-45.824960552 +/- 0.00498990689364 Ha # one value from

# qmcpack analyzer

If successful, you have just performed a start-to-finish QMC calculation. The total
energy quoted above probably will not match the one you produce due to different compi-
lation environments and the probabilistic nature of QMC. They should not, however differ
by three sigma.

Take some time to inspect the input files generated by Nexus and the output files from
PWSCF and QMCPACK. The runs were performed in sub-directories of the runs directory.
The order of execution of the simulations is roughly scf, nscf, nscfopt, opt, then qmc.

runs

graphene_test

nscf

nscf.in

nscf.out

nscfopt

nscf.in

nscf.out

opt

opt.in.xml

opt.out



CHAPTER 4. COMPLETE EXAMPLES 15

qmc

qmc.in.xml

qmc.out

scf

scf.in

scf.out

The directories above contain all the files generated by the simulations. Often one only
wants to save the files with the most important data, which are generally small. These are
copied to the results directory which mirrors the structure of runs.

results

runs

graphene_test

nscf

nscf.in

nscf.out

nscfopt

nscf.in

nscf.out

opt

opt.in.xml

opt.out

qmc

qmc.in.xml

qmc.out

scf

scf.in

scf.out

Although this QMC run was performed at a single k-point, a twist-averaged run could
be performed simply by changing kgrid in generate physical system from (1,1,1) to
(4,4,1), or similar.



CHAPTER 4. COMPLETE EXAMPLES 16

Example: C 20 Molecule DMC

The files for this example are found in:

/your_download_path/nexus/examples/simple_qmc/c20_example

Take a moment to study the “input file” script (c20 example.py) and the attendant
comments (prefixed with #). The relevant differences from the graphene example mostly
involve how the structure is procured (it is read from an XYZ file rather than being gener-
ated), the boundary conditions (open BC’s, see bconds in the QMCPACK input parame-
ters), and the workflow involved (as opposed to standard qmc, basic qmc does not perform
non-self-consistent DFT calculations).

#! /usr/bin/env python

from nexus import settings,ProjectManager,Job

from nexus import Structure,PhysicalSystem

from nexus import loop,linear,vmc,dmc

from qmcpack_calculations import basic_qmc

#general settings for Nexus

settings(

pseudo_dir = ’./pseudopotentials’,# directory with all pseudopotentials

sleep = 3, # check on runs every ’sleep’ seconds

generate_only = 0, # only make input files

status_only = 0, # only show status of runs

machine = ’node16’, # local machine is 16 core workstation

)

#generate the C20 physical system

# specify the xyz file

structure_file = ’c20.cage.xyz’

# make an empty structure object

structure = Structure()

# read in the xyz file

structure.read_xyz(structure_file)

# place a bounding box around the structure

structure.bounding_box(

box = ’cubic’, # cube shaped cell



CHAPTER 4. COMPLETE EXAMPLES 17

scale = 1.5 # 50% extra space

)

# make it a gamma point cell

structure.add_kmesh(

kgrid = (1,1,1), # Monkhorst-Pack grid

kshift = (0,0,0) # and shift

)

# add electronic information

c20 = PhysicalSystem(

structure = structure, # C20 structure

net_charge = 0, # net charge in units of e

net_spin = 0, # net spin in units of e-spin

C = 4 # C has 4 valence electrons

)

#generate the simulations for the qmc workflow

qsims = basic_qmc(

# subdirectory of runs

directory = ’c20_test’,

# description of the physical system

system = c20,

pseudos = [’C.BFD.upf’, # pwscf PP file

’C.BFD.xml’], # qmcpack PP file

# job parameters

scfjob = Job(cores=16), # cores to run scf

optjob = Job(cores = 16, # cores for optimization

app_name = ’qmcapp’), # use real-valued qmcpack

qmcjob = Job(cores = 16, # cores for qmc

app_name = ’qmcapp’), # use real-valued qmcpack

# dft parameters (pwscf)

functional = ’lda’, # dft functional

ecut = 150 , # planewave energy cutoff (Ry)

conv_thr = 1e-6, # scf convergence threshold (Ry)

mixing_beta = .7, # charge mixing factor

# qmc wavefunction parameters (qmcpack)

bconds = ’nnn’, # open boundary conditions

meshfactor = 1.0, # bspline grid spacing, larger is finer

jastrows = [

dict(type = ’J1’, # 1-body

function = ’bspline’, # bspline jastrow

size = 8, # with 8 knots

rcut = 6.0), # and a radial cutoff of 6 bohr

dict(type = ’J2’, # 2-body

function = ’bspline’, # bspline jastrow

size = 8, # with 8 knots



CHAPTER 4. COMPLETE EXAMPLES 18

rcut = 8.0), # and a radial cutoff of 8 bohr

],

# opt parameters (qmcpack)

perform_opt = True, # produce optimal jastrows

block_opt = False, # if true, ignores opt and qmc

skip_submit_opt = False, # if true, writes input files, does not run opt

opt_calcs = [ # qmcpack input parameters for opt

loop(max = 4, # No. of loop iterations

qmc = linear( # linearized optimization method

energy = 0.0, # cost function

unreweightedvariance = 1.0, # is all unreweighted variance

reweightedvariance = 0.0, # no energy or r.w. var.

timestep = 0.5, # vmc timestep (1/Ha)

warmupsteps = 100, # MC steps before data collected

samples = 16000,# samples used for cost function

stepsbetweensamples = 10, # steps between uncorr. samples

blocks = 10, # ignore this

minwalkers = 0.1,# and this

bigchange = 15.0,# and this

alloweddifference = 1e-4 # and this, for now

)

)

],

# qmc parameters (qmcpack)

block_qmc = False, # if true, ignores qmc

skip_submit_qmc = False, # if true, writes input file, does not run qmc

qmc_calcs = [ # qmcpack input parameters for qmc

vmc( # vmc parameters

timestep = 0.5, # vmc timestep (1/Ha)

warmupsteps = 100, # No. of MC steps before data is collected

blocks = 200, # No. of data blocks recorded in scalar.dat

steps = 10, # No. of steps per block

substeps = 3, # MC steps taken w/o computing E_local

samplesperthread = 40 # No. of dmc walkers per thread

),

dmc( # dmc parameters

timestep = 0.01, # dmc timestep (1/Ha)

warmupsteps = 50, # No. of MC steps before data is collected

blocks = 400, # No. of data blocks recorded in scalar.dat

steps = 5, # No. of steps per block

nonlocalmoves = True # use Casula’s T-moves

), # (retains variational principle for NLPP’s)

],

# return a list or object containing simulations

return_list = False

)



CHAPTER 4. COMPLETE EXAMPLES 19

#the project manager monitors all runs

pm = ProjectManager()

# give it the simulation objects

pm.add_simulations(qsims.list())

# run all the simulations

pm.run_project()

# print out the total energy

performed_runs = not settings.generate_only and not settings.status_only

if performed_runs:

# get the qmcpack analyzer object

# it contains all of the statistically analyzed data from the run

qa = qsims.qmc.load_analyzer_image()

# get the local energy from dmc.dat

le = qa.dmc[1].dmc.LocalEnergy # dmc series 1, dmc.dat, local energy

# print the total energy for the 20 atom system

print ’The DMC ground state energy for C20 is:’

print ’ {0} +/- {1} Ha’.format(le.mean,le.error)

#end if

To run the example, navigate to the example directory and type

./c20_example.py

or, alternatively,

python ./c20_example.py

You should see output like this (without the added # comments):



CHAPTER 4. COMPLETE EXAMPLES 20

Pseudopotentials # reading pseudopotential files

reading pp: ./pseudopotentials/C.BFD.upf

reading pp: ./pseudopotentials/C.BFD.xml

Project starting

checking for file collisions # ensure created files don’t overlap

loading cascade images # load previous simulation state

cascade 0 checking in

checking cascade dependencies # ensure sim.’s have needed dep.’s

all simulation dependencies satisfied

starting runs: # start submitting jobs

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

poll 0 memory 56.21 MB

Entering ./runs/c20_test/scf 0 # scf job

writing input files 0 scf # input file written

Entering ./runs/c20_test/scf 0

sending required files 0 scf # PP files copied

submitting job 0 scf # job is in the virtual queue

Entering ./runs/c20_test/scf 0

Executing: # job executed on workstation

export OMP_NUM_THREADS=1

mpirun -np 16 pw.x -input scf.in

poll 1 memory 56.23 MB # waiting for job to finish

poll 2 memory 56.23 MB

poll 3 memory 56.23 MB

poll 4 memory 56.23 MB

poll 5 memory 56.23 MB

poll 6 memory 56.23 MB

poll 7 memory 56.23 MB

poll 8 memory 56.23 MB

Entering ./runs/c20_test/scf 0

copying results 0 scf # job is finished, copy results

Entering ./runs/c20_test/scf 0

analyzing 0 scf # analyze output data

poll 9 memory 56.23 MB # now convert KS orbitals

Entering ./runs/c20_test/scf 1 # from planewave to bspline

writing input files 1 p2q # with pw2qmcpack.x

...

poll 12 memory 56.23 MB

Entering ./runs/c20_test/opt 3 # submit jastrow opt

CHAPTER 4. COMPLETE EXAMPLES 21

writing input files 3 opt # write input file

Entering ./runs/c20_test/opt 3

sending required files 3 opt # copy PP files

submitting job 3 opt # job is in virtual queue

Entering ./runs/c20_test/opt 3

Executing: # run qmcpack

export OMP_NUM_THREADS=1 # w/ real arithmetic

mpirun -np 16 qmcapp opt.in.xml

poll 13 memory 56.24 MB

poll 14 memory 56.24 MB

poll 15 memory 56.24 MB

...

...

...

poll 204 memory 56.24 MB # qmcpack opt finishes

poll 205 memory 56.24 MB # about 10 minutes later

poll 206 memory 56.24 MB

Entering ./runs/c20_test/opt 3

copying results 3 opt # copy output files

Entering ./runs/c20_test/opt 3

analyzing 3 opt # analyze the results

poll 207 memory 56.27 MB

Entering ./runs/c20_test/qmc 2 # submit dmc

writing input files 2 qmc # write input file

Entering ./runs/c20_test/qmc 2

sending required files 2 qmc # copy PP files

submitting job 2 qmc # job is in virtual queue

Entering ./runs/c20_test/qmc 2

Executing: # run qmcpack

export OMP_NUM_THREADS=1

mpirun -np 16 qmcapp qmc.in.xml

poll 208 memory 56.49 MB

poll 209 memory 56.49 MB

poll 210 memory 56.49 MB

...

...

...

poll 598 memory 56.49 MB # qmcpack dmc finishes

poll 599 memory 56.49 MB # about 20 minutes later

poll 600 memory 56.49 MB

Entering ./runs/c20_test/qmc 2

CHAPTER 4. COMPLETE EXAMPLES 22

copying results 2 qmc # copy output files

Entering ./runs/c20_test/qmc 2

analyzing 2 qmc # analyze the results

Project finished # all jobs are finished

The DMC ground state energy for C20 is:

-112.890695404 +/- 0.0151688786226 Ha # one value from

qmcpack analyzer

Again, the total energy quoted above probably will not match the one you produce due
to different compilation environments and the probabilistic nature of QMC. The results
should still be statistically comparable.

The directory trees generated by Nexus for C 20 have a similar structure to the graphene
example. Note the absence of the nscf runs. The order of execution of the simulations is
scf, opt, then qmc.

runs

c20_test

opt

opt.in.xml

opt.out

qmc

qmc.in.xml

qmc.out

scf

scf.in

scf.out

results

runs

c20_test

opt

opt.in.xml

opt.out

qmc

qmc.in.xml

qmc.out

scf

scf.in

scf.out

5 Nexus User Reference

Pending.

5.1 Reading what you wrote

5.2 Nexus settings: global state and user-specific
information

The first section of a project script is often dedicated to providing information regarding the
local machine, the location of various files, and the desired behavior of the ProjectManager.
This information is communicated to Nexus through the settings function. The settings
function is available in the project module. To make settings available in your project
script, use the following import statement:

from nexus import settings

How to use the settings function

In most cases, it is sufficient to supply only four pieces of information through the settings
function: whether to run all jobs or just create the input files, how often to check jobs for
completion, the location of pseudopotential files, and a description of the local machine.

settings(

generate_only = True, # only write input files, do not run

sleep = 3, # check on jobs every 3 seconds

pseudo_dir = ’./pseudopotentials’, # path to PP file collection

machine = ’node8’ # local machine is an 8 core workstation

)

A few additional parameters are available in settings to control where runs are per-
formed, where output data is gathered, and whether to print job status information.

23

CHAPTER 5. NEXUS USER REFERENCE 24

More detailed information about both local and target machines can be provided, such
as allocation account numbers, filesystem structure, and where executables are located.

settings(

generate_only = True, # only write input files, do not run

sleep = 3, # check on jobs every 3 seconds

pseudo_dir = ’./pseudopotentials’, # path to PP file collection

machine = ’node8’ # local machine is an 8 core workstation

)

Accessing settings data

6 QMC Practice
in a Nutshell

The aim of this section is to provide a very brief overview of the essential concepts under-
girding Quantum Monte Carlo calculations of electronic structure with a particular focus on
the key approximations and quantities to converge to achieve high accuracy. The discussion
here is not intended to be comprehensive. For deeper perspectives on QMC, please see the
review articles listed in the “Recommended Reading” section (7.4).

6.1 VMC and DMC in the abstract

Ground state QMC methods, such as Variational (VMC) and Diffusion (DMC) Monte
Carlo, attempt to obtain the ground state energy of a many-body quantum system.

E0 =
〈Ψ0|Ĥ|Ψ0〉
〈Ψ0|Ψ0〉

(6.1.1)

The VMC method obtains an upper bound on the ground state energy (guaranteed by the
Variational Principle) by introducing a guess at the ground state wavefunction, known as
the trial wavefunction ΨT :

EVMC =
〈ΨT |Ĥ|ΨT 〉
〈ΨT |ΨT 〉

≥ E0 (6.1.2)

The DMC method improves on this variational bound by projecting out component eigen-
states of the trial wavefunction lying higher in energy than the ground state. The operator
that acts as a projector is the imaginary time, or thermodynamic, density matrix:

|Ψt〉 = e−tĤ |ΨT 〉

= e−tE0

(
|Ψ0〉+

∑
n>0

e−t(En−E0)|Ψn〉

)
−−−→
t→∞

e−tE0 |Ψ0〉 (6.1.3)

The DMC energy approaches the ground state energy from above as the imaginary time
becomes large.

EDMC = lim
t→∞

〈Ψt|Ĥ|Ψt〉
〈Ψt|Ψt〉

= E0 (6.1.4)

25

CHAPTER 6. QMC PRACTICE
IN A NUTSHELL 26

However from the equations above, one can already anticipate that the DMC method will
struggle in the face of degeneracy or near-degeneracy.

In principle, the DMC method is exact for the ground state, but further complica-
tions arise for systems that are extended, comprised of fermions, or contain heavy nuclei,
pseudized or otherwise. Approximations arising from the numerical implementation of the
method also require care to keep under control.

6.2 From expectation values to random walks

Evaluating expectation values of a many-body system involves performing high dimensional
integrals (the dimensionality is at least the dimensions of the physical space times the
number of particles). In VMC, for example, the expectation value of the total energy is
represented succinctly as:

EVMC =

∫
dR|ΨT |2EL (6.2.1)

where EL is the local energy EL = Ψ−1
T ĤΨT . The other factor in the integral |ΨT |2 can

clearly be thought of as a probability distribution and can therefore be sampled by Monte
Carlo methods (such as the Metropolis algorithm) to evaluate the integral exactly.

The sampling procedure takes the form of random walks. A “walker” is just a set of
particle positions, along with a weight, that evolves (or moves) to new positions according
to a set of statisical rules. In VMC as few walkers are used as possible to reduce the
equilibration time (the number of steps or moves required to lose a memory of the potentially
poor starting guess for particle posistions). In DMC, the walker population is a dynamic
feature of the calculation and must be large enough to avoid introducing bias in expectation
values.

The tradeoff of moving to a the sampling procedure for the integration is that it in-
troduces statistical error into the calculation which diminishes slowly with the number of
samples (it falls off like 1/(#ofsamples) by the Central Limit Theorem). The good news
for ground state QMC is that this error can be reduced more rapidly through the discovery
of better guesses at the detailed nature of the many-body wavefunction.

6.3 Quality orbitals: planewaves, cutoffs, splines, and
meshes

Acting on an understanding of perturbation theory, the zeroth order representation of the
wavefunction of an interacting system takes the form of a Slater determinant of single par-
ticle orbitals. In practice, QMC calculations often obtain a starting guess at these orbitals
from Hartree-Fock or Density Functional Theory calculations (which already contain non-
perturbative contributions from correlation). An important factor in the generation and
use of these orbitals is to ensure that they are described to high accuracy within the parent
theory.

For example, when taking orbitals from a planewave DFT calculation, one must take
care to converge the planewave energy cutoff to a sufficient level of accuracy (usually far

CHAPTER 6. QMC PRACTICE
IN A NUTSHELL 27

beyond what is required to obtain an accurate DFT energy). One criterion to use it to
converge the kinetic energy of the Kohn-Sham wavefunction with respect to the planewave
energy cutoff until it is accurate to the energy scale you care about in your production QMC
calcuation. For systems with a small number of valence electrons, a cutoff of around 200 Ry
is often sufficient. To obtain the kinetic energy from a PWSCF calculation the pw2casino.x
post-processing tool can be used. In Nexus one has the option to compute the kinetic energy
by setting the kinetic E flag in the standard qmc or basic qmc convenience functions.

For efficiency reasons, QMC codes often use a real-space representation of the wave-
function. It is common to represent the orbitals in terms of B-splines which have control
points, or knots, that fall on a regular 3-D mesh. Analogous to the planewave cutoff, the
fineness of the B-spline mesh controls the quality of the represented orbitals. To verify
that the quality of the orbitals has not been compromised during the conversion process
from planewave to B-spline, one often performs a VMC calculation with the B-spline Slater
determinant wavefunction to obtain the kinetic energy. This value should agree with the
kinetic energy of the planewave representation within the energy scale of interest.

In QMCPACK, the B-spline mesh is controlled with the meshfactor keyword. Larger
values correspond to finer meshes. A value of 1.0 usually gives a similar quality represen-
tation as the original planewave calculation. Control of this parameter is made available
in Nexus through the meshfactor keyword in the standard qmc or basic qmc convenience
functions.

6.4 Quality Jastrows: less variance = more efficient

Taking a further que from perturbation theory, the first order correction to the Slater
determinant wavefunction is the Jastrow correlation prefactor.

ΨT ≈ e−JΨSlater Det. (6.4.1)

In a quantum liquid, an appropriate form for the Jastrow factor is:

J =
∑
i<j

uij(|ri − rj |) (6.4.2)

This form is often used without modification in electronic structure calculations. Note that
the correlation factors uij can be different for particles of differing species, or, if one of
the particles in the pair is classical (such as a heavy atomic nucleus), the local electronic
environment varies across the system.

The primary role of the Jastrow factor is to increase the efficiency of the QMC calcu-
lation. The variance of the local energy across all samples of the random walk is directly
related to the statistical error of the final results:

vΨT
=

1

Nsamples

∑
s∈samples

EL(s)2 −

 1

Nsamples

∑
s∈samples

EL(s)

2

(6.4.3)

σerror ≈
√

vΨT

Nsamples
(6.4.4)

CHAPTER 6. QMC PRACTICE
IN A NUTSHELL 28

The variance of local energy is usually minimized by performing a statistical optimization
of the Jastrow factor with QMC.

In addition to selecting a good form for the pair correlation functions uij (which are rep-
resented in QMCPACK as 1-D B-spline functions with a finite cutoff radius), the (iterative)
optimization procedure must be performed with a sufficient number of samples to converge
all the free parameters. Starting with a small number of samples (≈ 20, 000) is usually
preferable for early iterations, followed by a larger number for later iterations. This larger
number is something close to 100, 000× (# of free parameters)2. For B-spline functions,
the number of free parameters is the number of control points, or knots.

The number of samples is controlled with the samples keyword in QMCPACK. Control
of this parameter is made available in Nexus through the samples keyword in the linear or
cslinear convenience functions (Which are often used in conjunction with standard qmc

or basic qmc). For a B-spline correlation factor, the number of free parameters/knots is
indicated by the size keyword in either QMCPACK or Nexus.

6.5 Finite size effects: k-points, supercells, and corrections

For extended systems, finite size errors are a key consideration. In addition to the finite size
effects that are typically seen in DFT (k-points related). Correlated, many-body methods
such as QMC also must contend with correlation-related finite size effects. Both types of
finite-size effects are reduced by simply using larger supercells. The complete elimination
of finite size effects using this approach can be prohibitively costly since the finite size error
typically falls off like 1/ΩC , where ΩC is the volume of the supercell. A more sophisticated
approach involves a combination of the supercell size, k-point grid, and additional estimated
corrections for correlation finite size effects.

Although there is no firm rule on the selection of these three elements, adhering to some
general guidelines is usually helpful. For a production calculation of an extended system, the
minimum supercell size is around 50 atoms. The size of the supercell k-point grid can then
be determined by proxy with a DFT calculation (converge the energy down to the scale of
interest). Note that although the cost of a DFT calculation scales linearly with the number
of k-points, the cost of the corresponding QMC calculation is hardly increased due to the
statistical averaging of the results (the QMC calculation at each separate supercell k-point
is simply performed with fewer samples so that the total number of samples remains fixed
w.r.t. the number of k-points). Finally, corrections for correlation-related finite size effects
are computed during the QMC run and added to the result by hand in post-processing the
data.

In Nexus, the supercell size is controlled through the tiling parameter in the generate physical system,
generate structure, Structure, or Crystal convenience functions. Supercells can also be
constructed by tiling exising structures through the tile member function of Structure

or PhysicalSystem objects. The k-point grid is controlled through the kgrid parame-
ter in the generate physical system, generate structure, Structure, or Crystal con-
venience functions. K-point grids can also be added to existing structures through the
add kmesh member function of Structure or PhysicalSystem objects.

CHAPTER 6. QMC PRACTICE
IN A NUTSHELL 29

6.6 Imaginary time discretization: the DMC timestep

An analytic form for the imaginary time projection operator is not known, but real-space
approximations to it can be obtained in the small time limit. With importance sampling
included (not covered here), the short-time projector splits into two parts, known as the
drift-diffusion and branching factors (shown below in atomic units):

ρ(R′, R; t) = 〈R′|Ψ̂T e
−tĤΨ̂T

−1|R〉 (6.6.1)

= Gd(R′, R; t)Gb(R
′, R, t) +O(t2) (6.6.2)

Gd(R′, R; t) ≡ exp
(
− 1

2t

[
R′ −R− t∇R log ΨT (R)

]2)
(6.6.3)

Gb(R
′, R; t) ≡ exp

(
1
2

[
EL(R′) + EL(R)

])
(6.6.4)

The long-time projector is found as the product of many approximate short-time solutions,
which takes the form of a many-body path integral in real space:

ρ(RM , R0;Mτ) =

∫
dR1dRM−1 . . .

M−1∏
m=0

ρ(Rm+1, Rm; τ) (6.6.5)

The short-time parameter τ is known as the DMC timestep and accurate quantities are
obtained only in the limit as τ approaches zero.

Ensuring that the timestep error is sufficiently small usually involves performing many
DMC calculations over a range of timesteps (sometimes on a smaller supercell than the
production calculation). The largest timestep is chosen that produces a bias smaller than
the energy scale of interest. For very high accuracy, one uses the total energy as a function
of timestep to extrapolate to the zero time limit.

The DMC timestep is made available in Nexus through the timestep parameter of
the dmc convenience function (which is often used in conjuction with the standard qmc,
basic qmc, generate qmcpack, or Qmcpack functions).

6.7 Population control bias: safety in numbers

While the drift-diffusion factor Gd(R′, R; τ) can be sampled exactly using Gaussian dis-
tributed random numbers (this generates the DMC random walk), the branching factor
Gb(R

′, R; τ) is handled a different way for efficiency. The product of branching factors over
an imaginary time trajectory (random walk) serves as a statistical weight for each walker.
The fluctuations in this weight rapidly become quite large as the random walk progresses
(because it approaches an infinite product of real numbers). As its name suggests, this
weight factor is used to “branch” walkers every few steps. If the weight is small the walker
is deleted, but if the weight is large the walker is copied many times (“branched”) with
each copy carrying a weight close to unity. This is more efficient because more walkers are
created (and thus more statistics are gathered) in the high weight regions of phase space
that contribute most to the integral.

The branching process in DMC naturally leads to a fluctuating population of walkers.
The fluctuations in the walker population, if left to its own dynamics, are unbounded. This
means that the walker population can grow very large, or even become zero. To prevent

CHAPTER 6. QMC PRACTICE
IN A NUTSHELL 30

collapse of the walker population, population control techniques (not covered here) are
added to the algorithm. The practical upshot of population control is that it introduces a
systematic bias in the DMC results that scales like 1/(#ofwalkers) (Although note that
another route to reduce the population control bias is to improve the trial wavefunction,
since the fluctuations in the branching weights will become zero for the exact ground state).

For many production calculations, population control bias is not much of an issue be-
cause the simulations are performed on supercomputers with thousands of cores per run,
and thus tens of thousands of walkers. As a rule of thumb, the walker population should
at least number in the thousands. One should occasionally explicitly check the magnitude
of the population control bias for the system under study since predictions have been made
that it will eventually diverge exponentially with the number of particles in the system.

The DMC walker population can be directly controlled in QMCPACK or Nexus through
the samples (total walker population) or samplesperthread (walkers per OpenMP thread)
keywords in the VMC block directly proceeding DMC (vmc convenience function in Nexus).
If you opt to use the samples keyword, check that each thread in the calculation will have
at least a few walkers.

6.8 The fixed node/phase approximation: varying the
nodes/phase

For every fermionic system, the bosonic ground state lies lower in energy than the fermionic
ground state. This means that projection methods like DMC will approach the bosonic
ground state exponentially fast in imaginary time if unconstrained (this would show up
as an exponentially diverging statistical error). In order to guarantee that the projected
wavefunction remains in the space of fermionic functions (and consequently that the pro-
jected energy remains an upper bound to the fermionic ground state energy), the projected
wavefunction is constrained to share the nodes (if it is real-valued) or the phase (if it is
complex-valued) of the trial wavefunction. The fixed node/phase approximation represents
one of the two most important approximations for electronic structure calculations (the
other is the pseudopotential approximation covered in the next section).

The fixed node/phase error can be reduced, but it cannot be completely eliminated un-
less the exact nodes/phase is known. A common approach to reduce the fixed node/phase
error is to perform several DMC calculations (sometimes on a smaller supercell) with differ-
ent sets of orbitals (perhaps generated with different functionals). Another, more expensive
approach, is to include the backflow transformation (this is the second order correction to
the wavefunction; it is not covered in any detail here) to get a lower bound on how large
the fixed node error is in standard Slater-Jastrow calculations.

To perform a calculation of this type (scanning over orbitals from different function-
als) with Nexus, the DFT functional can be selected with the functional keyword in
the standard qmc or basic qmc convenience functions. If you are using pseudopotentials
generated for use in DFT, you should maintain consistency between the functional and
pseudopotential. Even if such consistency is maintained, the impact of using DFT pseu-
dopotentials (or those made with many other theories) in QMC can be significant.

CHAPTER 6. QMC PRACTICE
IN A NUTSHELL 31

6.9 Pseudopotentials: theoretical dissonance, the locality
approximation, and T-moves

The accurate use of pseudopotentials in electronic structure QMC calculations remains
one of the largest challenges in current practice. The necessity for pseudopotentials arises
from the rapidly increasing computational cost with increasing nuclear charge (it scales
like Z6, compared with the N3

electrons scaling with Z fixed). The challenge in using pseu-
dopotentials in QMC is that practically no pseudopotentials exist that have been generated
self-consistently with QMC. In other words, QMC is currently reliant on other theories to
provide the pseudopotentials, which can be a critical source of error.

The current state-of-the-art is not without rigor, however. One source of Dirac-Fock
based pseudopotentials, the Burkatzki-Filippi-Dolg database (see http://www.burkatzki.

com/pseudos/index.2.html), has been explicitly vetted against quantum chemistry calcu-
lations of atoms (a higher-fidelity proxy for QMC calculations of small systems). It must
be stressed that these pseudopotentials should still be validated for use in a particular tar-
get system. Another collection of Dirac-Fock pseudopotentials that have been created for
use in QMC can be found in the Trail-Needs database (see http://www.tcm.phy.cam.ac.

uk/~mdt26/casino2_pseudopotentials.html). Many current calculations also use the
OPIUM package (see http://opium.sourceforge.net/) to generate DFT pseudopoten-
tials and then port them directly to QMC.

Whatever the source of pseudopotentials (but perhaps especially so for those derived
from DFT), testing and validation remains an important step preceeding production calcula-
tions. One option is to perform parallel pseudopotential and all-electron DMC calculations
of atoms with varying electron count (i.e. ionization potential/electron affinity calcula-
tions). As with any electronic structure calculation, it is also advisable to devise a test
in or close to the target host environment. Validating pseudopotentials remains a difficult
task, and while the suggestions presented here may be of some help, they do not amount
to a panacea for the issue.

Beyond the central approximation of using a pseudopotential at all, two approxima-
tions unique to pseudopotential use in DMC merit discussion. The direct use of non-local
pseudopotentials in DMC leads to a second sign-problem (akin to the fixed-node issue)
in the imaginary time projector. One solution, devised first, is known as the locality ap-
proximation. In the locality approximation, the non-local pseudopotential is replaced by a
“localized” form: VNLPP → Ψ−1

T VNLPPΨT . This approximation becomes exact as the trial
wavefunction approaches the pseudo ground state, however the Variational Principle of the
pseudo-system is lost (though it should be acknowledged that a non-variational portion of
the energy has been discarded by using pseudopotentials at all). The Variational Principle
for the pseudo-system can be restored with an advanced sampling technique known as T-
moves (although the first incarnation of the technique reduces to the locality approximation
as the system becomes larger than several atoms, the second version fixes this oversight).

One can select whether to use the locality approximation or T-moves (version 1!) in
QMCPACK from within Nexus by setting the parameter nonlocalmoves to True or False
in the dmc convenience function.

http://www.burkatzki.com/pseudos/index.2.html
http://www.burkatzki.com/pseudos/index.2.html
http://www.tcm.phy.cam.ac.uk/~mdt26/casino2_pseudopotentials.html
http://www.tcm.phy.cam.ac.uk/~mdt26/casino2_pseudopotentials.html
http://opium.sourceforge.net/

CHAPTER 6. QMC PRACTICE
IN A NUTSHELL 32

6.10 Other approximations: what else is missing?

Though a few points could be selected for mention at this point, only one additional approx-
imation will be highlighted here. In most modern QMC calculations of electronic structure,
relativistic effects have been neglected entirely (there have been a few exceptions) or simply
assumed to be covered by the pseudopotential. Clearly this will become an issue for systems
with large effective core charges. At present, relativistic corrections are not available within
QMCPACK.

7 Recommended
Reading

The sections below contain information, or at least links to information, that should be
helpful for anyone who wants to use Nexus, but who is not an expert in one of the follow-
ing areas: installing python and related modules, installing PWSCF and QMCPACK, the
Python programming language, and the theory and practice of Quantum Monte Carlo.

7.1 Helpful Links for Installing Python Modules

Python itself
Download: http://www.python.org/download/
Be sure to get Python 2.x, not 3.x.

Numpy and Scipy
Download and installation: http://www.scipy.org/Installing_SciPy.

Matplotlib
Download: http://matplotlib.org/downloads.html
Installation: http://matplotlib.org/users/installing.html

H5py
Download and installation: http://www.h5py.org/

7.2 Helpful Links for Installing Electronic Structure Codes

PWSCF: pw.x, pw2qmcpack.x, pw2casino.x

Publicly available version

Download: svn co http://qmctools.googlecode.com/svn/dft/espresso-4.2
See also: http://qmcpack.cmscc.org/

Developer’s version:

Download: svn co https://subversion.assembla.com/svn/qmcdev/qe4.3.2
(QE 5.0 is not currently supported in Nexus)

33

http://www.python.org/download/
http://www.scipy.org/Installing_SciPy
http://matplotlib.org/downloads.html
http://matplotlib.org/users/installing.html
http://www.h5py.org/
http://qmcpack.cmscc.org/

CHAPTER 7. RECOMMENDED READING 34

Installation instructions: See section 2 of the User Guide (user guide.pdf) found in the Doc
directory of the distribution.

Wfconvert: wfconvert

Download: svn co http://qmctools.googlecode.com/svn/trunk/wfconvert
See also: http://qmcpack.cmscc.org/

QMCPACK: sqd, qmcapp, qmcapp complex

Install: http://users.nccs.gov/~jnkim/qmcpack/ug/a00001.html
See also: http://qmcpack.cmscc.org/getting-started

7.3 Brushing Up On Python

Python

Python is a flexible, multi-paradigm, interpreted programming language with powerful in-
trinsic datatypes and a large library of modules that greatly expand its functionality. A
good way to learn the language is through the extensive Documentation provided on the
python.org website. If you have never worked with Python before, be sure to go through
the Tutorial. To learn more about the intrinsic data types and standard libraries look at
Library Reference.

Documentation http://docs.python.org/2/

Tutorial http://docs.python.org/2/tutorial/index.html

Library Reference http://docs.python.org/2/library/index.html

NumPy

Other than the Python Standard Library, the main library/module Nexus makes heavy
use of is NumPy. NumPy provides a convenient and fairly fast implementation of multi-
dimensional arrays and related functions, much like MATLAB. If you want to learn about
NumPy arrays, the NumPy Tutorial is recommended. For more detailed information, see
the NumPy User Guide and the NumPy Reference Manual. If MATLAB is one of your
native languages, check out NumPy for MATLAB Users.

Tutorial http://www.scipy.org/Tentative_NumPy_Tutorial

User Guide http://docs.scipy.org/doc/numpy/user/index.html#user

Reference http://docs.scipy.org/doc/numpy/reference/

MATLAB http://www.scipy.org/NumPy_for_Matlab_Users

Matplotlib

Plotting in Nexus is currently handled by Matplotlib. If you want to learn more about
plotting with Matplotlib, the Pyplot Tutorial is a good place to start. More detailed
information is in the User’s Guide. Sometimes Examples provide the fastest way to learn.

http://qmcpack.cmscc.org/
http://users.nccs.gov/~jnkim/qmcpack/ug/a00001.html
http://qmcpack.cmscc.org/getting-started
http://docs.python.org/2/
http://docs.python.org/2/tutorial/index.html
http://docs.python.org/2/library/index.html
http://www.scipy.org/Tentative_NumPy_Tutorial
http://docs.scipy.org/doc/numpy/user/index.html#user
http://docs.scipy.org/doc/numpy/reference/
http://www.scipy.org/NumPy_for_Matlab_Users

CHAPTER 7. RECOMMENDED READING 35

Tutorial http://matplotlib.org/users/pyplot_tutorial.html

User’s Guide http://matplotlib.org/users/index.html

Examples http://matplotlib.org/examples/

Scipy and H5Py

Nexus also occasionally uses functionality from SciPy and H5Py. Learning more about
them is unlikely to help you interact with Nexus. However, they are quite valuable on
their own. SciPy provides access to special functions, numerical integration, optimization,
interpolation, fourier transforms, eigenvalue solvers, and statistical analysis. To get an
overview, try the SciPy Tutorial. More detailed material is found in the Scipy Reference.
H5Py provides a NumPy-like interface to HDF5 data files, which QMCPACK creates. To
learn more about interacting with HDF5 files through H5Py, try the Quick Start Guide.
For more information, see the General Documentation.

SciPy Tutorial http://docs.scipy.org/doc/scipy/reference/tutorial/index.html

SciPy Reference http://docs.scipy.org/doc/scipy/reference/

H5Py Quick Guide http://www.h5py.org/docs/intro/quick.html#quick

H5Py General Docs http://www.h5py.org/docs/

7.4 Quantum Monte Carlo: Theory and Practice

Currently, review articles may be the best way to get an overview of Quantum Monte Carlo
methods and practices. The review article by Foulkes, et al. from 2001 remains quite
relevant and is lucidly written. Other review articles also provide a broader perspective
on QMC, including more recent developments. Another resource that can be useful for
newcomers (and needs to be updated) is the QMC Wiki. If you are aware of resources
that fill a gap in the information presented here (almost a certainty), please contact the
developer at krogeljt@ornl.gov to add your contribution.

QMC Review Articles

Foulkes, 2001 http://rmp.aps.org/abstract/RMP/v73/i1/p33_1

Bajdich, 2009 http://www.physics.sk/aps/pub.php?y=2009&pub=aps-09-02

Needs, 2010 http://iopscience.iop.org/0953-8984/22/2/023201/

Kolorenc, 2011 http://iopscience.iop.org/0034-4885/74/2/026502/

Online Resources

QMCWiki www.qmcwiki.org

QMC Summer School 2012 http://www.mcc.uiuc.edu/summerschool/2012/program.html

http://matplotlib.org/users/pyplot_tutorial.html
http://matplotlib.org/users/index.html
http://matplotlib.org/examples/
http://docs.scipy.org/doc/scipy/reference/tutorial/index.html
http://docs.scipy.org/doc/scipy/reference/
http://www.h5py.org/docs/intro/quick.html#quick
http://www.h5py.org/docs/
http://rmp.aps.org/abstract/RMP/v73/i1/p33_1
http://www.physics.sk/aps/pub.php?y=2009&pub=aps-09-02
http://iopscience.iop.org/0953-8984/22/2/023201/
http://iopscience.iop.org/0034-4885/74/2/026502/
www.qmcwiki.org
http://www.mcc.uiuc.edu/summerschool/2012/program.html

Index

basic qmc, 8

generate physical system, 8

load analyzer image, 8

run project, 8

settings, 8
standard qmc, 8
Structure, 8

36

	Contents
	Using this document
	Overview of Nexus
	What Nexus is
	What Nexus can do
	How Nexus is used

	Nexus Installation
	Complete Examples
	Simple QMC Calculations

	Nexus User Reference
	Reading what you wrote
	Nexus settings: global state and user-specific information

	QMC Practice in a Nutshell
	VMC and DMC in the abstract
	From expectation values to random walks
	Quality orbitals: planewaves, cutoffs, splines, and meshes
	Quality Jastrows: less variance = more efficient
	Finite size effects: k-points, supercells, and corrections
	Imaginary time discretization: the DMC timestep
	Population control bias: safety in numbers
	The fixed node/phase approximation: varying the nodes/phase
	Pseudopotentials: theoretical dissonance, the locality approximation, and T-moves
	Other approximations: what else is missing?

	Recommended Reading
	Helpful Links for Installing Python Modules
	Helpful Links for Installing Electronic Structure Codes
	Brushing Up On Python
	Quantum Monte Carlo: Theory and Practice

	Index

