
NIFTY GUI
1.3.20
The Missing Manual

Book Credits

Authors

Jens Hohmuth (void)

Martin Karing (mkaring)
(Slick2D chapter)

Wesley Shillingford (wezrule)
(Grammar and spelling changes)

2

Documentversion

Version Release Author Changes

1.0 28.12.2011 Jens Hohmuth (void) Initial Version

1.1 12.11.2012 Jens Hohmuth (void) Update for Nifty 1.3.2

3

1.Introduction 10

2.Basics 11

Required Files 11

Additional Files 11

Nifty Service Provider Interface (SPI) 12

Initialize Nifty 13

Render and Update 14

Elements Introduction 14

Get Nifty Version String (Nifty 1.3.2) 15

3.GUI Definition 16

XML GUI 16

Introduction 16

Loading XML 16

Validating XML 17

Special XML Markup 19

Localization 20

JAVA GUI 21

Introduction 21

JAVA Creator Classes 21

JAVA Builder Classes 23

4.Elements 26

Screen 26

What is a Screen? 26

Screen Controller 26

4

Default Focus Element 28

Screen Level Keyboard Events 28

Layer 29

Panel 30

Text 31

Color Encoded Text 32

Additional Text Properties 32

Image 36

General Properties 36

ImageMode Property 37

Common Element Attributes 40

Popup Layers 42

Introduction 42

Define Popup Layers 43

Create Popup Instance 44

Display Popup Instance 44

Close and remove a Popup 44

5.Layout 45

Introduction 45

Vertical Layout 47

Horizontal Layout 51

Center Layout 54

Absolute Layout 57

Clipping 58

Absolute Inside 60
5

Overlay Layout 62

Padding 63

Example for Vertical Layout Padding 63

Example for Horizontal Layout Padding 64

Example for Center Layout Padding 65

Margin (Nifty 1.3.2) 66

Troubleshooting Layout 67

6.Basic Eventhandling 69

Introduction 69

Element Controllers 69

Mouse Events 69

Introduction 69

Call Methods with String Parameters 72

Mouse Coordinates for onClick and onClickMouseMoved 72

Additional Mouse Events 73

OnClickAlternateKey 73

Element Controller Example 74

Keyboard Events 76

Nifty Input Events and NiftyInputMapping 76

Screen Level Keyboard Events 77

Keyboard Events for individual Elements 78

Nifty Event Consuming and Disabling Event Processing (Nifty 1.3.2) 78

Disable event processing globally 78

Disable event processing for individual elements 78

7.Eventbus Eventhandling 80
6

Introduction 80

Subscribe for NiftyEvents 80

Using the @NiftyEventSubscriber annotation 81

Using the @NiftyEventSubscriber Annotation in any class 81

Subscribe directly for events without annotations 82

NiftyEvent Reference 83

Element based Events 83

Mouse based Events 83

Input Events 84

Standard Controls Events 84

General Mouse Event Processing Changes with Nifty 1.3.2 85

8.Effects 86

Introduction 86

Effect Events 88

Hover Effects 89

Manually Starting Effects 90

Effect Parameters 92

Dynamically change effect Parameter 93

Effects Reference 94

Custom Effects 94

9.Runtime Element Modification 96

Introduction 96

Access Elements 96

Request Element Properties 97

7

Modify Element Properties 98

Modify Layout 98

Move Elements to another Parent 99

Remove Elements 99

Change Panel, Image and Text Properties 100

10.Nifty Styles 101

Principles 101

Overwrite Attributes 102

Organize Styles in Files 102

11.Controls 103

Basics 103

Standard Controls and Styles 103

Control Include 103

Control API 105

Control Events 107

Control Reference 107

Custom Controls 108

Control Definition 108

Control Parameters 110

Control Styles 111

12.Integration with other Systems 113

Integration with jme3 113

Integration with slick2d 113

Basic Setup 113

8

Resource Loading API 114

Input forwarding 114

13.Reference 116

9

INTRODUCTION
Nifty GUI is a Java library to create interactive user interfaces. It is well integrated into many
existing rendering systems (JME3, JME2, LWJGL, JOGL, Slick2D and even Java2D). If necessary it
can be easily integrated into other rendering systems by implementing a simple Service Provider
Interface (SPI).

The actual GUI is stored in XML files (using a custom XSD) or it can be created directly from Java.
Java is used to respond to events generated by the GUI and to modify the GUI to reflect changes in
the state of your application, changing a text label for example. Additionally there is a large set of
effects available that can be used to modify the appearance of the GUI. Effects add the "nifty" part
to Nifty GUI :)

Besides many standard controls like buttons, textfields, scrollbars and so on Nifty provides a lot of
freedom and it can be used to create in-game HUD like displays as well. GUIs written with Nifty
can be more visual stunning and exciting of what you‘d usually expect from a Java GUI system.

Here are some screenshots from the Nifty example projects:

This manual will give you an in-depth view on how Nifty works and how you can use it in your own
applications.

10

BASICS
REQUIRED FILES
Since Nifty can be integrated into several different rendering systems there exists quite a number of
adapter jars besides the Nifty core module (one for each rendering system). Usually you won‘t need
all of them and only the one for the rendering system you‘d like to use.

At the very minimum Nifty consists of at least two Jar files:

1. The Nifty core module: nifty-<version>.jar

2. A Nifty rendering system adapter: nifty-<system>-<version>.jar

The following table lists all of the available renderer Jar files for Nifty.

System jar File

Nifty LWJGL nifty-lwjgl-renderer-1.3.jar

Nifty JME3 (Integrated into JME3)

Nifty JME2 not released yet for Nifty 1.3

Nifty Slick2D nifty-slick-renderer-1.3.jar

Nifty JOGL not released yet for Nifty 1.3

Nifty Java2D not released yet for Nifty 1.3

With the Nifty Core Jar and a renderer Jar you can already create and use Nifty. But there are
additional Jars available.

ADDITIONAL FILES
There is a separate Jar that contains the Nifty standard controls („nifty-default-controls-
<version>.jar“). This Jar provides standard GUI components like Button, Checkbox, ListBox and so
on.

Everything that this jar provides is based on the Nifty Core module. If you don‘t plan to use the
standard controls then this project can still be useful as a demonstration on how you can combine
the basic mechanism that Nifty provides into more complex controls.

The controls project is meant to be used together with an accompanying style file. We will get into
Nifty styles later in this book. For the moment you can see the „nifty-style-black-<version>.jar“ as
the specification on how the controls will look like. To use the Nifty standard controls you‘ll need to
add both, the „nifty-default-controls-<version>.jar“ and the „nifty-style-black-<version>.jar“ to
your Java classpath.

Last but not least Nifty supports sound output for playing background music or sound effects. For
sound there are two additional Jar files available that use OpenAL (using LWJGL) „nifty-openal-
soundsystem-<version>.jar“ or Pauls Soundsystem „nifty-pauls-soundsystem-<version>.jar“ for
sound output.

The following table lists all of the available additional Jars for reference.
11

http://sourceforge.net/projects/nifty-gui/files/nifty-gui/1.3/nifty-lwjgl-renderer-1.3.jar/download
http://sourceforge.net/projects/nifty-gui/files/nifty-gui/1.3/nifty-lwjgl-renderer-1.3.jar/download
http://sourceforge.net/projects/nifty-gui/files/nifty-gui/1.3/nifty-slick-renderer-1.3.jar/download
http://sourceforge.net/projects/nifty-gui/files/nifty-gui/1.3/nifty-slick-renderer-1.3.jar/download

Name Jar File

Nifty Standard Controls nifty-default-controls-<version>.jar

Nifty Standard Controls Style nifty-style-black-<version>.jar

Nifty OpenAL Soundsystem (LWJGL) nifty-openal-soundsystem-<version>.jar

Nifty Pauls Soundsystem nifty-pauls-soundsystem-<version>.jar

NIFTY SERVICE PROVIDER INTERFACE (SPI)
Nifty provides a couple of Java Interfaces that you can implement to make Nifty use whatever
rendering system you want to use. This is called a Service Provider Interface (SPI). The SPI for Nifty
consists of RenderDevice-, SoundSystem- and InputSystem-Java Interfaces. Here is a schematic
view of all the individual components involved in Nifty.

The InputSystem is usually implemented together with a RenderDevice implementation. The next
image shows all of the already available implementations of the Nifty SPI.

12

INITIALIZE NIFTY
To access Nifty and use it you‘ll first need to instantiate the de.lessvoid.nifty.Nifty class. To do so
you‘ll need to call the constructor which looks like this:

As you can see the Nifty constructor requires instances of the three subsystem implementations of
the SPI one for the RenderDevice, the SoundDevice and the InputSystem. Additionally it requires
a de.lessvoid.nifty.tools.TimeProvider instance. The TimeProvider is just a simple class for accessing
the current system time without scattering new Date() calls all over the system.

Currently most Nifty renderer Jars provide implementations for all three subsystems because they
often relate to each other. Usually all you need is the „nifty-<system>-renderer-<version>.jar“ for
your rendering system in the Java classpath to access implementations for all subsystems.

Additionally Nifty provides Null implementations for all three Interfaces in the
de.lessvoid.nifty.nulldevice package that you can use if you don‘t require an implementation for one
of the subsystems. So for instance if you don‘t need any sound output in your GUI you can just use
de.lessvoid.nifty.nulldevice.NullSoundDevice as the SoundDevice parameter when constructing the
Nifty instance and Nifty will not output any sound.

EXAMPLE

Here is an example of creating Nifty using LWJGL and no sound output support.

Please note that most Nifty RenderDevice implementations assume that you have already initialized
the underlying rendering system before you create Nifty using the constructor. In the example using
LWJGL you‘ll need to initialize LWJGL before you can create the Nifty instance.

The reason is that Nifty is probably not the only part of your system that needs to render things. So
Nifty lets you decide when and how you setup your rendering system and it does not try to overtake
your whole system.

We‘ll take a look at rendering and updating Nifty next.

 public Nifty(
 final RenderDevice newRenderDevice,
 final SoundDevice newSoundDevice,
 final InputSystem newInputSystem,
 final TimeProvider newTimeProvider);

LwjglInputSystem inputSystem = new LwjglInputSystem();
inputSystem.startup();

Nifty nifty = new Nifty(
 new LwjglRenderDevice(),
 new NullSoundDevice(),
 inputSystem,
 new TimeProvider());

13

RENDER AND UPDATE
There are only two calls to Nifty necessary that you‘ll need to call regularly.

One of them is nifty.render() which will render the GUI in its current state on the screen. There is a
catch however. Nifty assumes that your rendering system is in a state that is appropriate for 2d
rendering and it is up to you to set it up. So in case of using LWJGL you‘ll need to enable 2d ortho
mode prior to calling nifty.render().

Nifty.render() takes a boolean as its only parameter. You set this parameter to true if you like to clear
the screen before rendering Nifty or you can set it to false if Nifty should draw the GUI without
clearing the screen because maybe you‘ve already did this on your own.

The second method you‘ll need to call is nifty.update(). This call will process input events and update
the internal GUI state. The method will return true if Nifty reaches a state that should end the GUI
processing or false if the GUI is still active and should be kept updating and rendering.

In case of using LWJGL calling Display.update() is still up to you. Here is some pseudocode for the
render loop using Nifty when using LWJGL.

ELEMENTS INTRODUCTION
At it‘s core Nifty only supports a handful of elements. Nifty can display Text and Image elements as
well as Panels, which are just rectangular areas on the screen that can optionally be visible. Usually
Nifty Panels are invisible and are only used as containers for other elements to help in layout.

These three basic elements are organized or grouped into so called layers and one or more layers
are grouped into a screen. You can think of a Nifty screen as a form of reference for a certain state
of your GUI. There is a whole chapter dedicated to the elements and all of the attributes they
provide. For now it is only important to understand that Nifty really is only about the Panel, Text
and Image elements which you can position, display and interact with (click them, move them
around, change them and so on).

All of the basic elements can be combined into a Nifty control. You can see this as a form of
container for the basic elements and the combination of the elements can be used exactly like the

// render and update Nifty
boolean done = false;
while (!done) {
 // update Nifty
 if (nifty.update()) {
 done = true;
 }

 // render Nifty
 nifty.render(true);

 // render other stuff, call LWJGL Display.update() and so on
}

14

// get Nifty Version and output it to system.out
String niftyVersion = nifty.getVersion();
System.out.println(niftyVersion);

basic elements. A control can simply be a form of a template. If you need the exact same
combination of elements multiple times then you can simply group them, give them a name and
then reuse this combination multiple times.

Another way to see controls are the provided standard controls. There is a button control available
for instance that is a combination of a panel and a text but can be simply seen and used as a single
control, the „button“. There is a dedicated chapter for controls as well.

So to summarize Nifty is about the display and management of elements, where a element can be
one of the build-in elements (Panel, Text, Image) or it is a combination of these build-in elements in
the form of a control.

GET NIFTY VERSION STRING (NIFTY 1.3.2)
Starting with Nifty 1.3.2 the main Nifty instance has a new new getVersion() method that returns
the version of Nifty and the time of the Nifty build.

The result is a String like: „1.3.2 (2012-10-08 00:09:03)“.

15

GUI DEFINITION
XML GUI

INTRODUCTION
One way to define all the elements that make up your GUI is to use XML-Files. This is especially
useful to modify your GUI without the need to recompile any Java files. You just use the same code
and change only some XML files if you need to modify the GUI.

Nifty uses XML-Schema (XSD) to define what elements and attributes are possible. This way you
can use XML tools that can read the XSD information to enable things like auto completion and
syntax checks when writing XML files. Using XML and XSD allows third party tools like the Nifty
GUI editor in the jMonkeyEngine SDK project to parse and „understand“ the GUI definition and 0

support you even more when designing your GUIs. However please note that currently not all
possible attributes are supported or constrained in the Nifty-XSD.

The correct XML namespace for the Nifty XSD is „http://nifty-gui.sourceforge.net/nifty-1.3.xsd“
and you can download the current XSD by using the namespace URL as well.

A valid Nifty XML file looks like the following example.

It specifies the namespace „xmlns“ attribute as well as the „schemaLocation“ for XML tools that
support the „schemaLocation“ attribute.

The next chapter will explain in detail what this „Nifty XML content“ is and how it works. For now
it‘s just important to understand that the XML file will define everything that your GUI needs to
display. How you can tell Nifty to actually load the XML file(s) is explained in the next section.

LOADING XML
To load a XML file you can use one of the fromXml() Methods the Nifty instance provides. There
are methods available to load a file directly from the filesystem using a filename or from an
InputStream. The methods allow you to specify a „screenId“ of the screen that should be started
after the XML has been loaded. You can find more informations about the concepts of a Nifty
screen in the next chapter.

Here are the standard methods to load a Nifty XML file.

<?xml version="1.0" encoding="UTF-8"?>
<nifty xmlns="http://nifty-gui.sourceforge.net/nifty-1.3.xsd" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://nifty-
gui.sourceforge.net/nifty-1.3.xsd http://nifty-gui.sourceforge.net/nifty-1.3.xsd">

 <!-- Nifty XML content goes in here -->

</nifty>

// load Nifty XML file from a file or an InputStream
public void fromXml(String filename, String startScreen);
public void fromXml(String fileId, InputStream input, String startScreen);

16

http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd

When you use the method that takes an InputStream as a parameter you‘ll need to specify a „fileId“
for the InputStream. The „fileId“ is used to identify the loaded XML file in case Nifty needs to
decide if a given file has already been loaded. When using the filename method the filename itself
acts as the „fileId“.

Sometimes it is necessary to load a XML file but without starting a screen. There are two other
methods available to just load a Nifty XML file. Again, you can find more informations about the
concepts of a screen in the next chapter.

As you can see from the method signature the only difference is the missing „startScreen“
parameter.

There is an additional set of methods available that allow you to specify the ScreenControllers to
load. The next chapter will explain what a ScreenController is and why you might want to specify
them when loading a XML file.

All of these methods will remove any previously loaded screens and replace everything loaded with
the data from the new XML file. This means that everything you would like to display must be
defined in a single XML file.

If you have many screens or you want to keep them organized in separate files there are two
„addXml“ methods available that will just load an additional XML file. The content of the files are
simply added to whatever XML data has been loaded before.

VALIDATING XML
Nifty supports validating of XML-Files using the XSD. This way you can ensure that a given XML
file is valid and does not contain any syntax errors.

XML validation is an optional step which means that all of the loadXml() and addXml() methods
don‘t check the XML. You‘ll need to call a special validateXml() method to check XMLs. This is
because validating XML files takes some time and if you are sure your XML files are valid (because
you‘ve written them using an XML editor that already validated the XML) validating them again
would just be a waste of time.

So if you‘re unsure if your XML is valid you can call validateXml() which looks like this:

// only load file or InputStream but don‘t start any screen
public void fromXmlWithoutStartScreen(String filename);
public void fromXmlWithoutStartScreen(String fileId, InputStream input);

// load from a file or InputStream with ScreenController instances
public void fromXml(String filename, String startScreen,
 ScreenController ... controllers);

public void fromXml(String fileId, InputStream input, String startScreen,
 ScreenController ... controllers);

// add the content of an XML file to the loaded data
public void addXml(String filename);
public void addXml(InputStream stream);

17

Both methods will simply return when the XML is valid or they will throw an Exception if
something is wrong with the XML. This check is always performed in respect to the XSD. The
Exception will point out what is wrong.

And now that you know how to load and validate XML files we'll continue with a complete Nifty
XML example!

EXAMPLE

The following XML is a minimal Nifty XML file to display „Hello World“ in the middle of the
screen. Again the details of what <screen>, <layer> and <text> mean is being explained in detail
in the next chapter.

And as the result we get a black background and a „Hello World!“ text label in the middle of the
screen:

public void validateXml(String filename) throws Exception;
public void validateXml(InputStream stream) throws Exception;

<?xml version="1.0" encoding="UTF-8"?>
<nifty xmlns="http://nifty-gui.sourceforge.net/nifty-1.3.xsd" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://nifty-
gui.sourceforge.net/nifty-1.3.xsd http://nifty-gui.sourceforge.net/nifty-1.3.xsd">
 <screen id="start">
 <layer childLayout="center">
 <text font="aurulent-sans-16.fnt" color="#ffff"
 text="Hello World!" />
 </layer>
 </screen>
</nifty>

18

http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd

Not too bad :)

SPECIAL XML MARKUP
Every attribute of every XML element can contain the special markup „${...}“ that gets replaced
with something else when the XML is loaded. The following values are supported with the „${...}“
syntax:

${id.key}
Lookup resource bundle with "id" and request "key" from it. This is explained in more detail below
in the Localization section.

${ENV.key}
Lookup "key" in all of the environment variables (System.getEnv()) and replace „${ENV.key}“ with
the value of the environment variable „key“.

${PROP.key}
Lookup "key" in the Nifty.setGlobalProperties(Properties) properties or if the properties are not set
use System.getProperties() to lookup "key".

${CALL.method()}
Call method() at the current ScreenController and replace the value that the method() returns.
When used in this way then „method()“ should return a String.

Here is an example. When we change the text in Hello Word example like so.

<text font="aurulent-sans-16.fnt" color="#ffff"
 text="your home directory: ${ENV.HOME}" />

19

Then „${ENV.HOME}“ will be replaced by the content of your $HOME environment variable!

If the replacement could not be performed successfully then nothing is being replaced and you’ll get
the original „${…}“ String back.

LOCALIZATION
Nifty localization is using standard property file based Java Resourcebundles. This simply means
that you‘ll need to create a property file containing keys that are referenced from Nifty XML using
the current locale settings of the VM.

Let‘s suppose you have the following files:

dialog.properties:
hello = Hello World in Default Language

dialog_de.properties:
hello = Hallo Welt in Deutsch

dialog_en.properties:
hello = hello world in english

Once you have created these files you'll need to tell Nifty where it can find them. You‘ll do that with
the <resourceBundle> XML tag. You‘ll need to give the resourceBundle a name using the id
property so that we can later reference this specific resourceBundle (you can have multiple different
ones).

Now that Nifty knows about your ResourceBundle you can access it with the „${id.key}“ XML
markup. Here is an example to access the „hello“ key in the „dialog“ ResourceBundle we have just
registered using the <resourceBundle> tag.

Now Nifty will use the current default locale to access the ResourceBundle with the id "dialog" and
looks up the value for "hello".

If for some reason you don’t want Nifty to use the default Locale you can force a specific one with
the "nifty.setLocale(Locale)" method.

<resourceBundle id="dialog" filename="src/main/resources/dialog" />

<text font="aurulent-sans-16.fnt" color="#ffff" text="${dialog.hello}" />

20

JAVA GUI

INTRODUCTION
XML is not the only way you can use to define Nifty GUIs. It is possible to create elements directly
from Java. This is necessary when you need to create elements at runtime or when you don‘t want to
be dependent on XML files at all. Everything you can do with XML is possible with Java as well.

Nifty offers two slightly different mechanism to create elements from Java and this chapter will
explain both ways. What way you use is up to you in the end.

JAVA CREATOR CLASSES
This is the old way of creating elements in Nifty. For every standard element there exists a *Creator
class that has simple getter and setter methods to set the attributes of the element. To actually create
a new element you call the create method of the *Creator classes.

EXAMPLE

Here is an example to create a new panel in the layer with the id „baseLayer“.

To create a new element Nifty needs the Nifty instance, the screen and the parent element of the
new element. The new element will be added as a new child element to the given parent element.

For this example we assume that you have the following Nifty XML and that you want to create a
new panel inside the empty „baseLayer“ layer.

So there is this empty layer with id=“baseLayer“. To actually create a new element inside of that
layer, we‘ll first need the screen instance and the layer element. We can get both from the Nifty
instance.

Please note that there is a dedicated chapter „Runtime Element Modification“ that explains how to
access the screen, elements and a lot more in detail.

So this is the code to get the screen and the layer element:

When we have both we can finally create the new panel using a PanelCreator instance:

<?xml version="1.0" encoding="UTF-8"?>
<nifty xmlns="http://nifty-gui.sourceforge.net/nifty-1.3.xsd" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://nifty-
gui.sourceforge.net/nifty-1.3.xsd http://nifty-gui.sourceforge.net/nifty-1.3.xsd">
 <screen id="start">
 <layer id="baseLayer" childLayout="center">
 <!-- this layer is empty and populated from Java -->
 </layer>
 </screen>
</nifty>

Screen screen = nifty.getCurrentScreen();
Element layer = screen.findElementByName("baseLayer");

21

http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd

And Nifty will create the element and we end up with this as the result:

Please note that the create() method returns the new element. This can be used as the parent
element of other *Creator calls. This way you can build a whole screen with all layers and elements
if necessary.

You can find all build-in *Creator classes in the de.lessvoid.nifty.controls.dynamic package. Here is a
reference of all the available *Creator classes:

Classname Purpose

CustomControlCreator Create a new control instance. This is the same
as the <control> tag in XML.

ImageCreator Create a new image element.

LayerCreator Create a new layer. Please note that you have to
use screen.getRootElement() as the parent
element when you call create() in this case.

PanelCreator Create a new panel.

// create a 8px height red panel
PanelCreator createPanel = new PanelCreator();
createPanel.setHeight("8px");
createPanel.setBackgroundColor("#f00f");
Element newPanel = createPanel.create(nifty, screen, layer);

22

Classname Purpose

PopupCreator Create a popup element. Please note that you‘ll
need to call registerPopup() instead of build()
for the PopupCreator since you can only
register new popups with Nifty instead of
creating them directly. Popups have their own
chapter in this book as well.

ScreenCreator Create a new screen. Please note that the
create() method of the Screen only requires the
Nifty instance.

TextCreator Create a new text element.

Besides the build-in *Creator classes the standard controls project introduces special classes for each
of the standard controls that allows you to create them. You can find these classes in the
de.lessvoid.nifty.controls.<controlname>.builder package.

Please note that they are called Create<ControlName>Control. Besides their name they work the
same as the core *Creator classes.

JAVA BUILDER CLASSES
The Java Builder way to create elements works similar to the Creator classes but provides a
somewhat nicer API. The trick is that the *Builder classes are designed in a way that feels more like
a DSL (Domain Specific Language) for Nifty instead of a regular class. This is achieved by nesting
anonymous inner classes with an initialize block.

Here is a short reminder what an initialize block is:

And here is an anonymous inner class:

The Nifty Java Builders combine both so that we can create elements very easily.

EXAMPLE

Here is the panel we‘ve seen before with the *Creator classes in the Java Builder version.

We‘d like to add a new panel to the empty layer in the XML from above.

public class Stuff {
 {
 // you can do things in here to initialize this class
 }
}

void someMethod() {
 new Stuff() {
 // define methods here and Java will create an anonymous inner class for it
 };
}

23

So besides the duplicate {{ and }} this looks almost the same as the *Creator version but it is quite a
bit shorter.

But the really interesting things are happening when we nest the Builders.

So in the next example we create the whole screen, with a layer and the panel using only Java
Builders.

EXAMPLE

Create a complete screen with Java Builders only.

And that‘s a very compact way to create a Nifty GUI!

You can find all the Builder classes in the de.lessvoid.nifty.builder package. Here is an overview of
what you can find in that package:

Classname Purpose

ControlBuilder Create a new control instance. This is the same
as the <control> tag in XML.

ControlDefinitionBuilder Define a new control. This is the same as the
<controlDefinition> tag.

EffectBuilder Create a new effect. You can use this with the
on<Effect>() methods of any Builder class.

HoverEffectBuilder Create a new hover effect. You can use this
with the onHover() method of all Builders that
support onHover()

ImageBuilder Create a new image. Use this with the image()
method.

LayerBuilder Create a new layer. Use this with the layer()
method.

new PanelBuilder() {{
 height("8px");
 backgroundColor("#f00f");
}}.build(nifty, screen, layer);

Screen screen = new ScreenBuilder("start") {{
 layer(new LayerBuilder("baseLayer") {{
 childLayoutCenter();
 panel(new PanelBuilder() {{
 height("8px");
 backgroundColor("#f00f");
 }});
 }});
}}.build(nifty);

24

Classname Purpose

PanelBuilder Create a new panel. Can be used with the
panel() method.

PopupBuilder The PopupBuilder is used to register a new
popup with Nifty (see the chapter about popups
for an example)

ScreenBuilder The ScreenBuilder adds a new screen to a Nifty
instance.

StyleBuilder Register a new style with Nifty using the
StyleBuilder. This is the same as the XML
<style> tag.

TextBuilder The TextBuilder is used to build a new text
element. You use it with the text() method.

25

ELEMENTS
SCREEN

WHAT IS A SCREEN?
The basic building block of any Nifty GUI is the concept of a screen. In XML it is defined in a
<screen> element and this element acts as the root or parent element for all other GUI elements. A
screen can also be used to manage individual states in an application. A typical Nifty GUI consists of
several screens that are interconnected.

Every screen must be given a unique name with the id attribute. This way every screen can be
identified and referenced. When loading XML-files with the fromXml() method the screen id must
be specified to define which screen the GUI should start with. It is possible to switch screens from
Java with the nifty.gotoScreen(String screenId) method which takes the screenId of the target screen
as the parameter.

Here is a simple example of a screen definition using XML:

and the same example using Java Builders:

SCREEN CONTROLLER
The ScreenController is a Java class that implements the Nifty ScreenController interface. Every
screen has a ScreenController instance attached. If you don‘t provide one then Nifty will use a
simple default implementation.

Whenever something interesting is happening to a screen a method on its ScreenController instance
is called. The ScreenController is also the place where Nifty will look for additional callback
methods as you will see in Chapter about interacting with the GUI.

The ScreenController interface consists of three methods.

The first method gives you access to the main Nifty instance and the Screen class, the Java
representation of the active screen. Nifty will call this method when it initializes the screen. The
method is: bind(Nifty nifty, Screen screen).

There are two other simple methods in the ScreenController interface that are called in the screen
life cycle: onStartScreen() and onEndScreen().

<?xml version="1.0" encoding="UTF-8"?>
<nifty>
 <screen id="start">
 <!-- content of the screen -->
 </screen>
</nifty>

Screen screen = new ScreenBuilder("start") {{
 // content of the screen
}}.build(nifty);

26

The ScreenController interface looks like this:

To connect a screen with a ScreenController you need to specify the fully qualified class name of
your ScreenController in the controller attribute of the <screen> tag:

To provide Nifty with a ScreenController instance there are two ways possible:

1. Nifty creates a new instance of the given ScreenController class and registers this instance with
the Screen using the bind() method.

2. You can give Nifty an existing ScreenController instance that matches the classname given in the
controller attribute. In the example given you would give Nifty an instance of the
my.package.MyScreenController class.

Nifty will first look for an existing instance and creates a new class only when it can't find an existing
one.

To register a ScreenController instance with Nifty there are additional parameters on the fromXml()
method. This way you can even add multiple different instances for use in multiple Nifty screens.

The fromXml method looks like this:

/**
 * ScreenController Interface all screen controllers should support.
 * @author void
 */
public interface ScreenController {
 /**
 * Bind this ScreenController to a screen. This happens
 * right before the onStartScreen STARTED and only exactly once for a screen!
 * @param nifty nifty
 * @param screen screen
 */
 void bind(Nifty nifty, Screen screen);

 /**
 * called right after the onStartScreen event ENDED.
 */
 void onStartScreen();

 /**
 * called right after the onEndScreen event ENDED.
 */
 void onEndScreen();
}

<screen id="start" controller="my.package.MyScreenController">
 <!-- ... -->

public void fromXml(String filename, String startScreen,
 ScreenController ... controllers);

27

Nifty will use the className to match instances so you‘ll still need the controller attribute in the
XML.

In case you want to use anonymous inner classes for your ScreenController like in this example:

You‘ll need to specify the controller attribute like: „MyStuff$1“.

When you use the Java Builders to create your GUI you can can directly set a ScreenController
instance:

DEFAULT FOCUS ELEMENT
Another attribute the screen element supports is the defaultFocusElement. You simply specify the
element id of the element that should retrieve the keyboard focus when the screen is started. If you
don‘t specify the defaultFocusElement then Nifty will use the very first focusable element on the
screen. More about the keyboard focus is presented in a later chapter.

It works the same using the Java Builder mechanism of course:

SCREEN LEVEL KEYBOARD EVENTS
There are two other attributes available for the Screen element: inputMapping and
inputMappingPre. These attributes are explained in the Nifty InputEvents and InputMapping
section of the Interaction chapter later as well.

class MyStuff {
 nifty.fromXml("menu.xml", "start", new ScreenController() {
 public void bind(Nifty nifty, Screen screen) {
 // ...
 }
 });
}

Screen screen = new ScreenBuilder("start") {{
 controller(new MyScreenController());
 // ...
}}.build(nifty);

<screen id="start" defaultFocusElement="okButton">
 <!-- other stuff with a button element with the id „okButton“ -->

Screen screen = new ScreenBuilder("start") {{
 defaultFocusElement("okButton");
 // ...
}}.build(nifty);

28

LAYER
Within a screen you can have several layers of elements. A layer is a container for other elements.
You can stack layers on top of each other. So for example you can use a layer for the background
and another layer on top of it to display elements. Layers are rendered in the order they appear in
the screen. So for the background example you should define your background layer first and all
other layers after it.

EXAMPLE

Here is an example screen that consists of two layers:

Using the Java Builder pattern it would look like this:

As you can see the background layer is defined first and therefore will be rendered first as well.

By default layers are transparent which means that you would actually see nothing rendered if you
would try this example as is.

Opposite to screen definitions the id attribute of the layer element is optional. You can give layers a
name in form of the id attribute if you later need to reference a layer from Java. For instance if it‘s
necessary to dynamically hide or show a layer you can access the layer from Java using its id and
toggle it‘s visibility.

The following picture shows a visualization of what is going on in the example:

<?xml version="1.0" encoding="UTF-8"?>
<nifty>
 <screen id="start">
 <layer id="background">
 <!-- background layer content in here -->
 </layer>
 <layer>
 <!-- content for this layer in here -->
 </layer>
 </screen>
</nifty>

Screen screen = new ScreenBuilder("start") {{
 layer(new LayerBuilder("background") {{
 // background layer content in here
 }});
 layer(new LayerBuilder() {{
 // content for this layer in here
 }});
}}.build(nifty);

29

As you can see from the picture the layer with the id=“background“ will be rendered below the
second layer that does not have an id.

A layer supports all of the general element attributes that are explained later in this chapter.

PANEL
A Panel is a (usually) invisible helper element that can contain other elements. Panels are normally
used to help layout other elements. The next chapter will discuss how layout in Nifty works.

Besides layout you could use panels for design purposes since they can be given a backgroundColor.
So if you need a solid colored rectangle you could use a Panel for this as well.

The Panel element name is <panel> in XML and there is a PanelBuilder available for the Java
Builder pattern.

Like the layer element panels support general element attributes as explained a bit later.

Panels support the backgroundImage attribute so that you can set a background image for the
panel. There are additional properties available to influence the way the backgroundImage is
applied. This is the filter and the imageMode attribute. Both work the same as for the image
element and are explained below when we discuss the image element.

EXAMPLE

Panel with backgroundColor and backgroundImage attributes applied.

Please note that the backgroundImage is rendered before the backgroundColor when you apply
both attributes. So the backgroundColor acts as a color overlay when a backgroundImage is given
and that‘s why it uses an alpha value of #8.

<?xml version="1.0" encoding="UTF-8"?>
<nifty>
 <screen id="start">
 <layer id="layer" backgroundColor="#003f" childLayout="center">
 <panel width="50%" height="50%" backgroundImage="nifty-logo-150x150.png"
 imageMode="repeat:0,0,150,150" backgroundColor="#0f08" />
 </layer>
 </screen>
</nifty>

30

In this example we use the repeat image mode to tile the background image and overlay it with a
half transparent green color.

We get this as the result:

More about the imageMode=“repeat:...“ can be found below when we discuss the image element.

As always the example works the same using the Java Builder:

TEXT
The text element is used to output text. Usually renderers are using bitmap based fonts although
what kind of font formats are supported depends on the actual system and the Nifty RenderDevice
implementation.

Screen screen = new ScreenBuilder("start") {{
 layer(new LayerBuilder("layer") {{
 backgroundColor("#003f");
 childLayoutCenter();
 panel(new PanelBuilder() {{
 width("50%");
 height("50%");
 backgroundImage("nifty-logo-150x150.png");
 imageMode("repeat:0,0,150,150");
 backgroundColor("#0f08");
 }});
 }});
}}.build(nifty);

31

You can specify font, color and alignment properties for the text and the text can be modified from
Java.

EXAMPLE

Here is a basic example that displays a simple text.

As usual it works the same using the Java Builder pattern:

The attributes of the <text> element should be easy to understand. Using the font attribute you 0

specify the font. Using the color attribute you specify the color of the text (including alpha) and
finally the text attribute will specify the actual text String that you want to be displayed.

COLOR ENCODED TEXT
Nifty supports encoding colors into the text string. This works with a special syntax. You include a
special kind of String directly into the text to change the color. This string starts with „\#“ followed
by three values, one for red, green and blue as hexadecimal values (optionally followed by an alpha
value). The string has to end with a single „#“ character.

Say you have the String „Hello World“ and you want the word „World“ to be colored in red. Then
you can specify the text attribute like so: „Hello \#ff0000#World“ and this text would be displayed
like: „Hello World“.

ADDITIONAL TEXT PROPERTIES
There are some additional text properties available for the text element:

„textLineHeight“ as SizeValue, Default: null
The textLineHeight property influences the height of the text element. Usually the height of the
text element is calculated as the height of the font.

<?xml version="1.0" encoding="UTF-8"?>
<nifty>
 <screen id="start">
 <layer childLayout="center">
 <text font="aurulent-sans-16.fnt" color="#f00f" text="Hello World!"
 align="center" valign="center" />
 </layer>
 </screen>
</nifty>

Screen screen = new ScreenBuilder("start") {{
 layer(new LayerBuilder() {{
 childLayoutCenter();
 text(new TextBuilder() {{
 font("aurulent-sans-16.fnt");
 color("#f00f");
 text("Hello World!");
 alignCenter();
 valignCenter();
 }});
 }});
}}.build(nifty);

32

If you set the textLineHeight property you can override that height. This way you can enforce a
certain height of the text element.

„textMinHeight“ as SizeValue, Default: null
The textMinHeight property can be used to set a minimal height of the text element. When the
calculated height of the text element is lower than the textMinHeight value then the textMinHeight
value is being used.

„textVAlign“ as one of „top“, „center“, „bottom“, Default: „center“
It is possible that the text element area is actually bigger than the text itself.

For instance if you use width=“100%“ and/or height=“100%“ then Nifty will calculate the size of
the (text) element like it would do for any other element. But that could mean that the text only
needs a small area of the actual space of the element.

With the textVAlign property you can specify how the text should be aligned vertically in the
element area. For example you could align the text to the top or bottom of the element. Or you can
leave it at the „center“ which is the default.

„textHAlign“ as one of „left“, „center“, „right“, Default: „center“
The textHAlign property works the same as the textVAlign property only for the horizontal
alignment. It allows you to change the horizontal alignment of the text inside of the text element
from the default value, which is again „center“, „left“ or „right“

EXAMPLE

Here is a XML example of a screen that displays text with different alignments. This example is
from one of the Nifty examples (slightly modified).

And this is how it looks.

<layer id="layer" backgroundColor="#003f" childLayout="vertical">
 <text id="text1" style="nifty-label" height="15%" width="75%"
 backgroundColor="#f60f" text="TextHAlign: center, TextVAlign: top"
 color="#000f" textHAlign="center" textVAlign="top"/>
 <text id="text2" style="nifty-label" height="15%" width="75%"
 backgroundColor="#f80f" text="TextHAlign: center, TextVAlign: center"
 color="#000f" textHAlign="center" textVAlign="center"/>
 <text id="text3" style="nifty-label" height="15%" width="75%"
 backgroundColor="#fa0f" text="TextHAlign: center, TextVAlign: bottom"
 color="#000f" textHAlign="center" textVAlign="bottom"/>
 <text id="text4" style="nifty-label" height="15%" width="75%"
 backgroundColor="#fc0f" text="TextHAlign: left, TextVAlign: center"
 color="#000f" textHAlign="left" textVAlign="center"/>
 <text id="text5" style="nifty-label" height="15%" width="75%"
 backgroundColor="#fe0f" text="TextHAlign: center, TextVAlign: center"
 color="#000f" textHAlign="center" textVAlign="center"/>
 <text id="text6" style="nifty-label" height="15%" width="75%"
 backgroundColor="#ff2f" text="TextHAlign: right, TextVAlign: center"
 color="#000f" textHAlign="right" textVAlign="center"/>
</layer>

33

„selectionColor“ as Color, Default: null
The text element supports selection of text and the selectionColor attribute specifies the color of
how the selected text is being rendered. Selecting text is probably only usable in the textfield control
which actually allows selecting text by the user of the GUI but the core text element already support
this.

„wrap“ as Boolean, Default: false
Usually Nifty will not automatically wrap text lines when they are too long which is the default value
of wrap=“false“. In that case Nifty will simply render the text and will eventually draw text outside
of the element boundaries.

You can change this by setting wrap=“true“. This will make text lines automatically wrap when they
would be longer than the element width. Setting wrap=“true“ will only work when you set a width
for the text element, so that Nifty knows when to wrap a line.

EXAMPLE

In this example we start with text that is way longer then the element width.

 <screen id="start">
 <layer id="layer" childLayout="center">
 <text width="50%" height="50%" backgroundColor="#33af" font="verdana-small-
regular.fnt" textHAlign="left" textVAlign="top" text="very long text very long text
very long text very long text very long text very long text very long text very long
text "/>
 </layer>
 </screen>

34

The text element is 50% of the screen width and is centered in the middle of a screen. This will
make the text go over the element boundaries, since the wrap attribute defaults to false:

We can change this by adding wrap=“true“ to the text element.

Since we have also set a width for the text element Nifty will now wrap the text. Nifty will first try to
wrap the lines at any whitespace character. If this is not possible it will try to wrap individual
characters.

This is the result of adding wrap=“true“ to the example XML:

 <screen id="start">
 <layer id="layer" childLayout="center">
 <text width="50%" height="50%" backgroundColor="#33af" font="verdana-small-
regular.fnt" wrap="true" textHAlign="left" textVAlign="top" text="very long text very
long text very long text very long text very long text very long text very long text
very long text "/>
 </layer>
 </screen>

35

IMAGE

GENERAL PROPERTIES
The image element is used to display an image. In its simple form you only need to specify a
filename of the image and Nifty will automatically read it, forces the element to be the size of the
loaded image and then displays the image.

You can change the width and height of the image by providing the width and height properties and
Nifty will resize the image accordingly.

EXAMPLE

Simple display of an image using XML.

Which looks like this.

<screen id="start">
 <layer id="layer" childLayout="center">
 <image filename="nifty-logo-150x150.png" />
 </layer>
</screen>

36

And as always it works the same using Java Builder:

But there is a bit more to the image element. The following additional attributes are possible.

„filter“ as boolean, Default: false
Use linear filtering of the image when set to „true“ or nearest when set to „false, which is the
default.

„inset“ as SizeValue, Default: 0px
Using the inset parameter you can scale the image smaller or greater than it‘s original size. Using a
positive value for inset will make the area of the image smaller. So for instance when you set inset to
„20px“ then you get an inner border of 20px and the image is being scaled to fit into the area that is
now 20px smaller (at each border). Using negative values for inset will effectively make the image
being drawn over the boundary of the element.

IMAGEMODE PROPERTY
The imageMode attribute can greatly influence the way image data is being interpreted by Nifty.
There are lots of different options.

Screen screen = new ScreenBuilder("start") {{
 layer(new LayerBuilder() {{
 childLayoutCenter();
 image(new ImageBuilder() {{
 filename("nifty-logo-150x150.png");
 }});
 }});
}}.build(nifty);

37

imageMode=„normal“ (the default value)
The standard rendering of images. When the width/height attributes on the 

62

PADDING
Nifty supports a padding parameter similar to the CSS-Padding mechanism. In Nifty the „padding“
attribute is applied to an element and will reduce the inside of the element without changing it‘s
size. This means there is less room available for the child elements of this element.

Currently padding is only supported for childLayout values of „vertical“, „horizontal“ and „center“.

A Nifty padding attribute consists of at least one and up to 4 comma separated Nifty SizeValues.
These values work exactly like in the CSS-Padding property to yield individual values for left, right,
top and bottom padding:

No. of
values

Description Example Result (left, right,
top, bottom)

one Left, right, top and bottom are set
to the same value.

„10px“ 10px, 10px, 10px, 10px

two The first value is used for top and
bottom padding and the second
value is used for left and right
padding.

„10px,50px“ 50px, 50px, 10px, 10px

three The first value is used for top
padding. The second value is used
for left and right padding and the
third value is used for bottom
padding.

„1px,2px,3px“ 2px, 2px, 1px, 3px

four The values are applied in the
order: top, right, bottom, left.

„1px,2px,3px,4px“ 4px, 2px, 1px, 3px

Since the values are Nifty SizeValues you can use % values as well. For instance the value „10%“
will use 10% of the width and 10% of the height of the element as the padding value.

If you want to specify a single padding value for one of the sides of the element you can use the
individual attributes paddingLeft, paddingRight, paddingTop or paddingBottom. So for
example you could set paddingLeft=“10px“ to get a left padding of 10px and no padding on the
other sides.

Let‘s look at some examples for padding now.

EXAMPLE FOR VERTICAL LAYOUT PADDING
We‘ll start with our two colored panel example from the layout example above:

And we get the same result: the red and the green panel are vertically laid out.

<panel width="100px" height="100px" childLayout="vertical" backgroundColor="#ff0f">
 <panel id="red" backgroundColor="#f008"/>
 <panel id="green" backgroundColor="#0f08" />
</panel>

63

Now lets add a padding of 10px.

And we get this result:

We now have a border of 10px inside of the element and we can now see the yellow
backgroundColor which was completely covered by the child panels before.

EXAMPLE FOR HORIZONTAL LAYOUT PADDING
For the horizontal padding example we start again with the layout example shown before:

Here is the result of the starting point XML:

<panel width="100px" height="100px" childLayout="vertical" backgroundColor="#ff0f"
padding=“10px“>
 <panel id="red" backgroundColor="#f008"/>
 <panel id="green" backgroundColor="#0f08" />
</panel>

<panel width="100px" height="100px" childLayout="horizontal" backgroundColor="#ff0f">
 <panel id="red" backgroundColor="#f008"/>
 <panel id="green" backgroundColor="#0f08" />
</panel>

64

Now let‘s modify the XML and use a padding with two values:

The value of padding=“10px,50px“ will give use a top and bottom padding of 10px and a left and
right padding of 20px as shown in this picture:

We could get the same result by specifying the individual padding values for each side of course as
well:

EXAMPLE FOR CENTER LAYOUT PADDING
Finally padding for the center layout works the same. Again we start with the example we‘ve used
above:

This gives us the centered red panel:

<panel width="100px" height="100px" childLayout="horizontal" backgroundColor="#ff0f"
padding=“10px,20px„>
 <panel id="red" backgroundColor="#f008"/>
 <panel id="green" backgroundColor="#0f08" />
</panel>

<panel width="100px" height="100px" childLayout="horizontal" backgroundColor="#ff0f"
paddingTop=“10px“ paddingBottom=“10px“ paddingLeft=“20px„ paddingRight=“20px“>0
 <panel id="red" backgroundColor="#f008"/>
 <panel id="green" backgroundColor="#0f08" />
</panel>

<panel width="100px" height="100px" childLayout="center" backgroundColor="#ff0f">
 <panel id="red" backgroundColor="#f008" />
</panel>

65

Now we‘ll use different padding values for each of the sides using the 4 value padding attribute:

And we‘ll get a padding of 2px on the top, 4px on the right, 8px on the bottom and 10px on the left
as shown in this picture:

MARGIN (NIFTY 1.3.2)
Nifty 1.3.2 added support for basic margin support. It can be used to add an outer margin to
elements. Basically it says: „hey parent layout, when you calculate my layout consider that I‘m that
much wider/higher but when you later render me just use my actual size“ :)

It works similar to the HTML/CSS attribute with the same name although the implementation in
Nifty is more basic, for instance margins don‘t collapse in certain situations as they do in HTML/
CSS. There are even more restrictions like there is currently only margin support for „center“,
„vertical“ and „horizontal“ layouts. Other layouts will simply ignore the attribute.

You can specify margin values in the same way as you specify padding values. This means you can
use a single „margin“ attribute and specify a single, two, three or four values and they are
interpreted exactly like in the table shown above. Or you can specify individual margin values using
„marginLeft“, „marginRight“, „marginTop“ or „marginBottom“ attributes.

Please Note that contrary to the padding attributes margin values can only be used with „px“
values currently. There is no support for „%“ values at the moment.

<panel width="100px" height="100px" childLayout="center" backgroundColor="#ff0f"
padding=“2px,4px,8px,10px“>
 <panel id="red" backgroundColor="#f008" />
</panel>

66

TROUBLESHOOTING LAYOUT
Sometimes layout can be tricky to debug. There are two ways to help you in debugging layout.

Nifty allows you to enable a debug rendering mode using the following method.

When being set to true Nifty will render a randomly colored rectangle above each element it
renders. This way you can easily see where the layout is off or where maybe changing some
alignment property might fix your issue.

Another way to troubleshoot layout issues is to get a reference to the current screen (f.i. using
nifty.getCurrentScreen() or by keeping the Screen reference of the ScreenController bind() call) and
then call screen.debugOutput(). This call will return a String that contains all of the attributes of
every element on the screen including it‘s state and position.

This way you can check in detail if every element is exactly where it should be or where there is an
error. The output of screen.debugOutput() looks something like that:

nifty.setDebugOptionPanelColors(true);

67

RENDER ORDER (NIFTY 1.3.2)
The standard order Nifty renders child elements is the order in which they are defined in XML or
with Java Builder.

Let‘s say you use an image element with a childLayout=“overlay“ and you define two child panels,
one with a red backgroundColor and the second one with a green backgroundColor. In this case
Nifty will render the image, then the red panel and finally the green panel on top.

In most cases this is what you want but sometimes you need to modify this order. The new
TabControl uses this feature to render the active Tab above all other tabs:

In Nifty 1.3.2 elements will be rendered ascending by a new attribute, the „renderOrder“ value
which is an Integer. The default value for "renderOrder" is 0 which means that the original render
order of the elements will be used (the order the elements are defined in XML). Internally the index
in the elements list is used as the default „renderOrder“ value. So when you have a panel with 3
child elements and you don't specify a „renderOrder“ Nifty will internally use the values 0, 1 and 2.

You can change the „renderOrder“ value to some high value, like 10000 to enforce rendering this
element on top of all other or to some very small number like -10000 to render it below the others.

Please note: When you use the same „renderOrder“ for two elements then the id will be used for
comparison. If the elements don't have ids or the same id then object.toString() is being compared
(the reference in memory).

 +[layer]
 style [null]
 state [normal]
 position [x=0, y=0, w=1024, h=768]
 constraint [null, null, null, null]
 padding [0px, 0px, 0px, 0px]
 flags [enabled(0), visible]
 effects [{}]
 [navigation] PanelType childLayout [horizontal]
 style [null]
 state [normal]
 position [x=0, y=0, w=1024, h=63]
 constraint [null, null, 100%, 63px]
 padding [20px, 20px, 20px, 20px]
 flags [enabled(0), visible]
 effects [{}]
 [menuButtonListBox] ControlType childLayout [center]
 style [null]
...

68

BASIC EVENTHANDLING
INTRODUCTION
A GUI makes only sense if you can interact with it. This means that you can click on buttons,
change scrollbars, enter text into a textfield and so on. Nifty supports several different mechanism to
support interaction using the mouse and keyboard as the input device.

But before we discuss all of the events we need to talk about another important concept, the
controller class.

ELEMENT CONTROLLERS
In the screen section of the elements chapter we‘ve discussed the ScreenController. The
ScreenController is the class that all interaction events will be routed to. But this is not the only way
to attach a class to a Nifty element.

It is possible to add a class to any element using the controller attribute of an element. With it you
can specify a fully qualified Java class that has to implement the Controller interface:

So this looks a bit like the ScreenController interface and indeed it works in a similar way. If you
attach a Controller to an element then Nifty will call the methods of your Controller instance at the
appropriate times. Similar to the way Nifty calls the methods of a ScreenController.

The Controller, if present, will be the target for all events that the element generates (more about
interact events below) and the event will travel the tree upwards calling the Controller of other
elements all the way up to the ScreenController.

We‘ll see an example on how that works in a second but let‘s first look at basic mouse interaction
events.

MOUSE EVENTS

INTRODUCTION
At the moment Nifty supports the following mouse events that you can intercept directly at any
element that has visibleToMouse=“true":

onClick
The element is being clicked by the mouse.

public interface Controller {
 void bind(
 Nifty nifty,
 Screen screen,
 Element element,
 Properties parameter,
 Attributes controlDefinitionAttributes);
 void init(Properties parameter, Attributes controlDefinitionAttributes);
 void onStartScreen();
 void onFocus(boolean getFocus);
 boolean inputEvent(NiftyInputEvent inputEvent);
}

69

onClickRepeat
The element is being clicked by the mouse and the mouse button is hold down. This event is
automatically generated as long as the mouse button is pressed.

onRelease
The mouse button is being released while the mouse cursor is over the element.

onClickMouseMove
The mouse button is moved while the mouse button is pressed and the mouse cursor is still hovering
the element.

All events will use the primary mouse button. If necessary you can address the individual mouse
buttons with additional events that work exactly as the standard ones but will only be executed when
a specific mouse button is used.

First mouse button (usually the left mouse button)
onPrimaryClick
onPrimaryClickRepeat
onPrimaryRelease
onPrimaryClickMouseMove

Second mouse button (usually the right mouse button)
onSecondaryClick
onSecondaryClickRepeat
onSecondaryRelease
onSecondaryClickMouseMove

Third mouse button (usually the middle mouse button)
onTertiaryClick
onTertiaryClickRepeat
onTertiaryRelease
onTertiaryClickMouseMove

With the <interact> XML element, which you can add to any Nifty element, you can specify what
method should be called when a mouse event occurs for the element. Nifty will try to call the
method on the element controller first (if available) and then on all of the parent elements (when
they have a Controller) until the event reaches the ScreenController.

The way this works is with Java reflection. You specify a method as a string, something like:
„myMethod()“ and Nifty will look up a method with the name „public void myMethod()“ on the
Controller.

EXAMPLE

Let‘s say we have an image. When the image is clicked with the mouse we want to execute a method
with the name „next()“.

Again we start with our simple XML example containing a single Screen, a single layer and the
image:

70

To add the mouse event handler we add the <interact> XML element to the image element. And
because Nifty will call the ScreenController when no other Controller class is available we add a
ScreenController to the screen as well.

Since by default Nifty elements do not receive mouse events it would be necessary to set the attribute
visibleToMouse=“true“ but because we‘ve added an <interact> tag Nifty will do that for us
automatically.

Whenever you now click on the image Nifty will look for the method „public void next()“ on the
class „my.stuff.StartScreen“ and if it exists it will call it.

Here is the ScreenController implementation with the next() method:

And of course the same works using Java Builder only.

<screen id="start">
 <layer id="layer" childLayout="center">
 <image filename="nifty-logo-150x150.png" />
 </layer>
</screen>

<screen id="start" controller="my.stuff.StartScreen">
 <layer id="layer" childLayout="center">
 <image filename="nifty-logo-150x150.png">
 <interact onClick="next()" />
 </image>
 </layer>
</screen>

package my.stuff;

public class StartScreen implements ScreenController {

 @Override
 public void bind(Nifty nifty, Screen screen) {
 }

 @Override
 public void onStartScreen() {
 }

 @Override
 public void onEndScreen() {
 }

 public void next() {
 System.out.println("next() clicked! woohoo!");
 }
}

71

CALL METHODS WITH STRING PARAMETERS
It is possible to use String parameters for the <interact> methods. So you can write onClick as
follows:

And when you just add a next() method with two String parameters to your ScreenController, Nifty
will resolve the right method and calls it:

This will only work with Strings. So even when you write „next(12.2)“ then Nifty will still call the
next() method with the String „12.2“.

MOUSE COORDINATES FOR ONCLICK AND ONCLICKMOUSEMOVED
A special method signature is supported to allow access to the mouse coordinates where the click
occurs. Nifty will first look automatically for a method with two int parameters:

new ScreenBuilder("start") {{
 controller(new MyScreenController());
 layer(new LayerBuilder("layer") {{
 childLayoutCenter();
 image(new ImageBuilder() {{
 filename("nifty-logo-150x150.png");
 interactOnClick("next()");
 }});
 }});
}}.build(nifty);
nifty.gotoScreen("start");

...

public class MyScreenController implements ScreenController {
 @Override
 public void bind(Nifty nifty, Screen screen) {
 }

 @Override
 public void onStartScreen() {
 }

 @Override
 public void onEndScreen() {
 }

 public void next() {
 System.out.println("next() clicked! woohoo!");
 }
}

<interact onClick="next(hello, there)" />

public class MyScreenController implements ScreenController {
...
 public void next(String param1, String param2) {
 System.out.println("next() clicked with parameters: " + param1 + ", " + param2);
 }
}

72

If it finds one it calls it with the x and y coordinates of the mouse cursor at the time of the click.

If no method with two int parameters could be found it will look for a method without any
parameters and it will call this instead.

ADDITIONAL MOUSE EVENTS
There are some additional mouse events available.

onMouseOver
This method is executed when the mouse is hovering the element. So your method gets called when
ever you move the mouse over the element.

If you define the callback method in Java to take two parameters, an Nifty Element instance and a
NiftyMouseInputEvent instance then Nifty will call you with those parameters.

So when your method looks like this:

Then you‘ll get the Element instance where the mouse event occurs and the NiftyMouseInputEvent
which gives you access to the state of the mouse buttons and the position of the event.

Please note that you still only specify „someMethodName()“ in the <interact> element event though
the method has actually parameters.

onMouseWheel
This method is called when the mouse wheel is moved while the mouse hovers the element you‘ve
attached the <interact> onMouseWheel method to.

The additional method parameters Element and NiftyMouseEvent work exactly the same as in the
onMouseOver case. For onMouseWheel you‘ll probably use this version because otherwise you
don‘t get access to the actual position of the mouse wheel :)

ONCLICKALTERNATEKEY
There is one special attribute for the <interact> element. The onClickAlternateKey is a String that
can optionally be set for the <interact> element. If you set it, then it will be used as the
alternateKey for the current Nifty instance and all screens that are currently registered with Nifty.

This enables all effects that have been marked with the same key using the alternateEnable=“key“
attribute or it will disable effects that have been marked with alternateDisable=“key“. „key“ in this
example would be the value you provided for onClickAlternateKey.

You can read more about the alternate magic :) in the effects reference section of the next chapter.

public class MyScreenController implements ScreenController {
...
 public void nextWithCoords(int x, int y) {
 System.out.println("next() clicked at: " + x + ", " + y);
 }
}

public void someMethodName(Element element, NiftyMouseInputEvent event);

73

ELEMENT CONTROLLER EXAMPLE
Now that we know what basic events are possible we can come back to our element controller
example.

EXAMPLE

We start again with the screen that displays an image centered in the middle and with an onClick
interaction method added to the image. As before the screen still has the same ScreenController
attached (the one with the „public void next()“ method still in place) but now we set a controller
attribute at the image element as well.

The class „my.stuff.ElementController“ looks like this:

<screen id="start" controller="my.stuff.StartScreen">
 <layer id="layer" childLayout="center">
 <image filename="nifty-logo-150x150.png" controller="my.stuff.ElementController">
 <interact onClick="next()" />
 </image>
 </layer>
</screen>

74

And now lets run this example and click on the image!

We get the following output on the console:

So what‘s happening is that a bunch of methods are called to initialize the ElementController class
(bind(), init() and onStartScreen() in this order) and when we click on the image the next() method of
the ElementController is called first and then the next() method on the ScreenController is called as
well.

public class ElementController implements Controller {
 private Element element;

 @Override
 public void bind(
 Nifty nifty,
 Screen screen,
 Element element,
 Properties parameter,
 Attributes controlDefinitionAttributes) {
 this.element = element;
 System.out.println("bind() called for element: " + element);
 }

 @Override
 public void init(Properties parameter, Attributes controlDefinitionAttributes) {
 System.out.println("init() called for element: " + element);
 }

 @Override
 public void onStartScreen() {
 System.out.println("onStartScreen() called for element: " + element);
 }

 @Override
 public void onFocus(boolean getFocus) {
 System.out.println("onFocus() called for element: " + element + ", with: " +
getFocus);
 }

 @Override
 public boolean inputEvent(NiftyInputEvent inputEvent) {
 return false;
 }

 public void next() {
 System.out.println("next() clicked for element: " + element);
 }
}

bind() called for element: null (de.lessvoid.nifty.elements.Element@fba0f36)
init() called for element: null (de.lessvoid.nifty.elements.Element@fba0f36)
onStartScreen() called for element: null (de.lessvoid.nifty.elements.Element@fba0f36)

next() clicked for element: null (de.lessvoid.nifty.elements.Element@ed0220c)
next() clicked! woohoo!

75

 If you change the next() method of the ElementController like so:

then the method at the ScreenController is not called anymore.

Changing the return value of an interaction method to boolean and returning true prevents calling
any other methods.

KEYBOARD EVENTS

NIFTY INPUT EVENTS AND NIFTYINPUTMAPPING
A NiftyInputEvent is a device neutral representation of an input event. The idea is that we don't
want to be dependent directly on a keyboard when we code a GUI. If we later plan to add a game
pad or some other input controller that is not a keyboard, we don't want to change the code of all of
our elements. What Nifty does instead is to abstract the physical input event and creates an abstract
representation for it. If we only depend on the abstract representation we can easily add support for
different physical input devices later.

This all sounds probably more complicated then it really is. Take for example the TAB key which is
usually used to change the focus from one element to the next. The physical input event would be
the Keyboard TAB key pressed. Now instead of checking the TAB key directly Nifty maps the TAB
key to the NiftyInputEvent.NextInputElement enum. Now our code only depends on
NiftyInputEvent.NextInputElement and not the actual key. If we later support a gamepad which
might have special keys to switch to the next input element we don't need to change the control
code. We just have to add a different input mapping to Nifty and we're all set. That's the basic idea.

The way that physical events are mapped to NiftyInputEvents is just a class that implements the
de.lessvoid.nifty.input.NiftyInputMapping interface, which looks like so:

Currently Nifty only supports KeyboardInputEvents so the NiftyInputMapping interface currently
only supports converting keyboard events into NiftyInputEvents but that might change later.

So a NiftyInputMapping implementation gets the KeyboardInputEvent and converts the keyboard
event into a NiftyInputEvent. You can implement your own mapping but Nifty comes with
predefined NiftyInputMappings that you can use directly.

public boolean next() {
 System.out.println("next() clicked for element: " + element);
 return true;
}

public interface NiftyInputMapping {

 /**
 * Convert the given KeyboardInputEvent into a NiftyInputEvent.
 * @param inputEvent KeyboardInputEvent to convert
 * @return converted NiftInputEvent
 */
 NiftyInputEvent convert(KeyboardInputEvent inputEvent);
}

76

You can find the default mappings in the de.lessvoid.nifty.input.mapping package.

Here is one of the existing mappings, the de.lessvoid.nifty.input.mapping.DefaultInputMapping
class.

SCREEN LEVEL KEYBOARD EVENTS
It is possible to handle keyboard input events at the screen level. Screen level input events will be
handled by the ScreenController independent of the keyboard focus of any other elements on the
screen. You can think of screen level input events as global events. The perfect example would be
the possibility to cancel a screen with the ESC key. This kind of events should be handled by screen
level events.

There are two steps necessary to make this work. The first step is to implement the
KeyInputHandler interface in your ScreenController class. The Nifty KeyInputHandler interface is
very simple and looks like this:

The second step is to actually enable input processing at the screen level by providing the
inputMapping or inputMappingPre attribute. You have to provide a NiftyInputMapping
implementation. This will enable screen level keyboard input.

When Nifty processes a keyboard event it will first use the inputMappingPre class (if provided) to
convert the keyboard event into a NiftyInputEvent. The NiftyInputEvent is then sent to the
ScreenController.

public class DefaultInputMapping implements NiftyInputMapping {

 public NiftyInputEvent convert(final KeyboardInputEvent inputEvent) {
 if (inputEvent.isKeyDown()) {
 if (inputEvent.getKey() == KeyboardInputEvent.KEY_F1) {
 return NiftyInputEvent.ConsoleToggle;
 } else if (inputEvent.getKey() == KeyboardInputEvent.KEY_RETURN) {
 return NiftyInputEvent.Activate;
 } else if (inputEvent.getKey() == KeyboardInputEvent.KEY_SPACE) {
 return NiftyInputEvent.Activate;
 } else if (inputEvent.getKey() == KeyboardInputEvent.KEY_TAB) {
 if (inputEvent.isShiftDown()) {
 return NiftyInputEvent.PrevInputElement;
 } else {
 return NiftyInputEvent.NextInputElement;
 }
 }
 }
 return null;
 }
}

public interface KeyInputHandler {
 /**
 * handle a key event.
 * @param inputEvent key event to handle
 * @return true when the event has been consumed and false if not0
 */
 boolean keyEvent(NiftyInputEvent inputEvent);
}

77

Next the keyboard event is being sent to all elements that have the keyboard focus.0

And as the last step the inputMapping is used (if provided) to convert the Keyboard event into a
NiftyInputEvent and is then sent to the ScreenController as well.

This way you can decide if you want to process keyboard events before or after the regular
processing using inputMapping or inputMappingPre. Processing of the keyboard event is stopped
when a KeyInputHandler returns true.

KEYBOARD EVENTS FOR INDIVIDUAL ELEMENTS
Handling Keyboard events at the element level requires that the attribute focusable is set to true for
the element. This way the element can get the keyboard focus which is required for the element to
get keyboard events. The controller and the inputMapping attributes have to be set as well (although
Nifty will use it‘s DefaultInputMapping class if you don‘t specify one).

With all of these things in place Nifty will call the inputEvent method of the controller when the 0

element has the keyboard focus.

Please note that when the NiftyInputMapping does not map the key the inputEvent is null.

You usually handle keyboard events in a custom control implementation and not in single elements.
This means that you would build your own control, let‘s say a text input field as a custom control
and all keyboard input handling will be performed in the control. The chapter on Nifty controls will
explain all of the details on how you can create your own control.

NIFTY EVENT CONSUMING AND DISABLING EVENT
PROCESSING (NIFTY 1.3.2)
Events processed by Nifty will be marked internally as consumed. Such events will usually not be
forwarded by Nifty InputSystem implementations to other parts of your application (e.g. your game
below a GUI overlay).

Sometimes however it is desired to completely disable event processing by Nifty so that all events will
be passed to your application. Nifty 1.3.2 added support for this for all events and for individual
elements.

DISABLE EVENT PROCESSING GLOBALLY
Use nifty.setIgnoreMouseEvents(true) to completely disable mouse event processing in Nifty.
The NiftyInputConsumer.processMouseEvent() method will always return false in that case. The
Nifty InputSystem implementation should forward all of these mouse events to your game.

Use nifty.setIgnoreKeyboardEvents(true) to completely disable keyboard event processing in
Nifty. The NiftyInputConsumer.processKeyboardEvent() method will always return false in that case
as well.

DISABLE EVENT PROCESSING FOR INDIVIDUAL ELEMENTS
The new methods to ignore mouse events and keyboard events at the global Nifty level have now
been added at the element level as well. You can now ignore mouse and keyboard events for
individual elements too. You simple use the same method names setIgnoreMouseEvents(true)
and setIgnoreKeyboardEvents(true) for a single Element and this element will no longer
process any elements.

78

Please note that this is a bit redundant to the existing visibleToMouseEvents attributes but we've
kept the same names to be consistent with the method on the main Nifty instance. The
visibleToMouseEvents attribute should be used to generally define visibility to mouse events and
ignoreMouseEvents / ignoreKeyboardEvents to temporarily disable access to the element.

79

EVENTBUS EVENTHANDLING
INTRODUCTION
There is a different way to handle events that works without the <interact> element. Instead of
registering events for each and every element/control Nifty utilizes the EventBus mechanism.

The EventBus mechanism supports loose coupling between Nifty (as the creator of events) and your
application (as the receiver of events) using a publish/subscribe mechanism. Nifty publishes events
to some “global” EventBus and your application subscribes to specific Events that it is interested in.

What sounds not very different from the standard Listener pattern is in fact a great improvement.
There is only a dependency to the EventBus and not between the actual objects that communicate.
This helps to decouple the objects from one another. Nifty does not need to know who will receive
the event in the end. It just creates the event, publishes it on the EventBus and everybody interested
in it will be notified automatically.

Nifty uses the EventBus project (http://www.eventbus.org/) for this. The project is available as
Open Source under the Apache License, Version 2.0. It’s only 80KB in size, so it should not hurt the
download/memory footprint of Nifty that much.

You subscribe to the EventBus using the id of the element as the topic. So it‘s important that all the
elements you want to be notified about have the id attribute set.

When an event occurs Nifty will generate a new event class which implements the NiftyEvent
marker interface:

So whenever an event occurs Nifty calls you (via the EventBus) with a specific event class that
implements the NiftyEvent interface. Typically you‘ll use methods of the specific event class to
request details of the event. This chapter will list all specific event classes and when they are being
published by Nifty.

There exist several mechanism to register for events with Nifty. Some of them use Java annotations
to make this very easy. This chapter will explain how this works.

SUBSCRIBE FOR NIFTYEVENTS
We start again with the screen that contains a single image and since we‘ll try to subscribe for
mouse click events we‘ll make sure to set visibleToMouse=“true“. To subscribe for events it‘s
necessary that the element has an id attribute set, so we‘ll set id=“imageId“ as well.

Please note that in the following XML there is no <interact> element necessary!

public interface NiftyEvent<T> {
}

<screen id="start" controller="my.stuff.StartScreen">
 <layer id="layer" childLayout="center">
 <image id="imageId" filename="nifty-logo-150x150.png" visibleToMouse="true" />
 </layer>
</screen>

80

http://eventbus.org/
http://eventbus.org/

The ScreenController „my.stuff.StartScreen“ is for now just an empty implementation of the
ScreenController interface.

USING THE @NIFTYEVENTSUBSCRIBER ANNOTATION
This is probably the simplest way to register for events with Nifty. It uses the @NiftyEventSubscriber
annotation with the id of the element we‘d like to receive events for. The annotation will work with
single methods. The annotated method is required to have exactly two parameters:

- The first parameter must be a String and will contain the elementId that has published the event.

- The second parameter will be an instance of a class that implements the NiftyEvent interface.

EXAMPLE

Let‘s add the following method to the ScreenController class my.stuff.StartScreen:

And that‘s all there is to do! :) The onClick() method will be called when the element is clicked.

The @NiftyEventSubscriber annotation will use the id you set to subscribe to all events the element
with the given id generates that match the second parameter. In the example it will only subscribe to
the NiftyMousePrimaryClickedEvent. To do this it will look at the annotated method signatures
second parameter.

Sometimes you want to register the same method for several different elements. The
@NiftyEventSubscriber annotation offers a second syntax for this. Instead of using a single id you
can set the pattern attribute which is a regular expression matching the id of all the elements you
want to subscribe to.

EXAMPLE

The onClick method will be called for all elements with an id that starts with „im“.

Using the @NiftyEventSubscriber annotation is automatically supported in all ScreenController
and Controller implementations. This means that all you need to do is to add an annotation to a
method and Nifty will automatically subscribe/unsubscribe all matching methods for you.

USING THE @NIFTYEVENTSUBSCRIBER ANNOTATION IN ANY CLASS
To use the @NiftyEventSubscriber annotation in a class that is not a Nifty ScreenController or a
Nifty Controller implementation but just any other class there is an additional step required.

@NiftyEventSubscriber(id="imageId")
public void onClick(String id, NiftyMousePrimaryClickedEvent event) {
 System.out.println("element with id [" + id + "] clicked at [" + event.getMouseX() +
 ", " + event.getMouseY() + "]");
}

@NiftyEventSubscriber(pattern="im.*")
public void onClick(String id, NiftyMousePrimaryClickedEvent event) {
 System.out.println("element with id [" + id + "] clicked at [" + event.getMouseX() +
 ", " + event.getMouseY() + "]");
}

81

http://nifty-gui.sourceforge.net/projects/1.3/nifty/apidocs/de/lessvoid/nifty/NiftyEventSubscriber.html
http://nifty-gui.sourceforge.net/projects/1.3/nifty/apidocs/de/lessvoid/nifty/NiftyEventSubscriber.html
http://nifty-gui.sourceforge.net/projects/1.3/nifty/apidocs/de/lessvoid/nifty/screen/ScreenController.html
http://nifty-gui.sourceforge.net/projects/1.3/nifty/apidocs/de/lessvoid/nifty/screen/ScreenController.html
http://nifty-gui.sourceforge.net/projects/1.3/nifty/apidocs/de/lessvoid/nifty/controls/Controller.html
http://nifty-gui.sourceforge.net/projects/1.3/nifty/apidocs/de/lessvoid/nifty/controls/Controller.html

You'll need to call nifty.subscribeAnnotations() with an instance of your class. Nifty will then scan the
given instance for all @NiftyEventSubscriber annotations and subscribe all of them with the
EventBus.

If you don't need your object anymore you should call nifty.unsubscribeAnnotations() with the
instance again to unsubscribe all annotated methods.

This is how the methods look like and you can find them on the Nifty instance:

SUBSCRIBE DIRECTLY FOR EVENTS WITHOUT ANNOTATIONS
If for some reason you can‘t use annotations you can directly subscribe for Nifty events using a
special subscribe() method.

You‘ll need to directly implement the org.bushe.swing.event.EventTopicSubscriber interface:

where T is a specific NiftyEvent implementation.

And you‘ll need to call a method on the Nifty instance to subscribe for the event:

To unsubscribe for the event again you‘ll need to call the unsubscribe method with the same class
that you‘ve subscribed before (the org.bushe.swing.event.EventTopicSubscriber implementation).

Everything else works exactly the same.

// call this to subscribe all annotated methods of the given object
public void subscribeAnnotations(Object object);

// call this to unsubscribe all annotated methods of the given object
public void unsubscribeAnnotations(Object object);

public interface EventTopicSubscriber<T> {
 public void onEvent(String topic, T data);
}

public <T, S extends EventTopicSubscriber<? extends T>> void subscribe(
 Screen screen,
 String elementId,
 Class<T> eventClass,
 S subscriber);

public void unsubscribe(String elementId, Object object);

82

http://nifty-gui.sourceforge.net/projects/1.3/nifty/apidocs/de/lessvoid/nifty/NiftyEventSubscriber.html
http://nifty-gui.sourceforge.net/projects/1.3/nifty/apidocs/de/lessvoid/nifty/NiftyEventSubscriber.html

NIFTYEVENT REFERENCE
The following reference lists all available EventBus events that Nifty publishes. All of the listed
classes are implementations of the marker interface NiftyEvent.

ELEMENT BASED EVENTS
These events will be published by Nifty when element state changes. All classes are in the
de.lessvoid.nifty.elements.events package.

Classname Event

ElementDisableEvent Published when an element will be disabled.

ElementEnableEvent Published when an element will be enabled.

ElementHideEvent Published when an element will be hidden.

ElementShowEvent Published when an element will be shown.

de.lessvoid.nifty.elements.Element Published when an element changed layout
specific properties and the Element class itself
is published as the NiftyEvent in this case.

MOUSE BASED EVENTS
These events will be published by Nifty when a mouse event occurs. All classes are in the
de.lessvoid.nifty.elements.events package.

Classname Event

NiftyMouseEvent Published for any mouse event. The
NiftyMouseEvent has getters for the individual
attributes.

NiftyMouseMovedEvent Published when the mouse cursor has been
moved. The class has getters for the current
mouse coordinates.

NiftyMouseWheelEvent Published when the mouse wheel position has
been changed.

NiftyMousePrimaryClickedEvent Published when the primary (usually the left
mouse button) has been pressed.

NiftyMousePrimaryClickedMovedEvent Published when the primary (usually the left
mouse button) has been pressed and the mouse
is being moved.

NiftyMousePrimaryReleaseEvent Published when the primary (usually the left
mouse button) has been released.

NiftyMouseSecondaryClickedEvent Published when the secondary (usually the right
mouse button) has been pressed.

83

Classname Event

NiftyMouseSecondaryClickedMovedEvent Published when the secondary (usually the right
mouse button) has been pressed and the mouse
is being moved.

NiftyMouseSecondaryReleaseEvent Published when the secondary (usually the right
mouse button) has been released.

NiftyMouseTertiaryClickedEvent Published when the tertiary (usually the middle
mouse button) has been pressed.

NiftyMouseTertiaryClickedMovedEvent Published when the tertiary (usually the middle
mouse button) has been pressed and the mouse
is being moved.

NiftyMouseTertiaryReleaseEvent Published when the tertiary (usually the middle
mouse button) has been released.

INPUT EVENTS
When an element is enabled to retrieve keyboard events the converted NiftyInputEvent itself is
published using the id of the element.

STANDARD CONTROLS EVENTS
All of the standard controls publish events. The following table lists all the NiftyEvent classes that
are currently available for the standard controls. All classes are in the de.lessvoid.nifty.controls
package.

This time the classes are only listed and they should be self explaining. The complete reference is
available in the wiki at

http://sourceforge.net/apps/mediawiki/nifty-gui/index.php?title=Nifty_Standard_Controls_
%28Nifty_1.3%29.

Classname Classname

ButtonClickedEvent ChatTextSendEvent

CheckBoxStateChangedEvent ConsoleExecuteCommandEvent

DraggableDragCanceledEvent DraggableDragStartedEvent

DropDownSelectionChangedEvent DroppableDroppedEvent

FocusGainedEvent FocusLostEvent

ImageSelectSelectionChangedEvent ListBoxSelectionChangedEvent

MenuItemActivatedEvent RadioButtonGroupStateChangedEvent

RadioButtonStateChangedEvent ScrollPanelChangedEvent

ScrollbarChangedEvent SliderChangedEvent

84

Classname Classname

TabSelectedEvent TextFieldChangedEvent

TreeItemSelectedEvent

GENERAL MOUSE EVENT PROCESSING CHANGES
WITH NIFTY 1.3.2
When you use the <interact /> callback methods like <interact onClick="..." /> everything works
as expected: Mouse events will travel down all elements that are visibleToMouse="true" until some
element has been found with an <interact /> event handler. When the event handler is found this
mouse event is consumed and is not send to any other elements "below" this element.

However there is a problem with this approach especially with EventBus events. EventBus events are
published and because of their very nature are not able to provide any information if the event has
been consumed by anybody or not at all.

This is a problem when you imagine several elements overlayed, like a button on a panel and you
have a <interact onClick="..." /> event handler on the panel but you're using the Eventbus
ButtonClickedEvent for the button. In this case Nifty processes the mouse click event for the button
first, because it is "above" the panel. The button will publish its click event on the EventBus and
then the event will be forwarded to the panel! Since the panel has a <interact onClick="..." />
event handler this event handler will be executed as well.

The problem is that we've now executed two event handlers (for the button and the panel) even
though from an intuitive point of view we've expected that the button should have consumed the
event.

Because of this problem Nifty 1.3.2 has changed the general event processing as follows:

To keep things simple Nifty will now stop processing directly when it encounters the first
visibleToMouse="true" element. This means events will not travel any further when a
visibleToMouse=“true“ element has been detected. When you have two elements above each other
that both have visibleToMouse="true" then only the topmost element will now get the event.

Please Note:

It might be necessary to change your code slightly! Especially you must be careful where you add
visibleToMouse="true" because this can now really block events from traveling down the element
tree.

85

EFFECTS
INTRODUCTION
Now that you have all of your elements arranged nicely on the screen and you know how you can
interact with them it‘s time to make your Nifty GUI really nifty with the use of effects.

A Nifty effect is basically just some change of a render state before or after an element is rendered.
Additionally effects are time aware and can change the render state over time.

Here is an example XML that just displays an image.

And we get the Nifty Logo centered in the middle of the screen as the output.

Now we change the XML and add an effect to the image to make it fade in when the screen starts.

<?xml version="1.0" encoding="UTF-8"?>
<nifty>
 <screen id="start">
 <layer childLayout="center">
 <image filename="nifty-logo-150x150.png" />
 </layer>
 </screen>
</nifty>

86

And now the image slowly fades in when the screen is started. The „fade“ effect will by default
change the alpha value of anything it is applied to from 0% to 100% over the time of one second.
This, however, are only default values which we can easily change:

Now the image will be initially visible but it will fade out over 15000ms which are 15 seconds. After
the 15 seconds the effect will be disabled because it has ended and it it will be removed so that the
image will be fully visible again. If we want the effect to be applied even when it has ended we can
add neverStopRendering=“true“ and the effect will stay active with its last value hiding the image
forever.

<?xml version="1.0" encoding="UTF-8"?>
<nifty>
 <screen id="start">
 <layer childLayout="center">
 <image filename="nifty-logo-150x150.png">
 <effect>
 <onStartScreen name="fade" />
 </effect>
 </image>
 </layer>
 </screen>
</nifty>

<?xml version="1.0" encoding="UTF-8"?>
<nifty>
 <screen id="start">
 <layer childLayout="center">
 <image filename="nifty-logo-150x150.png">
 <effect>
 <onStartScreen name="fade" start="#f" end="#0" length="15000" />
 </effect>
 </image>
 </layer>
 </screen>
</nifty>

<?xml version="1.0" encoding="UTF-8"?>
<nifty>
 <screen id="start">
 <layer childLayout="center">
 <image filename="nifty-logo-150x150.png">
 <effect>
 <onStartSceeen name="fade" start="#f" end="#0" length="15000"
 neverStopRendering=“true“/>
 </effect>
 </image>
 </layer>
 </screen>
</nifty>

87

EFFECT EVENTS
You can attach effects to any element. There are the following events that can trigger an effect.

onStartScreen
The effect is started when the screen the element is a part of begins.

onEndScreen
The effect is started when the screen the element is part of ends.

onFocus
When the element is able to get the keyboard/input focus then this effect is active as long as the
element has the keyboard focus.

onGetFocus
The element just got the keyboard/input focus.

onLostFocus
The element just lost the keyboard/input focus.

onClick
The element has been clicked by the mouse or is activated by a keyboard interaction.

onHover
The mouse cursor is currently hovering the element.

onStartHover
The mouse cursor just began hovering the element.

onEndHover
The mouse cursor just left the element.

onActive
The element has been initialized and is now ready and active.

onCustom
This effect can only be started from Java and will not be started by Nifty. You‘ll need to manually
trigger the effect (Explained below).

onHide
The element is about to be hidden.

onShow
The element is shown again (after first being hidden).

onEnabled
The element is enabled.

onDisabled
The element is disabled.

88

HOVER EFFECTS
Hover effects are a special kind of an effect. Additional to the normal effect parameters they can
take the distance of the mouse cursor into account and change effect parameters accordingly. To
specify the additional parameters there is a nested <hover> element you can apply to the onHover
effect.

All effects can be used as hover effects. However not all effects really support the hover mode.

EXAMPLE

Here is an example of the hover effect in action.

So when you apply this to a text element and you move your mouse around the text element then
the textSize effect will dynamically change the size of the text in an area 200% around the element
and with a maximal size of 120% of the original text size.

Please note: Elements in Nifty don't receive mouse events by default. To get the above example
working you‘ll need to set "visibleToMouse" to „true“ on the element you apply that effect to or you
won‘t see any change at all :)

Here is an explanation of all the available hover effect attributes:

„hoverFalloffType“ one of „none“ or „linear“, Default: „none“
The falloff type to use. When being set to „none“ hover is actually disabled and „linear“ will take
the linear distance between the center of the element the effect is applied to and the mouse position
into account.

„hoverFalloffConstraint“ one of „none“, „vertical“, „horizontal“ or „both“,
Default: „none“
You can constraint the falloff of the hover effect to only „vertical“ or only „horizontal“ which
means that only the specified axis is being taken into account. With „none“ the falloff is disabled.

„hoverWidth“ as a Nifty SizeValue, Default: not set
You can specify the width of the hover area as a Nifty SizeValue. This means you can specify the
width as a pixel value (adding „px“ to the value) or as a percent value (adding „%“ to the value).

„hoverHeight“ as a Nifty SizeValue, Default: not set
You can specify the height of the hover area as a Nifty SizeValue. This means you can specify the
height as a pixel value (adding „px“ to the value) or as a percent value (adding „%“ to the value).

<onHover name="textSize" maxSize="120%">
 <hover hoverFalloffType="linear"
 hoverFalloffConstraint="both"
 hoverWidth="200%"
 hoverHeight="200%" />
</onHover>

89

MANUALLY STARTING EFFECTS
Most of the effect events are started automatically by Nifty when certain events occur. But
sometimes you want or need to trigger some effects manually.

This is possible using methods that the Element class provides. The simplest one looks like this:

The EffectEventId is an enum that describes all the possible events. You can use the startEffect()
methods like this:

There is another version of startEffect() available that takes a second parameter.

The EndNotify is a simple callback interface which Nifty calls when the effect has ended. By
implementing this interface you can execute some code when the effect you‘ve just started ends.

The EndNotify is very simple and it consists of only a single perform() method without any
parameters and with no return value.

And there is yet another version of startEffect() available that is especially useful for the onCustom
effect. You can attach multiple onCustom effects to an element. When you would use the regular
startEffect() method then all of the onCustom effects will be activated.

But sometimes you need multiple custom effects and you want to start the individual custom effects
under different circumstances. So in that case you need a way to select which one of the custom
effects you want to start.

To do this you can set the „customKey“ parameter for the effect and using the startEffect() method
that takes as a third parameter the „customKey“. Nifty will find all the effects with a matching
„customKey“ and will only start the effects that match.

EXAMPLE

Here we demonstrate the onCustom effect. We‘ve attached two onCustom effects to an image. One
of onCustom effects fades the image in and the other one fades the image out. To achieve that we‘ll
add customKey=“fadeIn“ to one of the effects and customKey=“fadeOut“ to the other.

public void startEffect(final EffectEventId effectEventId);

Element element = screen.findElementByName("elementId");
element.startEffect(EffectEventId.onStartScreen);

public void startEffect(EffectEventId effectEventId, EndNotify effectEndNotiy);

public interface EndNotify {
 void perform();
}

public void startEffect(EffectEventId effectEventId,
 EndNotify effectEndNotiy,
 String customKey);

90

The ScreenController for the screen looks like this:

So there are some interesting things happening in here. In the bind() method of the
ScreenController we‘ll lookup the image element by it‘s id attribute in the XML (id=“imageId).

<?xml version="1.0" encoding="UTF-8"?>
<nifty>
 <screen id="start"
controller="de.lessvoid.nifty.examples.helloworld.HelloWorldStartScreen">
 <layer childLayout="center">
 <image id="imageId" filename="nifty-logo-150x150.png">
 <effect>
 <onCustom customKey="fadeIn" name="fade" start="#0" end="#f" />
 <onCustom customKey="fadeOut" name="fade" start="#f" end="#0"
neverStopRendering="true" />
 </effect>
 </image>
 </layer>
 </screen>
</nifty>

public class HelloWorldStartScreen implements ScreenController {
 private Nifty nifty;
 private Element image;

 @Override
 public void bind(final Nifty newNifty, final Screen newScreen) {
 this.nifty = newNifty;
 this.image = newScreen.findElementByName("imageId");
 }

 @Override
 public void onStartScreen() {
 image.startEffect(EffectEventId.onCustom, new FadeInEnd(), "fadeIn");
 }

 @Override
 public void onEndScreen() {
 }

 class FadeInEnd implements EndNotify {
 @Override
 public void perform() {
 System.out.println("fadeIn has ended.");
 image.startEffect(EffectEventId.onCustom, new FadeOutEnd(), "fadeOut");
 }
 }

 class FadeOutEnd implements EndNotify {
 @Override
 public void perform() {
 System.out.println("fadeOut has ended.");
 }
 }
}

91

Then in the onStartScreen() method we will start the onCustom effect with the customKey „fadeIn“
and we will add a FadeInEnd instance as the EndNotify so that Nifty can call us back when the
fadeIn effect has ended.

This will make the image fade in as specified in the XML file and when the fade in has finished
Nifty will call the perform() method of FadeInEnd. We output a string to the console and then start
a new custom effect. This time we use „fadeOut“ as the customKey and call the startEffect method
with a FadeOutEnd instance so that Nifty can call us back when the „fadeOut“ effect has ended.

This will make the image fade out and in the perfom() method of the FadeOutEnd we‘ll simply
output another string to the console.

EFFECT PARAMETERS
There are some effect parameters that change the way in how the effect is applied to a given
element. We‘ll explain all of them in this section.

„startDelay“ in ms, Default: 0
Whenever an effect gets active it immediately is being applied by default. But sometimes you want to
delay the effect start for a bit so that the effect better synchronizes with other things or you simply
want to pause it for a while. In this case you can set the "startDelay" attribute of the effect to some
integer value that represents the time in ms to delay the start of the effect.

„length“ in ms, Default: 1000
How long the effect lasts depends on the "length" parameter. The standard value is one second
(1000ms). You can set the „length“ parameter to any value you want. The special value "infinite" is
also supported so that the effect never ends.

„oneShot“ as a boolean, Default: false
If you want an effect to only run for a single time when it gets activated you should set "oneShot“ to
„true".

„timeType“ one of "infinite", "linear" or "exp", Default: „linear“
Time in Nifty is only by default "linear". For special effects you can also use "exp" time which
calculates time^value. For instance when you set the "factor" attribute to 2 this would mean time^2.

You can achieve infinite effects by setting timeType to "infinite" too. This is the same as setting
length to "infinite".

„factor“ as a number, Defaut: 1
When using timeType="exp" you can use the "factor" attribute to specify the factor, f.i. factor="1.5"
would calculate time^1.5.

„inherit“ as a boolean, Default: false
Determines if the effect is only applied to the element that contains the effect (inherit="false") or if
the effect is applied to all child elements as well (inherit="true"). For example a "move" effect with
inherit="true" would also move all child elements.

„post“ as a boolean, Default: false
Effects are applied before an element is rendered when post is set to "false" which is the default. This
way the effect can modify some state, f.i. the current alpha value and when the element gets
rendered this modified state is applied. There are however effects that are better applied after the
element is rendered. A perfect example would be a color overlay. This effects should be applied after
the element is rendered by setting post to "true".

92

„overlay“ as a boolean, Default: false
The "overlay" Attributes is used to render an effect after all child elements are rendered. If you
would use a "post" effect, the effect would be applied after the element has been rendered but before
the child elements are rendered. So f.i. an "imageOverlay" effect would be overwritten by child
elements. With overlay=“true" you can add special effects after the element and the children have
been rendered.

„alternateEnable“ as a String, Default: null
This is a very powerful attribute. You can attach a tag to an effect and tell Nifty that this effect is
only enabled when the tag you set matches the alternateKey you set for the whole screen. When you
start a Screen from Java there is an option to set this alternateKey tag. Nifty will filter all effects that
match this tag and will activate the effect only when the tags match.

„alternateDisable“ as a String, Default: null
This works the same as "alternateEnable" but disables the effect when the tag set on the effect
matches the global screen tag.

„onStartEffect“ as a callback, Default: null
For special effects you can attach a callback to the effect that is executed when the effect is about to
be started. The callback is resolved with the current ScreenController.

„onEndEffect“ as a callback, Default: null
For special effects you can attach a callback to the effect that is executed when the effect has ended.
The callback is resolved with the current ScreenController.

„neverStopRendering“ as a boolean, Default: false
Keep rendering this effect rendered even when the actual effect time is over.

DYNAMICALLY CHANGE EFFECT PARAMETER
Sometimes you want to use the same effect but tweak some of the effect parameters slightly. The
perfect example for this would be the „hintEffect“.

The „hintEffect“ exposes a „hintText“ property that defines the text of the hint. This is fine as long
as the text is static and you can specify it in XML for instance. But what if you need to change the
hint text?

You can do that by changing the effect properties before you display the effect:

93

When the effect will be activated the next time it will use the new parameters.

EFFECTS REFERENCE
You can find a reference of all effects including examples online in the Nifty wiki at

http://sourceforge.net/apps/mediawiki/nifty-gui/index.php?title=Effects.

CUSTOM EFFECTS
You're not limited to the build-in effects. You can easily define your own effects.

When you apply an effect in Nifty the name of an effect connects the effect to its implementing
class. For all build-in effects there is a class inside of Nifty that registers all of the default effects. The
class is called de.lessvoid.nifty.NiftyDefaults and you‘ll find a lot of lines like the following one in this
class:

This will link the effect name „alphaHide“ to the implementing class for the effect
„de.lessvoid.nifty.NiftyDefaults“.

So creating your own effect is a two step process. First you‘ll need to implement the Nifty
de.lessvoid.nifty.effects.EffectImpl Interface and then you‘ll need to define a name for your new
effect and register it with the <registerEffect> XML element in your Nifty XML:

When you don‘t use XML you can do the same with the Nifty instance:

// Get the element that has the effect attached.
Element element = nifty.getCurrentScreen().findElementByName("test");

// Get all effects of the element. This is a list since there could be
// multiple effects attached for the given EffectEventId and effect class.
List<Effect> hoverHintEffects = element.getEffects(EffectEventId.onHover, Hint.class);

// this is probably not necessary since you know what element and effect you request
if (hoverHintEffects.size() != 1) {
 throw new RuntimeException("sanity check failed");
}

// Simply get the first effect from the list
Effect hoverEffect = hoverHintEffects.get(0);

// and finally change the Effectparameters
hoverEffect.getParameters().setProperty("hintText", "change me");

nifty.registerEffect(new RegisterEffectType(
 "alphaHide", "de.lessvoid.nifty.effects.impl.AlphaHide"));
... // more lines like this

<registerEffect name="my-cool-new-effect" class="my.package.MyCoolNewEffect" />

nifty.registerEffect("my-cool-new-effect", "my.package.MyCoolNewEffect");

94

With the effect registered with Nifty you can use it like the build-in effects with name=“my-cool-
new-effect“ when applying any of the effects.

The EffectImpl interface you need to implement is not really complicated. It looks like this:

Nifty calls the activate() method when the effect starts and deactivate() when the effect ends.

The execute() method is called each frame to actual render the effect. In the execute() method you
have access to the element the effect is attached to as well as the effectTime, which runs from 0.0 to
1.0 and the NiftyRenderEngine. The NiftyRenderEngine allows you to modify render states in your
effect to modify how the element gets drawn. The falloff parameter gives you access to the hover
effect parameters.

You can render anything in execute. What about a particle effect? =)

public interface EffectImpl {

 /**
 * initialize effect.
 * @param nifty Nifty
 * @param element Element
 * @param parameter parameters
 */
 void activate(Nifty nifty, Element element, EffectProperties parameter);

 /**
 * execute the effect.
 * @param element the Element
 * @param effectTime current effect time
 * @param falloff the Falloff class for hover effects.
 * This is supposed to be null for none hover effects.
 * @param r RenderDevice to use
 */
 void execute(Element element, float effectTime, Falloff falloff,
 NiftyRenderEngine r);

 /**
 * deactivate the effect.
 */
 void deactivate();
}

95

RUNTIME ELEMENT MODIFICATION
INTRODUCTION
This chapter explains how you can access Nifty elements from Java and modify properties of your
GUI at runtime. If you access and modify the standard controls you‘ll usually use the dedicated
control API that the standard controls provide. How this works is explained in the Controls chapter.

Here we concentrate on how you can access and modify the core elements (panel, image, text) as
well as how you can dynamically modify the layout of elements in general.

ACCESS ELEMENTS
Before you can modify elements you need to access them. At the root of every Nifty GUI is the
screen so we‘ll need to first access the screen.

If you don‘t have a Screen instance already there are a couple of methods available at the Nifty
instance to access Screens:

Another way is the bind() method of the ScreenController or the Controller interface. Nifty will call
you with the Screen instance that the ScreenController or Controller is being bound to. You can
keep that Screen instance around in your implementation of those interfaces.

Once you have a Screen instance you can begin accessing it‘s content.

For instance you can get a list of all layer elements or you can get a reference to individual elements
using the id of the element. You can access layer elements by id as well:

So you‘ll notice that Nifty treats everything as a Nifty Element. This is an important concept to
understand the way Nifty works internally:

Every core element (Layer, Panel, Image, Text) is treated equally by Nifty as an Element. The
difference is only in the way the core element will get rendered on the screen. Which we will talk
about in a minute.

First we‘ll take a look at how we can request and change common Element properties of an
Element.

// get the current (active) screen
public Screen getCurrentScreen();

// get a screen with the given id
public Screen getScreen(final String id);

// request all ids of all screens currently registered with Nifty
public Collection < String > getAllScreensName();

// get all layers
public List<Element> getLayerElements();

// get an element by id. this returns null when the Element could not be found
public Element findElementByName(String name);

96

REQUEST ELEMENT PROPERTIES
You can request element properties by simply calling a getter method on the Element class. Here are
some selected interesting properties:

getX(), getY(), getWidth(), getHeight()
These methods give you the coordinates of the element on the screen. These are the resolved values
after layout has been performed. You get the coordinates in absolute pixel coordinates (0,0 is the top
left corner of the screen).

getStyle()
You can access the name of the style that has been applied to this element.

getParent()
Every element has exactly one parent element. With getParent() you can access the parent Element.

getNifty()
This is a helper method that gives you easily access to the Nifty instance this Element is attached to.

getId()
Returns the id of the element which can be handy sometimes.

getElements()
Return all child elements of this element.

getEffects()
This is another helper method to access all of the effects attached to this Element. With it you can
modify effect attributes if necessary. You‘ll need to provide the EffectEventId you are interested in as
well as the class of the EffectImpl you want to access and the method will give you the EffectImpl
back.

getControl()
If you have a reference to an Element which is actually a control you can use the getControl()
method to access the Controller of the Element.

getNiftyControl()
If you have a reference to an Element which is actually a standard control (or any control that
implements the NiftyControl interface) you can use the getNiftyControl() method to access the
control API interface of the control. This is the preferred method to access the standard control API
of a standard control.

getConstraintX(), getConstraintY(), getConstraintWidth(), getConstaintHeight()
getConstraintHorizontalAlign(), getConstraintVerticalAlign()
As explained in the Nifty Layout chapter layout in Nifty works by setting a couple of constraints on
the Element which the layout mechanism tries to satisfy. So when you set width=“50%“ for an
Element this is actually a width constraint for the element. With these getters you can access the
original values of the constraints. The return values are SizeValues or the appropriate enums for
Horizontal- and VerticalAlign.

isClipChildren()
You can check if this element will clip the content of it‘s child element at this elements boundary.
This corresponds to the value of the childClip attribute.

isEffectActive()
You can ask the element if a certain EffectEventId is still active.

97

isEnabled(), isVisible(), isFocusable(), isVisibleToMouseEvents()
You can request the states of enabled, visible and so on.

You can find out more about these methods in the JavaDoc for the Nifty Element class.

MODIFY ELEMENT PROPERTIES
The Element class has some methods available that we can call directly to modify some properties.

disable() and enable()
You can enable and disable elements with a simple call to these methods. Nifty will ensure that the
element can not be interacted with if it is disabled. It will also start the appropriate effects and it will
make sure to shift the focus to the next element when the element you disable() has the keyboard
focus currently.

hide() and show()
You can change the visibility of an Element with the hide() and show() methods. Please keep in mind
that hiding an Element will not remove it from the layout (e.g. it will still take up place!). If you want
to remove the Element you‘ll need to remove it from the screen. This is explained further below.

Especially hide() supports an optional EndNotify callback which will be called when the Element has
been completely hidden. This is sometimes important when you want to trigger other actions and
you have an onHide effect applied to the element and you want to trigger the action when the
element has been completely hidden.

setFocus()
If the element is focusable then you can manually make it active by calling setFocus() on the
element.

setFocusable()
You can change if the element can get the keyboard focus with this method.

setId()
If necessary you could change the id attribute dynamically.

startEffect(), stopEffect()
You can start and stop effects dynamically as well. This is explained in the Effect chapter in detail.

MODIFY LAYOUT
Since Nifty has done the layout of your screen you can‘t move elements freely around. This is why
there is no direct setX(), setY(), setWidth() or setHeight() method available. What you can do is
change the constraints and then tell Nifty to relayout the whole screen or individual elements which
we will look into in a minute.

There are a couple of setConstraint*() methods available to change constraints:

setConstraintX(), setConstraintY()
You can change the x and y coordinates of an element only when the parents childLayout supports
direct x and y coordinates. Currently these are „absolute“ and „absolute-inside“. Please note that
the method take SizeValue as a parameter so that they can allow % values as well.

setConstraintWidth(), setConstraintHeight()
Change the width and height constraints. These are SizeValues again to allow % values.

98

setConstraintHorizontalAlign(), setConstraintVerticalAlign()
Change the horizontal or vertical alignment values. Again this will only work for childLayouts that
support alignment and needs a relayout after you‘ve changed the values.

After you‘ve changed the constraints you‘ll need to tell Nifty to take your changes and apply them to
the screen. You can change several constraints at once and then apply them all.

There are two ways to do that:

1. You can call screen.layoutLayers()
This will go through all layers of the screen and adjust all elements according to the changed
constraints.

2. You can call element.layoutElements()
This will go to all child elements of the element you‘ve called that method on and only these child 0

elements (and all of their child elements) will be laid out.0

The difference is that in the 1. case all elements are being relayout which might take a bit longer
then when the layout is applied to only a subset of the element tree in the 2. case.

Please note that you‘ll need to call layoutElements() for the parent element of the element you‘ve
changed constraints or your change will have no effect. So when you are unsure or you‘ve changed a
lot of elements it is probably safer to call screen.layoutLayers().

Future Nifty version might optimize this so it‘s not necessary to call layoutLayers() or
layoutElements() manually but at the moment this is still a required step.

MOVE ELEMENTS TO ANOTHER PARENT
Sometimes it is necessary that you move elements to another parent element. In that case you‘ll
need to call a method on the element which you want to move:

You can‘t directly move the element because at the point in your code you call this method Nifty
might still be traversing the element tree. This is why you can only mark the element to be moved
and Nifty will take care of this when it‘s ready.

If you need to perform an action when the element has been moved you can use the second version
of the method which allows you to provide an EndNotify implementation.

REMOVE ELEMENTS
Removing elements works the same as moving them to a new parent. You can‘t remove them
directly but you can mark them for being removed later when Nifty is ready with processing the
Element tree.

// mark this element for being moved to the given destination element
public void markForMove(Element destination);

// same as above but call a method when the element has been moved
public void markForMove(Element destination, EndNotify endNotify);

99

When the element is being removed its onEndScreen effect is activated. When the onEndScreen
effect ends it is finally removed from the screen.

CHANGE PANEL, IMAGE AND TEXT PROPERTIES
Panel, Image and Text only exists as Element instances. So there is no Panel or Image or Text class
in Nifty. But there are some attributes that are only present for panel, image or text. For instance a
font attribute makes only sense for the text element.

The way Nifty handles this case is that every Element contains a set of ElementRenderers.
ElementRenderer implementations define the way how a specific element is being rendered on the
screen. Currently Nifty has an Image-, Panel- and TextRenderer which match the core elements for
Image, Panel and Text.

If you need to change attributes that are specific for these elements then you will need to access the
specific ElementRenderer implementation from an Element and use it to change the attributes.

Accessing the specific ElementRenderer is supported by the Element class with a special method:

So for instance if you need to change the image of an image element, you‘ll first request the element
from the screen using the id of your element and then you use the getRenderer() method to access
the ImageRenderer where you can simply set a new NiftyImage:

Accessing and changing the other ElementRenderers works exactly the same. You can find all of the
ElementRenderer implementations in the de.lessvoid.nifty.elements.render package.

// mark this element for being removed
public void markForRemoval();

// same as above but call a method when the element has been removed
public void markForRemoval(EndNotify endNotify);

// get a specific ElementRenderer from an element
public <T extends ElementRenderer> T getRenderer(Class <T> requestedRendererClass);

// find the element
Element imageElement = screen.findElementByName("imageId");

// get the ImageRenderer
ImageRenderer imageRenderer = imageElement.getRenderer(ImageRenderer.class);

// change the image
imageRenderer.setImage(nifty.getRenderEngine().createImage("new-image.png", false);

100

NIFTY STYLES
PRINCIPLES
If you have lots of elements on your screen that all share some common attributes, then Nifty styles
are a way to reduce the duplication and make your GUI definition more manageable.

Here is an example. Without style definitions your Nifty XML file might look like this.

So we have two text elements using the same font and the same backgroundColor. Having the same
attributes in several different places makes changes to the attributes difficult. If I want a green
background instead or a different font for all of the text elements I‘d need to find all the occurrences
of the backgroundColor and font attributes and set a new value for all of them.

Of course in this example I could simply use a search and replace feature of my text or XML editor
but when I have lots of elements I might not be able to easily solve the problem this way.

With Nifty style definitions we can extract all of the attributes that we need to use multiple times
and define them just once. This definition is called a style in Nifty and it can be applied to elements
where we need the attributes. This way Nifty styles are a great way to organize complex GUI
definitions into more manageable components.

For our example with the two text elements we‘d like to extract the font and the backgroundColor
attribute into a style. To define the style we use the <style> XML element and we need to give the
style definition a name with the "id" attribute of the <style> element.

As always we can do the same using the Java Builder pattern.

So, that‘s it basically. We can define any attribute we‘d like to apply to other elements later and give
the style definition the name „redBackgroundCaption“ so that we can later reference this exact style.

With the style definition in place we can rewrite our original example to use this style.

<text font="myfont.fnt" backgroundColor="#f00f" text="stuff 1" />
<text font="myfont.fnt" backgroundColor="#f00f" text="stuff 2" />

<style id="redBackgroundCaption">
 <attributes font="myfont.fnt" backgroundColor="#f00f" />
</style>

new StyleBuilder() {{
 id("redBackgroundCaption");
 backgroundColor("#8fff");
}}.build(nifty);

<text style="redBackgroundCaption" text="stuff 1" />
<text style="redBackgroundCaption" text="stuff 2" />

101

Nifty will now apply the attributes from the style definition to the text elements.

And we are now able to simply change the style definition and all of the elements where this style is
applied will automatically update accordingly. Besides the benefit of reducing duplication this makes
the GUI definition simpler, easier to read and easier to maintain as well.

OVERWRITE ATTRIBUTES
If required you can overwrite any attribute that has been defined by a style by directly applying the
attribute directly at the element. This allows you to use a base style for your elements and if
required you can use a different value for some of the attributes.

Nifty will apply all of the attributes of the style definition first and all of the attributes that you‘ve
specified last.

In this examples the second text element will use a different font although the
„redBackgroundCaption" style is still being applied.

ORGANIZE STYLES IN FILES
To better organize your style definitions you can put them in a separate XML file and include it into
your actual XML with the <useStyle> element.

Here is an example Nifty style XML file „styles.xml“.

To include a Nifty style XML file you can use the <useStyles> element in XML.

Or you can call the method „loadStyleFile“ on the Nifty instance:

Style files are a great way to switch the look and feel of your GUI. If you put the visual appearance
of your GUI in a Nifty style file you can change the look by simply using a different <useStyles> file.

<text style="redBackgroundCaption" text="stuff 1" />
<text style="redBackgroundCaption" text="stuff 2" font="other.fnt"/>

<?xml version="1.0" encoding="UTF-8"?>
<nifty-styles>
 <!-- define a style with the name „myStyle“ -->
 <style id="myStyle">
 </style>

 <!-- you can have more <style> definitions here -->
</nifty-styles>

<useStyles filename="styles.xml" />
<!-- you can now use „myStyle“ in here -->

nifty.loadStyleFile("styles.xml");

102

CONTROLS
BASICS
The basic building blocks of a Nifty GUI are the core elements: panel, image and text. Building
GUIs out of those elements is possible but it's not very practicable. What we want to use instead are
abstractions, like buttons, input fields, scrollbars and so on.

The Nifty GUI way to do that are controls. A Nifty GUI control is the combination of multiple
panels, images and texts that together form a component. The component (control) is defined once
and then it is used multiple times. You can see a control as some form of template as well. Nifty
controls can be defined in XML or from Java using the JavaBuilder.

Before we dive into all of the details on how to create your own controls we‘ll first take a look on
how you can use the standard controls that Nifty provides.

STANDARD CONTROLS AND STYLES

CONTROL INCLUDE
Nifty provides a standard set of controls that you can simply use in your own GUIs. All you need to
do is to add „nifty-default-controls-<version>.jar“ and the „nifty-style-black-<version>.jar“ to your
Java classpath and then you use the <useControl> and the <useStyles> tag to include both into
your XML.

EXAMPLE

Include the Nifty „default-default-controls.xml“ to use the standard controls and the „nifty-default-
styles.xml“ to use the standard look‘n‘feel.

You‘ll need to include both, the styles and the control to access the standard controls. Without the
style file the controls don‘t know how they should look ;)

Of course you can do the same using Java only by calling two methods that the Nifty instance
provides:

Once you've included both XML files the standard controls are available.

<?xml version="1.0" encoding="UTF-8"?>
<nifty>
 <!-- include the style file for the standard controls -->
 <useStyles filename="nifty-default-styles.xml" />

 <!-- include the standard controls -->
 <useControls filename="nifty-default-controls.xml" />

...

// load default styles
nifty.loadStyleFile("nifty-default-styles.xml");

// load standard controls
nifty.loadControlFile("nifty-default-controls.xml");

103

EXAMPLE

You can insert a control into your GUI with the <control> Tag. Here is an example to use the
standard textfield control in a Nifty GUI XML.

Which will give us a simple textfield centered in the middle of the screen which is 200px width and
contains the initial text of „hello textfield“:

As you see you can use the <control> tag in the same way as you would use any other Nifty element
(panel, image, text).

<?xml version="1.0" encoding="UTF-8"?>
<nifty xmlns="http://nifty-gui.sourceforge.net/nifty-1.3.xsd" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://nifty-
gui.sourceforge.net/nifty-1.3.xsd http://nifty-gui.sourceforge.net/nifty-1.3.xsd">

 <!-- load styles -->
 <useStyles filename="nifty-default-styles.xml" />
 <useControls filename="nifty-default-controls.xml" />

 <!-- start screen -->
 <screen id="start">
 <layer backgroundColor="#003f" childLayout="center">
 <!-- use the textfield control -->
 <control id="input" name="textfield" width="200px" text="hello textfield"/>
 </layer>
 </screen>
</nifty>

104

http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd
http://nifty-gui.sourceforge.net/nifty-1.3.xsd

Using the Java Builder we can get the same result when we use the following Java source:

For all of the standard controls there are specific Java Builders that you can use to create a control.
In the example above there is the TextFieldBuilder being used to create the textfield control. The
specific Java Builders have the advantage that they are designed for a specific control and therefore
expose special methods to use.

CONTROL API
Creating a control and adding it to your GUI is great but a control only makes sense when we can
interact with it and in the case of the textfield actually get the text that the user provides or the
control is useless.

To do this all of the standard controls provide an API to access the controls functions. In case of the
textfield the API is the interface de.lessvoid.nifty.controls.TextField and you can access it using the
findNiftyControl() method of the screen.

EXAMPLE

Access the TextField control API interface using the findNiftyControl() method of the screen class:

For a better understanding of what that means, here is the actual TextField interface that you get
back.

// create screen
new ScreenBuilder("start") {{
 layer(new LayerBuilder("layer") {{
 childLayoutCenter();
 backgroundColor("#003f");
 control(new TextFieldBuilder("input", "hello textfield") {{
 width("200px");
 }});
 }});
}}.build(nifty);

// tell Nifty that it should show the „start“ screen
nifty.gotoScreen("start");

TextField textField = screen.findNiftyControl("input", TextField.class);

105

So once you‘ve the TextField interface you can call it‘s methods.

EXAMPLE

Get the text of a textfield using the TextField interface API.

There exists similar interfaces for the other standard controls.

public interface TextField extends NiftyControl {

 /**
 * Get the current TextField text.
 * @return text
 */
 String getText();

 /**
 * Set the Text of the TextField.
 * @param text new text
 */
 void setText(String text);

 /**
 * Change the max. input length to a new length.
 * @param maxLength max length
 */
 void setMaxLength(int maxLength);

 /**
 * Set the cursor position to the given index.
 * @param position new cursor position
 */
 void setCursorPosition(int position);

 /**
 * Enable a password character that is displayed instead of the actual text.
 * @param passwordChar character to use, like '*'
 */
 void enablePasswordChar(final char passwordChar);

 /**
 * Disable the password character which displays the text again,
 */
 void disablePasswordChar();

 /**
 * Checks if a password character is currently enabled.
 * @return true if password character is enabled and false if not.
 */
 boolean isPasswordCharEnabled();
}

TextField textField = screen.findNiftyControl("input", TextField.class);
String text = textField.getText();

106

CONTROL EVENTS
Some of the controls support EventBus notifications when interesting things happen to the control.
The textfield control generates an event whenever the text of the textfield changes.

EXAMPLE

Subscribe for the TextFieldChangedEvent to listen for any text change events.

There exists similar events for the other standard controls as well.

CONTROL REFERENCE
You can find a reference of all standard controls online in the Nifty wiki.

http://sourceforge.net/apps/mediawiki/nifty-gui/index.php?title=Nifty_Standard_Controls_
%28Nifty_1.3%29

@NiftyEventSubscriber(id="input")
public void onTextfieldChange(final String id, final TextFieldChangedEvent event) {
 System.out.println(event.getText());
}

107

CUSTOM CONTROLS

CONTROL DEFINITION
Creating your own Nifty controls is not complicated. Let's see next how you can do that.

EXAMPLE

Control definition for a simple button control.

So basically that's a control definition in Nifty XML. We'll look at all the little details in a moment
but first here is the same control definition using the Java Builder pattern:

And now let‘s take a look at the details.

With the name attribute you can obviously name your control and if you later want to use the
control you can select the control with its name.

With the control definition in place we can use the control with the <control> tag using „button“ as
the name and this will work the same as with the name=“textfield“ before.

EXAMPLE

Use the newly defined button control using the <control> Tag.

Using the newly defined button control using the Java Builder pattern:

<controlDefinition style="nifty-button"
 name="button"
 controller="de.lessvoid.nifty.controls.button.ButtonControl"
 inputMapping="de.lessvoid.nifty.input.mapping.MenuInputMapping">
 <panel style="#panel" focusable="true">
 <text id="#text" style="#text" text="$label"/>
 </panel>
</controlDefinition>

new ControlDefinitionBuilder("button") {{
 controller("de.lessvoid.nifty.controls.button.ButtonControl");
 inputMapping("de.lessvoid.nifty.input.mapping.MenuInputMapping");
 style("nifty-button");
 panel(new PanelBuilder() {{
 style("#panel");
 focusable(true);
 text(new TextBuilder("#text") {{
 style("#text");
 text(controlParameter("label"));
 }});
 }});
}}.registerControlDefintion(nifty);

<control id="theButton" name="button" label="OK" />

108

When Nifty parses a Nifty XML file and it finds a control, it looks up a matching control definition
using the control name. If a corresponding control definition is found the content of the control
definition actually replaces the control tag. So all the panels, images and text elements that make up
the control definition are inserted into the element tree at the position of the control. If you look at
it in this way you can imagine controls as a form of a template.

Like screens it is possible to attach a controller class to a control. This works exactly the same as with
screens, whenever something happens the controller is the first address that is called.

When resolving all of the GUI elements Nifty keeps track of the current controller class. The
controller of a control is a Java class that gets all the events of the control. So let's say that we have a
onClick() event on any element inside the control definition that event will not travel immediately to
the screen controller but to the controller of the control. So this way you have a Java class
representing the control and that gets all the events. This is an important mechanism to get controls
working.

control(new ControlBuilder("theButton", "button") {{
 parameter("label", "OK");
}});

109

So to wrap that part up here is the Controller interface all Control classes need to implement:

You‘ll implement this interface and register it with the controlDefinition with the controller
attribute.

You can put several of your own control definitions into a XML file and include it the same way as
we've included the nifty default controls or you can define the control definitions directly in your
Nifty XML.

CONTROL PARAMETERS
In the case of the button example we don't want all of our buttons to have the same label. So we
need a way to customize the control.

public interface Controller {

 /**
 * Bind this Controller to a certain element.
 * @param nifty nifty
 * @param element the Element
 * @param parameter parameters from the xml source to init the controller
 * @param listener the ControllerEventListener
 */
 void bind(
 Nifty nifty,
 Screen screen,
 Element element,
 Properties parameter,
 Attributes controlDefinitionAttributes);

 /**
 * Init the Controller. You can assume that bind() has been called for all other
controls on the screen.
 * @param parameter
 * @param controlDefinitionAttributes
 */
 void init(Properties parameter, Attributes controlDefinitionAttributes);

 /**
 * Called when the screen is started.
 */
 void onStartScreen();

 /**
 * This controller gets the focus.
 * @param getFocus get focus (true) or loose focus (false)
 */
 void onFocus(boolean getFocus);

 /**
 * input event.
 * @param inputEvent the NiftyInputEvent to process
 * @return true, the event has been handled and false, the event has not been
handled
 */
 boolean inputEvent(NiftyInputEvent inputEvent);
}

110

The way this works is that we can override some attributes when we actual use the control. Maybe
you remember this strange syntax in the button example:

If a attribute value inside of the control definition begins with the "$" character you can later set
this value by using the value after the „$“ character as another attribute. You can think of the „$“
character as a way of introducing a new attribute for your control!

Assigning a value to this new attribute when you use the control will replace the value in the control
definition. This works not only for text attributes but for all attributes of all elements!

EXAMPLE

The „label“ attribute of the button control is set to the value „OK“.

The same works when using the Java Builder:

Please note the syntax: The method to set control parameters is called „parameter“ and you‘ll need
to specify the attribute you want as the first parameter and the value as the second parameter.

CONTROL STYLES
The last piece of information that is missing are control styles. When you define your control with
the control definition tag you are free to apply any style to the elements that your control uses. This
works the same as we've seen before and you can just add a style attribute to the elements.

However there is one problem. When we use the control, let's say the button control, the style of the
button will always be fixed. If, for instance, the button is defined as a red button then this button will
always be applied in red and you always get a red button. This might be ok but what we really want
is a control style. If I use the button and apply a different style, let's say the green button style, I
want to use the same control but with the green button style applied.

And actually you can!

If you take a look at the control definition we've shown before, you've noticed two things:

1. The control definition itself has a style attribute and

2. the elements that make up the control use strange style names that begin with a # character.

The style attribute for the control definition is the default style that Nifty applies when you actually
use the control. So if you don't set any other style when you use the control then Nifty will simply
use the style that was given in the control definition tag.

<controlDefinition name="button" ...>
 <panel style="#panel" focusable="true">
 <text id="#text" style="#text" text="$label"/>
 </panel>
</controlDefinition>

<control id="theButton" name="button" label="OK" />

control(new ControlBuilder("theButton", "button") {{
 parameter("label", "OK");
}});

111

Style names inside a control definition that start with a # character are called "sub styles". When
Nifty resolves styles it combines the style name of the control definition ("nifty-button") and the style
at the element inside the control ("#panel") to build a final style name ("nifty-button#panel"). And
this allows us to define the style for the sub style too.

EXAMPLE

This is a sub style for the panel inside of the nifty-button style.

So using a control and not setting a style attribute will fall back to the style that was set in the control
definition.

All the elements that have a sub style attached will get resolved using the combination of the style of
the control definition and the sub style that was attached to the element. Nifty will resolve all of the
sub styles and apply the attributes to the elements as we've seen before.

But this allows us to create a complete new style for a control. All we need to do is to create styles
that consists of our name for the base style, e.g. "green-button" and the sub style given in the control
definition, e.g. "#panel". So we simply define a style: "green-button#panel". When we later use this
style on the control tag we can simply use our new style "green-button".

You can use the existing styles (and sub styles) as the base for your own styles. You only need to make
sure that you‘ll define all sub styles of the control.

You can even change styles dynamically from Java using element.setStyle(). However there is one
catch: Changing sub styles is not supported at runtime currently. So you can only apply the „green-
button“ style when you create the button but not change a „red-button“ style to a „green-button“
style at runtime.

(You could change the style at runtime but only when this style does not have sub styles applied).

<style id="nifty-button#panel">
 <attributes backgroundImage="button/button.png"
 imageMode="sprite-resize:100,23,0,2,96,2,2,2,96,2,19,2,96,2,2"
 paddingLeft="7px"
 paddingRight="7px"
 width="100px"
 height="23px"
 childLayout="center"
 visibleToMouse="true" />
</style>

112

INTEGRATION WITH OTHER SYSTEMS
INTEGRATION WITH JME3
This topic is covered in detail on the jMonkeyEngine3 wiki that you can find online at http://
jmonkeyengine.org/wiki/doku.php/jme3:advanced:nifty_gui.

INTEGRATION WITH SLICK2D
The Nifty Slick2D Renderer is the binding between Nifty GUI and Slick2D in matters of graphic,
user input and sound.

BASIC SETUP
The Slick2D renderer provides access to Nifty GUI by extending the

org.newdawn.slick.Game,
org.newdawn.slick.BasicGame,
org.newdawn.slick.state.GameState and
org.newdawn.slick.state.BasicGameState

of Slick2D. Each class or interface is implemented twice. One overlay type and one pure Nifty GUI
type.

The overlay type of the classes are meant to display Nifty GUI as overlay over graphics rendered
outside of Nifty GUI. The pure Nifty GUI classes are meant to display only the Nifty GUI on the
screen.

Each of the implementations have at least one abstract method that you‘ll need to implement.

It‘s one of the two methods written above. The first one is for GameState based implementations
and the second one is for Game based implementations.

Inside this method you have to load the things the Nifty GUI is supposed to display. How you load
the GUI is up to you. Either build it inside this method or load a XML file.

When using the overlay classes you‘ll get a few more methods that you‘ll need to implement.

These two methods are supposed to be used to initialize the Nifty instance and the game in case you
need it. Initializing the GUI is done by calling the initNifty functions that are provided by the super
classes. These functions have various implementations and it‘s possible to use whatever fits.
Preparing Nifty GUI is not supposed to be done in this function. As named before the prepareNifty()
functions are used for this.

protected abstract void prepareNifty(Nifty nifty, StateBasedGame game);
protected abstract void prepareNifty(Nifty nifty);

protected abstract void initGameAndGUI(GameContainer container)
 throws SlickException;

protected abstract void initGameAndGUI(GameContainer container, StateBasedGame game)
 throws SlickException;

113

The overlay classes now also add two more functions called updateGame() and renderGame(). Both
functions are respective used to handle the game unit. Using those functions ensures that Nifty
receives the update and render calls properly.

So Nifty GUI does not need to be updated or rendered by hand. The library handles this internally.

RESOURCE LOADING API
The resource loading API provides an easy way to add your own methods of loading resouces
(images/sounds/cursors/fonts) into the rendering environment. The basic loader storages can be
found in the package de.lessvoid.nifty.slick2d.loaders. There it is possible to register more loaders to
the Slick devices that are used to load resources.

There are already some implementations of these loaders that utilize most of the possibilities to load
the data.

There are:

• Font loaders: de.lessvoid.nifty.slick2d.render.font.loader

• Cursor loaders: de.lessvoid.nifty.slick2d.render.cursor.loader

• Image loaders: de.lessvoid.nifty.slick2d.render.image.loader

• Sound loaders: de.lessvoid.nifty.slick2d.sound.sound.loader

• Music loaders: de.lessvoid.nifty.slick2d.sound.music.loader

For example when writing a new loader to load images the class needs to implement the
de.lessvoid.nifty.slick2d.render.image.loader.SlickRenderImageLoader interface.

This class has to this class has to make sure to load this image or throw a
de.lessvoid.nifty.slick2d.render.image.SlickLoadImageException in case loading the image fails.
T h e n t h e c l a s s n e e d s t o b e a d d e d t o t h e l o a d e r s s t o r e d i n
de.lessvoid.nifty.slick2d.loaders.SlickRenderImageLoaders. This loader list will try all registered
image loaders in order to load a resource and use the first one that does not throw a exception.

Those loaders are automatically utilised by the RenderDevice and SourceDevice implementations
that are provided by the Slick2D-Renderer.

INPUT FORWARDING
Especially for the cases where Nifty-GUI is used as overlay over another game is often required that
the game receives all the input event that were not handled by Nifty.

For this purpose there are a few implementations provided that take care for the input forwarding.

de.lessvoid.nifty.slick2d.input.PlainSlickInputSystem
Receives the input events from Slick and forwards them to the Nifty-GUI. All events not handled by
the Nifty-GUI are discarded. In case your application is just supposed to display the Nifty-GUI, this
one is the best choice.

de.lessvoid.nifty.slick2d.input.NiftySlickInputSystem
Receives the input events from Slick and forwards them to the Nifty-GUI. All events not handled by
the Nifty-GUI are forwarded to a de.lessvoid.nifty.NiftyInputConsumer.

114

de.lessvoid.nifty.slick2d.input.SlickSlickInputSystem
Receives the input events from Slick and forwards them to the Nifty-GUI. All events not handled by
the Nifty-GUI are forwarded to a org.newdawn.slick.InputListener

So in case you implement a listener of one of the two libraries, the required implementations are
available. In case you want to write your own input system you should consider using
de.lessvoid.nifty.slick2d.input.AbstractSlickInputSystem. This class already implements the required
logic to forward to the Nifty-GUI and sends all events not handled by the Nifty-GUI to the abstract
function handleInputEvent(...). Also this class takes care for handling events Nifty-GUI usually does
not need. Such as high-level events like dragging, (double-)clicking, and so on.

115

REFERENCE
You can find additional informations online here.

Resource URL

Project Page http://sourceforge.net/projects/nifty-gui/

Ohloh.net http://www.ohloh.net/p/nifty-gui

Wiki http://sourceforge.net/apps/mediawiki/nifty-gui/index.php?title=Main_Page

Blog http://nifty-gui.lessvoid.com/

Twitter http://twitter.com/#!/niftygui

Github https://github.com/void256/nifty-gui

116

http://sourceforge.net/projects/nifty-gui/
http://sourceforge.net/projects/nifty-gui/
http://www.ohloh.net/p/nifty-gui
http://www.ohloh.net/p/nifty-gui
http://sourceforge.net/apps/mediawiki/nifty-gui/index.php?title=Main_Page
http://sourceforge.net/apps/mediawiki/nifty-gui/index.php?title=Main_Page
http://nifty-gui.lessvoid.com
http://nifty-gui.lessvoid.com
http://twitter.com/#!/niftygui
http://twitter.com/#!/niftygui
https://github.com/void256/nifty-gui
https://github.com/void256/nifty-gui

The End

117

