NI VeriStand 2010 Custom Device
Developer’s Guide (Beta)

This is a beta version of the guide. Please post questions, comments and feedback
on the NI Developer Zone.

Copyright
© 2010 National Instruments Corporation. All rights reserved.

Under the copyright laws, this publication may not be reproduced or transmitted in any form,
electronic or mechanical, including photocopying, recording, storing in an information retrieval
system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the
same. NI software is protected by copyright and other intellectual property laws. Where NI
software may be used to reproduce software or other materials belonging to others, you may
use NI software only to reproduce materials that you may reproduce in accordance with the
terms of any applicable license or other legal restriction.

Trademarks

National Instruments, NI, ni.com, LabVIEW and VeriStand are trademarks of National
Instruments Corporation. Refer to the Terms of Use section on ni.com/legal for more information
about National Instruments trademarks.

Other product and company names mentioned herein are trademarks or trade names of their
respective companies.

Patents

For patents covering National Instruments products/technology, refer to the appropriate location:
Help » Patents in your software, the patents.txt file on your media, or the National Instruments
Patent Notice at ni.com/legal/patents.

Custom Device Developer's Guide © 2010 National Instruments 2 0of 85

(000 1Y7=1 0110 0 E- TP 6

1] 1o o 11 o 1o o 0SSR 7
What iS @ CUSIOM DEVICE?ceiiiiiiiiiiiiiieiee ettt ee s 7
Table of DIrectories and AlTASES ... coii i i e e e e e e e e e e eaeaen s 8
CUStOM DEeVICE FramEWOIKcooiiiiiiiiiiiiiieeee e 9
CONTIGUIATION ...ttt 10
L= 142 U0 o HAY A R 11

Y= T = o = 3SR 11

[0o 1T PP P PP PP PPPPPPPPPP 12
CUSIOM COAER ... 12
CUSEOM DEVICE XIML ...t ettt e e e et ettt e s e e e e e e eeetta e e e e e e e e e eeantnn e e eeaeeeennnes 12
When do you Need a CUStOM DEVICE?ouuiiiiiii it e e e e aaaaa s 13
B PAILY HAMAWATEo.vevceeeeeeeee ettt ee et e ettt n e e et e st e tes e s eaetesn s aeene e, 15
Unsupported Measurement or Generation MOGEooiiiviiiiiiiii e 15
T 10| PSPPI 15
CUSLOM DEVICE RISK ANGIYSIS... i it e e e et e e e e e e e e e e ettt e e eeaeas 15
LabVIEW Application DEVEIOPIMENTuu ittt neenne 15
LabVIEW Real-Time Application DevelopmeNnt.........ccooii i 16
NI VeriStand BaCKGrOUNGuuuuiiiiiiiiiiiiii bbb bsneannneennes 16
Hardware Driver DEVEIOPMENToooiiiiiii it e et e e e e e e ar e e e e 16
=TS U] o PP P TP PP PR PPRPPRPTRRTRN 17
Planning the CUSTOM DEVICEcoiiiiiiiiiiiiiiiiiiiiie ettt 17
CRANNEIS ... 18

P T OPEITIES .. 20
(TN (o] g AT ToA Tt B =Tl 4 F= U1 T 23
HIBT AT CRY .. 23
= 10 1P 27
EXITA PAOES .. e 29

= 10 T P 30

GUID 30

DoAY 1 =T od =T = 1 o] o 31

BUIID SPECITICALION ... 31

) oL PP SPUPPTRUPPPIN 32
ASYNCNTONOUS ... 33
INliNE Hardware INEITACEcoiieeeeiee e e e e e e e e e 36

L= 14 = PSPPSR 36

Custom Device Developer's Guide © 2010 National Instruments 30f85

Read Data from HWV ... e e et a s e e e e e e e eeeat e e e e aeeeennnes 37

gL C= R D= L= B (o T LT PPN 38

L4 0 P 38

Inline Model INtEITACE ..o 38
EXECULE MOAEL..... et e e e et a e e e e e e e e eeaata e e e e eeaeeeanne 39

Table of Custom Device FrameWOTKScccooiiiiiieieeiee e 40
(@011 aToN o) B e O I 11T =Y 1o o TR 41
=Tz 11 1= YT Yo [PSPPSRI 41
LOW-LAtENCY MOUE ... e e e e et a s e e e e e e e e e sat e e e eeeeeannnes 42
Implement the CUSIOM DEVICEoeviiiiiiiiiiiiiiiiiie ettt 42
BUild the TemPlate PrOJECT........ i e e e e e e e e 43
BUild the CONfIQUIALIONuiiiiiiiii b 44
BUII The DIIVET ...ttt 52
Add Custom Device DEPENUENCIES........coooiie i 53
Channel Change DEetECHIONcii i e e e et e e e e e e eeraaaas 60
Debugging and BENCNMAIKINGcvviiiiiiiiiiiiiiiiiiiiie ettt 62
LabVIEW Debugging TECNNIQUES.........uuuuiii ettt e e e e e e aa e e e 62
(070 T0) [TV T Y= SRR 63
Printing tO the CONSOIEcoiiiiiii e e e et e e e e e e e r e e eaaes 63
Printing With NIVS Debug String VIoooiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 63
Printing With ni_emb.dlloooiiiiiii e 63
Distributed SYStEM MANAGETcie et ee e e et e e e e e ettt e e e e e e e e e ar e aeaeas 64
SyStem ChanNEISooiiiii 64
Table of Debugging and Benchmarking System Channels...............ccccvviiiien i, 64
System MONItOr AQT-0Ncooiiiiiiiiii e 65
Real-Time EXECULION TTACINGccieeeiiiiiiiiiee e eee et s e e e et e e e e e e e e et e e e e e e e e e e aa b e eeaeas 65
Table of RT Execution Tracing Channels........ccoooo oo 66
Additional Debugging Options for NI VeriStandcccooooeiiiiiiiiiii e, 66
Table of Debugging and Benchmarking TECNNIQUES...........uuuuuuriiimmiiiiiiiiiiiiiiiieiiiiieeneineneenenaen 67
Distributing the CUSIOM DEVICEii e e e e e e e e e eeeeeennnes 68
Custom DevVvice TIPS @Nd THCKS ... 68
Custom Device ENGINE EVENTSuuuiiii et e e e e e e e e eeetaa e e e e eaeeeeanes 69
BlOCK WItING @NA REATING ...ttt 70
WoOrking With String CONSTANTS........uuuuuuuiiiiiiiiiiiiiieetiei bbb ebaeeebeeeneenes 72
L1010 ¢ I =1 ¢ (0] 0o o L= SRPPRRPR 72

Custom Device Developer's Guide © 2010 National Instruments 4 of 85

U1 VY PSSR 72

Sort Channels DY FIFO LOCALIONuuuiiiiiiiiiiiiiiiiiiiiiiiieiiiieiiieie e eeeenseeseseeseenennnnnnne 73
Triggering Within the CUSTOM DEVICE...........uuiiiii i e e e e eaaas 74
Adding Extra Pages After Creating the Custom DeViCe Projectuuuuvummmimimmimnimninnnnnnnns 75
CUSIOM DEVICE XML ...ciiiiiiiiiiiieeeee e 76

(DT o] o o 0] (=T £ [o USSR 77

Limiting Occurrences of the CUStOM DEVICE..........ccciviiiiiiiii e 77

RENAME PrOECLION ...ceviiiiiiiiiiii ittt 77

1o] o Y £ 77

RUN-TIMe RIGt-ClICK MENUoiiiiiiii i e e e et eeaeeeaenes 78

DYNAMIC BUITONSeiiiiiiiieeeieie ettt ettt ettt e e e e e e e e e eeeeees 79

Upgrading VeriStand 2009 Custom DeVvices t0 2010ceeieieiiiiiiiiiiiiiee et eeerenns 80
Beyond the Template FrameEWOTKS...........ouviiiiiiiiiiiiiiiiiiiiiiei ettt 82

Inline Custom Device with Asynchronous Threadscooiiiiiiiiiiiiiicci e, 82
Custom Device Development JOD Aid ... 85

Custom Device Developer's Guide © 2010 National Instruments 5 of 85

Conventions
This document uses the following formatting and typographical conventions.

<> Angle brackets that contain numbers separated by an ellipsis represent a range
of values associated with a bit or signal name—for example, AO <0..3>.

» The » symbol leads you through nested menu items and dialog box options to a
final action. The sequence File » Page Setup » Options directs you to pull down
the File menu, select the Page Setup item, and select Options from the last

dialog box.
@ This icon denotes a tip, which alerts you to advisory information.
@ This icon denotes a note, which alerts you to important information.
A This icon denotes a caution, which advises you of precautions to take to avoid

injury, data loss, or a system crash.

bold Bold text denotes items that you must select or click in the software, such as
menu items and dialog box options. Bold text also denotes parameter names,
controls and indicators on the front panel, dialog boxes, sections of dialog boxes,
menu names, and palette names.

green Underlined text in this color denotes a link to a help topic, help file, or Web
address.

purple Underlined text in this color denotes a visited link to a help topic, help file, or Web
address.

italic Italic text denotes variables, emphasis, cross-references, or an introduction to a

key concept. Italic text also denotes text that is a placeholder for a word or value
that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples. This
font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, operations, variables,
filenames, and extensions.

Custom Device Developer's Guide © 2010 National Instruments 6 of 85

Introduction

NI VeriStand is a ready-to-use, open software environment for configuring real-time testing
applications, including hardware-in-the-loop (HIL) test systems. With NI VeriStand, you can
configure real-time input/output (I0), stimulus profiles, data logging, alarming, and other tasks;
implement control algorithms or system simulations by importing models from a variety of
software environments; and build test system interfaces quickly with a run-time editable user
interface complete with ready-to-use tools. See NI Developer Zone Tutorial: What is NI
VeriStand for more information.

When necessary, you can customize and extend NI VeriStand’s open environment with
LabVIEW, ensuring it always meets application requirements. The purpose of this document is
to provide the background, design decisions, and technical information required to understand
and develop custom devices in NI VeriStand 2010.

Understanding the NI VeriStand Engine is prerequisite to this document. See NI
VeriStand Help » Components of a Project » Understanding the VeriStand Engine for
more information.

What is a Custom Device?

While NI VeriStand provides most of the functionality required by a real-time testing application,
NI has designed the environment to be customized and extended when necessary to ensure it
always meets application requirements. Custom devices are one of several ways to customize
and extend NI VeriStand. To learn about other ways you can customize NI VeriStand, see NI
Developer Zone Tutorial: Using LabVIEW and Other Software Environments with NI VeriStand.

Custom devices give the developer complete freedom in regards to execution. Any LabVIEW
code, or any code you can call from LabVIEW, can be made into a custom device.

Custom devices give the developer complete freedom to customize the operator interface to
within System Explorer. Custom devices may present whatever configuration experience
desired by the developers. From simple controls on a VI front panel, to a company branded
pop-up window, to a silent routine that scrapes the configuration from an ActiveX database — the
developer defines the configuration experience.

Custom devices typically consist of two VI libraries (configuration and engine) that define the
behavior of the device, and an XML file that tells NI VeriStand how to load, display, use and
deploy the device. Custom devices come from developers including National Instruments, 3rd
parties, and in-house developers. The developer builds the configuration and engine libraries
and the XML file from Source Distributions in LabVIEW.

The LabVIEW Project for most custom devices starts with a template project. A VI called the
Custom Device Template Tool scripts the template project based on a few inputs from the
developer. The developer then adds-to and changes the template project to fulfill the
requirements of the custom device. The Custom Device Template Tool installs on top of NI
LabVIEW with the Full and PC versions of NI VeriStand.

Custom Device Developer's Guide © 2010 National Instruments 7 of 85

http://zone.ni.com/devzone/cda/tut/p/id/9347
http://zone.ni.com/devzone/cda/tut/p/id/9347
http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC5.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/understanding_vs_engine/
http://zone.ni.com/devzone/cda/tut/p/id/9366
http://zone.ni.com/devzone/cda/tut/p/id/9366
http://zone.ni.com/reference/en-XX/help/371361G-01/lvhowto/lv_file_extensions/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvhowto/build_source_distrib/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/creating_custom_dev/

@ The LabVIEW Project is needed to build the custom device, but only the configuration
and engine libraries and the XML file are required to use the custom device in NI

VeriStand.

After obtaining (or building himself) the custom device’s libraries, the operator places them in
the NI VeriStand <Common Data>\Custom Devices directory. This directory varies with the

host operating system.

<Common Data>

Table of Directories and Aliases

Alias: To Common Doc Dir

Generic Windows OS

<Public Documents>\National Instruments\NI
VeriStand 2010

Default Windows XP

C:\Documents and Settings\All Users\Shared
Documents\National Instruments\NI VeriStand 2010

Default Windows Vista &
7

C:\Users\Public\Documents\National Instruments\NI
VeriStand 2010

<Application Data>

Alias: To Application Data Dir

Generic Windows OS

<Application Data>\National Instruments\NI
VeriStand 2010

Default Windows XP

C:\Documents and Settings\All Users\Application
Data\National Instruments\NI VeriStand 2010

Default Windows Vista &
7

C:\ProgramData\National Instruments\NI VeriStand
2010

<Base>

Alias: To Base

Generic Windows OS

<Program Files>\National Instruments\NI VeriStand
2010

Default Windows XP,
Vista & 7

C:\Program Files\National Instruments\VeriStand
2010

<Custom Device Engine Destination>

PharLap / ETX

C:\ni-rt\veristand\custom devices\<custom device
name>\

NI VeriStand parses <Common Data>\Custom Devices for custom device XML files when it
first launches. You must restart NI VeriStand to recognize newly added or modified custom
device XML files. The custom device may then be added to the system definition by right-
clicking Custom Devices from System Definition » Targets » Controller in the configuration

tree.

It's not necessary for the operator to have any knowledge of LabVIEW or custom device
development to use the custom device. It's not necessary to have the LabVIEW Project to use

Custom Device Developer's Guide

© 2010 National Instruments 8 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/custom_devices_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/root_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/targets_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/

a custom device. It's courteous common practice to provide the LabVIEW Project along with
the custom device. Providing the project allows operators and other developers to modify the
custom device to suit their specific requirements.

4 System Explorer - Sinewave Delay. nivssdf = &g
s p Y.
Fle Edt Tools Help
BoSH & 8 B A
=il Sinewave Delay
S Targets :
Pa Custom Devices
4l Contraller
%--:? System Channels Custom Devices contains any custom devices you add. Custom devices execute user-defined actions,
4B Hardware determined by LabVIEW VIs. You can create a custom device using the LabVIEW development environment.
e Stimulus
it Simulation Models What do you want to do?
@) Alarms
4+Q) Procedures Add a custom device
() (Custom Navicac. Tomdd o ot doio-_right-click Custom Devices in the configuration tree and select the custom device that
g User h| [Natianal Tnstiiments 1) Embedded Data Logger S ROLEUE MR,
4 f Calculated Channels Pickering 40-295
L9 XNET Databases Gopel LIN ce
- 23 Al Lambda Genesys DC Power Supply
e e reeve s aevice, select the custom device name in the configuration tree and dlick the red X button.
28 System Mappings
vy Data Sharing Network
593 System Initialization View or change a custom device

To view or change a custom device, select the custom device name in the configuration tree. The Custom
Device Configuration page appears to the right of the configuration tree.

For more information about adding and configuring custom devices, refer to the Configuring and Running a
Project book of the NI VeriStand Help, available by selecting Help»Search the NI VeriStand Help.

Submit feedback on this topic

Figure: Adding a Custom Device to a System Definition

Most custom devices consist of the two VI libraries and XML file mentioned above. Logically,
custom devices consist of three parts.

1. Custom Device Framework
2. Custom Code
3. Custom Device XML File

The custom device framework consists of type definitions, specifically-named controls and
indicators, template Vis and a LabVIEW API. Together these items for the rules, or framework,
that allows any conforming VI to interact with NI VeriStand. There are five prebuilt types of
custom devices. Almost any requirement can be accomplished by adding or modifying code in
one of the five prebuilt devices.

The five prebuilt devices start with the Custom Device Template Tool. The template tool is
located in <vi.lib>\ NI Veristand\Custom Device Tools\Custom Device
Template Tool\Custom Device Template Tool.vi.

The developer specifies the type of custom device before running the template tool. The tool
generates the LabVIEW Project for the new custom device. The exact resources in the project
depend on the type of custom device selected.

The project is pre-populated with VlIs, LabVIEW Libraries, an XML File, and two build
specifications. These resources provide the framework upon which almost all custom devices
are built.

Custom Device Developer's Guide © 2010 National Instruments 9 of 85

@ NI VeriStand evolved from NI Dynamic Test Software (NI-DTS). NI-DTS evolved from
Intellectual Property (IP) called EASE obtained from a 3" party. EASE made basic
provisions for add-on LabVIEW code. In a sense this was the first custom device
framework. Several “custom devices” were built for the original framework, and NI has
mutated them from EASE through NI-DTS and into NI-VeriStand. If you come across a
custom device that doesn't fit into the framework provided by the Custom Device
Template Tool, you may have stumbled upon one of the original custom devices.

For each of the five types of custom
devices, you’ll see two VI libraries in the
LabVIEW source project: Custom
Device API.lvlib and Custom
Device Name Custom Device.lvlib.

The Custom Device API library contains
most of the type definitions, template Vis
and LabVIEW API needed to interact with
NI VeriStand’s data and timing resources.
They give a VI the ability to behave as a
native task in the NI VeriStand Engine.
Some of these Vls also appear on the
LabVIEW palette in NI VeriStand » Custom

i3 Project Explorer - My Custom Device... E]@

File Edit VYiew Project Operate Tools Window Help

eS| X vt | B~

Device API.

The <custom device name> library
contains the custom device’s configuration
and RT Engine VIs. These correspond to
the configuration and engine VI libraries
(or LLBs) mentioned earlier. Notice the
front panel and block diagram of these VIs
have been populated with objects from the
Custom Device API library.

Items | Files

—- &), Project: My Custom Device Custom Device Project.lvpro ‘
- B My Computer

= [3 Custom Device APLIvib

s [J Controls

~

- [J System Navigation
- [J Configuration
- [Templates
- [Private
[Utiliey
= Custom Device My Custom Device,xml
=- L;’r My Custom Device Custom Device.lvlib
> L_-_gl My Custom Device Initialization YI.vi
. My Custom Device Main Page.vi
@) My Custom Device RT Driver YL.vi
- 22" Dependencies
& °’4}_ Build Specifications

tB Configuration

'_13 Engine

&
*

Figure: A New Custom Device Project

The custom device’s configuration defines the operator’s experience adding and configuring the
custom device. It is the device's operator interface (Ol) or user interface (Ul). The Custom
Device Template Tool provides two VIs for configuration: Initialization and Main. Additional VIs

may be added as needed.

Custom Device Developer's Guide © 2010 National Instruments 10 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/TOC12.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC13.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC13.htm

When a custom device VI's front panel is presented to the operator in the System
Explorer window, that VI is called a page. Pages are a subset of the VIs that make up a
custom device.

The Custom Device Template Tool names the initialization VI <Custom Device Name>
Initialization VI.vi. Itrunsinthe background when the custom device is first added to

the system definition. The initialization page does not run again unless the operator removes
and re-adds the custom device.

While you may rename certain objects in the custom device’s LabVIEW Project, it's
important to understand the ramifications of doing so. For example, the Initialization VI
is referenced by name in the custom device XML file. This file is generated when you
first run the Custom Device Template Tool. If you rename the Initialization VI after
running the tool, you'll need to manually change the path to the Initialization VI in the
custom device XML file.

The Initialization Page runs each time a new instance of the same custom device is added to
the system definition. NI VeriStand retains state information for each instance of a custom
device in the System Definition (.nivssdf) file. State is defined by the value of each control,
indicator, and property (properties are covered later) of the page. This file is human-readable
XML, so you can open the file with a text editor and take a look. There’s also a .NET API for
modifying the System Definition programmatically.

The Custom Device Template Tool names the main page <Custom Device Name> Main
Page.vi. After the custom device has been added to the system definition, the main page

runs whenever the operator clicks on the on the custom device’s top-level item in System
Explorer’s configuration tree.

L System Explorer - Blank Project. mivssdf =)o
Fle Edt Tooks Help
O H | % X aBE A
= %ﬂk P'”‘t“t Custom Device Item Settings
3 Targets
2 Controller
are hame
AES-201
|5 o Main Page VI
A/ Description .
| & Hordwars Inputs — runs in the
| ~
The top_level i‘iiwm;at:’rlvﬁ;l:uae\s 1 configuration
custom device & e chore g
: g - fe Calnulated Channels pane
-t Stimulus .
item is selected o
i @ Procedures
n the g NHET Databsses
s H 127 System Channel
configuration i e chormet a
2= System Mappings
tree. o5 ata Sharing Network Resource umber Configure Range
232 System [nktialization 0 +1V =

Use ADDataFromCh<1..8> to bring
digitized data From your AES-201 into
the NI VeriStand system. The 6Hz
single-pole LPF may be togaled from
the channel page.

Use ADENCh<1..8> to enable or
disable the channel. Zero disables the
charnel, Mon-zera enables the
charnel,

Custom Device Developer's Guide © 2010 National Instruments 11 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/comp_of_project/#system_definition_file
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/vs_file_extensions/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/vs_file_extensions/
http://zone.ni.com/devzone/cda/tut/p/id/9366#toc2

Figure: Highlighting the Top-Level Item Runs the Main Page

The Custom Device Template Tool names the engine <Custom Device Name> RT
Driver.vi. Itdefines the behavior of the custom device on the execution host. The RT
Driver VI runs on the execution host regardless of the target’s operating system.

@ NI VeriStand 2009 did not support the NI VeriStand Engine on VxWorks operating
systems. Starting with NI VeriStand 2010, if you want to support VxXWorks targets such
as Compact RIO, you must compile the engine library for VxWorks. PharLap and
Windows engines do not require additional compilation.

The engine runs after the custom device has been added to the system definition, configured by
the operator, and deployed to the execution host. The developer usually adds initialization,
steady-state, and shutdown code to the engine template. There aren’t any hard boundaries on
what code you can put into the engine, only on what code you should put in the engine.

NI VeriStand deploys the engine when the operator clicks Run Project from the NI VeriStand
Getting Started Window, selects Operate » Run or Operate » Deploy from the Project
Explorer, or when the system definition is deployed using the NI VeriStand Execution API.

Each of the five prebuilt custom devices has a different engine VI. Each engine VI executes at a
different time with respect to other NI VeriStand components. The timing requirements of a
custom device, and thus the type of device selected, are functions of when the device needs to
execute with respect to other NI VeriStand Engine components. We'll cover this in detail later
on.

Not all requirements can be satisfied by one of the five types of prebuilt custom devices. Some
custom devices require multiple engine libraries (to support different real-time operating
systems for example). NI VeriStand — Set Custom Device Driver VI allows you to
programmatically change the driver library for a custom device. Some custom devices use the
prebuilt template as a launching pad for multiple parallel processes or complex frameworks.

See the section Beyond the Template Frameworks for more information. Again, custom devices
give the developer complete freedom with regard to Ol/Ul and execution.

The custom code performs any functionality desired by the custom device developer. While the
initialization and engine frameworks provide access to NI VeriStand data and timing resources,
it's up to the developer to implement the code to meet specification.

For example, the custom code might perform a single A/D conversion on a 3" party digitizer.
The framework provides the means for sending the digitized value to the rest of the NI
VeriStand system so it can be mapped to channels, used in a stimulus profile, etc. Again, there
aren’t any hard boundaries on the code you can put into the driver.

Each custom device has an XML file that contains information used by NI VeriStand to load,
configure, display, deploy and run the device. The basic information includes VI and
dependency paths, page names, action and menu items, and Meta data for the various pages
that make up the custom device. The Custom Device Template Tool generates an XML file for

Custom Device Developer's Guide © 2010 National Instruments 12 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/veristand_glossary/#execution_host
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_driver_vi/

you and include it in the template LabVIEW Project. Any properly-formatted XML file will be
parsed by NI VeriStand. After the XML file is created by the Custom Device Template Tool, all

edits to it are manual, i.e. it is not automatically updated to reflect changes made by the
developer.

& The custom device XML does not automatically synchronize with changes to the
LabVIEW project, nor does it automatically deploy. Be sure to modify the XML in the
LabVIEW Project directory when making changes. Building the Initialization
specification overwrites the XML in the <Common Data>\Custom Devices folder.

The XML file provides the ability to customize the appearance and behavior of the custom
device in System Explorer. For example, you can change the default glyph or add a right-click
menu to a custom device by adding tags to the custom device XML file.

Since NI VeriStand parses <Common Data> for custom devices when it launches, a
corrupt custom device XML file can affect the overall NI VeriStand system. You should
exercise care and make a backup of the custom device XML before modifying it.

Custom Device.lvproj

XML Custom Device
Required to run the APLIVIb Custom Device.Ivlib Build Specifications
device .

Initialization VI
Runs when device is
1st added to sys
explorer

Contains all resources
for developing the
custom device

Engine.llb
== Required to run the
custom device

Main Page
Runs when user clicks
on device in sys
explorer

Configuration.llb
Required to run the
custom device

RT Driver
Runs on execution
target after configured
and deployed

Figure: Diagram of the LabVIEW Project Created by the Custom Device Template Tool

When do you Need a Custom Device?

The built-in components of an NI VeriStand Project are listed in NI VeriStand Help » Navigating
the NI VeriStand Environment » System Explorer Window. If the built-in components do not
fulfill a specification, it can most likely be fulfilled by one of the customization methods shown in

NI Developer Zone Tutorial: Using LabVIEW and Other Software Environments with NI
VeriStand.

Four custom devices are included with NI VeriStand 2010. These devices are listed in NI
VeriStand Help » NI VeriStand Reference » Custom Devices Included with NI VeriStand.

Custom Device Developer's Guide © 2010 National Instruments 13 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC4.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC4.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/system_explorer/
http://zone.ni.com/devzone/cda/tut/p/id/9366
http://zone.ni.com/devzone/cda/tut/p/id/9366
http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC15.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/custom_devices/

Embedded Data Logger

Gopel LIN

Lambda Genesys DC Power Supply
Pickering 40-295

PO

In addition to these four devices, a variety of custom devices have already been implemented
by National Instruments and are available for download. You should consult NI Developer Zone
Tutorial: NI VeriStand Add-ons to determine if a custom device has already been developed to
fulfill your specification.

Several hardware vendors have implemented custom devices for their hardware. You should
check with the manufacturer that a custom device doesn’t exist before you build one.

Custom Device Developer's Guide © 2010 National Instruments 14 of 85

http://zone.ni.com/devzone/cda/tut/p/id/9346
http://zone.ni.com/devzone/cda/tut/p/id/9346

In general, there are three specifications that are best-suited for a custom device.

1. 3" Party Hardware
2. Unsupported Measurement or Generation Mode
3. Feature

A list of hardware natively supported by NI VeriStand is found in NI VeriStand Help » NI
VeriStand Reference » Supported National Instruments Hardware. If the application requires
other hardware, it can probably be implemented in a custom device.

Check NI VeriStand Help » Configuring and Running a Project » Configuring a System
Definition File » Adding and Configuring Hardware Devices to determine if the required
measurement or generation mode of your hardware is supported. If not, it can probably be
implemented in a custom device. For example, single-point hardware-timed analog acquisition
on NI-DAQ devices is supported out-of-the-box. Continuous analog acquisition can be
implemented as a custom device.

All of the common functionality necessary for most real-time testing applications such as host
interface communication, data logging, stimulus generation, etc, is provided by NI VeriStand —
ready to configure and use. You should first try to meet specifications with the built-in
functionality because it is engineered, tested, and supported by National Instruments.

If a built-in feature does not exist, it can be implemented by extending NI VeriStand. See NI
Developer Zone Tutorial: Using LabVIEW and Other Software Environments with NI VeriStand
for a complete list of ways to customize and extend NI VeriStand. Certain features are best
implemented as custom devices. To determine when a custom device is the most appropriate
mechanism to meet a specification, you should be familiar with all the customization methods
available. A general rule-of-thumb is that custom devices implement features that require or
use NI VeriStand channel data on the execution host.

For example, there is a TDMS File Viewer tool built into the NI VeriStand Workspace. If you
need to log NI VeriStand channels to TDMS without first sending it back to the Workspace (as
with high-speed streaming), a custom device called the Embedded Data Logger fulfills this
requirement. This custom device ships with NI VeriStand 2010. On the other hand, if you need
to display previous test results on the workspace while a new test is running, a custom
workspace object may be more appropriate than a custom device. See NI Developer Zone
Tutorial: Creating Custom Workspace Objects for NI VeriStand for more information.

Custom Device Risk Analysis

The open nature of NI VeriStand is a strong advantage over other real-time/HIL testing
solutions. It's easy to take advantage of this extensibility by using custom devices written by
other developers. Writing your own custom device incurs a set of manageable risks. This
section provides a list of risks that should be considered before custom device development
begins.

Custom devices are written in LabVIEW. The framework generated by the Custom Device
Template Tool is single-loop or action-engine VI. This architecture may be suitable for simple
custom devices.

Custom Device Developer's Guide © 2010 National Instruments 15 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC15.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC15.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/supported_ni_hardware/
http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC6.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC7.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC7.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/add_configure_hw/
http://zone.ni.com/devzone/cda/tut/p/id/9366
http://zone.ni.com/devzone/cda/tut/p/id/9366
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/use_tools_menu_items/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/custom_devices/
http://zone.ni.com/devzone/cda/tut/p/id/9989
http://zone.ni.com/devzone/cda/tut/p/id/9989

Non-trivial devices will require more advanced architecture. A requisite for custom device
development is thorough knowledge of LabVIEW programming and application architectures.
This knowledge represents NI Certified LabVIEW Developer (CLD) level expertise, and is
typically obtained through NI's Training and Certification program by completing the LabVIEW
Core 1, Core 2, and Core 3 courses.

It should be mentioned that NI VeriStand custom devices are typically not large LabVIEW
applications. Custom devices are designed to be modular, self-contained plug-ins that add a
specific functionality to NI VeriStand. While custom devices are typically developed by a single
programmer, large application development best-practices may still apply. See LabVIEW 2010
Help: Best Practices for Large Application Development for more information.

Custom devices are typically designed to execute on real-time systems. This allows the
operator to perform deterministic HIL and RT test procedures. Programming for a real-time
system requires knowledge of real-time operating systems (RTOS) and specialized LabVIEW
development techniques. This knowledge is typically obtained through NI's Training and
Certification program by completing the Real-Time Application Development course, and it is
refined by working on several LabVIEW Real-Time applications.

Familiarity with the NI VeriStand Engine is crucial to successful custom device development.
The correct type of custom device cannot be selected in the Custom Device Template Tool
without understanding the implications of each. This knowledge is typically obtained by reading
the NI VeriStand 2010 Help, with an emphasis on Understanding the VeriStand Engine.

Experience with NI VeriStand from an operator's perspective is highly desired. This experience
enables you to build operator-friendly interfaces that conform to the standard look and feel of
other NI VeriStand components. Familiarity with NI VeriStand allows the developer to build-up a
complex system definition, which allows thorough and realistic testing and benchmarking.

Custom device must call a hardware or instrument driver to support 3“-party hardware. All
National Instruments hardware comes with a LabVIEW Application Program Interface (API) that
can be used in the custom device. However, just because a LabVIEW API exists does not
guarantee the custom device can be easily implemented. Consider the following points when
evaluating the feasibility of a custom device for 3"-party hardware.

[1 Does an Instrument Driver exist? See NI Developer Zone » Instrument Driver Network to
search for instrument drivers.

[Is a hardware driver available?

[0 Is the driver well documented?

[1 If necessary, is the driver compatible with LabVIEW Real-Time? See KnowledgeBase
3BMI76L1: How Can | Verify that My DLL is Executable in LabVIEW Real-Time for
instructions on checking compatibility.

NI VeriStand uses channels to pass data between different parts of the system, including to and
from custom devices. All NI VeriStand channels are LabVIEW double data type (DBL). See
LabVIEW 2010 Help » Fundamentals » Building the Block Diagram » How-To » Floating Point
Numbers for more information on LabVIEW data types.

Custom Device Developer's Guide © 2010 National Instruments 16 of 85

http://sine.ni.com/nips/cds/view/p/lang/en/nid/10647
http://www.ni.com/training/
http://sine.ni.com/nips/cds/view/p/lang/en/nid/207868
http://sine.ni.com/nips/cds/view/p/lang/en/nid/207868
http://sine.ni.com/nips/cds/view/p/lang/en/nid/207869
http://sine.ni.com/nips/cds/view/p/lang/en/nid/207870
http://zone.ni.com/reference/en-XX/help/371361G-01/lvdevconcepts/best_practices_large_apps/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvdevconcepts/best_practices_large_apps/
http://www.ni.com/training/
http://www.ni.com/training/
http://sine.ni.com/nips/cds/view/p/lang/en/nid/13760
http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/understanding_vs_engine/
http://zone.ni.com/dzhp/app/main
http://www.ni.com/devzone/idnet/
http://ae.natinst.com/operations/ae/public.nsf/web/searchinternal/0bf52e6fac0bf9c286256edb00015230?OpenDocument
http://ae.natinst.com/operations/ae/public.nsf/web/searchinternal/0bf52e6fac0bf9c286256edb00015230?OpenDocument
http://zone.ni.com/reference/en-XX/help/371361G-01/
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC10.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC17.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC19.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/lvhowto/floating_point_numbers/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvhowto/floating_point_numbers/

[J Can the hardware requirement be met by passing LabVIEW DBLs to and from the
custom device during steady state operation?

If the hardware driver returns a vector, structure, or any hon-DBL data, it cannot be passed
directly from the custom device to the rest of the NI VeriStand system. The developer is
responsible for coercing the data (or using an alternative communication mechanism) to pass
data from the custom device to the rest of the system. For more information on the available
communication mechanisms, see LabVIEW 2010 Real-Time Module Help » Real-Time Module
Concepts » Sharing Data in Deterministic Applications » Exploring Remote Communication
Methods.

NI VeriStand also exposes its TCP pope via dynamic event registration. This pipe may suite
your remote communication requirements. See the Custom Device Engine Events section for
more information.

A custom device is one part of an NI VeriStand system. The complete state of the operator's
system is seldom known by the custom device developer. System state includes the following
information.

[J What are the specifications of the execution host and host computer?
[J What components are in the system definition?
o How computationally intense are the simulation models?
[l What loop rates are required?
[J What is the health and resource utilization of the system?

Ideally, the custom device is implemented to be minimally burdensome, extremely efficient, and
easy to use. Depending on its complexity, it may become necessary to test, debug, and
optimize the code on systems representative of the operator’'s system. Consider the following
example.

A custom device developer needs to benchmark a 3"-party hardware custom device. He adds
the custom device to the Sine Wave example that ships with NI VeriStand 2010. He deploys
the system definition to a quad-core NI-8110 RT controller. Adding the custom device to the
system in increased the target's CPU load by 10% per-core and RAM utilization increased
120KB. If the operator is deploying the same custom device to a single-core 8101 RT
controller, with an average CPU load of 60% because of a computationally intense model, it’s
unlikely the operator will achieve the same loop rate after adding the custom device. This
system may be incapable of running the custom device at all.

Time to test, debug and optimize the code must be factored into the development timeline. If
you're developing for a specific operator, then it's best to test on a system representative of their
system. If you're developing for unknown systems, then it may be appropriate to include the
specifications of the system used to obtain benchmarking and timing information with the
custom device documentation.

Planning the Custom Device

The most critical phase of custom device development is planning. Several idiosyncrasies of NI
VeriStand require more thorough planning than does a small stand-alone LabVIEW application.
There are five main things that must be planned.

1. Channels

Custom Device Developer's Guide © 2010 National Instruments 17 of 85

http://zone.ni.com/reference/en-XX/help/370622H-01/
http://zone.ni.com/reference/en-XX/help/370622H-01/TOC5.htm
http://zone.ni.com/reference/en-XX/help/370622H-01/TOC5.htm
http://zone.ni.com/reference/en-XX/help/370622H-01/TOC9.htm
http://zone.ni.com/reference/en-XX/help/370622H-01/lvrtconcepts/exploring_communication_methods/
http://zone.ni.com/reference/en-XX/help/370622H-01/lvrtconcepts/exploring_communication_methods/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/veristand_glossary/#execution_host
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/veristand_glossary/#host_computer

Properties
Hierarchy
Pages
Device Type

aprwd

After you have a clear idea of the channels, properties, hierarchy, pages, and type of custom
device, you're ready to start implementation. In the following discussion, we'll refer to a
hypothetical 3rd party analog to digital (A/D) converter, the AES-201. A hypothetical device was
chosen to simplify this discussion. If you prefer to follow along with an actual device, please
refer to NI DeveloperZone Tutorial: Building Custom Devices for NI VeriStand 2010.

Figure: A Hypothetical Digitizer called the AES-201

The AES-201 has (8) 32-bit analog input channels (Al). The device can digitize on 1V or
+500mV. The card has a single software trigger line. Each channel has a software enable that
is ON by default, and a 6Hz low pass filter that is OFF by default. A call to the hardware API
makes a single A/D conversion on the specified channel and returns raw data. The range of the
device cannot be changed after the device has been initialized.

Channels are the built-in mechanism used to exchange data between the custom device and
the rest of the NI VeriStand system. All channels are 64-bit floating point numbers; there is no
built-in mechanism for other channel data types. There are three common use cases for
planning a custom device channel.

1. Data generated by the custom device after it's deployed that may be required by other
parts of the NI VeriStand system.

2. Data originating elsewhere in the NI VeriStand system that may be consumed by the
custom device after it's deployed.

3. Dynamic properties that may change after the device is deployed can be implemented in
channels.

@ Notice the emphasis on “may”. Custom devices should be designed with a generic use-
case in mind. Just because your customer doesn’t use all channels and settings of the
hardware doesn’'t mean you shouldn’t expose everything to the operator.

Given these use cases, the AES-201 custom device should have one channel each for
ADDataFromCh<1..8>. The digitized data is going to change while the device is running. The
operator may need that data to be available to the rest of the NI VeriStand system. For
example, operators often map data from hardware to simulation model inputs.

Custom Device Developer's Guide © 2010 National Instruments 18 of 85

http://zone.ni.com/devzone/cda/tut/p/id/9348

The operator may need the ability to map the AES-201 software trigger to another channel in
the system explorer (a calculated channel for instance). So the developer should create a
channel for sWTrig. The operator may need the ability to disable a channel or toggle the input
filter or the AES-201 while the device is running. The developer should plan an additional 16
channels: one each for FilterEnCh<1..8>and ADEnCh<1..8>.

5

NI VeriStand channels are always LabVIEW DBLs. It may be easier to flatten data to
DBL than it is to implement a background communication loop that passes native data
types to the rest of the system. While the AES-201’s LabVIEW API calls for Boolean
data to enable the channel or filter, you can still use a DBL channel with the assumption
that 0 = Falseand !0 = True.

Channels are created with NI VeriStand Custom Device API » Configuration » Add Custom
Device Channel. The type of channel is either Input or Output. Channel type is with respect to

the custom device. If the custom device passes data to the rest of the NI VeriStand system, it
requires an output channel. If the custom device gets data from the rest of the system, it
requires an input channel. For example, the AES-201 may have 8 output channels
(ADDataFromCh<1..8>) and 17 input channels (ADEnCh<1..8>, FilterEnCh<1..8> and
SWTrig).

Once the custom device is loaded into NI VeriStand, the operator can map each input channel
to a single data source. Similarly, the operator can map each output channel to an arbitrary
number of sinks. For example, you can map ADDataFromCh1l to several simulation model
inputs, but SWTrig may be mapped to a user channel or model output, but not both.

Custom Device Developer's Guide © 2010 National Instruments 19 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/TOC13.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_configuration_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_channel_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_channel_vi/

NI VeriStand — Add Custom Device Channel VI
Owning Palette: Configuration

Adds a channel to the device or device subsection specified by Parrent Ref in. If the Channel Name you specify
already exists, the VI overwrites the existing channel settings without affecting any custom properties.

nghllght? (F) 1

GUID (Default Channel)
Parent Ref in ::E%‘ Parent Ref out
Channel Name 1 Fre Channel Ref
Channel = TE

E=grror out

error in (no error)
Property names
PrODeI’tY Values ___

Highlight? makes the item active in System Explorer.
GUID (Default Channel) the GUID of a custom channel defined in the custom device XML file.
Parent Ref in is the NI VeriStand reference to the parent section for the new channel.
Channel Name is the name of the new channel. The name is applied to the channel when the VI runs. If
the operator changes the name of the channel in the System Explorer, the changed name persists.
Channel defines the type, units, and default value of the channel. It also toggles Faultable and Scalable
properties on the channel.
==.¥ error in describes error conditions that occur before this node runs. This input provides standard error in
functionality.
abcd Property names is an string array of arbitrary property names associated with the channel.
'_ Property Values is a variant array that cooresponds one-to-one with the property names.
Parent Ref out is a duplicate of the Parent Ref in.
Channel Ref provides the NI VeriStand reference to the new channel within the custom device.
[»=2%]| error out contains error information. This output provides standard error out functionality.

The Add Custom Device Channel VI may be called from any VI that runs on the host computer.
There are several other Vis in the NI VeriStand Custom Device LabVIEW palette that operate
on custom device channels. The behavior of the VI is what you'd expect given the name of the
VI.

Configuration » Get Custom Device Channel Data VI

Configuration » Rename Custom Device Item VI

Configuration » Remove Custom Device ltem VI

Channel Properties » Set Custom Device Channel Default Value VI
Channel Properties » Set Custom Device Channel Faultability VI
Channel Properties » Set Custom Device Channel Scalability VI
Channel Properties » Set Custom Device Channel Type VI
Channel Properties » Set Custom Device Channel Units VI

Driver Functions » Get Custom Device Channel List VI

I O B

O

In addition to these channel-specific VIs, any VI from the Item Properties palette may be used
with a custom device channel.

Properties

Properties are used within the custom device to communicate state information. Property
names are case-sensitive strings. Unlike channels, property values may be any standard
LabVIEW data type. Properties are the recommended way to transfer configuration and state

Custom Device Developer's Guide © 2010 National Instruments 20 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_in/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_out/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_configuration_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_custom_device_channel_data_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_configuration_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_rename_custom_device_item_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_configuration_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_remove_custom_device_item_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_channel_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_channel_default_value_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_channel_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_channel_faultability_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_channel_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_channel_scalability_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_channel_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_channel_type_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_channel_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_channel_units_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_driver_functions_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_custom_device_channel_list_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_item_properties_vis_pal/

information from the configuration to the engine on a one-time basis. The transfer occurs when
the system definition is deployed to the execution host.

After the system definition is deployed, the engine may still read and write properties on the
execution host, but it may not exchange properties with the host computer using the property
Vis.

The range setting on the AES-201 is best implemented as a custom device property because
the range cannot be changed after the card has been initialized. The configuration routine on
the host computer can set the Range property of the card based on operator input. When the
operator deploys the system definition, the engine can then read the Range property. The
engine can then make the appropriate call to the hardware API to set the range.

After the AES-201 has been started, the range cannot be changed. If the operator wants to
change the range setting, he must launch System Explorer, reconfigure the custom device, and
redeploy the system definition. The engine may still read or write the Range property, but the
change is not reflected in System Explorer.

You may decide to implement the filter setting as a property. The operator would enable or
disable the filter in System Explorer by toggling a check-box on each channel’s page. On one
hand, the device would require 8 fewer channels. On the other hand, the operator could no
longer toggle the input filter while the custom device was running. To illustrate several aspects
of custom device development, we will implement the filter setting as a property.

In this small example, we have eluded to a design decision often faced by custom device
developers. As the number of use-cases and flexibility of a custom device increases, so does
the complexity of planning and implementing the device. The tradeoff is a more robust device
that requires less customization by the operator.

NI VeriStand — Set Item Property VI
Owning Palette: Item Properties VIs

Sets a Property Name and Value for an item. If the Property Name you specify already exists, NI VeriStand
overwrites the property.

Item Ref in Vi Item Ref out
Property Name = i ITEM
value - EELE error out
error in (no error) S Replaced

Item Ref In is the NI VeriStand reference to the item destined for the property.

Property Name is an arbitrary case-sensitive name for the property.

Value corresponds to the value of the property. This is a polymorphic VI and the data type of the value input
cooresponds with the instance.

error in describes error conditions that occur before this node runs. This input provides standard error in
functionality.

Item Ref out is a duplicate of the Item Ref in.

error out contains error information. This output provides standard error out functionality.
Replaced indicates if the property was overwriten by the new value.

The Set Item Property VI may be called from any VI in the custom device. Properties can be
applied to any channel or section. In addition to the Set Item Property VI, properties can be set

Custom Device Developer's Guide © 2010 National Instruments 21 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_in/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_out/

when a channel or section is created by using the Property Names and Property Values
terminals.

A property must be read from the item to which it was set. For example, if you set the

Filter Enabled property onthe ADDataFromChl channel, you cannot read the value of the
Filter Enabled property directly from the parent section or any reference other than
ADDataFromChl. Properties do not inherit.

NI VeriStand — Get Item Property VI
Owning Palette: Item Properties VIs

Returns the Value of a specific item Property Name. If the Property Name does not exist for the specified item,
Value returns Default Value.

Item Refin COEY Item Ref out
Property Name T iTEM Yalue

Default Yalug - EREE o error out
error in (no error) Found?

Item Ref in is the NI VeriStand reference to query for the property.

Property Name is an arbitrary case-sensitive name for the property.

Default Value is returned by the Value terminal if the property is not found.

»==%]| errorin describes error conditions that occur before this node runs. This input provides standard error in
functionality.

Item Ref out is a duplicate of Item Ref in.

value is the value of the property. This is a polymorphic VI and the data type of the Default Value and

Value terminals coorespond with the instance.

[¥==71| error out contains error information. This output provides standard error out functionality.

Found indicates if Property Name was found on Iltem Ref in (true) or if the default value was returned

(false).

It's good programming practice to always use the Found terminal of the Get Item Property VI to
check that the intended property name was found on the item.

NI VeriStand — Remove Item Property VI
Owning Palette: Item Properties VIs

Removes the Property Name from an item.

Item Ref in QAICOEY Item Ref out
property Name ~A e Removed
error in {no error) === &serror out

[ued ¥ Item Ref in is the NI VeriStand reference to the item.
[abe} Property Name is an arbitrary case-sensitive name for the property.

pEat error in describes error conditions that occur before this node runs. This input provides standard error in
functionality.
Item Ref out is a duplicate of ltem Ref in.

Removed indicates if the property was found and removed successfully.
[»=2T]| error out contains error information. This output provides standard error out functionality.

Custom Device Developer's Guide © 2010 National Instruments 22 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_in/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_out/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_in/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_out/

The Get Item Property and Remove Item Property VIs may be called from any VI in the custom
device. There are several other Vls in the NI VeriStand Custom Device LabVIEW palette that
operate on custom device properties. The behavior of the VI is what you’d expect from the
name of the VI.

ltem Properties » Get Iltem Description

ltem Properties » Get Iltem GUID

ltem Properties » Get Property Names List

ltem Properties » Set ltem Description

ltem Properties » Set Item GUID

Device Properties » Get Custom Device Decimation
Device Properties » Get Custom Device Driver
Device Properties » Get Custom Device Version
Device Properties » Set Custom Device Decimation
Device Properties » Set Custom Device Driver
Device Properties » Set Custom Device Version
Device Properties » Specify Custom Device Execution Mode

N e I I

You can set decimation for any type of custom device. However, decimation is handled
differently for inline and asynchronous devices. We’'ll discuss the difference between these
devices later in the document.

An inline custom device is not called if its decimation indicates not to. For example, when you
decimate an inline custom device by 4, the PCL calls the custom device at every fourth iteration.
It does not mean the custom device has four times as long to execute. The inline custom
device must execute in short enough time for the entire PCL to complete its iteration including
the time to execute the inline custom device. Asynchronous devices have their channel FIFOs
read on the N'th iteration of the PCL, where N is the decimation rate of the asynchronous
device.

This information will make more sense after you understand the difference between inline and
asynchronous custom devices.

Hierarchy

NI VeriStand's System Explorer allows each custom device to present a hierarchal user
configuration interface. A hierarchal structure is not required, but it's a convenient way for the
developer to organize and present the device logically to the operator.

Custom Device Developer's Guide © 2010 National Instruments 23 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_item_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_item_description_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_item_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_item_guid_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_item_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_property_names_list_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_item_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_item_description_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_item_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_item_guid_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_device_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_custom_device_decimation_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_device_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_custom_device_driver_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_device_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_custom_device_version_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_device_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_decimation_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_device_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_driver_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_device_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_version_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_device_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_specify_custom_device_execution_mode_vi/

The Pickering 40-295 device that
ships with NI VeriStand has a simple
hierarchy. This custom device
hierarchy begins with the Pickering
40-295 custom device. This is the
top-level item in this custom device’s
hierarchy.

Within the next echelon are sections
for Desired Values and Actual
Values. Within each section are the
individual channels. If you're familiar
with this 3 party hardware, the
hierarchy is an intuitive configuration
interface for the Pickering 40-295
resistive module.

There are an arbitrary number of
possible hierarchies for most custom
devices.

= Targets

= e Sinewave Delay

=4 Controller Top-level item in
#-32 System Channels . .
T- Hardware the P|Cker|ng
St SFimqu§ custom device.
+- i} Simulation Models
+g Alarms

+-(Q) Procedures

i'fﬂ Custom Devices

= @ Pickering 40-295

=+ Desired Values

| Desired Resistance 1
Desired Resistance 2
Desired Resistance 3
Desired Resistance 4
Desired Resistance 5
Desired Resistance 6
Desired Resistance 7
Desired Resistance 8
Desired Resistance 9
Desired Resistance 10
-y Actual Values

- = Actual Resistance 1
- = Actual Resistance 2
- = Actual Resistance 3
- = Actual Resistance 4
- = Actual Resistance 5
- = Actual Resistance 6
- = Actual Resistance 7
- = Actual Resistance 8
- = Actual Resistance 9
- = #Actual Resistance 10
- = Board Status

+-@f User Channels

+- fy Calculated Channels

Ly XNET Databases

+- 25 Aliases

-3 System Mappings
~gly Data Sharing Network
83 System Initialization

Figure: Hierarchy of the Pickering 40-295 Custom
Device

Within the hierarchy, there are two types of objects: sections and channels. We’ve already
discussed custom device channels. Sections provide a logical way to group items in the
hierarchy. The default section glyph (icon) is a folder, as shown in the Pickering 40-295 custom
device. The developer can change the glyph by modifying the custom device XML. A collection
of glyphs that install with NI VeriStand 2010 is found in <Application Data>\System
Explorer\Glyphs.

All items in a custom device's configuration tree are either channels or sections, regardless of
their glyph. You cannot create additional levels of custom device hierarchy from channels. You
cannot map sections to other items in NI VeriStand. You cannot exchange data through
sections during run-time as you can with channels.

Sections are created with NI VeriStand Custom Device AP| » Custom Device APl VIs »
Configuration VIs » NI VeriStand - Add Custom Device Section.

Custom Device Developer's Guide © 2010 National Instruments 24 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/TOC12.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC13.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_configuration_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_section_vi/

NI VeriStand — Add Custom Device Section VI
Owning Palette: Configuration

Adds a section with the name Section Name to the device specified by Parent Ref in. If the Section Name you

specify already exists for that device, this VI updates only the GUID of that section without affecting any properties or
any child items.

nghhght? (F)

GUID (Default Section)

Parent Ref in COEV} Parent Ref out
Section Name ~ t:"‘ Section Ptr

error in (no error) == ; B=error out
Property names

Property Values

Highlight? makes the item active in System Explorer.

[abc® GUID (Default Section) specifies the GUID of a custom page in the custom device XML file.

[uedl Parent Ref in is the NI VeriStand reference to the parent for the new section.

[abe¥ Section Name is the name of the new section. The name is applied to the channel when the VI runs. If the
operator changes the name of the section in the System Explorer, the changed name persists.

| ==:¥ error in describes error conditions that occur before this node runs. This input provides standard error in
functionality.

abc» Property names is an string array of arbitrary property names assigned to the section.
L Property Values is a variant array that cooresponds one-to-one with the property names.
Parent Ref out is a duplicate of the Parent Ref in.
Section Ptr provides the NI VeriStand reference to the new section.
{»==%]| error out contains error information. This output provides standard error out functionality.

The Add Custom Device Section VI may be called from any VI that runs on the host computer.
You build-up the custom device hierarchy by using the Parent Reference terminal and the
Section Pointer terminal. Parent Reference is the level of the hierarchy that will contain the
new section. Section Pointer is the reference to the new section, one level deeper in the
custom device hierarchy than the Parent Reference. Now we’ll examine several hierarchies for
the AES-201 and discuss the advantages and disadvantages of each.

Custom Device Developer's Guide © 2010 National Instruments 25 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_in/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_out/

| --8 Sinewave Delay
;—"’\:i Targets
1) Controller
1?--:? System Channels
+- Hardware
+1v’~ Stimulus
+ Simulation Models
+g Alarms
+-(Q) Procedures
-m Custom Devices
=+ |Flat Hierarchy

- = SMBTrig
- = #ADDataFromCh1

Device Tkem Ref in

errar in (no errar)
S b b

i

Cuskom KML

!

A

TE+

_ 2010

Device Item Ref out

error aut
5

- = ADDataFromCh2
- = ADDataFromCh3
- = ADDataFromCh4
- = ADDataFromChs
- = ADDataFromChé
- = ADDataFromCh?
- = ADDataFromChg
- = ADENCh1
- = ADENCh2
- = ADENCh3
- = ADENCh4
- = ADENChS
- = ADENChE
- = ADENCh7
- = ADENCh3
+-@f User Channels
+- f Calculated Channels
Ly ¥NET Databases
- A3 Aliases
x System Mappings
1y Data Sharing Network
-3 System Initialization

Goer-

Type

[t Qutput |
Units
Default Yalue
o

Faultable

(Scalable

Figure: Flat Custom Device Hierarchy and Corresponding Initialization VI

The figure above is an example of a flat or single-level hierarchy for the AES-201. All of the
channels are under the main section in the configuration tree. While it's easy to determine how
many channels are available, the type of channel is unknown and the function of the channel is
implied by the channel name. A flat hierarchy is suited for devices with a small number of
channels that all perform the same function. A flat hierarchy is less suited for large channel
count devices, or when channels perform different functions. For example, a custom device for
a multifunction data acquisition board would be difficult to present in a flat hierarchy.

Notice that the same Device Item Ref in is used to create the SWTrig, ADEnCh<1..8>, and
ADDataFromCh<1..8> channels. As aresult, all of these channels appear at the same
echelon of the hierarchy. In the code above, you should be able to identify the input and output
channels. sWTrig and ADEnCh<1..8> are input channels because the custom device sinks
data from them. ADDataFromCh<1. .8> are output channels because they source data to the
rest of NI VeriStand. We'll be showing clusters as icons in much of the following material.

From an operator's perspective, custom device inputs and outputs may seem backwards.
Hardware inputs correspond to custom device outputs. The operator is not required to interact
with the custom device source code, only System Explorer. If the developer did a good job,
channel direction should make sense to the operator.

Custom Device Developer's Guide © 2010 National Instruments 26 of 85

:a Sinewave Delay 7 Bv? o8 L o
= 9\:' Targets T T

ZHif) Controller | bevice Ttem Ref in
-32 System Channels |

Device Item Ref out

Hardware Enables Hardware Inputs SMETrig

-B= Hardware _ =3 N =]
e StimUILS errar in {no error) errer ot
- i Simulation Models — f— Section Ptr > ——

Section Pir >
@ Alarms =a-a

-@ Procedures
= Custom Devices
=+ Mested Hierarchy

|- = SMBTrig
{5 Hardware Enables
~ = ADENCh1
= ADEnChZ [
- ADEnCh3
- ADEnCh4
= ADEnChS
- ADENChé
- ADENCh7
| L= aDEnchs
=4 Hardware Inputs
- = ADDataFromCh1
~ = ADDataFromCh2
~ = ADDataFromCh3
- = ADDataFromCh4
- = ADDataFromChs
- = ADDataFromChé
- = ADDataFromCh?
- = ADDataFromCh3
- User Channels
- A Calculated Channels

-—% XNET Databases
- 23 Aliases

=3 System Mappings

1y Data Sharing Netwark
-3 System Initialization

Figure: Nested Custom Device Hierarchy and Corresponding Initialization VI

The figure above is an example of a nested hierarchy for the AES-201. The channels have
been organized into Hardware Enables and Hardware Inputs sections. This device is
well-organized and fairy intuitive. Note how the Section Ptr outputs are used to create
channels beneath the corresponding section in the Initialization VI. Also note how the parent
reference is used to create the trigger channel at the same level as the two sections in the
custom device hierarchy.

You can create an arbitrarily complex hierarchy. You should plan the custom device hierarchy
to use the minimum number of sections that make the hierarchy well-organized, intuitive, and
user friendly.

Pages are VIs that System Explorer displays in the configuration pane. The configuration pane
is a Subpanel. Subpanels are LabVIEW front panel containers that allow a VI to display the
front panel of another VI. See LabVIEW 2010 Help » Fundamentals » Building the Front Panel
» Concepts » Front Panel Controls and Indicators » Subpanel Controls for more information.

An item'’s page gets displayed in the Subpanel when the operator clicks on the item in system
Explorer’s configuration tree. Pages run on the host computer; they define the appearance and
configuration experience of the custom device. The Custom Device Template Tool creates two
configuration VIs by default: Initialization and Main. The Initialization VI is a simple VI (it doesn’t
get populated into the Subpanel), the Main VI is a page.

When you click on the top-most custom device item in the configuration tree, <Custom Device
Name>Main Page.vi goes into System Explorer’s configuration pane’s Subpanel and its
block diagram executes.

Custom Device Developer's Guide © 2010 National Instruments 27 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC10.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC14.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC15.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/fp_controls_indicators/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/fp_controls_indicators/#Subpanel_Controls

= =) % 1/ System Explorer - Sinewave Delay. nivssdf =
T_ i He Edk Took telp

| = s I oy

BoH 3 X & E A
Custom Device e Settngs

Name.
Nested Hierarchy

Description

The Main
Page

Clicking the top-level
item in the
configuration tree...

...runs the main
page and puts itin
the configuration
pane’s Subpanel.

Figure: Main VI Populated into System Explorer when the Operator Clicks the Top-level
Custom Device Item in the Configuration Tree

If the developer did not assign a custom page to a new section or channel, the default section or
channel page is shown when the operator clicks on the item in the configuration tree.

1 System Explorer - Sinowave Delay.nivss df (=]~ 3 [\ System Explorer - Sinewave Delay. nivssdf
Eo £ Lo tep Ho £ Toos tep

ol W 3 X L3 H 3 X = A
| ——— | Achannelis
highlighted.
A section is
highlighted.
Figure: The Default Section Page Figure: The Default Channel Page

The default pages allow the operator to set a description for the section or page. NI VeriStand
retains this data in the System Definition (nivssdf) file. You cannot individually modify the block
diagram or font panel of the default pages. The Custom Device Template Tool allows the
developer to specify extra pages. Extra pages can be used to override the default page for an
item. When the developer creates an extra page and associates it with a section or channel, he
overrides the default page for that item. You can individually modify the front panel and block
diagram of extra pages. The block diagram executes when the operator clicks on the item in
the configuration tree.

Custom Device Developer's Guide © 2010 National Instruments 28 of 85

Before we discuss adding extra pages in detail, we must cover a two rules for modifying custom
device pages.

[J You must not change the size of any page's front panel. The page's front panel is
loaded into a Subpanel in the configuration pane. If you change the size of the front
panel, it may not fit correctly into the Subpanel and may be unusable.

{1 You must not change the names or connector pane associations of any terminal
generated by the page template or Custom Device Template Tool. NI VeriStand uses
these objects to interface with the page. If they are changed, the custom device will not
work and will likely prevent the operator from deploying the system definition.

Extra pages provide a way to customize the appearance and/or behavior of any item in the
custom device's hierarchy. Extra pages override the default pages. You should plan an extra
page for each item in the custom device you wish to customize differently. For example, if you
want to customize the page for each ADDataFromCh channel, but you’ll customize all
ADDataFromCh channels the same (say by adding an extra button for the filter), you only need
one extra page. NI VeriStand stores state data for each individual item in the custom device
hierarchy in the nivssdf file.

The AES-201 may call for five extra pages. One page for each section, one page each for the
ADDataFromCh<1..8>and ADEnCh<1. .8> channels, and one page for the SWTrig channel.
Even if you don’t wind up using the extra pages, it's better to have extra pages that you don’t
need than to need extra pages that you don’t have.

NI VeriStand requires four things in order to override a default page with an extra page in the
custom device.

Page

Globally Unique IDentifier (GUID)
XML Declaration

Build Specification

PwbdE

Custom Device Developer's Guide © 2010 National Instruments 29 of 85

A properly formed page VI must {3 Custom Device Template Tool.lvlib:Custom Device Template Tool.vi Front Panel g@a
exist. If you plan properly, you'll be |[5e &t vew oroject perate Tods sindow tih

GUTHEL

able to specify all the extra pages (] @[un] [t popicstionFort_[~ 5[- e (€51 Q |
when you run the Custom Device Ta’get“oldev' % e v . - 1
Template Tool. An extra page is I.,j“emp = B AR
created for each element in the Extra ! @ !

Custom Device Project path

Page Names (No Extension)

co ntrol . ﬁmt;m DevicevName (]\Io Exl:emiol;n) ‘ %
The tool generates the page, GUID,)f-—ﬂﬂ‘-”—"“f-J-— HHHHAHH PR I I
g Asynchronous Custom Device Library path

page in the build specification. You'll o

find the extra page template in B AN NN N B
T

XML Declaration, and includes the
Open Project

Custom Device B""""!(m""") W sxuapagename‘s(mua@\ i r_._....._x____n.e"°5°“*-] ..
API.lvlib\Templates\Subpane || " &= w ' A]
g1 Gfo L : | o
1 Page VI\Page Template-Vit- source ‘ / source
iEmee e EEEEEE—
i i I i i i -
< I >

Figure: Extra Page Names Array

@ If you do not use the Custom Device Template Tool to create extra pages, you must
manually add and configure them.

Manually adding extra pages to a custom device after running the Custom Device Template
Tool is cumbersome. Avoid this issue by creating a few extra pages beyond what you think will
be necessary. Unused extra pages are not executed, but they do consume marginal space on
disk.

When you associate an extra page with a channel or section, you override the default page for
that item. This is done by specifying a GUID when the item is created, or by setting the item’s
GUID using NI VeriStand Custom Device API » Configuration » Item Properties » Set ltem
GUID.

i i 1D (Default Channel
Tempet I SUIDpsrc S NI VeriStand - Add Custom Device Section.vi SUip{oetaat la%: NI Weristand - Add Custom Device Channel.vi
NI VeriStand - Set Item GUID.vi ey fin [l +]
GUID SHLANG 2SEem. M Parent Ref in Parent Refin || +
oo | e

Refresh System Explorer Tree? (F)

Figure: NI VeriStand API to Set an Item’s GUID

The Custom Device Template Tool generates a GUID for each extra page in the Extra Page
Names (No Extension) control.

There is a GUID Generator VI in <vi.lib>\NI Veristand\Custom Device
Tools\Custom Device Template Tool\Custom Device Template
Tool.lvlib:GUID Generator.vi. Before you can run this VI by itself, you must change
the Custom Device Template Tool.lvlib\subVIs access scope to public, and set the

Custom Device Developer's Guide © 2010 National Instruments 30 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/TOC13.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_configuration_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_item_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_item_guid_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_item_guid_vi/

VI's Execution Priority to Normal. There is a stand-alone GUID generator VI attached to
KnowledgeBase 571B71YP: Adding a Page to an NI VeriStand Custom Device's Configuration
Library after Running the Custom Device Template Tool. There are also a variety of free GUID
generators on-line.

The custom device API associates a channel or section with a GUID. The custom device XML

associates the GUID with the page VI. The page and its GUID must be declared in the custom

device XML <PAGES> section within a <PAGE> schema. If the developer planned for the extra

pages before running the Custom Device Template Tool, the tool makes the appropriate entries
in the custom device XML file for each extra page.

<Page>
<Name>
<eng>Extra Page 1</eng>
<loc>Extra Page 1</loc>
</Name>
<GUID>36481013-A447-6517-7D1C-FBB21CAE1E9F</GUID>
<Glyph>
<Type>To Application Data Dir</Type>
<Path>System Explorer\Glyphs\default fpga category.png</Path>
</Glyph>
<Item2Launch>
<Type>To Common Doc Dir</Type>
<Path>Custom Devices\Extra Page Demo\Demo Configuration.llb\Extra Page 1.vi</Path>
</Item2Launch>
</Page>

Custom Device XML Showing the Page Name, GUID, and VI

Extra pages are dynamically called VIs. Since they are not a part of the custom device’s VI
hierarchy, they must be explicitly included in the custom device's Build Specification. If the
developer planned for the required extra pages before running the Custom Device Template
Tool, the tool configures the build specifications to include the extra pages into the initialization
library.

If a page must be added to the custom device after the tool has been run, the developer must
edit the configuration Build Specification to include the extra page and all its dynamically called
dependencies (if any).

Custom Device Developer's Guide © 2010 National Instruments 31 0of 85

http://digital.ni.com/public.nsf/allkb/95970CF2E098065C862576DA00641440?OpenDocument
http://digital.ni.com/public.nsf/allkb/95970CF2E098065C862576DA00641440?OpenDocument

Type

ile deployed to the execution Custom Device Template Tool.lvlib:Custom Device Template Tool.vi Front Panel 25
While deployed to th t & &3
host, all custom devices run inside |[&k et tew project Operste ook Window telp !
the NI VeriStand Engine. The T e | = = = [l A [k
engine is the non-visible mechanism Targel:}[-‘oider i cefer i . H R E |
that controls the timing of the entire Iﬁe"‘p S PeeEem
system as well as communication ‘ HER. - Eus I NN
between the execution host and ! HH Suson Devee Profertpath
host computer. See NI VeriStand Custom Device Name (o Extension) . . 4
Help » Components of a Project » [s ; . S ‘ =!
Understanding the VeriStand piitentiod FOr R E S i [

N - .)| Asynchronous Custom Device Library path A
Engine for more information. RS SEm g =

SEEmmnE _ _]
The Custom Device Template Tool | =
generates a new LabVIEW Project || etorntosro) 58 1 2 O S A eroro |
.. . . status code i - . status code

containing one of five pre-built Vil — o , I

]
SOHIES) source

device frameworks. The framework
is determined by the Execution
Mode control.

I 1 1 | i i £

Figure: Execution Mode Control

The Execution Mode determines when the device will run with respect to the other operations
performed by the NI VeriStand Engine. There are five pre-built device frameworks. Three of
the frameworks are for custom devices; the other two are for custom timing and synchronization
devices.

Custom timing and synchronization devices are the same as regular custom devices, but they
can be configured as the hardware synchronization master to drive RTSIO. For more
information about the Real Time System Integration (RTSI) bus see KnowledgeBase
2R5FK53J: What is RTSI and How is it Configured? Custom timing and synchronization
devices are not covered in detail in this document. For more information about custom timing
and synchronization devices, see NI VeriStand Help » Configuring and Running a Project »
Configuring a System Definition File » Adding and Configuring Timing and Sync Devices. Multi-
chassis synchronization may also be accomplished using built-in features. See NI
DeveloperZone Tutorial: Creating a Distributed System With NI VeriStand 2010 for more
information.

Two of the regular custom devices run in-line with the Primary Control Loop (PCL), the other
runs in parallel with the PCL. A custom device is not limited to using just one type of framework.
Some developers have built both in-line and parallel engines for a single custom device and
allow the operator to select which mode to deploy.

Generally it's OK to alter the code within the framework depending on your needs. However
you must maintain the connector pane, controls, and indicators provided by the Custom Device
Template Tool or VI template. NI VeriStand uses these objects to interface with the custom
device. If they are changed, the custom device will not work and will likely cause errors.

Custom Device Developer's Guide © 2010 National Instruments 32 0of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC5.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/understanding_vs_engine/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/understanding_vs_engine/
http://digital.ni.com/public.nsf/allkb/A120195AAAA9222A86256C69007C8B27
http://digital.ni.com/public.nsf/allkb/A120195AAAA9222A86256C69007C8B27
http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC6.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC7.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/add_configure_timing_sync/
http://zone.ni.com/devzone/cda/tut/p/id/11060
http://zone.ni.com/devzone/cda/tut/p/id/11060

The asynchronous custom device framework provides a simple, single-loop architecture. There
are sections for initialization and cleanup before and after the loop. The asynchronous template
provides a Timed Loop which may be exchanged for a While at the developer’s discretion.

The loop runs in parallel loop to the PCL. If proper real-time development practices are adhered
to, it is unlikely to block the PCL or slow it down. Essentially this means that the rest of the NI
VeriStand system will continue to execute as expected even if the asynchronous custom device
is latent or stalls.

The loop can be synchronized to the PCL's timing source, making it pseudo-synchronous. This
applies to asynchronous devices that use a Timed Loop, While Loops cannot be used for this
purpose. The benefit of an asynchronous custom device synchronized to the PCL is that it will
not cause the PCL to be late just because the custom device finishes late. Use NI VeriStand —
Set Loop Type to specify the asynchronous Timed Loop uses the device clock. NI VeriStand
tics the device clock for all Timed Loops that have Use Device Clock setto true.

The asynchronous device can also run at a different rate than the PCL. The rate may be
defined using any execution timing method available in LabVIEW, and may iterate faster than
the PCL. The rate can also be a decimation of the PCL rate specified by Custom Device AP| »
Configuration » Iltem Property » Device Properties » Set Custom Device Decimation VI.

The asynchronous template provides two RT FIFOs (Device Inputs FIFO and Device Outputs
FIFO) to exchange channel data with the rest of NI VeriStand. Since the asynchronous device
runs in parallel to the PCL and passes channel data via RT FIFOs, there is a minimum of one
cycle delay from when data leaves the PCL and when it enters the custom device and vice
versa. These FIFOs correspond exactly to those shown in NI VeriStand 2010 Help »
Components of a Project » Understanding the VeriStand Engine.

Primary Contral Loop :

‘ \ J4]
L} n
o o

™ T ™y 9 =

T Model Execution Loop(s) — =

ot / 8

[—

I
= 3
HY M L h o
Custom Device Loop(s) T
) o
M .)
Data Procassing Loop(s)
J
| ! !
FIFO FIFO FIID FIFO

() =)=) (=)

E-.Gﬂmmurﬂmlmn LMP‘S .“...u...“...:] E‘Lﬂw Sﬁﬂ&d ([la] LO‘}‘:'B [P ————
F'IFP

Figure: The NI VeriStand Engine

Custom Device Developer's Guide © 2010 National Instruments 33 0f 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_loop_type_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_loop_type_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC13.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_configuration_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_item_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_device_properties_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_custom_device_decimation_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC5.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/understanding_vs_engine/

The asynchronous device is not guaranteed to execute at the same time with respect to the
other components of the system. For example, the first iteration may execute before the PCL
processes alarms; the second and third iterations after, the fourth before et cetera.

The input controls are specially named controls that the system will use to provide the device
loop with data. The controls are not required for the device loop to run. For instance, if the
device doesn't produce any output data, then you don't need the Device Outputs FIFO control.
If you do need these controls, they must have these exact names to be functional.

The optional status notifier element is used to notify the RT engine of the last state of the
custom device, and to indicate the device has completed execution. If this control is not used, a
default No Error value is returned to the system when the device finishes execution. This error
state is not checked until the system shuts down. Use an output channel to send more
immediate status values to the system.

The asynchronous framework includes Vs from the NI VeriStand Asynchronous Device
Properties VIs palette.

Custom Device Developer's Guide © 2010 National Instruments 34 of 85

Use this template as a starting point For creating a custom device code module. The input controls shown here are specially named controls that the system will use to provide the device loop with data. The controls
lare not required for the device loop to run. For instance, if the device doesn't produce any output data, then you don't need the Device Outputs FIFO contral, If you do use these controls, however, they need to
lhave these exact names to be functional, Use the RT Debug String Y1 to make the status of a custom device public on an RT Target.

[Use the Device Clock timing

lsource if you want the IWarning: Configuring a timing source From the Timed Loop Configuration Dialog instead of wiring in a timing source may prevent the Timed Loop from synchronizing with the YeriStand Engine. We recommend

lexecution of the timed loop |always wiring an external timing source. FFas <P
Ischeduled by the primary ; MFalse]
lcontrol loop in the system.
By default the 1kHz clock is
lused.
(D) ms
Device Clock [ZE L | | N |] CIZTE s
Processor d T["Mormal”, Default b
Period [100}—p dt =
T IThe Device Input
5 ‘Wakeup Reason b}— land Output :
- < FIFOs are closed | E
The Device Reference the Ta[Default_vP lby the system. .
reference to the custom Produce Output Data IThis is an
device. Use it to read T lindication that
lconfiguration properties, lthe system is
lget a list of channels, etc. >Dev.Outputs:> —f1) —{B-8-= — ' shutt};\g down or
=7 iH=t :
i i & o Irestarting, and
Device Reference (V64K o that this device
e - 5 e q B lloop should shut
RT FIFO Write dowin as well.
Device Outputs FIFO [CB_¥ [There is no need
[Produce and send back o close the
IThe array of outputs sent to the system on the Default loutput data to the FIFOs here.
[Device Outputs FIFO corresponds one-to-one to @v o . lsystem.
lthe Outputs array specfied by Get Channel List.vi. Read input
|data sent from
@ (FY {E lthe system.
L] RT FIFO Read Status Notifier
Device Inputs FIFO [& [B WerooooooeoSouom
p = =Dev.Inputs> i'mpll { oR
IThe array of inputs received from the system on) BT I
lthe Device Inputs FIFO corresponds one-to-one ko i
lthe Outputs array specfied by Get Channel List. vi. & P [status]- Eﬂ Use the optional Status Notifier ta publish the final
lerror state of your device. Publish this state
m regardless of error. If a Status Notifier control is
lpresent in the driver Y1, the system uses this as an
lindication that the device has shut down. Otherwise

lthe system provides default status notification for
lthe device.

INormal errors, shut as the error when the system
Ishuts down a FIFO to signal the device to close,
should not be reported. The Report Final Error
[Status ¥I handles this case automatically.

Figure: Asynchronous Custom Device Framework

Get Loop Type - Returns the type of loop that an asynchronous custom device uses. The type can be either While Loop or Timed
Loop. Ifit's a Timed Loop, this VI also returns whether the loop uses the device clock.

Get Asynchronous Driver VI Timed Loop Name - Returns the name of the Timed Loop that a custom device uses. The VeriStand
Engine synchronizes the start of this Timed Loop with the other system Timed Loops. Use the name to ensure synchronization
occurs successfully.

Get Timed Loop Priority - Returns the priority (Low, Medium, or High) of an asynchronous custom device Timed Loop. To convert
this enumerated value to a numeric value that the Timed Loop input terminal accepts, use the Convert Timed Loop Priority Property
to Number VI.

Convert Timed Loop Priority to Number - Converts a priority value (Low, Medium, High) for a custom device Timed Loop into a
numeric value that the Timed Loop Input Node accepts. To set the priority, use the Set Timed Loop Priority VI.

Custom Device Developer's Guide © 2010 National Instruments 35 0f 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_loop_type_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_asynchronous_driver_vi_timed_loop_name_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_timed_loop_priority_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_convert_timed_loop_priority_to_number_vi/

Whenever a timing source is specified for a Timed Loop, the dt terminal is in tics of the
timing source. The asynchronous template has a default period of 100. The default
timing source is a 1KHz clock, so the default configuration iterates at 10Hz. If you set
Use Device Clock = true inthe Set Loop Type VI, the Timed Loop will iterate every
once every 100 iterations of the PCL.

See LabVIEW 2010 Help » VI and Function Reference » Programming VIs and Functions »
Structures » Timed Loop for more information about the Timed Loop and its terminals.

The inline hardware interface template is similar to state machine architecture. Some
developers will recognize it as an action-engine. See NI Discussion Forums » LabVIEW »
Community Nugget 4/08/2007 Action Engines for a discussion on action engines. The PCL
specifies the case to execute. An uninitialized Feedback Node is used for iterative data
transfer. There are five cases defined by the Operation enumerated control.

Initialize

Start

Read Data from Hardware
Write Data to Hardware
Close

arwbdE

This custom device runs in-line with the PCL, which calls each case at a specific time with
respect to the other components in the NI VeriStand engine. The PCL will not proceed until the
custom device case has completed.

The Initialize case executes before the PCL starts. In this case, you can read the device
configuration information from properties using the reference to the device. Initialize data and
buffers used internally in the device. The framework compiles the list of Data References for
the custom device Inputs and Outputs in advance using Custom Device API » Driver Functions
» Get Custom Device Channel List and Custom Device API.lvlib » Templates » RT
Driver VIs» Inline » Inline Driver Utilities » Channel Data References »
Get Channel Data Reference.vi.

Custom Device Developer's Guide © 2010 National Instruments 36 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/con_select_timed_struct_timing/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_loop_type_vi/
http://zone.ni.com/reference/en-XX/help/371361G-01/
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC99.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC100.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC112.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/glang/timed_loop/
http://forums.ni.com/
http://forums.ni.com/t5/LabVIEW/bd-p/170
http://forums.ni.com/t5/LabVIEW/Community-Nugget-4-08-2007-Action-Engines/m-p/503801?requireLogin=False
http://zone.ni.com/reference/en-XX/help/371361G-01/glang/feedback_node/
http://zone.ni.com/reference/en-XX/help/372846B-01/TOC13.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_driver_functions_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_custom_device_channel_list_vi/

i

f["Initialize", Default v f

Read the device configuration information from the data storage using the reference to the device. Initialize any state
data and buffers used internally in the device.

(Compile the list of Data References for the custom device Inputs and Outputs in advance using Get Channel List and
Get Channel Data Reference. Allocate any necessary data buffers and configure any state data.

You can't read or write channel values in this case.

¢ Qutput v

Device Reference in

COE [COEY]
GET 0} e @
il g I 1 4 W E code} Error Code
- j

Operation

Figure: Initialize State of the Inline Hardware Interface Framework

Since the PCL hasn’t started yet, you can't read or write channel values in the Initialize case.

The Start case executes after Initialization and before the PCL starts running. There’s no
difference between what code you can place in the Initialize and Start states. Since the PCL
hasn’t started yet, you can't read or write channel values in the Start case.

The Read Data from HW case executes at the beginning of the PCL, before other components
(such as Stimulus, Faults, Alarms, Procedures, et cetera) execute. For a detailed timing
diagram, see the Outline of PCL Iteration section. After processing system mappings, the data
obtained in this case is available to the other components of the system for the remainder of the
PCL iteration.

1
[["Read Data from HW"]

Send device output data read from HW to the system using Data References for the output channels. Don't ever call
Get or Set Channel Value by Data Reference outside the Inline Driver V1. This could cause system instability or errors,

Read Hardware Channels
00000000000 00000000000000

Device Reference in N
[ue M i3] [CoEY
a— Y
e £ code »132]|Error Code
i
Operation

0000000000000 000000000000

Figure: Read Data from HW State of the Inline Hardware Interface Framework

Custom Device Developer's Guide © 2010 National Instruments 37 of 85

The template contains a Flat Sequence frame named Read Hardware Channels. You can
replace the code inside the frame with the API calls necessary to obtain data from a hardware
API.

Do not call Get or Set Channel Value by Data Reference outside the inline driver VI.
Doing so could cause system instability or errors.

The Write Data to HW case executes at the end of the PCL, after the other components (such
as Stimulus, Faults, Alarms, Procedures, et cetera) have executed.

E—3
fa["Write Data to HW" v

Read input data from the system using Data References and write it to the hardware channels. Don't ever call
Get or Set Channel Value by Data Reference outside the Inline Driver V1. This could cause system instability or
errors.

‘Write Input Data to Hardware Channels
O0ooo0oo0o0oo0o0o0o00

Read Input Yalues from System

= | Input Refs
Device Error

Device Reference in

I

- BEsz][Error Code

Operation

000000000000

Figure: Write Data to HW State of the Inline Hardware Interface Framework

The case contains a Flat Sequence frame named Write Input Data to Hardware Channels. You
can replace the code inside the frame with the API calls necessary to send data to a hardware
device.

The Close case executes after the PCL has finished executing. It's good practice to close
references and release resources in this state. Since the PCL has terminated, you cannot read
or write channel values in this case.

The Inline Model Interface custom device template is state machine/action engine architecture.
An uninitialized Feedback Node is used for iterative data transfer. There are four cases defined
by the Operation enumerated control.

1. Initialize — Same as Inline HW Interface
2. Start — Same as Inline HW Interface

Custom Device Developer's Guide © 2010 National Instruments 38 of 85

3. Execute Model
4. Close — Same as Inline HW Interface

This custom device is run in-line with the PCL, which calls each case at a specific time with
respect to the other components in the system. The PCL will not proceed until the custom

device case has returned.

The execute model case is called in the middle of the PCL. This is the one state of this device
that executes during the PCL. This state reads input data, performs a calculation, and then
writes output data to NI VeriStand. Using the Inline Model Interface mode enables you to
process data acquired from hardware inputs and send the processed values to hardware

outputs with no latency.

=3
#

T["Execute Model” v}

Read inputs from system. Execute the model calculation. Write outputs back to the system. Don't ever call Get or Set Channel
Value by Data Reference outside the Inline Driver V1. This could cause system instability or errors.

Output Refs

L 7\.‘&\?. Do Model Calculation

[u] [u] [u] [u] [u] o [u] [u] oc
HE

Input Refs ==

Read Inputs from System

J Write Output Values to System

Device Reference in N

et 1] [CDEY] ® DE!
r e 4::7 -
0] = 5 ry = ool A b jofoy [code]
[| i
000000000000000000

Figure: Execute Model State of the Inline Model Interface Framework

B2 |Error Code

Do not call Get or Set Channel Value by Data Reference outside the inline driver VI.

Doing so could cause system instability or errors.

Custom Device Developer's Guide © 2010 National Instruments

39 of 85

Device Type Basic Framework Timing Pros Caveats Use Cases
Architecture Data
Interface
Asynchronous | Single Loop | Input and Synchronized w/ Unlikely to 1-cycle latency to Shared resources,
Output FIFO | PCL adversely affect get data to/from the | background
timing of other device due to RT processes, non-
Decimation of components inthe | FIFOs deterministic
PCL rate (FIFOs system hardware/
are read ever N'th protocols,
iteration of PCL) May run faster, system health
slower, or monitoring, logging,
Any user defined | decimation of PCL offline analysis
rate
Inline State Channel In-line with the Presents data to Can adversely Most hardware,
Hardware machine references PCL engine before other | affect the timing of | deterministic
Interface components the PCL operations, two-
Two steady- Decimation of the | execute phase operations
state cases PCL (device such as stimulus-
executes every Receive data from response
N’th iteration of engine after other
PCL, does not components have
have N-times as executed
long to finish)
Inline Model State Channel In-line with the Send data to Can adversely Low-latency
Interface machine references PCL engine with low affect the timing of | calculations such
latency the PCL as PID,
One steady- Decimation of the interpolation, etc.
state case PCL (device

executes every
N’th iteration of
PCL, does not
have N-times as
long to finish)

Custom Device Developer's Guide

© 2010 National Instruments

40 of 85

The order of operations in the Primary Control Loop varies with respect to the execution mode
of the controller. You can adjust this setting in System Explorer » Targets » Controller » Other
Settings » Execution Mode.

The Data Processing Loop (DPL) is responsible for executing Procedures, alarms, and
calculated channels. For more information about hardware timing in NI VeriStand see
KnowledgeBase 58BFIFAF: Hardware 1/O Latency Times in NI VeriStand.

(N-1) means “from the previous iteration”.

1. Get hardware inputs from Controller » Hardware » Chassis
¢ DAQ Digital Lines and Counters are read after Read From HW case of Inline
Hardware custom devices
Read asynchronous custom device FIFOs (N-1)
Run Read Data From HW case of Inline Hardware custom devices
e Scaling is applied after all hardware inputs have been acquired
Read models from Controller » Simulation Models
Read from DPL (N-1)
Process system mappings®
Run the Execute Model case of Inline Model custom devices
e All hardware inputs have been acquired and all channels have been scaled
before this case runs
8. Process system mappings®
9. Execute generators
10. Process system mappings®
11. Write to DPL
12. Write to Controller » Simulation Models
13. Write hardware outputs to Controller » Hardware » Chassis
14. Run the Write to Hardware case of Inline Hardware custom devices
15. Write to Asynchronous device FIFOs

wnN

Noos

! You can’t read data from a previous step until a “process system mappings” step has executed, even if
that step acquired the data you want. For example, you write an inline HW custom device, and inside the
read data from HW state of this custom device, you want to read the channel data from a DAQ card in the
configuration. The DAQ executes at step 1, your code executes at step 3. However, if you read the
channel for the DAQ in your code in step 3, you would get the data from the previous iteration (N-1)
because “process system mappings” hasn’t executed yet. This is the case for NIVS 2010, it will likely
change in the future.

Custom Device Developer's Guide © 2010 National Instruments 41 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/understanding_vs_engine/#Primary_Control
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/system_explorer/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/targets_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/understanding_vs_engine/#Data_Processing_Loop
http://digital.ni.com/public.nsf/allkb/9E9DCC2414B0692A8625770300765403
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/hardware_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/chassis_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/simulation_models_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/simulation_models_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/hardware_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/chassis_se/

Low latency mode executes models in-line.

1. Get hardware inputs from Controller » Hardware » Chassis
¢ DAQ Digital Lines and Counters are read after Read From HW case of Inline
Hardware custom devices
2. Read asynchronous custom device FIFOs (N-1)
3. Run the Read Data From HW case of Inline Hardware custom devices
e Scaling is applied after all hardware inputs have been acquired
4. Read from DPL (N-1)
5. Process system mappings®
6. Run the Execute Model case of Inline Model custom devices
e All hardware inputs have been acquired and all channels have been scaled
before this case runs
7. Process system mappings®
8. Execute generators
9. Process mappings®
10. Write to Controller » Simulation Models
11. Wait for models to finish
12. Read from Controller » Simulation Models
13. Process system mappings®
14. Write to DPL
15. Write hardware outputs to Controller » Hardware » Chassis
16. Run the Write to Hardware case of Inline Hardware custom devices
17. Write to Asynchronous device FIFOs

Based on the timing requirements of the custom device, plan the type of device before
executing the Custom Device Template Tool. The AES-201 API sinks and sources data during
steady-state operation; the custom device needs input and output channels. The operator
needs deterministic hardware data. The AES-201 should be implemented with the Inline
Hardware type of custom device.

Implement the Custom Device
You should thoroughly plan before you implement the custom device. We'll now implement the

custom device for the AES-201. Recall this is a hypothetical 3" party device. By inventing our
own device and API, we're able to focus on the custom device process and avoid the
programming tedium. If you’d like to walk through building an actual custom device, you can
follow NI DeveloperZone Tutorial: Building Custom Devices for NI VeriStand 2010.

Custom Device Developer's Guide © 2010 National Instruments 42 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/hardware_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/chassis_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/simulation_models_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/simulation_models_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/hardware_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/chassis_se/
http://zone.ni.com/devzone/cda/tut/p/id/9348

AES-201 Analog Input Specifications

Range: +1V or £500mV
Cannot be changed while digitizing
Return: 32-bit raw

Trigger: 1 software

SW Enable: Default on

Filter: 6Hz LPF default off

Figure: AES-201

Do we need a custom device?

Our customer requires 32-bits of resolution for their RT test system. This is the only PXI
digitizer that fulfills this requirement. After checking with Nl.com and the manufacturer, we
found no custom device exists for the AES-201, so we determine that a new custom device is
necessary.

What are the risks?

The AES-201 ships with a hardware driver that's compatible with LabVIEW Real-Time and a
LabVIEW API. We have a real-time desktop target that’s identical to our customer’s platform.
At our request, the customer has provided their model dll, so we can test and benchmark on a
system very similar to our customer’s system.

Implementation
Based on the AES-201, we create the following specifications.

e Eight output channels ADDataFromCh<1..8>

e Nine input channels ADEnCh<1..8>, SWTrig

e Nine properties: FilterEn<1l..8> and Range

o We will use a nested two-level hierarchy

e We plan to override the default channel page for ADDataFromCh<1. .8> but we'll use
the default page for everything else. We'll create a few extra pages just to be safe.

e To avoid FIFO latency, we’ll use the Hardware Inline custom device.

Open <vi.lib>\NI Veristand\Custom Device Tools\Custom Device Template
Tool\Custom Device Template Tool.vi. Configure the front panel to generate a
LabVIEW Project for the AES-201 custom device and then run the VI.

Custom Device Developer's Guide © 2010 National Instruments 43 of 85

The CUStom DeV|Ce Template TOOI }ﬂ Custom Device Template Tool.lvlib:Custom Device Template Tool.vi Front Panel E]@{

puts the new LabVIEW Project in @ |5 &® e ot operste Took window b
] i -Q) :] lication For]v‘ a [--37 |
sub folder inside the target folder Al L [z ’

(A). The name of the custom |
device (B) is also the name of the
sub folder. That is, you don’t have
to specify a sub folder for your
device because the tool makes one
for you. Select the type of custom é
device from the Execution Mode
control (C). We'll only need one
extra page, but we'll create several -
just in case requirements change ot co 1y f— T

(D) . s i Extra Page 2

Build the Configuration

Now we'll modify the LabVIEW Yo, g
Project Vls generated by the | LIRS B
Custom Device Template Tool. | e]-N]
We'll start with AES-201 e “e”‘

| Channel Mame

Initialization.vi. Inthe ADDataFromCh

initialization VI, we’ll build-up the
default channel list. You've already
seen Add Custom Device Channel
VI.

{8
Channel
Type

|

|

|

|

|

|

|

0Outaut 'l |
Linits |
|

|

|

|

|

|

|

Parent Ref out

errar in error out

Custom Device Developer's Guide © 2010 National Instruments 44 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_channel_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_channel_vi/

Add a Boolean property to each [oem] _ 20,

channel using Set Item Property. | e =

The property will indicate the state of Ioaviceltemﬂn ! r
the filter on the channel. | —

Channel Mame

ADDataFromCh

Parent Ref out

Channel
[

Filtern]

IE il = = i | - — o - ol r o2 5 |

| error in error out

L e =

It's good practice to use Global ji‘?Ei!l__

2010
. — T TR B
Variables or enum type definitions : e |
for any constants that will be reused |,_. ,..cen ! r :
throughout the custom device. | =l Cramme e |
. . |
Replace the string constant with a | |
global variable that has the same | pa,gnmefuut:
Channel iterEn
default value as the constant. Add I W) Sty |
. error in error out
the global variable to the custom | iz - = AR 8] :
device Ivlib in the LabVIEW Project. | e+ |
| F |
R |
We want to override the default <Page>
channel page so we can add a <Name>
<eng>ADDataFromCh</eng>
control to the page that allows the <loc>ADDataFromCh</loc>
operator to set the filter. We created </Name>
an extra page called <GUID>8AB4F65B-85C9-6BD6-B869-680C60278524</GUID>

<Glyph>

. i <Type>To Application Data Dir</Type>
purpose. Look in the custom device <Path>System Explorer\Glyphs\default fpga
XML and find the GUID associated channel.png</Path>

with the extra page. While you're at </Glyph>

it, change the glyph for the custom ~ <ttem2Launch>

ADDataFromCh.vi for this

<Type>To Common Doc Dir</Type>
channelpaget0<jefaujjz fpga <Path>Custom Devices\AES-201\AES-201
channel. Configuration.llb\ADDataFromCh.vi</Path>
</Item2Launch>
</Page>
<Page>

Operators are used to having channels associated with that glyph. Likewise, change the glyph of
the main page to dag device.

Custom Device Developer's Guide © 2010 National Instruments 45 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_item_property_vi/
http://zone.ni.com/reference/en-XX/help/371361G-01/glang/global_variable/
http://zone.ni.com/reference/en-XX/help/371361G-01/glang/global_variable/
http://zone.ni.com/reference/en-XX/help/371361G-01/glang/enum_constant/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvhowto/creating_type_defs/

Add the GUID to the global variable.
Wire the global into the GUID
terminal of Add Custom Device
Channel. This associates the
channel with the VI.

Now when the operator clicks on
ADDataFromCh<1..8> inthe
configuration tree,
ADDataFromCh.vi runs as a sub
panel in System Explorer instead of
the default channel page.

|GE- 1

| [®[Ma Error 't[

| EHK]
|Davice Ttem Ref in
=

Channel Mame

ADDataFromCh

error in

St b ¥

Parent Ref out

error out

W

L e

From here-on, we’ll set properties when we create the item rather than using the Set Item
Property VI to set them on the item reference.

Now that we’ve linked the channels
to the extra page, we’ll make edits to

the extra page, ADDataFromCh.vi. |

In the Initialization frame, we’ll add
code to display the channel
information.

Operators are used to seeing
channel data when they click on a
channel, so we want to preserve that
experience. If the device is a
channel, we’ll send the channel data
to an indicator on the front panel.

It's good practice to use the Boolean
outputs from functions in the API to
make sure that you’re operating on a
valid reference.

Initialization code

10000000000 o0o000ooooooan

F A Description

b+ [Mame H kA larne |

jOooooooooooooooooood

Initialization code

10 0000000000000 000000000amo

kA Descripkion

el b 1 |

Mame
Iz Zhannel

—
Ty
abi fee

OO0 0000000000000 00000000

In this case, we’ll only retrieve the channel data if we have a valid channel reference. Another
option is to specify the default property value. The default property value is returned if the

property is not found. Using the default property value does not set the property.

Custom Device Developer's Guide

© 2010 National Instruments

46 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_channel_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_channel_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_item_property_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_set_item_property_vi/

Notice how the initialization frame
reads the name and description from
the device reference.

Do the same thing for the
FilterEn property so the operator
can see the state of the channel’s
filter setting. NI VeriStand is
responsible for passing the correct
channel reference to our custom
device, and storing state data for all
the controls and indicators. The
developer is responsible for acting
on the reference and displaying the
state.

Add a Boolean control to the front
panel called Channel Filter.
Create a case in the Event Structure
for the control’s value change. If the
FilterEn property is found, set the
property according to the value of
the control. Ifthe FilterEn
property is not found, show a dialog
box with debugging information.

Initizlization code
TOooooo00000000000000000000o00000ooooon

F A Descrption

v Y Channel
=Ty

ab:

LIEEET o LR {Pﬂchannel Filker
Boolean ~

1000000000000 000000000000000000000«©070 70 L0

Z}][] "Channel Filker": Yalue Change
(D i F
SFil +
FilterEn f_;' Channel Filter [TE8-f ————LJi5 ¥

— [T —

E Boolean ~
[~

If the operator does not change this control, the property is never created. There are
several ways around this. You could initialize the property in the Initialization VI, or you
can assume a default value when you read the property.

Custom Device Developer's Guide

© 2010 National Instruments 47 of 85

Remember, this VI runs on the host
computer, so we can launch a pop-
up dialog box to assist with

debugging. WFase]

There was i
a problem —

Channel Filker -

Now we’ll build a subVI that creates
channels so we can reuse it for the
enable channels.

f
I
£ e

Add the default channel GUID to the
global variable. You can get it from —

the front panel of Add Custom == Default
Device Channel. channel GUID

Here it is for your reference:
03D3BB99-1485-13A6-

561D1F898F032919.

If the Override Default Channel? | ©=®&| _________ ___ ___________ _=u
terminal of our subVI is true, the VI |
takes a GUID from the caller. If not, &rtman

the VI uses the default channel }Mefa“'““a”“a'?
GUID.

[ke Error 't

\

|
Notice how properties are set from }
the Add Custom Device Channel VI |
|

\

|

|

|

|

Device Item Ref out

directly. You can use this subVI in
many custom device projects.

error out

— e el

Custom Device Developer's Guide © 2010 National Instruments 48 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_channel_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_channel_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_channel_vi/

@ Custom devices execute as reentrant on the execution host. This enables the operator to
run multiple independent instances of the same custom device. Consider the case if the
operator has several AES-201 cards. Be sure to enable Reentrant execution from the
subVI’s File » VI Properties » Execution category to preserve this capability. See
LabVIEW Help » Fundamentals » Managing Performance and Memory » Concepts »
Suggestions for Using Execution Systems and Priorities » Simultaneously Calling SubVIs
from Multiple Places for more information about reentrant Vis.

The final Initialization VI createstwo ®=%|
. [k Errar ‘t
SeCtlonS . The Hardware I n pUtS } Create Hardware Inputs section and (Create Hardware Enables
. . create & output channels, each with section and create 8 input
SeCtlon has elg ht Output Chan nels . ‘ a property called FilterEn, Override channels.
\
\
\

(Create a single
SMETrig input
channel.

the default channel page.
The Hardware Enables section has

Hardware Inputs

Hardware Enables SMBTria Device Ltem Ref out

eight input channels. We also
create an input channel for the }Mmmﬂn
. =T
software trigger. o Mkl S Ry L TESETRETENETED § B [SRR ey
| Custom L e
== [} - T et
R .. I B
NOW that the inltlalizatlon rOUtlne IS {g Combo Box prnperties: cUnﬁgure Range
done, we’ll turn our attention to the
. s Appearance | EditItems | pocumentation | DataBinding | Key Mavigation || Security
main page. We'll use a type | Appesrance |
definition combo box to set the [Jvalues match Ttems
range of the AES-201. Add the type Items Va'uesl [Tnsert
.. . . ESRY Orne Yolk
definition to the custom device Ivlib. +500my HalF Volt
| Mave Down |
v]
[allows undefined values at run time
’ (a4] ’ Cancel] [Help]

Custom Device Developer's Guide © 2010 National Instruments 49 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/lvdialog/vi_properties_dialog_box/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvdialog/execution/
http://zone.ni.com/reference/en-XX/help/371361G-01/
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC10.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC84.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC85.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/suggestions_for_exec/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/suggestions_for_exec/#Simultaneously_Calling_SubVIs_from_Multiple_Places
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/suggestions_for_exec/#Simultaneously_Calling_SubVIs_from_Multiple_Places

Modify the main page so the 43 AES-201 Custom Device. lvlib:AES-201 Main Page.vi Front Panel on AES-201 Custom Device Pro... [~ (0 E3

File Edit Yiew Project Operate Tools ‘Window Help Py G|

operator can set the range of the D [P = P [I <@l
device. You don’t have to override Custom Device o Setings
the main page with a custom page; Hame
you can simply modify the main
page dlrectly. Description [ﬂ
Add another string to the global
variable for the Range property.
[

Configure Range

|Use ADDataFromCh<1..8% ta bring

| digitized data From your AES-201 into
" the NI YeriStand system. The 6Hz

| single-pole LPF may be toggled from
‘the channel page.

|Use ADENCh«1. .8 to enable or
‘disable the channel, Zero disables the
(channel. Mon-zero enables the

_ chanrel.

Tl

Add an event case to the main page [L] "Configure Range”: Vaue Change M
that sets the range property when
the operator changes the value of
the control.

Custom Device Developer's Guide © 2010 National Instruments 50 of 85

The engine will need some way to 43 AFS-201 Custom Device. Ivlib:AES-201 Main Page.vi Front Panel on AES-201 Custom Device Pro... [~ (0 &3

File Edit Yiew Project Operate Tools ‘Window Help Py G|
know how to address the board. D [P = P [I i
Add another control so the operator pome———————
can configure a Resource Name
Number.
Descripkion
[#]
[v]
3520 L i SHCIE AR SN
0 Jx1v

|Use ADDataFromCh<1..8% ta bring

| digitized data From your AES-201 into
" the NI YeriStand system. The 6Hz

| single-pole LPF may be toggled from
‘the channel page.

|Use ADENCh«1. .8 to enable or
‘disable the channel, Zero disables the
(channel. Mon-zero enables the

_ chanrel.

@ Many developers have asked for MAX integration/auto-discovery so the operator doesn’t
have to enter resource names manually. As of NI VeriStand 2010 this functionality does
not exist. You can write your own discovery routine that populates available resources, or
you can allow the operator to enter the resource name manually.

Add the event case tO Set the Z} P[] "Resource Murnber”; Yalue Changs b
resource number property.

(] 5ource |

Custom Device Developer's Guide © 2010 National Instruments 51 of 85

Read the device’s resource name
and range into the corresponding
controls in the initialization frame,
the same as you did for the extra
channel page’s filter property.

Remember, NI VeriStand stores
state and provides the correct
reference; the developer acts on the
reference and modifies the state.

Build the custom device and inspect
the hierarchy, sections, channels,
main page and extra pages. Now
we’ll turn our attention to the RT
Driver.

Build the Driver
The AES-201 comes with a simple

LabVIEW API. We'll use the API to
build the RT driver portion of the
custom device.

Custom Device Developer's Guide

Initialization cade

OO00000000000000000000000000000000000¢C

W Y

@ Range FRTT _fg | ®Resource Numberﬂl‘a":fg

kA Description
HCOE! IcoE VS
= [el
b e i)
Skring =
& Configure Range

I52 =

FResource Number

£ System Explorer - Blank Project. nivesdf*

Fle Edt Toos Help

Custom Device Item Settings

Name
AES-201

Description

Configure Range

e
a +1V

The eHe
le LPF may be toggled from
el page.

Use ADEMCh<1
disabl the chr

-[::] BES-201
AEZ Init | [AES A¢D] [AES Dand
e

6l L

1 .
AEZEnt | [AESFile] [RES Sear
|| S

© 2010 National Instruments

52 of 85

Functions in the API call into the
hardware dll. This is typical of a
LabVIEW API. This paradigm
requires the developer to post the
dll to the execution host.

Modify the custom device to
package the dll with the custom
device and deploy it to the
execution host.

AES-201 in

5.

Taltio Error =]

®AES-201.dIk
n

error in {no error) [E2K 7}
Resouce Nurnber

error out
i iy LS

Channels

Kumber of Channels
R.ange

Range @—E

Shared libraries are typically .dll files on Windows/PharLap operating systems and .out files on
VxWorks systems. If you're building a custom device for a Compact RIO execution host, you'll
be working with .out files. See KnowledgeBase 4LRA4100: What Operating System is my Real-

Time Controller Running and Why for more information.

There are two parts to packaging
dependencies. The first part is to

incorporate the dependency into the

LabVIEW Project.

Add the dll to the custom device
LabVIEW library.

Modify the configuration’s source
distribution by adding the dll to the
Always Included list.

Custom Device Developer's Guide

= Configuration Properties

Categor,
Infarmation
Hoiirce Files!
Destinations

Project Files

Source Fles

Source File Settings

Advanced Elr
Addtiarial Exclusians

FreiPust Buld Actions

Preview

ad

o

()) L L

AES-201 RT Driver WLvi

Range Combo Box. ctl

13 Custom Device APLkib

AES-201 Custam Device Global varisble,

Create ADDataFromCh Channels. vi

Aways Included

~

[ml AES201 Main Page.i

= Custom Device AES-201,xml
), Extra Page 104
s, Extra Page 2.
ml, Extra Page B.vi
sl Extra Page 4.1
s, Extra Page 5.vi
sl Extra Page 6.1
|ml, Extra Page 7.vi
ml, Extra Page &.vi
=l Extra Page 9uvi
%] AES-201.dI

Always Excluded

buld | ok J[concel

J [el

© 2010 National Instruments

53 of 85

http://digital.ni.com/public.nsf/allkb/D85F9139AEB88F188625745700569E8D
http://digital.ni.com/public.nsf/allkb/D85F9139AEB88F188625745700569E8D
http://zone.ni.com/reference/en-XX/help/371361G-01/lvdialog/source_distrib_db/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvdialog/source_distrib_db/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvdialog/source_file_distrib_page/

Note the location of the Support
Directory. In this case it's
C:\Documents and
Settings\All
Users\Documents\National
Instruments\NI VeriStand
2010\Custom Devices\AES-

201\Data.

Set the destination directory for the
dll to the Support Directory.

Now when you build the

configuration, LabVIEW sends the
dll to the support directory.

Custom Device Developer's Guide

=
estizmme Destinations
Information
Source Files — ‘
iDestinations; EENE LT ol
Source Flle Settings Destination Directory Destnaton abe
Advanced Suppart Directory? Support Directory
ddtionsl Exclusions AES-201 Configuration LLE
PrefPost Buld Actions Destination path
Preview Ci{Documents and Settings'al UsersiDocumerts\
Hational Instruments|Nl Veristand 20101Custorn
Devices\AES-201|Data
Destination type
Directory
Preserve disk hisrarchy
in:}
] Add files to new project library
Library name

Buld [ok

J [_cancel |[telp

= Configuration Properties

Categary

Source File Setfings

Inclusion Type

Additional Exclusions
PrejPost Build Actions
Freview

Infarmation

Source Files

Destinations Project Files
iSource File Settings: =)
Advanced

2

17) o

Always Included

=3 AES-201 Custom Device lvib

ADDataFromCh, vi

AES-201 Custom Device Global Yariable,
AES-201 Iniislization ¥1.vi

AES-201 Main Page i

AES-201 RT Driver WLvi

Destination
Suppart Dirsctory

(AES-Z01 di

Create ADDataFramCh Charnels. vi [
Extra Page 2.vi
Extra Page 3.v1
Extra Page 4.vi
Extra Page S.vi
Extra Page 6.vi
Extra Page 7.4i
Extra Page 8.vi
Extra Page 9.vi
Extra Page 10.vi
Range Combo Box. ctl

Use default save ssttings
Remowe front panel

Remove block diagram

Mo password changs
Remowe passwiord

‘2| Custam Device AES-201.xml
| 2 Custom Device APLib

Apply new password

= Dependendizs

[CIRename this file in the build
AES-201.dl

Custarmize Y1 Froperties...

Buld [ok

J [concel][heln

© 2010 National Instruments

54 of 85

The second part in packaging dependencies is to incorporate the dependency into the custom
device. Use Add Custom Device Dependencies to deploy the library to the execution host.

NI VeriStand — Add Custom Device Dependencies VI
Owning Palette: Dependencies Vis

Adds dependencies to a custom device.

Device Ref in ey Device Ref out
Dependencies = ﬁf"‘
error in (no error) == error out

[uedl Device Ref in is the NI VeriStand reference to the custom device.

=::» Dependencies is an array of Custom Device File Dependency controls.

7

" Path is the path and file name of the dependency

Type is absolute or relative to one of NI VeriStand’s built-in file paths. See the What is a Custom
Device for a list of built-in file paths.

RT Destination specifies the directory and file name of the dependency on the execution host

Force Download terminal must be false.

el

SupportedTarget specifies the target operating systems that will receive the dependency

abecd Version

==:¥ error in describes error conditions that occur before this node runs. This input provides standard error in
functionality.

Device Ref out is a duplicate of the Device Ref in.

»==:]| error out contains error information. This output provides standard error out functionality.

There are several other Vis in the NI VeriStand Dependencies VIs palette that operate on
custom device dependencies. These functions do what you’d expect given their names.

[0 Dependencies Vis » Get Custom Device Dependencies
0 Dependencies VIs » Reset Custom Device Dependencies

Add the custom device dependency rlflfﬂi, fffffffffff I — o
Talo Error vl
to the Initialization VI. \ Gt ok e ol e o ooty | G e | et ot
craate B output channels, each with section and create & input| [SMETrig mpct | |device di
‘ = property called FikerEn. Override charinsls. channel. depend
| he deFauit channel page.
} [Fardware Inputs [Hardware Enables Device Item Ref out
TEE e
| Device Item Ref in T s =
= -
‘Err?r (noerrar) tf.:*' @ &0DataFromch GUID Hy, + t:‘:T [ADERCh T‘F:+ "~w error out
e e - |
usom @ Filtern ¥ == | T e ——
=il
= =

% custom devicesiaes-201\datalAES-201
Type
[To Common Data Dir

[RT Destination
[ctini-rtiveristand}Custom Devices|AES-2011AES-201.di
ForceDownload?

Custom Device Developer's Guide © 2010 National Instruments 55 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_dependencies_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_add_custom_device_dependencies_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_dependencies_vis_pal/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_in/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_out/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_dependencies_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_dependencies_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_get_custom_device_dependencies_vi/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_dependencies_vis_pal/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristandmerge/vs_reset_custom_device_dependencies_vi/

As a result, the Initialization VI adds
the dll to the project’s dependency
list when it runs.

You must have some way to direct
the engine to the dll on the
execution host. One way is to
deploy the dll to a folder in RT’s
search path (C:\ni-rt\system
by default).

A better way is to use a global
variable that points to the absolute
path of the dll on the execution
host.

LoE

{4 Project Explorer - Blank Project.nivsproj

File Edit Operate Todls

H &

=& Blank Praject.rivsproj
4L System Definition File
{il) Workspare
o) Services

[Profiles
L@ Alarm Response

4 Custom Files
& g#3 Dependencies
- @ AES-201.dl [Ct|Documents and Settingshal Lisers|Dr weristand 20101 custom devices\aes-2011d) 01.di]
|- @ AES-201 Engine.Ib [C:{Documents and SettingslAll isers|Dacumentsiblational InstrumentsiI VeriStand 2010} ustom Devices\AES-2011AE5-201 Engine.lb]
L@ Blark Froject. nivsscreen [C:\Documents and Settings?All UssrsiDocuments|National InstrumentsyhI VeriStand 2010\Projects|Blark Project|Blank, Project.nivescresn]
L @ Blark Project.nivssdf [C:\Documents and SettingsiAll UsersiDocu weristand 20101Proj Praject. nivssdf]

Help

=

Offline:

T3 AES-201.Ivclass:Path_to_AES_DLL.vi Front Panel on AES-201 ... |- |03
File Edit Wiew Project

Operate Tools Window Help
2 =5 = = [
|

AES-201 .41|| I I I

I'i: c:hni-rtveristandiCustom Devices\AES-20144E5-201 . dil

| [| [) |
AES-201 Custom Device Project. lvpraojfiy Computer| ¢

| 13pt Application Font

o
w0

Deploy the dll to C: \ni-rt\VeriStand\Custom Devices\<Custom Device
Name>\<library>.d1ll. This is more maintainable.

Read the range and resource
number properties from the custom
device reference. Recall that you
must read the property from the
correct item, and we set these
properties to the top-level device
reference. Call the AES-201 API to
initialize the board according to the
property values.

f['Initialize", Default >

@Resource Mumber

,,,,,,,, —!
m #Read

TalErrar hda

There was a problem
initializing the AES-
201,

Read item property

Custom Device Developer's Guide

/

Coerce the property Call the
value to a data for hardware
the API API
© 2010 National Instruments 56 of 85

Remember, if the operator didn’t
trigger the event to set the property,
there won’t be a property to read.
Instead of throwing an error, default
to the value of your choice and call
the API accordingly.

It might be nice to tell the operator
what’s going on. Print a few strings
to the console. See the Printing to
the Console section for more
information.

The inline HW custom device uses
a feedback node to pass state data
between states. Add the AES-201
state data to the feedback node’s
cluster. If you're not familiar with
LabVIEW Objects, it’s sufficient to
know that this LabVIEW object

represents all the state data needed [%]

to use the AES-201 in subsequent
states.

Add the input and output channel
references to the state data cluster.

The innut channel references

The input channel data
references

Custom Device Developer's Guide

[Iritislize", Default v

TalFalse ~

||DaFaL|Iting ta AES-201 board |

@Resource HMumber b

| R

S TR
m [Read

E Error 't

There was a problem

initializing the AES-
201,

Use a default value if
the property is not
found.

Tal"Initialize”, Default)]

m #+Read =)

@y B

[Qutput |

EET) [EEET)
E3

GET
cHAN

m [+ttt]

TalErrar P

There was 3 prablem
initializing the AES-
201,

"Initialize”, Default ¥

m #+Read =)

e H
£

[Qutput |

)
GET
cHAN

m [+ttt]

E Errar 't

There was 3 prablem
initializing the AES-
201,

© 2010 National Instruments

57 of 85

The output channels are for
ADDataFromCh<1..8>. Check
the filter property on each output
channel reference and call the
AES-201 API to set the filter
accordingly.

1 "Start”

AES-201

- | Oubput Channel References

Device Errar

Return FALSE if the
property is not found.

]

/

After the custom device has been configured and deployed, NI VeriStand will no longer
exchanged property information between the host computer and execution host. Since we

implemented the filter as a property, we’ll call the AES-201 API in the Start case. If the operator
wants to toggle the filter, he must reconfigure the device in System Explorer.

Now that we’ve configured the
hardware, we’ll request an A/D
sample. For this custom device,
the Read Data from HW case is
nicely suited for this operation.

Replace the Read Hardware
Channels frame with the API call to
digitize. Convert the 32-bit raw
data to DBL data depending on the
range of the AES-201.

"Read Data From HW" 't

Dukput Refs

Device Error

Read Hardware Channels

Doo000000000000 000000000

(i N B N M M

Cubput Refs

Drevice Errar ...

Query the range

Digitize

Send the channel data to the rest
of the NI VeriStand system by
writing to the Output Reference.

Custom Device Developer's Guide

/
/

\‘erta Cutput b System
i E) §

{Cubput values 1]
{ Cevice Error [T

1

Cukput Refs)
AES-201 [—esseal™
Dievice Errar) &hg” ™
Jeo] 5 0]

© 2010 National Instruments

Write NI VeriStand Channels

58 of 85

For flat hierarchies, the reference array corresponds one-to-one with channels as they were
created on the host computer. In other words, the first channel created is the 0’th element of

the array.

For non-flat hierarchies, the reference array corresponds top-down and one-to-one with
In other words, channels at the highest level of the hierarchy

channels as they were created.

appear first in the array, then subsequent levels’ channels appear in the array in the order they

were created.

Robust custom devices do not depend on any particular order of channel references. Unique
properties or GUIDs should be used to ensure the driver VI operates on the correct channel.

The AES-201 inputs are enabled
by default. Build the custom
device, enable filtering on all
channels, add it to a new system
definition and deploy the project.

You should see messages on the
console indicating the non-default
configuration. This is a good sanity
check.

Map the ADDataFromCh<1. .8>
channels to a simple graph and
make sure they display the
expected signals.

Custom Device Developer's Guide

File Tools

Target Machine/IP Local Port
10.0.36.163 o 4576

Hold Screen

Display colors?

J Target: 10.0.36.163
A Workspace - Blank Project Q@
Ele Iools Soreen Yiew Window Help
3] [¥ 1o
W At E Hold
u'u' it AN HH LARERILEY ‘.anll) nu ‘h”w'." i il
"“"‘ | Y | | ' | |‘\ “I' Autoscale X
H| ‘ |\“ ”‘||""\|\\,“"|IH| ’ ’\\ ‘\llu J“H"‘
“\ H“.‘ "‘H‘I‘\M N I\‘ |\"M\u\|\ ‘|‘I|'H”,“ Hl"“l“‘\|| “
f
I mARAR] \l
A f‘," WAL
Autoscale ¥
El
000302 00:03:04 00:03:06 00:03:08 00:0%:10 00312 -
== FeiLu]
| - Data Lost
© 2010 National Instruments 59 of 85

Now we’ll process the software
enable channels. For this custom
device, the Write Data to HW case
is nicely suited.

The SWTrig channel is higher than
the ADEnCh<1. . 8> input channels
in the hierarchy; even though it
was created last, it’s the first
channel in the input channel
reference array. We'll skip the
SWTrig channel reference for
now, and read the 8 enable
channels.

Make a call to the AES-201 only if
the enable channel value has
changed. Enable the hardware
channel if the NI VeriStand channel
does not equal zero.

Skip the sWwTrig channel

|

["write Data to HW"]

t=+ | Input Refs
Device Errar

Read Input Walues Fram System

\Write Input Data to Hardware Channels

Ooooooooooo0o

Drevice Error

OO0 0000000 OOEE

code

Read Input Yalues From Swskem

Input Refs

Device Error

Read Input Values from System §

et

Input Refs

Device Error

Ml True Vt

Only call the API if the enable channel has changed value

You can build change detection into the custom device engine so it doesn’t perform actions if
the data hasn’t changed. This will cause differing execution times depending on data. Some
may consider this jitter; but it isn’t the literal sense of the word unless the code fails to meet
determinism requirements. And as long as you don’t fail a requirement, saving time is never

bad.

Custom Device Developer's Guide

© 2010 National Instruments

60 of 85

http://zone.ni.com/reference/en-XX/help/370622H-01/lvrtconcepts/builddeterapps_rt/

Tolerence

4
o “F i B
=eEL e BT B
Figure: Simple Chnge Detection Figure: Change Detection ith Tollerance

There are a variety of methods for doing change detection. We'll briefly discuss two methods.
Simple change detection can fail due to floating point precision issues. See NI Developer Zone

Tutorial: An Introduction to Floating-Point Behavior in LabVIEW for more information about how
computers handle floating point numbers.

Change detection with tolerance works-around the precision issues. Make sure to use
tolerances that avoid false triggers.

Rebuild the device and add 8 & Item Properties
Boolean controls to the workspace.
Map each control to the @eneral | Format & Predsion || Limits & Warnings
corresponding ADEnCh<1..8> Channel
channel. ’_storn Devices/AES-201/Hardwara Enables/ADENChL ':3.
Conkrol Label:
ADEMCh1
Default Units: Mew Units:
Boolean [#]Use Default Units?
Scale Fackor: Offset:
1] il]

(0] 4] [Zancel

Custom Device Developer's Guide © 2010 National Instruments 61 of 85

http://zone.ni.com/devzone/cda/tut/p/id/11956
http://zone.ni.com/devzone/cda/tut/p/id/11956

You should now be able to toggle | erkspace -Blank roject ok

File Tools Screen YView window Help

the channels on and off from the
workspace. In this contrived
example, disabled channels hold
the last sample.

ADENCh1 <_®» ADEnCh$ =
ADEnCh2 @ ADENnChs =
ADEnCh3 <_® ADEnCh?7 >
ADEnCh4 < ®» ADEnCh3 =

Since we thoroughly planned the AES-201 custom device before we started writing code, it was
fairly straightforward to implement the device. Planning is key. The next section of the
document will cover some debugging and benchmarking techniques.

Debugging and Benchmarking

Debugging and benchmarking is a normal process of code development. There are a variety of
ways to debug and benchmark custom devices.

Custom devices are written in LabVIEW code. Therefore it's possible to develop, test and
debug in LabVIEW before running the Custom Device Template Tool. In other words, you can
use LabVIEW'’s built-in debugging technigues during development; and merge the LabVIEW
code into the custom device framework after it matures.

Since the custom device is one of many parts of the system definition, the behavior of the
LabVIEW code within the custom device framework will likely differ from the stand-alone
LabVIEW application, especially in regards to timing. As a result, you should benchmark the
custom device inside of the NI VeriStand Engine.

Once added to the system definition, custom devices have been fully integrated into NI
VeriStand’s context. As a result, LabVIEW'’s built-in debugging techniques are no longer
available. Several techniques are available for debugging and benchmarking the custom
device.

Custom Device Developer's Guide © 2010 National Instruments 62 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/lvhowto/debugging_techniques/

A subcomponent of NI VeriStand RT (& view console S
Engine is the RT Console Viewer. Flo ook

Target MachinefIP Local Port

You can install it to the execution 10.0.36.157 v s [lDisplay colors?

host using Measurement and
Automation Explorer. When
installed, the component runs a
small UDP daemon allowing the
operator to view the console from a
utility called the RT Console Viewer.
You can access the RT Console
viewer from NI VeriStand »
Workspace » Tools » Console
Viewer.

. Target: 10,0.36.157

Figure: RT Console Viewer

The Console Viewer will show the system definition and the resulting CPU usage. The viewer is
also useful for displaying debugging messages. The console viewer provides a periodic
shapshot of utilization. CPU spikes and transients will probably be unobservable. If the system
is very busy, it may not update the console viewer at all. You can use other debugging methods
for a more accurate indication of resource utilization.

As the name implies, the RT Console viewer is only available on real-time targets. The RT
Console Viewer is also available as a stand-alone add-on to LabVIEW Real-Time. See NI
Developer Zone Tutorial: Remotely View Console Output of Real-Time Targets for more
information.

Printing to the console is often all that’s needed to debug an application.

The recommended method of printing Print NIVS Debug String.vi

to the console is to use Print NIVS Color (Plain White)

Debug String VI. You can download Debug String

the VI from NI Community » NI Append EOL? (T)

VeriStand Add-Ons » Documents » Add to NIVS Log Flle? (T) = e @ror out
Print NI VeriStand Debug String. error in (no error)

This VI works on both Windows and RT execution hosts. It has an optional input to change the
color of the text. It also has an optional input to append the string to the NI VeriStand log file.

The NIVS Debug String VI is not available in NI VeriStand 2009. You'll find ni emb.d11 in
<labview>\Targets\NI\RT\vi.lib. This dll contains a stub function called
PrintStringToConsole. Calling this function sends a string to the RT console. Configure
the function to run in any thread using the C calling convention. The return type is void and it
has a C String pointer input constant. You'll find this function wrapped in a VI in the same folder

Custom Device Developer's Guide © 2010 National Instruments 63 of 85

http://zone.ni.com/devzone/cda/tut/p/id/8237
http://zone.ni.com/devzone/cda/tut/p/id/8237
http://decibel.ni.com/content/index.jspa
http://decibel.ni.com/content/groups/ni-veristand-add-ons
http://decibel.ni.com/content/groups/ni-veristand-add-ons
http://decibel.ni.com/content/groups/ni-veristand-add-ons?view=documents
http://decibel.ni.com/content/docs/DOC-14012

in rtutility.11b\RT Debug String.vi. Since ni emb.dll is a stub dll, it's not
necessary to deploy this VI to the RT target. The stub exists so the PrintStringToConsole
function does not return an error when called on Windows.

If you do not want to call Conditional Disable Structure
ni_emb.dll onaWindows OS, you [oS==PharLap b |
can use a Conditional Disable
Structure around the dil. See NI
Developer Zone Tutorial: Using the
Conditional Disable Structure for
more information.

Figure: Disable ni_emb.d11 for non-Windows
Operating Systems

You may find NI Developer Zone Example Program: Debuginfo.vi: Polymorphic VI for Showing
Debug Information on an RT System useful for printing non-string data to the console window.
You should be aware of the overhead incurred by calling this function. KnowledgeBase
3EK88SOH: Can | Use the RT Debug String In My Time-Critical Loop outlines a few caveats
and best practices for using the PrintStringToConsole function, such as using \r in a
Slash Code string constant to avoid scrolling the screen.

Distributed System Manager

You can use the NI Distributed System Manager (DSM) to monitor the CPU and memory
resources of an RT target. You must install System State Publisher on the RT target. This
component runs a small daemon that publishes the system state to DSM. See NI Distributed
System Manager for LabVIEW 2010 Help » System Manager Overview » System Manager
Overview » Monitor RT target resources for more information.

System State Publisher provides a periodic snapshot of utilization. Spikes and transients in
CPU utilization will probably not be observable. If the system is very busy, it may not update
DSM at all. You can use other debugging methods for a more accurate indication of resource
utilization.

System Channels

NI VeriStand includes dozens of system channels. System channels provide information about
what’s going on under the hood of NI VeriStand. Several of these system channels are useful in
benchmarking and debugging.

System Channel Description

HP Count The number of times the Primary Control Loop reported being late.

HP Loop Duration | The duration of the Primary Control Loop in hanoseconds.

LP Count The number of times the Data Processing Loop reported being late.

Model Count The number of times the models have not completed their execution in
time.

Custom Device Developer's Guide © 2010 National Instruments 64 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/glang/conditional_disable_structure/
http://zone.ni.com/reference/en-XX/help/371361G-01/glang/conditional_disable_structure/
http://zone.ni.com/devzone/cda/tut/p/id/9853
http://zone.ni.com/devzone/cda/tut/p/id/9853
http://zone.ni.com/devzone/cda/tut/p/id/9853
http://zone.ni.com/devzone/cda/epd/p/id/4817
http://zone.ni.com/devzone/cda/epd/p/id/4817
http://digital.ni.com/public.nsf/allkb/0ADE74764A68F76B86256F34004E59FD?OpenDocument
http://digital.ni.com/public.nsf/allkb/0ADE74764A68F76B86256F34004E59FD?OpenDocument
http://zone.ni.com/reference/en-XX/help/372572C-01/
http://zone.ni.com/reference/en-XX/help/372572C-01/
http://zone.ni.com/reference/en-XX/help/372572C-01/TOC2.htm
http://zone.ni.com/reference/en-XX/help/372572C-01/sysman/sysman_overview/
http://zone.ni.com/reference/en-XX/help/372572C-01/sysman/sysman_overview/
http://zone.ni.com/reference/en-XX/help/372572C-01/sysman/monitoring_resources/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/system_channels_table/

If the value of the count channels increase over time, the execution host is not achieving the
desired loop rates. You can use the system channels in conjunction with an alarm or procedure
to handle the event.

The NI VeriStand System Monitor is a Custom Device that tracks memory resources and CPU
usage on an RT target running the NI VeriStand Engine. Set the update rate (Hz) in System
Explorer to determine how often the custom device checks CPU and memory usage and sends
them to the corresponding channel. The NI VeriStand System Monitor can only be used on an
RT target. The custom device returns an error if you target it to a Windows system.

NI VeriStand 2010 provides built-in support for using the NI Real-Time Execution Trace Toolkit
to create trace logs for low-level debugging. The NI Execution Trace Toolkit is required to view
the log. The execution trace provides the finest grain thread and timing details of all the
debugging tools. See LabVIEW Execution Trace Toolkit Help » Viewing Trace Sessions to
learn about the information the tool provides.

The execution trace will start capturing when System Definition » Targets » Controller » System
Channels » Trace Enabled Flag becomes non-zero. When Trace Enabled Flag
becomes zero again, it finalizes the execution and stores the execution trace log file on the
targetat C:\ni-rt\NIVeriStand2010\ExecutionTraces\. If you have the Execution
Trace Log Viewer open on the execution host, the target will send the log to the viewer over
Ethernet. The following channels may be used with the execution trace.

Custom Device Developer's Guide © 2010 National Instruments 65 of 85

http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/add_alarms/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/add_procedures/
http://zone.ni.com/devzone/cda/epd/p/id/6244
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209041
http://zone.ni.com/reference/en-XX/help/370622E-01/defaultt.htm
http://zone.ni.com/reference/en-XX/help/370622E-01/TOC3t.htm
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/root_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/targets_se/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_controller/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_system_chan/
http://zone.ni.com/reference/en-XX/help/372846B-01/veristand/cp_system_chan/

Channel Name Function

Detailed Tracing | Specifies whether detailed execution tracing is enabled on the RT

Flag target. This channel corresponds to the Detailed Tracing terminal.

Thread Tracing Specifies whether thread execution tracing is enabled on the RT target.

Flag This channel corresponds to the Thread Tracing terminal.

Trace Buffer Specifies the size in bytes of the execution trace buffer on the RT

Size target. This channel corresponds to the Buffer Size terminal.

Trace Enabled Specifies whether execution tracing is currently active on the RT

Flag Target.

VI Tracing Flag Specifies whether VI execution tracing is enabled on the RT Target.
This channel corresponds to the VI Tracing terminal.

In NI VeriStand 2009, you could obtain an execution trace by using the Real-Time Trace Toolkit
Add-on.

Upon request, National Instrument may provide advanced debugging tools to help you resolve
certain custom device issues. These tools are a last resort when all other debugging options
have been exhausted. Please contact National Instruments for more information.

Custom Device Developer's Guide © 2010 National Instruments 66 of 85

http://zone.ni.com/reference/en-XX/help/370622E-01/lvtrace/tt_start_tracec/#Input0
http://zone.ni.com/reference/en-XX/help/370622E-01/lvtrace/tt_start_tracec/#Input2
http://zone.ni.com/reference/en-XX/help/370622E-01/lvtrace/tt_start_tracec/#Input1
http://zone.ni.com/reference/en-XX/help/370622E-01/lvtrace/tt_start_tracec/#Input3
http://zone.ni.com/devzone/cda/epd/p/id/6243
http://zone.ni.com/devzone/cda/epd/p/id/6243

Technique Useful For Granularity | Caveats
LabVIEW'’s Built-in Debugging N/A e Useful before the LabVIEW code has been merged into the
Debugging Tools custom device framework
e LabVIEW debugging hooks do affect timing
e Execution highlighting drastically affects VI timing
Console Viewer Debugging Low e Periodic snapshot of utilization, transients and spikes may be
Benchmarking CPU missed
e Requires the RT Console Viewer daemon
RT Debug String Debugging N/A ¢ Incurs overhead, especially when the console window requires
a redraw
Distributed System Benchmarking CPU Medium e Periodic snapshot of utilization, transients and spikes may be
Manager Benchmarking RAM missed
e Requires the System State Publisher daemon
System Channels Benchmarking timing High e Knowledge of the operator’'s System Definition is required to
make good use of the system channels for benchmarking
System Monitor Add- Benchmarking CPU High e This add-on is an asynchronous custom device. The higher
on Benchmarking RAM you configure the custom device loop rate, the more overhead
it adds.
Real-Time Execution Debugging Ultra High e Execution trace logs contain a vast amount of detailed

Tracing

Benchmarking

information. They require a good deal of domain expertise to
interpret.

Using the tool effectively requires starting and stopping the
trace directly around the period of interest.

Additional Debugging
Options

Debugging

Must request from NI
NI must approve its use
Considered a last resort only

Custom Device Developer's Guide

© 2010 National Instruments

67 of 85

Distributing the Custom Device

After you build, debug, validate, and benchmark the custom device, you'll probably want to
package it for operators and other developers to use. We'll briefly cover a manual distribution
process. As with a generic application, you may streamline distribution by building an installer.
See LabVIEW 2010 Help » Fundamentals » Building and Distributing Applications » Creating
Build Specifications » Building an Installer (Windows) for more information.

(55 AE5-201 Custom Device mExX]
'l}r

File Edit ‘Wiew Fawvorites Tools Help

GEack . > ir /.-E: Search Faolders ¥ (] x w) Elv

Address |\ C\Documents and SettingsiskarcherDeskiop\8ES-201 Custom Device Bl E G
Mame Size | Twpe Drake Modified
2Bl | File: Folder 11/1/2010 1:10 PM
| Source File Folder 1112010 1:11 PM
;‘E[_] | ‘L AES-201 Readme, pdf 119KE Adobe Acrobat Doc,., 11712010 2:15 PM
|
CRES-Z01
{ Custom |
Device.zip:

Figure: AES-201 Distribution and Folder Hierarchy

We recommend distributing the custom device by copying the necessary files into a simple
folder hierarchy. The top-level folder should contain a Readme file and two folders: Build and
Source. By copying the contents of the Build folder to NI VeriStand’s <Common
Data>\Custom Devices\, the operator can add the custom device to his system definition.

The source folder should contain the LabVIEW Project used to create the custom device and
any supporting libraries and dependencies required to build the custom device. For example,
you’ll want to ship the AES-201 custom device with the LabVIEW API and hardware dll.

Do not include the Custom Device API.Ivlib files with the distribution. You do not want to
replace the library on the operator’s machine, and you do not want to change the library
linking on your machine.

The Readme file should contain instructions for installing, licensing, using, and modifying the
custom device. It should also contain contact information if you plan to support the device, or a
disclaimer if you don’t plan to support the device. The Readme file is a good place to put any
benchmarking information you’ve obtained.

You cannot directly use an NI VeriStand 2009 custom device in NI VeriStand 2010 or vice
versa, so it's important to include version information for the custom device.

Custom Device Tips and Tricks
This section contains a hodgepodge of tips and tricks when developing custom devices.

Custom Device Developer's Guide © 2010 National Instruments 68 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC10.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC29.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC31.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/TOC31.htm
http://zone.ni.com/reference/en-XX/help/371361G-01/lvhowto/build_installer/

After a custom device has been deployed, data is exchanged via custom device channels. If
channels are insufficient or overly cumbersome, you may implement your own communication
mechanism. NI VeriStand also provides access to its own TCP pipe so you don’t have to
maintain the connection. NI VeriStand’s pipe facilitates readable text and byte array data.

In the custom device API you'll find NI VeriStand - Register Custom Device Engine Events VI.
This VI provides three dynamic events that may be registered in any VI with a reference to the
custom device.

1. Shut Down
2. Message (Byte Array)
3. Message (string)

i =y
14 Edit Events
Event case
(2] b
Ewent Specifiers
_Event SR _Event il Evenk Sources Events
<application = s S
<This Y= B | B |
| = [rvnarnic
£5huk Down=: User Event
«Message (Bvte Arrayi=: User E
<Message {3tring) = User Event
= Panes
Pane
= Controls
Device Reference
Status Motifier
hd ~
lnd] £ Ed £ >
| + Add Event ” T — | Define the new event specifier by selecting an event source and event From the lisks above,
Lock Front panel {defer processing of user actions) unkil this event case completes
[QK l [Cancel] [Help

Figure: Registering for NI VeriStand Dynamic Events

The two message events fire when some code calls NI VeriStand — Send Custom Device
Message VI.

Custom Device Developer's Guide © 2010 National Instruments 69 of 85

=} J[[17"send String Command": Walue Change -]

Send Skring Command
Send a string message ko the Custom Device, The String Data and String Command must include
only readable text. For instance, it cannot include any null characters, A timeout error is returned
if the Custom Device does not send a response in the specified amount of time,
| =ED " i

String Cammand
|IE b

String Data

@ Skring Response

pabc]

HOST]
SEHD
DEMICE
MG

Timeout ms {5000)

Figure: Sending a Message to NI VeriStand’s Dynamic Message Events

There is an example of using the dynamic event pipe in <labview>\Examples\NI
VeriStand\Custom Devices\Communication Example\Communication Example
Custom Device Project.lvproj.

For inline hardware and inline model custom devices with a large number of channels, it's more
efficient to read and write channel data using block data references. Use the following VIs to
work with block data references. Custom Device APL.Ivlib » Templates » RT Driver VIs » Inline
» Inline Driver Utilities » Channel Data References » NI VeriStand...

e Get Channel Block Data References
e Get Channel Values by Block Data Reference
e Set Channel Values by Block Data Reference

Custom Device Developer's Guide © 2010 National Instruments 70 of 85

Recall the Initialization code that
generates a list of output channel

references.
LT
] m{ fea]
e, 2 =

Ll |
I Cukpuk I N

—crew W (Y
GET &, e [
GHAH =" ﬁ /
=] 5T hd nnn]
m 4 rike
[

Channel data references |

Instead of output channel
references, obtain block references
to the output channels. Modify the
state data cluster accordingly.

I"Out:uut "I

BET &
CHAH Jor wirice ~H ;

o] ||ST

| Block data references |

Custom Device Developer's Guide © 2010 National Instruments 71 of 85

In the first version of the custom

. . Oubput Refs
device, we auto-indexed each |, [esanr |-F
channel data reference. Device Error iy

L 1y Default :.‘;.

Auto indexing channel data references 7 [2147483647

Modify the code to write the block | _ |m=F H
. . Cutput Refs AES-201

reference instead. Notice the I I e g S == Dl Rl

Device Error :_ \mgm N = Device Error

channel block data references are |

written en-mass outside the loop Fr BV Defauk TP

ra_thgr than channel-by-channel — iy 8

within the loop. —

Writing block data references —

During custom device development, strings are used for property names and GUIDs. These
strings are case-sensitive and, in the case of GUIDs, long and prone to typos. To facilitate
working with these, consider using either LabVIEW Global Variables or a type definition Combo
Box control. When using the global variable, ensure that you have set the correct default value
for the control. When using the Combo Box control, uncheck the Values match Items box on
the Edit Items tab of the Properties dialog box.

The Combo Box control does not auto-update from its type definition. Completely
populate the control before using it on the block diagram.

You may build custom error codes for your custom device by using the General Error Handler VI
or the Error Code File Editor. See LabVIEW 2010 Help: Defining Custom Error Codes in Test
Files for more information. If you use an error file, you must move the file to NI VeriStand’s
error folder. By default, this folder is located at <Program Files>\National
Instruments\VeriStand 2010\project\errors\English. You should add the error
file as a project dependency. If applicable, deploy the file to the error directory on the RT
system, located at \NI-RT\SYSTEM\errors\english for PharLap and VxWorks targets.

The NI VeriStand developers have assembled a library of useful utility VIs in <vi.1ib>\NT
Veristand\Custom Device Tools\Custom Device Utility Library\Custom
Device Utility Library.lvlib. The Vls in this library are documented in LabVIEW’s
Context Help window. Here is a list of the utility VIs.

Add Sections Recursively by Relative Path
Advanced Browsing Dialog

Get All Channels

Get Channel FIFO Buffer Index

Custom Device Developer's Guide © 2010 National Instruments 72 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/glang/global_variable/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvhowto/creating_type_defs/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvhowto/adding_strings_combo_box/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvhowto/adding_strings_combo_box/
http://zone.ni.com/reference/en-XX/help/371361G-01/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvhowto/def_custom_error_text/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvhowto/def_custom_error_text/

Get Item Ref by Relative Path

Get Multiple Dependent Node Refs
Get Next Unique Label

Get Target Ref

Highlight Node in System Explorer
Not a Ref

Ref Constants

Report Final Error Status

Search for All Items by GUID
Search for All Items by Name
Search for All ltems by Property
Search for Item by GUID

Search for Item by Name

Search for Item by Property
Search for Item

Set Multiple Dependent Node Refs

NI VeriStand — Get Channel FIFO Buffer Index VI returns the FIFO buffer index for the input or
output channel reference. Use this function for Asynchronous Custom Device channels to
determine what index to read or write in the FIFO arrays. The VI also returns which FIFO Buffer
(Input or Output) the channel will be located in. This function is only intended for Asynchronous
Custom Devices.

Consider a custom device to read an arbitrary list of DAQmx thermocouple inputs. One way to
accomplish the task would be to read all the hardware channels, cycle through the list of custom
device channels looking for the channel property, and write the associated hardware channel
value that corresponds to the custom device channel.

A superior way to accomplish the task is to sort the channel references in the order they appear
in the custom device FIFO, and configure the DAQmNXx task so the thermocouple channels are
read in the same order as they appear in the FIFO.

ﬁ?_ﬁ-‘;ﬂL_________________________znw
Channel Type _]
|

| Device Ikem Ref |

| [Ueis N [N
Channel References sorted by FIFD location |
| . %TWET :E::IITFI:; o 64 T g + E e BIST=T] E_@
errar in (no errary - fSET fut SETFIFS " arrar aut |
=i - A

+ 4
JELEl

LIST feecsucesd] IHDE;

Figure: Sorting Asynchronous Custom Device Channels by their Order in the FIFO

Custom Device Developer's Guide © 2010 National Instruments 73 of 85

@ Max Valr

@_EJ = [EH =il
=
e
™ L o A e | TOET T W |
e I T g1 o i e .
[String +] [Ui6 *| [we =] [u16 ~]|| [Double *]| [Double + Al Temp TC ~] _E

I

Figure: Adding Channels to a DAQmx Task by their Order in the Custom Device FIFO

There are several advantages of this architecture. The operator is free to add/remove/reorder
channels how he pleases, only the desired channels are configured, and writing data to the
custom device FIFO becomes naturally efficient.

|— = Dev, Outputs =
RT FIFO Write

| I
@nk 2 -

Analog 1D DBL _
MChan 15amp

Figure: Writing Multiple Hardware Channels Directly to the Custom Device FIFO

The hardware data returns from the DAQmx driver in the same order as the channel references
in the asynchronous custom device FIFO.

Triggering Within the Custom Device

There are many cases where you want to run code in the custom device when an event occurs.
By comparing the AEEnCh<1. . 8> channel values to the previous iteration, we implemented
simple value-triggering.

A useful VI for triggering is Signal Processing

) . . initialize
» Point by Point » Other Functions » Boolean)
- - - inpuk .
Crossing Point by Point. direction crossing

Figure: Boolean Crossing PtByPt VI

Custom Device Developer's Guide © 2010 National Instruments 74 of 85

http://zone.ni.com/reference/en-XX/help/371361G-01/lvanls/signal_processing_vis/
http://zone.ni.com/reference/en-XX/help/371361G-01/ptbypt/other_point_by_point_vis/
http://zone.ni.com/reference/en-XX/help/371361G-01/ptbypt/other_point_by_point_vis/
http://zone.ni.com/reference/en-XX/help/371361G-01/ptbypt/boolean_crossing_ptbypt/
http://zone.ni.com/reference/en-XX/help/371361G-01/ptbypt/boolean_crossing_ptbypt/

Recall the Write Data to HW state R —

that reads NI VeriStand Channels.
Add code to check the software

H AES-201
trigger.
Read Input Yalues from System
r

True ¥

EEEEE]|

i oo S0l b
; f——fEico o] |

ek

ek vaiae])
y

7
[¥]

|
|
ot

Check the swWTrig channel for a R

transition and handle the transition

accordingly.
BTeeszot
Read Input Yalues from System
False] || AES-201
_ g Device Error
oot Ve | g o B ; Tigger
S 8
[Beviee ver i o
o | b AE;[n’
o 4 nl
o e
5l s
i
I

This triggering VI is most useful in asynchronous custom devices that do not execute in line with
the PCL. An asynchronous device might iterate multiple times in a single iteration of the PCL,
but this triggering VI will only assert on the desired edge of the transition.

If your Custom Device requires additional pages for sections or channels, you should specify
their names in the Extra Page Names control of the Custom Device Template Tool before you
generate the LabVIEW project for the device. The tool ensures that the appropriate references
are available to the page, the necessary declarations go into the Custom Device XML file, and
the Build Specification deploys the page to the correct location.

There are two telltale signs that an extra page has not been added correctly to a custom device.
The first is the default section or channel page loads into System Explorer instead of the
expected extra page. The second is an error from System Explorer similar to Custom Device
Page Error: The following Custom Device page VI is not executable. The
VI might not be found at the correct location, or it is missing
dependencies that it requires to run. Please contact the Custom Device

vendor for more information on this problem.

In order to add a new page after the framework has been generated, you must manually
perform all the actions the tool performs.

Custom Device Developer's Guide © 2010 National Instruments 75 of 85

Perform the following operations from the LabVIEW Project Explorer.
Incorrect changes to the Custom Device's XML file can corrupt the System Definition in
NI VeriStand.

[l Ensure the device gets the appropriate device reference. The NI VeriStand API requires
the correct Node Reference input. The NI VeriStand system is responsible for passing
this reference to the page. There’s a VI Template in Custom Device
API.lvlib\Templates\Subpanel Page VI\Page Template.vit for this
purpose. Another way to ensure the new page gets the correct Node Reference is to
copy a page generated by the Custom Device Template Tool, such as the Main page.

[J Create the page section in the custom device XML file. The Custom Device's XML file
tells the System Explorer how to load the device's files.

Open the XML file from the Project Explorer window.

Locate the Pages section.

Copy the information between Main Page’s Page and /Page declarations.

Paste the section immediately below the /Page declaration that closes the Main

Page section.

5. Change the eng, loc, and Path tags for the new page.
6. Change the GUID to match the extra page’s GUID you created.
7. Save and close the XML file.

[l Modify the configuration build specification. The Custom Device Template Tool scripts
two Build Specifications that put the custom device files in the necessary format and
location for System Explorer.

1. Open the configuration’s build specification dialog box.

2. In Source Files, expand the Ivlib for your device.

3. Add the new page to the Always Included section.

4. In Source Files Settings, select the new page in the Project Files tree and
change the Destination to Custom Device <Name> Folder.

Click OK to close the build specification.

Save the LabVIEW project.

PwOnNE

o 0

You must rebuild the Configuration and Engine build specifications to deploy the changes. You
may then use the extra page as if it were generated by the Custom Device Template Tool.

The Custom Device Template Tool is open source. If you have any questions about what the
tool does, you can refer to the code as you would any other VI.

The full set of features that can be implemented with custom device XML tags are
undocumented. Refer to the XML schema file (<common data>\Custom Devices) to
discover what features may exist. Features are shown as tag names. Consider the following
example line from the Custom Device.xsd file.

<xs:element minOccurs="0" name="ActionVIOnDelete" type="Path" />

A Line from the Custom Device XML Schema File

Custom Device Developer's Guide © 2010 National Instruments 76 of 85

The name of this tag is ActionVIOnDelete. Adding this tag to the custom device XML runs a
VI when the operator deletes the item from System Explorer. While these features are
undocumented, the XML is fairly intuitive. You may find experimenting with the custom device
XML easier in an empty custom device. Assistance implementing the features may be obtained
by contacting National Instruments VeriStand technical support.

It may be helpful to explore NI VeriStand’s built-in components for examples on implementing
XML features. The built-in components are found in <application data>\System
Explorer\System Explorer Definition Files.

If a tag is opened, use the format </ tag name> to close the tag. If atag must be specified but
has no value, you may use the format <tag name /> to open and close the tag at the same
time. This format has the same effect as <tag name>tag value</tag name>.

You can add <DeleteProtection>true</DeleteProtection> to any section in the
custom device XML to disallow deleting the item from the configuration tree in System Explorer.

If it doesn’t make sense to have more than N instances of the custom device in a single
System Definition, you can limit the number of instances by adding
<MaxOccurrence>N</MaxOccurrence> t0 the custom device XML underneath the device

type.

There may be cases when you depend on a custom device item to have a certain name, and
you’d like to prevent the operator from renaming the item. Add
<DisallowRenaming>true</DisallowRenaming> below the </Name>tag for any page to
prevent the operator from renaming the item.

There are a variety of actions that can trigger a VI to run.

e OnDelete
Executes on the deletion of a node in the system definition

e OnLoad
Executes on the creation of a new node or load of an existing nod in the system
definition

e OnSystemShutdown
Executes on system explorer close or current system definition close

e OnSave
Executes on save of system definition

e OnDownload
Executes when the system definition is downloaded to the target. This VI is
called after compile is complete and binary files have been created. Writing to
memory should not be performed in this VI. The VI can be used to read from
memory and download additional files as needed

e OnPaste
Executes when a node is pasted within the system definition

e OnTargetTypeChange

Custom Device Developer's Guide © 2010 National Instruments 77 of 85

Executes on change of target type in the system definition

e OnDeleteRequest
Executes on the delete request before deletion of node in system definition

e OnCompile
Executes when the system definition is compiled during deployment. The system
definition will only be compiled during deployment if there is not a good compile
cache available on the host. This happens when the system definition file has
been moved on disk or when changes have been made.

These Vs are useful if you need to make checks or perform cleanup operations after something
happens. The template VIs for these actions are found in the Custom Device API library.

You can add right-click functionality in System Explorer to any custom device item. Underneath
the </Item2Launch> tag for any page, add the following framework.

</Item2Launch>
<RunTimeMenu>
<Menultem>
<GUID>GUID</GUID>
<Type>Type Enum</Type>
<Execution>Execution Enum</Execution>
<Position>Position Enum</Position>
<Behavior>Behavior Enum</Behavior>
<Name>
<eng>Extra Page Name</eng>
<loc>Extra Page Name</loc>
</Name>
<Item2Launch>
<Type>To Common Doc Dir</Type>
<Path>...\Configuration.llb\Extra Page Name.vi</Path>

</Item2Launch>
</Menultem>
</RunTimeMenu>
Custom Device XML Right-Click Framework
e GUID

A unique GUID for the extra page
e Type_Enum
Describes the type of right-click item
o Action (default) runs the VI silently in the background, i.e. carry out a pre-
configured task and exit
o VI runs the Vlin interactive mode displaying the front panel
e Execution_Enum
o silent runs the VI silently in the background
o modal runs the VI as a modal window
o floating runs the VI as a floating window
e Position_Enum
o centered (default) centers the window on the default monitor on launch
o mouse pointer puts the font panel origin at the mouse pointer on launch

e Behavior_Enum
o None

Custom Device Developer's Guide © 2010 National Instruments 78 of 85

o OpenFrontPanel (default)

Dynamic buttons are tied to the page and are displayed in the menu area of System Explorer.
One the page goes out of memory and a different page (with a different GUID) is loaded,
dynamic buttons disappear. Underneath the </RunTimeMenu> tag for any page, add the

following framework.

Custom Device Developer's Guide © 2010 National Instruments 79 of 85

<RunTimeMenu/>
<ButtonList>
<Button>
<ID>A unique button ID</ID>
<Glyph>
<Type>To Application Data Dir</Type>
<Path>System Explorer\Glyphs\abc.png</Path>
</Glyph>
<Type>Type Enum</Type>
<ReferencedGUID></ReferencedGUID>
<ButtonText>
<eng>Button Text</eng>
<loc>Button Text</loc>
</ButtonText>
<Caption>
<eng>Button Caption</eng>
<loc>Button Caption</loc>
</Caption>
<TipStrip>
<eng>Button Tip</eng>
<loc>Button Tip</loc>
</TipStrip>
<Documentation>
<eng></eng>
<loc></loc>
</Documentation>
</Button>
</ButtonList>

Custom Device Dynamic Button Framework

e Type Enum
o Action runs the VI silently in the background, i.e. carry out a pre-configured task

and exit

o Dialog

o Page

o Notification send a naotification to the currently loaded page and pass the unique
button ID

o Separator add a visual separator to the toolbar

In the custom device LabVIEW Project, you'll find Custom Device API.lvlib » Utility
» NI VeriStand - Enable Dynamic Button and Disable Dynamic Button.vi to
enable/disable the button based on the unique button ID.

Upgrading VeriStand 2009 Custom Devices to 2010

While custom devices are written in LabVIEW, they depend on NI VeriStand’s framework to
behave as native tasks within the engine. Changes to NI VeriStand’s framework require
changes to the LabVIEW code. Mass compiling NI VeriStand 2009 custom devices in LabVIEW
2010 does not account for these changes; it simply saves the Vls in the new version of
LabVIEW. As a result, mass compiling alone does not upgrade the custom device to NI
VeriStand 2010. The following instructions assume that you have access to the custom device
LabVIEW source project.

[1 Open the custom device source project in LabVIEW 2010
1 Mass compile the source directory
[J Update the build destinations

Custom Device Developer's Guide © 2010 National Instruments 80 of 85

Open the build specification for the configuration
Select the Destinations category in the Configuration Properties window
Highlight the custom device name in the Destinations list
If necessary, direct the Destination Path control to the correct custom device
folder for your operating system. Make sure the Destination type is still LLB
o Follow the same steps for the engine’s build specificaiton
[J Rebuild the configuration and engine source distributions
[J Add the custom device to an NI VeriStand 2010 system definition — this automatically
mutates the XML file

O O O O

The original XML file is renamed to VersO_0_0_0<Custom Device Name>.xml. The mutation is
necessary due to several changes in the XML schema definition.

One major change is the alias name of the destination folder of custom devices. The actual
source folder of custom devices has not changed (<Common Data>\Custom Devices)
whereas the alias has. In NI VeriStand 2009 this folder was called <Type>To App Data
Dir</Type>. In NI VeriStand 2010 it has been changed to <Type>To Common Doc
Dir</Type>. Due to this change, the alias of the application data directory (C: \Documents
and Settings\All Users\Application Datal\National Instruments\NI
VeriStand 2010) was changed from <Type>To App Data Dir</Type>t0o <Type>To
Application Data Dir</Type>

The folder structure has been changed, which can affect custom devices that have referenced
internal NI VeriStand glyphs in their XML file. If the custom device glyphs are incorrect after the
mutation, change the glyph'’s location alias from <To Common Doc Dir>to <To
Application Data Dir>.

NI VeriStand 2010 has introduced the knowledge of operating systems (Windows, Pharlap and
VxWorks). Existing custom device XML files get mutated to PharLapWindows.
PharLapWindows is the default if the tag is not specified in the XML. The 2010 Custom
Device Template Tool creates the tag by default. If an operator wants to run the custom device
on VxWorks, he has to modify the custom device XML file. A good start to get an idea how this
works is the Embedded Data Logger that ships with NIVS 2010.

<CustomDeviceVI>
<SourceDistribution>
<Source>
<SupportedTarget>PharlapWindows</SupportedTarget>
<Source>
<Type>To Common Doc Dir</Type>
<Path>Custom Devices\National Instruments\Embedded Data Logger\Embedded Data
Logger - Engine - Pharlap.llb\Embedded Data Logger RT Driver VI.vi</Path>
</Source>
<RealTimeSystemDestination>c:\ni-rt\NIVeriStand2010\Custom Devices\National
Instruments\Embedded Data Logger\Embedded Data Logger - Engine - PharLap.llb\Embedded
Data Logger RT Driver VI.vi</RealTimeSystemDestination>
</Source>
<Source>
<SupportedTarget>VxWorks</SupportedTarget>
<Source>
<Type>To Common Doc Dir</Type>
<Path>Custom Devices\National Instruments\Embedded Data Logger\Embedded Data
Logger - Engine - VxWorks.llb\Embedded Data Logger RT Driver VI.vi</Path>
</Source>
<RealTimeSystemDestination>c:\ni-rt\NIVeriStand2010\Custom Devices\National

Custom Device Developer's Guide © 2010 National Instruments 81 of 85

Instruments\Embedded Data Logger\Embedded Data Logger - Engine - VxWorks.llb\Embedded
Data Logger RT Driver VI.vi</RealTimeSystemDestination>
</Source>
</SourceDistribution>
</CustomDeviceVI>

Excerpt from the Embedded Data Logger XML Showing Two Separate LLBs

If the custom device’s LabVIEW source project is unavailable, the following process will update
the NI VeriStand 2009 custom device to 2010.

Open the configuration and engine LLBs and look for all custom VIs and controls
Save all custom VIs and controls to a new location

Create a new LabVIEW Project and add the custom device API library

Create a new custom device library

Add the custom files to the LabVIEW library

Recreate the source distributions for the configuration and engine LLBs

Build the new LLBs

N Y o

This goal of this process is to link the custom ViIs to the NI VeriStand 2010 VIs and controls
instead of the old resources in the LLBs.

Beyond the Template Frameworks
The Custom Device Template Tool provides a convenient starting point for most custom

devices; it reduces the opportunity for error; and it contains build specifications that deploy the
custom device to the correct location on disk. Now that you've seen the tool in action, you
should know that it's completely unnecessary. The <vi.lib>\NI VeriStand\Custom
Device API\Cutom Device API.lvlib library contains all the template Vls, type
definitions and functions needed to make a custom device.

There’s no hard requirement for an Initialization and Engine library, or any of the Vls you've
seen that are part of these libraries (Main, Initialization, RT Driver). NI VeriStand will deploy a
custom device according to any properly formatted XML file, so long as the controls and
indicators provided by the appropriate VI template(s) are maintained.

One of the best resources for ideas about custom device architecture are the devices that
already exist. You may come across the following framework.

Inline custom devices execute within the PCL. The device is guaranteed an opportunity to
publish and consume data to/from NI VeriStand in each iteration of the PCL. A major caveat of
inline devices is the potential for the device to introduce latency into the PCL. An asynchronous
custom device may synchronize its Timed Loop to the PCL, achieving a pseudo-synchronous
loop. Two caveats of pseudo-synchronous loops are they are not guaranteed to iterate once
per iteration of the PCL and they are not guaranteed to iterate deterministically with respect to
the PCL.

It may suite your needs to launch asynchronous worker thread(s) from an inline custom device.
The inline device is responsible for communicating channel data to/from NI VeriStand, and the
worker is responsible for nondeterministic operations on the channel data. RTFIFOs are best-
suited for communicating between the inline device and the worker(s). You'll find an example of

Custom Device Developer's Guide © 2010 National Instruments 82 of 85

this architecture in the Embedded Data Logger custom device that ships with NI VeriStand
2010. If you look in the Initialize case of Embedded Data Logger - Engine -
PharLap.llb\Embedded Data Logger RT Driver VI.vi, you'll see the inline device
launch an asynchronous loop.

13 Embedded Data Logger Custom Device. lvlib:Launch Asynchronous Logging Loop.vi Block Diagram g@
File Edit “ew Project Operate Tools indow Help

[[OGEEF:|
LALIHCH|
:{}I@I ©|E||I..ulla’|uj} | 13pt Application Font |+ ”:mvllfu:vl |E§3v||.s—é| |- | Q, |
1| Mo Error "t i

f MErrar]

EE
error in (no error) Mame ’”I—I':,m = = = = 34 error out
=== Elm{i)y at VL g at M n 7 =

Chrl Wal Set Run &I

—@Eﬂ NIrput Data fJsConkrol Mame Er Wait Unkil Done
[
)

Value | [} vk Dispose Ref
Lag Data FIFO Size] | |

T

Log Status FIFO

B
b
i S

E

Log Data FIFC

B

File: Logging Specs

Pa i E
“

B
Figure: Launching an Asynchronous Worker Thread from an Inline Device

A

|~

One RT FIFO is used to communicate information from the asynchronous worker to the inline
custom device in the Read Data from HW case.

["Read Data from Hw"

Fead the Asynchronous Logging Loop Status FIFO data. After
initialization it will only return data if the error value changes,

Fil= Sample Specs r‘m File Sample Specs
Bl Skat FIFO 4 Skat FIFC > =]
Error = = errar
pa[False v
HDefault =]
Mo M

4 o : :

ey == & A kR D@ g

]

Figure: Communicating from the Asynchronous Worker to the Inline Device

Custom Device Developer's Guide © 2010 National Instruments 83 of 85

Another RT FIFO is used to communicate channel values to the asynchronous worker.

13 Embedded Data Logger Custom Device. lvlib:Sample Group Data.vi:2 {clone) Block Diagram E]@
Eile Edit Wew Project Operate Tools Window Help |
[=AMPLE|
BEL
[The header infarmation For the Data FIFO Buffer is [Logaing Enabled, File Indesx Group Index]. The first bwo elements are already Filed in, iad
Mo B
Decimation 1 Decimation
Zounker Counker Group Sample Spec out
\Group Sample Spec in |IE Moo [Block Refs E lock Refs | P pEaT]
E Data FIFO aut
Data FIFC in | & k= =
E Diaka FIFO Buffer out
Data FIFO Buffer in r EERE [
=

error out

----- =)

EFFOF N (N0 ErTar) |[Sat ke
Timeaut

.................................. .
Buffer Used out

_‘

Buffer Used in

Figure: Communicating from the Inline Device to the Asynchronous Worker

This architecture works-around the caveats of the inline device and the pseudo-synchronous
device. A caveat of this architecture is the data must be consumed from the RT FIFOs at an
acceptable rate or the mechanism will overflow. In the RT logging custom device, the developer
tallies the number of “missed points” when this happens, but does not abort logging.

Custom Device Developer's Guide © 2010 National Instruments 84 of 85

Custom Device Development Job Aid
e Do you Need a Custom Device?
o Have you tried to meet specification with built-in NI VeriStand features?
o Do you need to support 3rd Party Hardware?
o Do you need an unsupported measurement or generation mode?
o Do you need to implement a feature?
* |s a custom device the best customization mechanism for the feature?
o Have you checked that a custom device doesn’t already exist
e Custom Device Risk Analysis
o Do you have the appropriate LabVIEW application development experience?
o Do you have LabVIEW Real-Time application development experience?
o Do you have an NI VeriStand operator background or understanding?
o If you need to support hardware, does an RT compatible driver exist?
o Can you test and debug on a system representative of the operator’s system?
¢ Planning
o Channels (DBL)
= Pass data from the custom device to the system
= Pass data from the system to the custom device
= Pass dynamic properties
o Properties (any data type)
= Pass configuration data from execution host to target on one time basis
= Use within the RT driver to pass around information
o Hierarchy
= Use the minimum number of sections
= Make the hierarchy well-organized, intuitive, and user friendly
o Extra Pages
= One for each channel or section that requires other than the default page
= Create a few extra just in case
o Type
= Select the type based on the timing requirements of the custom device
= Plan the type before executing the Custom Device Template Tool
= Some devices require multiple RT Driver Vls
Implement
e Debug and Benchmark
o Console Viewer
RT Debug String
System State Publisher
System Channels
System Monitor Add-on
Real-Time Execution Tracing
o “Other” debugging options from NI
e Distributing the Custom Device

O O O O O

o Source
o Build
o Readme

Custom Device Developer's Guide © 2010 National Instruments 85 of 85

