

Nokia Customer Care

Service Manual

RM-596 (Nokia N8-00; L3&4)

Mobile Terminal

Part No: (Issue 2)

COMPANY CONFIDENTIAL

NOKIA
Care

Amendment Record Sheet

Amendment No	Date	Inserted By	Comments
Issue 1	07/2010	MT	
Issue 2	08/2010	MT	A minor update has been made to section <i>Product selection</i> .

Copyright

Copyright © 2010 Nokia. All rights reserved.

Reproduction, transfer, distribution or storage of part or all of the contents in this document in any form without the prior written permission of Nokia is prohibited.

Nokia, Nokia Connecting People, and Nokia X and Y are trademarks or registered trademarks of Nokia Corporation. Other product and company names mentioned herein may be trademarks or tradenames of their respective owners.

Nokia operates a policy of continuous development. Nokia reserves the right to make changes and improvements to any of the products described in this document without prior notice.

Under no circumstances shall Nokia be responsible for any loss of data or income or any special, incidental, consequential or indirect damages howsoever caused.

The contents of this document are provided "as is". Except as required by applicable law, no warranties of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose, are made in relation to the accuracy, reliability or contents of this document. Nokia reserves the right to revise this document or withdraw it at any time without prior notice.

The availability of particular products may vary by region.

IMPORTANT

This document is intended for use by qualified service personnel only.

Warnings and cautions

Warnings

- IF THE DEVICE CAN BE INSTALLED IN A VEHICLE, CARE MUST BE TAKEN ON INSTALLATION IN VEHICLES FITTED WITH ELECTRONIC ENGINE MANAGEMENT SYSTEMS AND ANTI-SKID BRAKING SYSTEMS. UNDER CERTAIN FAULT CONDITIONS, EMITTED RF ENERGY CAN AFFECT THEIR OPERATION. IF NECESSARY, CONSULT THE VEHICLE DEALER/ MANUFACTURER TO DETERMINE THE IMMUNITY OF VEHICLE ELECTRONIC SYSTEMS TO RF ENERGY.
- THE PRODUCT MUST NOT BE OPERATED IN AREAS LIKELY TO CONTAIN POTENTIALLY EXPLOSIVE ATMOSPHERES, FOR EXAMPLE, PETROL STATIONS (SERVICE STATIONS), BLASTING AREAS ETC.
- OPERATION OF ANY RADIO TRANSMITTING EQUIPMENT, INCLUDING CELLULAR TELEPHONES, MAY INTERFERE WITH THE FUNCTIONALITY OF INADEQUATELY PROTECTED MEDICAL DEVICES. CONSULT A PHYSICIAN OR THE MANUFACTURER OF THE MEDICAL DEVICE IF YOU HAVE ANY QUESTIONS. OTHER ELECTRONIC EQUIPMENT MAY ALSO BE SUBJECT TO INTERFERENCE.
- BEFORE MAKING ANY TEST CONNECTIONS, MAKE SURE YOU HAVE SWITCHED OFF ALL EQUIPMENT.

Cautions

- Servicing and alignment must be undertaken by qualified personnel only.
- Ensure all work is carried out at an anti-static workstation and that an anti-static wrist strap is worn.
- Ensure solder, wire, or foreign matter does not enter the telephone as damage may result.
- Use only approved components as specified in the parts list.
- Ensure all components, modules, screws and insulators are correctly re-fitted after servicing and alignment.
- Ensure all cables and wires are repositioned correctly.
- Never test a mobile phone WCDMA transmitter with full Tx power, if there is no possibility to perform the measurements in a good performance RF-shielded room. Even low power WCDMA transmitters may disturb nearby WCDMA networks and cause problems to 3G cellular phone communication in a wide area.
- During testing never activate the GSM or WCDMA transmitter without a proper antenna load, otherwise GSM or WCDMA PA may be damaged.

For your safety

QUALIFIED SERVICE

Only qualified personnel may install or repair phone equipment.

ACCESSORIES AND BATTERIES

Use only approved accessories and batteries. Do not connect incompatible products.

CONNECTING TO OTHER DEVICES

When connecting to any other device, read its user's guide for detailed safety instructions. Do not connect incompatible products.

ESD protection

Nokia requires that service points have sufficient ESD protection (against static electricity) when servicing the phone.

Any product of which the covers are removed must be handled with ESD protection. The SIM card can be replaced without ESD protection if the product is otherwise ready for use.

To replace the covers ESD protection must be applied.

All electronic parts of the product are susceptible to ESD. Resistors, too, can be damaged by static electricity discharge.

All ESD sensitive parts must be packed in metallized protective bags during shipping and handling outside any ESD Protected Area (EPA).

Every repair action involving opening the product or handling the product components must be done under ESD protection.

ESD protected spare part packages MUST NOT be opened/closed out of an ESD Protected Area.

For more information and local requirements about ESD protection and ESD Protected Area, contact your local Nokia After Market Services representative.

Care and maintenance

This product is of superior design and craftsmanship and should be treated with care. The suggestions below will help you to fulfil any warranty obligations and to enjoy this product for many years.

- Keep the phone and all its parts and accessories out of the reach of small children.
- Keep the phone dry. Precipitation, humidity and all types of liquids or moisture can contain minerals that will corrode electronic circuits.
- Do not use or store the phone in dusty, dirty areas. Its moving parts can be damaged.
- Do not store the phone in hot areas. High temperatures can shorten the life of electronic devices, damage batteries, and warp or melt certain plastics.
- Do not store the phone in cold areas. When it warms up (to its normal temperature), moisture can form inside, which may damage electronic circuit boards.
- Do not drop, knock or shake the phone. Rough handling can break internal circuit boards.
- Do not use harsh chemicals, cleaning solvents, or strong detergents to clean the phone.
- Do not paint the phone. Paint can clog the moving parts and prevent proper operation.
- Use only the supplied or an approved replacement antenna. Unauthorised antennas, modifications or attachments could damage the phone and may violate regulations governing radio devices.

All of the above suggestions apply equally to the product, battery, charger or any accessory.

Company policy

Our policy is of continuous development; details of all technical modifications will be included with service bulletins.

While every endeavour has been made to ensure the accuracy of this document, some errors may exist. If any errors are found by the reader, NOKIA MOBILE PHONES Business Group should be notified in writing/e-mail.

Please state:

- Title of the Document + Issue Number/Date of publication
- Latest Amendment Number (if applicable)
- Page(s) and/or Figure(s) in error

Please send to:

NOKIA CORPORATION

Nokia Mobile Phones Business Group

Nokia Customer Care

PO Box 86

FIN-24101 SALO

Finland

E-mail: Service.Manuals@nokia.com

Battery information

Note: A new battery's full performance is achieved only after two or three complete charge and discharge cycles!

The battery can be charged and discharged hundreds of times but it will eventually wear out. When the operating time (talk-time and standby time) is noticeably shorter than normal, it is time to buy a new battery.

Use only batteries approved by the phone manufacturer and recharge the battery only with the chargers approved by the manufacturer. Unplug the charger when not in use. Do not leave the battery connected to a charger for longer than a week, since overcharging may shorten its lifetime. If left unused a fully charged battery will discharge itself over time.

Temperature extremes can affect the ability of your battery to charge.

For good operation times with Li-Ion batteries, discharge the battery from time to time by leaving the product switched on until it turns itself off (or by using the battery discharge facility of any approved accessory available for the product). Do not attempt to discharge the battery by any other means.

Use the battery only for its intended purpose.

Never use any charger or battery which is damaged.

Do not short-circuit the battery. Accidental short-circuiting can occur when a metallic object (coin, clip or pen) causes direct connection of the + and - terminals of the battery (metal strips on the battery) for example when you carry a spare battery in your pocket or purse. Short-circuiting the terminals may damage the battery or the connecting object.

Leaving the battery in hot or cold places, such as in a closed car in summer or winter conditions, will reduce the capacity and lifetime of the battery. Always try to keep the battery between 15°C and 25°C (59°F and 77°F). A phone with a hot or cold battery may temporarily not work, even when the battery is fully charged. Batteries' performance is particularly limited in temperatures well below freezing.

Do not dispose of batteries in a fire!

Dispose of batteries according to local regulations (e.g. recycling). Do not dispose as household waste.

(This page left intentionally blank.)

Nokia N8-00; L3&4 Service Manual Structure

- [1 General Information](#)
- [2 Service Tools and Service Concepts](#)
- [3 BB Troubleshooting and Manual Tuning Guide](#)
- [4 Cellular RF troubleshooting](#)
- [5 Camera Module Troubleshooting](#)
- [6 System Module](#)
- [Glossary](#)

(This page left intentionally blank.)

Nokia Customer Care

1 — General Information

(This page left intentionally blank.)

Table of Contents

Product selection	1-5
Product features and sales package	1-5
Product and module list	1-9
Mobile enhancements	1-9
Technical specifications	1-11
Transceiver general specifications	1-11
Main RF characteristics for GSM850/900/1800/1900 and WCDMA VIII/V/IV/II/I phones	1-11
Battery endurance	1-13
Environmental conditions	1-13

List of Tables

Table 1 Audio	1-9
Table 2 Car	1-10
Table 3 Data	1-10
Table 4 Messaging	1-11
Table 5 Power	1-11

List of Figures

Figure 1 View of RM-596	1-5
-------------------------------	-----

(This page left intentionally blank.)

■ Product selection

RM-596 is a GSM/WCDMA dual-mode handportable monoblock multimedia computer with a capacitive touch UI, integrated GPS (A-GPS OMA SUPL), WLAN and a TV-out connection. It supports GSM 850/900/1800/1900 and WCDMA I/II/IV/V/VIII bands, GPRS/EGPRS and WCDMA/HSDPA/HSUPA data bearers.

For WCDMA the maximum bit rate is up to 384 kbit/s for downlink and 384 kbit/s for uplink with simultaneous CS speech or CS video (max. 64 kbit/s). RM-596 supports HSDPA category 9 with downlink peak data rate up to 10.2 Mbit/s (in limited use cases), HSUPA belongs to category 5 with uplink peak data rate up to 2.0 Mbit/s (in limited use cases).

In PS/CS mode, RM-596 supports DTM with multi slot class 32 (max. 5 RX + 3 TX, sum 6). With EGPRS this means maximum download speed of up to 236.8 kbit/s simultaneously with speech. With GPRS this means maximum download speed of up to 85.6 kbit/s simultaneously with speech.

In PS only mode, RM-596 supports MSC 33 (max. 5 Rx + 4 TX, sum 6) timeslots resulting in maximum download speed of up to 296 kbit/s with EGPRS, and up to 107 kbit/s with GPRS.

RM-596 has a large AMOLED nHD 3.5" (640 x 360 pixels) colour display (active area 43.2 mm x 76.8 mm) with 16 million colors. It also has a 12 megapixel autofocus camera with Carl Zeiss optics, 2 x digital zoom and an integrated Xenon flash. The device supports two-way video calls with two integrated cameras, one on the front and one on the back.

The MMS implementation follows the OMA MMS standard release 1.3. The browser is a highly advanced Internet browser also capable of viewing operator domain XHTML Mobile Profile (MP) content. The device also supports Bluetooth 2.1 EDR standard.

RM-596 uses Symbian ^3 for Nokia devices operating system, and supports the full Web Browser for S60, which brings desktop-like Web browsing experience to mobile devices. It also supports MIDP Java 2.1, providing a good platform for compelling 3rd party applications.

Figure 1 View of RM-596

■ Product features and sales package

Imaging

Main camera:

- Sensor: 12 megapixel
- Carl Zeiss Optics: Tessar™ lens

- F number/Aperture: F2.8
- Digital zoom: 2x
- Auto focus: Two-stage capture key
- Focal length: 28 mm (35 mm equivalent)
- Focus range: 10 cm ~ infinity
- Flash: Integrated Xenon flash
- Macro focus distance: 10-50 cm
- Shutter speed: Mechanical shutter 1/1000~1/4 s

Secondary camera:

- Sensor: VGA (640 x 480 pixels)
- F number/Aperture: F2.8
- Fixed focus

Video:

- Video resolution: nHD 25 fps (720p)
- Audio recording: AAC (AMR for MMS)
- Video stabilization
- Video clip length: Max. 90 min
- Video file format: .mp4 (default), .3gp (for MMS)
- White balance: automatic, sunny, cloudy, incandescent, fluorescent
- Scene: Auto, Night
- Colour tone: normal, sepia, B&W, vivid, negative
- Zoom (digital): 3x
- Video recording indicator

Photo:

- Aspect ratio: 16:9 (9Mpix) , 4:3 (12Mpix)
- View finder: Full screen view finder
- Still image resolutions: up to 12 megapixel: 4000 x 3000
- Still image file format: JPEG/EXIF
- Auto exposure: center weighted AE
- Image orientation: automatic
- Exposure compensation: +2 ~ -2EV at 0.5 step
- White balance: automatic, sunny, cloudy, incandescent, fluorescent
- Scene: auto, sports, portrait, close-up, landscape, night, user defined
- Colour tone: normal, sepia, B&W, vivid, negative
- Zoom (digital): 2x

Edit

- On device Photo editor and Video editor (manual & automatic)

View

- 3.5" nHD (640 x 360 pixels) colour display (active area 43.2 mm x 76.8 mm), up to 16M colors, 16:9 aspect ratio

- Digital Ambient Light Sensor (ALS) – used to optimize display/key brightness and power consumption
- Slideshow from Gallery

Share

- Nokia XpressShare - share effortlessly from Gallery or after capture via Email, Bluetooth or MMS
- Direct connection to TV via cable or WLAN (UPnP)
- Video call and video sharing support. (WCDMA services)
- Online Album: Image/Video uploading from Gallery

Print

- Nokia XpressPrint – direct printing via USB (PictBridge), Bluetooth (BPP), and WLAN (UPnP), from memory card or via online printing

Store

- 16 GB internal user memory
- Nokia XpressTransfer – easy to transfer and organize photos and video between your device and a compatible PC
- Nokia Lifeblog (mobile & PC)

Music

- Digital music player: supports MP3/ AAC/ eAAC/ eAAC+/ WMA/ AMR-NB/ AMR-WB with playlists, equalizer and album art
- Synchronise music with Microsoft Windows Media Player 10 & 11
- One click CD ripping, converting and transferring music to your device using Nokia Music Manager
- Stereo FM radio (87.5-108 MHz /76-90 MHz) with Visual Radio™ support
- Bluetooth speakers
- Integrated handsfree speaker
- Nokia Music Headset (WH-701), inbox

Media

- Full-screen video playback to view downloaded, streamed or recorded video clips
- Supported video formats: MPEG-4 , H.264/AVC, H.263/3GPP, VC-1, Real Video 10, ON2 VP6, Flash video

Productivity

Context management:

- OMA DRM version 2.0
- OTA provisioning & over the air SW update (FOTA)
- Ovi Suite
- Web Browser (OSS), Java™ MIDP 2.1, XHTML browsing over TCP/IP

Messaging:

- E-mail (SMTP, IMAP4, POP3), MMS, SMS, unified editor
- IM client

Office applications:

- Viewing of email attachments – .doc, .xls, .ppt, .pdf, .zip

- Mail for Exchange

PIM:

- Contacts, calendar, to-do, notes, recorder, calculator, clock, converter

Synchronization:

- Local/Remote (using SyncML)
 - Data: Calendar, Contacts, To-do, Notes, E-mail
 - PC Applications: Microsoft Outlook (98, 2000, 2002, 2003), Outlook Express, Lotus Organizer (5.0, 6.0), Lotus Notes (5.0, 6.0)

Call management:

- Call logs, speed dial, voice dialling (with SIND) and voice commands
- Nokia Push to Talk (PoC)

Connectivity

- Integrated GPS (A-GPS OMA SUPL)
- Nokia Maps 3.0, including Friend Finder
- WLAN - IEEE802.11 g/b/n with UPnP support
- HDMI type C connector
- Micro USB interface with USB 2.0 high speed
- Bluetooth wireless technology 2.1 + EDR + A2DP
- FM transmitter
- MicroSD memory card - support up to 32 GB
- Nokia 3.5 mm AV connector
- 2.0 mm DC connector

Add-on software framework

- Symbian ^3 for Nokia devices
- Java: MIDP2.1
- C++ and Java SDKs
- Flash Lite 4.0

Additional technical specifications

- Vibrating alert
- 3GPP Rel 5/6 WCDMA , Rel 4 EGSM compliant
- Speech codecs supported: AMR, NB AMR, WB AMR, FR, EFR
- GPRS/EGPRS Class B, Multi slot class 33
- Dual Transfer Mode (DTM) class A, multi slot class 32
- WCDMA DL 384 kbit/s, UL 384 kbit/s
- HSDPA up to 10.2 Mbps, HSUPA 2 Mbps

Sales package

- Transceiver RM-596
- Charger (AC-15)
- Battery (BL-4D)

- Music headset (WH-701)
- Connectivity cable (CA-101)
- HDMI adapter (CA-157)
- Micro USB OTG to USB adapter (CA-156)
- CD-ROM
- User Guide

■ Product and module list

Module name	Type code	Notes
System/RF module PWB	3CE	
Upper flex module		
UI flex module		
Flash flex module		

■ Mobile enhancements

Table 1 Audio

Enhancement	Type
Music headset	WH-701
Nokia Wireless Stereo Gateway	AD-42W
Mini speakers	MD-8
	MD-9
Hearing aids	HDA-12
	LPS-5
Wired headsets	WH-205
	WH-502
	WH-700
	WH-701
	WH-800
	WH-900

Enhancement	Type
Bluetooth headsets	BH-103
	BH-214
	BH-215
	BH-500
	BH-501
	BH-503
	BH-504
	BH-505
	BH-606
	BH-607
	BH-702
	BH-704
	BH-804
	BH-805
	BH-900
	BH-902
	BH-904
	BH-905
Bluetooth speakers	MD-5W
	MD-7W

Table 2 Car

Enhancement	Type
Nokia Universal Mobile Holder	CR-99
Speakerphone	HF-310
	HF-510
Mobile charger	DC-9
	DC-10
	DC-11

Table 3 Data

Enhancement	Type
Connectivity cable	CA-101
	CA-101D

Enhancement	Type
Micro USB OTG to USB adapter cable	CA-156
HDMI adapter cable	CA-157
MicroSD card	MU-43, 8GB
	MU-44, 16GB
	MU-xx 32GB

Table 4 Messaging

Enhancement	Type
Other multimedia peripherals	SU-33W
Stylus	STYLUS PEN ASSY

Table 5 Power

Enhancement	Type
Battery 1200 mAh Li-ion	BL-4D
Travel charger	AC-6
	AC-8
	AC-10
	AC-15

■ Technical specifications

Transceiver general specifications

Unit	Dimensions (L x W x T) (mm)	Weight (g)	Volume (cm ³)
Transceiver with BL-4D 1200 mAh Li-ion battery pack	113.5 x 59.0 x 12.9	135	86

Main RF characteristics for GSM850/900/1800/1900 and WCDMA VIII/V/IV/II/I phones

Parameter	Unit
Cellular system	GSM850, EGSM900, GSM1800/1900, WCDMA VIII (900), WCDMA V (850), WCDMA IV (1700/2100), WCDMA II (1900) and WCDMA I (2100)

Parameter	Unit
Rx frequency band	GSM850: 869 - 894MHz
	EGSM900: 925 - 960 MHz
	GSM1800: 1805 - 1880 MHz
	GSM1900: 1930 - 1990 MHz
	WCDMA VIII (900): 925 - 960 MHz
	WCDMA V (850): 869 - 894 MHz
	WCDMA IV (1700/2100): 2110 - 2155 MHz
	WCDMA II (1900): 1930 - 1990 MHz
	WCDMA I (2100): 2110 - 2170 MHz
Tx frequency band	GSM850: 824 - 849 MHz
	EGSM900: 880 - 915 MHz
	GSM1800: 1710 - 1785 MHz
	GSM1900: 1850 - 1910 MHz
	WCDMA VIII (900): 880 - 915 MHz
	WCDMA V (850): 824 - 849 MHz
	WCDMA IV (1700/2100): 1710 - 1755 MHz
	WCDMA II (1900): 1850 - 1910 MHz
	WCDMA I (2100): 1920 - 1980 MHz
Output power	GSM850: +5 ... +33 dBm/3.2 mW ... 2 W
	GSM900: +5 ... +33 dBm/3.2 mW ... 2 W
	GSM1800: +0 ... +30 dBm/1.0 mW ... 1 W
	GSM1900: +0 ... +30 dBm/1.0 mW ... 1 W
	WCDMA VIII (900): -50 ... +24 dBm/0.01 µW ... 251 mW
	WCDMA V (850): -50 ... +24 dBm/0.01 µW ... 251 mW
	WCDMA IV (1700/2100): -50 ... +24 dBm/0.01 µW ... 251 mW
	WCDMA II (1900): -50 ... +21 dBm/0.01 µW ... 126 mW
	WCDMA I (2100): -50 ... +24 dBm/0.01 µW ... 251 mW
EDGE output power	EDGE850: +5 ... +27 dBm/3.2 mW ... 501 mW
	EDGE900: +5 ... +27 dBm/3.2 mW ... 501 mW
	EDGE1800: +0 ... +26 dBm/1.0 mW ... 398 mW
	EDGE1900: +0 ... +26 dBm/1.0 mW ... 398 mW

Parameter	Unit
Number of RF channels	GSM850: 124
	GSM900: 174
	GSM1800: 374
	GSM1900: 299
	WCDMA VIII (900): 152
	WCDMA V (850): 108
	WCDMA IV (1700/2100): 211
	WCDMA II (1900): 289
	WCDMA I (2100): 277
Channel spacing	200 kHz (WCDMA II, IV and V 100/200 kHz)
Number of Tx power levels	GSM850: 15
	GSM900: 15
	GSM1800: 16
	GSM1900: 16
	WCDMA VIII (900): 75
	WCDMA V (850): 75
	WCDMA IV (1700/2100): 75
	WCDMA II (1900): 75
	WCDMA I (2100): 75

Battery endurance

Battery	Capacity (mAh)	Talk time	Stand-by	Music playback	Video playback H.264 720p 30fps
BL-4D	1200	Up to 12 h (GSM) Up to 6 h (WCDMA)	Up to 390 h (GSM) Up to 400 h (WCDMA)	Up to 50 h	Up to 7 h

Environmental conditions

Temperature conditions

Environmental condition	Ambient temperature	Notes
Normal operation	-15°C...+55°C	Specifications fulfilled
Reduced performance	-25°C...-15°C +55°C...+70°C	Operational for shorts periods only

Environmental condition	Ambient temperature	Notes
Intermittent operation	-40°C...-15°C +70°C...+85 °C	Operation not guaranteed but an attempt to operate does not damage the phone.
No operation or storage	<-40°C...>+85°C	No storage or operation: an attempt may damage the phone.
Charging allowed	-10°C...+60°C	BTemp measurement range for charging.
Long term storage conditions	0°C...+85°C	

Humidity

Relative humidity range is 5...95%.

The HW module is not protected against water. Condensed or splashed water might cause malfunction. Any submersion of the phone will cause permanent damage. Long-term high humidity, with condensation, will cause permanent damage because of corrosion.

Vibration

The module should withstand the following vibrations:

- 5 - 10 Hz; +10dB / octave
- 10 - 50 Hz; 5.58 m² / s³ (0.0558 g²/ Hz)
- 50 - 300 Hz; - 10 dB / octave

ESD strength

Conducted discharge is 8 kV (>10 discharges) and air contact 15 kV (>10 discharges).

The standard for electrostatic discharge is IEC 61000-4-2, and this device fulfils level 4 requirements.

RoHS

This device uses RoHS compliant components and lead-free soldering process.

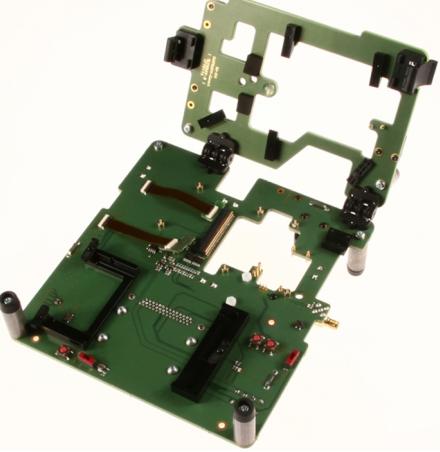
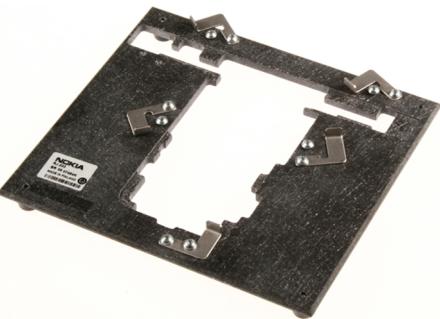
2 — Service Tools and Service Concepts

(This page left intentionally blank.)

Table of Contents

Service tools	2-5
Product specific tools	2-5
MJ-241	2-5
RJ-233	2-5
SD-60	2-6
General tools	2-6
AC-35	2-6
ACF-8	2-6
CU-4	2-7
FLS-5	2-8
FPS-21	2-8
JXS-1	2-9
PK-1	2-9
SB-6	2-9
SB-7	2-9
SRT-6	2-10
SS-182	2-10
SS-93	2-10
SX-4	2-10
Cables	2-10
CA-101	2-11
CA-158RS	2-11
CA-31D	2-11
CA-89DS	2-12
DAU-9S	2-12
PCS-1	2-12
XRS-6	2-13
Service concepts	2-13
POS (Point of Sale) flash concept	2-13
Flashing, certificate restore and product code change option 2	2-14
Module jig service concept	2-15
RF testing and BB/RF tuning concept with module jig	2-16

List of Figures



Figure 2 POS flash concept	2-13
Figure 3 Flashing, certificate restore and product code change	2-14
Figure 4 Module jig service concept	2-15
Figure 5 RF testing and BB/RF tuning concept with module jig	2-16

(This page left intentionally blank.)

■ Service tools

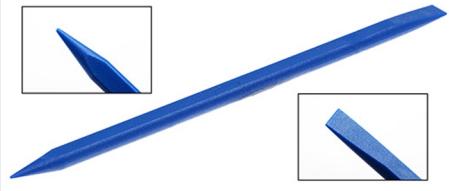
Product specific tools

The table below gives a short overview of service devices that can be used for testing, error analysis, and repair of product RM-596. For the correct use of the service devices, and the best effort of workbench setup, please refer to various concepts.

	MJ-241	Module jig																																																														
	<p>MJ-241 is meant for troubleshooting, testing, tuning and flashing on the engine level (CU-4 supported).</p> <p>The jig includes the following features:</p> <ul style="list-style-type: none"> • Provides mechanical interface with the engine module • Provides galvanic connection to all needed test pads in module • Connector for control unit • Access for AV- and USB connectors • CA-158RS cable is used together with this jig for RF testing <p>Attenuation values for galvanic RF connection MJ-241</p> <table border="1"> <thead> <tr> <th>Band</th><th>Default f/ MHz RX</th><th>Att. RX</th><th>Default f/ MHz TX</th><th>Att. TX</th></tr> </thead> <tbody> <tr> <td>GSM 850</td><td>881.6</td><td>0.1</td><td>836.6</td><td>0.1</td></tr> <tr> <td>GSM 900</td><td>942.4</td><td>0.1</td><td>897.4</td><td>0.1</td></tr> <tr> <td>GSM 1800</td><td>1842.8</td><td>0.2</td><td>1747.8</td><td>0.2</td></tr> <tr> <td>GSM 1900</td><td>1960.0</td><td>0.2</td><td>1880.0</td><td>0.2</td></tr> <tr> <td>WCDMA I</td><td>2140.0</td><td>0.2</td><td>1950.0</td><td>0.2</td></tr> <tr> <td>WCDMA II</td><td>1960.0</td><td>0.2</td><td>1880.0</td><td>0.2</td></tr> <tr> <td>WCDMA IV</td><td>2140.0</td><td>0.2</td><td>1740.0</td><td>0.2</td></tr> <tr> <td>WCDMA V</td><td>880.0</td><td>0.1</td><td>835.0</td><td>0.1</td></tr> <tr> <td>WCDMA VIII</td><td>942.6</td><td>0.1</td><td>897.6</td><td>0.1</td></tr> <tr> <td>WLAN</td><td>n / a</td><td>n / a</td><td>2442.0</td><td>0.3</td></tr> <tr> <td>FM / Tx</td><td>n / a</td><td>n / a</td><td></td><td></td></tr> </tbody> </table>					Band	Default f/ MHz RX	Att. RX	Default f/ MHz TX	Att. TX	GSM 850	881.6	0.1	836.6	0.1	GSM 900	942.4	0.1	897.4	0.1	GSM 1800	1842.8	0.2	1747.8	0.2	GSM 1900	1960.0	0.2	1880.0	0.2	WCDMA I	2140.0	0.2	1950.0	0.2	WCDMA II	1960.0	0.2	1880.0	0.2	WCDMA IV	2140.0	0.2	1740.0	0.2	WCDMA V	880.0	0.1	835.0	0.1	WCDMA VIII	942.6	0.1	897.6	0.1	WLAN	n / a	n / a	2442.0	0.3	FM / Tx	n / a	n / a	
Band	Default f/ MHz RX	Att. RX	Default f/ MHz TX	Att. TX																																																												
GSM 850	881.6	0.1	836.6	0.1																																																												
GSM 900	942.4	0.1	897.4	0.1																																																												
GSM 1800	1842.8	0.2	1747.8	0.2																																																												
GSM 1900	1960.0	0.2	1880.0	0.2																																																												
WCDMA I	2140.0	0.2	1950.0	0.2																																																												
WCDMA II	1960.0	0.2	1880.0	0.2																																																												
WCDMA IV	2140.0	0.2	1740.0	0.2																																																												
WCDMA V	880.0	0.1	835.0	0.1																																																												
WCDMA VIII	942.6	0.1	897.6	0.1																																																												
WLAN	n / a	n / a	2442.0	0.3																																																												
FM / Tx	n / a	n / a																																																														
	RJ-233	Soldering jig																																																														
	<p>RJ-233 is a soldering jig used for soldering and as a rework jig for the engine module.</p>																																																															

	SD-60	Dummy battery	
SD-60 dummy battery is meant for component level troubleshooting..			

General tools


The table below gives a short overview of service devices that can be used for testing, error analysis, and repair of product RM-596. For the correct use of the service devices, and the best effort of workbench setup, please refer to various concepts.

	AC-35	Power supply	
Universal power supply for FPS-21; included in the FPS-21 sales package.			
 ACF-8	ACF-8	Universal power supply	
The ACF-8 universal power supply is used to power FLS-5.			

<p>CU-4</p>	<p>CU-4 Control unit</p> <p>CU-4 is a general service tool used with a module jig and/or a flash adapter. It requires an external 12 V power supply.</p> <p>The unit has the following features:</p> <ul style="list-style-type: none"> • software controlled via USB • EM calibration function • Forwards FBUS/Flashbus traffic to/from terminal • Forwards USB traffic to/from terminal • software controlled BSI values • regulated VBATT voltage • 2 x USB2.0 connector (Hub) • FBUS and USB connections supported <p>When using CU-4, note the special order of connecting cables and other service equipment:</p> <p>Instructions</p> <ol style="list-style-type: none"> 1 Connect a service tool (jig, flash adapter) to CU-4. 2 Connect CU-4 to your PC with a USB cable. 3 Connect supply voltage (12 V) 4 Connect an FBUS cable (if necessary). 5 Start Phoenix service software. <p>Note: Phoenix enables CU-4 regulators via USB when it is started.</p> <p>Reconnecting the power supply requires a Phoenix restart.</p>
--	---

	FLS-5	Flash device	
	FLS-5 is a dongle and flash device incorporated into one package, developed specifically for POS use. Note: FLS-5 can be used as an alternative to PK-1.		
FPS-21 	FPS-21	Flash prommer	
	FPS-21 sales package: <ul style="list-style-type: none">• FPS-21 prommer• AC-35 power supply• CA-31D USB cable FPS-21 interfaces: <i>Front</i> <ul style="list-style-type: none">• Service cable connector Provides Flashbus, USB and VBAT connections to a mobile device.• SmartCard socket A SmartCard is needed to allow DCT-4 generation mobile device programming. <i>Rear</i> <ul style="list-style-type: none">• DC power input For connecting the external power supply (AC-35).• Two USB A type ports (USB1/USB3) Can be used, for example, for connecting external storage memory devices or mobile devices• One USB B type device connector (USB2) For connecting a PC.• Phone connector Service cable connection for connecting Flashbus/FLA.• Ethernet RJ45 type socket (LAN) For connecting the FPS-21 to LAN. <i>Inside</i> <ul style="list-style-type: none">• Four SD card memory slots For internal storage memory. <p>Note: In order to access the SD memory card slots inside FPS-21, the prommer needs to be opened by removing the front panel, rear panel and heatsink from the prommer body.</p>		

	JXS-1	RF shield box	
		<p>Because the WCDMA network disturbs the RX side testing of the WCDMA phone and the Tx signal of the WCDMA phone can severely disturb the WCDMA network, a shield box is needed in all testing, tuning and fault finding which requires WCDMA RF signal.</p>	
	PK-1	Software protection key	
	<p>PK-1 is a hardware protection key with a USB interface. It has the same functionality as the PKD-1 series dongle.</p> <p>PK-1 is meant for use with a PC that does not have a series interface. To use this USB dongle for security service functions please register the dongle in the same way as the PKD-1 series dongle.</p>		
	SB-6	Bluetooth test and interface box (sales package)	
	<p>The SB-6 test box is a generic service device used to perform Bluetooth bit error rate (BER) testing, and establishing cordless FBUS connection via Bluetooth. An ACP-8x charger is needed for BER testing and an AXS-4 cable in case of cordless interface usage testing .</p> <p>Sales package includes:</p> <ul style="list-style-type: none"> • SB-6 test box • Installation and warranty information 		
	SB-7	WLAN test box	
	<p>WLAN test requires defined position for the device.</p>		

	SRT-6	Opening tool	
	<p>SRT-6 is used to open phone covers.</p> <p>Note: The SRT-6 is included in the Nokia Standard Toolkit.</p>		
	SS-182	Camera removal tool	
	<p>The camera removal tool SS-182 is used to remove/attach a camera module from/to the camera socket of the phone PWB.</p>		
	SS-93	Opening tool	
	<p>SS-93 is used for opening JAE connectors.</p> <p>Note: The SS-93 is included in Nokia Standard Toolkit.</p>		
	SX-4	Smart card	
	<p>SX-4 is a BB5 security device used to protect critical features in tuning and testing.</p> <p>SX-4 is also needed together with FPS-21 when DCT-4 phones are flashed.</p>		

Cables

The table below gives a short overview of service devices that can be used for testing, error analysis, and repair of product RM-596. For the correct use of the service devices, and the best effort of workbench setup, please refer to various concepts.

 CA-101 100cm	CA-101	Micro USB cable	
	The CA-101 is a USB-to-microUSB data cable that allows connections between the PC and the phone.		
	CA-158RS	RF tuning cable	
	Product-specific adapter cable for RF tuning.		
	CA-31D	USB cable	
	The CA-31D USB cable is used to connect FPS-21 to a PC. It is included in the FPS-21 sales package.		

<p>CA-89DS 100cm</p>	CA-89DS	Cable	
	Provides VBAT and Flashbus connections to mobile device programming adapters.		
	DAU-9S	MBUS cable	
	The MBUS cable DAU-9S has a modular connector and is used, for example, between the PC's serial port and module jigs, flash adapters or docking station adapters.	<p>Note: Docking station adapters valid for DCT4 products.</p>	
	PCS-1	Power cable	
	The PCS-1 power cable (DC) is used with a docking station, a module jig or a control unit to supply a controlled voltage.		

	XRS-6	RF cable	
<p>The RF cable is used to connect, for example, a module repair jig to the RF measurement equipment.</p> <p>SMA to N-Connector approximately 610 mm.</p> <p>Attenuation for:</p> <ul style="list-style-type: none"> • GSM850/900: 0.3+-0.1 dB • GSM1800/1900: 0.5+-0.1 dB • WCDMA/WLAN: 0.6+-0.1dB 			

■ Service concepts

POS (Point of Sale) flash concept

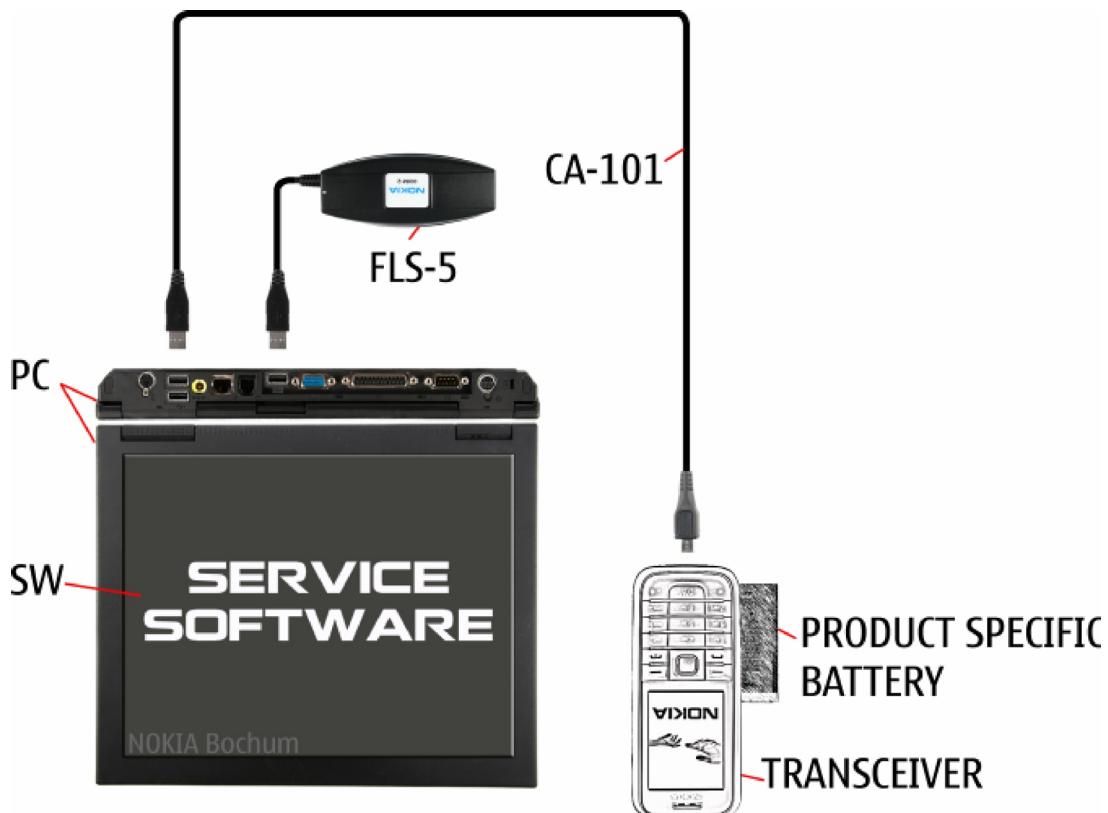
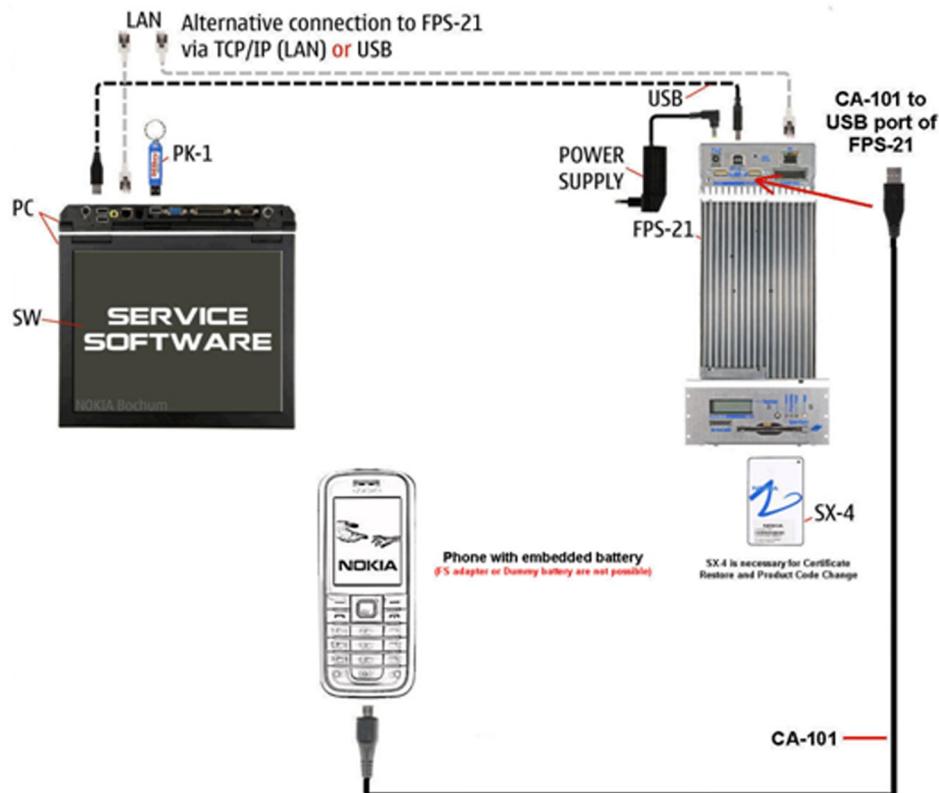



Figure 2 POS flash concept

Type	Description	
Product specific tools		
BL-4D	Battery	
Other tools		
FLS-5	POS flash dongle	
	PC with service software	

Type	Description
Cables	
CA-101	Micro USB cable

Flashing, certificate restore and product code change option 2
BB5 USB only - Extended EB flash concept L3 - Option 2

Figure 3 Flashing, certificate restore and product code change

Type	Description
Product specific devices	
BL-4D	Battery
Other devices	
FPS-21	Flash prommer box
AC-35	Power supply
PK-1	SW security device
SX-4	Smart card
	PC with service software
Cables	
CA-101	Micro USB cable

Type	Description
	USB cable

Module jig service concept

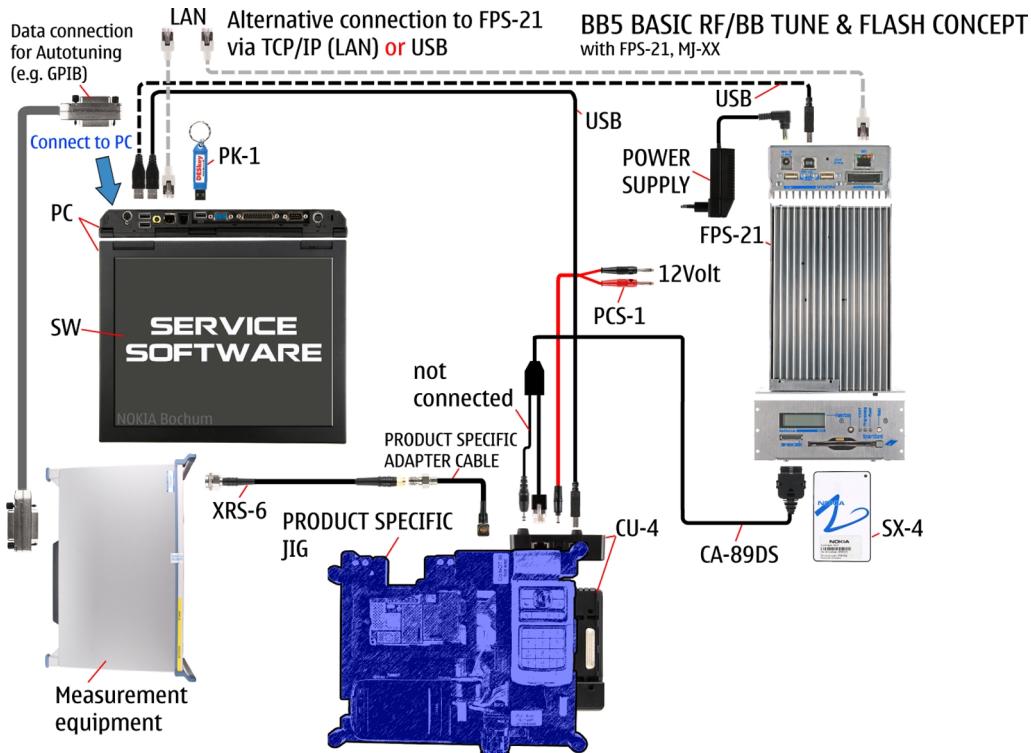


Figure 4 Module jig service concept

Type	Description
Phone specific devices	
MJ-241	Module jig
Other devices	
CU-4	Control unit
FPS-21	Flash prommer box
PK-1	SW security device
SX-4	Smart card
	PC with VPOS and service software
	Measurement equipment
Cables	
CA-89DS	Service cable
PCS-1	DC power cable
XRS-6	RF cable
	USB cable

Type	Description
	GPIB control cable
CA-158RS	Product specific RF adapter cable

RF testing and BB/RF tuning concept with module jig

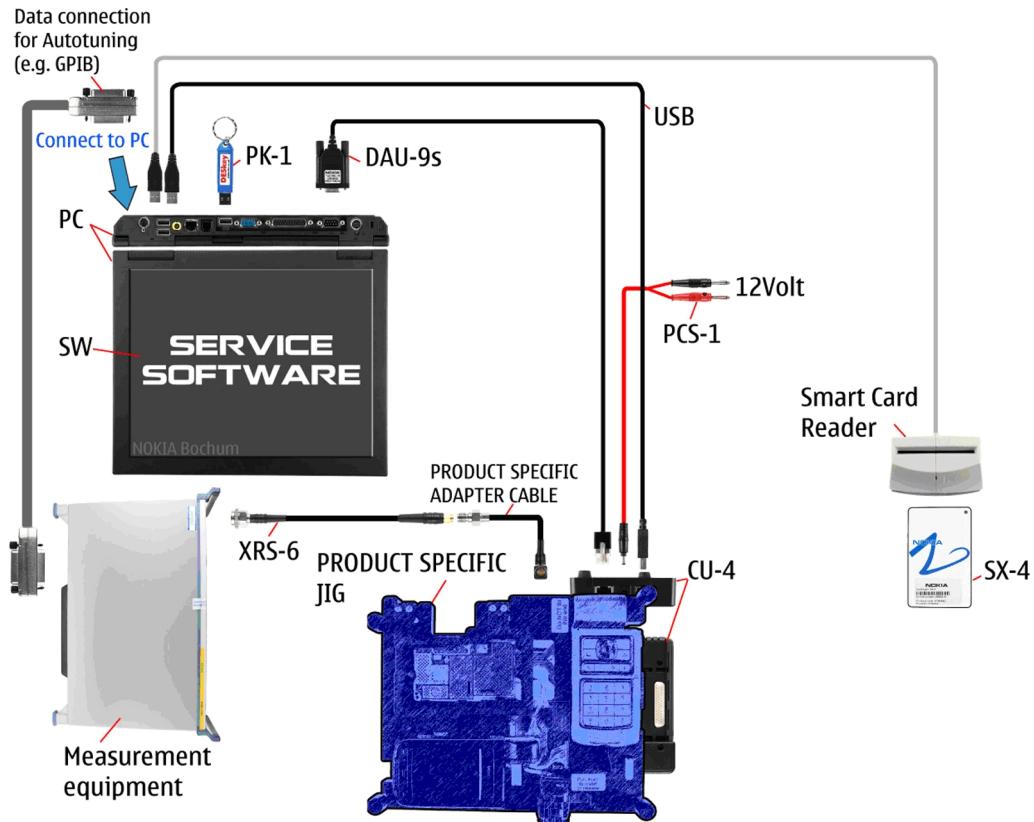


Figure 5 RF testing and BB/RF tuning concept with module jig

Type	Description
Product specific tools	
MJ-241	Module jig
Other tools	
CU-4	Control unit
PK-1	SW security device
SX-4	Smart card
	PC with service software
	Smart card reader
Cables	
DAU-9S	MBUS cable
PCS-1	Power cable
XRS-6	RF cable

Type	Description
	USB cable
CA-158RS	Product specific RF adapter cable

(This page left intentionally blank.)

3 — BB Troubleshooting and Manual Tuning Guide

(This page left intentionally blank.)

Table of Contents

Baseband main troubleshooting	3-7
Power and charging troubleshooting	3-10
Backup battery troubleshooting	3-10
Battery current measuring fault troubleshooting	3-11
General power checking troubleshooting	3-12
Dead or jammed device troubleshooting	3-13
Dynamo charging troubleshooting	3-14
Clocking troubleshooting	3-15
USB charging troubleshooting	3-17
Interface troubleshooting	3-18
USB flashing fault troubleshooting	3-18
USB data interface troubleshooting	3-19
SIM card troubleshooting	3-19
Memory troubleshooting	3-23
MicroSD card troubleshooting	3-23
External memory eMMC troubleshooting	3-23
NOR troubleshooting	3-25
SDRAM troubleshooting	3-26
IVE troubleshooting	3-27
Introduction to IVE troubleshooting	3-27
IVE troubleshooting	3-28
TV out troubleshooting	3-29
Introduction to HDTV and SDTV troubleshooting	3-29
HDTV out troubleshooting	3-31
SDTV out troubleshooting	3-31
Display module troubleshooting	3-34
General instructions for display troubleshooting	3-34
Introduction to display troubleshooting	3-35
Display fault troubleshooting	3-37
Touch panel troubleshooting	3-37
Illumination troubleshooting	3-39
Charging illumination troubleshooting	3-39
Menu key backlight troubleshooting	3-40
Keyboard troubleshooting	3-41
Keys troubleshooting	3-41
Power key troubleshooting	3-41
Sensors troubleshooting	3-43
Accelerometer troubleshooting	3-43
Magnetometer troubleshooting	3-44
Proximity sensor troubleshooting	3-46
ALS technical description and troubleshooting	3-46
Ambient Light Sensor (ALS)	3-46
ALS functionality check	3-47
Re-tuning ALS	3-48
ALS troubleshooting	3-49
Audio troubleshooting	3-50
Audio troubleshooting test instructions	3-50
External earpiece troubleshooting	3-52
External microphone troubleshooting	3-52
Internal earpiece troubleshooting	3-54

Internal handsfree (IHF) troubleshooting.....	3-55
Internal microphone troubleshooting.....	3-56
Vibra troubleshooting.....	3-57
Connectivity module troubleshooting	3-57
Introduction to connectivity module troubleshooting	3-57
Bluetooth/FM radio and WLAN troubleshooting	3-59
Introduction to Bluetooth/FM radio troubleshooting	3-59
Introduction to WLAN troubleshooting	3-62
Bluetooth and FM radio self tests in Phoenix.....	3-63
WLAN self test in Phoenix.....	3-64
Bluetooth BER test in Phoenix	3-64
FMRX radio receiver testing.....	3-65
FMTX transmitter antenna connectivity test in Phoenix	3-66
FMTX transmitter tuning and power measurement in Testing and Tuning Tool.....	3-67
WLAN TX and RX testing in Phoenix	3-70
WLAN TX BiP testing procedure in Phoenix	3-71
WLAN TX BiP testing procedure in Testing and Tuning Tool	3-72
Bluetooth troubleshooting	3-75
FMRX receiver troubleshooting	3-76
FMTX transmitter troubleshooting	3-77
WLAN troubleshooting	3-78
GPS troubleshooting	3-78
Introduction to GPS troubleshooting	3-78
GPS settings for Phoenix.....	3-80
Quick Test window	3-80
GPS control	3-80
GPS failure troubleshooting	3-81
GPS basic checks troubleshooting	3-82
Baseband manual tuning guide	3-84
Certificate restoring for BB5 products.....	3-84
Energy management calibration	3-89

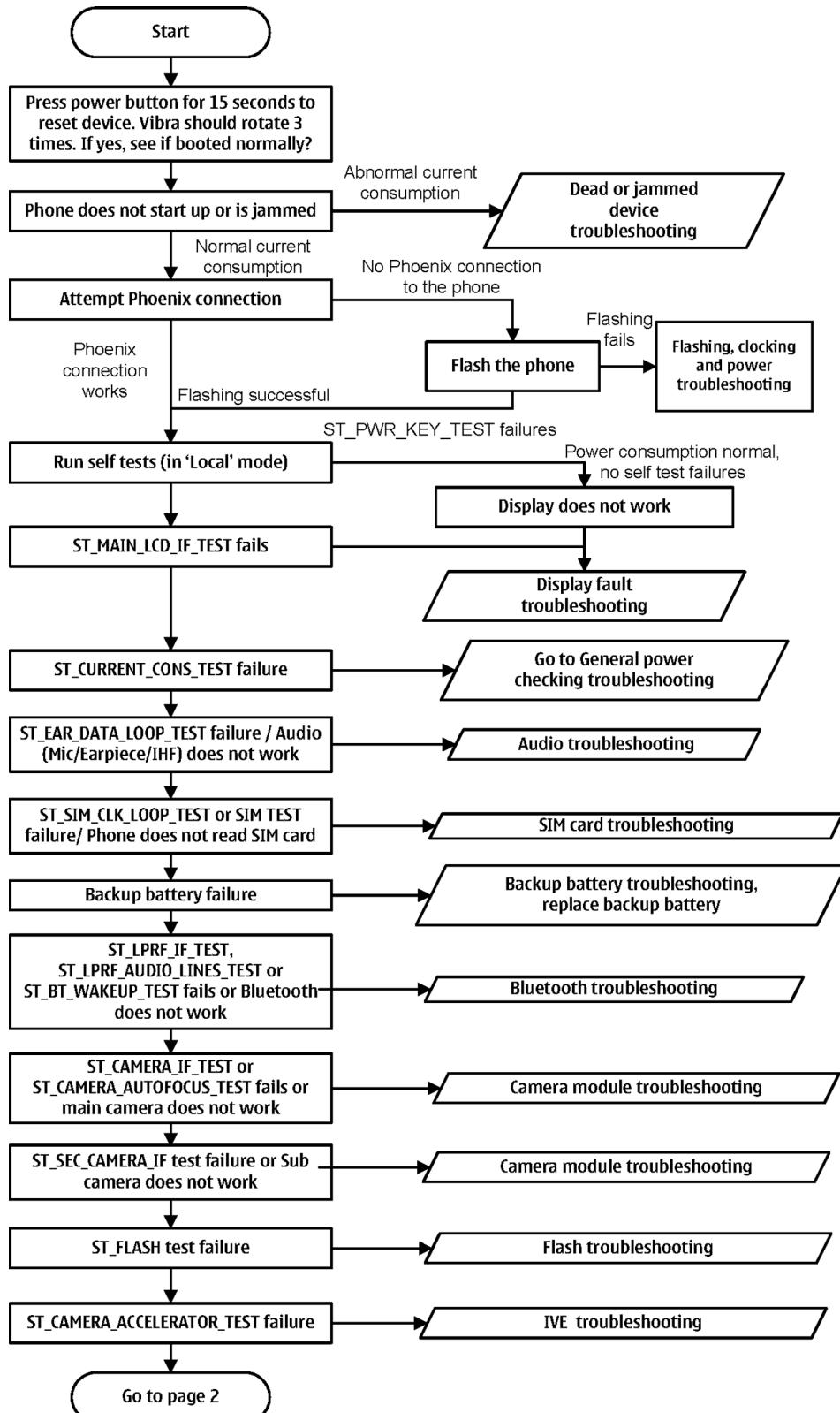
List of Tables

Table 6 Display module troubleshooting cases.....	3-34
Table 7 Pixel defects	3-35
Table 8 Defects table.....	3-35
Table 9 Antenna tuning value limits for RM-596	3-67
Table 10 Calibration value limits	3-89

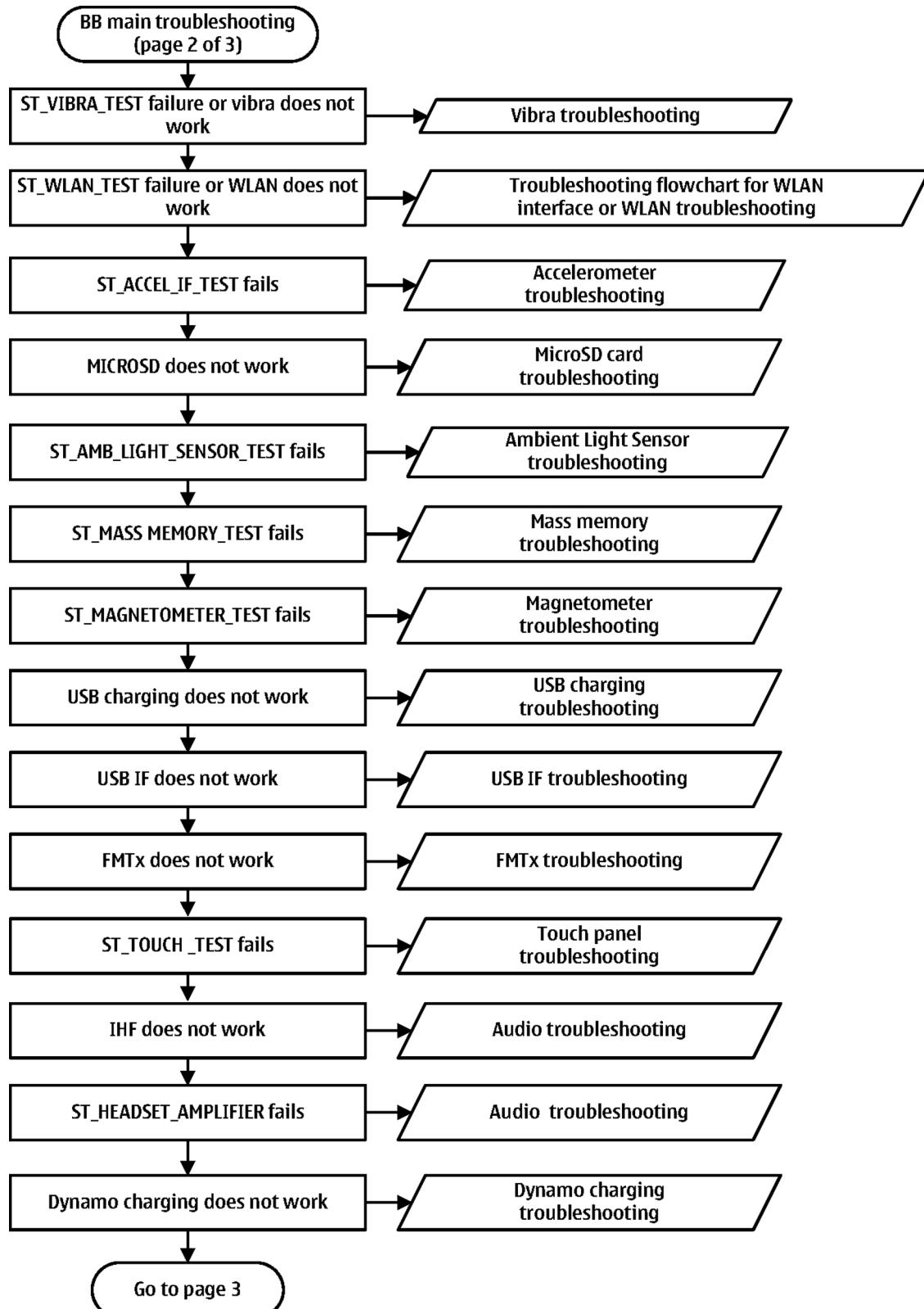
List of Figures

Figure 6 BufSleepClk and SleepClk signals on R2808 pads. The resistor is not assembled.....	3-16
Figure 7 Expected Crystal clock input to BCM2727B on Oscilloscope	3-28
Figure 8 Expected SDTV CVBS PAL signal on Oscilloscope	3-33
Figure 9 Expected SDTV CVBS NTSC signal on Oscilloscope	3-34
Figure 10 Ambient Light Sensor	3-47
Figure 11 Hardware connections between BB and BOB1.0M-b	3-58
Figure 12 Bluetooth/WLAN/GPS antenna.....	3-58
Figure 13 Connectivity module's component layout, bottom side	3-59
Figure 14 Connectivity module's component layout, top side	3-59
Figure 15 Bluetooth and FM radio self tests in Phoenix.....	3-64

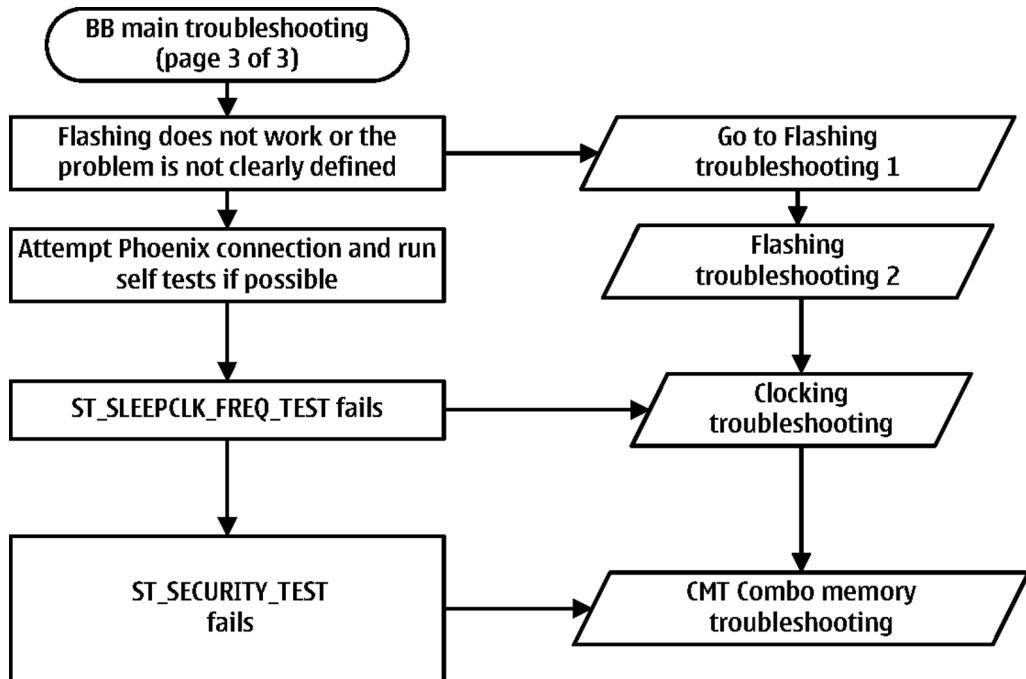
Figure 16 Bluetooth BER test in Phoenix	3-65
Figure 17 FMTX transmitter antenna connectivity test in Phoenix	3-66
Figure 18 Component layout, bottom side	3-79
Figure 19 GPS layout and basic test points	3-79
Figure 20 GPS Quick Test window	3-80
Figure 21 GPS Control dialogue box	3-81


(This page left intentionally blank.)

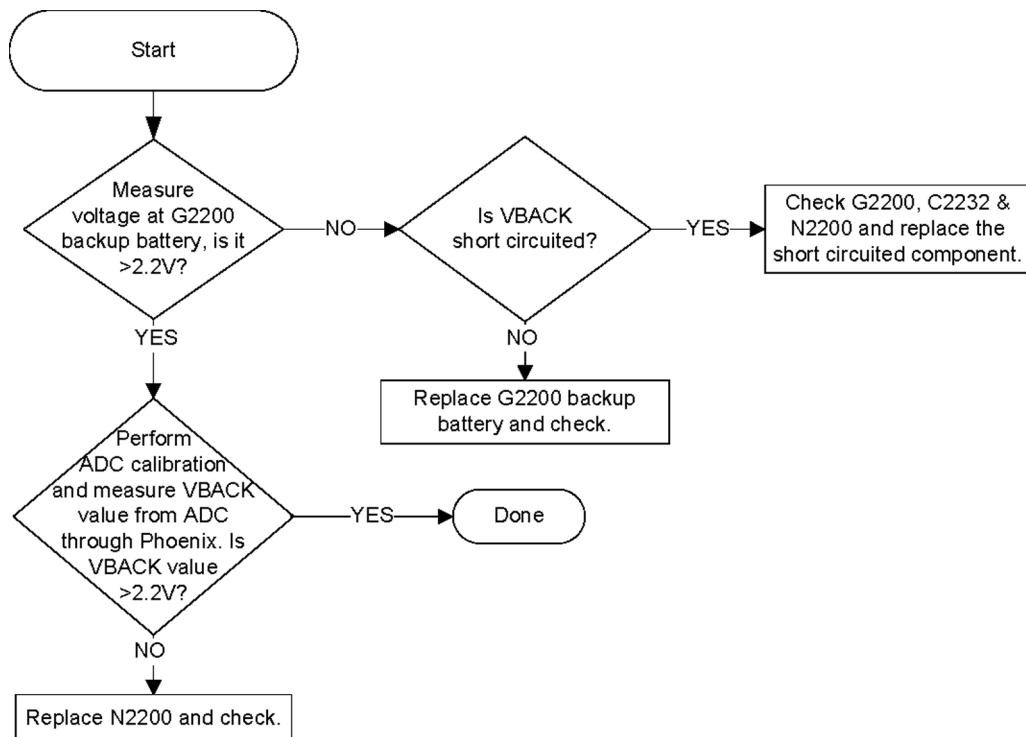
■ **Baseband main troubleshooting**


Context

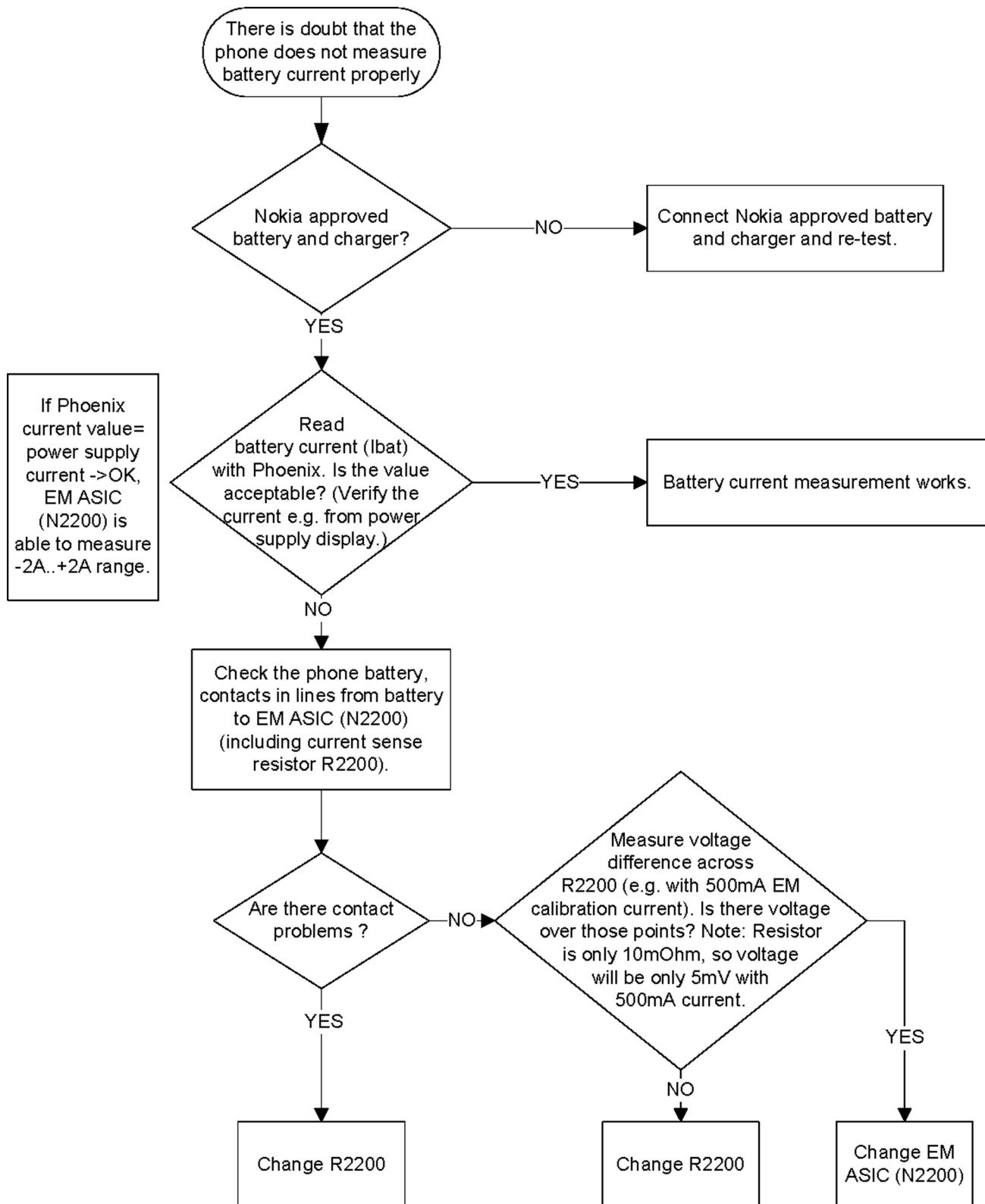
Always start the troubleshooting procedure by running the Phoenix self tests. If a test fails, please follow the diagrams below. If the phone is dead and you cannot perform the self tests, go to *Dead or jammed device troubleshooting*.


Troubleshooting flow - Page 1 of 3

Troubleshooting flow - Page 2 of 3


Troubleshooting flow - Page 3 of 3

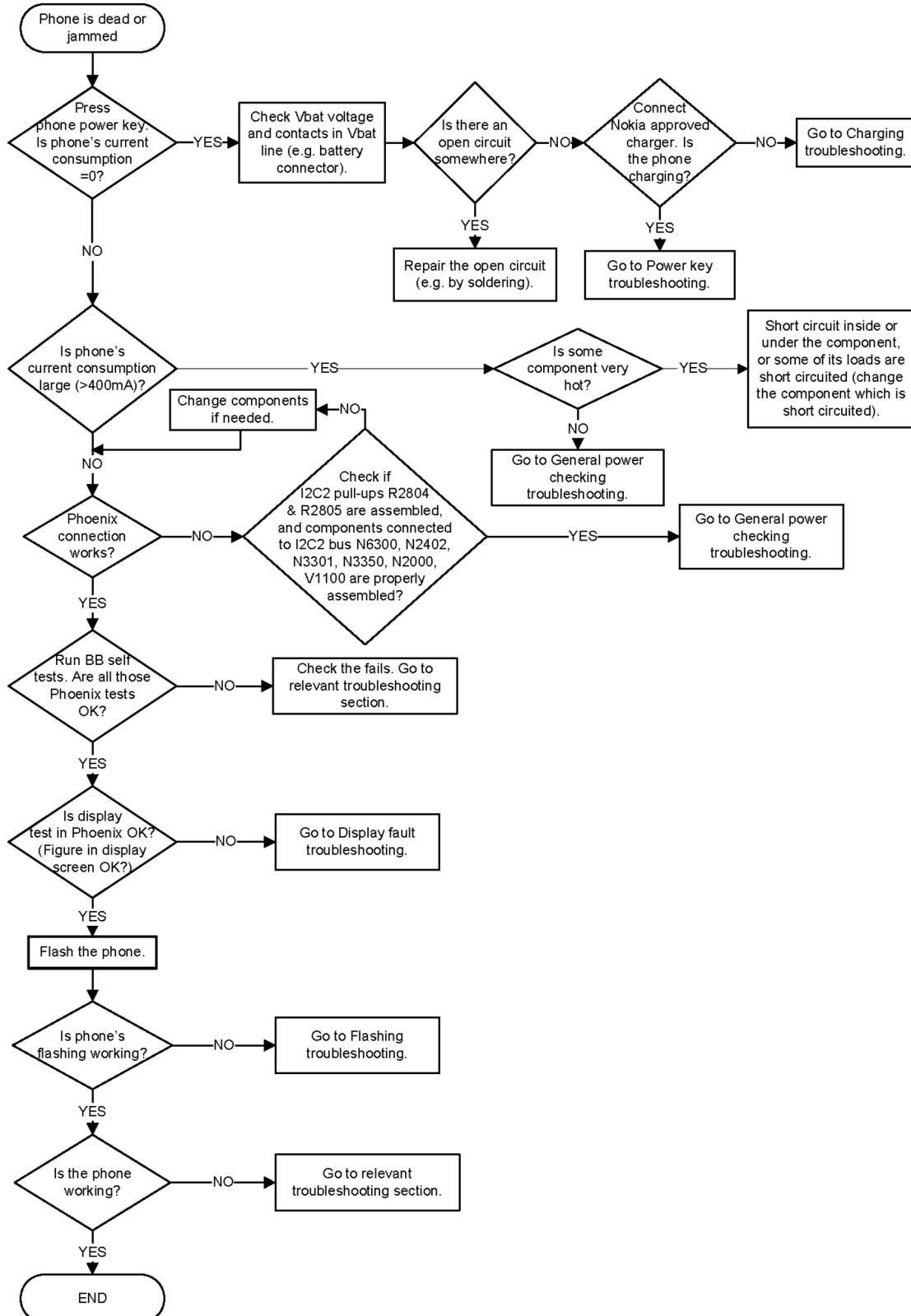
■ Power and charging troubleshooting


Backup battery troubleshooting

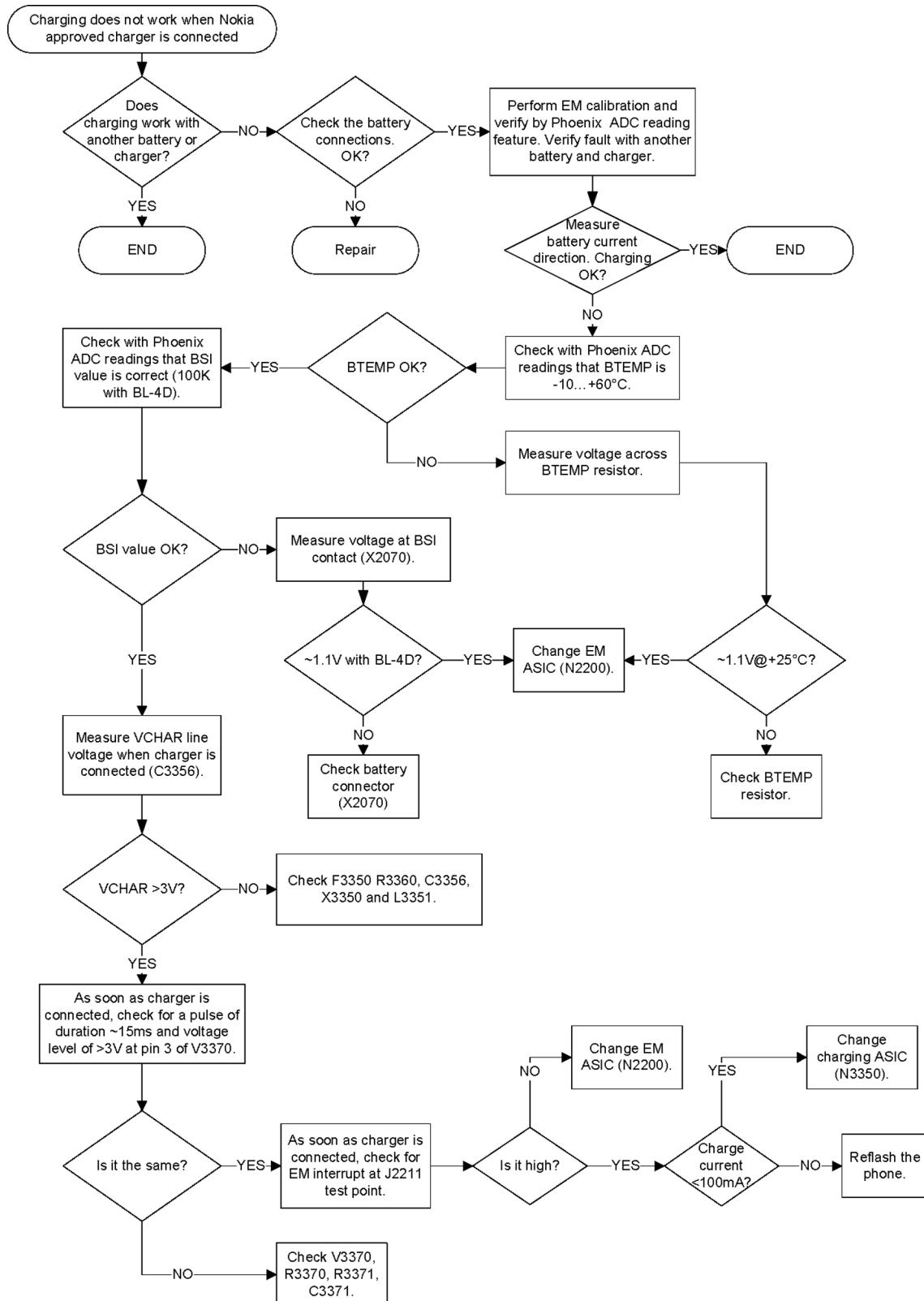
Troubleshooting flow


Battery current measuring fault troubleshooting

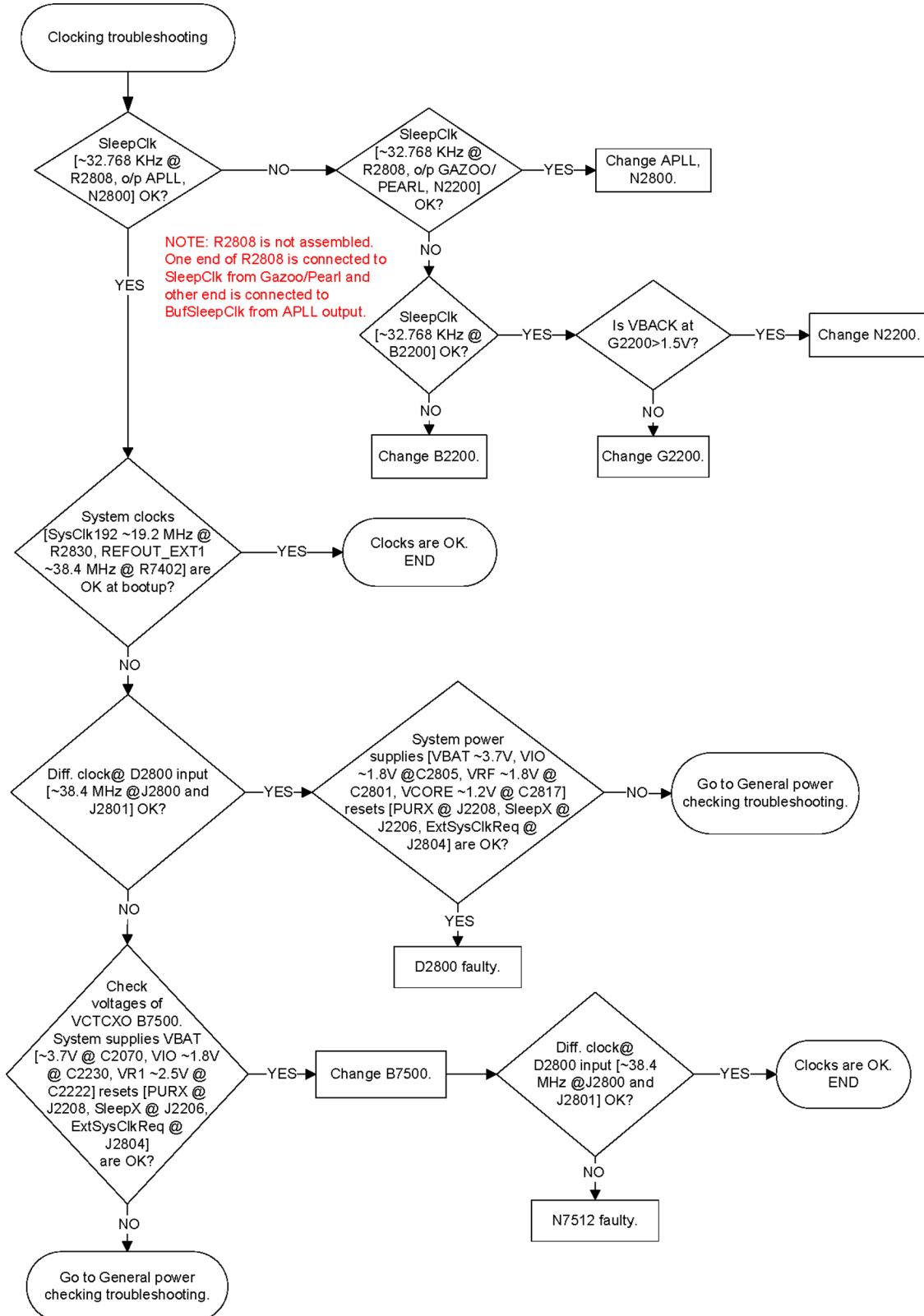
Troubleshooting flow


General power checking troubleshooting

Troubleshooting flow


Dead or jammed device troubleshooting

Troubleshooting flow


Dynamo charging troubleshooting

Troubleshooting flow

Clocking troubleshooting

Troubleshooting flow

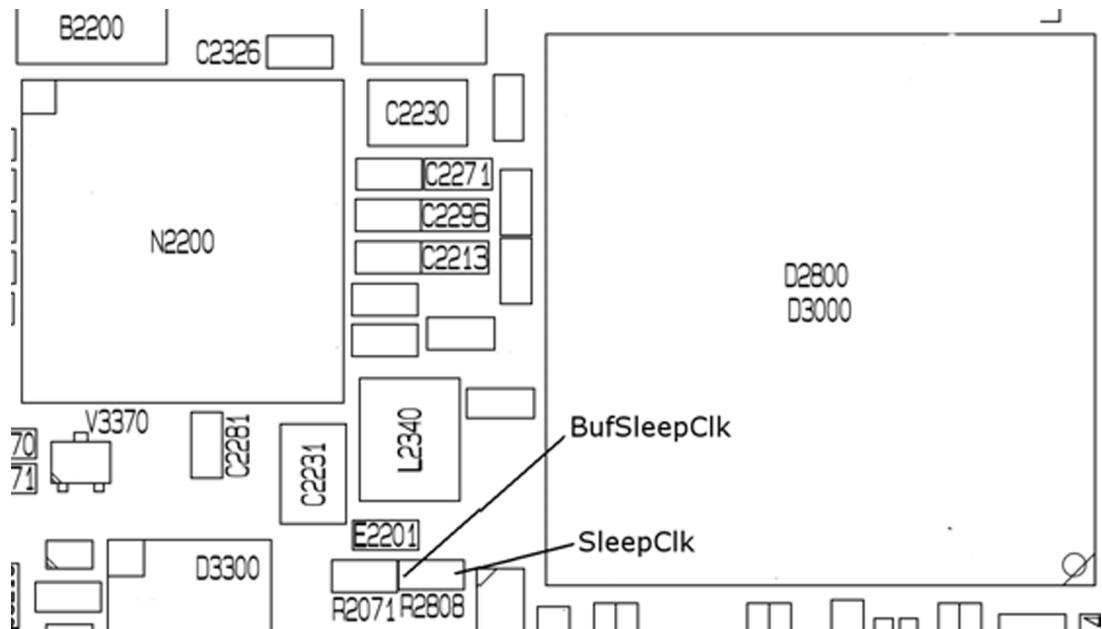
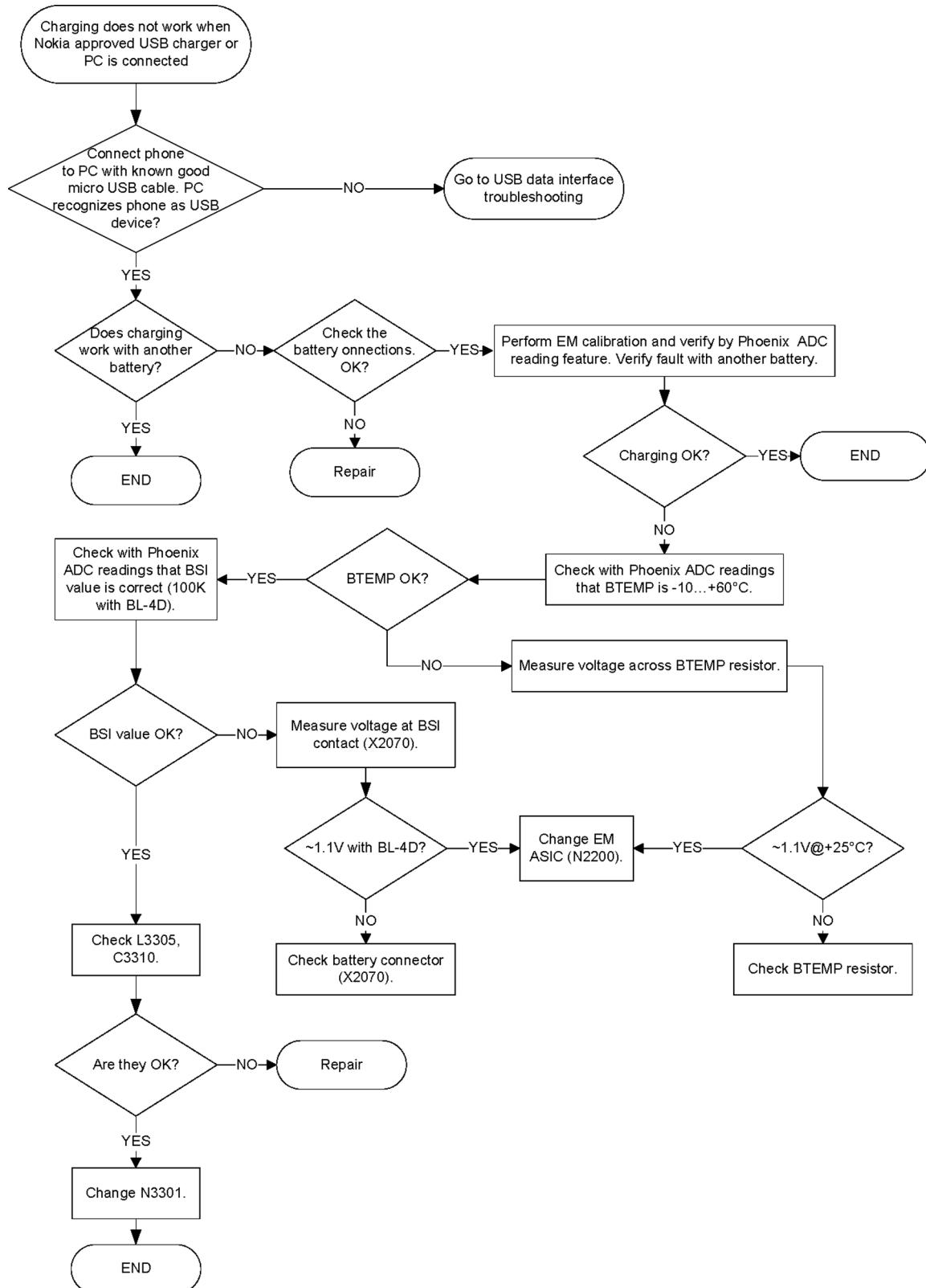
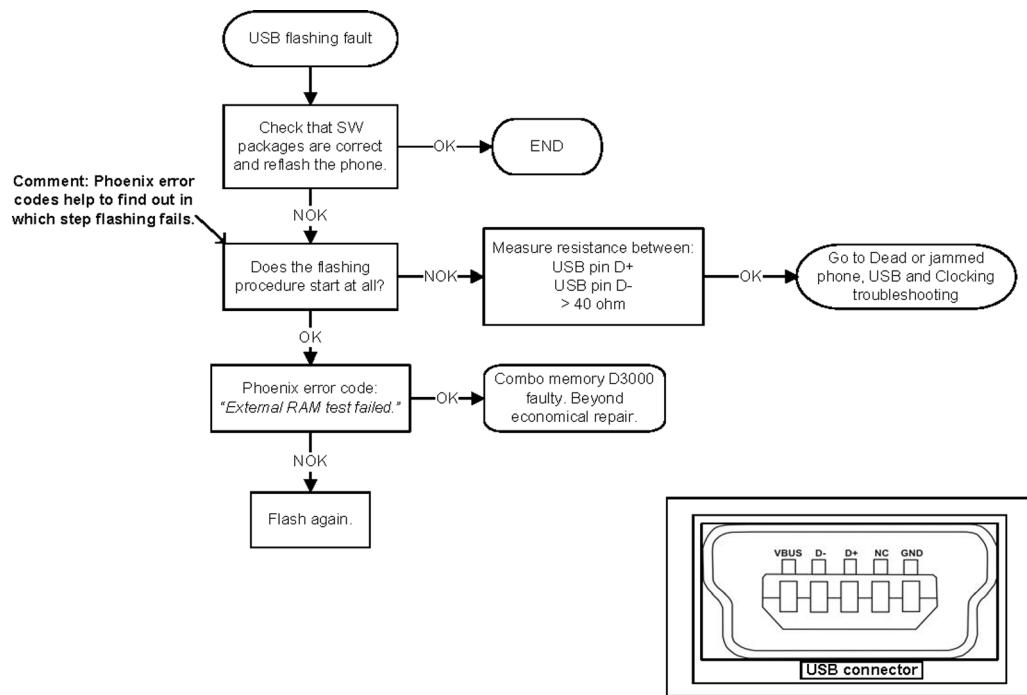
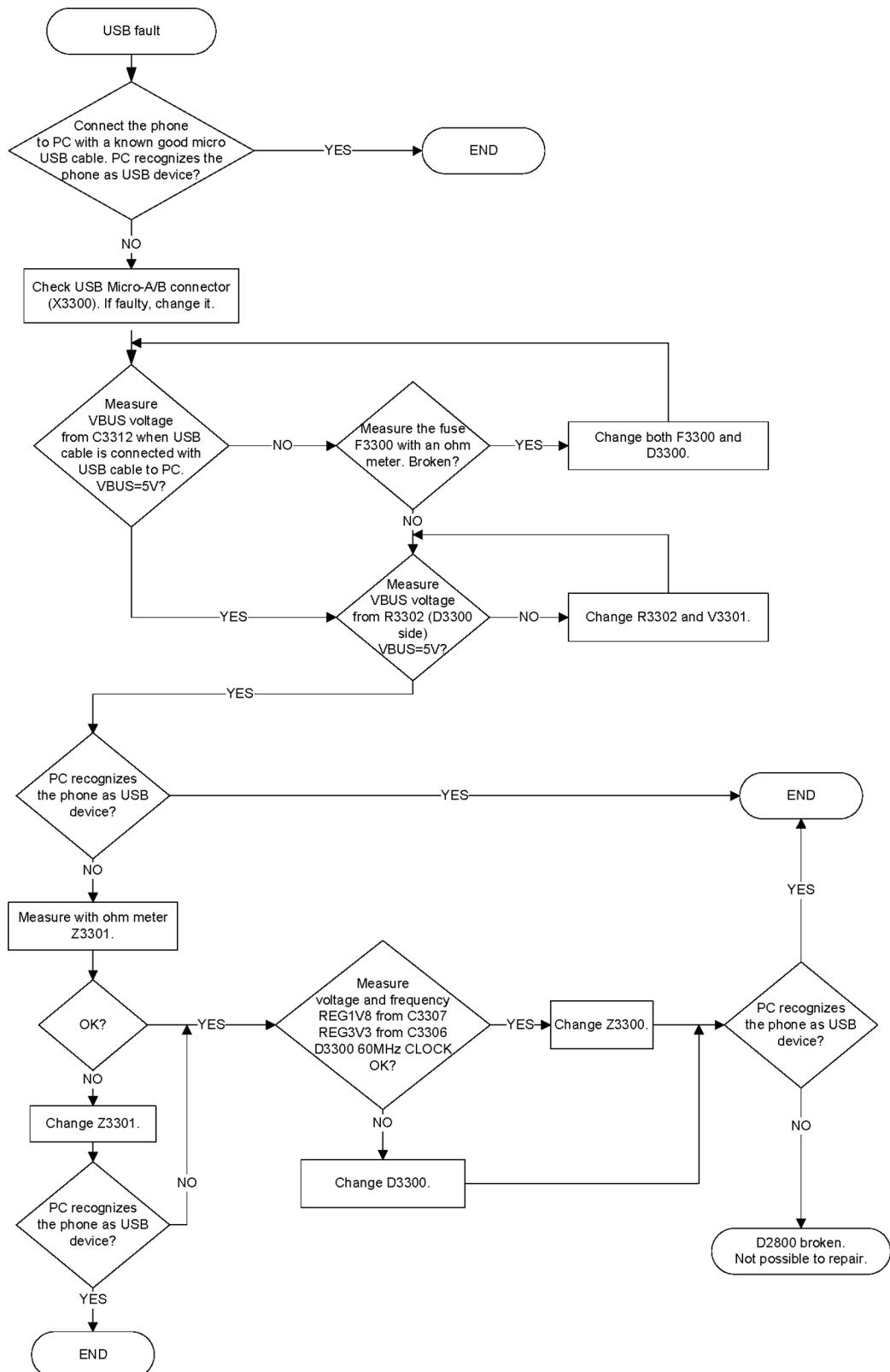



Figure 6 BufSleepClk and SleepClk signals on R2808 pads. The resistor is not assembled.

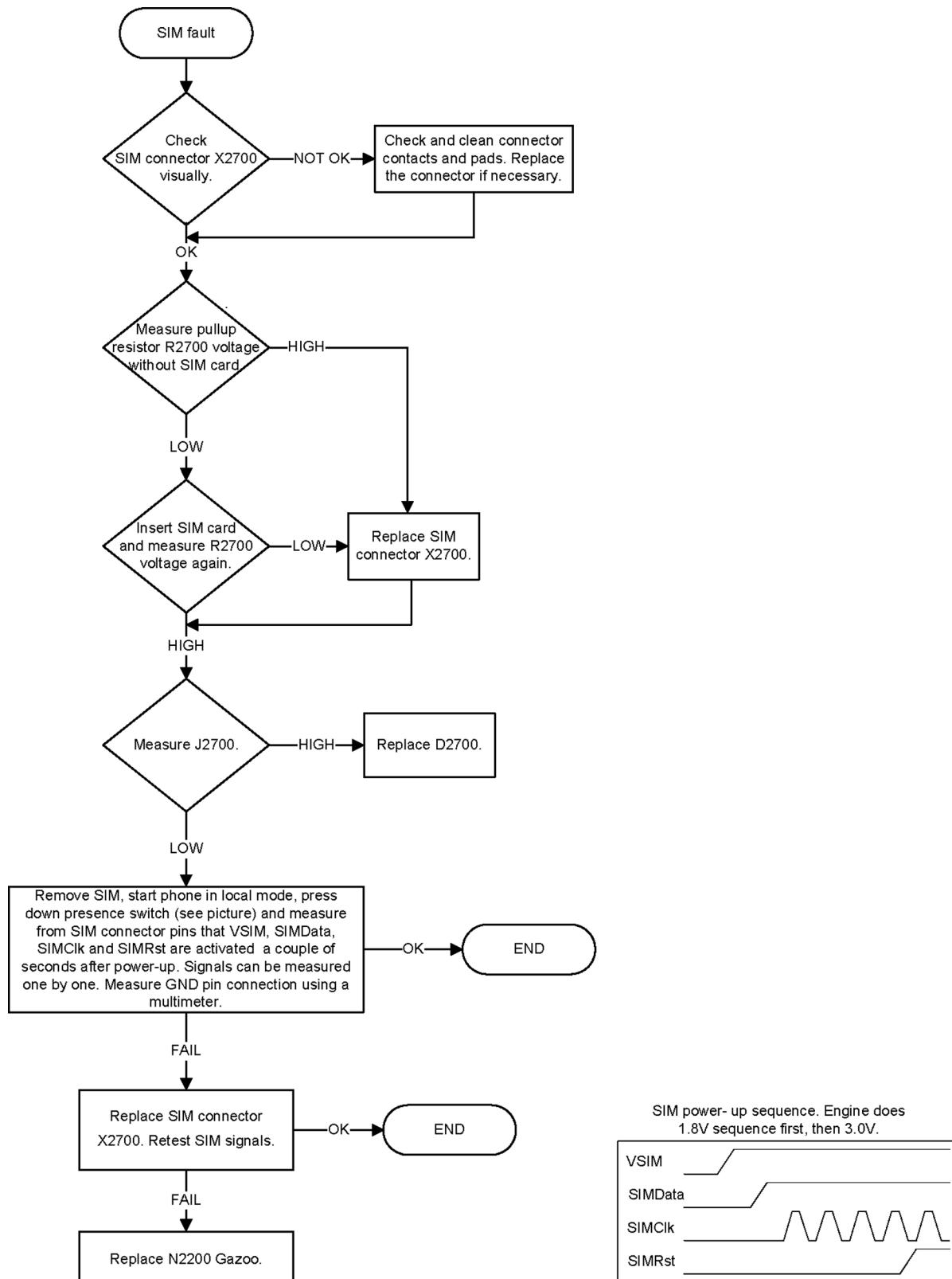
USB charging troubleshooting


Troubleshooting flow

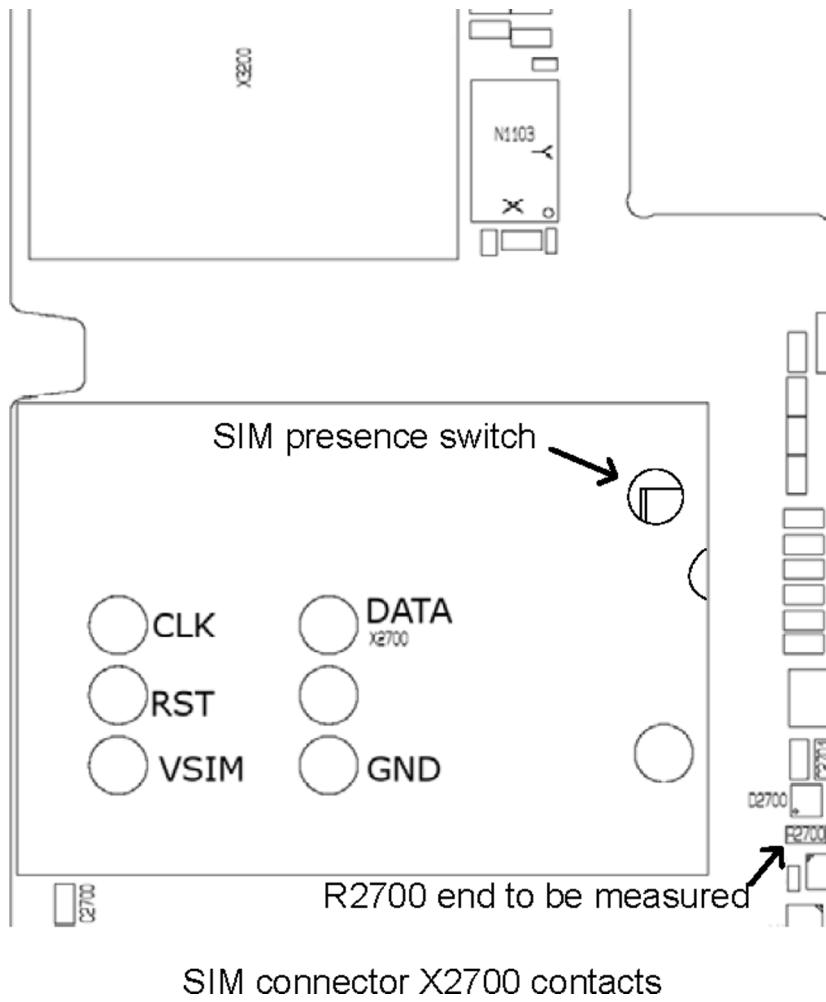
■ Interface troubleshooting


USB flashing fault troubleshooting

Troubleshooting flow

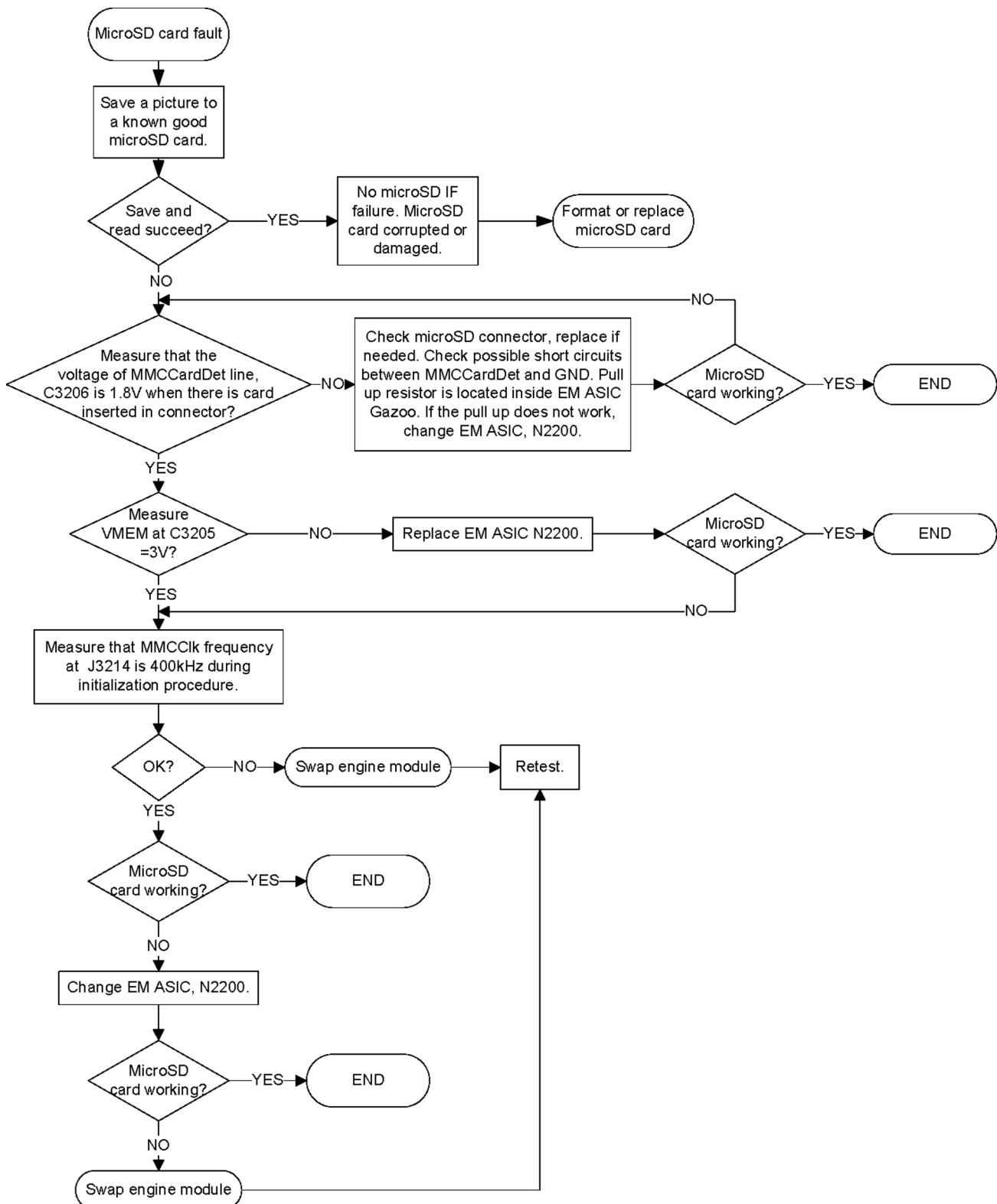

USB data interface troubleshooting

Troubleshooting flow


SIM card troubleshooting

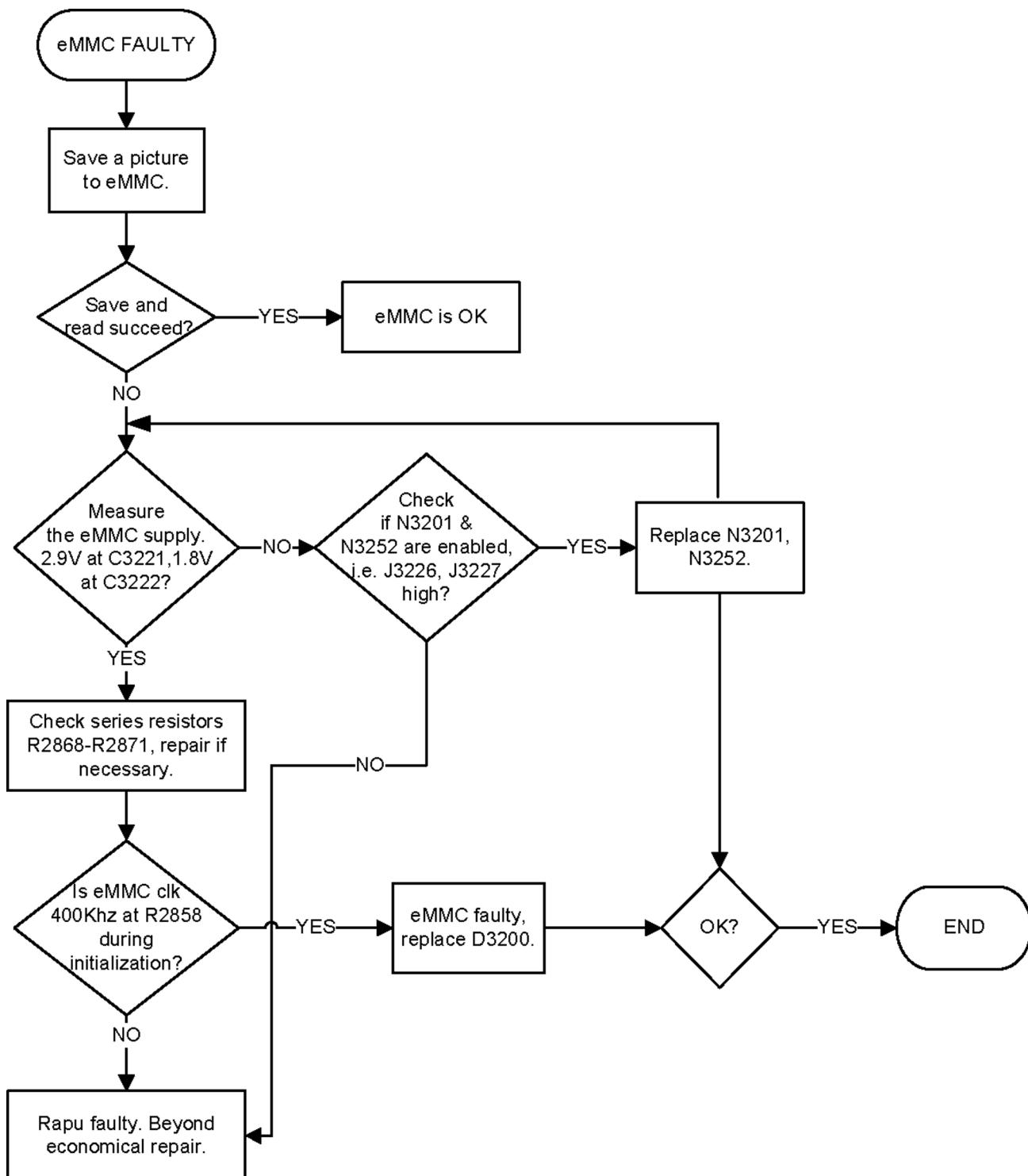
Troubleshooting flow

SIM power-on sequence on X2700. Sequence is first done at 1.8V and then changed to 3.0V.



SIM connector X2700 contacts

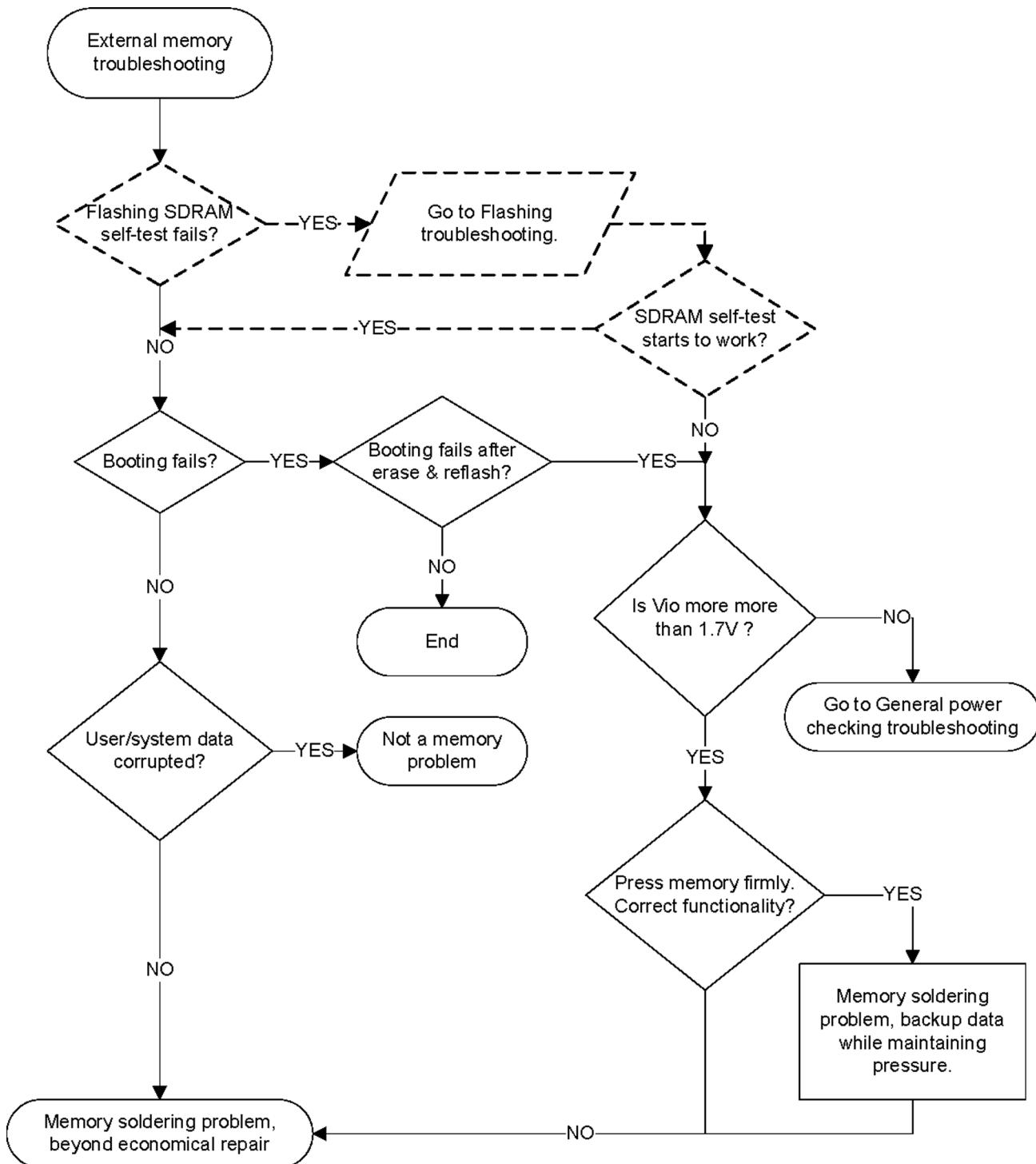
Memory troubleshooting


MicroSD card troubleshooting

Troubleshooting flow

External memory eMMC troubleshooting

Troubleshooting flow

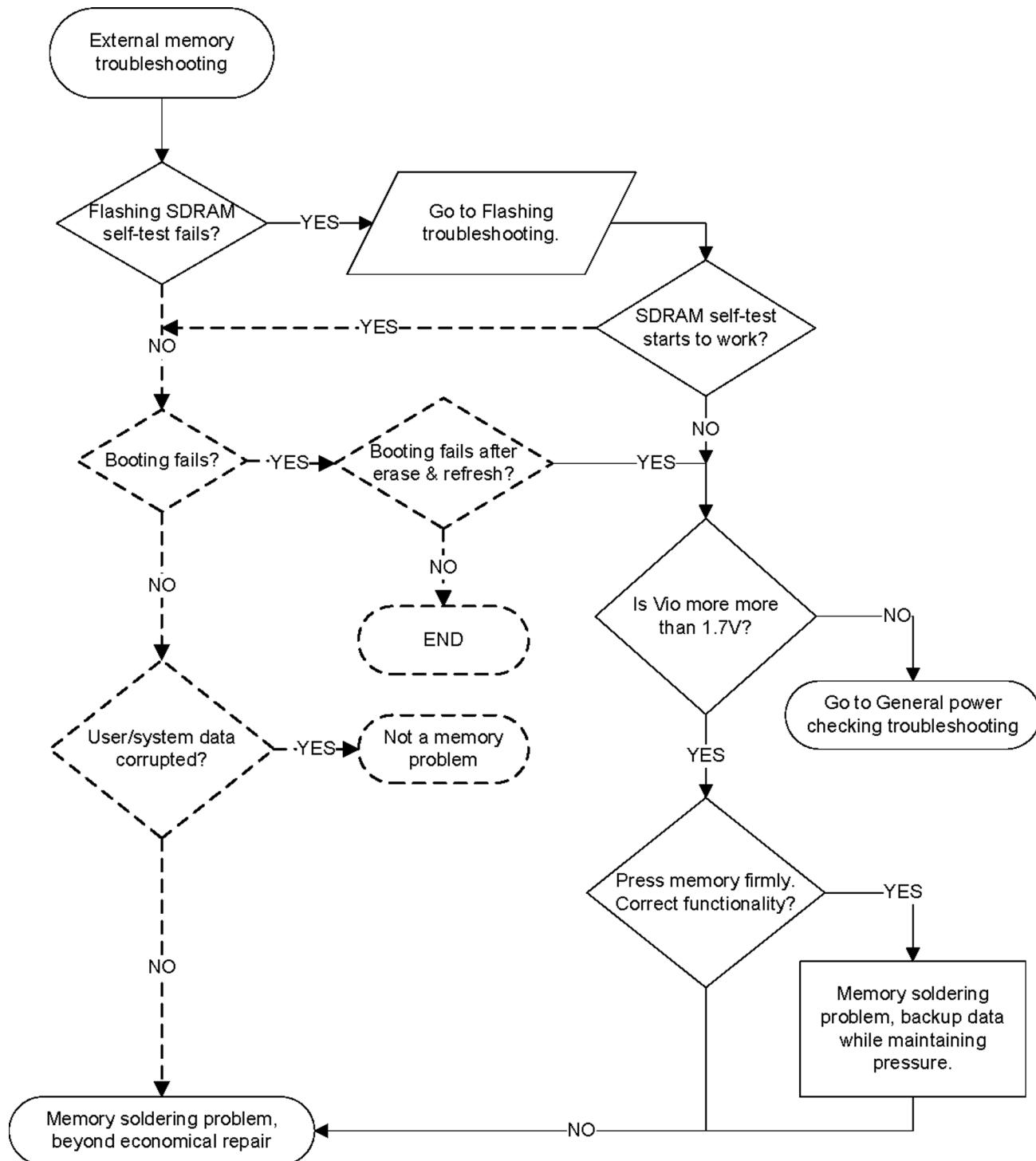


NOR troubleshooting

Context

NOR flash interface is an electrical interface between the memory and the digital ASIC. It is used for accessing the memory IC for SW instructions and data.

Troubleshooting flow



SDRAM troubleshooting

Context

SDRAM interface is an electrical interface between the memory and the digital Asic. It is used for accessing the memory IC for SW instructions and data.

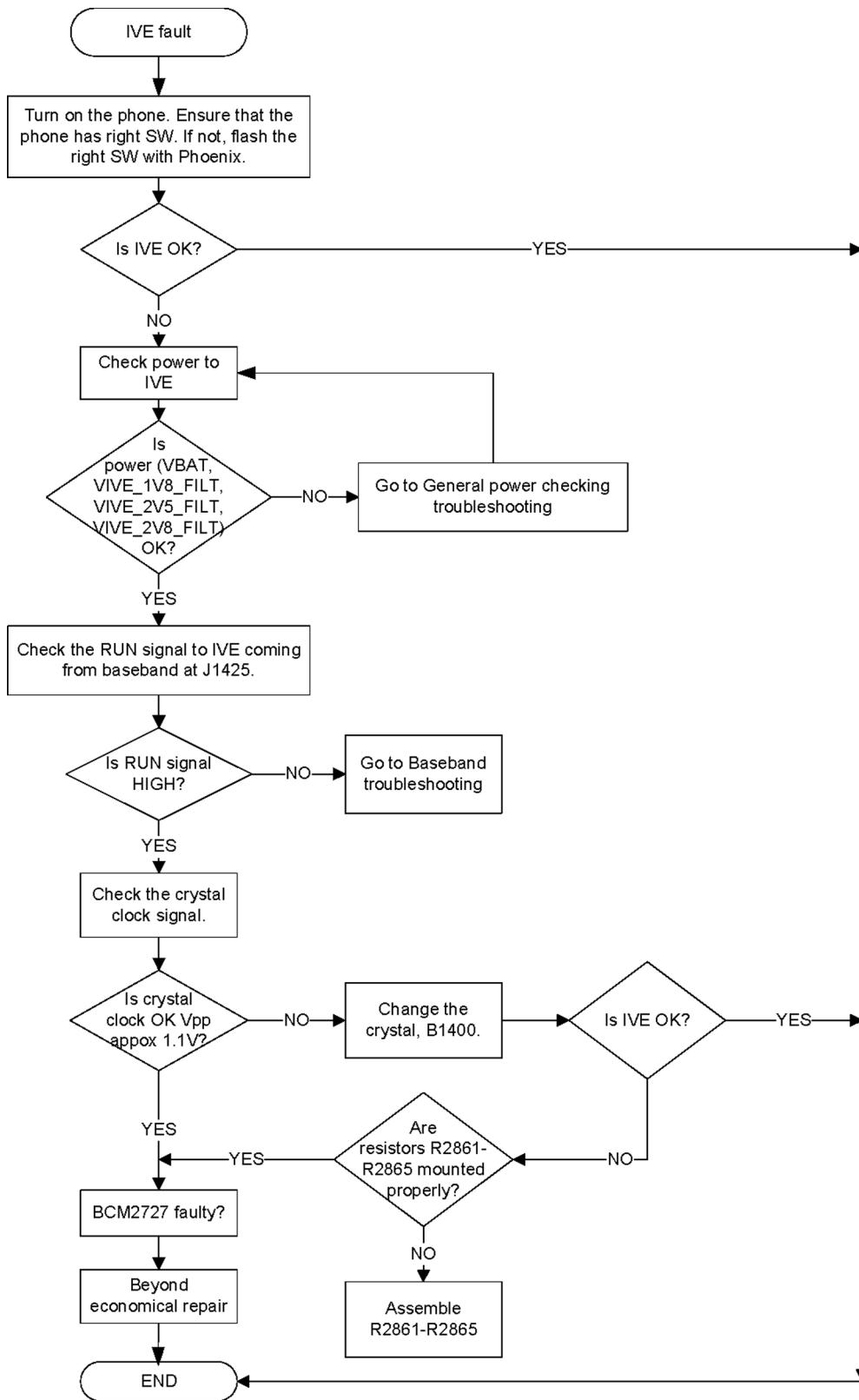
Troubleshooting flow

■ IVE troubleshooting

Introduction to IVE troubleshooting

The IVE engine is a next generation imaging and video engine based on BCM2727B. The BCM2727B acts as imaging, video, display, and HDTV and SDTV hardware accelerator.

The following references on the PWB help in the effective debugging and troubleshooting of IVE.


Sr. No	Reference	Description
1	B1400	19.2MHz Crystal
2	D1400	IVE/BCM2727B IC

The following test points on the PWB help in the effective debugging and troubleshooting.

Sr. No	Signal name	Measuring point	Description
1	VIVE_2V5_FILT	C1419/C1417	2.5V supply to BCM2727B
2	VIVE_2V8_FILT	C1414	2.8V supply to BCM2727B
3	VIVE_1V8_FILT	L1402/C1450	1.8V supply to BCM2727B
4	VBAT	L1403/C1466	VBAT supply to BCM2727B
5	RUN	J1425	Enable signal to IVE. This needs to be High for IVE to be Up.
6	XIN	C1448	19.2MHz clock to IVE

IVE troubleshooting

Troubleshooting flow

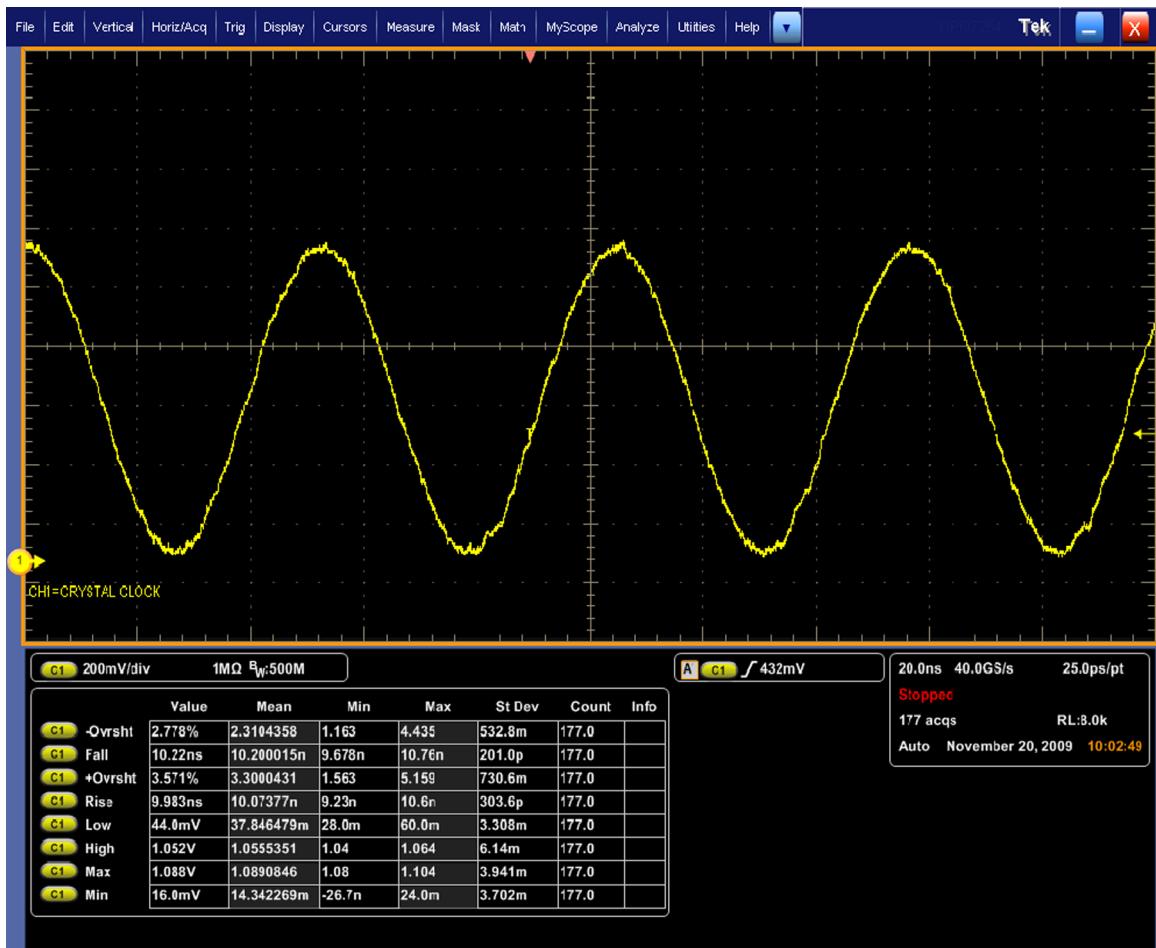


Figure 7 Expected Crystal clock input to BCM2727B on Oscilloscope

■ TV out troubleshooting

Introduction to HDTV and SDTV troubleshooting

HDTV

The phone has HDTV capability. The phone can be connected to an HDTV through a Type A to Type C HDMI cable.

The following references on the PWB help in the effective debugging and troubleshooting of HDTV Out.

Sr. No	Reference	Description
1	X1650	HDMI connector
2	N1653	HDMI connector ASIP on HDMI bus
3	N1654	HDMI bus ASIP on control bus
4	Z1650 to Z1653	Common mode choke on HDMI bus
5	N1651	HDMI 5V regulator
6	D1400	BCM2727B IC
7	D1653	HPD signal buffer
8	V1657	HDMI +5V ESD protection

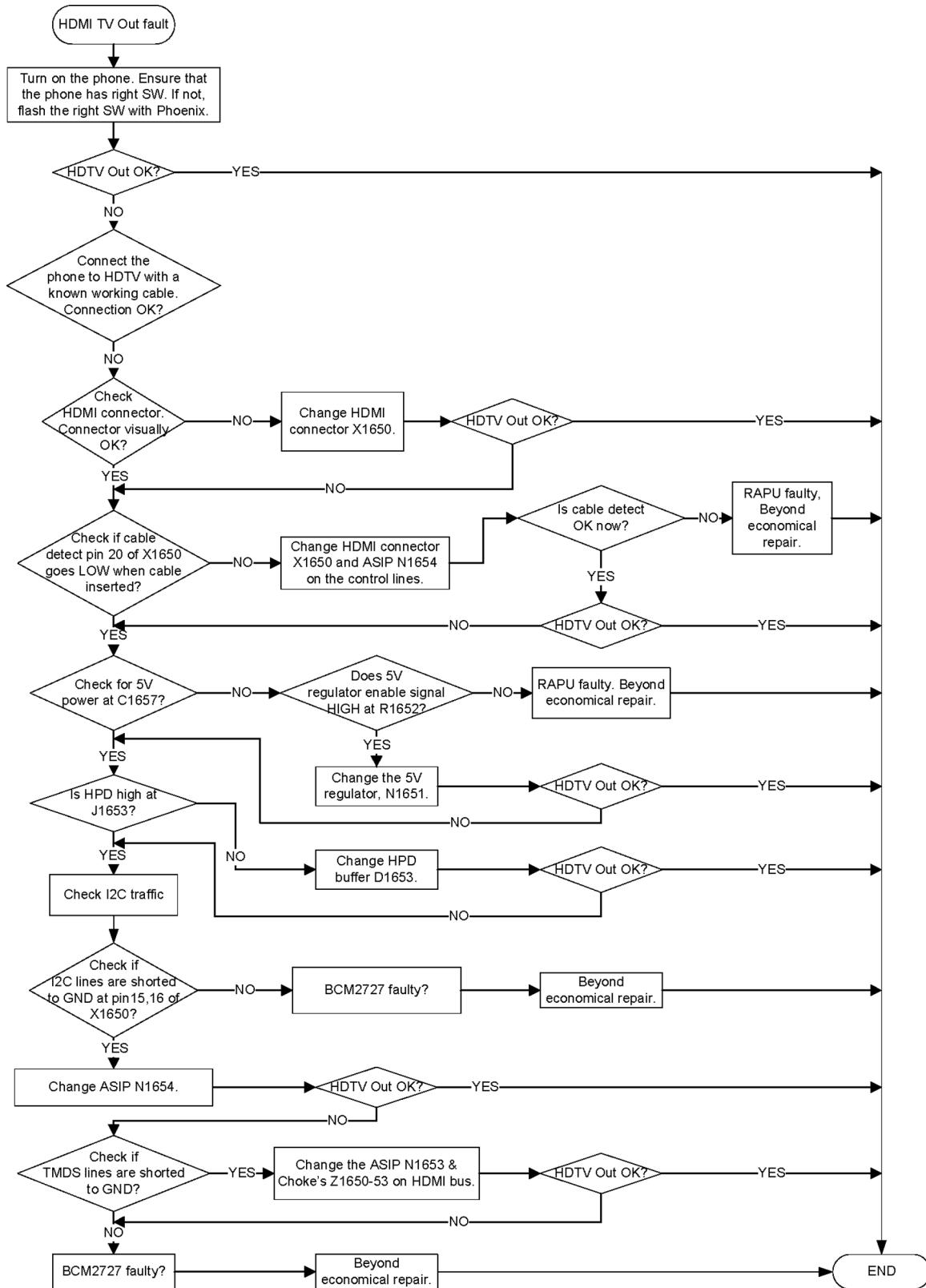
The following test points on the PWB help in the effective debugging and troubleshooting.

Sr No	Signal name	Measuring point	Description
1	HDMI_REG_EN	R1672	Enable signal for VHDMI_5V0 regulator. This signal needs to be High for regulator to be On.
2	VHDMI_5V0	L1653/C1657	5V supply to HDMI sink.
3	HDMI_CABLE_DET	SW1.X1650	HDMI cable detect signal to HDMI source. This signal goes Low when a cable is inserted.
4	HDMI_HPD	19.X1650	Hot Plug Detect signal to HDMI source. This signal goes High when a cable is inserted.
5	HDMI_I2C(1:0)	15.X1650 16.X1650	I2C signals for HDMI.

SDTV

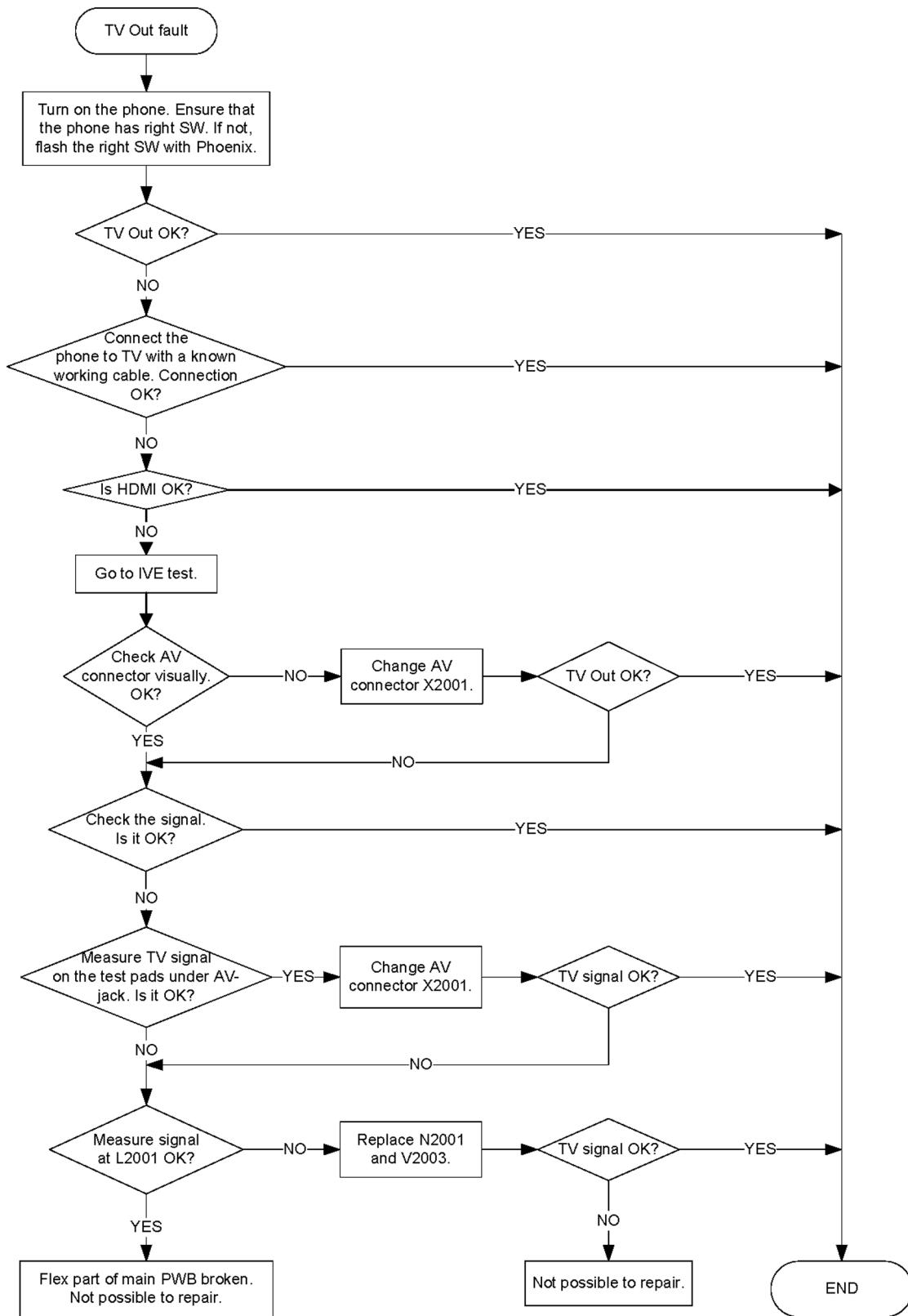
The phone has SDTV capability. The phone can be connected to an analog TV through a TV Out cable.

The following references on the PWB help in the effective debugging and troubleshooting of SDTV Out.


Sr. No	Reference	Description
1	R1419	DAC termination resistor. Resistor value 15 OHMS.
2	D1400	BCM2727B IC
3	N2001	Analog switch
4	L2001	Ferrite bead on the CVBS signal
5	X2001	AV connector

The following test points on the PWB help in the effective debugging and troubleshooting.

Sr No	Signal name	Measuring point	Description
1	CVBS	X2001.1/J2002	SDTV signal


HDTV out troubleshooting

Troubleshooting flow

SDTV out troubleshooting

Troubleshooting flow

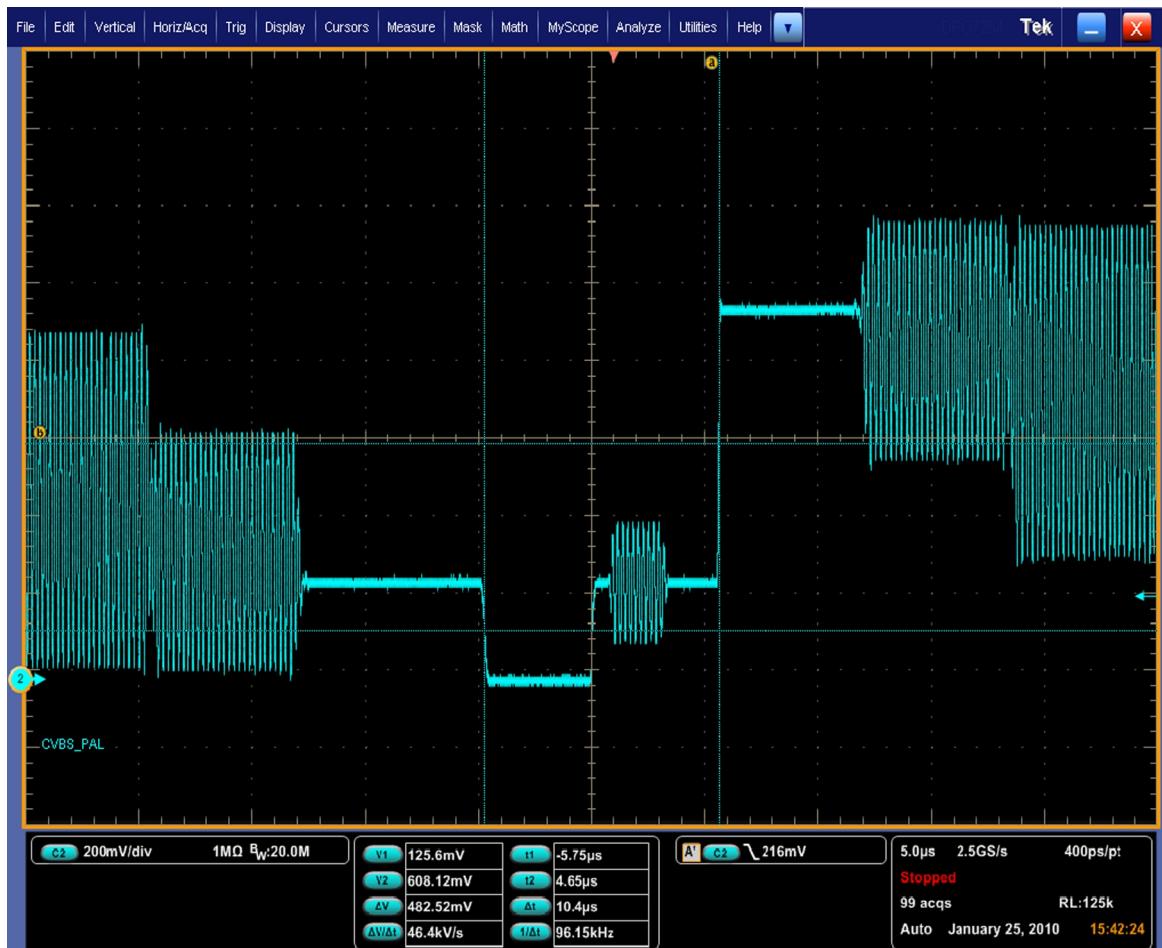


Figure 8 Expected SDTV CVBS PAL signal on Oscilloscope

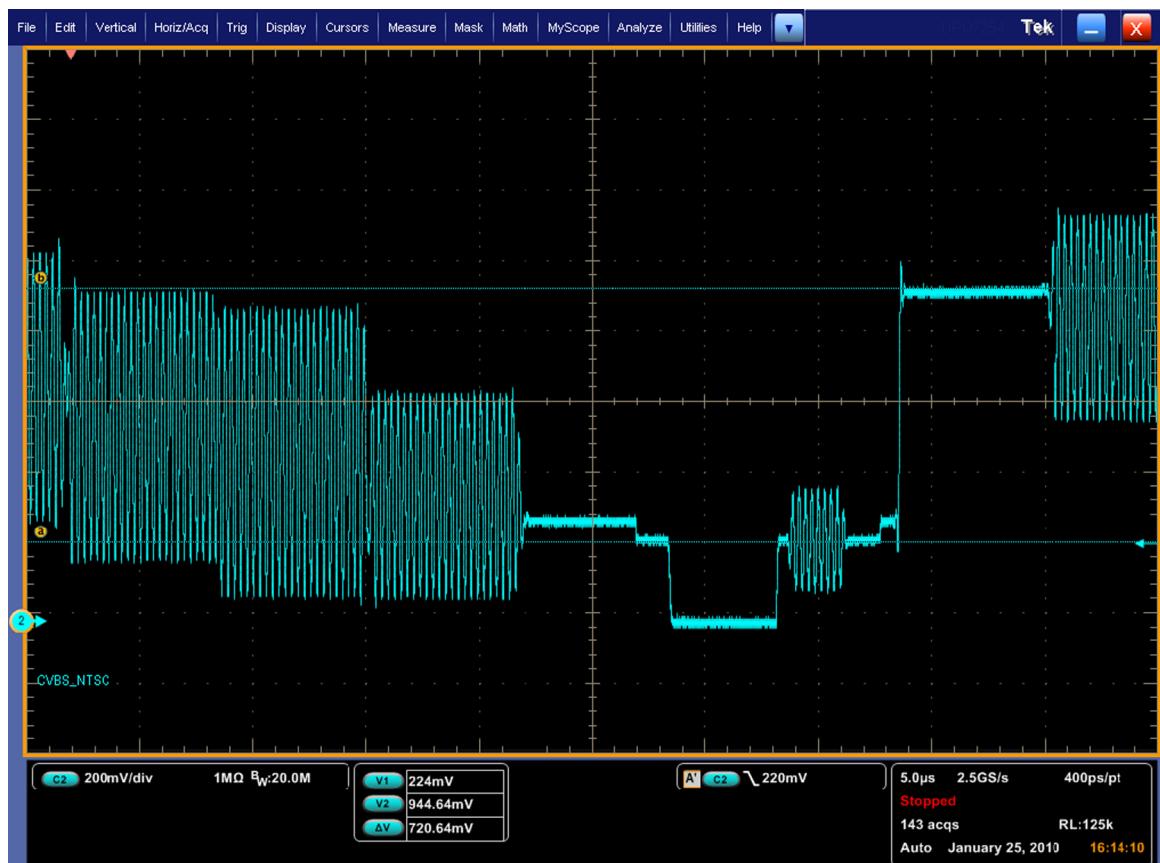


Figure 9 Expected SDTV CVBS NTSC signal on Oscilloscope

■ Display module troubleshooting

General instructions for display troubleshooting

The first step is to verify with a working display that the fault is not on the display module itself. The display module cannot be repaired.

The second step is to check that the engine is working normally. This can be done by connecting the phone to a docking station and starting Phoenix service software. With the help of Phoenix read the phone information to check that also the application engine is functioning normally (you should be able to read the APE ID).

After these checks proceed to the display troubleshooting flowcharts. Use the Display Test tool in Phoenix to find the detailed fault mode.

Pixel defects

Table 6 Display module troubleshooting cases

Display blank	There is no image on the display. The display looks the same when the phone is on as it does when the phone is off.
Image on the display not correct	Image on the display can be corrupted or a part of the image can be missing. If a part of the image is missing, change the display module. If the image is otherwise corrupted, follow the appropriate troubleshooting diagram.

Visual defects (pixel)	Pixel defects can be checked by controlling the display with Phoenix. Use both colors, black and white, on a full screen. R, G, B are also helpful. The display may have some random pixel defects that are acceptable for this type of display. The criteria when pixel defects are regarded as a display failure, resulting in a replacement of the display, are presented in the following table.
------------------------	--

Table 7 Pixel defects

Bright sub-pixels	(sometimes called on-pixels or stuck-on) are characterized by the appearance of bright/colored pixels in, for example, black full screen picture.
Dark sub-pixels	(sometimes called off-pixels, stuck-off, or black pixels) are characterized by the appearance of dark pixels in white, red, green, or blue full-screen picture.
Combined sub-pixel	defects are characterized by at least two sub-pixels defects (bright or dim) being closer than 5 mm to each other.
Temporal sub-pixels	(sometimes called blinking defects) exhibit temporal variations not related to any steady-state video input. Temporal sub-pixel defects may be intermittent, exhibit a sudden change of state, or be flickering.

Table 8 Defects table

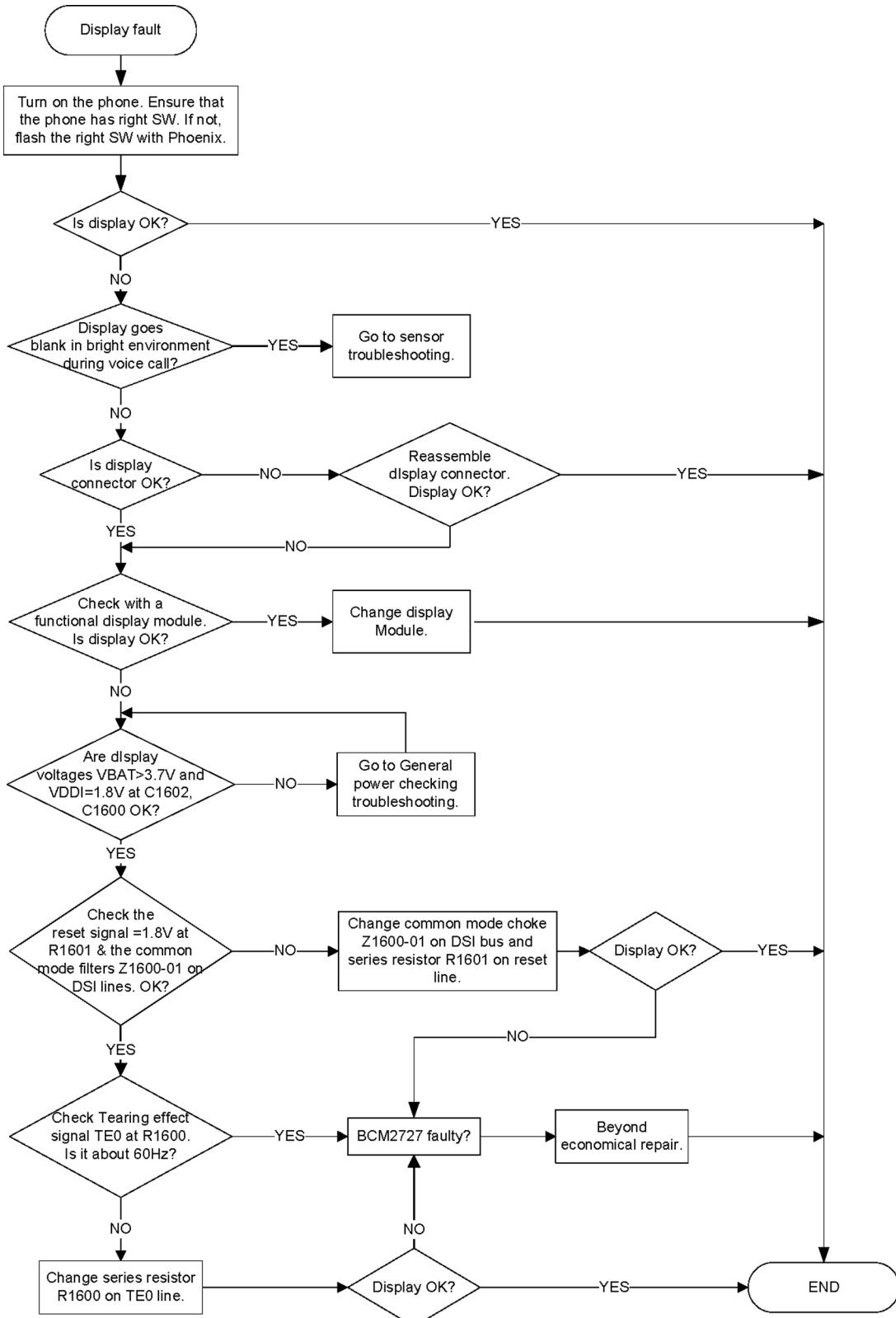
Item		Bright dot (sub-pixel) defect	Dark dot (sub-pixel) defect	Total
1	Defect counts	Not allowed		
2	Combined sub-pixel defect	Not allowed		
3	Temporal sub-pixel defect	Not allowed		

Note: Blinking pixels are not allowed in normal operating temperatures and light conditions.

Introduction to display troubleshooting

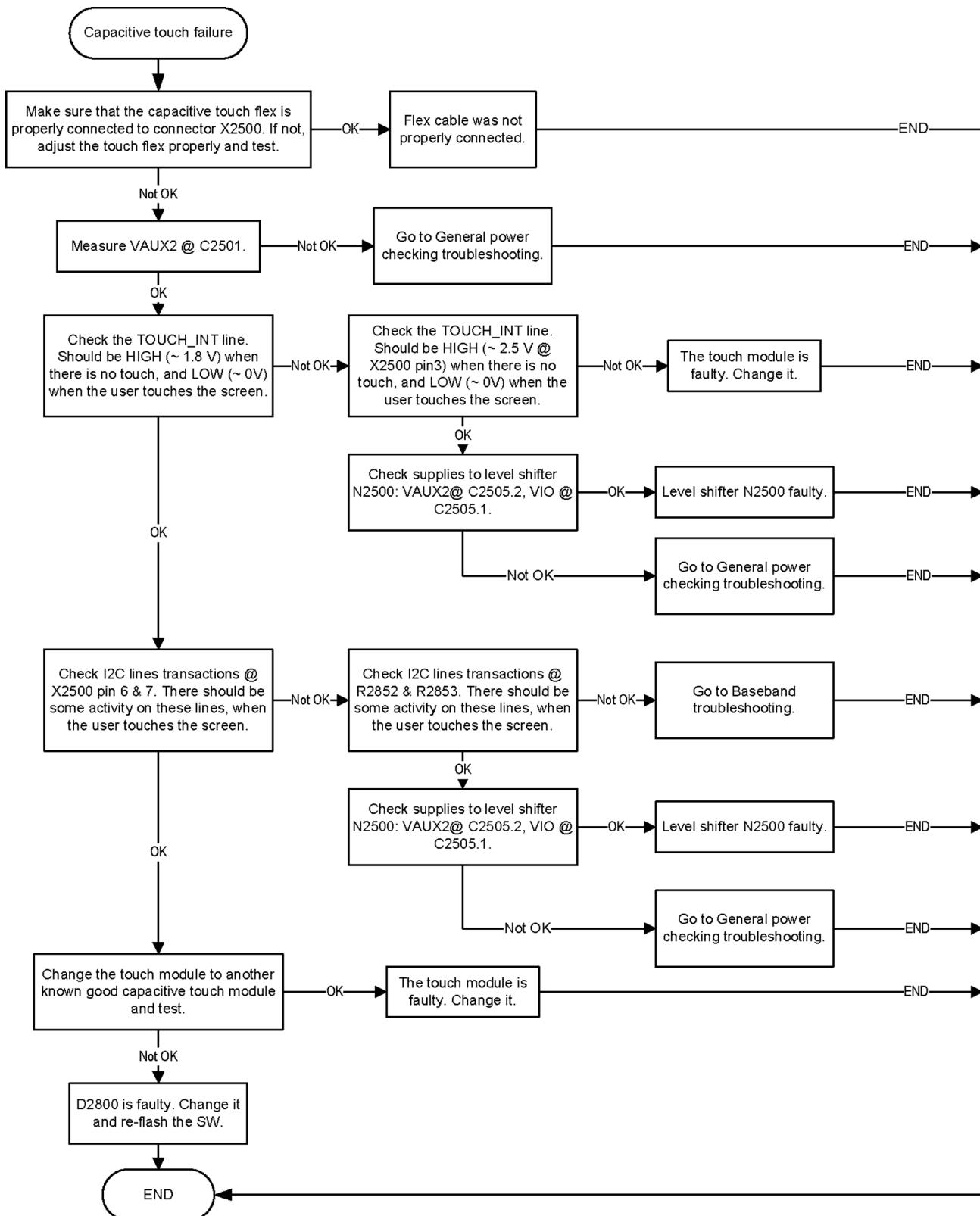
The display module used is based on AM OLED technology and supports display format of 360 columns x 640 rows. The dimension of the display module is 47.8 mm x 86.3 mm x 2.12 mm. The module will interface to the phone via FPC with a 20 pins board to board connector.

The following references on the PWB help in the effective debugging and troubleshooting of the display.


Sr No	Reference	Description
1	X1600	Display connector
2	Z1600, Z1601	Common Mode Choke on DSI bus
3	R1601/C1605	Series resistor on display Reset line. Reset signal needs to be High for the display to be Up.
4	D1400	BCM2727B IC

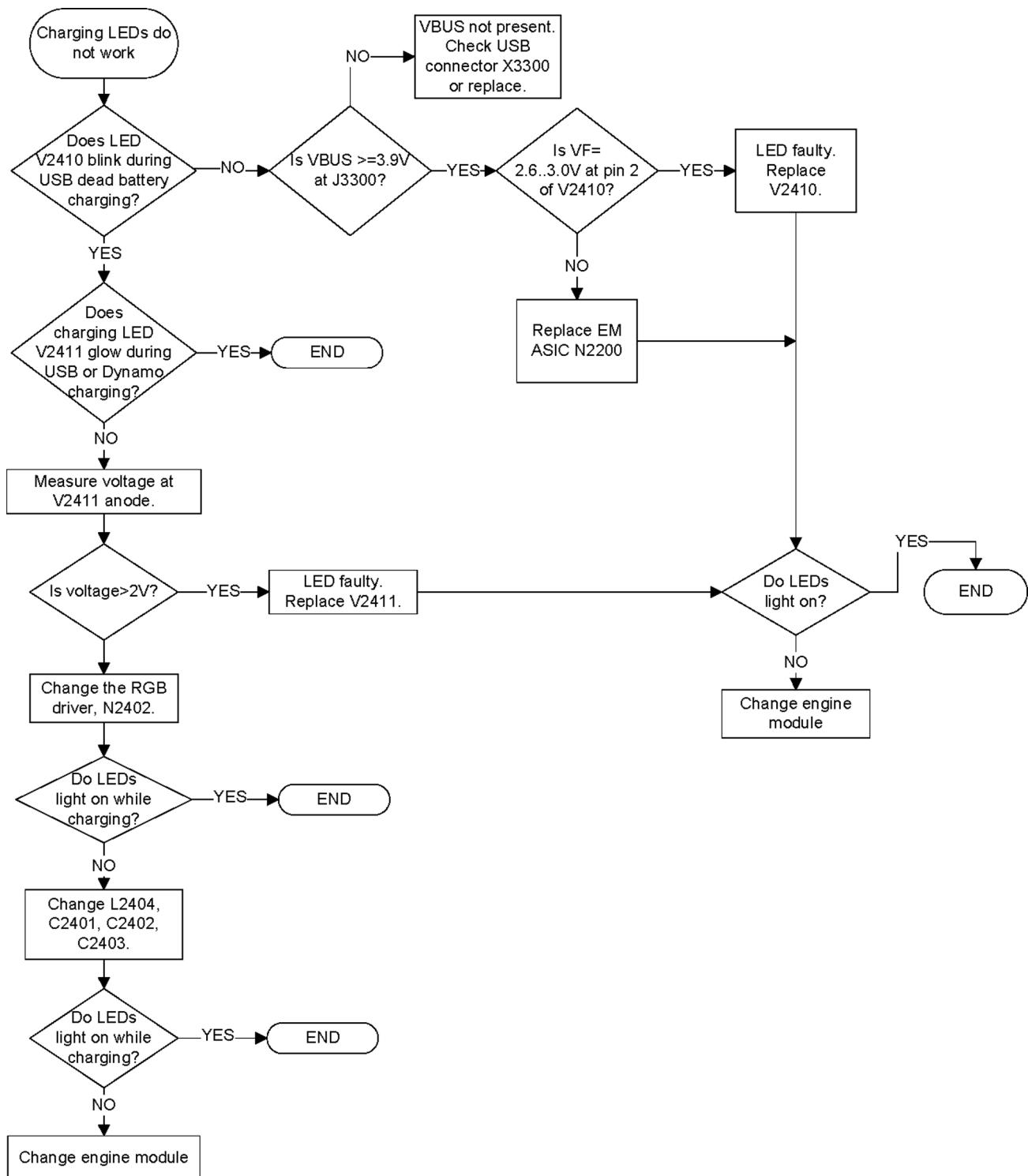
The following test points on the PWB help in the effective debugging and troubleshooting.

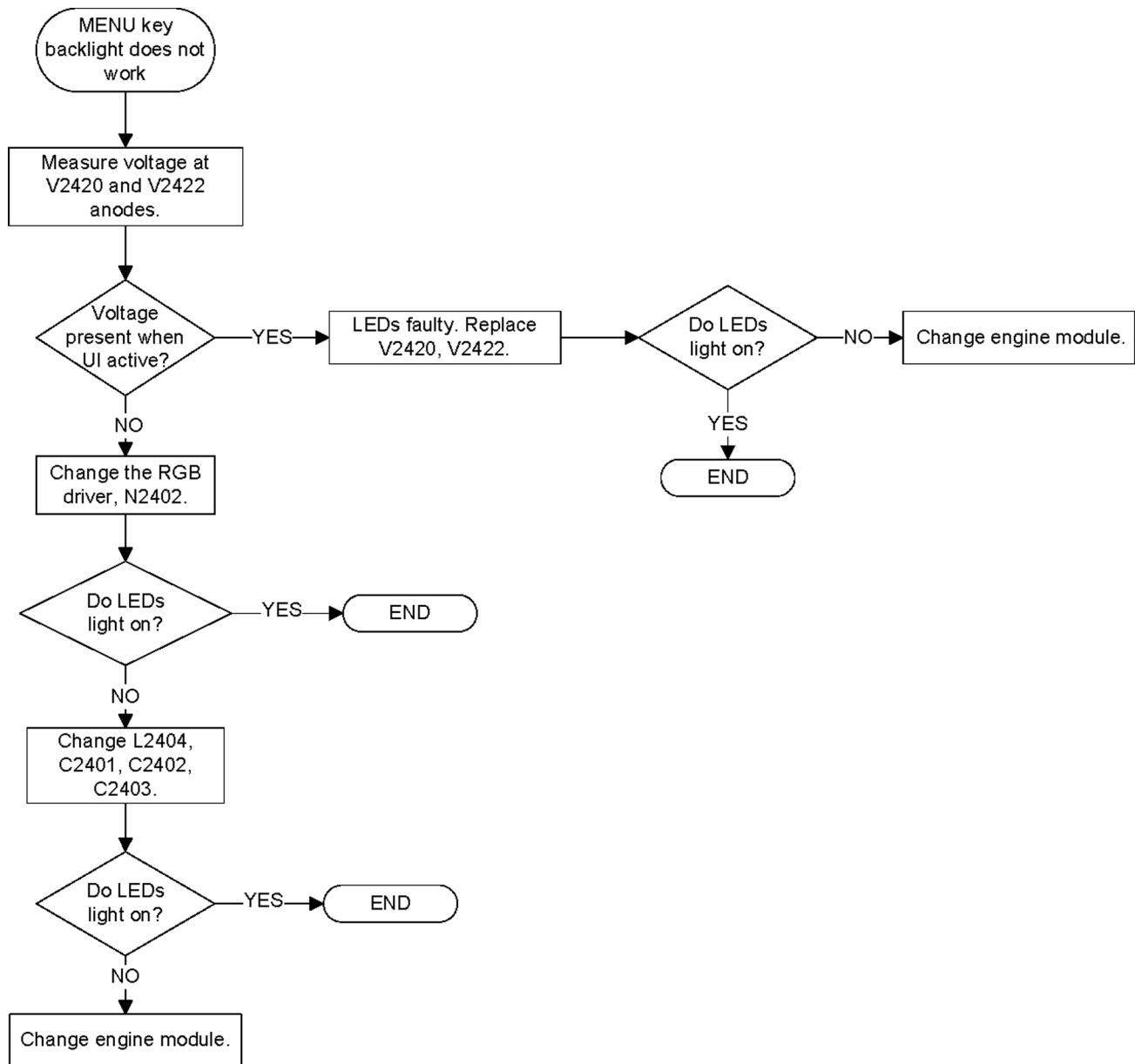
Sr. No	Signal name	Measuring point	Description
1	VIO	L1600/C1600	1.8V supply to display
2	VBAT	L1601/C1602	VBAT supply to display
3	TE0	R1600	Tearing effect signal from display module.


Display fault troubleshooting

Troubleshooting flow

Touch panel troubleshooting

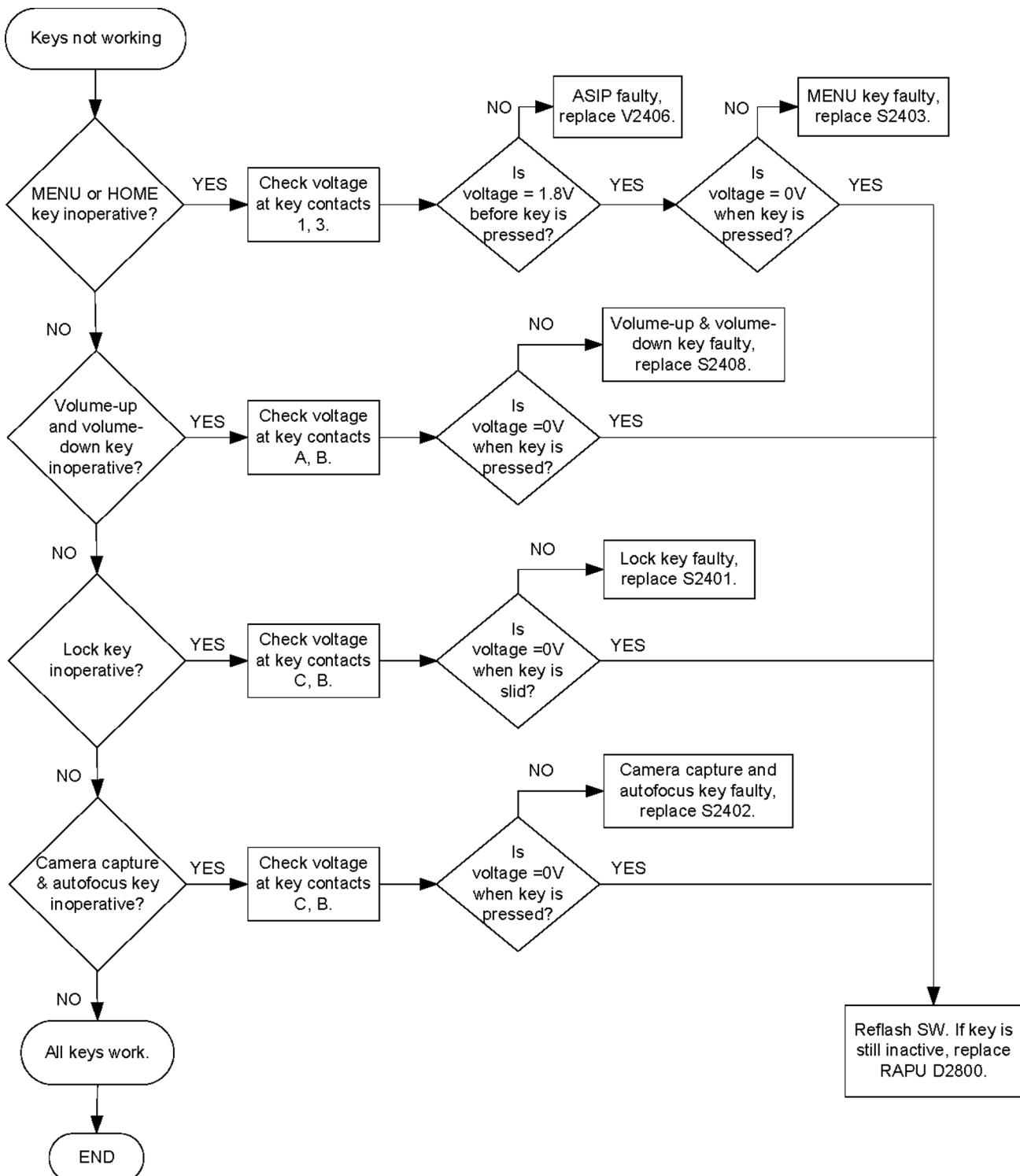

Troubleshooting flow



Illumination troubleshooting

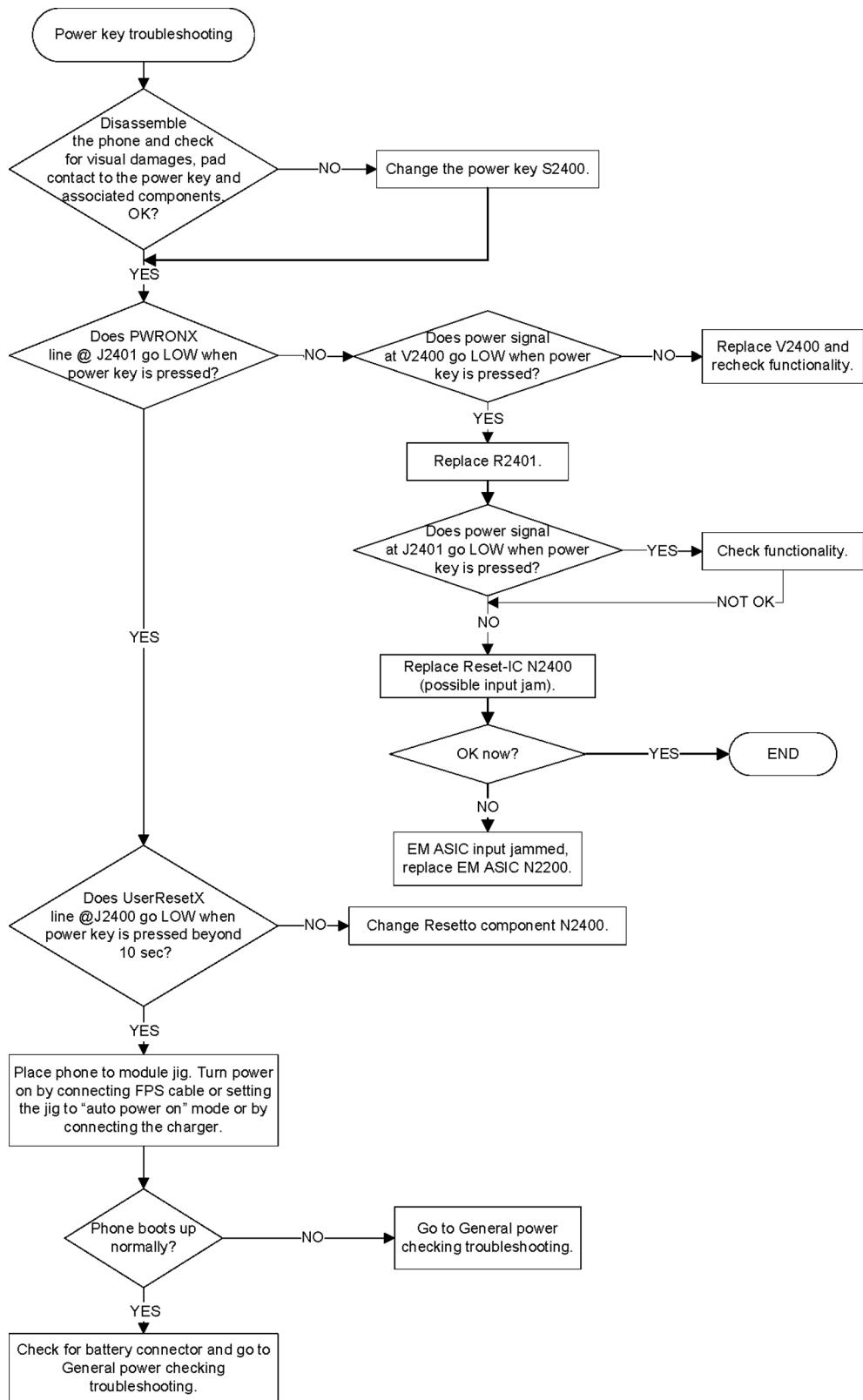
Charging illumination troubleshooting

Troubleshooting flow



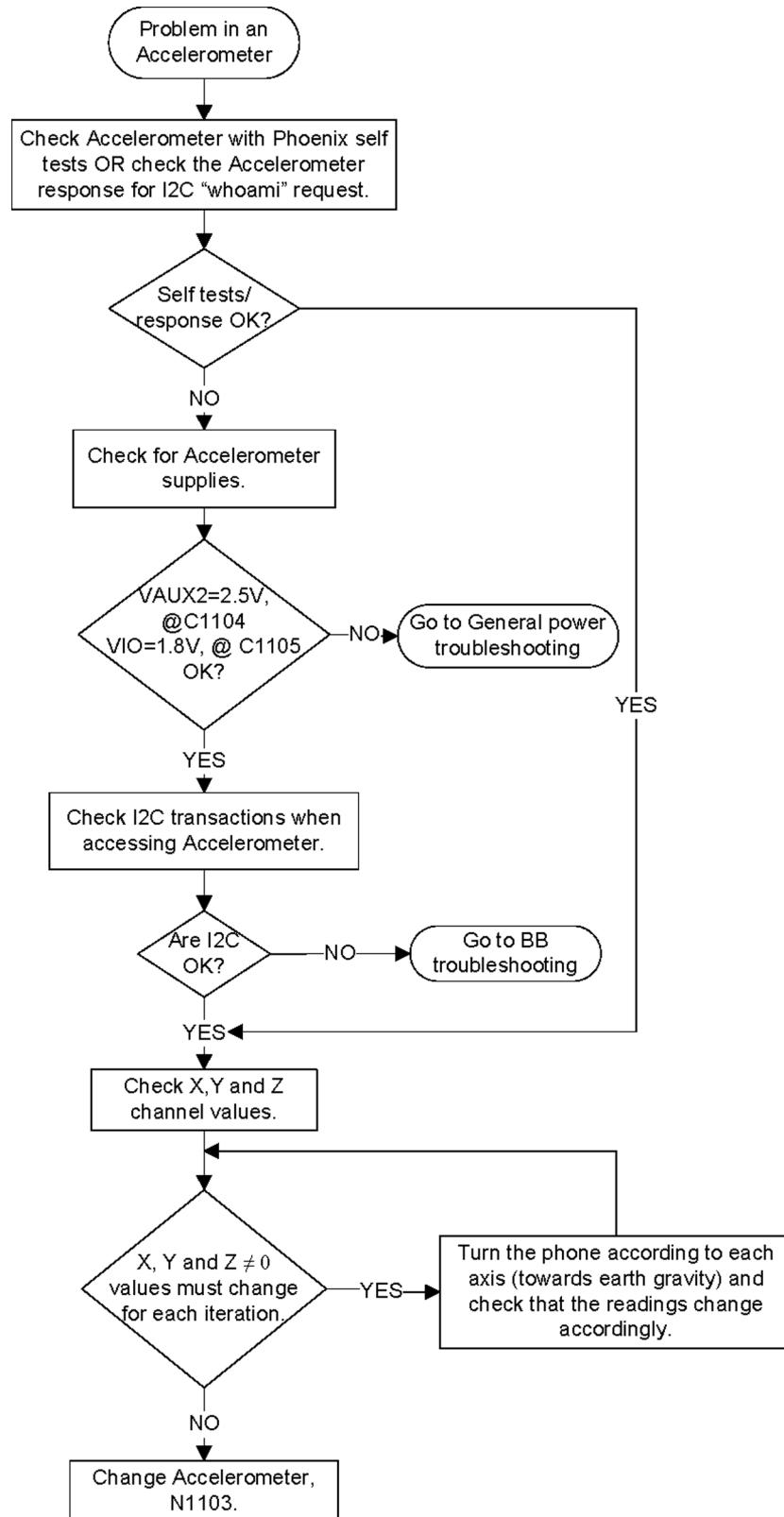
Menu key backlight troubleshooting**Troubleshooting flow**

■ Keyboard troubleshooting


Keys troubleshooting

Troubleshooting flow

Power key troubleshooting


Troubleshooting flow

■ Sensors troubleshooting

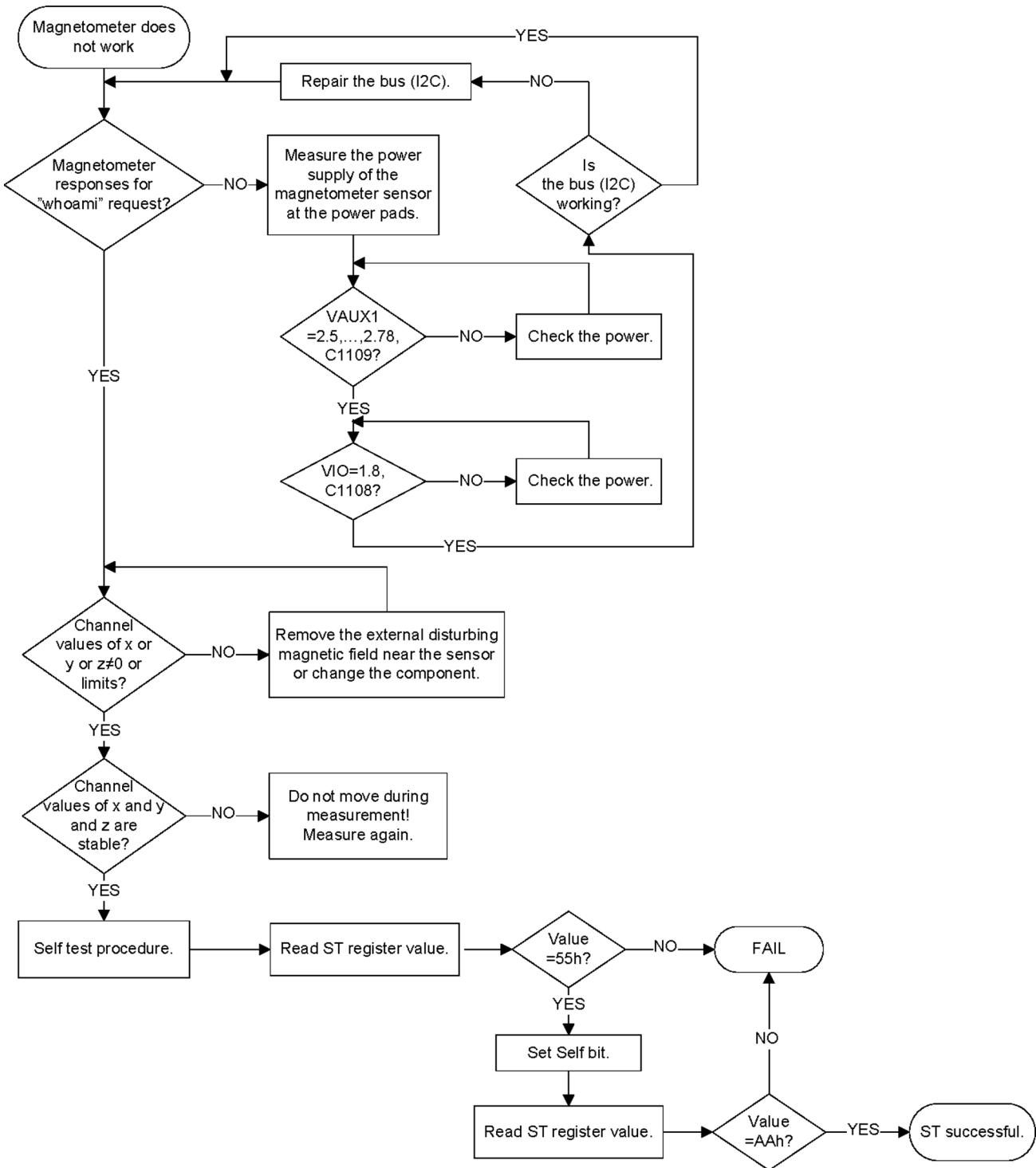
Accelerometer troubleshooting

Troubleshooting flow

Magnetometer troubleshooting

Equipment

- Non-magnetic, horizontal table
 - nearest ferromagnetic part, distance more than 50 cm
- Traditional needle type compass for reference
- Rotating platform (sheet of wood or plastic)
- PC with Phoenix

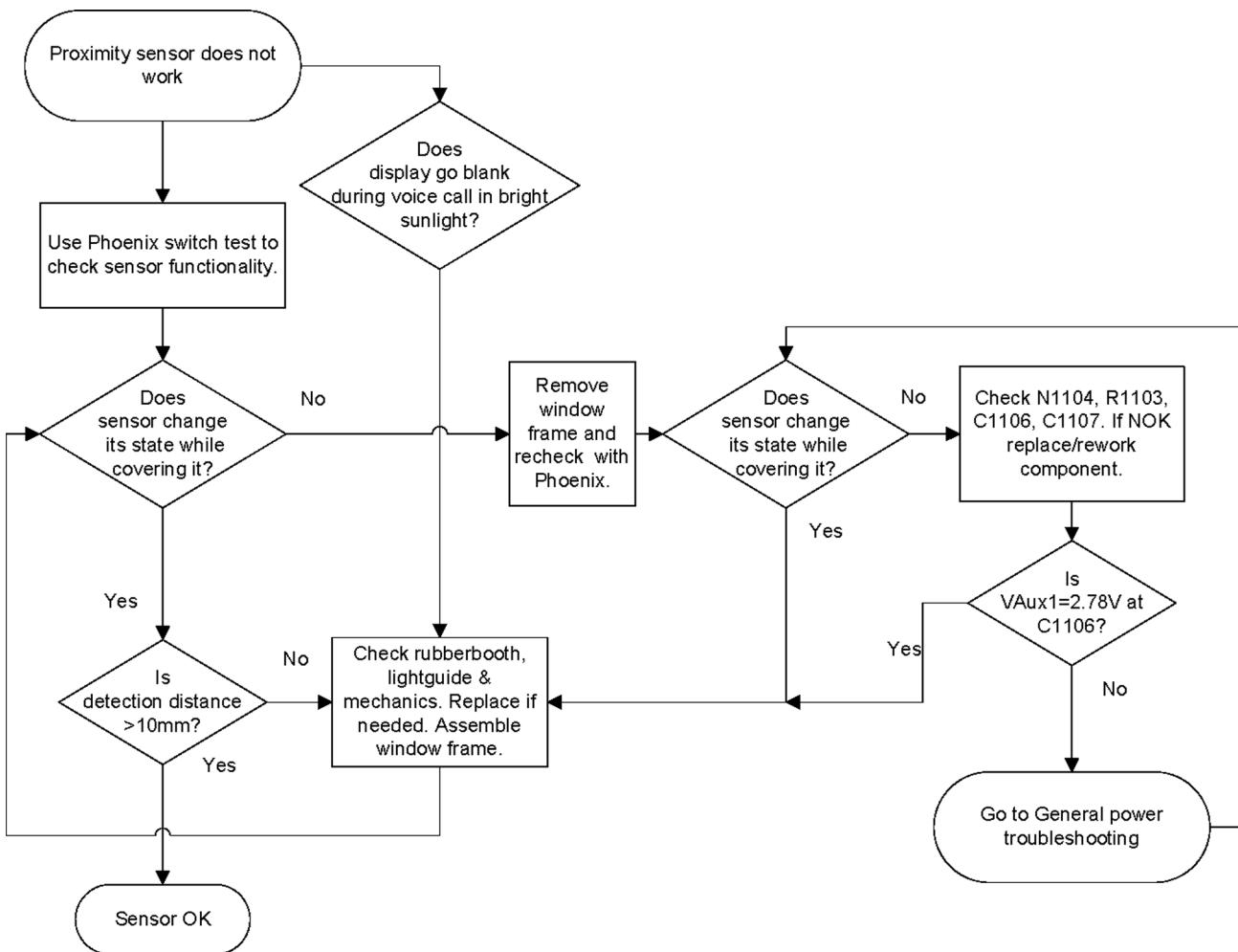

Preparation of phone

- Set the rotating platform to the table
- Set the phone and reference compass to the rotating platform
- Connect the phone to the PC and start Phoenix

Tests

- General troubleshooting test
- Self-test (ST)
- Azimuth check test

Magnetometer general troubleshooting flow


Azimuth check

- Search magnetically quiet place for the test table
 - No disturbing elements near the table, such as motors, coils, electric currents or similar
- Calibrate the phone as described in the user manual
 - The indicator must be GREEN

- Rotate the platform manually one round on the horizontal table with steps of approximately 15° degrees
 - The reference angle direction value from the reference compass = REF(angle)
 - Read the phone value = ACT(angle)
- Calculate for every step (24 steps)
 - Result(angle) = REF(angle) - ACT(angle)
 - The result is the real angle difference of angles in a 360° degrees continuous round
- Criteria:
 - If the Result(angle) value < 15° degrees GO, otherwise NOGO

Proximity sensor troubleshooting

Troubleshooting flow

ALS technical description and troubleshooting

Ambient Light Sensor (ALS)

Pupumon V1100 is a digital Ambient Light Sensor (ALS) which is connected to RAPU via I₂C_2 bus. It does not have an interrupt signal as in Augumon ALS. Power supply voltage is provided from VAUX2 output of EM ASIC. ALS is used in backlight control system to measure the amount of ambient light reaching display surface so that it is possible to adjust the display (and keypad) brightness in order to achieve good user experience. This also helps in saving power.

Pupumon Digital Ambient Light Sensor

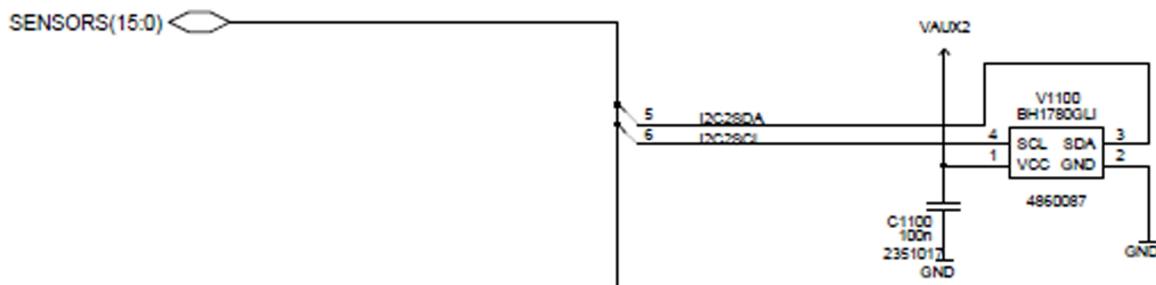
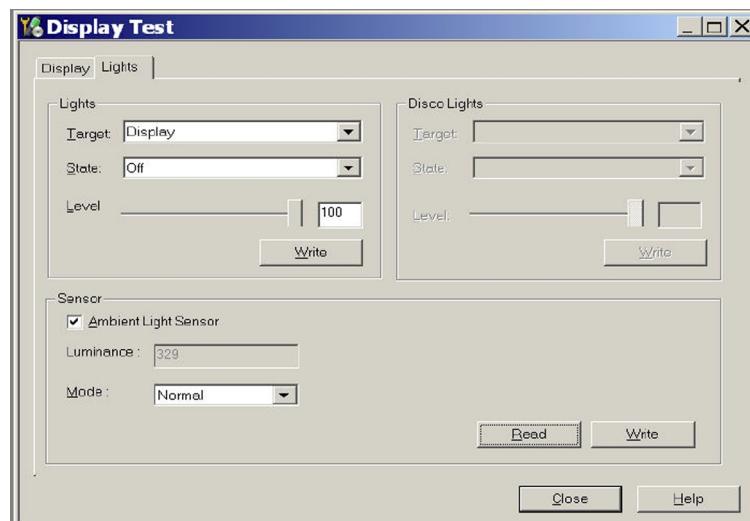
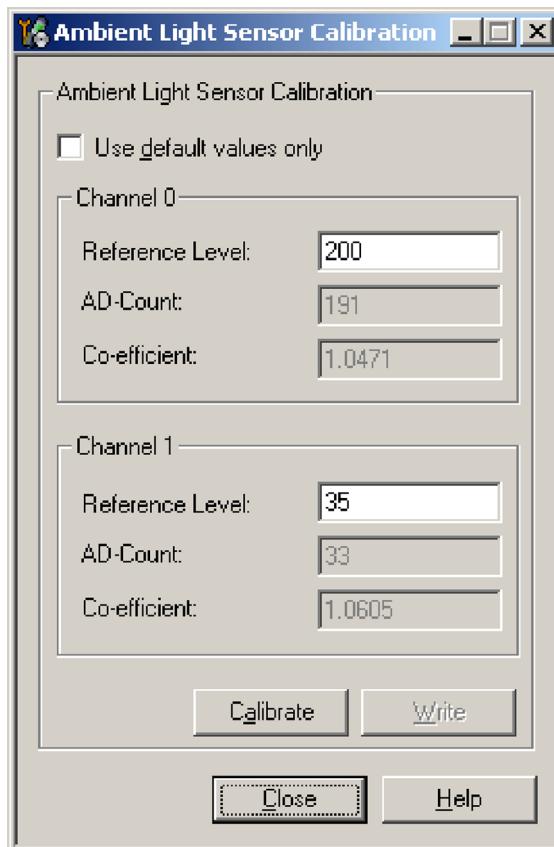



Figure 10 Ambient Light Sensor

ALS functionality check

Steps

1. Connect the phone to Phoenix and set the phone (e.g. on the table) so that the amount of ambient light seen by ALS is as stable as possible.
2. Start **Phoenix**.
3. Choose **File -> Scan product** .
4. Choose **Testing -> Display Test** .
5. Open the **Lights** tab, check Ambient Light Sensor check box, click **Read** , cover the sensor and click **Read** again. When covered, **Luminance** reading should be less than after clicking Read without covering the sensor.
6. If the component does not give any reading or reading does not change when the sensor is/is not covered, replace the part.

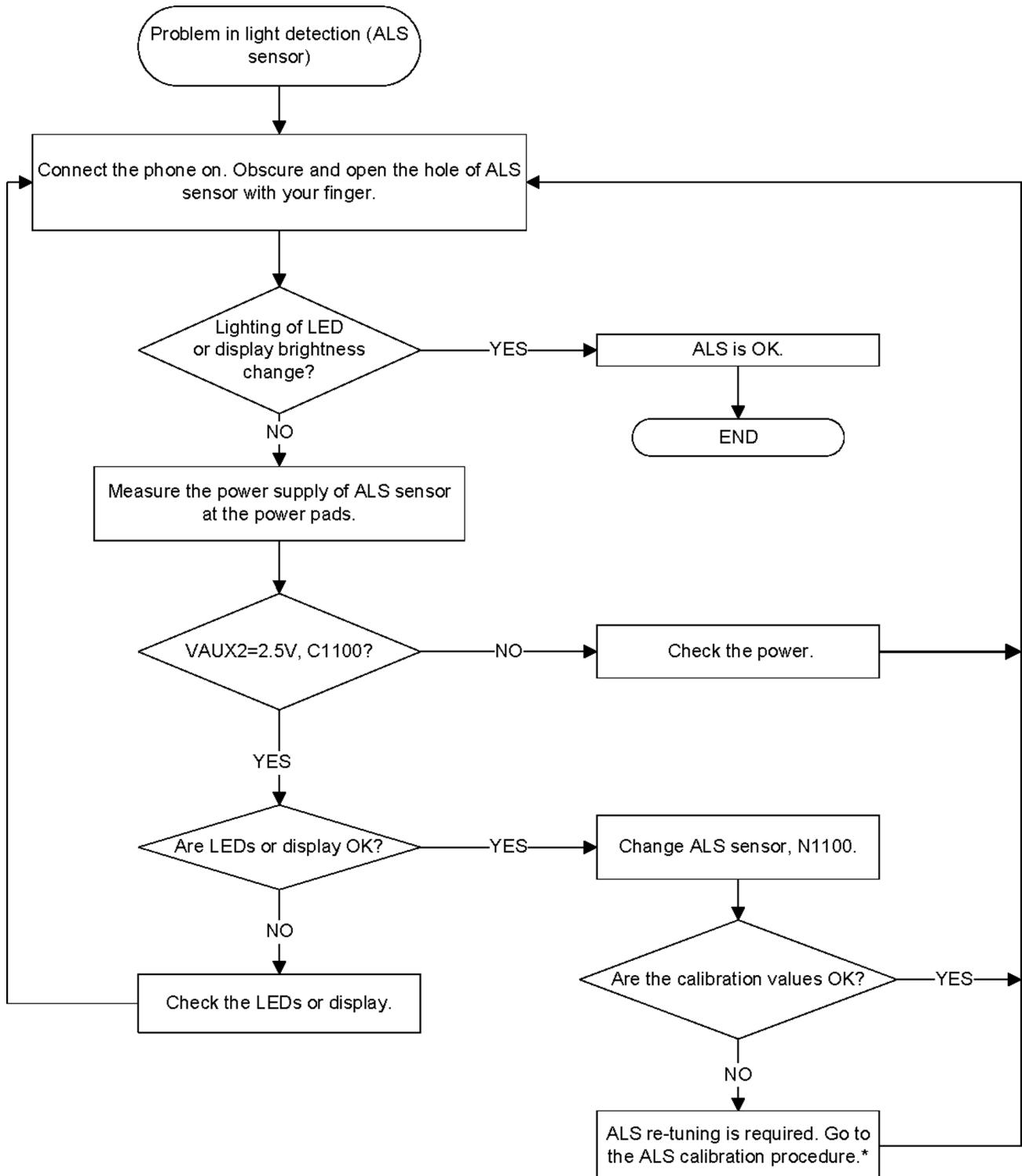


- After replacing the ALS, if the calibration values of the new sensor are lost or for some other reason, ALS re-tuning is required.
- When doing the ALS calibration procedure, it is required to have a reference phone which includes a calibrated ALS. ALS re-tuning instructions show why the reference phone is needed.

Re-tuning ALS

Steps

1. Connect reference phone to Phoenix and set the phone (e.g. on the table) so that the amount of ambient light seen by ALS is as stable as possible.
2. Start Phoenix.
3. Choose **File→Scan Product**.
4. Choose **Tuning -> Ambient Light Sensor Calibration**. You should see the following window:



5. Read AD-count values for Channel 0 and Channel 1 by click **Read** button and write them down.
6. Repeat 1-5 for the phone to be calibrated and make sure the phone to be calibrated is located in the same place as reference phone was when luminance reading was taken.
7. Calculate co-efficient from reference phone and phone to be calibrated AD-count values by division: Co-efficient = AD-count(reference phone) / AD-count(phone to be calibrated), write down the calculated co-efficient values.
8. -> Iterate by changing Channel 0 and Channel 1 (reference level) values (remove cross from 'Use default values only'). After writing some value to Channel 0 and Channel 1 (reference value), calibrate button must be pressed. Stop iterating when Co-efficient is equal to Co-efficient calculated in step 7. Note that decimal numbers should be used in the iteration in order to achieve enough precision (e.g. 200.2455)
9. After having same Co-efficient value in "Co-efficient" textbox as the calculated value, make sure that ambient light values (read using **Testing → Display Test → "Luminance"** textbox) are almost the same in reference phone and calibrated phone. Remember that illuminance readings for reference and calibrated phones must be done in the same ambient light conditions. If illuminance values differs a lot (difference max. +- 10%), repeat whole ALS re-tuning procedure.

10. To end the calibration, click Close.

ALS troubleshooting

Troubleshooting flow

■ Audio troubleshooting

Audio troubleshooting test instructions

Single-ended external earpiece and differential internal earpiece outputs can be measured either with a single-ended or a differential probe.

When measuring with a single-ended probe each output is measured against the ground.

Internal handsfree output is measured using a current probe, if a special low-pass filter designed for measuring a digital amplifier is not available. Note also that when using a current probe, the input signal frequency must be set to 2 kHz.

The input signal for each loop test can be either single-ended or differential. Exception to this is a digital microphone which needs input signal from an external sound source (laptop speaker) to playback, eg. 1 kHz sine wave from 5 cm distance.

Required equipment

The following equipment is needed for the tests:

- Oscilloscope
- Function generator (sine waveform)
- Current probe (Internal handsfree DPMA output measurement)
- Phoenix service software
- Battery voltage 3.7V
- Sound source (laptop speaker or B&K type 4231 calibrator)

Test procedure

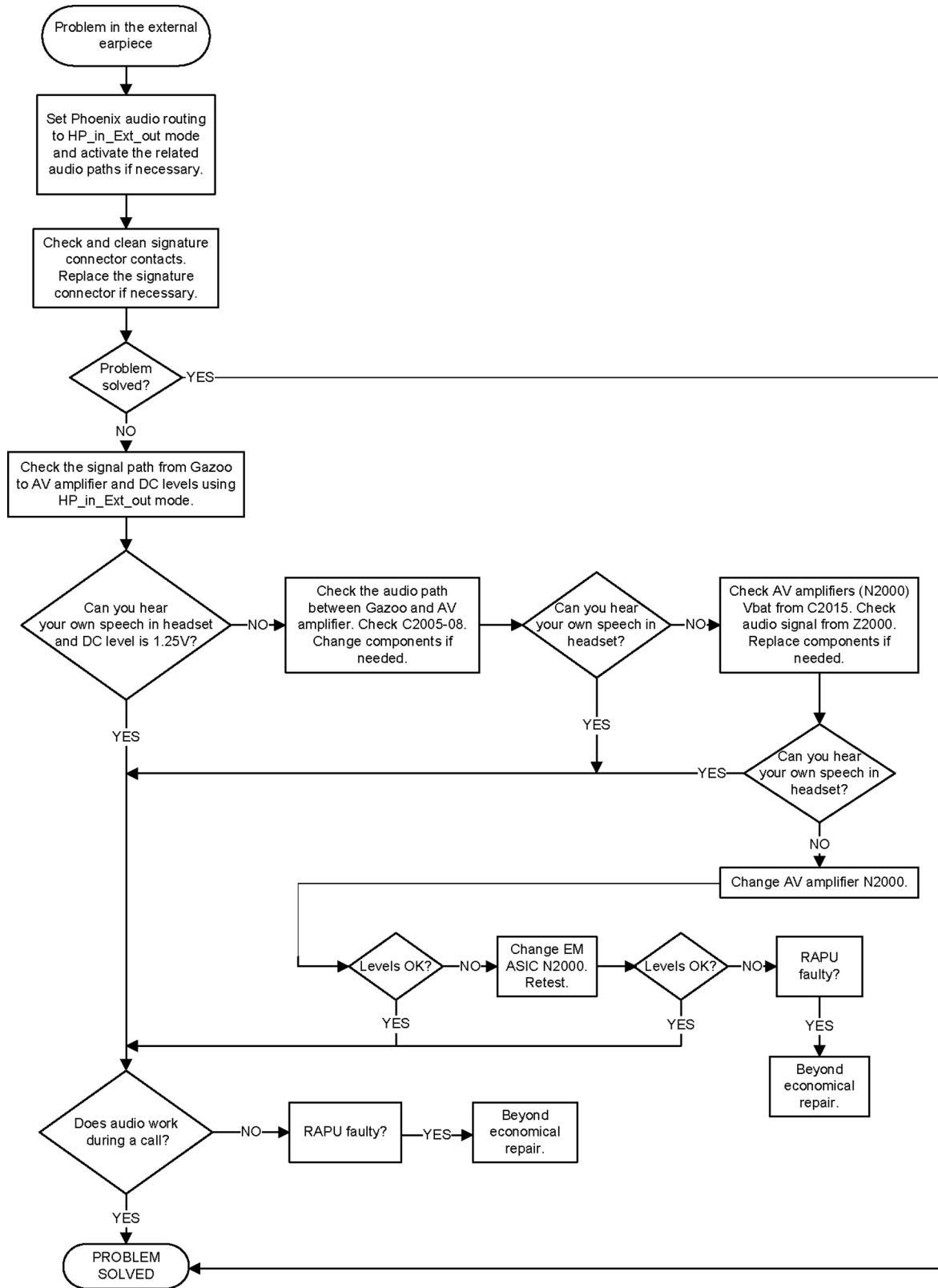
Audio can be tested using the Phoenix audio routings option. Three different audio loop paths can be activated:

- External headset mic to earpiece
- External headset mic to IHF mono
- Internal digital microphone to headset

Each audio loop sets routing from the specified input to the specified output enabling a quick in-out test. Loop path gains are fixed and they cannot be changed using Phoenix. Correct pins and signals for each test are presented in the following table.

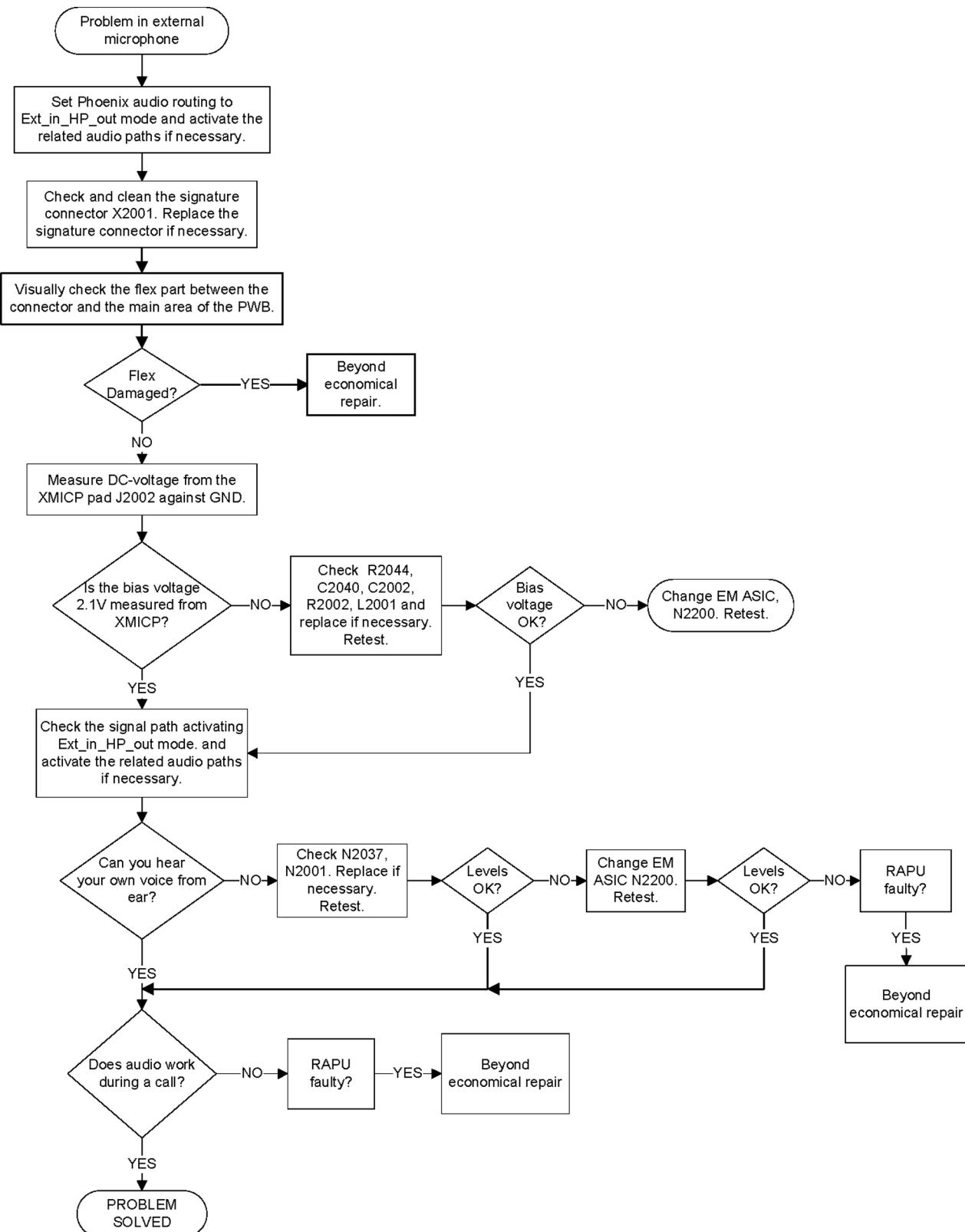
Phoenix audio loop tests and test results

The results presented in the table apply when no accessory is connected and battery voltage is set to 3.7V. Earpiece, internal microphone and speaker are in place during measurement. Applying a headset accessory during measurement causes a significant drop in measured quantities.

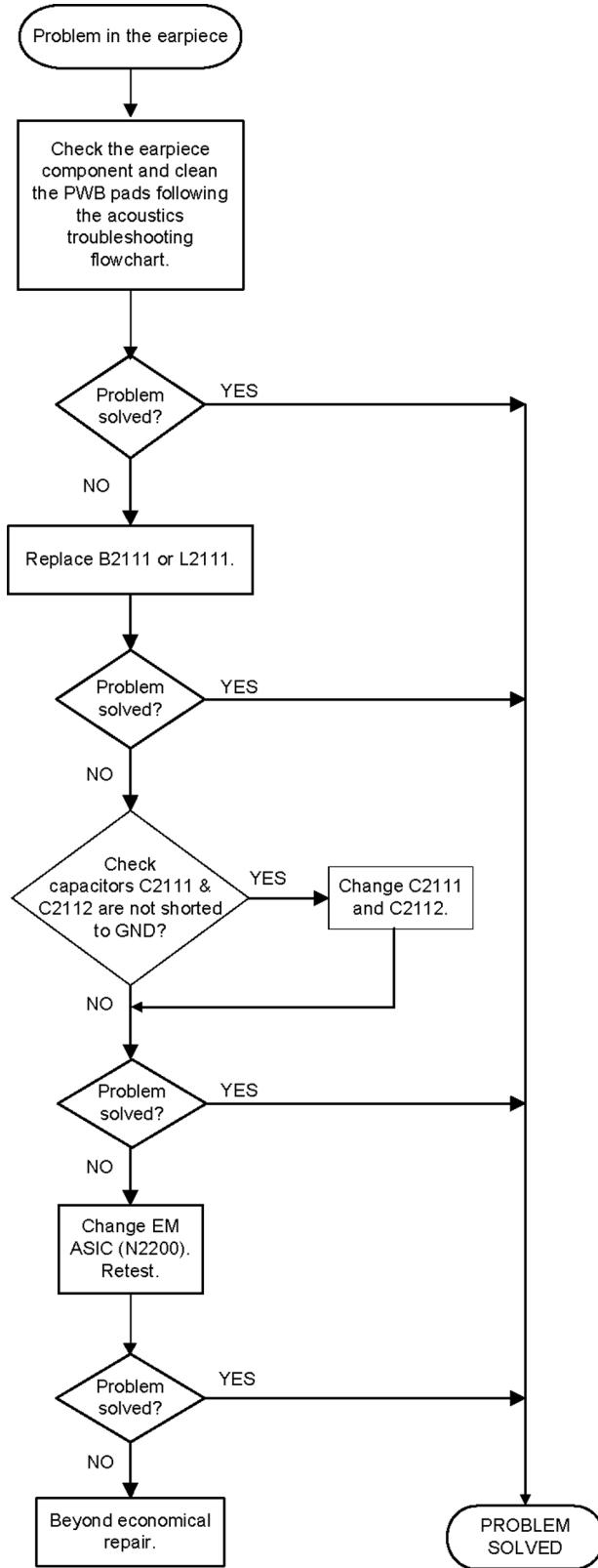

The gain values presented in the table apply for a differential output vs. single-ended/differential input.

Loop test	Input terminal	Output terminal	Path gain [dB] (fixed)	Input voltage [mVp-p]	Output DC level [V]	Output voltage [mVp-p]
External headset mic to earpiece	HS_MIC & GND	EAR 1 & GND	0	300	1.35	300
		EAR 0 & GND				

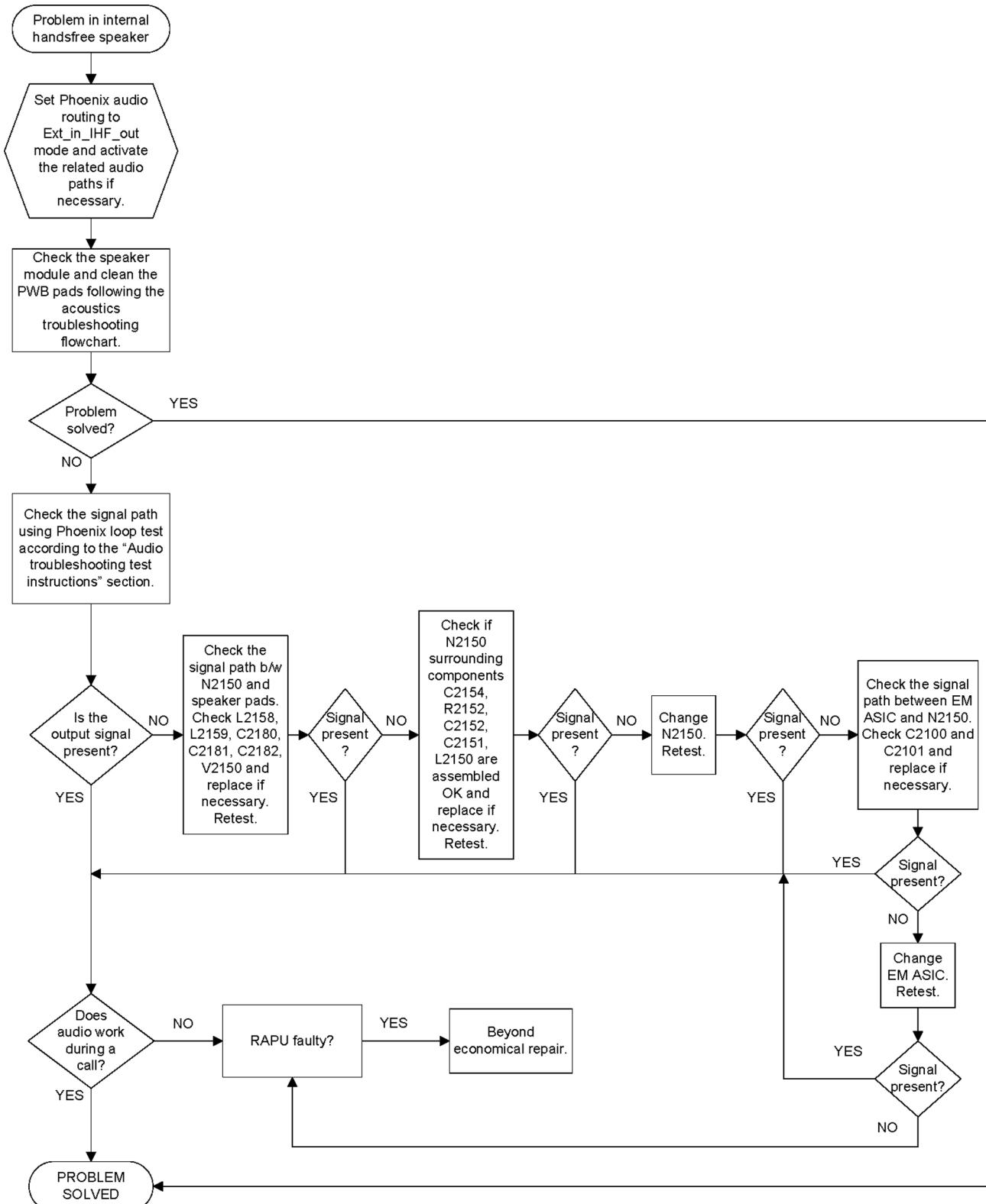
Loop test	Input terminal	Output terminal	Path gain [dB] (fixed)	Input voltage [mVp-p]	Output DC level [V]	Output voltage [mVp-p]
External headset mic to IHF mono	HS_MIC & GND	L4855 & L4856	10	200		630
		L4857 & L4858				
Internal digital microphone to headset	Acoustical Input, 1kHz sine wave	HS_L & GND	NA	94 dB SPL		70
		HS_R & GND				


External earpiece troubleshooting

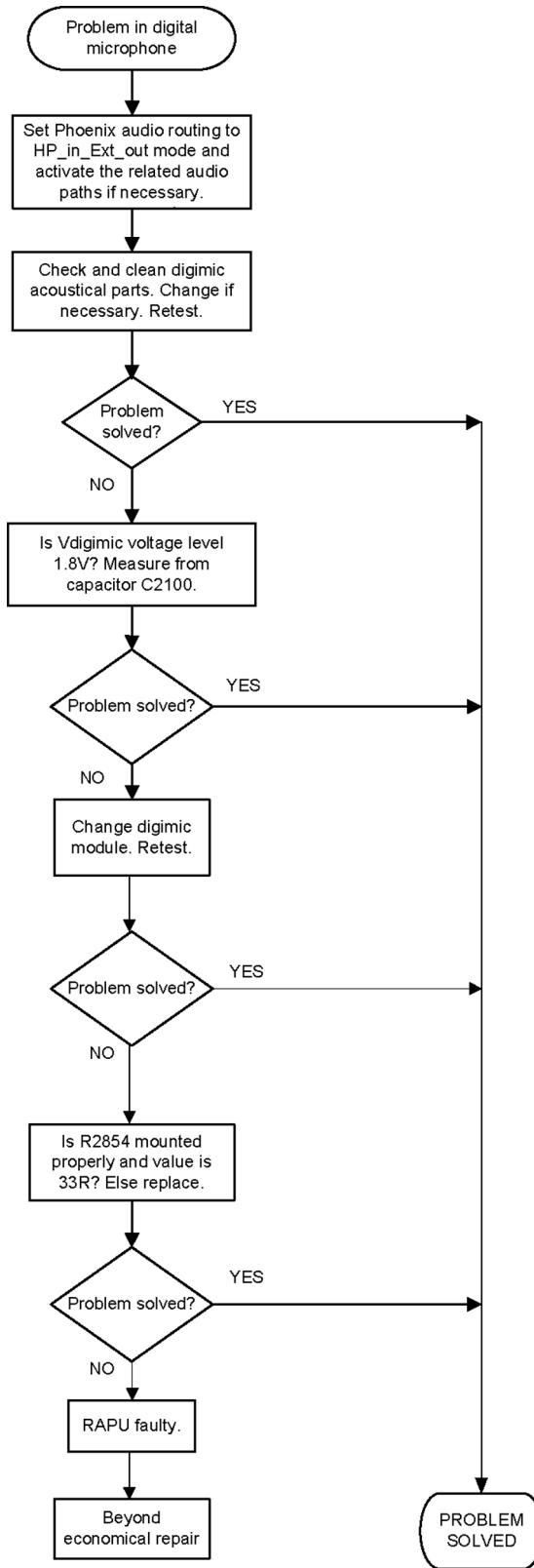
Troubleshooting flow


External microphone troubleshooting

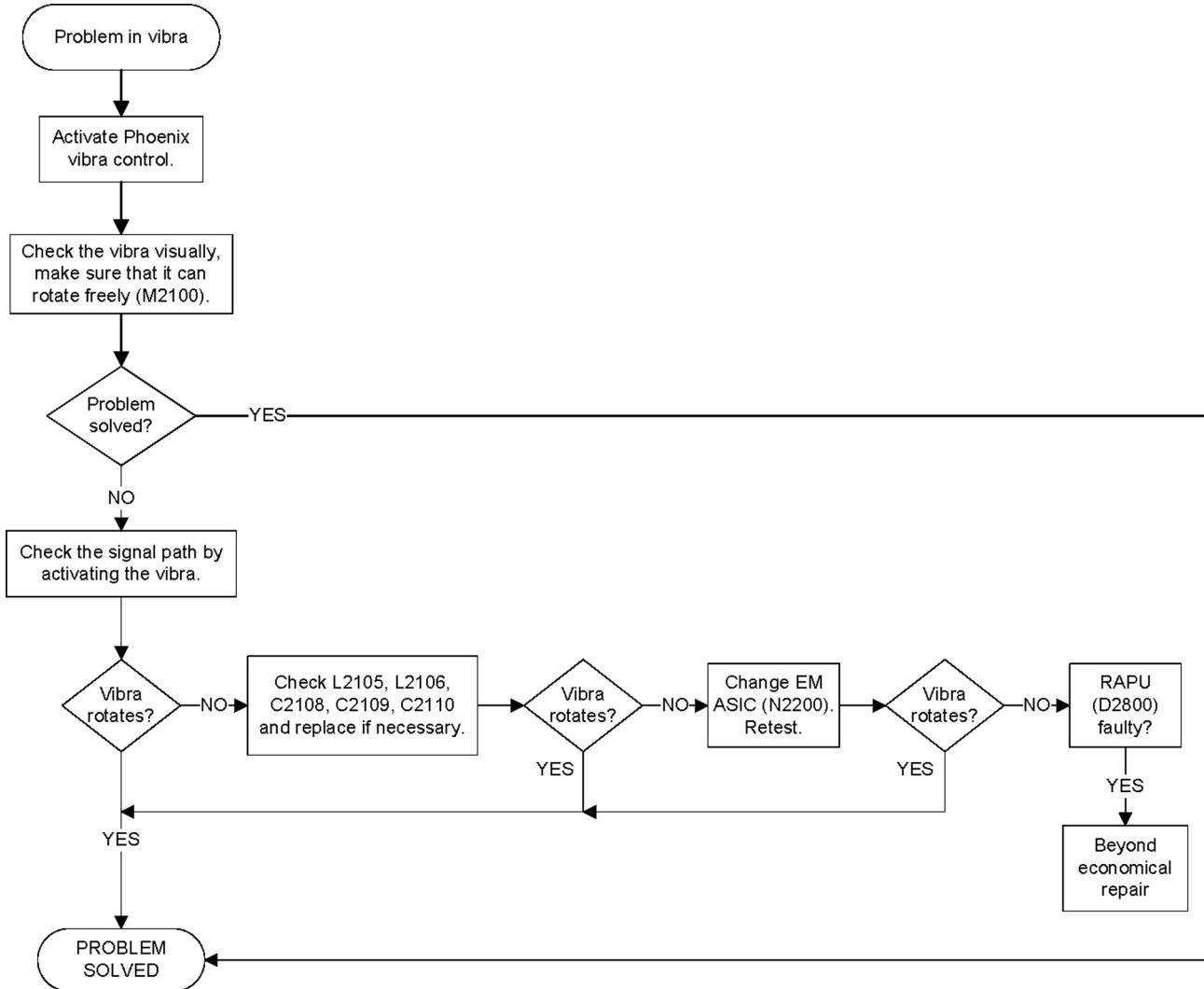
Troubleshooting flow


Internal earpiece troubleshooting

Troubleshooting flow


Internal handsfree (IHF) troubleshooting

Troubleshooting flow


Internal microphone troubleshooting

Troubleshooting flow

Vibra troubleshooting

Troubleshooting flow

■ Connectivity module troubleshooting

Introduction to connectivity module troubleshooting

The BOB1.0M-b module supports WLAN, BT, FMRX and FMTX. From a troubleshooting point of view, WLAN is tested separately, but BT, FMRX and FMTX are checked in parallel.

REFOUT_EXT1 single ended 38.4 MHz analog clock from Linko RF is provided to BOB1.0M-b. The clock request for the reference clock in the BOB1.0M-b module is shared between WLAN and BT blocks. When either system requires a clock, this signal will be active. The CLK_REQ is connected to ExtSysClkReq pin of RAPU. The SLEEPCLK input of 32.768 KHz clock from EM ASIC is used for power management and for FM in low power mode. The internal SMPS supplies the whole BOB1.0M-b solution from the phone battery supply, VBAT, apart from VIO which is needed for interface signal reference levels.

The following figure shows a top level block diagram of the BOB1.0M-b module.

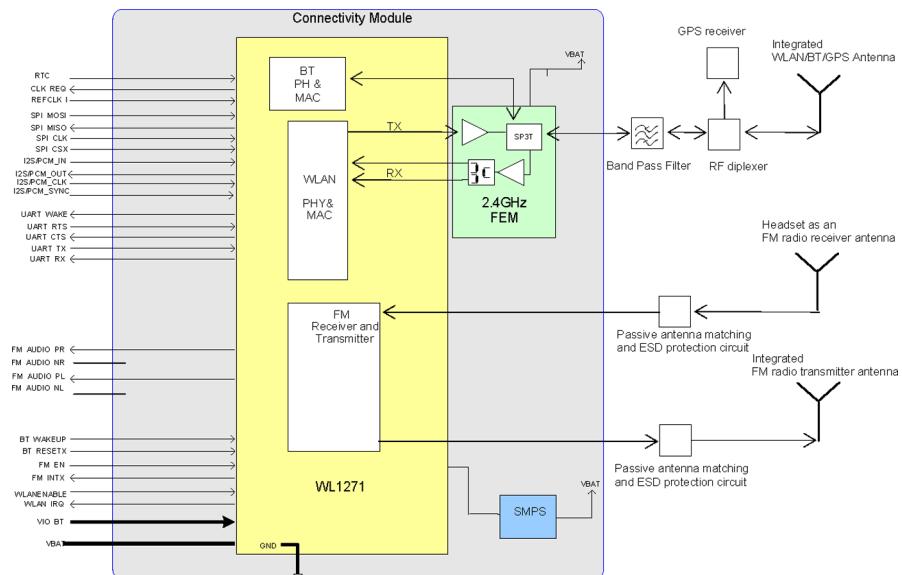


Figure 11 Hardware connections between BB and BOB1.0M-b

Bluetooth/WLAN/GPS antenna

The Bluetooth/WLAN/GPS antenna is product specific (antenna integrated into phone's top cap). On phones with WLAN, the Bluetooth RF signal is routed from the connectivity module through the RF diplexer and a shared Bluetooth/WLAN/GPS antenna is used. The FM receiver RF signal is routed through a product specific FM antenna matching circuit to the phone headset connector. The FM radio audio signal is routed to the headset connector through the BB ASIC shared by the phone audio functions. The camera plate in the back cover works as an FM transmitter antenna.

The antenna positions are presented in the following figure.

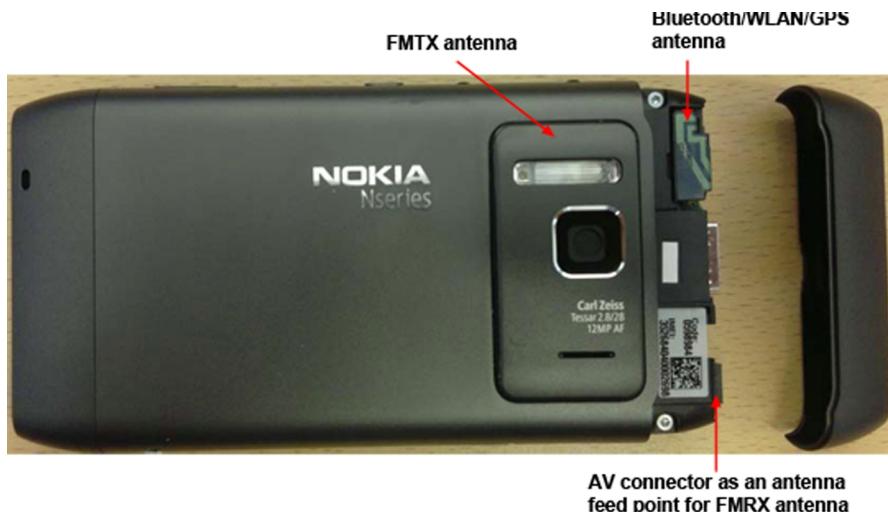


Figure 12 Bluetooth/WLAN/GPS antenna

Component layout and test points of the connectivity module

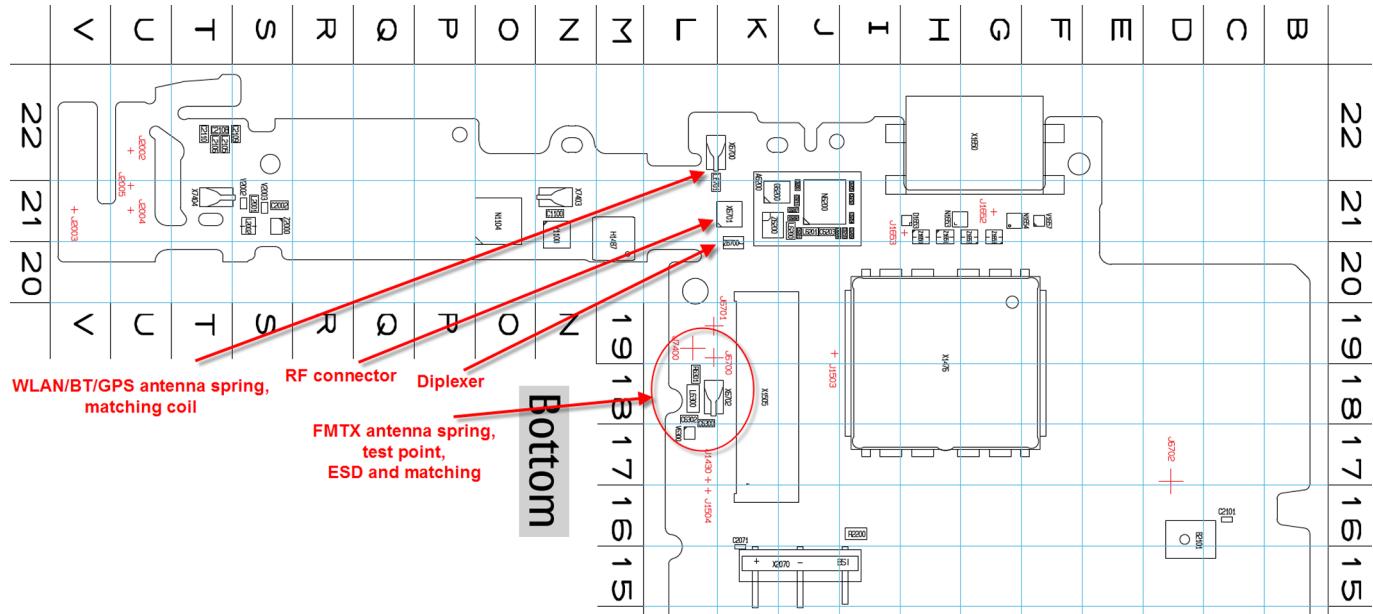


Figure 13 Connectivity module's component layout, bottom side

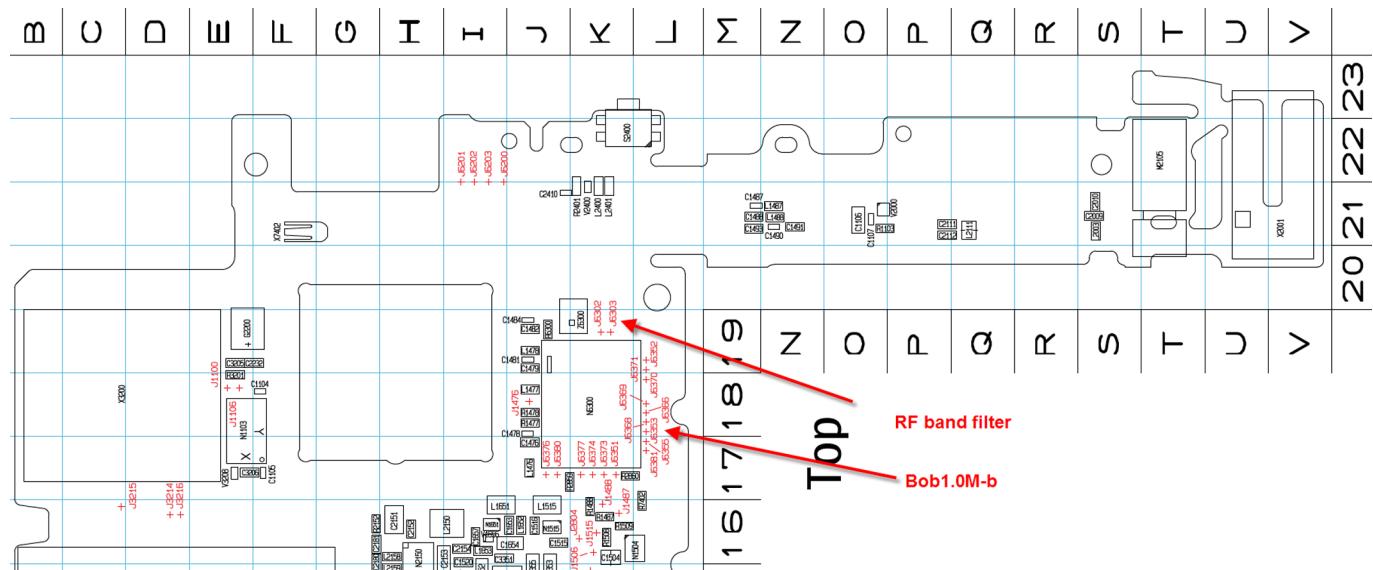


Figure 14 Connectivity module's component layout, top side

Bluetooth/FM radio and WLAN troubleshooting

Introduction to Bluetooth/FM radio troubleshooting

The Bluetooth and FM radio receiver/transmitter functions are combined so these features are checked when troubleshooting.

The following problems can occur with the Bluetooth and FM radio hardware:

Symptom	Problem	Repair solution
Unable to switch on Bluetooth on phone user interface	Open circuit solder joints or component failure of BOB module or SMD components	Replacement of BOB module
Able to send data file to another Bluetooth device, but unable to hear audio through functional Bluetooth headset	Open circuit solder joints or component failure of BOB module (PCM interface)	Replacement of BOB module
Able to switch on Bluetooth on phone user interface, but unable to detect other Bluetooth devices	Open circuit solder joints or detached component in Bluetooth antenna circuit	Repair of Bluetooth antenna circuit
Problems connecting to specific manufacturer/model Bluetooth accessory (specific Bluetooth profile supported by phone and accessory in product specification)	Possible interoperability issue with accessory fixed in recent Nokia phone software release (check Nokia Service Bulletin for the latest information)	Update phone software to the latest version if advised in Nokia Service Bulletin Note: The phone Bluetooth Address and software version are displayed by pressing *#2820# when Bluetooth is on.
Able to turn on FM radio and Bluetooth on phone user interface, but unable to detect local FM radio stations with FM headset inserted	Open circuit solder joints or detached component in FM antenna circuit	Repair of FM receiver antenna circuit
Able to perform scans to detect local FM radio stations with functional FM headset inserted, but unable to hear FM audio through headset	Open circuit solder joints or detached component in FM receiver audio path between Bluetooth/FM ASIC and headset	Repair of FM audio circuit

Users may experience the following problems resulting in functional phones being returned to the repair centre:

Symptom	Problem	Repair solution
Bluetooth feature does not operate as desired with another Bluetooth device	Bluetooth Profile implemented in Bluetooth accessory not supported in Nokia phone	Use Bluetooth accessory with Bluetooth profiles supported by phone
Poor FM radio reception (unable to detect many radio stations)	Nokia headset not being used	Use Nokia headset

Symptom	Problem	Repair solution
Poor FM transmitter range (for example with car radio)	Large path loss between the phone FM transmitter antenna and external FM radio aerial (for example, FM aerial routing inside car is very well screened or greater than 3 metre distance between the phone and FM radio)	Change the setup of aerial on FM radio used for listening to audio

BT and FM radio test coverage

The tests listed in the table below should be performed to verify whether the Bluetooth and FM receiver and transmitter are functional. The use of self tests is described in section *Bluetooth and FM radio self tests in Phoenix*.

Test	Test Coverage	Repair solution
Bluetooth Self Test: ST_LPRF_IF_TEST	Bluetooth-FM ASIC UART interface (controls Bluetooth and FM receiver and transmitter)	Replacement of BOB module (or repair of phone BB)
Bluetooth Self Test: ST_BT_WAKEUP_TEST	Bluetooth ASIC interrupt control interface	Replacement of BOB module (or repair of phone BB)
Bluetooth Self Test: ST_LPRF_AUDIO_LINES_TEST	Bluetooth ASIC PCM interface	Replacement of BOB module (or repair of phone BB)
Bluetooth Functional Test: BER test with BT-Box or functional test with other Bluetooth device	Bluetooth antenna circuit	Repair of Bluetooth antenna circuit (including RF filter or WLAN switch if fitted)
FM Radio Functional Test: Perform scan for local radio stations and check station list displayed on phone	FM receiver antenna circuit	Repair of FM antenna circuit (between BTHFMWLAN ASIC and headset connector)
FM Radio Functional Test: Listen to local radio station	FM receiver audio circuit	Repair of FM receiver audio circuit (between BTHFMWLAN ASIC and headset connector)
FM Transmitter Antenna Test: Read Antenna Tuning Values in Phoenix or functional test transmitting music to nearby radio	FM transmitter antenna circuit and antenna	Replacement of FM transmitter circuit or antenna

The self tests run from Phoenix software are used for fault diagnosis.

If Phoenix software is not available, the functional tests with phone accessories are sufficient to verify the functionality of Bluetooth and FM radio receiver and transmitter.

If Bob1.0M-b module has been replaced, the WLAN tuning must be performed to ensure that the output complies with ETSI/ FCC legal limits.

FMTX troubleshooting faults

Possible faults

Expected fault reports relating to the FMTx 2.1 implementation may consist of one or more of the following;

- 1 No left audio
- 2 No right audio
- 3 No audio
- 4 Can't start FMTx
- 5 Can't locate FM transmission on an FM receiver or no FM transmission
- 6 Distortion on audio
- 7 Poor reception on FM receiver
- 8 No RDS information

Initial fault analysis

Where possible, attempt to reproduce and verify the reported fault. Intermittent problems are likely to be due to bad connections or broken components/solder joints. Any faults relating to poor FM transmitter performance or frequent failure to locate usable frequencies when performing a scan are likely to be due to some kind of antenna issues.

In handsets that utilise an antenna solution in a removable cover it is likely that the connecting interface pins are either damaged, dirty or that the cover fits poorly perhaps due to broken tabs/latching lugs. Poor audio fault reports may also be due to the above antenna issues.

Introduction to WLAN troubleshooting

The following problems can occur with the WLAN hardware:

Symptom	Problem	Repair solution
Unable to switch on WLAN on phone user interface	Open circuit solder joints or component failure of BOB module	Replacement of BOB module or Host
Able to turn on WLAN via phone user interface, but unable to detect any WLAN APs or other WLAN devices	Open circuit solder joints or component failure of BOB module or filter	Replacement of BOB module or filter
Able to turn on WLAN via phone user interface and find APs and other WLAN devices, but not able to connect	Problem with TX part of WLAN circuit	Replacement of BOB module
Slow download speed when using WLAN as connection method	System clock possibly degraded	Change system clock source

Users may experience the following problems resulting in functional phones being returned to the repair centre:

Symptom	Problem	Repair solution
WLAN does not operate as desired with another WLAN device	Other WLAN device is not conforming to ETSI/FCC specifications	Use only certified WLAN products

WLAN test coverage

The tests listed in the table below should be performed to verify whether WLAN is functional. WLAN should be re-tested after repair.

Test	Test Coverage	Repair solution
WLAN Self Test: ST_WLAN_TEST	WLAN SPI and control interface (data interface and control of WLAN)	Replacement of BOB module
Bluetooth Functional Test: BER test with BT-Box or functional test with another Bluetooth device	Antenna connection from module, including filter	Replacement of BOB module or antenna components
WLAN TX Tuning	Checks WLAN TX path up to module output and calibrates the new module if fitted	Replacement of BOB module or antenna components

The self tests run from Phoenix software are used for fault diagnosis.

If Phoenix software is not available, the functional tests with phone accessories are sufficient to verify the functionality of WLAN.

Bluetooth and FM radio self tests in Phoenix

Prerequisites

A flash adapter (or phone data cable) connected to a PC with Phoenix service software is required.

Steps

1. Place the phone in the flash adapter or connect data cable to phone.
2. Start *Phoenix* service software.
3. Choose **File** → **Scan Product**.
4. From the **Mode** drop-down menu, set mode to **Local**.
5. Choose **Testing** → **Self Tests**.
6. In the *Self Tests* window check the following Bluetooth and FM radio related tests:
 - **ST_LPRF_IF_TEST**
 - **ST_LPRF_AUDIO_LINES_TEST**
 - **ST_BT_WAKEUP_TEST**

7. To run the tests, click **Start**.

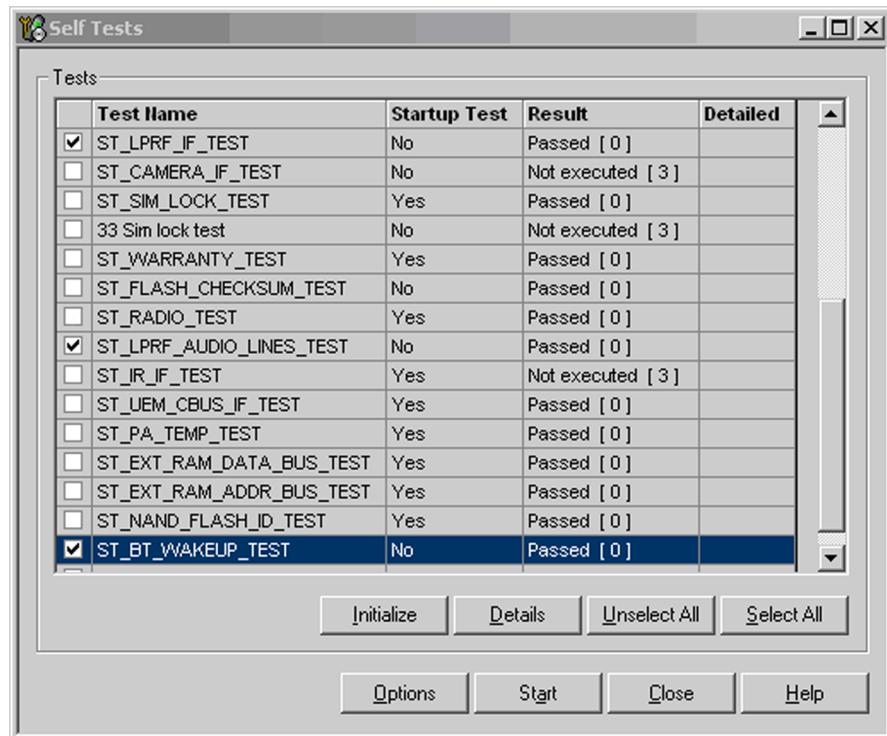


Figure 15 Bluetooth and FM radio self tests in *Phoenix*

WLAN self test in Phoenix

Prerequisites

A flash adapter (or phone data cable) connected to a PC with Phoenix service software is required.

Steps

1. Place the phone in the flash adapter or connect data cable to phone.
2. Start *Phoenix* service software.
3. Choose **File** → **Scan Product**.
4. From the **Mode** drop-down menu, set mode to **Local**.
5. Choose **Testing** → **Self Tests**.
6. In the *Self Tests* window check the following WLAN test:
 - **ST_WLAN_TEST**
7. To run the test, click **Start**.

Bluetooth BER test in Phoenix

Prerequisites

GBT-9, or SB-6 Bluetooth test box (BT-box) is required to perform a BER test. If a BT-box is not available, Bluetooth functionality can be checked by transferring a file to another Bluetooth phone.

Steps

1. Connect data cable to phone.
2. Start *Phoenix* service software.

3. Choose **File → Scan Product**.
4. Choose **Testing → Bluetooth LOCALS**.
5. Locate the BT-box serial number (12 digits) found in the type label on the back of the JBT-9, or SB-6 Bluetooth test box.
6. In the Bluetooth *LOCALS* window, write the 12-digit serial number on the *Counterpart BT Device Address* line.
7. Place the BT-box near (within 10 cm) of the phone and click **Start BER Test**.

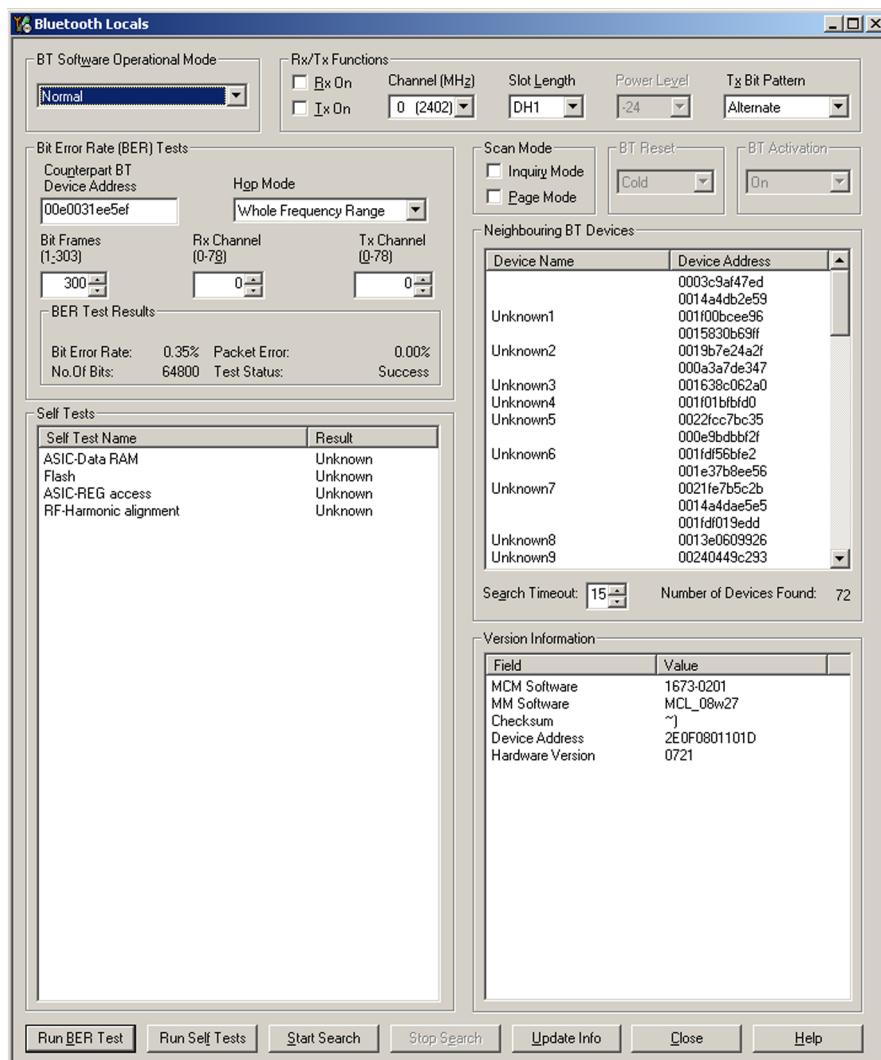


Figure 16 Bluetooth BER test in Phoenix

FMRX radio receiver testing

Steps

1. Set signal generator parameters:
 - FM modulation on
 - Frequency 100MHz
 - FM deviation 22kHz
 - Modulation frequency 1kHz
 - RF level should be varied during the test to obtain good audio signal quality

- Connect suitable antenna to signal generator

Note: You may alternately use a known good FM radio broadcast as a test signal.

2. Attach the Nokia headset to the phone's AV connector.
3. Use Scroll button to autotune to the radio frequency.
4. Set volume to suitable level.
5. Check audio quality with a headset.

FMTX transmitter antenna connectivity test in Phoenix

Context

The purpose is to check the connectivity between the FM TX antenna and Bob ASIC. The FM transmitter antenna can be checked by reading the 'Antenna Tuning Values' displayed in the FM TX Control test display in Phoenix. This test can be performed with the product specific FM TX antenna assembled. Alternatively, this test can be performed with the FM antenna pins terminated with the external impedance provided by the MJ-241 test jig, but then this test will not test the phone's own FMTX antenna connectivity anymore.

Steps

1. Connect data cable to phone including FM transmitter antenna.
2. Start *Phoenix* service software.
3. Choose **File → Scan Product**.
4. Choose **Testing → FMTX Control**.
5. Set frequency to near the bottom of the band (92 MHz) and press the **Activate** button.

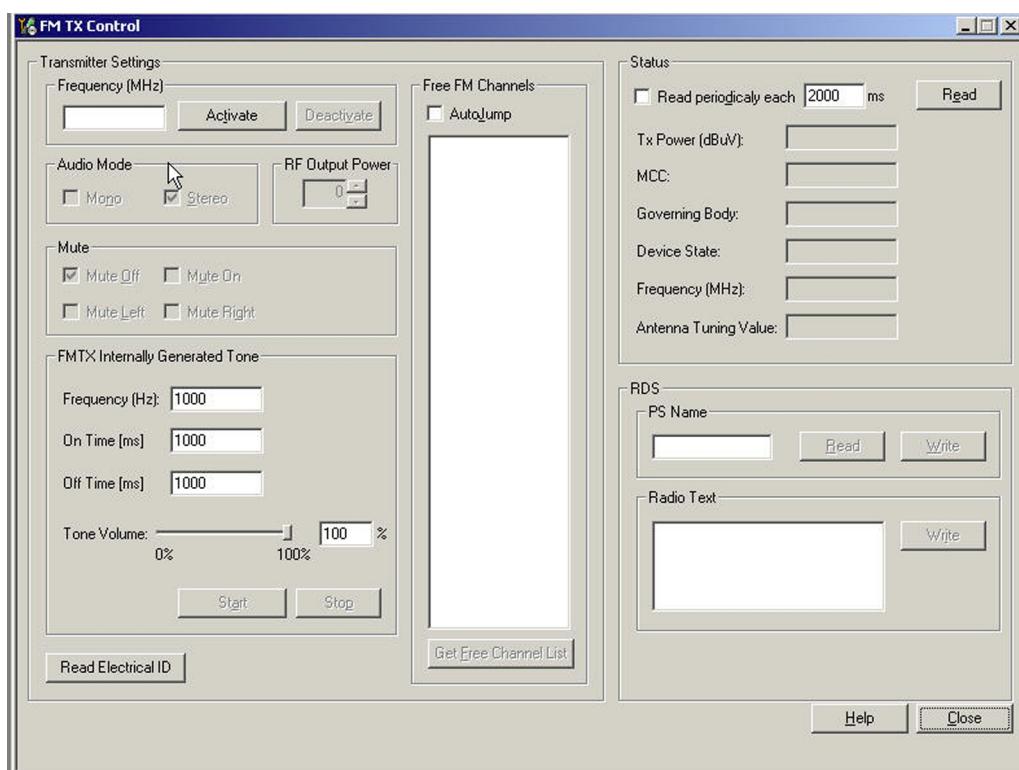


Figure 17 FMTX transmitter antenna connectivity test in Phoenix

6. Set the 'RF Output Power' to 120uV.
7. Press the **Read** button and record 'Antenna Tuning Value'.

8. Set frequency to near the top of the band (107 MHz) and press the **Activate** button again.
9. Press the **Read** button and record 'Antenna Tuning Value'.

Results

The test limits for the antenna tuning varactor value are product specific.

Table 9 Antenna tuning value limits for RM-596

Frequency	Antenna tuning value	
	Low limit	High limit
92 MHz	80	126
107 MHz	35	1

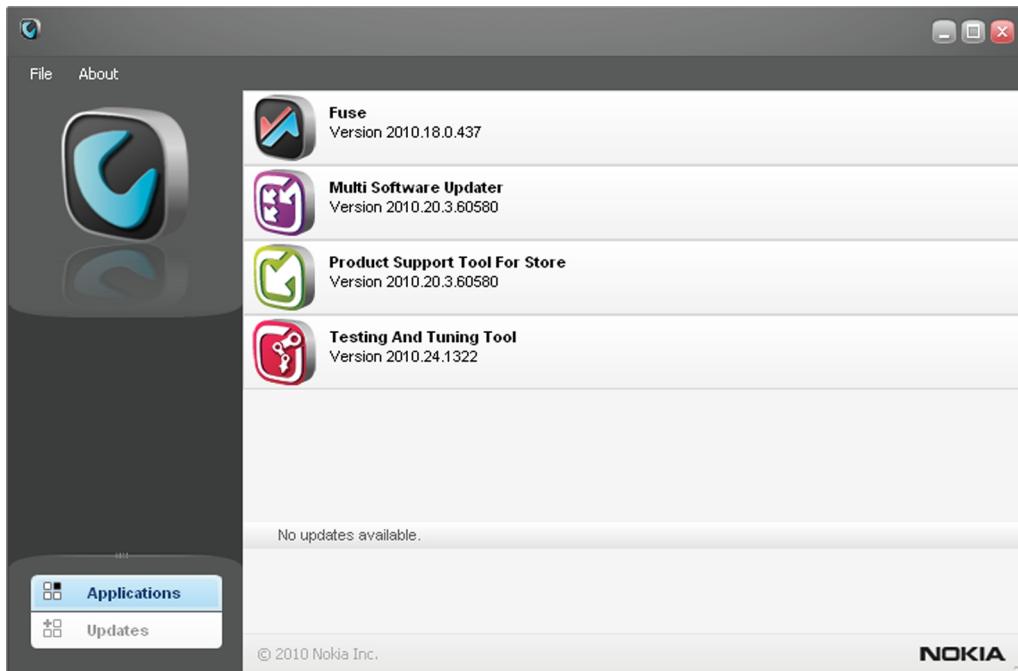
The default value (displayed when there is no antenna present) is 0...2. If both values are 0...2, this indicates there is a poor connection between the FMTX antenna and the Bob ASIC.

FMTX transmitter tuning and power measurement in Testing and Tuning Tool

Context

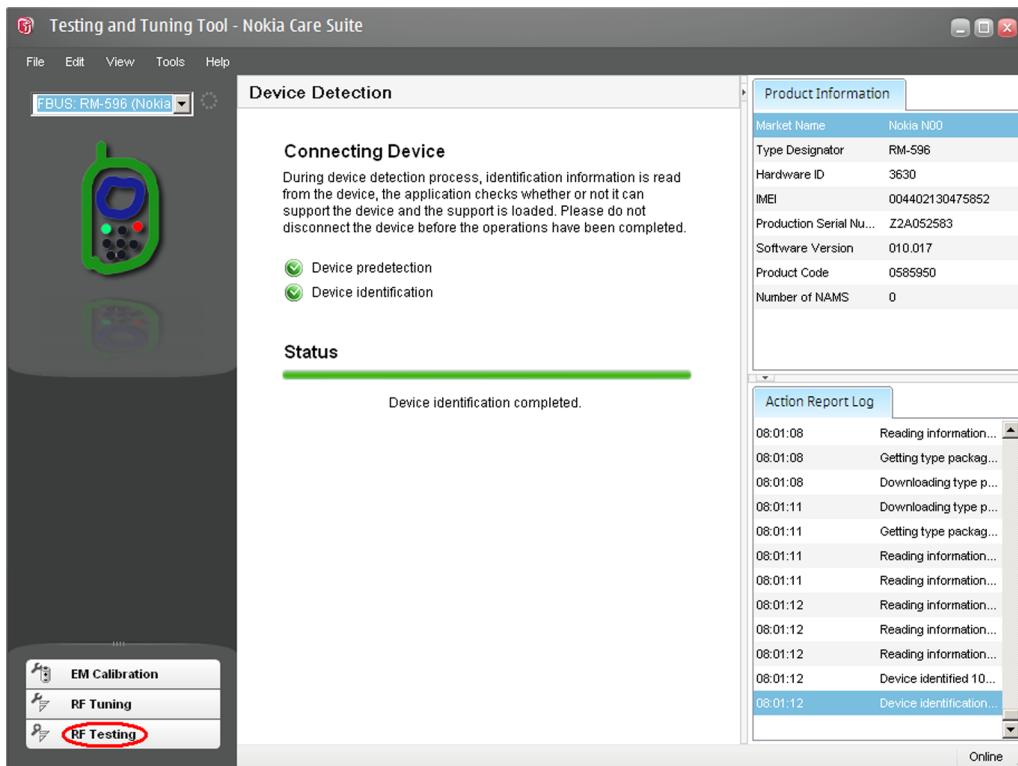
Note: RF cables and adapters have some losses. They have to be taken into account when the FMTX is measured. Approximately, the FMTX RF loss in the MJ-241 test jig is around 24 dB. Cable attenuations have to be taken into account separately.

FMTX has been tuned correctly in production. There is no reason to do re-calibration unless the memory (D3000) is corrupted. But it is a good way to ensure the RF performance by these tuning and power measurements.

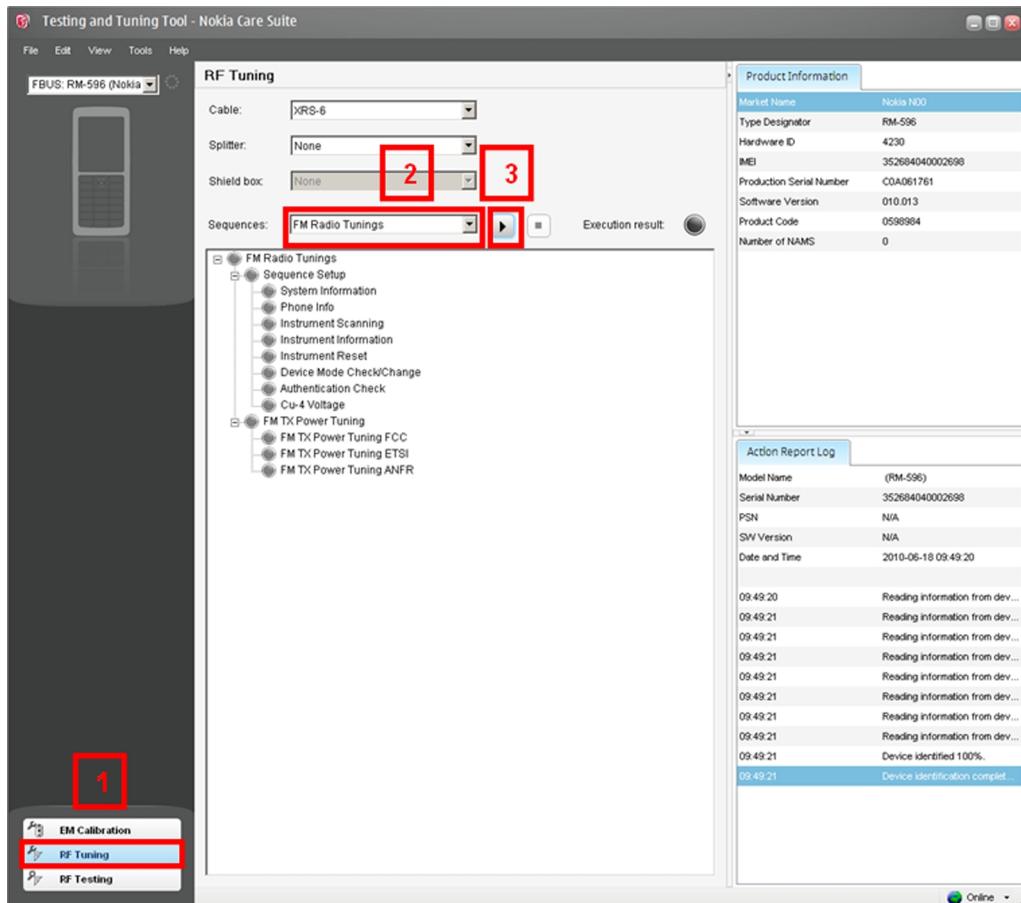

FMTX can be tuned and measured automatically with Testing and Tuning Tool. Actually it performs output power level writings and measurements for FMTX. The results are displayed and logged in a result file, if initiated.

For hardware requirements for auto tuning, please refer to *RF testing and BB/RF tuning concept with module jig* in section 'Service Tools and Service Concepts'.

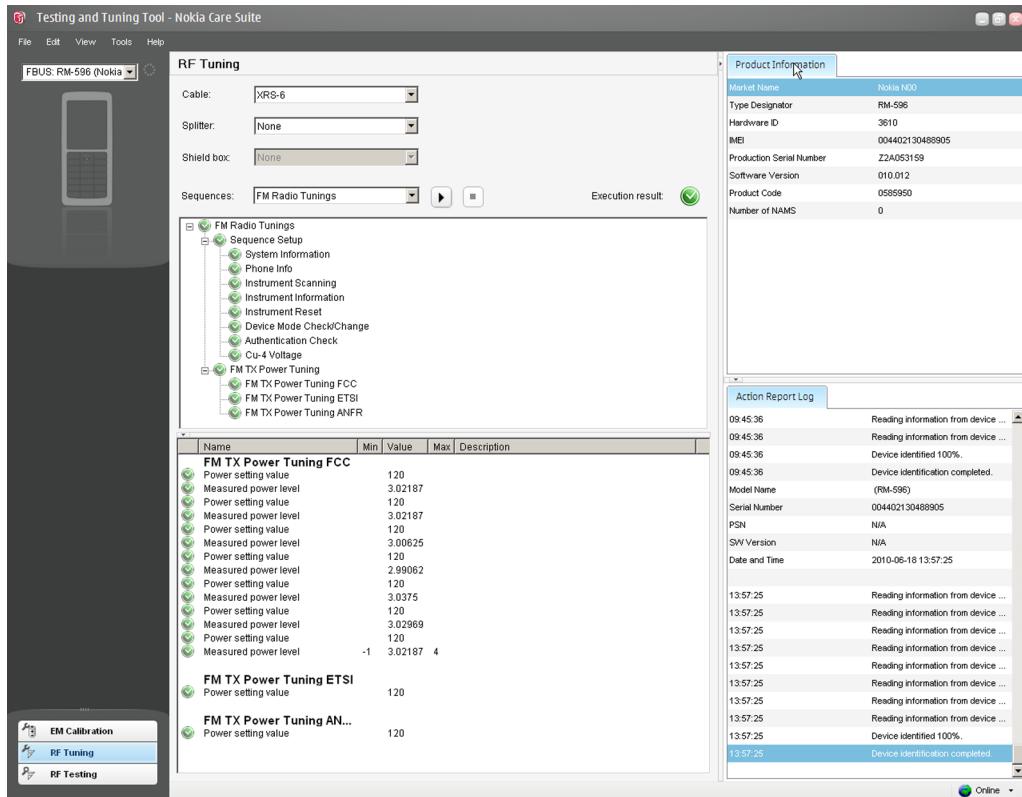
Steps


1. Make sure the phone is connected to the PC.
2. Connect the RF cable between the MJ-241 test jig (SMA RF connector located next to the BT/WLAN/GPS antenna connector) and the communication tester.

3. Start *Nokia Care Suite* application.



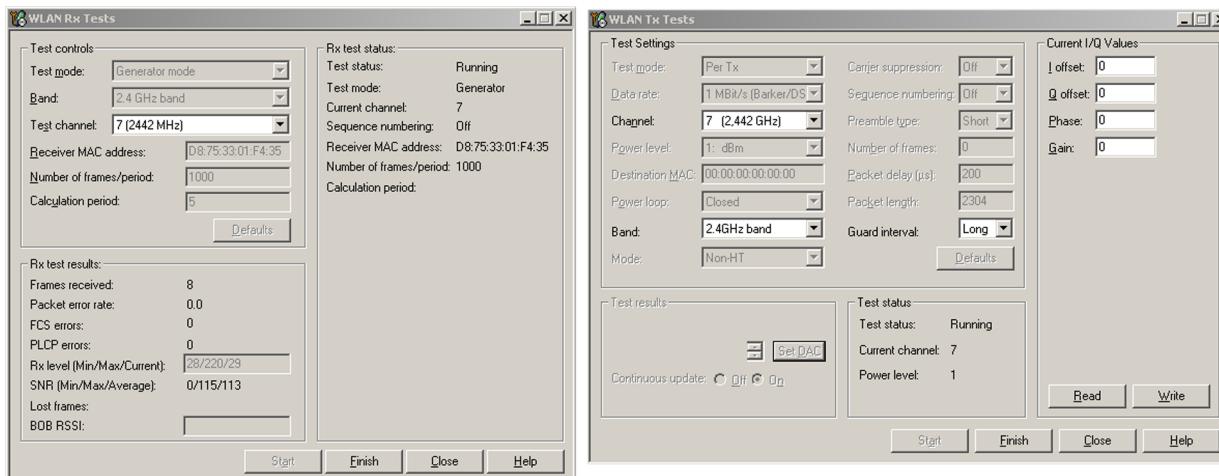
4. To open the application, double-click the **Testing And Tuning Tool** icon.


5. If the application is able to find a connected phone, the following view will open:

6. Click on the **RF Tuning** button and select from the drop-down menu:

7. RF tunings will be ready when all the tunings and measurements are green in the tool window and no errors occur.

WLAN TX and RX testing in Phoenix


Context

The basic WLAN RX and TX functionality can be checked with Phoenix.

Steps

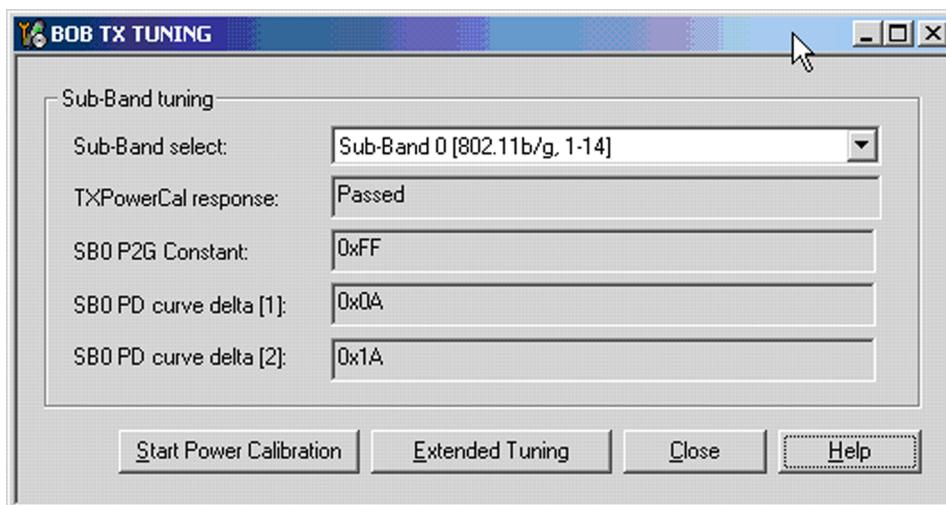
1. Place the phone in the flash adapter or connect data cable to phone.
2. Start *Phoenix* service software.
3. Choose **File** → **Scan Product**.

4. Choose **Testing → WLAN RX Tests** or **WLAN TX Tests**. See the following figures.

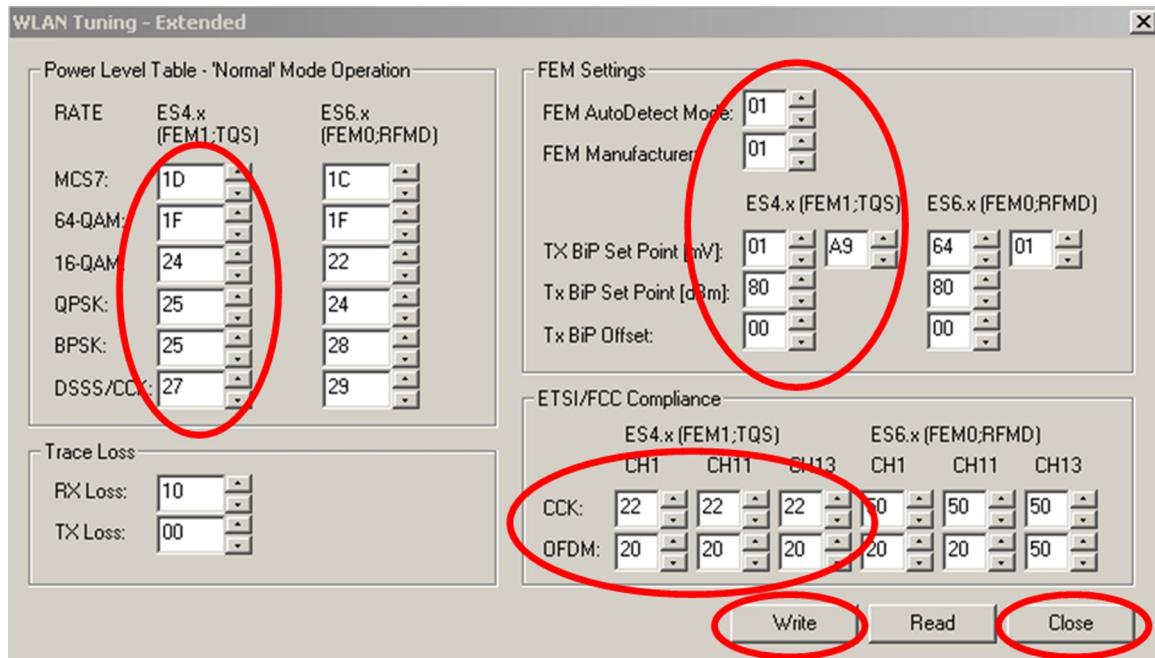
WLAN TX BiP testing procedure in Phoenix

Context

Note: This is an alternative procedure to tune the WLAN TX. The other, recommended procedure is described in chapter [WLAN TX BiP testing procedure in Testing and Tuning Tool \(page 3-72\)](#).


Note: No external measurement equipment is required as the calibration is completely handled internally. RF cable and adapter losses do not need to be taken into account while WLAN TX tuning is proceeded.

WLAN TX has been BiP (Build in Production line testing) tuned correctly in production. There is no reason to do re-calibration unless the Bob1.0M-b (N6300) is changed or memory (D3000) is corrupted.


WLAN TX can be tuned automatically with Testing and Tuning Tool. It performs calibrations and tunings of WLAN TX. The results are displayed and logged in a result file, if initiated.

Steps

1. Place the phone in the flash adapter or connect data cable to phone.
2. Start *Phoenix* service software.
3. Choose **File → Scan Product**.
4. Choose **Tuning → WLAN_TX_TUNING**. See the following figure.

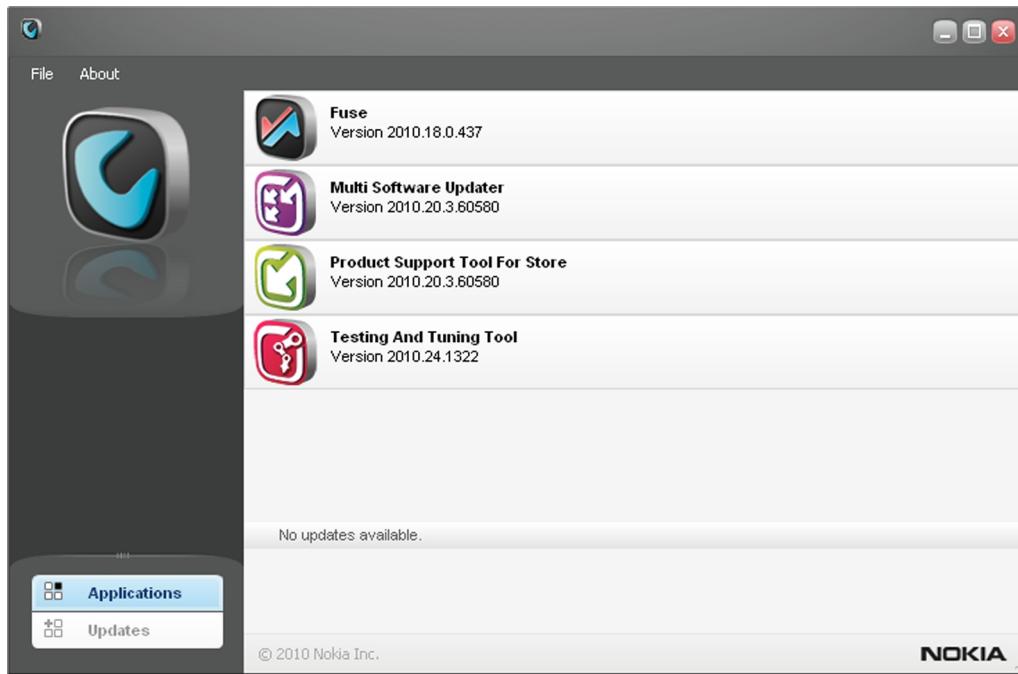
5. Select "Sub-Band 0" as indicated in the figure.
6. Open the **Extended Tuning** menu. See the following figure.

7. Type the correct tuning values. The values are circled in the figure above.
8. Click **Write** and **Close**.
9. Click **Start Power Calibration** and read the result from the **Result** box.
10. If TXPowerCal response returns 'Passed' results, the WLAN TX BiP test is successful.

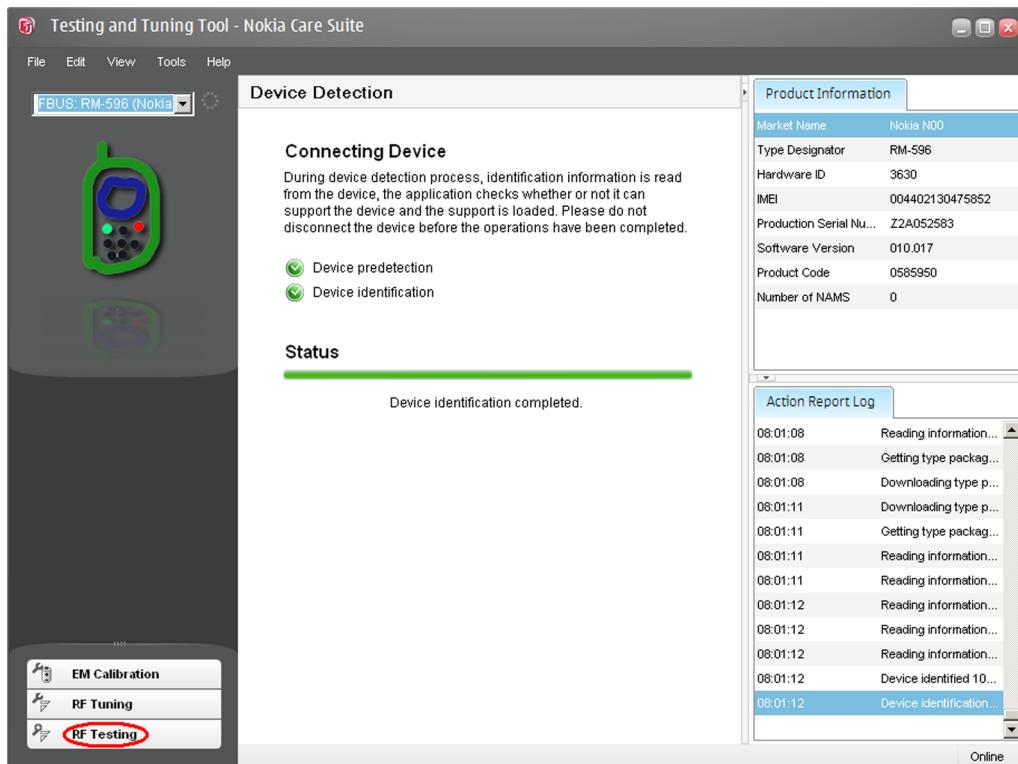
WLAN TX BiP testing procedure in Testing and Tuning Tool

Context

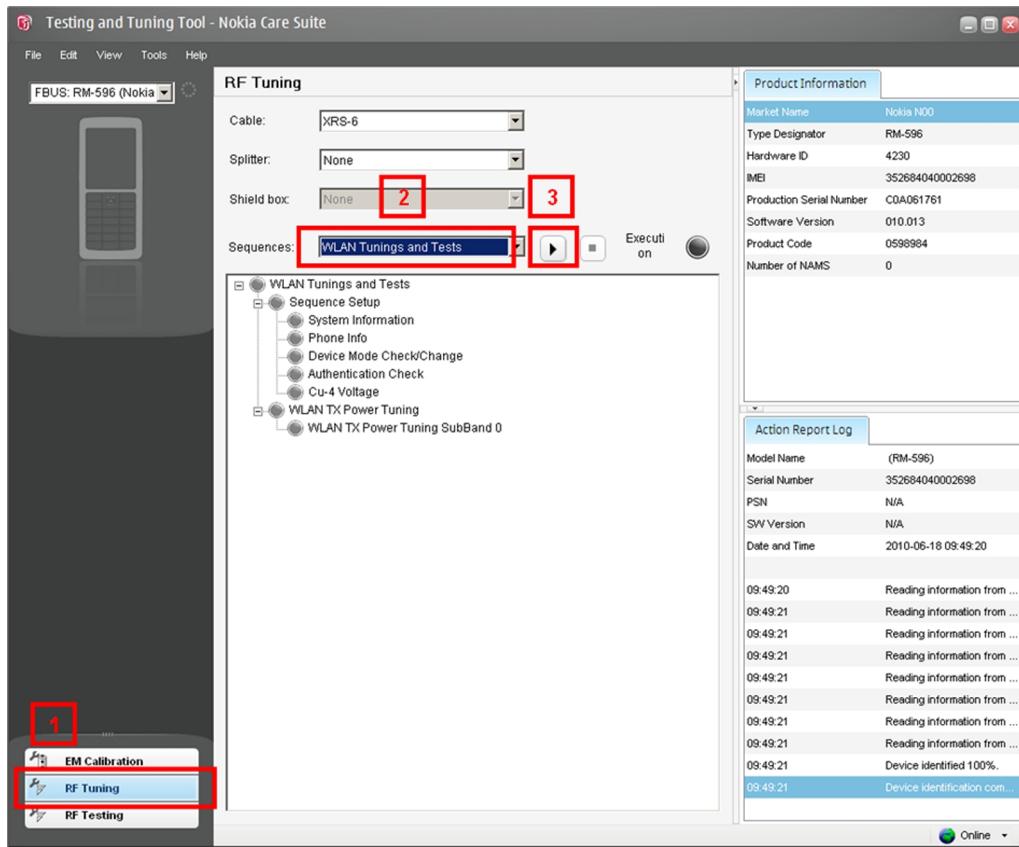
Note: No external measurement equipment is required as the calibration is completely handled internally. RF cable and adapter losses do not need to be taken into account while WLAN TX tuning is proceeded.

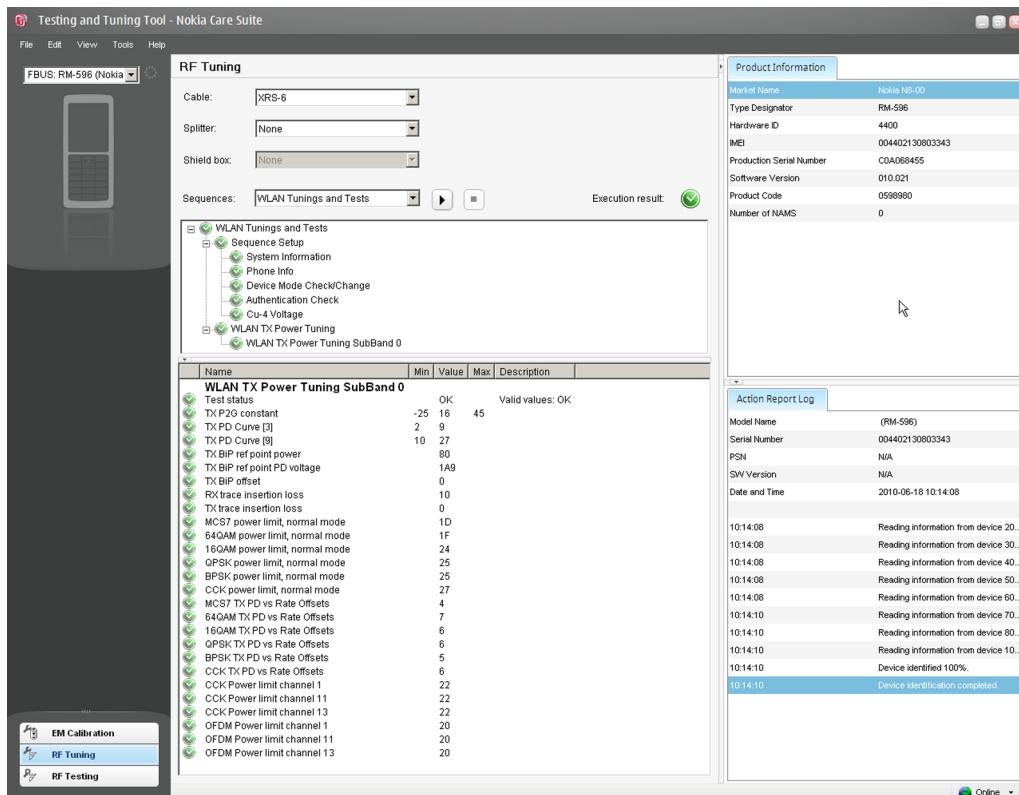

WLAN TX has been BiP (Build in Production line testing) tuned correctly in production. There is no reason to do re-calibration unless the Bob1.0M-b (N6300) is changed or memory (D3000) is corrupted.

WLAN TX can be tuned automatically with Testing and Tuning Tool. It performs calibrations, tunings and measurements of WLAN TX. The results are displayed and logged in a result file, if initiated.

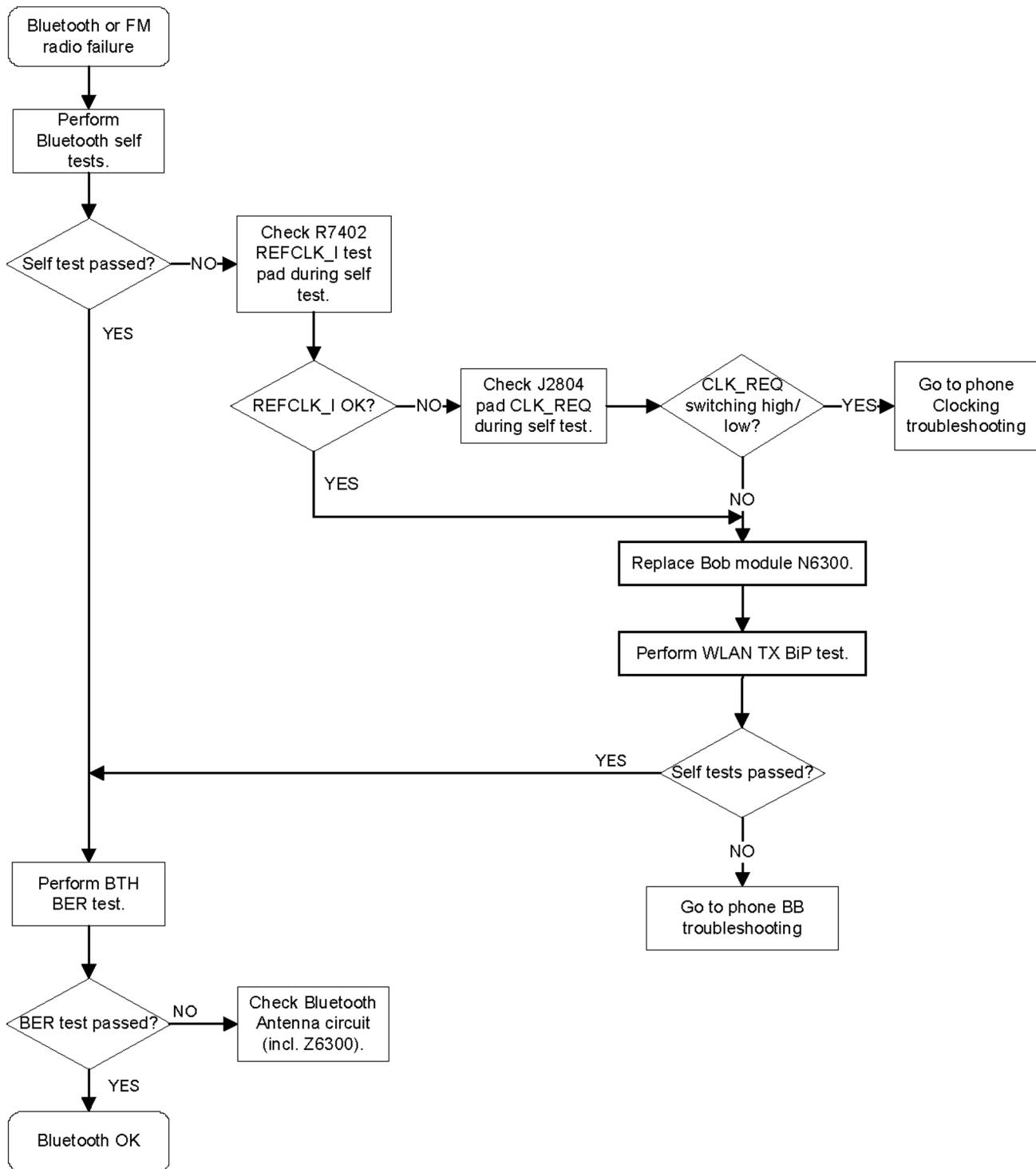

Steps

1. Make sure the phone is connected to the PC.

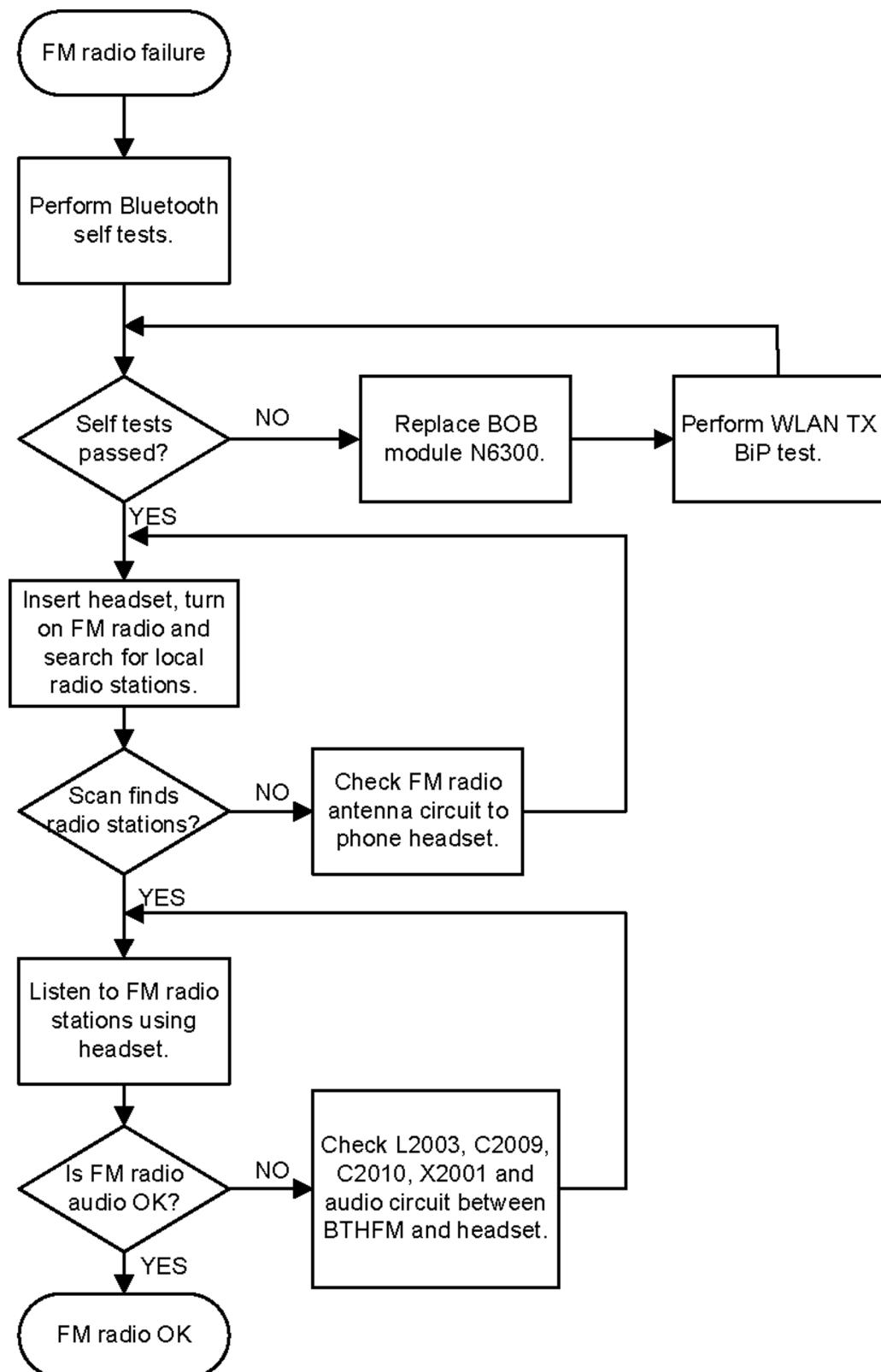

2. Start *Nokia Care Suite* application.


3. To open the application, double-click the **Testing And Tuning Tool** icon.
4. If the application is able to find a connected phone, the following view will open:

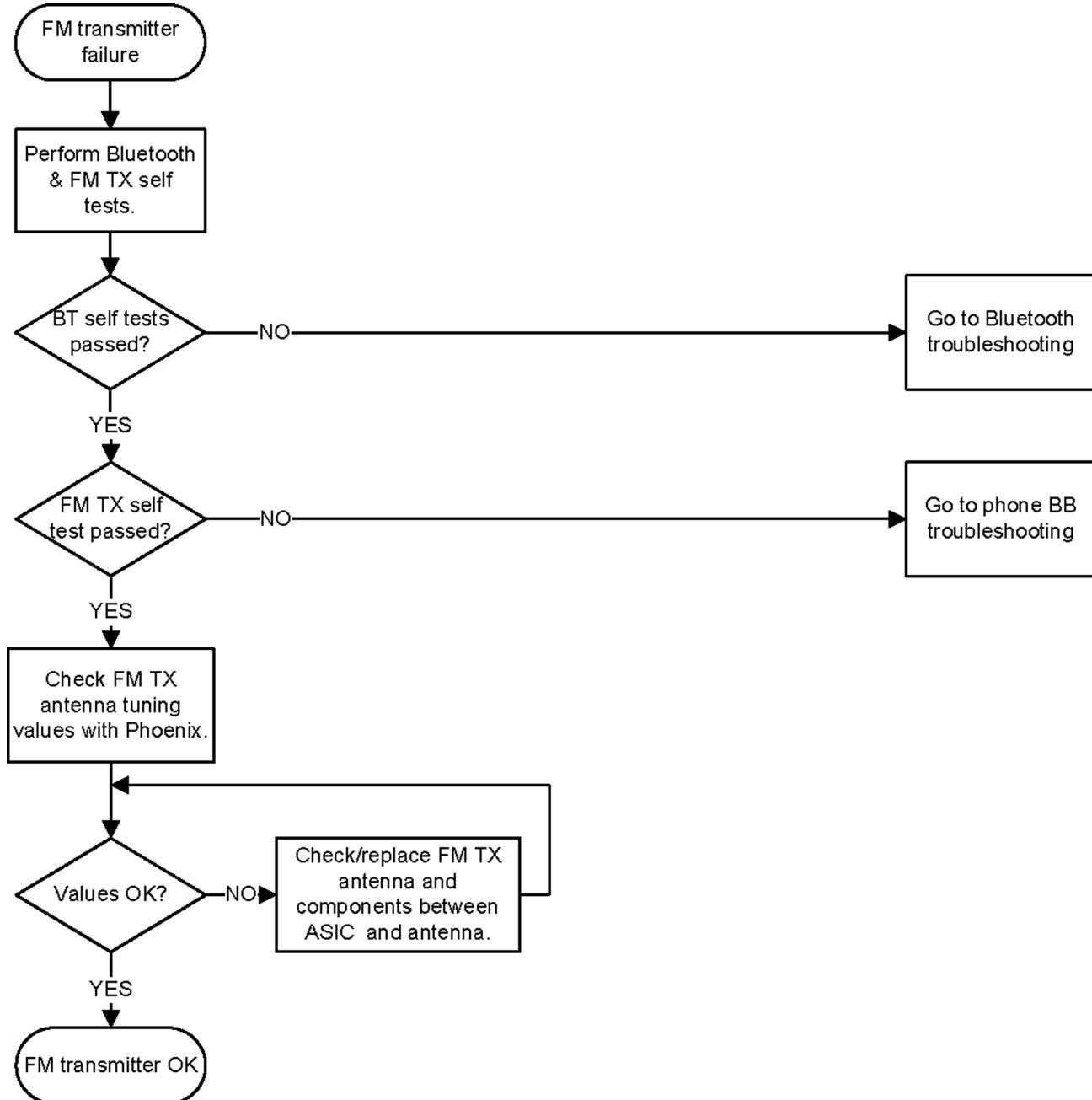
5. Click on the **RF Tuning** button and select from the drop-down menu:


6. RF tunings will be ready when all the tunings and measurements are green in the tool window and no errors occur.

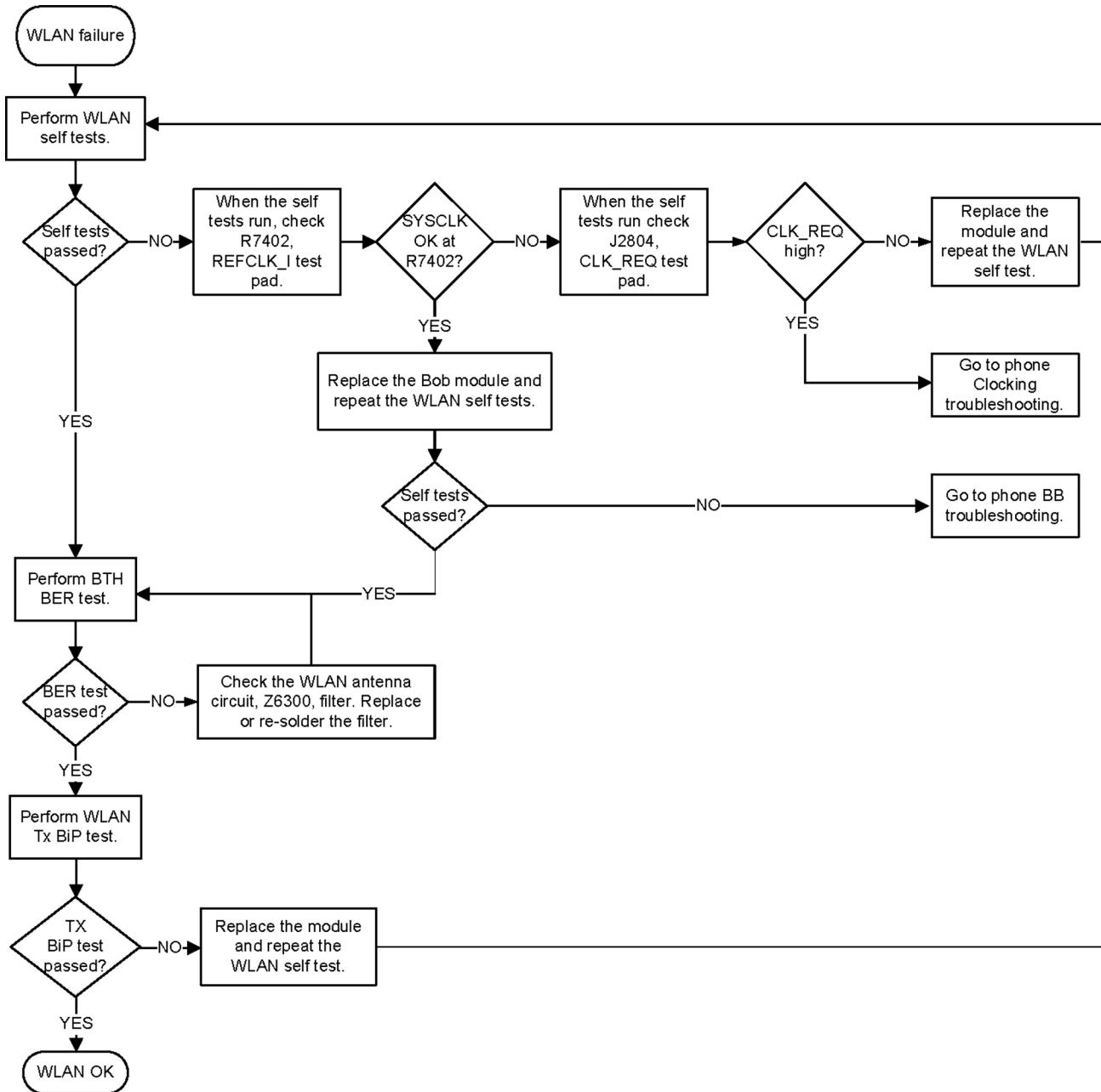
7. If errors do happen, failed tuning/testing steps are marked with a red color and more detailed results are shown on the screen.


Bluetooth troubleshooting

Troubleshooting flow


FMRX receiver troubleshooting

Troubleshooting flow


FMTX transmitter troubleshooting

Troubleshooting flow

WLAN troubleshooting

Troubleshooting flow

GPS troubleshooting

Introduction to GPS troubleshooting

GPSCost4.1D is a single chip GPS receiver, comprising both RF and BB blocks integrated in a single digital die. GPSCost4.1D is connected to RAPU ASIC via I2C_1 and some GENIOs. GPSCost4.1D operates in Multi-master mode and the REF clock is requested via AGPS_CLK_REQ signal connected to RAPU genio46. REFOUT_EXT2 single ended 38.4 MHz analog clock from Linko RF is provided to GPSCost4.1D.

The GPS components are located on the bottom side of the PWB. Satellite signals are picked up by the Bluetooth/WLAN/GPS antenna in the top end cap. The signal is then routed through a diplexer before being processed by the GPS5350 receiver ASIC.

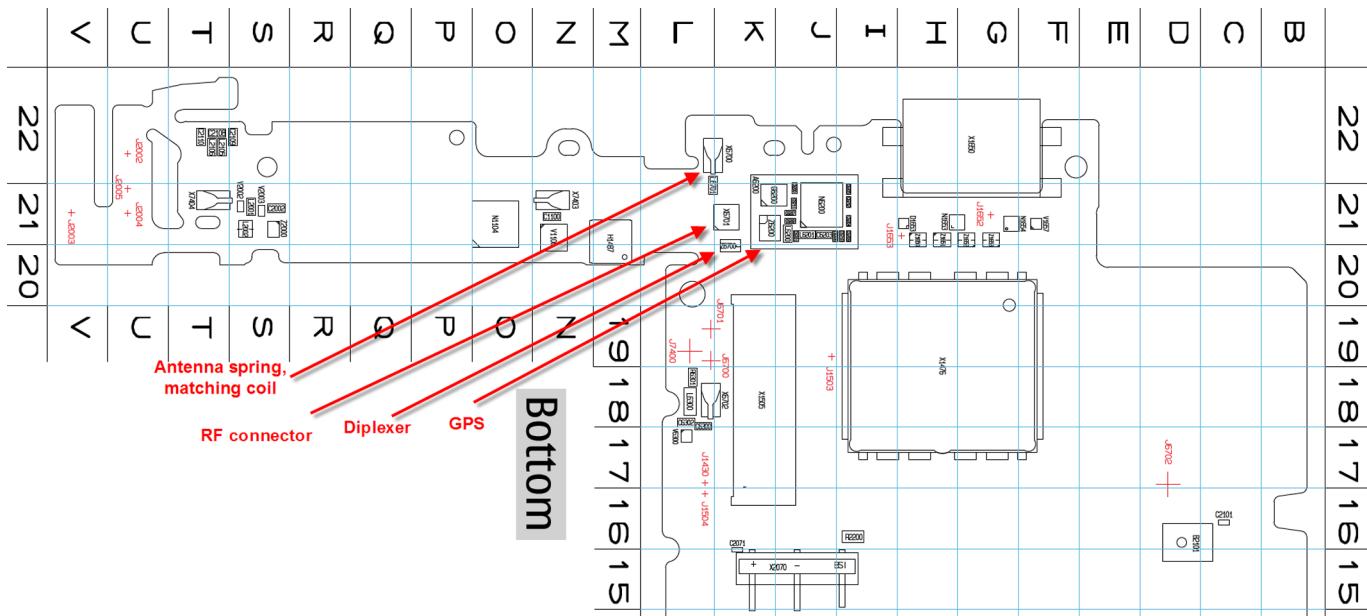


Figure 18 Component layout, bottom side

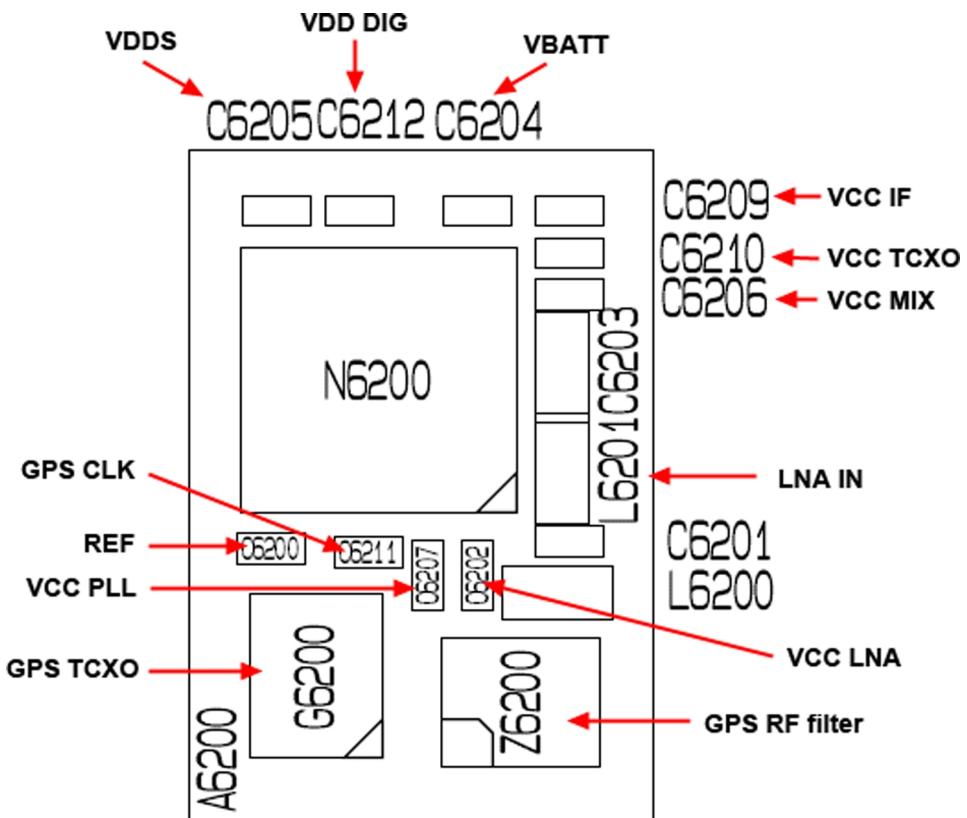


Figure 19 GPS layout and basic test points

GPS settings for Phoenix

Quick Test window

This test will perform 3 tests in one: Self test, Oscillator Test and CW Test and will provide a Pass/Fail Response for each. The HW Self Test confirms basic communication with the GPS ASIC. The oscillator test confirms the frequency accuracy of the GPS TCXO against the Ref_Clk. The CW Test confirms end-to-end connectivity between the GPS antenna and the GPS ASIC. It also contains a receive button.

Before this test is performed a known good phone should be tested in order to calibrate the setup. The signal level of the Signal Generator should be adjusted so a reading of SNR 35 dB is achieved with the reference unit. A good starting point is to set up the signal generator to -50 dBm.

These checks are part of *GPS failure troubleshooting*.

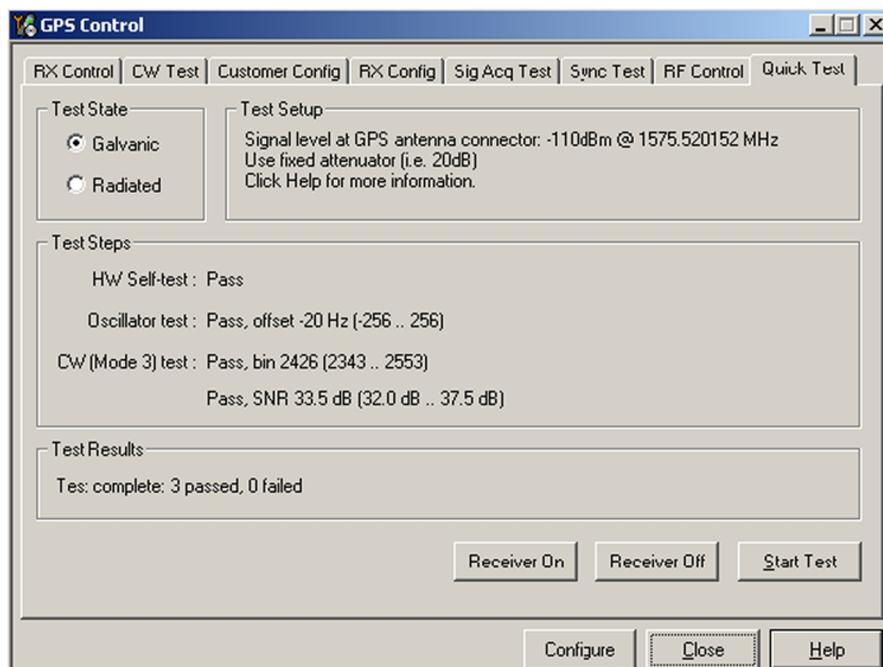


Figure 20 GPS Quick Test window

GPS control

Prerequisites

A flash adapter with RF connector connected to a PC with Phoenix service software is required. The GPS signal should be connected to the RF connector. Calibrate the signal level with a known good phone. Signal level will be high (approx -45 dBm) because it is a leakage connection.

Context

Use the following to test GPS using Phoenix.

Steps

1. Place phone to Flash Adaptor.
2. Start Phoenix service software.
3. From the **File** menu, select **Scan Product** and check that the correct product version is displayed.

4. From the **Testing** menu, select **GPS Control**. This opens up *GPS Control* dialogue box, as shown in the figure below, and enables the GPS.

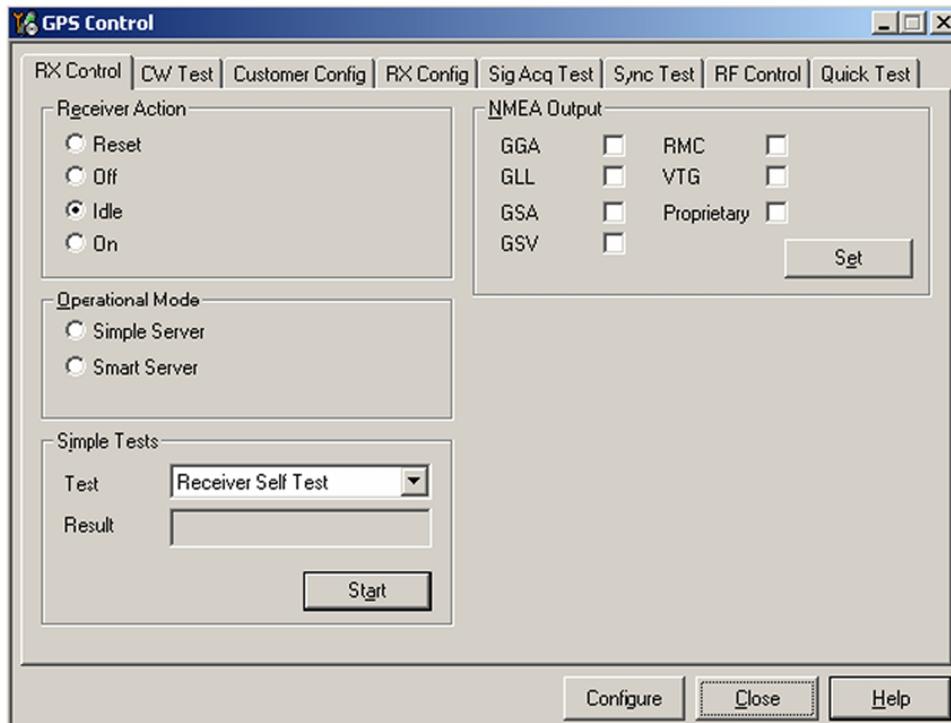
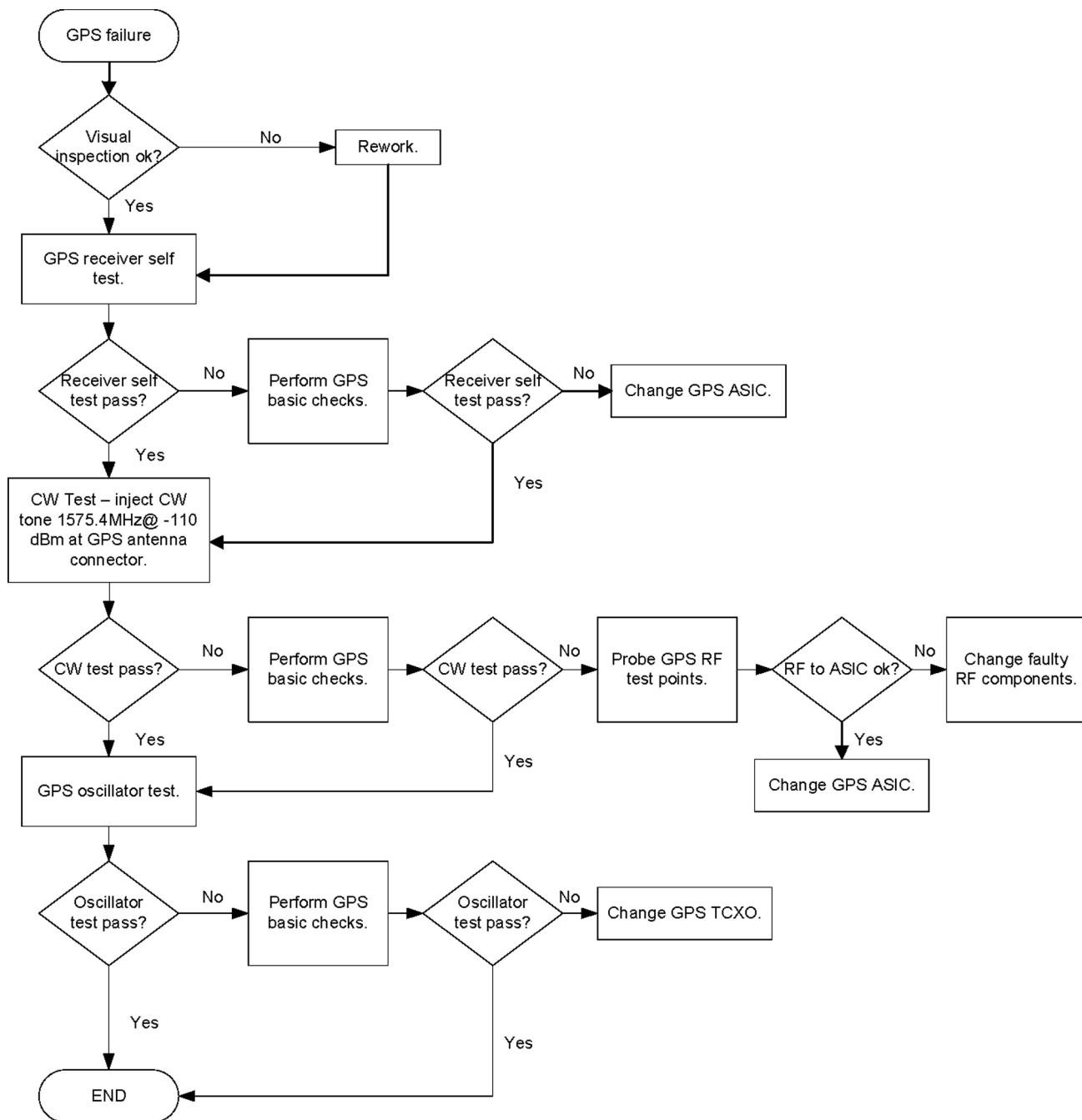


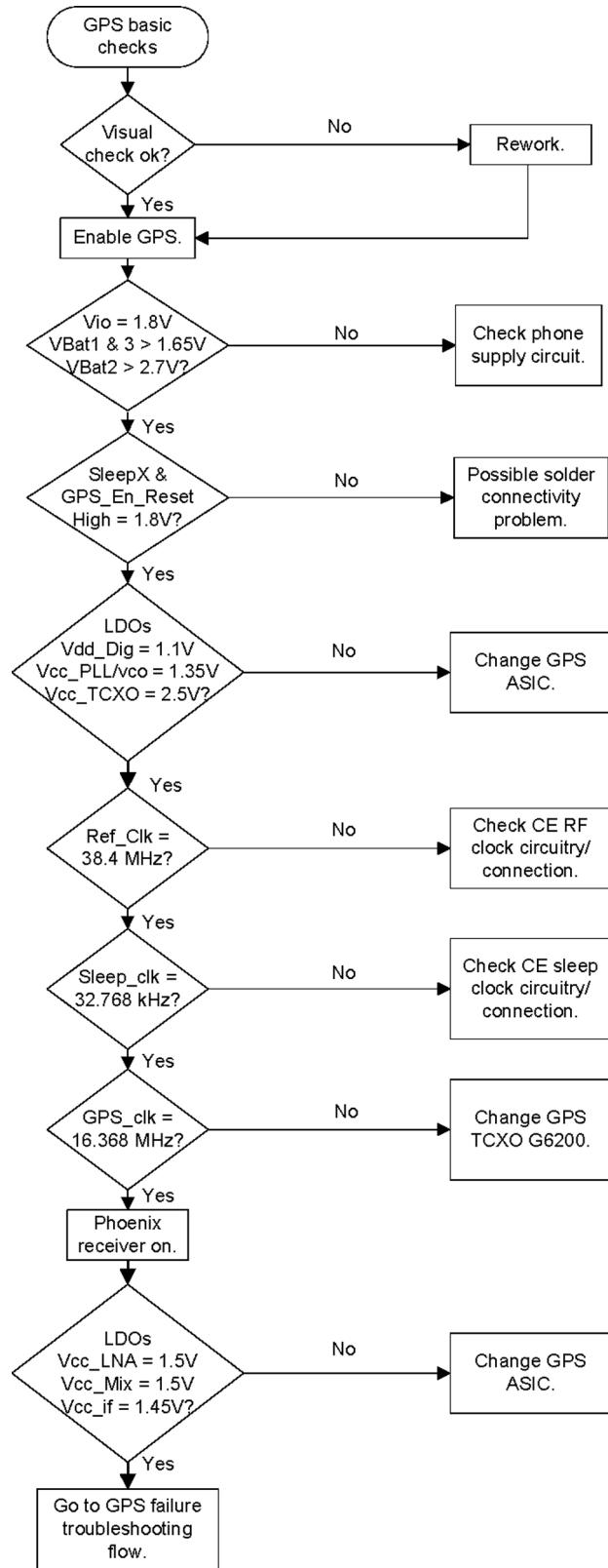
Figure 21 GPS Control dialogue box

Select **Idle** to confirm the GPS is enabled and is in idle mode; at this point all clocks should be present, GPS_En_Reset & SleepX should be high, and Vdd_Dig, Vcc_TCXO & Vcc_PLL/VCO will be present.


Receiver On turns on all RF sections of the ASIC and so all LDOs will be on.

GPS failure troubleshooting

Context


GPS troubleshooting is broken down into two parts: general GPS failure troubleshooting and GPS basic checks troubleshooting. The GPS failure troubleshooting flow can be followed and, where applicable, will feed into the GPS basic checks troubleshooting flow.

Troubleshooting flow

GPS basic checks troubleshooting

Troubleshooting flow

■ Baseband manual tuning guide

Certificate restoring for BB5 products

Context

This procedure is performed when the device certificate is corrupted for some reason.

All tunings (RF & Baseband, UI) must be done after performing the certificate restoring procedure.

The procedure for certificate restoring is the following:

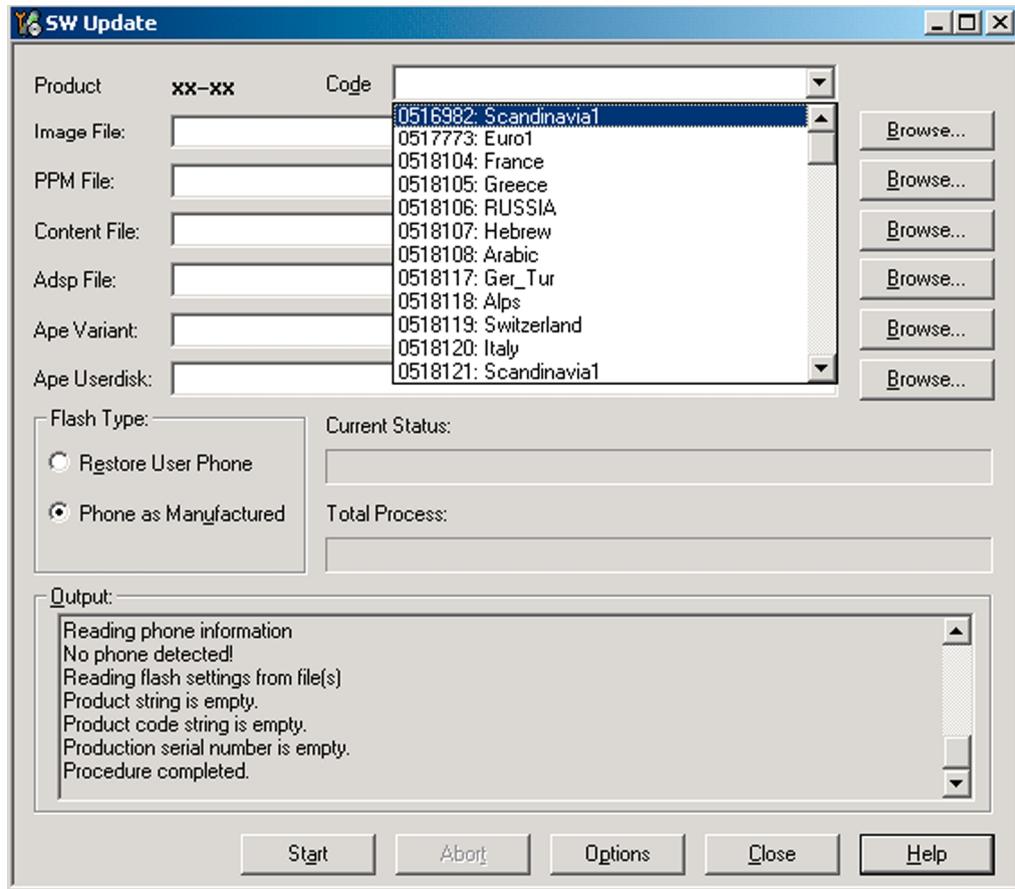
- Flash the phone with the latest available software using FPS-20 or FPS-21.
- Create a request file.
- Send the file to Nokia by e-mail. Use the following addresses depending on your location:
 - APAC: sydney.service@nokia.com
 - CHINA: repair.ams@nokia.com
 - E&A: salo.repair@nokia.com
 - AMERICAS: fls1.usa@nokia.com
- When you receive a reply from Nokia, carry out certificate restoring.
- Tune the phone completely.

Note: SX-4 smart card is needed.

- If the phone resets after certificate restoring, reflash the phone again.

Required equipment and setup:

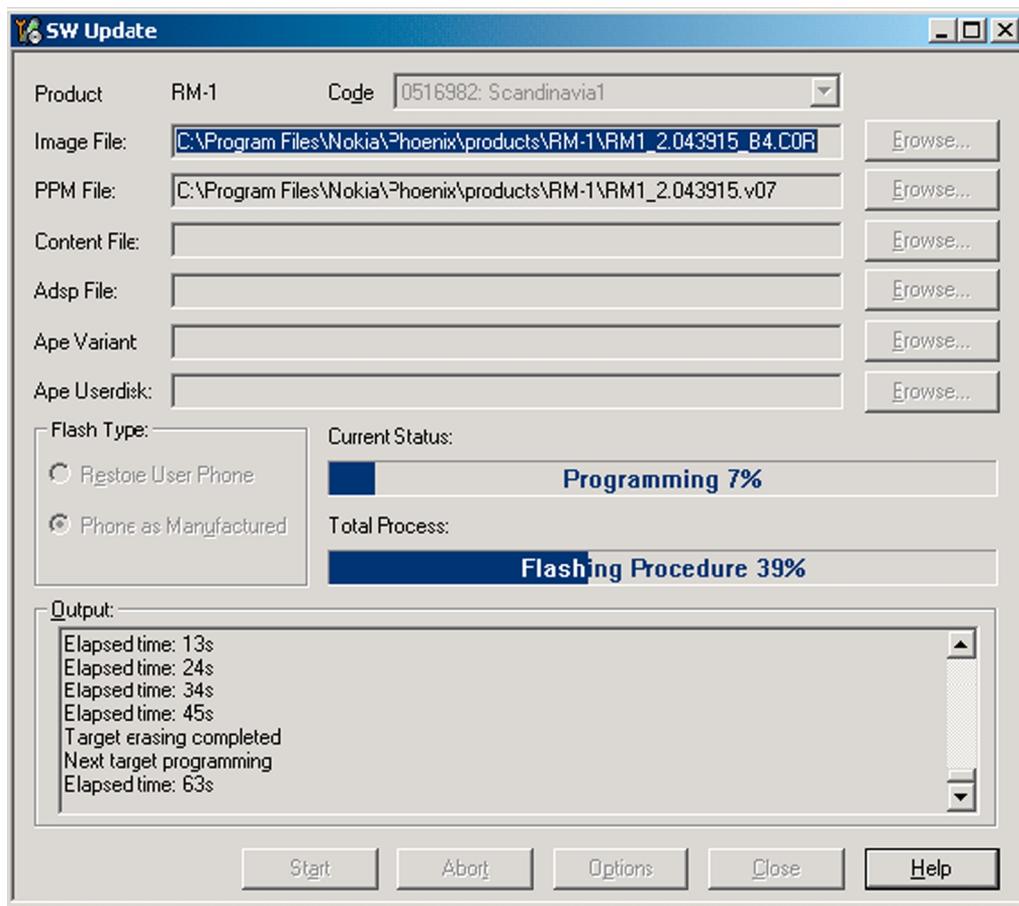
- *Phoenix* service software v 2009.41 or newer.
- The latest phone model specific *Phoenix* data package.
- Care dongle
- SX-4 smart card (Enables BB5 testing and tuning features)
- Activated FPS-20 flash prommer **OR** FPS-21 flash prommer
- Flash update package 08.30.012 or newer for FPS-20 or FPS-21 flash prommers
- CU-4 control unit
- USB cable from PC USB Port to CU-4 control unit
- Phone model specific adapter for CU-4 control unit
- PCS-1 cable to power CU-4 from external power supply
- Service cable between flash prommer and CU-4


Note: CU-4 must be supplied with +12 V from an external power supply in all steps of certificate restoring.

Steps

1. Program the phone software.

- i Start *Phoenix* and login. Make sure the connection has been managed correctly for FPS-20 or FPS-21.
- ii Update the phone MCU software to the latest available version.
If the new flash is empty and the phone cannot communicate with *Phoenix*, reflash the phone.
- iii Choose the product manually from **File → Open Product**, and click **OK**.
Wait for the phone type designator (e.g. "RM-1") to be displayed in the status bar.


iv Go to **Flashing → SW Update** and wait until *Phoenix* reads the product data as shown in the following picture.

Product	is automatically set according to the phone support module which was opened manually, but the flash files cannot be found because the correct data cannot be read from the phone automatically.
Code	must be chosen manually, it determines the correct flash files to be used. Please choose the correct product code (can be seen in the phone type label) from the dropdown list.
Flash Type	must be set to Phone as Manufactured .

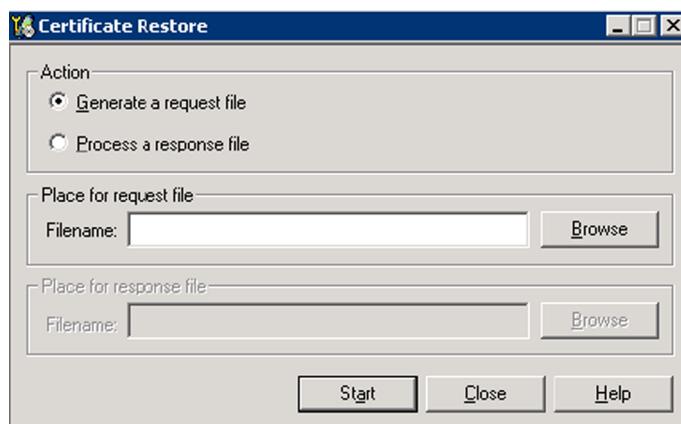
v To continue, click **Start**.

Progress bars and messages on the screen show actions during phone programming, please wait.

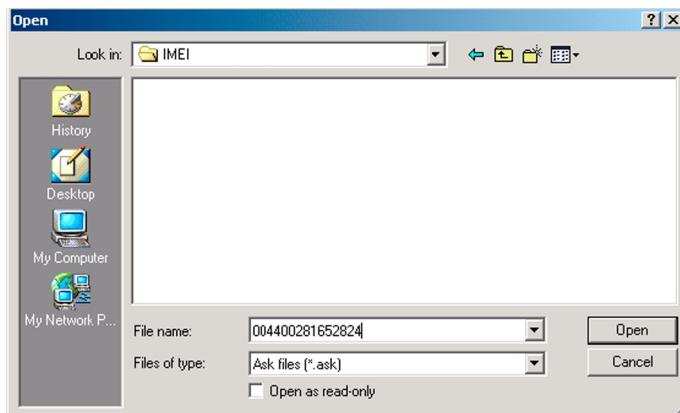
Programming is completed when Flashing Completed message is displayed.

The product type designator and MCU SW version are displayed in the status bar.

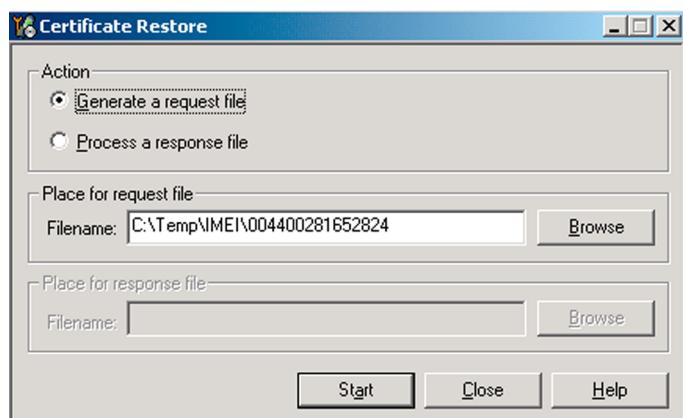
vi Close the *SW Update* window and then choose **File → Close Product** .


2. Create a *Request* file.

For this procedure, you must supply +12 V to CU-4 from an external power supply.

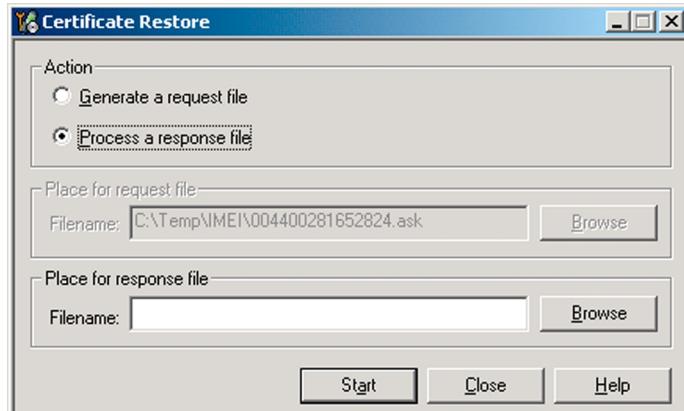

i To connect the phone with *Phoenix*, choose **File → Scan Product** .

ii Choose **Tools → Certificate Restore** .

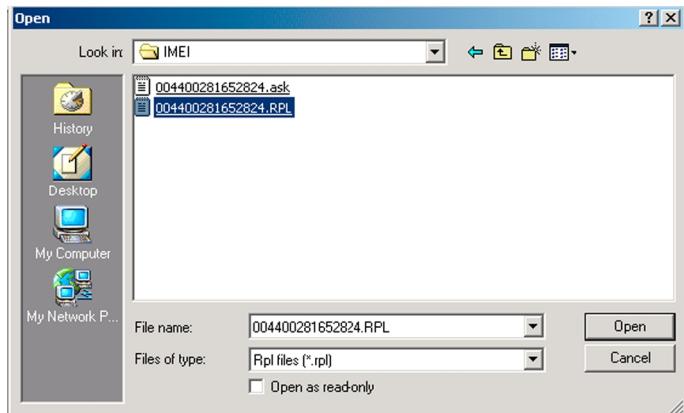

iii To choose a location for the request file, click **Browse**.

iv Name the file so that you can easily identify it, and click **Open**.

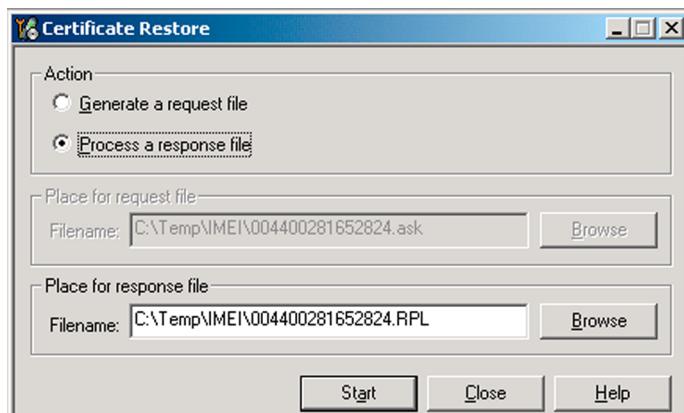
The name of the file and its location are shown.


v To create the *Request* file, click **Start**.
vi When the file for certificate restore has been created, send it to Nokia as an e-mail attachment.

3. Restore certificate.


For this procedure, you must supply +12 V to CU-4 from an external power supply.

- i Save the reply file sent by Nokia to your computer.
- ii Start *Phoenix* service software.
- iii Choose **File** → **Scan Product** .


iv From the **Tools** menu, choose **Certificate Restore** and select **Process a response file** in the *Action* pane.

v To choose the location where response file is saved, click **Browse**.
vi Click **Open**.

The name of the file and the path where it is located are shown.
vii To write the file to phone, click **Start**.

Next actions

After a successful rewrite, you must retune the phone completely by using *Phoenix* tuning functions.

Important: Perform all tunings: RF, BB, and UI.

Energy management calibration

Prerequisites

Energy Management (EM) calibration is performed to calibrate the setting (gain and offset) of AD converters in several channels (that is, **battery voltage**, **BSI**, **battery current**) to get an accurate AD conversion result.

Hardware setup:

- An external power supply is needed.
- Supply 12V DC from an external power supply to CU-4 to power up the phone.
- The phone must be connected to a CU-4 control unit with a product-specific flash adapter.

Steps

1. Place the phone to the docking station adapter (CU-4 is connected to the adapter).
2. Start *Phoenix* service software.
3. Choose **File** → **Scan Product**.
4. Choose **Tuning** → **Energy Management Calibration**.
5. To show the current values in the phone memory, click **Read**, and check that communication between the phone and CU-4 works.
6. Check that the **CU-4 used** check box is checked.
7. Select the item(s) to be calibrated.

Note: ADC calibration has to be performed before other item(s). However, if all calibrations are selected at the same time, there is no need to perform the ADC calibration first.

8. Click **Calibrate**.

The calibration of the selected item(s) is carried out automatically.

The candidates for the new calibration values are shown in the *Calculated values* column. If the new calibration values seem to be acceptable (please refer to the following "Calibration value limits" table), click **Write** to store the new calibration values to the phone permanent memory.

Table 10 Calibration value limits

Parameter	Min.	Max.
ADC Offset	-30	+40
ADC Gain	12000	14000
BSI Gain	1100	1350
VBAT Offset	2635	2755
VBAT Gain	14900	15900
VCHAR Gain	N/A	N/A
IBAT (ICal) Gain	7750	12250

9. Click **Read**, and confirm that the new calibration values are stored in the phone memory correctly. If the values are not stored to the phone memory, click **Write** and/or repeat the procedure again.
10. To end the procedure, close the *Energy Management Calibration* window.

(This page left intentionally blank.)

4 — Cellular RF troubleshooting

(This page left intentionally blank.)

Table of Contents

General instructions for cellular RF troubleshooting.....	4-5
Cellular RF key components.....	4-6
Cellular RF main troubleshooting	4-7
Cellular RF main troubleshooting	4-7
Self test troubleshooting.....	4-10
Troubleshooting with RF Self tests.....	4-10
RF-BB interface self test troubleshooting.....	4-11
RF supply self test troubleshooting.....	4-12
VBAT level.....	4-13
VXO level.....	4-14
VIO level.....	4-15
VREF level	4-15
VHIA (Vhi) level	4-16
VDCDCA (Vlow) level	4-16
VPA level.....	4-17
RF tuning and testing	4-17
RF auto tuning and testing with Nokia Care Suite.....	4-17
RF auto tuning procedure	4-18
Automatic RF testing with Nokia Care Suite.....	4-22
Troubleshooting with Testing And Tuning Tool	4-23
Manual transmitter (TX) testing with Phoenix.....	4-26
General instructions for transmitter (TX) activation	4-26
GSM transmitter activation.....	4-26
WCDMA transmitter activation.....	4-29
Manual receiver (RX) testing with Phoenix	4-30
General instructions for manual receiver testing	4-30
GSM RX chain activation for manual measurements/GSM RSSI measurement	4-31
WCDMA RX chain activation for manual measurement	4-31
WCDMA RSSI measurement	4-32
Antenna	4-33
Antenna overview	4-33
Antenna troubleshooting	4-35

List of Figures

Figure 22 Linko shields	4-7
Figure 23 GSM/WCDMA antenna connection pads.....	4-35
Figure 24 Pogo pins for GSM/WCDMA antenna.....	4-35
Figure 25 Cellular antenna fail situation.....	4-36
Figure 26 C-clip for WLAN/BT/GPS antenna	4-36
Figure 27 C-clip for FM TX antenna	4-37
Figure 28 GND pogo pin for FM TX antenna	4-37

(This page left intentionally blank.)

■ General instructions for cellular RF troubleshooting

Most RF semiconductors are static sensitive

ESD protection must be applied during repair (ground straps and ESD soldering irons).

Measuring equipment

All measurements should be done using:

- An oscilloscope for low frequency and DC measurements. Recommended probe: 10:1, 10 Mohm//8 pF.
- Willtek 440x/3100, Rohde & Schwarz CMU-200 or CMW-500 radio communication tester.

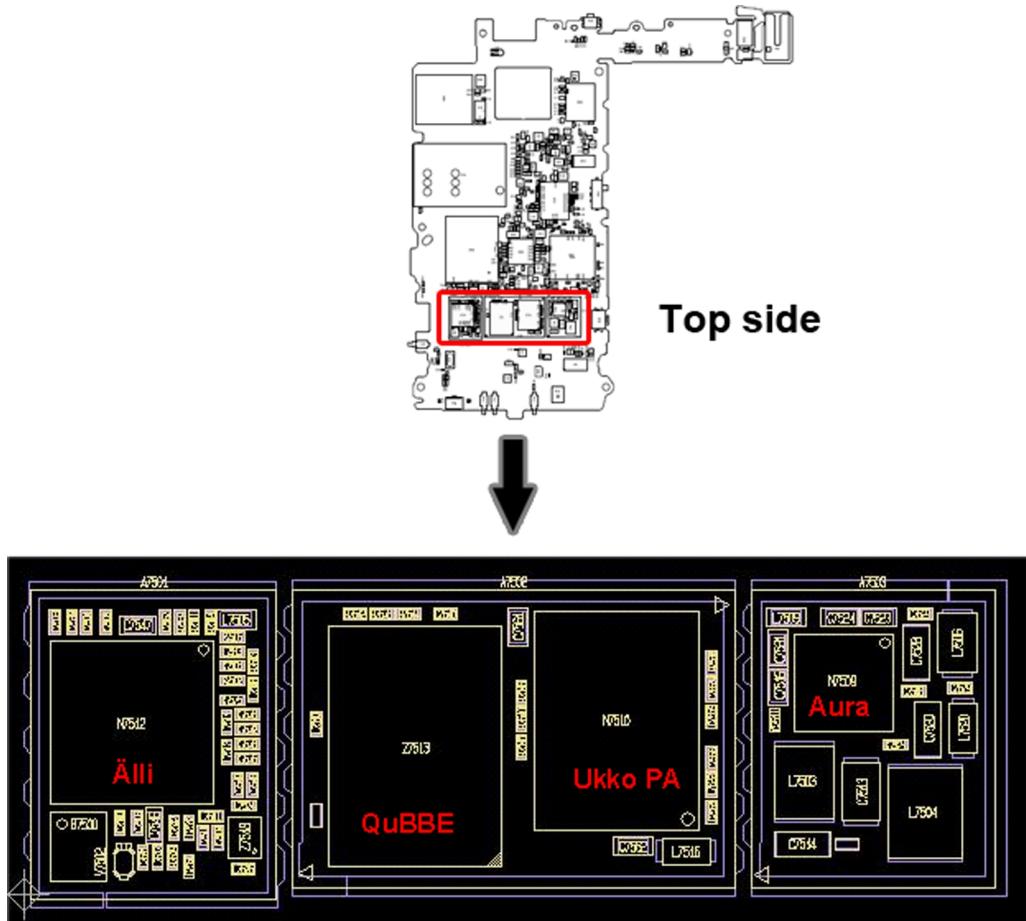
Note: A mobile phone WCDMA transmitter should never be tested with full TX power (permitted only if measurements and tests are performed in an RF-shielded environment). Even low power WCDMA transmitters may disturb nearby WCDMA networks and cause problems to 3G cellular communication in a wide area.

Note: All measurements with an RF coupler should be performed in an RF-shielded environment because nearby base stations can disturb sensitive receiver measurements. If there is no possibility to use an RF-shielded environment, testing at frequencies of nearby base stations should be avoided.

Note: All communication test set screen dumps are from CMU-200. Other testers are different.

RF auto tune

Cellular RF parameters should always be re-tuned by means of Testing and Tuning Tool if one or more of the RF components have been changed or memory (D3000) is corrupted.

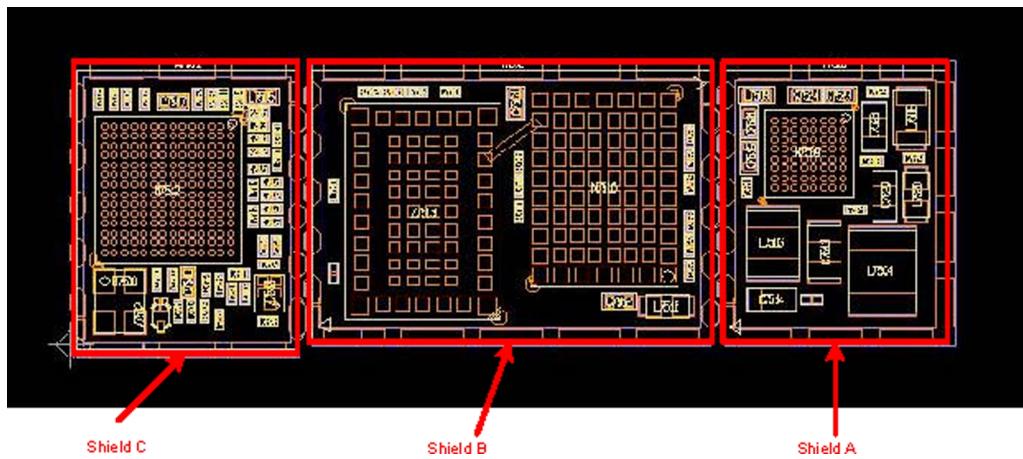

RF shield cans

Once a peel-off type RF shield can is opened, a repair lid (Nokia code 9501325) should always be installed. RF shielding does not work at all if RF shield cans are left open.

Level of repair

The scope of this guideline is to verify functionality of the cellular RF block as well as possible without removing RF shields.

■ Cellular RF key components



Linko RF has the following key components:

- Älli N7512 (Transceiver RF ASIC)
- Aura N7509 (RF power management ASIC)
- UKKO N7510 (Power amplifier, PA)
- QuBBE Z7513 (Front end module)

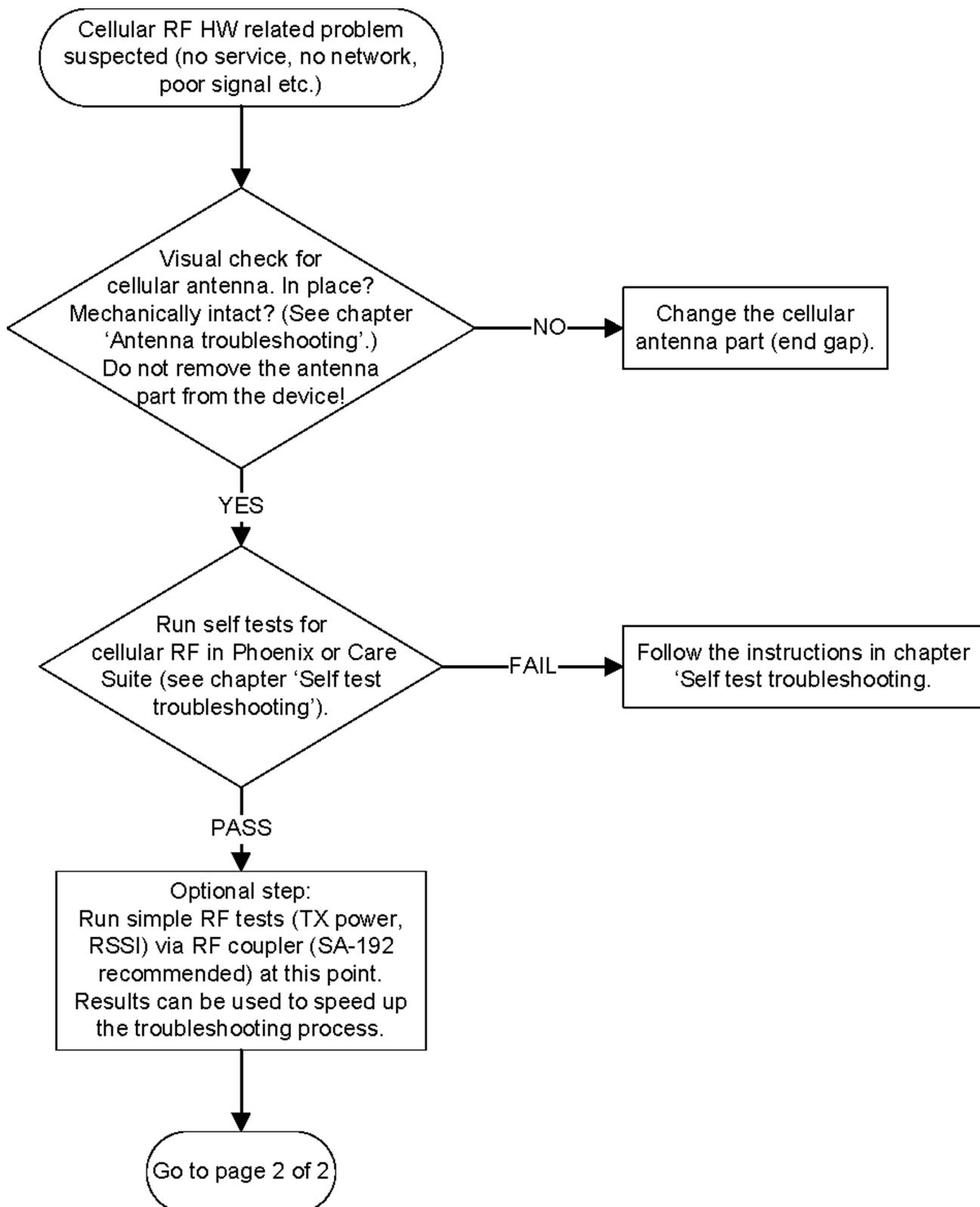
Linko RF has separate RF shielding cans for:

- Älli N7512 + surroundings (Shield C)
- QuBBE Z7513 + Ukko PA N7510 (Shield B)
- Aura N7509 + surroundings (Shield A)

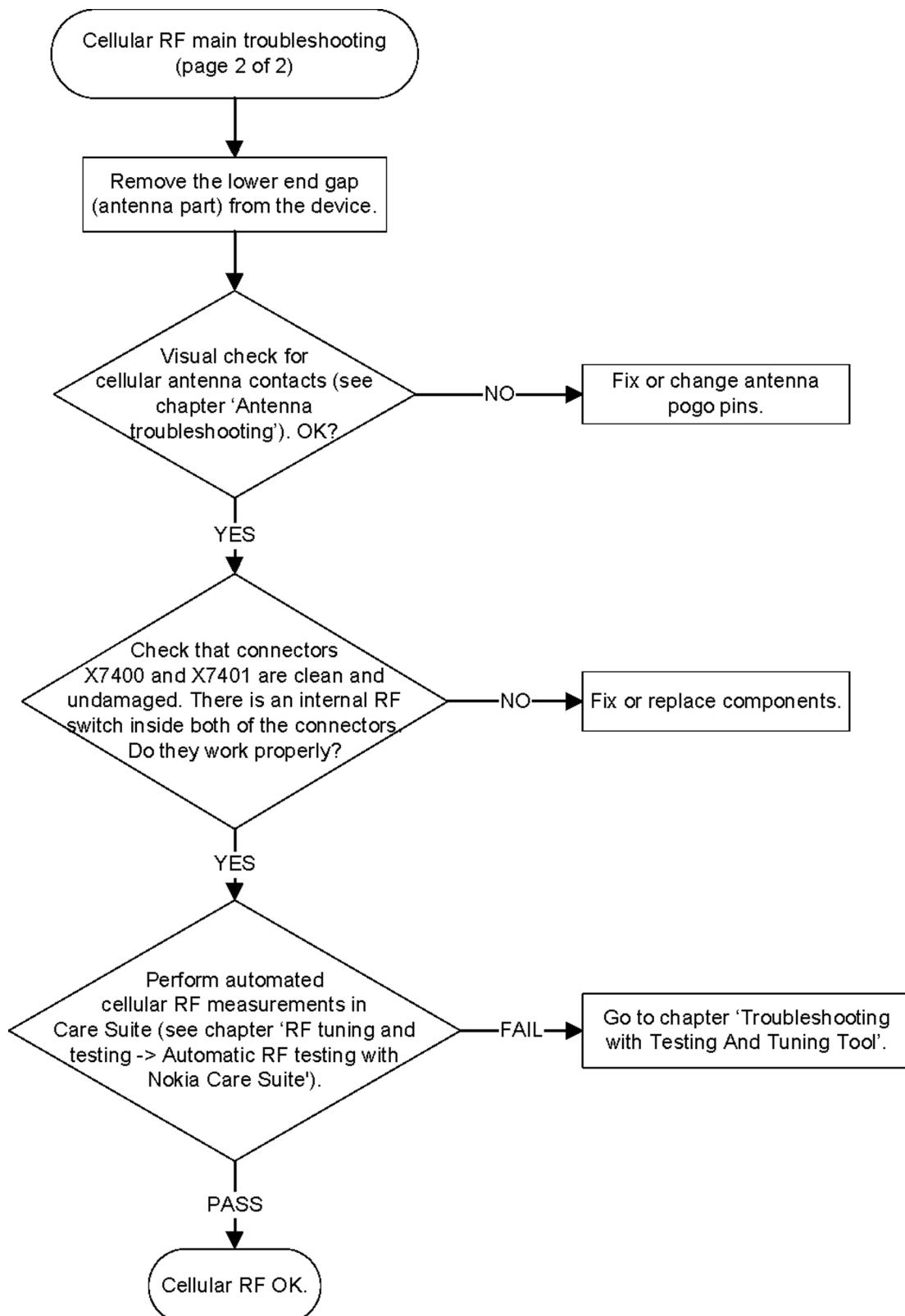
Figure 22 Linko shields

RF shield A is peel-off type and can be opened for repair purposes. The other two RF shield cans (B and C) are solid and should not be opened in service centers.

The maximum height of the shields is 1.70 mm.


■ **Cellular RF main troubleshooting**

Cellular RF main troubleshooting


Context

Always start the cellular RF related troubleshooting procedure by following the diagram below.

Troubleshooting flow — Page 1 of 2

Troubleshooting flow — Page 2 of 2

Self test troubleshooting

Troubleshooting with RF Self tests

Context

ÄLLI (N7512) RF ASIC contains test structures that can be used to detect certain RF related errors. In order to use these self tests the most efficient way, it is very important that the tests are performed in a certain order, or at least that the error data is analyzed in this order. The tests are designed so that by going through them in this order it is easy to find the problem component without any redundant checks. The flowcharts presented in this document are based on that idea.

The testing order recommended and used in this troubleshooting guide is the following:

1 ST_CDSP_RF_BB_IF test (ID hex. 56)

- Tests the functionality of the BB/Linko serial interface & reset lines.
- If this test fails, it means that there is a problem in programming of the N7512 and all of the following tests cannot give correct data.

2 ST_CDSP_RF_SUPPLY_TEST (ID hex. 53)

- Tests the functionality of N7512 bias block, regulators, reference voltage line and supply connections, as well as almost all Aura (N7509) regulator voltages..
- If this test fails, all other N7512 tests can/will fail.

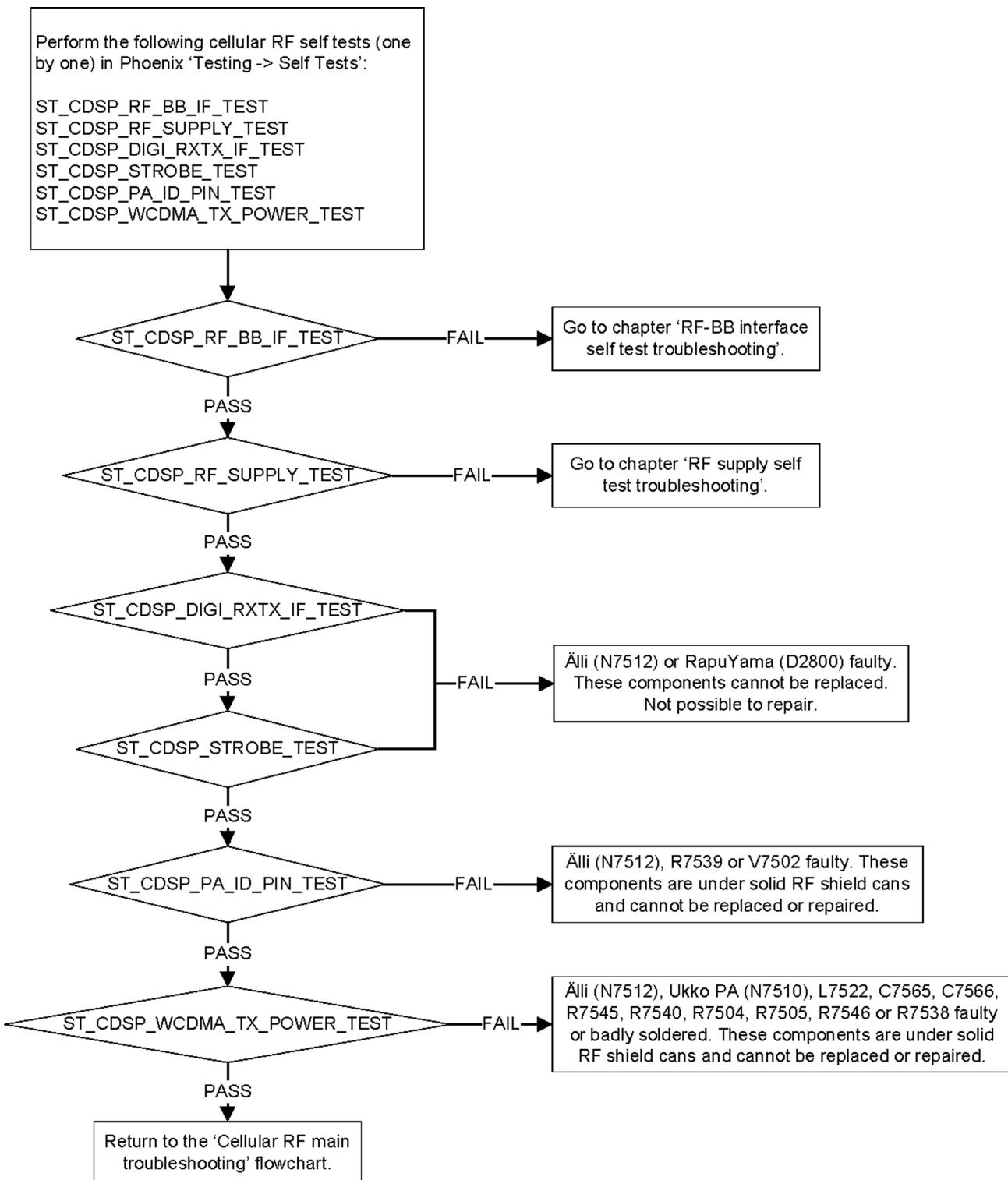
3 ST_CDSP_DIGI_RXTX_IF_TEST (ID hex. 7D)

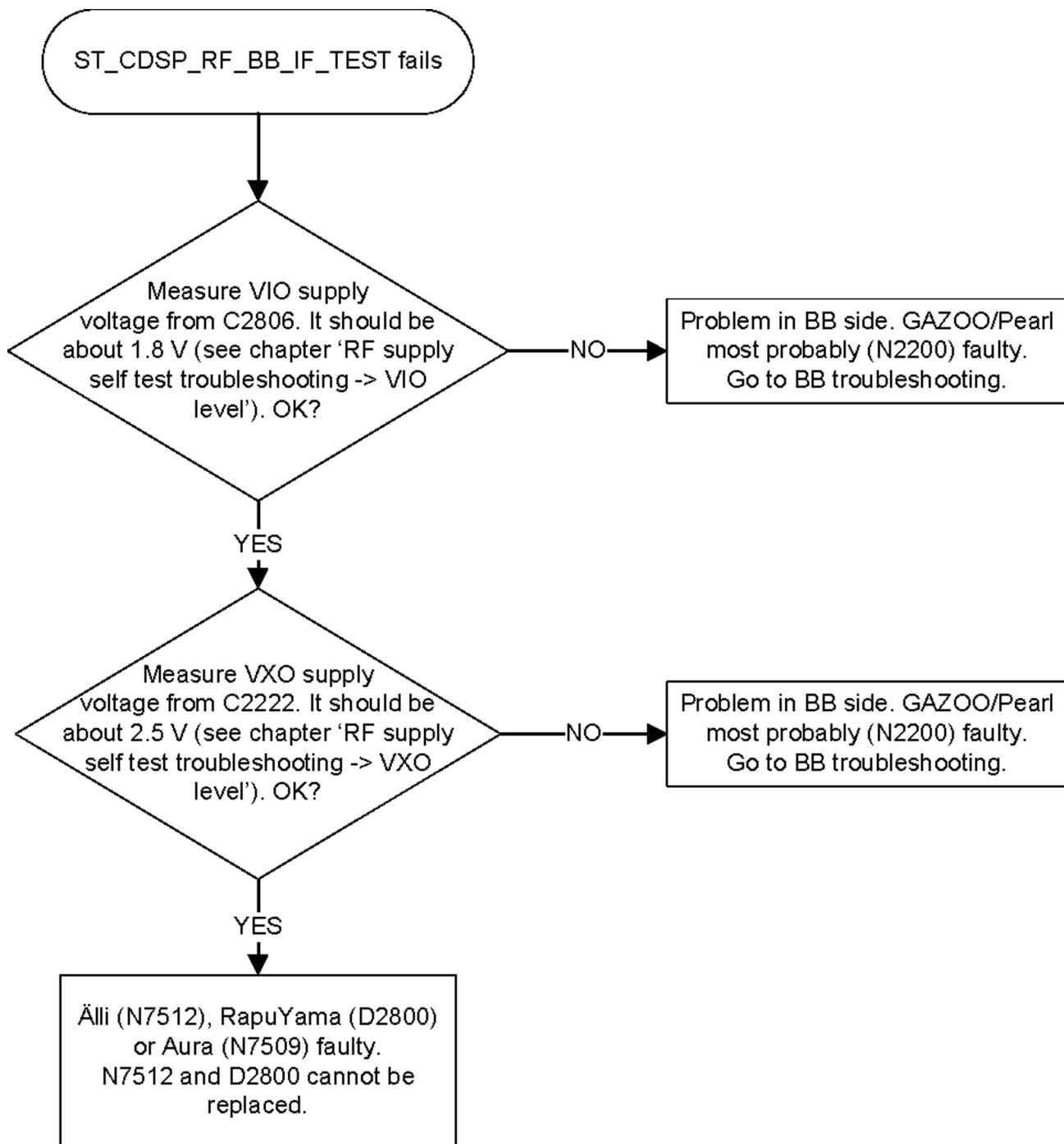
- Test checks that the digital RX and TX lines between BB and N7512 are properly connected.

4 ST_CDSP_STROBE_TEST (ID hex. 7C)

- Tests the functionality of the RFStrobe signal..

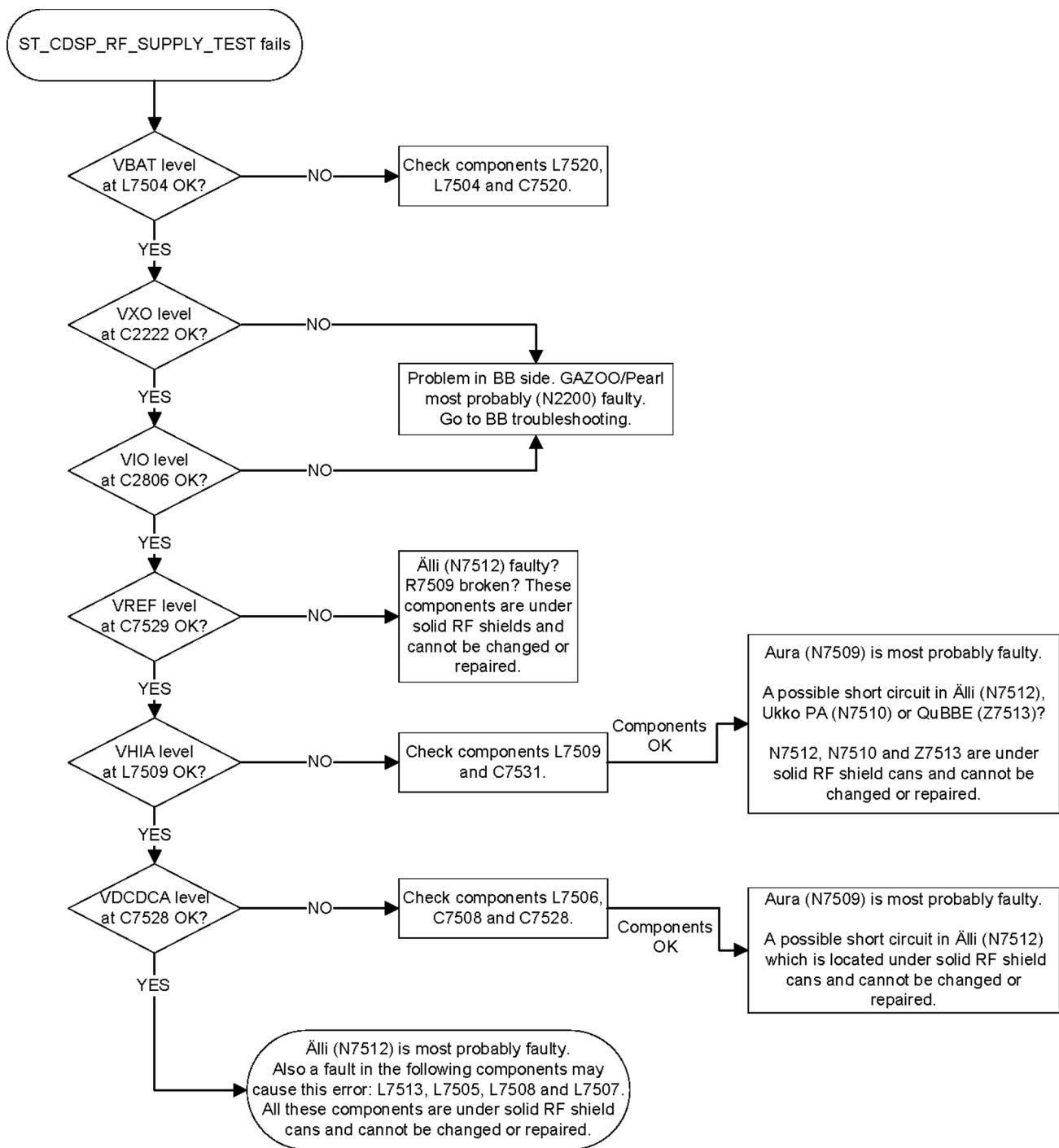
5 ST_CDSP_PA_ID_PIN_TEST (ID hex. 7F)

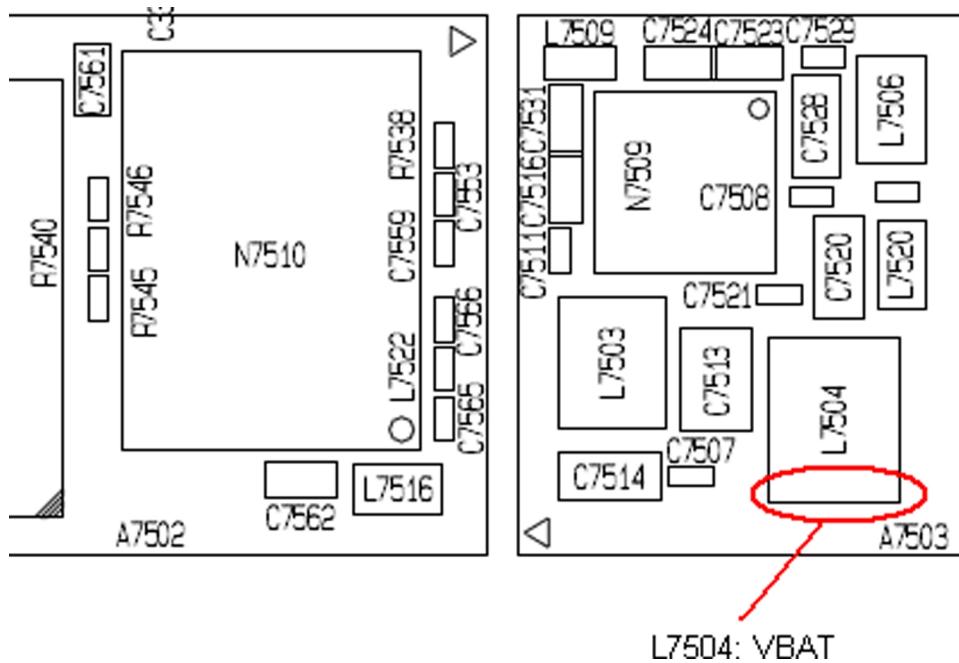

- The purpose of this test is to identify the PAs of the different vendors.
- Tests also the functionality of the temperature sensor V7502.


6 ST_CDSP_TX_WCDMA_POWER_TEST (ID hex. 4B)

- Tests the basic functionality of the WCDMA transmitter.

To get the best out of these instructions you need to have the valid schematics at hand.

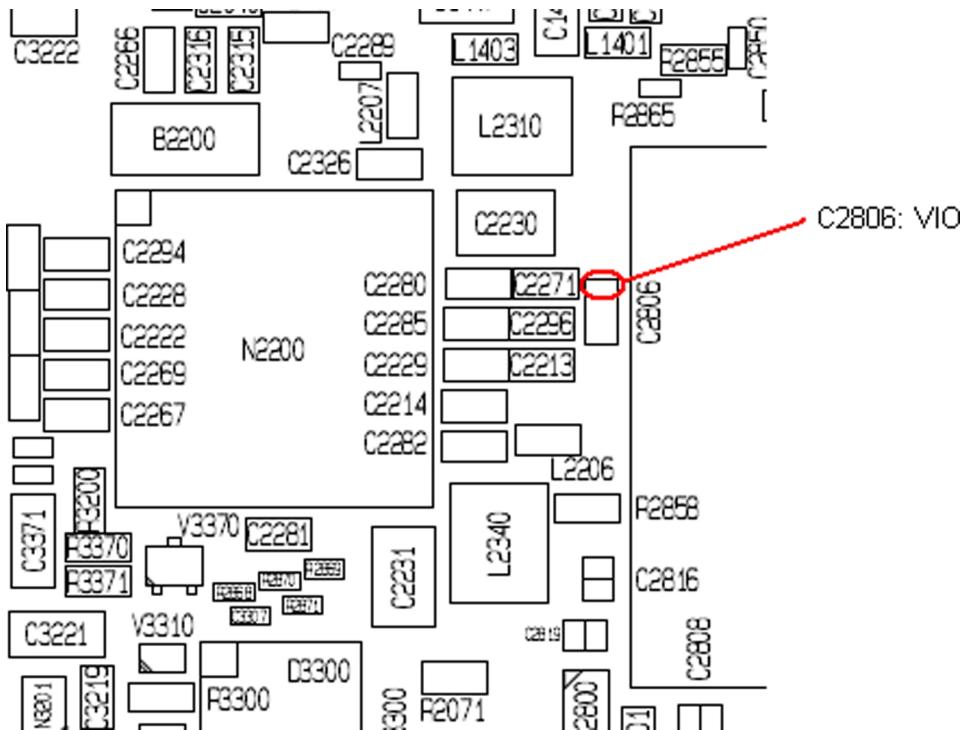

Troubleshooting flow


RF-BB interface self test troubleshooting**Troubleshooting flow**

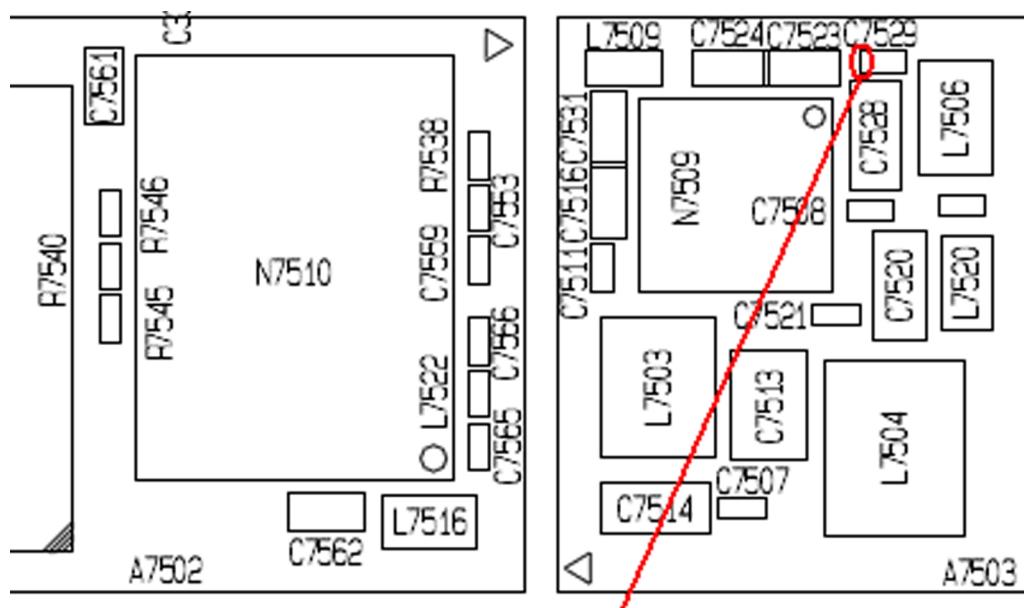
RF supply self test troubleshooting

Troubleshooting flow

VBAT level


Check the VBAT level at the L7504. The level should be the same as the battery voltage and always on.

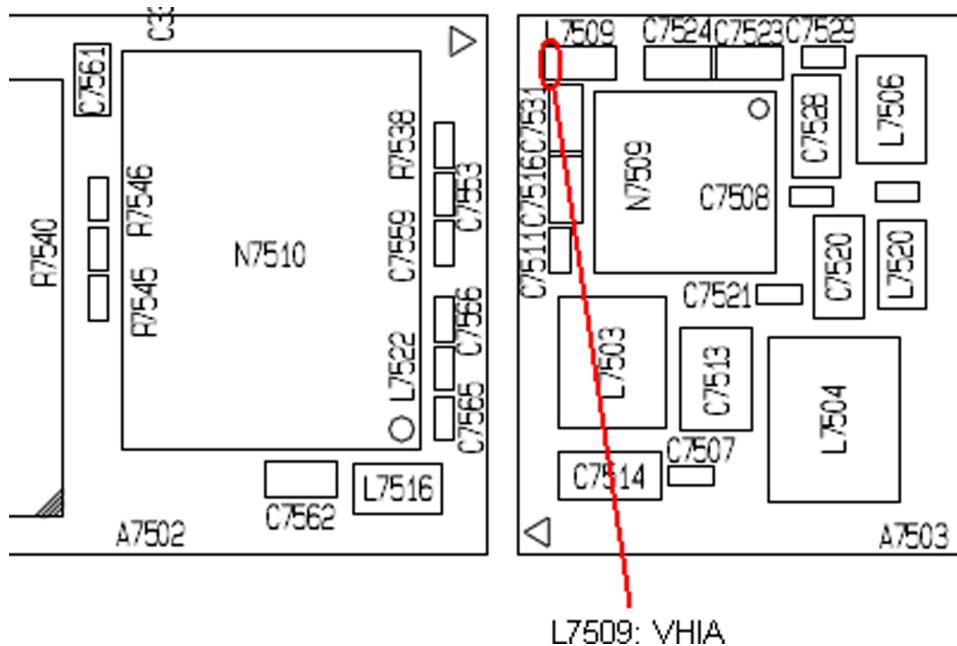
VXO level


Check the VXO level (2.5V) at C2222. The signal is always on when the phone is in local mode.

VIO level

Check the VIO level (1.8V) at C2806. The signal is always on when the phone is in local mode.

VREF level

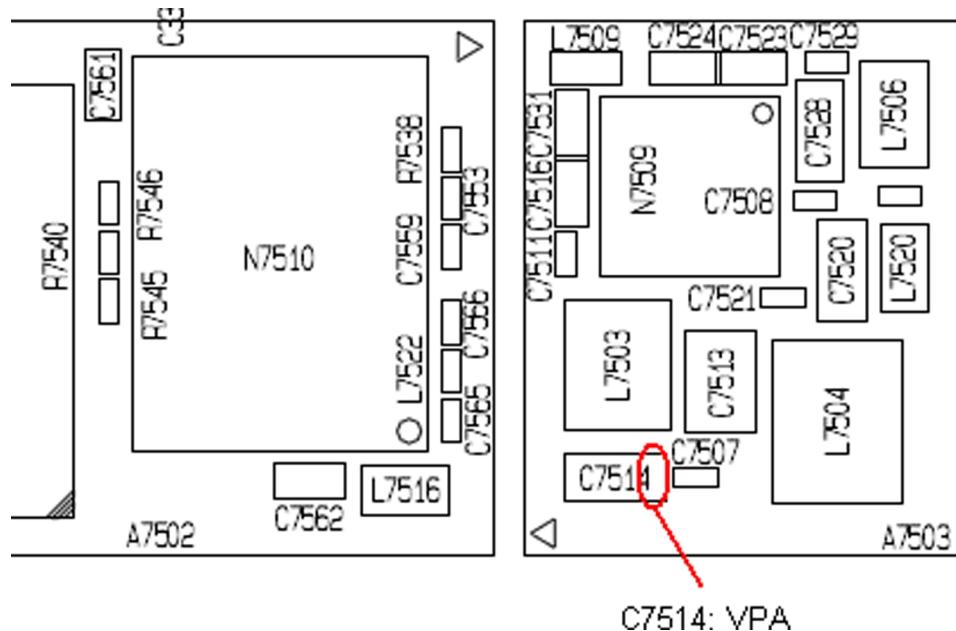


C7529: Vref

Check the Vref level (1.2 V) at C7529.

The GSM or WCDMA transmitter (or receiver) has to be activated before the Vref supply voltage can be measured. Follow the instructions given in chapter 'Manual transmitter (TX) testing with Phoenix → GSM transmitter activation' or 'WCDMA transmitter activation'.

VHIA (Vhi) level


The WCDMA transmitter has to be activated before the VDCDCA supply voltage can be measured. Follow the instructions given in chapter 'Manual transmitter (TX) testing with Phoenix → 'WCDMA transmitter activation'.

Note: The VDCDCA signal is continuously on when WCDMA TX is activated.

VPA level

The GSM or WCDMA transmitter has to be activated before the VPA supply voltage can be measured. Follow the instructions given in chapter 'Manual transmitter (TX) testing with Phoenix → GSM transmitter activation' or 'WCDMA transmitter activation'.

Check the VPA voltage level at C7514.

In WCDMA mode, the voltage levels should be:

- 0.4...0.8 V @ Start level 0 dBm
- 0.8...1.3 V @ Start level 10 dBm
- 3.0...4.2 V @ Start level 24 dBm

In GSM mode, the voltage levels should be:

- 0.1...0.5 V @ GSM 900 & Tx Power Level 19
- 0.5...1.1 V @ GSM 900 & Tx Power Level 12
- 3.5...4.3 V @ GSM 900 & Tx Power Level 5

Note: The VPA signal is continuously on when WCDMA TX is activated, but has a pulsed nature in GSM TX mode (the signal is on only when a GSM TX burst is transmitted).

Note: The VPA signal is not tested by ST_CDSP_RF_SUPPLY_TEST.

■ RF tuning and testing

RF auto tuning and testing with Nokia Care Suite

Introduction to cellular RF tunings

RM-596 cellular RF engine has been tuned correctly in production. There is no reason to do re-calibration unless one or more of the RF components are changed or memory (D3000) is corrupted.

RM-596 can be tuned automatically. Auto tuning is designed to align the phone's RF part easily and faster. It performs calibrations, tunings and measurements of RX and TX. The results are displayed and logged in a result file, if initiated.

Note: Always perform RF tuning with the help of the module jig MJ-241, never with RF couplers. Using an RF coupler in the tuning phase will cause a complete mistuning of the RF part.

Important: After RF component changes, **always** perform cellular RF auto tuning.

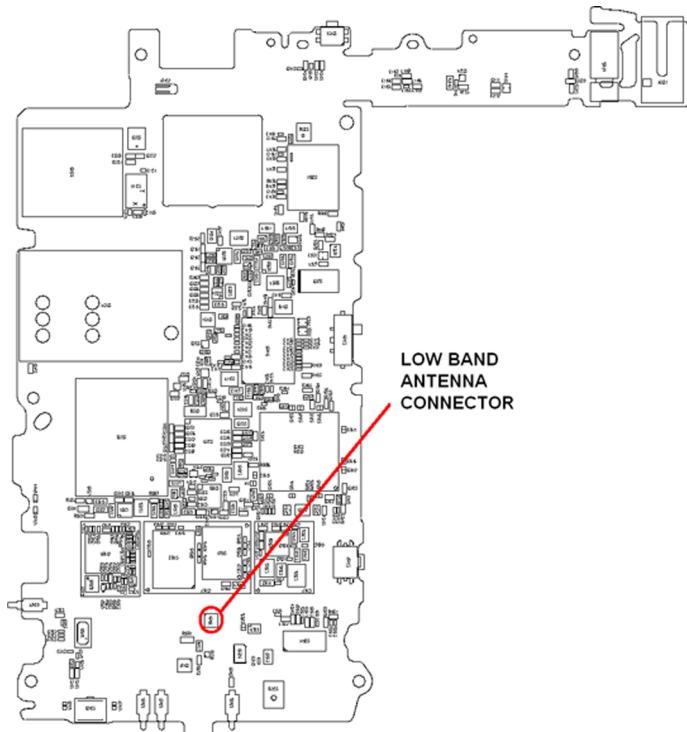
Cable and adapter losses

RF cables and adapters have some losses. They have to be taken into account when the phone is tuned. As all the RF losses are frequency dependent, the user has to act very carefully and understand the measurement setup. For RF attenuations of the CA-158RS RF cable, please refer to section 'Service Tools and Service Concepts'.

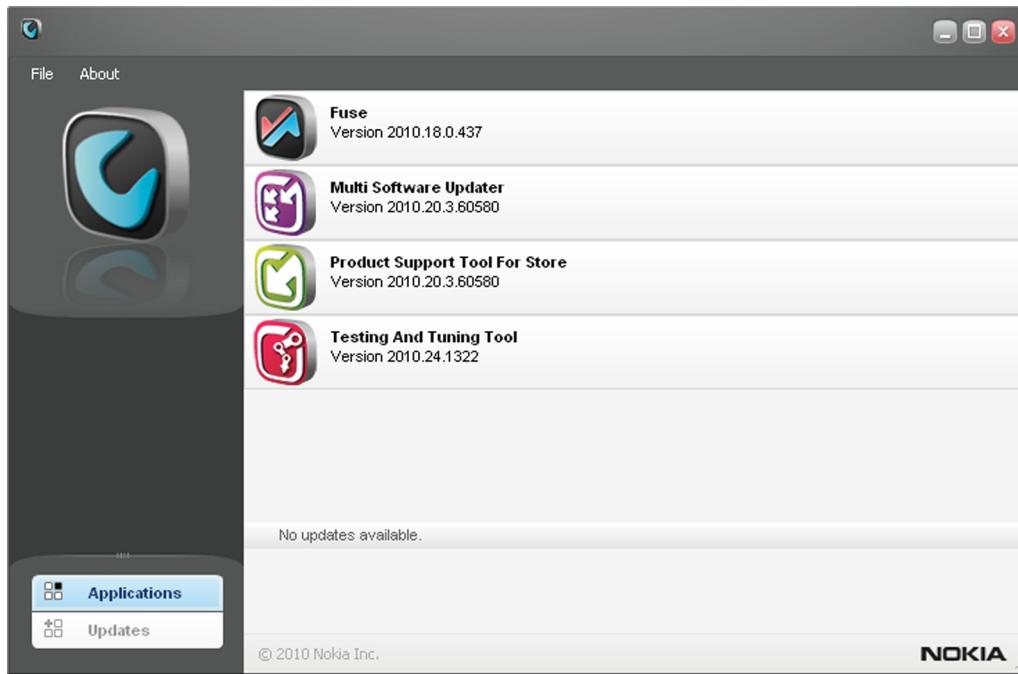
Hardware set up

For hardware requirements for auto tuning, please refer to *RF testing and BB/RF tuning concept with module jig* in section 'Service Tools and Service Concepts'.

Nokia Care Suite preparations

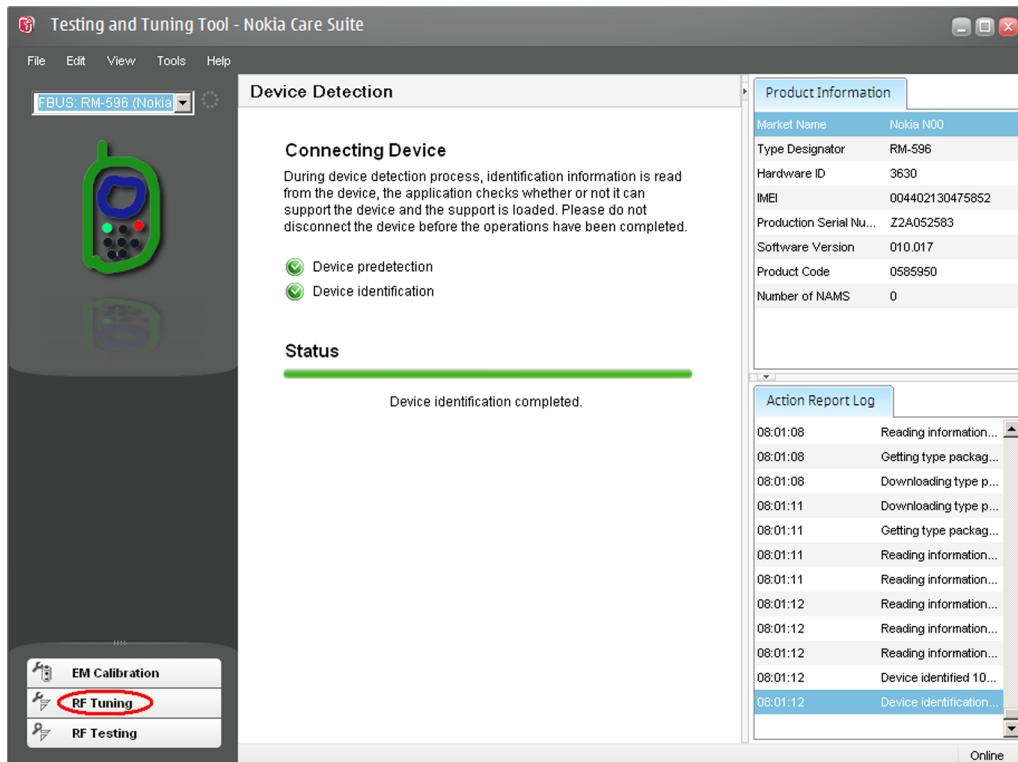

Install Testing And Tuning Tool add-on application to Nokia Care Suite. Automatic RF testing and tuning is not possible without this application. There is no more support in Phoenix to auto tune RM-596 product.

Install the phone specific data package, for example *Nokia_firmware_RM-596_EUROPE_10.014_v41.0.exe*. This defines phone specific settings.

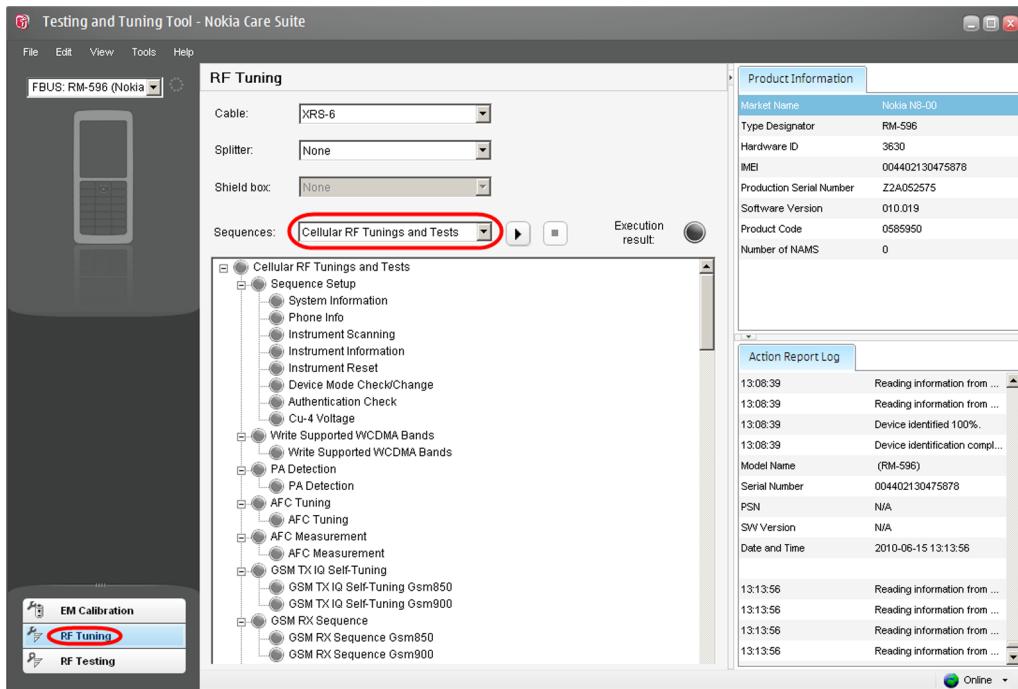

RF auto tuning procedure

Note: If RF splitter is in use, skip steps 10, 11 and 12.

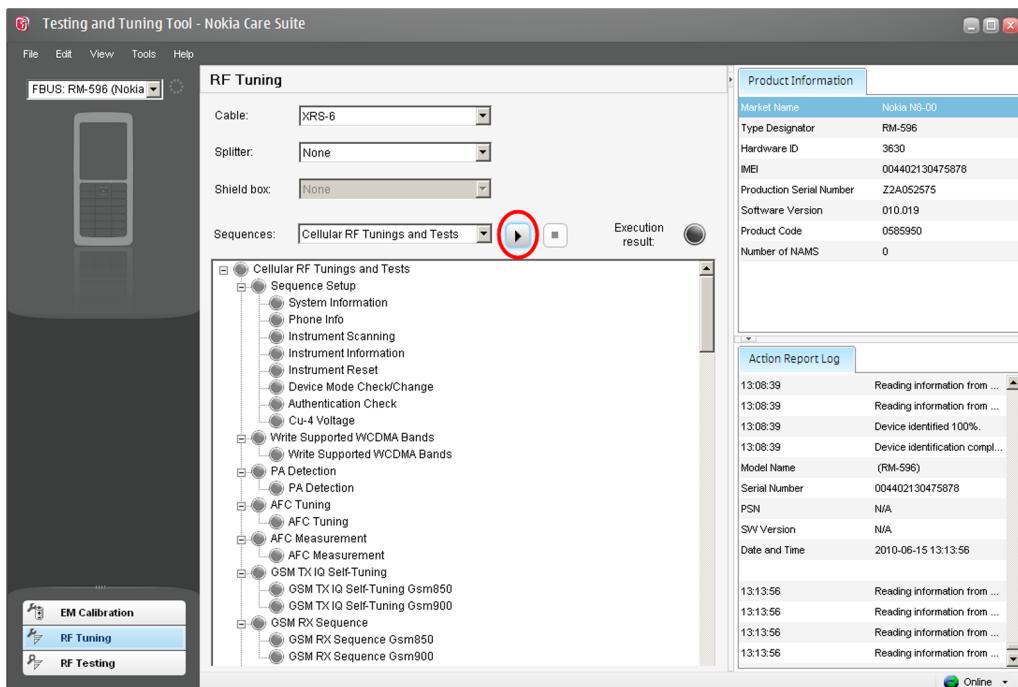
- 1 Make sure the phone (in the module jig) is connected to the PC.
- 2 Connect the RF cable between the phone (low band antenna connector) and the communication tester. If an RF splitter is in use, connect both low and high band antenna cables.


3 Start *Nokia Care Suite* application. The following window opens:

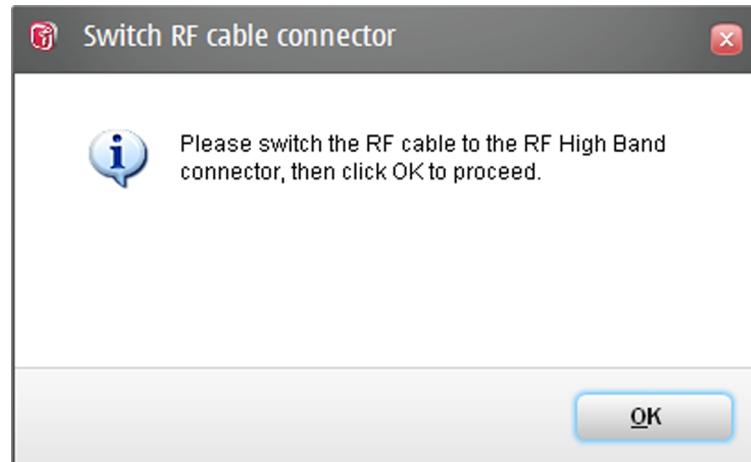
Note: The window appearance may differ depending on the *Nokia Care Suite* version.


Note: *Fuse*, *Multi Software Updater*, *Product Support Tool For Store* and *Testing And Tuning Tool* are Care Suite add-on applications. The list is different if there are different add-on applications installed.

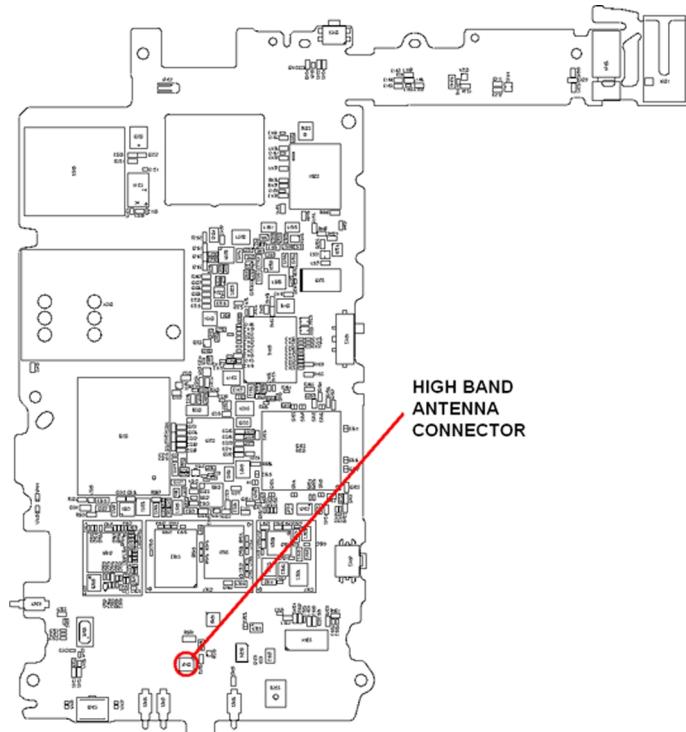
- 4 To open the application, double-click **Testing And Tuning Tool** icon.
- 5 If the application is able to find a connected phone, the following view will open:


Note: The window appearance may differ depending on the *Nokia Care Suite* and *Testing And Tuning Tool*/versions

- 6 Click on the **RF Tuning** button. The following view opens:

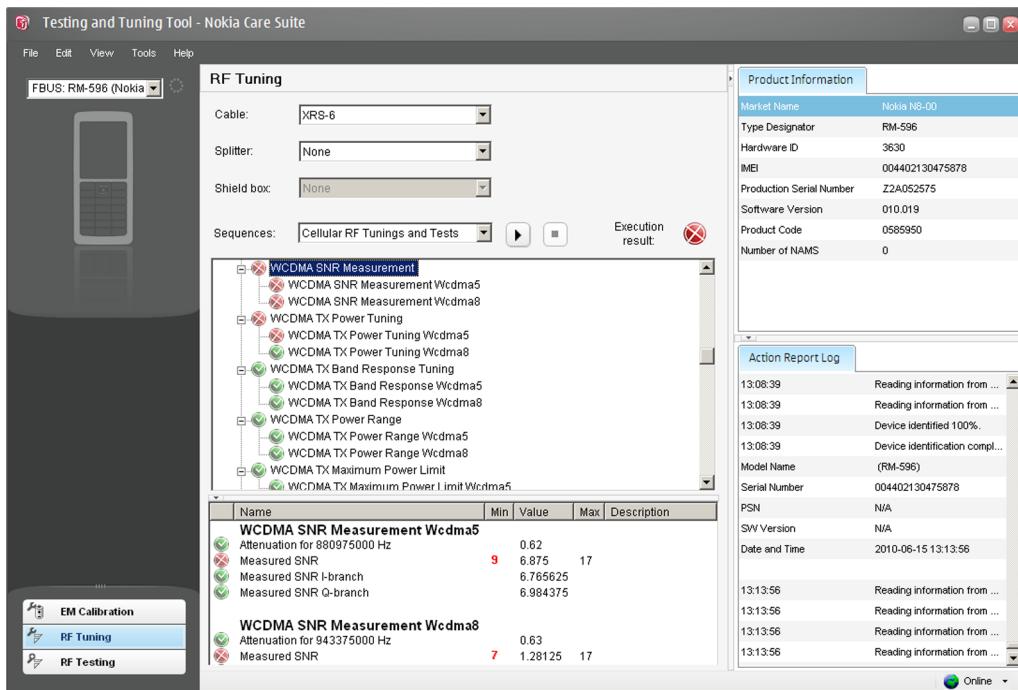

Note: The window appearance may differ depending on the *Nokia Care Suite* and *Testing And Tuning Tool*/versions

- 7 Select **Cellular RF Tunings and Tests** from the drop-down menu.
- 8 Select the RF cable used (and possible RF splitter / RF shield box) from the drop-down menu. CA-158RS attenuation values are always taken automatically into account when RM-596 product is connected to *Nokia Care Suite* tool.
- 9 Click the **Run** button.



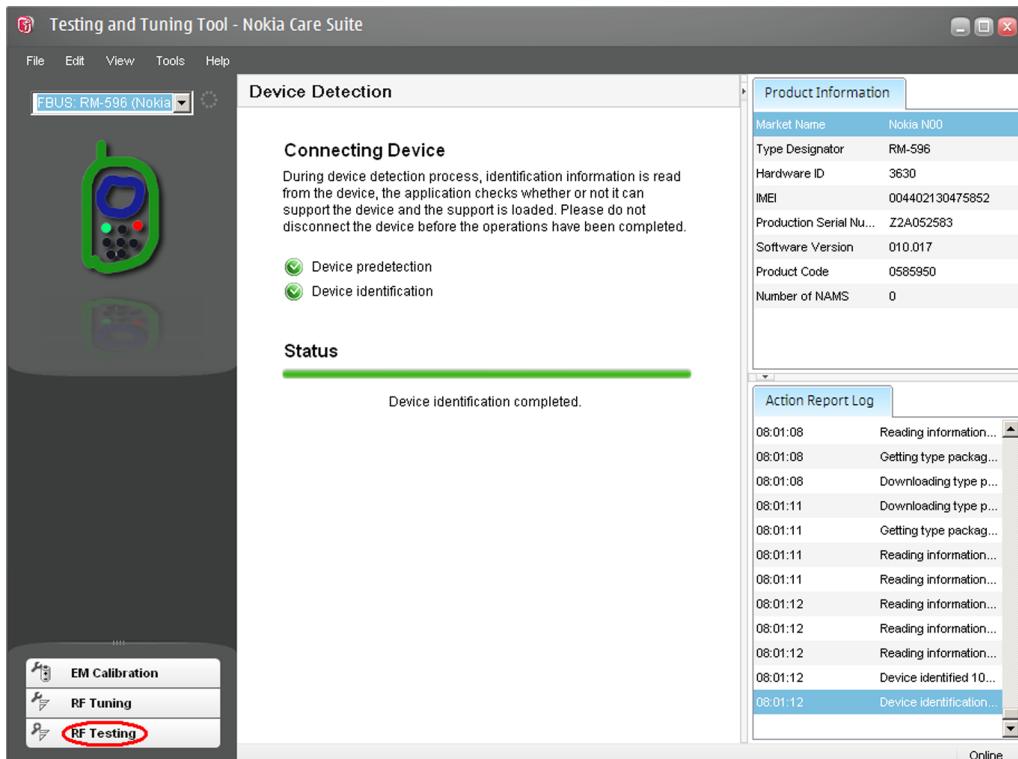
Note: The window appearance may differ depending on the *Nokia Care Suite* and *Testing And Tuning Tool* versions

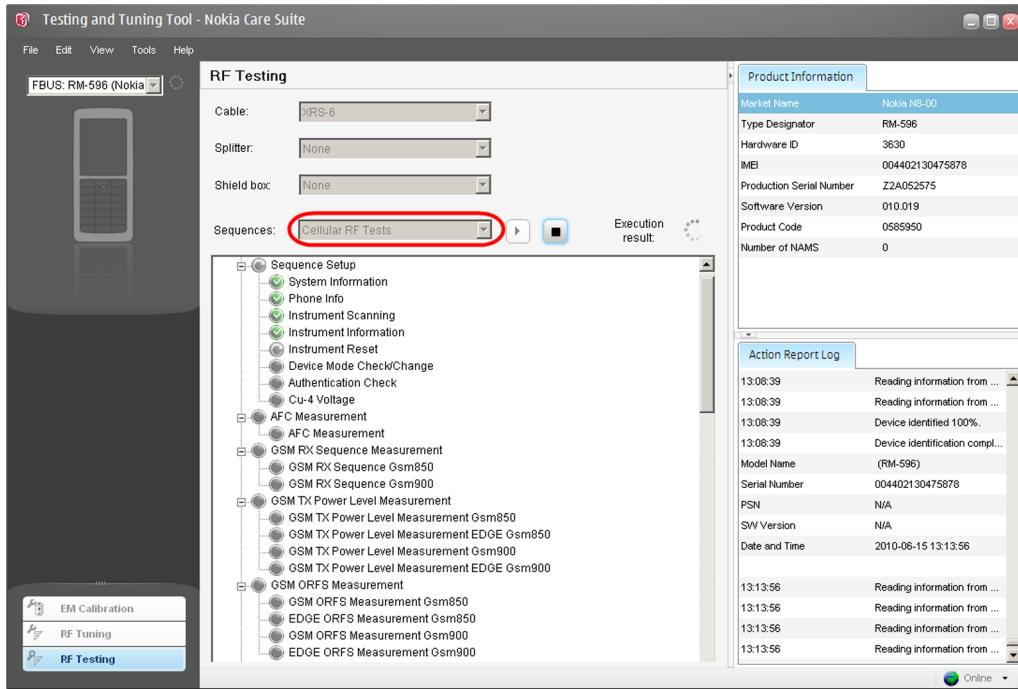
10 If no critical errors happen during the low band RF tuning procedure, the following window will pop up:


11 Change the CA-158RS cable to the high band RF connector on the phone PWB.

12 Click **OK** and RF tunings will automatically be performed for high cellular bands.

13 RF tunings will be ready when all the tunings and measurements are green in the tool window and no errors occur.


14 If errors do happen, failed tuning/testing steps are marked with a red color and more detailed results are shown on the screen. An example fail case is shown below:



Note: The window appearance may differ depending on the *Nokia Care Suite* and *Testing And Tuning Tool*/versions

Automatic RF testing with Nokia Care Suite

Testing And Tuning Tool/add-on application can be used also for non-signalling RF tests. The automatic RF testing procedure is the same as explained in the chapter *RF auto tuning procedure*, but **RF Testing** should be selected in the *Testing And Tuning Tool* main window instead of **RF Tuning** .

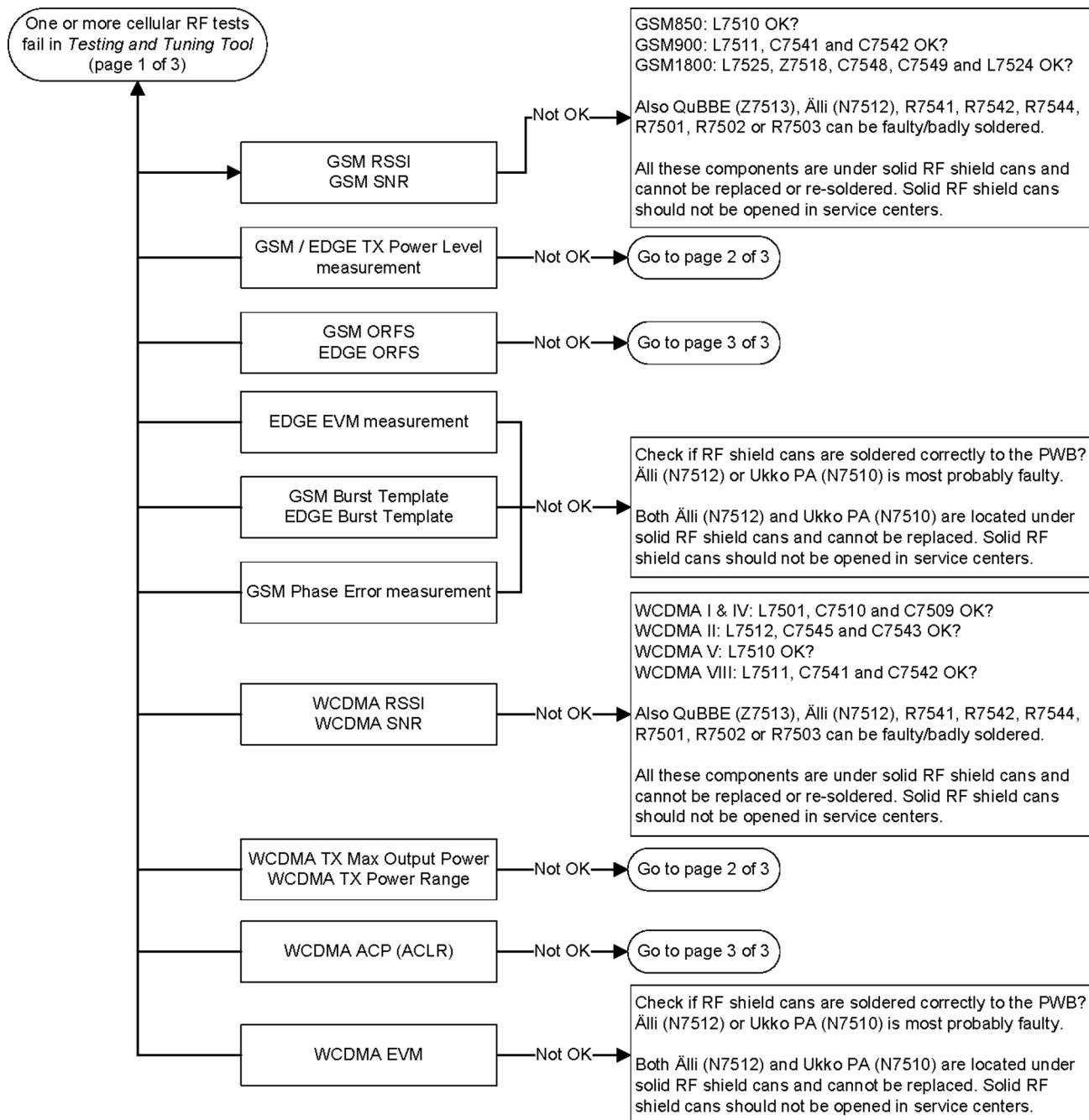
Note: The window appearance may differ depending on the *Nokia Care Suite* and *Testing And Tuning Tool*/versions.

RF Testing selection does all the same measurements as **RF Tuning**, but does not perform any tunings. **RF Testing** is a safe way to check the basic cellular RF performance of the phone. The following test cases will be performed (the complete set of measurements may differ depending on the data package content):

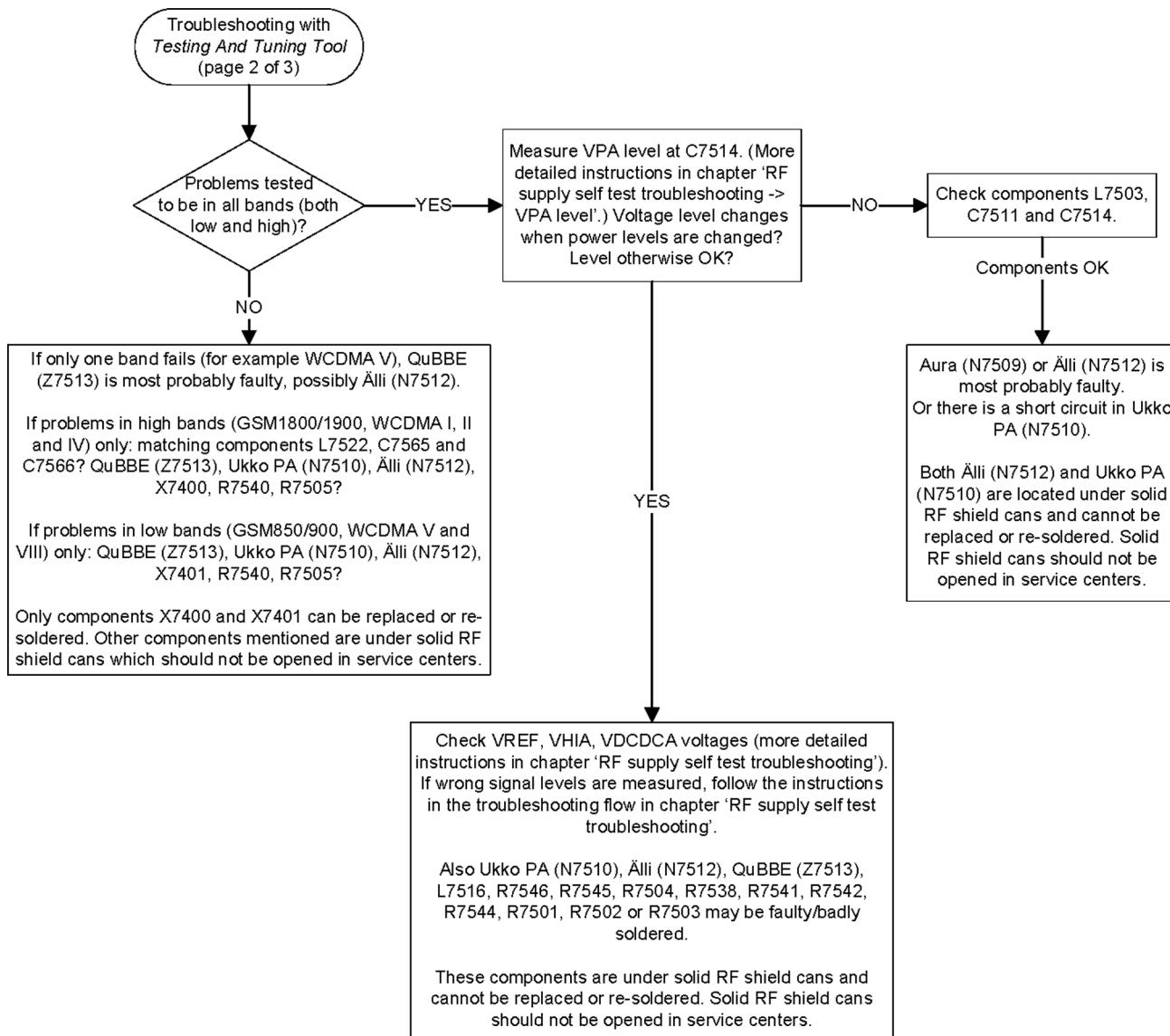
- GSM SNR
- GSM RSSI
- GSM / EDGE TX Power Level
- GSM Modulation & Switching spectrum
- GSM EDGE EVM
- GSM Burst Template
- GSM Phase Error
- WCDMA RSSI
- WCDMA SNR
- WCDMA TX Power Range
- WCDMA TX Max Output Power
- WCDMA ACP
- WCDMA EVM

Troubleshooting with Testing And Tuning Tool

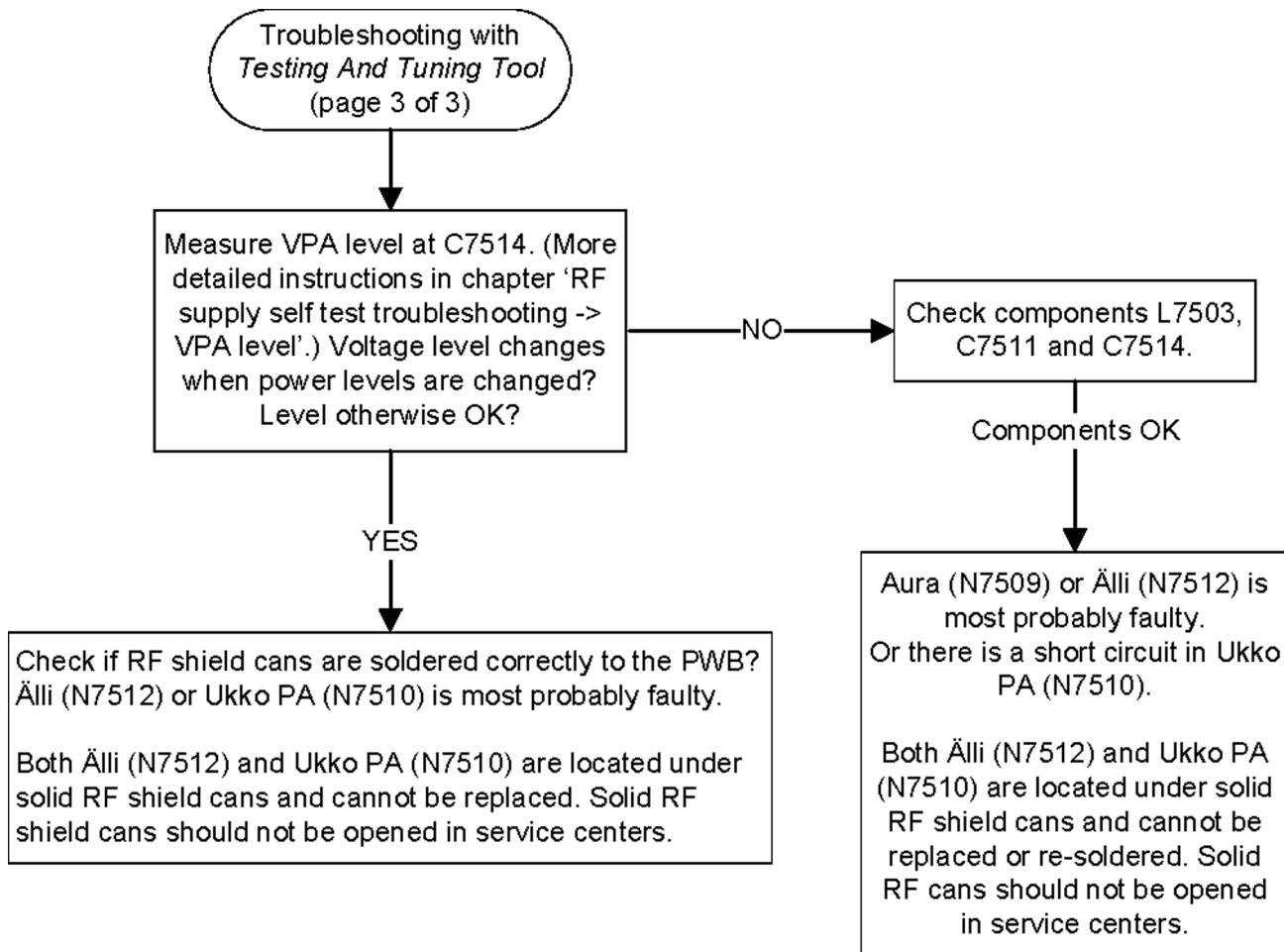
Context


If limit fails occur while RF tests are performed with Testing And Tuning Tool, the user has to be very careful to understand the measurement results. Fails may occur because of many reasons:

- 1 RF attenuation between the phone and the communication tester is something else as expected by the *Testing And Tuning Tool*. Please check that cable, splitter and shield box selections are correct in the *Testing And Tuning Tool* main window.


- 2 Test limits (specified in the product specific data package) are quite tight. Small limit violations do not always mean that the tested product is broken, but the RF performance may not be as good as it should be.
- 3 RX measurements (RSSI, SNR) may fail because of strong signals from base stations nearby. It is recommended to always perform RF measurements in an RF-shielded environment (in an RF-shield box or room).
- 4 The phone is really broken and needs more specific troubleshooting. Typical for these cases is that *RF Testing* gives measurement results which are far from the test limits.

Note: Start the more specific troubleshooting always from the chapter [Cellular RF main troubleshooting \(page 4-7\)](#). The troubleshooting flow below may be misleading if followed without upper level instructions.


Troubleshooting flow — Page 1 of 3

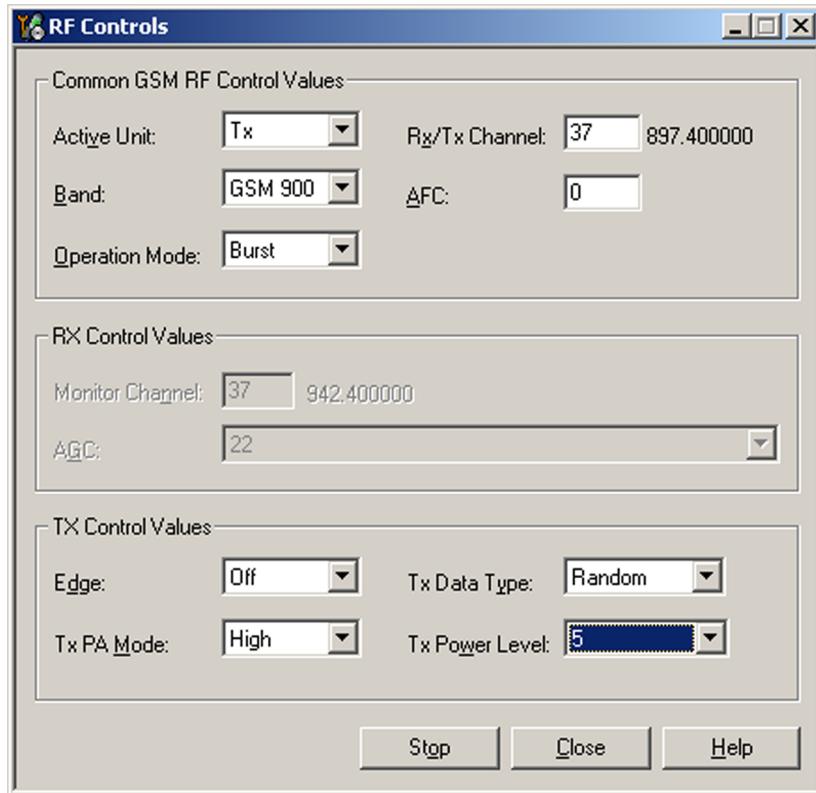
Troubleshooting flow — Page 2 of 3

Troubleshooting flow — Page 3 of 3

Manual transmitter (TX) testing with Phoenix

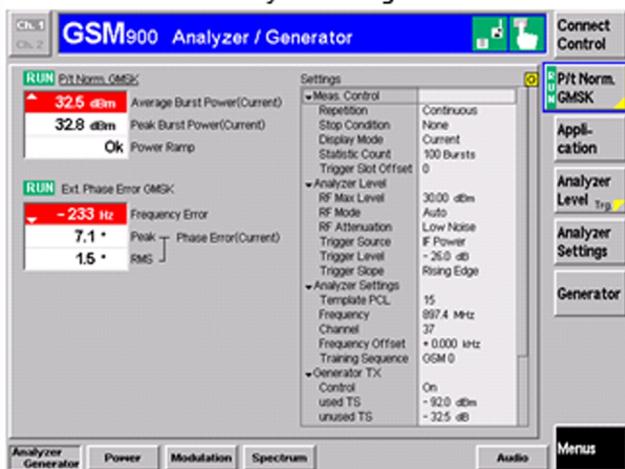
General instructions for transmitter (TX) activation

Please note the following before performing transmitter tests:

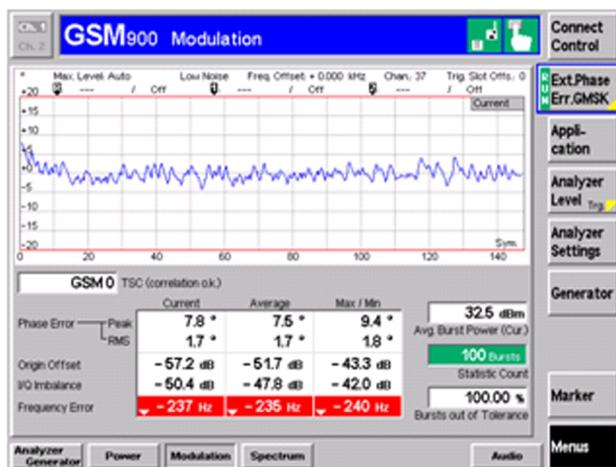

- TX troubleshooting requires TX operation
- Do not transmit on frequencies that are in use
- The transmitter can be controlled in local mode for diagnostic purposes
- The most useful Phoenix tool for GSM transmitter testing is "RF Controls", in WCDMA transmitter testing the best tool is "TX Control"

Note: Never activate the GSM or WCDMA transmitter without a proper antenna load. Always connect a 50 Ω load to the RF connector (antenna, RF measurement equipment or at least a 2 W dummy load), otherwise the power amplifier (PA) may be damaged.

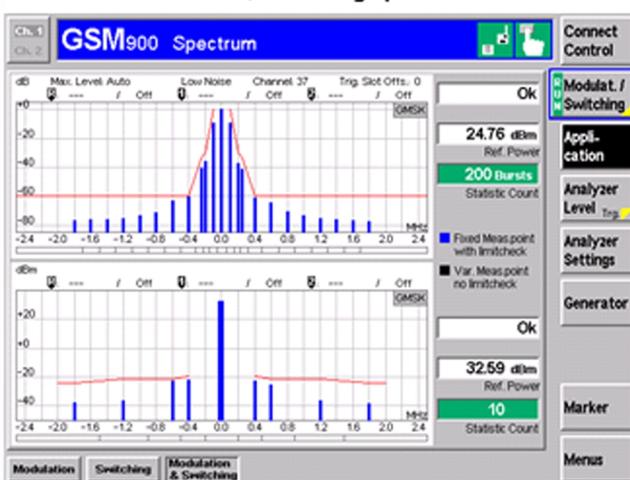
GSM transmitter activation**Steps**

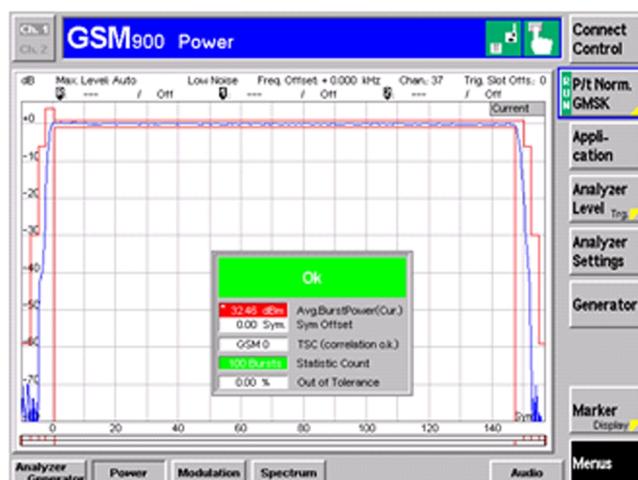

1. Set the phone to local mode.
2. Activate the RF controls tool in Phoenix (**Testing → GSM → RF Controls**).

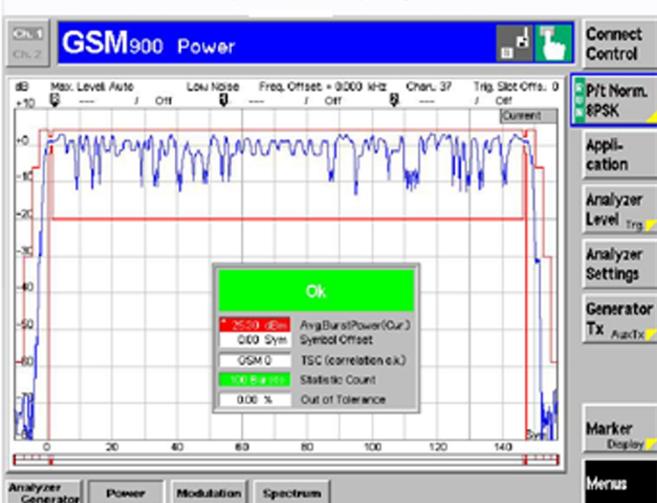
3. Make settings as shown in the figure:



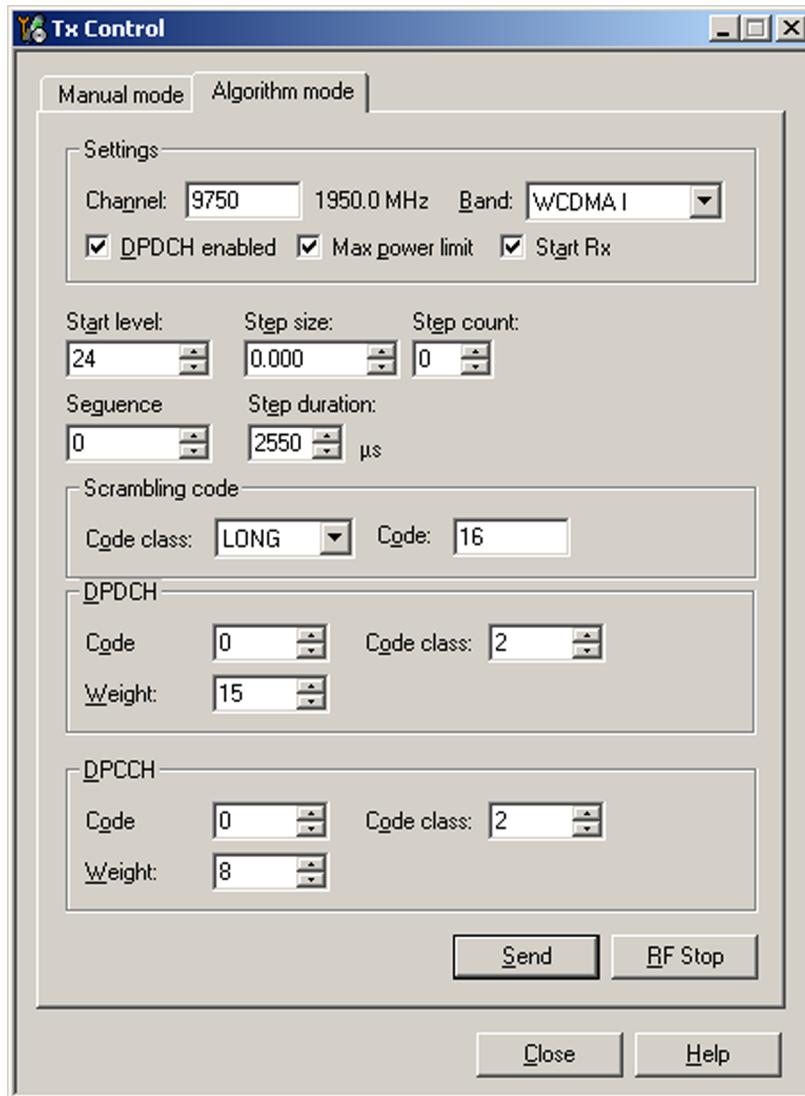
4. GSM transmitter is activated when **Active Unit** is set to "Tx". Aura (N7509) supply voltages are on for measurement purposes after this step is completed.
5. *Optional step (not needed if GSM TX activation only required):* Check the basic TX parameters (i.e. power, phase error, modulation and switching spectrum) manually, using a communication analyzer (for example CMU-200). Change power level (in "RF Controls" tool) and make sure the power reading follows accordingly.


Analyser settings

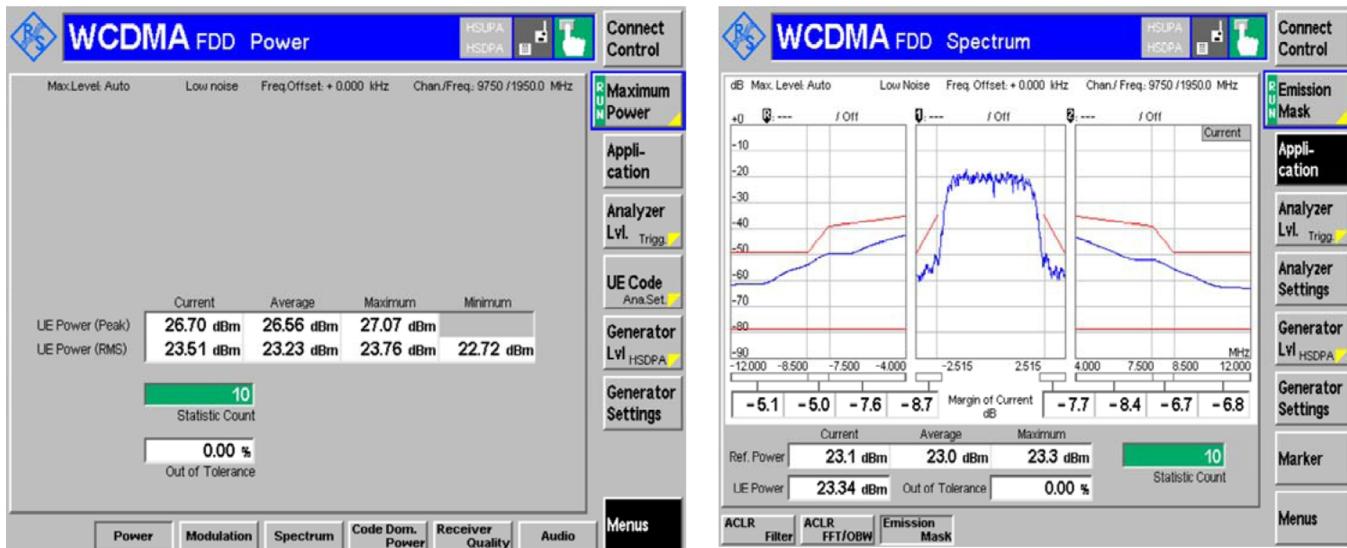
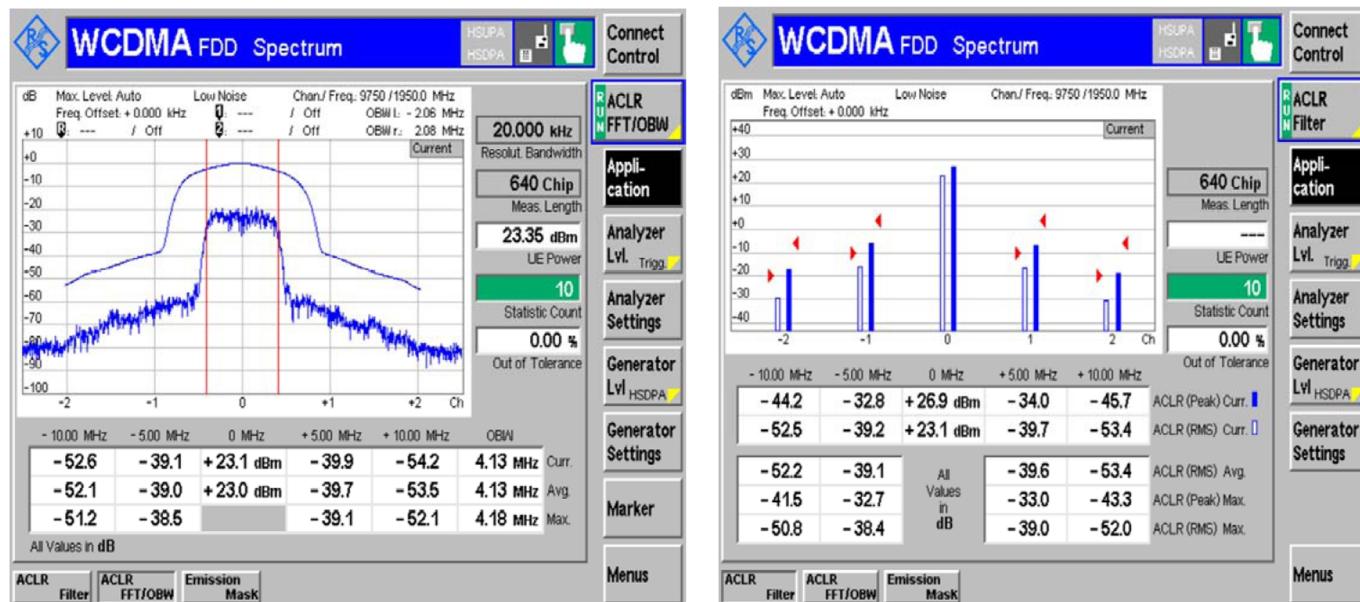

Phase error


Modulation/Switching spectrum

Power/Burst GSM/GPRS (GMSK)


Power/Burst - EDGE (8PSK)

WCDMA transmitter activation



Steps

1. Set the phone to local mode.
2. In Phoenix, select **Testing** → **WCDMA** → **TX Control** .
3. Select **Algorithm mode** tab.
4. In the TX Control window, make settings as in the figure:

5. Click **Send** to enable the settings and activate TX. If settings are changed (e.g. new channel or power level), you have to click **RF Stop** and **Send** again. Aura (N7509) supply voltages are on for measurement purposes after this step is completed.
6. *Optional step (not needed if WCDMA TX activation only required):* Check the basic TX parameters using a communication analyzer (for example CMU-200).

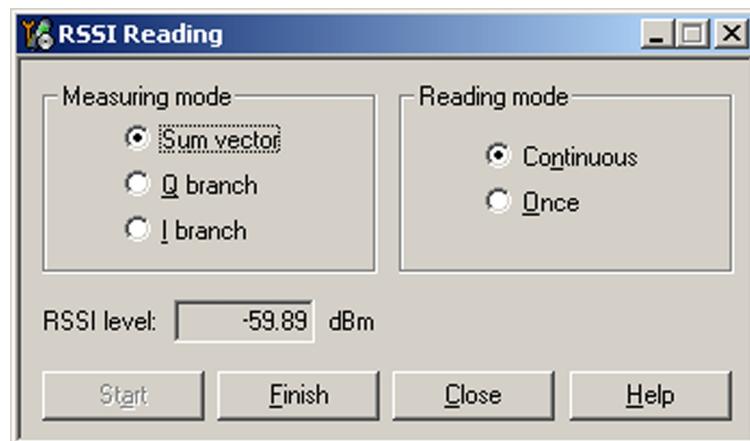
Note: RM-596 WCDMA TX power classes: WCDMA I, IV, V and VIII class 3 (maximum output power +24 dBm), WCDMA II class 4 (maximum output power +21 dBm).

Power
Spectrum - Emission Mask

Spectrum - ACLR (FFT/OBW)
Spectrum - ACLR (Filter)

Manual receiver (RX) testing with Phoenix
General instructions for manual receiver testing

RX can be tested manually by making a phone call or in local mode. For the local mode testing, use Phoenix service software.


The most important RX measurement in local mode is RSSI reading. This test measures the signal strength of the received signal. For GSM RSSI measurements, see chapter *GSM RX chain activation for manual measurements/GSM RSSI measurement*. For a similar test in WCDMA mode, see chapter *WCDMA RSSI measurement*.

GSM RX chain activation for manual measurements/GSM RSSI measurement**Prerequisites**

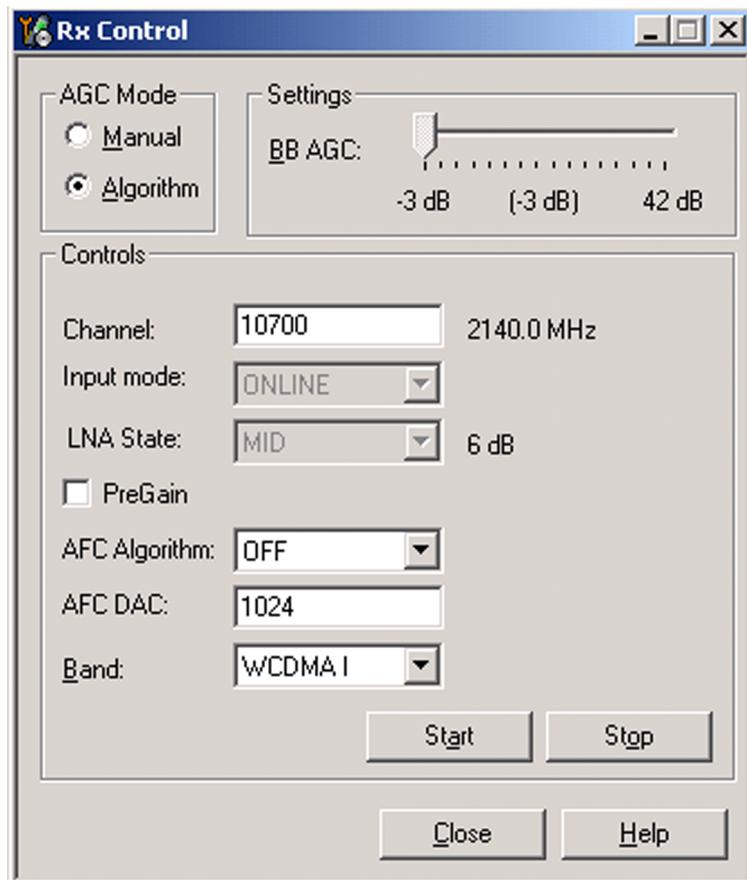
Connect a signal generator to a proper RF connector on the phone PWB (note: there are two antenna connectors for cellular RF on the phone PWB, one for low bands and one for high bands).

Steps

1. Set the phone to local mode.
2. Activate GSM RSSI reading in Phoenix (**Testing → GSM → RSSI Reading**)

3. Use the following frequencies and RF levels in RF generator for different GSM bands:

Setting	GSM850	GSM900	GSM1800	GSM1900
Phoenix: <i>Monitor Channel</i>	190	37	700	661
RF frequency	881.6 MHz	942.4 MHz	1842.8 MHz	1960.0 MHz
Signal generator frequency	881.66771 MHz	942.46771 MHz	1842.86771 MHz	1960.06771 MHz
Signal generator RF level (CW signal)	-60dBm	-60dBm	-60dBm	-60dBm


Results

The *RSSI level* reading should reflect the level of the signal generator (- losses) +/- 5 dB.

When varying the level in the range of -30 to -102 dBm, the reading should follow within +/-5 dB.

WCDMA RX chain activation for manual measurement**Steps**

1. Set the phone to local mode.
2. Activate *RX Control*/tool in Phoenix (**Testing → WCDMA → RX Control**).
3. In the RX Control window, make the following settings:

4. Click **Start** to activate the WCDMA RX. If the settings are changed later on (for example, change of channel) you have to click **Stop** and **Start** again.

Note: Channels for testing: WCDMA I 10700, II 9800, IV 1637, V 4408, VIII 3012.

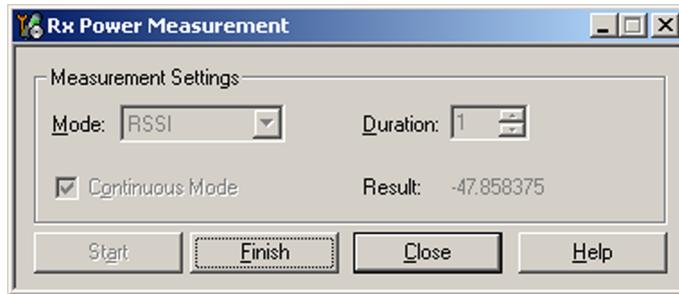
Note: Clicking **Stop** also disables TX control if it was active.

WCDMA RSSI measurement

Prerequisites

WCDMA RX must be activated before RSSI can be measured. For instructions, please refer to chapter *WCDMA RX chain activation for manual measurement*. Connect a signal generator to a proper RF connector on the phone PWB (note: there are two antenna connectors for cellular RF on the phone PWB, one for low bands and one for high bands).

Steps


1. Use the following frequencies and RF levels in RF generator for different WCDMA bands:

Setting	WCDMA I	WCDMA II	WCDMA IV	WCDMA V	WCDMA VIII
Phoenix: <i>Channel</i>	10700	9800	1637	4408	3012
RX frequency	2140.0 MHz	1960.0 MHz	2132.4 MHz	881.6 MHz	942.4 MHz
Signal generator frequency	2141.0 MHz	1961.0 MHz	2133.4 MHz	882.6 MHz	943.4 MHz

Setting	WCDMA I	WCDMA II	WCDMA IV	WCDMA V	WCDMA VIII
Signal generator RF level (CW signal)	-48 dBm	-48 dBm	-48 dBm	-48 dBm	-48 dBm

2. Activate WCDMA RSSI reading in Phoenix (**Testing** → **WCDMA** → **Rx Power Measurement**) .

3. In the Rx Power Measurement window, make the following settings:

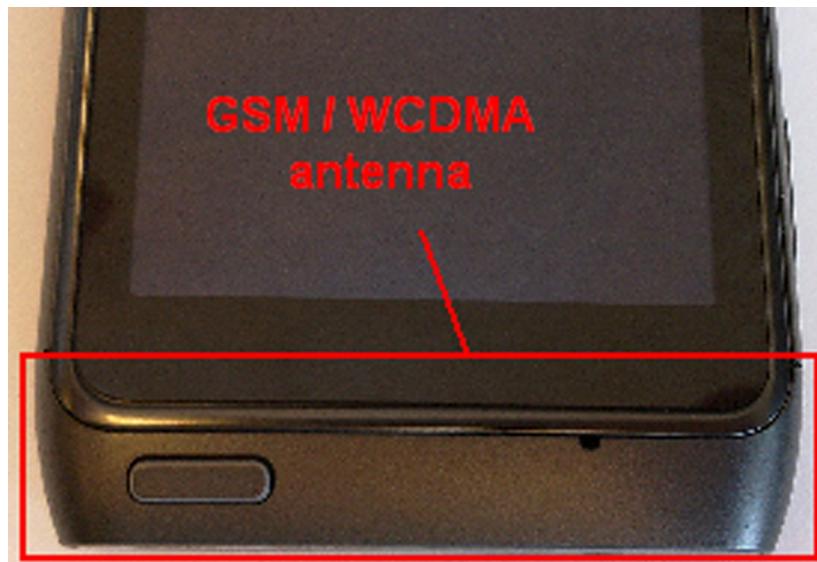
4. Click **Start** to perform the measurement.

Results

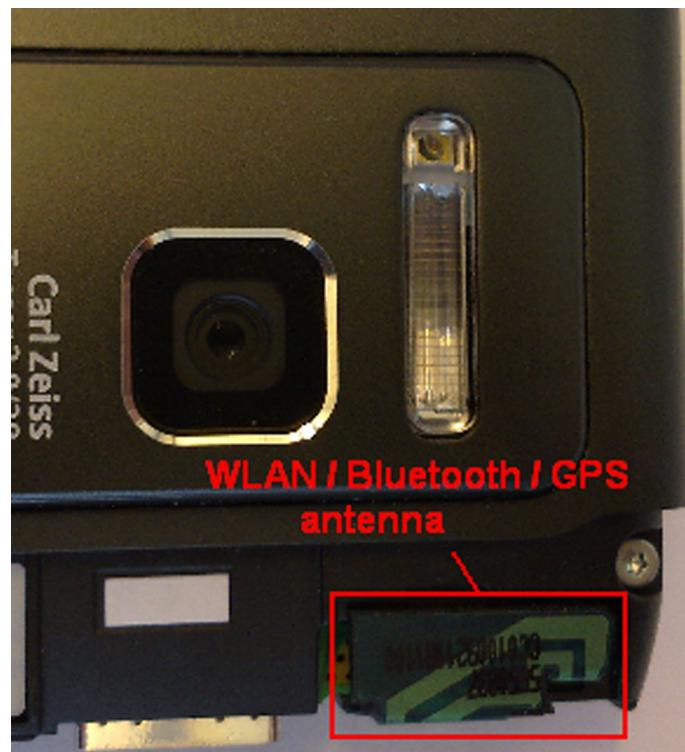
The *Result* reading should reflect the level of the signal generator (- losses) +/- 5 dB.

When varying the level in the range of -40 to -100 dB, the reading should follow within +/- 5 dB.

Note: In some versions of the Phoenix service tool, the *WCDMA Rx Power Measurement* tool does not work as it should. In these cases, the result is something really small (for example -8387684.9).


■ Antenna

Antenna overview


RM-596 has three internal antennas:

- The main antenna which is integrated to the lower end gap of the phone
- GPS/WLAN/Bluetooth antenna below the upper end gap of the phone
- FM TX antenna which is integrated to the decoration part surrounding the main camera

The main antenna covers GSM and WCDMA bands and has separate antenna feeds for low and high bands. Connection from the phone PWB to the antenna flex is implemented by pogo pins (3pcs). The main antenna consists of an antenna flex which is integrated between two plastic parts in the lower end gap of the phone.

GPS, BT and WLAN RF interfaces are connected to one common antenna. RF feed from the phone PWB to the antenna is made by one spring clip.

The FM TX antenna is a metallic decoration part at the top of the camera bump. RF feed from the PWB is implemented by a spring contact and a GND connection to the PWB by a pogo pin.

Antenna troubleshooting

Cellular antenna

The main antenna is functioning normally when the feed and GND pads take proper contact to the pogo pins on the phone PWB, and the antenna part is visually intact.

The main antenna has three connection pads. Check that these pads have a proper contact to the pogo pins on the phone PWB. Check also that all three pogo pins exist and work properly.

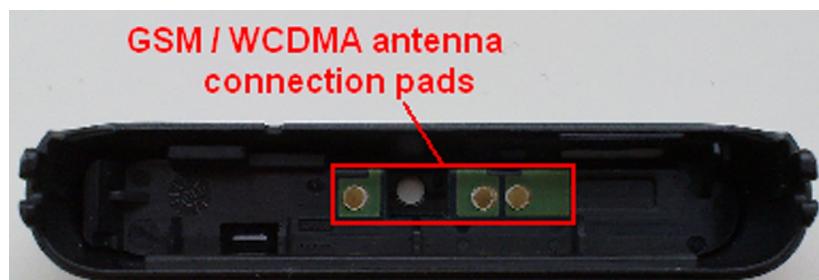


Figure 23 GSM/WCDMA antenna connection pads

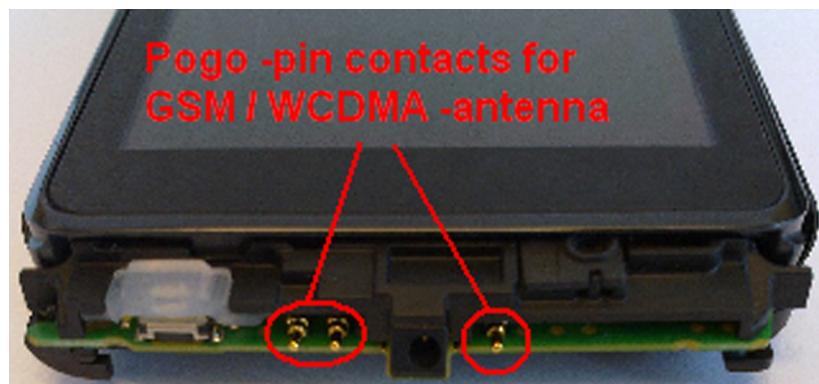


Figure 24 Pogo pins for GSM/WCDMA antenna

A typical fail situation is shown in the picture below. Cellular antenna fastenings are broken or screws holding the end gap are loose. There is a visible gap between the phone and the antenna part.

Figure 25 Cellular antenna fail situation

WLAN/BT/GPS antenna

Check that the only pad in the WLAN/Bluetooth/GPS antenna takes a proper contact to the C-clip on the phone PWB and the C-clip is clearly open.

Figure 26 C-clip for WLAN/BT/GPS antenna

FM TX antenna

Check that the pad in the FM TX antenna takes a proper contact to the C-clip on the phone PWB and the C-clip is clearly open. Check also that a GND pogo pin exists in the phone mechanics and takes a proper contact to the PWB.

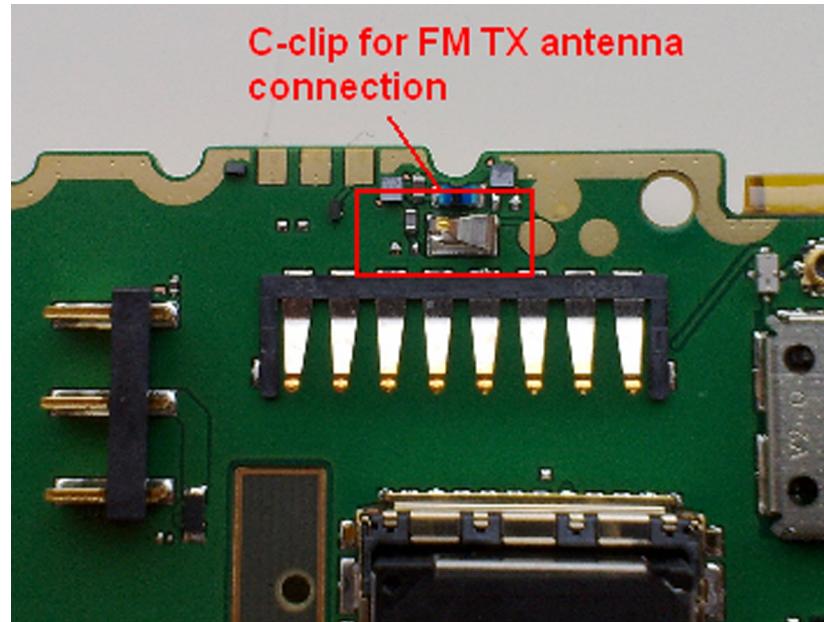


Figure 27 C-clip for FM TX antenna

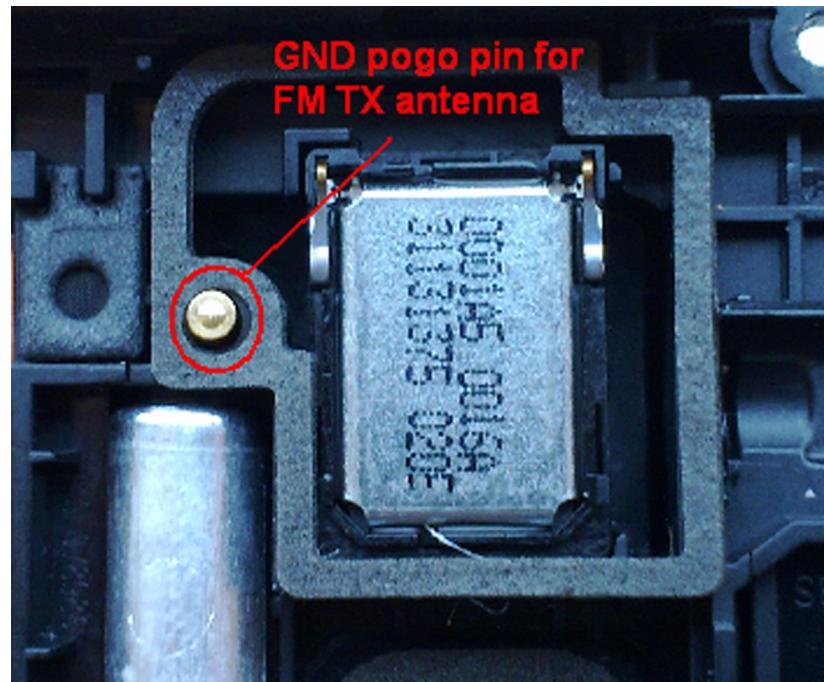


Figure 28 GND pogo pin for FM TX antenna

(This page left intentionally blank.)

5 — Camera Module Troubleshooting

(This page left intentionally blank.)

Table of Contents

Introduction to camera module troubleshooting	5-5
The effect of image taking conditions on image quality	5-6
Image quality analysis	5-10
Possible faults in image quality.....	5-10
Testing for dust in camera module	5-11
Testing camera image sharpness	5-12
Effects of dirty or defective camera lens protection window	5-13
Faulty pixels in images	5-14
Flash photography problems	5-15
Main (back) camera troubleshooting flowcharts	5-16
No recognizable viewfinder image	5-16
Bad image quality troubleshooting	5-17
Main camera troubleshooting.....	5-18
Secondary camera troubleshooting	5-20
Flash troubleshooting	5-22

List of Figures

Figure 29 Only center part of image is in focus due to limited depth of focus	5-6
Figure 30 Blurring caused by shaking hands	5-7
Figure 31 Near objects get skewed when taking images from a moving vehicle	5-7
Figure 32 Noisy image taken in +70 degrees Celsius	5-8
Figure 33 Image taken against light	5-8
Figure 34 Flicker in an image; object illuminated by strong fluorescent light.....	5-9
Figure 35 A lens reflection effect caused by sunshine.....	5-9
Figure 36 Good image taken indoors	5-10
Figure 37 Good image taken outdoors	5-10
Figure 38 Effects of dust on optical path	5-11
Figure 39 Image taken with clear protection window	5-13
Figure 40 Image taken with greasy protection window	5-13
Figure 41 Image of point light sources taken with a clean protective window.....	5-14
Figure 42 Image of point light sources taken with a dirty (finger print) protective window	5-14
Figure 43 Enlargement of a hot pixel.....	5-15
Figure 44 Light from the flash has reflected on particles in front of the camera	5-15

(This page left intentionally blank.)

■ Introduction to camera module troubleshooting

Background, tools and terminology

Faults or complaints in camera operation can be roughly categorised into three subgroups:

- 1 Camera is not functional at all; no image can be taken.
- 2 Images can be taken but there is nothing recognizable in them.
- 3 Images can be taken and they are recognizable but for some reason the quality of images is seriously degraded, or customer complains about image quality.

Image quality is very hard to measure quantitatively, and even comparative measurements are difficult (comparing two images) to do, if the difference is small. Especially if the user is not satisfied with his/her device's image quality, and tells, for example, that the images are not sharp, it is fairly difficult to accurately test the device and get an exact figure which would tell whether the device is functioning properly.

Often subjective evaluation has to be used for finding out if a certain property of the camera is acceptable or not. Some training or experience of a correctly operating reference device may be needed in order to detect what actually is wrong, or is there anything wrong at all.

It is easy for the user to take bad images in bad conditions. Therefore the camera operation has to be checked always in constant conditions (lighting, temperature) or by using a second, known-to-be good device as reference. Experience helps significantly in analysing image quality.

Terms

Autofocus	Camera module contains lens movement mechanics for focus adjustment. Autofocus enables camera to take sharp images of objects positioned between 10cm to infinity. During AF the viewfinder image will be momentarily blurred as the camera searches for the right focus setting.
Digital zoom	Digital zoom is done by first cropping the image by the zoom ratio and then upscaling it to the output resolution. This will decrease the image quality especially with high zoom ratios.
Dynamic range	Camera's ability to capture details in dark and bright areas of the scene simultaneously.
Exposure time	Camera modules use silicon sensor to collect light and for forming an image. The imaging process roughly corresponds to traditional film photography, in which exposure time means the time during which the film is exposed to light coming through optics. Increasing the time will allow for more light hitting the film and thus results in brighter image. The operation principle is exactly the same with silicon sensor, but the shutter functionality is handled electronically.
Flicker	Phenomenon, which is caused by pulsating in scene lighting, typically appearing as wide horizontal stripes in an image.
ND-filter	Neutral density filter is a filter which is used in very bright conditions to reduce the amount of light hitting the sensor. The filter is built into the camera module and applied automatically when needed.
Noise	Variation of response between pixels with same level of input illumination.
Resolution	Usually the amount of pixels in the camera sensor. In some occasions the term resolution is used for describing the sharpness of the images.

Sensitivity	Camera module's sensitivity to light. In equivalent illumination conditions, a less sensitive camera needs a longer exposure time to gather enough light in forming a good image. Analogous to ISO speed in photographic film.
Sharpness	Good quality images are 'sharp' or 'crisp', meaning that image details are well visible in the picture. However, certain issues, such as non-idealities in optics, cause image blurring, making objects in picture to appear 'soft'. Each camera type typically has its own level of performance.
Shutter	The electronic shutter is used when short exposure times are needed and in video. When the mechanical shutter is used a black sheet will cover the lens after the exposure.

■ The effect of image taking conditions on image quality

There are some factors, which may cause poor image quality, if not taken into account by the end user when shooting images, and thus may result in complaints. The items listed are normal to camera operation and are not a reason for changing the camera module.

Autofocus

When the camera is focusing a lens is moved inside the module to give the sharpest possible image. This camera module is specified to operate satisfactorily from 10 cm to infinite distance of scene objects. Trying to photograph objects closer than 10 cm is likely to result in a blurred out of focus image. The lack of sharpness is first visible in full resolution images. Images taken very close to the subject, a limited depth of focus will be visible, that is the upper or lower parts of the image may be out of focus. This is normal; do not change the camera module.

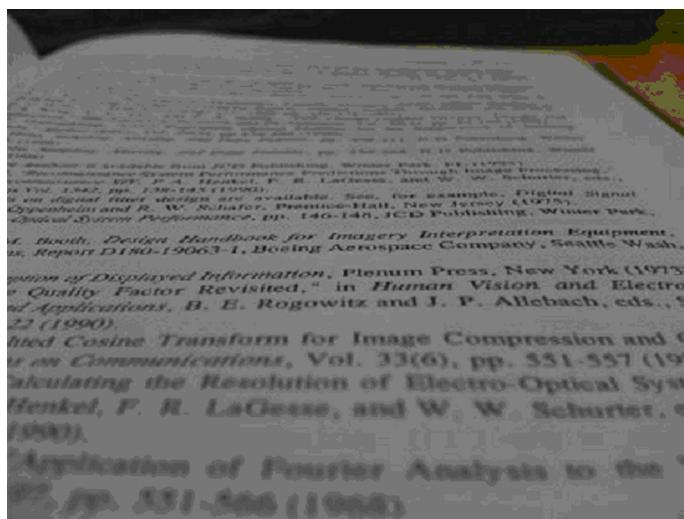


Figure 29 Only center part of image is in focus due to limited depth of focus

The amount of light available

In dim conditions camera runs out of sensitivity. The exposure time is long (especially in the night mode) and the risk of getting shaken (= blurred) images increases. In addition, image noise level grows. The maximum exposure time in the night mode is $\frac{1}{4}$ seconds. Therefore, images need to be taken with extreme care and by supporting the phone when the amount of light reflected from the target is low. Because of the longer exposure time and larger gain value, noise level increases in low light conditions. Sometimes blurring may even occur in daytime, if the image is taken very carelessly. See the figure below for an example. This is normal; do not change the camera module.

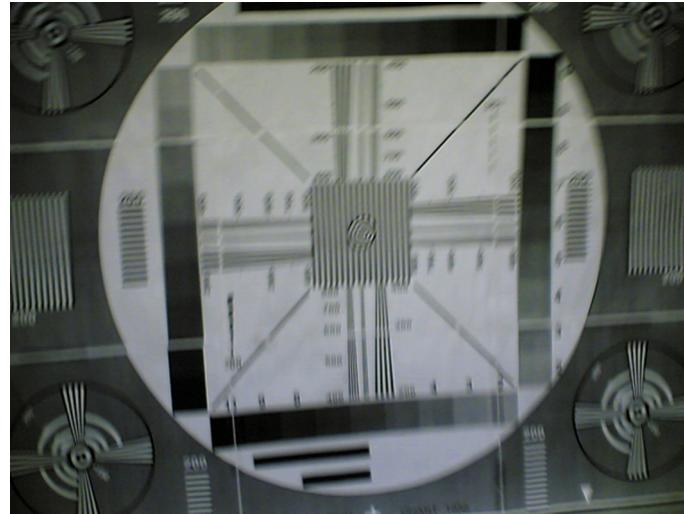


Figure 30 Blurring caused by shaking hands

Movement in bright light

If an image is taken of moving objects or if the device is used in a moving vehicle, object 'skewing' or 'tilting' may occur. This phenomenon is fundamental to most CMOS camera types, and may happen when using the electronic shutter. The movement of camera or object sometimes cause blurring indoors or in dim lighting conditions because of long exposure time. This is normal; do not change the camera module.

Figure 31 Near objects get skewed when taking images from a moving vehicle

Temperature

High temperatures inside the mobile phone cause more noise to appear in images. For example, in +70 degrees (Celsius), the noise level may be very high, and it further grows if the conditions are dim. If the phone processor has been heavily loaded for a long time before taking an image, the phone might have considerably higher temperature inside than in the surrounding environment. This is also normal to camera operation; do not change the camera module.

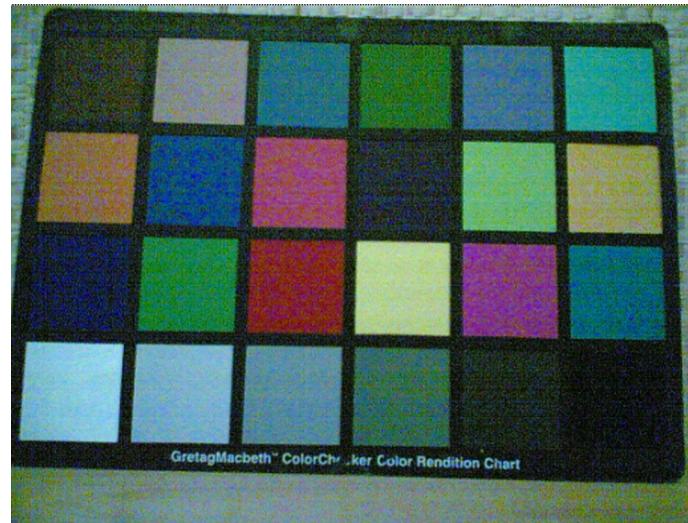


Figure 32 Noisy image taken in +70 degrees Celsius

Phone display

If the display contrast is set too dark, the image quality degrades: the images may be very dark depending on the setting. If the display contrast is set too bright, image contrast appears bad and "faint". This problem is solved by setting the display contrast correctly. This is normal behaviour; do not change the camera module.

Basic rules of photography (especially shooting against light)

Because of dynamic range limitations, taking images against bright light might cause either saturated image or the actual target appear too dark. In practice, this means that when taking an image indoors and having, for example, a window behind the object, the result is usually poor. This is normal behaviour; do not change the camera module.

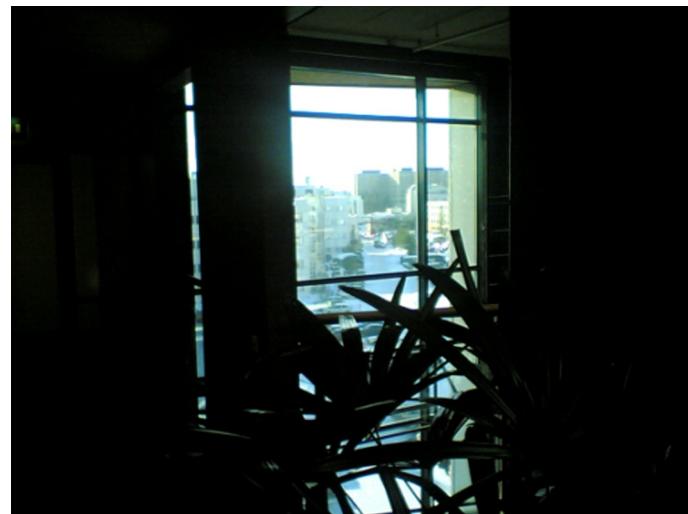


Figure 33 Image taken against light

Flicker

In some occasions a bright fluorescent light may cause flicker in the viewfinder and captured image. This phenomenon may also be a result, if images are taken indoors under the mismatch of 50/60 Hz electricity network frequency. The electricity frequency used is automatically detected by the camera module. In some very few countries, both 50 and 60 Hz networks are present and thus probability for the phenomenon increases. Flickering occurs also under high artificial illumination level. Flickering only occurs when the rolling shutter is used. This is normal behaviour; do not change the camera module.

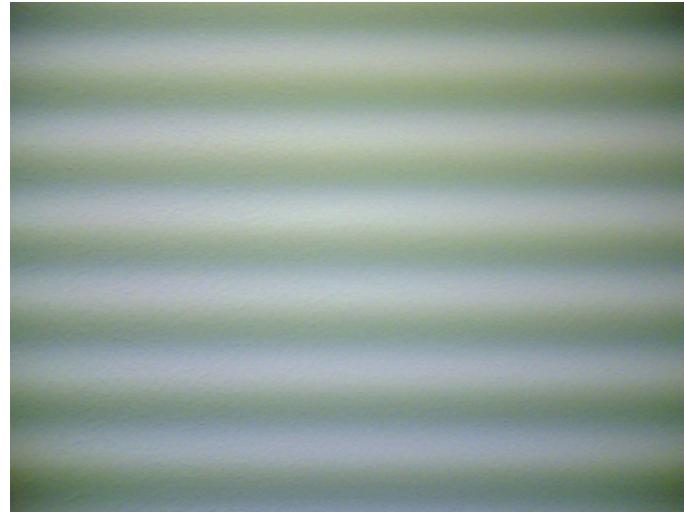


Figure 34 Flicker in an image; object illuminated by strong fluorescent light

Bright light outside of image view

Especially the sun can cause clearly visible lens glare phenomenon and poor contrast in images. This happens because of undesired reflections inside the camera optics. Generally this kind of reflections are common in all optical systems. This is normal behaviour; do not change the camera module.

Figure 35 A lens reflection effect caused by sunshine

Examples of good quality images

Figure 36 Good image taken indoors

Figure 37 Good image taken outdoors

■ Image quality analysis

Possible faults in image quality

When checking for possible errors in camera functionality, knowing what error is suspected significantly helps the testing by narrowing down the amount of test cases. The following types of image quality problems may be expected to appear:

- Dust (black spots)
- Lack of sharpness
- Bit errors

In addition, there are many other kinds of possibilities for bad image quality, but those are ruled out from the scope of this document since the probability of their appearance is small.

Testing for dust in camera module

Symptoms and diagnosis

For detecting these kinds of problems, take an image of a uniform white surface and analyse it in full resolution. A good quality PC monitor is preferred for analysis. Search carefully, since finding these defects is not always easy. Figure "Effects of dust on optical path" is an example image containing easily detectable dust problems.

When taking a white image, use uniformly lightened white paper or white wall. One possibility is to use uniform light but in this case make sure that the camera image is not flickering when taking the test image. In case flickering happens, try to reduce illumination level. Use JPEG image format for analysing, and set the image quality parameter to 'High Quality'.

Black spots in an image are caused by dirt particles trapped inside the optical system. Clearly visible and sharp edged black dots in an image are typically dust particles on the image sensor. These spots are searched for in the manufacturing phase, but it is possible that the camera body cavity contains a particle, which may move onto the image sensor active surface, for example, when the phone is dropped. Thus it is also possible that the problem will disappear before the phone is brought to service. The camera should be replaced if the problem is present when the service technician analyses the phone.

If a dust particle is lying on the infrared filter surface on either side, they are hard to locate because they are out of focus, and appear in the image as large, grayish and fading-edge 'blobs'. Sometimes they are invisible to the eye, and thus the user probably does not notice them at all. However, it is possible that a larger particle disturbs the user, causing need for service.

Figure 38 Effects of dust on optical path

If large dust particles get trapped on top of the lens surface in the cavity between camera window and lens, they will cause image blurring and poor contrast. The dust gasket between the window and lens should prevent any particles from getting into the cavity after the manufacturing phase.

If dust particles are found on the sensor, this is classified as a manufacturing error of the module and the camera should be replaced. Any particles inside the cavity between the protection window and lens have most probably been trapped there in the assembly phase at a Nokia factory. Unauthorized disassembling of the product can also be the root of the problem. However, in most cases it should be possible to remove the particle(s) by using clean compressed air. Never wipe the lens surface before trying compressed air; the possibility of damaging the lens is substantial. Always check the image sharpness after removing dust.

Testing camera image sharpness

Symptoms and diagnosis

If pictures taken with a device are claimed to be blurry, there are five possible sources for the problem:

- 1 The protection window is fingerprinted, soiled, dirty, visibly scratched or broken.
- 2 The camera module has failed to focus correctly, producing a blurred image.
- 3 User has tried to take pictures in too dark conditions and images are blurred due to handshake or movement. This is not a cause to replace camera module.
- 4 There is dirt between the protection window and the camera lens.
- 5 The protection window is defective. This can be either a manufacturing failure or caused by the user. The window should be changed.

A quantitative analysis of sharpness is very difficult to conduct in any other environment than optics laboratory. Therefore, subjective analysis should be used.

If no visible defects (items 1-4) are found, a couple of test images should be taken. Generally, a well-illuminated typical indoor scene, such as the one in Figure "Good image taken indoors", can be used as a target. The main considerations are:

- The camera module has to be given time to focus correctly. Correct focusing is normally indicated with a flashing icon or green bracket in the viewfinder. During focusing, the image in the viewfinder moves slightly back and forth, this is normal and shows that the lens unit is moving. During the movement a faint sound can be heard from the camera head.
- The protection window has to be clean.
- The amount of light (300 – 600 lux (bright office lighting)) is sufficient.
- The scene should contain, for example, small objects for checking sharpness. Their distance should be 1 – 2 meters.
- If possible, compare the image to another image of the same scene, taken with a different device. Note that the reference device has to be a similar Nokia phone.

There are several conditions in which AF operation is challenging for the camera module, i.e. failing from time to time. These include:

- Low light scenes and night mode
- Scenes with low contrast
- Fast-moving objects

AF operation is disabled on purpose in "night", "landscape", and "sports" modes.

When using these modes the lens is set to a predetermined focal position and is not moved during use.

The AF lens is fixed in hyper focal in video mode.

Under low light and night mode the AF function is slower than under good light, it may even fail to find correct focus position. Low contrast scenes or fast moving objects may also slow down or cause AF to fail. This is normal operation, and is not a cause to replace camera.

The operation of AF can be tested by taking images of objects at different distances. Good distances are 20 cm, 60 cm and infinity (>3 m). Any LED or xenon flashes should not be used while taking the images.

The taken images should be analysed on PC screen at 100% scaling simultaneously with a reference image. Pay attention to the computer display settings; at least 65000 colors (16 bit) have to be used. 256 (8-bit) color setting is not sufficient; true color (24 bit, 16 million colors) or 32 bit (full color) setting is recommended.

If the differences are noticeable at a glance and also if the one under investigation is significantly inferior, the module might have a faulty lens. In this case, the module should be changed. Always re-check the resolution after changing the camera module. If a different module produces a clearly noticeable quality gap,

the fault is probably in the camera window. Check the window by looking carefully through it when replacing the module. As references Figure "Good image taken indoors" and Figure "Good image taken outdoors" can be used. Another possibility is to use a service point comparison phone, if available.

Effects of dirty or defective camera lens protection window

The following series of images demonstrates the effects of fingerprints on the camera protection window.

Note: The effects of any dirt in images can vary very much; it may be difficult to judge if the window has been dirty when some image has been taken or if something else has been wrong. That is why the cleanliness of the protection window should always be checked and the window should be wiped clean with a suitable cloth.

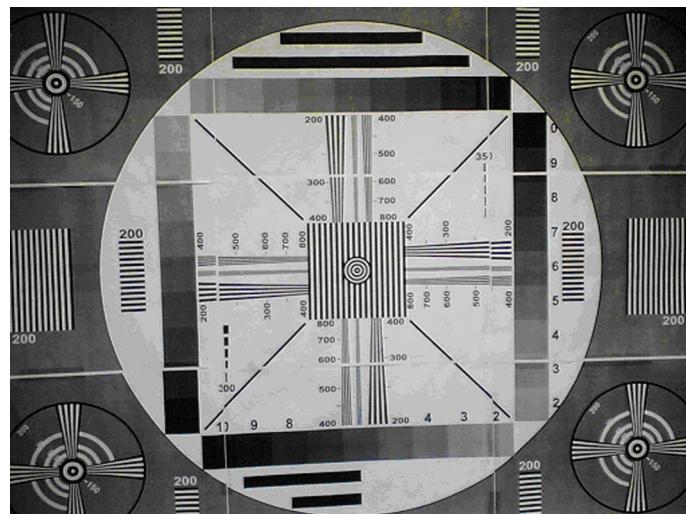


Figure 41 Image of point light sources taken with a clean protective window

Figure 42 Image of point light sources taken with a dirty (finger print) protective window

Faulty pixels in images

Faulty pixels are pixels that do not respond to light in the same way as the pixels around them. There are three main types of faulty pixels, dead, stuck and hot pixels.

Dead pixels are always black or significantly darker than their surrounding. Dead pixels appear as black spots in all lightning conditions. Camera modules producing images with dead pixels that are clearly noticeable should be replaced.

If the pixel remains always saturated to its maximum value it is stuck. Stuck pixels may appear as red, green, blue or white spots in all lightning conditions. Camera modules producing images with one or more stuck pixels should be replaced.

Hot pixels are pixels that easily saturate in dim light conditions. It is normal to get a lot of noise and hot pixels in night conditions or otherwise dark conditions. The hot pixels should disappear when the ambient light is increased, but may still appear in darker areas of an otherwise well illuminated scene. This is normal behavior, do not change the camera.

When examining an image for defect pixels, test images should be viewed as 100% enlargements on a PC monitor.

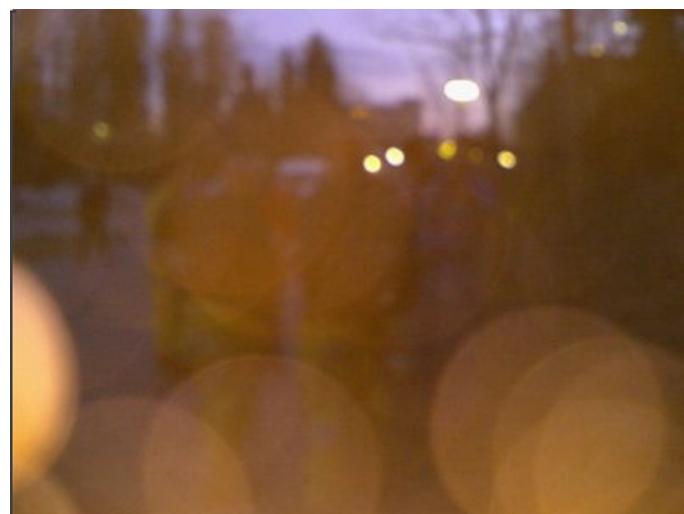


Figure 43 Enlargement of a hot pixel

Flash photography problems

Use of flash device may affect the image in many ways.

- White balance errors. The image may get a wrong tone due to mixing of flash colour temperature and ambient lightning. This is unwanted but normal feature.
- Dust reflections. Dust or water drops in front of the flash unit may reflect strongly to the camera sensor. See the following figure.

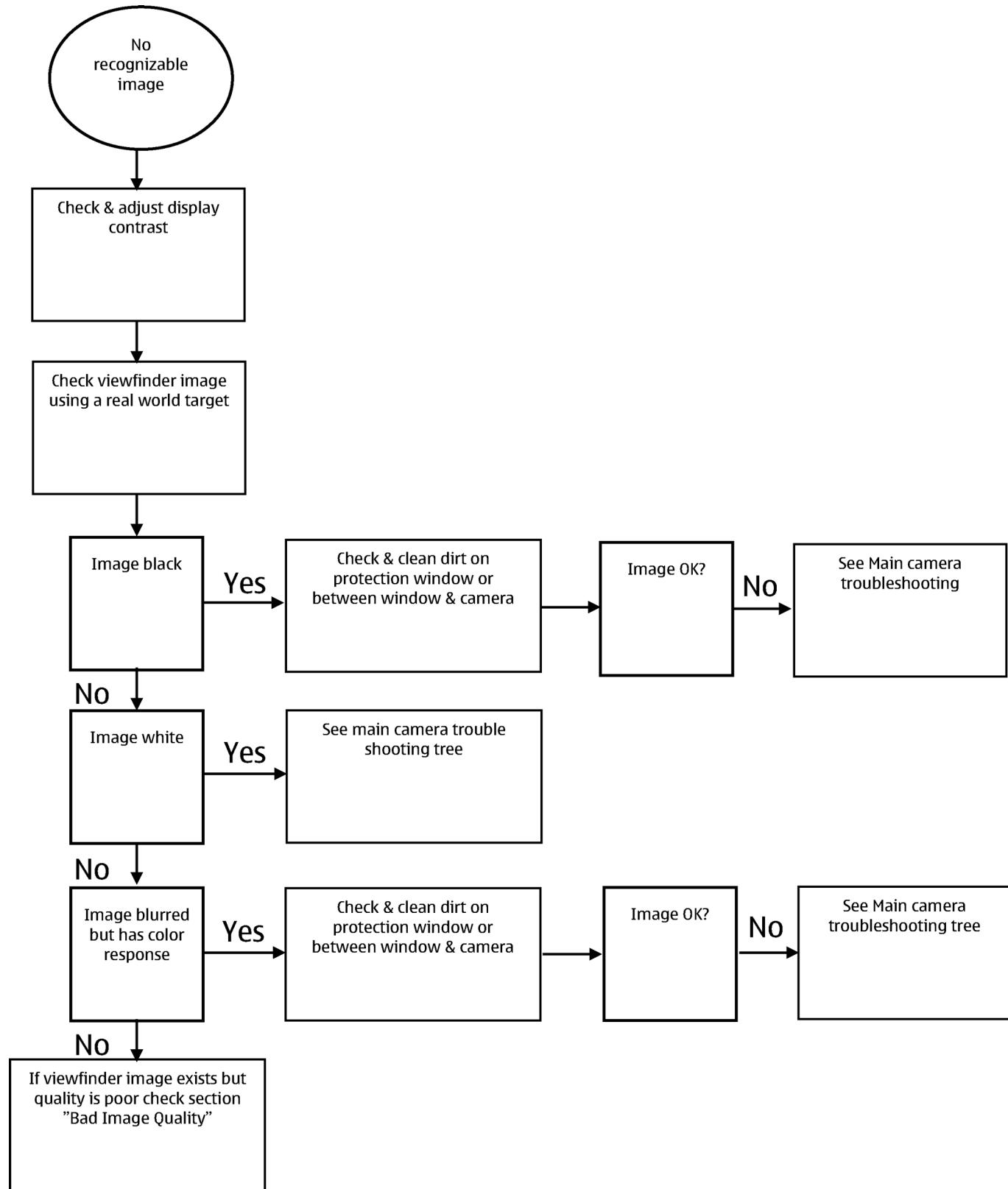
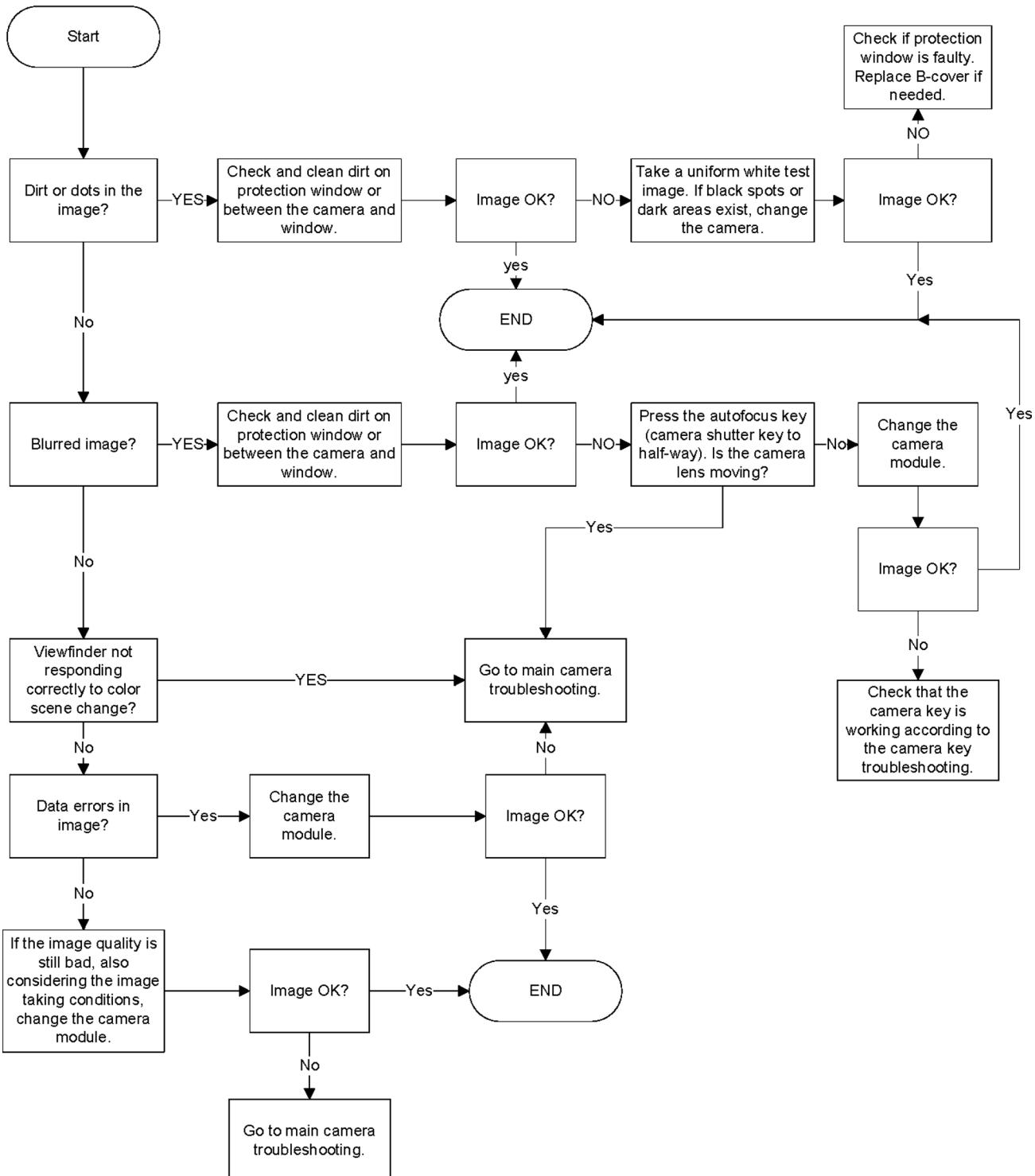


Figure 44 Light from the flash has reflected on particles in front of the camera

■ Main (back) camera troubleshooting flowcharts

No recognizable viewfinder image


Troubleshooting flow

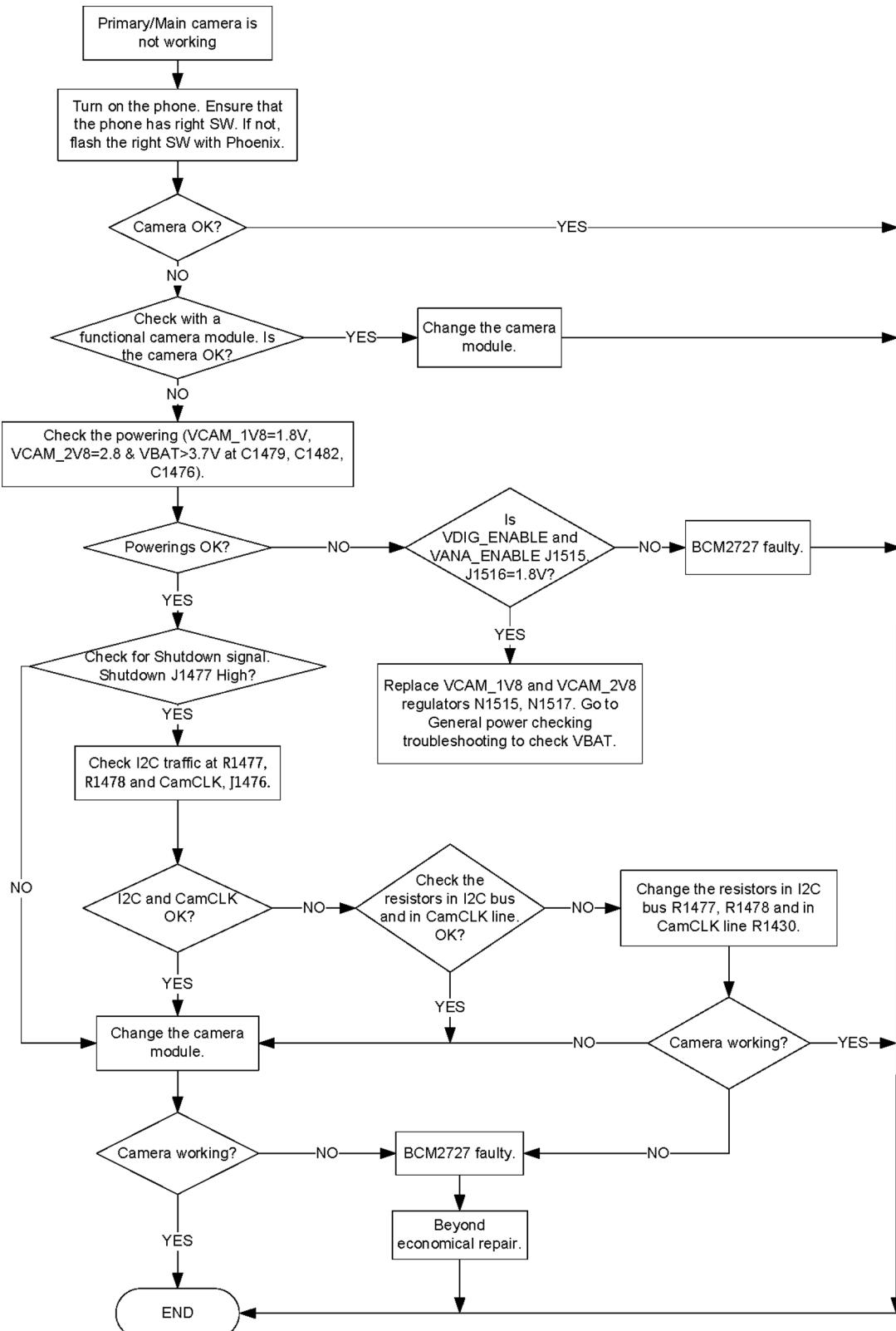
Bad image quality troubleshooting

Troubleshooting flow

Before starting check the effects of image taking conditions on the image quality from the previous chapter!

Main camera troubleshooting

Context


The following references on the PWB help in the effective debugging and troubleshooting of the main/primary camera.

Sr. No	Reference	Description
1	X1476	Primary camera socket
2	R1477, R1478	Pull-up resistors on primary camera I2C lines. Resistor value 4.7 KOHMS.
3	D1400	BCM2727B IC
4	N1515	VCAM_1V8 regulator
5	N1517	VCAM_2V8 regulator

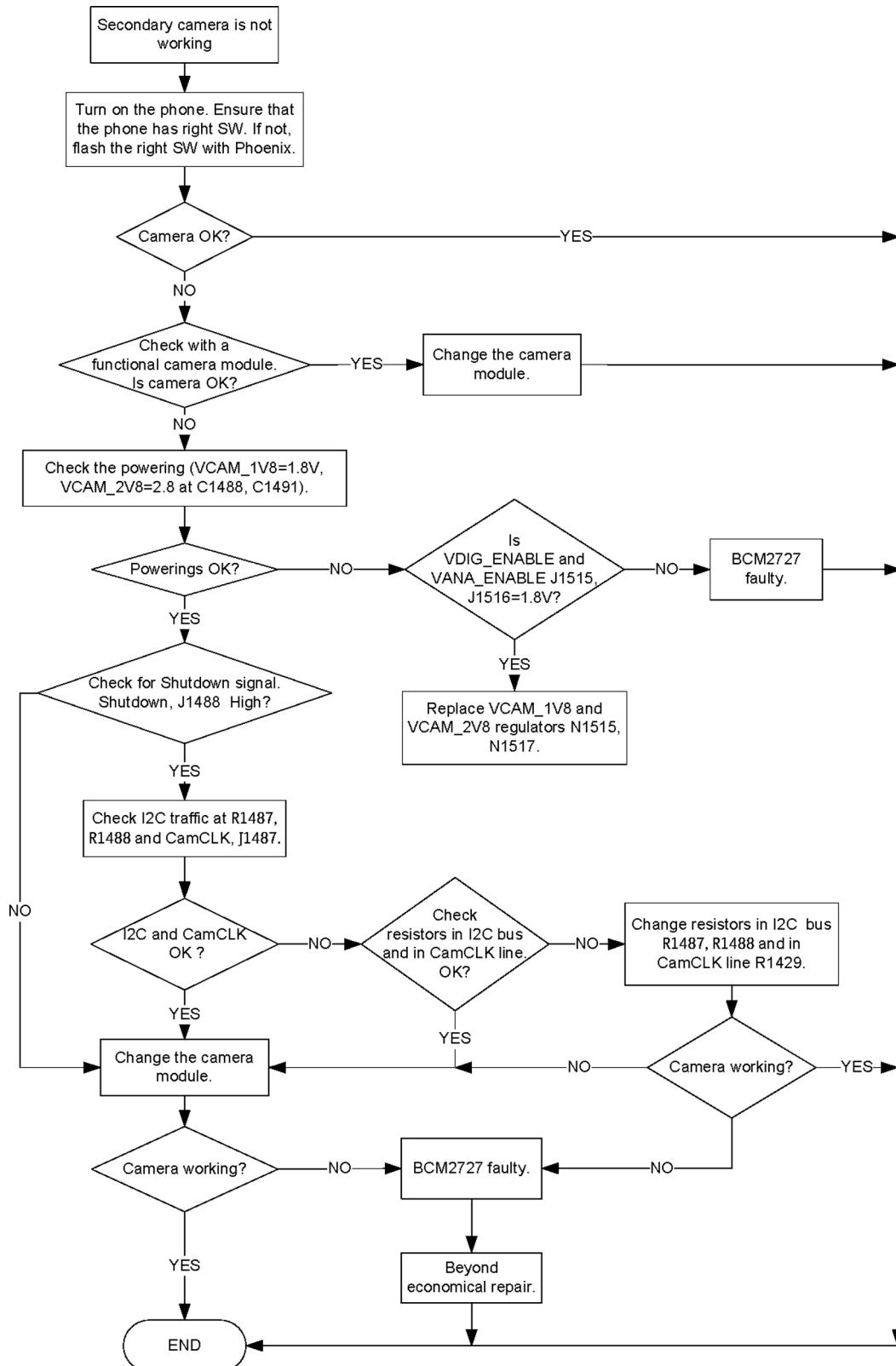
The following test points on the PWB help in the effective debugging and troubleshooting.

Sr. No	Signal name	Measuring point	Description
1	VBAT	L1476/C1476	VBAT supply to primary camera
2	VCAM_1V8	L1477/C1479	1.8V supply to primary camera
3	VCAM_2V8	L1478/C1482	2.8V supply to primary camera
4	VDIG_ENABLE	J1515	Enable signal for VCAM_1V8 regulator. This signal needs to be High for the regulator to be On.
5	VANA_ENABLE	J1516	Enable signal for VCAM_2V8 regulator. This signal needs to be High for the regulator to be On.
6	PRI_CAM_CLK	J1476	External clock signal to primary camera
7	PRI_CAM_SHUTDN WN	J1477	Shutdown signal to primary camera. This needs to be High for the camera to be Up.
8	PRI_CAM_I2C(1:0)	R1477, R1478	I2C signals for primary camera

Troubleshooting flow

■ Secondary camera troubleshooting

Context


The following references on the PWB help in the effective debugging and troubleshooting of the secondary camera.

Sr. No	Reference	Description
1	H1487	Secondary camera
2	R1487, R1488	Pull-up resistors on the secondary camera I2C lines. Resistor value 4.7 KOHMS.
3	D1400	BCM2727B IC
4	N1515	VCAM_1V8 regulator
5	N1517	VCAM_2V8 regulator

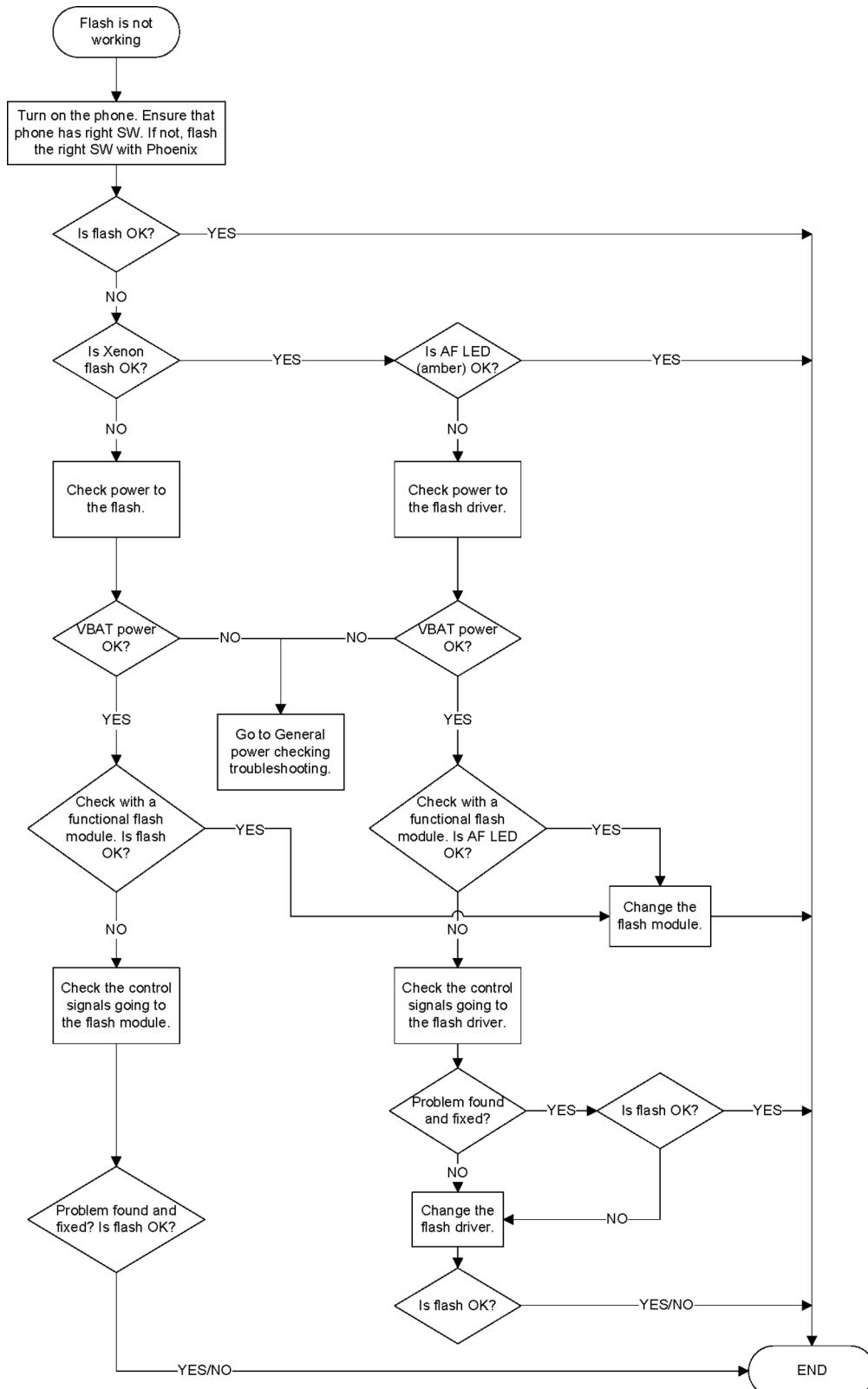
The following test points on the PWB help in the effective debugging and troubleshooting.

Sr. No	Signal name	Measuring point	Description
1	VCAM_1V8	L1487/C1488	1.8V supply to secondary camera
2	VCAM_2V8	L1488/C1491	2.8V supply to secondary camera
3	VDIG_ENABLE	J1515	Enable signal for VCAM_1V8 regulator. This signal needs to be High for the regulator to be On.
4	VANA_ENABLE	J1516	Enable signal for VCAM_2V8 regulator. This signal needs to be High for the regulator to be On.
5	SEC_CAM_CLK	J1487	External clock signal to secondary camera
6	SEC_CAM_SHUTDOWN	J1488	Shutdown signal to secondary camera. This needs to be High for the camera to be Up.
7	SEC_CAM_I2C(1:0)	R1487, R1488	I2C signals for secondary camera

Troubleshooting flow

■ Flash troubleshooting

Context


The following references on the PWB help in the effective debugging and troubleshooting of the flash.

Sr. No	Reference	Description
1	N1504	Flash driver
2	X1505	Habanero flash connector
3	D1400	BCM2727B IC

The following test points on the PWB help in the effective debugging and troubleshooting of the flash.

Sr. No	Signal name	Measuring point	Description
1	VBAT	L1507/pin3 of X1505	VBAT supply to flash and flash driver
2	FLASH_READY_XE	J1430	Ready signal from flash module
3	FLASH_CHARGE_XE	J1504	Charge signal to flash module. This needs to be High for the charging to start.
4	CAM_FLASH_STROBE	J1503	Strobe signal to flash module. This needs to be High for flashing.
5	FLASH_INDICATOR_XE	R1508	Flash indicator signal to flash driver
6	FLASH_AFASSIST_XE	J1506	Flash auto focus signal to flash driver

Troubleshooting flow

(This page left intentionally blank.)

6 — System Module

(This page left intentionally blank.)

Table of Contents

Introduction	6-5
Phone description	6-5
Energy management	6-11
Battery and charging	6-11
Normal and extreme voltages	6-11
Power key and system power up	6-12
Modes of operation	6-12
Power distribution	6-13
Clocking scheme	6-14
SIM interface	6-15
Device memory	6-16
BOB1.0M-b module	6-16
GPS interface	6-18
USB	6-19
USB interface and charging	6-19
MicroUSB connector	6-19
Charger interface	6-20
User interface	6-20
Touch module	6-20
Proximity sensor	6-21
Imaging and video	6-22
Multimedia application processor	6-22
Display module	6-22
TV-out interface	6-22
Cameras	6-23
Illumination	6-24
Keyboard interface	6-25
Ambient Light Sensor (ALS)	6-25
Accelerometer	6-26
Magnetometer	6-27
Audio concept	6-28
Audio HW architecture	6-28
Internal earpiece	6-30
Internal handsfree (IHF) speakers	6-30
Internal microphones	6-30
External earpiece and microphone	6-31
Vibra	6-31
AV connector	6-32
Cellular RF technical description	6-32
RF block	6-32
QuBBE	6-33
Receiver (RX)	6-33
Synthesizer	6-33
Transmitter (TX)	6-33
Frequency mappings	6-35
GSM850 frequencies	6-35
EGSM900 frequencies	6-35
GSM1800 frequencies	6-36
GSM1900 frequencies	6-38
WCDMA I (2100) Rx frequencies	6-39

WCDMA I (2100) Tx frequencies	6-40
WCDMA II (1900) frequencies	6-41
WCDMA IV (1700/2100) frequencies	6-42
WCDMA V (850) frequencies	6-43
WCDMA VIII (900) frequencies	6-44

List of Tables

Table 11 Nominal voltages	6-11
---------------------------------	------

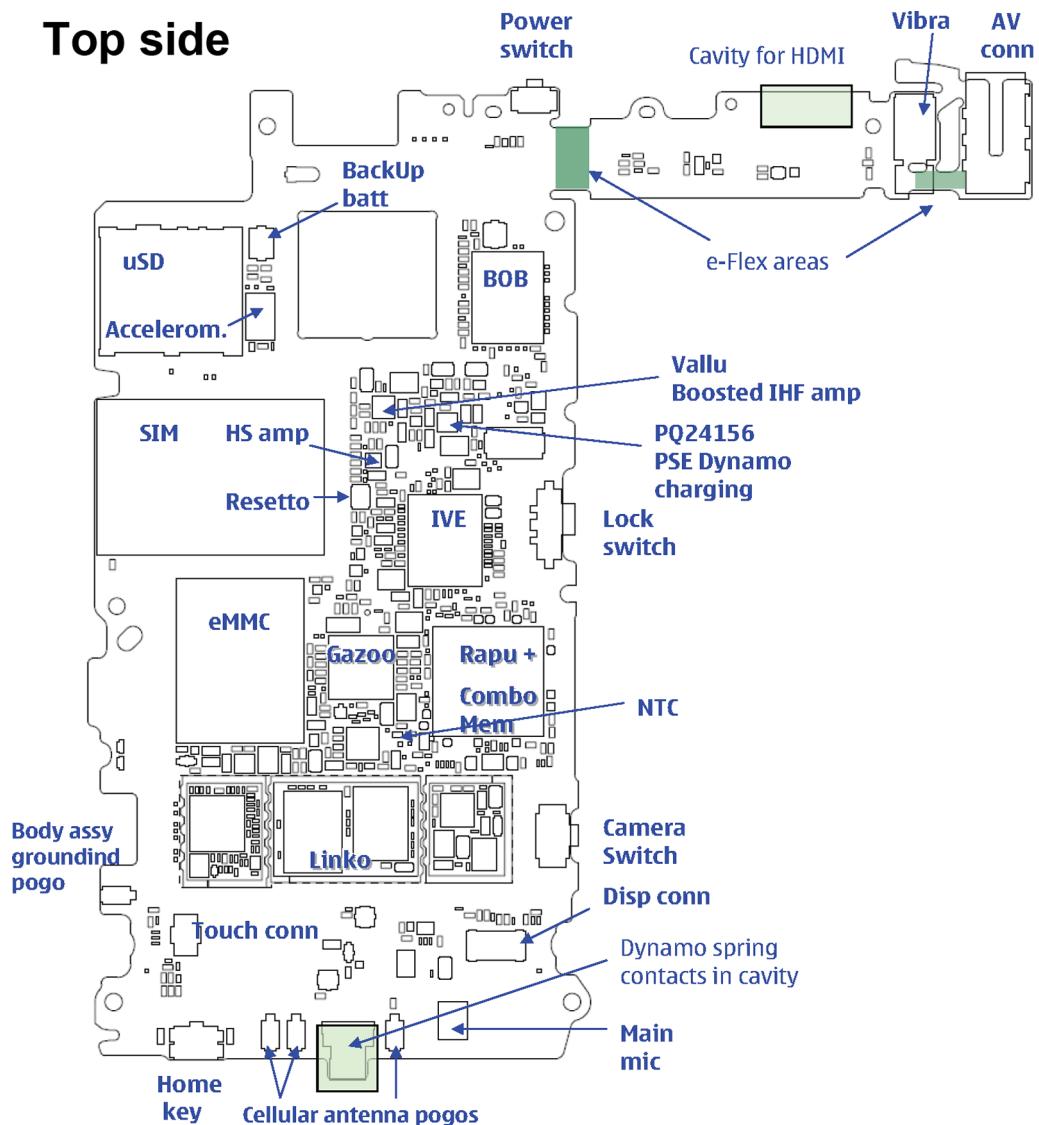
List of Figures

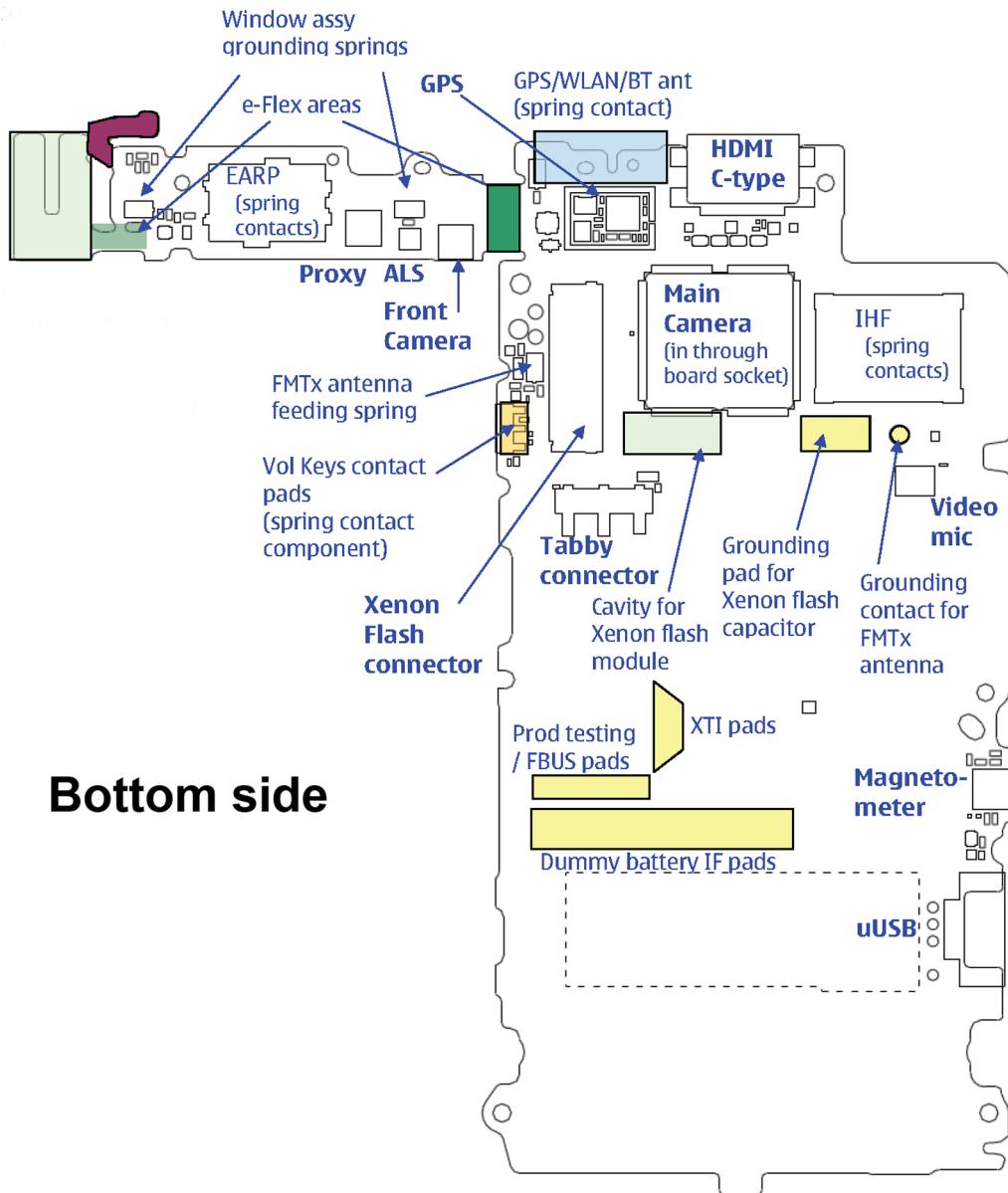
Figure 45 Battery pin order	6-11
Figure 46 Blade battery connector	6-11
Figure 47 Power distribution diagram	6-13
Figure 48 SIM interface	6-15
Figure 49 Puzzle SIM connector circuitry	6-16
Figure 50 BOB1.0M-b module block diagram and application circuit	6-17
Figure 51 BOB1.0M-b interface in RM-596	6-18
Figure 52 GPS interface	6-18
Figure 53 USB interface	6-19
Figure 54 MicroUSB connector	6-19
Figure 55 Charger interface	6-20
Figure 56 Touch system block diagram	6-21
Figure 57 Proximity sensor	6-21
Figure 58 BCM2727B block diagram	6-22
Figure 59 Primary camera interface	6-23
Figure 60 Secondary camera interface	6-24
Figure 61 Illumination	6-25
Figure 62 Ambient Light Sensor	6-26
Figure 63 Accelerometer	6-27
Figure 64 Magnetometer	6-28
Figure 65 RM-596 Audio block diagram	6-29
Figure 66 Internal earpiece diagram	6-30
Figure 67 Internal handsfree (IHF) speaker diagram	6-30
Figure 68 Internal microphones diagram	6-31
Figure 69 Vibra diagram	6-31
Figure 70 AV connector	6-32
Figure 71 Linko RF block diagram	6-32

■ Introduction**Phone description**

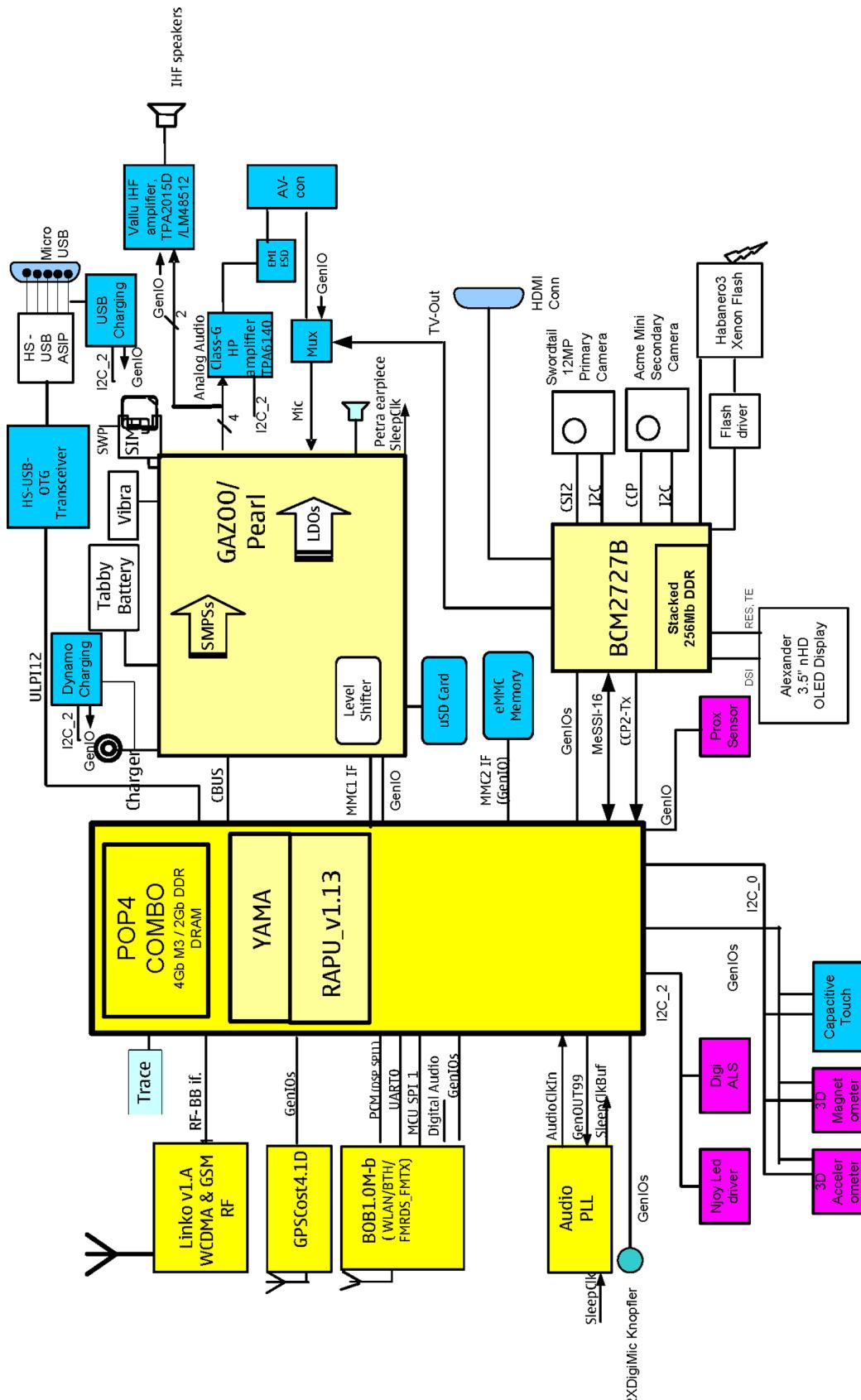
RAPUYAMA is the main digital baseband ASIC in the phone. It contains functionality for both WCDMA and GSM EDGE. The hardware accelerator is used for imaging and video.

GAZOO/PEARL (N2200) is the main audio and energy management controller for the phone.

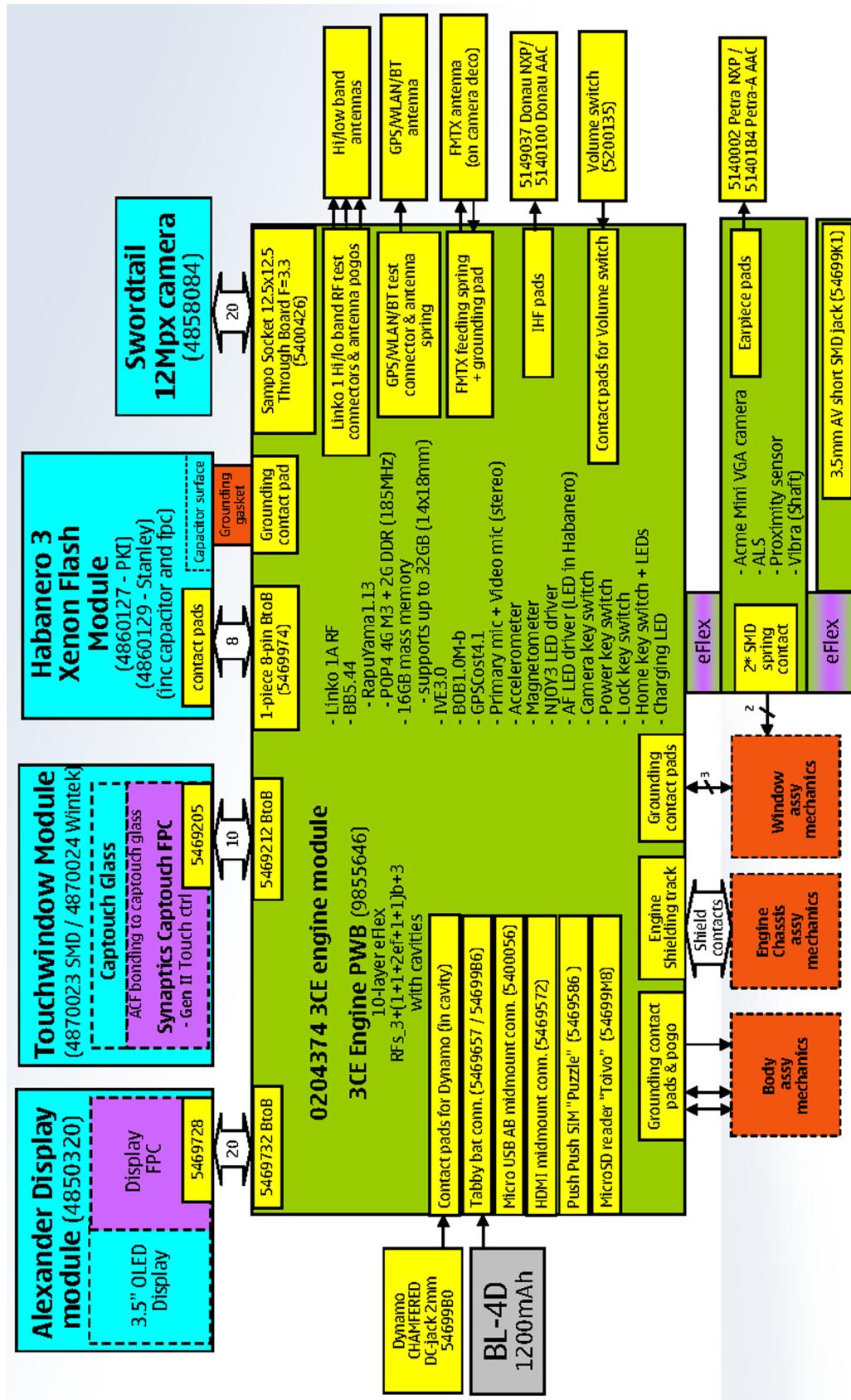

Key components


Function	Description	Item ref
Main PWB	3CE	
Upper flex module		
UI flex module		
Flash flex module		
Baseband ASIC	EM ASIC GAZOO/PEARL	N2200
RF ASIC	ÄLLI	N7512
Processor	RAPUYAMA	D2800
GSM/WCDMA PA	UKKO GSM850/900/1800/1900 WCDMA I, II, IV, V and VIII	N7510
Oscillators	VCTCXO TCXO 16.368 MHZ Crystal 32.768KHZ Crystal 38.4 MHZ Crystal 19.2 MHZ	G7500 G6200 B2200 B7500 B1400
CMT memory	Combo POP4 2G DDR + 4G M3 NAND (stacked with RAPU)	D3000
Back-up capacitor	RTC back-up capacitor	G2200
WLAN/ Bluetooth/ FM radio/ FM transmitter	BOB 1.0M-b module	N6300
GPS	GPSCost4.1	N6200
Battery	BL-4D	
Battery connector	Tabby blade interface	X2070
UI flex connector	Board-to board connector for UI flex module	X2500
Display connector	Board-to-board connector	X1600
RF connectors		X6701 X7500 X7501
USB transceiver		D3300
MicroSD connector		X3200

Function	Description	Item ref
eMMC	16GB internal mass memory	D3200
USB connector	Micro USB-AB	X3300
SIM connector		X2700
Resetto	HW reset with power key	N2400
IVE	Imaging processor	D1400
AV connector	Standard 3.5mm	X2001
Charging connector	Dynamo	X3350
HDMI connector		X1650
Earpiece	Petra	B2111
Microphone	Knopfler	B2100 B2101
IHF	Donau	B2150
Vibra		M2105
Accelerometer	3-axis accelerometer Ahti	N1103
Magnetometer	3-axis magnetic sensor	N1105
Digital Ambient Light Sensor	Pupumon	V1100
Dynamo charging circuit		N3350
USB charging circuit		N3301
Camera socket		X1476
Xenon flash connector		X1505
Front camera		H1487


Key component placement

Top side



System module block diagram

Board and module connections

■ Energy management

Battery and charging

BP-4L battery

The phone is powered by a 3-pole BL-4D battery 1200 mAh battery. The three poles are named VBAT, BSI and GND where the BSI line is used to recognize the battery capacity. This is done by means of an internal battery pull down resistor.

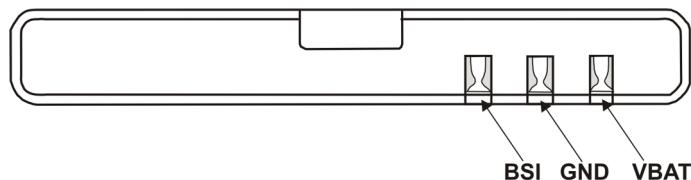


Figure 45 Battery pin order

The battery temperature is estimated by measuring separate temperature NTC resistor via the BTEMP line of EM ASIC N2200. This is located on the main PWB, near the battery connector.

Battery connector

The battery connector is a blade connector. It has three blades;

- BSI (Battery size indicator)
- GND (Ground)
- VBAT (Battery voltage)

Figure 46 Blade battery connector

Charging

The phone is charged through the 2 mm Nokia standard interface charger plug. Charging is controlled by dynamo charging IC BQ24156 (N3350). Dynamo charger detection is handled by EM ASIC (N2200) and external components are needed to protect the baseband module against EMC, reverse polarity and transient frequency deviation. For charger detection, a pulse of duration 15ms is sent to EM ASIC via V3370 MOSFET.

Normal and extreme voltages

Energy management is mainly carried out in the EM ASIC (N2200) that contains a number of regulators. In addition, there are also some external regulators.

In the table below normal and extreme voltages are shown when a BL-4D battery is used.

Table 11 Nominal voltages

Voltage	Voltage [V]	Condition
General Conditions		
Nominal voltage	3.700	

Voltage	Voltage [V]	Condition
Higher extreme voltage (fast charging)	4.230	
HW Shutdown Voltages		
Vmstr+	2.1 ± 0.1	Off to on
Vmstr-	1.9 ± 0.1	On to off
SW Shutdown Voltages		
Sw shutdown	3.15	In call
Sw shutdown	3.25	In idle
Min Operating Voltage		
Vcoff+	2.9 ± 0.1	Off to on
Vcoff-	2.6 ± 0.1	On to off

Power key and system power up

When the battery is placed in the phone, the power key circuits are energized. When the power key is pressed, the system boots up (if an adequate battery voltage is present).

Power down can be initiated by pressing the power key again and the system is powered down with the aid of SW. The power key is connected to EM ASIC (N2200) via the PWRONX signal.

The PWRONX line cannot be detected when SW hangs. For that reason, the user has to remove the battery. Because the semi-fixed battery is difficult to remove, a fixed delay circuit Resetto IC (N2400) is used. The PWRONX is also connected to Resetto. When the user presses the power key beyond 7.5 secs, it generates a reset which is connected to EM ASIC's UserResetX line. The UserResetX is entirely HW controlled, so even when SW hangs, the phone can be powered down by pressing the power key beyond 7.5 sec.

Modes of operation

Mode	Description
NO_SUPPLY	(Dead) mode means that the main battery is not present or its voltage is too low (below N2200 master reset threshold) and that the back-up battery voltage is too low.
BACK_UP	The main battery is not present or its voltage is too low but back-up battery is adequate and the 32 kHz oscillator is running.
PWR_OFF	In this mode (warm), the main battery is present and its voltage is over N2200 master reset threshold. All regulators are disabled, PURX is on low state, the RTC is on and the oscillator is on. PWR_OFF (cold) mode is almost the same as PWR_OFF (warm), but the RTC and the oscillator are off.
RESET	RESET mode is a synonym for start-up sequence. RESET mode uses 32 kHz clock to count the RESET mode delay (typically 16ms).
SLEEP	SLEEP mode is entered only from PWR_ON mode with the aid of SW when the system's activity is low.
FLASHING	FLASHING mode is for SW downloading.

Power distribution

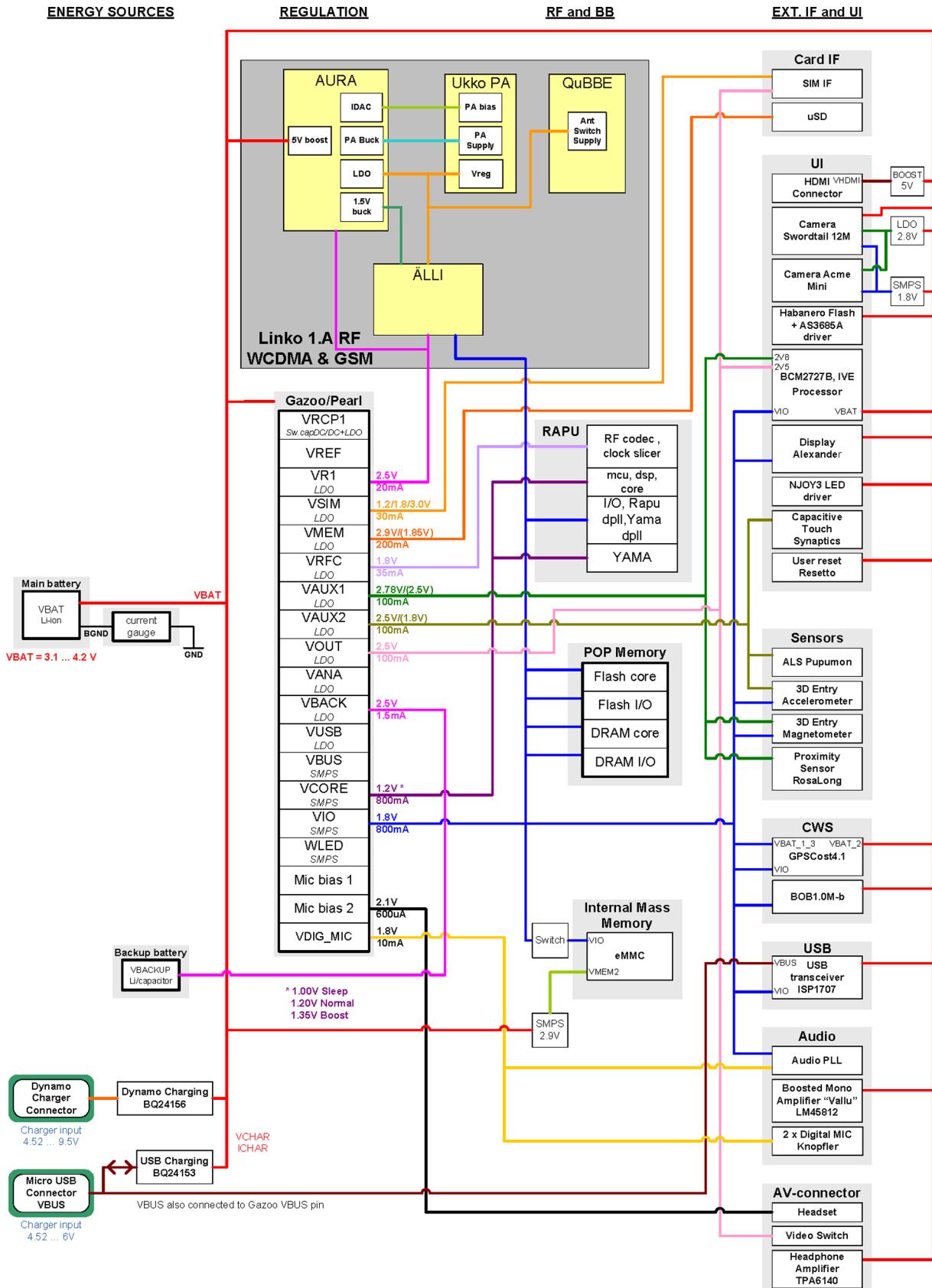
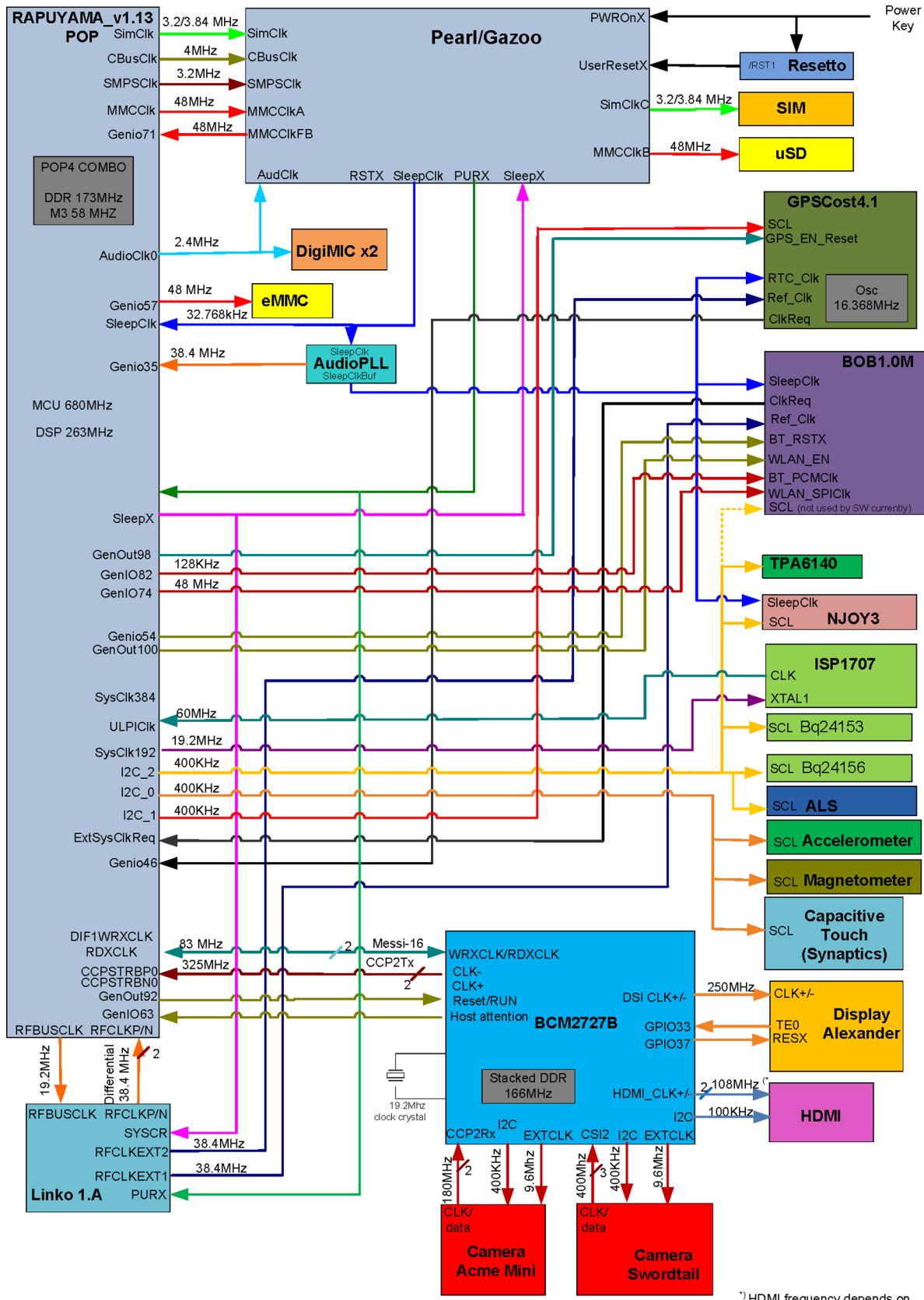



Figure 47 Power distribution diagram

Clocking scheme

¹⁾ HDMI frequency depends on screen resolution

■ SIM interface

The phone has a SIM (Subscriber Identification Module) interface including a SIM connector.

The SIM interface consists of an internal interface between RAPU and EM ASIC (N2200), and an external interface between EM ASIC and SIM contacts.

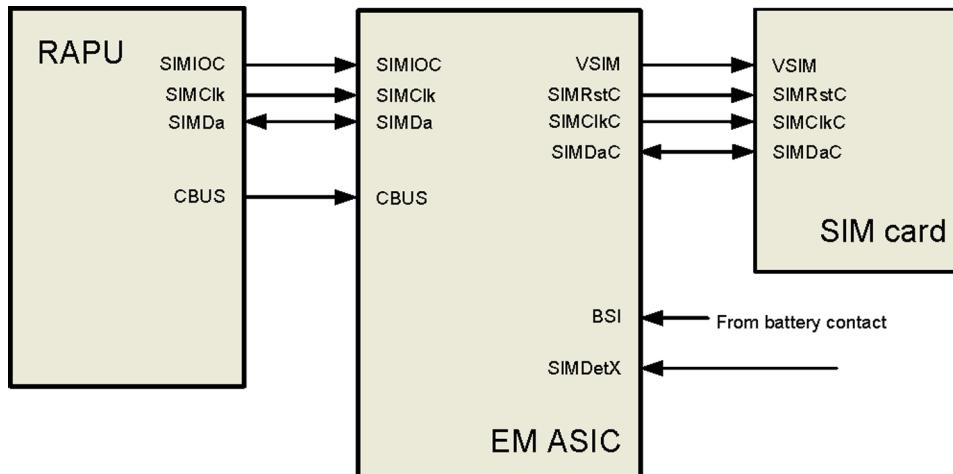


Figure 48 SIM interface

As the phone does not have a traditional battery cover due to semi-fixed battery concept, the SIM card can be removed and inserted without removing the battery. For safe SIM card functionality, a new Puzzle push-push SIM reader with card detection and removal pre-warning switches is used.

Pre-warning and card detect signals are connected together in the Puzzle layout symbol, so there is only one switch connection in the schematics symbol. The combined switch signal is connected through an inverter to Gazoo/Pearl SimDetX input. The following figure shows the principle of SIM circuitry with the Puzzle.

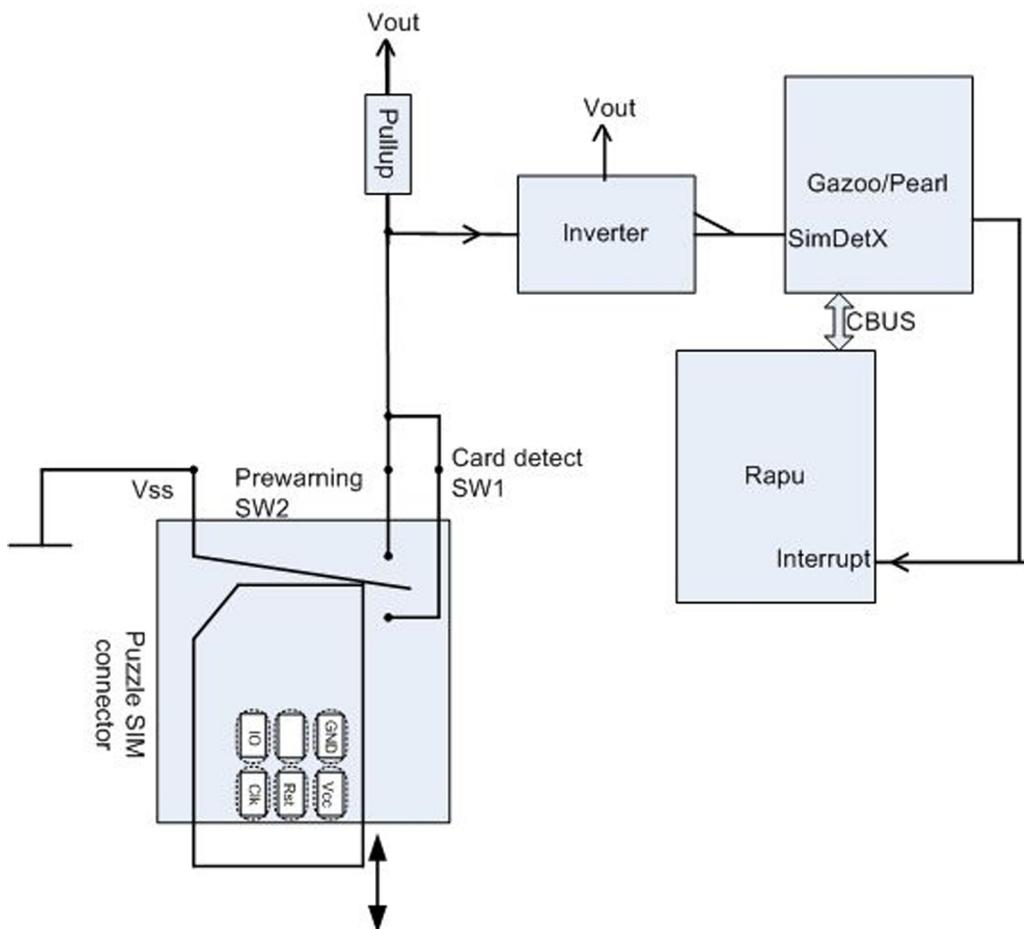


Figure 49 Puzzle SIM connector circuitry

The SIM interface supports both 1.8V and 3.0V SIM cards. The SIM interface voltage is first 1.8 V when the SIM card is inserted, and if the card does not response to the ATR (Answer to Request), 3V interface voltage is used.

■ Device memory

The memory components of the device are internal COMBO POP4 2Gb DDR + 4Gb M3 (NAND), a card reader for MicroSD, and 16GB eMMC memory which is non-removable and internal to the phone.

The MicroSD is used as a user's data storage memory. The μ SD card is connected to RAPU via EM ASIC which has an internal level shifter with an ESD protection filter. The μ SD card door state is detected by a detect switch connected to RAPU Genio25. When the door is open, the μ SD card is powered off. Hot swap is supported, which means that the card may be plugged in/out at any time, without removing the battery.

The device uses 16GB eMMC (D3200) external memory. The eMMC interface is a 6-wire serial/parallel data bus which includes a clock (CLK), 4 data signals (DAT), and command (CMD) wires. The eMMC interface is completely formed of the GENIOs of RAPU. The eMMC consists of an internal NAND controller and an MMC controller for I/O interface. It is a dual supply device which requires VCC of 2.9V for the NAND core and VCCQ of 1.8V for the MMC I/O interface.

■ BOB1.0M-b module

The BOB1.0M-b module provides full 802.11b,g & n WLAN, BT 2.1 + EDR, FM RDS and FM TX connectivity.

BOB is the name given to a generic technology release that combines WLAN, Bluetooth, FM Rx and FM TX radio on a single monolithic IC. RM-596 uses BOB1.0M-b module that consists of a single chip transceiver WL1271, plus a separate RF front end (FE) device. The BOB1.0M-b release operates in the 2.4GHz (ISM) and the 76-108MHz FM bands.

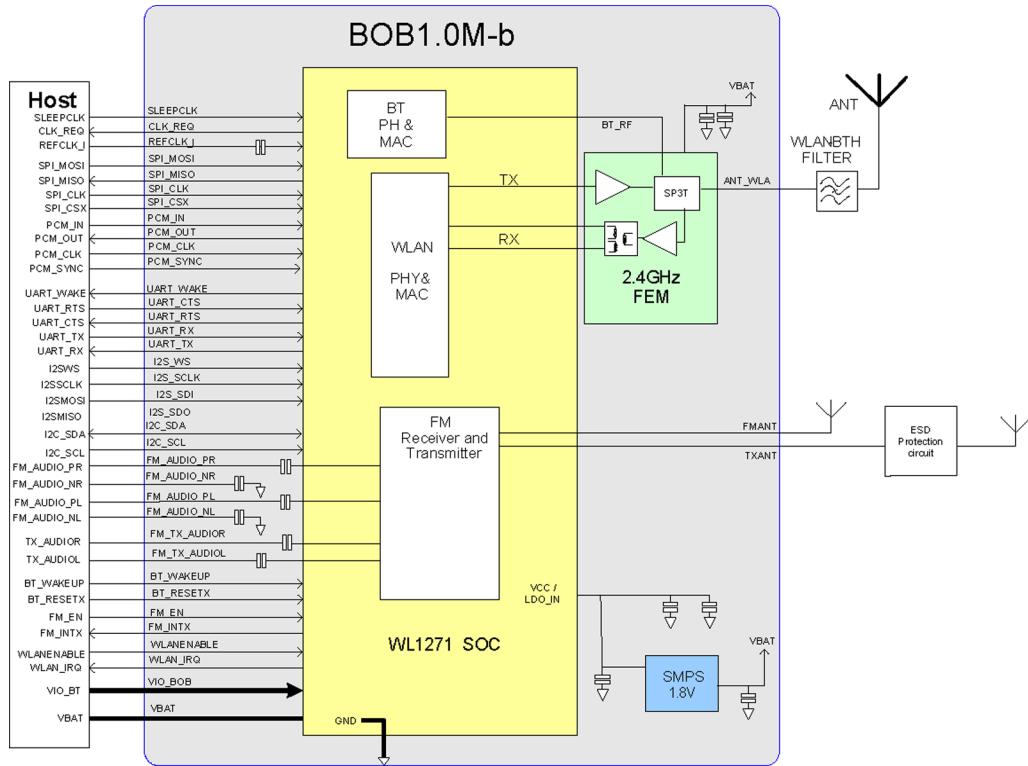
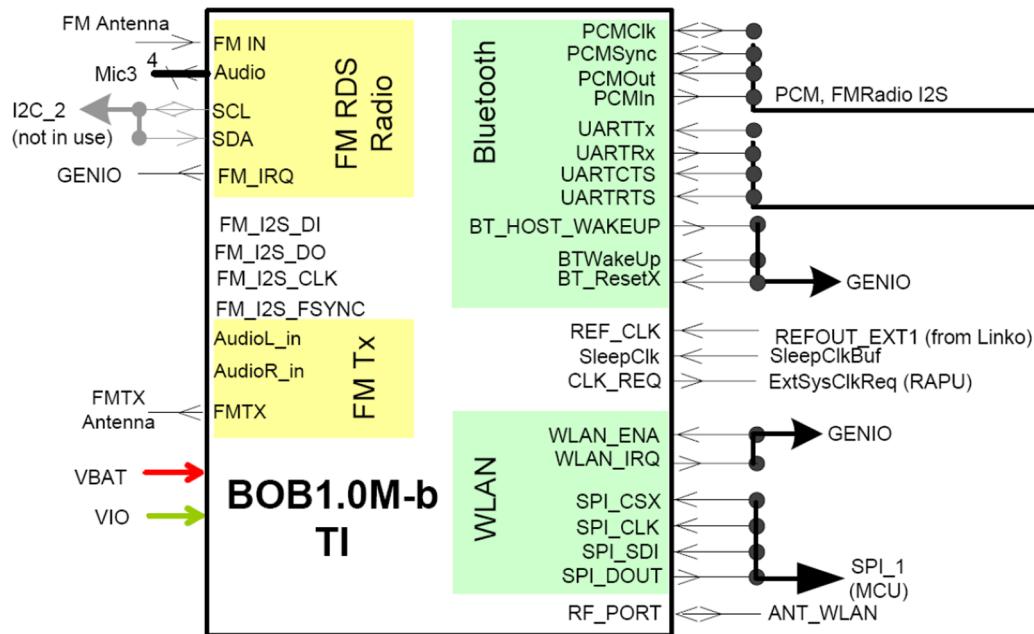
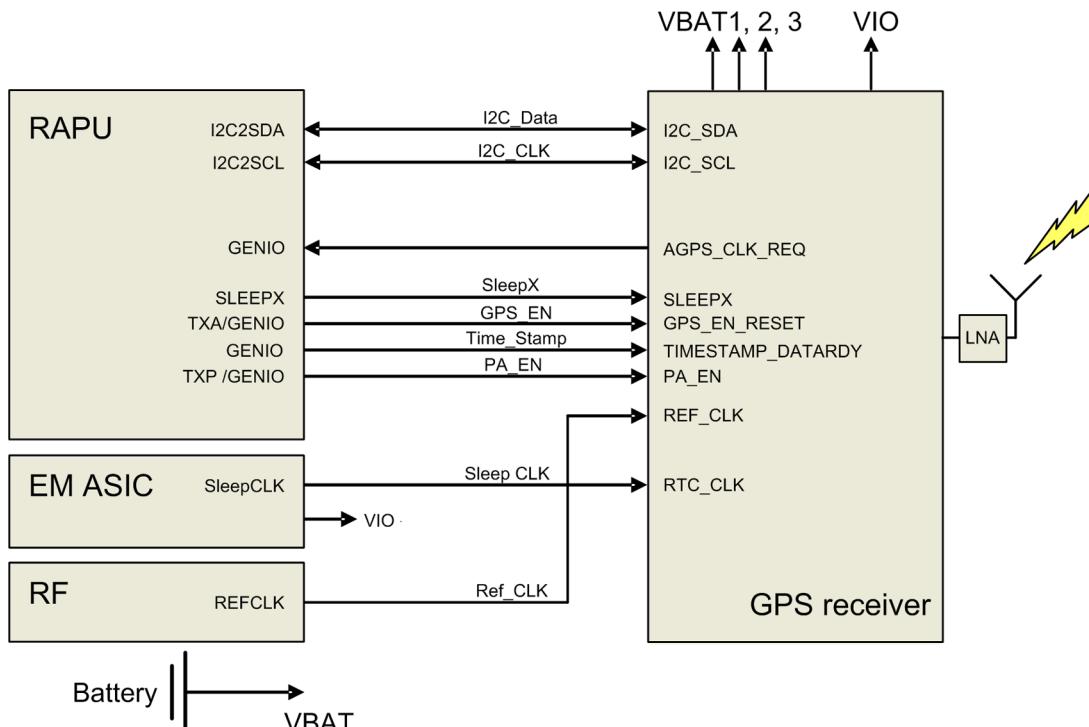



Figure 50 BOB1.0M-b module block diagram and application circuit

From a troubleshooting point of view, WLAN is tested separately, but BTH, FMRX and FMTX are checked in parallel.


REFOUT_EXT1 single ended 38.4 MHz analog clock from Linko RF is provided to BOB1.0M-b. The clock request for the reference clock in the BOB1.0M-b module is shared between WLAN and BTHFM blocks. When either system requires a clock, this signal will be active. The CLK_REQ is connected to ExtSysClkReq pin of RAPU. The SLEEPCLK input of 32.768 KHz clock from EM ASIC is used for power management and for FM in low power mode.

The internal SMPS supplies the whole BOB1.0M-b solution from the phone battery supply, VBAT, apart from VIO, which is needed for interface signal reference levels.

Figure 51 BOB1.0M-b interface in RM-596

■ GPS interface

RM-596 includes an inbuilt single chip GPS receiver GPSCost4.1D, comprising both RF and BB blocks integrated in a single digital die. GPSCost4.1D is connected to RAPU ASIC via I2C_1 and some GENIOs. GPSCost4.1 D operates in Multi-master mode and the REF clock is requested via AGPS_CLK_REQ signal connected to RAPU genio46. REFOUT_EXT2 single ended 38.4 MHz analog clock from Linko RF is provided to GPSCost4.1D.

Figure 52 GPS interface

■ USB

USB interface and charging

The phone has an interface for USB (Universal Serial Bus). USB is a differential serial bus that provides a wired connectivity between a PC and peripheral devices, as in this case a mobile phone.

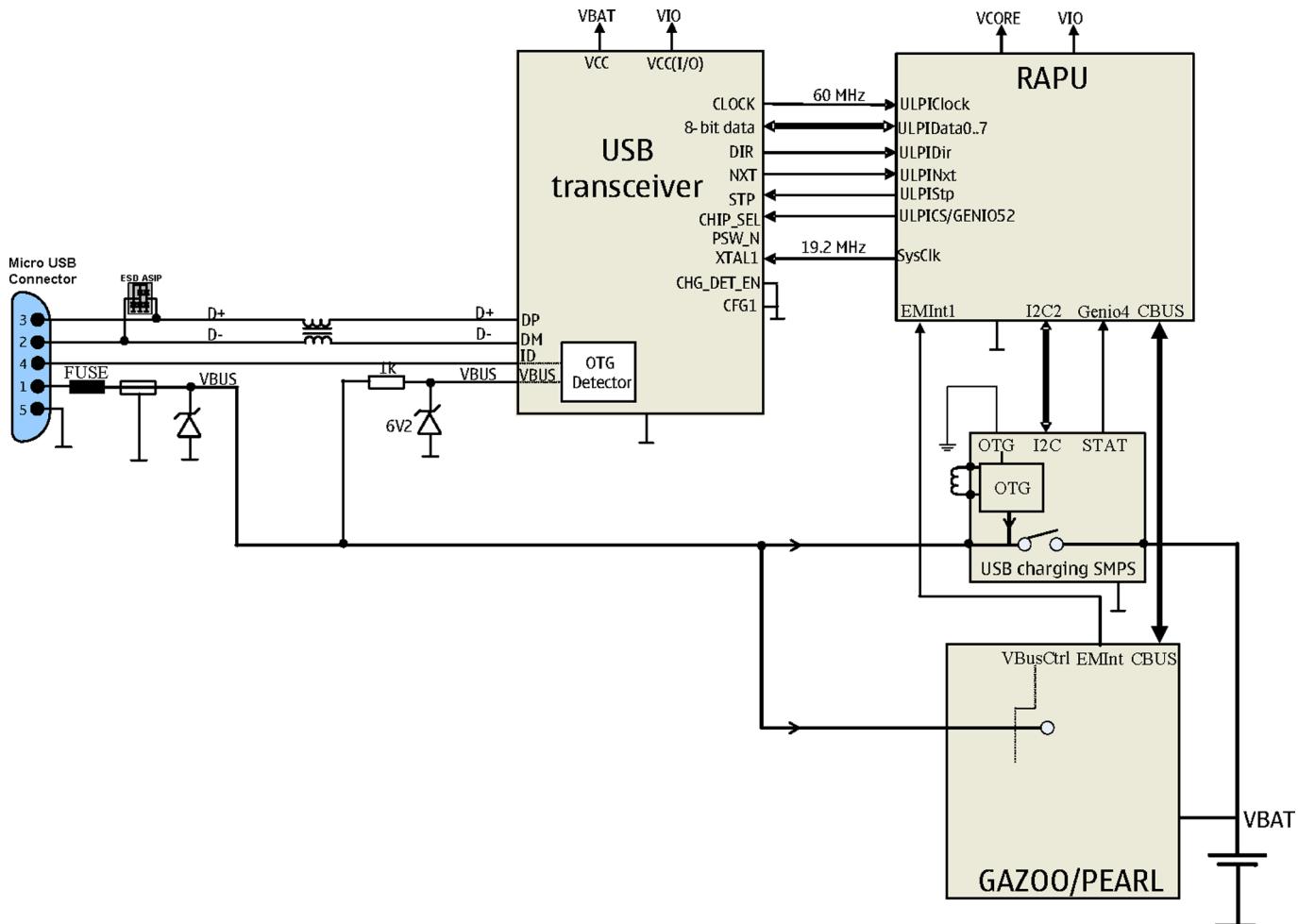


Figure 53 USB interface

The phone supports USB 2.0 with High-Speed (480 Mbps).

Hot swap is supported, which means that USB devices may be plugged in and out at any time.

MicroUSB connector

This phone is provided with a specific connector for microUSB.

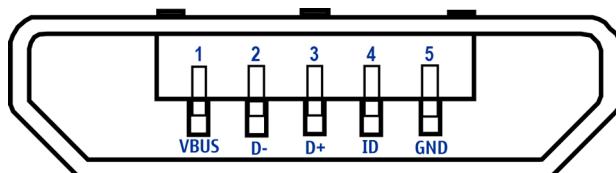


Figure 54 MicroUSB connector

■ Charger interface

The charger interface is a 2 mm Dynamo charger plug. Older chargers with a 3.5 mm plug are supported via the charger adapter cable CA-44.

Charging is controlled by Dynamo charging SMPS circuit. EM ASIC is used only for waking up the system when the charger is connected.

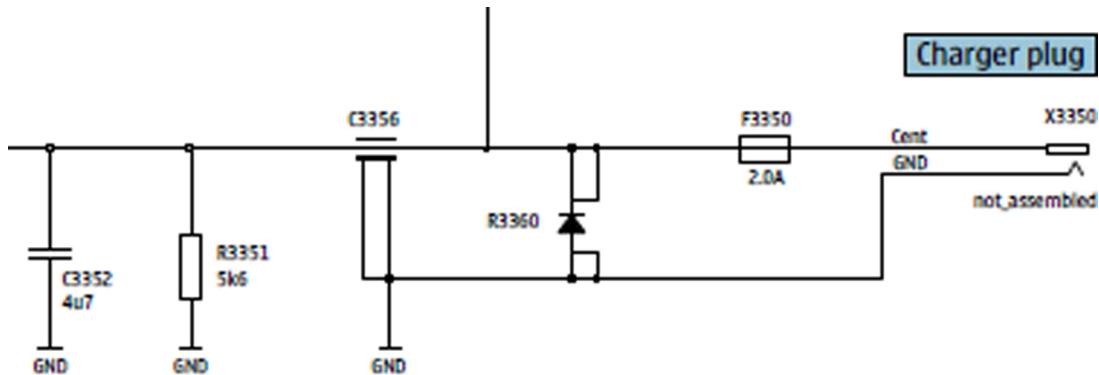
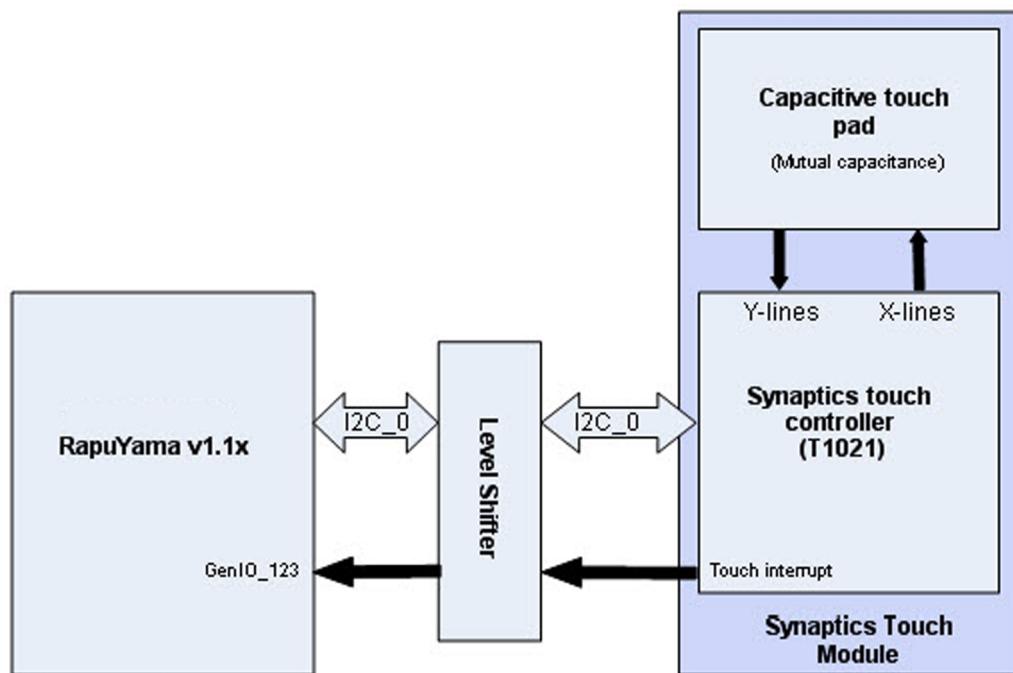


Figure 55 Charger interface

■ User interface


Touch module

This phone uses Synaptic capacitive touch series 2000 for displays.

The Synaptics DT touch module is interfaced to I2C0 bus of RAPU via level shifter (N2500). RAPU's GenI0123 is used for Touch INT. The level shifter is used in between the RAPU and Synaptics touch module for level translation from 1.8V to 2.5V and vice versa.

The Synaptics DT touch module operates with VAUX2 -supply output from EMASIC. VIO is used for port-A supply and VAUX2 is used for port-B supplies of the level shifter. The OE signal of the level shifter is tied to VAUX2 so that the interfaces would be enabled once VAUX2 is available.

Whenever the user touches the touch screen, the controller raises an interrupt to RAPU which initiates I2C transactions to identify the locations the user touches on the display.

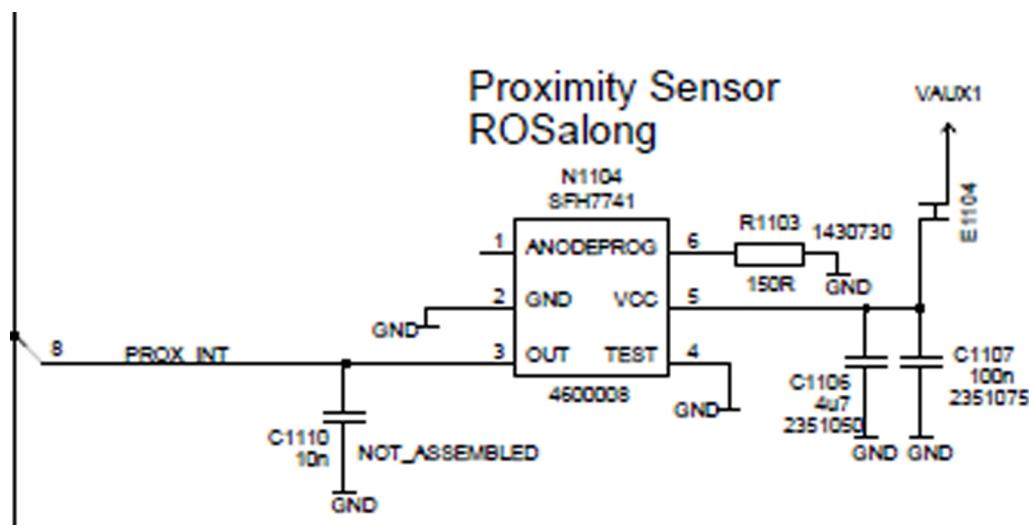


Figure 56 Touch system block diagram

Proximity sensor

Proximity sensor (N1104) Rosa Long is connected to RAPU via a single GenIO. Power supply voltage is provided from VAUX1 output of EM ASIC. The proximity sensor is an optical reflective sensor mainly comprising of an optical transmitter LED and optical receiver photo transistor. The proximity sensor is used is to detect indirect impulses from the transmitter to the receiver to measure reflections from the reflective surface.

One of the typical applications of the proximity sensor is for using the proximity INT output as an indication to SW of a phone being present near to human ear while attending a call. In such a case, the human body will act as a reflector, due to which more IR rays fall on the photo transistor of the proximity sensor and the o/p of the proximity sensor goes from LOW to HIGH. This LOW to HIGH transition is used as an indication to SW of the presence of a reflector (human body in this case). SW can then switch off the display as the user is not looking at it while attending the call. This helps in current saving. Similarly, when the user moves the phone away from the ear, the proximity o/p goes from HIGH to LOW. This is an indication to SW that there is no reflector nearby and the display should be switched on.

Figure 57 Proximity sensor

Imaging and video

Multimedia application processor

Multimedia application processor, BCM2727B, is used as a HW accelerator for imaging and video graphics. The key features of BCM2727B are:

- 12MPIx primary camera
- Secondary camera
- Xenon flash
- nHD OLED DSI display
- 720p HDMI or NTSC/PAL analog TV-out

MeSSI-16 and CCP2-Tx are the key interfaces between RapuYama and BCM2727B. BCM2727B has in-build 256Mb stacked SDRAM.

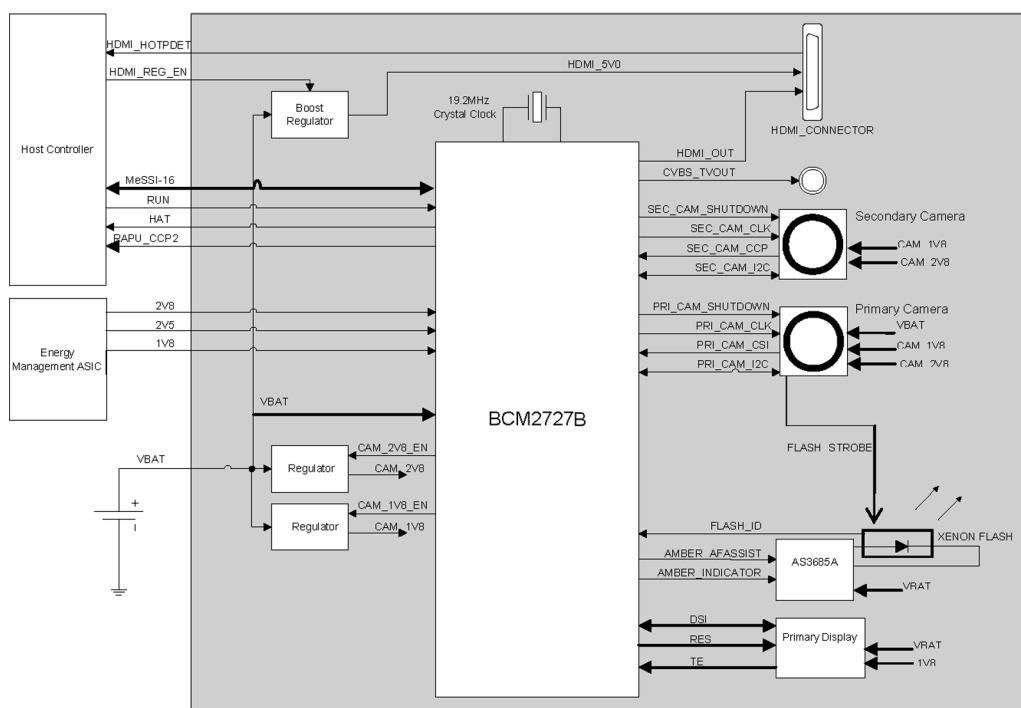


Figure 58 BCM2727B block diagram

Display module

This phone uses a 3.5" OLED type nHD Alexander display with 16 million colors. The display module supports the display format of 640 rows x 360 columns. The dimension of the display module is 47.8 mm x 86.3 mm x 2.12 mm. The module interfaces to the phone via FPC with a 20 pins board to board connector.

The primary display is controlled by BCM2727B over DSI interface. The DSI Interface is used for data transfer and control. Other display signals, RESET and TE, are interfaced to BCM2727B.

TV-out interface

The phone has HDTV and SDTV capability. The phone can be connected to HDTV through Type A to Type C HDMI cable, and to analog TV through a TV-out cable.

BCM2727B supports both 720p 30fps HDMI and Analog PAL/NTSC TV-out.

For the HDMI interface, both audio and video data is passed from the host to BCM2727B over MeSSI-16 interface and BCM2727B sends the data to the HDMI connector.

For the Analog TV-out, video data is passed from the host to the BCM2727B over MeSSI-16 interface and BCM2727B sends it to the AV connector. Audio is routed separately by the host to the AV connector.

Cameras

This phone has two cameras, a 12 MPix resolution main camera and a VGA resolution secondary camera. Xenon flash is used for the main camera.

Primary camera (Swordtail)

The primary camera is a 12 Megapixel auto focus camera module. The module size is 12.5 mm x 12.5 mm x 9 mm and it fits into the 20-pin camera socket on the phone. The camera module is SMIA profile 2 compliant and is configured by the BCM2727B using I2C control bus. Image data is transferred to the BCM2727B for further processing over CSI-2 (PRI_CAM_CSI).

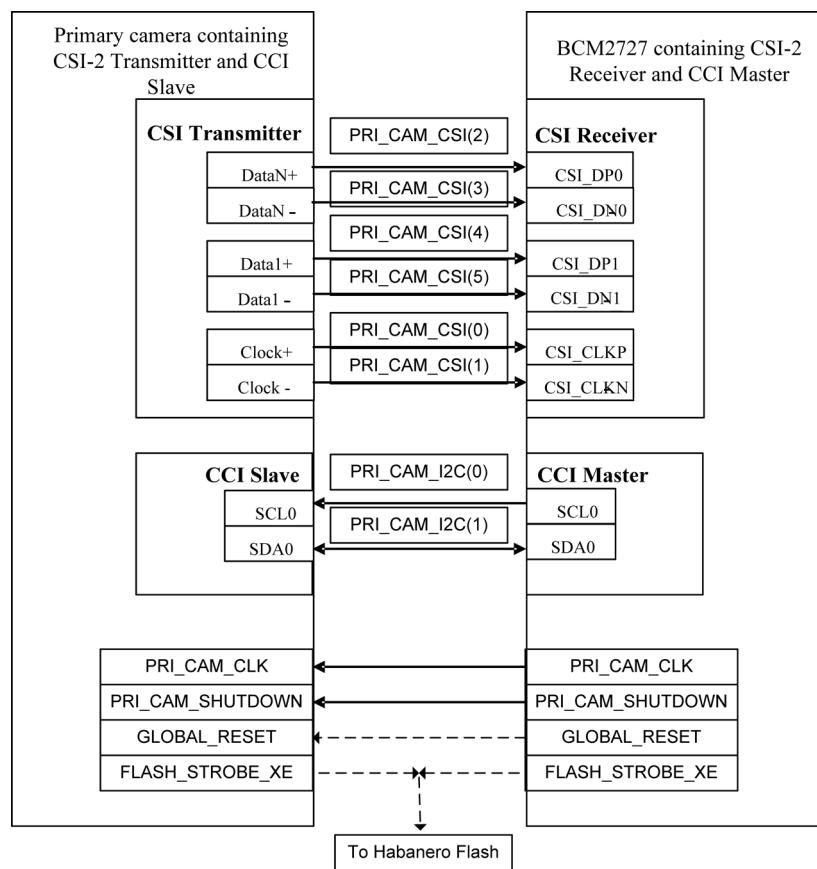


Figure 59 Primary camera interface

Secondary camera (VGA Acme mini)

The secondary camera is a 0.3 Megapixel fixed focus camera module. It is SMIA compliant and is configured by the BCM2727B using I2C control bus. Image data is transferred to the BCM2727B for further processing over a CCP based bus (SEC_CAM_CCP).

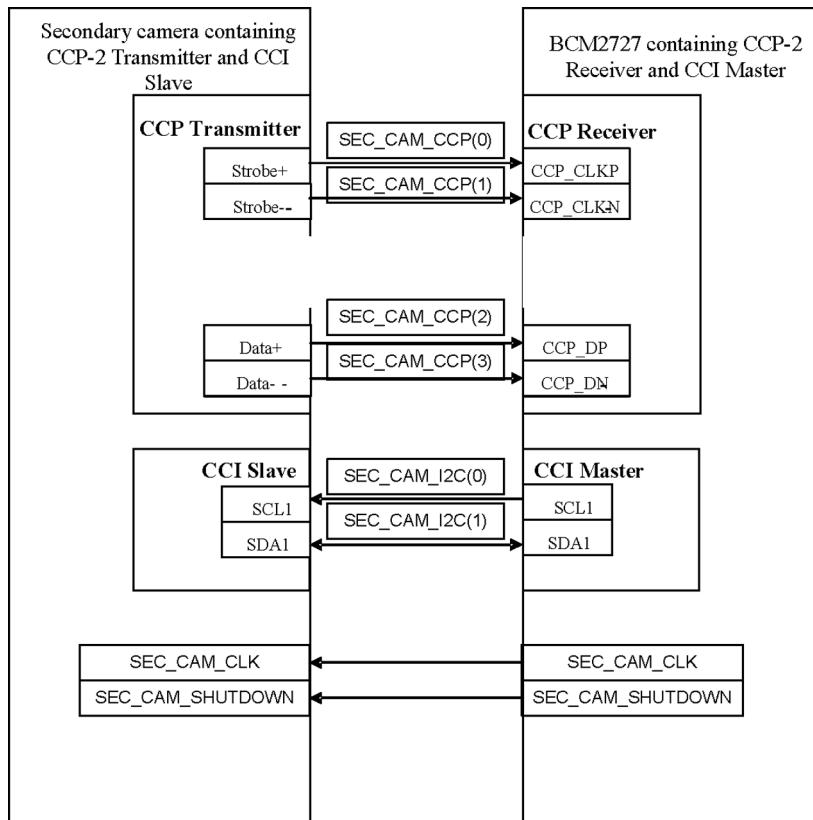


Figure 60 Secondary camera interface

Flash (Xenon)

The Xenon flash module consists of a flash lamp, capacitor bank and a LED. The flash lamp is used for flash and pre-flash operations. The capacitor is used to store the electrical energy for discharge of the flash lamp. Xenon flash is controlled from BCM2727B via AS3685A flash driver which is used to drive the LED in the flash module for auto focus and indication operations. The driver has GPIO control for STROBE, ENABLE and auto focus assist.

Illumination

Key illumination

Only MENU or HOME key illumination is supported and is handled by RGB 3 channel LED driver NJOY-3. 2 white LEDs, V2420 and V2422, are used for MENU key illumination. These LEDs are connected in parallel to R output of NJOY-3 LED driver.

Charging illumination

2 white LEDs are used for charging indication.

One white LED (V2410) is connected to EM ASIC "ChInd" pin and blinks only during dead battery USB charging in intervals of 1.5s. This LED is OFF during Dynamo dead battery charging and when the charging is taking place under SW control.

The second white LED (V2411) is connected to B output of NJOY-3 LED driver and glows for indicating USB or Dynamo charging controlled by SW. This LED is OFF during dead battery Dynamo and USB charging. Neither LED V2410 nor V2411 glows during Dynamo dead battery charging case.

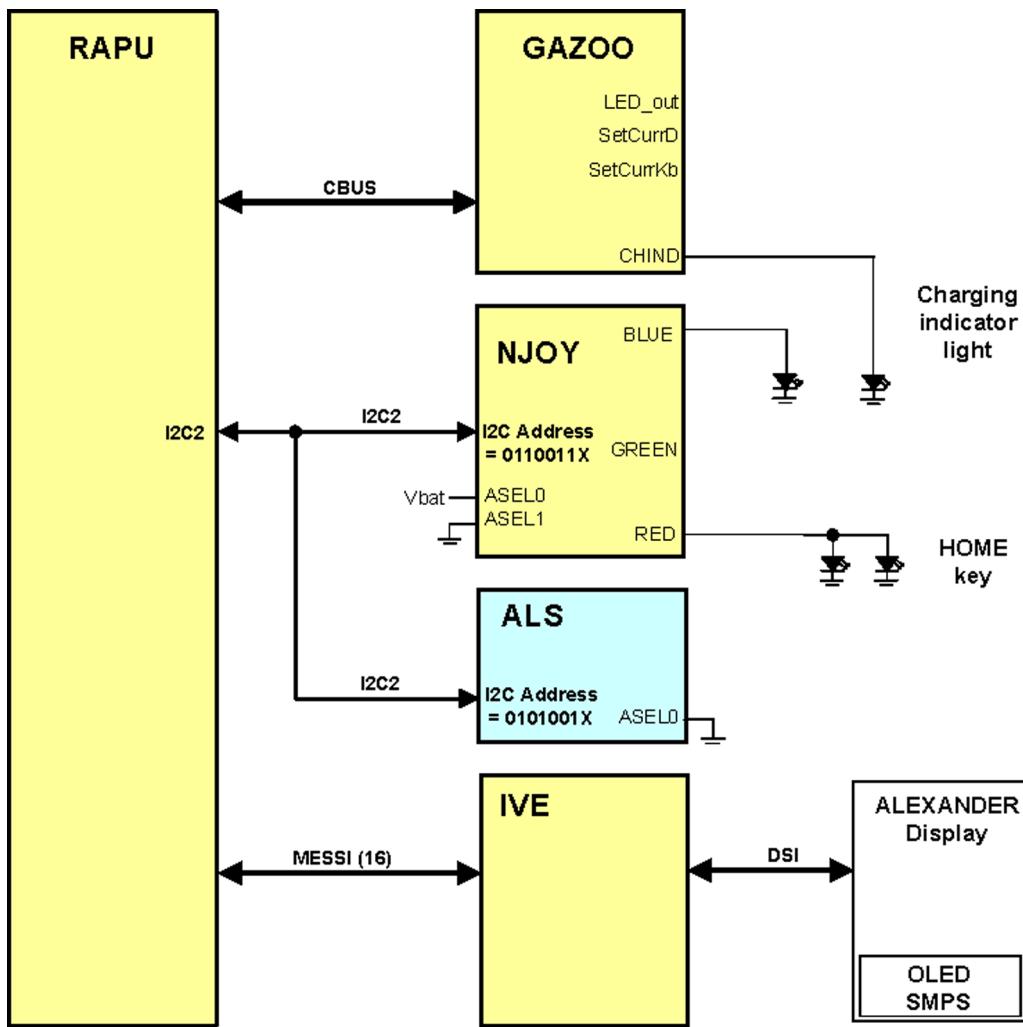


Figure 61 Illumination

Keyboard interface

MENU key (Home key), Volume-up and Volume-down key, Lock key, and Camera Capture and auto focus key are directly connected to RAPU BB ASIC.

Ambient Light Sensor (ALS)

Pupumon V1100 is a digital Ambient Light Sensor (ALS) which is connected to RAPU via I2C_2 bus. It does not have an interrupt signal as in Augumon ALS. Power supply voltage is provided from VAUX2 output of EM ASIC. ALS is used in backlight control system to measure the amount of ambient light reaching display surface so that it is possible to adjust the display (and keypad) brightness in order to achieve good user experience. This also helps in saving power.

Pupumon Digital Ambient Light Sensor

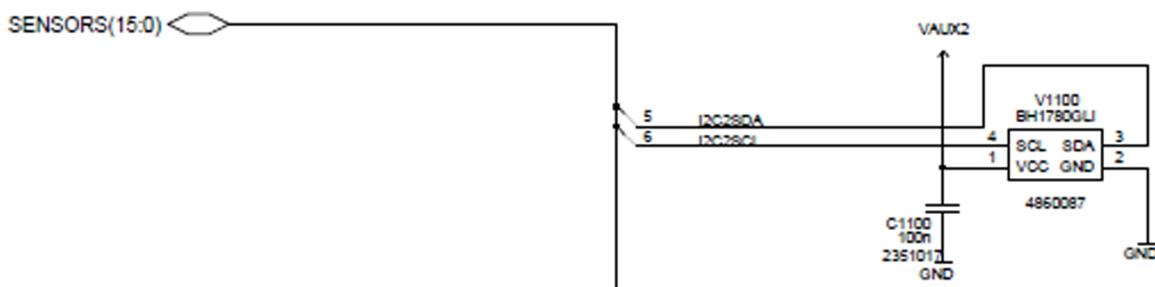


Figure 62 Ambient Light Sensor

Accelerometer

Accelerometer is a geometric type component which can be configured either to generate an inertial wake-up interrupt signal when a programmable acceleration threshold is exceeded along one of the three axes (x, y, and z), or to detect a free-fall event. Each axis has its own sensor and those can measure positive and negative directions.

The 3D accelerometer (N1103) Ahti_A sensor is connected to RAPU via two GENIOs ie Genio12 and Genio44 and I2C_0 bus. Power supply voltage is provided from VIO & VAUX2 output of EM ASIC.

It has the following features:

- 2.16V to 3.6V supply voltage
- 1.8V compatible IOs
- Low power consumption
- $\pm 2g/\pm 8g$ dynamically selectable scale
- I²C/SPI digital output interface
- Embedded self test
- 10000g high shock survivability
- Pb free/RoHS compliancy

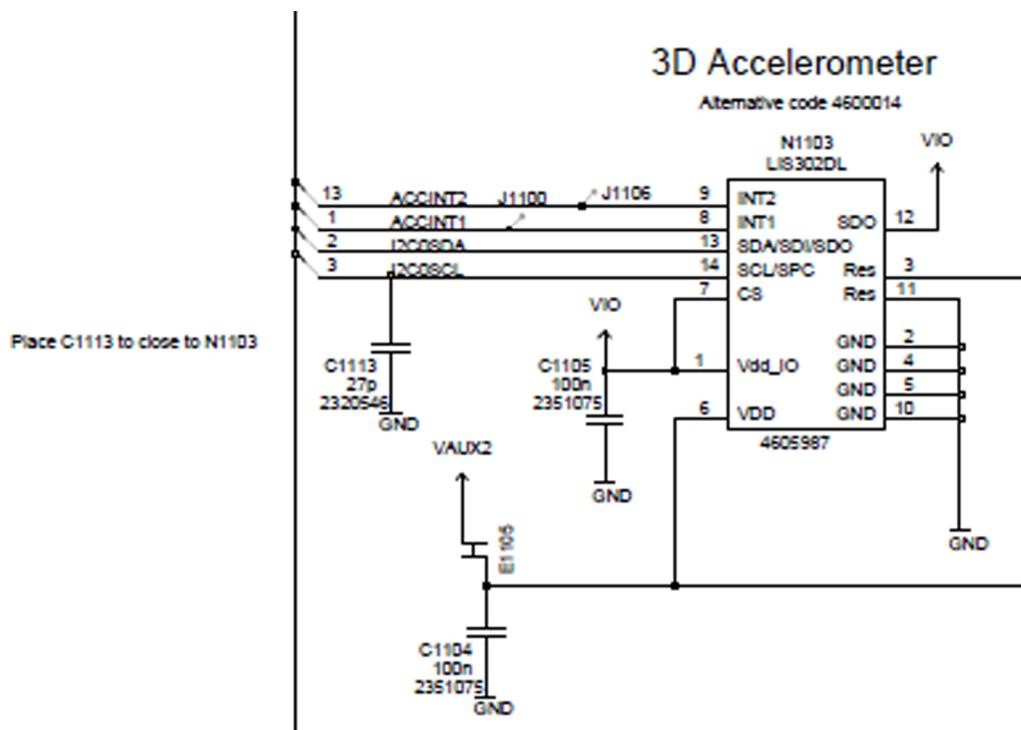


Figure 63 Accelerometer

Magnetometer

3D magnetometer sensor (N1105) is connected to RAPU via two GENIOs ie Genio40 and Genio41 and I2C_0 bus. Power supply voltage is provided from VIO & VAUX1 output of EM ASIC. The magnetometer is used as a city compass sensor. It detects the earth magnetic field density and composes bearing information for navigation applications.

The magnetometer has the following features:

- 3-axis magnetometer device suitable for compass application
- Built-in A to D converter for magnetometer data out
- Self test function
- I2C bus interface
- Power modes: OFF mode, stand-by mode and active mode
- DRDY function for measurement data ready
- INT function to inform exceeding magnetic field strength threshold.

The operating temperature is -20°C to +85°C.

The operating supply voltages are:

- Analogue supply +2.4V to +3.6V
- Digital interface supply +1.70V to analogue supply voltage.

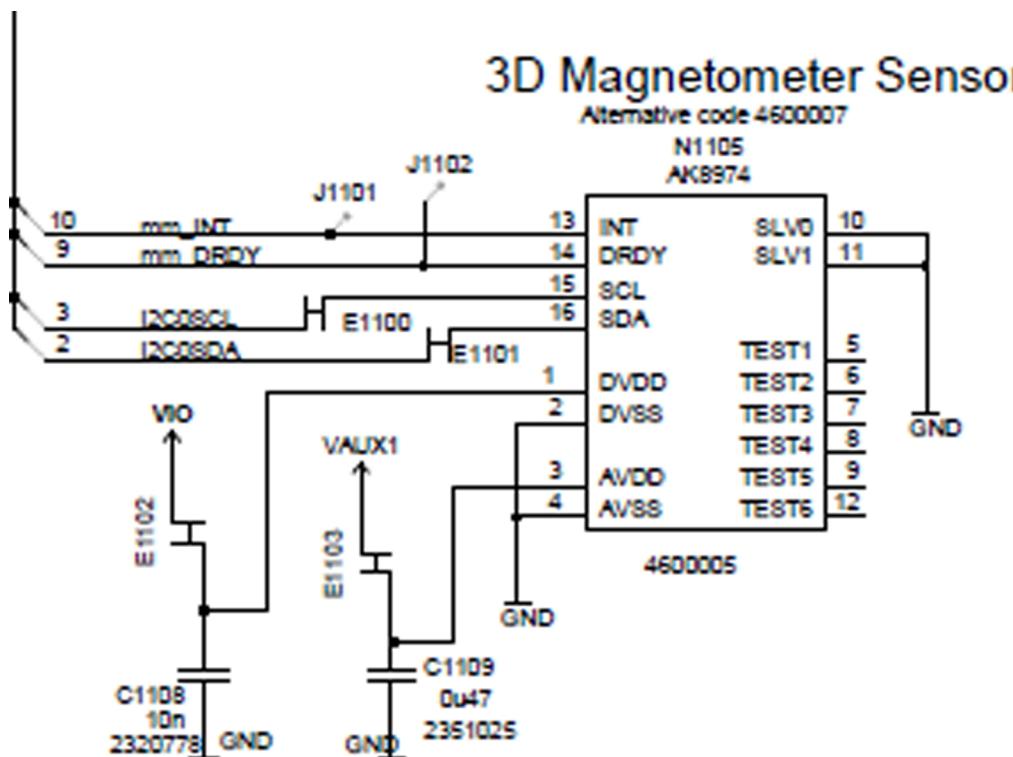


Figure 64 Magnetometer

■ Audio concept

Audio HW architecture

TPA6140 (N2000), BoostMono (N2150) along with mixed-signal ASIC Gazoo/Pearl provides the analogue audio output interfaces and RAPU provides the digital audio output interface support.

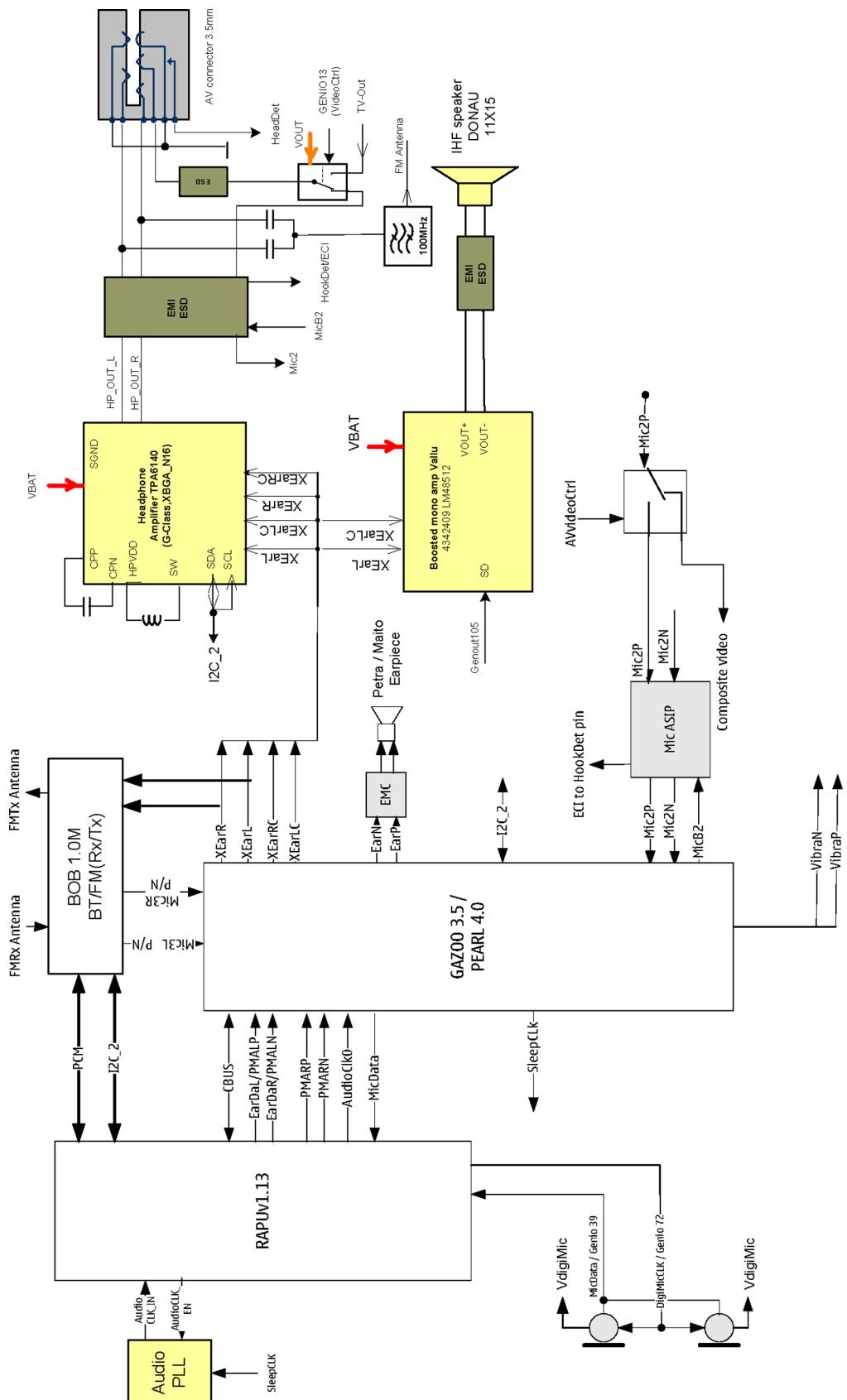


Figure 65 RM-596 Audio block diagram

Internal earpiece

The internal earpiece used is Petra (8X12) and is connected to EM ASIC EARP and EARN lines.

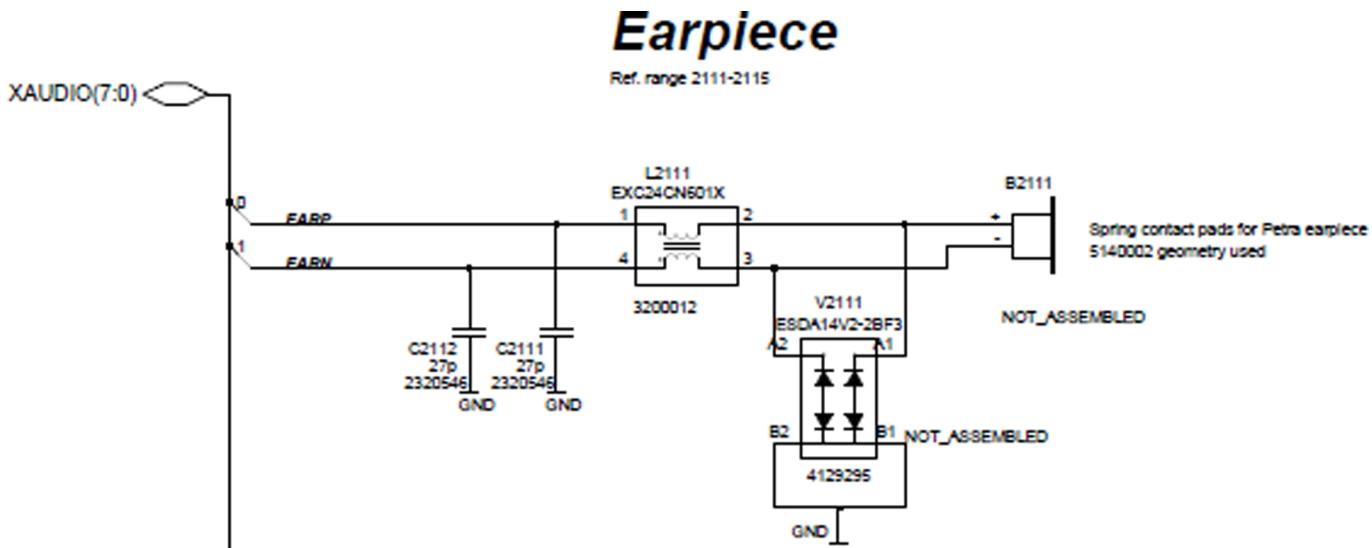


Figure 66 Internal earpiece diagram

Internal handsfree (IHF) speakers

IHF speakers used are Donau and are connected to BoostMono Vallu N2150. Vallu is a mono D-class speaker amplifier with an integrated inductive boost converter. Vallu's differential audio inputs are connected to EM ASIC Gazoo/Pearl XEarL, XEarLC and it can be enabled/disabled by Genout105 from Rapu.

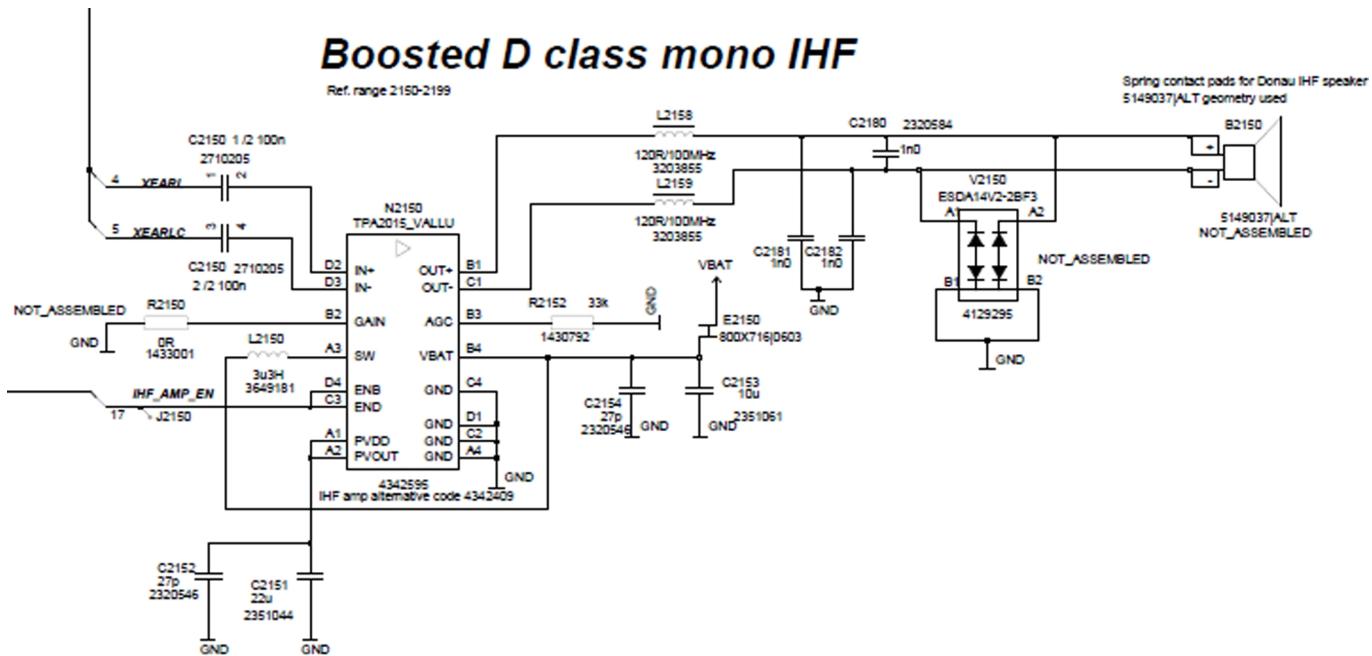


Figure 67 Internal handsfree (IHF) speaker diagram

Internal microphones

Digital microphones used are Knopfler and are connected to Rapu. DigiMic CLK is connected to RAPU Genio72 and DigiMic DATA is connected to Rapu Genio39.

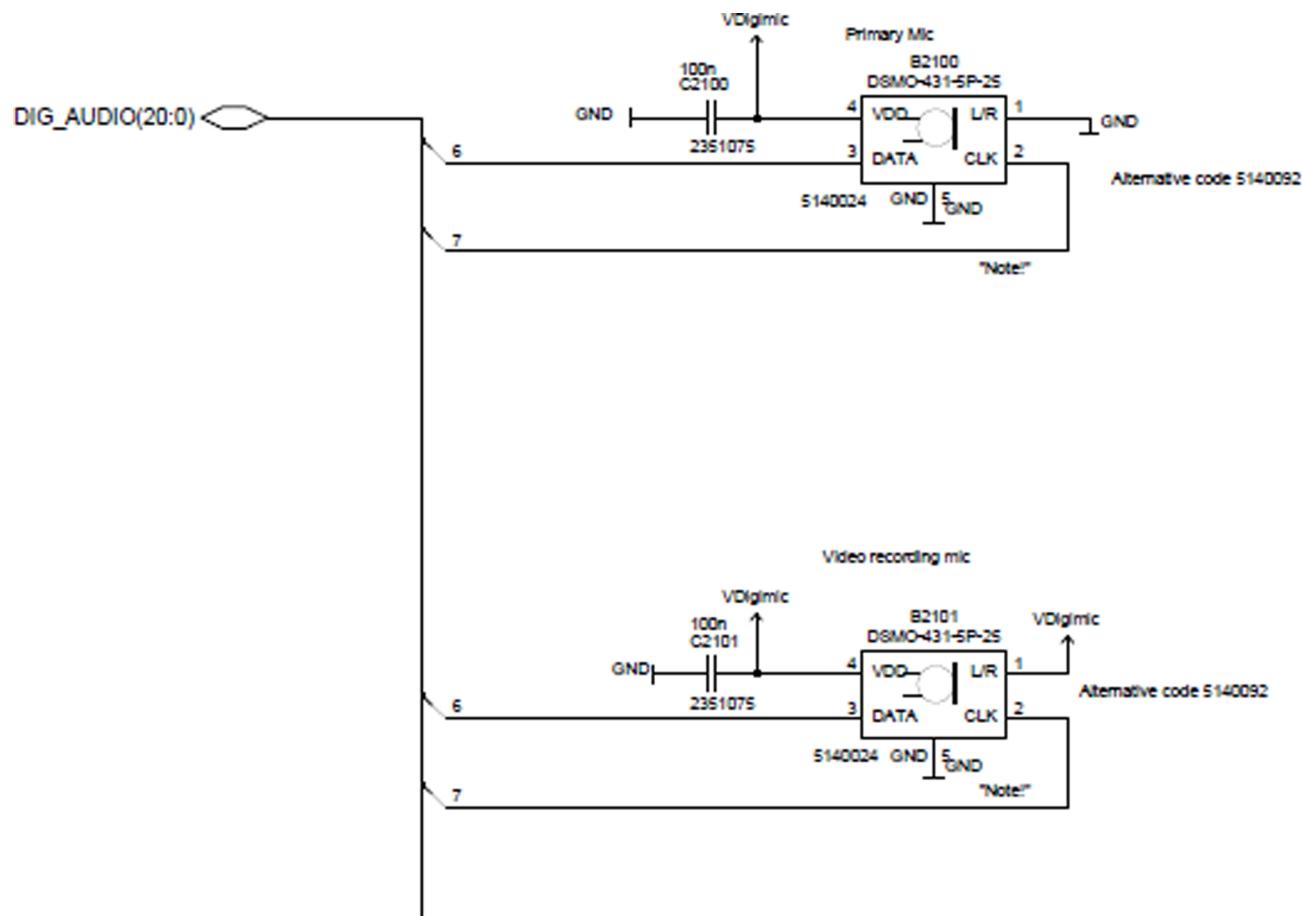


Figure 68 Internal microphones diagram

External earpiece and microphone

The AV headset earpiece is connected to TPA6140 audio amplifier which is used for high quality audio output and to guarantee long playback time for accessory use. TPA6140 is connected to Gazoo/Pearl XEarL, XEarLC, XEarR, XEarRC lines for audio and is controlled via I2C_2 bus by RAPU.

The AV headset microphone line is connected to EM ASIC Gazoo/Pearl Mic2 line via AV switch N2001.

Vibra

Vibra is connected to VibraN and VibraP lines of EM ASIC Gazoo/Pearl.

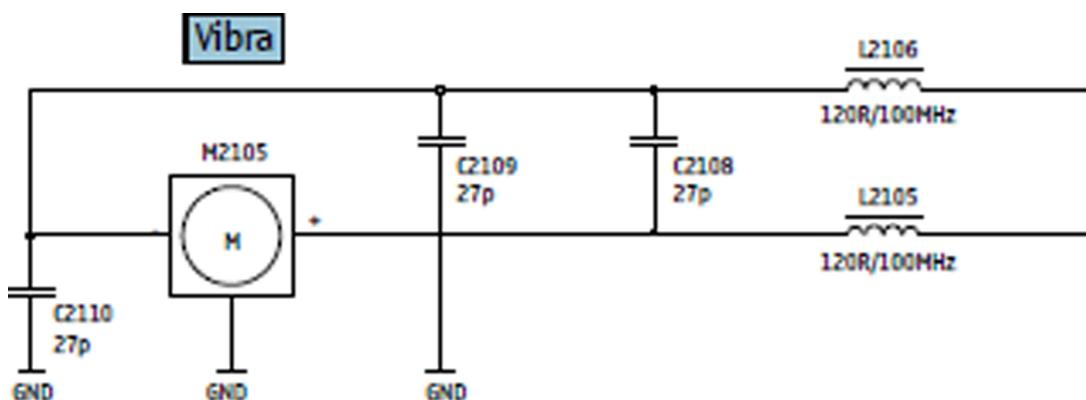


Figure 69 Vibra diagram

AV connector

The AV connector handles both audio and video signals output. It has audio left and right signals separately (pins 4 and 5) and the microphone signal wired to pin 3.

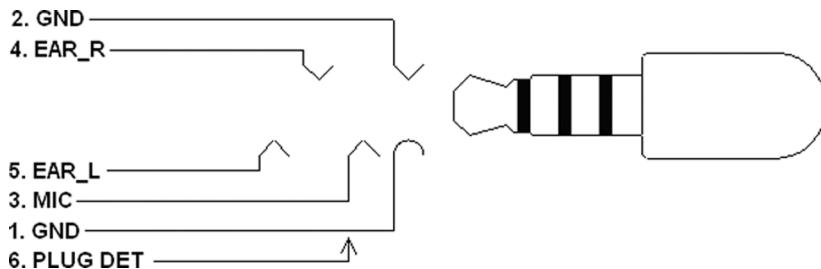


Figure 70 AV connector

The AVVideoControl signal handles microphone usage of the AV connector. The plug detection signal handles the AV connector plug detection with HeadDet signal from EM ASIC.

■ Cellular RF technical description

RF block

Linko RF consists of the following key components:

- Älli (Transceiver RF Asic)
- Aura (RF power management Asic)
- Ukko PA
- QuBBE (Front end module)

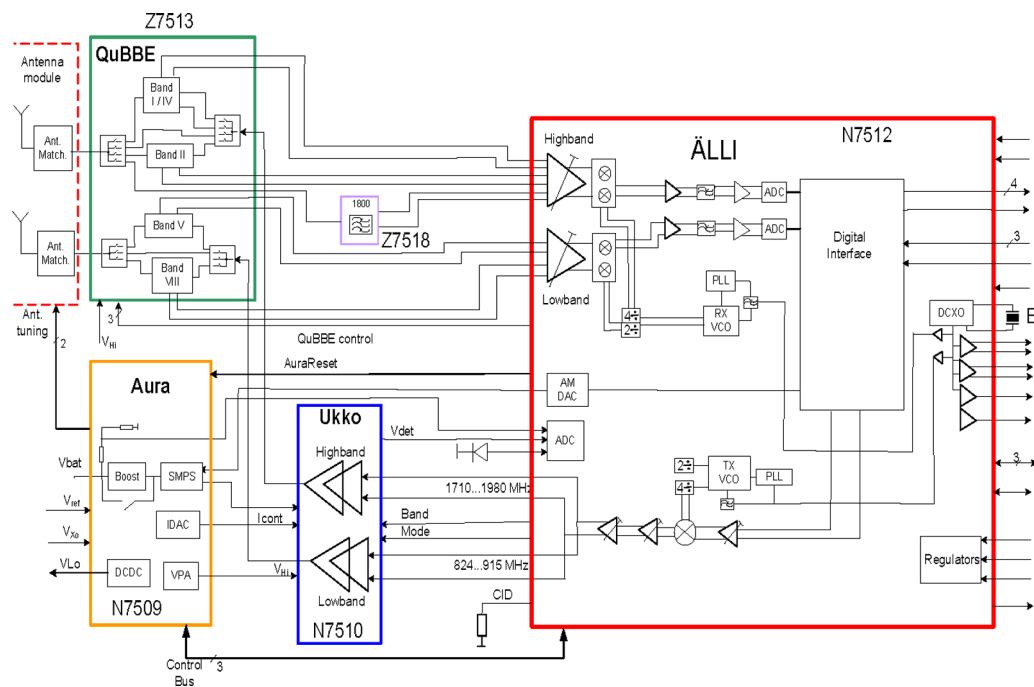


Figure 71 Linko RF block diagram

The RF block uses RF ASIC N7512 that performs the RF back-end functions of receive and transmit function of the cellular transceiver.

QuBBE

The front end module called QuBBE contains the needed front end filters and the switches. QuBBE contains:

- 3 duplexers (Band II, V, VIII)
- 1 triplexer (Band I, IV)
- 12 switches with the control
- Low and high band GSM TX low pass filters
- 50 ohms low and high and antenna interface

The control signals for the switches come from Älli.

Receiver (RX)

Linko RF has higher integration level compared to previous RF generations and especially more digital design blocks have been integrated to Älli, RF Asic.

Älli contains the receiver chain from LNAs to digital base band interface. Digital RX baseband interface contains four data and one clk signals. The data rate and clock frequency depend on the use case.

The main blocks in Älli are:

- LNAs: Balanced inputs for 850, 900, 1800, 1900, 2100 bands
- Passive mixer
- Analog baseband: Programmable for different modes
- ADC: Programmable Sigma Delta Modulator topology ADC
- RX Digital Front End (RXDFE): Contains for example digital filtering, DC offset compensation, wide/narrowband power measurement blocks

There is integrated external LNA matching on the bands 900, 1800, 1900 and 2100. On 850 band, there is an integrated matching.

Synthesizer

The synthesizer has separate highly integrated 4GHz VCOs for RX and TX. The integrator capacitors of the loop filter are outside of the IC. The PLLs are fractional type of dividers.

The reference oscillator is an on-chip 38.4 MHz digitally controlled oscillator. The 38.4 MHz crystal is outside of Älli. DCXO delivers the internal clock to Älli, differential clock signal to BB, and two single mode clock signals to NCW modules. Älli delivers a clk signal to diversity RX. The oscillator is controlled via RFBus with AFC signal. Temperature compensation of the oscillator is running by the SW in Älli. The temperature sensor itself is outside of Älli.

Transmitter (TX)

The main features of Linko1 transmitter are:

- Common PA for GSM and WCDMA
 - High and low band signal paths
 - Low band: 824 - 915 MHz
 - High band: 1710 - 1980 MHz
 - Two operation modes in PA
 - Saturation mode in GMSK usage
 - Linear mode in Edge and WCDMA usage
- No TX filter between PA and Älli

- Common regulators for GSM and WCDMA
 - Boost and SMPS regulators in Aura
 - Feeding the supply voltage to PA
 - Operation frequency varies depending on the used system

Frequency	SMPS	Boost	DCDC
WCDMA	3.0 MHz (typ)	4.5 MHz (typ)	1.3 MHz (typ)
GSM	9.5 MHz	7.5 MHz	2.7 MHz

- Digital interface to baseband
 - WCDMA mode
 - Digital IQ interface
 - 3 data and 1 clk signals
 - GSM mode
 - GSM TX data bits are sourced from baseband via RFBus to Älli

In GMSK mode, the output level of Älli is kept high with all power levels, and the output power is adjusted by altering the collector voltage of PA. In practice, the output level of Älli is also slightly changed (optimized) in the highest power level to keep the PA compression level more constant, which results in better overall efficiency and performance.

In WCDMA and EDGE mode, the output power is tuned by output level of Älli. The supply voltage in WCDMA mode is adjusted in power levels to optimize the current consumption.

■ Frequency mappings

GSM850 frequencies

CH	TX	RX	VCO TX	VCO RX	CH	TX	RX	VCO TX	VCO RX	CH	TX	RX	VCO TX	VCO RX
128	824.2	869.2	3296.8	3476.8	170	832.6	877.6	3330.4	3510.4	212	841.0	886.0	3364.0	3544.0
129	824.4	869.4	3297.6	3477.6	171	832.8	877.8	3331.2	3511.2	213	841.2	886.2	3364.8	3544.8
130	824.6	869.6	3298.4	3478.4	172	833.0	878.0	3332.0	3512.0	214	841.4	886.4	3365.6	3545.6
131	824.8	869.8	3299.2	3479.2	173	833.2	878.2	3332.8	3512.8	215	841.6	886.6	3366.4	3546.4
132	825.0	870.0	3300.0	3480.0	174	833.4	878.4	3333.6	3513.6	216	841.8	886.8	3367.2	3547.2
133	825.2	870.2	3300.8	3480.8	175	833.6	878.6	3334.4	3514.4	217	842.0	887.0	3368.0	3548.0
134	825.4	870.4	3301.6	3481.6	176	833.8	878.8	3335.2	3515.2	218	842.2	887.2	3368.8	3548.8
135	825.6	870.6	3302.4	3482.4	177	834.0	879.0	3336.0	3516.0	219	842.4	887.4	3369.6	3549.6
136	825.8	870.8	3303.2	3483.2	178	834.2	879.2	3336.8	3516.8	220	842.6	887.6	3370.4	3550.4
137	826.0	871.0	3304.0	3484.0	179	834.4	879.4	3337.6	3517.6	221	842.8	887.8	3371.2	3551.2
138	826.2	871.2	3304.8	3484.8	180	834.6	879.6	3338.4	3518.4	222	843.0	888.0	3372.0	3552.0
139	826.4	871.4	3305.6	3485.6	181	834.8	879.8	3339.2	3519.2	223	843.2	888.2	3372.8	3552.8
140	826.6	871.6	3306.4	3486.4	182	835.0	880.0	3340.0	3520.0	224	843.4	888.4	3373.6	3553.6
141	826.8	871.8	3307.2	3487.2	183	835.2	880.2	3340.8	3520.8	225	843.6	888.6	3374.4	3554.4
142	827.0	872.0	3308.0	3488.0	184	835.4	880.4	3341.6	3521.6	226	843.8	888.8	3375.2	3555.2
143	827.2	872.2	3308.8	3488.8	185	835.6	880.6	3342.4	3522.4	227	844.0	889.0	3376.0	3556.0
144	827.4	872.4	3309.6	3489.6	186	835.8	880.8	3343.2	3523.2	228	844.2	889.2	3376.8	3556.8
145	827.6	872.6	3310.4	3490.4	187	836.0	881.0	3344.0	3524.0	229	844.4	889.4	3377.6	3557.6
146	827.8	872.8	3311.2	3491.2	188	836.2	881.2	3344.8	3524.8	230	844.6	889.6	3378.4	3558.4
147	828.0	873.0	3312.0	3492.0	189	836.4	881.4	3345.6	3525.6	231	844.8	889.8	3379.2	3559.2
148	828.2	873.2	3312.8	3492.8	190	836.6	881.6	3346.4	3526.4	232	845.0	890.0	3380.0	3560.0
149	828.4	873.4	3313.6	3493.6	191	836.8	881.8	3347.2	3527.2	233	845.2	890.2	3380.8	3560.8
150	828.6	873.6	3314.4	3494.4	192	837.0	882.0	3348.0	3528.0	234	845.4	890.4	3381.6	3561.6
151	828.8	873.8	3315.2	3495.2	193	837.2	882.2	3348.8	3528.8	235	845.6	890.6	3382.4	3562.4
152	829.0	874.0	3316.0	3496.0	194	837.4	882.4	3349.6	3529.6	236	845.8	890.8	3383.2	3563.2
153	829.2	874.2	3316.8	3496.8	195	837.6	882.6	3350.4	3530.4	237	846.0	891.0	3384.0	3564.0
154	829.4	874.4	3317.6	3497.6	196	837.8	882.8	3351.2	3531.2	238	846.2	891.2	3384.8	3564.8
155	829.6	874.6	3318.4	3498.4	197	838.0	883.0	3352.0	3532.0	239	846.4	891.4	3385.6	3565.6
156	829.8	874.8	3319.2	3499.2	198	838.2	883.2	3352.8	3532.8	240	846.6	891.6	3386.4	3566.4
157	830.0	875.0	3320.0	3500.0	199	838.4	883.4	3353.6	3533.6	241	846.8	891.8	3387.2	3567.2
158	830.2	875.2	3320.8	3500.8	200	838.6	883.6	3354.4	3534.4	242	847.0	892.0	3388.0	3568.0
159	830.4	875.4	3321.6	3501.6	201	838.8	883.8	3355.2	3535.2	243	847.2	892.2	3388.8	3568.8
160	830.6	875.6	3322.4	3502.4	202	839.0	884.0	3356.0	3536.0	244	847.4	892.4	3389.6	3569.6
161	830.8	875.8	3323.2	3503.2	203	839.2	884.2	3356.8	3536.8	245	847.6	892.6	3390.4	3570.4
162	831.0	876.0	3324.0	3504.0	204	839.4	884.4	3357.6	3537.6	246	847.8	892.8	3391.2	3571.2
163	831.2	876.2	3324.8	3504.8	205	839.6	884.6	3358.4	3538.4	247	848.0	893.0	3392.0	3572.0
164	831.4	876.4	3325.6	3505.6	206	839.8	884.8	3359.2	3539.2	248	848.2	893.2	3392.8	3572.8
165	831.6	876.6	3326.4	3506.4	207	840.0	885.0	3360.0	3540.0	249	848.4	893.4	3393.6	3573.6
166	831.8	876.8	3327.2	3507.2	208	840.2	885.2	3360.8	3540.8	250	848.6	893.6	3394.4	3574.4
167	832.0	877.0	3328.0	3508.0	209	840.4	885.4	3361.6	3541.6	251	848.8	893.8	3395.2	3575.2

EGSM900 frequencies

CH	TX	RX	VCO TX	VCO RX	CH	TX	RX	VCO TX	VCO RX	CH	TX	RX	VCO TX	VCO RX
975	880,2	925,2	3520,8	3700,8	1	890,2	935,2	3560,8	3740,8	63	902,6	947,6	3610,4	3790,4
976	880,4	925,4	3521,6	3701,6	2	890,4	935,4	3561,6	3741,6	64	902,8	947,8	3611,2	3791,2
977	880,6	925,6	3522,4	3702,4	3	890,6	935,6	3562,4	3742,4	65	903,0	948,0	3612,0	3792,0
978	880,8	925,8	3523,2	3703,2	4	890,8	935,8	3563,2	3743,2	66	903,2	948,2	3612,8	3792,8
979	881,0	926,0	3524,0	3704,0	5	891,0	936,0	3564,0	3744,0	67	903,4	948,4	3613,6	3793,6
980	881,2	926,2	3524,8	3704,8	6	891,2	936,2	3564,8	3744,8	68	903,6	948,6	3614,4	3794,4
981	881,4	926,4	3525,6	3705,6	7	891,4	936,4	3565,6	3745,6	69	903,8	948,8	3615,2	3795,2
982	881,6	926,6	3526,4	3706,4	8	891,6	936,6	3566,4	3746,4	70	904,0	949,0	3616,0	3796,0
983	881,8	926,8	3527,2	3707,2	9	891,8	936,8	3567,2	3747,2	71	904,2	949,2	3616,8	3796,8
984	882,0	927,0	3528,0	3708,0	10	892,0	937,0	3568,0	3748,0	72	904,4	949,4	3617,6	3797,6
985	882,2	927,2	3528,8	3708,8	11	892,2	937,2	3568,8	3748,8	73	904,6	949,6	3618,4	3798,4
986	882,4	927,4	3529,6	3709,6	12	892,4	937,4	3569,6	3749,6	74	904,8	949,8	3619,2	3799,2
987	882,6	927,6	3530,4	3710,4	13	892,6	937,6	3570,4	3750,4	75	905,0	950,0	3620,0	3800,0
988	882,8	927,8	3531,2	3711,2	14	892,8	937,8	3571,2	3751,2	76	905,2	950,2	3620,8	3800,8
989	883,0	928,0	3532,0	3712,0	15	893,0	938,0	3572,0	3752,0	77	905,4	950,4	3621,6	3801,6
990	883,2	928,2	3532,8	3712,8	16	893,2	938,2	3572,8	3752,8	78	905,6	950,6	3622,4	3802,4
991	883,4	928,4	3533,6	3713,6	17	893,4	938,4	3573,6	3753,6	79	905,8	950,8	3623,2	3803,2
992	883,6	928,6	3534,4	3714,4	18	893,6	938,6	3574,4	3754,4	80	906,0	951,0	3624,0	3804,0
993	883,8	928,8	3535,2	3715,2	19	893,8	938,8	3575,2	3755,2	81	906,2	951,2	3624,8	3804,8
994	884,0	929,0	3536,0	3716,0	20	894,0	939,0	3576,0	3756,0	82	906,4	951,4	3625,6	3805,6
995	884,2	929,2	3536,8	3716,8	21	894,2	939,2	3576,8	3756,8	83	906,6	951,6	3626,4	3806,4
996	884,4	929,4	3537,6	3717,6	22	894,4	939,4	3577,6	3757,6	84	906,8	951,8	3627,2	3807,2
997	884,6	929,6	3538,4	3718,4	23	894,6	939,6	3578,4	3758,4	85	907,0	952,0	3628,0	3808,0
998	884,8	929,8	3539,2	3719,2	24	894,8	939,8	3579,2	3759,2	86	907,2	952,2	3628,8	3808,8
999	885,0	930,0	3540,0	3720,0	25	895,0	940,0	3580,0	3760,0	87	907,4	952,4	3629,6	3809,6
1000	885,2	930,2	3540,8	3720,8	26	895,2	940,2	3580,8	3760,8	88	907,6	952,6	3630,4	3810,4
1001	885,4	930,4	3541,6	3721,6	27	895,4	940,4	3581,6	3761,6	89	907,8	952,8	3631,2	3811,2
1002	885,6	930,6	3542,4	3722,4	28	895,6	940,6	3582,4	3762,4	90	908,0	953,0	3632,0	3812,0
1003	885,8	930,8	3543,2	3723,2	29	895,8	940,8	3583,2	3763,2	91	908,2	953,2	3632,8	3812,8
1004	886,0	931,0	3544,0	3724,0	30	896,0	941,0	3584,0	3764,0	92	908,4	953,4	3633,6	3813,6
1005	886,2	931,2	3544,8	3724,8	31	896,2	941,2	3584,8	3764,8	93	908,6	953,6	3634,4	3814,4
1006	886,4	931,4	3545,6	3725,6	32	896,4	941,4	3585,6	3765,6	94	908,8	953,8	3635,2	3815,2
1007	886,6	931,6	3546,4	3726,4	33	896,6	941,6	3586,4	3766,4	95	909,0	954,0	3636,0	3816,0
1008	886,8	931,8	3547,2	3727,2	34	896,8	941,8	3587,2	3767,2	96	909,2	954,2	3636,8	3816,8
1009	887,0	932,0	3548,0	3728,0	35	897,0	942,0	3588,0	3768,0	97	909,4	954,4	3637,6	3817,6
1010	887,2	932,2	3548,8	3728,8	36	897,2	942,2	3588,8	3768,8	98	909,6	954,6	3638,4	3818,4
1011	887,4	932,4	3549,6	3729,6	37	897,4	942,4	3589,6	3769,6	99	909,8	954,8	3639,2	3819,2
1012	887,6	932,6	3550,4	3730,4	38	897,6	942,6	3590,4	3770,4	100	910,0	955,0	3640,0	3820,0
1013	887,8	932,8	3551,2	3731,2	39	897,8	942,8	3591,2	3771,2	101	910,2	955,2	3640,8	3820,8
1014	888,0	933,0	3552,0	3732,0	40	898,0	943,0	3592,0	3772,0	102	910,4	955,4	3641,6	3821,6
1015	888,2	933,2	3552,8	3732,8	41	898,2	943,2	3592,8	3772,8	103	910,6	955,6	3642,4	3822,4
1016	888,4	933,4	3553,6	3733,6	42	898,4	943,4	3593,6	3773,6	104	910,8	955,8	3643,2	3823,2
1017	888,6	933,6	3554,4	3734,4	43	898,6	943,6	3594,4	3774,4	105	911,0	956,0	3644,0	3824,0
1018	888,8	933,8	3555,2	3735,2	44	898,8	943,8	3595,2	3775,2	106	911,2	956,2	3644,8	3824,8
1019	889,0	934,0	3556,0	3736,0	45	899,0	944,0	3596,0	3776,0	107	911,4	956,4	3645,6	3825,6
1020	889,2	934,2	3556,8	3736,8	46	899,2	944,2	3596,8	3776,8	108	911,6	956,6	3646,4	3826,4
1021	889,4	934,4	3557,6	3737,6	47	899,4	944,4	3597,6	3777,6	109	911,8	956,8	3647,2	3827,2
1022	889,6	934,6	3558,4	3738,4	48	899,6	944,6	3598,4	3778,4	110	912,0	957,0	3648,0	3828,0
1023	889,8	934,8	3559,2	3739,2	49	899,8	944,8	3599,2	3779,2	111	912,2	957,2	3648,8	3828,8
0	890,0	935,0	3560,0	3740,0	50	900,0	945,0	3600,0	3780,0	112	912,4	957,4	3649,6	3829,6
					51	900,2	945,2	3600,8	3780,8	113	912,6	957,6	3650,4	3830,4
					52	900,4	945,4	3601,6	3781,6	114	912,8	957,8	3651,2	3831,2
					53	900,6	945,6	3602,4	3782,4	115	913,0	958,0	3652,0	3832,0
					54	900,8	945,8	3603,2	3783,2	116	913,2	958,2	3652,8	3832,8
					55	901,0	946,0	3604,0	3784,0	117	913,4	958,4	3653,6	3833,6
					56	901,2	946,2	3604,8	3784,8	118	913,6	958,6	3654,4	3834,4
					57	901,4	946,4	3605,6	3785,6	119	913,8	958,8	3655,2	3835,2
					58	901,6	946,6	3606,4	3786,4	120	914,0	959,0	3656,0	3836,0
					59	901,8	946,8	3607,2	3787,2	121	914,2	959,2	3656,8	3836,8
					60	902,0	947,0	3608,0	3788,0	122	914,4	959,4	3657,6	3837,6
					61	902,2	947,2	3608,8	3788,8	123	914,6	959,6	3658,4	3838,4
					62	902,4	947,4	3609,6	3789,6	124	914,8	959,8	3659,2	3839,2

GSM1800 frequencies

Ch	Tx	Rx	VCO Tx	VCO Rx	Ch	Tx	Rx	VCO Tx	VCO Rx	Ch	Tx	Rx	VCO Tx	VCO Rx	Ch	Tx	Rx	VCO Tx	VCO Rx
512	1710.2	1805.2	3420.4	3610.4	606	1729.0	1824.0	3458.0	3648.0	700	1747.8	1842.8	3495.6	3685.6	793	1766.4	1861.4	3532.8	3722.8
513	1710.4	1805.4	3420.8	3610.8	607	1729.2	1824.2	3458.4	3648.4	701	1748.0	1843.0	3496.0	3686.0	794	1766.6	1861.6	3533.2	3723.2
514	1710.6	1805.6	3421.2	3611.2	608	1729.4	1824.4	3458.8	3648.8	702	1748.2	1843.2	3496.4	3686.4	795	1766.8	1861.8	3533.6	3723.6
515	1710.8	1805.8	3421.6	3611.6	609	1729.6	1824.6	3459.2	3649.2	703	1748.4	1843.4	3496.8	3686.8	796	1767.0	1862.0	3534.0	3724.0
516	1711.0	1806.0	3422.0	3612.0	610	1729.8	1824.8	3459.6	3649.6	704	1748.6	1843.6	3497.2	3687.2	797	1767.2	1862.2	3534.4	3724.4
517	1711.2	1806.2	3422.4	3612.4	611	1730.0	1825.0	3460.0	3650.0	705	1748.8	1843.8	3497.6	3687.8	798	1767.4	1862.4	3534.8	3724.8
518	1711.4	1806.4	3422.8	3612.8	612	1730.2	1825.2	3460.4	3650.4	706	1749.0	1844.0	3498.0	3688.0	799	1767.6	1862.6	3535.6	3725.2
519	1711.6	1806.6	3423.2	3613.2	613	1730.4	1825.4	3460.8	3650.8	707	1749.2	1844.2	3498.4	3688.4	800	1767.8	1862.8	3535.6	3725.6
520	1711.8	1806.8	3423.6	3613.6	614	1730.6	1825.6	3461.2	3651.2	708	1749.4	1844.4	3498.8	3688.8	801	1768.0	1863.0	3536.0	3726.0
521	1712.0	1807.0	3424.0	3614.0	615	1730.8	1825.8	3461.6	3651.6	709	1749.6	1844.6	3499.2	3689.2	802	1768.2	1863.2	3536.4	3726.4
522	1712.2	1807.2	3424.4	3614.4	616	1731.0	1826.0	3462.0	3652.0	710	1749.8	1844.8	3499.6	3689.6	803	1768.4	1863.4	3536.8	3726.8
523	1712.4	1807.4	3424.8	3614.8	617	1731.2	1826.2	3462.4	3652.4	711	1750.0	1845.0	3500.0	3690.0	804	1768.6	1863.6	3537.2	3727.2
524	1712.6	1807.6	3425.2	3615.2	618	1731.4	1826.4	3462.8	3652.8	712	1750.2	1845.2	3500.4	3690.4	805	1768.8	1863.8	3537.6	3727.6
525	1712.8	1807.8	3425.6	3615.6	619	1731.6	1826.6	3463.2	3653.2	713	1750.4	1845.4	3500.8	3690.8	806	1769.0	1864.0	3538.0	3728.0
526	1713.0	1808.0	3426.0	3616.0	620	1731.8	1826.8	3463.6	3653.6	714	1750.6	1845.6	3501.2	3691.2	807	1769.2	1864.2	3538.4	3728.4
527	1713.2	1808.2	3426.4	3616.4	621	1732.0	1827.0	3464.0	3654.0	715	1750.8	1845.8	3501.6	3691.6	808	1769.4	1864.4	3538.8	3728.8
528	1713.4	1808.4	3426.8	3616.8	622	1732.2	1827.2	3464.4	3654.4	716	1751.0	1846.0	3502.0	3692.0	809	1769.6	1864.6	3539.2	3729.2
529	1713.6	1808.6	3427.2	3617.2	623	1732.4	1827.4	3464.8	3654.8	717	1751.2	1846.2	3502.4	3692.4	810	1769.8	1864.8	3539.6	3729.6
530	1713.8	1808.8	3427.6	3617.8	624	1732.6	1827.6	3465.2	3655.2	718	1751.4	1846.4	3502.8	3692.8	811	1770.0	1865.0	3540.0	3730.0
531	1714.0	1809.0	3428.0	3618.0	625	1732.8	1827.8	3465.6	3655.6	719	1751.6	1846.6	3503.2	3693.2	812	1770.2	1865.2	3540.4	3730.4
532	1714.2	1809.2	3428.4	3618.4	626	1733.0	1828.0	3466.0	3656.0	720	1751.8	1846.8	3503.6	3693.6	813	1770.4	1865.4	3540.8	3730.8
533	1714.4	1809.4	3428.8	3618.8	627	1733.2	1828.2	3466.4	3656.4	721	1752.0	1847.0	3504.0	3694.0	814	1770.6	1865.6	3541.2	3731.2
534	1714.6	1809.6	3429.2	3619.2	628	1733.4	1828.4	3466.8	3656.8	722	1752.2	1847.2	3504.4	3694.8	815	1770.8	1865.8	3541.6	3731.6
535	1714.8	1809.8	3429.6	3619.6	629	1733.6	1828.6	3467.2	3657.2	723	1752.4	1847.4	3504.8	3694.8	816	1771.0	1866.0	3542.0	3732.0
536	1715.0	1810.0	3430.0	3620.0	630	1733.8	1828.8	3467.6	3657.6	724	1752.6	1847.6	3505.2	3695.2	817	1771.2	1866.2	3542.4	3732.4
537	1715.2	1810.2	3430.4	3620.4	631	1734.0	1829.0	3468.0	3658.0	725	1752.8	1847.8	3505.6	3695.6	818	1771.4	1866.4	3542.8	3732.8
538	1715.4	1810.4	3430.8	3620.8	632	1734.2	1829.2	3468.4	3658.4	726	1753.0	1848.0	3506.0	3696.0	819	1771.6	1866.6	3543.2	3733.2
539	1715.6	1810.6	3431.2	3621.2	633	1734.4	1829.4	3468.8	3658.8	727	1753.2	1848.2	3506.4	3696.4	820	1771.8	1866.8	3543.6	3733.6
540	1715.8	1810.8	3431.6	3621.6	634	1734.6	1829.6	3469.2	3659.2	728	1753.4	1848.4	3506.8	3696.8	821	1772.0	1867.0	3544.0	3734.0
541	1716.0	1811.0	3432.0	3622.0	635	1734.8	1829.8	3469.6	3659.6	729	1753.6	1848.6	3507.2	3697.2	822	1772.2	1867.2	3544.4	3734.4
542	1716.2	1811.2	3432.4	3622.4	636	1735.0	1830.0	3470.0	3660.0	730	1753.8	1848.8	3507.6	3697.8	823	1772.4	1867.4	3544.8	3734.8
543	1716.4	1811.4	3432.8	3622.8	637	1735.2	1830.2	3470.4	3660.4	731	1754.0	1849.0	3508.0	3698.0	824	1772.6	1867.6	3545.2	3735.2
544	1716.6	1811.6	3433.2	3623.2	638	1735.4	1830.4	3470.8	3660.8	732	1754.2	1849.2	3508.4	3698.4	825	1772.8	1867.8	3545.6	3735.6
545	1716.8	1811.8	3433.6	3623.6	639	1735.6	1830.6	3471.2	3661.2	733	1754.4	1849.4	3508.8	3698.8	826	1773.0	1868.0	3546.0	3736.0
546	1717.0	1812.0	3434.0	3624.0	640	1735.8	1830.8	3471.6	3661.6	734	1754.6	1849.6	3509.2	3699.2	827	1773.2	1868.2	3546.4	3736.4
547	1717.2	1812.2	3434.4	3624.4	641	1736.0	1831.0	3472.0	3662.0	735	1754.8	1849.8	3509.6	3699.6	828	1773.4	1868.4	3546.8	3736.8
548	1717.4	1812.4	3434.8	3624.8	642	1736.2	1831.2	3472.4	3662.4	736	1755.0	1850.0	3510.0	3700.0	829	1773.6	1868.6	3547.2	3737.2
549	1717.6	1812.6	3435.2	3625.2	643	1736.4	1831.4	3472.8	3662.8	737	1755.2	1850.2	3510.4	3700.4	830	1773.8	1868.8	3547.6	3737.6
550	1717.8	1812.8	3435.6	3625.6	644	1736.6	1831.6	3473.2	3663.2	738	1755.4	1850.4	3510.8	3700.8	831	1774.0	1869.0	3548.0	3738.0
551	1718.0	1813.0	3436.0	3626.0	645	1736.8	1831.8	3473.6	3663.6	739	1755.6	1850.6	3511.2	3701.2	832	1774.2	1869.2	3548.4	3738.4
552	1718.2	1813.2	3436.4	3626.4	646	1737.0	1832.0	3474.0	3664.0	740	1755.8	1850.8	3511.6	3701.6	833	1774.4	1869.4	3548.8	3738.8
553	1718.4	1813.4	3436.8	3626.8	648	1737.2	1832.2	3474.4	3664.4	741	1756.0	1851.0	3512.0	3702.0	834	1774.6	1869.6	3549.2	3739.2
554	1718.6	1813.6	3437.2	3627.2	649	1737.4	1832.4	3474.8	3664.8	742	1756.2	1851.2	3512.4	3702.4	835	1774.8	1869.8	3549.6	3739.6
555	1718.8	1813.8	3437.6	3627.6	650	1737.6	1832.6	3475.2	3665.2	743	1756.4	1851.4	3512.5	3702.5	836	1775.0	1870.0	3550.0	3740.0
556	1719.0	1814.0	3438.0	3628.0	652	1737.8	1832.8	3475.6	3665.6	744	1756.6	1851.6	3513.2	3703.2	837	1775.2	1870.2	3550.4	3740.4
557	1719.2	1814.2	3438.4	3628.4	653	1738.0	1833.0	3476.0	3666.0	745	1756.8	1851.8	3513.6	3703.6	838	1775.4	1870.4	3553.2	3743.2
558	1719.4	1814.4	3438.8	3628.8	654	1738.2	1833.2	3476.4	3666.4	746	1757.0	1852.0	3514.0	3704.0	839	1775.6	1870.6	3551.2	3741.2
559	1719.6	1814.6	3439.2	3629.2	655	1738.4	1833.4	3476.8	3666.8	747	1757.2	1852.2	3514.4	3704.4	840	1775.8	1870.8	3551.6	3741.6
560	1719.8	1814.8	3439.6	3629.6	656	1738.6	1833.6	3477.2	3667.2	748	1757.4	1852.4	3514.8	3704.8	841	1776.0	1871.0	3552.0	3742.0
561	1720.0	1815.0	3440.0	3630.0	656	1738.8	1833.8	3477.6	3667.6	749	1757.6	1852.6	3515.2	3705.2	842	17			

GSM1900 frequencies

CH	TX	RX	VCO TX	VCO RX	CH	TX	RX	VCO TX	VCO RX	CH	TX	RX	VCO TX	VCO RX	CH	TX	RX	VCO TX	VCO RX
512	1850.2	1930.2	3700.4	3860.4	606	1869.0	1949.0	3738.0	3898.0	700	1887.8	1967.8	3775.6	3935.6	794	1906.6	1986.6	3813.2	3973.2
513	1850.4	1930.4	3700.8	3860.8	607	1869.2	1949.2	3738.4	3898.4	701	1888.0	1968.0	3776.0	3936.0	795	1906.8	1986.8	3813.6	3973.6
514	1850.6	1930.6	3701.2	3861.2	608	1869.4	1949.4	3738.6	3898.6	702	1888.2	1968.2	3776.4	3936.4	796	1907.0	1987.0	3814.0	3974.0
515	1850.8	1930.8	3701.6	3861.6	609	1869.6	1949.6	3739.2	3899.2	703	1888.4	1968.4	3776.8	3936.8	797	1907.2	1987.2	3814.4	3974.4
516	1851.0	1931.0	3702.0	3862.0	610	1869.8	1949.8	3739.6	3899.6	704	1888.6	1968.6	3777.2	3937.2	798	1907.4	1987.4	3814.8	3974.8
517	1851.2	1931.2	3702.4	3862.4	611	1870.0	1950.0	3740.0	3900.0	705	1888.8	1968.8	3777.6	3937.6	799	1907.6	1987.6	3815.2	3975.2
518	1851.4	1931.4	3702.8	3862.8	612	1870.2	1950.2	3740.4	3900.4	706	1889.0	1969.0	3778.0	3938.0	800	1907.8	1987.8	3815.6	3975.6
519	1851.6	1931.6	3703.2	3863.2	613	1870.4	1950.4	3740.8	3900.8	707	1889.2	1969.2	3778.4	3938.4	801	1908.0	1988.0	3816.0	3976.0
520	1851.8	1931.8	3703.6	3863.6	614	1870.6	1950.6	3741.2	3901.2	708	1889.4	1969.4	3778.6	3938.8	802	1908.2	1988.2	3816.4	3976.4
521	1852.0	1932.0	3704.0	3864.0	615	1870.8	1950.8	3741.6	3901.6	709	1889.6	1969.6	3779.2	3939.2	803	1908.4	1988.4	3816.8	3976.8
522	1852.2	1932.2	3704.4	3864.4	616	1871.0	1951.0	3742.0	3902.0	710	1889.8	1969.8	3779.6	3939.6	804	1908.6	1988.6	3817.2	3977.2
523	1852.4	1932.4	3704.8	3864.8	617	1871.2	1951.2	3742.4	3902.4	711	1890.0	1970.0	3780.0	3940.0	805	1908.8	1988.8	3817.6	3977.6
524	1852.6	1932.6	3705.2	3865.2	618	1871.4	1951.4	3742.8	3902.8	712	1890.2	1970.2	3780.4	3940.4	806	1909.0	1989.0	3818.0	3978.0
525	1852.8	1932.8	3705.6	3865.6	619	1871.6	1951.6	3743.2	3903.2	713	1890.4	1970.4	3780.8	3940.8	807	1909.2	1989.2	3818.4	3978.4
526	1853.0	1933.0	3706.0	3866.0	620	1871.8	1951.8	3743.6	3903.6	714	1890.6	1970.6	3781.2	3941.2	808	1909.4	1989.4	3818.8	3978.8
527	1853.2	1933.2	3706.4	3866.4	621	1872.0	1952.0	3744.0	3904.0	715	1890.8	1970.8	3781.6	3941.6	809	1909.6	1989.6	3819.2	3979.2
529	1853.6	1933.6	3707.2	3867.2	623	1872.4	1952.4	3744.8	3904.8	717	1891.2	1971.2	3782.4	3942.4					
530	1853.8	1933.8	3707.6	3867.6	624	1872.6	1952.6	3745.2	3905.2	718	1891.4	1971.4	3782.8	3942.8					
531	1854.0	1934.0	3708.0	3868.0	625	1872.8	1952.8	3745.6	3905.6	719	1891.6	1971.6	3783.2	3943.2					
532	1854.2	1934.2	3708.4	3868.4	626	1873.0	1953.0	3746.0	3906.0	720	1891.8	1971.8	3783.6	3943.6					
533	1854.4	1934.4	3708.8	3868.8	627	1873.2	1953.2	3746.4	3906.4	721	1892.0	1972.0	3784.0	3944.0					
534	1854.6	1934.6	3709.2	3869.2	628	1873.4	1953.4	3746.8	3906.8	722	1892.2	1972.2	3784.4	3944.4					
535	1854.8	1934.8	3709.6	3869.6	629	1873.6	1953.6	3747.2	3907.2	723	1892.4	1972.4	3784.8	3944.8					
536	1855.0	1935.0	3710.0	3870.0	630	1873.8	1953.8	3747.6	3907.6	724	1892.6	1972.6	3785.2	3945.2					
537	1855.2	1935.2	3710.4	3870.4	631	1874.0	1954.0	3748.0	3908.0	725	1892.8	1972.8	3785.6	3945.6					
538	1855.4	1935.4	3710.8	3870.8	632	1874.2	1954.2	3748.4	3908.4	726	1893.0	1973.0	3786.0	3946.0					
539	1855.6	1935.6	3711.2	3871.2	633	1874.4	1954.4	3748.8	3908.8	727	1893.2	1973.2	3786.4	3946.4					
540	1855.8	1935.8	3711.6	3871.6	634	1874.6	1954.6	3749.2	3909.2	728	1893.4	1973.4	3786.8	3946.8					
541	1856.0	1936.0	3712.0	3872.0	635	1874.8	1954.8	3749.6	3909.6	729	1893.6	1973.6	3787.2	3947.2					
542	1856.2	1936.2	3712.4	3872.4	636	1875.0	1955.0	3750.0	3910.0	730	1893.8	1973.8	3787.6	3947.6					
543	1856.4	1936.4	3712.8	3872.8	637	1875.2	1955.2	3750.4	3910.4	731	1894.0	1974.0	3788.0	3948.0					
544	1856.6	1936.6	3713.2	3873.2	638	1875.4	1955.4	3750.8	3910.8	732	1894.2	1974.2	3788.4	3948.4					
545	1856.8	1936.8	3713.6	3873.6	639	1875.6	1955.6	3751.2	3911.2	733	1894.4	1974.4	3788.8	3948.8					
546	1857.0	1937.0	3714.0	3874.0	640	1875.8	1955.8	3751.6	3911.6	734	1894.6	1974.6	3789.2	3949.2					
547	1857.2	1937.2	3714.4	3874.4	641	1876.0	1956.0	3752.0	3912.0	735	1894.8	1974.8	3789.6	3949.6					
548	1857.4	1937.4	3714.8	3874.8	642	1876.2	1956.2	3752.4	3912.4	736	1895.0	1975.0	3790.0	3950.0					
549	1857.6	1937.6	3715.2	3875.2	643	1876.4	1956.4	3752.8	3912.8	737	1895.2	1975.2	3790.4	3950.4					
550	1857.8	1937.8	3715.6	3875.6	644	1876.6	1956.6	3753.2	3913.2	738	1895.4	1975.4	3790.8	3950.8					
551	1858.0	1938.0	3716.0	3876.0	645	1876.8	1956.8	3753.6	3913.6	739	1895.6	1975.6	3791.2	3951.2					
552	1858.2	1938.2	3716.4	3876.4	646	1877.0	1957.0	3754.0	3914.0	740	1895.8	1975.8	3791.6	3951.6					
553	1858.4	1938.4	3716.8	3876.8	647	1877.2	1957.2	3754.4	3914.4	741	1896.0	1976.0	3792.0	3952.0					
554	1858.6	1938.6	3717.2	3877.2	648	1877.4	1957.4	3754.8	3914.8	742	1896.2	1976.2	3792.4	3952.4					
555	1858.8	1938.8	3717.6	3877.6	649	1877.6	1957.6	3755.2	3915.2	743	1896.4	1976.4	3792.8	3952.8					
556	1859.0	1939.0	3718.0	3878.0	650	1877.8	1957.8	3755.6	3915.6	744	1896.6	1976.6	3793.2	3953.2					
557	1859.2	1939.2	3718.4	3878.4	651	1878.0	1958.0	3756.0	3916.0	745	1896.8	1976.8	3793.6	3953.6					
558	1859.4	1939.4	3718.8	3878.8	652	1878.2	1958.2	3756.4	3916.4	746	1897.0	1977.0	3794.0	3954.0					
559	1859.6	1939.6	3719.2	3879.2	653	1878.4	1958.4	3756.8	3916.8	747	1897.2	1977.2	3794.4	3954.4					
560	1859.8	1939.8	3719.6	3879.6	654	1878.6	1958.6	3757.2	3917.2	748	1897.4	1977.4	3794.8	3954.8					
561	1860.0	1940.0	3720.0	3880.0	655	1878.8	1958.8	3757.6	3917.6	749	1897.6	1977.6	3795.2	3955.2					
562	1860.2	1940.2	3720.4	3880.4	656	1879.0	1959.0	3758.0	3918.0	750	1897.8	1977.8	3795.6	3955.6					
563	1860.4	1940.4	3720.8	3880.8	657	1879.2	1959.2	3758.4	3918.4	751	1898.0	1978.0	3796.0	3956.0					
564	1860.6	1940.6	3721.2	3881.2	658	1879.4	1959.4	3758.8	3918.8	752	1898.2	1978.2	3796.4	3956.4					
565	1860.8	1940.8	3721.6	3881.6	659	1879.6	1959.6	3759.2	3919.2	753	1898.4	1978.4	3796.8	3956.8					
566	1861.0	1941.0	3722.0	3882.0	660	1879.8	1959.8	3759.6	3919.6	754	1898.6	1978.6	3797.2	3957.2					
567	1861.2	1941.2	3722.4	3882.4	661	1880.0	1960.0	3760.0	3920.0	755	1898.8	1978.8	3797.6	3957.6					
568	1861.4	1941.4	3722.8	3882.8	662	1880.2	1960.2	3760.4	3920.4	756	1899.0	1979.0	3798.0						

WCDMA I (2100) Rx frequencies

Ch	RX	VCO RX												
10562	2112.4	4224.8	10625	2125	4250	10688	2137.6	4275.2	10751	2150.2	4300.4	10814	2162.8	4325.6
10563	2112.6	4225.2	10626	2125.2	4250.4	10689	2137.8	4275.6	10752	2150.4	4300.8	10815	2163	4326
10564	2112.8	4225.6	10627	2125.4	4250.8	10690	2138	4276	10753	2150.6	4301.2	10816	2163.2	4326.4
10565	2113	4226	10628	2125.6	4251.2	10691	2138.2	4276.4	10754	2150.8	4301.6	10817	2163.4	4326.8
10566	2113.2	4226.4	10629	2125.8	4251.6	10692	2138.4	4276.8	10755	2151	4302	10818	2163.6	4327.2
10567	2113.4	4226.8	10630	2126	4252	10693	2138.6	4277.2	10756	2151.2	4302.4	10819	2163.8	4327.6
10568	2113.6	4227.2	10631	2126.2	4252.4	10694	2138.8	4277.6	10757	2151.4	4302.8	10820	2164	4328
10569	2113.8	4227.6	10632	2126.4	4252.8	10695	2139	4278	10758	2151.6	4303.2	10821	2164.2	4328.4
10570	2114	4228	10633	2126.6	4253.2	10696	2139.2	4278.4	10759	2151.8	4303.6	10822	2164.4	4328.8
10571	2114.2	4228.4	10634	2126.8	4253.6	10697	2139.4	4278.8	10760	2152	4304	10823	2164.6	4329.2
10572	2114.4	4228.8	10635	2127	4254	10698	2139.6	4279.2	10761	2152.2	4304.4	10824	2164.8	4329.6
10573	2114.6	4229.2	10636	2127.2	4254.4	10699	2139.8	4279.6	10762	2152.4	4304.8	10825	2165	4330
10574	2114.8	4229.6	10637	2127.4	4254.8	10700	2140	4280	10763	2152.6	4305.2	10826	2165.2	4330.4
10575	2115	4230	10638	2127.6	4255.2	10701	2140.2	4280.4	10764	2152.8	4305.6	10827	2165.4	4330.8
10576	2115.2	4230.4	10639	2127.8	4255.6	10702	2140.4	4280.8	10765	2153	4306	10828	2165.6	4331.2
10577	2115.4	4230.8	10640	2128	4256	10703	2140.6	4281.2	10766	2153.2	4306.4	10829	2165.8	4331.6
10578	2115.6	4231.2	10641	2128.2	4256.4	10704	2140.8	4281.6	10767	2153.4	4306.8	10830	2166	4332
10579	2115.8	4231.6	10642	2128.4	4256.8	10705	2141	4282	10768	2153.6	4307.2	10831	2166.2	4332.4
10580	2116	4232	10643	2128.6	4257.2	10706	2141.2	4282.4	10769	2153.8	4307.6	10832	2166.4	4332.8
10581	2116.2	4232.4	10644	2128.8	4257.6	10707	2141.4	4282.8	10770	2154	4308	10833	2166.6	4333.2
10582	2116.4	4232.8	10645	2129	4258	10708	2141.6	4283.2	10771	2154.2	4308.4	10834	2166.8	4333.6
10583	2116.6	4233.2	10646	2129.2	4258.4	10709	2141.8	4283.6	10772	2154.4	4308.8	10835	2167	4334
10584	2116.8	4233.6	10647	2129.4	4258.8	10710	2142	4284	10773	2154.6	4309.2	10836	2167.2	4334.4
10585	2117	4234	10648	2129.6	4259.2	10711	2142.2	4284.4	10774	2154.8	4309.6	10837	2167.4	4334.8
10586	2117.2	4234.4	10649	2129.8	4259.6	10712	2142.4	4284.8	10775	2155	4310	10838	2167.6	4335.2
10587	2117.4	4234.8	10650	2130	4260	10713	2142.6	4285.2	10776	2155.2	4310.4			
10588	2117.6	4235.2	10651	2130.2	4260.4	10714	2142.8	4285.6	10777	2155.4	4310.8			
10589	2117.8	4235.6	10652	2130.4	4260.8	10715	2143	4286	10778	2155.6	4311.2			
10590	2118	4236	10653	2130.6	4261.2	10716	2143.2	4286.4	10779	2155.8	4311.6			
10591	2118.2	4236.4	10654	2130.8	4261.6	10717	2143.4	4286.8	10780	2156	4312			
10592	2118.4	4236.8	10655	2131	4262	10718	2143.6	4287.2	10781	2156.2	4312.4			
10593	2118.6	4237.2	10656	2131.2	4262.4	10719	2143.8	4287.6	10782	2156.4	4312.8			
10594	2118.8	4237.6	10657	2131.4	4262.8	10720	2144	4288	10783	2156.6	4313.2			
10595	2119	4238	10658	2131.6	4263.2	10721	2144.2	4288.4	10784	2156.8	4313.6			
10596	2119.2	4238.4	10659	2131.8	4263.6	10722	2144.4	4288.8	10785	2157	4314			
10597	2119.4	4238.8	10660	2132	4264	10723	2144.6	4289.2	10786	2157.2	4314.4			
10598	2119.6	4239.2	10661	2132.2	4264.4	10724	2144.8	4289.6	10787	2157.4	4314.8			
10599	2119.8	4239.6	10662	2132.4	4264.8	10725	2145	4290	10788	2157.6	4315.2			
10600	2120	4240	10663	2132.6	4265.2	10726	2145.2	4290.4	10789	2157.8	4315.6			
10601	2120.2	4240.4	10664	2132.8	4265.6	10727	2145.4	4290.8	10790	2158	4316			
10602	2120.4	4240.8	10665	2133	4266	10728	2145.6	4291.2	10791	2158.2	4316.4			
10603	2120.6	4241.2	10666	2133.2	4266.4	10729	2145.8	4291.6	10792	2158.4	4316.8			
10604	2120.8	4241.6	10667	2133.4	4266.8	10730	2146	4292	10793	2158.6	4317.2			
10605	2121	4242	10668	2133.6	4267.2	10731	2146.2	4292.4	10794	2158.8	4317.6			
10606	2121.2	4242.4	10669	2133.8	4267.6	10732	2146.4	4292.8	10795	2159	4318			
10607	2121.4	4242.8	10670	2134	4268	10733	2146.6	4293.2	10796	2159.2	4318.4			
10608	2121.6	4243.2	10671	2134.2	4268.4	10734	2146.8	4293.6	10797	2159.4	4318.8			
10609	2121.8	4243.6	10672	2134.4	4268.8	10735	2147	4294	10798	2159.6	4319.2			
10610	2122	4244	10673	2134.6	4269.2	10736	2147.2	4294.4	10799	2159.8	4319.6			
10611	2122.2	4244.4	10674	2134.8	4269.6	10737	2147.4	4294.8	10800	2160	4320			
10612	2122.4	4244.8	10675	2135	4270	10738	2147.6	4295.2	10801	2160.2	4320.4			
10613	2122.6	4245.2	10676	2135.2	4270.4	10739	2147.8	4295.6	10802	2160.4	4320.8			
10614	2122.8	4245.6	10677	2135.4	4270.8	10740	2148	4296	10803	2160.6	4321.2			
10615	2123	4246	10678	2135.6	4271.2	10741	2148.2	4296.4	10804	2160.8	4321.6			
10616	2123.2	4246.4	10679	2135.8	4271.6	10742	2148.4	4296.8	10805	2161	4322			
10617	2123.4	4246.8	10680	2136	4272	10743	2148.6	4297.2	10806	2161.2	4322.4			
10618	2123.6	4247.2	10681	2136.2	4272.4	10744	2148.8	4297.6	10807	2161.4	4322.8			
10619	2123.8	4247.6	10682	2136.4	4272.8	10745	2149	4298	10808	2161.6	4323.2			
10620	2124	4248	10683	2136.6	4273.2	10746	2149.2	4298.4	10809	2161.8	4323.6			
10621	2124.2	4248.4	10684	2136.8	4273.6	10747	2149.4	4298.8	10810	2162	4324			
10622	2124.4	4248.8	10685	2137	4274	10748	2149.6	4299.2	10811	2162.2	4324.4			
10623	2124.6	4249.2	10686	2137.2	4274.4	10749	2149.8	4299.6	10812	2162.4	4324.8			
10624	2124.8	4249.6	10687	2137.4	4274.8	10750	2150	4300	10813	2162.6	4325.2			

WCDMA I (2100) Tx frequencies

Ch	Tx	VCO Tx												
9612	1922.4	3844.8	9671	1934.2	3868.4	9730	1946	3892	9789	1957.8	3915.6	9848	1969.6	3939.2
9613	1922.6	3845.2	9672	1934.4	3868.8	9731	1946.2	3892.4	9790	1958	3916	9849	1969.8	3939.6
9614	1922.8	3845.6	9673	1934.6	3869.2	9732	1946.4	3892.8	9791	1958.2	3916.4	9850	1970	3940
9615	1923	3846	9674	1934.8	3869.6	9733	1946.6	3893.2	9792	1958.4	3916.8	9851	1970.2	3940.4
9616	1923.2	3846.4	9675	1935	3870	9734	1946.8	3893.6	9793	1958.6	3917.2	9852	1970.4	3940.8
9617	1923.4	3846.8	9676	1935.2	3870.4	9735	1947	3894	9794	1958.8	3917.6	9853	1970.6	3941.2
9618	1923.6	3847.2	9677	1935.4	3870.8	9736	1947.2	3894.4	9795	1959	3918	9854	1970.8	3941.6
9619	1923.8	3847.6	9678	1935.6	3871.2	9737	1947.4	3894.8	9796	1959.2	3918.4	9855	1971	3942
9620	1924	3848	9679	1935.8	3871.6	9738	1947.6	3895.2	9797	1959.4	3918.8	9856	1971.2	3942.4
9621	1924.2	3848.4	9680	1936	3872	9739	1947.8	3895.6	9798	1959.6	3919.2	9857	1971.4	3942.8
9622	1924.4	3848.8	9681	1936.2	3872.4	9740	1948	3896	9799	1959.8	3919.6	9858	1971.6	3943.2
9623	1924.6	3849.2	9682	1936.4	3872.8	9741	1948.2	3896.4	9800	1960	3920	9859	1971.8	3943.6
9624	1924.8	3849.6	9683	1936.6	3873.2	9742	1948.4	3896.8	9801	1960.2	3920.4	9860	1972	3944
9625	1925	3850	9684	1936.8	3873.6	9743	1948.6	3897.2	9802	1960.4	3920.8	9861	1972.2	3944.4
9626	1925.2	3850.4	9685	1937	3874	9744	1948.8	3897.6	9803	1960.6	3921.2	9862	1972.4	3944.8
9627	1925.4	3850.8	9686	1937.2	3874.4	9745	1949	3898	9804	1960.8	3921.6	9863	1972.6	3945.2
9628	1925.6	3851.2	9687	1937.4	3874.8	9746	1949.2	3898.4	9805	1961	3922	9864	1972.8	3945.6
9629	1925.8	3851.6	9688	1937.6	3875.2	9747	1949.4	3898.8	9806	1961.2	3922.4	9865	1973	3946
9630	1926	3852	9689	1937.8	3875.6	9748	1949.6	3899.2	9807	1961.4	3922.8	9866	1973.2	3946.4
9631	1926.2	3852.4	9690	1938	3876	9749	1949.8	3899.6	9808	1961.6	3923.2	9867	1973.4	3946.8
9632	1926.4	3852.8	9691	1938.2	3876.4	9750	1950	3900	9809	1961.8	3923.6	9868	1973.6	3947.2
9633	1926.6	3853.2	9692	1938.4	3876.8	9751	1950.2	3900.4	9810	1962	3924	9869	1973.8	3947.6
9634	1926.8	3853.6	9693	1938.6	3877.2	9752	1950.4	3900.8	9811	1962.2	3924.4	9870	1974	3948
9635	1927	3854	9694	1938.8	3877.6	9753	1950.6	3901.2	9812	1962.4	3924.8	9871	1974.2	3948.4
9636	1927.2	3854.4	9695	1939	3878	9754	1950.8	3901.6	9813	1962.6	3925.2	9872	1974.4	3948.8
9637	1927.4	3854.8	9696	1939.2	3878.4	9755	1951	3902	9814	1962.8	3925.6	9873	1974.6	3949.2
9638	1927.6	3855.2	9697	1939.4	3878.8	9756	1951.2	3902.4	9815	1963	3926	9874	1974.8	3949.6
9639	1927.8	3855.6	9698	1939.6	3879.2	9757	1951.4	3902.8	9816	1963.2	3926.4	9875	1975	3950
9640	1928	3856	9699	1939.8	3879.6	9758	1951.6	3903.2	9817	1963.4	3926.8	9876	1975.2	3950.4
9641	1928.2	3856.4	9700	1940	3880	9759	1951.8	3903.6	9818	1963.6	3927.2	9877	1975.4	3950.8
9642	1928.4	3856.8	9701	1940.2	3880.4	9760	1952	3904	9819	1963.8	3927.6	9878	1975.6	3951.2
9643	1928.6	3857.2	9702	1940.4	3880.8	9761	1952.2	3904.4	9820	1964	3928	9879	1975.8	3951.6
9644	1928.8	3857.6	9703	1940.6	3881.2	9762	1952.4	3904.8	9821	1964.2	3928.4	9880	1976	3952
9645	1929	3858	9704	1940.8	3881.6	9763	1952.6	3905.2	9822	1964.4	3928.8	9881	1976.2	3952.4
9646	1929.2	3858.4	9705	1941	3882	9764	1952.8	3905.6	9823	1964.6	3929.2	9882	1976.4	3952.8
9647	1929.4	3858.8	9706	1941.2	3882.4	9765	1953	3906	9824	1964.8	3929.6	9883	1976.6	3953.2
9648	1929.6	3859.2	9707	1941.4	3882.8	9766	1953.2	3906.4	9825	1965	3930	9884	1976.8	3953.6
9649	1929.8	3859.6	9708	1941.6	3883.2	9767	1953.4	3906.8	9826	1965.2	3930.4	9885	1977	3954
9650	1930	3860	9709	1941.8	3883.6	9768	1953.6	3907.2	9827	1965.4	3930.8	9886	1977.2	3954.4
9651	1930.2	3860.4	9710	1942	3884	9769	1953.8	3907.6	9828	1965.6	3931.2	9887	1977.4	3954.8
9652	1930.4	3860.8	9711	1942.2	3884.4	9770	1954	3908	9829	1965.8	3931.6	9888	1977.6	3955.2
9653	1930.6	3861.2	9712	1942.4	3884.8	9771	1954.2	3908.4	9830	1966	3932			
9654	1930.8	3861.6	9713	1942.6	3885.2	9772	1954.4	3908.8	9831	1966.2	3932.4			
9655	1931	3862	9714	1942.8	3885.6	9773	1954.6	3909.2	9832	1966.4	3932.8			
9656	1931.2	3862.4	9715	1943	3886	9774	1954.8	3909.6	9833	1966.6	3933.2			
9657	1931.4	3862.8	9716	1943.2	3886.4	9775	1955	3910	9834	1966.8	3933.6			
9658	1931.6	3863.2	9717	1943.4	3886.8	9776	1955.2	3910.4	9835	1967	3934			
9659	1931.8	3863.6	9718	1943.6	3887.2	9777	1955.4	3910.8	9836	1967.2	3934.4			
9660	1932	3864	9719	1943.8	3887.6	9778	1955.6	3911.2	9837	1967.4	3934.8			
9661	1932.2	3864.4	9720	1944	3888	9779	1955.8	3911.6	9838	1967.6	3935.2			
9662	1932.4	3864.8	9721	1944.2	3888.4	9780	1956	3912	9839	1967.8	3935.6			
9663	1932.6	3865.2	9722	1944.4	3888.8	9781	1956.2	3912.4	9840	1968	3936			
9664	1932.8	3865.6	9723	1944.6	3889.2	9782	1956.4	3912.8	9841	1968.2	3936.4			
9665	1933	3866	9724	1944.8	3889.6	9783	1956.6	3913.2	9842	1968.4	3936.8			
9666	1933.2	3866.4	9725	1945	3890	9784	1956.8	3913.6	9843	1968.6	3937.2			
9667	1933.4	3866.8	9726	1945.2	3890.4	9785	1957	3914	9844	1968.8	3937.6			
9668	1933.6	3867.2	9727	1945.4	3890.8	9786	1957.2	3914.4	9845	1969	3938			
9669	1933.8	3867.6	9728	1945.6	3891.2	9787	1957.4	3914.8	9846	1969.2	3938.4			
9670	1934	3868	9729	1945.8	3891.6	9788	1957.6	3915.2	9847	1969.4	3938.8			

WCDMA II (1900) frequencies

TX CH	RX CH	TX	RX	VCO TX	VCO RX	TX CH	RX CH	TX	RX	VCO TX	VCO RX	TX CH	RX CH	TX	RX	VCO TX	VCO RX
9262	9662	1852.4	1932.4	3704.8	3864.8	9355	9755	1871.0	1951.0	3742.0	3902.0	9448	9848	1889.6	1969.6	3779.2	3939.2
12	412	1852.5	1932.5	3705.0	3865.0	9356	9756	1871.2	1951.2	3742.4	3902.4	9449	9849	1889.8	1969.8	3779.6	3939.6
9263	9663	1852.6	1932.6	3705.2	3865.2	9357	9757	1871.4	1951.4	3742.8	3902.8	9450	9850	1890.0	1970.0	3780.0	3940.0
9264	9664	1852.8	1932.8	3705.6	3865.6	9358	9758	1871.6	1951.6	3743.2	3903.2	9451	9851	1890.2	1970.2	3780.4	3940.4
9265	9665	1853.0	1933.0	3706.0	3866.0	9359	9759	1871.8	1951.8	3743.6	3903.6	9452	9852	1890.4	1970.4	3780.8	3940.8
9266	9666	1853.2	1933.2	3706.4	3866.4	9360	9760	1872.0	1952.0	3744.0	3904.0	9453	9853	1890.6	1970.6	3781.2	3941.2
9267	9667	1853.4	1933.4	3706.8	3866.8	9361	9761	1872.2	1952.2	3744.4	3904.4	9454	9854	1890.8	1970.8	3781.6	3941.6
9268	9668	1853.6	1933.6	3707.2	3867.2	9362	9762	1872.4	1952.4	3744.8	3904.8	9455	9855	1891.0	1971.0	3782.0	3942.0
9269	9669	1853.8	1933.8	3707.6	3867.6	9363	9763	1872.6	1952.6	3745.2	3905.2	9456	9856	1891.2	1971.2	3782.4	3942.4
9270	9670	1854.0	1934.0	3708.0	3868.0	9364	9764	1872.8	1952.8	3745.6	3905.6	9457	9857	1891.4	1971.4	3782.8	3942.8
9271	9671	1854.2	1934.2	3708.4	3868.4	9365	9765	1873.0	1953.0	3746.0	3906.0	9458	9858	1891.6	1971.6	3783.2	3943.2
9272	9672	1854.4	1934.4	3708.8	3868.8	9366	9766	1873.2	1953.2	3746.4	3906.4	9459	9859	1891.8	1971.8	3783.6	3943.6
9273	9673	1854.6	1934.6	3709.2	3869.2	9367	9767	1873.4	1953.4	3746.8	3906.8	9460	9860	1892.0	1972.0	3784.0	3944.0
9274	9674	1854.8	1934.8	3709.6	3869.6	9368	9768	1873.6	1953.6	3747.2	3907.2	9461	9861	1892.2	1972.2	3784.4	3944.4
9275	9675	1855.0	1935.0	3710.0	3870.0	9369	9769	1873.8	1953.8	3747.6	3907.6	9462	9862	1892.4	1972.4	3784.8	3944.8
9276	9676	1855.2	1935.2	3710.4	3870.4	9370	9770	1874.0	1954.0	3748.0	3908.0	9463	9863	1892.6	1972.6	3785.2	3945.2
9277	9677	1855.4	1935.4	3710.8	3870.8	9371	9771	1874.2	1954.2	3748.4	3908.4	9464	9864	1892.8	1972.8	3785.6	3945.6
9279	9679	1855.8	1935.8	3711.6	3871.6	9372	9772	1874.4	1954.4	3748.8	3908.8	9465	9865	1893.0	1973.0	3786.0	3946.0
9280	9680	1856.0	1936.0	3712.0	3872.0	9373	9773	1874.6	1954.6	3749.2	3909.2	9466	9866	1893.2	1973.2	3786.4	3946.4
9281	9681	1856.2	1936.2	3712.4	3872.4	9374	9774	1874.8	1954.8	3749.6	3909.6	9467	9867	1893.4	1973.4	3786.8	3946.8
9282	9682	1856.4	1936.4	3712.8	3872.8	9375	9775	1875.0	1955.0	3750.0	3910.0	9468	9868	1893.6	1973.6	3787.2	3947.2
9283	9683	1856.6	1936.6	3713.2	3873.2	9376	9776	1875.2	1955.2	3750.4	3910.4	9469	9869	1893.8	1973.8	3787.6	3947.6
9284	9684	1856.8	1936.8	3713.6	3873.6	9377	9777	1875.4	1955.4	3750.8	3910.8	9470	9870	1894.0	1974.0	3788.0	3948.0
9285	9685	1857.0	1937.0	3714.0	3874.0	9378	9778	1875.6	1955.6	3751.2	3911.2	9471	9871	1894.2	1974.2	3788.4	3948.4
9286	9686	1857.2	1937.2	3714.4	3874.4	9379	9779	1875.8	1955.8	3751.6	3911.6	9472	9872	1894.4	1974.4	3788.8	3948.8
9287	9687	1857.4	1937.4	3714.8	3874.8	9380	9780	1876.0	1956.0	3752.0	3912.0	9473	9873	1894.6	1974.6	3789.2	3949.2
37	437	1857.5	1937.5	3715.0	3875.0	9381	9781	1876.2	1956.2	3752.4	3912.4	9474	9874	1894.8	1974.8	3789.6	3949.6
9288	9688	1857.6	1937.6	3715.2	3875.2	9382	9782	1876.4	1956.4	3752.8	3912.8	9475	9875	1895.0	1975.0	3790.0	3950.0
9289	9689	1857.8	1937.8	3715.6	3875.6	9383	9783	1876.6	1956.6	3753.2	3913.2	9476	9876	1895.2	1975.2	3790.4	3950.4
9290	9690	1858.0	1938.0	3716.0	3876.0	9384	9784	1876.8	1956.8	3753.6	3913.6	9477	9877	1895.4	1975.4	3790.8	3950.8
9291	9691	1858.2	1938.2	3716.4	3876.4	9385	9785	1877.0	1957.0	3754.0	3914.0	9478	9878	1895.6	1975.6	3791.2	3951.2
9292	9692	1858.4	1938.4	3716.8	3876.8	9386	9786	1877.2	1957.2	3754.4	3914.4	9479	9879	1895.8	1975.8	3791.6	3951.6
9293	9693	1858.6	1938.6	3717.2	3877.2	9387	9787	1877.4	1957.4	3754.8	3914.8	9480	9880	1896.0	1976.0	3792.0	3952.0
9294	9694	1858.8	1938.8	3717.6	3877.6	9388	9788	1877.5	1957.5	3755.0	3915.0	9481	9881	1896.2	1976.2	3792.4	3952.4
9295	9695	1859.0	1939.0	3718.0	3878.0	9388	9788	1877.6	1957.6	3755.2	3915.2	9482	9882	1896.4	1976.4	3792.8	3952.8
9296	9696	1859.2	1939.2	3718.4	3878.4	9389	9789	1877.8	1957.8	3755.6	3915.6	9483	9883	1896.6	1976.6	3793.2	3953.2
9297	9697	1859.4	1939.4	3718.8	3878.8	9390	9790	1878.0	1958.0	3756.0	3916.0	9484	9884	1896.8	1976.8	3793.6	3953.6
9298	9698	1859.6	1939.6	3719.2	3879.2	9391	9791	1878.2	1958.2	3756.4	3916.4	9485	9885	1897.0	1977.0	3794.0	3954.0
9299	9699	1859.8	1939.8	3719.6	3879.6	9392	9792	1878.4	1958.4	3756.8	3916.8	9486	9886	1897.2	1977.2	3794.4	3954.4
9300	9700	1860.0	1940.0	3720.0	3880.0	9393	9793	1878.6	1958.6	3756.2	3917.2	9487	9887	1897.4	1977.4	3794.8	3954.8
9301	9701	1860.2	1940.2	3720.4	3880.4	9394	9794	1878.8	1958.8	3757.6	3917.6	9488	9888	1897.6	1977.6	3795.2	3955.0
9302	9702	1860.4	1940.4	3720.8	3880.8	9395	9795	1879.0	1959.0	3758.0	3918.0	9489	9889	1897.8	1977.8	3795.6	3955.6
9303	9703	1860.6	1940.6	3721.2	3881.2	9396	9796	1879.2	1959.2	3758.4	3918.4	9490	9890	1898.0	1978.0	3796.0	3956.0
9304	9704	1860.8	1940.8	3721.6	3881.6	9397	9797	1879.4	1959.4	3758.8	3919.8	9491	9891	1898.2	1978.2	3796.4	3956.8
9306	9706	1861.2	1941.2	3722.4	3882.4	9398	9799	1879.8	1959.8	3759.6	3919.6	9492	9892	1898.4	1978.4	3796.8	3956.8
9307	9707	1861.4	1941.4	3722.8	3882.8	9400	9800	1880.0	1960.0	3760.0	3920.0	9493	9893	1898.6	1978.6	3797.2	3957.2
9308	9708	1861.6	1941.6	3723.2	3883.2	9401	9801	1880.2	1962.0	3760.4	3920.4	9494	9894	1898.8	1978.8	3797.6	3957.6
9309	9709	1861.8	1941.8	3723.6	3883.6	9402	9802	1880.4	1964.0	3760.8	3920.8	9495	9895	1899.0	1979.0	3798.0	3958.0
9310	9710	1862.0	1942.0	3724.0	3884.0	9403	9803	1880.6	1966.0	3761.2	3921.2	9496	9896	1899.2	1979.2	3798.4	3958.4
9311	9711	1862.2	1942.2	3724.4	3884.4	9404	9804	1880.8	1968.0	3761.6	3921.6	9497	9897	1899.4	1979.4	3798.8	3958.8
9312	9712	1862.4	1942.4	3724.8	3884.8	9405	9805	1881.0	1961.0	3762.0	3922.0	9498	9898	1899.6	1979.6	3799.2	3959.2
62	462	1862.5	1942.5	3725.0	3885.0	9406	9806	1881.2	1961.2	3762.4	3922.4	9499	9899	1899.8	1979.8	3799.6	3959.6
9313	9713	1862.6	1942.6	3725.2	3885.2	9407	9807	1881.4	1961.4	3762.8	3922.8	9500	9900	1900.0	1980.0	3800.0	3960.0
9314	9714	1862.8	1942.8	3725.6	3885.6	9408	9808	1881.6	1961.6	3763.2	3923.2	9501	9901	1900.2	1980.2	3800.4	3960.4
9315	9715	1863.0	1943.0	3726.0	3886.0	9409	9809	1881.8	1961.8	3763.6	3923.6	9502	9902	1900.4	1980.4	3800.8	3960.8
9316	9716	1863.2	1943.2	3726.4	3886.4	9410	9810	1882.0	1962.0	3764.0	3924.0						

WCDMA IV (1700/2100) frequencies

TX CH	RX CH	TX (MHz)	RX (MHz)	TX VCO (MHz)	RX VCO (MHz)	TX CH	RX CH	TX (MHz)	RX (MHz)	TX VCO (MHz)	RX VCO (MHz)	TX CH	RX CH	TX (MHz)	RX (MHz)	TX VCO (MHz)	RX VCO (MHz)	TX CH	RX CH	TX (MHz)	RX (MHz)	TX VCO (MHz)	RX VCO (MHz)
1312	1537	1712.4	2112.4	3424.8	4224.8	1364	1589	1722.8	2122.8	3445.6	4245.6	1416	1641	1733.2	2133.2	3466.4	4266.4	1472	1697	1744.4	2144.4	3488.8	4288.8
1313	1538	1712.6	2112.6	3425.2	4225.2	1365	1590	1723.0	2123.0	3446.0	4246.0	1417	1642	1733.4	2133.4	3466.8	4266.8	1473	1698	1744.6	2144.6	3489.2	4289.2
1314	1539	1712.8	2112.8	3425.6	4225.6	1366	1591	1723.2	2123.2	3446.4	4246.4	1418	1643	1733.6	2133.6	3467.2	4267.2	1474	1699	1744.8	2144.8	3489.6	4289.6
1315	1540	1713.0	2113.0	3426.0	4226.0	1367	1592	1723.4	2123.4	3446.8	4246.8							1475	1700	1745.0	2145.0	3490.0	4290.0
1316	1541	1713.2	2113.2	3426.4	4226.4	1368	1593	1723.6	2123.6	3447.2	4247.2	1419	1644	1733.8	2133.8	3467.6	4267.6	1476	1701	1745.2	2145.2	3490.4	4290.4
1317	1542	1713.4	2113.4	3426.8	4226.8	1369	1594	1723.8	2123.8	3447.6	4247.6	1420	1645	1734.0	2134.0	3468.0	4268.0	1477	1702	1745.4	2145.4	3490.8	4290.8
1318	1543	1713.6	2113.6	3427.2	4227.2	1370	1595	1724.0	2124.0	3448.0	4248.0	1421	1646	1734.2	2134.2	3468.4	4268.4	1478	1703	1745.6	2145.6	3491.2	4291.2
1319	1544	1713.8	2113.8	3427.6	4227.6	1371	1596	1724.2	2124.2	3448.4	4248.4	1422	1647	1734.4	2134.4	3468.8	4268.8	1479	1704	1745.8	2145.8	3491.6	4291.6
1320	1545	1714.0	2114.0	3428.0	4228.0	1373	1598	1724.6	2124.6	3449.2	4249.2	1423	1648	1734.6	2134.6	3469.2	4269.2	1480	1705	1746.0	2146.0	3492.0	4292.0
1321	1546	1714.2	2114.2	3428.4	4228.4	1374	1599	1724.8	2124.8	3449.6	4249.6	1424	1649	1734.8	2134.8	3469.6	4269.6	1481	1706	1746.2	2146.2	3492.4	4292.4
1322	1547	1714.4	2114.4	3428.8	4228.8	1375	1600	1725.0	2125.0	3450.0	4250.0	1425	1650	1735.0	2135.0	3470.0	4270.0	1482	1707	1746.4	2146.4	3492.8	4292.8
1323	1548	1714.6	2114.6	3429.2	4229.2	1376	1601	1725.2	2125.2	3450.4	4250.4	1426	1651	1735.2	2135.2	3470.4	4270.4	1483	1708	1746.6	2146.6	3493.2	4293.2
1324	1549	1714.8	2114.8	3429.6	4229.6	1377	1602	1725.4	2125.4	3450.8	4250.8	1427	1652	1735.4	2135.4	3470.8	4270.8	1484	1709	1746.8	2146.8	3493.6	4293.6
1325	1550	1715.0	2115.0	3430.0	4230.0	1378	1603	1725.6	2125.6	3451.2	4251.2	1428	1653	1735.6	2135.6	3471.2	4271.2	1485	1710	1747.0	2147.0	3494.0	4294.0
1326	1551	1715.2	2115.2	3430.4	4230.4	1379	1604	1725.8	2125.8	3451.6	4251.6	1429	1654	1735.8	2135.8	3471.6	4271.6	1486	1711	1747.2	2147.2	3494.4	4294.4
1327	1552	1715.4	2115.4	3430.8	4230.8	1380	1605	1726.0	2126.0	3452.0	4252.0	1430	1655	1736.0	2136.0	3472.0	4272.0	1487	1712	1747.4	2147.4	3494.8	4294.8
1328	1553	1715.6	2115.6	3431.2	4231.2	1381	1606	1726.2	2126.2	3452.4	4252.4	1431	1656	1736.2	2136.2	3472.4	4272.4	1488	1713	1747.6	2147.6	3495.2	4295.2
1329	1554	1715.8	2115.8	3431.6	4231.6	1382	1607	1726.4	2126.4	3452.8	4252.8	1432	1657	1736.4	2136.4	3472.8	4272.8	1489	1714	1747.8	2147.8	3495.6	4295.6
1330	1555	1716.0	2116.0	3432.0	4232.0	1383	1608	1726.6	2126.6	3453.2	4253.2	1433	1658	1736.6	2136.6	3473.2	4273.2	1490	1715	1748.0	2148.0	3496.0	4296.0
1331	1556	1716.2	2116.2	3432.4	4232.4	1384	1609	1726.8	2126.8	3453.6	4253.6	1434	1659	1736.8	2136.8	3473.6	4273.6	1491	1716	1748.2	2148.2	3496.4	4296.4
1332	1557	1716.4	2116.4	3432.8	4232.8	1385	1610	1727.0	2127.0	3454.0	4254.0	1435	1660	1737.0	2137.0	3474.0	4274.0	1492	1717	1748.4	2148.4	3496.8	4296.8
1333	1558	1716.6	2116.6	3433.2	4233.2	1386	1611	1727.2	2127.2	3454.4	4254.4	1436	1661	1737.2	2137.2	3474.4	4274.4	1493	1718	1748.6	2148.6	3497.2	4297.2
1334	1559	1716.8	2116.8	3433.6	4233.6	1387	1612	1727.4	2127.4	3454.8	4254.8	1437	1662	1737.4	2137.4	3474.8	4274.8	1494	1719	1748.8	2148.8	3497.6	4297.6
1335	1560	1717.0	2117.0	3434.0	4234.0	1388	1613	1727.6	2127.6	3455.2	4255.2	1438	1663	1737.6	2137.6	3475.2	4275.2	1495	1720	1749.0	2149.0	3498.0	4298.0
1336	1561	1717.2	2117.2	3434.4	4234.4	1389	1614	1727.8	2127.8	3455.6	4255.6	1439	1664	1737.8	2137.8	3475.6	4275.6	1496	1721	1749.2	2149.2	3498.4	4298.4
1337	1562	1717.4	2117.4	3434.8	4234.8	1390	1615	1728.0	2128.0	3456.0	4256.0	1440	1665	1738.0	2138.0	3476.0	4276.0	1497	1722	1749.4	2149.4	3498.8	4298.8
1338	1563	1717.6	2117.6	3435.2	4235.2	1391	1616	1728.2	2128.2	3456.4	4256.4	1441	1666	1738.2	2138.2	3476.4	4276.4	1498	1723	1749.6	2149.6	3499.2	4299.2
1339	1564	1717.8	2117.8	3435.6	4235.6	1392	1617	1728.4	2128.4	3456.8	4256.8	1442	1667	1738.4	2138.4	3476.8	4276.8	1500	1725	1750.0	2150.0	3500.0	4300.0
1340	1565	1718.0	2118.0	3436.0	4236.0	1393	1618	1728.6	2128.6	3457.2	4257.2	1443	1668	1738.6	2138.6	3477.2	4277.2	1501	1726	1750.2	2150.2	3500.4	4300.4
1341	1566	1718.2	2118.2	3436.4	4236.4	1394	1619	1728.8	2128.8	3457.6	4257.6	1444	1669	1738.8	2138.8	3477.6	4277.6	1502	1727	1750.4	2150.4	3500.8	4300.8
1342	1567	1718.4	2118.4	3436.8	4236.8	1395	1620	1729.0	2129.0	3458.0	4258.0	1445	1670	1739.0	2139.0	3478.0	4278.0	1503	1728	1750.6	2150.6	3501.2	4301.2
1343	1568	1718.6	2118.6	3437.2	4237.2	1396	1621	1729.2	2129.2	3458.4	4258.4	1446	1671	1739.2	2139.2	3478.4	4278.4	1504	1729	1750.8	2150.8	3501.6	4301.6
1344	1569	1718.8	2118.8	3437.6	4237.6	1397	1622	1729.4	2129.4	3458.8	4258.8	1447	1672	1739.4	2139.4	3478.8	4278.8	1505	1730	1751.0	2151.0	3502.0	4302.0
1345	1570	1719.0	2119.0	3438.0	4238.0	1398	1623	1729.6	2129.6	3459.2	4259.2	1448	1673	1739.6	2139.6	3479.2	4279.2	1506	1731	1751.2	2151.2	3502.4	4302.4
1346	1571	1719.2	2119.2	3438.4	4238.4	1399	1624	1729.8	2129.8	3459.6	4259.6	1449	1674	1739.8	2139.8	3479.6	4279.6	1507	1732	1751.4	2151.4	3502.8	4302.8
1347	1572	1719.4	2119.4	3438.8	4238.8	1400	1625	1730.0	2130.0	3460.0	4260.0	1450	1675	1740.0	2140.0	3480.0	4280.0	1508	1733	1751.6	2151.6	3503.2	4303.2
1348	1573	1719.6	2119.6	3439.2	4239.2	1401	1626	1730.2	2130.2	3460.4	4260.4	1451	1676	1740.2	2140.2	3480.4	4280.4	1509	1734	1751.8	2151.8	3503.6	4303.6
1349	1574	1719.8	2119.8	3439.6	4239.6	1402	1627	1730.4	2130.4	3460.8	4260.8	1452	1677	1740.4	2140.4	3480.8	4280.8	1510	1735	1752.0	2152.0	3504.0	4304.0
1350	1575	1720.0	2120.0	3440.0	4240.0	1403	1628	1730.6	2130.6	3461.2	4261.2	1453	1678	1740.6	2140.6	3481.2	4281.2	1511	1736	1752.2	2152.2	3504.4	4304.4
1351	1576	1720.2	2120.2	3440.4	4240.4	1404	1629	1730.8	2130.8	3461.6	4261.6	1454	1679	1740.8	2140.8	3481.6	4281.6	1512	1737	1752.4	2152.4	3504.8	4304.8
1352	1577	1720.4	2120.4	3440.8	4240.8	1405	1630	1731.0	2131.0	3462.0	4262.0	1455	1680	1741.0	2141.0	3482.0	4282.0	1513	1738	1752.6	2152.6	3505.2	4305.2
1353	1578	1720.6	2120.6	3441.2	4241.2	1406	1631	1731.2	2131.2	346													

WCDMA V (850) frequencies

TX CH	RX CH	TX	RX	VCO TX	VCO RX
4132	4357	826.4	871.4	3305.6	3485.6
782	1007	826.5	871.5	3306.0	3486.0
4133	4358	826.6	871.6	3306.4	3486.4
4134	4359	826.8	871.8	3307.2	3487.2
4135	4360	827.0	872.0	3308.0	3488.0
4136	4361	827.2	872.2	3308.8	3488.8
4137	4362	827.4	872.4	3309.6	3489.6
787	1012	827.5	872.5	3310.0	3490.0
4138	4363	827.6	872.6	3310.4	3490.4
4139	4364	827.8	872.8	3311.2	3491.2
4140	4365	828.0	873.0	3312.0	3492.0
4141	4366	828.2	873.2	3312.8	3492.8
4142	4367	828.4	873.4	3313.6	3493.6
4143	4368	828.6	873.6	3314.4	3494.4
4144	4369	828.8	873.8	3315.2	3495.2
4145	4370	829.0	874.0	3316.0	3496.0
4146	4371	829.2	874.2	3316.8	3496.8
4147	4372	829.4	874.4	3317.6	3497.6
4148	4373	829.6	874.6	3318.4	3498.4
4149	4374	829.8	874.8	3319.2	3499.2
4150	4375	830.0	875.0	3320.0	3500.0
4151	4376	830.2	875.2	3320.8	3500.8
4152	4377	830.4	875.4	3321.6	3501.6
4153	4378	830.6	875.6	3322.4	3502.4
4154	4379	830.8	875.8	3323.2	3503.2
4155	4380	831.0	876.0	3324.0	3504.0
4156	4381	831.2	876.2	3324.8	3504.8
4157	4382	831.4	876.4	3325.6	3505.6
807	1032	831.5	876.5	3326.0	3506.0
4158	4383	831.6	876.6	3326.4	3506.4
4159	4384	831.8	876.8	3327.2	3507.2
4160	4385	832.0	877.0	3328.0	3508.0
4161	4386	832.2	877.2	3328.8	3508.8
4162	4387	832.4	877.4	3329.6	3509.6
812	1037	832.5	877.5	3330.0	3510.0
4163	4388	832.6	877.6	3330.4	3510.4
4164	4389	832.8	877.8	3331.2	3511.2
4165	4390	833.0	878.0	3332.0	3512.0
4166	4391	833.2	878.2	3332.8	3512.8
4167	4392	833.4	878.4	3333.6	3513.6
4168	4393	833.6	878.6	3334.4	3514.4
4169	4394	833.8	878.8	3335.2	3515.2
4170	4395	834.0	879.0	3336.0	3516.0
4171	4396	834.2	879.2	3336.8	3516.8
4172	4397	834.4	879.4	3337.6	3517.6
4173	4398	834.6	879.6	3338.4	3518.4
4174	4399	834.8	879.8	3339.2	3519.2
4175	4400	835.0	880.0	3340.0	3520.0
4176	4401	835.2	880.2	3340.8	3520.8
4177	4402	835.4	880.4	3341.6	3521.6
4178	4403	835.6	880.6	3342.4	3522.4
4179	4404	835.8	880.8	3343.2	3523.2
4180	4405	836.0	881.0	3344.0	3524.0
4181	4406	836.2	881.2	3344.8	3524.8

TX CH	RX CH	TX	RX	VCO TX	VCO RX
4182	4407	836.4	881.4	3345.6	3525.6
4183	4408	836.6	881.6	3346.4	3526.4
4184	4409	836.8	881.8	3347.2	3527.2
4185	4410	837.0	882.0	3348.0	3528.0
4186	4411	837.2	882.2	3348.8	3528.8
4187	4412	837.4	882.4	3349.6	3529.6
837	1062	837.5	882.5	3350.0	3530.0
4188	4413	837.6	882.6	3350.4	3530.4
4189	4414	837.8	882.8	3351.2	3531.2
4190	4415	838.0	883.0	3352.0	3532.0
4191	4416	838.2	883.2	3352.8	3532.8
4192	4417	838.4	883.4	3353.6	3533.6
4193	4418	838.6	883.6	3354.4	3534.4
4194	4419	838.8	883.8	3355.2	3535.2
4195	4420	839.0	884.0	3356.0	3536.0
4196	4421	839.2	884.2	3356.8	3536.8
4197	4422	839.4	884.4	3357.6	3537.6
4198	4423	839.6	884.6	3358.4	3538.4
4199	4424	839.8	884.8	3359.2	3539.2
4200	4425	840.0	885.0	3360.0	3540.0
4201	4426	840.2	885.2	3360.8	3540.8
4202	4427	840.4	885.4	3361.6	3541.6
4203	4428	840.6	885.6	3362.4	3542.4
4204	4429	840.8	885.8	3363.2	3543.2
4205	4430	841.0	886.0	3364.0	3544.0
4206	4431	841.2	886.2	3364.8	3544.8
4207	4432	841.4	886.4	3365.6	3545.6
4208	4433	841.6	886.6	3366.4	3546.4
4209	4434	841.8	886.8	3367.2	3547.2
4210	4435	842.0	887.0	3368.0	3548.0
4211	4436	842.2	887.2	3368.8	3548.8
4212	4437	842.4	887.4	3369.6	3549.6
862	1087	842.5	887.5	3370.0	3550.0
4213	4438	842.6	887.6	3370.4	3550.4
4214	4439	842.8	887.8	3371.2	3551.2
4215	4440	843.0	888.0	3372.0	3552.0
4216	4441	843.2	888.2	3372.8	3552.8
4217	4442	843.4	888.4	3373.6	3553.6
4218	4443	843.6	888.6	3374.4	3554.4
4219	4444	843.8	888.8	3375.2	3555.2
4220	4445	844.0	889.0	3376.0	3556.0
4221	4446	844.2	889.2	3376.8	3556.8
4222	4447	844.4	889.4	3377.6	3557.6
4223	4448	844.6	889.6	3378.4	3558.4
4224	4449	844.8	889.8	3379.2	3559.2
4225	4450	845.0	890.0	3380.0	3560.0
4226	4451	845.2	890.2	3380.8	3560.8
4227	4452	845.4	890.4	3381.6	3561.6
4228	4453	845.6	890.6	3382.4	3562.4
4229	4454	845.8	890.8	3383.2	3563.2
4230	4455	846.0	891.0	3384.0	3564.0
4231	4456	846.2	891.2	3384.8	3564.8
4232	4457	846.4	891.4	3385.6	3565.6
4233	4458	846.6	891.6	3386.4	3566.4

WCDMA VIII (900) frequencies

Uplink CH (TX)	Freq (MHz)	VCO (MHz)	Downlink CH (RX)	Freq (MHz)	VCO (MHz)
2712	882,4	3529,6	2937	927,4	3709,6
2713	882,6	3530,4	2938	927,6	3710,4
2714	882,8	3531,2	2939	927,8	3711,2
2715	883	3532	2940	928	3712
2716	883,2	3532,8	2941	928,2	3712,8
2717	883,4	3533,6	2942	928,4	3713,6
2718	883,6	3534,4	2943	928,6	3714,4
2719	883,8	3535,2	2944	928,8	3715,2
2720	884	3536	2945	929	3716
2721	884,2	3536,8	2946	929,2	3716,8
2722	884,4	3537,6	2947	929,4	3717,6
2723	884,6	3538,4	2948	929,6	3718,4
2724	884,8	3539,2	2949	929,8	3719,2
2725	885	3540	2950	930	3720
2726	885,2	3540,8	2951	930,2	3720,8
2727	885,4	3541,6	2952	930,4	3721,6
2728	885,6	3542,4	2953	930,6	3722,4
2729	885,8	3543,2	2954	930,8	3723,2
2730	886	3544	2955	931	3724
2731	886,2	3544,8	2956	931,2	3724,8
2732	886,4	3545,6	2957	931,4	3725,6
2733	886,6	3546,4	2958	931,6	3726,4
2734	886,8	3547,2	2959	931,8	3727,2
2735	887	3548	2960	932	3728
2736	887,2	3548,8	2961	932,2	3728,8
2737	887,4	3549,6	2962	932,4	3729,6
2738	887,6	3550,4	2963	932,6	3730,4
2739	887,8	3551,2	2964	932,8	3731,2
2740	888	3552	2965	933	3732
2741	888,2	3552,8	2966	933,2	3732,8
2742	888,4	3553,6	2967	933,4	3733,6
2743	888,6	3554,4	2968	933,6	3734,4
2744	888,8	3555,2	2969	933,8	3735,2

Uplink CH (TX)	Freq (MHz)	VCO (MHz)	Downlink CH (RX)	Freq (MHz)	VCO (MHz)
2745	889	3556	2970	934	3736
2746	889,2	3556,8	2971	934,2	3736,8
2747	889,4	3557,6	2972	934,4	3737,6
2748	889,6	3558,4	2973	934,6	3738,4
2749	889,8	3559,2	2974	934,8	3739,2
2750	890	3560	2975	935	3740
2751	890,2	3560,8	2976	935,2	3740,8
2752	890,4	3561,6	2977	935,4	3741,6
2753	890,6	3562,4	2978	935,6	3742,4
2754	890,8	3563,2	2979	935,8	3743,2
2755	891	3564	2980	936	3744
2756	891,2	3564,8	2981	936,2	3744,8
2757	891,4	3565,6	2982	936,4	3745,6
2758	891,6	3566,4	2983	936,6	3746,4
2759	891,8	3567,2	2984	936,8	3747,2
2760	892	3568	2985	937	3748
2761	892,2	3568,8	2986	937,2	3748,8
2762	892,4	3569,6	2987	937,4	3749,6
2763	892,6	3570,4	2988	937,6	3750,4
2764	892,8	3571,2	2989	937,8	3751,2
2765	893	3572	2990	938	3752
2766	893,2	3572,8	2991	938,2	3752,8
2767	893,4	3573,6	2992	938,4	3753,6
2768	893,6	3574,4	2993	938,6	3754,4
2769	893,8	3575,2	2994	938,8	3755,2
2770	894	3576	2995	939	3756
2771	894,2	3576,8	2996	939,2	3756,8
2772	894,4	3577,6	2997	939,4	3757,6
2773	894,6	3578,4	2998	939,6	3758,4
2774	894,8	3579,2	2999	939,8	3759,2
2775	895	3580	3000	940	3760
2776	895,2	3580,8	3001	940,2	3760,8
2777	895,4	3581,6	3002	940,4	3761,6
2778	895,6	3582,4	3003	940,6	3762,4
2779	895,8	3583,2	3004	940,8	3763,2

Uplink CH (TX)	Freq (MHz)	VCO (MHz)	Downlink CH (RX)	Freq (MHz)	VCO (MHz)
2780	896	3584	3005	941	3764
2781	896,2	3584,8	3006	941,2	3764,8
2782	896,4	3585,6	3007	941,4	3765,6
2783	896,6	3586,4	3008	941,6	3766,4
2784	896,8	3587,2	3009	941,8	3767,2
2785	897	3588	3010	942	3768
2786	897,2	3588,8	3011	942,2	3768,8
2787	897,4	3589,6	3012	942,4	3769,6
2788	897,6	3590,4	3013	942,6	3770,4
2789	897,8	3591,2	3014	942,8	3771,2
2790	898	3592	3015	943	3772
2791	898,2	3592,8	3016	943,2	3772,8
2792	898,4	3593,6	3017	943,4	3773,6
2793	898,6	3594,4	3018	943,6	3774,4
2794	898,8	3595,2	3019	943,8	3775,2
2795	899	3596	3020	944	3776
2796	899,2	3596,8	3021	944,2	3776,8
2797	899,4	3597,6	3022	944,4	3777,6
2798	899,6	3598,4	3023	944,6	3778,4
2799	899,8	3599,2	3024	944,8	3779,2
2800	900	3600	3025	945	3780
2801	900,2	3600,8	3026	945,2	3780,8
2802	900,4	3601,6	3027	945,4	3781,6
2803	900,6	3602,4	3028	945,6	3782,4
2804	900,8	3603,2	3029	945,8	3783,2
2805	901	3604	3030	946	3784
2806	901,2	3604,8	3031	946,2	3784,8
2807	901,4	3605,6	3032	946,4	3785,6
2808	901,6	3606,4	3033	946,6	3786,4
2809	901,8	3607,2	3034	946,8	3787,2
2810	902	3608	3035	947	3788
2811	902,2	3608,8	3036	947,2	3788,8
2812	902,4	3609,6	3037	947,4	3789,6
2813	902,6	3610,4	3038	947,6	3790,4
2814	902,8	3611,2	3039	947,8	3791,2

Uplink CH (TX)	Freq (MHz)	VCO (MHz)	Downlink CH (RX)	Freq (MHz)	VCO (MHz)
2815	903	3612	3040	948	3792
2816	903,2	3612,8	3041	948,2	3792,8
2817	903,4	3613,6	3042	948,4	3793,6
2818	903,6	3614,4	3043	948,6	3794,4
2819	903,8	3615,2	3044	948,8	3795,2
2820	904	3616	3045	949	3796
2821	904,2	3616,8	3046	949,2	3796,8
2822	904,4	3617,6	3047	949,4	3797,6
2823	904,6	3618,4	3048	949,6	3798,4
2824	904,8	3619,2	3049	949,8	3799,2
2825	905	3620	3050	950	3800
2826	905,2	3620,8	3051	950,2	3800,8
2827	905,4	3621,6	3052	950,4	3801,6
2828	905,6	3622,4	3053	950,6	3802,4
2829	905,8	3623,2	3054	950,8	3803,2
2830	906	3624	3055	951	3804
2831	906,2	3624,8	3056	951,2	3804,8
2832	906,4	3625,6	3057	951,4	3805,6
2833	906,6	3626,4	3058	951,6	3806,4
2834	906,8	3627,2	3059	951,8	3807,2
2835	907	3628	3060	952	3808
2836	907,2	3628,8	3061	952,2	3808,8
2837	907,4	3629,6	3062	952,4	3809,6
2838	907,6	3630,4	3063	952,6	3810,4
2839	907,8	3631,2	3064	952,8	3811,2
2840	908	3632	3065	953	3812
2841	908,2	3632,8	3066	953,2	3812,8
2842	908,4	3633,6	3067	953,4	3813,6
2843	908,6	3634,4	3068	953,6	3814,4
2844	908,8	3635,2	3069	953,8	3815,2
2845	909	3636	3070	954	3816
2846	909,2	3636,8	3071	954,2	3816,8
2847	909,4	3637,6	3072	954,4	3817,6
2848	909,6	3638,4	3073	954,6	3818,4
2849	909,8	3639,2	3074	954,8	3819,2

Uplink CH (TX)	Freq (MHz)	VCO (MHz)	Downlink CH (RX)	Freq (MHz)	VCO (MHz)
2850	910	3640	3075	955	3820
2851	910,2	3640,8	3076	955,2	3820,8
2852	910,4	3641,6	3077	955,4	3821,6
2853	910,6	3642,4	3078	955,6	3822,4
2854	910,8	3643,2	3079	955,8	3823,2
2855	911	3644	3080	956	3824
2856	911,2	3644,8	3081	956,2	3824,8
2857	911,4	3645,6	3082	956,4	3825,6
2858	911,6	3646,4	3083	956,6	3826,4
2859	911,8	3647,2	3084	956,8	3827,2
2860	912	3648	3085	957	3828
2861	912,2	3648,8	3086	957,2	3828,8
2862	912,4	3649,6	3087	957,4	3829,6
2863	912,6	3650,4	3088	957,6	3830,4

Nokia Customer Care

Glossary

(This page left intentionally blank.)

A/D-converter	Analogue-to-digital converter
ACI	Accessory Control Interface
ADC	Analogue-to-digital converter
ADSP	Application DPS (expected to run high level tasks)
AGC	Automatic gain control (maintains volume)
ALS	Ambient light sensor
AMSL	After Market Service Leader
ARM	Advanced RISC Machines
ARPU	Average revenue per user (per month or per year)
ASIC	Application Specific Integrated Circuit
ASIP	Application Specific Interface Protector
B2B	Board to board, connector between PWB and UI board
BA	Board Assembly
BB	Baseband
BC02	Bluetooth module made by CSR
BIQUAD	Bi-quadratic (type of filter function)
BSI	Battery Size Indicator
BT	Bluetooth
CBus	MCU controlled serial bus connected to UPP_WD2, UEME and Zocus
CCP	Compact Camera Port
CDMA	Code division multiple access
CDSP	Cellular DSP (expected to run at low levels)
CLDC	Connected limited device configuration
CMOS	Complimentary metal-oxide semiconductor circuit (low power consumption)
COF	Chip on Foil
COG	Chip on Glass
CPU	Central Processing Unit
CSD	Circuit-switched data
CSR	Cambridge silicon radio
CSTN	Colour Super Twisted Nematic
CTSI	Clock Timing Sleep and interrupt block of Tiku
CW	Continuous wave
D/A-converter	Digital-to-analogue converter
DAC	Digital-to-analogue converter
DBI	Digital Battery Interface
DBus	DSP controlled serial bus connected between UPP_WD2 and Helgo

DCT-4	Digital Core Technology
DMA	Direct memory access
DP	Data Package
DPLL	Digital Phase Locked Loop
DSP	Digital Signal Processor
DTM	Dual Transfer Mode
Dtos	Differential to Single ended
EDGE	Enhanced data rates for global/GSM evolution
EGSM	Extended GSM
EM	Energy management
EMC	Electromagnetic compatibility
EMI	Electromagnetic interference
ESD	Electrostatic discharge
FCI	Functional cover interface
FM	Frequency Modulation
FPS	Flash Programming Tool
FR	Full rate
FSTN	Film compensated super twisted nematic
GMSK	Gaussian Minimum Shift Keying
GND	Ground, conductive mass
GPIB	General-purpose interface bus
GPRS	General Packet Radio Service
GSM	Group Special Mobile/Global System for Mobile communication
HSDPA	High-speed downlink packet access
HF	Hands free
HFCM	Handsfree Common
HS	Handset
HSCSD	High speed circuit switched data (data transmission connection faster than GSM)
HW	Hardware
I/O	Input/Output
IBAT	Battery current
IC	Integrated circuit
ICHAR	Charger current
IF	Interface
IHF	Integrated hands free
IMEI	International Mobile Equipment Identity

IR	Infrared
IrDA	Infrared Data Association
ISA	Intelligent software architecture
JPEG/JPG	Joint Photographic Experts Group
LCD	Liquid Crystal Display
LDO	Low Drop Out
LED	Light-emitting diode
LPRF	Low Power Radio Frequency
MCU	Micro Controller Unit (microprocessor)
MCU	Multiport control unit
MIC, mic	Microphone
MIDP	Mobile Information Device Profile
MIN	Mobile identification number
MIPS	Million instructions per second
MMC	Multimedia card
MMS	Multimedia messaging service
MP3	Compressed audio file format developed by Moving Picture Experts Group
MTP	Multipoint-to-point connection
NFC	Near field communication
NTC	Negative temperature coefficient, temperature sensitive resistor used as a temperature sensor
OMA	Object management architecture
OMAP	Operations, maintenance, and administration part
Opamp	Operational Amplifier
PA	Power amplifier
PCM	Pulse Code Modulation
PDA	Pocket Data Application
PDA	Personal digital assistant
PDRAM	Program/Data RAM (on chip in Tiku)
Phoenix	Software tool of DCT4.x and BB5
PIM	Personal Information Management
PLL	Phase locked loop
PM	(Phone) Permanent memory
PUP	General Purpose IO (PIO), USARTS and Pulse Width Modulators
PURX	Power-up reset
PWB	Printed Wiring Board

PWM	Pulse width modulation
RC-filter	Resistance-Capacitance filter
RDS	Radio Data Service
RF	Radio Frequency
RF PopPort™	Reduced function PopPort™ interface
RFBUS	Serial control Bus For RF
RSK	Right Soft Key
RS-MMC	Reduced size Multimedia Card
RSS	Web content Syndication Format
RSSI	Receiving signal strength indicator
RST	Reset Switch
RTC	Real Time Clock (provides date and time)
RX	Radio Receiver
SARAM	Single Access RAM
SAW filter	Surface Acoustic Wave filter
SDRAM	Synchronous Dynamic Random Access Memory
SID	Security ID
SIM	Subscriber Identity Module
SMPS	Switched Mode Power Supply
SNR	Signal-to-noise ratio
SPR	Standard Product requirements
SRAM	Static random access memory
STI	Serial Trace Interface
SW	Software
SWIM	Subscriber/Wallet Identification Module
TCP/IP	Transmission control protocol/Internet protocol
TCXO	Temperature controlled Oscillator
Tiku	Finnish for Chip, Successor of the UPP
TX	Radio Transmitter
UART	Universal asynchronous receiver/transmitter
UEME	Universal Energy Management chip (Enhanced version)
UEMEK	See UEME
UI	User Interface
UPnP	Universal Plug and Play
UPP	Universal Phone Processor
UPP_WD2	Communicator version of DCT4 system ASIC

USB	Universal Serial Bus
VBAT	Battery voltage
VCHAR	Charger voltage
VCO	Voltage controlled oscillator
VCTCXO	Voltage Controlled Temperature Compensated Crystal Oscillator
VCXO	Voltage Controlled Crystal Oscillator
VF	View Finder
V _{p-p}	Peak-to-peak voltage
VSIM	SIM voltage
WAP	Wireless application protocol
WCDMA	Wideband code division multiple access
WD	Watchdog
WLAN	Wireless local area network
XHTML	Extensible hypertext markup language
Zocus	Current sensor (used to monitor the current flow to and from the battery)

(This page left intentionally blank.)

www.s-manuals.com