
PALISADE Lattice Cryptography Library
User Manual (v1.5.0)

Yuriy Polyakov1, Kurt Rohloff1, and Gerard W. Ryan1

1Cybersecurity Research Center, New Jersey Institute of
Technology (NJIT), Newark, NJ, 07102, USA.

{polyakov,rohloff,gwryan}@njit.edu

March 21, 2019

Abstract

This document is the manual for the PALISADE lattice cryptography
library. This manual provides an introduction to the library by describ-
ing the library architecture and cataloging its capabilities. We focus on
the PALISADE library’s ability to support public-key homomorphic en-
cryption capabilities to evaluate arithmetic operations on data while en-
crypted. We do not explicitly provide an introduction to lattice cryptog-
raphy, but we provide an overview of notation and terminology necessary
to use the PALISADE library. In addition to providing code samples for
the use of the PALISADE library, we also discuss the library program-
ming style for developers who wish to read library code or even add to
the library. We also provide an overview of common pitfalls in the use of
PALISADE.

1

Contents

1 Document Overview 5

2 Introduction 6

3 A Brief Overview of Lattice Cryptography 8

4 Library Architecture 10
4.1 Application Layer . 11
4.2 Encoding Layer . 11
4.3 Crypto Layer . 11
4.4 Lattice Operations Layer . 11
4.5 Primitive Math Layer . 12
4.6 Utilities . 12

5 Capabilities 13

6 PALISADE Directory Structure 17

7 Terminology and Notation 18
7.1 Typing . 18
7.2 CryptoContext . 19
7.3 ABEContext . 20
7.4 SignatureContext . 20
7.5 Plaintext . 21
7.6 Ciphertext . 22
7.7 Access Policy . 22
7.8 Signature . 22
7.9 Keys . 22
7.10 Capability . 23
7.11 Scheme . 23
7.12 Element . 24

7.12.1 Poly . 24
7.12.2 NativePoly . 24
7.12.3 DCRTPoly . 24

7.13 ElementParams . 24
7.14 EncodingParams . 24
7.15 Matrix . 24

8 Sample Implementations 26
8.1 PKE . 26

8.1.1 Creating a CryptoContext 26
8.1.2 Creating A Plaintext . 32
8.1.3 Encryption . 35
8.1.4 Decryption . 36

2

8.1.5 Re-Encryption . 36
8.1.6 Serialization and Deserialization 38
8.1.7 Homomorphic Addition of Ciphertexts 40
8.1.8 Homomorphic Multiplication of Ciphertexts 42

8.2 ABE . 44
8.2.1 Creating an ABEContext 44
8.2.2 Generating Master Keys 44
8.2.3 Creating Access Policies 45
8.2.4 Key Generation . 45
8.2.5 Encryption . 47
8.2.6 Decryption . 47

8.3 Signature . 48
8.3.1 Creating a SignatureContext 48
8.3.2 Key Generation . 48
8.3.3 Signing . 49
8.3.4 Verification . 50

8.4 Matrix Operations . 50

9 Building and Installing PALISADE 51

10 Programming Style 53

Appendix A PALISADE License 54

Appendix B Contributors 55

Appendix C Support 56

Listings

1 Values in Plaintext . 22
2 Creating a CryptoContext with parameters 27
3 Creating a CryptoContext with parameter generation 29
4 Creating a preconfigured CryptoContext 29
5 Creating a CryptoContext using standard paranerers 31
6 Creating a CryptoContext from a serialization 32
7 Creating a Scalar Plaintext . 33
8 Creating an Integer Plaintext . 33
9 Creating a Fractional Plaintext 33
10 Creating a CoefPackedEncoding Plaintext 34
11 Creating a PackedEncoding Plaintext 34
12 Creating a String Plaintext . 35
13 Encrypting . 35
14 Decrypting . 36
15 Re-Encrypting . 37
16 Serializing and Deserializing a CryptoContext 39

3

17 Serializing and Deserializing Keys 39
18 Adding Ciphertexts . 41
19 Multiplying Ciphertexts . 43
20 Creating a ABEContext with Security Level 44
21 Creating a ABEContext with Parameters 44
22 Generating Master Public Key Pair with ABEContext 45
23 Creating a User Identifier with GPV IBE ABEContext 45
24 Creating a User Attribute Set/Access Policy with CP-ABE ABECon-

text . 45
25 Generating a Secret Key with ABEContext 46
26 Generating a Secret Key with ABEContext (Offline Phase - Per-

turbation Generation) . 46
27 Generating a Secret Key with ABEContext (Online Phase - Key

Generation) . 46
28 Encryption with CP-ABE ABEContext 47
29 Decryption with CP-ABE ABEContext 47
30 Decryption with GPV IBE ABEContext 48
31 Creating a SignatureContext with Parameters 48
32 Key Generation with SignatureContext 48
33 Signing with SignatureContext 49
34 Signing with SignatureContext (Offline Phase - Perturbation Gen-

eration) . 49
35 Signing with SignatureContext (Online Phase - Signing) 50
36 Verification with SignatureContext 50
37 Calculating Linear Regression . 51

4

1 Document Overview

This manuscript is a working document to introduce users to the PALISADE
lattice cryptography library. The most recent copy of this document is avail-
able for download from the PALISADE library website. This document will
be updated as the public version of the PALISADE library repo is updated.
Copies of this document may be available for download from PALISADE con-
tributors’ websites, but the version available for download on the PALISADE
library website should be considered authoritative.

The manual is organized as follows.

• An introduction to the library is provided in Section 2.

• Section 3 provides a basic introduction to lattice cryptography.

• The library architecture is discussed in Section 4.

• The library capabilities are discussed in Section 5.

• Section 6 provides an overview of the PALISADE library directory struc-
ture.

• Section 7 provides an overview of notation and terminology used in the
library and this manual.

• This document is intended to be driven by code samples which show the
library being used for specific needs.

• Section 8 provides these code samples, with a focus on homomorphic en-
cryption applications.

• Section 9 describes how the library can be built in a generic Linux envi-
ronment.

• Section 10 describes the programming style we maintain in the library for
those users who wish to contribute code to the library.

In addition to the primary manual content discussed above, we provide the
following appendices.

• Appendix A reproduces the library’s BSD 2-clause license.

• Contributors to the PALISADE library are listed in Appendix B.

• The PALISADE library has been made possible by the generous support
of our sponsors. A listing of the PALISADE library sponsors can been
seen in Appendix C.

The public version of the PALISADE Lattice Cryptography library can be
found on The PALISADE Git Repo.

The listed authors of this document are the current primary maintainers of
the PALISADE library repo.

5

https://git.njit.edu/palisade/PALISADE

2 Introduction

Lattice cryptography has received considerable attention because of its capa-
bility to support both post-quantum public-key encryption and the ability to
compute on data while encrypted via homomorphic encryption. Lattice cryptog-
raphy also provides other powerful capabilities such as proxy re-encryption and
attribute-based encryption. The PALISADE library provides implementations
of the building blocks for lattice cryptography capabilities along with end-to-
end implementations of advanced lattice cryptography protocols for public-key
encryption, proxy re-encryption, homomorphic encryption and others. PAL-
ISADE provides both an experimental platform for researchers to design and
evaluate new lattice cryptography capabilities, while at the same time providing
implementations of known protocols that can be integrated into applications.
In this manual we describe PALISADE and discuss how it can be used.

The PALISADE library is designed to address the following inherent chal-
lenges of lattice cryptography implementation:

• The complexity of algebraic constructions makes it hard for non-experts to
leverage, let alone implement, algebraic constructions used as the building
blocks of lattice cryptography.

• Lattice cryptography implementations are often purpose-built. Rapid de-
ployment on new hardware systems is difficult to support with these ex-
isting implementations.

• Parameter selection for security and performance takes very sophisticated
understanding, and this is nontrivial even for experts - up to a dozen
parameters may be needed to be set for some schemes.

• Security assumptions are evolving, and it has been difficult to adapt
prior implementations. See for example the recent subfield lattice attacks
against LTV which required re-design of libraries that previously used this
scheme.

• Application integration has been challenging, without easy methods to
efficiently perform operations on non-trivial data types, such as rationals,
complex numbers, etc.

As a result of these identified challenges, we design PALISADE to achieve
the following design goals:

• Create an extendible and adaptable library for lattice cryptography. Lattice
crypto uses few computational primitives. We allow for new protocols
that mix-and-match these primitives to avoid the need for expert low-
level knowledge. This has been a major advance in the PALISADE library,
and we are still refining these features of PALISADE as we support more
capabilities.

6

• Provide a modular structure to mix and match components. This allows
for system-optimized arithmetic and lattice “backends”/plugins. We cur-
rently support multiple math backends which can be selected at compile
time. The PALISADE library is thus designed to be highly portable into
commodity computing and hardware environments, including Windows,
Linux, MacOS and Android environments. The ability to support multiple
hardware accelerators is a work in progress in PALISADE.

• Offer (semi-)automated parameter selection. This reduces the need to tune
an overwhelming number of parameters. This is still a major research topic
and is a work in progress in PALISADE.

• Develop common crypto APIs. Common crypto APIs across multiple
schemes and backends “hide” complex details of lattice constructions /
parameterization from application developers, allowing developers to fo-
cus on their areas of interest while integrating and replacing components
to maintain security and performance. This is another major feature of
PALISADE that we continue to refine.

• Deliver good software engineering with focus on usability. This permits
standards-based design and style. Unit tests and benchmarking environ-
ments are supported for evaluation and tuning of integrated applications.
We aim to provide documentation, clean code and code samples that re-
duce effort for new developers.

Our identification of these goals in PALISADE is informed by industry ex-
perience integrating PALISADE into multi-organizational large software engi-
neering projects. As a result of these identified challenges and the resulting
engineering goals we set for ourselves in the design of PALISADE, we design
PALISADE to be highly modular, with a core library of lattice cryptography
primitives that support multiple protocols for public-key encryption, homomor-
phic encryption, digital signature schemes, proxy re-encryption and program
obfuscation.

7

3 A Brief Overview of Lattice Cryptography

At a high intuitive level, encryption is a computational process wherein Data
is Encoded as Plaintext and then encrypted into Ciphertext according to
some Encryption algorithm. Conversely, decryption is a corresponding compu-
tational process wherein the Plaintext can be recovered from the Ciphertext
through the use of a correspoding Decryption algorithm.

These algorithms use cryptographic Keys to perform the Encryption and
Decryption operations. Intuitively, an encryption scheme is secure if it pre-
vents an adversary from recovering Plaintext (or information about a Plain-
text) from Ciphertext when the adversary does not have the corresponding
decryption key.

A “symmetric key” protocol uses the same key to perform both encryption
and decryption. A “public key” or “assymmetric” protocol uses a pair of Public
and Secret keys, respectively, for encryption and decryption. A Secret key is
sometimes called a Private key.

In practice symmetric keys and secret keys are kept secret because they can
be used to access protected information. Public keys are often widely distributed
and often published on the open Internet. The intended use of a public key
is that one can encrypt data with a downloaded public key corresponding to
an intended recipient, encrypt sensitive information for the recipient with the
public key, and send that encrypted sensitive information to the recipient. The
recipient can use her secret key to decrypt and recover the protected information
encoded in the plaintext.

Cryptographic algorithms are designed around computational hardness as-
sumptions so that the difficulty of recovering information about plaintext is
at least as hard as some computationally hard problem. Thus, it is theoret-
ically possible to break such a system, but it is assumed infeasible to do so
by any known practical means. Different computationally hard problems de-
fine different classes of encryption systems. PALISADE focuses on lattice-based
cryptography. The security of lattice cryptography is based on the hardness of
variants of the Shortest Vector Problem (SVP), Learning With Errors (LWE),
and other hard problems. Lattice cryptography has both symmetric and pub-
lic key variants, but we generally focus on the public key lattice cryptography
variants in this manual and in the PALISADE library.

Homomorphic Encryption (HE) or Fully Homomorphic Encryption (FHE)
refer to a class of encryption methods envisioned by Rivest, Adleman, and Der-
touzos in 1978. Homomorphic encryption differs from basic encryption methods
in that it allows computation to be performed directly on encrypted data with-
out requiring access to a secret key. The result of such a computation remains
in an encrypted form, and can at a later point be revealed by the owner of the
secret key by decrypting the result.

In 2009 Craig Gentry showed the existence of lattice-based FHE capabil-
ities. Since this initial discovery of a lattice-based FHE protocol, there has
been a Renaissance in lattice cryptography, with the discovery of several other

8

increasingly practical homomorphic encryption schemes and variations of ho-
momorphic encryption protocols. Some of the common homomorphic encryp-
tion schemes include the Brakerski-Fan-Vercauteren (BFV)1, Brakerski-Gentry-
Vaikuntanathan (BGV), Lopez-Alt–Tramer–Vaikuntanathan (LTV) 2 and Stehle-
Steinfeld (StSt) schemes. Other related protocols include:

• Proxy Re-Encryption (PRE), which permits delegation of ciphertext de-
cryption, thus allowing a host to delegate access to encrypted data.

• Somewhat Homomomorphic Encryption (SHE), which permits a limited
amount of computation on encrypted data.

• Leveled Somewhat Homomorphic Encryption (Leveled SHE), which per-
mits at least a fixed depth of computation to be performed on encrypted
data by using a decreasing ladder of ciphertext moduli.

• Multiparty Homomorphic Encryption, which enables multiple participants
to contribute data to a joint computation, without sharing access to the
actual data.

The public version of PALISADE supports all of the protocols discussed
above, and we are in the process of adding support for more protocols and
schemes. From v1.4 and onwards, PALISADE also supports a selection of
trapdoor-based schemes: a Gentry-Peikert-Vaikuntanathan (GPV) digital sig-
nature scheme, a GPV identity-based encryption (IBE) scheme, and a Zhang-
Zhang ciphertext-policy attribute-based encryption (CP-ABE) scheme.

An inherent property of encrypted computing technologies, including the
various protocols supported by PALISADE, is that computing on encrypted data
is significantly slower and more compute intensive than computing on plaintext
data. As such, debugging the applications of encrypted computing technologies
can be a frustrating, slow process. To aid developers in integrating PALISADE
implementations of encrypted computing technoligies, we also provide in PAL-
ISADE a “Null” scheme which supports the same API as the BFV, BGV, LTV
and StSt implementations, but which does not encrypt data and performs all
operations on unencrypted plaintext. The Null scheme implementation operates
as a light-duty no-security equivalent of the encrypted computing protocols sup-
ported by PALISADE. Thus, we provide the Null scheme so developers can test
their PALISADE integrations more easily without the overhead or frustration
of testing operations with slower more compute-intensive workloads engendered
by encrypted computing capabilities.

1This scheme is also frequently denoted as the FV scheme, but we choose to call it the
BFV scheme.

2Note that we include LTV in PALISADE for historical purposes. This scheme is no longer
considered fully secure. We developed an initial implementation of this scheme before the later
discovery of subfield lattice attacks.

9

4 Library Architecture

The PALISADE library implements lattice cryptography in C++. The objects
that are created by and manipulated within PALISADE are instances of C++
classes.

PALISADE is designed as a layered architecture where each layer provides
a set of services to the layer “above” it in the stack, and makes use of services
in the layer “below” it in the stack. The interfaces between each of the layers
are designed to implement a common API. This permits substituting multiple
implementations at any layer for experimental purposes.

The high-level architecture of PALISADE is illustrated in Figure 1.

Figure 1: High-level PALISADE architecture

The layers in PALISADE are as follows:

1. Application: All programs that call the PALISADE library services are
in this layer.

2. Encoding: All implementations of methods to encode data are at this
layer.

3. Crypto: All implementation of cryptographic protocols are at this layer.

4. Lattice Operations: All higher-level lattice-crypto mathematical build-
ing blocks are in this layer.

5. Primitive Math: All low-level generic mathematical operations, such as
multi-precision arithmetic implementations, are at this layer.

10

4.1 Application Layer
All programs that make use of the PALISADE library are said to be in the
Application layer.

All programs at the Application layer make calls to services exposed in the
PALISADE Crypto layer to gain access to PALISADE lattice cryptography
functionality. The Application layer also makes use of service at the Encoding
layer.

4.2 Encoding Layer
The Encoding layer contains all classes needed to provide for the encoding of
any supported raw plaintext message data into a Plaintext object, and for
decoding back to raw plaintext messages whenever necessary.

The Encoding layer is used to create Plaintext objects. These objects
are sometimes created at the request of the Application layer, in which case
Crypto layer methods act as a proxy for the Application layer, sometimes at
the request of the Crypto layer itself. The interface for Encoding functionality
is C++ methods provided by Plaintext.

4.3 Crypto Layer
The Crypto layer contains all classes needed to provide all available lattice cryp-
tography functionality for specific cryptographic protocols such as public-key
encryption, PRE and SHE schemes, and all included methods such as encryp-
tion and decryption, proxy re-encryption and container classes for parameters
specific to those schemes.

The interface for Crypto functionality is C++ methods provided by Cryp-
toContext. Therefore the Crypto layer provides various factory methods for
creating a CryptoContext along with the context itself. The Crypto layer ma-
nipulates Plaintext and Ciphertext objects that are passed to it by the Ap-
plication layer, and returns the appropriate Plaintext and Ciphertext objects
to the Application. Operations on a Matrix of such objects is also provided.

Similar to CryptoContext, library also provides SignatureContext and
ABEContext for the digital signature and GPV IBE/CP-ABE operations, re-
spectively. However, unlike CryptoContext these contextes have their own
implementation of ciphertexts. SignatureContext also uses its own imple-
mentation of plaintexts. The Crypto layer makes use of services provided by
the Lattice Operations layer.

4.4 Lattice Operations Layer
The Lattice Operations layer provides support for all lattice constructs, includ-
ing power-of-two cyclotomic rings and arbitrary cyclotomic rings. The Double
Chinese Remainder Theorem (Double-CRT) representation of cyclotomic rings
is also implemented in the Lattice layer.

11

With the release of version 1.4.0, the lattice layer also hosts trapdoors and
trapdoor sampling. Trapdoors are lattice constructs consisting of two vectors of
polynomials. These structures are key parts of the newly added digital signa-
ture, identity-based encryption and ciphertext-policy attribute-based encryption
schemes. These algorithms require a preimage of the information to be sam-
pled from a discrete Gaussian over a lattice, which is done using the trapdoor
sampling algorithms.

The Lattice layer is used to provide an implementation of the various Poly
classes, including Poly, NativePoly, and DCRTPoly. These objects are used
as building blocks in Plaintext and Ciphertext. The interface for Lattice
functionality is the C++ methods provided by the Poly classes.

The Lattice layer performs lattice operations by decomposing operations into
primitive arithmetic operations on integers, vectors, and matrices. The Lattice
layer makes use of the Primitive Math layer to perform these operations.

4.5 Primitive Math Layer
The Primitive Math layer provides support for basic modular arithmetic opera-
tions, including multi-precision arithmetic. This layer also includes efficient al-
gorithms for Number-Theoretic Transform (NTT), Fermat-Theoretic Transform
(FTT), and discrete Gaussian samplers, among others. The interface for Math
functionality is the C++ methods provided by both custom multi-precision li-
braries, and external imported libraries such as NTL.

4.6 Utilities
PALISADE also provides a cross-cutting Utilities module for common utility
functions used by all the layers. The primary use of this layer is for serialization
and deserialization of objects, and for creation of exceptions.

12

5 Capabilities

One of the goals of PALISADE is to provide straightforward mechanisms to
select 1) an encryption protocol, 2) an encryption scheme to support that pro-
tocol, 3) encoding mechanisms to represent data with that scheme, 4) a math
back-end to support computational operations over that data for the scheme and
5) configuration parameters for that protocol, encoding mecahnisms and math
back-end. PALISADE provides a broad set of selections for each of these choices,
and provides the user with the ability to add their own schemes, encodings, op-
erations, etc. Furthermore, the user of PALISADE can select from multiple
lattice layer implementations and math layer implementations, can easily mix-
and-match, and can even provide their own implementations at different layers.
In this section we describe these choices we make available in PALISADE.

At the highest level, the PALISADE library groups encryption protocols
into a set of capabilities that can be selectively enabled by the user at run time.
Table 1 shows which functions are supported by which capabilities. Enabling a
particular capability turns on several functions in support that capability. Some
capabilities implies other capabilities, such as how SHE for example implies
PKE capabilities. Thus, in these scenarioes, some capabilities are turned “on”
automatically.

Capabilities currently supported PALISADE are listed in Table 1.

13

Table 1: PALISADE Capabilities and Functions
Capability Description Functions Supported Also Enabled

ENCRYPTION Public-Key Encryption
KeyGen
Encrypt
Decrypt

PRE Proxy Re-Encryption ReKeyGen
ReEncrypt PKE

SHE Somewhat Homomorphic Encryption

EvalAdd
EvalMult
EvalSub

EvalNegate
EvalAutomorphism

EvalAtIndex
EvalMerge

EvalMultMany
EvalSum

EvalInnerProduct
EvalLinRegression

EvalLinRegressBatched
EvalCrossCorrelation

EvalRightShift

KeySwitch
KeySwitchGen

EvalMultKeyGen
EvalAutomorphismKeyGen

EvalAtIndexKeyGen
EvalSumKeyGen

PKE

LeveledSHE Leveled SHE with Modulus Switching

ModReduce
RingReduce
LevelReduce

ComposedEvalMult

PKE
SHE

Multiparty Multiparty Capabilities MultipartyKeyGen
MultiPartyDecrypt PKE

CP-ABE Ciphertext-Policy Attribute-Based Encryption

Setup
KeyGen

KeyGenOfflinePhase
KeyGenOnlinePhase

Encrypt
Decrypt

GPV Signature Digital Signature

KeyGen
Sign

SignOfflinePhase
SignOnlinePhase

Verify

GPV IBE Identity-Based Encryption

Setup
KeyGen

KeyGenOfflinePhase
KeyGenOnlinePhase

Encrypt
Decrypt

Once an encryption protocol is selected, a user of PALISADE can select
from one of multiple schemes, each of which supports some or all of the above
protocols

• BFV variants

– BFV: “textbook“ Fan-Vercauteren variant of Brakerski’s scale invari-
ant scheme [2, 5, 9]

– BFVrns: Halevi-Polyakov-Shoup RNS variant of the BFV scheme [8]

14

– BFVrnsB: Bajard-Eynard-Hasan-Zucca RNS variant of the BFV scheme [1]

• BGV: Brakerski-Gentry-Vaikuntanathan scheme [3, 6]

• LTV: Lopez-Alt–Tromer–Vaikuntanathan scheme [10]

• StSt: Stehele-Steinfeld scheme [11]

• Null

Table 2 maps which schemes support which capabilities.
In addition to the homomorphic encryption schemes, PALISADE supports

the following trapdoor based schemes

• GPV Signature: Gentry-Peikert-Vaikuntanathan Digital Signature Scheme [7]

• GPV IBE: Gentry-Peikert-Vaikuntanathan Identity-based Encryption Scheme [7]

• CP-ABE: Zhang-Zhang Ciphertext-policy Attribute-based Encryption Scheme [12]

Table 2: PALISADE Implemented Capabilities Matrix
Function/Scheme LTV StSt BGV BFV* Null
ENCRYPTION Y Y Y Y Y
PRE Y Up to 2 Hops Y Y Y
SHE Y Y Y Y Y
LeveledSHE Y Y Y
Multiparty Y Y Y Y Y

After the selection of the scheme, a user can then select how to represent
polynomials, among the following polynomial types:

• Poly, which corresponds to representing polynomial coefficients in a mul-
tiprecision integer format.

• DCRTPoly, which corresponds to representing polynomial coefficients
in a Residue Number System (RNS), a.k.a. Chinese Remainder Theorem
(CRT), format using single-precision integers.

• NativePoly, which corresponds to representing polynomial coefficents in
a single-precision format (only works up to the word size of 64 bits).

We generally recommend using theDCRTPoly representation of polynomi-
als for performance on commodity computing environments, although we include
the multiprecision polynomial representation Poly for advanced users and im-
plementers of new schemes who which to initially implement using the simpler
Poly representation.

Similar to the polynomial representations, PALISADE also supports multiple
math back-ends. The current implementation of PALISADE selects the math
back end at compile time. Supported multi-precision math backends include:

15

• Multi-precision with fixed sizing (BACKEND 2) supporting bit widths up
to 1,500 by default (this value can be changed)

• Multi-precision with variable sizing (BACKEND 4)

• NTL (BACKEND 6)

Native data types are always available, and we require that native 64-bit oper-
ations be supported in order to use PALISADE.

16

6 PALISADE Directory Structure

The directory structure of the PALISADE source code is shown in Table 3

Table 3: PALISADE Library File Structure
Directory Description
benchmark Code for benchmarking PALISADE library components.
bin Executables built by the make process.
doc Documentation of library components, including doxygen.
google Google unit test library components.
src Library source code.
test Google unit test code.
third-party Code provided by an external third party.

Within the PALISADE library: the src/core/lib directory contains subdi-
rectories for the Math, Lattice, Encoding and Utils layers; and the src/pke/lib,
src/abe/lib and src/signature/lib directories contain the Crypto layer source
code for PKE, ABE and signatures, respectively.

All of the src/core, src/pke. src/abe and src/signature contain a subdirectory
for unit tests as well as a subdirectory for demo applications that exercise the
capabilities of PALISADE.

17

7 Terminology and Notation

In this section we provide a glossary of terminology that we use in PALISADE.
PALISADE provides a framework for using lattice cryptography.
If a Scheme supports the ENCRYPTION Capability, encrypt and decrypt

methods are available for use. The encrypt and decrypt methods are provided as
part of the implementation of the ENCRYPTION Capability in the Scheme
being used. A Plaintext can be encrypted into a Ciphertext through the use
of an encrypt method. A Ciphertext can be used to generate a Plaintext
through the use of a decrypt method. The library supports several formats of
Plaintext and methods to create a Plaintext for use in PALISADE.

If a Scheme supports the PRE Capability, a re-encrypt method is avail-
able.

If a Scheme supports the SHE and/or LeveledSHE Capability, then there
is support for homomorphic operations on pairs of Ciphertext as well as mixed-
mode operations between a Ciphertext and a Plaintext. These operations
are supported by using C++ operator overloading. For example, multiplication
of two instances of a Ciphertext, A and B, can be simply written as A * B.

PALISADE also includes support for several Matrix operations. It is pos-
sible to create several Matrix of Plaintext, encrypt them, perform operations
on them, and then decrypt back into a Matrix of Plaintext.

7.1 Typing
All PALISADE operations are strongly typed. A Plaintext that is passed to
encrypt will create a Ciphertext that is aware of the underlying format of the
Plaintext, as well as the particular key that was used to encrypt the Plaintext.
The decrypt operation will fail in cases where an improper key is used. A suc-
cessful decrypt will produce a new Plaintext whose underlying format matches
the initial Plaintext that was passed to encrypt. Homomorphic operations
between Ciphertext, and mixed-mode operations between a Ciphertext and
a Plaintext will only be permitted for operands with formats and keys that
match.

The underlying data inside of PALISADE is an Element in lattice space.
Within PALISADE, all Plaintext are encoded into an Element. Every Ci-
phertext contains one or more Element objects, and all operations are math-
ematical operations on these Elements.

There are several formats of Element available: a Poly, which represents
the encoded Plaintext as a polynomial; a NativePoly, which uses a poly-
nomial with coefficients with a maximum size of 64 bits; and a DCRTPoly,
which represents the encoded Plaintext as a stack of decomposedMativePoly
polynomials using the Double Chinese Remainder Transform.

18

7.2 CryptoContext
A CryptoContext in PALISADE is the class that provides all PALISADE
encryption functionality. All objects used in a PALISADE implementation are
created by a CryptoContext and can be considered to “belong to” the Cryp-
toContext that they were created with.

Any and all operations on PALISADE objects must be on objects that belong
to the same CryptoContext. The high-level use of the CryptoContext to
encrypt a Plaintext to generate a Ciphertext is as follows:

1. Choose a set of ElementParams to define parameters for the Element
to be used.

2. Choose a set of EncodingParams to define parameters for encoding.

3. Select a Scheme that you wish to use for lattice cryptography.

4. Construct aCryptoContext for your selected scheme, ElementParams
and EncodingParams, in which all operations shall take place. The con-
struction of a CryptoContext involves selecting parameters for security
and performance. There are potentially multiple mechanisms to generate
the Scheme parameters needed for this construction.

5. Select which Capability are used with the CryptoContext. Note that
not every Scheme will support every possible Capability.

6. Use CryptoContext methods to create Keys.

7. The user may also perform homomorphic operations on Ciphertext and
Plaintext objects if thatCapability has been enabled and if the Scheme
supports the operations.

8. Encrypt a Plaintext into a Ciphertext.

9. Decrypt a Ciphertext back to a Plaintext.

Each CryptoContext is uniquely identified by its Scheme, Element type,
ElementParams and EncodingParams. When we say that an object "be-
longs to" a CryptoContext, we are actually saying that it is associated with a
CryptoContext with a particular Scheme, Element type, ElementParams
and EncodingParams.

PALISADE incorporates the standard security tables developed during the
Homomorphic Encryption standardization process described at
http://homomorphicencryption.org. Users of the library can construct
a CryptoContext by specifying the parameter sets defined in the standard.

It follows that if one creates a CryptoContext on two different computers,
each with the same Scheme, Element type, ElementParams and Encoding-
Params, then those two CryptoContexts are the same, and objects created
on one machine can be transferred to and used on the other machine.

19

http://homomorphicencryption.org

7.3 ABEContext
An ABEContext is the equivalent of a CryptoContext for attribute-based
and identity-based encrpytion functionality. All CP-ABE and GPV IBE re-
lated operations are done using an ABEContext. The high-level use of an
ABEContext to encrypt a Palintext is as follows:

1. Choose a set of parameters to create appropriate set of ElementParams
for the Element to be used.

2. Select a Scheme to use (GPV IBE or CP-ABE).

3. Construct aABEContext for your selected scheme and parameters. Note
that the steps up to this point are similar to CryptoContext, with the
exception of EncodingParams. This is due to the fact that ABECon-
text at its current implementation only supports the plaintext modulus
of 2 for encoding, hence it is done internally.

4. Create an AccessPolicy for the parties that will be able to decrypt.

5. Use ABEContext methods to create Keys.

6. Encrypt a Plaintext under an AccessPolicy into a Ciphertext.

7. Decrypt a Ciphertext back to a Plaintext.

The standard security tables developed during the Homomorphic Encryp-
tion standardization process described at http://homomorphicencryption.
org also apply to ABEContext.

It is also worth to mention that ABEContext does not support DCRT-
Poly at its current state. However, for most casesNativePoly is enough.
The ABE does not have homomorphic operations within ciphertexts de-
fined for the time being, which means there is no need for moduli larger
than 64 bits. The ciphertext modulus required for the security/correctness
of regular encryption functionality is below 64 bits.

7.4 SignatureContext
A SignatureContext is the equivalent of a CryptoContext for digital sig-
nature schemes. All GPV signature scheme-related operations are done using
a SignatureContext. The high-level use of a SignatureContext to sign a
Plaintext is as follows:

1. Choose a set of parameters to create appropriate set of ElementParams
for the Element to be used.

2. Select a Scheme to use (GPV only for the time being).

20

http://homomorphicencryption.org
http://homomorphicencryption.org

3. Construct a SignatureContext for your selected scheme and parameters.
Note that the steps up to this point are similar to CryptoContext, with
the exception of EncodingParams. This is due to the fact that the
encoding is handled internally.

4. Use SignatureContext methods to create Keys.

5. Sign a Plaintext into a Signature.

6. Verify a Signaturewith a Plaintext.

It is also worth to mention that just likeABEContext, SignatureContext
does not support DCRTPoly at its current state and NativePoly is enough
for all cases. Homomorphic operations are not defined for signatures, which
means there is no need for moduli larger than 64 bits.

7.5 Plaintext
A Plaintext is used in PALISADE to represent something that has not been en-
crypted. It is actually the base class for each of the possible plaintext encodings
that are supported in PALISADE:

• ScalarEncoding

• IntegerEncoding

• FractionalEncoding

• PackedEncoding

• CoefPackedEncoding

• StringEncoding

APlaintext is created by invoking the appropriateCryptoContextmethod,
passing it the unencrypted information as a parameter.

Once created, a Plaintext can be encrypted into a Ciphertext using the
CryptoContext Encrypt routine.

A Plaintext can also be used as a parameter to several of the CryptoCon-
text homomorphic operations.

When a Ciphertext is decrypted, the decryption method creates a new
Plaintext to contain the decryption.

The Plaintext has several methods that provide access to the information
in the Plaintext, as shown in listing 1:

Note that the only one of these Plaintext methods that will return a value
is the one that corresponds to the actual type of the Plaintext. For exam-
ple, GetStringValue() will return a std::string if the Plaintext is actually a
StringEncoding, and will throw an exception otherwise.

WhileABEContext also uses Plaintext for unencrypted information, Sig-
natureContext uses its own plaintext definition.

21

const std::string& GetStringValue();
const int64_t GetIntegerValue();
const int64_t GetScalarValue();
const vector<int64_t>& GetCoefPackedValue();
const vector<uint64_t>& GetPackedValue();

Listing 1: Values in Plaintext

7.6 Ciphertext
A Ciphertext is used in PALISADE to represent encrypted information. A
Ciphertext is created from a Plaintext by an encrypt method, and is con-
verted back to a Plaintext by a decrypt method. The encrypt and decrypt
methods also require Keys that have been generated by the CryptoContext.

Homomorphic operations between pairs of Ciphertext, or between a Ci-
phertext and a Plaintext, are supported, provided that the encodings of the
operands match, and provided that those encodings support homomorphic op-
erations (for example, homomorphic operations are not supported for string
encodings, and will be rejected if attempted).

The CP-ABE/GPV IBE schemes utilizing ABEContext have their own
unique classes for ciphertext implementations, which do not have homomorphic
operations supported at this time.

7.7 Access Policy
An Access Policy is a rule/set of rules dictating the decrypting party of the
communication. User holding the appropriate rights can generate the relevant
Keys for decryption and decrypt the information encrypted under an Access
Policy.

In the context of GPV IBE, Access Policy refers to the unique user iden-
tifier.

In the context of CP-ABE, Access Policy can refer to both attributes
defined for the access policy as well as user’s own attribute set.

7.8 Signature
A Signature is used in PALISADE for authentication. A Signature is created
from aPlaintext by a sign method, and used in conjunction with thePlaintext
for verification. The sign and verify methods also require Keys that have been
generated by the SignatureContext.

7.9 Keys
Many PALISADE functions make use of Keys. These objects are created using
CryptoContext, ABEContext or SignatureContext methods.

22

Encryption and decryption functionality requires a public key/private key
pair. The CryptoContext KeyGen method generates this key pair and returns
it to the caller.

CP-ABE and GPV IBE operations require a master public key/private key
pair for the encryption and derivation of personal secret keys. This is done using
Setup method of ABEContext. For decryption, a secret key corresponding
to an access policy/user is required, which is done using the ABEContext
KeyGen method.

Signing and verification operations for digital signature schemes require a
sign(private)/verify(public) key pair. This pair can be generated using the Sig-
natureContext KeyGen method.

Re-Encryption requires an Evaluation key. This key is generated using the
ReKeyGen method.

Certain homomorphic operations may require the application of evaluation
keys to complete the operation. The CryptoContext EvalMultKeyGen and
EvalAddKeyGen methods are used to generate the requisite keys needed for the
EvalMult and EvalAdd operations, respectively.

7.10 Capability
A Capability refers to sets of CryptoContext methods that must be enabled
before they can be used. A Capability must be enabled by calling the Cryp-
toContext Enable method and passing it the name of the Capability as an
argument. Multiple values for Capability can be or-ed together and passed as
a single argument to Enable.

Table 1 lists the available choices for Capability, and the functionality
enabled when a particular Capability is Enabled.

7.11 Scheme
A Scheme is the algorithms used for key generation, encryption/decryption,
and homomorphic operations.

Table 2 outlines the different supported schemes in PALISADE.
In order to use a particular Scheme, its configuration parameters must be

specified. The particular configuration parameters for each scheme are stored
in a CryptoParameters class that is particular for that scheme. The classes
for CryptoParameters for each scheme are unique, but they all share several
characteristics:

1. Each CryptoParameter class has a constructor that allows for the specifi-
cation of all configuration parameters.

2. The CryptoParameter may have a ParamsGen feature that generates a
full set of configuration parameters from a small specification as to how
many homomorphic operations will be performed.

3. The CryptoParameter class is part of the CryptoContext

23

ABEContext and SignatureContext also use their equivalent parameter
classes like CryptoParameters.

7.12 Element
The math layer performs operations on different kinds of Element. This is a
representation of a vector in lattice space.

7.12.1 Poly

A Poly is a vector of polynomial coefficients. The coefficients are whatever the
BigInteger is for the selected math backend, and the vector is simply a vector
of these BigInteger, and an associated modulus. All operations on a Poly are
done modulo the modulus.

7.12.2 NativePoly

A NativePoly is a vector of polynomial coefficients where each of the coeffi-
cients is at most a 64-bit unsigned integer. The NativePoly also has a modulus
of at most 64 bits, and all operations are done modulo the modulus.

7.12.3 DCRTPoly

A DCRTPoly implements a large Poly decomposed into a tower of Native-
Poly elements.

7.13 ElementParams
An ElementParams is a container for the configuration parameters of what-
ever Element is being used. The configuration parameters include the ring
dimension, cyclotomic order, and primitive root of unity.

7.14 EncodingParams
An EncodingParams is a container for all of the parameters needed to encode
a Plaintext. In most cases, this consists solely of a plaintext modulus; however,
some encodings require more detailed parameters.

7.15 Matrix
PALISADE supports general operations Matrix objects with elements of the
types described above in this section, as well as operations on these matrices. A
user can create a matrix of Plaintext, encrypt it into a matrix of Ciphertext,
and perform operations on matrices.

In addition to homomorphic matrix multiplication, higher level statistical
operations such as inner product and linear regression are available. Some
operations result in a matrix of RationalCiphertext, where each entry in

24

the matrix is a rational number such that the numerator and denominator of
the entry is a Ciphertext. For matrices of RationalCiphertext, separate
decryption of the numerators and denominators of each entry are provided.

25

8 Sample Implementations

8.1 PKE

8.1.1 Creating a CryptoContext

All PALISADE operations are associated with a CryptoContext; therefore, the
first step in using PALISADE is to acquire a CryptoContext. A CryptoCon-
text can be created in a number of different ways through the use of static
CryptoContextFactory methods. The factory methods return a shared_ptr to
a CryptoContext.

It is useful to note that PALISADE keeps track all of the CryptoContexts
that have been created, and will not create duplicate contexts. If a user requests
that the factory create a context that already exists, the factory simply returns
a shared_ptr to the existing context rather than creating a duplicate of that
existing context.

A CryptoContext is uniquely identified by the parameters for the underlying
lattice layer element that is to be used, the encoding parameters to be used with
Plaintext, and the Scheme (and any associated configuration parameters for the
Scheme).

The underlying lattice layer element is either a Poly, a NativePoly, or a
DCRTPoly. These type names are used as template parameters with the Cryp-
toContext and its methods. The lattice layer elements share a set of element
parameters that are given to the CryptoContextFactory methods.

Encoding parameters may be a simple Plaintext modulus, or they may be a
broader set of EncodingParms that are used. Encoding parameters are passed
to the CryptoContextFactory methods.

Different Schemes have wildly different configuration parameters, and so the
Scheme is selected by calling a CryptoContextFactory method for the desired
Scheme.

Each Scheme actually has several factory methods:

• A method that accepts values for all configuration parameters for the
scheme.

• A method that accepts some values for configuration parameters, and that
invokes a scheme-specific parameter generation operation.

There are two other mechanisms available for creating a CryptoContext:

• Deserialize a previously serialized CryptoContext.

• Construct a CryptoContext from one of the set of predefined scheme pa-
rameters.

Once a CryptoContext has been created, the appropriate capabilities should
be enabled. Once this is complete, the CryptoContext is ready for use.

Below are some code samples for creating contexts. Listing 2 demonstrates
creating a CryptoContext by specifying all of the scheme’s parameters.

26

/// Example showing creating an LTV CryptoContext
/// By specifying all Scheme parameters
/// Element is Poly with non power-of-two cyclotomics

usint m = 22;
PlaintextModulus p = 89;
BigInteger ptm(p);

BigInteger ctm("955263939794561");
BigInteger srr("941018665059848");
BigInteger bigmod("80899135611688102162227204937217");
BigInteger bigroot("77936753846653065954043047918387");

auto cycloPoly = GetCyclotomicPolynomial<BigVector,
BigInteger>(m, ctm);

ChineseRemainderTransformArb<BigInteger, BigVector>::
SetCylotomicPolynomial(cycloPoly, ctm);

float stdDev = 4;
usint bSize = 8;

shared_ptr<Poly::Params> params(new ILParams(m, ctm, srr,
bigmod, bigroot));

EncodingParams ep(new EncodingParamsImpl(p,
PackedEncoding::GetAutomorphismGenerator(p), bSize));

CryptoContext<Poly> cc = CryptoContextFactory<Poly>::
genCryptoContextLTV(params, ep, bSize, stdDev);

cc->Enable(ENCRYPTION);
cc->Enable(SHE);

Listing 2: Creating a CryptoContext with parameters

27

Listing 3 demonstrates the use of the factory method that uses parameter
generation.

Listing 4 shows the use of preconfigured parameter sets.

28

/// Example showing creating an FV Cryptocontext
/// using parameter generation
/// Element is DCRTPoly (configured by ParamsGen)

int relWindow = 1;
PlaintextModulus ptm = 256;
double sigma = 4;
double rootHermiteFactor = 1.006;

//Set Crypto Parameters
CryptoContext<Poly> cryptoContext =

CryptoContextFactory<Poly>::genCryptoContextFV(
ptr, rootHermiteFactor, relWindow, sigma,

0, 5, 0, OPTIMIZED, 6);

// enable features that you wish to use
cryptoContext->Enable(ENCRYPTION);
cryptoContext->Enable(SHE);

Listing 3: Creating a CryptoContext with parameter generation

/// Example showing CryptoContext generation
// from a preconfigured parameter set

CryptoContext<Poly> cryptoContext =
CryptoContextHelper::getNewContext("LTV3");

if(!cryptoContext) {
cout << "Error creating CryptoContext" << endl;
return 0;

}

cryptoContext->Enable(ENCRYPTION);

Listing 4: Creating a preconfigured CryptoContext

29

Listing 5 shows the use of parameter sets defined by the Homomorphic En-
cryption standardization process, as defined in http://homomorphicencryption.
org.

30

http://homomorphicencryption.org
http://homomorphicencryption.org

/// Example showing CryptoContext generation
// using standard tables from the homomorphic encryption

standardization project

PlaintextModulus ptm = 536903681;
double sigma = 3.2;
SecurityLevel securityLevel = HEStd_128_classic;

// support 7 multiplies (ciel(log2(7)))
usint nMults = 3;

// generate keys for s^2 and s^3
usint maxDepth = 3;

CryptoContext<DCRTPoly> cryptoContext =
CryptoContextFactory<DCRTPoly>::

genCryptoContextBFVrns(
ptm, securityLevel, sigma, 0, nMults, 0,

OPTIMIZED, maxDepth);

if(!cryptoContext) {
cout << "Error creating CryptoContext" << endl;
return 0;

}

cryptoContext->Enable(ENCRYPTION);

Listing 5: Creating a CryptoContext using standard paranerers

31

Listing 6 shows creation from a serialization.

/// Example showing CryptoContext generation
/// from a serialization

Serialized serObj;
if(!SerializableHelper::

ReadSerializationFromFile(FILENAME, &serObj)) {
return 1;

}

CryptoContext<DCRTPoly> cc =
CryptoContextFactory<DCRTPoly>::

DeserializeAndCreateContext(serObj);

if(cc == 0) {
cout << "Unable to deserialize" << endl;
return 1;

}

cc->Enable(ENCRYPTION | SHE | LEVELEDSHE);

Listing 6: Creating a CryptoContext from a serialization

8.1.2 Creating A Plaintext

PALISADE users are able to convert integers, vectors of integers, and strings
into Plaintext objects.

Plaintext objects can be used as input to Encryption, can be used as part
of homomorphic operations, and are produced as a result of decryption.

All Plaintexts are created by static factory methods within the CryptoCon-
text. Each style of Plaintext encoding has its own factory method.

The Plaintexts are all type safe. A Ciphertext knows the encoding used by
the original Plaintext that it came from. Decryption creates a Plaintext with the
proper encoding. All homomorphic operations check types before performing
the operation, and will fail if either the encodings do not match, or if a particular
encoding does not support homomorphic operations.

8.1.2.1 ScalarEncoding

ScalarEncoding is used to encode a single integer by simply copying the integer
into the polynomial starting at index 0 and zero-filling remaining unused indices
of the polynomial. Listing 7 shows an example of creating a Scalar Plaintext.

32

int64_t val = 12;

Plaintext sPtx = ctx->MakeScalarPlaintext(val);

Plaintext sPtx2 = ctx->MakeScalarPlaintext(-val);

Listing 7: Creating a Scalar Plaintext

8.1.2.2 IntegerEncoding

IntegerEncoding is used to encode a single unsigned integer into a polynomial
such that each bit (0 or 1) in the integer is copied into its corresponding slot in
the polynomial. For example, the integer 14, which is binary 1110, is encoded
by emplacing 1, 1, 1 and 0 into the first four positions of the polynomial. This
is shown in listing 8.

Plaintext intPtx = ctx->MakeIntegerPlaintext(14);

Listing 8: Creating an Integer Plaintext

Important Note: IntegerEncoding encodes each bit of the integer into a
separate coefficient of the polynomial. This implies that the ring dimension
(degree of polynomial) should be large enough to store all bits, especially in
scenarios where each homomorphic multiplication doubles the number of poly-
nomial coefficients with each multiplication. This is typically a non-issue for
secure schemes/settings (as the ring dimension is already large enough) but can
be an issue for the Null scheme, where the cyclotomic order is provided as an
input argument.

8.1.2.3 FractionalEncoding

FractionalEncoding is a generalization of IntegerEncoding that can encode both
integers and fractions. Currently it is limited in its functionaly and is only used
to add support for right shifting (moving least significant bits to the fractional
part). Examples of FractionalEncoding for encoding an integer 3 and a fraction
1/8 are shown in listing 9.

Plaintext intPtx = ctx->MakeFractionalPlaintext(3);
Plaintext intPtx = ctx->MakeFractionalPlaintext(0,3);

Listing 9: Creating a Fractional Plaintext

Important Note: FractionalEncoding encodes each bit of the integer into
a separate coefficient of the polynomial. This implies that the ring dimension
(degree of polynomial) should be large enough to store all bits, especially in

33

scenarios where each homomorphic multiplication doubles the number of poly-
nomial coefficients with each multiplication. This is typically a non-issue for
secure schemes/settings (as the ring dimension is already large enough) but can
be an issue for the Null scheme, where the cyclotomic order is provided as an
input argument.

8.1.2.4 CoefPackedEncoding

CoefPackedEncoding is used to encode a vector of integers, or an initializer list
of integers, into a polynomial such that each integer is emplaced into a coefficient
of the polynomial. This is illustrated in listing 10.

std::vector<int64_t> inputs({ 2, 3, 5, 7});

// construction from vector
Plaintext c1 = ctx->MakeCoefPackedPlaintext(inputs);

// construction from initializer list
Plaintext c2 = ctx->MakeCoefPackedPlaintext({-6,1,4,8});

Listing 10: Creating a CoefPackedEncoding Plaintext

8.1.2.5 PackedEncoding

PackedEncoding is an implementation of an efficient encoder packing multiple
integers into a single plaintext polynomial (single ciphertext) that enables SIMD
(Single Instruction, Mutiple Data) operations on these integers. Currently PAL-
ISADE supports addition, multiplication, and rotation capabilities for packed
ciphertexts. The cyclotomic order m has to divide p−1, where p is the plaintext
modulus. This is shown in listing 11.

std::vector<int64_t> val({37, 22, 18, 4, 3, 2, 1, 9});

Plaintext packedPtx = ctx->MakePackedPlaintext(val);

Listing 11: Creating a PackedEncoding Plaintext

8.1.2.6 StringEncoding

StringEncoding is used to encode a string into a polynomial. For this encoding,
each 8-bit character in the input is encoded directly into a coefficient of the
polynomial. This encoding is constrained to only use 256 as a plaintext modulus.
Listing 12 shows the use of this encoding.

34

Future implementations that support other character encodings, such as
Unicode, are possible but are not currently supported.

Homomorphic operations will NOT work with this encoding.

string s("Here is my string!");

Plaintext stringPtx = ctx->MakeStringPlaintext(s);

Listing 12: Creating a String Plaintext

8.1.3 Encryption

In order to encrypt a Plaintext into a Ciphertext, create a CryptoContext and
a Plaintext as illustrated above.

The code in listing 13 illustrates this. It assumes that you have created a
CryptoContext named "cc" and have created a Plaintext named ptxt within cc.

Observe that the code uses the KeyGen method to create a key pair, and
uses the publicKey portion of that key pair for the encryption. The encryption
will fail if the keys were generated in a different CryptoContext than cc.

///
// Perform Key Generation Operation
///

LPKeyPair<Poly> keyPair = cc->KeyGen();

if(!keyPair.good()) {
cout << "Key generation failed!" << endl;
exit(1);

}

///
// Encryption
///

Ciphertext<Poly> ciphertext;

ciphertext = cc->Encrypt(keyPair.publicKey, ptxt);

Listing 13: Encrypting

35

8.1.4 Decryption

In order to decrypt a Ciphertext into a Plaintext, a CryptoContext, Ciphertext
and KeyPair must exist. The keys and the Ciphertext must have been created
within the CryptoContext. An example is shown in listing 14.

///
//Decryption of Ciphertext
///

Plaintext decrypted;

cc->Decrypt(keyPair.secretKey, ciphertext, &decrypted);

Listing 14: Decrypting

8.1.5 Re-Encryption

Re-Encryption involves converting a Ciphertext that is decryptable with key
"A" into a Ciphertext that is decryptable with key "B" by creating a re-
encryption key and using it to re-encrypt the ciphertext.

The code sample in listing 15 illustrates this capability. It assumes a Cryp-
toContext cc, an initial keypair A, and a Ciphertext cipher that has been cre-
ated using A. We show the generation of key pair B, the generation of the
re-encryption key, the re-encryption operation, and the subsequent decryption
of the re-encrypted Ciphertext with B’s secret key.

Two variants of re-encryptions are shown. The first one corresponds to the
Chosen Plaintext Attack (CPA) model. The second variant corresponds to the
model secure under Honest Re-encryption Attacks (HRA) [4]. We recommend
the HRA model for practical use.

Note that in order to use Re-Encryption, the PRE capability must be enabled
for the CryptoContext.

36

///
// Perform Key Generation Operation
///

// Initialize Key Pair Containers
LPKeyPair<Poly> B = cc->KeyGen();

if(!B.good()) {
cout << "Key generation failed!" << endl;
exit(1);

}

///
//Perform Re-encryption key generation operation.
///

LPEvalKey<Poly> rekey =
cc->ReKeyGen(B.publicKey, A.secretKey);

///
// Re-Encryption
// CPA-secure variant
///

auto re_cipher = cc->ReEncrypt(rekey, cipher);

///
//Decryption of Ciphertext
///

///
// Re-Encryption with Ciphertext Re-randomization
// HRA-secure variant
///

auto re_cipherHRA = cc->ReEncrypt(rekey, cipher,B.
publicKey);

///
//Decryption of Ciphertext
///

Plaintext ptxtHRA;

cc->Decrypt(B.secretKey, re_cipherHRA, &ptxtHRA);

Listing 15: Re-Encrypting

37

8.1.6 Serialization and Deserialization

It is occasionally useful to be able to serialize objects in PALISADE into a string
of characters, and to convert a string from a serialized object back into an object
again.

PALISADE objects implement serialization through the use of RapidJSON
(see http://rapidjson.org), Serialize and Deserialize methods, and a set of meth-
ods in the SerializableHelper class.

Serialize converts the object into a Serialized, which is a typedef for a Rapid-
JSON Document. Deserialize converts from a Serialized back into an object.

The PALISADE library includes a number of SerializableHelper utility meth-
ods to

• convert a ‘Serialized‘ to a JSON string

• convert a JSON string to a ‘Serialized‘

• write a ‘Serialized‘ to an output stream

• read a ‘Serialized‘ from an input stream

• write a ‘Serialized‘ to a file, given a file name

• read a ‘Serialized‘ from a file, given a file name

Many of the objects to be serialized are associated with a particular Cryp-
toContext.

In order for such objects to be correctly serialized and deserialized, the se-
rialization saves the CryptoContext that the object belongs to as part of the
serialization, and the deserialization makes sure that the CryptoContext for the
object being deserialized matches the CryptoContext in the serialization.

This latter point creates a bit of a "chicken and egg" problem in the code.

• When objects are created, they are created within a particular Crypto-
Context.

• Once an object is in a CryptoContext, it cannot be moved to another
CryptoContext.

• To deserialize, you must first create an object so that you can call its
‘Deserialize()‘ method.

• For that ‘Deserialize()‘ to work properly, the object that you created has
to be in the proper CryptoContext, but you don’t know what the proper
CryptoContext is until you deserialize the object!

PALISADE addresses this problem by keeping track of all known Crypto-
Contexts, and by providing static methods of CryptoContext that are used to
deserialize objects that belong in that context. Each method takes a reference
to a ‘Serialized‘ and returns a fresh object; the functionality should be obvious
from the name of the method:

38

• deserializePublicKey

• deserializeSecretKey

• deserializeCiphertext

• deserializeEvalKey

8.1.6.1 CryptoContexts

In the code sample in listing 16, we assume a CryptoContext named cc.

Serialized s;
ser.SetObject();
if(cc->Serialize(&s) == false) {

cout << "Serialization failed";
}

CryptoContext<Poly> cc2 = CryptoContextFactory<Poly>::
DeserializeAndCreateContext(s);

Listing 16: Serializing and Deserializing a CryptoContext

8.1.6.2 Other Objects

In the code sample in listing 17, we assume a CryptoContext named cc.

LPKeyPair<Poly> kp = cc->KeyGen();

// serializing/deserializing key in a context
Serialized sK;
kp.publicKey->Serialize(&sK);
LPPublicKey<Poly> newPub = cc->deserializePublicKey(sK);

// creating context when deserializing key
CryptoContext<Poly> newcc = CryptoContextFactory<T>::

DeserializeAndCreateContext(sK);

LPPublicKey<Poly> nPub = newcc->deserializePublicKey(sK);

Listing 17: Serializing and Deserializing Keys

The PALISADE library includes a number of SerializableHelper utility meth-
ods to

• convert a ‘Serialized‘ to a JSON string

39

• convert a JSON string to a ‘Serialized‘

• write a ‘Serialized‘ to an output stream

• read a ‘Serialized‘ from an input stream

• write a ‘Serialized‘ to a file, given a file name

• read a ‘Serialized‘ from a file, given a file name

8.1.7 Homomorphic Addition of Ciphertexts

Homomorphic addition of two Ciphertext is performed by invoking the Eval-
Add method of the CryptoContext. Both of the operands to the EvalAdd
must have been created in the same CryptoContext, encrypted with the same
Key, and encoded in the same way for this operation to work.

The code sample in listing 18 illustrates how to encode two vectors of in-
tegers into Plaintext, encrypt them into Ciphertext, perform homomorphic
addition, and decrypt the result back into a Plaintext.

This code assumes a CryptoContext named cc and a keypair named kp.

40

// Encode source data

std::vector<int64_t> v1 = {3,2,1,3,2,1,0,0,0,0,0,0};
std::vector<int64_t> v2 = {2,0,0,0,0,0,0,0,0,0,0,0};
std::vector<int64_t> v3 = {1,0,0,0,0,0,0,0,0,0,0,0};
Plaintext p1 = cc->MakeCoefPackedPlaintext(v1);
Plaintext p2 = cc->MakeCoefPackedPlaintext(v2);
Plaintext p3 = cc->MakeCoefPackedPlaintext(v3);

// Encryption

auto c1 = cc->Encrypt(kp.publicKey, p1);
auto c2 = cc->Encrypt(kp.publicKey, p2);
auto c3 = cc->Encrypt(kp.publicKey, p3);

// EvalAdd Operation

auto c12 = cc->EvalAdd(c1,c2);
auto csum = cc->EvalAdd(c12,c3);

//Decryption after Accumulation Operation

Plaintext plaintextAdd;

cc->Decrypt(kp.secretKey, csum, &plaintextAdd);

plaintextAdd->SetLength(p1->GetLength());

cout << "Original Plaintext:" << endl;
cout << p1 << endl;
cout << p2 << endl;
cout << p3 << endl;

cout << "Resulting Added Plaintext:" << endl;
cout << plaintextAdd << endl;

Listing 18: Adding Ciphertexts

41

8.1.8 Homomorphic Multiplication of Ciphertexts

Homomorphic multiplication of two Ciphertext is performed by invoking the
EvalMult method of the CryptoContext. Both of the operands to the Eval-
Mult must have been created in the same CryptoContext, encrypted with the
same Key, and encoded in the same way for this operation to work.

The code sample in listing 19 illustrates how to encode two vectors of in-
tegers into Plaintext, encrypt them into Ciphertext, perform homomorphic
multiplication, and decrypt the result back into a Plaintext.

This code assumes a CryptoContext named cc and a keypair named kp.
Note the creation of an EvalMult key using EvalMultKeyGen at the begin-

ning of the sample.

42

cc->EvalMultKeyGen(kp.secretKey);

// Encode source data

std::vector<int64_t> v1 = {3,2,1,3,2,1,0,0,0,0,0,0};
std::vector<int64_t> v2 = {2,0,0,0,0,0,0,0,0,0,0,0};
std::vector<int64_t> v3 = {1,0,0,0,0,0,0,0,0,0,0,0};
Plaintext p1 = cc->MakeCoefPackedPlaintext(v1);
Plaintext p2 = cc->MakeCoefPackedPlaintext(v2);
Plaintext p3 = cc->MakeCoefPackedPlaintext(v3);

// Encryption

auto c1 = cc->Encrypt(kp.publicKey, p1);
auto c2 = cc->Encrypt(kp.publicKey, p2);
auto c3 = cc->Encrypt(kp.publicKey, p2);

// EvalMult Operation

auto m12 = cc->EvalMult(c1,c2);
auto cprod = cc->EvalMult(m12,c3);

//Decryption after Multiplication Operation

Plaintext plaintextMul;

cc->Decrypt(kp.secretKey, cprod, &plaintextMul);

plaintextMul->SetLength(p1->GetLength());

cout << "Original Plaintext:" << endl;
cout << p1 << endl;
cout << p2 << endl;
cout << p3 << endl;

cout << "Resulting Plaintext:" << endl;
cout << plaintextMul << endl;

Listing 19: Multiplying Ciphertexts

43

8.2 ABE

8.2.1 Creating an ABEContext

An ABEContext can be created by either choosing the relevant security level
or basic parameters related to security level.

/// Example showing creating an CP-ABE ABEContext
/// By specifying security level and number of attributes

only
/// Element is NativePoly
/// First parameter is for security level, next parameter

is the number of attributes

ABEContext<NativePoly> context;
context.GenerateCPABEContext(HEStd_192_classic,6);

Listing 20: Creating a ABEContext with Security Level

/// Example showing creating a GPV IBE ABEContext
/// By specifying relevant parameters: ring size and base

of the gadget matrix
/// Element is NativePoly
/// First parameter is for ring size, second one is for

base

ABEContext<NativePoly> context;
context.GenerateIBEContext(1024,64);

Listing 21: Creating a ABEContext with Parameters

8.2.2 Generating Master Keys

44

/// Example showing master key pair generation for GPV
IBE ABEContext

/// Element is NativePoly

IBEMasterPublicKey<NativePoly> mpk;
IBEMasterSecretKey<NativePoly> msk;
context.Setup(&mpk,&msk);

Listing 22: Generating Master Public Key Pair with ABEContext

8.2.3 Creating Access Policies

/// Example showing user identifier generation for GPV
IBE ABEContext

/// Element is NativePoly

IBEUserIdentifier<NativePoly> id(context.
GenerateRandomElement());

Listing 23: Creating a User Identifier with GPV IBE ABEContext

/// Example showing user attribute set/access policy
creating for CP-ABE ABEContext

/// Element is NativePoly

std::vector<unsigned int> userattributes = {1,0,1,0,1,1};
std::vector <int> accesspolicy = {0,-1,1,0,1,0);

CPABEUserAccess<NativePoly> ua(userattributes);
CPABEAccessPolicy<NativePoly> ap(accesspolicy);

Listing 24: Creating a User Attribute Set/Access Policy with CP-ABE
ABEContext

8.2.4 Key Generation

The secret key generated is tailored to the identifier or attribute set of the user

45

/// Example showing secret key generation for GPV IBE
ABEContext

/// Element is NativePoly
/// msk is the master secret key, mpk is the master

public key, id is the user identifier

IBESecretKey<NativePoly> sk;
context.KeyGen(msk,mpk,id,&sk);

Listing 25: Generating a Secret Key with ABEContext

Additionally, it is possible to split the key generation process into two phases:
Online and offline. Offline phase consists of creation of perturbation vector
which is independent from the user’s id or attribute set.

/// Example showing the offline phase of secret key
generation for GPV IBE ABEContext

/// Element is NativePoly
/// msk is the master secret key

PerturbationVector<NativePoly> pv;
context.KeyGenOfflinePhase(msk,pv);

Listing 26: Generating a Secret Key with ABEContext (Offline Phase -
Perturbation Generation)

The online phase in this scenario consists of actual key generation based on
user’s id or attribute set without the perturbation subroutine.

/// Example showing the online phase of secret key
generation for GPV IBE ABEContext

/// Element is NativePoly
/// msk is the master secret key, mpk is the master

public key, id is the user’s identifier and pv is the
perturbation vector

IBESecretKey<NativePoly> sk;
context.KeyGenOnlinePhase(msk,mpk,id,pv,&sk);

Listing 27: Generating a Secret Key with ABEContext (Online Phase - Key
Generation)

46

8.2.5 Encryption

A Plaintext is encrypted with a target party, which means the target user’s
identifier in GPV IBE or access policy for CP-ABE.

/// Example showing encryption for CP-ABE ABEContext
/// Element is NativePoly
///mpk is the master public key, ap is the access policy

///Creation of plaintext. The format is intentionally
used for support

std::vector<int64_t> vectorOfInts = { 1,0,0,1,1,0,1,0,
1, 0};

Plaintext pt = context.MakeCoefPackedPlaintext(
vectorOfInts);

///Actual encryption
CPABECiphertext<NativePoly> ct;

context.Encrypt(mpk,ap,pt,&ct);

Listing 28: Encryption with CP-ABE ABEContext

8.2.6 Decryption

/// Example showing decryption for CP-ABE ABEContext
/// Element is NativePoly
///sk is the secret key of the user, ua is the user’s

attributes, ap is the access policy defined and ct is
the ciphertext

Plaintext dt = context.Decrypt(ap,ua,sk,ct);

Listing 29: Decryption with CP-ABE ABEContext

47

/// Example showing decryption for GPV IBE ABEContext
/// Element is NativePoly
///sk is the secret key of the user and ct is the

ciphertext

Plaintext dt = context.Decrypt(sk,ct);

Listing 30: Decryption with GPV IBE ABEContext

8.3 Signature

8.3.1 Creating a SignatureContext

A SignatureContext can be created by either choosing one of the predefined
ring sizes or a set of parameters.

/// Example showing creating a GPV SignatureContext
/// By specifying some specific parameters
/// First parameter is the ring size, second parameter is

the bit width of modulus and third one is the base of
the gadget matrix

/// Element is NativePoly

SignatureContext<NativePoly> context;
context.GenerateGPVContext(1024,61,64);

Listing 31: Creating a SignatureContext with Parameters

8.3.2 Key Generation

/// Example showing creating sign/verification keys with
a GPV SignatureContext

/// Element is NativePoly

GPVVerificationKey<NativePoly> vk;
GPVSignKey<NativePoly> sk;
context.KeyGen(&sk,&vk);

Listing 32: Key Generation with SignatureContext

48

8.3.3 Signing

/// Example showing signing with a GPV SignatureContext
/// Element is NativePoly
///sk is the signing key and vk is the verification key

///Creation of plaintext
string pt = "This is a test";
GPVPlaintext<NativePoly> plaintext(pt);

///Actual signing
GPVSignature<NativePoly> signature;
context.Sign(plaintext,sk,vk,&signature);

Listing 33: Signing with SignatureContext

Additionally, it is possible to split the signing process into two phases: Online
and offline. Offline phase consists of creation of perturbation vector which is
independent from message to be signed.

/// Example showing offline phase of signing with a GPV
SignatureContext

/// Element is NativePoly
///sk is the signing key

PerturbationVector<NativePoly> pv;
context.SignOfflinePhase(sk,pv);

Listing 34: Signing with SignatureContext (Offline Phase - Perturbation
Generation)

The online phase in this scenario consists of actual signing process without
the perturbation subroutine.

49

/// Example showing online phase of signing with a GPV
SignatureContext

/// Element is NativePoly
///sk is the signing key, vk is the verification key and

pv is the perturbation vector generated in offline
phase

///Creation of plaintext
string pt = "This is a test";
GPVPlaintext<NativePoly> plaintext(pt);

///Actual signing
GPVSignature<NativePoly> signature;
context.SignOnlinePhase(plaintext,sk,vk,pv,&signature);

Listing 35: Signing with SignatureContext (Online Phase - Signing)

8.3.4 Verification

/// Example showing verification with a GPV
SignatureContext

/// Element is NativePoly
/// vk is the verification key

bool verificationResult = context.Verify(plaintext,
signature,vk);

Listing 36: Verification with SignatureContext

8.4 Matrix Operations
A large number of matrix operations are available in PALISADE.

In the example in Listing 37, we illustrate performing a linear regression on
two encrypted matrices. The code assumes a CryptoContext named cc.

50

auto zA = [=]() { return
make_unique<Plaintext>(cc->MakeCoefPackedPlaintext(

{int64_t(0)}));
};

Matrix<Plaintext> xP = Matrix<Plaintext>(zA, 2, 2);
xP(0,0) = cc->MakeCoefPackedPlaintext({1,0,1,1,0,1,0,1});
xP(0,1) = cc->MakeCoefPackedPlaintext({1,1,0,1,0,1,1,0});
xP(1,0) = cc->MakeCoefPackedPlaintext({1,1,1,1,0,1,0,1});
xP(1,1) = cc->MakeCoefPackedPlaintext({1,0,0,1,0,1,1,0});

Matrix<Plaintext> yP = Matrix<Plaintext>(zA, 2, 1);
yP(0,0) = cc->MakeCoefPackedPlaintext({1,1,1,0,0,1,0,1});
yP(1,0) = cc->MakeCoefPackedPlaintext({1,0,0,1,0,1,1,0});

//Perform the key generation operations.
LPKeyPair<Poly> kp = cc->KeyGen();
cc->EvalMultKeyGen(kp.secretKey);

//Encryption
shared_ptr<Matrix<RationalCiphertext<Poly>>> x =

cc->EncryptMatrix(kp.publicKey, xP);
shared_ptr<Matrix<RationalCiphertext<Poly>>> y =

cc->EncryptMatrix(kp.publicKey, yP);

//Linear Regression
auto result = cc->EvalLinRegression(x, y);

//Decryption into num and denom matrices
shared_ptr<Matrix<Plaintext>> num;
shared_ptr<Matrix<Plaintext>> denom;
cc->DecryptMatrix(kp.secretKey, result, &num, &denom);

Listing 37: Calculating Linear Regression

9 Building and Installing PALISADE

PALISADE includes a wiki with detailed instructions on building and running
PALISADE on various platforms.

PALISADE can be built and used in Windows, Linux and Macintosh envi-
ronments.

The library requires a C++ compiler that implements the C++11 standard,
support for the OpenMP library, and make.

While not required, it is also recommended that you install and use doxygen.

51

Users may run the configure.sh script to test if their build environment
supports building and running PALISADE.

Running make builds the entirety of the library in the bin subdirectory. All
unit tests, sample demos, and libraries are contained in bin.

A full suite of unit tests is available by running make testall.
Library users must ensure that the directories containing the library files,

bin/lib and third-party/lib, are available to any executables wishing to dynam-
ically link to the libraries.

52

10 Programming Style

PALISADE coding style is based on the official Google C++ coding style.
Of particular note on the documentation style:

• We use doxygen commenting style on classes, methods and constants.

• We given meaningful variable names to all variables.

• Every reused discrete block of code has its own method.

• Every discrete line or code or discrete group of code lines for each task
has its own comment.

With regards to naming conventions:

• Variable names: camelCase.

• Class, struct, typedef, and enum names: CamelCase.

• Class data members: m_camelCase.

• Class accessor names: GetProperty() and SetProperty().

• Class method names: CamelCase.

• Global variable names: g_camelCase.

• Constant names and macros: UPPER_CASE_WITH_UNDERSCORES
(example: BIT_LENGTH).

• Operator overloading is used for binary operations.

We also follow the additional design principles that:

• cout should never be used for exception handling and should never be used
in committed code in the core PALISADE library.

• a set of PALISADE exceptions is defined in utils/exception.h. The library
is being migrated to throw only these exceptions.

53

https://google.github.io/styleguide/cppguide.html

A PALISADE License

PALISADE is available under the following license:
Copyright (c) 2017, New Jersey Institute of Technology (NJIT)
All rights reserved.
Redistribution and use in source and binary forms, with or without modifi-

cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

54

B Contributors

We gratefully acknowledge intellectual and software contributions to the library
from numerous individuals at Duality Technologies, Galois, Inc., IBM, TwoSix
Labs, Lucent Government Systems (LGS Innovations), Massachussetts Institute
of Technology (MIT), New Jersey Institute of Technology (NJIT), Raytheon
BBN Technologies, Sabancı University (SU), University of California San Diego
(UCSD), National University of Singapore (NUS), New York University (NYU),
Worcester Polytechnic Institute (WPI) and Vencore Labs / Applied Communi-
cation Sciences (ACS).

Along with the authors of this manual, the following individuals have con-
tributed code or algorithms to the PALISADE library:

• Ahmad Al Badawi (NUS)

• Lisa Bahler (ACS)

• Cheng Chen (MIT)

• Aloni Cohen (MIT)

• Dave Cousins (Raytheon BBN)

• Yarkın Doröz (NJIT)

• Arnab Bobby Deb Gupta (NJIT)

• Shai Halevi (IBM)

• Nick Genise (UCSD)

• Kamil Doruk Gür (NJIT)

• Chiraag Juvekar (MIT)

• Kevin King (MIT)

• Alex Malozemoff (Galois)

• Daniele Micciancio (UCSD)

• Antonis Papadimitriou (Duality
Technologies)

• Nishanth Pasham (NJIT)

• Thomas Petsche (NJIT)

• Gyana Sahu (NJIT)

• Hadi Sajjadpour (NJIT)

• Erkay Savaş (SU/NJIT)

• Victor Shoup (NYU)

• David Stott (LGS)

• Matthew Triplett (NJIT)

• Vinod Vaikuntanathan (MIT)

• Michael Walter (UCSD)

Note. We have attempted to make an as inclusive a list as possible to iden-
tify contributors, but we may of forgotten some important contributors. Any
oversights are unintentional. If we neglected to identify your contribution, please
let us know and we’ll update our listing. If you are on the list of contributors
and you’d prefer not to be, please let us know and we’ll similarly update our
list.

55

C Support

Support to develop and maintain the PALISADE lattice cryptography library
has been generously provided by the following organizations:

• Defense Advanced Research Projects Agency (DARPA) and the Army
Research Laboratory (ARL) under contract numbers W911NF-15-C-0226
and W911NF-15-C-0233.

• Defense Advanced Research Projects Agency (DARPA) and the SPAWAR
System Center Pacific under contract number N66001-17-1-40403.

• National Security Agency under Grant H98230-15-1-0274.

• Director of National Intelligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA).

• The Alfred P. Sloan Foundation.

• A Simons Investigator Award Agreement Dated 6-5-12.

The views expressed are those of the authors and do not necessarily reflect
the official policy or position of the Department of Defense or the U.S. Govern-
ment. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies, either
express or implied, of ODNI, IARPA, or the U.S. Government.

The U.S. Government is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright annotation therein.

56

References

[1] Jean-Claude Bajard, Julien Eynard, M Anwar Hasan, and Vincent Zucca.
A full rns variant of fv like somewhat homomorphic encryption schemes.
In International Conference on Selected Areas in Cryptography, pages 423–
442. Springer, 2016.

[2] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical gapsvp. In Advances in Cryptology–CRYPTO 2012, pages
868–886. Springer, 2012.

[3] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT), 6(3):13, 2014.

[4] Aloni Cohen. What about bob? the inadequacy of cpa security for proxy
reencryption. Cryptology ePrint Archive, Report 2017/785, 2017. https:
//eprint.iacr.org/2017/785.

[5] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. IACR Cryptology ePrint Archive, 2012:144, 2012.

[6] Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic evaluation of
the aes circuit. In Advances in Cryptology–CRYPTO 2012, pages 850–867.
Springer, 2012.

[7] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In STOC, pages 197–
206, 2008.

[8] Shai Halevi, Yuriy Polyakov, and Victor Shoup. An improved rns variant
of the bfv homomorphic encryption scheme. https://eprint.iacr.
org/2018/117.

[9] Tancrede Lepoint and Michael Naehrig. A comparison of the homomorphic
encryption schemes fv and yashe. In International Conference on Cryptol-
ogy in Africa, pages 318–335. Springer, 2014.

[10] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. Multi-
key fully homomorphic encryption and on-the-fly multiparty computation.
IACR Cryptology ePrint Archive, 2013:94, 2013. Full Version of the STOC
2012 paper with the same title.

[11] Damien Stehlé and Ron Steinfeld. Making ntru as secure as worst-case
problems over ideal lattices. In KennethG. Paterson, editor, Advances in
Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Com-
puter Science, pages 27–47. Springer Berlin Heidelberg, 2011.

57

https://eprint.iacr.org/2017/785
https://eprint.iacr.org/2017/785
https://eprint.iacr.org/2018/117
https://eprint.iacr.org/2018/117

[12] Jiang Zhang, Zhenfeng Zhang, and Aijun Ge. Ciphertext policy attribute-
based encryption from lattices. In Heung Youl Youm and Yoojae Won,
editors, 7th ACM Symposium on Information, Compuer and Communica-
tions Security, ASIACCS ’12, Seoul, Korea, May 2-4, 2012, pages 16–17.
ACM, 2012.

58

	Document Overview
	Introduction
	A Brief Overview of Lattice Cryptography
	Library Architecture
	Application Layer
	Encoding Layer
	Crypto Layer
	Lattice Operations Layer
	Primitive Math Layer
	Utilities

	Capabilities
	PALISADE Directory Structure
	Terminology and Notation
	Typing
	CryptoContext
	ABEContext
	SignatureContext
	Plaintext
	Ciphertext
	Access Policy
	Signature
	Keys
	Capability
	Scheme
	Element
	Poly
	NativePoly
	DCRTPoly

	ElementParams
	EncodingParams
	Matrix

	Sample Implementations
	PKE
	Creating a CryptoContext
	Creating A Plaintext
	Encryption
	Decryption
	Re-Encryption
	Serialization and Deserialization
	Homomorphic Addition of Ciphertexts
	Homomorphic Multiplication of Ciphertexts

	ABE
	Creating an ABEContext
	Generating Master Keys
	Creating Access Policies
	Key Generation
	Encryption
	Decryption

	Signature
	Creating a SignatureContext
	Key Generation
	Signing
	Verification

	Matrix Operations

	Building and Installing PALISADE
	Programming Style
	Appendix PALISADE License
	Appendix Contributors
	Appendix Support

