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paramap-package paramap

Description

This package provides factor analysis-related functions for assessing dimensionality. Users can re-
quest that the analyses be conducted using polychoric correlations, which are preferable to Pearson
correlations for item-level data, and a polychoric correlation matrix is returned for possible further
analyses. There are also functions for conducting principal components analysis, principal axis fac-
tor analysis, maximum likelihood factor analysis, image factor analysis, and extension factor anal-
ysis, all of which can take raw data or correlation matrices as input and with options for conducting
the analyses using Pearson correlations, Kendall correlations, Spearman correlations, or polychoric
correlations. Varimax rotation, promax rotation, and Procrustes rotations can be performed.

CONGRUENCE factor solution congruence

Description

This function aligns two factor loading matrices and computes the factor solution congruence and
the root mean square residual.

Usage

CONGRUENCE(target, loadings, display)

Arguments

target The target loading matrix.

loadings The loading matrix that will be aligned with the target.

display Display the results? The options are TRUE or FALSE.

Details

The function first searches for the alignment of the factors from the two loading matrices that has
the highest factor solution congruence. It then aligns the factors in "loadings" with the factors
in "target" without changing the loadings. The alignment is based solely on the positions and
directions of the factors. The function then produces the Tucker-Wrigley-Neuhaus factor solution
congruence coefficient as an index of the degree of similarity between between the aligned loading
matrices (see Guadagnoli & Velicer, 1991; and ten Berge, 1986, for reviews).
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Value

A list with the following elements:

rcBefore The factor solution congruence before factor alignment

rcAfter The factor solution congruence after factor alignment

rcFactors The congruence for each factor

rmsr The root mean square residual

residmat The residual matrix

loadingsNew The aligned loading matrix

Author(s)

Brian P. O’Connor

References

Guadagnoli, E., & Velicer, W. (1991). A comparison of pattern matching indices. Multivariate
Behavior Research, 26, 323-343.

ten Berge, J. M. F. (1986). Some relationships between descriptive comparisons of components
from different studies. Multivariate Behavioral Research, 21, 29-40.

Examples

# RSE data
loadings <- PCA(data_RSE[1:150,], corkind='pearson', nfactors = 3,

rotate='varimax', display=FALSE)
target <- PCA(data_RSE[151:300,], corkind='pearson', nfactors = 3,

rotate='varimax', display=FALSE)
CONGRUENCE(target$loadingsROT, loadings$loadingsROT, display=TRUE)

## Not run:
# NEO-PI-R data
loadings <- PCA(data_NEOPIR[1:500,], corkind='pearson', nfactors = 3,

rotate='varimax', display=FALSE)
target <- PCA(data_NEOPIR[501:1000,], corkind='pearson', nfactors = 3,

rotate='varimax', display=FALSE)
CONGRUENCE(target$loadingsROT, loadings$loadingsROT, display=TRUE)

## End(Not run)

data_Harman Correlation matrix from Harman (1967, p. 80).

Description

The correlation matrix for eight physical variables for 305 cases from Harman (1967, p. 80).

Usage

data(data_Harman)
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References

Harman, H. H. (1967). Modern factor analysis (2nd. ed.). Chicago: University of Chicago Press.

Examples

## Not run:
# MAP test on the Harman correlation matrix
MAP(data_Harman, display=TRUE)

# parallel analysis of the Harman correlation matrix
RAWPAR(data_Harman, extract='PCA', Ndatasets=100, percentile=95,

Ncases=305, display=TRUE)

## End(Not run)

data_NEOPIR data_NEOPIR

Description

A data frame with scores for 1000 cases on 30 variables that have the same intercorrelations as
those for the Big 5 facets on pp. 100-101 of the NEO-PI-R manual (Costa & McCrae, 1992).

Usage

data(data_NEOPIR)

References

Costa, P. T., & McCrae, R. R. (1992). Revised NEO personality inventory (NEO-PIR) and NEO
five-factor inventory (NEO-FFI): Professional manual. Odessa, FL: Psychological Assessment Re-
sources..

Examples

head(data_NEOPIR)

## Not run:
# MAP test on the data_NEOPIR data
MAP(data_NEOPIR, corkind='pearson', display=TRUE)

# parallel analysis of the data_NEOPIR data
RAWPAR(data_NEOPIR, extract='PCA', Ndatasets=100, percentile=95,

corkind='pearson', display=TRUE)

## End(Not run)
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data_RSE Item-level dataset for the Rosenberg Self-Esteem scale

Description

A data frame with 300 observations on the 10 items from the Rosenberg Self-Esteem scale.

Usage

data(data_RSE)

Examples

head(data_RSE)

## Not run:
# MAP test on the Rosenberg Self-Esteem Scale (RSE) data
MAP(data_RSE, corkind='pearson', display=TRUE)

# parallel analysis of the Rosenberg Self-Esteem Scale (RSE) data
RAWPAR(data_RSE, extract='PCA', Ndatasets=100, percentile=95,

corkind='pearson', display=TRUE)

## End(Not run)

data_WISC data_WISC

Description

A data frame with scores for 175 cases on 10 WISC-R subscales, used by Tabacknick & Fidell
(2013, p. 737) in their section on confirmatory factor analysis.

Usage

data(data_WISC)

References

Tabachnik, B. G., & Fidell, L. S. (2014). Using multivariate statistics. New York, NY: Pearson.

Examples

head(data_WISC)

## Not run:
# MAP test on the data_WISC data
MAP(data_WISC, corkind='pearson', display=TRUE)

# parallel analysis of the data_WISC data
RAWPAR(data_WISC, extract='PCA', Ndatasets=100, percentile=95,
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corkind='pearson', display=TRUE)

## End(Not run)

EXTENSION_FA extension factor analysis

Description

Extension factor analysis provides correlations between nonfactored items and the factors that exist
in a set of core items. The extension item correlations are then used to decide which factor, if any,
a prospective item belongs to.

Usage

EXTENSION_FA(data, Ncore, Next, higherorder, roottest,
corkind, corkindRAND, extract, rotate, Nfacts,
NfactsHO, Ndatasets, percentile, salvalue, numsals,
iterpaf, iterml, tolerml, ppower)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables.

Ncore An integer indicating the number of core variables. The function will run the
factor analysis on the data that appear in column #1 to column #Ncore of the
data matrix.

Next An integer indicting the number of extension variables, if any. The function
will run extension factor analyses on the remaining columns in data, i.e., using
column #Ncore+1 to the last column in data. Enter zero if there are no extension
variables.

corkind The kind of correlation matrix to be used. The options are ’pearson’, ’kendall’,
’spearman’, and ’polychoric’.

corkindRAND The kind of correlation matrix to be used for the random data when roottest =
’parallel’. The options are ’pearson’, ’kendall’, ’spearman’, and ’polychoric’.
These options are included for research purposes. In most applications, it is
probably best to use Pearson correlations, which is the default.

higherorder Should a higher-order factor analysis be conducted? The options are TRUE or
FALSE.

roottest The method for determing the number of factors. The options are: ’Nsalient’ for
number of salient loadings (see salvalue & numsals below); ’parallel’ for paral-
lel analysis (see Ndatasets & percentile below); ’MAP’ for Velicer’s minimum
average partial test; ’SEscree’ for the standard error scree test; ’nevals>1’ for
the number of eigenvalues > 1; and ’user’ for a user-specified number of factors
(see Nfacts & NfactsHO below).

Nfacts An integer indicating the user-determined number of factors (required only if
roottest = ’user’).

NfactsHO An integer indicating the user-determined number of higher order factors (re-
quired only if roottest = ’user’ and higherorder = TRUE).
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extract The factor extraction method. The options are: ’PAF’ for principal axis / com-
mon factor analysis; ’PCA’ for principal components analysis; ’ML’ for maxi-
mum likelihood.

rotate The factor rotation method. The options are: ’promax’, ’varimax’, and ’none’.

Ndatasets An integer indicating the # of random data sets for parallel analyses (required
only if roottest = ’parallel’).

percentile An integer indicating the percentile from the distribution of parallel analysis
random eigenvalues to be used in determining the # of factors (required only if
roottest = ’parallel’). Suggested value: 95

salvalue The minimum value for a loading to be considered salient (required only if
roottest = ’Nsalient’). Suggested value: .40

numsals The number of salient loadings required for the existence of a factor i.e., the
number of loadings > or = to salvalue (see above) for the function to identify a
factor. Required only if roottest = ’Nsalient’. Gorsuch (1995a, p. 545) suggests:
3

iterpaf The maximum # of iterations for a principal axis / common factor analysis (re-
quired only if extract = ’PAF’). Suggested value: 100

iterml The maximum # of iterations for a maximum likelihood analysis (required only
if extract = ’ML’). Suggested value: 100

tolerml The tolerance value for a maximum likelihood analysis (required only if extract
= ’ML’). Suggested value: .001

ppower The power value to be used in a promax rotation (required only if rotate = ’pro-
max’). Suggested value: 3

Details

Traditional scale development statistics can produce results that are baffling or misunderstood by
many users, which can lead to inappropriate substantive interpretations and item selection deci-
sions. High internal consistencies do not indicate unidimensionality; item-total correlations are
inflated because each item is correlated with its own error as well as the common variance among
items; and the default number-of-eigenvalues-greater-than-one rule, followed by principal com-
ponents analysis and varimax rotation, produces inflated loadings and the possible appearance of
numerous uncorrelated factors for items that measure the same construct (Gorsuch, 1997a, 1997b).
Concerned investigators may then neglect the higher order general factor in their data as they use
misleading statistical output to trim items and fashion unidimensional scales.

These problems can be circumvented in exploratory factor analysis by using more appropriate fac-
tor analytic procedures and by using extension analysis as the basis for adding items to scales.
Extension analysis provides correlations between nonfactored items and the factors that exist in a
set of core items. The extension item correlations are then used to decide which factor, if any, a
prospective item belongs to. The decisions are unbiased because factors are defined without being
influenced by the extension items. One can also examine correlations between extension items and
any higher order factor(s) in the core items. The end result is a comprehensive, undisturbed, and
informative picture of the correlational structure that exists in a set of core items and of the potential
contribution and location of additional items to the structure.

Extension analysis is rarely used, at least partly because of limited software availability. Further-
more, when it is used, both traditional extension analysis and its variants (e.g., correlations between
estimated factor scores and extension items) are prone to the same problems as the procedures
mentioned above (Gorsuch, 1997a, 1997b). However, Gorusch (1997b) described how diagonal
component analysis can be used to bypass the problems and uncover the noninflated and unbiased
extension variable correlations – all without computing factor scores.
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Value

A list with the following elements:

fits1 eigenvalues & fit coefficients for the first set of core variables

rff factor intercorrelations

corelding core variable loadings on the factors

extcorrel extension variable correlations with the factors

fits2 eigenvalues & fit coefficients for the higher order factor analysis

rfflding factor intercorrelations from the first factor analysis and the loadings on the
higher order factor(s)

ldingsef variable loadings on the lower order factors and their correlations with the higher
order factor(s)

extsef extension variable correlations with the lower order factor(s) and their correla-
tions with the higher order factor(s)

Author(s)

Brian P. O’Connor

References

Gorsuch, R. L. (1997a). Exploratory factor analysis: Its role in item analysis. Journal of Personality
Assessment, 68, 532-560.

Gorsuch, R. L. (1997b). New procedure for extension analysis in exploratory factor analysis. Edu-
cational and Psychological Measurement, 57, 725-740.

Dwyer, P. S. (1937) The determination of the factor loadings of a given test from the known factor
loadings of other tests. Psychometrika, 3, 173-178.

Horn, J. L. (1973) On extension analysis and its relation to correlations between variables and
factor scores. Multivariate Behavioral Research, 8(4), 477-489.

O’Connor, B. P. (2001). EXTENSION: SAS, SPSS, and MATLAB programs for extension analysis.
Applied Psychological Measurement, 25, p. 88.

Examples

## Not run:
EXTENSION_FA(data_RSE, Ncore=7, Next=3, higherorder=TRUE, roottest='MAP',

corkind='pearson', extract='PCA', rotate='promax', Nfacts=4,
NfactsHO=1, Ndatasets=100, percentile=95, salvalue=.40, numsals=3,
iterpaf=200, iterml=30, tolerml=.001, ppower=4)

EXTENSION_FA(data_NEOPIR, Ncore=12, Next=6, higherorder=TRUE, roottest='MAP',
corkind='pearson', extract='PCA', rotate='promax', Nfacts=4,
NfactsHO=1, Ndatasets=100, percentile=95, salvalue=.40, numsals=3,
iterpaf=200, iterml=30, tolerml=.001, ppower=4)

## End(Not run)
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FACTORABILITY The factorability of a correlation matrix

Description

Three methods for assessing the factorability of a correlation matrix

Usage

FACTORABILITY(data, corkind='pearson', Ncases=NULL, display=TRUE)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal. The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix. The
options are ’pearson’, ’kendall’, ’spearman’, and ’polychoric’. Required only if
the entered data is not a correlation matrix.

Ncases The number of cases for a correlation matrix. Required only if the entered data
is a correlation matrix.

display Display the results? The options are TRUE (the default) or FALSE.

Details

This function provides results from three methods of assessing whether a dataset or correlation
matrix is suitable for factor analysis:

1 – whether the determinant of the correlation matrix is > 0.00001;

2 – Bartlett’s test of whether a correlation matrix is significantly different an identity matrix; and

3 – the Kaiser-Meyer-Olkin measure of sampling adequacy

Value

A list with the following elements:

chisq The chi-squared value for Bartlett’s test

df The degrees of freedom for Bartlett’s test

pvalue The significance level for Bartlett’s test

Rimage The image correlation matrix

KMO The overall KMO value

KMOvars The KMO values for the variables

Author(s)

Brian P. O’Connor
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References

Bartlett, M. S. (1951). The effect of standardization on a chi square approximation in factor analy-
sis, Biometrika, 38, 337-344.

Cerny, C. A., & Kaiser, H. F. (1977). A study of a measure of sampling adequacy for factor-
analytic correlation matrices. Multivariate Behavioral Research, 12(1), 43-47.

Dziuban, C. D., & Shirkey, E. C. (1974). When is a correlation matrix appropriate for factor analy-
sis? Psychological Bulletin, 81, 358-361.

Kaiser, H. F., & Rice, J. (1974). Little Jiffy, Mark IV. Educational and Psychological Measure-
ment, 34, 111-117.

Examples

FACTORABILITY(data_RSE, corkind='pearson')

IMAGE_FA image factor analysis

Description

image factor analysis

Usage

IMAGE_FA(data, corkind, nfactors, rotate, ppower, display)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal.The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix. The
options are ’pearson’, ’kendall’, ’spearman’, and ’polychoric’. Required only if
the entered data is not a correlation matrix.

nfactors The number of factors to extract.

rotate The factor rotation method. The options are: ’promax’, ’varimax’, and ’none’.

ppower The power value to be used in a promax rotation (required only if rotate = ’pro-
max’). Suggested value: 3

display Display the results? The options are TRUE or FALSE.

Value

A list with the following elements:

eigenvalues The eigenvalues

loadingsNOROT The unrotated factor loadings

loadingsROT The rotated factor loadings (for varimax rotation)
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structure The structure matrix (for promax rotation)

pattern The pattern matrix (for promax rotation)

correls The correlations between the factors (for promax rotation)

Author(s)

Brian P. O’Connor

Examples

IMAGE_FA(data_NEOPIR, corkind='pearson', nfactors=5, rotate='varimax', ppower=3, display=TRUE)

LOCALDEP Provides the residual correlations after partialling the first component
out of a correlation matrix.

Description

Item response theory models are based on the assumption that the items display local independence.
The latent trait is presumed to be responsible for the associations between the items. Once the latent
trait is partialled out, the residual correlations between pairs of items should be negligible. Local
dependence exists when there is additional systematic covariance among the items. It can occur
when pairs of items have highly similar content or between sequentially presented items in a test.
Local dependence distorts IRT parameter estimates, it can artificially increase scale information, and
it distorts the latent trait, which becomes too heavily defined by the locally dependent items. The
LOCALDEP function partials out the first component (not the IRT latent trait) from a correlation
matrix. Examining the residual correlations is a preliminary, exploratory method of determining
whether local dependence exists. The function also displays the number of residual correlations
that are >= a range of values.

Usage

LOCALDEP(data, corkind, display)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal. The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix. The
options are ’pearson’, ’kendall’, ’spearman’, and ’polychoric’. Required only if
the entered data is not a correlation matrix.

display Display the results? The options are TRUE or FALSE.

Value

A list with the following elements:

correlations The corrrelation matrix

residcor The residualized corrrelation matrix
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Author(s)

Brian P. O’Connor

Examples

# Residual correlations for the Rosenberg Self-Esteem Scale (RSE)
LOCALDEP(data_RSE, corkind = 'pearson', display=TRUE)

MAP Velicer’s minimum average partial (MAP) test for number of factors

Description

Velicer’s minimum average partial (MAP) test for determining the number of factors focuses on
the common variance in a correlation matrix. It involves a complete principal components analy-
sis followed by the examination of a series of matrices of partial correlations. Specifically, on the
first step, the first principal component is partialled out of the correlations between the variables of
interest, and the average squared coefficient in the off-diagonals of the resulting partial correlation
matrix is computed. On the second step, the first two principal components are partialled out of
the original correlation matrix and the average squared partial correlation is again computed. These
computations are conducted for k (the number of variables) minus one steps. The average squared
partial correlations from these steps are then lined up, and the number of components is determined
by the step number in the analyses that resulted in the lowest average squared partial correlation.
The average squared coefficient in the original correlation matrix is also computed, and if this coef-
ficient happens to be lower than the lowest average squared partial correlation, then no components
should be extracted from the correlation matrix. Statistically, components are retained as long as
the variance in the correlation matrix represents systematic variance. Components are no longer
retained when there is proportionately more unsystematic variance than systematic variance (see
O’Connor, 2000, p. 397).

The MAP test is often more appropriate for factor analyses than it is for principal components
analyses. In Velicer’s words, "Component analysis has a variety of purposes. It can be used to find
a parsimonious description of the total variance of the variables involved; in this case, the [MAP
test] is not applicable. Principal component analysis is frequently used to express the variance
shared among variables in a set; that is, it is used as kind of a factor analysis" (1976, p. 321). "...
if component analysis is employed as an alternative to factor analysis or as a first-stage solution for
factor analysis, the stopping rule proposed here would seem the most appropriate." (1976, p. 326)’

Usage

MAP(data, corkind, display)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal. The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix. The
options are ’pearson’, ’kendall’, ’spearman’, and ’polychoric’. Required only if
the entered data is not a correlation matrix.

display Display the results? The options are TRUE or FALSE.
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Value

A list with the following elements:

eigenvalues eigenvalues

avgsqrs Velicer’s average squared correlations

nfMAP number of factors according to the original (1976) MAP test

nfMAP4 number of factors according to the revised (2000) MAP test

Author(s)

Brian P. O’Connor

References

Velicer, W. F. (1976). Determining the number of components from the matrix of partial correla-
tions. Psychometrika, 41, 321-327.

Velicer, W. F., Eaton, C. A., and Fava, J. L. (2000). Construct explication through factor or com-
ponent analysis: A review and evaluation of alternative procedures for determining the number of
factors or components. In R. D. Goffin & E. Helmes, eds., Problems and solutions in human as-
sessment (p.p. 41-71). Boston: Kluwer.

O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components
using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instrumentation, and
Computers, 32, 396-402.

Examples

# MAP test on the Harman correlation matrix
MAP(data_Harman, corkind='pearson', display=TRUE)

## Not run:
# MAP test on the Rosenberg Self-Esteem Scale (RSE) using Pearson correlations
MAP(data_RSE, corkind='pearson', display=TRUE)

# MAP test on the Rosenberg Self-Esteem Scale (RSE) using polychoric correlations
MAP(data_RSE, corkind='polychoric', display=TRUE)

# MAP test on the NEO-PI-R data
MAP(data_NEOPIR, display=TRUE)

## End(Not run)

MAXLIKE_FA maximum likelihood factor analysis

Description

maximum likelihood factor analysis
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Usage

MAXLIKE_FA(data, corkind, nfactors, tolerml, iterml, rotate, ppower, display)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal.The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix. The
options are ’pearson’, ’kendall’, ’spearman’, and ’polychoric’. Required only if
the entered data is not a correlation matrix.

nfactors The number of factors to extract.

tolerml The tolerance level.

iterml The maximum number of iterations.

rotate The factor rotation method. The options are: ’promax’, ’varimax’, and ’none’.

ppower The power value to be used in a promax rotation (required only if rotate = ’pro-
max’). Suggested value: 3

display Display the results? The options are TRUE or FALSE.

Value

A list with the following elements:

eigenvalues The eigenvalues

loadingsNOROT The unrotated factor loadings

loadingsROT The rotated factor loadings (for varimax rotation)

structure The structure matrix (for promax rotation)

pattern The pattern matrix (for promax rotation)

correls The correlations between the factors (for promax rotation)

Author(s)

Brian P. O’Connor

Examples

MAXLIKE_FA(data_RSE, corkind='pearson', nfactors = 2,
tolerml = .001, iterml = 50, rotate='promax', ppower=3, display=TRUE)
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NEVALSGT1 The number of eigenvalues greater than 1 in a correlation matrix.

Description

This function returns the count of the number of eigenvalues greater than 1 in a correlation matrix.
This value is often referred to as the "Kaiser", "Kaiser-Guttman", or "Guttman-Kaiser" rule for
determining the number of components or factors in a correlation matrix.

The rationale is that a component with an eigenvalue of 1 accounts for as much variance as a
single variable. Extracting components with eigenvalues of 1 or less than 1 would defeat the usual
purpose of component and factor analyses. Furthermore, the reliability of a component will always
be nonnegative when its eigenvalue is greater than 1. This rule is the default retention criteria in
SPSS and SAS.

There are a number of problems with this rule of thumb. Monte Carlo investigations have found that
its accuracy rate is not acceptably high (Zwick & Velicer, 1986)). The rule was originally intended
to be an upper bound for the number of components to be retained, but it is most often used as the
criterion to determine the exact number of components or factors. Guttman’s original proof applies
only to the population correlation matrix and the sampling error that occurs in specific samples
results in the rule often overestimating the number of components. The rule is also considered
overly mechanical, e.g., a component with an eigenvalue of 1.01 achieves factor status whereas a
component with an eigenvalue of .999 does not.

This function is included in this package for curiosity and research purposes.

Usage

NEVALSGT1(data, corkind, display)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal. The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix. The
options are ’pearson’, ’kendall’, ’spearman’, and ’polychoric’. Required only if
the entered data is not a correlation matrix.

display Display the eigenvalues and the number that are greater than one? The options
are TRUE or FALSE.

Value

The number of eigenvalues greater than 1.

Author(s)

Brian P. O’Connor
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References

Kaiser, H. F. (1960). The application of electronic computer to factor analysis. Educational and
Psychological Measurement, 20, 141-151.

Guttman, L. (1954). Some necessary conditions for common factor analysis. Psychometrika, 19,
149-161.

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use
of exploratory factor analysis in psychological research. Psychological Methods, 4, 272-299.

Hayton, J. C., Allen, D. G., Scarpello, V. (2004). Factor retention decisions in exploratory fac-
tor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7, 191-205.

Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of
components to retain. Psychological Bulletin, 99, 432-442.

Examples

## Not run:
# test on the Harman correlation matrix
NEVALSGT1(data_Harman, corkind='pearson', display=TRUE)

# test on the Rosenberg Self-Esteem Scale (RSE) using Pearson correlations
NEVALSGT1(data_RSE, corkind='pearson', display=TRUE)

# test on the Rosenberg Self-Esteem Scale (RSE) using polychoric correlations
NEVALSGT1(data_RSE, corkind='polychoric', display=TRUE)

## End(Not run)

PARALLEL parallel analysis of eigenvalues (random data only)

Description

This function generates eigenvalues for random data sets with specified numbers of variables and
cases. Typically, the eigenvalues derived from an actual data set are compared to the eigenvalues
derived from the random data. In Horn’s original description of this procedure, the mean eigenval-
ues from the random data served as the comparison baseline, whereas the more common current
practice is to use the eigenvalues that correspond to the desired percentile (typically the 95th) of
the distribution of random data eigenvalues. Factors or components are retained as long as the ith
eigenvalue from the actual data is greater than the ith eigenvalue from the random data. This func-
tion produces only random data eigenvalues and it does not take real data as input. See the rawpar
function in this package for parallel analyses that also involve real data.

Usage

PARALLEL(Nvars, Ncases, Ndatasets=100, extract='PCA', percentile='95',
corkind='pearson', display=TRUE)
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Arguments

Nvars The number of variables.

Ncases The number of cases.

Ndatasets An integer indicating the # of random data sets for parallel analyses.

extract The factor extraction method. The options are: ’PAF’ for principal axis / com-
mon factor analysis; ’PCA’ for principal components analysis. ’image’ for im-
age analysis.

percentile An integer indicating the percentile from the distribution of parallel analysis
random eigenvalues. Suggested value: 95

corkind The kind of correlation matrix to be used for the random data. The options are
’pearson’, ’kendall’, and ’spearman’.

display Display the results? The options are TRUE or FALSE.

Details

Although the PARALLEL function permits users to specify PCA or PAF or image as the factor
extraction method, users should be aware of an unresolved issue in the literature. Principal compo-
nents eigenvalues are often used to determine the number of common factors. This is the default
in most statistical software packages, and it is the primary practice in the literature. It is also
the method used by many factor analysis experts, including Cattell, who often examined principal
components eigenvalues in his scree plots to determine the number of common factors. But others
believe that this common practice is wrong. Principal components eigenvalues are based on all
of the variance in correlation matrices, including both the variance that is shared among variables
and the variances that are unique to the variables. In contrast, principal axis eigenvalues are based
solely on the shared variance among the variables. The procedures are qualitatively different. Some
therefore claim that the eigenvalues from one extraction method should not be used to determine
the number of factors for another extraction method. The issue remains neglected and unsettled.
The PAF option in the extract argument for this function was included for research purposes. It is
otherwise probably best to use PCA as the extraction method for regular data analyses. The MAP
test (also in this package) is probably more suitable for determining the number of common factors.

Value

The random data eigenvalues

Author(s)

Brian P. O’Connor

References

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika,
30, 179-185.

Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of
components to retain. Psychological Bulletin, 99, 432-442.

O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components
using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instrumentation, and
Computers, 32, 396-402.



18 PA_FA

Examples

## Not run:
PARALLEL(Nvars=15, Ncases=250, Ndatasets=100, extract='PCA', percentile=95,

corkind='pearson', display=TRUE)

## End(Not run)

PA_FA principal axis (common) factor analysis

Description

principal axis (common) factor analysis with squared multiple correlations as the initial communal-
ity estimates

Usage

PA_FA(data, corkind, nfactors, iterpaf, rotate, ppower, display)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal.The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix. The
options are ’pearson’, ’kendall’, ’spearman’, and ’polychoric’. Required only if
the entered data is not a correlation matrix.

nfactors The number of factors to extract.

iterpaf The maximum number of iterations.

rotate The factor rotation method. The options are: ’promax’, ’varimax’, and ’none’.

ppower The power value to be used in a promax rotation (required only if rotate = ’pro-
max’). Suggested value: 3

display Display the results? The options are TRUE or FALSE.

Value

A list with the following elements:

eigenvalues The eigenvalues

loadingsNOROT The unrotated factor loadings

loadingsROT The rotated factor loadings (for varimax rotation)

structure The structure matrix (for promax rotation)

pattern The pattern matrix (for promax rotation)

correls The correlations between the factors (for promax rotation)

Author(s)

Brian P. O’Connor
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Examples

PA_FA(data_RSE, corkind="pearson", nfactors = 2, iterpaf = 50,
rotate='promax', ppower=3, display="yes")

PCA principal components analysis

Description

principal components analysis

Usage

PCA(data, corkind, nfactors, rotate, ppower, display)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal.The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix. The
options are ’pearson’, ’kendall’, ’spearman’, and ’polychoric’. Required only if
the entered data is not a correlation matrix.

nfactors The number of components to extract.

rotate The factor rotation method. The options are: ’promax’, ’varimax’, and ’none’.

ppower The power value to be used in a promax rotation (required only if rotate = ’pro-
max’). Suggested value: 3

display Display the results? The options are TRUE or FALSE.

Value

A list with the following elements:

eigenvalues The eigenvalues

loadingsNOROT The unrotated factor loadings

loadingsROT The rotated factor loadings (for varimax rotation)

structure The structure matrix (for promax rotation)

pattern The pattern matrix (for promax rotation)

correls The correlations between the factors (for promax rotation)

Author(s)

Brian P. O’Connor

Examples

PCA(data_RSE, corkind='pearson', nfactors=2, rotate='promax', ppower=3, display=TRUE)
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POLYCHORIC_R polychoric correlation matrix

Description

This function produces a polychoric correlation matrix

Usage

POLYCHORIC_R(data, method)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables. All values should be integers, as in the values for Likert rating scales.

method (optional) The source package used to estimate the polychoric correlations: ’Rev-
elle’ for the psych package (the default); ’Fox’ for the polycor package.

Details

Applying familiar factor analysis procedures to item-level data can produce misleading or un-
interpretable results. Common factor analysis, maximum likelihood factor analysis, and principal
components analysis produce meaningful results only if the data are continuous and multivariate
normal. Item-level data almost never meet these requirements.

The correlation between any two items is affected by both their substantive (content-based) simi-
larity and by the similarities of their statistical distributions. Items with similar distributions tend
to correlate more strongly with one another than do with items with dissimilar distributions. Easy
or commonly endorsed items tend to form factors that are distinct from difficult or less commonly
endorsed items, even when all of the items measure the same unidimensional latent variable. Item-
level factor analyses using traditional methods are almost guaranteed to produce at least some fac-
tors that are based solely on item distribution similarity. The items may appear multidimensional
when in fact they are not. Conceptual interpretations of the nature of item-based factors will often
be erroneous.

A common, expert recommendation is that factor analyses of item-level data (e.g., for binary re-
sponse options or for ordered response option categories) or should be conducted on matrices of
polychoric correlations. Factor analyses of polychoric correlation matrices are essentially factor
analyses of the relations among latent response variables that are assumed to underlie the data and
that are assumed to be continuous and normally distributed.

This is a cpu-intensive function. It is probably not necessary when there are > 8 item response
categories.

By default, the function uses the polychoric function from William Revelle’s’ psych package to
produce a full matrix of polychoric correlations. The function uses John Fox’s hetcor function from
the polycor package when requested or when the number of item response categories is > 8.

The hetcor function from the polycor package requires a dataframe as input. It also "computes a het-
erogenous correlation matrix, consisting of Pearson product-moment correlations between numeric
variables, polyserial correlations between numeric and ordinal variables, and polychoric correla-
tions between ordinal variables." This means that polychoric correlations will not be computed if
a variable is numeric. A numeric variable must first be converted to an ordinal variable (ordered
factor), by the user, for the function to produce polychoric correlations for that variable.’
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Value

The polychoric correlation matrix

Author(s)

Brian P. O’Connor

Examples

## Not run:
# polychoric correlation matrix for the Rosenberg Self-Esteem Scale (RSE)
Rpoly <- POLYCHORIC_R(data_RSE, method = 'Fox')
Rpoly

## End(Not run)

PROCRUSTES factor solution congruence

Description

This function conducts Procrustes rotations of a factor loading matrix to a target factor matrix, and it
computes the factor solution congruence and the root mean square residual (based on comparisons
of the entered factor loading matrix with the Procrustes-rotated matrix).

Usage

PROCRUSTES(loadings, target, type, display)

Arguments

loadings The loading matrix that will be aligned with the target.

target The target loading matrix.

type The options are ’orthogonal’ or ’oblique’ rotation.

display Display the results? The options are TRUE or FALSE.

Details

This function conducts Procrustes rotations of a factor loading matrix to a target factor matrix,
and it computes the factor solution congruence and the root mean square residual (based on com-
parisons of the entered factor loading matrix with the Procrustes-rotated matrix). The orthogonal
Procrustes rotation is based on Schonemann (1966; see also McCrae et al., 1996). The oblique
Procrustes rotation is based on Hurley and Cattell (1962). The factor solution congruence is the
Tucker-Wrigley-Neuhaus factor solution congruence coefficient (see Guadagnoli & Velicer, 1991;
and ten Berge, 1986, for reviews).
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Value

A list with the following elements:

loadingsPROC The Procrustes-rotated loadings

congruence The factor solution congruence after factor Procrustes rotation

rmsr The root mean square residual

residmat The residual matrix after factor Procrustes rotation

Author(s)

Brian P. O’Connor

References

Guadagnoli, E., & Velicer, W. (1991). A comparison of pattern matching indices. Multivariate
Behavior Research, 26, 323-343.

Hurley, J. R., & Cattell, R. B. (1962). The Procrustes program: Producing direct rotation to test a
hypothesized factor structure. Behavioral Science, 7, 258-262.

McCrae, R. R., Zonderman, A. B., Costa, P. T. Jr., Bond, M. H., & Paunonen, S. V. (1996). Evalu-
ating replicability of factors in the revised NEO personality inventory: Confirmatory factor analysis
versus Procrustes rotation. Journal of Personality and Social Psychology, 70, 552-566.

Schonemann, P. H. (1966). A generalized solution of the orthogonal Procrustes problem. Psy-
chometrika, 31, 1-10.

ten Berge, J. M. F. (1986). Some relationships between descriptive comparisons of components
from different studies. Multivariate Behavioral Research, 21, 29-40.

Examples

# RSE data
loadings <- PCA(data_RSE[1:150,], nfactors = 2, rotate='varimax', display=FALSE)
target <- PCA(data_RSE[151:300,], nfactors = 2, rotate='varimax', display=FALSE)

PROCRUSTES(loadings$loadingsROT, target$loadingsROT, type = 'orthogonal', display=TRUE)

PROMAX promax rotation

Description

promax rotation

Usage

PROMAX(loadings, ppower, display)



RAWPAR 23

Arguments

loadings A loading matrix.

ppower The exponent for the promax target matrix. ’ppower’ must be 1 or greater. ’4’
is a conventional value.

display Display the results? The options are TRUE or FALSE.

Value

A list with the following elements:

structure The structure matrix (for promax rotation)

pattern The pattern matrix (for promax rotation)

correls The correlations between the factors (for promax rotation)

Author(s)

Brian P. O’Connor

Examples

## Not run:
loadings <- PCA(data_NEOPIR, corkind='pearson', nfactors = 5, rotate='none', display=TRUE)

PROMAX(loadings, ppower = 3, display=TRUE)

## End(Not run)

RAWPAR parallel analysis of eigenvalues (with real data as input)

Description

The parallel analysis procedure for deciding on the number of components or factors involves ex-
tracting eigenvalues from random data sets that parallel the actual data set with regard to the number
of cases and variables. For example, if the original data set consists of 305 observations for each
of 8 variables, then a series of random data matrices of this size (305 by 8) would be generated,
and eigenvalues would be computed for the correlation matrices for the original, real data and for
each of the random data sets. The eigenvalues derived from the actual data are then compared to
the eigenvalues derived from the random data. In Horn’s original description of this procedure, the
mean eigenvalues from the random data served as the comparison baseline, whereas the more com-
mon current practice is to use the eigenvalues that correspond to the desired percentile (typically
the 95th) of the distribution of random data eigenvalues. Factors or components are retained as long
as the ith eigenvalue from the actual data is greater than the ith eigenvalue from the random data.

Usage

RAWPAR(data, randtype, extract, Ndatasets, percentile,
corkind, corkindRAND, Ncases, display)
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Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal. The function internally
determines whether the data are a correlation matrix.

randtype The kind of random data to be used in the parallel analysis: ’generated’ for
random normal data generation; ’permuted’ for perumatations of the raw data
matrix.

extract The factor extraction method. The options are: ’PAF’ for principal axis / com-
mon factor analysis; ’PCA’ for principal components analysis. ’image’ for im-
age analysis.

Ndatasets An integer indicating the # of random data sets for parallel analyses.

percentile An integer indicating the percentile from the distribution of parallel analysis
random eigenvalues to be used in determining the # of factors. Suggested value:
95

corkind The kind of correlation matrix to be used if data is not a correlation matrix. The
options are ’pearson’, ’kendall’, ’spearman’, and ’polychoric’. Required only if
the entered data is not a correlation matrix.

corkindRAND The kind of correlation matrix to be used for the random data analyses. The
options are ’pearson’, ’kendall’, ’spearman’, and ’polychoric’. The default is
’pearson’.

Ncases The number of cases upon which a correlation matrix is based. Required only if
data is a correlation matrix.

display Display the results? The options are TRUE or FALSE.

Details

Although the RAWPAR function permits users to specify PCA or PAF as the factor extraction
method, users should be aware of an unresolved issue in the literature. Principal components eigen-
values are often used to determine the number of common factors. This is the default in most
statistical software packages, and it is the primary practice in the literature. It is also the method
used by many factor analysis experts, including Cattell, who often examined principal components
eigenvalues in his scree plots to determine the number of common factors. But others believe that
this common practice is wrong. Principal components eigenvalues are based on all of the variance
in correlation matrices, including both the variance that is shared among variables and the variances
that are unique to the variables. In contrast, principal axis eigenvalues are based solely on the shared
variance among the variables. The two procedures are qualitatively different. Some therefore claim
that the eigenvalues from one extraction method should not be used to determine the number of
factors for the other extraction method. The issue remains neglected and unsettled. The PAF option
in the extract argument for this function was included for research purposes. It is otherwise proba-
bly best to use PCA as the extraction method for regular data analyses. The MAP test (also in this
package) is probably more suitable for determining the number of common factors.

Polychoric correlations are time-consuming to compute. While polychoric correlations should prob-
ably be specified for the real data eigenvalues when data consists of item-level responses, polychoric
correlations should probably not be specified for the random data computations, even for item-level
data. The procedure would take much time and it is unnecessary. Polychoric correlations are esti-
mates of what the Pearson correlations would be had the real data been continuous. For item-level
data, specify polychoric correlations for the real data eigenvalues (corkind=’polychoric’) and use
the default for the random data eigenvalues (corkindRAND=’pearson’). The option for using poly-
choric correlations for the random data computations (corkindRAND=’polychoric’) was provided
for research purposes.
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Value

A list with:

eigenvalues the eigenvalues for the real and random data

nfPA the number of factors based on the parallel analysis

Author(s)

Brian P. O’Connor

References

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika,
30, 179-185.

Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of
components to retain. Psychological Bulletin, 99, 432-442.

O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components
using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instrumentation, and
Computers, 32, 396-402.

Examples

## Not run:
# parallel analysis of the WISC data
RAWPAR(data_WISC, randtype='generated', extract='PCA', Ndatasets=100,

percentile=95, corkind='pearson', display=TRUE)

# parallel analysis of the Harman correlation matrix
RAWPAR(data_Harman, randtype='generated', extract='PCA', Ndatasets=100,

percentile=95, corkind='pearson', Ncases=305, display=TRUE)

# parallel analysis of the Rosenberg Self-Esteem Scale (RSE)
RAWPAR(data_RSE, randtype='permuted', extract='PCA', Ndatasets=100,

percentile=95, corkind='pearson', corkindRAND='pearson', display=TRUE)

# parallel analysis of the Rosenberg Self-Esteem Scale (RSE) using polychoric correlations
RAWPAR(data_RSE, randtype='generated', extract='PCA', Ndatasets=100,

percentile=95, corkind='polychoric', display=TRUE)

# parallel analysis of the NEO-PI-R data
RAWPAR(data_NEOPIR, randtype='generated', extract='PCA', Ndatasets=100,

percentile=95, corkind='pearson', Ncases=305, display=TRUE)

## End(Not run)

ROOTFIT factor fit coefficients

Description

A variety of fit coefficients for the possible N-factor solutions in exploratory factor analysis
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Usage

ROOTFIT(data, corkind, Ncases, extract, verbose)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal.The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix. The
options are ’pearson’, ’kendall’, ’spearman’, and ’polychoric’. Required only if
the entered data is not a correlation matrix.

Ncases The number of cases upon which a correlation matrix is based. Required only if
data is a correlation matrix.

extract The factor extraction method. The options are: ’PAF’ for principal axis / com-
mon factor analysis; ’PCA’ for principal components analysis. ’ML’ for maxi-
mum likelihood estimation.

verbose Display descriptions of the fit coefficients? The options are ’TRUE’ (default) or
’FALSE’.

Value

A list with eigenvalues & fit coefficients.

Author(s)

Brian P. O’Connor

Examples

# RSE data
ROOTFIT(data_RSE, corkind='pearson', extract='ML')
ROOTFIT(data_RSE, corkind='pearson', extract='PCA', verbose = 'FALSE')

## Not run:
# NEO-PI-R data
ROOTFIT(data_NEOPIR, corkind='pearson', extract='ML')
ROOTFIT(data_NEOPIR, corkind='pearson', extract='PCA', verbose = 'FALSE')

## End(Not run)

SALIENT The salient loadings criterion for determing the number of factors.

Description

This is a procedure for determining the number of factors recommended by Gorsuch. Factors are
retained when they consist of a specified minimum number (or more) variables that have a specified
minimum (or higher) loading value.

Usage

SALIENT(data, salvalue, numsals, corkind, display)
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Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal. The function internally
determines whether the data are a correlation matrix.

salvalue The loading value that is considered salient. Default = .40

numsals The required number of salient loadings for a factor. Default = 3

corkind The kind of correlation matrix to be used if data is not a correlation matrix. The
options are ’pearson’, ’kendall’, ’spearman’, and ’polychoric’. Required only if
the entered data is not a correlation matrix.

display Display the loadings? The options are TRUE or FALSE.

Value

The number of factors according to the salient loadings criterion.

Author(s)

Brian P. O’Connor

References

Gorsuch, R. L. (1997a). Exploratory factor analysis: Its role in item analysis. Journal of Personality
Assessment, 68, 532-560.

Boyd, K. C. (2011). Factor analysis. In M. Stausberg & S. Engler (Eds.), The Routledge Hand-
book of Research Methods in the Study of Religion (pp. 204-216). New York: Routledge.

Examples

# test on the Harman correlation matrix
SALIENT(data_Harman, salvalue=.4, numsals=3, corkind='pearson', display=TRUE)

## Not run:
# test on the Rosenberg Self-Esteem Scale (RSE) using Pearson correlations
SALIENT(data_RSE, salvalue=.4, numsals=3, corkind='pearson', display=TRUE)

# test on the Rosenberg Self-Esteem Scale (RSE) using polychoric correlations
SALIENT(data_RSE, salvalue=.4, numsals=3, corkind='polychoric', display=TRUE)

## End(Not run)

SESCREE Standard Error Scree test for the number of components.

Description

This is a linear regression operationalization of the scree test for determining the number of com-
ponents. The results are purportedly identical to those from the visual scree test. The test is based
on the standard error of estimate values that are computed for the set of eigenvalues in a scree plot.
The number of components to retain is the point where the standard error exceeds 1/m, where m is
the numbers of variables.
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Usage

SESCREE(data, corkind, display)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal. The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix. The
options are ’pearson’, ’kendall’, ’spearman’, and ’polychoric’. Required only if
the entered data is not a correlation matrix.

display Display the eigenvalues, slopes, SE estimates, & the number of components?
The options are TRUE or FALSE.

Value

The number of components according to the Standard Error Scree test.

Author(s)

Brian P. O’Connor

References

Zoski, K., & Jurs, S. (1996). An objective counterpart to the visual scree test for factor analysis:
the standard error scree test. Educational and Psychological Measurement, 56(3), 443-451.

Examples

# test on the Harman correlation matrix
SESCREE(data_Harman, corkind='pearson', display=TRUE)

## Not run:
# test on the Rosenberg Self-Esteem Scale (RSE) using Pearson correlations
SESCREE(data_RSE, corkind='pearson', display=TRUE)

# test on the Rosenberg Self-Esteem Scale (RSE) using polychoric correlations
SESCREE(data_RSE, corkind='polychoric', display=TRUE)

## End(Not run)

VARIMAX varimax rotation

Description

varimax rotation

Usage

VARIMAX(loadings, display)
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Arguments

loadings A loading matrix.

display Display the results? The options are TRUE or FALSE.

Value

The varimax-rotated loadings

Author(s)

Brian P. O’Connor

Examples

## Not run:
loadings <- PCA(data_NEOPIR, corkind='pearson', nfactors = 5, rotate='none', display=TRUE)

VARIMAX(loadings, display=TRUE)

## End(Not run)
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