

PGP® Command Line

User's Guide
10.2

The software described in this book is furnished under a license agreement and may be used only in accordance with the terms of the agreement.
Version 10.2.0. Last updated: July 2011.

Legal Notice
Copyright (c) 2011 Symantec Corporation. All rights reserved.
Symantec, the Symantec Logo, PGP, Pretty Good Privacy, and the PGP logo are trademarks or registered trademarks of Symantec Corporation or its
affiliates in the U.S. and other countries. Other names may be trademarks of their respective owners.
The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation/reverse engineering.
No part of this document may be reproduced in any form by any means without prior written authorization of Symantec Corporation and its licensors, if
any.
THE DOCUMENTATION IS PROVIDED"AS IS"AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING
ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT
TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. SYMANTEC CORPORATION SHALL NOT BE LIABLE FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION.
THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.
The Licensed Software and Documentation are deemed to be commercial computer software as defined in FAR 12.212 and subject to restricted rights
as defined in FAR Section 52.227-19 "Commercial Computer Software - Restricted Rights" and DFARS 227.7202, et seq. “Commercial Computer
Software and Commercial Computer Software Documentation”, as applicable, and any successor regulations. Any use, modification, reproduction
release, performance, display or disclosure of the Licensed Software and Documentation by the U.S. Government shall be solely in accordance with
the terms of this Agreement.
Symantec Corporation
350 Ellis Street
Mountain View, CA 94043
Symantec Home Page (http://www.symantec.com)

Printed in the United States of America.
10 9 8 7 6 5 4 3 2 1

http://www.symantec.com/

Contents

About PGP Command Line 1
Important Concepts 1
Technical Support 2

Contacting Technical Support 3
Licensing and registration 3
Customer service 3
Support agreement resources 4

Installing 5
Install Location 5
Supported Platforms 6
System Requirements 6

Windows 7 and Vista 7
Windows Server 2008 and 2003 7
Windows XP 8
IBM AIX 9
HP-UX 11i 9
Solaris 9 and 10 9
Red Hat Enterprise Linux, SLES, and Fedora Core 10
Mac OS X 10

Installing on AIX 10
Installing on AIX 10
Changing the Home Directory on AIX 11
Uninstalling on AIX 12

Installing on HP-UX 12
Installing on HP-UX 12
Changing the Home Directory on HP-UX 13
Installing to a Non-Default Directory on HP-UX 13
Uninstalling on HP-UX 14

Installing on Mac OS X 14
Installing on Mac OS X 14
Changing the Home Directory on Mac OS X 15
Uninstalling on Mac OS X 15

Installing on Red Hat Enterprise Linux, SLES, or Fedora Core 15
Installing on Red Hat Enterprise Linux or Fedora Core 15
Changing the Home Directory on Linux or Fedora Core 16
Uninstalling on Linux or Fedora Core 17

Installing on Solaris 17
Installing on Solaris 17
Changing the Home Directory on Solaris 18
Uninstalling on Solaris 19

Installing on Windows 19
PGP Command Line for Windows and PGP Desktop on the Same System 19
To Install on Windows 19
Changing the Home Directory on Windows 20
Uninstalling on Windows 21

ii Contents

Upgrading 23

Relocating 23

Licensing 25
Overview 25
License Recovery 26
Using a License Number 26
Using a License Authorization 27
Re-Licensing 28
Through a Proxy Server 29

The Command-Line Interface 31
Overview 31
Flags and Arguments 32

Flags 33
Arguments 33

Configuration File 36
Keyserver Configuration File Settings 39

Environment Variables 40
Standard Input, Output, and Error 41

Redirecting an Existing File 41
Entering Data 42

Specifying a Key 42
'Secure' Options 43

First Steps 45
Overview 45
Creating Your Keypair 46
Protecting Your Private Key 47
Distributing Your Public Key 48

Posting Your Public Key to a Keyserver 48
Exporting Your Public Key to a Text File 49

Getting the Public Keys of Others 49
Finding a Public Key on a Keyserver 50
Importing a Public Key from a Keyserver 50

Verifying Keys 51

Cryptographic Operations 53
Overview 53
Commands 54

--armor (-a) 54
--clearsign 55
--decrypt 57

Contents

iii

--detached (-b) 59
--dump-packets, --list-packets 60
--encrypt (-e) 61
--export-session-key 64
--list-sda 65
--list-archive 65
--sign (-s) 66
--symmetric (-c) 68
--verify 69

Key Listings 71
Overview 71
Commands 71

--fingerprint 72
--fingerprint-details 72
--list-key-details 74
--list-keys (-l) 75
--list-keys-xml 76
--list-sig-details 76
--list-sigs 77
--list-userids 77

Working with Keyservers 79
Overview 79
Commands 79

--keyserver-disable 79
--keyserver-recv 80
--keyserver-remove 81
--keyserver-search 82
--keyserver-send 82
--keyserver-update 83

Managing Keys 85
Overview 87
Commands 87

--add-adk 87
--add-photoid 88
--add-preferred-cipher 88
--add-preferred-compression-algorithm 89
--add-preferred-email-encoding 89
--add-preferred-hash 90
--add-revoker 90
--add-userid 91
--cache-passphrase 91
--change-passphrase 92
--clear-key-flag 93
--disable 93
--enable 94
--export, --export-key-pair 94

iv Contents

--export-photoid 96
--gen-key 97
--gen-revocation 99
--gen-subkey 100
--get-email-encoding 100
--import 101
--join-key 102
--join-key-cache-only 105
--key-recon-send 106
--key-recon-recv-questions 107
--key-recon-recv 108
--remove 109
--remove-adk 109
--remove-all-adks 110
--remove-all-photoids 110
--remove-all-revokers 110
--remove-expiration-date 111
--remove-key-pair 111
--remove-photoid 111
--remove-preferred-cipher 112
--remove-preferred-compression-algorithm 112
--remove-preferred-email-encoding 113
--remove-preferred-hash 113
--remove-preferred-keyserver 114
--remove-revoker 114
--remove-sig 115
--remove-subkey 115
--remove-userid 116
--revoke 116
--revoke-sig 117
--revoke-subkey 117
--send-shares 118
--set-expiration-date 118
--set-key-flag 119
--set-preferred-ciphers 119
--set-preferred-compression-algorithms 120
--set-preferred-email-encodings 120
--set-preferred-hashes 121
--set-preferred-keyserver 121
--set-primary-userid 122
--set-trust 122
--sign-key 123
--sign-userid 124
--split-key 125

Working with Email 129
Overview 129
Encrypt Email 130
Sign Email 131
Decrypt Email 132
Verify Email 132
Annotate Email 132

Contents

v

Working with a PGP Key Management Server 135
Overview 136

New Terms and Concepts 136
Relationship with a PGP KMS 137
Authentication for PGP KMS Operations 137

--decrypt 139
--encrypt (-e) 139
--create-mak 140
--export-mak 140
--export-mak-pair 141

Export Format 142
--import-mak 143
--request-cert 144
--edit-mak 144
--search-mak 145
--delete-mak 146
--create-mek-series 147
--edit-mek-series 147
--search-mek-series 148
--delete-mek-series 149
--create-mek 150
--import-mek 150
--export-mek 151
--edit-mek 151
--search-mek 152
--create-msd 153
--export-msd 154
--edit-msd 154
--search-msd 155
--delete-msd 156
--create-consumer 157
--search-consumer 157
--check-certificate-validity 158

Miscellaneous Commands 161
Overview 161
Commands 162

--agent 162
--create-keyrings 162
--help (-h) 163
--license-authorize 163
--purge-all-caches 163
--purge-keyring-cache 163
--purge-passphrase-cache 163
--speed-test 164
--version 164
--wipe 165
--check-sigs 165
--check-userids 165

vi Contents

Options 167
Using Options 167
Boolean Options 168

--alternate-format 168
--annotate 168
--archive 169
--banner 170
--biometric 170
--buffered-stdio 170
--compress, --compression 170
--details 171
--email 171
--encrypt-to-self 172
--eyes-only 172
--fast-key-gen 172
--fips-mode, --fips 173
--force (-f) 173
--halt-on-error 173
--import-certificates 173
--keyring-cache 173
--large-keyrings 174
--license-recover 174
--local-mode 175
--marginal-as-valid 175
--master-key 175
--pass-through 175
--passphrase-cache 176
--photo 176
--quiet (-q) 176
--recursive 176
--reverse-sort, --reverse 176
--sda 177
--skep 177
--text-mode, --text (-t) 177
--truncate-passphrase 178
--verbose (-v) 178
--warn-adk 178
--wrapper-key 178
--xml 178

Integer Options 179
--3des 180
--aes128, --aes192, --aes256 180
--bits, --encryption-bits 180
--blowfish 181
--bzip2 181
--cast5 181
--creation-days 182
--expiration-days 182
--idea 182
--index 183
--keyring-cache-timeout 183

Contents

vii

--keyserver-timeout 183
--md5 184
--passphrase-cache-timeout 184
--partitioned 184
--pgp-mime 185
--ripemd160 185
--sha, --sha256, --sha384, --sha512 186
--signing-bits 187
--skep-timeout 187
--threshold 187
--trust-depth 187
--twofish 188
--wipe-input-passes 188
--wipe-overwrite-passes 188
--wipe-passes 188
--wipe-temp-passes 189
--zip 189
--zlib 189

Enumeration Options 189
--auto-import-keys 189
--cipher 190
--compression-algorithm 191
--compression-level 191
--email-encoding 192
--enforce-adk 192
--export-format 192
--hash 193
--import-format 194
--input-cleanup 194
--key-flag 195
--key-type 195
--manual-import-key-pairs 196
--manual-import-keys 196
--overwrite 196
--sig-type 197
--sort-order, --sort 197
--tar-cache-cleanup 198
--target-platform 198
--temp-cleanup 198
--trust 199

String Options 199
--basic-constraint 199
--city, --common-name, --contact-email, --country 199
--comment 199
--creation-date 200
--default-key 200
--expiration-date 200
--export-passphrase 201
--extended-key-usage 201
--home-dir 201
--key-usage 201
--local-user (-u), --user 202
--license-name, --license-number, --license-organization, --license-email 202
--new-passphrase 203

viii Contents

--organization, --organizational-unit 203
--output (-o) 203
--output-file 204
--passphrase 204
--preferred-keyserver 204
--private-keyring 205
--proxy-passphrase, --proxy-server, --proxy-username 205
--public-keyring 205
--recon-server 206
--regular-expression 206
--random-seed 206
--root-path 207
--share-server 207
--state 207
--status-file 207
--subject-alternative-name 208
--symmetric-passphrase 208
--temp-dir 208

List Options 209
--additional-recipient 209
--adk 209
--input (-i) 209
--question / --answer 210
--keyserver 210
--recipient (-r) 211
--revoker 211
--share 211

File Descriptors 212
--auth-passphrase-fd, auth-passphrase-fd8 212
--export-passphrase-fd, --export-passphrase-fd8 213
--new-passphrase-fd, --new-passphrase-fd8 213
--passphrase-fd 213
--proxy-passphrase-fd, --proxy-passphrase-fd8 214
--symmetric-passphrase-fd, --symmetric-passphrase-fd8 214

Lists 215
Basic Key List 215

The Default Key Column 216
The Algorithm Column 216
The Type Column 217
The Size/Type Column 217
The Flags Column 218
The Key ID Column 219
The User ID Column 219

Detailed Key List 220
Main Key Details 221
Subkey Details 227
ADK Details 229
Revoker Details 230

Key List in XML Format 230
Elements with fixed settings 234
X.509 Signatures 236

Contents

ix

Detailed Signature List 237

Usage Scenarios 243
Secure Off-Site Backup 243
PGP Command Line and PGP Desktop 243
Compression Saves Money 244
Surpasses Legal Requirements 245

Searching for Data on a PGP KMS 247
Overview 247

Operators 248
Types 248
Keyword Listing 248

Example Searches 250
For Linux and Mac OSX 250
For Windows 250

More About Types 251
Time Fields 251
Boolean Values 251
Open PGP Algorithms 252
Open PGP Key Usage Flags 252
Key Modes 252

Creating a Certificate Signing Request 255
About CSRs 255
Creating a CSR using PGP Command Line 256

Codes and Messages 259
Messages Without Codes 259
Messages With Codes 260

Parser 260
Keyrings 261
Wipe 262
Encrypt 262
Sign 262
Decrypt 263
Speed Test 263
Key edit 264
Keyserver 269
Key Reconstruction 270
Licensing 271
PGP Universal Server 272
General 272

Exit Codes 280

x Contents

Frequently Asked Questions 283
Key Used for Encryption 283
"Invalid" Keys 283
Maximum File Size 284
Programming and Scripting Languages 285
File Redirection 285
Protecting Passphrases 285

Quick Reference 287
Commands 287
Options 290
Environment Variables 294
Configuration File Variables 295

Index 299

PGP Command Line is a command line product for performing cryptography and key
management tasks. It operate as a stand-alone product that performs those tasks
locally. It can also operate as a client product that interacts PGP Universal Server to
perform those tasks.

With PGP Command Line, you can write command line scripts that use PGP technology
to perform these tasks:

 Encrypt, sign, and decrypt individual files or collections of files

 Create and manage keys on a local keyring

 Access keys on PGP Universal Server and other keyservers

 Manage keys on PGP Universal Server

 Create consumer (user) accounts on PGP Universal Server

 Manage X.509 certificates, including requesting and validating a certificate

 Encrypt, sign, and decrypt email

You can insert PGP Command Line commands into scripts for automating tasks. PGP
Command Line commands are easily added to shell scripts or scripts written with
scripting languages, such as Perl or Python.

For example, consider a company that regularly backs up a large sensitive database to
an off-site location. A script runs automatically to perform the backup. This company
can add PGP Command Line commands to that script to compress and encrypt the
database before transmitting it to the off-site location. It can also add commands to
decrypt and uncompress the database when it arrives at its destination.

In This Chapter

Important Concepts .. 1

Technical Support ... 2

Important Concepts
The following concepts are important for you to understand:

 environment variables: Environment variables control various aspects of PGP
Command Line behavior; for example, the location of the PGP Command Line
home directory. Environment variables are established on the computer running
PGP Command Line.

1 About PGP Command Line

2 About PGP Command Line

Technical Support

 configuration file variables: When PGP Command Line starts, it reads the
configuration file, which includes special configuration variables and values for
each variable. These settings affect how PGP Command Line operates.
Configuration file variables can be changed permanently by editing the
configuration file or overridden on a temporary basis by specifying a value for a
configuration file variable on the command line.

 Self-Decrypting Archives (SDAs): PGP Command Line lets you create SDAs,
compressed and conventionally encrypted archives that require a passphrase to
decrypt. SDAs contain an executable for the target platform, which means the
recipient of an SDA does not need to have any PGP software installed to open the
archive. You can thus securely transfer data to recipients with no PGP software
installed. You will have to communicate the passphrase of the SDA to the
recipient, however.

 Additional Decryption Key (ADK): PGP Command Line supports the use of an
ADK, which is an additional key to which files or messages are encrypted, thus
allowing the keeper of the ADK to retrieve data or messages as well as the
intended recipient. Use of an ADK ensures that your corporation has access to all
its proprietary information even if employee keys are lost or become unavailable.

 PGP Zip archives: The PGP Zip feature lets you encrypt/sign groups of files or
entire directories into a single compressed archive file. The archive format is tar
and the supported compression formats are Zip, BZip2, and Zlib.

Technical Support
Symantec Technical Support maintains support centers globally. Technical Support’s
primary role is to respond to specific queries about product features and functionality.
The Technical Support group also creates content for our online Knowledge Base. The
Technical Support group works collaboratively with the other functional areas within
Symantec to answer your questions in a timely fashion. For example, the Technical
Support group works with Product Engineering and Symantec Security Response to
provide alerting services and virus definition updates.

Symantec’s support offerings include the following:

 A range of support options that give you the flexibility to select the right amount
of service for any size organization

 Telephone and/or Web-based support that provides rapid response and up-to-the-
minute information

 Upgrade assurance that delivers software upgrades

 Global support purchased on a regional business hours or 24 hours a day, 7 days a
week basis

 Premium service offerings that include Account Management Services

For information about Symantec’s support offerings, you can visit our Web site at the
following URL:

www.symantec.com/business/support/

All support services will be delivered in accordance with your support agreement and
the then-current enterprise technical support policy.

http://www.symantec.com/business/support/

About PGP Command Line

Technical Support
3

Contacting Technical Support
Customers with a current support agreement may access Technical Support
information at the following URL:

www.symantec.com/business/support/

Before contacting Technical Support, make sure you have satisfied the system
requirements that are listed in your product documentation. Also, you should be at the
computer on which the problem occurred, in case it is necessary to replicate the
problem.

When you contact Technical Support, please have the following information available:

 Product release level

 Hardware information

 Available memory, disk space, and NIC information

 Operating system

 Version and patch level

 Network topology

 Router, gateway, and IP address information

 Problem description:

 Error messages and log files

 Troubleshooting that was performed before contacting Symantec

 Recent software configuration changes and network changes

Licensing and registration
If your Symantec product requires registration or a license key, access our technical
support Web page at the following URL:

www.symantec.com/business/support/

Customer service
Customer service information is available at the following URL:

www.symantec.com/business/support/

Customer Service is available to assist with non-technical questions, such as the
following types of issues:

 Questions regarding product licensing or serialization

 Product registration updates, such as address or name changes

 General product information (features, language availability, local dealers)

 Latest information about product updates and upgrades

 Information about upgrade assurance and support contracts

http://www.symantec.com/business/support/
http://www.symantec.com/business/support/
http://www.symantec.com/business/support/

4 About PGP Command Line

Technical Support

 Information about the Symantec Buying Programs

 Advice about Symantec's technical support options

 Nontechnical presales questions

 Issues that are related to CD-ROMs or manuals

Support agreement resources
If you want to contact Symantec regarding an existing support agreement, please
contact the support agreement administration team for your region as follows:

Asia-Pacific and Japan customercare_apac@symantec.com

Europe, Middle-East, Africa semea@symantec.com

North America, Latin America supportsolutions@symantec.com

mailto:customercare_apac@symantec.com
mailto:semea@symantec.com
mailto:supportsolutions@symantec.com

This chapter lists the system requirements for, and tells you how to install PGP
Command Line onto, the supported platforms: AIX, HP-UX, Mac OS X, Linux, Solaris,
and Windows. It also includes uninstall instructions.

In This Chapter

Install Location.. 5

Supported Platforms... 6

System Requirements... 6

Installing on AIX..10

Installing on HP-UX..12

Installing on Mac OS X ...14

Installing on Red Hat Enterprise Linux, SLES, or Fedora Core15

Installing on Solaris ..17

Installing on Windows..19

Install Location
PGP Command Line uses a specific directory for the application data such as the
configuration file, and a specific directory (called the home directory) for the files it
creates, such as keyring files.

On any UNIX system, the application data and the home directory are identical and
they are configured through the $HOME environment variable. For more information,
refer to the installation instructions for the specific UNIX platform.

On Windows, the application data directory is used to store data such as the
configuration file PGPprefs.xml. The home directory is called “My Documents” and
is used to store keys. These two directories can be named differently, depending on the
specific version on Windows. For more information, see To Install on Windows (on page
19).

Note: You can also use the --home-dir option on the command line to specify a
different home directory. Using this option affects only the command it is used in
and does not change the PGP_HOME_DIR environment variable.

Using --home-dir on the command line overrides the current setting of the
PGP_HOME_DIR environment variable.

2 Installing

6 Installing

Supported Platforms

Supported Platforms
You can install PGP Command Line on these platforms:

 Windows XP Professional 32-bit (including Service Pack 2 or 3), Windows XP
Professional 64-bit (including Service Pack 2 or 3), Windows Vista 32-bit and 64-
bit (including Service Pack 2), Windows 7 32-bit and 64-bit (including Service Pack
1), Windows Server 2003 32-bit and 64-bit (including Service Pack 1 or 2),
Windows Server 2008 32-bit (including Service Pack 1 and 2), Windows Server
2008 R2 64-bit

 HP-UX 11i and above (PA-RISC 32-bit and Itanium2 32-bit)

 IBM AIX 5.3 (Technology Levels supported by IBM; as of July 2011, TL 11 and
greater) and 6.1 (TL 4 and greater) PowerPC

 Red Hat Enterprise Linux 5.4 (x86 and x86_64), Red Hat Enterprise Linux 5.5 (x86
and x86_64), and Red Hat Enterprise Linux 6.0 (x86 and x86_64)

 SLES (SUSE Linux Enterprise Server) 10 SP2 (x86)

 Solaris 9 (SPARC, 32-bit), Solaris 10 (SPARC, 32-bit), Solaris 10 (x86), Solaris 10
(x86_64)

 Apple Mac OS X 10.5.x (x86) and Mac OS X 10.6.x (x86)

Note: These platforms are no longer supported: Windows 2000, Red Hat Enterprise
Linux 5.0, SLES (SUSE Linux Enterprise Server) 9, Sun Solaris 9 (x86 and x86_64),
Fedora Core 6, AIX 5.2 and Mac OS X 10.4.

System Requirements
In general, system requirements for PGP Command Line are the same as the system
requirements for the host operating system.

In addition to the hard drive space required by the base operating system, PGP
Command Line requires additional space for both the data on which cryptographic
operations (such as encryption, decryption, signing, and verifying) will be applied and
temporary files created in the process of performing those operations.

For a given file being encrypted or decrypted, PGP Command Line can require several
times the size of the original file in free hard drive space (depending on how much the
file was compressed), enough to hold both the original file or files and the final file
resulting from the encryption or decryption operation.

In cases where PGP Zip functionality is used on a file, PGP Command Line may also
require several times the size of the original file or files in free hard drive space, enough
to hold the original file, a temporary file created when handling the archive, and the
final file resulting from the encryption or decryption operation. Make sure you have
adequate free hard drive space on your system before using PGP Command Line.

Installing

System Requirements
7

Windows 7 and Vista

Component Requirement

Computer and
processor

PC with 1 GHz 32-bit (x86) processor

Memory 1 gigabyte (GB) of RAM or higher recommended (64 MB minimum supported;
may limit performance and some features)

Hard disk 15 GB of available space

Drive DVD-ROM drive

Display Support for DirectX 9 graphics with WDDM driver, 128 MB of graphics
memory (minimum), Pixel Shader 2.0 in hardware, 32 bits per pixel

Windows Server 2008 and 2003
PGP Command Line supports four editions of Windows Server 2008 and 2003:
Standard, Datacenter, Enterprise, and Web.

Standard Edition

Component Requirement

Computer and
processor

PC with a 133-MHz processor required; 550-MHz or faster processor
recommended (Windows Server 2003 Standard Edition supports up to four
processors on one server)

Memory 128 MB of RAM required; 256 MB or more recommended; 4 GB maximum

Hard disk 1.25 to 2 GB of available hard-disk space

Drive CD-ROM or DVD-ROM drive

Display VGA or hardware that supports console redirection required; Super VGA
supporting 800 x 600 or higher-resolution monitor recommended

Datacenter Edition

Component Requirement

Computer and
processor

Minimum: 400 MHz processor for x86-based computers Recommended: 733
MHz processor

Memory Minimum: 512 MB of RAM

Recommended: 1 GB of RAM

8 Installing

System Requirements

Hard disk 1.5 GB hard-disk space for x86-based computers

Other Minimum: 8-way capable multiprocessor machine required

Maximum: 64-way capable multiprocessor machine supported

Enterprise Edition

These system requirements apply only to the 32-bit version of Windows Server 2003
Enterprise Edition; 64-bit versions of Windows Server 2003 Enterprise Edition are not supported.

Component Requirement

Computer and
processor

133-MHz or faster processor for x86-based PCs; up to eight processors
supported on either the 32-bit

Memory 128 MB of RAM minimum required

Maximum: 32 GB for x86-based PCs with the 32-bit version

Hard disk 1.5 GB of available hard-disk space for x86-based PCs; additional space is
required if installing over a network

Drive CD-ROM or DVD-ROM drive

Display VGA or hardware that supports console redirection required

Web Edition

Component Requirement

Computer and
processor

133-MHz processor (550 MHz recommended)

Memory 128 MB of RAM (256 MB recommended; 2 GB maximum)

Hard disk 1.5 GB of available hard-disk space

Windows XP
PGP Command Line supports the 32-bit and 64-bit versions of Windows XP.

32-bit Windows XP

Component Requirement

Computer and
processor

PC with 300 megahertz (MHz) or higher processor clock speed recommended;
233-MHz minimum required; Intel Pentium/Celeron family, AMD
K6/Athlon/Duron family, or compatible processor recommended

Installing

System Requirements
9

Memory 128 megabytes (MB) of RAM or higher recommended (64 MB minimum
supported; may limit performance and some features)

Hard disk 1.5 gigabyte (GB) of available hard disk space

Drive CD-ROM or DVD-ROM drive

Display Super VGA (800 × 600) or higher resolution video adapter and monitor
supporting 800 x 600 or higher-resolution monitor recommended

64-bit Windows XP

Component Requirement

Computer and
processor

PC with AMD Athlon 64, AMD Opteron, Intel Xeon with Intel EM64T support,
Intel Pentium 4 with Intel EM64T support

Memory 256 megabytes (MB) of RAM or higher recommended

Hard disk 1.5 gigabyte (GB) of available hard disk space

Drive CD-ROM or DVD-ROM drive

Display Super VGA (800 × 600) or higher resolution video adapter and monitor
supporting 800 x 600 or higher-resolution monitor recommended

IBM AIX
PGP Command Line runs on the range of IBM eServer p5, IBM eServer pSeries, IBM
eServer i5 and IBM RS/6000, as supported by IBM AIX 5.3 and 6.1.

HP-UX 11i
PGP Command Line runs on the list of PA-RISC workstation and servers supported by
HP-UX 11i, as specified at http://docs.hp.com/ http://docs.hp.com/en/5187-
2239/ch03s01.html.

Solaris 9 and 10

Component Requirement

Computer and
processor

SPARC (32- and 64-bit) platforms

Memory 64 MB minimum (128 MB recommended)

Hard disk 600 MB for desktops; one GB for servers

http://docs.hp.com/
http://docs.hp.com/en/5187-2239/ch03s01.html
http://docs.hp.com/en/5187-2239/ch03s01.html

10 Installing

Installing on AIX

Red Hat Enterprise Linux, SLES, and Fedora Core

Component Requirement

Computer and
processor

x86 for Red Hat Enterprise Linux and SLES, x86_64 for Fedora Core; see Red
Hat or Fedora websites for hardware compatibility.

Memory 256 MB minimum

Hard disk 800 MB minimum

Mac OS X

Component Requirement

Computer and
processor

Macintosh computer, Intel-based system only

Memory 128 MB of physical RAM

Installing on AIX
This section tells you how to install, change the home directory, and uninstall on AIX.

Installing on AIX
You need to have root or administrator privileges on the machine on which you are
installing PGP Command Line.

To install PGP Command Line on an AIX system:

1 If you have an existing version of PGP Command Line installed on the computer,
uninstall it.

2 Download the installer application called PGPCommandLine10IX.tar to a known
location on your system.

3 Untar the package first. You will get the following file:
PGPCommandLine100AIX.rpm

4 Type: rpm -ivh PGPCommandLine10IX.rpm

5 Press Enter.

Installing

Installing on AIX
11

By default, the PGP Command Line application, pgp, is installed into the directory
/opt/pgp/bin. You need to add this directory to your PATH environment variable in
order for the application to be found.

For sh-based shells, use this syntax:

PATH=$PATH:/opt/pgp/bin

For csh-based shells, use this syntax:

set path = ($path /opt/pgp/bin)

Also, in order to access the PGP Command Line man page, you need to set the
MANPATH environment variable appropriately.

For sh-based shells, use this syntax:

MANPATH=$MANPATH:/opt/pgp/man; export MANPATH

For csh-based shells, use this syntax:

setenv MANPATH "/opt/pgp/man"

By adding the option --prefix to the rpm command, you can install PGP Command
Line to a location other than the default.

Type rpm --prefix=/usr/pgp -ivh PGPCommandLine10AIX.rpm and press
Enter.

This command installs the application binary in the directory /usr/pgp/bin/pgp,
libraries in /usr/pgp/lib, and so on.

You will need to edit the environmental variable LIBPATH to include the new library
path (/usr/pgp/lib) so that PGP Command Line can function in a location other than the
default.

By adding the option --prefix to the rpm command, you can install PGP Command
Line in a location other than the default:

1 If you have an existing version of PGP Command Line installed on the computer,
uninstall it.

2 Download the installer application called PGPCommandLine10AIX.tar to a
known location on your system.

3 Untar the package first. You will get the following file:
PGPCommandLine10AIX.rpm

4 Type: rpm --prefix=/opt -ivh PGPCommandLine10AIX.rpm

5 Press Enter.

This command will install the application binary, pgp, in the directory
/usr/pgp/bin/pgp, libraries in /usr/pgp/lib, and so on.

You will need to edit the environment variable LIBPATH to include the new library path
(/usr/pgp/lib), so that PGP Command Line can function in any location other than
the default.

Changing the Home Directory on AIX
The home directory is where PGP Command Line stores the files that it creates and
uses; for example, keyring files.

12 Installing

Installing on HP-UX

By default, the PGP Command Line installer for AIX creates the PGP Command Line
home directory at $HOME/.pgp. If this directory does not exist, it will be created. For
example, if the value of $HOME for user "alice"is /usr/home/alice, PGP Command
Line will attempt to create /usr/home/alice/.pgp.

The PGP Command Line installer will not try to create any other part of the directory
listed in the $HOME variable, only .pgp.

If you want the home directory changed on a permanent basis, you will need to create
the $PGP_HOME_DIR environment variable and specify the path of the desired home
directory.

Uninstalling on AIX
Uninstalling PGP Command Line on AIX requires root privileges, either through su or
sudo.

To uninstall PGP Command Line on AIX

1 Type the following command and press Enter:

rpm -e pgpcmdln

2 PGP Command Line is uninstalled.

Installing on HP-UX
This section tells you how to install, change the home directory, and uninstall on HP-
UX.

Installing on HP-UX
You need to have root or administrator privileges on the machine on which you are
installing PGP Command Line.

To install PGP Command Line on an HP-UX system

1 If you have an existing version of PGP Command Line installed on the computer,
uninstall it.

2 Download the installer file called PGPCommandLine10HPUX.tar to a known
location on your system.

3 Untar the package first. You will get the following file:
PGPCommandLine10HPUX.depot

4 Type: swinstall -s /absolute/path/to/PGPCommandLine10HPUX.depot

5 Press Enter.

By default, the PGP Command Line application, pgp, is installed into the directory
/opt/pgp/bin. You need to add this directory to your PATH environment variable in
order for the application to be found.

Installing

Installing on HP-UX
13

For sh-based shells, use this syntax:

PATH=$PATH:/opt/pgp/bin

For csh-based shells, use this syntax:

set path = ($path /opt/pgp/bin)

Also, in order to access the PGP Command Line man page, you need to set the
MANPATH environment variable appropriately.

For sh-based shells, use this syntax:

MANPATH=$MANPATH:/opt/pgp/man; export MANPATH

For csh-based shells, use this syntax:

setenv MANPATH "/opt/pgp/man"

Note: You may encounter an issue generating 2048- or 4096-bit keys on HP-UX
systems running PGP Command Line if you have altered the maximum number of
shared memory segments that can be attached to one process, as configured by the
shmseg system parameter. if you encounter this issue, reset the shmseg system
parameter to its default value of 120. Consult your HP-UX documentation for
information about how to alter system parameters.

Changing the Home Directory on HP-UX
The home directory is where PGP Command Line stores the files that it creates and
uses; for example, keyring files.

By default, the PGP Command Line installer for HP-UX creates the PGP Command Line
home directory in $HOME/.pgp. If this directory does not exist, it will be created. For
example, if the value of $HOME for user "alice" is /usr/home/alice, PGP Command
Line will attempt to create /usr/home/alice/.pgp.

The PGP Command Line installer will not try to create any other part of the directory
listed in the $HOME variable, only .pgp.

If you want the PGP Command Line home directory changed on a permanent basis, you
can define the $PGP_HOME_DIR environment variable and specify the path of the
desired home directory.

Installing to a Non-Default Directory on HP-UX
This procedure describes how to install PGP Command Line for HP-UX into a non-
default directory. The information provided is in addition to the information provided
in Installing on HP-UX.

Note: This procedure uses /opt/pgp_alt as the non-default directory. Be sure to
substitute the desired directory in place of /opt/pgp_alt.

To install PGP Command Line for HP-UX to a non-default directory

1 Add the following extra argument to the swinstall command:

swinstall -s /path/to/pgpcmdln.depot pgpcmdln,l=/opt/pgp_alt

2 Set all libraries to respect the SHLIB_PATH environment variable:

14 Installing

Installing on Mac OS X

chatr +s enable /opt/pgp_alt/lib/*

3 Set the SHLIB_PATH environment variable to the new library directory when
starting PGP Command Line:

export SHLIB_PATH=/opt/pgp_alt/lib

Uninstalling on HP-UX
Uninstalling PGP Command Line on HP-UX requires root privileges, either su or sudo.

To uninstall PGP Command Line on HP-UX:

1 Type the following command and press Enter:

swremove pgpcmdln

2 PGP Command Line is uninstalled.

Installing on Mac OS X
This section tells you how to install, change the home directory, and uninstall on Mac
OS X.

Installing on Mac OS X

To install PGP Command Line on a Mac OS X system:

1 Close all applications.

2 Download the installer application, PGPCommandLine10MacOSX.tgz, to your
desktop.

3 Double-click on the file PGPCommandLine10MacOSX.tgz.

4 If you have Stuffit Expander, it will automatically first uncompress this file into
PGPCommandLine10MacOSX.tar, and then untar it into
PGPCommandLine10MacOSX.pkg.

5 Double-click on the file PGPCommandLine10MacOSX.pkg.

6 Follow the on-screen instructions.

The Mac OS X PGP Command Line application, pgp, is installed into /usr/bin/.

After you run PGP Command Line for the first time, its home directory will be created
automatically in the directory $HOME/Documents/PGP. This directory may already
exist if PGP Desktop for Mac OS X is already installed on the system.

Installing

Installing on Red Hat Enterprise Linux, SLES, or Fedora Core
15

Changing the Home Directory on Mac OS X
The home directory is where PGP Command Line stores the files that it creates and
uses; for example, keyring files.

By default, the PGP Command Line installer for Mac OS X creates the PGP Command
Line home directory at $HOME/Documents/PGP. If this directory does not exist, it will
be created.

The PGP Command Line installer will not try to create any other part of directory listed
in the $HOME variable, only .pgp.

If you want the home directory changed permanently, you need to create the
$PGP_HOME_DIR environment variable and specify the path of the desired home
directory.

Uninstalling on Mac OS X
Uninstalling PGP Command Line on Mac OS X requires administrative privileges.

Caution: If you have PGP Desktop for Mac OS X installed on the same system with
PGP Command Line, do not uninstall PGP Command Line unless you also plan to
uninstall PGP Desktop. Uninstalling PGP Command Line will delete files that PGP
Desktop requires to operate; you will have to reinstall PGP Desktop to return to
normal operation.

To uninstall PGP Command Line on Mac OS X:

1 Using the Terminal application, enter the following commands:

rm -rf /usr/bin/pgp

rm -rf /Library/Frameworks/PGP*

rm -rf /Library/Receipts/PGP*

2 PGP Command Line is uninstalled.

Preferences and keyrings are not removed when PGP Command Line is uninstalled.

Installing on Red Hat Enterprise Linux, SLES, or Fedora
Core

This section tells you how to install, change the home directory, and uninstall on a
Linux or Fedora Core system.

Installing on Red Hat Enterprise Linux or Fedora Core
You need to have root or administrator privileges on the machine on which you are
installing PGP Command Line.

16 Installing

Installing on Red Hat Enterprise Linux, SLES, or Fedora Core

Linux installations now default to /opt/pgp, which matches the default installation
location on other UNIX platforms. To install PGP Command Line on Linux to the
previous installation location (/usr/bin/), use the "--prefix=/usr" option.

If you have an existing Linux installation of PGP Command Line and do not install the
new version using the "--prefix=/usr" option, you will need to update your path to
include /opt/pgp/bin and you will need to update any scripts accordingly.

Caution: If you want to use the XML key list functionality in PGP Command Line, you
need to upgrade libxml2 to Version 2.6.8; the default is Version 2.5.10. If you attempt
to use the XML key list functionality without upgrading, you will receive an error.

To install PGP Command Line on a Linux system:

1 If you have an existing version of PGP Command Line installed on the computer,
uninstall it.

2 Download the installer file called PGPCommandLine10Linux.tar to a known
location on your system.

3 Untar the package first. You will get the following file:
PGPCommandLine10Linux.rpm

4 Type: rpm -ivh PGPCommandLine10Linux.rpm

5 Press Enter.

The PGP Command Line application, pgp, is installed by default into /opt/pgp/.

By adding the option --prefix to the rpm command, you can install PGP Command
Line in a location other than the default.

To install PGP Command Line into a different directory:

1 If you have an existing version of PGP Command Line installed on the computer,
uninstall it.

2 Download the installer file called PGPCommandLine10Linux.tar to a known
location on your system.

3 Untar the package first. You will get the following file:
PGPCommandLine10Linux.rpm

4 Type: rpm --prefix=/opt -ivh PGPCommandLine10Linux.rpm

5 Press Enter.

This command will install the application binary in the directory /opt/bin/pgp,
libraries in /opt/lib, etc. You will need to edit the environment variable
LD_LIBRARY_PATH to include the new library path for the software to function in any
location other than the default.

Changing the Home Directory on Linux or Fedora Core
The home directory is where PGP Command Line stores the files that it creates and
uses; for example, keyring files.

Installing

Installing on Solaris
17

By default, the PGP Command Line installer for Linux creates the PGP Command Line
home directory at $HOME/.pgp. If this directory does not exist, it will be created. For
example, if the value of $HOME for user "alice" is /usr/home/alice, PGP Command
Line will attempt to create /usr/home/alice/.pgp.

The PGP Command Line installer will not try to create any other part of the directory
listed in the $HOME variable, only .pgp.

If you want the home directory changed on a permanent basis, you need to create the
$PGP_HOME_DIR environment variable and specify the path of the desired home
directory.

Uninstalling on Linux or Fedora Core
Uninstalling PGP Command Line on Linux requires root privileges, either su or sudo.

To uninstall PGP Command Line on Linux or Fedora Core:

1 Type the following command and press Enter:

rpm -e pgpcmdln

2 PGP Command Line is uninstalled.

Installing on Solaris
This section tells you how to install, change the home directory, and uninstall on
Solaris.

Installing on Solaris
You need to have root or administrator privileges on the machine on which you are
installing PGP Command Line.

To install PGP Command Line onto a Solaris machine in the default directory:

1 If you have an existing version of PGP Command Line installed on the computer,
uninstall it.

2 Download the installer file called PGPCommandLine10Solaris.tar to a known
location on your system.

3 Untar the package first. You will get the following file:
PGPCommandLine10Solaris.pkg

4 Type pkgadd -d PGPCommandLine10Solaris.pkg and press Enter.

5 At the first prompt, enter "1" or "all" to install the package.

If the directories /usr/bin and /usr/lib are not owned by root:bin, the install
application pkgadd will ask if you want to change the ownership/group on these
directories. It is not necessary to change them, but as an admin you may do so if you
wish.

18 Installing

Installing on Solaris

By default, the PGP Command Line application, pgp, is installed into the directory
/opt/pgp/bin. You need to add this directory to your PATH environment variable in
order for the application to be found.

For sh-based shells, use this syntax:

PATH=$PATH:/opt/pgp/bin

For csh-based shells, use this syntax:

set path = ($path /opt/pgp/bin)

Also, in order to access the PGP Command Line man page, you need to set the
MANPATH environment variable appropriately.

For sh-based shells, use this syntax:

MANPATH=$MANPATH:/opt/pgp/man; export MANPATH

For csh-based shells, use this syntax:

setenv MANPATH "/opt/pgp/man"

To install PGP Command Line onto a Solaris machine in another directory:

1 If you have an existing version of PGP Command Line installed on the computer,
uninstall it.

2 Download the installer application PGPCommandLine10Solaris.tar to a
known location on your system.

3 Untar the package first. You will get the following file:
PGPCommandLine10Solaris.pkg

4 Type: pkgadd -a none -d PGPCommandLine10Solaris.pkg

(This will force an interactive installation).

5 Press Enter.

6 At the first prompt, enter “1” or “all” to install the package.

You will be asked to enter the path to the package’s base directory. If you enter
/usr/pgp, the binary will be installed to /usr/pgp/bin/pgp, libraries will be
installed to /usr/pgp/lib, and so on.

You need to edit the environment variable LD_LIBRARY_PATH to include the new
library path (/usr/pgp/lib) so that PGP Command Line can function in this location.

Changing the Home Directory on Solaris
The home directory is where PGP Command Line stores the files that it creates and
uses; for example, keyring files.

By default, the PGP Command Line installer for Solaris creates the PGP Command Line
home directory in $HOME/.pgp. If this directory does not exist, it will be created. For
example, if the value of $HOME for user "alice" is /usr/home/alice, PGP Command
Line will attempt to create /usr/home/alice/.pgp.

The PGP Command Line installer will not try to create any other part of the directory
listed in the $HOME variable, only .pgp.

Installing

Installing on Windows
19

If you want the PGP Command Line home directory changed on a permanent basis, you
can define the $PGP_HOME_DIR environment variable and specify the path of the
desired home directory.

Uninstalling on Solaris
Uninstalling PGP Command Line on Solaris requires root privileges, either su or sudo.

To uninstall PGP Command Line on Solaris:

1 Type the following command and press Enter:

pkgrm PGPcmdln

To uninstall with no confirmation, use: pkgrm -n PGPcmdln

2 PGP Command Line is uninstalled.

Installing on Windows
This section tells you how to install, change the home directory, and uninstall on
Windows.

PGP Command Line for Windows and PGP Desktop on the Same System
PGP Command Line and PGP Desktop can be installed on the same system at the same
time.

To use PGP Command Line for Windows and PGP Desktop for Windows on the same 64-
bit system, you must use the 64-bit version of PGP Desktop and the 32-bit version of
PGP Command Line.

This ensures compatible versions of the PGP SDK are used. The PGP SDK for the 64-bit
version of PGP Command Line for Windows includes functionality that makes it
incompatible with PGP Desktop for Windows.

To Install on Windows

To install PGP Command Line onto a Windows system:

1 Close all Windows applications.

2 Download the installer application, PGPCommandLine10Win.zip, to a known
location on your system.

3 Unzip the file PGPCommandLine10Win.zip. You will get the following file:
PGPCommandLine10Win.msi.

4 Double click on PGPCommandLine10Win.msi.

5 Follow the on-screen instructions.

20 Installing

Installing on Windows

6 If prompted, restart your machine. A restart is needed only if other PGP products
are also installed on the same machine.

The Windows PGP Command Line application, pgp.exe, is installed into:

C:\Program Files\PGP Corporation\PGP Command Line\

After you run PGP Command Line for the first time, its home directory will be created
automatically in the user’s home directory:
C:\Documents and Settings\<user>\My Documents\PGP\

Application data is stored in the directory:

C:\Documents and Settings\<user>\Application Data\PGP
Corporation\PGP

Locations may be different for the different Windows versions.

Changing the Home Directory on Windows
The home directory is where PGP Command Line stores its keyring files. If a different
PGP product has already created this directory, PGP Command Line will also use it
(thus, PGP Command Line can automatically use existing PGP keys).

PGP Command Line data files, such as keys, are stored in the home directory:
C:\Documents and Settings\<user>\My Documents\PGP\

PGP Command Line application files, such as the configuration file PGPprefs.xml,
are stored in:

C:\Documents and Settings\<user>\Application Data\PGP
Corporation\PGP\

If you want the home directory changed on a permanent basis, you need to create the
PGP_HOME_DIR environment variable and specify the path of the desired home
directory.

To create the PGP_HOME_DIR environment variable on a Windows system:

1 Click Start, select Settings, select Control Panel, and then select System.

The System Properties dialog appears.

2 Select the Advanced tab, then click Environment Variables.

The Environment Variables screen appears.

3 In the User Variables section, click New.

The New User Variable dialog appears.

4 In the Variable name field, enter PGP_HOME_DIR. In the Variable value field,
enter the path of the home directory you want to use. For example:

C:\PGP\PGPhomedir\

5 Click OK.

The Environment Variables screen reappears. PGP_HOME_DIR appears in the list
of user variables.

Installing

Installing on Windows
21

Uninstalling on Windows

To remove PGP Command Line from a Windows system:

1 Navigate to the Add or Remove Programs Control Panel.

2 Select PGP Command Line from the list of installed programs.

3 Click Remove, then follow the on-screen instructions.

PGP Command Line is uninstalled.

When upgrading to a new version of PGP Command Line, in most cases you can install
the new version without uninstalling the older version of PGP Command Line. During
installation, the new version of PGP Command Line overwrites or updates any older

version files.

If your facility upgrades its computers, you may need to relocate an existing PGP
Command Line installation to another computer.

To relocate PGP Command Line to another computer

1 Install PGP Command Line on your new system.

2 License PGP Command Line on your new system.

3 Copy your keyring files (pubring.pkr, secring.skr) from your old system to the new
one. To locate the keyring files, use the pgp --version --verbose command.

4 If you have changed your preferences file PGPprefs.xml, re-apply those changes to
your new preferences file.

See also:

Licensing (on page 25)

3 Upgrading

Relocating

PGP Command Line requires a valid license to operate. This chapter describes how to
license your copy of PGP Command Line.

In This Chapter

Overview... 25

License Recovery... 26

Using a License Number .. 26

Using a License Authorization.. 27

Re-Licensing .. 28

Through a Proxy Server... 29

Overview
PGP Command Line requires a valid license to support full functionality. If you use PGP
Command Line without entering a license or after your license has expired, only basic
functionality will be available. You will only be able to get help and version information;
perform a speed test; list keys, user IDs, fingerprints, and signatures; export public keys
and keypairs; and license PGP Command Line.

Note: As PGP Command Line will not operate normally until licensed, you should
license it immediately after installation.

When your license gets within 60 days of expiration, PGP Command Line begins issuing
warnings that license expiration is nearing. There is no grace period once the license
expiration date has been reached.

PGP Command Line supports the following licensing scenarios:

 Using a License Number (on page 26). This is the normal method to license PGP
Command Line. You must have your license number and a working connection to
the Internet.

 Re-Licensing (on page 28). If you have already licensed PGP Command Line on a
system but want to re-license it with a new license number (to support additional
functionality, for example), use this method. You must have your new license
number and a working connection to the Internet.

 Through a Proxy Server (on page 29). If you connect to the Internet through a
proxy server, use this method to license PGP Command Line. You must have your
license number and the appropriate proxy server information.

4 Licensing

26 Licensing

License Recovery

License Recovery
When you first enter your PGP Command Line license, one option is --license-
email, which takes a valid email address.

You are not required to use --license-email to license your copy of PGP Command
Line, but it is required if you want to take advantage of the license recovery feature.

The license recovery feature provides an automated mechanism for retrieving your
original licensing information for those occasions when you need to enter it again.

Here is how the license recovery feature works: When you first license your copy of PGP
Command Line, you enter a License Name, License Organization, your License Number,
and a License Email. The license authorizes, and you begin using PGP Command Line.

Several months pass. The hardware hosting PGP Command Line fails and it is no longer
usable. You need to reinstall PGP Command Line on a new system. You still have your
PGP Command Line license number, but you enter your company name differently in
License Organization; you didn’t remember exactly how you entered it several months
ago, and this time you picked a slightly different form (or maybe you even mis-typed it
by mistake).

Not a big deal, you think; what difference could it make? But when you attempt to
authorize the license, it does not work.

What happened is that when you re-license PGP Command Line, you must enter the
same information exactly as you did the first time or it will not license correctly.

At this point the license recovery feature kicks in. When you attempt to re-license PGP
Command Line, and you enter a valid license, but the License Name or License
Organization you enter is different, the license recovery feature sends an email
message to the License Email you entered the first time you licensed PGP Command
Line.

The email message includes the License Name and License Organization you used when
you first licensed PGP Command Line. You can now license PGP Command Line on the
new system using the information in the message.

The key to the license recovery feature is entering a valid email address when you first
license PGP Command Line. The license recovery feature will only use the email address
you enter when you first license a specific PGP Command Line license. You cannot add
or change the email address at a later time; if you don’t enter it the first time you
license, the license recovery feature will not work for that particular PGP Command
Line license.

If the license recovery feature is not available for a PGP Command Line license, but you
need your original License Name or License Organization, contact PGP Support at
www.pgp.com/support/ http://www.pgp.com/support\n.

Using a License Number
If you have a license number and a working Internet connection, you can license your
copy of PGP Command Line.

Use --license-authorize to license PGP Command Line.

http://www.pgp.com/support/
http://www.pgp.com/supportn

Licensing

Using a License Authorization
27

The following options are required:

 --license-name <Name>

Where <Name> is your name or a descriptive name.

--license-organization <Org> Where <Org> is the name of your company.

--license-number <Number> Where <Number> is a valid license number.

The following option is not required but is recommended:

 --license-email <EmailAddress>

Where <EmailAddress> is a valid email address, generally the email address of
the PGP Command Line administrator.

Before deciding not to enter a license email, be sure to refer to License Recovery (on
page 26). Not entering a license email when you first license your copy of PGP
Command Line negates the license recovery feature for your PGP Command Line
license. If you decide not to enter a license email, you will see a warning message but
your license will authorize.

For example:

pgp --license-authorize --license-name "Alice Cameron"
--license-organization "Example Corporation"
--license-number "aaaaa-bbbbb-ccccc-ddddd-eeeee-fff"
--license-email "acameron@example.com"

(When entering this text, it all goes on a single line.)

Using a License Authorization
If you have both a license number and a license authorization (a text file) from PGP
Corporation instead of just a license number, you need to enter the name of the license
authorization file in the command.

You may need a license authorization if you are having problems authorizing your
license number or if the system hosting PGP Command Line is not connected to the
Internet.

Use --license-authorize to license PGP Command Line using a license
authorization.

The following options are required:

 --license-name <Name>

Where <Name> is your name or a descriptive name.

--license-organization <Org> Where <Org> is the name of your company.

--license-number <Number> Where <Number> is a valid license number.

The following option is not required but is recommended:

 --license-email <EmailAddress>

Where <EmailAddress> is a valid email address, generally the email address of
the PGP Command Line administrator.

mailto:acameron@example.com

28 Licensing

Re-Licensing

Before deciding not to enter a license email, be sure to refer to License Recovery (on
page 26). Not entering a license email when you first license your copy of PGP
Command Line negates the license recovery feature for your PGP Command Line
license. If you decide not to enter a license email, you will see a warning message but
your license will authorize.

For example:

pgp --license-authorize --license-name "Alice Cameron"
--license-organization "Example Corporation"
--license-number "aaaaa-bbbbb-ccccc-ddddd-eeeee-fff"
license-auth.txt --license-email "acameron@example.com"

(When entering this text, it all goes on a single line.)

In this example, the text file "license-auth.txt" is shown after the license number.

Re-Licensing
If you have already licensed your copy of PGP Command Line on a system, but you need
to re-license it on the same system (if you have purchased a new license with additional
capabilities, for example), you must use the <force> option to override the existing
license.

You can use a license number or a license authorization when you are re-licensing.

Use --license-authorize to re-license PGP Command Line.

The following options are required:

 --license-name <Name>

Where <Name> is your name or a descriptive name.

--license-organization <Org> Where <Org> is the name of your company.

--license-number <Number> Where <Number> is a valid license number.

--force The following option is not required but is recommended:

 --license-email <EmailAddress>

Where <EmailAddress> is a valid email address, generally the email address of
the PGP Command Line administrator.

The following option is optional:

 <LicenseAuthFilename>

Where <LicenseAuthFilename> is the name of the text file from PGP
Corporation that includes license authorization information.

Before deciding not to enter a license email, be sure to refer to License Recovery (on
page 26). Not entering a license email when you first license your copy of PGP
Command Line negates the license recovery feature for your PGP Command Line
license. If you decide not to enter a license email, you will see a warning message but
your license will authorize.

For example:

mailto:acameron@example.com

Licensing

Through a Proxy Server
29

pgp --license-authorize --license-name "Alice Cameron"
--license-organization "Example Corporation"
--license-number "aaaaa-bbbbb-ccccc-ddddd-eeeee-fff"
--license-email "acameron@example.com" --force

(When entering this text, it all goes on a single line.)

Through a Proxy Server
If the Internet access of the system hosting PGP Command Line is via an HTTP proxy
connection, you can still license your copy of PGP Command Line directly; you simply
need to add the necessary proxy information.

Use --license-authorize to license PGP Command Line via a proxy server.

The following options are required:

 --license-name <Name>

Where <Name> is your name or a descriptive name.

--license-organization <Org> Where <Org> is the name of your company.

--license-number <Number> Where <Number> is a valid PGP Command Line
license number.

 --proxy-server <Server>

Where <Server> is the IP address or fully qualified domain name of the proxy
server PGP Command Line must go through to reach the Internet.

The following options are not required; they are only needed when the proxy server
requires authentication:

--proxy-username <Username> Where <Username> is a valid username on
the proxy server.

--proxy-passphrase <Passphrase> Where <Passphrase> is the passphrase
for the username you entered.

The following option is not required but is recommended:

 --license-email <EmailAddress>

Where <EmailAddress> is a valid email address, generally the email address of
the PGP Command Line administrator.

Before deciding not to enter a license email, be sure to refer to License Recovery (on
page 26). Not entering a license email when you first license your copy of PGP
Command Line negates the license recovery feature for your PGP Command Line
license. If you decide not to enter a license email, you will see a warning message but
your license will authorize.

For example:

pgp --license-authorize --license-name "Alice Cameron"
--license-organization "Example Corporation"
--license-number "aaaaa-bbbbb-ccccc-ddddd-eeeee-fff"
--proxy-server "proxyserver.example.com"
--proxy-username "acameron"
--proxy-passphrase 'a_cameron1492sailedblue'
--license-email "acameron@example.com"

mailto:acameron@example.com
mailto:acameron@example.com

30 Licensing

Through a Proxy Server

(When entering this text, it all goes on a single line.)

This section describes the command-line interface of the PGP Command Line product.

In This Chapter

Overview... 31

Flags and Arguments.. 32

Configuration File ... 36

Environment Variables .. 40

Standard Input, Output, and Error... 41

Specifying a Key.. 42

'Secure' Options... 43

Overview
PGP Command Line uses a command-line interface. You enter a valid command and
press Enter. PGP Command Line responds appropriately based on what you entered (if
you entered a valid command) or with an error message (if you entered an invalid or
incorrectly structured command).

All PGP Command Line commands have a long form: the text “pgp”, a space, two
hyphens "--", and then the command name. Some of the more common commands
have a short form: one hyphen and then a single letter that substitutes for the command
name.

The --version command, for example, tells you what version of PGP Command Line
you are using. It does not have a short form:

%pgp --version [Enter]

From here on, the command prompt (% in this example) and [Enter] will not be shown.

The response is:

PGP Command Line 10.0

Copyright (C) 2010 PGP Corporation

All rights reserved.

The --help command tells you about the commands available in PGP Command Line.
The long form is:

pgp --help

The short form is:

pgp -h

The response to either version of the --help command is:

5 The Command-Line Interface

32 The Command-Line Interface

Flags and Arguments

PGP Command Line 10.0

Copyright (C) 2010 PGP Corporation

All rights reserved.

Commands:

Generic:

 -h --help this help message and so on.

Some more examples of the command line:

1 pgp --encrypt report.doc --recipient Alice

report.doc:encrypt (0:output file report.doc.pgp)

Encrypts a file (the output filename will be report.doc.pgp) to the recipient
"Alice".

2 pgp -e report.doc -r Alice

report.doc:encrypt (0:output file report.doc.pgp)

Does the same as above, but using the short forms of the encrypt and the recipient
flags.

3 pgp -er Alice report.doc

report.doc:encrypt (0:output file report.doc.pgp)

Combines multiple command short forms. "Alice" must come after the "r" because
it is a required argument to --recipient.

4 pgp -er Alice report.doc --output NewReport.pgp

report.doc:encrypt (0:output file NewReport.pgp)

Changes the name of the file that is produced.

Flags and Arguments
PGP Command Line uses flags, commands, options, and arguments:

 Flags come in two different types, commands and options. Commands are flags
that control what PGP Command Line does in its current invocation; they have no
effect on subsequent invocations of PGP Command Line. Options change the
behavior of the current command. Some options require an argument, described
below, while others do not. The order in which flags are listed on the command
line has no effect on their behavior.

 Arguments are required as the next parameter when an option flag is used.
Arguments must immediately follow their flags. Where the flag/argument pair are
on the command line does not change what the flag/argument pair does. Except
when setting lists, in which case the command is read left to right; so when
searching keyservers, for example, the listed keyservers are searched in the order
in which they are provided on the command line.

Flags and arguments must be separated by a space on the command line. Extra spaces
are ignored. If a space between parts of an argument is required, the entire argument
must be between quotes.

In some cases, there can be multiple names for a single flag.

The Command-Line Interface

Flags and Arguments
33

For example:

--textmode and --text (same flag with two names)

It is also possible to provide an option that has no effect on the current operation. Flags
that have no bearing on the current operation are ignored, unless they cause an error,
in which case the command returns an error.

For example:

--list-keys Alice with the option --encrypt-to-self
(the option --encrypt-to-self will be ignored)

Flags
As noted above, flags have both long and short forms. To combine multiple long forms,
you simply write them out separated by a space. For example, to encrypt a file and
armor the output:

pgp --encrypt ... --armor

You can, however, combine multiple short forms into a single flag. For example, to
encrypt and sign at the same time:

pgp -es ...

When combining short forms, if at any time an option is used in the list that requires an
argument, the list must be terminated and followed by the argument. For example: -
ear recipient.

Arguments
An argument is required as the next parameter when some option flags are used. There
are several kinds of arguments, differentiated by how they are structured or what kind
of information is provided.

The kinds of arguments are:

 Booleans

 Integers

 Enumerations

 Strings (page 34)

 Lists

 File descriptor

 No parent

Booleans

Booleans are a special kind of argument. They never take a direct argument themselves.
Instead, the behavior changes by how the flag is specified. To disable a Boolean, specify
it with the prefix "--no-" instead of the normal "--".

When the short form is used for a Boolean flag, there is no way to specify the disabled
version of the flag.

34 The Command-Line Interface

Flags and Arguments

For example:

--reverse-sort (activates reverse sorting)

--no-compress (deactivates compression, the reverse of --compress)

-t (activates text mode; to deactivate text mode, the long form must be used, --
no-text)

Integers

Integers are arguments that take a numeric value.

For example:

--wipe-passes 8 (sets the number of wipe passes to eight)

Enumerations

Enumerations are arguments that take a string, which is then converted to the correct
value by PGP Command Line. This string will be one of several possible for each flag.

For example:

--sort-order userid (sort by user ID)

--overwrite remove (sets the file overwrite behavior to remove files if they
exist)

Strings

Many PGP Command Line commands take strings as arguments. On Windows systems,
strings are read in as double-byte character strings and converted to UTF-8 for use by
the PGP SDK or for output. On all other platforms, UTF-8 is used.

For strings that include spaces, quotes, or other special characters, enclose the strings
in double quotes and use escape characters where needed. These rules apply to all
platforms:

 Empty set. Type two double quotes.

 Strings where the only special characters are spaces and non-quotes: Enclose the
string in double quotes.

 Strings that include single-quotes: Enclose the string in double quotes.

 Strings that include double quotes: Treatment depends on the type of command.
See Passphrases That Have Double Quotes (page 35) and Searches That Use Strings
(page 35).

In addition, these broader rules apply to Linux and Mac OSX:

 Empty set. Type two double quotes or two single quotes.

 Strings where the only special characters are spaces and non-quotes: Enclose the
string in double- or single-quotes.

 Strings that include single-quotes: Enclose the string in double quotes. For
example, to specify this passphrase:

I can't believe it's not butter

The Command-Line Interface

Flags and Arguments
35

type this command

--passphrase "I can't believe it's not butter"

 Strings that include double quotes: Treatment depends on the type of command.
See Passphrases That Have Double Quotes (page 35) and Searches That Use Strings
(page 35).

These examples apply to all platforms:

--default-key 0x8885BE88 (sets the key with this key ID as the default key)

--output "New File.txt.pgp" (sets the output filename to a filename with a
space in it)

--passphrase "" (specifies a blank passphrase)

--expiration-date 2008-12-27 (specifies an expiration date of Dec. 27,
2008)

For consistency, all example strings in this guide are shown in double quotation marks
("). Putting passphrases between double quotation marks ensures that reserved
characters and spaces are interpreted correctly.

Note: If you are having problems entering certain characters in your passphrases,
check the information about how to handle reserved characters for the operating
system or shell interpreter you are using.

Passphrases That Have Double Quotes
For passphrases that contain double quotes, precede the inner double quotes with an
escape character. For Linux, use a blackslash. For Windows, use a double quote. For
example, to specify this passphrase:

Thomas "Stonewall" Jackson

On Linux, type either of these commands:

--passphrase "Thomas \"Stonewall\" Jackson"

--passphrase 'Thomas \"Stonewall\" Jackson' On Windows, type this
command:

--passphrase "Thomas ""Stonewall"" Jackson"

Searches That Use QUOTED_STRING Types
String search commands that use QUOTED_STRING types may require escaping. See
Searching for Data on a PGP KMS (on page 247).

Lists

List arguments are the same as string arguments except you can supply more than one
string.

For example:

--recipient bob --recipient bill (sets both Bob and Bill as recipients)

-r bob -r bill (same command using the short form of the flag)

36 The Command-Line Interface

Configuration File

File descriptors

File descriptor arguments behave like integer arguments, but instead of storing the
value of the descriptor, PGP Command Line reads a string value from the descriptor.
These string values always have a string type counterpart.

If you need to specify the data in UTF-8 format on a Windows system, use the "8"
versions of the file descriptor options.

For example:

--passphrase-fd 4 (read passphrase from fd 4 and use it as if --passphrase
had been supplied)

--passphrase-fd8 7 (read a UTF-8 passphrase from fd 7)

No parent

Arguments that have no parent flag behave like lists and follow the same rules. They
are used in different ways, depending on the operation being performed, but they can
occur anywhere in the command line except after a flag that has a required argument.

These arguments can represent users or represent files.

For example

--list-keys Alice Bob Bill (list all keys that match any one of these users)

--encrypt file1.txt file2.txt file3.txt (encrypt multiple files with
the same command)

Configuration File
Generally, the configuration file PGPprefs.xml cannot be changed by PGP Command
Line itself: any changes need to be edited manually (on Mac OS X, the configuration file
is com.pgp.desktop.plist, located in /user’s home directory/Library/Preferences/).

Starting with the PGP Command Line version 9.0, there is one operation that will
change the configuration file: when you authorize a license, this information is saved in
the file PGPprefs.xml for future use.

The configuration file PGPprefs.xml is located in the following locations:

 $HOME directory on any Unix platform

 The exact location depends on the version of Windows, but it is always the
directory that holds the application data.

By changing some of the settings in the PGPprefs.xml file, you will change how PGP
Command Line works as long as this file is not replaced.

Note that those configuration file settings that do not begin with "CL" are shared among
all PGP applications on the system.

Like arguments, the configuration file settings come in different types: Boolean,
Integer, Enumeration, List, and String.

Boolean configuration file settings you can use with PGP Command Line are:

The Command-Line Interface

Configuration File
37

 ADK warning level (adkWarning). Enables warning messages for ADK actions
such as adding an ADK, skipping an ADK, or when an ADK is not found. Refer to --
warn-adk (on page 178) for more information.

 Encrypt to self (encryptToSelf). When on, all files or messages you encrypt to
someone else are also encrypted to your key, which means you can decrypt those
encrypted files/messages at a later time, if you wish. The default is off. See --
encrypt-to-self (on page 172) for more information.

 Fast keygen (fastKeyGen). Establishes the setting for fast key generation, on or
off. The default is on. See --fast-key-gen (on page 172) for more information.

 Halt on error (CLhaltOnError). When on, causes PGP Command Line to halt
operations when an error occurs. Does not apply to all operations. The default is
off. See --halt-on-error (on page 173) for more information.

 Keyring cache (CLkeyringCache). When on, stores keyrings in memory for each
access. The default is off. See --keyring-cache (on page 173) for more information.

 Large Keyrings (CLlargeKeyrings). Checks keyring signatures only when
necessary. See --large-keyrings (on page 174) for more information.

 Marginal is invalid (marginalIsInvalid). Establishes whether marginally
trusted keys are considered valid. The default is true, which means that
marginally valid keys are not valid. See --marginal-as-valid (on page 175) for more
information.

 Passphrase cache (CLpassphraseCache). When on, automatically saves your
passphrase in memory until you log off or purge the passphrase cache. The default
is off. See --passphrase-cache (on page 176) for more information.

Integer configuration file settings you can use with PGP Command Line are:

 Keyring cache timeout (CLkeyringCacheTimeout). Establishes the number of
seconds a keyring stays cached in memory. The default is 120 seconds. See --
keyring-cache-timeout (on page 183) for more information.

 Keyserver timeout (CLkeyserverTimeout). Establishes the number of seconds
to wait before a keyserver operation times out. The default is 120 seconds. See --
KEYSERVER-TIMEOUT (SEE "INTEGER OPTIONS" ON PAGE 179) for more information.

 Number of wipe input passes (CLfileWipeInputPasses). Establishes the
number of wipe passes for input files. The default is 3 passes. See --wipe-input-
passes (on page 188) for more information.

 Number of wipe passes (fileWipePasses). Establishes the number of passes
used by the --wipe command. The default is 3 passes. See --wipe (on page 165) for
more information.

 Number of wipe temp passes (CLfileWipeTempPasses). Establishes the number
of wipe passes for temporary files. The default is 3 passes. See --wipe-temp-passes
(on page 189) for more information.

 Number of wipe overwrite passes (CLfileWipeOverwritePasses). Establishes
the number of wipe passes when overwriting an existing output file. The default is
3 passes. See --wipe-overwrite-passes (ON PAGE 188) for more information.

 Passphrase cache timeout (CLpassphraseCacheTimeout). Establishes the
number of seconds a passphrase stays cached in memory. The default is 120
seconds. See --passphrase-cache-timeout (on page 184) for more information.

Enumeration configuration file settings you can use with PGP Command Line are:

38 The Command-Line Interface

Configuration File

 Automatic import of keys (CLautoImportKeys). Establishes behavior when keys
are found during non-import operations. The default is all. See --auto-import-keys
(on page 189) for more information.

 Compression Level (CLcompressionLevel). Sets the compression level for the
current operation. The default is default. See --COMPRESSION-LEVEL (on page 191) for
more information.

 Enforce ADK (CLenforceADK). Establishes the ADK enforcement policy. The
default is attempt. See --enforce-adk (on page 192) for more information.

 Input cleanup (CLinputCleanup). Establishes what to do with input files after
they have been used. The default is off. See --input-cleanup (on page 194) for more
information.

 Manual import of keys (CLmanualImportKeys). Establishes behavior when keys
are found during an import. The default is all. See --manual-import-key-pairs (on
page 196) for more information.

 Manual import of key pairs (CLmanualImportKeyPairs). Establishes behavior
when key pairs are found during import. The default is pair. Refer to --manual-
import-keys (on page 196) for more information.

 Sort order (CLsortOrder). Changes the sort order for writing key lists. The
default is any. See --sort-order, --sort (on page 197) for more information.

 Overwrite (CLoverwrite). Establishes what to do when an operation tries to
create an output file but it already exists. The default is off. See --overwrite (on
page 196) for more information.

List configuration file settings you can use with PGP Command Line are:

 Always encrypt to keys (alwaysEncryptToKeys). Specifies additional recipients
for encryption. Use the 32- or 64-bit key ID to specify the key(s) to use. Refer to --
additional-recipient (on page 209) for more information.

 Default keyserver names and associated values (keyservers). Specifies default
keyservers. The default is ldap://keyserver.pgp.com:389/. If you supply a
keyserver on the command line, those keyservers listed in the configuration file
are ignored.

String configuration file settings you can use with PGP Command Line are:

 Comment (commentString). Specifies a comment string to be used in armored
output blocks. The default is not set. Refer to --comment (on page 199) for more
information.

 Default signing key (CLdefaultKey). Specifies a key to be used by default for
signing. The default is not set. See --default-key (on page 200) for more
information.

 License Authorization (CLlicenseAuthorization). Specifies the license
authorization. The default is not set. See --license-name, --license-number, --
license-organization, --license-email (on page 202) for more information.

Caution: Because licensing information is stored somewhat differently, PGP
Corporation recommends that you do not directly edit the license-related
configuration file settings; instead, use the license authorization commands
described in Licensing (on page 25).

 License Name (CLlicenseName). Specifies the name of the licensee. The default
is not set. See --license-name, --license-number, --license-organization, --license-
email (on page 202) for more information.

The Command-Line Interface

Configuration File
39

 License Number (CLlicenseNumber). Specifies the license number. The default
is not set. See --license-name, --license-number, --license-organization, --license-
email (on page 202) for more information.

 License Organization (CLlicenseOrganization). Specifies the organization of
the licensee. The default is not set. See --license-name, --license-number, --license-
organization, --license-email (on page 202) for more information.

 Output File (CLoutputFile). Specifies the output file (default is not set in the
configuration file; defaults to stdout). The output file is used for output messages.
See --output-file (on page 204) for more information.

 Private keyring file (privateKeyringFile). The filename or path and filename
to the private keyring file. The default is secring.skr, located in the default PGP
Command Line home directory. See --private-keyring (on page 205) for more
information.

 Public keyring file (publicKeyringFile). The filename or path and filename to
the public keyring file. The default is pubring.pkr, located in the default PGP
Command Line home directory. See --public-keyring (on page 205) for more
information.

 Random seed filename (rngSeedFile). Sets the location of the random seed file.
By default, the random seed file is located in the PGP Command Line data
directory. See --random-seed (on page 206) for more information.

 Status File (CLstatusFile). Specifies the status file. The default is not set in the
configuration file; defaults to stderr. The status file is used for status messages,
using a file name (with or without the path information). See --status-file (on page
207) for more information.

Keyserver Configuration File Settings
Here is the keyserver section of the PGPprefs.xml file, with brief explanations of
specific settings:

<key>keyservers</key>

 <array>

 <dict>

 <key>title</key>

 <string>keyserver.example.com</string>(
 (name of the keyserver)

 <key>domain</key>

 <string></string>

 <key>hostname</key>

 <string>keyserver.example.com</string>
 (hostname of the keyserver)

 <key>port</key>

 <integer>389</integer> (keyserver port)

 <key>protocol</key>

 <integer>1</integer>(keyserver protocol: 1= LDAP, 2= HTTP,
3 = LDAPS and 4 = HTTPS (currently not supported)

40 The Command-Line Interface

Environment Variables

 <key>type</key>

 <integer>1</integer>(keyserver type: 1 = HTTP, 2 = HTTPS
 (currently not supported)

 <key>keyserverType</key>

 <integer>100</integer>(keyserver type: 100 = PGPLDAP, 101
= PGPLDAPS, 102 = PGPVKD, 103 = X509LDAP, 104 = X509LDAPS, 105
= PGPHTTP)

 <key>baseDN</key>

 <string></string>

 <key>authKeyID</key>

 <string></string> (not used)

 <key>authAlgorithm</key>

 <integer>0</integer> (not used)

 <key>flags</key>

 <integer>0</integer> (not used)

Environment Variables
PGP Command Line behavior can be changed using environment variables. For
information about defining environment variables, refer to the section that describes
the platform you are using in Installation (see "Installing" on page 5).

Environment variables have the lowest priority compared to the command line and the
configuration file. Settings for either will override environment variables. However, if a
value for an item is not specified in either, the environment variable will be used.
Environment variables cannot be disabled; if they are present, they are implemented.
To disable an environment variable, remove it. Setting a Boolean environment variable
will activate it, regardless of the value to which it is set.

Environment variables that can be implemented for PGP Command Line are:

 PGP_LOCAL_MODE. This is a Boolean environment variable that forces PGP
Command Line to run in local mode. The default is unset. See --local-mode (on
page 175) for more information.

Usage: PGP_LOCAL_MODE=1

 PGP_NO_BANNER. This is a Boolean environment variable that turns off the
banner when a command is run. The default is unset. See --banner (on page 170)
for more information.

Usage: PGP_NO_BANNER=1

 PGP_HOME_DIR. This is a string environment variable that overrides the default
home directory, pointing it to the path supplied in the variable. The default is
unset. See --home-dir (on page 201) for more information.

Usage: PGP_HOME_DIR=/usr/bin/alice

 PGP_PASSPHRASE. This is a string environment variable that lets you set your
passphrase. The default is unset. For more information, See --passphrase (on page
204) for more information.

The Command-Line Interface

Standard Input, Output, and Error
41

Usage: PGP_PASSPHRASE="Now is the time for all good men"

 PGP_NEW_PASSPHRASE. This is a string environment variable that lets you set
a new passphrase. The default is unset. See --new-passphrase (on page 203) for
more information.

Usage: PGP_NEW_PASSPHRASE="to come to the aid of their
country."

 PGP_SYMMETRIC_PASSPHRASE. This is a string environment variable that lets
you set a passphrase for symmetric encryption. The default is unset. See --
symmetric-passphrase (on page 208) for more information.

Usage: PGP_SYMMETRIC_PASSPHRASE="Now is the time"

 PGP_EXPORT_PASSPHRASE. This is a string environment variable that lets you
set the export passphrase. The default is unset. See --export-passphrase (on page
201) for more information.

Usage: PGP_EXPORT_PASSPHRASE="For All Good Men"

Standard Input, Output, and Error
PGP Command Line writes different data to several different places by default. Any
user output generated by PGP Command Line is written to standard output (stdout),
including version information, key list data, and so on. Any status information
generated by PGP Command Line is sent to standard error (stderr).

When encrypting and decrypting, PGP Command Line reads and writes files by default.
These files can be overridden with the special argument "-" to either --input or --
output. This behavior is set so that PGP Command Line does not have to wait for input
if you forget something: it will generate an error you can detect.

The behavior of PGP Command Line changes depending on the operating system you
are using, while the syntax changes depending on the shell.

When you work with PGP Command Line, you can use standard input (stdin) in two
ways: by redirecting an existing file, or by typing (pasting in) data.

Redirecting an Existing File
You can use your shell to redirect input to PGP Command Line from an existing file.

The command looks like:

pgp -er user -i - -o file.pgp<file.txt

Example:

pgp -er "bob@example.com" -i - -o newnote.pgp<newnote.txt

stdin:encrypt (0:output file newnote.pgp)

In this case, the file newnote.txt was encrypted with Bob’s key and saved as
newnote.pgp.

mailto:bob@example.com

42 The Command-Line Interface

Specifying a Key

Entering Data
Instead of redirecting an existing file, you can also type (or paste in) the data that needs
to be encrypted. The command looks like:

pgp -er user -i - -o file.pgp

(type/paste in the data to be encrypted)

Example:

pgp -er "bob@example.com" -i - -o newnote.pgp

(This text is the file newnote.txt, which will be signed by Bob.)

^Z

stdin:encrypt (0:output file newnote.pgp)

In addition to specifying the end of file, you also need to specify an output file
name (such as "newnote.pgp"), since the input file name was not specified.

pgp --decrypt newnote.pgp --passphrase "B0bsm1t4"

newnote.pgp:decrypt (0:output file newnote)

If you now decrypt newnote.pgp, the decrypted file newnote will not have an
extension since the input was not in a file format.

On platforms where buffered standard input/output (I/O) is disabled by default, you
cannot type or paste into stdin. Instead, you need to enable standard I/O using --
buffered-stdio (see --buffered-stdio for details).

End-of-File

Depending on the shell you use, the end of file will be announced in different ways:

 On Windows, enter ^Z (ctrl-z) on a separate line.

 On UNIX, enter ^D (ctrl-d) anywhere in the text. The end of file character is
shell-dependent and will vary on different systems.

Specifying a Key
When you need to specify a key or keys as input for a PGP Command Line operation,
there are two methods you can use:

 Match by user ID: To match by user ID, supply some of the text in the user ID(s)
you want to match. A case insensitive search of the user IDs of the keys on the
local keyring is made. All keys that match the supplied text will be returned; for
example, searching on ’ex’ would return all keys on the local keyring from the
domain "example.com", as well as a key whose user ID was "dexter@pgp.com". This
is a convenience feature that makes it easy for you to match multiple keys on the
local keyring.

mailto:bob@example.com
mailto:dexter@pgp.com

The Command-Line Interface

'Secure' Options
43

Searching by user ID can return no keys, one key, or multiple keys, depending on
the supplied text and the user IDs of the keys on the local keyring. Matching by
user ID is best for operations where you want your search to return multiple keys;
for example, the list operations (--list-keys, --fingerprint, and so on).
Match by user ID can be used for operations that work only on a single key, but as
it may return multiple keys, match by user ID may not be the best choice for these
operations.

 Match by key ID: To match by key ID, supply the key ID of the specific key you
want used for the operation (0xABCD1234, for example). The key IDs of the keys
on the local keyring will be searched. If the key with the specified key ID is found
on the local keyring, it will be used for the operation; if not, the operation will
terminate.

Searching by key ID will return either no keys or one key. Matching by key ID is
best for those cases where the search must exactly match one key (--default-
key, for example) or where only a single key can be used for the operation; for
example, most of the key edit operations (--split-key, --revoke, and so on).

'Secure' Options
The descriptions of some options in PGP Command Line mention that they are "secure,"
as in "This option is not secure" or "--auth-passphrase is secure".

In this context, "secure" means that the option’s argument is saved in non-pageable
memory (when that option is available to applications). Options that are not "secure"
are saved in normal system memory.

This section describes the steps you need to take to get up and running with
PGP Command Line.

In This Chapter

Overview... 45

Creating Your Keypair.. 46

Protecting Your Private Key.. 47

Distributing Your Public Key .. 48

Getting the Public Keys of Others .. 49

Verifying Keys ... 51

Overview
The first steps for getting up and running with PGP Command Line are:

1 Install PGP Command Line.

Installation for all supported platforms is fully described in Installation (see
"Installing" on page 5).

2 License your copy of PGP Command Line.

Licensing is required for normal operation of PGP Command Line. Refer to
Licensing (on page 25) and --license-authorize (on page 163) for more information
about licensing PGP Command Line.

3 Create your key pair.

Most of the things you do with PGP Command Line require a key pair (a private
key and a public key). How to create your key pair is described later in this chapter
in Creating Your Keypair (on page 46).

4 Protect your private key.

No one but you should know the passphrase or have access to your private key.
How to protect your private key is described later in this chapter in Protecting
Your Private Key (on page 47).

5 Distribute your public key.

In order for others to verify your signature or encrypt data so that only you can
decrypt it, they will need your public key.

One way to distribute your public key is to post it to a keyserver so that others can
obtain it. The best way to do this is to post your public key to the PGP Global
Directory (keyserver.pgp.com), a free, public keyserver hosted by PGP
Corporation. It provides quick and easy access to the universe of PGP keys.

6 First Steps

46 First Steps

Creating Your Keypair

You can also export your public key to a file, which you can then distribute in any
number of ways. For information about how to post your public key to a keyserver
and extract your public key to a file, refer to Distributing Your Public Key (on page
48).

6 Obtain the public keys of others.

You need someone’s public key to be able to encrypt data so that only they can
decrypt it. You can get public keys from a keyserver (as long as the key is posted,
of course). And if you receive someone’s public key in a file, you can import it. For
more information about how to get a public key from a keyserver and how to
import a key, refer to Getting the Public Keys of Others (on page 49).

7 Verifying the public keys you get.

It is important to make sure the public keys you get actually belong to the person
or organization they appear to be from. For instructions on how to verify a public
key, refer to Verifying Keys (on page 51).

8 Start securing your data.

Creating Your Keypair
The first thing you need to do after installing PGP Command Line is to make sure you
have a usable PGP key pair, as most PGP Command Line operations require a key pair.

A key pair consists of two keys:

 Private key (stored in secring.skr) that only you have.

 Public key (stored in pubring.pkr) that you can distribute freely to the people
you correspond with.

Keys are stored on keyrings. There’s one keyring for private keys (secring.skr), and one
keyring for public keys (pubring.pkr).

If you are using a Windows or Mac OS X system, you may already have a key pair
generated by PGP Desktop. If you do have an existing key pair you want to use with
PGP Command Line and you distributed your public key to the people who will be
encrypting data to you, you need to make sure the environment variable
(PGP_HOME_DIR) is defined and points to the directory where your existing key pair is
located.

Note: If you have PGP Desktop installed on the same Windows or Mac OS X computer
as PGP Command Line, and you installed PGP Desktop into the default directory,
then PGP Command Line will automatically locate and use your existing keyrings.

If you do not have a PGP key pair, you will need to create one for use with
PGP Command Line.

Use the --gen-key command to create a new key pair.

To create a key pair:

1 On the command line, enter:

First Steps

Protecting Your Private Key
47

pgp --gen-key <user> --key-type <type> --encryption-bits
<bits>
--passphrase <pass> [--signing-bits <bits>] [options]

where:

<user> is a user ID that people can use to locate your public key. A common user
ID is your name and email address in the format: "Alice Cameron
<alice@example.com>". If your user ID contains spaces, you must enclose it in
quotation marks.

<type> means you are creating either an RSA or a DH key.

<bits> is the number of bits of the key (usually 1024 to 4096). Per FIPS 186-3,
DSA keys can be 1024, 2048, or 3072 bits.

<passphrase> is a passphrase of your choice. If your passphrase includes spaces,
enclose it in quotation marks.

For more information, refer to --gen-key (on page 97).

2 Press Enter when the command is complete.

PGP Command Line responds by generating your key pair.

Note: The --gen-key command automatically creates your key pair and a public
and a private keyring in the home directory, then puts your new private and public
keys onto their respective keyrings. You can create empty keyring files without
generating a key pair at the same time using the --create-keyrings command.

Protecting Your Private Key
If someone gets your private key and manages to guess your passphrase or finds it
written on a Post-it® note, they can impersonate you. They can open messages
encrypted to you and they can sign messages, making them appear to be from you.

Warning: It is very important to protect your private key! Do not let anyone get a
copy of it and do not ever give anyone the passphrase.

By default, all generated keys (private and public) are stored in the directory to which
the environment variable points (which is PGP_HOME_DIR, if set).

Otherwise:

 UNIX: $HOME/.pgp

 Windows: C:\Documents and Settings\<current user>\My
Documents\PGP

Mac OS X: $HOME/Documents/PGP You can locate your keyrings using the --version
(-v) command. Once the keys are generated, you can store them in any location you
choose (provided you do not forget to adjust the environment variable to point to the
new location). Moving your keys to a different location is one way to protect them from
someone who might get access to your system.

It is also a good practice to make a backup copy of your keys. Make sure to be especially
careful with your private key, storing it on a machine only you can access and in a
directory that cannot be accessed via a network. You may also choose to implement
additional security precautions.

mailto:alice@example.com

48 First Steps

Distributing Your Public Key

Distributing Your Public Key
People need your public key to encrypt information that only you can decrypt and to
verify your signature.

There are three main methods available to distribute your public key:

 Post your public key to the PGP Global Directory. The PGP Global Directory is a
free, publicly available keyserver hosted by PGP Corporation that provides quick
and easy access to the universe of PGP keys. If you are not in an email domain protected
by a PGP Universal Server, the PGP Global Directory is your source for trusted keys.

 Post your public key to another keyserver. Once posted, people can get a copy of
your public key and use it to encrypt data that only your private key can decrypt.
How to use PGP Command Line to post your public key to a keyserver is described
below.

 Export your public key to a text file. Once exported to a text file, you can
distribute your public key however you like: attached to an email message, pasted
into the body of an email message, or copied to a CD.

How to use PGP Command Line to extract your public key to a text file is described
in Exporting Your Public Key to a Text File (on page 49).

Posting Your Public Key to a Keyserver
You can post your public key to a private keyserver or a public keyserver; the procedure
is the same in both cases.

Use the --keyserver-send command to post your public key to a keyserver.

To post a public key to a keyserver:

1 On the command line, enter:

pgp --keyserver-send <input> --keyserver <ks>

where:

<input> is the user ID, portion of the user ID, or key ID of the public key you are
posting.

<ks> is the name of the keyserver to which you are posting.

For example:

pgp --keyserver-send alice@example.com --keyserver
ldap://keyserver.example.com

If there are multiple keys with user IDs that match the input, all of them will be
posted. To make sure only a specific key is posted, use the key ID as the input.

pgp --keyserver-send 0x12345678 --keyserver
ldap://keyserver.pgp.com

Only the specified key will be posted to ldap://keyserver.pgp.com, a public
keyserver.

2 Press Enter when the command is complete.

mailto:alice@example.com

First Steps

Getting the Public Keys of Others
49

PGP Command Line responds by posting the public key(s) to the specified
keyserver.

Once you have posted your public key to a keyserver, you should search the keyserver
for your public key to make sure it was correctly posted.

How to search for a key on a keyserver is described in Finding a Public Key on a
Keyserver.

Exporting Your Public Key to a Text File
Once you have extracted your public key to a text file, it is easy to distribute. You can
attach it to an email message, paste it into the body of an email message, or copy it to a
CD.

Use the --export command to export your public key.

To export a public key:

1 On the command line, enter:

pgp --export <input>

where:

<input> is the user ID, portion of the user ID, or the key ID of the key you want to
export.

By default, keys are exported as ASCII armor (.asc) files into the directory
currently active on the command line.

For example:

pgp --export example

All keys with the string "example" anywhere in them would be exported into
separate .asc files.

pgp --export "Alice C <acameron@example.com>"

Only keys that exactly match this user ID would be exported. The filename would
be Alice C.asc.

2 Press Enter when the command is complete.

PGP Command Line responds by creating the .asc file(s) in the appropriate
directory.

Getting the Public Keys of Others
To encrypt data to a specific person, you need to encrypt it with their public key.
Naturally, you have to get their public key onto your keyring first.

To get a public key onto your keyring, you must first find the public key on a keyserver
and then import it from the keyserver onto your keyring.

mailto:acameron@example.com

50 First Steps

Getting the Public Keys of Others

Finding a Public Key on a Keyserver
In order to get a public key onto your keyring, you have to find the right key. In many
cases, you can get the key you need from a keyserver. You use the same procedure for a
public keyserver and a private keyserver.

Use the --keyserver-search command to search a keyserver for a key.

To search a keyserver for a key:

1 On the command line, enter:

pgp --keyserver-search <input> --keyserver <ks>

where:

<input> is the user ID, portion of the user ID, or the key ID of the key for which
you are searching.

If you are searching by key ID, only an exact match will be found (you can find the
key ID of your key using the --list-keys (-l) (page 75) command). If you are
searching by user ID, any key whose user ID contains the user ID or portion of the
user ID you enter will be found. So a search by user ID could return many matches,
where a search by key ID will return only one key.

<ks> is the name of the keyserver you want to search.

You can enter more than one keyserver, separated by a space. Only results from
the first keyserver where there is a match will be returned.

For example:

pgp --keyserver-search example.com --keyserver
ldap://keyserver.pgp.com

This search would return keys that have "example.com" in the user ID and are on
keyserver.pgp.com, a public keyserver.

2 Press Enter when the command is complete.

PGP Command Line responds by listing the key or keys that match the search
criteria you specified in the following format:

Alg Type Size/Type Flags Key ID User ID

--- ---- --------- ----- --------- -------

DSS pub 2048/1024 [-----] 0x1234ABCD Alice C <ac@example.com>

Importing a Public Key from a Keyserver
Once you have found the key you want on the keyserver, you need to get the key from
the keyserver onto your keyring.

Use the --keyserver-recv command to locate a key on a keyserver and import it
onto your keyring.

To import a key from a keyserver:

1 On the command line, enter:

mailto:ac@example.com

First Steps

Verifying Keys
51

pgp --keyserver-recv <input> --keyserver <ks>

where:

<input> is the user ID, portion of the user ID, or key ID of the key you want to get
onto your keyring.

To get a specific key, use the key ID. To get one or more keys, use the user ID or
portion of the user ID.

<ks> is the name of the keyserver you want to search.

You can enter more than one keyserver to search, separated by a space. Only
results from the first keyserver where there is a match will be returned.

For example:

pgp --keyserver-recv 0xABCD1234 --keyserver
ldap://keyserver.pgp.com

The key with the key ID shown would be imported if it were on the specified
keyserver.

2 Press Enter when the command is complete.

PGP Command Line responds by listing the key(s) it found on the specified
keyserver that matched the criteria you specified and that the key(s) was
imported:

pgp:keyserver receive (2504:successful search on
ldap://keyserver.pgp.com)

0xABCD1234:keyserver receive (0:key imported as Alice C
<ac@example.com>.)

Note: If you want to make sure the key was imported onto your keyring, use the --
list-keys command (the short form is -l) to see what keys are currently on your
keyring.

Verifying Keys
If you have information you want to send to someone privately, and you are going to
the trouble to encrypt it so that it stays private, then it is probably also important that
you make sure the public key you have obtained and are going to use to encrypt your
important information is actually from the person or organization that you believe it to
be from.

One way to do this is to compare the fingerprint of the public key you have with the
fingerprint of the real key. You could, for example, call the person on the phone and ask
them to read the fingerprint of their key.

Some people also put the fingerprint of their PGP key on their Web site or on their
business card, making it easy to compare the fingerprint of the real key with the
fingerprint of the public key you have.

Use the --fingerprint command to see the fingerprint of any of the keys currently
on your keyring; refer to --fingerprint (page 72) for more information.

mailto:ac@example.com

52 First Steps

Verifying Keys

To view the fingerprint of a key:

1 On the command line, enter:

pgp --fingerprint <input>

where:

<input> is the user ID, portion of the user ID, or key ID of the key whose
fingerprint you want to see.

If you don’t enter any input, PGP Command Line will display the fingerprints of all
keys on your keyrings.

For example:

pgp --fingerprint 0xABCD1234

The user ID and the fingerprint of the key with the key ID shown would display if
it were on either keyring.

pgp --fingerprint

The user IDs and the fingerprints of all keys on both keyrings would display.

2 Press Enter when the command is complete.

PGP Command Line responds by listing the user ID of the key(s) it found that
matched the criteria you specified and the fingerprint of that key using the
following format:

Alice Cameron <alice@example.com>

 896A 4A96 9C3A 3BEC C87C EA8B 2CDB B87B 2CEB 53CC

mailto:alice@example.com

This chapter describes the commands used in PGP Command Line that relate to
cryptographic operations. These commands are:

 --armor (-a) (page 54), which converts a file to ASCII armor format.

 --clearsign (page 55), which creates a clear signature.

 --decrypt (page 57), which decrypts encrypted data.

 --detached (-b) (page 59), which creates a detached signature.

 --dump-packets | --list-packets, which dumps the packets in a PGP
message.

 --encrypt (-e) (page 61), which encrypts your data.

 --export-session-key (page 64), which exports the session key that was used
to encrypt data to a separate file.

 --list-sda (page 65), which lists the contents of an SDA.

 --list-archive (page 65), which lists the contents of a PGP Zip archive.

 --sign (-s) (page 66), which signs your data.

 --symmetric (-c) (page 68), which encrypts data using a symmetric cipher.

 --verify (page 69), which lets you verify data without creating any output.

In This Chapter

Overview .. 53

Commands ... 54

Overview
This chapter covers four of PGP Command Line’s most significant cryptographic
operations: encrypting, signing, decrypting, and verifying:

 Encrypt: A method of scrambling information to render it unreadable to anyone
except the intended recipient, who must decrypt it to read it. You use PGP
Command Line to encrypt your important information so that if it is stolen from a
hard drive or intercepted while in transit, it is of no value to the person who has
taken it because they cannot decrypt it.

 Sign: When you sign a message or file, PGP Command Line uses your private key to
create a digital code that is unique to both the contents of the message/file and
your private key. Only your public key can be used to verify your signature.

7 Cryptographic Operations

54 Cryptographic Operations

Commands

 Decrypt: When you receive decrypted data, it’s of no value until you decrypt it. To
do this, you need to use the private key of the key pair that includes the public key
that was used to encrypt the data.

 Verify: In addition to decrypting your data so that you can use it, you should also
verify the files you use with PGP Command Line, including data, signature, and
key files, to make sure they have not been tampered with.

For more information about these cryptographic operations, refer to An Introduction to
Cryptography, which was installed with PGP Command Line.

Commands
The commands that relate to encrypting and signing are described in the following
sections.

--armor (-a)
Armors data, produces a PGP armored file, and changes the default file extension from
.pgp or .sig to .asc. The resulting ASCII armored data format is used with email
systems that only allow ASCII printable characters. It converts the plaintext by
expanding groups of three binary 8-bit bytes into four (4) printable ASCII characters,
and the resulting file expands in size by approximately 33 percent.

The usage format is:

pgp --armor <input> [<input2> ...] [options]

Where:

<input> is the file to be armored. It is either in the current directory, or its
location has to be defined using a relative or absolute path. Multiple files can be
armored.

[options] modify the command:

--comment. Saves a comment at the beginning of the file with the header tag
"Comment".

--compress. Compresses the output file.

--compression-algorithm. Sets the compression algorithm. The default for
this option is zip.

--eyes-only. Text inputs that are processed using this option can only be
decrypted to the screen.

--input-cleanup. This option will clean up the input file, depending on the
arguments you specify: off (default), remove, or wipe.

--output. Lets you specify a different name for the armored file.

--overwrite. Sets the overwrite behavior when PGP Command Line tries to
create an output file with the same name that already exists in the directory. This
option accepts the following arguments: off (default), remove, rename, or wipe.

--temp-cleanup. Cleans up the temporary file(s), depending on the arguments
you specify: off, remove, or wipe (default). For large encryption jobs, this option
should be set to remove to speed up the process.

Cryptographic Operations

Commands
55

--text. Forces the input to canonical text mode. Do not use with binary files.
Automatic detection of file types is not supported.

-v|--verbose. Gives a verbose (detailed) report about the operation.

The option --compression-algorithm is allowed when --armor is the primary
operation (armor only). When --armor is combined with --sign or --encrypt
operations, check these operations for details about setting the compression algorithm.

Examples:

1 pgp --armor report.txt --overwrite remove

The ASCII armored output file "report.txt.asc" replaced the existing file with the
same name, which was removed by overwriting.

2 pgp -a report.txt --compression-algorithm zlib

The ASCII armored file "report.txt.asc" is compressed using the ZLIB compression
algorithm.

Using --armor as an option with other commands to armor a file:

The usage format is:

pgp command1 input command2 user [--passphrase] pass --armor

Examples:

1 pgp --sign report.txt --signer <alice@example.com> --passphrase
"cam3r0n" --armor

The output file is an armored file "report.txt.asc", which contains Alice’s
signature.

2 pgp -er "Bill Brown" report.txt --armor --comment "Urgent"

Creates the ASCII armored file "report.txt.asc," which is encrypted for Bill and has
the plaintext comment "Urgent" displayed on top of the encrypted file:

-----BEGIN PGP MESSAGE-----

Version: PGP Command Line v10.0 (OSX)

Comment: Urgent

qANQR1DBwEwDRB9gEpFtI3MBB/0UL7GQa1xr0LCp54FKg/FN4KZNlr+DrD3IGi
0P

e5xyNUQcYnQ2YqZYO2kDuFkOEJ1lE1HyixLs4m4ETYxhT3EH/VA+yIjqqBHOwl
6k

MXzGN9fNFcp8SoQZGVlOm6bLWOtRY/5W2E90B0iB+f3Pv/VHiN5gDO/FmvzREJ
ke

..

--clearsign
Causes the document to be wrapped in an ASCII-armored signature but otherwise does
not modify the document. The signed message can be verified to ensure that the
original document has not been changed. To verify the signed message, use --verify.

The usage format is:

mailto:alice@example.com

56 Cryptographic Operations

Commands

pgp --clearsign <input> [<input2> ...] --signer <user>
--passphrase <pass> [options]

Where:

<input> is the name of the file to be clear-signed. It is required. You can clear-
sign multiple files by listing them, separated by a space.

<user> is the user ID, portion of the user ID, or the key ID of the clearsigner. The
private key of the clear-signer must be on the keyring. If <user> is not specified,
the default key is used.

<pass> is the passphrase of the private key of the clear-signer. It is required.

[options] modify the command. Options are:

--comment saves a comment at the beginning of the file with the header tag
"Comment".

--input-cleanup cleans up the input file, depending on the arguments you
specify: off (default), remove, or wipe.

--overwrite sets the overwrite behavior when PGP Command Line tries to
create an output file with the same name that already exists in the directory. This
option accepts the following arguments: off (default), remove, rename, or wipe.

--temp-cleanup cleans up the temporary file(s) depending on the arguments
you specify: off, remove, or wipe (default). For large encryption jobs, this option
should be set to remove to speed up the process.

--text forces the input to canonical text mode. Do not use with binary files
(automatic detection of file types is not supported).

-v|--verbose gives a verbose (detailed) report about the operation.

Example:

pgp --clearsign newnote.txt --signer bob@example.com --
passphrase "B0bsm1t4"

newnote.txt:sign (0:output file newnote.txt.asc)

The resulting file "newnote.txt.asc" will have the unchanged text, "wrapped"
between the header and the footer such as this:

-----BEGIN PGP SIGNED MESSAGE-----

Hash: SHA256

…

(the unchanged text in the file "new.note.asc")

-----BEGIN PGP SIGNATURE-----

Version: PGP Command Line v10.0 (Win32)

iQEVAwUBQZF+rbnA+IViRSc+AQiSpQgAnaGd+6/4iOoQ+bsawPB632cEE9Ypa6
wL

/9DeSFgn2mmFIIIOaHljBGheJpIhax4BBDut2ngpOxIUywMEpMuD3Zw05IUGD7
n

r/+YseC6Hteb/S3j9ib0JCd97IxE54MA5DvSX07xTqAjc1ddBqkP8tK28kTmlJ
GN

0QEFJ/zti/k6IYSKP8QSQ+x+aTto2pioibk6QXz4NDWttZ30g4BFefxQnwNwYP
f7

mailto:bob@example.com

Cryptographic Operations

Commands
57

+kbq2fY+VHn0nkIPPrN+8vHskNklO4rxEZccLKPFGdoRPWc9hEkIqDEBOXt7CW
Jf

016AaKwF7wWtz1yWAZJXzfr/EHXRqOBWZb9F/cMimqgnvCnQI/i9VA==

=GE1E

-----END PGP SIGNATURE-----

--decrypt
Decrypts encrypted files with local keys or keys on a PGP KMS server. If data being
decrypted is also signed, the signature is automatically verified during the decryption
process.

The usage format is:

pgp --decrypt <input> [<input2> ...] [<inputd>...] [options]

Where:

<input> (required). Space-separated names of the files to decrypt.

<inputd>. Additional detached signature target files. Note that PGP Command
does not write output when decrypting detached signature files.

[options] modify the command. Options are:

--annotate. Adds annotations (information that PGP Command Line processed
the data in a certain way) when processing email messages.

--archive. When you decrypt archives, note the following:

 If you specify --archive, the contents of the archive are extracted.

 If you do not specify --archive, only the .tar file is extracted.

--decrypt-with. Name of a MEK or GKM MAK on a PGP KMS server. For
documents that are encrypted with SKM or SCKM MAKs, omit this argument. PGP
Command Line finds the SKM/SCKM MAK on the indicated PGP KMS server. For
documents that are encrypted with CKM MAKs, obtain a local copy of the key and
then call --decrypt without specifying --usp-server. An error results if PGP
Command Line can match the identifier to more than one MAK or MEK on the PGP
KMS. See Key Modes (page 252).

--email. Processes input data as an RFC 822-encoded email message, which
means that MIME headers and CRLF line endings will be respected by PGP
Command Line.

--eyes-only. Text inputs that are processed using this option can only be
decrypted to the screen: the recipient must view the output on screen when
decrypting a message. The default is off.

When decrypting data that is marked for your eyes only, PGP Command Line
generates an error if the option --eyes-only is not specified.

--input-cleanup. Cleans up the input file, depending on the arguments you
specify: off (default), remove, or wipe.

--output. Specifies a different name for the decrypted file or a different output
directory.

58 Cryptographic Operations

Commands

--overwrite. Sets the overwrite behavior when PGP Command Line creates an
output file that already exists. This option takes the following arguments: off
(default), remove, rename, or wipe.

--passphrase. Provides the password for [asymmetrically] encrypted files

--sda. Specifies the input files are self-decrypting archives. Supply either --
symmetric-passphrase or --passphrase.

When decrypting SDAs or archives, files are automatically overwritten
regardless of the --overwrite option. To avoid overwriting files, use the --
output option to specify an output directory.

--symmetric-passphrase. Provides the password for symmetrically encrypted
files. If supplied, the string cannot be the empty string ("").

--temp-cleanup. Cleans up the temporary file(s), depending on the arguments
you specify: off, remove, or wipe (default). For large encryption jobs, use remove
to speed up the process.

--usp-server. Specifies the PGP KMS to search for MEKs or MAKs containing
SKM, SCKM, or GKM keys.

-v|--verbose. Produces a verbose (detailed) report about the operation.

Examples:

 Decrypt a file with a key on the keyring

pgp --decrypt note.txt.pgp --symmetric-passphrase "cam3r0n" --
overwrite remove

This example decrypts the file to "note.txt" and removes the existing file with the
same name by overwriting it.

 Decrypt a file with a GKM key on a PGP KMS server

pgp --decrypt note.txt.pgp --decrypt-with alicesKey --usp-
server universal.example.com --auth-username acameron --auth-
passphrase "cam3r0n"

 Decrypt a file with an SKM/SCKM MAK from a PGP KMS server

pgp --decrypt note.txt.pgp --usp-server universal.example.com
--auth-username acameron --auth-passphrase "cam3r0n"

 Decrypt a self-decrypting archive (SDA)

pgp --decrypt keyshares.exe --sda --symmetric-passphrase
"B0bsm1t4"

keyshares.exe:decrypt (0:directory created successfully)

keyshares.exe:decrypt (0:output file keyshares\Alice Cameron-
1-Bob Smith.shf)

keyshares.exe:decrypt (0:output file keyshares\Alice Cameron-
2-John Jones.shf)

keyshares.exe:decrypt (0:output file keyshares\Alice Cameron-
3-Bill Brown.shf)

keyshares.exe:decrypt (0:output file keyshares\pgp)

keyshares.exe:decrypt (0:SDA decoded successfully)

Cryptographic Operations

Commands
59

What to avoid when decrypting an SDA pgp --decrypt keyshares.exe --
symmetric-passphrase "B0bsm1t4" keyshares.exe:decrypt
(3031:input does not contain PGP data) If you do not enter the option -
-sda. PGP Command Line will not recognize the SDA you want to decrypt and
uncompress.

Decrypt an attached signature file pgp --decrypt note.txt.sig --
passphrase "B0bsm1t4" note.txt:decrypt (1082:detached
signature target file) note.txt.sig:decrypt (3038:signing key
0x6245273E Bob Smith <bob@example.com>)

note.txt.sig:decrypt (3040:signature created 2005-10-
28T12:44:38-07:00)

note.txt.sig:decrypt (3035:good signature)

Decrypts the detached signature file "note.txt.sig". When decrypting detached
signature files, you will get only a status message as output.

Decrypt an archive file into a tar file pgp --decrypt bobsarchive.pgp --
passphrase "B0bsm1t4" bobsarchive.pgp:decrypt (0:output file
bobsarchive.tar)

 Decrypt an archive file

pgp --decrypt bobsarchive.pgp --passphrase "B0bsm1t4" --
archive

bobsarchive.pgp:decrypt (0:output file .\note.txt)

bobsarchive.pgp:decrypt (0:output file .\report.doc)

Decrypts the archive file into the actual archived files "note.txt" and report.doc,
with their path information included.

--detached (-b)
Signs data and creates a detached signature. If you use this command to sign a
document, both the document and detached signature are needed to verify the
signature. To verify the signed message, use --verify.

The usage format is:

pgp --detached <input> [<input2> ...] --signer <user> --
passphrase <pass> [options]

Where:

<input> is the name of the file for which the detached signature is being created.
It is required. You can create a detached signature for multiple files by listing
them, separated by a space.

<user> is the user ID, portion of the user ID, or the key ID of the signer. It is
required. The private key of the signer must be on the keyring.

<pass> is the passphrase of the private key of the signer. It is required.

[options] modifies the command. Options are:

--armor armors the data and changes the file extension from .sig to .asc.

--comment saves a comment at the beginning of the file with the header tag
"Comment". It works only if --armor is specified as well.

mailto:bob@example.com

60 Cryptographic Operations

Commands

--input-cleanup cleans up the input file, depending on the arguments you
specify: off (default), remove, or wipe.

--output lets you specify a different name for the created file.

--overwrite sets the overwrite behavior when PGP Command Line tries to
create an output file that already exists. This option accepts the following
arguments: off (default), remove, rename, or wipe.

--temp-cleanup cleans up the temporary file(s), depending on the arguments
you specify: off, remove, or wipe (default). For large encryption jobs, this option
should be set to remove to speed up the process.

--text forces the input to canonical text mode. Do not use this option with binary
files (automatic detection of file types is not supported).

-v|--verbose gives a verbose (detailed) report about the operation.

Examples:

1 pgp -b note.txt --passphrase "B0bsm1t4" --signer "Bob Smith"

note.txt:sign (0:output file note.txt.sig)

Output is the file note.txt.sig, which contains Bob’s detached signature.

2 pgp --verify note.txt.sig

note.txt:verify (1082:detached signature target file)

note.txt.sig:verify (3038:signing key 0x6245273E Bob Smith
<bob@example.com>)

note.txt.sig:verify (3040:signature created 2005-10-
28T12:44:38-07:00)

note.txt.sig:verify (3035:good signature)

note.txt.sig:verify (0:verify complete)

The detached signature is verified.

--dump-packets, --list-packets
Dumps the packet information in a PGP message. Input is a list of files or standard
input; output is always a standard output.

This command uses the normal output format for data blocks and displays hexadecimal
values in the format "NN".

The usage format is:

pgp --dump-packets <input> [<input2> …] [options]

Where:

<input> is a list of files or standard input.

<input2> are additional files.

[options] modifies the command. Options are:

--buffered-stdio enables buffered stdio for stdin and stdout.

Example:

mailto:bob@example.com

Cryptographic Operations

Commands
61

pgp --dump-packets TrainingDetails.msg

Processing file TrainingDetails.msg

New: unknown(tag 16)(4049 bytes)

Old: Trust Packet(tag 12)(46 bytes)

 Trust - 00 30 00 5f 00 30 00 30 00 36 00 34 00 30 00 30 00
31 00 45 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2a

Old: Reserved(tag 0)(2 bytes)

File TrainingDetails.msg complete

--encrypt (-e)
Encrypts documents for specified recipients, where keys are on the local keyring or on a
PGP KMS server.

Note: The --encrypt command is not used for symmetric encryption; instead, use
the --symmetric command, described in --symmetric (-c) (page 68).

PGP Command Line uses the recipient's preferred cipher and compression algorithms.
If there are multiple recipients, PGP Command Line uses the most compatible
algorithm. Note that you cannot specify a one-time cipher or compression algorithm
with --encrypt.

The usage format is:

pgp --encrypt <input> [<input2> ...] --recipient <user or
keyID>
[-r <user2> ...] [options]

Where:

<input> (required). Space-separated names of the files encrypt. The default
output filename for an encrypted file is <input filename>.pgp. Note that
stdin can be used only by itself and cannot be combined with other inputs.

--recipient (required). Specifies the recipient for the encryption. Provide one --
recipient option for each recipient. The --usp-server option affects --encrypt as
follows:

 --usp-server is not provided. --recipient specifies the recipient's user ID,
portion of the user ID, or the key ID. PGP Command Line searches the local
keyring for the recipient key.

 --usp-server is provided. --recipient specifies the the UUID of the recipient's
MAK or MEK, or the recipient's user ID, portion of the user ID, or the key ID.
PGP Command Line searches the server for the recipient key.An error results
if PGP Command Line can match the identifier to multiple MAKs or MEKs on
the PGP KMS server.

[options] modifies the command. Options are:

--adk. Alternative decryption key. This option can be used only the option --sda.
Note that if any of the keys used with the option --adk have ADKs, they will also
be used.

62 Cryptographic Operations

Commands

--anonymize. Hides the key IDs of recipients. Recipients of data encrypted with
this option are unable to identify other recipients of the data.

--archive. Saves the output as an archive. It cannot be used with the options --
text-mode or --sda. When using --archive, directories can be in the input
file: without this option, the directories are skipped.

-a or --armor armors the encrypted file.

--cipher. If the option --cipher is used, the existing cipher will be forcefully
overridden and the key preferences and algorithm lists in the SDK will be ignored.
This can create messages that don’t comply with the OpenPGP standard. This
option must be used together with the option --force.

--comment saves a comment at the beginning of the file with the header tag
"Comment". It works only if --armor is specified as well.

--compress toggles compression. If enabled, the preferred compression
algorithm of the recipient is used.

--compression-algorithm. If the option --compression-algorithm is
used, the existing compression algorithm will be forcefully overridden and the key
preferences and algorithm lists in the SDK will be ignored. This can create
messages that do not comply with the OpenPGP standard. This option must be
used together with the option --force.

--email processes input data as an RFC 822-encoded email message, which
means that MIME headers and CRLF line endings will be respected by PGP
Command Line. The resulting file has a .pgp extension. Note that PGP Command
Line does not send the resulting encrypted message, it only creates it.

--encrypt-to-self. Encrypts to the default key in addition to any other
specified keys. The default is off.

--eyes-only. Text inputs that are processed using this option can only be
decrypted to the screen.

--force. Required to use --compression-algorithm and --cipher.

--input-cleanup. Cleans up the input file, depending on the arguments you
specify: off (default), remove, or wipe.

--output. Specify a different name for the encrypted file.

--overwrite. Sets the overwrite behavior when PGP Command Line tries to
create an output file that already exists. This option accepts the following
arguments: off (default), remove, rename, or wipe.

--root-path. Use this option with --sda or --archive.

--sda cannot be used together with the command --sign (such as -es). For
more information, refer to the option --sda.

--sign lets you sign the encrypted file.

--temp-cleanup cleans up the temporary file(s) depending on the arguments
you specify: off, remove, or wipe (default). For large encryption jobs, this option
should be set to remove to speed up the process.

--text forces the input to canonical text mode. Do not use with binary files
(automatic detection of file types is not supported).

--usp-server specifies the PGP KMS to search for MAKs or MEKs.

Cryptographic Operations

Commands
63

-v |--verbose. Provides a verbose (detailed) report about the operation.

Refer to the descriptions of these options or to the man page for information about how
to use these options.

Examples:

 Encrypt to multiple recipients where keys are on the local keyring

pgp --encrypt report.txt README.rtf -r "Bill Brown" -r "Mary
Smith" -r "Bob Smith"

The files "report.txt" and "README.rtf" are encrypted to multiple recipients.

 Encrypt to recipients with keys on a PGP KMS server

pgp --encrypt report.txt README.rtf -r "Bill Brown" --usp-
server universal.example.com --auth-username acameron --auth-
passphrase "cam3r0n"

The files "report.txt" and "README.rtf" are encrypted to multiple recipients.

Encrypt for recipient's "eyes-only" pgp -er "Bob Smith" report.txt --
eyes-only

The output file "readme.txt.pgp" is encrypted for Bob’s "eyes only", which means
that he can read the file only on the screen.

Encrypt and show verbose results pgp -e report.doc -r "Bob Smith" --
output newreport.pgp -v

The output file is "newreport.pgp", and the on-screen message contains the
following detailed information about the performed operation:

pgp:encrypt (3157:current local time 2005-11-05T12:13:09-
08:00)

/Users/bobsmith/.pgp/pubring.pkr:open keyrings (1006:public
keyring)

/Users/bobsmith/.pgp/secring.skr:open keyrings (1007:private
keyring)

0x4A8C54B8:encrypt (1030:key added to recipient list)

report.doc:encrypt (3048:data encrypted with cipher AES-128)

report.doc:encrypt (0:output file newreport.pgp)

Encrypt and store the results in a directory pgp -er "Bob Smith"
report.doc --output /Users report.doc:encrypt (0:output file
/Users/report.doc.pgp) You have encrypted the file report.doc to the
specified directory.

Use wildcards to specify the files to encrypt pgp -er "Bob Smith" *.doc
myreport.doc:encrypt (0:output file myreport.doc.pgp)
report.doc:encrypt (0:output file report.doc.pgp) Both files with
the extension .doc were encrypted for the user Bob.

Encrypt multiple files into an archive pgp -er "Bob Smith" *.doc --
output archive.pgp

pgp:encrypt (3028:multiple inputs cannot be sent to a single
output file)

Nothing happened because archive mode was not enabled.

pgp -er "Bob Smith" *.doc --output archive.pgp --archive

64 Cryptographic Operations

Commands

pgp00000.tmp:encrypt (3110:archive imported myreport.doc)

pgp00000.tmp:encrypt (3110:archive imported report.doc)

pgp00000.tmp:encrypt (0:output file archive.pgp)

With the option --archive added, the two doc files are encrypted into
archive.pgp.

 Encrypt files from a folder

pgp -er "Bob Smith" /Users/note.txt

 /Users/note.txt:encrypt (0:output file /Users/note.txt.pgp)

In this case, you have encrypted the file note.txt, which was located in another
directory.

pgp -er "Bob Smith" /Users/*.txt -o MyNewArchive.pgp --archive

pgp00000.tmp:encrypt (3110:archive imported /Users/note.txt)

pgp00000.tmp:encrypt (3110:archive imported /Users/note2.txt)

pgp00000.tmp:encrypt (0:output file MyNewArchive.pgp)

In this case, you have encrypted multiple text files located in another directory
into a new archive in your local directory.

pgp -er "Bob Smith" /Data/emailmessage.txt --email

In this case, you have encrypted the file emailmessage.txt, an RFC 822-encoded
email message. The encrypted file emailmessage.txt.pgp will result.

--export-session-key
Exports the session key of an encrypted message. This key is used to encrypt each set of
data on a transaction basis, and a different session key is used for each communication
session. Output of this command is a key file with the extension .key, which contains
the key fingerprint of the key used during the session that produced the encrypted file.

Using the session key, it is possible to decrypt a document without the recipient’s
private key and its passphrase. Therefore, it reveals only the content of a specific
message without compromising the private recipient’s key (which would reveal all
messages encrypted to that key). Note that a user cannot directly specify a session key
during encryption.

The usage format is:

pgp --export-session-key <input> [<input2> ...] --passphrase
<pass> [--output]

Where:

<input> is the encrypted file whose session key is to be exported to a separate
file. It is required. Multiple files can have their session key exported as well; each
encrypted file must be listed, separated by a space.

--passphrase is needed for encrypted files (--symmetric-passphrase is used
for conventionally encrypted files, but --passphrase will also work)

--output lets you specify a different filename for the resulting file.

Refer to the descriptions of these options for information about how to use them.

Example:

Cryptographic Operations

Commands
65

1 pgp -e report.doc -r "Bob Smith" --output BobsReport.pgp

 report.doc:encrypt (0:output file BobsReport.pgp)

First, the file report.doc was encrypted into BobsReport.pgp.

2 pgp --export-session-key BobsReport.pgp --passphrase
"B0bsm1t4"

BobsReport.pgp:export session key (0:output file report.doc.key)

Second, the key used for the encrypting session was exported into the file
report.doc.key, which contains the fingerprint of the key used for the session,
such as:

7:8F042E99E383FCD4921FD74A63C514D3

--list-sda
Lists the contents of a Self-Decrypting Archive (SDA). The entire SDA needs to be
decrypted in order to list its contents, which could take up to several minutes
(depending on the number and size of the files in the archive).

The usage format is:

pgp --list-sda <input> --passphrase <pass>

Where:

<input> is an SDA file, such as reports.exe. Output is always the standard output.

<pass> This is a passphrase or symmetric passphrase with which the SDA was
encrypted.

Example:

pgp --list-sda reports.exe --symmetric-passphrase "B0bsm1t4"

reports\

reports\README.rtf

reports\README.txt

reports\report.txt

reports.exe:list SDA (0:SDA decoded successfully)

The archive "reports.exe" was decrypted and listed.

--list-archive
Lists the contents of a PGP Zip archive, which lets you add any combination of files and
folders to an encrypted, compressed, portable archive.

A PGP Zip archive is an excellent way to distribute files and folders securely or back
them up. Refer to --archive for more information about PGP Zip archives.

The usage format is:

pgp --list-archive <input> [<input2> ...] --passphrase <pass>

Where:

66 Cryptographic Operations

Commands

<input> is the PGP archive(s) whose files you want to list.

<pass> is the passphrase of the archive whose files you want to list.

Example:

pgp --list-archive archive.pgp --passphrase "B0bsm1t4"

In this case, the archive is located in the local directory and no directory path is
displayed.

report.txt

README.txt

--sign (-s)
Signs a document, without encrypting it. You can sign and encrypt a file at the same
time using the command -es. Input is a standard input or a list of files; output is a
standard output or a list of files.

To sign with a MAK on a PGP KMS, --signer, a MAK ID, and the PGP KMS must be
specified on the command line. The identifier can be either the name, prefix of a name,
or UUID of the MAK. An error results if PGP Command Line can match the identifier to
more than one MAK.

The usage format is:

pgp --sign <input> [<input2> ...] --passphrase <pass> [--
signer <user>] [options]

Where:

<input> is the name of the file to be signed. It is required. You can sign multiple
files by listing them, separated by a space.

<pass> is the passphrase of the private key of the signer. It is required.

<user> is the user ID, portion of the user ID, or the key ID of the signer. The
private key of the signer must be on the keyring. If <user> is not specified, the
default key is used to sign.

[options] modifies the command. Options are:

--archive allows you to create an unencrypted signed tar file. You cannot use
this archive until it is decrypted (the signature is removed). Using the option --
sign with --archive, you can create a signed tar file that anyone can open.

-a, --armor. Armors the signed file.

--comment saves a comment at the beginning of the file with the header tag
"Comment". It works only if --armor is specified as well.

--compress toggles compression.

--compression-algorithm. You can select the compression algorithm in case
you are creating an attached opaque signature only (that is not encrypted), or
when you are creating a conventionally encrypted and signed output.

--email processes input data as an RFC 822-encoded email message, which
means that MIME headers and CRLF line endings will be respected by PGP
Command Line.

Cryptographic Operations

Commands
67

--eyes-only. Text inputs that are processed using this option can be decrypted
only to the screen.

--force. Required to use --hash.

--hash. If you use this option, the existing hash algorithm will be forcefully
overridden. Note that the key preferences and algorithm lists in the SDK will be
ignored, which can lead to the creation of messages that violate OpenPGP
standard. You must use the option --force with --hash.

--input-cleanup cleans up the input file, depending on the arguments you
specify: off (default), remove, or wipe.

--output lets you specify a different name for the signed file.

--overwrite sets the overwrite behavior when PGP Command Line tries to
create an output file that already exists. This option accepts the following
arguments: off (default), remove, rename, or wipe.

--signer is required to sign with a MAK (managed asymmetric key).

--temp-cleanup cleans up the temporary file(s) depending on the arguments
you specify: off, remove, or wipe (default). For large encryption jobs, this option
should be set to remove to speed up the process.

--text forces the input to canonical text mode. Do not use with binary files
(automatic detection of file types is not supported).

-v|--verbose gives a verbose (detailed) report about the operation.

Refer to the descriptions of these options or to the man page for information about how
to use these options.

Examples:

1 pgp -s report.txt --signer "Bob Smith" --passphrase "B0bsm1t4"

report.txt:sign (0:output file report.txt.pgp)

Output is "report.txt.pgp" signed by Bob.

2 pgp -es report.txt -r bob@example.com --passphrase "cam3r0n"

This command produces "report.txt.pgp," which is encrypted for Bob and signed
by Alice using her passphrase (we assume that her key is the default signing key
and the option --signer is not used).

3 pgp -s report.txt --signer "Bob Smith" --passphrase "B0bsm1t4"
--compression-algorithm zip

report.txt:sign (0:output file report.txt.pgp)

The file "report.txt.pgp" was signed by Bob and compressed using the Zip
compression algorithm.

4 pgp -s report.doc note.txt --signer "Bob Smith" --passphrase
"B0bsm1t4" -o NewArchive.pgp --archive

pgp00001.tmp:sign (3110:archive imported report.doc)

pgp00001.tmp:sign (3110:archive imported note.txt)

pgp00001.tmp:sign (0:output file NewArchive.pgp)

First, both files are signed and saved as a tar file NewArchive.pgp. This file cannot
be used until the signature is removed by decrypting the file. This file is just
opaquely signed, and you do not need a passphrase to verify the signature:

mailto:bob@example.com

68 Cryptographic Operations

Commands

pgp --decrypt NewArchive.pgp

NewArchive.pgp:decrypt (3038:signing key 0x6245273E Bob Smith
<bob@example.com>)

NewArchive.pgp:decrypt (3040:signature created 2005-11-
11T16:40:42-08:00)

NewArchive.pgp:decrypt (3035:good signature)

NewArchive.pgp:decrypt (0:output file NewArchive.tar)

The resulting tar file can be uncompressed with utilities that are appropriate for
your platform.

--symmetric (-c)
Encrypts data using symmetric encryption, not public-key encryption.

The usage format is:

pgp --symmetric <input> [<input2> ...] --symmetric-passphrase
<pass> [options]

Where:

<input> is the name of the file to be symmetrically encrypted and it is required.
You can encrypt multiple files by listing them, separated by a space. The default
filename for an encrypted file is <input filename>.pgp. You can modify the
filename of the encrypted file using --output.

<pass> is the passphrase you want to use for the symmetrically encrypted file.

[options] modifies the command. Options are:

--output lets you specify a different filename for the encrypted file.

--sign lets you sign the encrypted file. If you use --sign with --symmetric,
you will need both --symmetric-passphrase for the encryption and --
passphrase for the signature.

--armor armors the output file. File extension is changed to .asc.

--comment lets you specify a comment for armored data.

--text forces the <input> to supported.

--compress toggles compression.

--compression-algorithm specifies the compression algorithm to use for the
operation. The default is Zip.

--cipher specifies the cipher to use for the operation. The default is AES256.

--eyes-only prevents the decrypted output from being saved to disk; the
decrypted output can only be displayed on-screen.

--encrypt-to-self lets you encrypt to the default key.

--archive lets you combine multiple files into a single .pgp file.

--overwrite lets you specify what to do if a file of the same name as the output
filename already exists.

mailto:bob@example.com

Cryptographic Operations

Commands
69

--input-cleanup lets you specify what to do with <input> files when the
operation is done. The default is off (leave them alone).

--temp-cleanup lets you specify how to handle temporary files. The default is to
wipe them.

--verbose (-v) shows verbose results information.

Examples:

1 pgp --symmetric file.txt --symmetric-passphrase "Bilbo$Frodo"

Encrypts a file, which will be called file.txt.pgp, using the passphrase
"Bilbo$Frodo" without the quotes.

2 pgp -ec file.txt --symmetric-passphrase "Bilbo$Frodo"

Same as above, using the short forms.

The important information about --encrypt also applies to --symmetric.

--verify
Verifies that data was not tampered with and tests whether PGP Command Line can
process the entire file.

It verifies data, signatures, and key files and works on all PGP Command Line data
types. The command output describes what was verified.

To verify with a MAK (managed asymmetric key) on a PGP KMS, you must specify a
PGP KMS on the command line as well as follow --verify-with with a MAK
identifier: either the name, prefix of a name, or UUID of a MAK. For example: --
verify-with MAKid --usp-server universal.example.com. An error results
if PGP Command Line can match the MAK identifier to more than one MAK.

The usage format is:

pgp --verify <input> [<input2> ...] [options]

Where:

<input> is the file to be verified. It is required.

[options] modifies the command. Options are:

--annotate adds annotations (information that PGP Command Line processed
the data in a certain way) when processing email messages.

--email processes input data as an RFC 822-encoded email message, which
means that MIME headers and CRLF line endings will be respected by PGP
Command Line.

--input-cleanup cleans up the input file, depending on the arguments you
specify: off (default), remove, or wipe.

--passphrase | --symmetric-passphrase. This is the passphrase that is
required for encrypted files.

--temp-cleanup cleans up the temporary file(s) depending on the arguments
you specify: off, remove, or wipe (default). For large encryption jobs, this option
should be set to remove to speed up the process.

-v | --verbose gives a verbose (detailed) report about the operation.

70 Cryptographic Operations

Commands

--verify-with is required to verify with a MAK (managed asymmetric key) on a
PGP KMS.

Refer to the descriptions of these options for information about how to use them.

Example:

pgp --verify report.doc.pgp --passphrase "B0bsm1t4"

report.doc.pgp:verify (3111:data is a PGP archive)

report.doc.pgp:verify (3042:suggested output file name
report.doc.tar)

report.doc.pgp:verify (3038:signing key 0x6245273E Bob Smith
<bob@example.com>)

report.doc.pgp:verify (3040:signature created 2005-11-
10T13:58:07-08:00)

report.doc.pgp:verify (3035:good signature)

report.doc.pgp:verify (0:verify complete)

The file report.doc.pgp is verified.

mailto:bob@example.com

This chapter describes the commands that list information about the PGP keys on
keyrings.

These commands are:

 --fingerprint (page 72), which lists the fingerprints of keys on your keyring, in
hexadecimal numbers or biometric words.

 --fingerprint-details (page 72), which lists the fingerprints of keys on your keyring
and their subkeys, in hexadecimal numbers or biometric words.

 --list-key-details (page 74), which lists the keys on the keyring and displays
detailed information about those keys.

 --list-keys (page 75), which lists the keys on the keyring.

 --list-keys-xml (page 76), which lists keys in XML format.

 --list-sig-details (page 76), which provides detailed information about signatures
on a key.

 --list-sigs (page 77), which lists the keys on the keyring and the user IDs and
signatures on those keys.

 --list-userids (page 77), which lists the keys on the keyring and the user IDs on
those keys.

In This Chapter

Overview .. 71

Commands ... 71

Overview
At some point, you are going to need to know about the keys on your keyrings. The key
listing commands provide those details. Using the commands in basic display mode
gives you summary information about the keys on a keyring. Detailed display mode
tells you everything there is to know about those keys.

Refer to Lists (on page 215) for more information about what the key and signature lists
show about a key.

Commands
The key listing commands are described in the following sections.

8 Key Listings

72 Key Listings

Commands

--fingerprint
Lists the fingerprints of keys on your keyring that match the supplied criteria. If you
run the command with no user or key ID information, all key fingerprints will be
displayed. If you enter any user or key ID information, only key fingerprints that match
will be displayed.

The usage format is:

pgp --fingerprint [<user1> ...] [--biometric] [--verbose]

Where:

<user1> is the user ID, portion of a user ID, or the key ID of a key on your
keyring. If you don’t supply a user ID, all fingerprints will be listed.

--biometric displays biometric words instead of hexadecimal numbers.

--verbose shows the key IDs under the primary user ID for each fingerprint.

Examples:

pgp --fingerprint Alice

Displays the fingerprint in hexadecimal of any keys on the keyring that match
"Alice" using the format:

Alice Cameron <alice@example.com>

 896A 4A96 9C3A 3BEC C87C EA8B 2CDB B87B 2CEB 53CC

pgp --fingerprint 0x12345678 --biometric

Displays the fingerprint in biometric words of the key with the specified key ID
using the format:

Alice Cameron <alice@example.com>

 aimless photograph goldfish yesteryear

 beeswax corporate crackdown millionaire

 indoors upcoming choking sardonic

 reward underfoot eyeglass amulet

 sawdust holiness glitter therapist

1 key found

--fingerprint-details
Lists the fingerprints and subkeys of keys on your keyring that match the supplied
criteria. If you run the command with no user or key ID information, all key
fingerprints will be displayed. If you enter any user or key ID information, only key
fingerprints that match will be displayed.

Subkey fingerprints are displayed if found on the specified key. Hash names are the
same as listed in the detailed key list mode.

Fingerprints are shown with one of the following prefixes:

 Key Fingerprint indicates that the following fingerprint is for a master key.

mailto:alice@example.com
mailto:alice@example.com

Key Listings
Commands

73

 Subkey Fingerprint indicates that the following fingerprint is for a subkey.

 X.509 <alg> Thumbprint indicates that the following thumbprint is for an X.509
certificate, where <alg> is replaced by the hash algorithm used to create the
thumbprint.

The usage format is:

pgp --fingerprint-details [<user1> ...] [--biometric]

Where:

<user1> is the user ID, portion of a user ID, or the key ID of a key on your
keyring. If you do not supply a user ID, all fingerprints and subkeys will be listed.

--biometric displays biometric words instead of hexadecimal numbers.

Examples:

1 pgp --fingerprint-details Alice

Displays the fingerprint in hexadecimal of any keys on the keyring that match
"Alice" using the format:

Alice Cameron <alice@example.com>

 Key Fingerprint: 0x6D2A476D (0x7B72AAE06D2A476D)

 D2E0 23B2 53D0 49C9 6812 31AC 7B72 AAE0 6D2A 476D

 Subkey Fingerprint: 0xB86FF2CF (0x0787EE48B86FF2CF)

 DAB6 570B 9411 197D 5DDF A9B2 0787 EE48 B86F F2CF

2 pgp --fingerprint-details 0xF88C6910 --biometric

Displays the key and subkey fingerprints in biometric words of the key with the
specified key ID using the format:

Alice Cameron <alice@example.com>

Key Fingerprint: 0x6D2A476D (0x7B72AAE06D2A476D)

 crucial performance ragtime adviser

 robust molasses stairway sardonic

 beehive quantity spindle gravity

 reform monument artist supportive

 Vulcan megaton gazelle autopsy

 Subkey Fingerprint: 0xB86FF2CF (0x0787EE48B86FF2CF)

 chatter decimal snowcap caravan

 breadline caravan pupil decimal

 beeswax Wilmington tunnel nebula

 bombast outfielder endorse Jupiter

 preclude Eskimo drainage sandalwood

mailto:alice@example.com
mailto:alice@example.com

74 Key Listings

Commands

--list-key-details
Lists the keys on a keyring in detailed output mode. If you run the command with no
user or key ID information, all keys on the keyring will be displayed. If you enter any
user or key ID information, only keys that match will be displayed.

The usage format is:

pgp --list-key-details [<user1> ...]

Where:

<user1> is the user ID, portion of a user ID, or the key ID of a key on your
keyring.

Example:

pgp --list-key-details Alice

Lists all of the keys on your keyrings using the format:

Key Details: Alice Cameron <acameron@example.com>

 Key ID: 0xB2726BDF (0xAAEB5E06B2726BDF)

 Type: RSA (v4) key

 Size: 2048

 Validity: Complete

 Trust: Implicit (Axiomatic)

 Created: 2003-04-22

 Expires: Never

 Status: Active

 Cipher: AES-192

 Cipher: AES-128

 Cipher: CAST5

 Cipher: TripleDES

 Cipher: Twofish-256

 Hash: SHA

 Compress: Zip (Default)

 Photo: No

 Revocable: No

 Token: No

 Keyserver: keyserver.pgp.com

 Default: No

 Prop Flags: Sign user IDs

 Prop Flags: Sign messages

 Ksrv Flags: None

 Feat Flags: Modification detection

mailto:acameron@example.com

Key Listings
Commands

75

 Notations: 01 0x80000000 preferred-email-encoding@pgp.com:pgp-
mime

 Subkey ID: 0x6F742FE6 (0x939BB8896F742FE6)

 Type: ElGamal

 Size: 2048

 Created: 2003-04-22

 Expires: Never

 Status: Active

 Revocable: No

 Prop Flags: Encrypt communications

 Prop Flags: Encrypt storage

 ADK: None

 Revoker: None

1 key found

--list-keys (-l)
Lists the keys on a keyring in basic output mode. If you run the command with no user
or key ID information, all keys on the keyring will be displayed. If you enter any user or
key ID information, only keys that match will be displayed.

The usage format is:

pgp --list-keys [<user1> ...]

Where:

<user1> is the user ID, portion of a user ID, or the key ID of a key on your
keyring.

Examples:

1 pgp --list-keys

Lists all of the keys on your keyrings using the format:

Alg Type Size/Type Flags Key ID User ID

--- ---- --------- ------- ---------- ------------------------

DSS pub 2048/1024 [-----] 0xABCD1234 Alice C <ac@example.com>

1 key found

2 pgp -l Alice Bob Jill

Uses the short form of the command; displays any key on the keyring with "Alice",
"Bob", or "Jill" in the user ID.

3 pgp -l 0x12345678

Lists only the key with the specified key ID, if it is on the keyring.

mailto:preferred-email-encoding@pgp.com:pgp-mime
mailto:preferred-email-encoding@pgp.com:pgp-mime
mailto:ac@example.com

76 Key Listings

Commands

--list-keys-xml
When you choose to list a key in XML format, PGP Command Line will display all
information including all user IDs and signatures. If you run the command with no user
or key ID information, all keys on the keyring will be displayed. If you enter any user or
key ID information, only keys that match will be displayed.

To list keys in XML format, you may use either the command --list-keys-xml, or a
key list operation with the added option --xml, such as --list-keys user1 --
xml, or --list-keys --xml.

The usage format is:

pgp --list-keys-xml [<user1> …]

Where:

<user1> is the name of the specific local user whose keys you want to check.

Example:

pgp --list-keys-xml "Jose Medina"

Here is an abbreviated key list in XML format.

<?xml version="1.0"?>

<keyList>

 <key>

<signature>

...

<subkey>

...

<adk>

...

<revoker>

 </key>

</keyList>

--list-sig-details
Lists keys with their user IDs and signatures in detailed output mode.

The usage format is:

pgp --list-sig-details <user> [<user2> ...]

Where:

<user> is the user ID, portion of a user ID, or the key ID of a key on your keyring.
You can list one or more users, with their names/IDs separated by a space. If you
don’t specify a user, you will get an error message ("too many keys found").

Key Listings
Commands

77

Example:

pgp --list-sig-details Alice

Lists Alice’s key and shows details about her user IDs and signatures:

Signature Details: Alice Cameron <alice@example.com>

 Signed Key ID: 0xB2726BDF (0xAAEB5E06B2726BDF)

 Signed User ID: Alice Cameron <alice@example.com>

 Signer Key ID: 0xB2726BDF (0xAAEB5E06B2726BDF)

 Signer User ID: Alice Cameron <alice@example.com>

 Type: DSA signature

 Exportable: Yes

 Status: Active

 Created: 2005-04-22

 Expires: Never

 Trust Depth: 0

 Domain: None

1 signature found

--list-sigs
Lists keys with their user IDs and signatures in basic output mode. If you run the
command with no user or key ID information, all signatures on the keyring will be
displayed. If you enter any user or key ID information, only signatures that match will
be displayed.

The usage format is:

pgp --list-sigs [<user1> ...]

Where:

<user1> is the user ID, portion of a user ID, or the key ID of a key on the keyring.

Example:

pgp --list-sigs 0x12345678

Lists the user IDs and signatures on the key with the specified key ID, if it is on the
keyring.

--list-userids
Lists keys and their user IDs in basic output mode. The command --list-users is
the same as --list-userids.

The usage format is:

pgp --list-userids [<user1> ...]

Where:

mailto:alice@example.com
mailto:alice@example.com
mailto:alice@example.com

78 Key Listings

Commands

<user1> is the user ID, portion of a user ID, or the key ID of a key on your
keyring.

Examples:

1 pgp --list-userids

Lists all of the user IDs on the keys on your keyrings.

2 pgp --list-users

Same as the previous command, using the other form of the command.

3 pgp --list-userids Alice Bob Jill

Lists any key on the keyring with "Alice", "Bob", or "Jill" in the user ID.

Descriptions and Examples of Keyserver Commands

This chapter describes those commands that explain how PGP Command Line interacts
with keyservers.

 --keyserver-disable, which disables keys on a keyserver.

 --keyserver-recv, which gets keys from a keyserver and imports them onto
your keyring.

 --keyserver-remove, which removes keys from a keyserver.

 --keyserver-search, which searches a keyserver for keys but does not import
them.

 --keyserver-send, which sends keys to a keyserver.

 --keyserver-update, which updates keys on a keyserver.

In This Chapter

Overview .. 79

Commands ... 79

Overview
PGP Command Line provides several commands that let you interact with keyservers.
These commands help you post keys to a keyserver, import keys from a keyserver, and
so on.

When using commands that require you to specify a keyserver, make sure to use the
full URL to the keyserver such as ldap://keyserver.pgp.com, and not just
keyserver.pgp.com.

Commands

--keyserver-disable
Disables a key on a keyserver. This command only works with the legacy PGP Keyserver
product.

Requests for disabling a key must be signed. If no signer is supplied, the default signing
key is used. Key disable requires an exact match on the key to be removed.

9 Working with Keyservers

80 Working with Keyservers

Commands

If a keyserver is specified on the command line, any keyservers listed in the PGP
Command Line configuration file will not be used.

The usage format is:

pgp --keyserver-disable <input> [--keyserver <ks1> ...] [--
signer <signer>] [--passphrase <pass>] [options]

Where:

<input> is the user ID, portion of the user ID, or key ID of the key you want
disabled on the keyserver. Key disable requires an exact match on the key to be
disabled.

<ks> is the name of the keyserver where the key to be disabled is located.

You can enter more than one keyserver, separated by a space.

[options] modifies the command.Options are:

--signer the user ID of the signer.

--passphrase the passphrase of the signer.

--keyserver-timeout sets the number of seconds until the keyserver operation
times out. The default setting is 120 seconds.

--halt-on-error stops if an error occurs, if more than one keyserver is
specified, or the operation stops.

Example:

pgp --keyserver-disable 0x12345678 --keyserver
ldap://keyserver.example.com --signer "Alice Cameron
<alice@example.com>" --passphrase "Bilbo*Baggins"

The specified key is disabled on the specified keyserver.

--keyserver-recv
Finds keys on a keyserver and imports them onto your keyring. Keyservers are searched
in the order provided on the command line. As soon as a match is made on a keyserver,
the operation will finish and all other keyservers on the list will be ignored.

If a keyserver is specified on the command line, any keyservers listed in the PGP
Command Line configuration file will not be used. Preferred keyservers are not used.
Note that you cannot search for disabled or pending keys.

The usage format is:

pgp --keyserver-recv <input> [<input2> ...] --keyserver <ks>
[--keyserver <ks2> ...] [options]

Where:

<input> is the user ID, portion of the user ID, or key ID of the key you want to get
onto your keyring.

To get a specific key, use the key ID. To get one or more keys, use the user ID or
portion of the user ID.

<ks> is the name of the keyserver you want to search.

You can enter more than one keyserver to search, separated by a space. Only
results from the first keyserver where there is a match will be returned.

mailto:alice@example.com

Working with Keyservers

Commands
81

[options] modify the command. Options are:

--keyserver-timeout sets the number of seconds until the keyserver operation
times out. The default setting is 120 seconds.

--halt-on-error stops if an error occurs, if more than one keyserver is
specified, or the operation stops.

Examples:

1 pgp --keyserver-recv 0xABCD1234 --keyserver
ldap://keyserver.pgp.com

The key with the key ID shown would be imported if it were on the specified
keyserver.

2 pgp --keyserver-recv Jim --keyserver http://keyserver.pgp.com

All keys that have "Jim" in their user IDs would be found and imported.

--keyserver-remove
Removes a key from a keyserver. This command only works with the legacy PGP Keyserver
product.

Requests for removal must be signed. If no signer is supplied, the default signing key is
used. Key removal requires an exact match on the key to be removed.

If a keyserver is specified on the command line, any keyservers listed in the PGP
Command Line configuration file will not be used.

The usage format is:

pgp --keyserver-remove <input> [--keyserver <ks1> ...] [--
signer <signer>] [--passphrase <pass>] [options]

Where:

<input> is the user ID, portion of the user ID, or key ID of the key you want
removed from the keyserver. Key removal requires an exact match on the key to
be removed.

<ks> is the name of the keyserver from which you want the key removed.

You can enter more than one keyserver, separated by a space.

[options] modify the command. Options are:

--signer the user ID of the signer.

--passphrase the passphrase of the signer.

--keyserver-timeout sets the number of seconds until the keyserver operation
times out. The default setting is 120 seconds.

--halt-on-error stops if an error occurs, if more than one keyserver is
specified, or the operation stops.

Example:

pgp --keyserver-remove 0x12345678 --keyserver
ldap://keyserver.pgp.com --signer "bob@example.com" --
passphrase "B0bsm1t4"

http://keyserver.pgp.com/
mailto:bob@example.com

82 Working with Keyservers

Commands

Removes the specified key from the specified keyserver.

--keyserver-search
Searches a keyserver for keys and lists those that it finds that match the criteria; it does
not import them.

Keyservers are searched in the order provided on the command line. As soon as a match
is made on a keyserver, the operation finishes; all other keyservers in the list after the
one that made the match will be ignored.

If a keyserver is specified on the command line, any keyservers listed in the PGP
Command Line configuration file will not be used. Preferred keyservers are not used.
You cannot search for disabled or pending keys.

The usage format is:

pgp --keyserver-search <input> [<input2> ...] --keyserver <ks>
[--keyserver <ks2> ...] [options]

Where:

<input> is the user ID, portion of the user ID, or key ID of the key for which you
are searching.

To find a specific key, use the key ID. To find one or more keys, use the user ID or
portion of the user ID.

<ks> is the name of the keyserver you want to search.

You can enter more than one keyserver to search, separated by a space. Only
results from the first keyserver where there is a match will be returned.

[options] modify the command. Options are:

--keyserver-timeout sets the number of seconds until the keyserver operation
times out. The default setting is 120 seconds.

--halt-on-error stops if an error occurs, if more than one keyserver is
specified, or the operation stops.

Example:

pgp --keyserver-search example.com --keyserver
ldap://keyserver.pgp.com

This search would return keys that have example.com in the user ID and are on
keyserver.pgp.com, a public keyserver.

--keyserver-send
Posts a public key to a keyserver. If multiple keyservers are specified, in most cases only
the first keyserver specified will be used. If a keyserver is specified on the command
line, any keyservers listed in the PGP Command Line configuration file will not be used.
Preferred keyservers are not used.

The usage format is:

pgp --keyserver-send <input> [<input2> ...] --keyserver <ks>
[--keyserver <ks2> ...] [options]

Where:

Working with Keyservers

Commands
83

<input> is the user ID, portion of the user ID, or key ID of the public key you are
posting. You can list one or more users, with their names/IDs separated by a space.

<ks> is the name of the keyserver to which you are posting.

[options] modify the command. Options are:

--keyserver-timeout sets the number of seconds until the keyserver operation
times out. The default setting is 120 seconds.

--halt-on-error moves to the next keyserver if an error occurs, if more than
one keyserver is specified, or the operation stops.

Examples:

1 pgp --keyserver-send alice@example.com --keyserver
ldap://keyserver.example.com

If there are multiple keys on the keyring with user IDs that match the input, all of
them will be posted. To make sure only a specific key is posted, use the key ID as
the input.

2 pgp --keyserver-send 0x12345678 --keyserver
ldap://keyserver.pgp.com

Only the specified key (if it is on the keyring) will be posted to
ldap://keyserver.pgp.com, a public keyserver.

--keyserver-update
Updates keys that have already been uploaded to a keyserver. This ensures that the
most up-to-date versions of the keys are on the keyserver.

An update consists of finding the key on the keyserver; merging that key onto the local
keyring; and sending the merged key back to the keyserver on which it was found. A key
must be on the local keyring to be updated.

If no keys are specified on the command line, all of the keys on the local keyring are
updated, one at a time. When multiple keys are specified, they are updated one key at a
time.

If a key has a preferred keyserver established, that keyserver is used for the update
(only RSA and DH/DSS v4 keys can have a preferred keyserver); keyservers specified on
the command line or in the configuration file are ignored. If the key being updated is
not found, it is sent to the preferred keyserver; if it is found, it is updated.

If a key does not have a valid preferred keyserver established, PGP Command Line will
search the keyserver specified on the command line, followed by keyservers specified in
the configuration file. If the key cannot be found, an error is returned; if it is found, it is
updated.

The usage format is:

pgp --keyserver-update <input> [<input2> ...] [--keyserver
<ks1> ...] [options]

Where:

<input> is the user ID, portion of the user ID, or key ID of the key for which you
are searching. To find a specific key, use the key ID. To find one or more keys, use
the user ID or portion of the user ID.

mailto:alice@example.com

84 Working with Keyservers

Commands

<ks> is the name of the keyserver you want to search. You can enter more than
one keyserver to search, separated by a space. Only results from the first
keyserver where there is a match will be returned.

--keyserver-timeout sets the number of seconds until the keyserver operation
times out. The default setting is 120 seconds.

--halt-on-error stops if an error occurs, if more than one keyserver is
specified, or the operation stops.

Examples:

1 pgp --keyserver-update 0x12345678 --keyserver
ldap://keyserver.pgp.com

Updates the key with key ID 0x12345678 on keyserver.pgp.com if that key is
on the local keyring and has already been uploaded to the keyserver. If either is
not true, the operation returns with an error.

2 pgp --keyserver-update 0x12345678

Key 0x12345678 has a preferred keyserver set, and that keyserver is used for the
update.

This chapter describes those commands used to manage keys with PGP Command Line.
These commands are:

 --add-adk, which adds an ADK to a key.

 --add-photoid, which adds a photo ID to a key.

 --add-preferred-cipher, which adds the preferred cipher to a key.

 --add-preferred-compression-algorithm, which adds the preferred
compression algorithms to a key.

 --add-preferred-email-encoding, which adds a preferred email encoding to
a key.

 --add-preferred-hash, which adds the preferred hash encryption algorithm to
a key.

 --add-revoker, which adds a revoker to a key.

 --add-userid, which adds a user ID to a key.

 --cache-passphrase, which specifically caches a passphrase.

 --change-passphrase, which changes the passphrase.

 --clear-key-flag, which clears one of the preferences flags.

 --disable, which disables a key.

 --enable, which enables a key.

 --export and --export-key-pair, which export keys or key pairs.

 --export-photoid, which exports a photo ID to a file.

 --gen-key, which generates a new key pair.

 --gen-revocation, which generates a revoked version of a key without actually
revoking the key. The revoked version of the key is stored securely in the event the
passphrase is lost, so the key can still be revoked.

 --gen-subkey, which generates a subkey.

 --import, which imports keys.

 --join-key, which reconstitutes a split key.

 --join-key-cache-only, which temporarily joins a key on the local machine.

 --key-recon-send, which sends PGP key reconstruction data to a PGP
Universal Server

 --key-recon-recv-questions, which retrieves the PGP key reconstruction
questions for a specified key.

 --key-recon-recv, which reconstructs a key

 --remove, which removes a key.

 --remove-adk, which removes an ADK from a key.

10 Managing Keys

86 Managing Keys

Commands

 --remove-all-adks, which remove all ADKs from a key.

 --remove-all-photoids, which removes all photo IDs

 --remove-all-revokers, which removes all revokers.

 --remove-expiration-date, which removes the expiration date from a key.

 --remove-key-pair, which removes a key pair.

 --remove-photoid, which removes a photo ID from a key.

 --remove-preferred-cipher, which removes a preferred cipher from a key.

 --remove-preferred-compression-algorithm, which removes a preferred
compression algorithm from a key.

 --remove-preferred-email-encoding, which removes a preferred email
encoding from a key.

 --remove-preferred-hash, which removes the preferred hash from a key.

 --remove-preferred-keyserver, which removes a preferred keyserver from a
key.

 --remove-revoker, which removes a revoker from a key.

 --remove-sig, which removes a signature.

 --remove-subkey, which removes a subkey.

 --remove-userid, which removes a user ID from a key.

 --revoke, which revokes a key pair.

 --revoke-sig, which revokes a signature.

 --revoke-subkey, which revokes a subkey.

 --send-shares, which sends shares to the server joining a key.

 --set-expiration-date, which sets the expiration date.

 --set-key-flag, which sets one of the preference flags for a key.

 --set-preferred-ciphers, which sets the list of preferred ciphers on a key.

 --set-preferred-compression-algorithms, which sets the list of preferred
compression algorithms on a key.

 --set-preferred-email-encodings, which sets preferred email encodings
for a key.

 --set-preferred-hashes, which sets the entire list of hashes for a key.

 --set-preferred-keyserver, which adds a preferred keyserver to a key.

 --set-primary-userid, which sets a user ID as primary for a key.

 --set-trust, which sets the trust on a key.

 --sign-key, which signs all user IDs on a key.

 --sign-userid, which signs a single user ID on a key.

 --split-key, which splits a specified key into multiple shares.

Managing Keys

Overview
87

In This Chapter

Overview .. 87

Commands ... 87

Overview
The PGP keys you create and those you obtain from others are stored in digital
keyrings; private keys are stored on your private keyring in a file named secring.skr
and public keys are stored on your public keyring in a file called pubring.pkr.

Commands you can use to manage your keys are described in this chapter.

Commands

--add-adk
Adds an ADK to a key. Keys can support multiple ADKs, if desired.

An Additional Decryption Key (ADK) is a key that allows an authorized person,
generally in an organization, to decrypt data this is from or was sent to someone in the
organization if that person is unable or unwilling to do it themselves.

Only RSA and DH/DSS v4 keys can have ADKs.

The usage format is:

pgp --add-adk <user> --adk <adk> --passphrase <pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key to which the
ADK is being added.

<adk> is the specific ADK to be added to the key.

<pass> is the passphrase of the key to which the ADK is being added.

Example:

pgp --add-adk "Bob Smith" --adk Alice --passphrase "B0bsm1t4"

0x6245273E:add ADK (0:ADKs successfully updated)

Adds the specified ADK to the specified key.

88 Managing Keys

Commands

--add-photoid
Adds a photo ID to a key. You can add just one photo ID to a key using PGP Command
Line. Other programs that are compatible with PGP Command Line support allow more
than one photo ID added to a file; PGP Command Line can work with these extra photo
IDs.

Only JPEG files can be added. For maximum picture quality, crop the picture to 120 by
144 pixels before adding it.

The usage format is:

pgp --add-photoid <user> --image <photo.jpg> --passphrase
<pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key to which the
photo ID is being added.

<photo.jpg> is the filename of the image being added.

<pass> is the passphrase of the key to which the photo ID is being added.

Example:

pgp --add-photoid Alice --image alice.jpg --passphrase
"cam3r0n"

0x3E439B98:add photo ID (0:photo ID added successfully)

Adds the image alice.jpg to the specified key.

--add-preferred-cipher
Adds a preferred cipher to a key.

If the preferred cipher is already on the key, it is moved to the top of the list. Only RSA
v4 and DH/DSS v4 keys can have a preferred cipher.

The usage format is:

pgp --add-preferred-cipher <user> --cipher <cipher> --
passphrase <pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key to which the
preferred cipher is being added.

<cipher> is the preferred cipher being added.

<pass> is the passphrase of the key.

Example:

pgp --add-preferred-cipher "Bob Smith" --cipher aes256 --
passphrase "B0bsm1t4"

0x6245273E:add preferred cipher (0:preferred ciphers updated)

Adds the cipher AES256 to the specified key.

Managing Keys

Commands
89

--add-preferred-compression-algorithm
Adds a preferred compression algorithm to a key.

If the preferred compression algorithm is already on the key, it is moved to the top of
the list. Only RSA v4 and DH/DSS v4 keys can have a preferred compression algorithm.

The usage format is:

pgp --add-preferred-compression-algorithm <user> --
compression-algorithm <algo> --passphrase <pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key to which the
preferred compression algorithm is being added.

<algo> is the preferred compression algorithm being added.

<pass> is the passphrase of the key.

Example:

pgp --add-preferred-compression-algorithm "bob@example.com" --
compression-algorithm bzip2 --passphrase "B0bsm1t4"

0x6245273E:add preferred compression algorithm (0:preferred
compression algorithms updated)

Adds the compression algorithm Bzip2 to the specified key.

--add-preferred-email-encoding
Adds a preferred email encoding to a key.

If the preferred email encoding is already on the key, it is moved to the top of the list.
Only RSA v4 and DH/DSS v4 keys can have a preferred email encoding.

The usage format is:

pgp --add-preferred-email-encoding <user> --email-encoding
<encoding> --passphrase <pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key to which the
preferred email encoding is being added.

<encoding> is the preferred email encoding being added.

<pass> is the passphrase of the key.

Example:

pgp --add-preferred-email-encoding "Bob Smith" --email-
encoding pgpmime --passphrase "B0bsm1t4"

Adds the email encoding pgpmime to the specified key.

mailto:bob@example.com

90 Managing Keys

Commands

--add-preferred-hash
Adds the preferred hash encryption algorithm to a key and lists it on the top of the hash
list. Note that a key must be at least v4 to have preferred hashes.

The usage format is:

pgp --add-preferred-hash <user> --hash <hash> --passphrase
<pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key to which the
preferred hash is being added.

<hash> is the preferred hash being added to a key. You can add several preferred
hashes to a key, one at a time. The newly added preferred hash will appear on top
of the hash list.

<pass> is the passphrase of the key to which the preferred hashes are being
added.

Example:

pgp --add-preferred-hash "Bob Smith" --hash sha512 --
passphrase "B0bsm1t4"

Adds the preferred hash SHA-512 and displays it on top of the hash list.

--add-revoker
Adds a revoker to a key. It is possible that you might forget your passphrase or lose
your private key, which would mean that you could never use it again and you would
have no way of revoking it. To safeguard against this latter possibility, you can add a
key to your keyring as a revoker, which could be used to revoke your key if you could
not do it.

Only RSA and DH/DSS v4 keys can have revokers.

The usage format is:

pgp --add-revoker <user> --revoker <revoker> --passphrase
<pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key to which the
revoker is being added.

<revoker> is the specific revoker to be added to the key.

<pass> is the passphrase of the key to which the revoker is being added.

Example:

pgp --add-revoker "Bob Smith" --revoker Alice --passphrase
"B0bsm1t4"

0x6245273E:add revoker (0:revokers successfully updated)

Adds the specified revoker to the specified key.

Revoker: 0x3E439B98 (0xA9B1D2723E439B98)

Managing Keys

Commands
91

User ID: Alice Cameron <alice@example.com>

--add-userid
Adds a user ID to a key. You can add as many user IDs as you want to a key. To add a
photo ID, use --add-photoid.

The usage format is:

pgp --add-userid <user> --user <newID> --passphrase <pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key to which the
user ID is being added.

<newID> is the user ID being added to the key.

<pass> is the passphrase of the key to which the user ID is being added.

Example:

pgp --add-userid "bob@example.com" --user Alice --passphrase
"B0bsm1t4"

Adds the specified user ID to the specified key.

--cache-passphrase
Caches the passphrase for a key for the current session. Caching your passphrase can
save you time in that you do not have to enter it for those operations that require it.
Passphrase caching must be enabled (using the option --passphrase-cache) for this
command to work.

Make sure to log out at the end of your session (which purges the passphrase cache) or
purge the passphrase cache manually using the command --purge-passphrase-
cache.

The number of cached passphrases can be checked with --version in verbose mode.

The usage format is:

pgp --cache-passphrase <user> --passphrase <pass> [options]

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key whose
passphrase is being cached.

<pass> is the passphrase of the key.

[options] change the behavior of the command. Options are:

--passphrase-cache enables passphrase caching. This is optional, since you
can enable passphrase caching by changing the passphrase cache settings in the
configuration file PGPprefs.xml from false to true.

--passphrase-cache-timeout sets the amount of time a passphrase can be
cached, in seconds. The default is 120. If you enter 0 (zero), the passphrase cache
will not timeout; it must be specifically purged.

Examples:

mailto:alice@example.com
mailto:bob@example.com

92 Managing Keys

Commands

1 pgp --cache-passphrase "Bob Smith" --passphrase "B0bsm1t4" --
passphrase-cache

0x6245273E:cache passphrase (0:key passphrase cached)

Caches the passphrase of the specified key. Since no timeout is specified, the
default of 120 seconds will be used.

2 pgp --cache-passphrase "Bob Smith" --passphrase "B0bsm1t4" --
passphrase-cache --passphrase-cache-timeout 0

0x6245273E:cache passphrase (0:key passphrase cached)

Caches the passphrase of the specified key and establishes a timeout of 0, which
means the passphrase cache must be specifically purged to remove the passphrase
from memory.

--change-passphrase
Changes the passphrase for a key and all subkeys (if the key has any).

The usage format is:

pgp --change-passphrase <user> --passphrase <oldpass> --new-
passphrase <newpass> [options]

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key whose
passphrase is being changed.

<oldpass> is the old passphrase of the key. It is not needed if the key has no

<newpass> is the new passphrase of the key.

[options] change the behavior of the command. Options are:

--master-key specifies that only the master key of the key provided will have its
passphrase changed.

--subkey specifies that only the subkey of the key provided will have its
passphrase changed.

Examples:

1 pgp --change-passphrase "Bob Smith" --passphrase "sm1t4" --
new-passphrase "B0bsm1t4"

Replaces the old passphrase sm1t4 with the new passphrase b0bsm1t4 for the
specified key and its subkey.

2 pgp --change-passphrase "Bob Smith" --master-key --passphrase
"sm1t4" --new-passphrase "B0bsm1t4"

Replaces the old passphrase sm1t4 on the master key of the specified key with a
new passphrase b0bsm1t4.

3 pgp --change-passphrase "Bob Smith" --subkey ABCD1234 --
passphrase "" --new-passphrase "B0bsm1t4"

Replaces the non-existant passphrase on the subkey of an SCKM key with a new
passphrase.

Managing Keys

Commands
93

--clear-key-flag
Clears one of the key's preferences flags.

The usage format is:

pgp --clear-key-flag <user> [--subkey <subkeyID>] --key-flag
<flag> [--passphrase <pass>]

Where:

<user> is the user ID, portion of the user ID, or the key ID of the user whose key
preferences flag is being cleared.

<flag> is the key preferences flag to be cleared. See --key-flag for more
details.

<subkeyID> is the subkey ID of the key whose key preferences flag is being
cleared.

<pass> is the passphrase of the key for which the preferences flag is being
cleared.

Example:

pgp --clear-key-flag Bob --key-flag encrypt --passphrase
"B0bsm1t4"

Clear the key preference flag "encrypt" from Bob’s key.

--disable
Disables a key or keypair.

Disabling a key or key pair prevents it from being used without deleting it. Note that
you cannot disable an axiomatic key.

The usage format is:

pgp --disable <user>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key being
disabled.

Examples:

1 pgp --disable "Jose Medina"

0xF6EFC4D9:disable key (3067:key is axiomatic)

You cannot disable Jose’s key since it is axiomatic.

2 pgp --disable "Maria Fuentes"

0x136259CB:disable key (0:key successfully disabled)

Maria’s public key is disabled.

94 Managing Keys

Commands

--enable
Enables a key or key pair that has been disabled.

Once enabled, you can use the key or key pair again.

The usage format is:

pgp --enable <user>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key being
enabled.

Example:

pgp --enable "Maria Fuentes"

0x136259CB:enable key (0:key successfully enabled)

Maria’s key is enabled.

--export, --export-key-pair
Exports a key or key pair to send to someone or for backup.

The usage format is:

pgp --export/--export-key-pair <input> [options]

Where:

<input> is the user ID, portion of the user ID, or the key ID of the key you want to
export.

[options] change the behavior of the command. Options are:

--output lets you specify a different name for the exported file.

--export-format specifies an export format from the following list of
supported formats. If this option is omitted, the keys are exported as ASCII armor
files (.asc). See Export Format (on page 95).

--cert. This option is the X.509 issuer long name or the 32-bit or 64-bit key ID, if
the signing key is available.

--export-passphrase specifies the passphrase to use when exporting PKCS8
and PKCS12 data. See Export Format (on page 95).

--passphrase belongs to the key that has a certificate. If only --passphrase is
supplied, PGP Command Line does the following depending on the used argument:

 valid. Exports the key with no passphrase.

 invalid. Gives an error.

To specify no passphrase, use the empty string " ".

Note that when you are exporting a key pair, the operation succeeds only when there is
a unique key pair that contains the string you specify as input (see examples).

Managing Keys

Commands
95

At least one key must be specified for export. If --export-format is omitted, keys are
exported as ASCII armor (.asc) files into the current directory. Keys can also be
exported in other formats; refer to Export Format (on page 95) for detailed information.

The command --export exports only public keys, while the command --export-
key-pair exports the entire key pair.

Examples:

 Export selected public keys

pgp --export Bob

0x6245273E:export key (0:key exported to Bob Smith.asc)

0xF6F83318:export key (0:key exported to Bob Reynolds.asc)

All public keys that contain the string "Bob" were exported.

 Export public and private keys

pgp --export-key-pair "bob@example.com"

0x6245273E:export key pair (0:key exported to Bob Smith.asc)

Bob's key pair was exported to the ASCII-armored file "Bob Smith.asc".

 Problematic export command

pgp --export-key-pair Bob

Bob:export key pair (2003:too many matches for key to edit)

The operation cannot be completed because there is more than one key pair that
contains the string: "Bob".

 Export the private key associated with the top X.509 certificate

pgp --export "Bob Smith" --export-format pkcs12 --passphrase
"B0bsm1t4" --cert 0x6245273E

0x6245273E:export key (0:key exported to Bob Smith.p12)

Bob's key pair is exported to a file "Bob Smith.p12".

Export Format

PGP Command Line supports multiple export formats:

 Complete (default): Only ASCII-armored files are output; the default file extension
is .asc. Use Complete to export keys in a newer format that supports all PGP
features.

 Compatible: Only ASCII-armored files are output; the default file extension is .asc.
Use Compatible to export keys in a format compatible with older versions of
PGP software; that is, PGP software versions 7.0 and prior. Some newer PGP
features are not supported when using Compatible.

 X.509-cert: Only ASCII-armored files are output; the default file extension is .crt.
The <input> must match exactly one key, and --cert is required.

 PKCS8: This format can produce unencrypted and encrypted PKCS8. Only ASCII-
armored files are output; the default file extension is .p8. A signed key must be
paired. The <input> must match exactly one key.

mailto:bob@example.com

96 Managing Keys

Commands

The passphrase options change the passphrase of the exported key. They do not
change the passphrase of the local key.

 If no --passphrase is supplied, the cache and an empty passphrase is tried.
If successful, the found passphrase is used as though it were supplied with
the command.

 If --passphrase and --export-passphrase are supplied and --
passphrase is valid, then the private key is exported as encrypted PKCS8.
The --export-passphrase is used to encrypt the result.

 If only --passphrase is supplied and the passphrase is valid, the private
key is exported without being encrypted. If the supplied passphrase is
invalid, an error is generated.

 PKCS12: Only binary blocks are output; the default file extension is .p12. A signed
key must be paired. The <input> must match exactly one key.

The passphrase options change the passphrase of the exported key and certificate.
They do not change the passphrase of the local key.

 If no --passphrase is supplied, the cache and an empty passphrase is tried.
If successful, the found passphrase is used as though it were supplied with
the command.

 If only --passphrase is supplied and the passphrase is valid, the key and
certificate are exported without encryption. If the supplied passphrase is
invalid, an error is generated.

 If --passphrase and --export-passphrase are supplied and --
passphrase is valid, then the key and the certificate are exported as
encrypted PKCS12. The --export-passphrase is used to encrypt the
result.

 Certificate signing request (CSR): Only ASCII-armored blocks are output. The default
file extension is .csr. Key must be paired. The input must match exactly one key.
The preferred method to create a CSR is to associate the certificate with a specific
subkey using the --subkey option.

--export-photoid
Exports a photo ID from a key to a file. There must be a photo ID on the key for it to be
exported. Only JPEG files are supported. Resulting files are saved to the current
directory.

The usage format is:

pgp --export-photoid <user> [options]

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key from which
the photo ID is being exported.

[options] change the behavior of a command. Options are:

--index specifies which photo ID on the key should be exported. 1 indicates the
first photo ID, 2 the second photo, and so on.

--output is a desired filename.

Managing Keys

Commands
97

Examples:

1 pgp --export-photoid "Alice C"

Exports the photo ID to filename "alice c.jpg".

2 pgp --export-photoid "Alice C" --output photoid.jpg

Exports the photo ID to filename "photoid.jpg".

3 pgp --export-photoid "Alice C" --index 2

Exports the second photo ID on the key to filename "alice c.jpg".

--gen-key
Creates a new key. It also creates a keyring pair if no keyrings exist.

The usage format is:

pgp --gen-key <user> --key-type <type> --encryption-bits
<bits> --passphrase <pass> [--signing-bits <bits>] [options]

Where:

<user>. This is a user for whom the key is being generated. A common user ID is
your name and email address in the format: "Alice Cameron
<alice@example.com>". If your user ID contains spaces, you must enclose it in
quotation marks.

<type> is the key type: rsa, rsa-sign-only, dh, or dh-sign-only.

--encryption-bits. This is the length of the encryption subkey in bits (1024 -
4096; for DSA keys, 1024, 2048, or 3072 only). When generating sign-only keys
(keys without a subkey), you can specify --bits only to define the signing key
size.

<pass> is a passphrase of your choice. This flag is not optional: to generate a key
without a passphrase, use --passphrase " ".

--signing-bits defines the length of the signing key in bits. The valid sizes in
bits for signing keys are as follows: for RSA v4 1024 to 4096 bits; and for DH 1024,
2048, or 3072 bits. For RSA v4 keys, this option can be set independently from --
bits.

[options] modify the behavior of the command. Options are:

--adk specifies an ADK (Additional Decryption Key). See --adk for more
information.

--compression-algorithm sets the compression algorithm. Note that this
option does not work with public-key encryption, because in this case the
recipient’s key preferences are used. The default for this option is zip. See --
compression-algorithm for more information.

--creation-date changes the date of creation. The format is yyyy-mm-dd
and it cannot be used together with --creation-days. Month and day do not
have to be two digits if the first digit is zero.

mailto:alice@example.com

98 Managing Keys

Commands

--creation-days changes the number of days until creation ("1" equals next
day, "2" equals day after next, etc.)

--expiration-date changes the date of expiration. The format is yyyy-mm-dd.
This option cannot be used at the same time as
--expiration-days. Month and day do not have to be two digits if the first digit
is zero.

--expiration-days changes the number of days until expiration. The default is
not set (no expiration).

--fast-key-gen enables fast key generation. The default is on.

--preferred-keyserver specifies a preferred keyserver. The keyserver must
have the correct prefix: http://, ldap://, ldaps://, or hkp://.

--revoker specifies a revoker for a key. See --revoker for more information.

Any cipher lets you specify which ciphers can be used with the key being generated;
see --SET-PREFERRED-CIPHERS for more information.

Any compression algorithm lets you specify which compression algorithms can be
used with the key being generated; see --SET-PREFERRED-COMPRESSION-ALGORITHMS for more
information.

Any preferred hash lets you specify which hashes can be used with the key being
generated; see --SET-PREFERRED-HASHES for more information.

Any preferred email encoding lets you specify which email encodings can be used with
the key being generated; see --SET-PREFERRED-EMAIL-ENCODINGS for more information.

Examples:

1 pgp --gen-key "Alice Cameron <alice@example.com>" --key-type rsa
--encryption-bits 2048 --signing-bits 2048 --passphrase
"cam3r0n" --expiration-date 2009-06-01

Creates a key pair for Alice with the expiration date June 1, 2009

2 pgp --gen-key "Fumiko Asako <fumiko@example.com>" --encryption-
bits 2048 --signing-bits 2048 --key-type rsa --passphrase
"Fumik*asak0" --preferred-keyserver "ldap://keys.example.com"

Creates a key pair for Fumiko with the preferred keyserver
"ldap://keys.example.com".

3 pgp --gen-key ... --aes256 1 --3des 2 --preferred-keyserver
ldap://aes.pgp.com

Creates a key pair with aes256 as the preferred cipher and 3des as the secondary
cipher.

Key Types

PGP Command Line gives you several key types to choose from: RSA, RSA-sign-only,
DH, and DH-sign-only:

 RSA. RSA v4 keys support all PGP key features, such as ADKs, designated revoker,
preferred ciphers, multiple encryption subkeys, or photo IDs. Their size is 1024
bits to 4096 bits.

http:///
mailto:alice@example.com
mailto:fumiko@example.com

Managing Keys

Commands
99

 RSA-sign-only. These are RSA v4 keys with no automatically generated subkey. You
can generate a subkey for this key later by using --gen-subkey. Like any other
v4 keys, they support all PGP key features, such as ADKs, designated revoker,
preferred ciphers, and so on.

 DH. Diffie-Hellman (DH/DSS) signing keys can be 1024, 2048, or 3072 bits (per
FIPS 186-3). Version 4 keys support all PGP key features, such as ADKs, designated
revoker, preferred ciphers. This is a DH/DSS key with no automatically generated
subkey. Version 4 keys support all PGP key features, such as ADKs, designated
revoker, preferred ciphers, and so on.

 DH-sign-only. This is a DH/DSS key without an encryption subkey.

Note: rsa-legacy keys can no longer be generated by PGP Command Line. They will be
recognized if used, but you cannot generate new keys of this type.

--gen-revocation
Generates a revocation certificate for a key, but does not revoke the key on the key ring.
By default, the revocation certificate is exported as if you have used the command --
export.

The usage format is:

pgp --gen-revocation <user> --passphrase <pass> --force [--revoker
<revoker>][--output <output>]

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key being
revoked.

<pass> is the passphrase of the key being revoked.

--force is required to revoke a key.

<revoker> is the user ID, portion of the user ID, or the key ID of the designated
revoker key. When this option is used, the passphrase belongs to the revoker key.
This option is not needed if you use a designated revoker or if you are doing self
revocation.

<output> is used to change the location of the exported certificate.

Example:

pgp --gen-revocation "Jose Medina" --passphrase "Jose*Med1na"
--force

0xF6EFC4D9:generate revocation (0:key exported to Jose
Medina.asc)

0xF6EFC4D9:generate revocation (2094:this key has NOT been
permanently revoked)

Generates the revocation certificate "Jose Medina.asc".

100 Managing Keys

Commands

--gen-subkey
Generates a subkey on an existing key. The key must be allowed to have subkeys or the
operation fails. The subkey is always of the same type as the key to which it is being
added.

The usage format is:

pgp --gen-subkey <user> --bits <bits> --passphrase <pass>
[options]

Where:

<user> is the user ID, portion of the user ID, or key ID of the key that is getting
the subkey.

<bits> specifies the length of the encryption subkey in bits. Values are 1024 to
4096.

<pass> is the passphrase of the key that is getting a subkey.

[options] change the behavior of the command. Options are:

--creation-date specifies the date on which the key becomes valid. You cannot
use --creation-date and --creation-days for the same operation.

--creation-days specifies the number of days until creation.

--expiration-date specifies the date the key expires. You cannot use --
expiration-date and --expiration-days in one operation.

--expiration-days specifies the number of days until expiration.

Example:

pgp --gen-subkey "bob@example.com" --bits 2048 --passphrase
"B0bsm1t4"

0x3D58AE31:generate subkey (0:subkey successfully generated)

Generates a subkey of the specified number of bits on Bob’s key:

Subkey ID: 0x3D58AE31 (0xAEE6484D3D58AE31)

 Type: RSA (v4)

 Size: 2048

 Created: 2005-11-18

 Expires: Never

 Status: Active

 Revocable: Yes

Prop Flags: Encrypt communications

Prop Flags: Encrypt storage

--get-email-encoding
Displays the email encoding of the specified key: either PGP/MIME or S/MIME.

mailto:bob@example.com

Managing Keys

Commands
101

PGP/MIME keys are normal PGP keys, including all keys created by PGP Desktop and
imported bundle keys created by PGP Desktop 9.5 or greater. S/MIME keys are PGP
keys created by PGP Desktop versions prior to 9.5 where an X.509 certificate was
imported and a PGP key "wrapped" around it (also called a wrapper key).

The usage format is:

pgp --get-email-encoding <user>

Where:

<user> is the user ID, portion of the user ID, or key ID of the key.

Example:

pgp --get-email-encoding 0x1234ABCD

The email encoding for the specified key will be displayed.

--import
Imports a key or keys to the local keyring.

The file containing the key(s) to be imported should be in the current directory, or you
must specify the fully qualified path to the file containing the keys. Note that both
private and public keys will be imported, if they exist in the file. If a key being imported
already exists in the local keyring, the keys are merged.

When importing PKCS-12 X.509 certificates (a digital certificate format used by most
Web browsers), you have two options:

 for keys created by a version of PGP Desktop prior to 9.5, create a wrapper key.
You must use the --wrapper-key option.

 for keys created by a version of PGP Desktop 9.5 or greater, create a bundle key.

A wrapper key is a PGP key based on the X.509 certificate being imported. A bundle key
is a PGP key with the X.509 certificate information imported as subkeys on the PGP key.
A bundle key allows for greater flexibility for use of the key; any operational
restrictions will be respected and bundle keys are compatible with other OpenPGP
applications.

Note: Only X.509 certificates that include a private key can be imported.

The usage format is:

pgp --import <input> [<input2> ...] [options]

Where:

<input> is the filename of the key being imported. Multiple keys can also be
imported by listing them, separated by a space.

[options] modify the behavior of the command. Options are:

--import-format specifies the import format for the current operation. See --
import-format for more information.

--manual-import-keys changes the behavior of PGP Command Line when keys
are found during import operations. The default is all.

--manual-import-key-pairs changes the behavior of PGP Command Line
when key pairs are found during an import operation.

102 Managing Keys

Commands

--passphrase is the passphrase of the key being imported.

--new-passphrase is the new passphrase of the bundle key being imported.

--local-user is the key ID of an existing bundle key.

--local mode runs the operation in local mode.

Examples:

1 pgp --import "Bob Smith.asc"

Bob Smith.asc:import key (0:key imported as 0x6245273E Bob
Smith <bob@example.com>)

Imports Bob Smith's key "Bob Smith.asc".

pgp --import key.p12 --wrapper-key --passphrase <p12pass>

Imports file "key.p12" as a wrapper key. The passphrase to the PKCS-12 private
key is provided.

pgp --import key.p12 --passphrase <p12pass> --new-passprhase
"0b*Sm1t4"

pgp --import encrypt.p12 --passphrase <p12pass> --new-
passphrase "B0b*Sm1t4"

In a two-step process, imports file key.p12 as a bundle key that includes a signing
and encryption subkey.

pgp --import key.p12 --passphrase <p12pass> --new-passprhase
"B0b*Sm1t4"

pgp --import encrypt.p12 --passphrase <p12pass> --new-
passphrase "B0b*Sm1t4" --local-user <existingbundlekeyID>

In a two-step process, imports the file key.p12 and adds the certificate to an
existing bundle key.

--join-key
This command joins the shares of a key that was previously split.

The minimum number of share files must be on the computer where the key is being
joined. The passphrase cache must be enabled for this command to work with public
keys that have passphrases; no passphrase caching is required for public keys with no
passphrases.

Since PGP Command Line currently cannot cache symmetrical passphrases, you need to
enter all necessary symmetrical passphrases onto the command line during key joining.
The symmetrical passphrases are added together with corresponding share files onto
the command line.

You can also turn on automatic passphrase caching by changing the value for
CLpassphraseCache from false/ to true/ in the preference file PGPprefs.xml,
which is located in your Data directory.

Following is an overview of how PGP Command Line handles key joining:

 Local shares are always assembled before PGP Command Line begins listening on
the network for remote shares.

 If the local shares are based on keys with passphrases, the passphrases must be
cached.

mailto:bob@example.com

Managing Keys

Commands
103

 If the local shares are conventionally encrypted, the passphrase must be supplied
on the command line.

 If there are enough local shares for reconstruction of the key, PGP Command Line
does not listen on the network for remote shares.

If you are experiencing problems with your local shares, perform the --join-key
command without --force; PGP Command Line will return all of the information
about each local file share that it has found, including whether or not the passphrases
are correct. If you find problems without --force, fix them. Once all problems with the
local shares are fixed, add --force and --skep to have PGP Command Line listen on
the network for remote shares after collecting the local shares.

The usage format is:

pgp --join-key <user> --passphrase <new pass> --share <share1>
--share <share2> [--share <shareN> ...] [--force] [options]

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key you want to
join. You must make an exact match, as you can only join one key at a time.

<new pass> This is the passphrase of the newly joined key. It is given to the new
key after the threshold requirement is removed: there were enough shares put
together for the key to be joined.

<share1> <share2> are share files given to a specific user when the key was
split. When you join the key using these shares, you need to reach the threshold:
the minimum number of shares needed for joining operation to succeed.

You need to supply the symmetric passphrases incorporated with the shares for
any share users who have such passphrases.

The share file format for users with symmetric passphrases (that cannot be cached
for this operation) is as follows:

--share "<share user>-2-<split key ID>.shf:<share user's
symmetric passphrase>" --share "Alice Cameron-2-Jill
Johnson.shf:ji11"

The share file format for users with asymmetric passphrases (that must be cached
for this operation) is as follows:

--share "<share user>-1-<split key ID>.shf" --share "Alice
Cameron-1-Bob Smith.shf"

--force. If you run the --join command without the --force option, PGP
Command Line will not join the key: it will only list the state of the shares in the
preview mode. The output will not be displayed if there are parse errors, or if a key
is missing or unable to decrypt.

The key shares preview will report if there are enough shares to join the key and if
there are invalid (or not cached) passphrases.

--skep. PGP Command Line uses this option when joining split keys over the
network. It looks for split files on the network and if it doesn't find enough of
them, it continues to listen using the timeout defined by the option --skep-
timeout.

--skep-timeout changes the timeout for joining keys over the network. There is
no value reserved to indicate no timeout. Default is 120 seconds

-v|--verbose will give a detailed overview of the operation.

104 Managing Keys

Commands

Examples:

1 In this example, the original key was split in 50 shares with a threshold of 40.
Therefore, you need only 40 shares in order to join the key: you can take shares
from two share users who together have 40 shares.

In order to join a key, you need first to cache passphrases of the users whose
shares you are joining:

pgp --cache-passphrase "Bob Smith" --passphrase "B0bsm1t4" --
passphrase-cache 0x2B65A65E:cache passphrase

(0:key passphrase cached)

You will enter the symmetrical passphrase together with the shares onto the
command line (Jill's passphrase in this example):

pgp --join-key "Alice Cameron" --passphrase "B0bsm1t4" --share
"Alice Cameron-1-Bob Smith.shf" --share "Alice Cameron-2-Jill
Johnson.shf:ji11"

2 pgp --join-key "Alice Cameron" --passphrase "B0bsm1t4" --share
"Alice Cameron-1-Bob Smith.shf" --share "Alice Cameron-2-Jill
Johnson.shf:ji11" --force --skep --skep-timeout 300

Tells the key joining operation to wait 5 minutes before it times out.

Command output for --join-key

Row 1: Split Key User Name
Name: "Split Key User"

Value: Primary user ID of the key being split, in this case "Alice Cameron".

Row 2: Split Key ID
Name: "Split Key ID"

Value: The 32-bit key ID followed by the 64-bit key ID in the format:

0xEB778BFA (0xEF20715FEB778BFA)

Row 3: Empty

Row 4: Threshold
Name: "Threshold"

Value: This is the threshold for the key being split (minimum number of shares to put
the key back together).

If threshold cannot be determined when joining a key, the character "?" is displayed.
This can happen when PGP Command Line displays this information before it listens
for network shares.

Row 5: Total Shares
Name: "Total Shares"

Value: Join. This is the number of shares being collected from the file shares.

Row 6: Total Users
Name: "Total Users"

Managing Keys

Commands
105

Value: Join. This is the total number of users from whom PGP Command Line has
collected file shares. When joining a key using --skep, network shares will not show
here because they are collected after this information is displayed.

Row 7: Empty

Row 8-N: Share User
Name: Share User

Value: The parsed value of each share in the following format:

Share User: 20 0xB910E083 Bob Smith

 Number of shares assigned to a specific user (3 characters, left justified).

 Key ID of the share recipient. For public key encryption, this is a key ID in
standard format, while for symmetric encryption, this is the string "symmetric".

 The name of the share recipient. For public key encryption, this is the primary
user ID string; for symmetric encryption, this is the name provided in the --
share option.

If there are no share users specified, "N/A" is displayed. This can only happen when
joining a key with the --skep option enabled.

pgp --join-key "Alice Cameron" --passphrase "B0bsm1t4" --share
"Alice Cameron-1-Bob Smith.shf" --share "Alice Cameron-2-Jill
Johnson.shf:ji11" --force

The key is joined:

0xEB778BFA:join key (3134:reconstructed split key passphrase
is valid)

0xEB778BFA:join key (0:key joined successfully)

--join-key-cache-only
Use this command to temporarily join a key on the local machine. After the key is
joined, it is not saved to the disk: instead, the key remains split and the newly joined key
is cached for later use.

The passphrase cache must be enabled for this command to work with public keys that
have passphrases; no passphrase caching is required for public keys with no
passphrases.

The usage format is:

pgp --join-key-cache-only <user> --share <share1> --share
<share2> [--share <shareN> ...] --force [-v|--verbose][--skep]

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key being joined.

<share1> and <share2> are the share files given to specific users when the key
was split. When you join the key using these shares, you need to reach the
threshold: the minimum number of shares needed for joining operation to
succeed. The minimum number of shares is two.

For more information, refer to the command --join-key.

106 Managing Keys

Commands

--force. If you run the --join-key-cache-only command without this
option, PGP Command Line will not join the key: it will only list the state of the
shares in the preview mode. The output will not be displayed if there are parse
errors, if a key is missing, or PGP Command Line was unable to decrypt.

The key shares preview will report if there are enough shares to join the key. and if
there are invalid (or not cached) passphrases.

-v|--verbose. This option will give a detailed overview of the operation.

--skep. PGP Command Line uses this option when joining split keys: it looks for
split files on the network. If it doesn't find enough of split files, it will continue to
listen on the network using the timeout defined by the option --skep-timeout.

Before you run --join-key-cache-only, refer to --passphrase-cache for
more explanation on enabling passphrase caching.

Example:

pgp --join-key-cache-only "Alice Cameron" --passphrase
"Alice*Camer0n" --share "Alice Cameron-1-Alice
Cameron.shf:brapa1" --share "Alice Cameron-2-Jose
Medina.shf:med1na" --force

Split Key User: Alice Cameron

Split Key ID: 0xB910E083 (0xBCC87BD2B910E083)

 Threshold: 20

 Total Shares: 20

 Total Users: 2

 Share User: 10 symmetric Alice Cameron

 Share User: 10 symmetric Jose Medina

0xB910E083:join key cache only (3134:reconstructed split key
passphrase is valid)

0xB910E083:join key cache only (0:key passphrase cached)

After the key is joined, it is not saved to the disk: instead, the key remains split and
the passkey is cached for later use.

--key-recon-send
Sends PGP key reconstruction data to a PGP Universal Server.

Key reconstruction works with PGP Universal Version 2.0 or greater (it is not supported
by Version 1.x PGP Universal, nor does it work with PGP Keyserver Version 7.0).

Key reconstruction lets you store your private key and passphrase so that only you can
retrieve it. It is a safety net in case you lose your private key or its passphrase.

Key reconstruction requires a PGP Universal Server that is getting user data from an
account on an Active Directory server. If no reconstruction server is specified, the
preferred server on the key will be used.

When setting up key reconstruction, you create five questions and answers. To
reconstruct the key, you must answer three or more of the five questions correctly (the
threshold of three correct answers is not configurable).

The usage format is:

Managing Keys

Commands
107

pgp --key-recon-send <key> [--question <q1> ... --question
<q5>] [--answer <a1> ... --answer <a5>] --passphrase <pass> --
auth-username <auth user> --auth-passphrase <auth pass> [--
recon-server <recon server>]

Where:

<key> is the user ID, portion of the user ID, or the key ID of the key whose
reconstruction data you want to send to a PGP Universal Server.

<q1> is a first of five questions that only you can answer.

<a1> is the answer to the first question. Answers must be at least six characters
long.

<pass> is the passphrase to your private key.

<auth user> is your username on an Active Directory server. This username
will be authenticated by the PGP Universal Server.

<auth pass> is your passphrase on an Active Directory server. This passphrase
will be authenticated by the PGP Universal Server.

<recon server> is the PGP Universal Server on which your key reconstruction
information is stored.

Examples:

1 pgp --key-recon-send 0xEB778BFA --question "First question?" -
-answer "First answer" ... --auth-username myuser --auth-
passphrase "B0bsm1t4"

The specified key (0xEB778BFA)is sent to the preferred server on the key
accompanied by the five questions and answers and the authorization username
and passphrase for the Active Directory server.

2 pgp --key-recon-send 0xEB778BFA --question "First question?" -
-answer "First answer" ... --question "Fifth question?" --
answer "Fifth answer" --auth-username myuser --auth-passphrase
"B0bsm1t4" --recon-server 10.1.1.45

The specified key (0xEB778BFA)is sent to the PGP Universal Server with IP
address of 10.1.1.45 accompanied by the five questions and answers and the
authorization username and passphrase for the Active Directory server.

--key-recon-recv-questions
Retrieves PGP key reconstruction questions for a specified key.

In order to be retrieved, the key reconstruction questions must already reside on the
PGP Universal Server.

PGP Command Line responds to a successful request in the following format:

User ID: <user>

Key ID: <keyID>

Question 1: <question1>

...

Question 5: <question5>

108 Managing Keys

Commands

Where:

<user> is the user ID of the key being reconstructed.

<keyID> is key ID of the key being reconstructed.

<question1> is the first of the five stored questions, <question2> is the second
of the five stored questions, and so on through <question5>, the last of the second
of the five stored questions.

The usage format is:

pgp --key-recon-recv-questions <key> --auth-username <auth
user> --auth-passphrase <auth pass> [--recon-server <recon
server>]

Where:

<key> is the user ID, portion of the user ID, or the key ID of the key whose
reconstruction data you want to send to a PGP Universal Server.

<auth user> is your username on an Active Directory server. This username
will be authenticated by the PGP Universal Server.

<auth pass> is your passphrase on an Active Directory server. This passphrase
will be authenticated by the PGP Universal Server.

<recon server> is the PGP Universal Server on which your key reconstruction
information is stored.

Example:

pgp --key-recon-recv-questions 0x3D58AE31 --auth-username
myuser --auth-passphrase "B0bsm1t4" --recon-server 10.1.1.45

The PGP key reconstruction questions for the specified key (0x3D58AE31)are
retrieved from the specified PGP Universal Server.

--key-recon-recv
Reconstructs a private key locally, on successful completion of the five key
reconstruction questions.

A new passphrase must be specified, even if it is blank (" ").

The usage format is:

pgp --key-recon-recv <key> [--answer <a1> ... --answer <a5>] -
-new-passphrase <newpass> --auth-username <auth user> --auth-
passphrase <auth pass> [--recon-server <recon server>] --force

Where:

<key> is the user ID, portion of the user ID, or the key ID of the key being
reconstructed.

<a1> is the answer to the first question of the five questions that only you can
answer. Answers must be at least six characters long.

<newpass> is the new passphrase for your reconstructed private key.

<auth user> is your username on an Active Directory server. This username
will be authenticated by the PGP Universal Server.

Managing Keys

Commands
109

<auth pass> is your passphrase on an Active Directory server. This passphrase
will be authenticated by the PGP Universal Server.

<recon server> is the PGP Universal Server on which your key reconstruction
information is stored.

<force> is required.

Example:

pgp --key-recon-recv 0x3D58AE31 --answer "Answer 1" ... --
answer "Answer 5" --new-passphrase "cam3r0n-Alic&" --auth-
username myuser --auth-passphrase "B0bsm1t4" --recon-server
10.1.1.45

The answers to the questions stored for the specified key (0x3D58AE31) on the
specified PGP Universal Server are provided and the key is reconstructed.

--remove
Removes a public key (not private keys) from the local keyring.

The usage format is:

pgp --remove <input>

Where:

<input> is the user ID, portion of the user ID, or the key ID of the key that is
being removed from the keyring.

Example:

pgp --remove 0x12345678

Removes the specified public key from the keyring.

--remove-adk
Removes a specific ADK from a key.

You can remove an ADK by name if the ADK is present on the local keyring. Otherwise,
you must use the key ID.

The usage format is:

pgp --remove-adk <user> --adk <adk> --passphrase <pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key from which
the ADK is being removed.

<adk> is the specific ADK to be removed from the key.

<pass> is the passphrase of the key from which the ADK is being removed.

Example:

pgp --remove-adk "Bob Smith" --adk Alice --passphrase
"B0bsm1t4"

0x6245273E:remove ADK (0:ADKs successfully updated)

110 Managing Keys

Commands

Removes the specified ADK from Bob’s key.

--remove-all-adks
Removes all ADKs from a key.

The usage format is:

pgp --remove-adks <user> --passphrase <pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key whose ADKs
are being removed.

<pass> is the passphrase of the key.

Example:

pgp --remove-all-adks alice@example.com --passphrase
"A1ice*cam3r0n"

0x3E439B98:remove all ADKs (0:ADKs successfully updated)

Removes all ADKs from Alice’s key.

--remove-all-photoids
Removes all photo IDs from a key. PGP Command Line can add only one photo ID, but it
can remove multiple photo IDs from a key.

The usage format is:

pgp --remove-all-photoids <user>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the user whose photo
IDs are being removed.

Example:

pgp --remove-all-photoids Alice

0xD0EA20A7:remove all photo IDs (0:removed photo IDs, 1)

All photo IDs are removed from Alice's key.

--remove-all-revokers
Removes all revokers from a key.

The usage format is:

pgp --remove-all-revokers <user> --passphrase <pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key whose
revokers are being removed.

<pass> is the passphrase of the key.

mailto:alice@example.com

Managing Keys

Commands
111

Example:

pgp --remove-all-revokers alice@example.com --passphrase "A1ice*cam3r0n"

0x3E439B98:remove all revokers (0:revokers successfully
updated)

Removes all revokers from Alice’s key.

--remove-expiration-date
Removes the expiration date from a key.

The usage format is:

pgp --remove-expiration-date <user> --passphrase <pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key whose
expiration date is being removed.

<pass> is the passphrase of the key.

Example:

pgp --remove-expiration-date Cameron --passphrase
"A1ice*cam3r0n"

0x3E439B98:remove expire date (0:expiration date successfully
updated)

Removes the expiration date from Alice’s key.

--remove-key-pair
Removes a key pair from the local keyring. The option --force is required to make it
more difficult to accidentally remove a key pair.

The usage format is:

pgp --remove-key-pair <input> --force

Where:

<input> is the user ID, portion of the user ID, or the key ID of the key pair that is
being removed from the keyring.

Example:

pgp --remove-key-pair "Jose Medina" --force

0xF6EFC4D9:remove key pair (0:key successfully removed)

Removes Jose’s key pair from the keyring.

--remove-photoid
Removes a photo ID from a key. There must be a photo ID on the key for it to be
removed.

The usage format is:

mailto:alice@example.com

112 Managing Keys

Commands

pgp --remove-photoid <user> [options]

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key from which
the photo ID is being removed.

--index specifies which photo ID on the key should be exported. 1 indicates the
first photo ID, 2 the second photo, and so on.

Examples:

1 pgp --remove-photoid "Bob Smith"

0x6245273E:remove photo ID (0:successfully removed photo ID)

Removes the photo ID from Bob’s key.

2 pgp --remove-photoid 0x12345678 --index 2

Removes only the second photo ID from the specified key.

--remove-preferred-cipher
Removes a preferred cipher from a key.

The usage format is:

pgp --remove-preferred-cipher <user> --cipher <cipher> --
passphrase <pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key from which
the preferred cipher is being removed.

<cipher> is the preferred cipher being removed.

<pass> is the passphrase of the key.

Example:

pgp --remove-preferred-cipher "Bob Smith" --cipher blowfish --
passphrase "B0bsm1t4"

0x6245273E:remove preferred cipher (0:preferred ciphers
updated)

Removes the cipher Blowfish from Bob’s key.

--remove-preferred-compression-algorithm
Removes a preferred compression algorithm from a key.

The usage format is:

pgp --remove-preferred-compression-algorithm <user> --
compression-algorithm <algo> --passphrase <pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key from which
the preferred compression algorithm is being removed.

Managing Keys

Commands
113

<algo> is the preferred compression algorithm being removed.

<pass> is the passphrase of the key.

Example:

pgp --remove-preferred-compression-algorithm "Bob Smith" --
compression-algorithm bzip2 --passphrase "B0bsm1t4"

0x6245273E:remove preferred compression algorithm (0:preferred
compression algorithms updated)

Removes the compression algorithm Bzip2 from Bob’s key.

--remove-preferred-email-encoding
Removes the preferred email encoding from a key.

A key must be at least v4 to have a preferred email encoding.

The usage format is:

pgp --remove-preferred-email-encoding <user> --email-encoding
<encoding> --passphrase <pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key from which
the preferred email encoding is being removed.

<encoding> is the preferred email encoding being removed from a key. You can
remove several preferred email encodings from a key, one at a time.

<pass> is the passphrase of the key from which the preferred email encodings are
being removed.

Example:

pgp --remove-preferred-hash "Bob Smith" --email-encoding
pgpmime --passphrase "B0bsm1t4"

Removes the preferred email encoding pgpmime from Bob’s key.

--remove-preferred-hash
Removes the preferred hash from a key. A key must be at least v4 to have preferred
hashes.

The usage format is:

pgp --remove-preferred-hash <user> --hash <hash> --passphrase
<pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key from which
the preferred hash is being removed.

<hash> is the preferred hash being removed from a key. You can remove several
preferred hashes from a key, one at a time.

<pass> is the passphrase of the key from which the preferred hashes are being
removed.

114 Managing Keys

Commands

Example:

pgp --remove-preferred-hash "Bob Smith" --hash md5 --
passphrase "B0bsm1t4"

Removes the preferred hash MD5 from Bob’s key.

--remove-preferred-keyserver
Removes the preferred keyserver from a key.

The usage format is:

pgp --remove-preferred-keyserver <user> --passphrase <pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key from which
the preferred keyserver is being removed.

<pass> is the passphrase of the key.

Example:

pgp --remove-preferred-keyserver "Bob Smith" --passphrase
"B0bsm1t4"

0x6245273E:remove preferred keyserver (0:preferred keyserver
removed)

The preferred keyserver is removed from Bob’s key.

--remove-revoker
Removes a specific revoker from a key. You can remove a revoker by name if the
revoker is present on the local keyring; otherwise, use the key ID.

The usage format is:

pgp --remove-revoker <user> --revoker <revoker> --passphrase
<pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key from which
the revoker is being removed.

<revoker> is the specific revoker to be removed from the key.

<pass> is the passphrase of the key from which the revoker is being removed.

Examples:

pgp --remove-revoker Smith --revoker Alice --passphrase
"B0bsm1t4"

0x6245273E:remove revoker (0:revokers successfully updated)

Removes the specified revoker from Bob’s key.

Managing Keys

Commands
115

--remove-sig
Removes a signature from your public key.

You can remove a signature from any key on the local keyring. The signature will be
merged back into the key when it is updated from the keyserver.

If you have posted your public key to a keyserver with the signature you are removing,
first remove your public key from the keyserver, remove the signature on your local
public key, and then post your key back to the keyserver. This will prevent the
signature from being merged back in on update.

The usage format is:

pgp --remove-sig <user> --sig <signature>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the public key that
holds the signature you want to remove. Be specific since there can be multiple
signatures from the same user on different user IDs of the same key.

<sig> is the user ID or key ID of the key of the signature you are removing from
your public key. You must match this ID exactly.

Example:

pgp --remove-sig "Bob Smith" --sig 0x3E439B98

0x6245273E:remove signature (0:removed signature by user Alice
Cameron <alice@example.com>)

Removes a specific signature (0x3E439B98) from Bob’s key.

--remove-subkey
Removes a subkey from a key on the local keyring.

The only way to specify the subkey is by its key ID. The --force option is required to
make it more difficult to accidentally remove a subkey. No passphrase is required.

The usage format is:

pgp --remove-subkey <user> --subkey <subkey> --force

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key from which
the subkey is being removed.

<subkey> is the key ID of the subkey being removed.

Example:

pgp --remove-subkey bob@example.com --subkey 0x3D58AE31 --force

0x3D58AE31:remove subkey (0:subkey successfully removed)

The specified subkey (0x3D58AE31)is removed from Bob’s key.

mailto:alice@example.com
mailto:bob@example.com

116 Managing Keys

Commands

--remove-userid
Removes a user ID from a key. If a key has only one user ID, you cannot remove it; also,
when removing user IDs, you cannot remove the last user ID. You cannot have a key
with only a photo ID. This command does not remove photo IDs; refer to the --remove-
photoid command.

If you remove the primary user ID on a key, the next one below it becomes primary; to
establish a different primary user ID, use --set-primary-userid.

The usage format is:

pgp --remove-userid <user> --user <userID>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key from which
the user ID is being removed.

<userID> is the user ID being removed from the key.

Examples:

pgp --remove-userid "Bob Smith" --user Alice

0x6245273E:remove user ID (0:successfully removed Alice)

Removes the user ID "Alice" from Bob’s key.

--revoke
Revokes a key on the local keyring.

If for some reason you cannot trust a key pair, you can revoke it, which tells the world
to stop using your public key to encrypt data to you. The best way to circulate a revoked
key is to put it onto a public keyserver after you have revoked it.

--force is required to make it more difficult to accidentally revoke a key.

The usage format is:

pgp --revoke <user> [--revoker <revoker>] --passphrase <pass>
--force

Where:

<user> is the user ID, portion of user ID, or the key ID of the key being revoked.

<pass> is the passphrase to the key being revoked.

<revoker> is the user ID, portion of the user ID, or the key ID of the designated
revoker key. When this option is used, the passphrase belongs to the revoker key.
This option is not needed if you use a designated revoker or if you are doing self
revocation.

Examples:

1 pgp --revoke "Bob Smith" --passphrase "B0bsm1t4" --force

0x6245273E:revoke key (0:key successfully revoked)

Revokes Bob’s key from the local keyring.

Managing Keys

Commands
117

2 pgp --revoke "Bob Smith" --revoker "Maria Fuentes
<maria@example.com>" --passphrase "M*riafu3nt3s" --force

Maria Fuentes, the designated revoker, revokes Bob’s key.

--revoke-sig
Revokes your signature on a public key that you have previously signed. The public key
that you signed and whose signature you now want to revoke must be on the local
keyring to be revoked.

The usage format is:

pgp --revoke-sig <user> --sig <sig> --passphrase <pass>
[options]

Where:

<user> is the user ID, portion of the user ID, or the key ID of the public key you
signed and whose signature you now want to revoke. Be as specific as possible, as
there can be multiple signatures from the same user on different user IDs of the
same key.

<sig> is the user ID or key ID of the key of the person who is revoking their
signature.

<pass> is the passphrase of the private key of the person revoking their
signature.

Options:

<force> is required to revoke a signature.

Example:

pgp --revoke-sig Fumiko --sig 0x3E439B98 --passphrase
"Al1ce*cam3r0n" --force

0x5571A08B:revoke signature (0:revoked signature by user Alice
Cameron <alice@example.com>)

Alice removed her signature from Fumiko’s key using Alice’s passphrase.

--revoke-subkey
Revokes a subkey on a key on the local keyring.

The option --force is required to make it more difficult to accidentally revoke a
subkey.

The usage format is:

pgp --revoke-subkey <user> --subkey <subkey> --passphrase
<pass> --force

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key on which the
subkey is being revoked.

<subkey> is the key ID of the subkey being revoked.

<pass> is the passphrase of the key on which the subkey is being revoked.

mailto:maria@example.com
mailto:alice@example.com

118 Managing Keys

Commands

Example:

pgp --revoke-subkey fumiko@example.com --subkey 0x29D55ACE --
passphrase "Fum1k0-asak0" --force

0x29D55ACE:revoke subkey (0:subkey successfully revoked)

The specified subkey on Fumiko’s key is revoked.

--send-shares
Sends key shares to a server that is joining a key and allows you to join a key over the
network. If shares are protected by a key with a passphrase, this passphrase must be
cached before sending the shares.

For more information, refer to the command --join-key.

The usage format is:

pgp --send-shares --share <share> --share-server <server> [--
signer <signer>][--passphrase <pass>]

Where:

<share> is the specific share you want to send to the server.

<server> is the URL of the server that is joining the shares

<signer> is the name of the key used to authenticate the connection.

<pass> is the passphrase of the signer authenticating the connection.

Example:

pgp --send-shares --share "Alice Cameron-1-Bob Smith.shf" --
share-server 172.30.100.51 --signer admin --passphrase
"adminpass"

This command sends the share of Alice's key assigned to Bob Smith to the server
172.30.100.51, where the connection is authenticated by the signer's key "admin"
and the passphrase "adminpass".

--set-expiration-date
Establishes an expiration date for a key.

The usage format is:

pgp --set-expiration-date <user> (--expiration-date <date>) --
passphrase <pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key whose
expiration date is being set.

<date> is the date on which the key expires.

<pass> is the passphrase of the key.

Examples:

pgp --set-expiration-date 0x12345678 --expiration-date 2009-
12-27 --passphrase "Merry#Pippen"

mailto:fumiko@example.com

Managing Keys

Commands
119

Sets the expiration date for the specified key to December 27, 2009.

pgp --set-expiration-date 0x12345678 --expiration-days 365 --
passphrase "Saturday&Sunday"

Sets the specified key to expire in 365 days.

--set-key-flag
Sets one of the key preferences flags.

The usage format is:

pgp --set-key-flag <user> [--subkey <subkeyID>] --key-flag
<flag> [--passphrase <pass>]

Where:

<user> is the user ID, portion of the user ID, or the key ID of the user whose key
preferences flag is being set.

<flag> is the key preferences flag to be set.

<subkeyID> is the subkey ID of the key whose key preferences flag is being set.

<pass> is the passphrase of the key for which the preferences flag is being set.

Example:

pgp --set-key-flag Bob --key-flag private-shared --passphrase
"B0bsm1t4"

0x2B65A65E:set key flag (0:flags updated successfully)

You have successfully set the properties preference flag on Bob's key to "private-
shared".

Prop Flags: Private shared

--set-preferred-ciphers
Sets the entire list of preferred ciphers on a key. Only RSA and DH/DSS v4 keys can
have preferred ciphers.

The numbering of the ciphers in the command determines which cipher is used first,
which is used second, and so on. The cipher set as 1 is the preferred cipher.

The usage format is:

pgp --set-preferred-ciphers <user> --passphrase <pass>
<ciphers>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key to which the
preferred ciphers are being added.

<pass> is the passphrase of the key.

<ciphers> is one or more preferred ciphers.

Example:

120 Managing Keys

Commands

pgp --set-preferred-ciphers 0x12345678 --passphrase
"bicycling#is*fun" --aes256 1 --cast5 2

Specifies that only the ciphers AES256 and CAST5 should be used for the specified
key, in that order.

--set-preferred-compression-algorithms
Sets the entire list of preferred compression algorithms on a key. Only RSA and
DH/DSS v4 keys can have preferred compression algorithms.

The numbering of the compression algorithms in the command determines which
compression algorithm is used first, which is used second, and so on. The compression
algorithm set as 1 is the preferred compression algorithm.

The usage format is:

pgp --set-preferred-compression-algorithms <user> --passphrase
<pass> <compression algorithms>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key to which the
preferred ciphers are being added.

<pass> is the passphrase of the key.

<compression algorithms is one or more preferred compression algorithms.

Example:

pgp --set-preferred-compression-algorithms 0x12345678 --
passphrase "bicycling#is*fun" --bzip2 1 --zlib 2 --zip 3

Specifies that the preferred compression algorithm is BZip2, followed by ZLib,
then Zip, in that order.

--set-preferred-email-encodings
Sets the entire list of preferred email encodings on a key. Only RSA and DH/DSS v4
keys can have preferred email encodings.

The numbering of the email encodings in the command determines which email
encoding is used first, which is used second, and so on. The email encoding set as 1 is
the preferred email encoding.

The usage format is:

pgp --set-preferred-email-encodings <user> --passphrase <pass>
<email encodings>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key to which the
preferred ciphers are being added.

<pass> is the passphrase of the key.

<email encodings> is one or more preferred email encodings.

Example:

Managing Keys

Commands
121

pgp --set-preferred-email-encodings 0x12345678 --passphrase
"bicycling#is*fun" --pgp-mime 1 --partitioned 2

Specifies that the email encodings pgp-mime and partitioned should be used for
the specified key, in that order.

--set-preferred-hashes
Sets the entire list of hashes for a key (which can be only a v4 key).

The usage format is:

pgp --set-preferred-hashes <user> --passphrase <pass> <hash> 1
[<hash> 2...]

Where:

<user> the user ID, portion of the user ID, or the key ID of the key for which the
preferred hashes are being set.

<hash> is the preferred hash being set. The number following this option defines
the place on the hash list: the first hash (1) is always the preferred hash, and other
numbers are entered for conflict resolution.

<pass> is the passphrase of the key on which the preferred ciphers are being set.

Example:

pgp --set-preferred-hashes "Bob Smith" --passphrase "B0bsm1t4"
--md5 1 --sha256 2 --sha384 3

0x2B65A65E:set preferred hashes (0:preferred hashes updated)

Sets MD5, SHA-256, and SHA-384 as preferred hashes for Bob's key.

Hash: MD5

Hash: SHA-256

Hash: SHA-384

--set-preferred-keyserver
Sets a preferred keyserver for a key. Only RSA and DH/DSS v4 keys can have a
preferred keyserver, and it can be only one preferred keyserver.

The full URL of the keyserver must be specified, such as
ldap://keyserver.pgp.com.

The usage format is:

pgp --set-preferred-keyserver <user> --preferred-keyserver
<ks> --passphrase <pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key to which the
preferred keyserver is being set.

<ks> is the keyserver being set.

<pass> is the passphrase of the key.

Example:

122 Managing Keys

Commands

pgp --set-preferred-keyserver 0x12345678
ldap://keyserver.pgp.com --passphrase "B0bsm1t4"

Sets ldap://keyserver.pgp.com as the preferred keyserver for the specified
key.

--set-primary-userid
Sets a new primary user ID on a key.

Photo IDs cannot be set as the primary user ID.

The usage format is:

pgp --set-primary-userid <user> --user <newID> --passphrase
<pass>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key to which the
new primary user ID is being added.

<newID> is the new primary user ID for the key.

<pass> is the passphrase of the key to which the new primary user ID is being
added.

Example:

pgp --set-primary-userid 0x12345678 --user "Alice Cameron
<acameron@example.com>" --passphrase "jrr*tolkien"

Adds the user ID "Alice Cameron <acameron@example.com>" to the specified key
and makes it the primary user ID.

--set-trust
Establishes the trust setting for a key.

Private keys can have trust settings of None or Implicit (for those for which you are the
owner). Public keys can have trust settings of None (Untrusted), Marginal, or Complete
(Trusted).

The usage format is:

pgp --set-trust <user> --trust <trust>

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key whose trust
is being set.

<trust> is trust setting you want to assign to the key. Options for private keys
are none and implicit. Options for public keys are none, marginal, and complete.

Examples:

pgp --set-trust 0x12345678 --trust implicit

Trust is set to Implicit for the specified private key.

pgp --set-trust 0xABCD1234 --trust marginal

Trust is set to Marginal for the specified public key.

mailto:acameron@example.com
mailto:acameron@example.com

Managing Keys

Commands
123

--sign-key
Signs every user ID on a key.

To sign a photo ID, use the --photo option. To sign just one photo ID among many, use
the --index option.

The usage format is:

pgp --sign-key <user> --signer <signer> --sig-type <type> --
passphrase <pass> [options]

Where:

<user> is the user ID, portion of the user ID, or the key ID of the key you are
signing.

<pass> is the passphrase of the signer of the key.

[options] modify the behavior of the command. Options are:

--signer is the user ID, portion of the user ID, or the key ID of the signer of the
key. If no signer is specified, the default key is used for signing.

--sig-type is the signature type: local, exportable, meta-introducer, or trusted
introducer.

Signature Types

PGP Command Line supports several signature types:

 local means the signature is non-exportable, which means it cannot be sent
with the key to a keyserver or exported in any way. Use this signature when
you believe the key is valid, but you don’t want others to rely on your opinion
of the key.

 exportable means the signature is exportable, which means that the
signature can be sent with the key to a keyserver or exported with the key.
Use this signature when you believe the key is valid and you want others to
be able to rely on your opinion of the key. They are not obligated to rely on
your opinion, however.

 meta-introducer means this is a non-exportable meta-introducer, which
means that this key and any keys signed by this key with a trusted
introducer validity assertion are fully trusted introducers to you. This
signature type is not exportable.

 trusted-introducer means that you certify that this key is valid and that the
owner of the key should be completely trusted to vouch for other keys. This
signature type is exportable.

--trust-depth for meta-introducers and trusted introducers, you can specify
how many levels of trust your signature applies to. The default for meta-
introducer is 2, the default for trusted introducers is 1. The maximum depth for
both is 8.

--regular-expression lets you establish a domain restriction for trusted
introducers. This limits the trusted introducer’s certificate validation capabilities
to the domain you enter. For example, example.com.

Examples:

124 Managing Keys

Commands

pgp --sign-key "Bob Smith" --signer "alice@example.com" --sig-
type exportable --passphrase "A1ice*cam3r0n"

0x6245273E:sign key (0:certified user ID Bob Smith
<bob@example.com>)

Signs Bob’s key with an exportable signature.

--sign-userid
Signs a user ID on a key on the local keyring.

To sign a single user ID, specify that user ID uniquely. To sign a photo ID, use the --
photo option. To sign just one photo ID among many, use the --index option.

The usage format is:

pgp --sign-userid <user> --signer <signer> --sig-type <type> -
-passphrase <pass> [options]

Where:

<user> is the user ID, portion of the user ID, or the key ID of the user ID you are
signing.

<signer> is the user ID, portion of the user ID, or the key ID of the signer of the
user ID.

<type> is the signature type: local, exportable, meta-introducer, or trusted
introducer. See Signature Types for complete descriptions.

<pass> is the passphrase of the signer of the user ID.

[options] modify the behavior of the command. Options are:

--trust-depth for meta-introducers and trusted introducers, you can specify
how many levels of trust your signature applies to. The default for meta-
introducer is 2, the default for trusted introducers is 1. The maximum depth for
both is 8.

--regular-expression lets you establish a domain restriction for trusted
introducers. This limits the trusted introducer’s certificate validation capabilities
to the domain you enter. For example, example.com.

--photo lets you sign a photo ID.

--index lets you sign one photo ID on a key when there are many. Specify 1 for
the first photo ID on the key, 2 for the second, and so on.

Examples:

pgp --sign-userid "specific user" --signer me --sig-type
exportable

Sign a specific user ID.

pgp --sign-userid key --photo --signer me ...

Sign the specified photo ID.

mailto:alice@example.com
mailto:bob@example.com

Managing Keys

Commands
125

--split-key
Splits a key into two or more share files, called shares.

When you split a key, you split it between a group of shareholders. Each shareholder is
assigned a certain number of shares in their share file; each shareholder can be
assigned a different number of shares.

You specify the number of shares required to reconstitute the key so that it can be used
(the threshold). For example, you could split a key into three shares with a threshold of
two. Two of the three share files would be required before the key could be used.

Key splitting is a way to protect an important key, like a Corporate Signing Key, so that
no one person can use the key unilaterally.

You must reconstitute a key using the --join-key command before you can use it
again; refer to --join-key for more information.

You can only split one key at a time, and a key cannot be split more than once. The
number of people who get shares of a key (called shareholders) must be from two to 99.
The maximum number of shares for a key is 255. A shareholder can have more than one
share.

You can encrypt a share to a public key or you can use the name of the shareholder, in
which case the share will be conventionally encrypted to a passphrase you specify.
Refer to --share for more information.

Running the --split-key command without the --force option causes PGP
Command Line to list the share information rather than split the key; refer to --split-key
Preview Mode for more information.

If the key you specify to be split is missing or not valid (revoked, disabled, and so on) or
there is an error in the entering of the command, preview mode will not work nor will
the key be split (depending on whether or not the --force option was used).

The share files are created based on the following:

 If --output is not used, the share filenames use the following format:

<split key common name>-#-<recipient common name>.shf

 If --output is a file, the share filenames use the following format:

<output>-#-<recipient common name>.shf

 If --output is a directory, the share filenames use the following format:

<output>/<split key common name>-#-<recipient common name>.shf

Where:

 # is the number of this share. The first share being a 1, the second a 2, and so on.
The number is a single digit if the number of shareholders is fewer than 10 or
double digits with zero padding from 10 to 99 (04, 09, 55, for example).

The usage format is:

pgp --split-key <user> --threshold <number> --share <share1> -
-share <share2> [--share <shareN> ...] --passphrase pass --
force [--output]

Where:

126 Managing Keys

Commands

<user> is the user ID, portion of the user ID, or the key ID of the key you want to
split. You must make an exact match, as you can only split one key at a time.
Maximum number of share users is 99 (inclusive).

--threshold is the threshold for the key being split: a minimum number of
shares you need to put the split key back together (or to sign or decrypt with the
key). It must be between 1 and the total number of shares (inclusive).

<share1> is the information that identifies share1, <share2> is the information
that identifies share2, and so on. Restrictions on the shares are as follows:
minimum number of shares per user is 1; maximum total number of shares (given
to all users) is 255.

--force. If you run --split-key without the option --force, you will be able
to see the preview mode before the actual key splitting occurs. There will be no
output if there are parse errors or if the specific key is missing or invalid (revoked,
disabled, etc.).

-- passphrase specifies the passphrase of the key being split. It can be omitted
if the key has no passphrase.

There is one option that can be user with the command --split-key:

--output lets you specify a different name for the share file. If output is not
used, share filenames look as follows:

Alice Cameron-1-Bob Smith.shf

<common name of the split key user>-<number of share users>

<common name of the recipient>.shf

If output is a file, share filenames look as follows:

shares-1-Bob Smith.shf

<output file name>-<number of share users>-

<common name of the recipient>.shf

If output is a directory, share filenames look as follows:

shares/Alice Cameron-1-Bob Smith.shf

<output file name>/<common name of the split key user>-

<number of share users>-<common name of the recipient>.shf

The number of share users is presented with a single digit for less than 10 users,
and a double digit for 10 to 99 users (which is the limit).

Example:

 pgp --split-key "Alice Cameron" --threshold 40 --share
"20:BobSmith" --share "20:Jill Johnson" --share "10:Mary Smith"
--passphrase "A1ice*cam3r0n"

Since you did not use --force, you will get the preview mode that gives you
information such as follows:

Split Key User: Alice Cameron <alice@example.com>

 Split Key ID: 0xEB778BFA (0xEF20715FEB778BFA)

 Threshold: 40

Total Shares: 50

 Total Users: 3

mailto:alice@example.com

Managing Keys

Commands
127

 Share User: 20 0x2B65A65E Bob Smith <bob@example.com>

 Share User: 20 0x17452786 Jill Johnson <jill@example.com>

 Share User: 10 0x17452786 Mary Smith <mary@example.com>

0xEB778BFA:split key (3108:permission denied, force option
required)

--split-key Preview Mode

If you use the --split-key command without the --force option, the specified key
will not be split. Instead, the information about the split that would have happened if
you had used --force is displayed; a preview mode.

This preview lets you check the split information you have entered to make sure it is
correct before you actually split the key.

Row 1: Split Key User Name
Name: "Split Key User"

Value: Primary user ID of the key being split, in this case "Alice Cameron".

Row 2: Split Key ID
Name: "Split Key ID"

Value: The 32-bit key ID followed by the 64-bit key ID in the format:

 0xEB778BFA (0xEF20715FEB778BFA)

Row 3: Empty

Row 4: Threshold
Name: "Threshold"

Value: Threshold for the key being split (minimum number of shares to put the key
back together).

If threshold cannot be determined when joining a key, the character "?" is displayed.
This can happen when PGP Command Line displays this information before it listens
for network shares.

Row 5: Total Shares
Name: "Total Shares"

Value: Split. This is the total number of shares being divided among all users.

Join: This is the number of shares being collected from the file shares.

Row 6: Total Users
Name: "Total Users"

Value: Split. This is the total number of users who are getting the split key shares.
Users can be public key recipients as well as conventionally encrypted recipients.

Row 7: Empty

Row 8-N: Share User
Name: "Share User"

Value: The parsed value of each share in the following format:

mailto:bob@example.com
mailto:jill@example.com
mailto:mary@example.com

128 Managing Keys

Commands

 Share User: 20 0xB910E083 Bob Smith

 Number of shares assigned to a specific user (3 characters, left justified).

 Key ID of the share recipient. For public key encryption, this is a key ID in
standard format, while for symmetric encryption, this is the string "symmetric".

 The name of the share recipient. For public key encryption, this is the primary
user ID string, while for symmetric encryption, this is the name provided in the --
share option.

If there are no share users specified, "N/A" is displayed. This can only happen when
joining a key with the --skep option enabled.

Example:

pgp --split-key "Alice Cameron" --threshold 50 --share "25:Bob
Smith" --share "25:Jill Johnson" --share 25:0x4EF05026
--passphrase "A1ice*cam3r0n" --force

This time, the key was split successfully and the following message is displayed:

Split Key User: Alice Cameron <alice@example.com>

 Split Key ID: 0xEB778BFA (0xEF20715FEB778BFA)

 Threshold: 50

 Total Shares: 50

 Total Users: 2

 Share User: 25 0x2B65A65E Bob Smith <bob@example.com>

 Share User: 25 0x17452786 Jill Johnson <jill@example.com>

Alice Cameron-1-Bob Smith.shf:split key (2065:share file)

Alice Cameron-2-Jill Johnson.shf:split key (2065:share file)

0xEB778BFA:split key (0:key split successfully)

mailto:alice@example.com
mailto:bob@example.com
mailto:jill@example.com

This chapter describes those commands and options used to manage email messages
with PGP Command Line.

In This Chapter

Overview... 129

Encrypt Email .. 130

Sign Email .. 131

Decrypt Email .. 132

Verify Email ... 132

Annotate Email.. 132

Overview
PGP Command Line supports processing (encrypt, sign, decrypt, verify, and annotate)
of RFC 822-encoded email messages, allowing them to be automatically handled via
scripting.

Some important things to understand about how PGP Command Line handles email
messages:

 PGP Command Line does not send or receive email messages, it only processes
them.

 The input for an operation must be an RFC 822-encoded email message, with the
appropriate MIME headers and including CRLF line endings. Incorrectly formatted
messages will not be processed.

 MIME headers in the RFC-822 encoded messages are respected by PGP Command
Line. That is, they are not encrypted.

 If the email message being processed has an attachment, the attachment will also
be processed.

 When PGP Command Line encrypts an email message, the resulting file has a .pgp
extension added. So, for example, earnings.doc would become earnings.doc.pgp.
Conversely, when PGP Command Line decrypts an email message file, the
resulting file has the .pgp extension removed. You can use --output to have PGP
Command Line save the file to a different filename.

 PGP Command Line uses the same mechanism for processing email messages as
do other PGP Corporation products, so email messages handled by PGP Command
Line would be handled exactly the same if you were using PGP Desktop, for
example.

 The keys used to encrypt, sign, decrypt, or verify must be on the local keyring; PGP
Command Line does not do key lookups.

11 Working with Email

130 Working with Email

Encrypt Email

 You can specify multiple recipients when encrypting a message. Only one file will
result, but it will be encrypted to all of the recipients you specified, including
ADKs.

 To designate a recipient, you can use the email address on a key on the local
keyring.

 You can use --sign with or without encrypting the email message.

 Even if a message is only signed (and not encrypted), use --decrypt to process
the message. Verification is done automatically if a message is signed, whether or
not it was encrypted.

 Annotations (information that PGP Command Line processed the data in a certain
way) are off by default. Use --annotate to add annotations to decrypted email
messages. No annotation information is added when a message is encrypted
and/or signed.

 Decrypted messages may not be identical to the original message: adding
annotations and processing HTML can cause minor differences between the two.
PGP Command Line introduces these differences, not outside influences. These
differences does not cause PGP Command Line to report that the file has been
tampered with.

 When email messages are encrypted, their format can be PGP/MIME or S/MIME,
but not both. The format is determined by the keys of the recipients. If the keys of
the recipients support only PGP/MIME or PGP/MIME and S/MIME, the resulting
message will be in PGP/MIME format. If the keys of the recipients support only
S/MIME, then the resulting message will be in S/MIME format. Most keys created
by PGP Corporation products support PGP/MIME. Older keys, where the PGP key
is "wrapped around" an X.509 certificate, support only S/MIME.

 You can encrypt email messages to multiple recipients, but their keys must be the
same format (PGP/MIME or S/MIME), as only one output file can be created. To
encrypt an email message to some PGP/MIME keys and some S/MIME keys, run
PGP Command Line twice, once for each format. Use --get-email-encoding
to determine the format of a key.

 If you sign an email message with a key that is different from the key in the From
field of the MIME header, a mismatched key error will be reported.

Encrypt Email
To encrypt email messages, use the --encrypt command.

Refer to --encrypt (page 61) for information about the general use of the --encrypt
command.

You must use the --email option on the command line to tell PGP Command Line that
the input file is an RFC 822-compliant email message, which PGP Command Line
processes differently than regular data. Specifically, MIME headers and CRLF line
endings are respected.

Examples:

1 pgp --encrypt --email C:\data\message.txt --recipient
jmedina@example.com

mailto:jmedina@example.com

Working with Email

Sign Email
131

Encrypts the file message.txt, an RFC 822-encoded email message, to the public
key associated with the email address jmedina@example.com. PGP Command Line
will search the keys on the local keyring for a public key that includes the specified
email address. The encrypted file message.txt.pgp will be created in the same
directory as the input file.

2 pgp --encrypt --email C:\data\message.txt --recipient
jmedina@example.com --recipient mpa@example.com --recipient
vtoskin@example.com

Encrypts the file message.txt, an RFC 822-encoded email message, to the public
keys associated with the specified email addresses. One encrypted email will be
created, but it will be encrypted to multiple recipients.

3 pgp --encrypt --email C:\data\message.txt --recipient
jmedina@example.com --sign acameron@example.com --passphrase
"a_cameron*1492sailedblue"

Encrypts the file message.txt to the public key associated with the email address
jmedina@example.com and signs it with the private key associated with the email
address acameron@example.com. The passphrase for the private key is supplied.
If the email address the message is being sent to is different than
jmedina@example.com, a mismatched key error will be reported.

Sign Email
To sign an email message (whether or not you are encrypting it), use the --sign
command.

Refer to --sign (page 66) for information about the general use of the --sign
command.

You must use the --email option on the command line to tell PGP Command Line that
the input file is an RFC 822-compliant email message, which PGP Command Line
processes differently than regular data. Specifically, MIME headers and CRLF line
endings are respected.

Examples:

pgp --email C:\data\message.txt --sign acameron@example.com --
passphrase "a_cameron*1492sailedblue"

Signs (but does not encrypt) the file message.txt with the private key associated
with the email address acameron@example.com. The passphrase for the private
key is supplied.

pgp --encrypt --email C:\data\message.txt --recipient
jmedina@example.com --sign acameron@example.com --passphrase
"a_cameron*1492sailedblue"

Encrypts the file message.txt to the public key associated with the email address
jmedina@example.com and signs it with the private key associated with the email
address acameron@example.com. The passphrase for the private key is supplied.

mailto:jmedina@example.com
mailto:jmedina@example.com
mailto:mpa@example.com
mailto:vtoskin@example.com
mailto:jmedina@example.com
mailto:acameron@example.com
mailto:jmedina@example.com
mailto:acameron@example.com
mailto:jmedina@example.com
mailto:acameron@example.com
mailto:acameron@example.com
mailto:jmedina@example.com
mailto:acameron@example.com
mailto:jmedina@example.com
mailto:acameron@example.com

132 Working with Email

Decrypt Email

Decrypt Email
To decrypt an encrypted and/or signed message, use the --decrypt command.

Note: PGP Corporation recommends using --decrypt on all messages, even those
that are signed but not encrypted.

Refer to --decrypt (page 57) for information about the general use of the --decrypt
command.

You must use the --email option on the command line to tell PGP Command Line that
the input file is an RFC 822-compliant email message, which PGP Command Line
processes differently than regular data. Specifically, MIME headers and CRLF line
endings are respected.

Example:

pgp --decrypt --email message.txt.pgp --annotate

Decrypts the email message file "message.txt" and adds annotations to the file.

Verify Email
To verify an email message, use the --verify command.

Verifying an email message verifies that the file was not tampered with and tests
whether PGP Command Line can process the entire file. The command output describes
what was verified.

Refer to --verify (page 69) for information about the general use of the --verify
command.

You must use the --email option on the command line to tell PGP Command Line that
the input file is an RFC 822-compliant email message, which PGP Command Line
processes differently than regular data. Specifically, MIME headers and CRLF line
endings are respected.

Example:

pgp --verify --email message.txt.pgp --annotate

Verifies the email message file "message.txt" and adds annotations to the file.

Annotate Email
To annotate an email message (information that PGP Command Line processed the data
in a certain way), use the --annotate command.

Annotations are off by default.

Working with Email

Annotate Email
133

A signed email message that was successfully decrypted by PGP Command Line would
have an annotation similar to the following at the top of the file, if the --annotate
option was used:

* PGP Signed: 1/31/09/ at 10:31:43 PM, Decrypted

The --annotate option is used only with two commands involving email messaging: -
-decrypt and --verify.

Example:

pgp --decrypt --email message.txt.pgp --annotate

Decrypts the email message file "message.txt" and adds annotations to the file.

This section describes the commands that can be used with a PGP Key Management
Server (KMS).

In This Chapter

Overview ...136

--decrypt ...139

--encrypt (-e)...139

--create-mak...140

--export-mak ..140

--export-mak-pair..141

--import-mak..143

--request-cert ...144

--edit-mak ...144

--search-mak ..145

--delete-mak ...146

--create-mek-series ...147

--edit-mek-series ...147

--search-mek-series...148

--delete-mek-series..149

--create-mek ...150

--import-mek..150

--export-mek ..151

--edit-mek ...151

--search-mek ..152

--create-msd ...153

--export-msd...154

--edit-msd ...154

--search-msd ..155

--delete-msd ...156

--create-consumer ...157

--search-consumer ..157

--check-certificate-validity ..158

12 Working with a PGP Key Management
Server

136 Working with a PGP Key Management Server

Overview

Overview
With the release of PGP Command Line 10.0, Symantec Corporation has expanded the
scope of PGP Command Line so that it can act on keys and objects on a PGP Key
Management Server (KMS), in addition to keys and objects on the local system.

PGP KMS is new technology that centralizes the management of multiple kinds of
encryption keys for your organization onto a single server, thus allowing multiple
applications in your enterprise to operate against the same set of keys.

No longer does each application that uses encryption keys in your organization have to
store and manage them on their own.

New Terms and Concepts
To accommodate this new PGP KMS technology, new terms and concepts are being used
to describe how PGP applications understand keys, users, and servers, and the
relationships between them:

 Consumer: Previous to KMS, we talked of a "user", generally identified with a
person. A user had a key, encrypted things, sent and received email, and so on.
One person could have more than one user identity (for example, they could be the
holder of a corporate ADK as one identity and a PGP Desktop user as a second
identity, each identity having a different PGP keypair). With PGP KMS, a
consumer is an identity associated with a person or a device. For example, a web
server that handles credit cards or a bank's automated teller machine could be
PGP KMS consumers. Each consumer has a MAK, which may or may not have
associated MEKs, MEK series, or MSDs.

 MAK (Managed Asymmetric Key): A keypair managed by PGP KMS for a
consumer. A MAK is a PGP keypair with additional information. A MAK can be
used to encrypt, decrypt, sign, and verify.

 MEK (Managed Encryption Key): A symmetric key associated with a MAK. A MEK
can be used to encrypt and decrypt; it cannot sign or verify. Any number of MEKs
can be associated with a MAK. MEKs can have a Validity Period, allowing them to
be valid for a specified period. At the end of the specified period, the MEK expires
and a new MEK can be automatically created. The old MEK is retained in an
expired state and kept, to decrypt older data if necessary.

 MEK series: A series of MEKs that are automatically created and then expired
when their Validity Period ends. Consumers using a MEK series can be
automatically notified of a new MEK so that they can synchronize to the series and
thus use the correct MEK at the correct time. In other cases, no notification is
needed; when you encrypt against the MEK series, the active MEK is used
automatically.

 MSD (Managed Secure Data): Encrypted data stored on a PGP KMS and associated
with a MAK. Just like a regular encrypted file except it is stored on a PGP KMS.

Working with a PGP Key Management Server

Overview
137

Relationship with a PGP KMS
To act on keys or objects on a PGP KMS, you must specify a PGP KMS as an argument
on the command line.

For example:

pgp --usp-server universal.example.com <kms_operation>

This example shows a PGP KMS operation being performed against the PGP KMS server
named universal.example.com.

Individual commands can act against keys or objects on a PGP KMS or on the local
system, but not both.

Authentication for PGP KMS Operations
Authentication as a consumer is required for most PGP KMS operations. Once
authenticated as a consumer, the settings of the PGP KMS determine what operations
can be performed. Contact your PGP administrator for details.

Four types of authentication are supported:

 No authentication

 Passphrase

 Public key

 Cookie

No Authentication

You can only search for keys or objects on the PGP KMS without providing
authentication.

Passphrase

You can perform all PGP KMS operations by providing the username and passphrase of
a valid user on the PGP KMS.

For example:

pgp --auth-username acameron --auth-passphrase
"bilbo42_baggins99" --usp-server universal.example.com
<kms_operation>

This example shows Alice Cameron authenticating to her company's PGP KMS,
universal.example.com, on which she is an authorized user, using her passphrase.

138 Working with a PGP Key Management Server

Overview

Public Key

You can perform all PGP KMS operations by unlocking the private key of a user on a
PGP KMS via a public key on the local keyring. The option --auth-key is used to
specify the local public key to be used.

The public key ID used with --auth-key can be a 32- or 64-bit key ID or a unique,
case-insensitive substring of the common name or email portion of the username.

For example:

pgp --auth-username acameron --auth-key 0x12345 --auth-
passphrase "bilbo42_baggins99" --usp-server
universal.example.com <kms_operation>

This example shows Alice Cameron specifying her public key on her local system
and the passphrase to her private key to her company's PGP KMS,
universal.example.com. The PGP KMS will unlock the private key associated with
her public key using the supplied passphrase and authenticate her.

Cookie

Cookie authentication lets you cache authentication credentials for a specific PGP KMS.

PGP Command Line automatically manages the location of the cookies. Security for the
cookies is by file permissions; only the appropriate user and the administrator (if any)
on a system can read the cookie.

PGP Command Line supports two types of cookie authentication:

 Anonymous cookie. A single cookie that automatically uses the credentials in the
cookie for authentication until it is overwritten, expires, or is deleted. With an
anonymous cookie in place, you do not need to enter authentication credentials on
the command line for KMS operations for the specified PGP KMS; the credentials
in the cookie are used instead.

 Named cookies. One or more cookies tied to a specific consumer that you can use
for authentication on the command line by specifying the the username (using --
auth-username) but without having to also specify the associated passphrase
(using --auth-passphrase) or associated key (using --user-key).

Note: Use an anonymous cookie when you use just one set of authentication
credentials for a PGP KMS. If you need multiple authentication credentials for a PGP
KMS (for example, if a user has multiple USP consumers), use named cookies.

To create an anonymous cookie, use passphrase or public key authentication while
performing a PGP KMS operation. The cookie will be created by the use of --usp-
cache-auth:

pgp --auth-username acameron --auth-passphrase
"bilbo42_baggins99" --usp-cache-auth --usp-server
universal.example.com <kms_operation>

In this example, passphrase authentication is used to set the cookie.

Once an anonymous cookie is in place, you do not need to enter any authentication
credentials when performing a KMS operation against the specified PGP KMS. Simply
perform your PGP KMS operations without any apparent authentication:

pgp --usp-server universal.example.com <kms_operation>

Working with a PGP Key Management Server

--decrypt
139

Use --usp-clear-cache to delete an anonymous cookie for a specific PGP KMS:

pgp --usp-server universal.example.com --usp-clear-cache

To create a named cookie, use passphrase or public key authentication while
performing a PGP KMS operation. The cookie will be created by the use of --usp-
cache-auth:

pgp --auth-username bobsmith --auth-passphrase
"B0bSm1th***7263" --usp-cache-auth --usp-server
universal.example.com <kms_operation>

In this example, a named cookie (bobsmith) is created using passphrase authentication
for the specified PGP KMS.

For subsequent KMS operations against the same PGP KMS, only --auth-username
bobsmith is required on the command line for authentication; the --auth-
passphrase <passphrase> or --auth-key <keyid> is not needed.

To create another named cookie for the same PGP KMS, simply run another KMS
operation against the same PGP KMS using the desired authentication credentials:

pgp --auth-username mikeallen --auth-passphrase
"M1chAelA11en##8351" --usp-cache-auth --usp-server
universal.example.com <kms_operation>

In this example, a second named cookie (mikeallen) is created for the same PGP KMS
(universal.example.com). For subsequent KMS operations against the same PGP KMS,
either named cookie (bobsmith or mikeallen) can be used in conjunction with --auth-
username.

Use --usp-clear-cache to delete a named cookie for a specific PGP KMS:

pgp --usp-server universal.example.com --auth-username
mikeallen --usp-clear-cache <kms_operation>

In this example, the named cookie mikeallen is deleted.

Note: When you create the first named cookie against a PGP KMS, you also create an
anonymous cookie for the specified PGP KMS. When you create additional named
cookies for the same PGP KMS, you overwrite the existing anonymous cookie with
the new one. It is not recommended to mix the use of anonymous and named cookies.

--decrypt
Decrypts encrypted files with local keys or keys on a PGP KMS server. See --decrypt.

--encrypt (-e)
Encrypts documents for specified recipients, where keys are on the local keyring or on a
PGP KMS server. See --encrypt (-e) (page 61).

140 Working with a PGP Key Management Server

--create-mak

--create-mak
The --create-mak command creates a new MAK on the specified PGP KMS server.

The --name option is required. You can also specify key size and algorithm (using the
same arguments as with creating a key on the local keyring), but you must specify both
or neither. If neither is specified, the default settings on the PGP KMS will be used.

The keys created by the --create-mak command are SKM keys.

The usage format is:

pgp --create-mak --usp-server <KMSserver> --name <MAKname> [--
key-type <type> --encryption-bits <bits>]

Where:

 --create-mak is the command to create a MAK on a PGP KMS.

 --usp-server specifies the PGP KMS on which the MAK will be created.

 <KMSserver> is the KMS server on which the MAK will be created.

 --name specifies a name for the MAK.

 <MAKname> is the desired name for the MAK. This is usually an email address, but
can be any text string you want.

 --key-type specifies the type of key you are creating.

 <type> is the key type: rsa, rsa-sign-only, dh, or dh-sign-only.

 --encryption-bits specifies the length of the encryption subkey in bits (1024 -
4096; for DSA keys, 1024, 2048, or 3072 only). When generating sign-only keys
(keys without a subkey), you can specify --bits only to define the signing key
size.

 <bits> is the desired number of bits: 1024, 2048, 3072, or 4096.

Example:

 pgp --create-mak --usp-server universal.example.com --name
"Alice Cameron <acameron@example.com>"

This example shows a MAK being created for Alice Cameron on the specified PGP
KMS using her name/email address as the name of the MAK.

--export-mak
The --export-mak command exports the public portion of a MAK to a file on the local
system.

Use the --export-mak-pair command to export both the public and the private
portion of a MAK to a file.

If you have two MAKs with the same name, and you want to export one of them, use the
UUID of the MAK you want to export, not the name.

mailto:acameron@example.com

Working with a PGP Key Management Server

--export-mak-pair
141

The usage format is:

pgp --export-mak <MAKid> --usp-server <KMSserver> --output
<MAKfile>

Where:

 --export-mak is the command to export the public portion of a MAK to a file on
the local system.

 <MAKid> is the name or UUID of the MAK being exported.

 --usp-server specifies the PGP KMS on which the MAK exists.

 <KMSserver> is the KMS server on which the MAK exists.

 --output specifies the output for the MAK being exported.

 <MAKfile> is the desired name (or name and path) for the MAK on the local
system.

Example:

 pgp --export-mak acameron@example.com --usp-server
universal.example.com --output c:\keys\test-pubkey.asc

This example shows the public portion of Alice Cameron's MAK being exported to
a key on the local system.

--export-mak-pair
The --export-mak-pair command exports the public and private portions of a MAK
to a file on the local system.

Use the --export-mak command to export just the public portion of a MAK to a file.

If you have two MAK pairs with the same name, and you want to export one of them,
use the UUID of the MAK you want to export, not the name.

The usage format is:

pgp --export-mak-pair <MAKid> --usp-server <KMSserver> --
export-format --output <MAKfile>

Where:

 --export-mak-pair is the command to export the public and private portions of
a MAK to a file on the local system.

 <MAKid> is the name or UUID of the MAK being exported.

 --usp-server is the command to specify the PGP KMS on which the MAK exists.

 <KMSserver> is the KMS server on which the MAK exists.

 --export-format specifies an export format from the following list of
supported formats. If this option is omitted, the keys are exported as ASCII armor
files (.asc). See Export Format (on page 95).

 --output is the command to specify the output for the MAK being exported.

 <MAKfile> is the desired name (or name and path) for the MAK on the local
system.

mailto:acameron@example.com

142 Working with a PGP Key Management Server

--export-mak-pair

Examples:

 Export public and private keys to a file

pgp --export-mak-pair acameron@example.com --usp-server
universal.example.com --output c:\keys\test-keypair.asc

This example shows the public and private portions of Alice Cameron's MAK being
exported to a key on the local system.

 Export the certificate's private key as encrypted PKCS8

pgp --usp-server universal.example.com --export-mak-pair mak-
uuid --export-format pkcs8 --passphrase keypass --export-
passphrase export-keypass -o cert-key-encrypted.pkcs8 --
overwrite remove

This example exports the private key associated with the top X.509 certificate. The
key material is saved as PKCS8 that is encrypted with the export-keypass
passphrase.

Export Format
PGP Command Line supports multiple export formats:

 Complete (default): Only ASCII-armored files are output; the default file extension
is .asc. Use Complete to export keys in a newer format that supports all PGP
features.

 Compatible: Only ASCII-armored files are output; the default file extension is .asc.
Use Compatible to export keys in a format compatible with older versions of
PGP software; that is, PGP software versions 7.0 and prior. Some newer PGP
features are not supported when using Compatible.

 X.509-cert: Only ASCII-armored files are output; the default file extension is .crt.
The <input> must match exactly one key, and --cert is required.

 PKCS8: This format can produce unencrypted and encrypted PKCS8. Only ASCII-
armored files are output; the default file extension is .p8. A signed key must be
paired. The <input> must match exactly one key.

The passphrase options change the passphrase of the exported key. They do not
change the passphrase of the local key.

 If no --passphrase is supplied, the cache and an empty passphrase is tried.
If successful, the found passphrase is used as though it were supplied with
the command.

 If --passphrase and --export-passphrase are supplied and --
passphrase is valid, then the private key is exported as encrypted PKCS8.
The --export-passphrase is used to encrypt the result.

 If only --passphrase is supplied and the passphrase is valid, the private
key is exported without being encrypted. If the supplied passphrase is
invalid, an error is generated.

 PKCS12: Only binary blocks are output; the default file extension is .p12. A signed
key must be paired. The <input> must match exactly one key.

The passphrase options change the passphrase of the exported key and certificate.
They do not change the passphrase of the local key.

mailto:acameron@example.com

Working with a PGP Key Management Server

--import-mak
143

 If no --passphrase is supplied, the cache and an empty passphrase is tried.
If successful, the found passphrase is used as though it were supplied with
the command.

 If only --passphrase is supplied and the passphrase is valid, the key and
certificate are exported without encryption. If the supplied passphrase is
invalid, an error is generated.

 If --passphrase and --export-passphrase are supplied and --
passphrase is valid, then the key and the certificate are exported as
encrypted PKCS12. The --export-passphrase is used to encrypt the
result.

 Certificate signing request (CSR): Only ASCII-armored blocks are output. The default
file extension is .csr. Key must be paired. The input must match exactly one key.
The preferred method to create a CSR is to associate the certificate with a specific
subkey using the --subkey option.

--import-mak
The --import-mak command creates a MAK on a PGP KMS from existing key material
on the local system.

The key mode for the MAK will be determined by the content of the existing key
material.

 If there is no private key in the imported file, the key mode will be CKM.

 If there is a private key but no signing subkey, the key mode will be SCKM.

 If the key material has no passphrase, the key mode will be SKM.

 If the key material has a passphrase, the key mode will be GKM.

Refer to the PGP Universal Administrator's Guide for more information about key
modes.

The usage format is:

pgp --import-mak --usp-server <KMSserver> --name <MAKname>

Where:

 --import-mak is the command to use existing key material to create a MAK.

 --usp-server specifies the PGP KMS on which the MAK will be created.

 <KMSserver> is the KMS server on which the MAK will be created.

 --name specifies a name for the MAK. This option is not required. If no name is
given, the name found in the imported key will be used.

 <MAKname> is the desired name for the MAK. This is usually an email address, but
can be any text string you want.

Example:

 pgp --import-mak --usp-server universal.example.com --name
acameron@example.com

mailto:acameron@example.com

144 Working with a PGP Key Management Server

--request-cert

This example shows a MAK being created for Alice Cameron on the specified PGP
KMS using existing key material with her email address as the name of the MAK.

--request-cert
The --request-cert command requests a certificate for a MAK.

The certificate signing request must have been previously generated, either by a PGP
application (such as PGP Command Line) or another application. For more information
about how PGP Command Line creates certificate signing requests, refer to --export.

The usage format is:

pgp --request-cert <<MAKid> --cert-file <request> --usp-server
<KMSserver>

Where:

 --request-cert is the command to request a certificate for a MAK.

 <MAKid> is the name or UUID of the MAK requesting the certificate.

 --cert-file specifies a file with the desired certificate signing request.

 <request> is the existing certificate signing request.

 --usp-server is the command to specify a PGP KMS.

 <KMSserver> is a specific KMS server.

Example:

 pgp --request-cert engMAK42 --cert-file certificate.csr --usp-
server universal.example.com

This example shows a certificate signing request named certificate.csr being
requested for the specified MAK.

--edit-mak
The --edit-mak command edits settings of a MAK on the specified PGP KMS.

MAK edit options are:

 set new name

 set attributes

 clear attributes

 set MAK key material from a key or keypair in a file

The edit-mak command requires at least one edit operation and a unique MAK
identifier (unique name or UUID). Multiple edit operations can be combined on the
command line.

Note: Clearing of attributes always happens before the setting of attributes,
regardless of where --clear-attributes is on the command line.

Working with a PGP Key Management Server

--search-mak
145

The usage format is:

pgp --edit-mak <MAKid> --usp-server <KMSserver> [--name
<NewName> --attribute "attr=val" --clear-attributes "attr" --
set-key <filename>]

Where:

 --edit-mak is the command to edit the settings of a MAK.

 <MAKid> is the name or UUID of the MAK being edited.

 --usp-server specifies the PGP KMS on which the MAK exists.

 <KMSserver> is the KMS server on which the MAK exists.

 --name specifies the MAK name should be changed.

 <NewName> is the desired new name for the MAK.

 --attribute specifies an attribute should be changed.

 <"attr=val"> is attribute to be changed and the new value.

 --clear-attributes specifies that an attribute should be cleared.

 <"attr"> is the attribute to be cleared.

 --set-key specifies that the key material for the MAK should be set.

 <KeyName> is the file from which the new key material should be taken.

Example:

 pgp --edit-mak testmak --usp-server universal.example.com --
name eng1mak

This example shows the MAK named testmak on PGP KMS universal.example.com
being renamed to eng1mak.

--search-mak
The --search-mak command searches a PGP KMS for a MAK.

Entering a search string is optional. If you do not enter a search string, all MAKs will be
returned.

The usage format is:

pgp --search-mak <search-string> --usp-server <KMSserver> --
details | --xml | --brief

Where:

 --search-mak is the command to search MAKs on the specified PGP KMS.

 <search-string> is the string to search for (optional). See Searching for Data on
a PGP KMS (on page 247) for more information about searching.

 --usp-server is the command to specify the PGP KMS on which to search.

 <KMSserver> is the PGP KMS server on which to search.

 --details displays detailed results of the search.

146 Working with a PGP Key Management Server

--delete-mak

 --xml displays the search results in XML format.

 --brief displays just the UUID as the search results.

Note: You can only choose one of --details, --xml, or --brief. They are
mutually exclusive.

For example, this command works on all platforms:

 pgp --search-mak "EQ(UUID, \"9ac0e652-5690-474c-ad34-898169346bcd\")"
--usp-server universal.example.com --auth-username acameron --auth-
passphrase "bilbo42_baggins99" --xml

And this command works on Linux or Mac OSX:

 pgp --search-mak 'EQ(UUID, "9ac0e652-5690-474c-ad34-898169346bcd")' -
-usp-server universal.example.com --auth-username acameron --auth-
passphrase "bilbo42_baggins99" --xml

These examples show a search on the specified PGP KMS for a MAK with the specified
UUID. The results will be displayed in XML format.

--delete-mak
The --delete-mak command deletes a MAK from the PGP Key Management Server.

Deleting a MAK deletes all the MEK series and MEKs associated with it. Because this is a
destructive operation, --force is required.

Note: You cannot delete SKM keys, even those you created, unless settings on the
PGP KMS are changed. Contact your PGP administrator for more information.

The usage format is:

pgp --delete-mak <MAKid> --usp-server <KMSserver> --force

Where:

 --delete-mak is the command to delete a MAK from a PGP KMS.

 <MAKid> is the name or UUID of the MAK you want to delete.

 --usp-server is the command to specify the PGP KMS from which the MAK will
be deleted.

 <KMSserver> is the KMS server from which the MAK will be deleted.

 --force is required because this is a destructive operation.

Example:

 pgp --delete-mak testMAK --usp-server universal.example.com --
force

This example shows a MAK named testMAK being deleted from the specified PGP
KMS.

Working with a PGP Key Management Server

--create-mek-series
147

--create-mek-series
The --create-mek-series command creates a MEK (Managed Encryption Key)
series on the local system.

A unique name or UUID is required to create a MEK series.

The usage format is:

pgp --create-mek-series --usp-server <KMSserver> --name
<MEKname> --parent <MAKid>

Where:

 --create-mek-series is the command to create a MEK series on a PGP KMS.

 --usp-server is the command to specify the PGP KMS on which the MEK series
will be created.

 <KMSserver> is the KMS server on which the MEK series will be created.

 --name specifies a name for the MEK series.

 <MEKname> is the desired name for the MEK series. This can be a unique name or
a UUID.

 --parent specifies the parent MAK for the MEK series.

 <MAKid> is the name or UUID of the parent MAK.

Example:

 pgp --create-mek-series --usp-server universal.example.com --
name MEKseriesname --parent test-MAK

This example shows a MEK series named MEKseriesname being created on the
specified PGP KMS for the MAK named test-MAK.

--edit-mek-series
The --edit-mek-series command edits an existing MEK series.

MEK series edit options are:

 set name

 set attribute

 clear attribute

 set validity period

 set end of life

Multiple edit operations can be combined on the command line.

Note: Clearing of attributes always happens before the setting of attributes,
regardless of where --clear-attributes is on the command line.

148 Working with a PGP Key Management Server

--search-mek-series

The usage format is:

pgp --edit-mek-series <MEKid> --usp-server <KMSserver> [--name
<NewName> --attribute "attr=val" --clear-attributes "attr" --
validity-duration <duration> --end-of-life <enddate>]

Where:

 --edit-mek-series is the command to edit the settings of a MEK series.

 <MAKid> is the name or UUID of the MAK being exported.

 --usp-server is the command to specify the PGP KMS.

 <KMSserver> is the KMS server on which the MEK series exists.

 --name specifies the name of the MEK series is to be changed.

 <NewName> is the desired name for the MEK series.

 --attribute specifies an attribute should be changed.

 <'attr=val'> is attribute to be changed and the new value.

 --clear-attributes specifies that an attribute should be cleared.

 <'attr'> is the attribute to be cleared.

 --validity-duration specifies a duration, in seconds, for which each member
of the MEK series is valid.

 <duration> is the desired number of seconds.

 --end-of-life specifies an end-of-life date for MEK series.

 <enddate> is the end of life date.

Example:

 pgp --edit-mek-series testmekseries --usp-server
universal.example.com --validity-duration 1000000

This example shows the validity duration for the members of a MEK series being
set to 1000000 seconds.

--search-mek-series
The --search-mek-series command searches a PGP KMS for a specified MEK series.

Entering a search string is optional. If you do not enter a search string, all MEK series
will be returned.

The usage format is:

pgp --search-mek-series <search-string> --usp-server
<KMSserver> --details | --xml | --brief

Where:

 --search-mek-series is the command to search for MEK series on the
specified PGP KMS for the specified search string.

Working with a PGP Key Management Server

--delete-mek-series
149

 <search-string> is the string to search for (optional). See Searching for Data on
a PGP KMS (on page 247) for more information about searching.

 --usp-server is the command to specify the PGP KMS on which to search.

 <KMSserver> is the PGP KMS server on which to search.

 --details displays detailed results of the search.

 --xml displays the search results in XML format.

 --brief displays just the UUID as the search results.

Note: You can only choose one of --details, --xml, or --brief. They are
mutually exclusive.

For example, this command works on all platforms:

 pgp --search-mek-series "EQ(UUID, \"9ac0e652-5690-474c-ad34-
898169346bcd\")" --usp-server universal.example.com --auth-
username acameron --auth-passphrase "bilbo42_baggins99" --details

This command works on Linux and Mac OSX:

 pgp --search-mek-series 'EQ(UUID, "9ac0e652-5690-474c-ad34-
898169346bcd")' --usp-server universal.example.com --auth-username
acameron --auth-passphrase "bilbo42_baggins99" --details

These examples show a search on the specified PGP KMS for a MEK series with the
specified UUID. Detailed results will be displayed.

--delete-mek-series
The --delete-mek-series command deletes a MEK series from a PGP KMS. All
MEKs in the series are deleted.

Because this is a destructive operation, --force is required.

The usage format is:

pgp --delete-mek-series <MEKseriesID> --usp-server <KMSserver>
--force

Where:

 --delete-mek-series is the command to delete a MEK series from a PGP KMS.

 <MEKseriesID> is the ID of the MEK series to be deleted.

 --usp-server is the command to specify the PGP KMS from which the MEK
series will be deleted.

 <KMSserver> is the KMS server from which the MEK series will be deleted.

 --force means this is a destructive operation.

Example:

 pgp --delete-mek-series MEKseries42 --usp-server
universal.example.com --force

150 Working with a PGP Key Management Server

--create-mek

This example shows a MEK series named MEKseries42 being deleted from the
specified PGP KMS.

--create-mek
The --create-mek command creates a MEK on a PGP KMS.

Because MEKs have no names, the most reliable way to reference them is by UUID. You
can also specify the UUID of the parent MEK series, and the currently active MEK will
be used automatically.

The usage format is:

pgp --create-mek --usp-server <KMSserver> --name <MEKname> [--
parent <MAKid>]

Where:

 --create-mek is the command to create a MEK.

 --usp-server is the command to specify the PGP KMS on which the MEK will be
created.

 <KMSserver> is the KMS server on which the MEK will be created.

 --parent specifies the parent MEK series for the MEK.

 <MAKid> is the name or UUID of the parent MEK series.

Example:

 pgp --create-mek --usp-server universal.example.com --parent
testMEKseries

This example shows a MEK being created on the specified PGP KMS for the parent
MEK series named testMEKseries.

--import-mek
The --import-mek command takes key material from the local system and makes a
MEK on the PGP KMS.

The usage format is:

pgp --import-mek --usp-server <KMSserver> --parent <MAKparent>
<file>

Where:

 --import-mak is the command to use existing key material to create a MAK.

 --usp-server specifies the PGP KMS on which the MAK will be created.

 <KMSserver> is the KMS server on which the MAK will be created.

 --parent specifies the name of the parent MAK.

 <MAKname> is the name of the parent MAK.

Working with a PGP Key Management Server

--export-mek
151

 <file> is the file on the local system containing the key material for the MEK.

Example:

 pgp --import-mak --usp-server universal.example.com --parent
MAKtest1 C:\keys\symmetrickey

This example shows the key material from the file symmetrickey on the local
system being imported as a MEK to the specified PGP KMS.

--export-mek
The --export-mek command exports the MEK to a file on the local system.

The usage format is:

pgp --export-mek <MEKid> --usp-server <KMSserver> --output
<MEKfile>

Where:

 --export-mek is the command to export the MEK to a file on the local system.

 <MEKid> is the UUID of the MEK being exported.

 --usp-server specifies the PGP KMS on which the MEK exists.

 <KMSserver> is the KMS server on which the MEK exists.

 --output specifies the output for the MEK being exported.

 <MEKfile> is the desired name (or name and path) for the MEK on the local
system.

Example:

 pgp --export-mek 550e8400-e29b-41d4-a716-446655440000 --usp-
server universal.example.com --output c:\keys\test-mekkey.asc

This example shows the specified MEK being exported to a file on the local system.

--edit-mek
The --edit-mek command edits a MEK on a PGP KMS.

MEK edit options are:

 set attributes

 clear attributes

 set expiration date

The --edit-mek command requires at least one edit operation and a unique MEK
identifier (UUID). Multiple edit operations can be combined on the command line.

Note: Clearing of attributes always happens before the setting of attributes,
regardless of where --clear-attributes is on the command line.

152 Working with a PGP Key Management Server

--search-mek

The usage format is:

pgp --edit-mek <MEKid> --usp-server <KMSserver> [--attribute
"attr=val" --clear-attributes "attr" --expiration-date <date>]

Where:

 --edit-mak is the command to edit the settings of a MEK.

 <MEKid> is the UUID of the MEK being edited.

 --usp-server specifies the PGP KMS on which the MEK exists.

 <KMSserver> is the KMS server on which the MEK exists.

 --attribute specifies an attribute should be changed.

 <"attr=val"> is attribute to be changed and the new value.

 --clear-attributes specifies that an attribute should be cleared.

 <"attr"> is the attribute to be cleared.

 --expiration-date specifies the expiration date of the MEK.

 <date> is the date the MEK expires.

Example:

 pgp --edit-mek 550e8400-e29b-41d4-a716-446655440000 --usp-
server universal.example.com --expiration-date 2011-01-01

This example shows the specified MEK having its expiration date changed to Jan.
1, 2011.

--search-mek
The --search-mek command searches a PGP KMS for a MEK.

Entering a search string is optional. If you do not enter a search string, all MEKs will be
returned.

The usage format is:

pgp --search-mek <search-string> --usp-server <KMSserver> --
details | --xml | --brief

Where:

 --search-mek is the command to search MEKs on the specified PGP KMS for the
specified search string.

 <search-string> is the string to search for (optional). See Searching for Data on
a PGP KMS (on page 247) for more information about searching.

 --usp-server is the command to specify the PGP KMS on which to search.

 <KMSserver> is the PGP KMS server on which to search.

 --details displays detailed results of the search.

 --xml displays the search results in XML format.

Working with a PGP Key Management Server

--create-msd
153

 --brief displays just the UUID as the search results.

Note: You can only choose one of --details, --xml, or --brief. They are
mutually exclusive.

For example, this command works on all platforms:

 pgp --search-mek "EQ(UUID, \"9ac0e652-5690-474c-ad34-898169346bcd\")"
--usp-server universal.example.com --auth-username acameron --auth-
passphrase "bilbo42_baggins99" --xml

This command works on Linux and MAC OSX:

 pgp --search-mek 'EQ(UUID, "9ac0e652-5690-474c-ad34-898169346bcd")' -
-usp-server universal.example.com --auth-username acameron --auth-
passphrase "bilbo42_baggins99" --xml

These examples show a search on the PGP KMS for a MEK with the specified UUID. The
results will be displayed in XML format.

--create-msd
The --create-msd command creates an MSD from an input file, standard input
(stdin), or a file descriptor.

MSDs are automatically encrypted when created.

The input file and mime type are optional. If no input file is specified, an empty MSD is
created. If no MIME type is specified, the default MIME type is used.

The usage format is:

pgp --create-msd --usp-server <KMSserver> --name <MSDname> --
parent-mak <MAKid> [--input <inputfile> --mime-type
<mimetype>]

Where:

 --create-msd is the command to create an MSD on a PGP KMS.

 --usp-server specifies the PGP KMS on which the MAK will be created.

 <KMSserver> is the KMS server on which the MAK will be created.

 --name is the option to specify a name for the MSD.

 <MSDname> is the name of the MSD being created.

 --parent-mak specifies the type of key you are creating.

 <MAKid> is the name or UUID of the parent MAK.

 --input specifies the input for the MSD, an input file, stdin, or a file descriptor.

 <inputfile> is the name of the file from which the MSD is to be created.

 --mime-type specifies the MIME type of the MSD.

 <mimetype> is the MIME type of the input file.

Example:

154 Working with a PGP Key Management Server

--export-msd

 pgp --create-msd --usp-server universal.example.com --name
testMSD11 --parent-mak testMAK4 --input C:\pgpkmsfiles\testMSD
--mime-type "text/plain"

This example shows an MSD being created on the specified PGP KMS. The name of
the MSD is testMSD11, it belongs to a MAK named testMAK4, and it is a plaintext
file created from a file on the local Windows system.

--export-msd
The --export-msd command exports an MSD to a plaintext file.

The usage format is:

pgp --export-msd --usp-server <KMSserver> --name <MSDname> --
output <MSDfile>

Where:

 --export-msd is the command to export an MSD.

 --usp-server specifies the PGP KMS on which the MSD resides.

 <KMSserver> is the KMS server.

 --name specifies the name of the MSD to be exported.

 <MSDname> is the name of the MSD being exported.

 --output specifies the output for the MSD being exported.

 <MSDfile> is the desired name (or name and path) for the MSD on the local
system.

Example:

 pgp --export-msd --usp-server universal.example.com --name
testMSD4 --output C:\pgpkmsfiles\testMSD14

This example shows an MSD named testMSD4 being exported to a file on the local
system.

--edit-msd
The --edit-msd command edits an MSD on the specified PGP KMS.

MSD edit options are:

 change MIME type

 change name

 replace data

 set attributes

 clear attributes

Multiple edit operations can be combined on the command line.

Working with a PGP Key Management Server

--search-msd
155

Note: Clearing of attributes always happens before the setting of attributes,
regardless of where --clear-attributes is on the command line.

The usage format is:

pgp --edit-msd <msdname> --usp-server <KMSserver> [--mime-type
<mimetype> --name <NewName> --new-data <input> --attribute
"attr=val" --clear-attribute <attribute>]

Where:

 --edit-mek-series is the command to edit the settings of a MEK series.

 <msdname> is the name of the MSD being edited.

 --usp-server is the command to specify the PGP KMS on which the MSD
resides.

 <KMSserver> is the KMS server on which the MSD resides.

 --mime-type specifies the MIME type of the MSD.

 <mimetype> is the MIME type of the input file.

 --name specifies the MSD name should be changed.

 <NewName> is the desired new name for the MSD.

 --new-data specifies the existing data in the MSD be replaced with the specified
data.

 <input> is the replacement data, via the --input option. See --input for more
information.

 --attribute specifies an attribute should be changed.

 <"attr=val"> is the attribute to be changed and the new value.

 --clear-attributes specifies that an attribute should be cleared.

 <"attr"> is the attribute to be cleared.

Example:

 pgp --edit-msd testmsd --usp-server universal.example.com --
name hr17msd

This example shows the MSD named testmsd on PGP KMS universal.example.com
being renamed to hr17msd.

--search-msd
The --search-msd command searches for an MSD on a PGP KMS.

Entering a search string is optional. If you do not enter a search string, all MSDs will be
returned.

The usage format is:

pgp --search-msd <search-string> --usp-server <KMSserver> --
details | --xml | --brief

Where:

156 Working with a PGP Key Management Server

--delete-msd

 --search-msd is the command to search on the PGP KMS for the specified
search string.

 <search-string> is the string to search for (optional). See Searching for Data on
a PGP KMS (on page 247) for more information about searching.

 --usp-server is the command to specify the PGP KMS on which to search.

 <KMSserver> is the PGP KMS server on which to search.

 --details displays detailed results of the search.

 --xml displays the search results in XML format.

 --brief displays just the UUID as the search results.

Note: You can only choose one of --details, --xml, or --brief. They are
mutually exclusive.

For example, this command works on all platforms:

 pgp --search-msd "EQ(UUID, \"9ac0e652-5690-474c-ad34-898169346bcd\")"
--usp-server universal.example.com --auth-username acameron --auth-
passphrase "bilbo42_baggins99" --xml

This command works on Linux and Mac OSX:

 pgp --search-msd 'EQ(UUID, "9ac0e652-5690-474c-ad34-898169346bcd")' -
-usp-server universal.example.com --auth-username acameron --auth-
passphrase "bilbo42_baggins99" --xml

These examples show a search on the specified PGP KMS for an MSD with the specified
UUID. The results will be displayed in XML format.

--delete-msd
The --delete-msd command deletes an MSD from a PGP KMS.

The usage format is:

pgp --delete-msd <MSDname> --usp-server <KMSserver>

Where:

 --delete-msd is the command to delete an MSD.

 <MSDname> is the MSD to be deleted.

 --usp-server specifies the PGP KMS on which the MSD resides.

 <KMSserver> is the KMS server on which the MSD resides.

Example:

 pgp --delete-msd testMSD11 --usp-server universal.example.com

This example shows an MSD named testMSD11 being deleted from the specified
PGP KMS.

Working with a PGP Key Management Server

--create-consumer
157

--create-consumer
The --create-consumer command creates a Consumer on the specified PGP KMS.

The usage format is:

pgp --create-consumer --usp-server <KMSserver> --name
<consumername>

Where:

 --create-consumer is the command to create a consumer on the specified PGP
KMS.

 --usp-server specifies the PGP KMS on which the consumer will be created.

 <KMSserver> is the KMS server on which the consumer will be created.

 --name specifies a name for the consumer being created.

 <consumername> is the desired name for the consumer.

Example:

 pgp --create-consumer --usp-server universal.example.com --
name acameron@example.com

This example shows a consumer named acameron@example.com being created on
the specified PGP KMS.

--search-consumer
The --search-consumer command searches for a consumer on a PGP KMS.

Entering a search string is optional. If you do not enter a search string, all consumers
will be returned.

The usage format is:

pgp --search-consumer <search-string> --usp-server <KMSserver>
--details | --xml | --brief

Where:

 --search-consumer is the command to search for a consumer on a PGP KMS.

 <search-string> is the string to search for (optional). See Searching for Data on
a PGP KMS (on page 247) for more information about searching.

 --usp-server specifies the PGP KMS on which to search.

 <KMSserver> is the PGP KMS server on which to search.

 --details displays detailed results of the search.

 --xml displays the search results in XML format.

 --brief displays just the UUID as the search results.

mailto:acameron@example.com
mailto:acameron@example.com

158 Working with a PGP Key Management Server

--check-certificate-validity

Note: You can only choose one of --details, --xml, or --brief. They are
mutually exclusive.

For example, this command works on all platforms:

 pgp --search-consumer "EQ(UUID, \"9ac0e652-5690-474c-ad34-
898169346bcd\")" --usp-server universal.example.com --auth-
username acameron --auth-passphrase "bilbo42_baggins99" --xml

This command works on Linux and Mac OSX:

 pgp --search-consumer 'EQ(UUID, "9ac0e652-5690-474c-ad34-
898169346bcd")' --usp-server universal.example.com --auth-username
acameron --auth-passphrase "bilbo42_baggins99" --xml

These examples show a search on the specified PGP KMS for a consumer with the
specified UUID. The results will be displayed in XML format.

--check-certificate-validity
The --check-certificate-validity command checks the validity of a supplied
X.509 certificate against the specified PGP KMS.

You must be an authorized user on the specified PGP KMS, and be able to connect to it,
to check the validity of a certificate. You can use either cached credentials or supply
them on the command line.

Supported certificate formats are:

 OpenPGP. File formats ASC and PGP.

 PKCS#7. File formats P7 and P7B.

 PEM. File formats CRT and PEM.

One or more certificates can be supplied on the command line. If all supplied
certificates are valid, an exit code of zero is returned. If one or more certificates are
invalid, an error is returned. A certificate is deemed invalid if it has expired, is not
trusted, or it has been revoked.

Certificate formats can be stated explicitly (the suggested method) on the command line
using --import-format, simply listed on the command line, or read in using stdin.

Note: You cannot mix stdin and other input methods. Also, you can only read in one
certificate at a time using stdin.

If you specify an import format, all supplied certificates must be in that format. If no
format is specified, then files with multiple certificate formats can be supplied.

If no format is specified, then file extension is used to determine format. If no format is
specified and the filename does not have an extension (or stdin is being used), then PGP
Command Line checks the content of the file to determine format. If a format cannot be
determined, an error is returned.

The usage format is:

pgp --usp-server <KMSserver> --check-certificate-validity [--
import-format <format> <cert1> <cert2> ...] [<cert1> <cert2>
...] [--input -]

Working with a PGP Key Management Server

--check-certificate-validity
159

Where:

 --usp-server <KMSserver> specifies the PGP KMS that will be checked
for the validity of the supplied certificates.

 --check-certificate-validity is the command to check the specified
PGP KMS for validity of the supplied certificates.

 --import-format <format> <cert1> <cert2> ... is the command
to explicitly supply the format of the certificate files being submitted for
validation.

 <cert1> <cert2> ... are the certificate files being submitted for
validation on the command line, without specifying their format.

 --input - is the command to read in one certificate for validation using
stdin.

Examples:

 pgp --usp-server universal.example.com --check-
certificate-validity --import-format X509 cert1.pem
cert2.pem

This example shows the certificate files cert1.pem and cert2.pem, explicitly
defined as X509 format, being checked for validity against the specified PGP
KMS. Because the format is explicitly defined, both certificate files must be
that format. Cached authentication credentials are being used.

 pgp --usp-server universal.example.com --check-
certificate-validity cert3.p7 cert4.pem

This example shows the certificate files cert3.p7 and cert4.pem being checked
for validity against the specified PGP KMS. Because certificates of two
different formats are being checked, they are simply listed on the command
line; a single import format cannot be specified. Cached authentication
credentials are being used.

 pgp --usp-server universal.example.com --check-
certificate-validity --input -

This example shows stdin being used to read in one certificate for validity
checking against the specified PGP KMS. Cached authentication credentials are
being used.

PGP Command Line commands that do not fit nicely into any other category include:

 --agent (on page 162), which starts a long-running process for retaining cached
passphrases

 --create-keyrings, which creates a pair of empty keyrings

 --help (-h), which displays the banner message and the built-in help message

 --license-authorize, which activates PGP Command Line after receiving user’s data
and license number

 --purge-all-caches, which purges the passphrase and keyring caches

 --purge-keyring-cache, which purges the keyring cache

 --purge-passphrase-cache, which purges the passphrase cache

 --speed-test, which runs a suite of PGP SDK speed tests

 --version, which displays the version of PGP Command Line you are using and the
banner message

 --wipe, which wipes files off of your system

 --check-sigs, which checks the signatures on all keys on the keyring

 --check-userids, which checks the user IDs on specified keys to make sure they
conform to the conventional naming standard

In This Chapter

Overview .. 161

Commands ... 162

Overview
There are a number of PGP Command Line commands that do not fit nicely into any
broad category. These commands are covered here.

13 Miscellaneous Commands

162 Miscellaneous Commands

Commands

Commands

--agent
Starts a long-running application for retaining cached passphrases. This command is
for use on Linux or other installations without PGP Desktop. The application continues
running until it is terminated with a sigint signal (for example control-C).

This command does not apply to PGP Desktop installations on Windows and Mac OSX
Those installations use PGP Tray to retain cached passphrases.

The usage format is:

pgp --agent

--create-keyrings
Creates a pair of empty keyrings. Several commands create keyrings automatically as
part of the command; --gen-key, --import, and --keyserver-recv, for example.
You only need to use --create-keyrings if you want to create empty keyrings.

PGP Command Line will try to create the keyrings in the default location for the
operating system: C:\Documents and Settings\<current user>\My
Documents\PGP\ on Windows, $HOME/Documents/PGP on Mac OS X, and
$HOME/.pgp/ on UNIX. If the PGP portions of these directories do not exist, PGP
Command Line attempts to create them.

If the home directory is set and keyrings are not specified, PGP Command Line will try
to create the keyrings in the default home directory location. No paths will be created in
this case; they must already exist. If the keyrings are specified, they are relative to the
current directory. Use a full path in this case.

The usage format is:

pgp --create keyrings [--home-dir <path1>] [--public-keyring
<path2>]
[--private-keyring <path3>]

Where:

<path1> is the path to the home directory.

<path2> is the path to the public keyring file. You can specify a single file (which
is relative to the current directory), a relative path (relative to the current
directory), or a full path (the recommended usage).

<path3> is the path to the private keyring file. You can specify a single file (which
is relative to the current directory), a relative path (relative to the current
directory), or a full path (the recommended usage).

Example:

pgp --create-keyrings --home-dir /test/

Create keyrings using /test as the home directory.

Miscellaneous Commands

Commands
163

--help (-h)
Displays the banner message and the built-in help message, which provides a brief
description of the commands and options in PGP Command Line.

The usage format is:

pgp --help

--license-authorize
You cannot use PGP Command Line normally until is licensed.

Refer to Licensing (on page 25) for a complete description of how to license PGP
Command Line.

--purge-all-caches
Purges both the passphrase cache and the keyring cache. Caching is a security risk, so
PGP Command Line makes it easy for you to purge the passphrase and keyring caches
at any time.

The usage format is:

pgp --purge-all-caches

Example:

pgp --purge-all-caches

Purges both the passphrase and the keyring cache.

--purge-keyring-cache
Purges the keyring cache, which stores keyrings in memory so that they do not have to
be retrieved each time they are needed. Caching is a security risk, so PGP Command
Line makes it easy for you to purge the keyring cache at any time. The option --
purge-keyring-cache is not used unless specifically enabled.

The usage format is:

pgp --purge-keyring-cache

Example:

pgp --purge-keyring-cache

Purges the keyring cache.

--purge-passphrase-cache
Purges the global (shared) passphrase cache, which stores in memory passphrases you
enter so that you do not have to enter them every time you need them. Caching is a
security risk, so PGP Command Line makes it easy for you to purge the passphrase
cache at any time.

164 Miscellaneous Commands

Commands

--purge-passphrase-cache is not used unless specifically enabled.

The usage format is:

pgp --purge-passphrase-cache

Example:

pgp --purge-passphrase-cache

Purges the passphrase cache.

--speed-test
Runs a suite of PGP SDK speed tests, which both identify the version of the PGP SDK
that PGP Command Line is using and returns test results for several tests: hash, cipher,
and public key, for example.

Running --speed-test forces PGP Command Line into local mode. Running --
speed-test in FIPS mode (--fips-mode) runs the tests with the PGP SDK in FIPS
mode, which runs a slightly different set of tests.

The usage format is:

pgp --speed-test [--fips-mode]

Example:

pgp --speed-test

Runs the suite of PGP SDK speed tests.

--version
Tells you what version of PGP Command Line you are using and displays the banner
message.

The usage format is:

pgp --version [options]

Where:

[options] modify the command. Options are:

--verbose, which displays additional information about PGP Command Line,
including passphrase cache information, time zone information, PGP SDK
information, public key algorithms, symmetric ciphers, hashes, and compression.

Examples:

pgp --version

Displays version information and the banner message in the format:

PGP Command Line 10.0

Copyright (C) 2010 PGP Corporation

All rights reserved.

Miscellaneous Commands

Commands
165

--wipe
Wipes a file off of your system.

The --wipe command exceeds the media sanitization requirements of Department of
Defense 5220.22-M at three passes. Security continues to increase up to approximately
28 passes.

The usage format is:

pgp --wipe <input> [<input> ...] [options]

Where:

<input> is the file or files you want to wipe.

[options] modify the command. Options are:

--wipe-passes, which lets you specify how many wipe passes are made.
Available values are 1 through 49. The default is 3.

--recursive, which lets you select subdirectories and files in subdirectories.

--verbose, which provides extra information about the progress.

Examples:

1 pgp --wipe secretreport.txt

Wipes the file secretreport.txt from your system using the default number of
passes, three.

2 pgp --wipe secret.doc --wipe-passes 8

Wipes the file secret.doc from your system using the number of passes specified
with the --wipe-passes option, eight.

--check-sigs
Checks the signatures on all keys on your keyring. If errors are found, they are
displayed.

The usage format is:

pgp --check-sigs

Example:

1 pgp --check-sigs

Checks the signatures of all keys on your keyring.

--check-userids
Checks the user IDs on specified keys to make sure they conform to the conventional
naming standard.

The acceptable form for a user ID is:

 More than one character but fewer than 256 characters.

166 Miscellaneous Commands

Commands

 Common Name <contact information>. For example, "Alice Cameron <acameron
@example.com>" or "Ming Pa <AIM: 12345678>".

Common Name does not have to be the name of an individual. On an ADK, for
example, it could be a company name.

<contact information> cannot be empty, but it does not have to be an email
address or viable contact information.

 The GPG format "Common Name (Comment) <contact information>" is invalid.

If no invalid user IDs are found, a successful status message ("0:signatures checked
successfully") appears.

If invalid user IDs are found, each is listed as an error status message and the exit code
is returned.

The usage format is:

pgp --check-userids [<user1> ...]

Where:

<user1> is the user ID, portion of a user ID, or the key ID of a key on your
keyring.

Examples:

1 pgp --check-userids

Checks the user IDs of all keys on your keyring.

2 pgp --check-userids acameron

Checks the user IDs of all keys on your keyring with "acameron" in the user ID or
key ID of the key.

This chapter lists and describes PGP Command Line options.

Options are listed in alphabetical order within their sections.

In This Chapter

Using Options .. 167

Boolean Options .. 168

Integer Options ... 179

Enumeration Options ... 189

String Options ... 199

List Options.. 209

File Descriptors ... 212

Using Options
The descriptions of some options in PGP Command Line mention that they are "secure,"
as in "This option is not secure" or "--auth-passphrase is secure". In this context,
"secure" means that the option’s argument is saved in non-pageable memory (when
that option is available to applications). Options that are not "secure" are saved in
normal system memory.

There are certain options that can change PGP Command Line behavior. For example,
the options --archive and --sda will change how an encryption command works.

For example, if you wish to encrypt multiple files and you specify an output file without
the option --archive, you will get an error message:

pgp -er "Bob Smith" note.txt report.doc -o bobsarchive.pgp

pgp:encrypt (3028:multiple inputs cannot be sent to a single
output file)

If you enter the option --archive, the command will succeed:

pgp -er "Bob Smith" note.txt report.doc -o bobsarchive.pgp --
archive

pgp00001.tmp:encrypt (3110:archive imported note.txt)

pgp00001.tmp:encrypt (3110:archive imported report.doc)

pgp00001.tmp:encrypt (0:output file bobsarchive.pgp)

PGP Command Line options are described in the following sections:

 Boolean Options (on page 168)

 Integer Options (on page 179)

14 Options

168 Options

Boolean Options

 Enumeration Options (on page 189)

 String Options

 List Options

 File Descriptors

Boolean Options
Boolean options are settings that support only on and off conditions. To enable a
Boolean option, just specify the flag on the command line. To disable a Boolean option,
specify the flag with the --no prefix. For example:

 To enable local mode, use --local-mode on the command line.

 To disable local mode, use --no-local-mode on the command line.

Boolean arguments are never secure.

--alternate-format
Specifies an alternate output format.

This option is used only with the commands --dump-packets and --list-packets.

The default is FALSE.

Example:

pgp --dump-packets resources.txt.pgp --alternate-format

Outputs the file resources.txt.pgp to an alternate format.

--annotate
Adds annotations (information that PGP Command Line processed the data in a certain
way) when processing email message data.

This option is used with the commands --decrypt and --verify.

For example, a signed email message that was successfully decrypted by PGP Command
Line would have an annotation similar to the following at the top of the file:

* PGP Signed: 12/31/07/ at 10:31:43 PM, Decrypted

The default is FALSE.

Example:

pgp --decrypt --email message.txt.pgp --annotate

Decrypts the email message file "message.txt" and adds annotations.

Options

Boolean Options
169

--archive
This option enables or disables archive mode. When set, PGP Command Line lets you
encrypt/sign multiple files or entire directories into a PGP Zip output archive that is
encrypted and compressed.

A PGP Zip archive is an excellent way to distribute files and folders securely or back
them up.

The usage format is:

pgp -e/-c <input1> <input2> [<inputN>..] --archive/--no-
archive

Where:

<input> is the file being encrypted

Examples:

1 pgp -er <bob@example.com> note.txt readme.txt -o archive.pgp --
archive

When archiving several files, you have to separate them with spaces. This
command creates "archive.pgp" with the following contents:

pgp00000.tmp:encrypt (3110:archive imported note.txt)

pgp00000.tmp:encrypt (3110:archive imported readme.txt)

pgp00000.tmp:encrypt (0:output file * the output will be
different depending on whether the archive mode is enabled or
disabled)

2 pgp -er "Bill Brown" *.txt --archive

This gives an error:

pgp:encrypt (3029:no output specified)

3 pgp -er "Bill Brown" *.txt --no-archive

All files ending with .txt are encrypted:

note.txt:encrypt (0:output file note.txt.pgp)

readme.txt:encrypt (0:output file readme.txt.pgp)

report.txt:encrypt (0:output file report.txt.pgp)

4 pgp -er "Bill Brown" *.txt -o newarchive.pgp --archive

All files ending with .txt are encrypted into the file "newarchive.pgp".

pgp00000.tmp:encrypt (3110:archive imported note.txt)

pgp00000.tmp:encrypt (3110:archive imported readme..txt)

pgp00000.tmp:encrypt (3110:archive imported report.txt)

pgp00000.tmp:encrypt (0:output file newarchive.pgp)

5 pgp -er "Bill Brown" *.txt -o newarchive.pgp --no-archive

This gives an error.

With the option --no-archive set, you cannot produce an archive.

mailto:bob@example.com

170 Options

Boolean Options

--banner
Changes how the PGP Command Line banner displays.

The PGP Command Line banner is automatically turned on for certain operations; --
version and --help, for example. The default is off.

Example:

pgp --list-keys --banner

List keys with the PGP Command Line banner at the top.

--biometric
Causes output to be in biometric format. Used only with --fingerprint. The default
is off.

Example:

pgp --fingerprint 0xABCD5678 --biometric

Displays the fingerprint of the specified key using biometric words, not
hexadecimal numbers.

--buffered-stdio
Enables buffered stdio (standard input and output).

Some platforms, such as Win32, AIX, and HP-UX, require the use of buffered stdio.
Note that large operations may become slower because the data must be stored in
memory.

Other platforms may optionally use /dev/stdin and /dev/stdout as files. This
speeds up I/O since PGP Command Line has direct file access to stdin and stdout.

Default for Win32, AIX, HP-UX is TRUE.

Default for Linux, Solaris, Mac OS X is FALSE.

Examples:

1 pgp -er user file --output

Writes directly to /dev/stdout as if it were a file.

2 pgp -er user file --output --buffered-stdio

First stores data in memory and then writes it to stdout.

--compress, --compression
Toggles compression, which is on by default.

When enabled, compression behaves as follows:

Options

Boolean Options
171

 Public-key encryption: The preferred compression algorithm of the recipient is
used. If no preferred compression algorithms are set, Zip is used.

 Symmetric encryption: If a preferred compression algorithm is supplied, it is
used; otherwise, Zip is used.

When compression is disabled, any preferred compression algorithms are ignored.

Example:

pgp -er "Bill Brown" readme.txt --compress

The file readme.txt was compressed using the preferred compression algorithm of
the recipient.

readme.txt:encrypt (0:output file readme.txt.pgp)

--details
Specifies that detailed information about the command should be returned.

Note: Using --details after a command produces the same results as those
commands that end with -details. For example, --list-key-details produces
the same output as --list-keys --details.

Because of it's flexibility, Symantec Corporation recommends using --details instead
of commands that end with -details.

Example:

--list-sigs --details

This example shows detailed information being request for the --list-sigs
command.

--email
Specifies that the input is an RFC 822-encoded email message.

The input text must include all MIME headers and have CRLF line endings, which will
be respected by PGP Command Line. The resulting file has a .pgp extension.

Note: PGP Command Line does not send or receive email messages, it only processes
them. Refer to Working with Email for more information about how email messages
are handled by PGP Command Line.

The default is FALSE.

Example:

pgp --encrypt --email message.txt --recipient "Bob Smith"

The input file message.txt, an RFC 822-encoded email message, is encrypted by
PGP Command Line. The encrypted file message.txt.pgp will result.

172 Options

Boolean Options

--encrypt-to-self
Encrypts to the default key. The default is off. A warning is generated if the default key
cannot encrypt.The default is off.

Example:

pgp -er Alice file.txt --encrypt-to-self

Encrypts the file to the specified recipient and also to the default key on the
keyring. If the default key cannot encrypt, a warning is generated (this does not
correspond to an error condition, since the default key is technically the default
signing key).

--eyes-only
Specifies that encryption should be for "eyes only," which means the recipient must
view the decrypted output on screen; the sender, the person encrypting the file,
specifies that the file is encrypted "eyes only." The default is off. The option --eyes-
only should be used for text inputs.

When a message is sent "eyes only," the decrypted output is only kept in secure
memory and is never written to disk. The recipient can only view the decrypted data on
screen. The recipient must use --eyes-only on decrypt.

Caution: While "eyes only" can prevent a file from being written to disk, it cannot
prevent the recipient from saving the data some other way; by writing it down or by
doing a screen capture, for example.

Example:

pgp -er "Alice@example.com" report.txt --eyes-only

Output is the file report.txt.pgp, which is encrypted so that Alice can view it on her
screen (for her eyes only).

--fast-key-gen
Enables fast key generation. The default is on.

The key generation process is made faster by using a previously calculated set of prime
numbers rather than going through the process of creating them from scratch.
Although it would be unlikely for anyone to crack your key based on their knowledge of
these previously calculated prime numbers, you may want to spend the extra time to
create a key pair with the maximum level of security.

Example:

pgp --gen-key <bob@example.com> --key-type rsa --encryption-
bits 1024 --passphrase " " --fast-key-gen

Generate this key in fast key generation mode.

mailto:Alice@example.com
mailto:bob@example.com

Options

Boolean Options
173

--fips-mode, --fips
FIPS (Federal Information Processing Standards) is a series of standards, from which
FIPS 140-1 and FIPS 140-2 are both worldwide de facto standards for the
implementation of cryptographic modules.

This option enables FIPS-compliant mode. The default is off.

Example:

pgp --speed-test --fips-mode

Performs the --speed-test command with the PGP SDK in FIPS mode.

--force (-f)
Required for certain operations to continue. Because there is no user interaction once a
command has been issued, --force is used to ensure that the user really wants to
issue the command.

This option is required for the following operations: --remove-key-pair, --
remove-subkey, --revoke, --revoke-subkey, --split-key, and --join-key.

For more details, refer to these commands. The default is off.

Examples:

1 pgp --remove-key-pair Alice

Returns an error; --force is required.

2 pgp --remove-key-pair Alice --force

Operation works.

--halt-on-error
Causes PGP Command Line to stop processing on error when multiple input/output
files are being used. The default is off. Does not apply to some operations.

Use --halt-on-error if you want processing to stop when an error occurs. If you do
not use --halt-on-error, PGP Command Line will keep trying all the files in the list
until there are not any more, then return a partial failure.

--import-certificates
Imports pending certificate requests to a MAK.

--keyring-cache
Enables the keyring cache, taking the value set by --keyring-cache-timeout (on
page 183). The default keyring cache timeout is 120 seconds.

174 Options

Boolean Options

These two options used together are useful when frequent operations need to be
performed on large keyrings. Keeping the large keyrings cached, so that they do not
have to be loaded for subsequent operations, speeds up those subsequent operations.

The default is off. This option does not work with --local-mode.

Example:

pgp --cache-passphrase 0x73CC6D8F --passphrase "Alice*cam3r0n"

--keyring-cache --keyring-cache-timeout 300

Enables the keyring cache, with a timeout of 300 seconds set by --keyring-
cache-timeout.

--large-keyrings
Checks keyring signatures only when necessary. This option will improve performance
of PGP Command Line when dealing with large keyrings, since keyring signatures will
not be verified.

This option is ignored when the following commands are used: --verify, --export,
--export-key-pair, and --revoke.

The default is FALSE.

Example:

pgp --list-keys --large-keyrings

This command will list all keys, but it will skip the signatures check.

--license-recover
Enables email support for license recovery.

If you are re-licensing PGP Command Line and the information entered (licensee name
and organization) does not match the information for which the existing authorization
was issued, you will get an error.

In such a case, an email message will be sent to you with the correct information if the
license recover feature is enabled.

The default is enabled.

Examples:

pgp --license-authorize --license-name "Alice Cameron" --
license-email "alice@example.com" --license-organization
"Example Corporation" --license-number "D45T4-TXXWZ-FNPVB-
LP6MJ-12NWJ-ZYA" authorization.txt --force --license-recover

In this case you will get an error since the file "authorization.txt" was issued for
the data that does not match the data entered in the above command. The option -
-license-recover is enabled by default and can be omitted on the command
line.

mailto:alice@example.com

Options

Boolean Options
175

pgp --license-authorize --license-name "Alice Cameron" --
license-email "alice@example.com" --license-organization
"Example Corporation" --license-number "D45T4-TXXWZ-FNPVB-
LP6MJ-12NWJ-ZYA" authorization.txt --force --no-license-
recover

In this case you will also get an error since the file "authorization.txt" was issued
for the data that does not match the data entered in the above command. Since
you used --no-license-recover, you will not get an email from the license
server.

--local-mode
Forces the PGP SDK to initialize and run in local mode. The default is off.

Running in local mode means passphrase and keyring caches are not enabled or used.
Entropy generation can be affected in some cases as well.

Example:

pgp --list-keys --local-mode

Performs the --list-keys command in local mode.

--marginal-as-valid
Treat keys with marginal validity as fully valid. The default is off.

--master-key
Specifies that a master key should be used for this operation.

The default is FALSE.

Example:

pgp --change-passphrase "Bob Smith" --master-key --passphrase
"sm1t4" --new-passphrase "B0bsm1t4"

Replaces the old passphrase (sm1t4) on the master key of the specified key with a
new passphrase (b0bsm1t4).

--pass-through
Pass through non-PGP data during decode. The default is off.

The option --pass-through is useful for decrypting an email, for example, and
preserving the headers.

Caution: If there is data outside a signature and you are using --pass-through,
there is no way to tell what was originally signed.

Example:

pgp --decrypt file ... --pass-through

mailto:alice@example.com

176 Options

Boolean Options

Decrypt a file with pass through enabled.

--passphrase-cache
Enables the passphrase cache. The default is off.

This option does not work with --local-mode.

--photo
Specifies that PGP Command Line is to match a photo ID when searching for users to
match. The default is off.

This option is implemented for --sign-userid, --remove-sig, and --revoke-sig.

Example:

pgp --sign-userid jasonskey --user mykey --photo

Sign the photo ID on Jason’s key.

--quiet (-q)

--recursive
Enables recursive mode, which is used to select items in subdirectories for archiving
and wiping.

This option is automatically enabled for --archive and --sda; it cannot be disabled
for these commands.

Example:

pgp --wipe *

pgp --wipe * --recursive

The first command wipes just the files at the specified location; subdirectories and
files in those subdirectories are not wiped. The second command, with --
recursive, wipes the files at the specified location and all subdirectories and all
files in those subdirectories.

--reverse-sort, --reverse
Causes lists to be sorted backwards. The default is off.

Example:

pgp --list-keys --sort userid --reverse-sort

Lists keys on the keyring in reverse order, sorted by user ID.

Options

Boolean Options
177

--sda
This option is used with --encrypt or --decrypt to encode or decode a Self-
Decrypting Archive (SDA).

An SDA is an encrypted archive that contains the code needed to decrypt it, but the
recipient does not need to have PGP Command Line or PGP Desktop on their system to
open the SDA. Because of this, you must be able to securely communicate the
passphrase of the SDA to the person who is going to be decrypting it.

To specify the target platform for the output file, see --target-platform for more
details. The extension .exe will be added also on all UNIX platforms in order to
differentiate the new SDA from the original file.

The default is FALSE.

Examples:

1 pgp --encrypt newreports --symmetric-passphrase "B0b*sm1t4" --
sda --target-platform win32

pgp00001.tmp:encrypt (0:output file newreports.exe)

When encrypting only one file or directory, you do not need to specify the output
file: it will be created with the extension .exe by default.

2 pgp --encrypt reports newreports -o allreports.exe --
symmetric-passphrase "B0b*sm1t4" --sda --target-platform win32

pgp00001.tmp:encrypt (0:output file allreports.exe)

When encrypting more files or directories into one SDA, you must specify the
output file with the extension (allreports.exe).

--skep
PGP Command Line uses this option when joining split keys over the network. It looks
for split files on the network and if it does not find enough of them, it continues to
listen using the timeout defined by the option --skep-timeout.

The default is FALSE.

This option is used with the commands --join-key and --join-key-cache-only.

Example:

pgp --join-key "Alice Cameron" --passphrase "B0bsm1t4" --share
"Alice Cameron-1-Bob Smith.shf" --share "Alice Cameron-2-Jill
Johnson.shf:ji11" --force --skep --skep-timeout 300

Tells the key joining operation to wait 5 minutes before it times out (the default
for --skep-timeout is 120 seconds).

--text-mode, --text (-t)
Forces the input to canonical text mode. The default is off.

This option should not be used with binary files, because they will not decode properly.
Auto detection of file type is currently not supported.

178 Options

Boolean Options

Example:

pgp -er user file.txt -t

The file.txt will decrypt properly on systems with alternate line endings.

--truncate-passphrase
Truncates all passphrases at the first newline, which is compatible with how GPG
handles passphrases.

The default is FALSE.

Example:

pgp --er <user> --passphrase-fd <fd> --truncate-passphrase

Truncates passphrases used in this operation at the first newline.

--verbose (-v)

--warn-adk
Enables warning messages for ADKs. The default is off. See also --enforce-adk, as
some warnings are not affected by this option.

You can also enable this option in the PGP Command Line configuration file; see
Configuration File (on page 36) for more information.

ADK warning messages are issued based on:

 If --enforce-adk is set to require and --warn-adk is enabled, PGP Command
Line will issue a warning when adding an ADK.

 If --enforce-adk is set to attempt and --warn-adk is enabled, PGP Command
Line will issue a warning when adding an ADK.

 If --enforce-adk is set to off and --warn-adk is enabled, PGP Command Line
will issue a warning when an ADK is not found and when skipping an ADK.

--wrapper-key
Specifies that a wrapper key should be used for the current operation.

The default is FALSE.

Example:

pgp --import key.p12 --wrapper-key --passphrase <p12pass>

Imports file "key.p12" as a wrapper key. The passphrase to the PKCS-12 private
key is provided.

--xml
This option is used to list information in XML format.

Options

Integer Options
179

PGP Command Line will display all information including all user IDs and signatures in
this format. You can list all keys or specify a single key for this operation.

To list keys in XML format, you may use either the command --list-keys-xml, or a
key list operation with the added option --xml, such as --list-keys user1 --xml,
or --list-keys --xml.

Because of it's flexibility, Symantec Corporation recommends using --xml instead of
commands that end with -xml.

The default is FALSE.

This option is used with the following commands: --list-keys, --list-key-
details, --list-userids, --list-sigs, --list-sig-details, --list-users,
and other key listing commands such as --keyserver-search.

Example:

pgp --list-keys Bob --xml

<?xml version="1.0"?>

<keyList>

 <key>

 <keyID>0x2B65A65E</keyID>

 <keyID64>0x6630EF382B65A65E</keyID64>

 <algorithm>RSA</algorithm>

 <version>4</version>

 <type>pair</type>

 <size>2048</size>

 <validity>complete</validity>

 <trust>implicit</trust>

 <creation>2005-04-20</creation>

 <expiration/>

………

</keyList>

This command displays output in XML format.

Refer to the command --list-keys-xml to see the complete XML output.

Integer Options
Integer options are options that take a single number as an argument. Currently PGP
Command Line does not support these options with negative values. The argument is
required in all cases.

Integer arguments are never secure.

180 Options

Integer Options

--3des
Specifies the precedence for the 3DES cipher algorithm. The default is not set.

This option takes as argument any number between 1 and the total number of ciphers
(currently eight). The cipher set to 1 is the preferred cipher.

Examples:

1 pgp --set-preferred-cipher user --3des 1

Sets 3DES to be the only preferred cipher.

2 pgp --set-preferred-cipher user --3des 1 --aes256 2

Sets 3DES and AES256 to be preferred ciphers.

--aes128, --aes192, --aes256
Specifies the precedence for the AES128, AES192, or AES256 cipher algorithm. The
default is not set.

This option takes as argument any number between 1 and the total number of ciphers
(currently eight). The cipher set to 1 is the preferred cipher.

Examples:

1 pgp --set-preferred-cipher user --aes128 1

Sets AES128 to be the only preferred cipher.

2 pgp --set-preferred-cipher user --aes128 1 --aes256 2

Sets AES128 and AES256 to be preferred ciphers.

3 pgp --set-preferred-cipher user --aes192 1 --aes256 2

Sets AES192 and AES256 to be preferred ciphers.

--bits, --encryption-bits
Specifies the size of the encryption key for generation. This option is required for all
key types.

Valid sizes for RSA v4 are 1024 to 4096 bits, DH are 1024 to 4096 bits.

 For RSA-sign-only keys, this option is mapped to --signing-bits, if not already
supplied.

 For DH-sign-only keys, this option is mapped to --signing-bits, if not already
supplied.

 Neither --encryption-bits nor --bits is a required option for RSA-sign-only
keys if --signing-bits is set.

Options

Integer Options
181

 Neither --encryption-bits, --bits, nor --signing-bits is required for
DH-sign-only keys, as the only valid setting is 1024 bits (specifying --bits or --
signing-bits for a DH-sign-only key with a size other than 1024 returns an
error).

Refer to the command --gen-key for more details.

--blowfish
The algorithm Blowfish is deprecated and should not be set for new encryption keys.

Due to concerns over security, PGP Command Line does not allow you to create new
encryption keys with Blowfish specified as the preferred cipher, but it can be used
either to decrypt messages encrypted using Blowfish, or to encrypt messages to existing
PGP keys that specify Blowfish as their preferred cipher.

The only action you can take with PGP Command Line in regards to Blowfish is to
remove it as a preferred cipher from a key.

Example:

pgp --remove-preferred-ciphers "Bob Smith" --cipher blowfish -
-passphrase "B0b*Sm1t4"

Removes Blowfish as the preferred cipher.

--bzip2
Specifies the precedence of the BZip2 compression algorithm. The default is not set.

Takes a number between one and the total number of compression algorithms
(currently three). The compression algorithm set to 1 is the preferred cipher.

Example:

pgp --set-preferred-compression-algorithms --bzip2 1 --zip 2

Sets BZip2 and Zip to be the preferred compression algorithms.

--cast5
Specifies the precedence for the CAST5 cipher algorithm. The default is not set.

Takes a number between 1 and the total number of ciphers (currently eight). The cipher
set to 1 is the preferred cipher.

Examples:

1 pgp --set-preferred-cipher user --cast5 1

Sets CAST5 to be the only preferred cipher.

2 pgp --set-preferred-cipher user --cast5 1 --aes256 2

Sets CAST5 and AES256 to be preferred ciphers.

182 Options

Integer Options

--creation-days
Changes the number of days until creation (1 equals tomorrow, 2 equals the next day,
and so on). The default is today. See --creation-date for more information.

The option --creation-days is used only with --gen-key and --gen-subkey. It
cannot be used on the same operation as --creation-date.

Using --creation-days changes the behavior of --expiration-days.

Example:

pgp --gen-key test ... --creation-days 31

Key will be valid starting in 31 days.

--expiration-days
Changes the number of days until expiration. The default is not set (no expiration). See
--expiration-date for more information.

Days are interpreted as days from creation. If no creation is specified (with a date or
number of days), --expiration-days is days from today (1 equals tomorrow, 2
equals the next day, and so on).

This option cannot be used on the same operation as --expiration-date. It is used
only with the commands --gen-key and --gen-subkey.

If --creation-date is set, this becomes number of days from the creation date. If --
creation-days is set, this becomes number of days from the creation date.

Examples:

1 pgp --gen-key test ... --expire-days 31

Key valid for 31 days.

2 pgp --gen-key test ... --creation-date 2008-01-01 --expire-
days 31

Key valid in January of 2008.

--idea
Specifies the precedence for the IDEA cipher algorithm. The default is not set. It takes a
number between 1 and the total number of ciphers (currently eight). The cipher set to 1
is the preferred cipher.

Example:

pgp --set-preferred-cipher user --idea 1 --aes256 2

Set IDEA and AES256 to be preferred ciphers.

Options

Integer Options
183

--index
Specifies which object to use if multiple objects are found. The default is not set. If
there is only one match, then the first item is returned. If there are multiple matches,
then an error is returned.

This option requires an integer value greater than zero. This option works only with --
photo to specify which photo ID is to be acted on. PGP Command Line lets you add
only one photo ID to a key. Other applications with which PGP Command Line is
compatible allow users to add more than one photo ID to a key; --index lets you work
with these keys.

Examples:

1 pgp --remove-photoid bobs-key

Removes the first, and only, photo ID on bobs-key.

2 pgp --remove-photoid bobs-key --index 1

Remove the first photo ID on bobs-key when there is more than one.

3 pgp --remove-photoid bills-key --index 2

Removes the second photo ID on bills-key when there are two or more.

4 pgp --remove-photoid bills-key

Error, bills-key has two photo IDs on it.

--keyring-cache-timeout
Sets the number of seconds after which the keyring cache will time out. This option
requires --keyring-cache (on page 173) to be enabled.

If set to zero, the keyring will not time out unless the cache is specifically purged. If
timeout is greater than zero, the keyring will time out after the specified number of
seconds.

The default time for keyring cache is 120 seconds.

Example:

pgp --cache-passphrase 0x73CC6D8F --passphrase "Alice*cam3r0n"

--keyring-cache --keyring-cache-timeout 0

Cache the specified keyring with no timeout.

--keyserver-timeout
Sets the number of seconds until a keyserver operation times out. The default is 120
seconds and the minimum setting is one second.

The option --keyserver-timeout applies to a single keyserver operation; when
searching multiple servers, the timeout increases. The update operation can use
multiple keyservers, as well.

184 Options

Integer Options

Example:

pgp --keyserver-search user --keyserver-timeout 30

Search with a 30-second timeout.

--md5
This option is used to specify precedence of MD5 hash algorithm. Note that only v4
keys have preferred hashes.

 Digest length: 16 bytes

 Block size: 64 bytes

 Max. final block size: 55 bytes

 State size: 16 bytes

 Default: UNSET

This option is used with the following commands: --add-preferred-hash, --set-
preferred-hashes, and --remove-preferred-hash.

Example:

pgp --add-preferred-hash Bob --hash md5 --passphrase
"B0bsm1t4"

Adds the preferred hash algorithm MD5 to Bob’s key.

--passphrase-cache-timeout
Specifies the number of seconds a passphrase lasts when cached. The default is 120
seconds.

Using a setting of zero means the passphrase cache will not time out, unless the cache
is purged. A number greater than zero means the passphrase cache will time out after
the specified number of seconds.

This option requires --passphrase-cache.

Examples:

1 pgp --passphrase-cache --passphrase-cache-timeout 0 --cache-
passphrase user --passphrase "B0bsm1t4"

The passphrase cache will not time out until the cache is purged.

2 pgp --cache-passphrase 0x73CC6D8F --passphrase "A1ice*cam3r0n"
--passphrase-cache --passphrase-cache-timeout 0

Cache the specified passphrase with no timeout.

--partitioned
Specifies the precedence of the partitioned email encoding scheme on a key.

The value can be a number between 1 and the total number of available email encodings
(currently two: pgp-mime and partitioned).

Options

Integer Options
185

The default is unset.

Example:

pgp --set-preferred-email-encodings ... --partitioned 1 --pgp-
mime 2

Establishes partitioned as the preferred email encoding scheme for the key and
pgp-mime as secondary.

--pgp-mime
Specifies the precedence of the pgp-mime email encoding scheme on a key.

The value can be a number between 1 and the total number of available email encodings
(currently two: pgp-mime and partitioned).

The default is unset.

Example:

pgp --set-preferred-email-encodings ... --pgp-mime 1 --
partitioned 2

Establishes pgp-mime as the preferred email encoding scheme for the key and
partitioned as secondary.

--ripemd160
This option is used to specify precedence of RIPEMD hash algorithm. Note that only v4
keys have preferred hashes.

 Digest length: 20 bytes

 Block size: 64 bytes

 Max. final block size: 55 bytes

 State size: 20 bytes

 Default: UNSET

THis option is used with the following commands: --add-preferred-hash, --set-
preferred-hashes, and --remove-preferred-hash.

Example:

1 pgp --add-preferred-hash Bob --hash ripemd160 --passphrase
"B0bsm1t4"

Adds the preferred hash algorithm RIPEMD160 to Bob's key.

2 pgp --set-preferred-hashes Bob --passphrase "B0bsm1t4" --
ripemd160 1 --sha256 2 --sha384 3

Sets first RIPEMD160 and then SHA-256 and SHA-384 as preferred hashes for
Bob's key.

3 pgp --remove-preferred-hash Bob --hash ripemd160 --passphrase
"B0bsm1t4"

Removes the preferred hash algorithm RIPEMD160 from Bob’s key.

186 Options

Integer Options

--sha, --sha256, --sha384, --sha512
These options are used to specify precedence of the specified hash algorithm. Note that
only v4 keys have preferred hashes. The default is unset. These options are used with
the following commands: --add-preferred-hash, --set-preferred-hashes, and
--remove-preferred-hash.

SHA-1

 Digest length: 20 bytes

 Block size: 64 bytes

 Max. final block size: 55 bytes

 State size: 20 bytes

SHA-256

 Digest length: 32 bytes

 Block size: 64 bytes

 Max. final block size: 55 bytes

 State size: 32 bytes

SHA-384

 Digest length: 32 bytes

 Block size: 64 bytes

 Max. final block size: 55 bytes

 State size: 32 bytes

SHA-512

 Digest length: 64 bytes

 Block size: 128 bytes

 Max. final block size: 111 bytes

State size: 64 bytes Examples:

1 pgp --add-preferred-hash Bob --hash md5 --passphrase
"B0bsm1t4"

Adds the preferred hash algorithm MD5 to Bob's key.

2 pgp --set-preferred-hashes Bob --passphrase "B0bsm1t4" --md5 1
--sha256 2 --sha384 3

Sets first MD5 and then SHA-256 and SHA-384 as preferred hashes for Bob’s key.

Options

Integer Options
187

3 pgp --remove-preferred-hash "Bob Smith" --hash md5 --
passphrase "B0bsm1t4"

Removes the preferred hash algorithm MD5 from Bob's key.

--signing-bits
Specifies the size of the master key for generation.

Valid bit ranges for signing keys are: RSA v4, 1024 to 4096 bits; DH, 1024 bits. For RSA
legacy keys, either --bits or --signing-bits can be supplied.

For RSA v4 keys, this option can be set independently of --bits. For DH keys, this
option is automatically set to 1024.

For detailed explanation, refer to the command --gen-key (on page 97).

--skep-timeout
Changes the timeout for joining keys over the network. There is no value reserved to
indicate no timeout. The default is 120 seconds.

This option is used with the command --join-key.

Example:

pgp --join-key "Alice Cameron" --passphrase "B0bsm1t4" --share
"Alice Cameron-1-Bob Smith.shf" --share "Alice Cameron-2-Jill
Johnson.shf:ji11" --force --skep --skep-timeout 300

Tells the key joining operation to wait 5 minutes before it times out.

--threshold
Establishes the minimum share threshold required when reconstituting a split key. The
default is not set. Refer to “--SPLIT-KEY” ON PAGE 128 for more information splitting a key.

Requires a value greater than zero and less than or equal to the total number of shares.

Example:

pgp --split-key 0x1234abcd --threshold 5 --share share1 ...

Establishes a threshold of 5 shares for the key being split.

--trust-depth
Sets the trust depth to use when creating meta-introducer and trusted-introducer
signatures. The default for meta-introducer signatures is 2. The default for trusted-
introducer signatures is 1.

For meta-introducer signatures, available values are 2 to 8, inclusive. For trusted-
introducer signatures, 1 to 8, inclusive

Example:

pgp --sign-key ... --trust-depth 4

188 Options

Integer Options

Sets the trust depth to 4.

--twofish
Specifies the precedence for the Twofish cipher algorithm. The default is not set. It
takes a number between 1 and the total number of ciphers (currently eight). The cipher
set to 1 is the preferred cipher.

Example:

pgp --set-preferred-cipher user --twofish 1

Sets Twofish to be the only preferred cipher.

--wipe-input-passes
This option sets the number of wipe passes when wiping the input file. This number
must be between 1 and 49 (inclusive). The default is 3.

This option requires --input-cleanup to be set for wipe following one of the file
generating commands: --armor, --clearsign, --decrypt, --detached, --
encrypt, and --sign.

Example:

pgp -er alice report.txt --input-cleanup wipe --wipe-input-
passes 8

Encrypt the file report.txt and wipe the original with 8 passes.

--wipe-overwrite-passes
This option sets the number of wipe passes to use when overwriting an existing output
file. The number of passes must be between 1 and 49 (inclusive).The default is 3.

This option requires --overwrite to be set for wipe following one of the file
generating commands: --armor, --clearsign, --decrypt, --detached, --
encrypt, and --sign.

Example:

pgp -er Bob report.txt --overwrite wipe --wipe-overwrite-
passes 12

Encrypt "report.txt" and then wipe the output file with 12 passes.

--wipe-passes
Sets the number of passes to use with --wipe (between 1 and 49 inclusive). This
command exceeds the media sanitization requirements of DoD 5220.22-M at 3 passes
(which is the default for this option). The default is 3.

Example:

pgp --wipe README.txt --wipe-passes 6

Wipes the file README.txt with 6 passes.

Options

Enumeration Options
189

--wipe-temp-passes
Sets the number of wipe passes to use when wiping temporary files. The default is 3.
The number of passes must be from 1 to 49, inclusive.

This option requires --temp-cleanup to be set for wipe following one of the file
generating commands: --armor, --clearsign, --decrypt, --detached, --
encrypt, and --sign.

Example:

pgp -er Alice report.txt --input-cleanup wipe --wipe-temp-
passes 8

Encrypt file, then wipe the temporary file with 8 passes.

--zip
Specifies the precedence of the Zip compression algorithm. The default is not set. It
takes a number between one and the total number of compression algorithms
(currently three). The compression algorithm set to 1 is the preferred cipher.

Example:

pgp --set-preferred-compression-algorithms --zip 1 --zlib 2

Sets Zip and Zlib to be the preferred compression algorithms.

--zlib
Specifies the precedence of the Zlib compression algorithm. The default is not set. It
takes aa number between one and the total number of compression algorithms
(currently three). The compression algorithm set to 1 is the preferred cipher.

Example:

pgp --set-preferred-compression-algorithms --zlib 1 --zip 2

Sets Zlib and Zip to be the preferred compression algorithms.

Enumeration Options
Enumeration options are options that take one of a specific set of strings that get
converted internally to values. Each option has its own set of arguments. The argument
is always required.

Enumeration arguments are never secure.

--auto-import-keys
Changes the behavior of PGP Command Line when keys are found during non-import
operations.The default is all.

190 Options

Enumeration Options

Options are:

 off (do not automatically import keys)

 merge (only merge the key if it already exists on the local keyring)

 new (import the key if it does not exist on the local keyring)

 all (automatically import / merge all keys found)

Examples:

1 pgp --decrypt file-with-keys.pgp --auto-import-keys off

Skips keys.

2 pgp --decrypt file-with-keys.pgp --auto-import-keys new

Gets any new keys.

--cipher
Specifies a cipher to use with certain operations. The default is unset. AES256 is used
for those operations that require a cipher to be set. Symmetric encryption defaults to
AES256.

This operation has no affect in certain cases; refer to --set-preferred-ciphers for more
information. Blowfish is deprecated.

Options are as follows:

 idea (IDEA cipher)

 3des (3DES cipher)

 cast5 (CAST5 cipher)

 blowfish (Blowfish cipher)

 aes128 (AES128 cipher)

 aes192 (AES192 cipher)

 aes256 (AES256 cipher)

 twofish (Twofish 256 cipher)

Examples:

1 pgp -c report.txt --symmetric-passphrase "B0bsm1t4" --cipher
cast5

Conventionally encrypts the file for the recipient Bob using the CAST5 cipher.

2 pgp --add-preferred-cipher Bill --cipher idea --passphrase
"B0bsm1t4"

Adds the cipher IDEA as the preferred cipher for Bill’s key.

Options

Enumeration Options
191

--compression-algorithm
Sets the compression algorithm. Note that this option doesn't work with public key
encryption, because in this case the recipient's key preferences are used. Mainly for
This option is used mainly with symmetric encryption; it can be used also with the
public key encryption, which is an advanced feature (see --encrypt for more
information).

This option can be used with the following arguments:

 zip. ZIP compression (default for SDK)

 zlib. ZLIB compression

bzip2. BZIP2 compression Examples:

1 pgp -s report.txt --signer Bob --passphrase "B0bsm1t4" --
compression-algorithm zip

An opaque attached signature (sign only) is created by Bob.

2 pgp -cs report.txt --symmetric-passphrase "sympass" --signer
"Bob Smith" --passphrase "B0bsm1t4" --compression-algorithm
zlib

pgp -c report.txt --symmetric-passphrase "sympass" --
compression-algorithm zip

Two conventionally encrypted and signed files are created using the option --
compression-algorithm.

3 pgp --add-preferred-compression-algorithm "Bill Brown" --
compression-algorithm zlib --passphrase "B0bsm1t4"

Adds the preferred compression algorithms zlib to Bill's key:

--compression-level
Sets the compression level for the current operation. The choices are as follows:

 default. Use the default compression level.

 fastest. Use the least compression.

 balanced. Optimize compression for size and speed.

 smallest. Use the most compression.

The default is balanced.

This option currently valid only for SDA creation.

Example:

pgp --encrypt newreports -o newreports.exe --symmetric-
passphrase "B0b*sm1t4" --sda --compression-level fastest
pgp00001.tmp:encrypt (0:output file newreports.exe)

This command produced a self-decrypting archive "newreports.exe" using the
least amount of compression.

192 Options

Enumeration Options

--email-encoding
Specifies the email encoding to use with certain operations, such as editing the
preferred email encoding for a key, for example.

The choices are as follows:

 pgp-mime. Use PGP-MIME encoding.

 partitioned. Use partitioned encoding (formerly known as PGP Legacy encoding).

The default is unset.

Example:

pgp --add-preferred-email-encoding ... --email-encoding
pgpmime

Specifies pgp-mime as the preferred email encoding for the key.

--enforce-adk
Changes the ADK enforcement policy. The default is attempt.

Options are: off (do not enforce any ADKs), attempt (attempt to enforce all ADKs), and
require (require all ADKs).

When off is specified, warnings are only generated when --warn-adk is enabled. When
attempt is specified, a non-suppressible warning is generated if an ADK is not found or
if an ADK is not valid. Also when attempt is specified, if --warn-adk is enabled, a warning
is generated when adding an ADK to the recipient set.

When require is specified, an error will be generated if an ADK is not found or an ADK
is not valid. When require is specified, if --warn-adk is enabled, a warning is generated
when adding an ADK to the recipient set.

Examples:

1 pgp -er user file --enforce-adk require

Require all ADKs; error otherwise.

2 pgp -er user file --enforce-adk off

Ignore all ADKs.

3 pgp -er user file --enforce-adk off --warn-adk

Ignore all ADKs, but show them.

--export-format
This option lets you specify an export format.

Choose the export format from the following list of supported formats:

 complete (default format). Only armored blocks are output; the default file
extension is .asc.

Options

Enumeration Options
193

 compatible. Only armored blocks are output; the default file extension is .asc. Use
compatible to export keys in the format compatible with older versions of PGP
software (Versions 7.0 and prior).

 x509-cert. Only armored blocks are output; the default file extension is .crt. In this
case, input must match exactly one key and --cert is required.

 pkcs8. Only binary blocks are output; the default file extension is .p8; a signed key
must be paired; and input must match exactly one key. In this case, --cert is
required.

 pkcs12. Only binary blocks are output; the default file extension is .p12; a signed
key must be paired; and input must match exactly one key. In this case, --cert is
required.

 csr. This option generates a certificate signing request (CSR). Only armored blocks
are output and the default file extension is .csr. In this case, user must match
exactly one key and key must be paired. The preferred method to create a CSR is to
associate the certificate with a specific subkey using the --subkey option.

Example:

pgp --export-key-pair "Bill Brown" --export-format complete --
passphrase " "

Bill's key pair is exported to the ASCII-armored file "Bill Brown.asc" with no
passphrase.

--hash
Used with operations that need to specify a single hash algorithm. The default is unset.

Choose from the following list of hashes:

 md5. MD5 hash

 ripemd160. RIPEMD-160 hash

 sha. SHA-1 hash

 sha256. SHA-256 hash

 sha384. SHA-384 hash

 sha512. SHA-512 hash

This option is used with the following commands: --add-preferred-hash, --
remove-preferred-hash, and -s/--sign (see --sign for more information)

Example:

1 pgp --add-preferred-hash "Bob Smith" --hash md5 --passphrase
"B0bsm1t4"

Adds the preferred hash algorithm MD5 to Bob's key.

2 pgp -s report.txt --signer Bob --passphrase "B0bsm1t4" --hash
md5

The file "report.txt.asc" is signed by Bob using the hash algorithm MD5.

194 Options

Enumeration Options

--import-format
Specifies the import format for the current operation. Choose one of the following
supported import formats:

 auto. Auto detect import format, which is the default. When using auto detect, PGP

Command Line will key off the file extension:

 – crt,.pem for x509-cert

 – asc,.pgp for pgp

 – p7,.p7b for pkcs7

 – p12,.pfx for pkcs12

If the format cannot be determined from the file extension, PGP Command Line
will also look at the file header.

 pgp. PGP key

 x509-cert. PEM encoded X.509 certificate

 pkcs7. PKCS7 data

 pkcs12. PKCS12 data. The option --passphrase is required when importing
PKCS12 data, even if it is an empty string.

Examples:

1 pgp --import "Bob Smith.asc" --import-format pgp

Bob Smith.asc:import key (0:key imported as 0x6245273E Bob
Smith <bob@example.com>)

Import Bob’s key using the PGP file format.

2 pgp --import "Bob Smith.asc" --import-format auto

Bob Smith.asc:import key (0:key imported as 0x6245273E Bob
Smith <bob@example.com>)

In this case, the import format was detected automatically.

--input-cleanup
Determines what to do with input files when an operation has finished with them. The
default is off. Input can be plaintext or ciphertext. See --wipe-input-passes for
more information.

Options are:

 off (leave input files alone)

 remove (delete input files)

 wipe (wipe input files)

Example:

pgp -er user file.txt --input-cleanup wipe

Encrypts a file and then wipes the original when done.

mailto:bob@example.com
mailto:bob@example.com

Options

Enumeration Options
195

--key-flag
Specifies the key preference flag. These flags specify how a key will encrypt or sign and
are grouped by their function into key usage flags, keyserver preference flags, and key
feature flags.

This option is used with the commands --set-key-flag and --clear-key-flag.
The default is unset.

The key preference flags are:

Key usage flags:

 sign-user-ids. When this flag is specified, the key can sign user IDs.

 sign-messages. When this flag is specified, the key can sign messages.

 encrypt-communications. When this flag is specified, the key can encrypt
communications.

 encrypt-storage. When this flag is specified, the key can encrypt for storage.

 private-shared. When this flag is specified, the private key is in the possession of a
third party (group bit)

 sign. This flag specifies all signing flags at the same time.

 encrypt. This flag specifies all encryption flags at the same time.

 encrypt-and-sign. This flag specifies all signing and encryption flags at the same
time.

Keyserver preferences

 no-modify. This flag requests that only the owner may modify the key on the server.

Examples:

pgp --set-key-flag Bob --key-flag private-shared --passphrase
"B0bsm1t4" 0x2B65A65E:set key flag (0:flags updated
successfully)

You have successfully set the preference flag on Bob's key to "private-shared".

--key-type
Specifies a key type when generating keys. This option is required when --gen-key is
used.

Options are:

 rsa (the newer RSA v4 key format)

 rsa-sign-only (the newer RSA v4 key format with no automatically generated
subkey)

 dh (the Diffie-Hellman/DSS v4 key format)

196 Options

Enumeration Options

 dh-sign-only (the Diffie-Hellman/DSS v4 key format with no automatically
generated subkey).

--manual-import-key-pairs
Changes the behavior of PGP Command Line when key pairs are found during import.

The manual key import can be set as follows:

 off. Do not import key pairs

 public. Imports public keys only

 pair. Imports key pairs

The default is pair.

Example:

pgp --import "Bob Smith.asc" --manual-import-key-pairs public

Bob Smith.asc:import key (0:key imported as 0x6245273E Bob
Smith <bob@example.com>

Only Bob’s public key was imported.

--manual-import-keys
Changes the behavior of PGP Command Line when keys are found during import
operations. The default is all. The available settings are:

 off (do not import keys)

 merge (only merge the key if it already exists on the local keyring)

 new (import the key if it does not exist on the local keyring)

 all (import/merge all keys found)

Example:

pgp --import key.asc --manual-import-keys merge

Merge existing keys only.

--overwrite
Determines what to do when an operation tries to create an output file but it exists. The
default is off.

Options are:

 off (return an error if the file exists)

 remove (delete the existing file)

 rename (rename the current output file and try again; existing files are left alone)

 wipe (wipe the existing file)

mailto:bob@example.com

Options

Enumeration Options
197

When the rename option is in use, PGP Command Line renames files by adding a
number to the filename (for example, /dir/file.ext becomes /dir/file.x.ext, where x is a
number from 1 to 10,000). If 10,000 renamed files is surpassed, an error is returned.

--sig-type
Specifies the signature type when signing user IDs. Default is local. See --sign-key and --
sign-userid for more information.

Options are:

 local (non-exportable signature)

 exportable (exportable signature)

 meta-introducer (non-exportable meta-introducer signature)

 trusted-introducer (exportable trusted introducer signature)

--sort-order, --sort
Changes the sort order for writing key lists. This option accepts the following
arguments:

 any. Key order is not changed at all.

 creation. Sort by creation date.

 email. Sort by email address of the primary user ID.

 expiration. Sort by expiration date.

 keyid. Sort by key ID.

 keysize. Sort by key size.

 subkeysize. Sort by subkey size.

 trust. Sort by trust.

 userid. Sort by primary user ID.

 validity. Sort by validity.

Key ID sorting does not work as expected, because keys are sorted by their 64-bit key
IDs while PGP Command Line generally shows the 32-bit key ID.

Example:

pgp --list-keys --sort-order email

RSA4 pair 2048/2048 [VI---] 0x3E439B98 Alice Cameron
<alice@example.com>

RSA4 pair 2048/2048 [VI--A] 0x6245273E Bob Smith <bob@example.com>

RSA4 pair 2048/2048 [VI---] 0x5571A08B Fumiko Asako
<fumiko@example.com>

RSA4 pair 2048/2048 [VI---] 0xF6EFC4D9 Jose Medina
<jose@example.com>

mailto:alice@example.com
mailto:bob@example.com
mailto:fumiko@example.com
mailto:jose@example.com

198 Options

Enumeration Options

--tar-cache-cleanup
Specifies how PGP Command Line removes a temporary TAR cache file.

TAR cache files are stored encrypted, so leaving them on the system is a minimal
security risk. If wipe is used, the number of passes is taken from --wipe-temp-
passes.

Options are:

 off: leaves the TAR cache file on the system.

 remove: removes any TAR cache files from the system.

 wipe: securely wipes any TAR cache files from the system.

The default is remove.

Example:

pgp --decrypt --archive.pgp ... --tar-cache-cleanup off

The temporary TAR cache files are left on the system.

--target-platform
Specifies the platform on which a SDA can decrypt itself.

The default is current platform. This option is used with --encrypt and --sda, such
as:

pgp --encrypt <SDA> --sda --target-platform <platform>

The OS platforms for which the files can be encrypted are:

 win32 (Windows)

 linux (Linux)

 solaris (Solaris)

 aix (AIX)

 hpux (HP-UX)

 osx (Mac OS X)

Example:

pgp -e report.txt -r Bob --passphrase "B0bsm1t4" --target-
platform hpux report.txt:encrypt (0:output file
report.txt.pgp)

This command produced the encrypted file "report.txt.pgp" prepared for the HP-
UX platform.

--temp-cleanup
Determines what to do when an operation tries to remove a temporary file. The default
is wipe.

Options

String Options
199

Options are: off (leave temporary files behind), remove (remove temporary files), and wipe
(wipe temporary files).

The remove option is recommended for large encryptions, as it will speed up the
process.

Removing temporary files does not occur under some circumstances. It will occur if the
output from an operation could not be moved into place or if the output file is on
another file system than the temporary file.

--trust
Sets the trust for the current operation. This option is required when --set-trust is used.
See --set-trust for more information.

Trust options are: never (the key is never trusted), marginal (the key is marginally
trusted), complete (the key is fully trusted), implicit (the key has ultimate trust).

Example:

pgp --set-trust key --trust complete

String Options
String options are options that take a single string as an argument. This argument is
required in all cases.

In certain cases, white space is required in an argument; in these cases, double quotes
must be used to enclose the entire argument.

--basic-constraint
Specifies that the certificate being requested via a CSR can only be used in certain ways.

--city, --common-name, --contact-email, --country
Specifies the data when making a certificate signing request (CSR). Used with --
export and --export-key-pair.

--comment
Specifies a comment string to be used in armored output blocks. The default is not set.
This option is not secure.

Strings with spaces in them must be in quotes. When this option is not set, an empty
comment header is not shown.

You can also set this option in the PGP Command Line configuration file; see
Configuration File for more information.

Example:

200 Options

String Options

pgp... --comment "Insert this comment..."

Calls for a comment of "Insert this comment..." in the current operation.

--creation-date
Changes the date of creation for the current operation. The default is unset (today).
This option is not secure. See --creation-days for more information.

Dates must be in the format YYYY-MM-DD (month and day can be a single digit; no
leading zero is required). You cannot use --creation-date and
--creation-days for the same operation. Using --creation-date changes the
behavior of --expiration-days. Dates beyond 2037-12-31 are not allowed.

Examples:

1 pgp --gen-key test ... --creation-date 2004-12-27

Key will be valid starting on Dec. 27, 2004.

2 pgp --gen-key test ... --creation-date 2005-7-4

Key will be valid starting on July 4, 2005.

--default-key
Specifies the default key to use for --sign and for --encrypt-to-self. As this is a
signing key, it must be able to sign. The ability to encrypt is good, but not required. If the
key can encrypt, it will be used for --encrypt-to-self. If it can’t encrypt, a warning
is generated.

Note: --default-key specifies a default key for the current invocation of PGP
Command Line only, not permanently.

If a default key is not specified, PGP Command Line searches for a key to use as the
default. PGP Command Line looks for the most recently created that can sign;
encryption is not required. This option is not secure.

You can specify the default key in either of several ways:

 User ID: a case insensitive substring search of all user IDs on the local keyring. Not
recommended, as you must match exactly one key.

 32-bit key ID

 64-bit key ID

You must make an exact match to exactly one key. The matched key must be able to
sign.

--expiration-date
Changes the date of expiration for the current operation. The default is not set (no
expiration). This option is not secure. See --expiration-days for more information.

Dates must be in the format YYYY-MM-DD (month and day can be a single digit; no
leading zero is required). Dates beyond 2037-12-31 are not allowed.

Options

String Options
201

You cannot use --expiration-date and --expiration-days for the same
operation.

Example:

pgp --gen-key test ... --expiration-date 2005-1-16

Key expires on Jan. 16, 2005.

--export-passphrase
Specifies the passphrase to use when exporting PKCS12 data. The default is not set.
This option is secure.

To specify no passphrase, use the empty string in double quotes: " ". See --export for
more information.

Example:

pgp --export key --sig cert --export-format pkcs12 --
passphrase "keypass" --export-passphrase "newpass"

Specifies to use an export passphrase of "newpass".

--extended-key-usage
Specifies extended key usage information in a CSR.

--home-dir
Establishes where PGP Command Line looks for preference files, keyring files, and the
random seed file. This option is not secure.

The default on Solaris and Linux is $HOME/.pgp/. On Windows, keyring files are stored
in C:\Documents and Settings\<current user>\My Documents\PGP\ and
data files (the random seed file and the configuration file) are stored in C:\Documents
and Settings\<current user>\Application Data\PGP Corporation\PGP\.
If you specify --home-dir, all PGP Command Line files will be stored in the directory
you specify.

To use --home-dir, enter the path to the new home directory (with or without a
trailing directory separator).

All files except preferences can be overridden.

Example:

pgp --list-keys --home-dir other-pgp-files/

Changes the home directory for this command to "other-pgp-files/".

--key-usage
Specifies, in a CSR, what the key on the certificate can be used for.

202 Options

String Options

--local-user (-u), --user
Specifies a local user to use for the current operation. The default is not set. This option
is not secure.

This option can be specified in one of several ways:

 When matching keys:

 User ID (a case insensitive substring search of all user IDs on the local
keyring)

 32-bit key ID

 64-bit key ID

 When matching signatures:

 User ID of the signer (if PGP Command Line has the signing key). User ID
match is a case insensitive substring search.

 32-bit key ID

 64-bit key ID

 When matching X.509 certificates:

 .509 issuer long name

 32-bit key ID (if PGP Command Line has the signing key)

 64-bit key ID (if PGP Command Line has the signing key)

Example:

pgp --sign-key gold --signer "my test user" --passphrase
"B0bsm1t4"

Specifies the user "my test user" for this operation.

--license-name, --license-number, --license-organization, --license-email
These options specify various licensee information when requesting a license
authorization.

The default is unset. These options are used with the command --license-
authorize.

 --license-name is the name of the person for whom the software is licensed

 --license-number is the number a user receives from PGP Corporation

 --license-organization is the organization of the licensee

 --license-email is the email of the person for whom the software is licensed.
This number is used to send license recovery emails and it cannot be changed once
the license is authorized: if you don't specify an email during licensing, the license
recovery won't be possible.

Be sure to enter these options correctly and also to write them down: if you need to
update your license, you will need to enter the identical information again. To get more
information, refer to the command --license-authorize.

Example:

Options

String Options
203

pgp --license-authorize --license-name "Alice Cameron" --
license-email "alice@example.com" --license-organization
"Example Corporation" --license-number "5555-KMKM-44444-33MMM-
MM000-000" authorization.txt

This command will generate a license for the user Alice with the given license
number, using manual authorization and the previously saved license
authorization file.

--new-passphrase
Specifies the new passphrase to use when changing a passphrase.

The default is not set. This option is secure.

To specify no passphrase, specify an empty string in double quotes: " ".

Example:

pgp --change-passphrase user --passphrase "oldpass" --new-
passphrase "newpass"

Specifies a new passphrase of "newpass".

--organization, --organizational-unit
Specifies the organization when making a certificate signing request (CSR). Used with -
-export and --export-key-pair.

--output (-o)
Specifies the output location/object for the current operation. The default is not set; if a
location/object cannot be determined from the input, an error is returned. This option
is not secure.

Operations that require an output filename or directory and do not get it return an
error. The exception to this rule is decoding files that have a suggested filename
embedded in them. User-supplied output filenames will not be modified. You can
specify the following:

 File, specify a file for output.

 Directory, specify to output the file into the directory named.

 “-”, a special keyword that means use the standard output.

Examples:

1 pgp -er user file -o new

Output is an encrypted file called "new".

2 pgp -er user file -o new.pgp

Output is an encrypted file called "new.pgp".

mailto:alice@example.com

204 Options

String Options

--output-file
Sets a file to use for output messages. The file name can be supplied with or without
path information. The output file is created when PGP Command Line is initialized,
even if no date is written to it. If you want to override the preferences settings and write
to file to the default location, use the value "-" for the output file name.

Default is unset (output messages are written to stdout by default).

Examples:

1 pgp --list-keys --output-file output.txt

The file containing key listing is written to "output.txt"

2 pgp --list-keys --output-file -

In this case, the key list is displayed on the screen.

--passphrase
Specifies a passphrase to use for the current operation. The default is not set. This
option is secure. To specify no passphrase, specify an empty string in double quotes: " ".

Example:

pgp --decrypt file.txt.pgp --passphrase "B0b*sm1t4"

Specifies a passphrase of "B0b*sm1t4" without the quotes for this operation.

See Strings (page 34).

--preferred-keyserver
Specifies a preferred keyserver. The default is not set. This option is not secure. To
remove a keyserver, use --remove-preferred-keyserver.

Prefixes supported are:

 http://

 https://

 ldap://

 ldaps://

 ldapx509://

ldapsx509:// Example:

pgp --add-preferred-keyserver user --preferred-keyserver
ldap://keyserver.pgp.com

Specifies ldap://keyserver.pgp.com as the preferred keyserver.

Options

String Options
205

--private-keyring
Changes the location of the private keyring file. The default order for keyring search is:
specified on the command line, specified in the configuration file, then home
directory/secring.skr. This option is not secure.

This option always specifies a file. Relative or absolute path information can be
included, but the target must still be a file.

You can also set the location1 in the PGP Command Line configuration file; refer to
Configuration File for more information.

You can specify a single file, relative path, or full path:

 File, relative to the personal directory

 Relative path, relative to the current directory

Absolute path, recommended usage Examples:

1 pgp --private-keyring /home/dave/.pgp/secring-backup.skr

Absolute path to the private keyring file.

2 pgp --private ./secring.skr

Relative path to the private keyring file.

--proxy-passphrase, --proxy-server, --proxy-username
These options specify login credentials for a proxy server and are used with --
license-authorize.The default is unset.

 --proxy-passphrase specifies login credentials to a proxy server.

 --proxy-server specifies a proxy server for certain network operations. If this
server is not supplied, PGP Command Line makes a direct connection.

 --proxy-username specifies login credentials for a proxy server.

Example:

pgp --license-authorize --license-name "Alice Cameron" --
license-email "alice@example.com" --license-organization
"Example Corporation" --license-number "5555-KMKM-44444-33MMM-
MM000-000" --proxy-server "http://192.168.1.98:9000/" --proxy-
username alice --proxy-passphrase "A1ice*Camer0n"

The user Alice has licensed her copy of PGP Command Line over the proxy server
at http://192.168.1.98:9000, using her proxy user name and passphrase.

--public-keyring
Changes the location of the public keyring file. The default order for keyring search is:
specified in configuration file, then home directory/pubring.pkr. This option is not
secure.

mailto:alice@example.com
http://192.168.1.98:9000/
http://192.168.1.98:9000/

206 Options

String Options

This option always specifies a file. Relative or absolute path information can be
included, but the target must still be a file.

You can also set the location in the PGP Command Line configuration file; refer to
Configuration File for more information.

You can specify a single file, relative path, or full path:

 File, relative to the personal directory

 Relative path, relative to the current directory

Absolute path, recommended usage Examples:

1 pgp --public-keyring /home/dave/.pgp/pubring-backup.pkr

Absolute path to the public keyring file.

2 pgp --keyring ./pubring.pkr

Relative path to the public keyring file.

--recon-server
Specifies a PGP Universal Server to use for key reconstruction.

If a reconstruction server is not established, PGP Command Line uses the preferred
keyserver for the key. This option is not secure.

The default is not set.

Example:

pgp --key-recon-send ... --recon-server 10.1.1.45

Uses the PGP Universal Server with IP address 10.1.1.45 for key reconstruction.

--regular-expression
Specifies a regular expression. The default is not set. This option is not secure. Regular
expressions are attached to trusted-introducer signatures as domain restrictions.

Example:

pgp --sign-key 0x12345678 --signer "Alice C" --sig-type
trusted-introducer --passphrase "Sam_Gamgee" --regular-
expression example.com

Restricts trusted introducer signatures to the domain example.com.

--random-seed
Sets the location of the random seed file. The default random seed file is randseed.rnd,
located in the home directory. This option is not secure. You can specify a single file,
relative path, or full path:

 File, relative to the home directory

 Relative path, relative to the current directory

Options

String Options
207

 Absolute path, recommended usage

If the path specified does not exist, the file will not be created. No warning or error is
generated in this case.

Example:

pgp --list-keys --random-seed /home/user/.pgp-
other/randseed.rnd

Specifies a directory location for the random seed file.

--root-path
Specifies a root path (directory path information) when creating SDAs and archives.
The root path will be removed from any input files added to SDAs and archives. The
default is unset.

If the files root/path/dir/file and root/path/dir/file2 are added with root
path set to "root/path", you will get these files in the archive: dir/file and
dir/file2.

--share-server
Specifies a server to use when sending split key shares over the network and us used
with --send-shares. The default is unset.

For more information, refer to --send-shares.

--state
Specifies the state when making a certificate signing request (CSR). Used with --
export and --export-key-pair.

--status-file
Sets a file to use for status messages. The status file is posted in the current working
directory, unless a specific path information is added to the file name. This file is
created on initialization even if no data is written to it. The special value of "-" can be
used to override the preferences setting and to write to the default location.

Note that success messages are sent to the same location as error messages. The default
is unset.

Examples:

1 pgp -er "Bob Smith" newnote.txt --status-file status.log

The file "status.log" was created in the home directory. If you open this file, you
will find the error message for the operation, which in this case is the following
one:

newnote.txt:encrypt (3013:no keys found)

2 pgp -er "Bob Smith" newnote.txt --status-file logs\status1.log

208 Options

String Options

In this case, the file "status1.log" was created in the directory "logs." If you open
this file, you will find the same error message as above:

newnote.txt:encrypt (3013:no keys found)

3 pgp -er "Bob Smith" newnote.txt --status-file -

newnote.txt:encrypt (3013:no keys found)

By using the value "-" as the status file name, you will get the error message
displayed on the screen (which is the default location in this case).

--subject-alternative-name
Specifies additional names for the subject of a CSR.

--symmetric-passphrase
Specifies the symmetric passphrase to use for encryption, decryption, or verification.
The default is not set. This option is secure.

You must enter a passphrase.

When decrypting, PGP Command Line will try all passphrases before giving up. This
means that a symmetric passphrase specified with --passphrase will work correctly. This
does not work for encryption, because PGP Command LIne might need the normal
passphrase to sign the data.

Examples:

1 pgp -c file.txt --symmetric-passphrase "weak"

Specifies a symmetric passphrase of "weak" for the specified file.

2 pgp -c file.txt --symmetric-passphrase "$+r0ng3r-pAss-c0de"

Specifies a stronger symmetric passphrase for the specified file.

--temp-dir
Specifies a temporary directory for PGP Command Line to use.

Setting --temp-dir to a different file system is not recommended for large operations.

This option is not secure. The default is the current directory.

You can specify a relative or absolute path:

 Relative path, relative to the current directory

Absolute path, recommended usage Example:

pgp ---er user file --temp-dir /tmp

Specifies the use of /tmp as a temporary directory.

Options

List Options
209

List Options
Lists are special cases of string options. They follow all the same rules, but there can be
more than one of them defined at any given time.

--additional-recipient
Specifies an additional recipient for an operation. This option works the same as --
recipient; refer to --recipient for more information.

The default is not set. This option is not secure.

--adk
Specifies an ADK (Additional Decryption Key) and is used with --add-adk, --
remove-adk, and --gen-key. The default is unset.

Example:

pgp --add-adk bob@example.com --adk jose@example.com --
passphrase "B0bsm1t4"

0x6245273E:add ADK (0:ADKs successfully updated)

You have added an ADK (Jose Medina) to Bob’s key using Bob’s passphrase. If you
check Bob's key now, it will display the following:

pgp --list-key-details bob@example.com

 ………………

 ADK: 0xF6EFC4D9 (0x90AC8366F6EFC4D9)

 User ID: Jose Medina <jose@example.com>

 Enforced: Yes

--input (-i)
Specifies the input location/object for the current operation. The default is not set (in
some cases the default can be determined from the input; if not, an error is returned).
This option is not secure.

The flag itself is optional. You can just specify the input on the command line without
using the flag. If an operation requires input but does not get it, an error is returned.

The input can be as follows:

 File. Simply specify the file.

 Directory. Specify to put the file into the specified directory.

 "-" . This is a special keyword that means use the standard input.

For operations that require input and get nothing, an error is returned.

mailto:bob@example.com
mailto:jose@example.com
mailto:bob@example.com
mailto:jose@example.com

210 Options

List Options

Examples:

1 pgp --verify file.txt.sig

The input, file.txt.sig, is entered on the command line without the flag.

2 pgp --decrypt --input - --passphrase "B0bsm1t4" < file.txt.pgp

Use the standard input, which is file.txt.pgp.

--question / --answer
Specify questions and answers for the key reconstruction feature.

The maximum length for a question is 95 characters; the maximum length for an
answer is 255 characters. The minimum length for an answer is six characters. Both
questions and answers should be in quotes.

--question is not secure; --answer is secure. The default is not set.

Example:

pgp --key-recon-send ... --question "What day were you born?"
--question "What is your mother’s maiden name?" ... --answer
"Friday the 13th" --answer "Cameron"

Two questions and their answers are sent to the key reconstruction server.

--keyserver
Specifies a keyserver for the current operation. The default is not set. This option is not
secure.

The basic format for --keyserver is protocol://hostname:port/. If you supply
a keyserver on the command line, keyservers specified in the configuration file are
ignored.

Depending on how your network is configured, certain ports in your corporate firewall
may need to be opened to allow PGP Command Line to access external keyservers.

Supported protocols are:

 LDAP and LDAPPGP: LDAP PGP keyserver

 LDAPS and LDAPSPGP: LDAPS PGP keyserver

 HTTP: HTTP (hkp) keyserver

 LDAPX509: LDAP X.509 keyserver

 LDAPSX509: LDAPS X.509 keyserver

The hostname can be a hostname or an IP address. Port is optional; if not supplied, the
default port for the protocol is used. The defaults are: LDAP, 389; LDAPS, 636; HTTP,
11371.

Example:

pgp --keyserver-send alice@example.com --keyserver
ldap://keyserver.pgp.com

mailto:alice@example.com

Options

List Options
211

Use the public LDAP keyserver at pgp.com. No port is specified, so the default for
the protocol will be used.

--recipient (-r)
Specifies a recipient for an encrypted message. The default is not set. This option is not
secure.

Recipient lists support the same format as user IDs; see --local-user for more
information.

Examples:

1 pgp -er "ben" file.dat

Encrypt file file.dat to recipient Ben using the short forms of the commands.

2 pgp --encrypt --recipient "dave" file.dat

Encrypt file file.dat to recipient Dave using the long forms of the commands.

3 pgp -er "mike" -r "jim" -r "glen" file*.dat

Encrypt all files that match “file*.dat” to recipients Mike, Jim, and Glen.

--revoker
Specifies a revoker for a key and is used with the commands --add-revoker, --
remove-revoker, --gen-key, and --revoke (third party revocation).

The default is unset.

Example:

pgp --add-adk bob@example.com --adk jose@example.com --
passphrase "B0bsm1t4"

0x6245273E:add ADK (0:ADKs successfully updated)

You added a revoker (Jose Medina) to Bob's key by using Bob's passphrase. If you
check Bob's key now, it will display the following:

pgp --list-key-details bob@example.com

………………….

 Revoker: 0xF6EFC4D9 (0x90AC8366F6EFC4D9)

 User ID: Jose Medina <jose@example.com>

--share
Specifies a share when splitting a key. The default is not set. This option is secure
because a passphrase may be entered. Refer to --split-key and --join-key for more
information about --share.

Usage:

Key split: <number of shares>:<user>[:passphrase]

mailto:bob@example.com
mailto:jose@example.com
mailto:bob@example.com
mailto:jose@example.com

212 Options

File Descriptors

Key join: <share file name>[:passphrase]

Where:

<number of shares> is required and must be one or more. This is the number
of shares in the share file that counts towards the threshold when the key is being
reconstituted. You can make all share files include one share, all share files
include multiple shares, or you can assign different numbers of shares to different
share files.

<user> is required and can be specified by user ID, portion of the user ID, or key
ID for a public key or by name if you want to conventionally encrypt the share. If a
username includes a colon (:), it must be preceded by a backslash (\).

<share file name> is required; you can rename a share file if you wish. If a
share file name includes a colon (:), it must be preceded by a backslash (\).

[:passphrase] is optional and is used to provide a passphrase for a
conventionally encrypted share.

Examples:

pgp --split-key ... --share 1:0x1234abcd --share "1:Alice
Cameron" --share 1:John

Specifies three shares to the specified key (not shown), one share to public key
0x1234abcd, one to the public key of Alice Cameron (which is shown in quotes as
there is a space in the name), and one share to the public key of John. If an exact
match to public keys is not made, the key will not be split.

pgp --split-key ... --share 1:conventionaluser:passphrase --
share "2:Alice Cameron" --share 1:0x1234abcd --share "1:Ming
Pa <mingp@example.com>"

Specifies five shares to the specified key (not shown), two to "conventionaluser",
one to Alice Cameron, and two to public key 0x1234abcd. If the threshold were
three, then Alice Cameron could reconstitute the key with any of the others; if
Alice’s share wasn’t available, then all three of the others would need to provide
their shares.

pgp --join-key ... --share ming-1-recip1.shf --share alice-2-
recip2.shf --share maria-3-recip3.shf

Specifies the three files that need to be joined to reconstitute the key that has been
split (not shown).

File Descriptors
These options are very similar to the integer options except that PGP Command LIne
reads from the file descriptor supplied.

--auth-passphrase-fd, auth-passphrase-fd8
Sets --auth-passphrase to the data that is read from a descriptor. The default is not
set. These options are secure. Requires a positive integer.

mailto:mingp@example.com

Options

File Descriptors
213

These options read double byte characters on Windows and UTF-8 on UNIX. The
version of this option that ends with “8” will read UTF-8 on Windows, but has no effect
on UNIX since UTF-8 is already being read there.

Example:

pgp ... --auth-passphrase-fd 7

Read authorization passphrase from file descriptor 7.

--export-passphrase-fd, --export-passphrase-fd8
Sets --export-passphrase to the data that is read from a descriptor. The default is
unset. This option is secure. Requires a positive integer.

These options read double byte characters on Windows and UTF-8 on UNIX. The
version of this option that ends with "8" will read UTF-8 on Windows, but has no effect
on UNIX since UTF-8 is already being read there.

Example:

pgp ... --export-passphrase-fd 7

Read export passphrase from file descriptor 7.

--new-passphrase-fd, --new-passphrase-fd8
Sets --new-passphrase to the data read from a file descriptor. The default is not set.
This option is secure. Requires a positive integer.

Reads double-byte characters on Windows and UTF-8 on UNIX. The version of the
option that ends with "8" reads UTF-8 on Windows; this has no effect on UNIX, as UTF-
8 is already being read there.

Example:

pgp ... --new-passphrase-fd 7

Read new passphrase from file descriptor 7.

--passphrase-fd
Sets --passphrase to the data read from a file descriptor.

The default is not set. This option is secure. Requires a positive integer.

Reads double-byte characters on Windows and UTF-8 on UNIX. The version of the
option that ends with "8" reads UTF-8 on Windows; this has no effect on UNIX, as UTF-
8 is already being read there.

Note: Consult the help and/or documentation for the command shell being used for
more information about how that command shell handles file descriptors.

Example:

pgp ... --passphrase-fd 7

Read passphrase from file descriptor 7.

214 Options

File Descriptors

--proxy-passphrase-fd, --proxy-passphrase-fd8
Sets --proxy-passphrase to the data that is read from a descriptor. The default is
not set. These options are secure. Requires a positive integer.

These options read double byte characters on Windows and UTF-8 on UNIX. The
version of this option that ends with "8" will read UTF-8 on Windows, but has no effect
on UNIX since UTF-8 is already being read there.

Example:

pgp ... --proxy-passphrase-fd 7

Read proxy passphrase from file descriptor 7.

--symmetric-passphrase-fd, --symmetric-passphrase-fd8
Sets --symmetric-passphrase to the data that is read from a file descriptor. The
default is unset. This option is secure. Requires a positive integer.

These options read double-byte characters on Windows and UTF-8 on UNIX. The
version of this option that ends with "8" will read UTF-8 on Windows; this has no effect
on UNIX, as UTF-8 is already being read there.

Example:

pgp ... --symmetric-passphrase-fd 7

Read symmetric passphrase from file descriptor 7.

This section provides details about the information that PGP Command Line displays in
the following lists:

 the basic key list

 the detailed key list

 the detailed key list in XML format

 the detailed signature list

In This Chapter

Basic Key List... 215

Detailed Key List ... 220

Key List in XML Format ... 230

Detailed Signature List .. 237

Basic Key List
Three PGP Command Line commands display information about the keys on the local
keyring in basic output mode: --list-keys, --list-userids, and --list-sigs.

 --list-keys displays the primary user IDs of keys that match the input.

 --list-userids displays all user IDs of keys that match the input.

 --list-sigs displays all user IDs and signatures of keys that match the input.

If you run any of these commands with no user ID or key ID information, all keys on the
keyring will be displayed. If you enter any user or key ID information, only keys that
match that some or all of that information will be displayed.

For example, enter the following command:

pgp --list-sigs "bob@example.com"

PGP Command Line responds with information about the key that has a key ID of
0x1234ABCD if that key is on the local keyring. If the key with that key ID is not on the
local keyring, PGP Command Line responds with "0 keys found".

If the key is found, PGP Command Line responds with something like:

 Alg Type Size/Type Flags Key ID User ID

----- ---- --------- ------- ---------- -------

 RSA4 pair 2048/2048 [VI--A] 0x6245273E Bob Smith <bob@example.com>

 RSA sig [--] 0x6245273E Bob Smith <bob@example.com>

1 key found

15 Lists

mailto:bob@example.com
mailto:bob@example.com
mailto:bob@example.com

216 Lists

Basic Key List

This response is a basic output mode listing showing the primary user ID, a secondary
user ID, and a signature for one key. This section tells you what this information is and
what it means.

The Default Key Column
The very first character in the display is called the default key column. It has no heading
text.

For the primary user ID, the default key column can have an asterisk (*) or be blank:

 An asterisk (*) in the default key column indicates this key is the default key on the
keyring.

 Nothing in the default key column (" ") indicates this key is not the default key on
the keyring.

The default key column is always blank for secondary user IDs and signatures.

The Algorithm Column
Characters 2 through 5 are the algorithm column. The heading text is "Alg".

For the primary user ID, the algorithm column can display:

 DSS to indicate a DH/DSS key.

 RSA1 to indicate a v1 RSA key (a very old version).

 RSA2 to indicate a v2 RSA key (a very old version).

 RSA to indicate a v3 RSA key, also called an RSA Legacy key.

 RSA4 to indicate a v4 RSA key.

 RSAe to indicate an RSA encrypt-only key.

 RSAs to indicate an RSA sign-only key.

 RSA? to indicate an RSA key of unknown version.

 ECe to indicate an elliptic curve encryption key (not currently supported).

 ECs to indicate elliptic curve signing key (not currently supported).

 0xYY to indicate an unknown key algorithm < 256 (YY is the algorithm ID in
hexadecimal).

 UNK to indicate an unknown key algorithm >= 256.

For the secondary user IDs, the algorithm column is always blank.

For a signature, the algorithm column can display the following:

 X509 to indicate an X.509 signature.

 DSS to indicate a DSS signature.

 RSA to indicate an RSA signature.

 0xYY to indicate an unknown key algorithm < 256 (YY is the algorithm ID in
hexadecimal).

 UNK to indicate an unknown key algorithm >= 256.

Lists

Basic Key List
217

The Type Column
Characters 7 through 10 are the type column. The heading is "Type".

For the primary user ID, the type column can display:

 pub to indicate a public key.

 pair to indicate a key pair.

 splt to indicate a split key.

For the secondary user IDs, the type column always shows uid.

For a signature, the type column can display:

 sig to indicate a signature in which the signer’s key is known (on the local
keyring).

 sig? to indicate a signature in which the signer’s key is unknown.

 sigX to indicate a corrupt or damaged signature.

The Size/Type Column
Characters 12 through 20 are the size/type column. The heading is "Size/Type".

For the primary user ID, the size/type column can display:

 DSS key with no subkey, shows the size of the signing DSS key.

 RSA v4 key with no subkey shows:

 ssss indicates signing key bits greater than or equal to 1,000.

 sss indicates signing key bits less than 1,000.

 sssss indicates signing key bits greater than or equal to 10,000.

The "s" characters are replaced with actual values.

 DSS or RSA v4 key with subkey present shows:

 eeee/ssss indicates encryption key (subkey) bits followed by signing key
bits.

 eee/ssss if encryption key bits are less than 1,000.

 eeee/ sss if signing key bits are greater than 1,000.

 eee/ sss if both bits are greater than 1,000.

 ****/ssss if encryption key bits are greater than or equal to 10,000.

 eeee/**** if signing key bits are greater than or equal to 10,000.

 ****/**** if both bits are greater than or equal to 10,000.

The "s" and "e" characters are replaced with actual values.

 RSA non-v4 key shows:

 bbbb if key bits are greater than or equal to 1,000.

 bbb if key bits are less than 1,000.

218 Lists

Basic Key List

 bbbbb if key bits are greater than or equal to 10,000.

The "b" characters are replaced with actual values.

For the secondary user IDs, the size/type column can display:

 Blank for a normal user ID.

 photo for a photo user ID.

For a signature, the size/type column can display:

 Blank for an exportable signature or a meta- or trusted-introducer signature.

 private for a non-exportable signature or a meta- or trusted-introducer
signature.

The Flags Column
Characters 22 through 28 are the flags column. The header is "Flags".

The --marginal-as-valid setting does not affect this display.

For the primary user ID, the secondary user IDs, and a signature, the flags column can
display:

 Column 1: Delimiter

[is always shown.

 Column 2: Validity

V indicates a fully valid key.

v indicates a marginally valid key.

- indicates an invalid key

? indicates unknown validity.

 Column 3: Trust

I indicates an implicitly trusted key.

T indicates a fully trusted key.

t indicates a marginally trusted key.

- indicates an untrusted key.

? indicates unknown trust.

! indicates undefined trust.

 Column 4: Revoked

R indicates a revoked key.

r indicates a unverified revoked key.

- indicates a non-revoked key.

 Column 5: Disabled/Expired

E indicates an expired key (or an expired and disabled key).

D indicates a disabled key.

Lists

Basic Key List
219

- indicates an active key.

 Column 6: ADK

A indicates ADKs present on the key

- indicates an ADK is absent

 Column 7: Delimiter

] is always shown.

Note: To see the value affected by the option --marginal-as-valid, use the
command --list-key-details.

The Key ID Column
Characters 30 through 39 are the key ID column. The header is "Key ID".

For the primary user ID, the key ID column displays:

 The 32-bit hexadecimal key ID with an "0x" prefix and numbers and/or capital
letters. For example: 0xB2726BDF.

For the secondary user IDs, the key ID column is always blank.

For a signature, the key ID column displays:

 For the key ID of the signer, which is always available, the 32-bit hexadecimal
signing key ID with an "0x" prefix and numbers and/or capital letters.

 For an X.509 signature when the signing key is found, the 32-bit hexadecimal
signing key ID with an "0x" prefix and numbers and/or capital letters.

 For an X.509 signature where the signing key is not found, the column is blank.

The User ID Column
Characters 41 through the end of the line are the user ID column. The heading is "User
ID".

For the primary user ID, the user ID column displays the primary user ID. For example:
Alice Cameron <ac@example.com>.

For the secondary user IDs, the user ID column displays the user ID string. For example,
Alice C <alice@example.com>.

For a signature, the user ID column displays:

 For a PGP signature where the signing key has been found:

User ID of the signer.

 For a PGP signature where the signing key has not been found:

Blank if the signer is unknown.

 For an X.509 signature, which is always available:

Long name of the issuer.

mailto:ac@example.com
mailto:alice@example.com

220 Lists

Detailed Key List

Detailed Key List
The --list-key-details command provides detailed information about the
specified key.

If you run --list-key-details with no user or key ID information, all keys on the
keyring are displayed. If you enter user or key ID information, only keys that match
some or all of that information will be displayed.

For example, enter the following command:

pgp --list-key-details "Bob Smith"

PGP Command Line responds with detailed information about Bob’s key. If that key is
not on the local keyring, PGP Command Line responds with "0 keys found".

If the key is found, PGP Command Line responds with something like:

Key Details: Bob Smith <bob@example.com>

 Key ID: 0x6245273E (0xB9C0F8856245273E)

 Type: RSA (v4) key pair

 Size: 2048

 Validity: Complete

 Trust: Implicit (Axiomatic)

 Created: 2004-10-27

 Expires: Never

 Status: Active

 Cipher: AES-128

 Cipher: AES-192

 Cipher: AES-256

 Cipher: TripleDES

 Hash: SHA-256

 Hash: SHA-512

 Compress: Zip (Default)

 Photo: No

 Revocable: Yes

 Token: No

 Keyserver: None

 Default: No

 Wrapper: No

 Prop Flags: Sign user IDs

 Prop Flags: Sign messages

 Ksrv Flags: None

mailto:bob@example.com

Lists

Detailed Key List
221

 Feat Flags: Modification detection

 Notation: 01 preferred-email-encoding@example.com=pgp-mime

 Subkey ID: 0x894BA6DC (0xBABBB613894BA6DC)

 Type: RSA (v4)

 Size: 2048

 Created: 2004-10-27

 Expires: Never

 Status: Active

 Revocable: Yes

 Prop Flags: Encrypt communications

 Prop Flags: Encrypt storage

 ADK: 0xF6EFC4D9 (0x90AC8366F6EFC4D9)

 User ID: Jose Medina <jmedina@example.com>

 Enforced: Yes

 Revoker: 0xF6EFC4D9 (0x90AC8366F6EFC4D9)

 User ID: Jose Medina <jmedina@example.com>

1 key found

Unlike the basic key list, the detailed key list displays information in rows, not columns.
The detailed key list is divided into four sections: main key details, subkey details, ADK
details, and revoker details.

Main Key Details
Row 1: Primary User ID Name

Name: Key Details

Value: The primary user ID of the key.

Row 2: Key ID

Name: Key ID

Value: The 32-bit key ID followed by the 64-bit key ID in the format:

 0x12341234 (0x12341234ABCDABCD)

Key ID hexadecimal letters are always uppercase (except for the x in 0x).

Row 3: Key Type

Name: Type

First value:

 DSA means this is a DSA signing key (with or without subkeys).

 RSA legacy (v1) means this is an RSA v1 key.

 RSA legacy (v2) means this is an RSA v2 key.

 RSA legacy (v3) means this is an RSA v3 key (RSA legacy key).

mailto:preferred-email-encoding@example.com=pgp-mime
mailto:jmedina@example.com
mailto:jmedina@example.com

222 Lists

Detailed Key List

 RSA (v4) means this is an RSA v4 key.

 RSA encrypt only means this is an RSA encrypt-only key.

 RSA sign only means this is an RSA sign-only key.

 RSA (version unknown) means this is an RSA key of unknown version.

 Unknown algorithm ID 0xYY means this is an unknown key algorithm (YY is
the algorithm ID in hexadecimal).

Second Value:

 public key means this is a public key.

 key pair means this is a key pair (or private key only).

 split key means this is a split key pair.

The second value string is appended to the first separated by a space.

Row 4: Key Size

Name: Size

Values:

 For keys that have a master key, the size in bits of that key.

 For legacy keys, the size in bits of the key.

There is no length restriction here as there is in basic mode.

Row 5: Validity

Name: Validity

Values:

 Complete means this is a valid key.

 Marginal means this is a marginally valid key.

 Invalid means the key is invalid.

 Unknown means the key has unknown validity.

 Unknown 0xYY means the key has a validity value that is not not handled by
command line (YY is the value in hexadecimal).

Values (effective):

 Complete means this is a valid key.

 Invalid means the key is invalid.

Notes: For marginally valid keys, PGP Command Line displays two validity settings, the
actual and the effective validity.

For example, the Marginal validity in the actual setting will depend on --marginal-
as-valid in its effective setting. In most cases, there will be just one validity shown
(the actual value).

Row 6: Trust

Name: Trust

Values:

 Implicit means this is an implicitly trusted key.

Lists

Detailed Key List
223

 Complete means this is a completely trusted key.

 Marginal means this is a marginally trusted key.

 Never means this is an untrusted key.

 Undefined means this key has an undefined trust value.

 Unknown means this is a key with an unknown trust value.

 Unknown 0xYY means this is a key with a trust value not handled by command
line (YY is the value in hexadecimal)

Only key pairs can have implicit trust.

The Implicit and Never states will have a suffix if the key is paired, such as:

 (Axiomatic) when the key is axiomatic.

 (Not axiomatic) when the key is not axiomatic.

The normal states are

 Implicit (Axiomatic).

 Never (Not axiomatic).

Other states are possible, but not common: they are caused by errors and can be fixed
by changing the key trust and then changing it back.

Row 7: Creation Date

Name: Created

Value:

 yyyy-mm-dd is the key’s creation date.

Row 8: Expiration Date

Name: Expires

Value:

 never means the key does not expire.

 yyyy-mm-dd is the key’s expiration date.

 unknown means the expiration date of the key is unknown.

Row 9: Status Fields

Name: Status

Values:

 Disabled means this key is disabled.

 Expired means this key is expired.

 Revoked means this key has been revoked.

 Unverified Revocation means this key has been revoked, but the revocation
is unverified.

 Third Party Revocation means the key was revoked by a third party.

 Active means the key has no status. If a key is active, there will be no other
status lines.

224 Lists

Detailed Key List

One or more status characteristics can be shown one after the other if they apply.
Revoked and unverified revocation are mutually exclusive.

Row 10: Preferred Cipher

Name: Cipher

The first preferred cipher row is the "preferred cipher."

Values:

 IDEA means IDEA is the preferred cipher for this key.

 TripleDES means 3DES is the preferred cipher for this key.

 CAST5 means CAST5 is the preferred cipher for this key.

 Blowfish means Blowfish is the preferred cipher for this key.

 AES-128 means AES 128 is the preferred cipher for this key.

 AES-192 means AES 192 is the preferred cipher for this key.

 AES-256 means AES 256 is the preferred cipher for this key.

 Twofish-256 means Twofish 256 is the preferred cipher for this key.

 Unknown 0xYY means an unknown cipher (YY is the cipher algorithm ID in
hexadecimal)

If a key has no preferred ciphers the default is used. For keys with versions less than 4
this is IDEA. For all other keys this is CAST5. One or more ciphers can be shown one
after the other if they are set in the list.

Row 11: Preferred Hash

Name: Hash

Values:

 MD5 means MD5 is the hash being used for this key.

 SHA means SHA is the hash being used for this key.

 RIPEMD-160 means RIPEMD 160 is the hash being used for this key.

 SHA-256 means SHA 256 is the hash being used for this key.

 SHA-384 means SHA 384 is the hash being used for this key.

 SHA-512 means SHA 512 is the hash being used for this key.

 Unknown 0xYY is an unknown hash (YY is the hash algorithm ID in hex)

If a key has no preferred hashes, the following default is used:

 MD5 for keys with versions less than 4.

 SHA-1 for all other keys.

In the case where the default is used, PGP Command Line appends the string "(Default)"
to the hash.

One or more hashes can be shown one after the other if set on the list.

Row 12: Preferred Compression Algorithm

Name: Compress

Values:

Lists

Detailed Key List
225

 Zip means Zip is the preferred compression algorithm.

 Zlib means Zlib is the preferred compression algorithm.

 Bzip2 means Bzip2 is the preferred compression algorithm.

 Unknown. 0xYYis an unknown compression algorithm (YY is the compression
algorithm ID in hexadecimal).

If a key has no preferred compression algorithm, the default is used (Zip is the default
in all cases). In this case, PGP Command Line appends the string (Default) to the
compression algorithm.

One or more compression algorithms can be shown one after the other if they are set in
the list.

Row 13: Photo ID

Name: Photo

Values:

 Yes means one of the user IDs on the key is a photo ID.

 Yes (X) means X number of user IDs on the key are photo IDs.

 No means none of the user IDs on the key is a photo ID.

Row 14: Revocable

Name: Revocable

Values:

 Yes means one of the keys on the keyring can revoke this key.

 No means none of the key on the keyring can revoke this key.

Row 15: Token

Name: Token

Values:

 Yes means part of all of this key is on a token

 No means no part of this key is on a token

Row 16: Preferred Keyserver

Name: Keyserver

Values:

 None means no preferred keyserver is set.

 Keyserver name if there is a preferred keyserver set.

Row 17: Default Key

Name: Default

Values:

 Yes means this is the default key for encrypting and signing.

 No means this is not the default key.

Row 18: X.509 Wrapper Key

Name: Wrapper

226 Lists

Detailed Key List

Values:

 Yes if the key was created to contain an imported X.509 certificate.

 No if the key is normal.

Row 19: Key Properties Flags

Name: Prop Flags

Values:

 Sign user IDs when the key can sign other user IDs.

 Sign messages when the key can sign messages.

 Encrypt communications when the key can encrypt communications.

 Encrypt storage when the key can encrypt storage.

 Private split when the private key is split.

 Private shared when the private key is in the possession of a third party
(group bit).

 None when the key has no properties flags set.

 Unknown (0xNNNNNNNN) when one or more unknown key properties flags are
set.

If enabled, one or more properties can be shown one after the other in the following
way:

 Unknown may be shown with other properties or by itself.

 None will only be shown if there are no flags set.

 If Unknown flags are set, they are shown in hexadecimal.

 Any known flags are stripped before PGP Command Line displays the hexadecimal
number.

Row 20: Key Server Preferences Flags

Name: Ksrv Flags

Values:

 No modify when the key should not be modified except by the owner.

 None when the key has no keyserver preferences flags set.

 Unknown (0xNNNNNNNN) when one or more unknown keyserver preferences
flags are set.

If enabled, one or more preferences can be shown one after the other in the following
way:

 Unknown may be shown with other properties or by itself.

 None will only be shown if there are no flags set.

 If unknown flags are set, they are shown in hexadecimal.

 Any known flags are stripped before PGP Command Line displays the hexadecimal
number.

Note that there is currently only one flag.

Row 21: Key Features Flags

Lists

Detailed Key List
227

Name: Feat Flags

Value:

 Modification detection.

 None when the key has no features flags set.

 Unknown (0xNNNNNNNN) when one or more unknown key features flags are set.

If enabled, one or more features can be shown one after the other in the following way:

 Unknown may be shown with other properties or by itself

 None will only be shown if there are no flags set

 If unknown flags are set, they are shown in hexadecimal

 Any known flags are stripped before PGP Command Line displays the hexadecimal
number

Note that there is currently only one flag.

Row 22: Notation Packets

Name: Notations

Value:

 None

 ZZ 0xNNNNNNNN <name>=<value>

 ZZ 0xNNNNNNNN <name>=<binary data, length <length>>

Notes:

 One of more notations can be shown one after the other if they exist.

 None is displayed if there are no notation packets for the current key.

 ZZ is the index of the notation packet (starting with 01, 02, etc.).

 0xNNNNNNNN is the value of the flags portion of the notation packet.

 <name> and <value> are substituted for the actual data.

 The name is always printable UTF-8.

 If value is not printable then the second value line above is used.

 The value portion of this line is literal except that <length> is substituted.

Subkey Details
The subkey details section has either one or N rows:

Row 1: Subkey ID

Name: Subkey ID

Values:

 N/A indicates the key type does not support subkeys.

 None means the current key does not have any subkeys.

 32-bit and 64-bit subkey IDs in the same format as for main key details.

228 Lists

Detailed Key List

If the key type does not support subkeys or there are no subkeys on the current key,
then no additional rows are shown.

Row 2: Type

Name: Type

Values:

 ElGamal means an Elgamal encryption key.

 RSA (v4) means an RSA v4 encryption key.

 Unknown algorithm ID 0xYY means an unknown subkey algorithm ID (YY is
the ID in hexadecimal).

Row 3: Size

Name: Size

Value:

 Subkey size in bits.

There is no length restriction here as there is in the basic key list view.

Row 4: Creation Date

Name: Created

Value:

 Creation date (same format as for main key details).

Row 5: Expiration Date

Name: Expires

Value:

 Expiration date (same format as for main key details).

Row 6: Status Fields

Name: Status

Values:

 Expired means an expired key.

 Revoked means a revoked key.

 Unverified Revocation means an unverified revoked key.

 Active means an active key.

If a subkey has no status, it shows as active. One or more status characteristics can be
shown one after the other, if they apply. Revoked and unverified revocation are
mutually exclusive.

Row 7: Revocable

Name: Revocable

Values:

 Yes if one of the keys on the keyring can revoke this subkey.

 No if none of the key on the keyring can revoke this subkey.

Row 8: Key Properties Flags

Lists

Detailed Key List
229

Name: Prop Flags

Values:

 Sign user IDs when the key can sign other user IDs.

 Sign messages when the key can sign messages.

 Encrypt communications when the key can encrypt communications.

 Encrypt storage when the key can encrypt storage.

 Private split when the private key is private split.

 Private shared when the private key is in the possession of a third party
(group bit).

 None when the key has no properties flags set.

 Unknown (0xNNNNNNNN) when one or more unknown key properties flags are
set.

If enabled, one or more properties can be shown one after the other in the following
way:

 Unknown may be shown with other properties or by itself.

 None will only be shown if there are no flags set.

 If unknown flags are set, they are shown in hexadecimal.

 Any known flags are stripped before PGP Command Line displays the hexadecimal
number.

ADK Details
ADK details uses either one or three rows. If there is no ADK on the key, then you see
just one row:

ADK: None.

If there is an ADK on the key, you see three rows:

Row 1: ADK Key ID

Name: ADK

Values:

 32-bit subkey ID.

 64-bit subkey IDs.

Row 2: ADK Primary User ID

Name: User ID

Values:

 Primary User ID of the ADK.

 Blank if the ADK is not found on the local keyring.

Row 3: Enforced

Name: Enforced

Values:

230 Lists

Key List in XML Format

 Yes if the ADK is set to be enforced.

 No if the ADK is not be enforced.

 Unknown 0xNN if the ADK has some other unknown setting.

Revoker Details
Revoker details uses either one or two rows. If there is no revoker on the key, then you
see just one row:

Revoker: None.

If there is a revoker on the key, you see two rows:

Row 1: Revoker Key ID

Name: Revoker

Values:

 32-bit subkey ID

 64-bit subkey IDs

Row 2: Revoker Primary User ID

Name: User ID

Values:

 Primary User ID of the revoker.

 Blank if the key is not found on the local keyring.

Key List in XML Format
When you choose to list a key in XML format, PGP Command Line will display all
information including all user IDs and signatures. You can also specify a single key to
view in XML format.

To list keys in XML format, you may use either the command --list-keys-xml, or a
key list operation with the added option --xml, such as --list-keys user1 --
xml, or --list-keys --xml.

If no users are specified, the command lists all keys on the local keyring.

Example:

pgp --list-keys-xml "Jose Medina"

Here is a typical key list (for the user Jose Medina) in XML format, with short
explanations in brackets. Elements with several fixed choices are listed after the
example.

<?xml version="1.0"?> (exactly one element)

<keyList> (exactly one element)

 <key> (zero or more elements)

 <keyID>0xCCFA35EC</keyID>

Lists

Key List in XML Format
231

 <keyID64>0x3A76B511CCFA35EC</keyID64>

 <algorithm>RSA</algorithm>

 <version>4</version>

 <type>pair</type>

 <size>2048</size>

 <validity>complete</validity>

 <trust>implicit</trust>

 <creation>2004-10-19</creation>

 <expiration/>

 <revoked>false</revoked>

 <unverifiedRevocation>false</unverifiedRevocation>

 <thirdPartyRevocation>false</thirdPartyRevocation>

 <expired>false</expired>

 <disabled>false</disabled>

 <revocable>true</revocable>

 <preferredKeyserver/>

 <preferredCipherAlgorithms>

 <cipher> (one or more elements)

 <name>AES-128</name>

 <value>7</value>

 <priority>1</priority>

 <default>false</default>

 </cipher>

 </preferredCipherAlgorithms>

 <preferredHashAlgorithms> (one or more elements)

 <hashAlgorithm>

 <name>SHA-256</name>

 <value>8</value>

 <priority>1</priority>

 <default>false</default>

 </hashAlgorithm>

 </preferredHashAlgorithms>

 <preferredCompressionAlgorithms> (one or more elements)

 <compressionAlgorithm>

 <name>Zip</name>

 <value>1</value>

 <priority>1</priority>

232 Lists

Key List in XML Format

 <default>true</default>

 </compressionAlgorithm>

 </preferredCompressionAlgorithms>

 <token>

 <onToken>false</onToken>

 </token>

 <defaultKey>false</defaultKey>

 <X509WrapperKey>false</X509WrapperKey>

<fingerprint>C984E2FB2BAAB8A02F61B8273A76B511CCFA35EC</fingerprint
>

 <keyProperties>

 <signUserIDs>true</signUserIDs>

 <signMessages>true</signMessages>

 <encryptCommunications>false</encryptCommunications>

 <encryptStorage>false</encryptStorage>

 <privateSplit>false</privateSplit>

 <privateShared>false</privateShared>

 <unknown>0x00000000</unknown> (same rules as --list-key-details)

 </keyProperties>

 <keyServerPreferences>

 <noModify>false</noModify>

 <unknown>0x00000000</unknown>

 </keyServerPreferences>

 <keyFeatures>

 <modificationDetection>true</modificationDetection>

 <unknown>0x00000000</unknown> (same rules as --list-key-details)

 </keyFeatures>

 <userID>(one or more elements)

 <name>Jose Medina</name>

 <commonName>Jose Medina</commonName>

 <contactName/>

 <type>primary</type>

 <validity>complete</validity>

 <revoked>false</revoked>

 <signature>

 <signerKeyID>0xCCFA35EC</signerKeyID>

 <signerKeyID64>0x3A76B511CCFA35EC</signerKeyID64>

Lists

Key List in XML Format
233

 <signerName>Jose Medina</signerName>

 <signerCommonName>Jose Medina</signerCommonName>

 <signerContactName/>

 <algorithm>RSA</algorithm>

 <type>signature</type>

 <exportable>true</exportable>

 <revoked>false</revoked>

 <expired>false</expired>

 <corrupt>false</corrupt>

 <creation>2004-10-19</creation>

 <expiration/>

 <trustDepth>0</trustDepth>

 <domainRestriction/>

 </signature>

 </userID>

 <subkey> (zero or more elements)

 <subkeyID>0x0E948D0B</subkeyID>

 <subkeyID64>0x152393F70E948D0B</subkeyID64>

 <algorithm>RSA</algorithm>

 <version>4</version>

 <size>2048</size>

 <creation>2004-10-19</creation>

 <expiration/>

 <revoked>false</revoked>

 <unverifiedRevocation>false</unverifiedRevocation>

 <expired>false</expired>

 <revocable>true</revocable>

 <subkeyProperties>

 <signUserIDs>false</signUserIDs>

 <signMessages>false</signMessages>

 <encryptCommunications>true</encryptCommunications>

 <encryptStorage>true</encryptStorage>

 <privateSplit>false</privateSplit>

 <privateShared>false</privateShared>

 <unknown>0x00000000</unknown> (same rules as --list-key-
details)

 </subkeyProperties>

 </subkey>

234 Lists

Key List in XML Format

 <adk> (zero or more elements)

 <keyID>0xAF3D2BB8</keyID>

 <keyID64>0x183ED5C6AF3D2BB8</keyID64>

 <name>Example Corp Additional Decryption Key</name>

 <commonName>Example Corp Additional Decryption
Key</commonName>

 <contactName/>

 <class>

 <setting>not enforced</setting>

 <value>0x00</value>

 </class>

 </adk>

 <revoker> (zero or more elements)

 <keyID>0x14A96E62</keyID>

 <keyID64>0x4B2AA68CE14A96E62</keyID64>

 <name/>

 <commonName/>

 <contactName/>

 </revoker>

 </key>

</keyList

Elements with fixed settings

Algorithm

Key encryption algorithms appear in the following sections:

<key> section

RSA | DSS

<signature> section

RSA | DSS | X.509

<subkey> section

RSA | Elgamal

For more details about key encryption algorithms refer to --list-key-details.

Type

Key types appear in the following sections:

Lists

Key List in XML Format
235

<key> section

public | split | pair

<userID> section

primary | secondary | photo

<signature> section

signature | trusted-introducer | meta-introducer

For more details about key types refer to --list-key-details.

Validity

Key validity types appear in the following sections:

<key> section

complete | marginal | invalid | unknown

<userID> section

complete | marginal | invalid | unknown

For more details about key validity refer to --list-key-details.

Trust

Key trust types appear as follows:

implicit | complete | marginal | never | undefined | unknown | invalid

For more details about key trust refer to --list-key-details.

Hash

Key hash algorithm types appear as follows:

MD5 | SHA | RIPEMD-160 | SHA-256 | SHA-384 | SHA-512 | invalid | unknown

For more details about key hash algorithms refer to --list-key-details.

Cipher

Key cipher algorithm types appear as follows:

<cipher> section

none | IDEA | TripleDES | CAST5 | Blowfish | AES-128 | AES-192 | AES-256 |
Twofish-256 | unknown

Compression

Key compression algorithm types appear as follows:

<compressionAlgorithm> section

236 Lists

Key List in XML Format

Zip | ZLIB | BZIP2

For more details about compression algorithms refer to --compression-algorithm.

Setting

Key settings appear as follows:

<class> section (in the <adk> section)

not enforced | enforce | unknown

X.509 Signatures
For X.509 signatures there are additional items under the <signature> heading.
Currently these are:

 x509Name

 x509Issuer

 thisCRL

nextCRL Example:

This is an abbreviated example of an X.509 signature. Note that the signer key ID and
signer name may not be known.

<?xml version="1.0"?>

<keyList>

 <key>

 ...

 <signature>

 <signerKeyID/>

 <signerKeyID64/>

 <signerName/>

 <signerCommonName/>

 <signerContactName/>

 <algorithm>X.509</algorithm>

 <type>signature</type>

 <exportable>true</exportable>

 <revoked>false</revoked>

 <expired>false</expired>

 <corrupt>false</corrupt>

 <creation>2004-01-19</creation>

 <expiration>2005-01-19</expiration>

 <trustDepth>0</trustDepth>

 <domainRestriction/>

Lists

Detailed Signature List
237

 <x509Name>CN=www.example.com, O=Example.com Inc., L=San
Jose, ST=California, C=US</x509Name>

 <x509Issuer>OU=Secure Server Certification Authority,
O="RSA Data Security, Inc.",

C=US</x509Issuer>

 <thisCRL>1969-12-31</thisCRL>

 <nextCRL>1969-12-31</nextCRL>

 </signature>

 </userID>

 </key>

</keyList>

Detailed Signature List
The --list-sig-details command provides detailed information about the
signatures on the specified key.

When you run --list-sig-details, enter either the key ID or enough of the user ID
so that only one key from the local keyring is specified. If more than one fits the criteria
you enter, an error message will be returned.

For example, enter the following command:

pgp --list-sig-details "Bob Smith"

If the specified key is found, PGP Command Line responds with something like:

Signature Details: Bob Smith <bob@example.com>

 Signed Key ID: 0x6245273E (0xB9C0F8856245273E)

 Signed User ID: Bob Smith <bob@example.com>

 Signer Key ID: 0x6245273E (0xB9C0F8856245273E)

 Signer User ID: Bob Smith <bob@example.com>

 Type: RSA signature

 Hash: SHA-256

 Exportable: Yes

 Status: Active

 Created: 2006-11-09

 Expires: Never

 Trust Depth: 0

 Domain: None

1 signature found

Like the detailed key list, the detailed signature list displays information in rows.

Row 1: Primary User ID Name of the signed key

mailto:bob@example.com
mailto:bob@example.com
mailto:bob@example.com

238 Lists

Detailed Signature List

Name: Signature Details

Value:

 The primary user ID of the key that contains the signature.

Row 2: Signed Key ID

Name: Signed Key ID

Value:

 The 32-bit key ID followed by the 64-bit key ID in the format:

0x12341234 (0x12341234ABCDABCD)

Key ID hexadecimal letters are always uppercase (except for the x in 0x).

Row 3: Signed User ID

Name: Signed User ID

Value:

 The name of the user ID to which the current signature belongs.

Row 4: Signer Key ID

Name: Signer Key ID

Value:

 PGP Signature (always available):

The 32-bit key ID followed by the 64-bit key ID in the format:

0x12341234 (0x12341234ABCDABCD)

 X.509 Signature (signing key found):

The 32-bit key ID followed by the 64-bit key ID in the format:

0x12341234 (0x12341234ABCDABCD)

 X.509 Signature (signing key not found):

Empty

Key ID hexadecimal letters are always upper case (except for the x in 0x).

Row 5: Signer User ID

Name: Signer User ID

Value:

 PGP Signature (signing key found):

The primary user ID of the signing key

 PGP Signature (signing key not found):

Empty

 X.509 Signature (signing key found):

The primary user ID of the signing key

 X.509 Signature (signing key not found):

Empty

Row 6: Signature type

Lists

Detailed Signature List
239

Name: Type

Value (algorithm ID):

 DSA means a signature by a DH/DSS key.

 RSA means a signature by an RSA key.

 Unknown algorithm ID 0xYY means a signature by an unknown algorithm ID
(YY is the ID in hexadecimal).

Value (signature type):

 signature means a regular signature.

 trusted-introducer signature means a trusted-introducer signature.

 meta-introducer signature means a meta-introducer signature.

Values are added together, with the algorithm ID first and the signature type second,
such as:

 DSA signature.

 RSA trusted-introducer-signature.

Row 7: Hash Algorithm

Name: Hash

Values:

 MD5 means MD5.

 SHA-1 means SHA-1.

 RIPEMD-160 means RIPEMD-160.

 SHA-256 means SHA-256.

 SHA-384 means SHA-384.

 SHA-512 means SHA-512.

 Invalid indicates an invalid hash.

 Unknown 0xYY means unknown hash, where YY is the hash algorithm ID in hex.

Row 8: Exportable Status

Name: Exportable

Values:

 Yes means the signature is marked exportable.

 No means the signature is local to this keyring.

Trusted-introducer signatures are always exportable. Meta-introducer signatures are
always local; that is, they are not exportable.

Row 9: Signature Status

Name: Status

Value:

 Expired means the signature is expired.

 Revoked means the signature is revoked.

240 Lists

Detailed Signature List

 Corrupt means verification of the signature failed for some reason.

 Active means this is a verified good signature.

Row 10: Creation date

Name: Created

Value:

 yyyy-mm-dd is the date the signature was created.

Row 11: Expiration date

Name: Expires

Value:

 yyyy-mm-dd is the expiration date of the signature.

 Never means the signature does not expire.

Row 12: Trust depth

Name: Trust Depth

Value:

 A number, zero or greater.

Regular signatures always have a trust depth of zero.

Row 13: Domain restriction

Name: Domain

Value:

 Regular expression domain restriction for this signature.

Domain restrictions can only be set for trusted-introducer signatures.

Row 14: X509 Long Name

Name: X509 Name

Value:

 X.509 Signature (always available): the DN used for the X.509 certificate.

This row is not displayed for PGP signatures.

Row 15: X509 Issuer

Name: X509 Issuer

Values:

 X.509 Signature (always available): the DN used for the issuer of the X.509
certificate

The row is not displayed for PGP signatures.

Row 16: This CRL

Name: This CRL

Values:

 yyyy-mm-dd. Date of the current CRL.

 N/A. No current CRL.

Lists

Detailed Signature List
241

The row is not displayed for PGP signatures

Row 17: Next CRL

Name: Next CRL

Values:

 yyyy-mm-dd. Date of the next CRL.

 N/A. No next CRL.

The row is not displayed for PGP signatures.

Row 18: Serial Number

Name: Serial Number

Value:

 Serial number bytes converted to a string:

 Each byte is represented by two characters (00-FF).

 One space is added every two bytes.

 One space is added every eight bytes.

 Format: XXYY XXYY XXYY XXYY XXYY XXYY XXYY XXYY XXYY ...

This section describes some of the ways PGP Command Line can be used in your
organization.

In This Chapter

Secure Off-Site Backup .. 243

PGP Command Line and PGP Desktop... 243

Compression Saves Money .. 244

Surpasses Legal Requirements ... 245

Secure Off-Site Backup
A data warehouse administrator for Example Corporation creates a nightly hot backup
of a database containing sensitive corporate data so that it can be securely stored off-
site.

The file, ExampleCorpData.db, is encrypted to Example Corporation’s official archival
key, Archival Key, and is then transferred to the secure, off-site backup location. The
file is stored encrypted in the appropriate directory on the archival machine.

After the file is transferred, it must be securely wiped off of the main database server so
that it cannot be retrieved. Example Corporation uses PGP Command Line’s --wipe
command at six passes, three more passes than required by the media sanitization
requirements of the U.S. Department of Defense specification 5220.22-M.

Example Corporation’s use of PGP Command Line to secure its nightly off-site backup
ensures that their sensitive corporate data is protected by proven PGP encryption
technology both while in transit and while stored on the archival machine. Wiping the
original file ensures that the file will not be recoverable from the main database server.

The PGP Command Line solution is:

pgp --encrypt ExampleCorpData.db --recipient "Archival Key"

scp ExampleCorpData.db.pgp archiveuser@172.30.100.90:~/<current
date>/ExampleCorpData.db

pgp --wipe ExampleCorpData.db --wipe-passes 6

PGP Command Line and PGP Desktop
A system administrator with Example Corporation wants to create a script that will
automate the process of creating a PGP cryptographic key for new employees for their
use with PGP Desktop, used by all Example Corporation employees.

A Usage Scenarios

mailto:archiveuser@172.30.100.90:~/%3Ccurrent

244 Usage Scenarios

Compression Saves Money

The key needs to be a 2048-bit, RSA v4 key that includes the Example Corporation
Additional Decryption Key (ADK) so that the employee’s encrypted email or files can be
decrypted after they leave the company, if they forget their password, or if they cannot
decrypt the message/file themselves.

Each new key must be signed with the company’s employee certification key so that
outside users are assured that messages/files encrypted and/or signed by this key are,
without doubt, from an Example Corporation employee.

To make the process of creating the key as user-friendly as possible, the new employee
should only be required to enter his or her name and passphrase on the internal
corporate Web site; the script should handle the rest.

The use of PGP Command Line to assist with the creation of keys for use with PGP
Desktop leverages the batch processing capabilities of PGP Command Line and the
ease-of-use of PGP Desktop.

The following PGP Command Line commands would be added to the script:

pgp --gen-key $NEWUSER --bits 2048 --key-type rsa --passphrase
"$USER_PASSPHRASE" --adk $EXAMPLECORP_ADK_ID

pgp --sign-key $NEWUSER --user $EXAMPLECORP_CERT_KEY_ID --
passphrase "$EXAMPLECORP_KEY_PASSPHRASE"

The variable names shown are examples.

Compression Saves Money
Example Corporation’s Engineering department performs a weekly download of the
Widget1000 engineering drawings and schematics to the Manufacturing department
located in another state over a leased line. Manufacturing uses the drawings and
schematics to create prototype boards that are sent to the Quality Assurance
department for testing.

The files are copied to a specific directory, which is made into a PGP archive for
transfer to Manufacturing. The files are compressed with BZip2, one of the three
compression formats supported by PGP Command Line (Zip and ZLib are the other two),
which reduces the size of the archive by approximately 80%.

Creating a PGP Archive using PGP Command Line and using BZip2 compression means
gives the Engineering department an easy-to-transfer file that is significantly smaller
than all of the files taken together, and thus saves Example Corporation money by
speeding the transfer over the leased lines.

The PGP Command Line solution is:

1 pgp --set-preferred-compression-algorithms 0x1234ABCD --bzip2
1 --zlib 2

2 pgp --encrypt c:\drawings\ --recipient 0xABCD1234 --archive
--output drawings.pgp

Step 1 sets BZip2 as the preferred compression algorithm for the key that will be used
to encrypt (the default key), Step 2 creates the PGP archive.

Usage Scenarios

Surpasses Legal Requirements
245

Surpasses Legal Requirements
Acme Corporation’s Human Resources (HR) department uses PGP Command Line to
encrypt and sign employee records that it sends over the Internet, an insecure medium,
to its benefits partners.

Because information in these records includes medical information about employees,
it’s important to Acme Corporation that they remain fully protected while in transit.
Using strong PGP encryption also ensures that Acme Corporation is in compliance with
the Health Insurance Portability and Accountability Act (HIPAA), which was passed by
the U.S. Congress in 1996 and is required by the Department of Health and Human
Services to, among other things, implement security standards to protect the
confidentiality and integrity of all "individually identifiable health information."

Prior to any employee records being sent over the Internet, the data is encrypted to the
public key of the benefits partner it is being sent to, then the data is transferred to the
partner. The benefits partner reverses the process on their end, decrypting the
employee data with their private key and routing it to the appropriate personnel.

Using PGP Command Line to encrypt their employee data protects it during transfer
over the Internet and ensures compliance with HIPAA.

The PGP Command Line solution is:

pgp -es employee42.doc -r 0xABCD1234 --signer "Alice Cameron"
--passphrase "A1ice*Camer0n"

This section describes how to search for data on a PGP KMS from the command line.

In This Chapter

Overview ...247

Example Searches..250

More About Types ...251

Overview
With search filters, you can search for data on a PGP KMS. You can operate on the
returned data.

Commands that include search filters have the form:

pgp --search-WHAT "OPERATOR(TYPE, FOR_WHAT)" --usp-server
universal.example.com AUTHENTICATION

On Linux or Mac OSX, they can also have this form:

pgp --search-WHAT 'OPERATOR(TYPE, FOR_WHAT)' --usp-server
universal.example.com AUTHENTICATION

The following key explains the terms used in the command forms:

 WHAT is the type of object to search for, for example mak, csr, or consumer.

 OPERATOR specifies the comparison rules, for example EQ or CI.

 TYPE specifies the type of data, for example UUID, NAME, or TIME.

 FOR_WHAT specifies what to search for.

 AUTHENTICATION authenticates the requester, for example --auth-username and
--authpassphrase.

Search filters for QUOTED_STRING data types may require escaping. If
OPERATOR(TYPE, FOR_WHAT)is enclosed in double quotes, then escape the double
quotes enclosing FOR_WHAT with backslashes:

pgp --search-WHAT "OPERATOR(TYPE, \"mySearchString\")" --usp-
server universal.example.com AUTHENTICATION

Linux and Mac OSX search filters for QUOTED_STRING data types can use single
quotes around OPERATOR(TYPE, FOR_WHAT). For such expression, escape characters
are not used on the FOR_WHAT string.

See the commands that begin with --search in Working with a PGP Key Management
Server.

B Searching for Data on a PGP KMS

248 Searching for Data on a PGP KMS

Overview

Operators
Operators specify the logical conditions that the search filter satisfies:

 EQ: Means equal to.

 LT: Means less than.

 GT: Means greater than.

 LE: Means less than or equal to.

 GE: Means grater than or equal to.

 CI: Means case insensitive equal to.

 RE: Means regular expression.

Conjunctions allow logical ANDs and ORs to be used:

 AND: Combines two or more filters using logical AND.

 OR: Combines two or more filters using logical OR.

You can also negate a filter using NOT:

 NOT: Negates a filter or set of filters.

Types
Types that can be used in search filters are:

 QUOTED_STRING: A valid UTF-8 string surrounded by double quotes.

 INTEGER: An integer (either positive or negative).

 TIME: A time/date value.

 BOOLEAN: A boolean value.

 ENUM_ALGORITHM: One of the OpenPGP key algorithm types.

 ENUM_USAGE: One of the OpenPGP key usage flags.

 ENUM_KEY_MODE: One of the PGP KMS MAK key modes.

Keyword Listing
The following table lists each keyword, the type of keyword, a description of the
keyword, and the type of object on which the keyword can operate.

Keyword Type Description

UUID QUOTED_STRING Object UUID

PARENT_MAK_UUID QUOTED_STRING UUID of parent MAK

PARENT_MEK_SERIES_UUID QUOTED_STRING UUID of parent MEK Series

Searching for Data on a PGP KMS

Overview
249

NAME QUOTED_STRING Object name

USER_ID QUOTED_STRING MAK user ID

CERT_ISSUER QUOTED_STRING Certificate issuer

CERT_SERIAL QUOTED_STRING Certificate serial number

CERT_SUBJECT QUOTED_STRING Certificate subject

KEY_SIZE INTEGER MAK key size (topkey)

SUBKEY_SIZE INTEGER MAK key size (subkey)

KEY_CREATION TIME MAK creation time (topkey)

KEY_EXPIRATION TIME MAK expiration time (topkey)

SUBKEY_CREATION TIME MAK creation time (subkey)

SUBKEY_EXPIRATION TIME MAK expiration time (subkey)

CERT_CREATION TIME Certificate creation time

CERT_EXPIRATION TIME Certificate expiration time

END_OF_LIFE_TIME TIME Object end of life time

IS_ORG_KEY BOOLEAN Is organization key

IS_POLICY_ADK BOOLEAN Is policy ADK key

KEY_EXPIRED BOOLEAN Is key expired

KEY_REVOKED BOOLEAN Is key revoked

KEY_HAS_REVOKER BOOLEAN Key has a revoker

KEY_HAS_ADK BOOLEAN Key has an ADK

KEY_HAS_KRB BOOLEAN Key has a key reconstruction block

KEY_HAS_CERT BOOLEAN Key has a certificate

KEY_HAS_PENDING_CERT_REQUEST BOOLEAN Key has a pending certificate request

SUBKEY_EXPIRED BOOLEAN Subkey is expired

SUBKEY_REVOKED BOOLEAN Subkey is revoked

CERT_EXPIRED BOOLEAN Certificate is expired

IS_END_OF_LIFE BOOLEAN Object has reached end of life

KEY_ALGORITHM ENUM_ALGORITHM MAK algorithm (topkey)

SUBKEY_ALGORITHM ENUM_ALGORITHM MAK algorithm (subkey)

KEY_USAGE ENUM_USAGE MAK usage (topkey)

SUBKEY_USAGE ENUM_USAGE MAK usage (subkey)

KEY_MODE ENUM_KEY_MODE MAK mode

KEY_ID KEYID MAK keyid (topkey)

KEY_IS_REVOKED_BY KEYID Key is revoked by a specific key

250 Searching for Data on a PGP KMS

Example Searches

KEY_HAS_REVOKER_KEY_ID KEYID Key has a specific revoker

KEY_HAS_ADK_KEY_ID KEYID Key has a specific ADK

KEY_IS_SIGNED_BY KEYID Key is signed by a specific key

SUBKEY_ID KEYID MAK keyid (subkey)

SUBKEY_IS_REVOKED_BY KEYID Subkey is revoked by a specific key

QUOTED_STRING QUOTED_STRING Attribute value pair

The last item in the table, QUOTED_STRING, is not an actual keyword. Instead, when used as a keyword, it indicates that an
attribute name is to be matched. In this case, the type is the value to be used for comparison.

Example Searches
Following are some example searches. The text shown would be entered on the
command line as the search string.

For Linux and Mac OSX
To match an object by UUID:

 pgp --search-mak 'EQ(UUID, "9ac0e652-5690-474c-ad34-898169346bcd")' --usp-
server universal.example.com --auth-username acameron --auth-passphrase
"bilbo42_baggins99"

To match an object by name:

 pgp --search-mak 'CI(NAME, "Test MAK")' --usp-server universal.example.com --
auth-username acameron --auth-passphrase "bilbo42_baggins99"

To match an object by attribute value:

 pgp --search-consumer 'EQ("Nickname", "Hobbit")' --usp-server
universal.example.com --auth-username acameron --auth-passphrase
"bilbo42_baggins99"

To match an object using a conjunction:

 pgp --search-mak 'AND(CI(NAME, "Test MAK"),LT(KEY_CREATION,2008-01-
01T00:00:00Z))' --usp-server universal.example.com --auth-username acameron --
auth-passphrase "bilbo42_baggins99"

For Windows
These examples can also be used Linux and Mac OSX systems.

To match an object by UUID:

 pgp --search-mak "EQ(UUID, \"9ac0e652-5690-474c-ad34-898169346bcd\")" --
usp-server universal.example.com--auth-username acameron --auth-passphrase
"bilbo42_baggins99"

To match an object by name:

Searching for Data on a PGP KMS

More About Types
251

 pgp --search-mak "CI(NAME, \"Test MAK\")" --usp-server universal.example.com -
-auth-username acameron --auth-passphrase "bilbo42_baggins99"

To match an object by attribute value:

 pgp --search-consumer "EQ(\"Nickname\", \"Hobbit\")" --usp-server
universal.example.com --auth-username acameron --auth-passphrase
"bilbo42_baggins99"

To match an object using a conjunction:

 pgp --search-mak "AND(CI(NAME, \"Test MAK\"),LT(KEY_CREATION,2008-01-
01T00:00:00Z))" --usp-server universal.example.com --auth-username acameron -
-auth-passphrase "bilbo42_baggins99"

More About Types
Some types require special formatting beyond what is shown in the Keyword Listing.

Time Fields
Time fields represent the date and time, per RFC-8601. You must specify time using
UTC ().

The format of the date/time string is:

YYYY-MM-DDTHH:MM:SSZ

Where:

 YYYY is the year, in four digits.

 MM is the month, in two digits (with leading zero where necessary).

 DD is the day, in two digits (with leading zero where necessary).

 T indicates that a specific time follows.

 HH is the hour, in two digits (with leading zero where necessary).

 MM is minutes, in two digits (with leading zero where necessary).

 SS is seconds, in two digits (with leading zero where necessary).

 Z indicates a time zone.

Boolean Values
Boolean values are defined with simple strings.

The only two allowed Boolean values are:

 True means true.

 False means false.

252 Searching for Data on a PGP KMS

More About Types

Open PGP Algorithms
Open PGP algorithms are represented with common string abbreviations.

Allowed values are:

 RSA is the RSA algorithm.

 DSA is the digital signature algorithm (used with DH/DSS keys).

 DH is the Diffie-Hellman algorithm (used with DH/DSS keys).

Open PGP Key Usage Flags
Open PGP key usage flags are specified by the names of the flags.

Allowed values are:

 ENCRYPT for encrypt storage and communications.

 ENCRYPT_STORAGE for encrypt storage only.

 ENCRYPT_COMMUNICATIONS for encrypt communications only.

 SIGN for sign messages and user IDs.

 SIGN_MESSAGES for sign messages only.

 SIGN_USER_IDS for sign user IDs only.

 ENCRYPT_AND_SIGN for all encrypt and sign modes.

 PRIVATE_SHARED for a private key that is shared.

 PRIVATE_SPLIT for a private key that has been split.

 PRODUCT_NETSHARE for a PGP NetShare product.

 PRODUCT_WDE for a PGP WDE product.

 PRODUCT_ZIP for a PGP Zip product.

 PRODUCT_MESSAGING for a PGP Messaging product.

 PRODUCT_ALL for all products defined.

 PRODUCT_NONE for no products defined.

Key Modes
Key modes are defined by their abbreviations.

Allowed values are:

 SKM is server key mode. The PGP KMS server performs all cryptography on its
host computer. Additionally, it manages the private key.

 CKM is client key mode. PGP Command Line performs all cryptography on its host
computer. Additionally the private key resides on the host comptuer.

Searching for Data on a PGP KMS

More About Types
253

 GKM is guarded key mode. The client computer handles all cryptography. An
encrypted copy of the private key is stored on the PGP KMS server. The key is
encrypted to the user’s passphrase.

 SCKM is server/client key mode. The PGP KMS server performs all cryptography
on its host computer. Additionally, an unencrypted copy of the encryption subkey
is stored on the PGP KMS server, while the signing subkey is held only on the
computer on hosting PGP KMS server. All other keys reside on the client
computer.

This section provides information on how to use PGP Command Line to create a
Certificate Signing Request (CSR).

In This Chapter

About CSRs ...255

Creating a CSR using PGP Command Line ..256

About CSRs
A CSR is a request sent to a Certificate Authority (CA) from a user or device asking for a
digital certificate to be issued to them. A CSR includes three things:

 The name of the entity (user or device) for which the certificate is being requested,
called the distinguished name.

 The public key portion of a keypair (the private key portion is always kept private).

 Other information the user or device wants to be included in the certificate, called
attributes.

The CA examines the information in the CSR and, if it can verify the information, it
issues the certificate, thus binding the identify information to the public key (that is,
the CA is saying that it verifies that the specified public key belongs to the specified
identity). The certificate is returned to the user or device the requested it; it is used to
verify to third parties that the public key specified in the certificate belongs to the
identity specified in the certificate.

PGP Command Line lets you create a PKCS#10-compliant CSR that can be sent to a PGP
Key Management Server or to any CA that accepts PKCS#10-compliant CSRs.

CSRs created by PGP Command Line can be sent directly to a PGP Key Management
Server (by specifying the server using --usp-server), to a PKCS#10 file (by specifying
the filename using --output), or to stdout.

Attributes that were supported in PGP Command Line Version 10.1 and previous were:

 City

 Common name

 Contact email address

 Country

 Organization

 Organizational Unit

State Attributes added in PGP Command Line Version 10.2:

C Creating a Certificate Signing Request

256 Creating a Certificate Signing Request

Creating a CSR using PGP Command Line

 Subject alternative name. Email, DNS, directory (binary DER of name), URI
(string), IP address, registered ID (as dotted OID), other (binary DER of
OtherName), or unrecognized.

 Key usage. Digital-signature, non-repudiation, key-encipherment, data-
encipherment, key-agreement, key-cert-sign, crl-sign, encipher-only, decipher-
only.

 Extended key usage. Explicit object identifier has to be given.

 Basic constraint. CA or path length (pathlen).

Creating a CSR using PGP Command Line
Use the --export command to create a CSR.

The usage format is:

pgp --export <publickey> --export-format csr --passphrase
<passphrase> --city <city> --common-name <commonname> --
contact-email <emailaddr> --country <countrycode> --
organization <org> --organizational-unit (orgdept> --state
<state> --subject-alternative-name <subaltname> --key-usage
<keyusage> --extended-key-usage <exkeyusage> --basic-
constraint <basiccon>

Where:

 --export is the command to export an object.

<publickey> specifies a public key to be exported.

 --export-format specifies the format of the public key being exported.

<csr> specifies that a CSR is being created.

 --passphrase is the command to a passphrase; in the case of a CSR, this is
the passphrase to the private key of the public key specified in --export. It
will be used to sign the CSR before it is sent to the CA.

<passphrase> is the passphrase to the private key of the public key being
exported.

 --city is the command to specify the city where your organization is
located.

<city> specifies the city.

 --common-name is the command to specify the name of the item for which
the CSR is being requested. This could be a device, an individual, or a
website, for example.

<commonname> is the name of the item.

 --contact-email is the command to specify a contact email address.

<emailaddr> is the email address.

 --country is the command to specify the country your organization is in.

<countrycode> is the two-digit ISO country code.

Creating a Certificate Signing Request

Creating a CSR using PGP Command Line
257

 --organization is the command to specify the name of your
organization.

<org> is the name of your organization.

 --organizational-unit is the command to specify a part of your
organization; a department name, for example.

<orgdept> is the part of your organization.

 --state is the command to specify the state or locality where your
organization is located.

<state> is the state or locality. Do not abbreviate.

 --subject-alternative-name is the command to specify an alternative
name for the subject in the certificate request.

<subaltname> is the alternative name.

 --key-usage is the command to specify what the key on the certificate can
be used for.

<keyusage> is one of the supported key usages.

 --extended-key-usage is the command to specify an extended key usage
option.

<exkeyusage> is the explicit object identifier of the extended key usage
option.

 --basic-constraint is the command to specify that the certificate being
requested can only be used in certain ways.

<basiccon> is the supported basic constraint and an appropriate value.
ca=true or pathlen=2, for example.

Examples:

pgp --export jmedina --export-format csr --passphrase
"med886#fortyniner*" --common-name "*.example.com" --
organization "Example Corporation" --organizational-unit
"Engineering" --city "Palo Alto" --state "CA" --country "US" -
-contact-email "jmedina@example.com" --output "example.csr"

In this example, Jose Medina of Example Corp. is creating a CSR to bind his key to
his organization's web servers using just the required attributes. The CSR is being
output to a file named example.csr.

pgp --export jmedina --export-format csr --passphrase
"med886#fortyniner*" --common-name "*.example.com" --
organization "Example Corporation" --organizational-unit
"Engineering" --city "Palo Alto" --state "CA" --country "US" -
-contact-email "jmedina@example.com" --subject-alternative-name
"webserver.example.com" --subject-alternative-name
"192.168.44.112" --key-usage "key-encipherment" --key-usage
"digital-signature" --extended-key-usage "1.2.3.4" --extended-
key-usage "4.3.2.1" --basic-constraint ca=true --basic-
constraint pathlen=1 --usp-server "keys.example.com"

In this example, Jose Medina of Example Corp. is creating a CSR to bind his key to
his organization's web server using the required attributes and some additional
attributes. The CSR is being sent directly to his organization's PGP KMS,
keys.example.com.

mailto:jmedina@example.com
mailto:jmedina@example.com

258 Creating a Certificate Signing Request

Creating a CSR using PGP Command Line

This section lists and describes the numeric codes and descriptive messages generated
by PGP Command Line.

A code of 0 (zero) means the operation was concluded successfully. The accompanying
message provides additional information.

A numeric code other than zero means the operation did not conclude successfully. The
accompanying message provides additional information.

Note: Some non-zero status codes are informational and do not indicate an error
condition. Exit codes always indicate an error.

Status messages use the form:

<source>,<operation> (<code>,<description>)

For example, in the case of a file that is not found:

file.txt,encrypt (3001,input file not found)

In This Chapter

Messages Without Codes ... 259

Messages With Codes ... 260

Exit Codes... 280

Messages Without Codes

Message Description

unknown An unknown error occurred.

unknown description An error with an unknown description occurred.

unknown err [number] An error with an unknown error number occurred.

unknown time zone PGP Command Line is unable to determine the current
time zone.

PGP SDK running in local mode. The PGP SDK is running in Local Mode.

PGP SDK running in forced local mode. The PGP SDK is running in Forced Local Mode.

PGP SDK running in FIPS mode. The PGP SDK is running in FIPS Mode.

FIPS mode initialization failed. FIPS Mode failed to initialize.

Unable to determine current time zone. PGP Command Line was unable to determine the current
time zone from the host computer.

D Codes and Messages

260 Codes and Messages

Messages With Codes

Message Description

unknown An unknown error occurred.

operation cancelled The operation was cancelled.

no application data directory found PGP Command Line was unable to locate its application
data directory.

no personal documents directory found PGP Command Line was unable to locate its personal
documents directory.

Messages With Codes

Parser

Code Message Description

9000 invalid flag "flag" An invalid flag was used.

9001 no match for enum argument
"argument"

There was no match for the listed enumeration
argument.

9002 invalid primary operation The primary operation is invalid.

9003 you cannot specify multiple
operations

Multiple operations cannot be specified.

9004 preferred cipher list contains
gaps or duplicates

The list of preferred ciphers includes gaps or
duplicate ciphers.

9005 Blowfish cipher has been
deprecated

The Blowfish cipher has been deprecated; you cannot
select. If a key already uses it, however, PGP
Command Line will work with it.

9006 no preferred ciphers specified No preferred ciphers have been specified.

9007 preferred cipher list contains
overlaps

The list of preferred ciphers has overlaps.

9008 no preferred cipher specified A preferred cipher was not specified.

9009 invalid cipher options specified Invalid cipher options were specified.

9010 unable remove the only
preferred cipher

PGP Command Line is unable to remove the only
preferred cipher.

9011 preferred compression list
contains overlaps

The list of preferred compression algorithms has
overlaps.

9012 preferred compression list
contains gaps or duplicates

The list of preferred compression algorithms has
gaps or overlaps.

Codes and Messages

Messages With Codes
261

Code Message Description

9013 no preferred compression
algorithms specified

No preferred compression algorithms have been
specified.

9014 no preferred compression
algorithm specified

A preferred compression algorithm was not
specified.

9015 invalid compression algorithm
options specified

An invalid compression algorithm option was
specified.

9016 unable remove the only
preferred compression algorithm

PGP Command Line is unable to remove the only
preferred compression algorithm.

9017 invalid file descriptor An invalid file descriptor was used.

9018 missing argument for option
"option"

An argument is missing for the specified option.

Keyrings

Code Message Description

1001 could not open keyrings, file not
found

PGP Command Line could not open the keyring file
because it was not found.

1002 could not open keyrings, file
locked

PGP Command Line could not open the keyring file
because it is locked.

1003 default key does not exist The default key does not exist.

1004 too many matches for default
key

There were too many matches for the default key.

1005 invalid default key specified An invalid default key was specified.

1006 public keyring An informational message that displays the location
of the public keyring file. Displays in verbose mode
only.

1007 private keyring An informational message that displays the location
of the private keyring file. Displays in verbose mode
only.

1008 keyring already exists The keyring already exists.

1009 unable to open prefs file PGP Command Line cannot open the preferences file.

262 Codes and Messages

Messages With Codes

Wipe

Code Message Description

0 file wiped successfully The file was successfully wiped.

0 file removed successfully The file was successfully removed.

0 directory removed successfully The directory was successfully removed.

0 symbolic link removed
successfully

The symbolic link was successfully removed.

0 directory wiped successfully The directory was successfully wiped.

0 symbolic link wiped successfully The symbolic link was wiped successfully.

1010 invalid number of wipe passes
specified

An invalid number of wipe passes was specified.

1011 invalid file permissions The wipe failed because of invalid file permissions.

1013 wipe failed The wipe failed.

1014 file locked The wipe failed because the file was locked.

Encrypt

Code Message Description

1030 key added to recipient list The key was added to the recipient list.

1031 default key not suitable for
encryption

The default key is not suitable for encryption.

1032 text mode is not applicable in
archive mode

Text mode is not applicable in PGP Archive mode.

Sign

Code Message Description

1050 key added as signer The key was added as a signer.

1051 default key added as signer The default key was added as a signer.

1052 no signing key specified No signing key was specified.

Codes and Messages

Messages With Codes
263

Code Message Description

1053 signing key not found The signing key was not found.

1054 too many matches for signing
key

There were too many matches to the signing key.

1055 SDA is not applicable when
signing

A self-decrypting archive (SDA) is not applicable
when signing.

Decrypt

Code Message Description

0 SDA decoded successfully The SDA was successfully decoded.

0 packet dump complete The packet dump is complete.

1080 no private key could be found for
decryption

No private key could be found to use for decryption.

1081 detached signature not found The detached signature was not found.

1082 detached signature target file Displays the file PGP Command Line believes is the
target file when verifying or decrypting a detached
signature.

1083 pass through is not applicable
for archive data

Passthrough is not applicable for archive data.

1084 signature date precedes key
creation date

The signature date precedes the key creation date.

1085 invalid SDA The SDA you are trying to decrypt is invalid.

1086 only one passphrase allowed You can only enter one passphrase when decrypting.

1087 SDA is not encrypted to any
ADKs

The SDA is not encrypted to the ADK you specified.

1088 PGP self-decrypting archive The file you are trying to decrypt is a PGP SDA.

Speed Test

Code Message Description

0 speed test successful The speed test was successful.

264 Codes and Messages

Messages With Codes

Key edit

Code Message Description

0 key imported as The key was imported as specified.

0 X.509 certificate imported to The X.509 certificate was imported as specified.

0 key exported to The key was exported as specified.

0 key successfully generated The key was generated.

0 subkey successfully generated The subkey was generated.

0 key successfully removed The key was removed.

0 key successfully revoked The key was s revoked.

0 subkey successfully removed The subkey was removed.

0 subkey successfully revoked The subkey was revoked.

0 certified user ID The user ID was certified.

0 removed signature by user The signature of the specified user was removed.

0 revoked signature by user The signature of the specified user was revoked.

0 trust set successfully Trust was successfully set.

0 key successfully enabled The key was enabled.

0 key successfully disabled The key was disabled.

0 user ID added successfully The user ID was added.

0 successfully removed The specified item was removed.

0 photo ID added successfully The photo ID was added.

0 successfully removed photo ID The photo ID was removed.

0 photo ID exported to The photo ID was exported as specified.

0 new primary user ID The specified user ID is now primary.

0 revokers successfully updated Revokers were updated.

0 ADKs successfully updated ADKs were updated.

0 verify complete The verify is complete.

0 expiration date successfully
updated

Expiration date was updated.

0 key passphrase changed The key passphrase was changed.

0 subkey passphrase changed The subkey passphrase was changed.

Codes and Messages

Messages With Codes
265

Code Message Description

0 key passphrase cached The key passphrase was cached.

0 preferred keyserver updated The preferred keyserver was updated.

0 preferred keyserver removed The preferred keyserver was removed.

0 preferred ciphers updated The preferred ciphers were updated.

0 preferred compression
algorithms updated

The preferred compression algorithms were
updated.

0 key split successfully The key was split.

0 key joined successfully The key was joined.

0 new primary user ID numbers New primary user ID numbers have been created.

0 flags updated successfully Flags were successfully updated.

0 shares successfully sent Shares were successfully sent.

0 preferred hashes updated Preferred hashes were successfully updated.

0 notation packet removed A notation packet was removed.

0 removed notation packets Multiple notation packets were removed.

0 notation packet added A notation packet was added.

0 notation packet updated A notation packet was updated.

0 preferred email encodings
updated

Preferred email encodings were updated.

2000 editing key Displays the key found for the edit operation.
Displays in verbose mode only.

2001 you must specify a key to edit A key to edit must be specified.

2002 key to edit not found The key to edit was not found.

2003 too many matches for key to edit There were too many matches for the key to edit.

2004 filter didn’t match any keys The filter didn’t match any keys.

2005 cannot edit key The key cannot be edited.

2020 key already enabled The key is already enabled.

2021 key already disabled The key is already disabled.

2022 unable to remove the last user ID PGP Command Line is unable to remove the last user
ID.

2023 cannot set trust on invalid key PGP Command Line cannot set trust on an invalid
key.

2024 key pair trust setting can only be
never or implicit

The trust setting on the key pair can only be Never
or Implicit.

266 Codes and Messages

Messages With Codes

Code Message Description

2025 public key trust setting cannot
be implicit

The trust setting on a public key cannot be Implicit.

2026 no revoker specified No revoker was specified.

2027 revoker not found No revoker was found.

2028 too many revokers found Too many revokers were found.

2029 revoker found Displays the revoker found when adding a revoker to
a key. Displays in verbose mode only.

2030 no ADK specified No ADK (additional decryption key) was specified.

2031 ADK not found The specified ADK was not found.

2032 too many ADKs found Too many ADKs were found.

2033 ADK found Displays the ADK found when adding an ADK to a
key. Displays in verbose mode only.

2034 preferred keyserver not specified A preferred keyserver was not specified.

2035 invalid preferred keyserver There is a formatting error on the preferred
keyserver.

2036 certification exists for user ID Certification exists for the specified user ID.

2037 unwilling to remove key pair The key pair was not removed. Use --remove-key-
pair to remove a key pair.

2038 no private key found to remove A request was made to remove a key pair, but a
public key was specified.

2039 no private key found to export No private key was found to export.

2040 cannot revoke key, no private
key present

No private key is present, so the key cannot be
revoked.

2041 cannot remove a self signature The self-signature cannot be removed.

2042 cannot remove photo ID A photo ID cannot be removed with --remove-userid.
Use --remove-photoid.

2043 creation cannot be specified When trying to specify an expiration date, a creation
date was also specified.

2044 expiration in date format is
required

An expiration date in date format is required.

2045 trust not specified Trust was not specified.

2046 photo ID too large The photo ID is too large.

2047 photo ID format invalid The format of the photo ID is invalid.

2048 too many photo IDs Too many photo IDs specified.

Codes and Messages

Messages With Codes
267

Code Message Description

2049 too many keys found Too many keys were found.

2050 passphrase cache disabled The passphrase cache is disabled.

2051 revoker already present The specified revoker is already present on the key,
and thus cannot be added.

2052 ADK already present The ADK is already present on the key, and thus
cannot be added.

2053 unable to set export passphrase PGP Command Line is unable to set an export
passphrase.

2054 too many matches for X.509
certificate

There are too many matches for the X.509
certificate.

2055 X.509 certificate not found The X.509 certificate was not found.

2056 one or more attribute value pairs
are required

One or more attribute value paris are required.

2057 only one X.509 certificate can be
imported at a time

Only one X.509 certificate can be imported at one
time.

2058 key does not match X.509
certificate

The key does not match the X.509 certificate.

2059 error decoding X.509 certificate An error occurred during decoding of the X.509
certificate.

2060 no shares specified No shares were specified.

2061 invalid share One of the specified shares is invalid.

2062 threshold must be between 1 and
the total number of shares
inclusive

The threshold setting must be between 1 and the
total number of shares being created.

2063 there must be at least 2
recipients

There must be at least the specified number of
recipients when splitting a key.

2064 split key cannot be a share
recipient

The key being split cannot be its own recipient.

2065 share file Displays the share file name for every recipient of a
share when the key is split. Informational.

2066 there can only be X recipients There can only be the specified number of recipients.

2067 there can only be 255 total
shares

There can be only be 255 total shares when splitting
a key.

2068 this key is already a share
recipient

The specified key is already a share recipient.

2069 this user is already a share
recipient

The specified user is already a share recipient.

268 Codes and Messages

Messages With Codes

Code Message Description

2070 could not open share file PGP Command Line could not open the share file.

2071 share file key ID does not match
split key

The key ID of the share file does not match that of
the split key.

2072 share file threshold does not
match split key

The threshold of the share file does not match that
of the split key.

2073 share file owner not found The key the share file is encrypted to was not found.
This error cannot happen to conventionally
encrypted shares.

2074 not enough shares collected for
split key

Not enough shares were collected to reconstitute the
split key.

2075 invalid passphrase for user X Y An invalid passphrase was entered for the specified
share file.

2076 invalid passphrase for X An invalid passphrase was entered for a
conventionally encrypted share file.

2077 duplicate shares detected Duplicate share files were detected on key join.

2078 non-standard user ID A non-standard user ID was detected. User IDs not in
the form “common name
<contact>” generate a warning.

2079 the primary user ID cannot be a
photo ID

You cannot specify a photo ID as the primary user ID
for a key.

2080 unknown input format PGP Command Line encountered unknown input
format

2081 no key flag specified No key flag was specified.

2082 subkeys do not support
keyserver preferences

Subkeys do not support keyserver preferences.

2083 subkeys do not support feature
flags

Subkeys do not support feature flags.

2084 only one share can be sent at a
time

You can only send one share at a time.

2085 connected to share server You are connect to a share server.

2086 invalid SKEP timeout PGP Command Line encountered an invalid SKEP
timeout.

2087 network share key ID does not
match split key

The network share key ID does not match that of the
split key.

2088 network share threshold does
not match split key

The network share threshold does not match that of
the split key.

2089 timeout waiting for network
shares

A timeout was exceeded waiting for network shares.

2090 no share server specified No share server was specified.

Codes and Messages

Messages With Codes
269

Code Message Description

2091 connected to share client You are connected to a share client.

2092 SKEP authenticated with user x SKEP authenticated with the specified user.

2093 shares received, x The specified number of shares were received.

2094 this key has NOT been
permanently revoked

The specified key has not been permanently revoked.

2095 non-standard user ID PGP Command Line encountered a non-standard
user ID.

2096 the MDC flag cannot be cleared PGP Command Line cannot clear an MDC flag.

Keyserver

Code Message Description

0 key imported as X The key was imported as specified.

0 key uploaded to X The key was uploaded to the specified keyserver .

0 key removed from X The key was removed from the specified keyserver.

0 key disabled on X The key was disabled on the specified keyserver.

2500 no keyserver specified No keyserver was specified.

2501 invalid keyserver specified An error was detected on the specified keyserver.

2502 keyserver operation timed out The keyserver operation timed out.

2503 invalid keyserver timeout value An invalid keyserver timeout value was encountered.

2504 successful search Displays the keyserver that matched the search.
Informational.

2505 keyserver error: X The specified keyserver error was encountered.

2506 skipping invalid preferred
keyserver

The preferred keyserver is invalid, so it was skipped.

2507 key not found on any keyserver The specified key was not found on any keyserver.

2508 too many matches found The search timed out while still receiving results
from the keyserver.

270 Codes and Messages

Messages With Codes

Code Message Description

2509 keyserver error Lists the keyserver that caused the error.

2510 unsuccessful search The search was unsuccessful; no keys matched the
search criteria.

Key Reconstruction

Code Message Description

0 reconstruction data sent
successfully

The key reconstruction data was sent successfully.

0 reconstruction questions
received successfully

The key reconstruction questions were received
successfully.

0 key reconstructed successfully The key was reconstructed.

2600 no reconstruction server found
for this key

There is no reconstruction server associated with the
specified key.

2601 reconstruction server on port x There is no reconstruction server on the specified
port.

2602 five questions must be specified
for key reconstruction

You must specify five questions to set up key
reconstruction.

2603 empty reconstruction question Not all key reconstruction questions were submitted.

2604 five answers must be specified
for key reconstruction

Not all key reconstruction answers were submitted.

2605 empty reconstruction answer A key reconstruction answer held no data.

2606 reconstruction question too long A key reconstruction question was too long.

2607 reconstruction answer too long A key reconstruction answer was too long.

2608 reconstruction server name too
long

The key reconstruction server name was too long.

2609 invalid reconstruction server An invalid reconstruction server was specified.

2610 key reconstruction data not
found on server

No key reconstruction data was found on the
specified server.

2611 key reconstruction answers are
not valid with this key

The specified key reconstruction answers aren’t
valid for the specified key.

2612 invalid key reconstruction data The submitted key reconstruction data is invalid.

Codes and Messages

Messages With Codes
271

Licensing

Code Message Description

0 license authorized Your PGP Command Line license has been
authorized.

0 license recovery email requested A PGP Command Line license recovery email was
requested.

2700 no license name specified No Name was specified in the license request.

2701 no license email address
specified

No Email Address was specified in the license
request.

2702 no license organization specified No Organization was specified in the license request.

2703 no license number specified No license number was specified in the license
request.

2704 invalid license number An invalid license number was submitted.

2705 this license is for a different PGP
product

The submitted license is for a different product line
from PGP Corporation.

2706 PGP Command Line already has
a license

This copy of PGP Command Line is already licensed.

2707 invalid license authorization An invalid license authorization was submitted.

2708 the current license is expired -
please contact support

Your PGP Command Line license has expired; please
contact PGP Corporation.

2709 license authorization failed The license authorization failed. Try again later.

2710 days left in current license, x The specified number of days are left on the current
license.

2711 could not store license
information

PGP Command Line could not store the license
information.

2712 invalid license The PGP Command Line license is invalid.

2713 no license has been entered No license was entered.

2714 encrypt / sign not allowed with
this license

Encrypting and signing are not supported by your
current license.

2715 decrypt / verify not allowed with
this license

Decrypting and verifying are not supported by your
current license.

2716 number of CPUs not allowed
with the current license

The number of CPUs on the computer hosting PGP
Command Line is not supported by the current
license.

272 Codes and Messages

Messages With Codes

PGP Universal Server

Code Message Description

2800 could not connect to server PGP Command Line could not connect to the
specified PGP Universal Server.

2801 server authentication failed PGP Command Line could not authenticate to the
specified PGP Universal Server.

2802 server responded with request
failed

The specified PGP Universal Server responded that
the request failed.

General

Code Message Description

0 output file X The specified file was output.

0 output symbolic link X The specified symbolic link was output.

0 output of archive files successful The archive files were output.

0 file created successfully The file was created.

0 directory created successfully The directory was created.

0 cache purge successful The cache was purged/

0 created symbolic link to X A symbolic link to the specified item was created.

3000 no input file specified No input file was specified.

3001 input file not found The input file was not found.

3002 invalid argument for wipe input
passes

PGP Command Line encountered an invalid
argument for wipe input passes.

3003 invalid argument for wipe temp
passes

PGP Command Line encountered an invalid
argument for wipe temp passes.

3004 stdin cannot be used with input
files

Standard input/output (stdin) cannot be used with
input files.

3005 no recipients specified No recipients were specified.

3006 ADK added to recipients The ADK was added to the recipients. Informational,
not an error.

3007 ADK not found The ADK was not found. Indicates an error; based on
the setting of --enforce-adk.

3008 skipping ADK The ADK was not enforced.

Codes and Messages

Messages With Codes
273

Code Message Description

3009 ADK not found The ADK was not found. Indicates a warning; based
on the setting of --enforce-adk.

3010 no symmetric passphrase
specified

No symmetric passphrase was specified.

3011 invalid passphrase specified An invalid passphrase was specified.

3012 could not create output file PGP Command Line could not create the output file.

3083 could not create output file X PGP Command Line could not create the specified
output file.

3013 no keys found No keys were found.

3014 no keys specified No keys were specified.

3015 failed with error X The operation failed with the specified error
number; error text not available.

3090 operation failed: X The operation failed with the specified error text.

3092 operation warning: X Operation encountered the specified warning
condition.

3016 invalid user ID specified An invalid user ID was specified; it cannot be used.

3017 user ID already exists The specified user ID already exists.

3018 user ID not found The specified user ID not found.

3019 file operation failed The file operation failed.

3020 photo ID not found The specified photo ID was not found.

3021 revokers are not supported with
this key

Revokers are not supported with this key.

3022 ADKs are not supported with
this key

ADKs are not supported with this key.

3023 key expired The key is expired.

3024 key revoked The key is revoked.

3025 key disabled The key is disabled.

3026 key is not paired The key is not paired.

3027 file locked The file is locked.

3028 multiple inputs cannot be sent to
a single output file

Multiple inputs cannot be sent to a single output file.

3029 no output specified No output was specified.

3030 cannot output to a directory
when reading from stdin

PGP Command Line cannot output to a directory
when reading from standard input.

274 Codes and Messages

Messages With Codes

Code Message Description

3031 input does not contain PGP data The input does not contain any PGP data.

3032 input contains unknown data The input contains unknown data.

3033 no passphrase specified No passphrase was specified.

3034 file is marked for your eyes only,
ignoring output

The specified file is marked “eyes only;” the output
is being ignored.

3035 good signature The signature is good.

3036 bad signature The signature is bad.

3037 cannot verify signature PGP Command Line cannot verify the signature
because the signing key was not found on the local
keyring.

3038 signing key [key ID] [primary
user ID]

Informational message when verifying the signature
on a key; displays the key ID and primary user ID of
the key used to verify with.

3039 signing key [key ID] Informational message when verifying the signature
on a key; displays the key ID of the key used to verify
with.

3040 signature created [date] Informational message that shows the date the
signature was created.

3041 output not applicable The --output option is not applicable; when doing a
verify, for example.

3042 suggested output file name X The suggested output filename is as specified.

3043 data is marked for your eyes only Data is marked “eyes only.”

3044 subkey ID X belongs to Y If the owner of the subkey is available, it is
displayed; otherwise, just the subkey is displayed.

3093 data is encrypted to subkey ID X The data is encrypted to the specified subkey ID.

3045 data is conventionally encrypted The data is conventionally encrypted.

3046 preferred keyservers are not
supported with this key

Preferred keyservers are not supported with this
key; they are only supported on RSA and DH/DSS v4
keys.

3047 no new passphrase specified No new passphrase was specified.

3048 data encrypted with cipher X The data is encrypted with the specified cipher.

3049 key unsuitable for signing The key is unsuitable for signing.

3050 too many user IDs found Too many user IDs were found.

Codes and Messages

Messages With Codes
275

Code Message Description

3051 trust level for meta-introducers
must be from 2 to 8 inclusive

The trust level you specify for meta-introducers
must be from 2 to 8.

3052 trust level for trusted-
introducers must be from 1 to 8
inclusive

The trust level you specify for trusted-introducers
must be from 1 to 8.

3053 too many signatures found Too many signatures were found.

3054 no signatures found No signatures were found.

3055 data contains the key X Data contains the specified key.

3056 key import off, skipping key X Error occurred during import; the import failed.

3057 key is not revocable You cannot revoke the key.

3058 subkey not found The subkey was not found.

3059 subkeys are not supported with
this key

The specified key does not support subkeys.

3060 no subkey specified No subkey was specified.

3061 data not encrypted The data is not encrypted.

3062 could not create file, X PGP Command Line could not create a file because of
the specified error.

3063 key unable to encrypt The key is unable to encrypt.

3064 key invalid The key is invalid.

3079 signing key invalid The signing key is invalid.

3065 key cannot be an ADK The key cannot be an ADK.

3066 key cannot be a designated
revoker

The key cannot be a designated revoker.

3067 key is axiomatic The key is axiomatic. You cannot disable a key pair
until you set trust to Never.

3068 invalid key type The key type is invalid.

3069 RSA legacy key size must be
between A and Z

The key size of RSA Legacy keys must be between
the specified values.

3070 RSA legacy key type does not
support signing bits

The RSA Legacy key type does not support signing
bits.

3071 too many user IDs specified Too many user IDs specified.

3072 RSA key size must be between A
and Z

The key size of RSA keys must be between the
specified values.

3073 RSA signing key size must be
between A and Z

The signing key size of RSA keys must be between
the specified values.

276 Codes and Messages

Messages With Codes

Code Message Description

3074 DH key size must be between A
and Z

The key size of Diffie-Hellman keys must be between
the specified values.

3075 DH signing key size must be X The signing key size of Diffie-Hellman keys must be
the specified size.

3076 encryption key size cannot be
specified with sign only key type

Encryption key size cannot be specified with sign-
only key types.

3077 out of entropy PGP Command Line is out of entropy.

3078 could not create directory, X PGP Command Line could not create a directory,
because of the specified error.

3080 invalid index The index is invalid.

3082 invalid date The date is invalid.

3084 stdin not applicable Standard input/output is not applicable.

3085 no signature specified No signature was specified when matching
signatures on user IDs (not signature files).

3086 skipping directory The directory is being skipped.

3087 could not remove file, X PGP Command Line could not remove a file because
of the specified error.

3088 invalid passphrase cache
timeout

An invalid passphrase cache timeout was
encountered.

3089 preferred ciphers are not
supported with this key

The key does not support preferred ciphers.

3091 skipping non-regular file An irregular (device, fifo, and so on) file is being
skipped.

3100 signing key expired The signing key is expired.

3101 signing key revoked The signing key is revoked.

3102 signing key disabled The signing key is disabled.

3103 photo IDs are not supported with
this key

The key does not support photo IDs.

3104 could not read file PGP Command Line could not read the file.

3105 cipher not applicable The --cipher option is not applicable, not a specific
cipher.

3106 preferred compression
algorithms are not supported
with this key

The key does not support preferred compression
algorithms.

3107 compression algorithm not
applicable

The --compression-algorithm option is not
applicable, not a specific compression algorithm.

Codes and Messages

Messages With Codes
277

Code Message Description

3108 permission denied, force option
required

The --force option is required for this operation.

3109 output cannot be a directory, it
must be a file

The output cannot be a directory, it must be a file.

3110 archive imported X The specified archive was imported, where X is the
file or directory just added to the archive. This is a
progress message.

3111 data is a PGP archive The data is a PGP Archive.

3112 input does not contain PGP
archive data

The input does not contain PGP Archive data.

3113 data is armored The data is ASCII-armored.

3114 ADK not valid for use The ADK is not valid for use; it cannot encrypt (this
is an error message).

3115 ADK not valid for use The ADK is not valid for use; it cannot encrypt (this
is a warning message).

3116 invalid additional recipient The additional recipient is invalid.

3117 additional recipient not found The additional recipient was not found.

3118 X.509 operations require a single
key

The X.509 operation requires a single key.

3119 no local key for merge, skipping
key X Y

Because there was no local key for the merge, the
specified keys were skipped; depends on the setting
of manual import keys.

3120 local key exists, skipping key X Y The local key exists, but the specified keys are being
skipped; depends on the setting of manual import
keys.

3121 automatically imported key [key
ID] [primary user ID]

The specified keys were automatically imported.

3122 PGP Command Line Beta has
expired - please update to the
latest release

The Beta version of PGP Command Line that you are
using has expired. You need to get a more recent
version.

3123 could not remove directory, X PGP Command Line could not remove a directory
because of the specified error.

3124 permission denied Permission is denied.

3125 input is not a regular file The input is not a regular file.

3126 invalid input The input is invalid.

3127 private key is already split The private key is already split.

3128 output must be a directory The output must be a directory.

3129 path too long The path is too long.

278 Codes and Messages

Messages With Codes

Code Message Description

3130 could not create symbolic link, X PGP Command Line could not create a symbolic link
because of the specified error.

3131 multiple encrypted blocks found
in single input stream

Multiple encrypted blocks were encountered in a
single input stream.

3132 reconstructed split key
passphrase is invalid

The reconstructed split key passphrase is invalid.

3133 key unable to decrypt The key is unable to decrypt.

3134 reconstructed split key
passphrase is valid

The reconstructed split key passphrase is valid.

3135 master passphrase changed The master passphrase has changed.

3136 subkey passphrase changed The subkey passphrase has changed.

3137 eyes only option not specified,
discarding output

The output is being discarded because the --eyes-
only option was not specified.

3138 error opening console There was an error opening the console; for direct
writing (--eyes-only option).

3139 error writing to console There was an error writing to the console; for direct
writing (--eyes-only option).

3140 private key is not split The private key is not split.

3141 operation warning: Y The operation generated the specified warning.

3142 data is encrypted to key ID X Data is encrypted to an RSA Legacy key, which do
not have subkeys. Data is encrypted to the specified
key ID.

3143 key belongs to X Y Data is encrypted to an RSA Legacy key, which do
not have subkeys. Specified key ID is matched to the
specified primary user ID.

3144 data is encrypted to unknown ID
X

PGP Command Line could not find a key, so the
specified ID is unknown.

3145 invalid argument for wipe
overwrite passes

PGP Command Line encountered an invalid
argument for wipe overwrite passes.

3146 error [number] importing key X The specified error occurred; the specified key is
being imported.

3147 key pair import off, skipping key
x

The specified key was skipped because key pair
import is off.

3148 importing only public key x y Just the specified public keys are being imported.

3149 no target platform specified No target platform was specified.

3150 unknown file type PGP Command Line encountered an unknown file
type.

3151 only one input is allowed Only one input is allowed.

Codes and Messages

Messages With Codes
279

Code Message Description

3152 stdout not applicable Standard output is not applicable.

3153 connection failed The connection failed.

3154 invalid keyring cache timeout An invalid keyring cache timeout was specified.

3155 preferred hashes are not
supported with this key

Preferred hashes are not supported on the specified
key.

3156 hash not applicable The specified hash is not applicable.

3157 current local time x The current local time is as specified.

3158 current UTC time x The current UTC time is as specified.

3159 multiple revokers not allowed Multiple revokers are not allowed.

3160 root path not found in input
object

The object input did not include the root path.

3161 root path invalid with input
object

The object input does not supported a root path.

3162 no auth username specified No authorization username was specified.

3163 no auth passphrase specified No authentication passphrase was specified.

3164 only one notation value may be
specified

You can only specify one notation value.

3165 notation packet not found A notation packet could not be found.

3166 invalid notation packet search
parameters

There was an invalid notation packet in the search
parameters.

3167 invalid notation packet

3168 could not change owner, x The specified packet owner could not be changed.

3169 could not change permissions, x The specified permission could not be changed.

3170 signature hash x There’s a problem with the specified signature hash.

3171 libxml error - x, y A structured error has occurred.

3172 libxml error - x A generic error has occurred.

3173 libxml error - unknown An unknown error has occurred.

280 Codes and Messages

Exit Codes

Exit Codes
Exit codes are returned by PGP Command Line on exit from the application. Depending
on the shell or script being used, these exit codes may or may not be displayed on-
screen.

Code Message Description

0 Success PGP Command Line exited successfully.

64 Usage Parser error.

71 OSError Bad data was received from the operating system at
startup.

128 InternalError An internal error occurred.

129 InitFailed An initialization failure occurred on startup.

130 Interrupt A user interrupt occurred.

145 PurgeCache Error purging a cache: passphrase, keyring, or both.

146 CreateKeyrings Error creating keyring riles.

147 SpeedTest Error during a speed test operation.

160 Wipe Complete failure during a file wipe.

161 WipePartial Partial fail, partial success during a file wipe (one file
wiped, one not, for example).

162 Encode Complete failure during an encode.

163 EncodePartial Partial failure during an encode.

164 Decode Complete failure during a decode.

165 DecodePartial Partial failure during a decode.

210 KeyList Error during one of the key list operations.

220 Key Maintenance Error during key maintenance.

221 CheckSigs Error when checking signatures.

222 CheckUserIDs Error when checking user IDs.

230 KeyEdit Error during one of the key edit operations.

240 Keyserver Error during one of the keyserver operations.

245 License Error with supplied license.

250 BetaExpired Returned if the software is expired due to beta
timeout.

251 LicenseExpired License is expired.

Codes and Messages

Exit Codes
281

Code Message Description

255 Unknown An unknown error occurred.

This section lists some frequently asked questions about PGP Command Line and how it
is used.

In This Chapter

Key Used for Encryption.. 283

"Invalid" Keys .. 283

Maximum File Size ... 284

Programming and Scripting Languages.. 285

File Redirection ... 285

Protecting Passphrases.. 285

Key Used for Encryption
Q. How do I determine the key to which a file was encrypted?

A. Use the command --verify and the encrypted file name, such as:

pgp --verify report.pgp

You will get a report about the encryption subkey used to encrypt this file:

report.pgp:verify (3093:data is encrypted to subkey ID
0x894BA6DC)

report.pgp:verify (3044:subkey ID 0x894BA6DC belongs to
0x6245273E Bob Smith <bob@example.com>)

report.pgp:verify (3033:no passphrase specified)

"Invalid" Keys
Q. I imported my partner's public key to my keyring, but every time I encrypt to it, PGP
Command Line gives me an error “3064: key invalid”! What does this mean?

A. The problem is that a key is not considered valid unless it is either signed by you or
someone you trust, which ensures that you're encrypting only to public key that has
been confirmed to belong to the person with whom you wish to communicate.

You can simply sign the public key with your private key. Here is the whole key import
and signing procedure:

1 Import the public key. If the public key is in a file called Alice.asc, use:

pgp --import "Alice Cameron.asc"

E Frequently Asked Questions

mailto:bob@example.com

284 Frequently Asked Questions

Maximum File Size

Alice Cameron.asc:import key (0:key imported as 0xD0EA20A7
Alice Cameron)

2 View the public key’s fingerprint. If this is Bob’s public key, use this command:

pgp --fingerprint "Alice Cameron"

Alice Cameron <alice@example.com>

 6DE3 5CB2 DF01 8CF2 5569 971E A9B1 D272 3E43 9B98

1 key found

You can also use the biometric option to view the key:

pgp --fingerprint "Alice Cameron" --biometric

Alice Cameron <alice@example.com>

 goggles torpedo escape pioneer

 talon adviser offload vagabond

 edict guitarist preshrunk Burlington

 revenge photograph standard holiness

 concert decimal puppy narrative

1 key found

Now call Alice and verify that this is the correct public key by having her read her
key's fingerprint. If the fingerprints match, then you know you have the correct
public key.

3 Sign the public key. If the public key is for a user called Alice, and your local
private key is for a user called Bob, use:

pgp --sign-key "alice@example.com" --signer Smith --passphrase
"B0b*sm1t4"

0x3E439B98:sign key (0:certified user ID Alice Cameron
<alice@example.com>)

Alice’s public key will now be valid for encryption operations.

Note that larger organizations normally establish a corporate key, sign all partner
keys, and store them in a PGP keyserver. Individual Desktop or PGP Command
Line installations then need only to validate and trust the corporate key. Because
you trust the corporate key, PGP software knows that you also trust any key
signed by the corporate key, meaning any partner key signed by the corporate key
is automatically considered valid.

Maximum File Size
Q. What is the maximum size of file that PGP Command Line can encrypt?

A. There is no hard limit on the size of file you can encrypt using Command Line, where
blocks of data are read from the input file, encrypted, and written to a temporary file.
Once the encryption is complete, the temporary file is renamed to the proper output
destination filename. Therefore, the output file is not loaded into memory at once and
encrypted there before being written out to the output file.

mailto:alice@example.com
mailto:alice@example.com
mailto:alice@example.com
mailto:alice@example.com

Frequently Asked Questions

Programming and Scripting Languages
285

There are some operating system and function-specific caveats:

 On Windows, AIX, and HP-UX the standard input stream works differently and
PGP Command Line actually reads the whole file into memory: the user will be
limited by the memory of the system and the swap file size. Hence, it's preferable
not to use standard input as the source of input for the encryption if you're
encrypting large files.

 Archiving: when using the --archive option, PGP Command Line first creates a
compressed tar file of the input files/directories, and then encrypts that tar file.
Therefore, you need to have available on the working drive two to three times the
size of the file being encrypted.

The only limitation for PGP Command Line is the size of the hard drive on which you'll
be performing an operation.

Programming and Scripting Languages
Q. Can I use PGP Command Line with VB/.NET/Perl/Python/other languages?

A. Yes. You can call PGP Command Line via any programming language that allows you
to call executables and pass parameters to the executable.

File Redirection
Q. How do I use file redirection with PGP Command Line?

A. PGP Command Line writes different data to several different places by default. Any
user output generated by PGP Command Line is written to standard output (stdout),
including version information, key list data, etc. Any status information generated by
command line is sent to standard error (stderr).

When encrypting and decrypting, PGP Command Line reads and writes files by default.
These files can be overridden with the special argument "-" to either --input or --
output. This behavior is set so that PGP Command Line doesn’t have to wait for input
if you forget something: it will generate an error that you can detect.

The behavior of PGP Command Line changes depending on the operating system you
are using, while the syntax changes depending on the shell.

When you work with PGP Command Line, you can use standard input (stdin) in two
ways: by redirecting an existing file, or by typing (pasting in) data.

See Standard Input, Output and Error more information.

Protecting Passphrases
Q. What's the best way to protect a passphrase when I'm using PGP Command Line to
automate encryption processes?Pr

286 Frequently Asked Questions

Protecting Passphrases

A. There are several ways to pass the passphrase into PGP Command Line: via a
command-line option --passphrase, via PGP_PASSPHRASE environment variable, or
via the passphrase cache.

 Passing the passphrase in via the command-line option. This is probably the least
desirable, as it requires the script calling PGP Command Line to cache the
passphrase. This may also be risky, especially if multiple users have access to the
account responsible for running the script, as those users will be able to see the
passphrase for private keys responsible for signing or decrypting data. To enter
the passphrase onto the command line, you will use the option --passphrase
combined with <passphrase>.

 Using the environment variable PGP_PASSPHRASE.

To set a passphrase environment variable PGP_PASSPHRASE, enter it in the way it
is required for the platform you are using.

You can add only one passphrase using this procedure. Note also that anyone who
has access to your machine and the environment variables location can read your
passphrase. This option is not recommended in any situation where other people
can see your environment variable data.

 Using the passphrase cache. To change the passphrase cache settings using the
configuration file, do the following:

a Open the PGPprefs.xml file, which is located in the Application Data
directory on Windows platform, or in the $HOME directory on any
UNIX platform.

b Find the text:

<key>CLpassphraseCache</key>

 <false></false>

and change the value to <true></true>. This will change the passphrase cache
from off to on, and allow you to cache passphrases during the operation.

c In addition, if you want to change the passphrase cache timeout to a
value other than the default (120 seconds), find the text:

<key>CLpassphraseCacheTimeout</key>

 <integer>120</integer>

and change the value to another, longer timeout.

If the machine is rebooted, the passphrase will need to be set in the cache again.
This has the advantage that the passphrase is not exposed on the system. There is
a slight risk that someone with access to the user account into which the
passphrase has been cached will be able to perform operations using the private
key (as operations requiring a passphrase for the private key will automatically
pull the passphrase from the cache).

This section lists all PGP Command Line commands, options, and environment
variables.

In This Chapter

Commands ... 287

Options ... 290

Environment Variables .. 294

Configuration File Variables ... 295

Commands

Miscellaneous
--create-keyrings Creates empty keyring files.

--help (-h) Shows basic help information.

--license-authorize Authorizes a license number for use with PGP Command Line

--list-archive Lists the contents of a PGP archive.

--purge-all-caches Purges all caches.

--purge-keyring-cache Purges the keyring cache.

--purge-passphrase-cache Purges the passphrase cache.

--speed-test Runs the PGP SDK speed tests.

--version Shows version information.

--wipe (-w) Wipes a file.

Cryptographic
--armor (-a) Armors a file.

--clearsign Creates a clear signature.

--decrypt Decrypts.

--detached (-b) Creates a detached signature.

--dump-packets Dumps the packets in a PGP message.

--encrypt (-e) Encrypts data.

--export-session-key Exports the session key of an encrypted message.

--list-packets Lists the packets in a PGP message.

F Quick Reference

288 Quick Reference

Commands

--list-sda Lists the contents of an SDA.

--sign (-s) Signs data.

--symmetric (-c) Encrypts using a symmetric cipher.

--verify Verifies data.

Key Listings
--fingerprint Shows fingerprint.

--list-keys (-l) Shows key list in basic mode.

--list-key-details Shows key list in detailed mode.

--list-sigs Shows signatures in basic key list.

--list-sig-details Shows signature details.

--list-keys-xml Shows keys in XML format.

--list-userids, --list-users Shows user IDs in a basic key list.

Key Editing
--add-adk Adds an ADK to a key.

--add-photoid Adds a photo ID to a key.

--add-preferred-cipher Adds/updates the preferred cipher on a key.

--add-preferred-compression-algorithm Adds/updates the preferred compression algorithm on a key.

--add-preferred-email-encoding Adds / updates the preferred email encoding on a key.

--add-preferred-hash Adds / updates the preferred hash on a key.

--add-revoker Adds a revoker to a key.

--add-userid Adds a user ID to a key.

--cache-passphrase Caches a passphrase.

--change-passphrase Changes the passphrase of a key.

--clear-key-flag Clears one of the key’s preferences flags.

--disable Disables key.

--enable Enables key.

--export Exports keys.

--export-key-pair Exports key pair.

--export-photoid Exports a photo ID to a file.

--gen-key Generates a new key pair.

--gen-subkey Generates subkey.

--import Imports keys.

--join-key Rejoins a split key so it can be used.

--join-key-cache-only Temporarily joins a previously split key

--key-recon-recv Reconstructs a key locally.

--key-recon-recv-questions Receives reconstruction questions for a specified key.

Quick Reference

Commands
289

--key-recon-send Sends reconstruction data to a server.

--remove Removes key.

--remove-adk Removes an ADK from a key.

--remove-all-adks Removes all ADKs from a key.

--remove-all-photoids Removes all photo IDs from a key.

--remove-all-revokers Removes all revokers from a key.

--remove-expiration-date Removes the expiration date from a key.

--remove-key-pair Removes key pair.

--remove-photoid Removes a photo ID from a key.

--remove-preferred-cipher Removes a preferred cipher from a key.

--remove-preferred-compression-algorithmRemoves a preferred compression algorithm from a key.

--remove-preferred-email-encoding Removes the preferred email encoding from a key.

--remove-preferred-hash Removes the preferred hash from a key

--remove-preferred-keyserver Removes a preferred keyserver from a key.

--remove-revoker Removes a revoker from a key.

--remove-sig Removes signature.

--remove-subkey Removes subkey.

--remove-userid Removes a user ID from a key.

--revoke Revokes key pair.

--revoke-sig Revokes signature.

--revoke-subkey Revokes subkey.

--send-shares Sends shares to the serve which is joining a key.

--set-expiration-date Sets the expiration date of a key.

--set-key-flag Sets one of the preference flags for a key.

--set-preferred-ciphers Sets the list of preferred ciphers on a key.

--set-preferred-compression-algorithmsSets the list of preferred compression algorithms on a key.

--set-preferred-email-encodings Sets the list of preferred email encodings for a key.

--set-preferred-hashes Sets the list of preferred hashes for a key.

--set-preferred-keyserver Sets the list of preferred keyservers for a key.

--set-primary-userid Sets a user ID as primary for a key.

--set-trust Sets the trust on a key.

--sign-key Signs all user IDs on a key.

--sign-userid Signs a single user ID on a key.

--split-key Splits a key into multiple shares.

Keyserver
--keyserver-disable Disables a key on a keyserver.

--keyserver-recv Gets keys from a keyserver.

--keyserver-remove Removes keys from a keyserver.

290 Quick Reference

Options

--keyserver-search Searches for keys on a keyserver, lists results.

--keyserver-send Sends keys to a keyserver.

--keyserver-update Updates keys with respect to a keyserver.

--recv-keys Gets keys from a keyserver (GPG synonym for --keyserver-recv)

--send-keys Sends keys to a keyserver (GPG synonym for --keyserver-send.)

PGP Key Management Server
--create-mak Creates a new MAK on the specified PGP KMS.

--import-mak Creates a MAK from existing key material.

--export-mak Exports the public portion of a MAK to a file on the local system.

--export-mak-pair Exports the public and private portions of a MAK to a file on the local system.

--request-cert Requests a certificate for a MAK.

--edit-mak Edits settings of a MAK on the specified PGP KMS.

--search-mak Searches a PGP KMS for a MAK.

--delete-mak Deletes a MAK from the PGP KMS.

--create-mek-series Creates a MEK series on the local system.

--edit-mek-series Edits an existing MEK series.

--search-mek-series Searches a PGP KMS for a specified MEK series.

--delete-mek-series Deletes a MEK series from a PGP KMS. All MEKs in the series are deleted.

--create-mek Creates a MEK on a PGP KMS.

--import-mek Creates a MEK on a PGP KMS using key material from the local system.

--export-mek Exports the MEK to a file on the local system.

--edit-mek Edits a MEK on a PGP KMS.

--search-mek Searches a PGP KMS for a MEK.

--create-msd Creates an MSD from an input file, stdin, or a file descriptor.

--export-msd Exports an MSD to a plaintext file.

--edit-msd Edits an MSD on a PGP KMS.

--search-msd Searches for an MSD on a PGP KMS.

--delete-msd Deletes an MSD from a PGP KMS.

--create-consumer Creates a consumer on a PGP KMS.

--search-consumer Searches for a consumer on a PGP KMS.

--check-certificate-validity Checks the validity of a certificate.

Options

Boolean
--always-trust Always trust all keys used.

Quick Reference

Options
291

--archive Sets encode and decode to use archive mode.

--banner Toggles the banner display for every operation.

--biometric Uses biometric output format.

--buffered-stdio Buffers stdin / stdout operations.

--compress Toggles compression.

--encrypt-to-self Always encrypt to the default key.

--eyes-only Specifies encryption for your-eyes-only.

--fast-key-gen Uses fast key generation.

--fips-mode, --fips Enables FIPS mode in the PGP SDK.

--force (-f) Forces certain dangerous operations to continue.

--halt-on-error Stops on error for multiple I/O operations.

--import-certificates Imports pending certificate requests to a MAK.

--keyring-cache Enables the keyring cache.

--large-keyrings Checks keyring signatures only when necessary.

--license-recover Enables the license recovery e-mail option during authentication

--local-mode Forces the PGP SDK to run in local mode.

--marginal-as-valid Treats marginal keys as valid.

--pass-through Passes through non-PGP data on decode.

--passphrase-cache Enables the passphrase cache.

--photo Specifies that we want to match a photo user ID.

--quiet (-q) Quiet mode.

--recursive Enables recursive mode.

--reverse-sort, --reverse Reverses the sorting order.

--sda Enables SDA (Self Decrypting Archive) creation

--skep Checks file shares first when joining split keys.

--textmode, text (-t) Forces the input to canonical text mode.

--verbose (-v) Shows verbose information.

--warn-adk Warns when enforcing ADKs.

--xml Displays information in XML format.

Integer
--3des Precedence of the 3DES cipher algorithm.

--aes128 Precedence of the AES128 cipher algorithm.

--aes192 Precedence of the AES192 cipher algorithm.

--aes256 Precedence of the AES256 cipher algorithm.

--bits, --encryption-bits Encryption key bits.

--blowfish Precedence of the Blowfish cipher algorithm (deprecated).

--bzip2 Precedence of the Bzip2 compression algorithm.

--cast5 Precedence of the CAST5 cipher algorithm

292 Quick Reference

Options

--creation-days Number of days until creation.

--expiration-days Number of days until expiration.

--idea Precedence of the IDEA cipher algorithm.

--index Matches a specific index (if more than one object is found).

--keyring-cache-timeout Number of seconds keyrings are cached.

--keyserver-timeout Number of seconds until a keyserver operation times out.

--md5 Precedence of the MD5 hash algorithm

--passphrase-cache-timeout Number of seconds passphrases are cached.

--ripemd160 Precedence of the CAST5 hash algorithm

--sha Precedence of the SHA-1 hash algorithm

--sha256 Precedence of the SHA-256 hash algorithm

--sha384 Precedence of the SHA-384 hash algorithm

--sha512 Precedence of the SHA-512 hash algorithm

--signing-bits Signing key bits.

--skep-timeout Timeout for joining keys over the network

--threshold Defines the minimum share threshold when splitting a key.

--trust-depth Trust depth when creating meta and trusted-introducer sigs.

--twofish Precedence of the Twofish cipher algorithm.

--wipe-input-passes Number of wipe passes for input files.

--wipe-passes Number of wipe passes for normal files.

--wipe-temp-passes Number of wipe passes for temp files.

--wipe-overwrite-passes Number of wipe passes for moving existing output files.

--zip Precedence of the Zip compression algorithm.

--zlib Precedence of the Zlib compression algorithm.

Enumeration
Auto-import-keys How to handle keys found during non-import operations.

--cipher Specifies a cipher algorithm to use with certain operations.

--compression-algorithm Sets the compression algorithm.

--compression-level Sets the compression level.

--enforce-adk Specifies how to handle ADKs.

--export-format Specifies the export format to use.

--hash Sets the hash algorithm.

--import-format Specifies the import format.

--input-cleanup How to deal with input files when done with them.

--key-flag Specifies one of the key preference flags.

--key-type Sets key type.

--manual-import-keys How to handle keys found during import.

--manual-import-key-pairs Specifies how to handle key pairs found during import.

Quick Reference

Options
293

--overwrite Sets the overwrite behavior.

--sig-type Sets the signature type.

--sort-order, --sort Sets the sort ordering for the current operation.

--target-platform Specifies the target platform for SDAs

--temp-cleanup How to deal with temp files when done with them.

--trust Sets the current trust level.

String
--basic-constraint Specifies how a certificate can be used in a CSR.

--city Specifies a city in a CSR.

--comment Specifies a comment for armored blocks.

--common-name Specifies a common name in a CSR.

--contact-email Specifies a contact e-mail address.

--country Specifies a country in a CSR.

--creation-date Number of days until creation in a date format.

--default-key Sets default key for signing (also used for --encrypt-to-self).

--expiration-date Number of days until expiration in a date format.

--export-passphrase Passphrase to use when exporting PKCS12 data.

--extended-key-usage Refines key usage information in a CSR.

--home-dir Location of the home directory (~/.pgp).

--key-usage Specifies how a key can be used in a CSR.

--license-email E-mail address of the licensed user

--license-name Name of the licensed user

--license-number License number

--license-organization Organization of the licensed user

--local-user (-u), --user Local user to use for an operation.

--new-passphrase Passphrase to use when changing a passphrase.

--organization Specifies an organization in a CSR.

--organizational-unit Specifies an organizational unit in a CSR.

--output (-o) Specifies an output object.

--output-file Sets a file to use for output messages

--passphrase Passphrase to use for the current operation.

--preferred-keyserver Specifies a preferred keyserver.

--private-keyring Private keyring file.

--proxy-passphrase Proxy server passphrase

--proxy-server Proxy server to use for certain network operations

--proxy-username Proxy server username

--public-keyring Public keyring file.

--random-seed Specifies a random seed file.

294 Quick Reference

Environment Variables

--regular-expression Specifies a regular expression.

--root-path Root path used to create SDAs and archives

--share-server Server to use for split key operations

--state Specifies a state in a CSR.

--status-file Sets a file to use for status messages

--subject-alternative-name Specifies an alternative name in a CSR.

--symmetric-passphrase Specifies a passphrase to use with conventional encryption.

--temp-dir Specifies a temporary directory for PGP Command Line to use.

List
--additional-recipient Specifies additional (required) recipients.

--adk Specifies an ADK

--input (-i) Specifies an input object.

--keyserver Specifies a keyserver.

--recipient (r) Specifies a recipient.

--revoker Specifies a revoker.

--share Specifies a share when splitting a key.

File Descriptors
--auth-passphrase-fd Reads --auth-passphrase from a file descriptor.

--auth-passphrase-fd8 Reads --auth-passphrase from a file descriptor (in UTF8).

--export-passphrase-fd Reads --export-passphrase from a file descriptor.

--export-passphrase-fd8 Reads --export-passphrase from a file descriptor (in UTF8).

--new-passphrase-fd Reads --new-passphrase from a file descriptor.

--new-passphrase-fd8 Reads --new-passphrase from a file descriptor (in UTF8).

--passphrase-fd Reads --passphrase from a file descriptor.

--passphrase-fd8 Reads --passphrase from a file descriptor (in UTF8).

--proxy-passphrase-fd Reads --proxy-passphrase from a file descriptor.

--proxy-passphrase-fd8 Reads --proxy-passphrase from a file descriptor (in UTF8).

--symmetric-passphrase-fd Reads --symmetric-passphrase from a file descriptor.

--symmetric-passphrase-fd8 Reads --symmetric-passphrase from a file descriptor (in UTF8).

Environment Variables
PGP_LOCAL_MODE Forces PGP Command Line to run in local mode (Boolean).

PGP_HOME_DIR Overrides the default home directory (String).

PGP_FIPS_MODE Forces PGP SDK to run in a FIPS-compliant mode (Boolean).

Quick Reference

Configuration File Variables
295

PGP_PASSPHRASE Lets you set your passphrase (String).

PGP_NEW_PASSPHRASE Lets you set a new passphrase (String).

PGP_SYMMETRIC_PASSPHRASE Lets you set a passphrase for symmetric encryption (String).

PGP_EXPORT_PASSPHRASE Lets you set the export passphrase (String).

PGP_PROXY_PASSPHRASE Lets you set the proxy passphrase in the environment (String).

PGP_AUTH_PASSPHRASE Lets you set the auth passphrase in the environment (String).

PGP_TEMP_DIR Lets you set the temporary directory in the environment (String).

PGP_SOURCE_CODE_PAGE Lets you set the source code page in the environment (String).

Configuration File Variables

Variable Type Name Description

CLlicenseAuthorization String License
Authorization

Specifies the license authorization.

CLlicenseName String License Name Specifies the name of the licensee.

CLlicenseNumber String License Number Specifies the license number.

CLlicenseOrganization String License
Organization

Specifies the organization of the
licensee.

CLstatusFile String Status File Specifies the status file used for status
messages

CLoutputFile String Output File Specifies the output file.

CLtempDir String Temp Directory Specifies a temporary directory.

rngSeedFile String Random seed
filename

Sets the location of the random seed
file.

privateKeyringFile String Private keyring
file

Sets filename or path and filename to
the private keyring file.

publicKeyringFile String Public keyring file Sets filename or path and filename to
the public keyring file.

commentString String Comment Specifies a comment string to be used
in armored output blocks.

CLDefaultKey String Default signing
key

Specifies a key to be used by default for
signing.

adkWarning Boolean ADK warning
level

Enables warning messages for ADK
actions.

fastKeyGen Boolean Fast keygen Sets fast key generation setting.

marginalIsInvalid Boolean Marginal is
invalid

Sets minimum number of marginally
trusted signatures.

296 Quick Reference

Configuration File Variables

encryptToSelf Boolean Encrypt to self Files/messages you encrypt are also
encrypted to your key.

CLpassphraseCache Boolean Passphrase cache Saves your passphrase in memory.

CLkeyringCache Boolean Keyring cache Stores keyrings in memory for each
access.

CLhaltOnError Boolean Halt on error Halts operations when an error occurs.

CLlargeKeyrings Boolean Large Keyrings Checks keyring signatures only when
necessary.

fileWipePasses Integer Number of wipe
passes

Sets passes used by the --wipe
command.

CLfileWipeInputPasses Integer Number of wipe
input passes

Sets wipe passes for input files.

CLfileWipeTempPasses Integer Number of wipe
temp passes

Sets wipe passes for temporary files.

CLfileWipeOverwritePasse
s

Integer Number of wipe
overwrite passes

Sets wipe passes when overwriting an
existing output file.

CLpassphraseCacheTimeo
ut

Integer Passphrase cache
timeout

Sets seconds a passphrase stays cached.

CLkeyringCacheTimeout Integer Keyring cache
timeout

Sets seconds a keyring stays cached in
memory.

CLkeyserverTimeout Integer Keyserver
timeout

Sets seconds to wait before a keyserver
operation times out.

CLcompressionLevel Enumeration Compression
Level

Sets the compression level for the
current operation.

CLmanualImportKeyPairs Enumeration Manual import
key pairs

Establishes behavior when key pairs are
found during import

CLsortOrder Enumeration Sort order Changes the sort order for writing key
lists.

CLinputCleanup Enumeration Input cleanup Sets behavior with input files after they
have been used.

CLoverwrite Enumeration Overwrite Sets behavior when an output file
already exists.

CLenforceADK Enumeration Enforce ADK Sets the ADK enforcement policy.

CLautoImportKeys Enumeration Automatic import
of keys

Sets behavior when keys are found in
non-import operations.

CLmanualImportKeys Enumeration Manual import of
keys

Sets behavior when keys are found
during an import.

Quick Reference

Configuration File Variables
297

alwaysEncryptToKeys List Always encrypt to
keys

Specifies an additional recipient for
encryption.

keyservers List Default keyserver Specifies a default keyserver.

3
--3des • 180

A
--add-adk • 87
--additional-recipient • 209
--add-photoid • 88
--add-preferred-cipher • 88
--add-preferred-compression-algorithm • 89
--add-preferred-email-encoding • 89
--add-revoker • 90
--add-userid • 91
--adk • 209
--aes128 • 180
AIX

change home directory • 11
how to install • 10

--answer • 210
--archive • 169
Arguments

about • 33
Boolean • 33
enumerations • 34
file descriptors • 36
integers • 34
lists • 35
no parent • 36

--armor (-a) • 54
--auth-passphrase-fd • 212, 214
--auth-passphrase-fd8 • 212, 214
--auto-import-keys • 189

B
--banner • 170
--biometric • 170
Boolean arguments • 33
--buffered-stdio • 170

C
--cache-passphrase • 91
--cast5 • 181
certificate signature request (CSR) • 95
--change-passphrase • 92
--check-sigs • 165
--check-userids • 165
--cipher • 190
--city • 199
--clearsign • 55
command line

environment variables • 40
command line interface

flags and arguments • 32
overview • 31

command-line interface, • 1
--comment • 199
--compress • 170
--compression-algorithm • 191
--compression-level • 191
concepts • 1, 32, 53
Configuration file • 36
--create-keyrings • 46, 162
creating

keypair • 46
SDA • 177

--creation-date • 200
--creation-days • 182

D
decrypt

eyes-only • 172
--decrypt • 57
decrypting

defined • 53
--default-key • 200
Department of Defense 5220.22-M • 165
--detached (-b) • 59
--disable • 93
distributing public key • 48
distributing your public key • 48

E
--email-encoding • 192
--enable • 94
encrypt

eyes-only • 172
--encrypt (-e) • 61
encrypting

defined • 53
--encryption-bits • 180
--encrypt-to-self • 172
--enforce-adk • 192
enumeration arguments • 34
environment variables • 40

PGP_HOME_DIR • 40
PGP_LOCAL_MODE • 40
PGP_NEW_PASSPHRASE • 40
PGP_NO_BANNER • 40
PGP_PASSPHRASE • 40
PGP_SYMMETRIC_PASSPHRASE • 40

--expiration-date • 200
--expiration-days • 182
--export • 49, 94
export formats • 95
export public key to file • 49
--export-format • 192

Index

30
0

Index

--export-passphrase • 201
--export-passphrase-fd • 213
--export-passphrase-fd8 • 213
--export-photoid • 96
--export-session-key • 64
--eyes-only • 172

F
--fast-key-gen • 172
Fedora Core

change home directory • 16
how to install • 15
uninstalling • 17

file descriptor arguments • 36
File redirection • 41
finding a public key on a keyserver • 50
--fingerprint • 51
--fips-mode • 173
Flags

about • 33
--force (-f) • 173

G
--gen-key • 46, 97
--gen-revocation • 99
--gen-subkey • 100
getting public keys • 49

H
--halt-on-error • 173
--hash • 193
--help (-h) • 163
--home-dir • 201
HP-UX • 12

change home directory • 13

I
--idea • 182
--import • 101
import public key from keyserver • 50
importing a public key from a keyserver • 50
--index • 183
--input (-i) • 209
installing • 5

AIX • 10
HP-UX • 12
Mac OS X • 14

integer arguments • 34

J
--join-key • 102
--join-key, command output • 104

K
key types • 98
keyboard input • 1
--key-flag • 195
keypair

creating • 46
--key-recon-recv • 108
--key-recon-recv-questions • 107
--key-recon-send • 106
--keyring-cache • 173
--keyserver • 210
Keyserver

configuration file settings • 39
--keyserver-disable • 79
--keyserver-recv • 50, 80
--keyserver-remove • 81
--keyserver-search • 50, 82
--keyserver-send • 48, 82
--keyserver-update • 83
--key-type • 195

L
--license-email • 202
--license-name • 202
--license-number • 202
--license-organization • 202
--license-recover • 174
licensing

license authorization • 27
license number • 26
license recovery • 26
overview • 25
re-licensing • 28
through proxy server • 29

Linux
change home directory • 16
how to install • 15
uninstalling • 17

list arguments • 35
--list-archive • 65
--list-keys • 50
--local-mode • 175
--local-user (-u) • 202

M
Mac OS X

change home directory • 15
how to install • 14

--manual-import-key-pairs • 196
--manual-import-keys • 196
--marginal-as-valid • 175
--md5 • 184

Index

30

1

N
--new-passphrase • 203
--new-passphrase-fd • 213
--new-passphrase-fd8 • 213
no parent arguments • 36

O
--organization • 203
--output (-o) • 203
--overwrite • 196

P
--partitioned • 184
--passphrase • 204
--passphrase-cache • 176
--passphrase-cache-timeout • 184
--passphrase-fd • 213
--passphrase-fd8 • 213
--pass-through • 175
PGP_HOME_DIR environment variables • 40
PGP_LOCAL_MODE environment variable • 40
PGP_NEW_PASSPHRASE environment variables • 40
PGP_NO_BANNER environment variables • 40
PGP_PASSPHRASE environment variables • 40
PGP_SYMMETRIC_PASSPHRASE environment

variables • 40
--pgpmime • 185
--photo • 176
platforms

supported • 5
post public key to keyserver • 48
--preferred-keyserver • 204
--private-keyring • 205
protecting private key • 47
--proxy-password • 205
--proxy-server • 205
--proxy-username • 205
public key

distributing • 48
finding on keyserver • 50
importing • 50

public keys
verifying • 51

--public-keyring • 205
--purge-all-caches • 163
--purge-keyring-cache • 163
--purge-passphrase-cache • 163

Q
--question • 210
--quiet (-q) • 176

R
--random-seed • 206
--recipient (-r) • 211
--recursive • 176
Red Hat Enterprise Linux

change home directory • 16
how to install • 15
uninstalling • 17

--regular-expression • 206
--remove • 109
--remove-adk • 109
--remove-all-adks • 110
--remove-all-revokers • 110
--remove-expiration-date • 111
--remove-key-pair • 111
--remove-photoid • 111
--remove-preferred-cipher • 112
--remove-preferred-compression-algorithm • 112
--remove-preferred-email-encoding • 113
--remove-preferred-keyserver • 114
--remove-revoker • 114
--remove-sig • 115
--remove-subkey • 115
--remove-userid • 116
--reverse-sort • 176
--revoke • 116
--revoker • 211
--revoke-sig • 117
--revoke-subkey • 117
--ripemd160 • 185
--root-path • 207

S
--sda • 177
Self-Decrypting Archive (SDA) • 177
--set-expiration-date • 118
--set-preferred-ciphers • 119
set-preferred-hashes • 121
--set-preferred-keyserver • 121
--set-primary-userid • 122
--set-trust • 122
--sha • 186
--sha256 • 186
--sha384 • 186
--sha512 • 186
--share • 211
--share-server • 207
--sign (-s) • 66
signature types • 123
signing

defined • 53
--signing-bits • 187
--sign-key • 123

30
2

Index

--sign-userid • 124
--sig-type • 197
--skep • 177
--skep-timeout • 187
Solaris

change home directory • 18
how to install • 17

--sort-order • 197
--speed-test • 164
--split-key • 125
--split-key, preview mode • 127
standard error • 41
standard input • 41
standard output • 41
--state • 207
stderr • 41
stdin • 41
stdout • 41
supported platforms • 5
--symmetric (-c) • 68
--symmetric-passphrase • 208
--symmetric-passphrase-fd • 214
--symmetric-passphrase-fd8 • 214
system requirements • 6

T
--tar-cache-cleanup • 198
--target-platform • 198
--temp-cleanup • 198
--temp-dir • 208
--text (-t) • 177
--threshold • 187
--trust • 199
--trust-depth • 187
--twofish • 188

U
--user • 202

V
--verbose (-v) • 178
--verify • 69
verifying

defined • 53
verifying public keys • 51
--version • 164

W
--warn-adk • 178
Windows

change home directory • 20
how to install • 19

wipe

Department of Defense 5220.22-M • 165
--wipe • 165
--wipe-input-passes • 188
--wipe-overwrite-passes • 188
--wipe-passes • 188
--wipe-temp-passes • 189

X
--xml • 178

Z
--zip • 189
--zlib • 189

Filename: PGP Command Line.doc
Directory: C:\Documents and

Settings\kstone.PGPCORP\MyAuthorIT\Publishing\Word
Document\PGP Command Line

Template: C:\Program Files\AuthorIT
V4\Data\Templates\Word Templates\SYMC_UG.dot

Title: PGP® Command Line
Subject:
Author: PGP Corporation
Keywords: 10.2
Comments: Copyright © 1996-2002 AuthorIT Software

Corporation Ltd., all rights reserved.
Creation Date: 7/14/2011 10:43:00 AM
Change Number: 3
Last Saved On: 7/14/2011 10:43:00 AM
Last Saved By: PGP Corporation
Total Editing Time: 5 Minutes
Last Printed On: 7/14/2011 11:13:00 AM
As of Last Complete Printing
 Number of Pages: 316
 Number of Words: 88,622 (approx.)
 Number of Characters: 458,180 (approx.)

	About PGP Command Line
	Important Concepts
	Technical Support
	Contacting Technical Support
	Licensing and registration
	Customer service
	Support agreement resources

	Installing
	Install Location
	Supported Platforms
	System Requirements
	Windows 7 and Vista
	Windows Server 2008 and 2003
	Standard Edition
	Datacenter Edition
	Enterprise Edition
	Web Edition

	Windows XP
	32-bit Windows XP
	64-bit Windows XP

	IBM AIX
	HP-UX 11i
	Solaris 9 and 10
	Red Hat Enterprise Linux, SLES, and Fedora Core
	Mac OS X

	Installing on AIX
	Installing on AIX
	Changing the Home Directory on AIX
	Uninstalling on AIX

	Installing on HP-UX
	Installing on HP-UX
	Changing the Home Directory on HP-UX
	Installing to a Non-Default Directory on HP-UX
	Uninstalling on HP-UX

	Installing on Mac OS X
	Installing on Mac OS X
	Changing the Home Directory on Mac OS X
	Uninstalling on Mac OS X

	Installing on Red Hat Enterprise Linux, SLES, or Fedora Core
	Installing on Red Hat Enterprise Linux or Fedora Core
	Changing the Home Directory on Linux or Fedora Core
	Uninstalling on Linux or Fedora Core

	Installing on Solaris
	Installing on Solaris
	Changing the Home Directory on Solaris
	Uninstalling on Solaris

	Installing on Windows
	PGP Command Line for Windows and PGP Desktop on the Same System
	To Install on Windows
	Changing the Home Directory on Windows
	Uninstalling on Windows

	Upgrading
	Relocating
	Licensing
	Overview
	License Recovery
	Using a License Number
	Using a License Authorization
	Re-Licensing
	Through a Proxy Server

	The Command-Line Interface
	Overview
	Flags and Arguments
	Flags
	Arguments
	Booleans
	Integers
	Enumerations
	Strings
	Passphrases That Have Double Quotes
	Searches That Use QUOTED_STRING Types

	Lists
	File descriptors
	No parent

	Configuration File
	Keyserver Configuration File Settings

	Environment Variables
	Standard Input, Output, and Error
	Redirecting an Existing File
	Entering Data
	End-of-File

	Specifying a Key
	'Secure' Options

	First Steps
	Overview
	Creating Your Keypair
	Protecting Your Private Key
	Distributing Your Public Key
	Posting Your Public Key to a Keyserver
	Exporting Your Public Key to a Text File

	Getting the Public Keys of Others
	Finding a Public Key on a Keyserver
	Importing a Public Key from a Keyserver

	Verifying Keys

	Cryptographic Operations
	Overview
	Commands
	--armor (-a)
	--clearsign
	--decrypt
	--detached (-b)
	--dump-packets, --list-packets
	--encrypt (-e)
	--export-session-key
	--list-sda
	--list-archive
	--sign (-s)
	--symmetric (-c)
	--verify

	Key Listings
	Overview
	Commands
	--fingerprint
	--fingerprint-details
	--list-key-details
	--list-keys (-l)
	--list-keys-xml
	--list-sig-details
	--list-sigs
	--list-userids

	Working with Keyservers
	Overview
	Commands
	--keyserver-disable
	--keyserver-recv
	--keyserver-remove
	--keyserver-search
	--keyserver-send
	--keyserver-update

	Managing Keys
	Overview
	Commands
	--add-adk
	--add-photoid
	--add-preferred-cipher
	--add-preferred-compression-algorithm
	--add-preferred-email-encoding
	--add-preferred-hash
	--add-revoker
	--add-userid
	--cache-passphrase
	--change-passphrase
	--clear-key-flag
	--disable
	--enable
	--export, --export-key-pair
	Export Format

	--export-photoid
	--gen-key
	Key Types

	--gen-revocation
	--gen-subkey
	--get-email-encoding
	--import
	--join-key
	Command output for --join-key
	Row 1: Split Key User Name
	Row 2: Split Key ID
	Row 3: Empty
	Row 4: Threshold
	Row 5: Total Shares
	Row 6: Total Users
	Row 7: Empty
	Row 8-N: Share User

	--join-key-cache-only
	--key-recon-send
	--key-recon-recv-questions
	--key-recon-recv
	--remove
	--remove-adk
	--remove-all-adks
	--remove-all-photoids
	--remove-all-revokers
	--remove-expiration-date
	--remove-key-pair
	--remove-photoid
	--remove-preferred-cipher
	--remove-preferred-compression-algorithm
	--remove-preferred-email-encoding
	--remove-preferred-hash
	--remove-preferred-keyserver
	--remove-revoker
	--remove-sig
	--remove-subkey
	--remove-userid
	--revoke
	--revoke-sig
	--revoke-subkey
	--send-shares
	--set-expiration-date
	--set-key-flag
	--set-preferred-ciphers
	--set-preferred-compression-algorithms
	--set-preferred-email-encodings
	--set-preferred-hashes
	--set-preferred-keyserver
	--set-primary-userid
	--set-trust
	--sign-key
	Signature Types

	--sign-userid
	--split-key
	--split-key Preview Mode
	Row 1: Split Key User Name
	Row 2: Split Key ID
	Row 3: Empty
	Row 4: Threshold
	Row 5: Total Shares
	Row 6: Total Users
	Row 7: Empty
	Row 8-N: Share User

	Working with Email
	Overview
	Encrypt Email
	Sign Email
	Decrypt Email
	Verify Email
	Annotate Email

	Working with a PGP Key Management Server
	Overview
	New Terms and Concepts
	Relationship with a PGP KMS
	Authentication for PGP KMS Operations
	No Authentication
	Passphrase
	Public Key
	Cookie

	--decrypt
	--encrypt (-e)
	--create-mak
	--export-mak
	--export-mak-pair
	Export Format

	--import-mak
	--request-cert
	--edit-mak
	--search-mak
	--delete-mak
	--create-mek-series
	--edit-mek-series
	--search-mek-series
	--delete-mek-series
	--create-mek
	--import-mek
	--export-mek
	--edit-mek
	--search-mek
	--create-msd
	--export-msd
	--edit-msd
	--search-msd
	--delete-msd
	--create-consumer
	--search-consumer
	--check-certificate-validity

	Miscellaneous Commands
	Overview
	Commands
	--agent
	--create-keyrings
	--help (-h)
	--license-authorize
	--purge-all-caches
	--purge-keyring-cache
	--purge-passphrase-cache
	--speed-test
	--version
	--wipe
	--check-sigs
	--check-userids

	Options
	Using Options
	Boolean Options
	--alternate-format
	--annotate
	--archive
	--banner
	--biometric
	--buffered-stdio
	--compress, --compression
	--details
	--email
	--encrypt-to-self
	--eyes-only
	--fast-key-gen
	--fips-mode, --fips
	--force (-f)
	--halt-on-error
	--import-certificates
	--keyring-cache
	--large-keyrings
	--license-recover
	--local-mode
	--marginal-as-valid
	--master-key
	--pass-through
	--passphrase-cache
	--photo
	--quiet (-q)
	--recursive
	--reverse-sort, --reverse
	--sda
	--skep
	--text-mode, --text (-t)
	--truncate-passphrase
	--verbose (-v)
	--warn-adk
	--wrapper-key
	--xml

	Integer Options
	--3des
	--aes128, --aes192, --aes256
	--bits, --encryption-bits
	--blowfish
	--bzip2
	--cast5
	--creation-days
	--expiration-days
	--idea
	--index
	--keyring-cache-timeout
	--keyserver-timeout
	--md5
	--passphrase-cache-timeout
	--partitioned
	--pgp-mime
	--ripemd160
	--sha, --sha256, --sha384, --sha512
	SHA-1
	SHA-256
	SHA-384
	SHA-512

	--signing-bits
	--skep-timeout
	--threshold
	--trust-depth
	--twofish
	--wipe-input-passes
	--wipe-overwrite-passes
	--wipe-passes
	--wipe-temp-passes
	--zip
	--zlib

	Enumeration Options
	--auto-import-keys
	--cipher
	--compression-algorithm
	--compression-level
	--email-encoding
	--enforce-adk
	--export-format
	--hash
	--import-format
	--input-cleanup
	--key-flag
	Key usage flags:
	Keyserver preferences

	--key-type
	--manual-import-key-pairs
	--manual-import-keys
	--overwrite
	--sig-type
	--sort-order, --sort
	--tar-cache-cleanup
	--target-platform
	--temp-cleanup
	--trust

	String Options
	--basic-constraint
	--city, --common-name, --contact-email, --country
	--comment
	--creation-date
	--default-key
	--expiration-date
	--export-passphrase
	--extended-key-usage
	--home-dir
	--key-usage
	--local-user (-u), --user
	--license-name, --license-number, --license-organization, --license-email
	--new-passphrase
	--organization, --organizational-unit
	--output (-o)
	--output-file
	--passphrase
	--preferred-keyserver
	--private-keyring
	--proxy-passphrase, --proxy-server, --proxy-username
	--public-keyring
	--recon-server
	--regular-expression
	--random-seed
	--root-path
	--share-server
	--state
	--status-file
	--subject-alternative-name
	--symmetric-passphrase
	--temp-dir

	List Options
	--additional-recipient
	--adk
	--input (-i)
	--question / --answer
	--keyserver
	--recipient (-r)
	--revoker
	--share

	File Descriptors
	--auth-passphrase-fd, auth-passphrase-fd8
	--export-passphrase-fd, --export-passphrase-fd8
	--new-passphrase-fd, --new-passphrase-fd8
	--passphrase-fd
	--proxy-passphrase-fd, --proxy-passphrase-fd8
	--symmetric-passphrase-fd, --symmetric-passphrase-fd8

	Lists
	Basic Key List
	The Default Key Column
	The Algorithm Column
	The Type Column
	The Size/Type Column
	The Flags Column
	The Key ID Column
	The User ID Column

	Detailed Key List
	Main Key Details
	Subkey Details
	ADK Details
	Revoker Details

	Key List in XML Format
	Elements with fixed settings
	Algorithm
	Type
	Validity
	Trust
	Hash
	Cipher
	Compression
	Setting

	X.509 Signatures

	Detailed Signature List

	Usage Scenarios
	Secure Off-Site Backup
	PGP Command Line and PGP Desktop
	Compression Saves Money
	Surpasses Legal Requirements

	Searching for Data on a PGP KMS
	Overview
	Operators
	Types
	Keyword Listing

	Example Searches
	For Linux and Mac OSX
	For Windows

	More About Types
	Time Fields
	Boolean Values
	Open PGP Algorithms
	Open PGP Key Usage Flags
	Key Modes

	Creating a Certificate Signing Request
	About CSRs
	Creating a CSR using PGP Command Line

	Codes and Messages
	Messages Without Codes
	Messages With Codes
	Parser
	Keyrings
	Wipe
	Encrypt
	Sign
	Decrypt
	Speed Test
	Key edit
	Keyserver
	Key Reconstruction
	Licensing
	PGP Universal Server
	General

	Exit Codes

	Frequently Asked Questions
	Key Used for Encryption
	"Invalid" Keys
	Maximum File Size
	Programming and Scripting Languages
	File Redirection
	Protecting Passphrases

	Quick Reference
	Commands
	Options
	Environment Variables
	Configuration File Variables

