
Created by Sanjay Sinha1

INTRODUCTION TO PL/1
PL/I is a structured language to develop
systems and applications programs (both
business and scientific).
Significant features :
v Allows Free format
v Regards a program as a continuous stream of data
v Supports subprogram and functions
v Uses defaults

Created by Sanjay Sinha2

Building blocks of PL/I :
v Made up of a series of subprograms and called

Procedure
v Program is structured into a MAIN program and

subprograms.
v Subprograms include subroutine and functions.

Every PL/I program consists of :
v At least one Procedure
v Blocks
v Group

Created by Sanjay Sinha3

v There must be one and only one MAIN procedure to every
program, the MAIN procedure statement consists of :

v Label
v The statement ‘PROCEDURE OPTIONS (MAIN)’
v A semicolon to mark the end of the statement.

Coding a Program :
1. Comment line(s) begins with /* and ends with */.
Although comments may be embedded within a PL/I
statements , but it is recommended to keep the
embedded comments minimum.

Created by Sanjay Sinha4

2. The first PL/I statement in the program is the
PROCEDURE statement :
AVERAGE : PROC[EDURE] OPTIONS(MAIN);
AVERAGE -- it is the name of the
program(label) and compulsory and marks the
beginning of a program.
OPTIONS(MAIN) -- compulsory for main
programs and if not specified , then the
program is a subroutine.
A PL/I program is compiled by PL/I compiler
and converted into the binary , Object program
file for link editing .

Created by Sanjay Sinha5

Advantages of PL/I are :
1. Better integration of sets of programs
covering several applications.
2. Easier interchangeability of files
3. Fewer programs to be written in a machine
oriented language.
4. Better machine utilization, greater use of
channels , more flexible storage assignment,
better intercept handling.

Created by Sanjay Sinha6

The process of compiling a PL/I program and
executing it in the computer’s memory takes
place through JCL.
Some restrictions :
Col # 1 for O.S.
Col # 2 - 72 for PL/I statements
Col # 73 - 80 ignored by complier

PL/I Language Components :
1. Character sets : 60 characters in total, A - Z ,

extended characters e.g # , @ , $, 0 -9 and 21
special characters.

Created by Sanjay Sinha7

2. Identifiers : Used to name data, procedures , files ,
labels of PL/I statements and keywords.
An identifiers for data names , statement labels and
internal procedure names may be from 1 to 30
alphabetic characters (A – Z,@, !, #, $) , numeric
digits (0-9) and underscore character.

3. Statement format :
LABEL : KEYWORD STATEMENT OPTIONS ;
the source program . A PL/I statement may be
continued across several lines.One line may contain
several statements terminated by semi-colon.

4. PL/I constants : A constant is a data item that does
not have a name and whose value cannot change in a
program. There are six types of constants , but only 2
or 3 types are used.

Created by Sanjay Sinha8

i) Decimal Fixed-point constants
ii) Decimal Floating-point constants(using E-

notation).
iii) Character string constants : up to 256 characters ,
must be enclosed by ‘ , if an apostrophe is a part of
data , then it should be preceded by another
apostrophe with no intervening blanks.The repetition
factors can be specified.
iv) Bit-string constants : It’s a series of binary digits
enclosed in single quotes and followed by the letter B.
Used as flag , setting 1 or 0 , repetition factor can be
used.
v) Binary Fixed-Point and Binary Floating-Point
constants .

Created by Sanjay Sinha9

Data types :

FIXED DECIMAL Two digits/byte Comm. Appl
plus sign

FIXED BINARY Half word or Comm &
full word scientific appl

FLOAT DECIMAL Full word, Scientific appl
double word or Arithmetic

two double words
PICTURE One digit / byte
CHARACTER or One character/byte
PICTURE
BIT One byte Boolean oper

Purpose

Created by Sanjay Sinha10

DECLARE statement :
The purposes :
i) For implicit declaration
ii) For data aggregation
iii) For input and output files
Base and Scale and precision attributes
DECLARE PRICE DECIMAL FIXED(5,2)
DECLARE PI FLOAT DECIMAL(6)
DECLARE COUNT FIXED BINARY(15)
DECLARE PI FLOAT BINARY(31)
DECLARE BETA FIXED BINARY(15,2)

Created by Sanjay Sinha11

Storage classes :
Any data name occupies some space in the main
memory to hold the data , when this storage space will
be allocated to a data is decided depending on the
storage class of the data .
The types are :
1. Automatic (Default)-- can be abbreviated as AUTO
2. Static
3. Based
4. Controlled --- can be abbreviated as CTL

Based : The address is delimited by a pointer variable.
E.g. DCL P POINTER;

DCL A(100) FIXED BASED(P);

Created by Sanjay Sinha12

Address can be assigned in any of the following
ways:

1. By assigning the value returned by the ADDR
built-in function.

2. By assigning the value of another pointer.
3. With the SET option of a READ statement.
4. With the SET option of a LOCATE statement.
Controlled : Similar to based , in this programmer

has a greater degree of control in the allocation
of storage than he does for STATIC or
AUTOMATIC. DCL A(100) INIT((100) 0)
CONTROLLED ;

Created by Sanjay Sinha13

Partially declared identifiers :
1. The base : DCL A DECIMAL ; DCL B BINARY;
2. The scale : DCL C FIXED; DCL D FLOAT;
3. The base and precision : DCL AA

DECIMAL(16);
DCL BB BINARY(53);

4. The scale and precision : DCL CC FIXED(9,2) ;
DCL DD FLOAT(16);

Created by Sanjay Sinha14

List-directed Input:
GET LIST (A,B,C,D);
GET LIST (A,B,C,D) COPY;
List-directed Output: The default line size for a

PUT LIST is 120 positions.
Different tab positions on the screen are :
column no 1,25,49,73,97,121(only be used to

print a record having length more than 120
characters). Different data items are printed
beginning at predetermined tab positions.

Created by Sanjay Sinha15

PUT LIST (A,B,C,D);
PUT LIST (50,’abc’,123.445);
To print at a specified tab position ,i.e. without

preceding the previous position , specify a
character-string of a blank to the preceding tab
positions.

E.g. PUT LIST (50,’ ‘,’abc’,’ ‘,123.445);---
First value will be printed at col no 1, second
value at 49th col. , third value at 97th col , a
blank will be printed at both 25th and 73rd col
positions.

Created by Sanjay Sinha16

Whenever PUT LIST statement is executed for the first
time , it automatically skips to a new page ,if you
want to print different values in different lines or
pages , SKIP and PAGE options can be used.

PAGE is used to advance to the top of a new page.
SKIP is used to advance by a number of lines

specified . If the no. of line is not specified , then
assumed as SKIP(1).

E.g. PUT PAGE LIST (‘ABC’);
PUT SKIP LIST (1212);
PUT SKIP(2) LIST(343);

Created by Sanjay Sinha17

A skip(0) causes a suppression of the line feed.
E.g. PUT PAGE LIST (‘ SALES REPORT’);

PUT SKIP(0) LIST ((12)’_’) ;
To specify the line number :
e.g. PUT PAGE LINE(10) LIST(A,B,C);

PUT PAGE;
PUT SKIP(2);
PUT LINE(10) ;

Created by Sanjay Sinha18

The Assignment Statement :
e.g.TOTAL_COST = COST * QUANTITY;

A,B,C = 0;
The Arithmetic Operations :
There are five basic arithmetic operators :

Symbol Operations
1. ** Exponentiation
2. * Multiplication
3. / Division
4. + Addition
5. - Subtraction

Created by Sanjay Sinha19

Concatenation :
The || symbol is used is to join string or Bit
data.
e.g. NAME1 = ‘IIS’;

NAME2 = ‘INFOTECH’
COMPANY_NAME = NAME1 || NAME2;
DATA1 = ‘1100’B;
DATA2 = ‘0011’B;
DATA3 = DATA1 || DATA2 ;

----This will store ‘11000011’B in DATA3.

Created by Sanjay Sinha20

Built-in Functions :
The following are the classes of Built-in
functions :

1. Arithmetic function
2. Mathematical function
3. Array-handling function
4. String handling
5. Condition handling
6. Storage control
7. Miscellaneous

Created by Sanjay Sinha21

Arithmetic function :
ABS(-44) --- 44
CEIL(3.333) --- 4
FLOOR(3.333) ---- 3
MIN(2,6,4) ---- 2
MAX(2,6,4) ---- 6
TRUNC(3.33) --- 3.00
SIGN(-4) --- -1
SIGN(0) ---- 0
SIGN(4) --- 1

Created by Sanjay Sinha22

ROUND(123.456,1) --- 123.500
ROUND(123.456,2) --- 123.460
ROUND(123.456,0) ---- 123.000
ROUND(123.456,-1) ---- 120.000
ROUND(123.456,-2) ---- 100.000
ROUND(123.456,-3) ---- 0
MOD (25,6) --- 1

Mathematical function
SIN , COS , TAN , LOG , LOG10 , SQRT

Created by Sanjay Sinha23

String handling
SUBSTR(‘IIS INFOTECH’,5,4) --- INFO

A CHAR(10) --- A = ‘ 10’
LENGTH(A) -- 3
REPEAT(‘A’,2) --- ‘AA’
TRANSLATE (‘CAT’,’C’,’B’) --- ‘BAT’

Miscellaneous
DATE returns date in the form of YYMMDD.
TIME returns current time in the form of
HHMMSSTTT.
When these functions are used they should be
explicitly declared as BUILTIN .

Created by Sanjay Sinha24

UNSPEC (identifier) - Converts any identifier to
a BIT string.

DCL A CHAR(2) INIT(‘AB’);
PUT LIST (UNSPEC(A)); --- prints the binary

equivalent of ‘AB’
UNSPEC(A) = ‘0100000101000011’B; -- The

value ‘AC’ will be assigned to the variable A

Created by Sanjay Sinha25

An example for Pseudo-variable:
BLANK : PROC OPTIONS(MAIN);

DCL NAME CHAR(15) INIT('NOW IS THE TIME');
DCL NAME1 CHAR(12) VARYING;
DCL I FIXED BINARY(15);
DCL J FIXED BIN(15) INIT(1);
DO I =1 TO LENGTH(NAME);

IF SUBSTR(NAME,I,1)=' '
THEN;

ELSE
DO;

Created by Sanjay Sinha26

SUBSTR(NAME1,J,1)=SUBSTR(NAME,I,1);
J=J+1;

END;
END;
PUT LIST(NAME1);

END BLANK;

Created by Sanjay Sinha27

Data Conversion: When mixed data types
appear in an arithmetic expression , data items
are converted to the data format of the other.

DECIMAL is converted to BINARY.
FIXED is converted to FLOAT.
BIT is converted to CHARACTER
A zero bit becomes a character 0.
Arithmetic to CHARACTER(length should be > 2 bytes)
CHARACTER to arithmetic
Arithmetic(without symbol) to BIT
BIT(always unsigned) to arithmetic
CHARACTER to BIT

Created by Sanjay Sinha28

Selection Construct (Logical testing) :
IF statement : The list of comparison operators ..
Symbols used are GE or >= , GT or > , NE , ~= ,LT or < ,

LE or <= , NL , NG .
The list of Logical operators ….
Symbols used are ~ or ^ , & , | .
IF condition1 THEN DO ………….;

………………;
………………;
END;

IF A=B THEN
IF A=C THEN X=1;
ELSE;

ELSE
X=3;

Created by Sanjay Sinha29

The SELECT statement :
-----------------Format- 1-------------------------------------

SELECT (identifier) ;
WHEN(value1) statement;
WHEN(value2) statement;

OTHERWISE statement ;
END;

-----------------Format - 2 ----------------------------------
SELECT ;

WHEN(cond1) statement;
WHEN(cond2) statement;
OTHERWISE statement ;

END;

Created by Sanjay Sinha30

The Comparison and Logical operators in the
Assignment statement

e.g. A=B=C;
A=B>C;
A= B>C & D>E;
A=B>C | D>E;

Created by Sanjay Sinha31

Conditions and On-units
During the execution of a PL/I program , a

number of conditions could arise causing a
program to interrupt.It may be the detection of
an unexpected error or of an occurrence that is
expected but at an unpredictable time.

Some conditions may be raised during file
handling :
! ENDFILE (filename) - ENDPAGE(filename)
! RECORD(filename) - TRANSMIT(filename)

They will be discussed during file handling only.

Created by Sanjay Sinha32

Some conditions may be raised during arithmetic
operations :
! CONVERSION(default is enabled)
e.g. DCL X BIT(4);
X= ‘10A1’;

! SIZE (default is disabled)
e.g. DCL A FIXED DEC(4);
DCL B FIXED DEC(5) INIT(12345) ;
A=B;

Created by Sanjay Sinha33

! FIXEDOVERFLOW(for fixed-point variables, default is
enabled)

e.g. DCL A FIXED DEC(5);
DCL B FIXED DEC(5);
DCL C FIXED DEC(5);
A=99999; B=88888;
C=A * B;

! OVERFLOW (for floating-point variables, default is enabled)
e.g. A = 55E71; B = 23E11;

C=A*B;

Created by Sanjay Sinha34

! UNDERFLOW (for floating-point variables, default
is enabled)

e.g. A = 55E-71;
B = 23E-11;

C=A*B;

! ZERODIVIDE(default is enabled)
e.g. A=10;

B=0;
C=A/B;

Created by Sanjay Sinha35

! CHECK (used for debugging, default is disabled)
(CHECK):
AVERAGE:PROC OPTIONS(MAIN);
:
GET LIST(A,B,C);
AVG=(A+B)/2;
PUT LIST(‘THE AVERAGE IS’, AVG);
END AVERAGE;
---- (CHECK(A,B)):
--- (CHECK):AVG=(A+B)/2;

Created by Sanjay Sinha36

The status of Conditions :
Conditions are enabled or disabled through a
condition prefix , which is the name of one or
more conditions separated by commas,
enclosed in parentheses, and prefixed to a
statement by a colon. The word NO preceding
the condition name indicates that the condition
is to be disabled.
E.g. (NOFIXEDOVERFLOW):SUM=A+B+C;

(SIZE,NOFIXEDOVERFLOW):PROG1:PROC
OPTIONS(MAIN);

(NOSIZE):Y=A*B/C;

Created by Sanjay Sinha37

/* An example of On - unit (SIZE) and pseudo-variable
(SIZE):

THIRD : PROCEDURE OPTIONS(MAIN);
DCL NAME CHAR(10) VARYING ,
I FIXED BIN(15),
A CHAR(1),
BITVAR BIT(8);
GET LIST(NAME);
DO I = 1 TO LENGTH(NAME);

A = SUBSTR(NAME,I,1);
UNSPEC(A) = UNSPEC(A) | '00100000'B;

Created by Sanjay Sinha38

PUT SKIP LIST (UNSPEC(A));
SUBSTR(NAME,I,1) = A;

END ;
PUT LIST (NAME);
END THIRD;

Created by Sanjay Sinha39

Changing the action taken :
ON statement is used to specify what action will
be taken if the condition arises.In the absence
of a program-supplied ON statement for an
enabled condition , standard system action will
be taken. If , after having supplied your own on-
unit for a condition , you wish to return to the
standard system action for that on-unit, simply
specify another ON statement with the keyword
SYSTEM.For multiple lines of actions enclose
the commands within BEGIN; …. END;

Created by Sanjay Sinha40

ON ERROR BEGIN;
ON ERROR

SYSTEM;
:
:
SNAP ERROR

END;

Null action:
ON ENDPAGE ;

First time the error is encountered the
first ON ERROR will be executed
and after entering the BEGIN block
, if it encounters another error then
it will not execute the first one , but
the second one i.e. system will
handle the condition in the default
way.

SNAP ERROR is used to execute the
first ON ERROR even after the first
time execution instead of second
one.

Created by Sanjay Sinha41

Simulating conditions :
Can simulate execution of any specified ON

condition statement by :
SIGNAL condition_name ;
If the specified condition is not enabled , then

it’ll be taken as null statement;
One of the uses of this statement is in program

checkout to test the action of an on-unit and
to determine that the correct program action
is associated with the condition.

Created by Sanjay Sinha42

BUILT-IN FUNCTIONS FOR ON-UNITS
1. ONCODE : e.g. ON ERROR

PUT LIST(ONCODE);
2. ONLOC : e.g. MAIN: PROC OPTIONS(MAIN);

:
SUBRT:PROC;
:
:
END SUBRT;

END MAIN;

3. ONCHAR : e.g. CHAR=ONCHAR;

4. ONSOURCE : e.g. SOURCE=ONSOURCE;

Created by Sanjay Sinha43

Iteration Constructs :
1. Label_name : DO WHILE(condition);

:
:
END label_name;

2. DO UNTIL(condition);
:
:
END;

3. DO I=n to m BY [+/-] x ;
4. DO M=1 TO 10,21 TO 30, 41 TO 50;

Created by Sanjay Sinha44

5. DO K= 1 TO 5, 8 TO 18 BY 2 , 50 TO 55 BY 5, 40
TO 44;

6. DO J=3,12,6,5,45
7. DO I=n BY x;

:
:
END; /* some other condition must be mentioned to
come out of the loop , otherwise it’ll be an infinite
loop or FIXEDOVERFLOW will occur.*/

8. DO K=1 TO 10 WHILE (A>10);

Created by Sanjay Sinha45

9. DO K=1 TO 10,11 WHILE (A>10);
10. DO K=1 TO 10,11 BY 0 WHILE (A>10);
11. DO K=1 TO 10 UNTIL (A>10);
12. DO NAME = ‘AAA’,’BBB’,’CCC’;

Nested DO-groups :
DO I=n TO M;

DO J= x TO y;
:
:
END;

END;

Created by Sanjay Sinha46

Leaving a loop :
1. By assigning a greater value than the highest value

to the index variable
2. By GOTO statement which is not advised by

structured programming.
3. By LEAVE statement .
E.g. LEAVE block_name ; -- comes out from the

specified block
LEAVE ; -- comes out from the current block

Created by Sanjay Sinha47

Array handling :
e.g. DCL DAY_NAMES(7) CHAR(10);

DCL LIST(-2:3) FIXED BIN(15,0)
INIT(10,20,15,25,30,40);

DCL TABLE(6,2) FIXED DEC (5);
DCL TABLE(-2:3,4:5) FIXED DEC(5) INIT (0);

-- only possible in Mainframe
DCL B(5,3) FIXED INIT ((15)0);
DCL B(9,9) FIXED INIT ((81)-1);
DCL A(2,2) FIXED INIT(1,2,3,4);
DCL TABLE(10) CHAR(2) INIT((2)’A’);

-- only possible in Mainframe
DCL TABLE(10) CHAR(2) INIT((2) (2)’A’);

Created by Sanjay Sinha48

DCL TABLE(10) CHAR(5) INIT((10) (1)’ABC’);
DCL A(3) INIT(10,*,30);

Array assignments:
Scalar to Array :
DCL MONTHS(12) FIXED(4,1);
MONTHS=0;
MONHS(5)=10.5;
Array to Array :
DCL A(5,5) ,B(5,5);
A=B;

Created by Sanjay Sinha49

Array Expressions:
Prefix operators and Arrays:
1) A=-A;
Infix operators and Arrays:
1) B=A*5 ; --Every elements of A is multiplied
by 5 and stored in B.
2) A=A * A(1,2); -- Multiplies every elements by
the value of the element at (1,2) and stores the
data into A.
3) C=A +B;

Created by Sanjay Sinha50

On conditions using String :
1. STRINGRANGE condition(default is
disabled)
2. STRINGSIZE condition (default is enabled)

On conditions using Array :
1.SUBSCRIPTRANGE condition(default is
disabled)

Created by Sanjay Sinha51

Array cross-sections:
B(*,3) ; B(5,*); B(*,*) i.e. B ;

e.g. S=SUM(B(*,3))
An example on Matrix multiplication :
C=0;
DO I=1 TO L;

DO J=1 TO N;
DO K=1 TO M;

C(I,J)= A(I,K) * B(K,J) +C(I,J);
END;

END;
END;

Created by Sanjay Sinha52

An example on Matrix multiplication using
cross sections :

C=0;
DO I=1 TO L;

DO J=1 TO N;
C(I,J)= SUM(A(I,*) * B(*,J));

END;
END;

Created by Sanjay Sinha53

/* An example using array */
REVERS:PROC OPTIONS(MAIN);

DCL STR1(10) FIXED (10)
INIT(1,2,3,4,5,6,7,8,9,10);

DCL STR2(10) FIXED (10) ;
DCL I FIXED (15);
DCL J FIXED (15) INIT(1);
DO I =10 TO 1 BY -1 ;

STR2(J)=STR1(I);
J=J+1;

END;
PUT LIST(STR2);

END REVERS;

Created by Sanjay Sinha54

/* An example to sort data stored in an array */
SORT1 : PROC OPTIONS (MAIN);

DCL ARRAY1(10) FIXED (10);
DCL I FIXED(2), J FIXED(2), TEMP FIXED(2);
PUT LIST ('ENTER 10 NUMBERS');
DO I = 1 TO 10;

PUT SKIP LIST ('ENTER NO. ',I);
GET (ARRAY1(I));

END;
DO I = 1 TO 9;

DO J = I+1 TO 10;

Created by Sanjay Sinha55

IF (ARRAY1(I) > ARRAY1(J) THEN
DO;

TEMP = ARRAY1(I);
ARRAY1(I) = ARRAY1(J);
ARRAY1(J) = TEMP;

END;
END;

END;
DO I = 1 TO 10;

PUT (ARRAY1(I));
END;

END SORT1;

Created by Sanjay Sinha56

/* An example to handle two arrays */
STARR:PROC OPTIONS(MAIN);

DCL 1 HISTORY (2),
2 NAME CHAR(20) ,
2 GRADE FIXED(4,1);

DCL 1 HONOR_STUDENT(2),
2 NAME CHAR(20) ,
2 GRADE FIXED(4,1);

DCL I FIXED DEC(1) INIT(1);
PUT LIST('ENTER DATA OF STUDENTS:');

Created by Sanjay Sinha57

DO I=1 TO 2;
PUT SKIP LIST('ENTER NAME');
GET LIST(HISTORY(I).NAME);
PUT SKIP LIST('ENTER GRADE');
GET LIST(HISTORY(I).GRADE);

END;
DO I=1 TO 2;

IF HISTORY(I).GRADE>=92.5 THEN
DO;

HONOR_STUDENT(I).NAME
=HISTORY(I).NAME;

HONOR_STUDENT(I).GRADE =
HISTORY(I).GRADE;

Created by Sanjay Sinha58

END;
END;
DO I=1 TO 2;

PUT SKIP LIST('NAME IS');
PUT LIST(HONOR_STUDENT(I).NAME);
PUT SKIP LIST('GRADE IS');
PUT LIST(HONOR_STUDENT(I).GRADE);

END;

END STARR;

Created by Sanjay Sinha59

Controlled storage with array bounds
determined dynamically :

CONTR : PROC OPTIONS(MAIN);
DCL (A(*,*),B(*,*),C(*,*)) CONTROLLED;
GET LIST(I,J); ALLOCATE A(I,J),B(I,J);
GET LIST(A,B); CALL ADDAR(A,B,C);
PUT LIST(C);

ADDAR : PROC(R,S,T);
DCL (R(*,*),S(*,*) ,T(*)) CONTROLLED;
ALLOCATE T(LBOUND(R,1) :

HBOUND(R,1));
L1: DO K=LBOUND(R,1) TO HBOUND(R,1);

T(K)=0;

Created by Sanjay Sinha60

L2 : DO I=LBOUND(R,2) TO HBOUND(R,2);
T(K)=R(K,J) + S(K,J) + T(K);
END L2;

END L1;
FREE R,S;

END ADDAR;
END CONTR;

/* Note : C can be passed as an argument although it
has not yet been allocated. */

Created by Sanjay Sinha61

Array manipulation and built-in functions :
The DIM built-in
The LBOUND built-in
The HBOUND built-in
The SUM built-in
The PROD built-in

Created by Sanjay Sinha62

I/O operations and Arrays :
e.g. DCL AMOUNT(5) FIXED DEC(3);

GET LIST(AMOUNT);
e.g. DCL TABLE(6,2) FIXED DEC(3);

GET LIST (TABLE);
The Repetitive specification of a data item :
e.g.DCL DAY_NAMES(7) CHAR(10);
GET LIST((DAY_NAMES(I) DO I=1 TO 7));
e.g.DCL TABLE(6,2) FIXED DEC (5);
GET LIST (((TABLE(I,J) DO I=1 TO 6) DO J=1 TO 2));
e.g. GET LIST((A(I) DO I=1TO 5),(B(J),C(J) DO J=1 TO

3));

Created by Sanjay Sinha63

Structures :
DCL 1 EMP_DET,

2 EMP_NO FIXED DEC(5) ,
2 EMP_NAME CHAR(20),
2 EMP_SALARY,

3 BASIC FIXED (9,2),
3 INDIA_ALLOW FIXED(9,2),
3 MEDICAL(12),

4 MED_MONTH FIXED(9,2);
The statement could be written in a continuous

string also.

Created by Sanjay Sinha64

Array of Structures :
DCL 1 EMP_DET(100),

2 EMP_NO FIXED DEC(5) ,
2 EMP_NAME CHAR(20),
2 EMP_SALARY,

3 BASIC FIXED (9,2),
3 INDIA_ALLOW FIXED(9,2),
3 MEDICAL(12),

4 MED_MONTH FIXED(9,2);
If attribute are to be explicitly declared in a

structure, they may only be specified for
elementary items.

Created by Sanjay Sinha65

e.g. DCL EMP_DET1 CHAR(100);
EMP_DET1=EMP_DET; ---- ERROR

e.g. DCL EMP_DET1 LIKE EMP_DET;
--it’ll copy the structure of EMP_DET to

EMP_DET1.
e.g. EMP_DET1=EMP_DET , BY NAME ;

-- it’ll only copy the elements having the same
names.

e.g. EMP_DET1=‘ ‘;
-- it’ll assign the same space to all character

elements.
Overlay defining:
e.g. DCL EMP_DET2(100) DEFINED EMP_DET;

Created by Sanjay Sinha66

Built-in Functions for structures :
STRING function : It concatenates all the

elements in an array or a structure into a single
character or bit-string element .Thus, if it is
desired to concatenate a number of elementary
items found in a structure or array , it would be
easier to code the STRING function than to
code the concatenation operation a number of
times. STRING may also be used as a pseudo-
variable.

Created by Sanjay Sinha67

E.g.
DCL 1 EMP_DET,

2 EMP_NO CHAR(2) INIT(‘11’),
2 EMP_NAME CHAR(20) INIT(‘ JOAN K.

HUGHES’),
2 EMP_ADD CHAR(30) INIT(‘JOHN WILEY

& SONS ,ENGLAND’);
DCL ITEM CHAR(45);
ITEM=EMP_DET; --illegal
ITEM=STRING(EMP_DET);
EMP_DET=ITEM;
STRING(EMP_DET)=ITEM;

Created by Sanjay Sinha68

Pictures :
The pictures are used for the following purposes :

1.To treat character-strings as arithmetic quantities.
2. To treat arithmetic quantities as character-strings.
3. To edit data
4. To validate data

The general form of pictures for editing and validating is
: PICTURE ‘picture specification characters’
There are two types of pictures :
1. Decimal pictures
2. Characters-string pictures

Created by Sanjay Sinha69

Decimal pictures : The base and scale are
implicitly DECIMAL and FIXED respectively.

e.g DCL A PICTURE ‘9999V99’;
DCL B PICTURE ‘(4)9V9(2);
DCL C PICTURE ‘S9999V99;
DCL D PIC ‘999S’;

Editing data for printed output :
Using Z , . , B, /, $, S, +, -, *,CR, DR AND , .

E.g. DCL A PIC’****$S9,999V.99CR’;
A=1234.54;
PUT LIST(A); ------ The output is : *1234.54

Created by Sanjay Sinha70

Character-string pictures :
The symbols used are : A, X, 9 .
E.g. DCL NAME PIC ’(20)A’;

DCL ADDRESS PIC ‘(20)X;
DCL PINCODE PIC ‘999999’;

Pictures in Stream I/O :
Some editing of data in stream I/O is
automatic.In list-directed and data-directed
output of arithmetic coded data , leading zeros
will be suppressed and minus sign and decimal
point inserted if necessary.

Created by Sanjay Sinha71

Full editing capability may be achieved in list-
directed output by simply assigning data items
to identifiers that have the PICTURE attribute
and then issuing a PUT LIST on those
identifiers.In edit-directed I/O, full editing of data
may be implemented by using a format item
called P-format , containing any
character allowed in PICTURE and used to
describe the characteristics of external data.
E.g. DCL VALUE FIXED DEC(8,2);

DCL EDIT_DATA PIC’$$$$.$$$V.99CR’;
VALUE=A*B;

Created by Sanjay Sinha72

P’picture specification’ :

e.g. GET FILE(SYSIN) EDIT(A,B,C,D) (COL(1) ,
P’ZZZ9’, P’99V99’,P’AA999’,P’(5)9);

e.g. DCL ASSETS FIXED DEC(11,2);
ASSETS = 45326985.76;
PUT EDIT (ASSETS) (P’$$$$,$$$,$$$V.99’);

The output is : b$45,326,985.76

Created by Sanjay Sinha73

e.g. ASSETS=2500.00;
PUT EDIT(ASSETS) (P’$ZZ,ZZZ,ZZZV.99’);

The output is : $bbbbb2,500.00

e.g. DCL TODAY CHAR(6);
TODAY=‘080880’;
PUT EDIT(TODAY)(P’99/99/99’);

The output is 08/08/80

Created by Sanjay Sinha74

Procedures:
Sub-routine procedures :
1. Invoked by CALL statement
2. Separately compiled ,from the invoking

procedures, called as external procedures .
3. The length of these procedures’ names is

limited to 7 or 8 characters.
4. A STOP or EXIT statement in both separately

compiled procedure and nested sub-routine
procedure , abnormally terminates execution
of that sub-routine and of the entire program
associated with the procedure that invoked it.

Created by Sanjay Sinha75

5. Ideally an external sub-routine should not terminate
the entire program , should return an error indicator
to the calling program indicating whether or not an
error has been detected during the execution of the
sub-routine. It’s the function of MAIN program to
decide what action is taken.

6. Arguments passed to a called procedure must be
accepted by parameters of the calling procedure.

7. A built-in functions may be specified as arguments to
other subprogram , that function is

Created by Sanjay Sinha76

may be executed before the subroutine is called and
the value is being passed when there is no argument
of that built-in or the name of the built-in is enclosed
by parentheses or the built-in is passed to another
built-in as an argument. Otherwise the name is passed
to the sub-routine.

8. If arguments and parameters are of same type, then
the parameters share the same memory area of that
of parameters , called as call by reference.

9. If arguments and parameters are of different types or
constants , then the different memory area is allocated
to the parameters , called as call by value.

Created by Sanjay Sinha77

Dummy arguments :There are created in the
following cases:
1) If an argument is a constant
2) If an argument is an expression involving
operators.
3) If an argument is an expression in
parentheses.
4) If an argument is a variable whose attributes
are different from the attributes declared for the
parameter in an entry name attribute
specification appearing in the invoking block.
5) If an argument is itself a function reference
containing arguments.

Created by Sanjay Sinha78

The ENTRY attribute :It directs the compiler(in
Mainframe only) to generate the coding to convert one
or more arguments to conform to the attribute of the
corresponding parameters .Declare the sub-routine
within the main procedure as:
DCL SUBRT ENTRY(types of parameters);
After conversion , the values are stored in dummy
arguments in different locations and names are
automatically assigned by compiler, which can not be
accessed by programmers.Any manipulation done by
the called procedure only effects those dummy
arguments and hence original arguments remain
unchanged.

Created by Sanjay Sinha79

/* An example of Sub-routine using ENTRY(CALL BY
VALUE)*/

SUBPR : PROC OPTIONS(MAIN);
DCL A FIXED BINARY(15) INIT(10),

B FIXED BINARY (15) INIT(15),
C FIXED BINARY(15);
DCL ADDP ENTRY (FIXED DEC(15), FIXED DEC(15),);
CALL ADDP(A,B,C);

PUT LIST(C);
ADDP : PROC(A,B,C);

DCL A FIXED DEC(15),
B FIXED DEC(15),
C FIXED BIN(15);
C=A+B;

END ADDP;
END SUBPR;

Created by Sanjay Sinha80

The External attribute:
Specifies a name to be known to other

procedures containing an EXTERNAL
declaration of the same name(must be
limited to 6 characters).

PROG: PROC OPTIONS(MAIN);
DCL ARRAY(200) FIXED EXTERNAL;
DCL SUM FIXED(7) EXTERNAL;
GET LIST(ARRAY);
CALL ADDSUM;
PUT LIST(‘RESULT IS’,SUM);

Created by Sanjay Sinha81

ADDSUM : PROC;
DCL ARRAY(200) FIXED EXTERNAL;
DCL SUM FIXED(7) EXTERNAL;
SUM=0;
DO K=1 TO 200

SUM=SUM+ARRAY(K);
END;

END ADDSUM;

END PROG;

Created by Sanjay Sinha82

/* An example of Sub-routine using builtin */
TIMED: PROC OPTIONS(MAIN);

DCL TIME BUILTIN;
DCL TSTR CHAR(8) ;
CALL CTIME ((TIME),TSTR);
PUT LIST (TSTR);

CTIME:PROC(T,X) ;
DCL T CHAR(9);
DCL X CHAR(8);
DCL A CHAR(2);

Created by Sanjay Sinha83

DCL B CHAR(2);
DCL C CHAR(2);

A=SUBSTR(T,1,2);
B=SUBSTR(T,3,2);
C=SUBSTR(T,5,2);
X=A || ':’ || B || ':’ ||C;

END CTIME;
END TIMED;

Created by Sanjay Sinha84

Function Procedures:
1. A function is a procedure that returns a single value

to the invoking procedure.
2. Invoked in the same manner as PL/I built-in

functions are referenced.
3. Should not be invoked by CALL statement.
4. The RETURN statement is used to terminate a

function and a single value to the point of
invocation.
CALC:PROCEDURE(A,B,C);

RETURN(A+B+C);
END CALC;

Created by Sanjay Sinha85

5. By default , if the function name begins with
the letters A to H or O to Z , then the result
will be DECIMAL FLOAT(6).
Names starting with I to N return a result with
the attributes FIXED BINARY (15).
D=CALC(A,B,C);
To return data of some other type , use
RETURNS keyword , in both invoking and
invoked procedures.

Created by Sanjay Sinha86

CALC:PROCEDURE(A,B,C) RETURNS(FIXED
DECIMAL(7));

RETURN(A+B+C);
END CALC;

6. The RETURNS keyword , when specified in a
PROCEDURE or ENTRY statement , is
referred to as the RETURNS option.In the
previous example , the invoking procedure
must also specify that CALC is returning a
FIXED DECIMAL value of the same precision
because these attributes differ from the
default.

Created by Sanjay Sinha87

The RETURNS attribute , specified in a DECLARE
statement for an entry name , indicates the
attributes of the value returned by that function.

MAIN: PROCEDURE OPTION(MAIN);
DCL CALC ENTRY RETURNS (FIXED DEC(7));
DCL SUM FIXED DEC(7);
GET LIST (A,B,C);
SUM=CALC(A,B,C);
:
:

END MAIN;

Created by Sanjay Sinha88

/* An example of Function */
SUBPR : PROC OPTIONS(MAIN);
DCL A FIXED BINARY(15) INIT(10),

B FIXED BINARY (15) INIT(15),
C FIXED BINARY(15);
C= ADDP(A,B);
PUT LIST(C);

ADDP : PROC(A,B) RETURNS(FIXED BIN(15));
C=A+B;
RETURN (C);

END ADDP;
END SUBPR;

Created by Sanjay Sinha89

/* An example of function using builtin */
TIMED: PROC OPTIONS(MAIN);

DCL TIME BUILTIN;
DCL TRES CHAR(8) ;
TRES= CTIME (TIME);
PUT LIST (TRES);

CTIME:PROC(T,X) RETURNS(CHAR(8));
DCL T CHAR(9);
DCL X CHAR(8);
DCL A CHAR(2);
DCL B CHAR(2);

Created by Sanjay Sinha90

DCL C CHAR(2);
A=SUBSTR(T,1,2);
B=SUBSTR(T,3,2);
C=SUBSTR(T,5,2);
X=A || ':’ || B || ':’ ||C;
RETURN(X);

END CTIME;
END TIMED;

Created by Sanjay Sinha91

Recursive procedures :
When a procedure invokes itself , its said to be

recursive.
e.g. the computation of factorial where
n! = 1*2*3…….*n
----code in the calling procedure--------
N=4;
RESULT=CALC_FACT(N);

-----code in the called procedure ---------
CALC_FACT:PROCEDURE(M);

K=1;

Created by Sanjay Sinha92

DO I=1 TO M;
K=K*I;

END;
RETURN(K);

END CALC_FACT;
-----code using RECURSIVE option-----------
CALC_FACT:PROCEDURE(M) RECURSIVE;

K=M - 1;
IF K=1 THEN

I=M;
ELSE

I=M * CALC_FACT(K);
RETURN(I);

END CALC_FACT;

Created by Sanjay Sinha93

File declarations :
1. Define the file via a DECLARE statement.

-- DECLARE EMPLOYEE FILE(other attributes);
Attributes associated with a file include the type
of transmission (STREAM or RECORD) , the
direction of transmission (INPUT ,OUTPUT ,
UPDATE in the case of disk files) and the
physical environment of the file e.g. ENV /
ENVIRONMENT to specify BLKSIZE or
RECSIZE or record type(F,V,VB,FB) or device
type.

Created by Sanjay Sinha94

---- DECLARE EMPLOYEE FILE INPUT STREAM
ENV (options);

2. File must be opened before communicating via
OPEN statement and can also provide additional file
attributes at open time.
File attributes :
1. FILE attribute
2. INPUT/OUTPUT attribute
3. STREAM attribute
4. ENVIRONMENT attribute
5. PRINT attribute

Created by Sanjay Sinha95

The OPEN statement :
Files are opened automatically , hence not
required to give the command explicitly . But
still used to specify the additional file attributes
and/or options may be specified at open times.
OPEN FILE(FILE1), FILE(FILE2);
OPEN FILE(FILE1) PAGESIZE(50);
OPEN FILE(FILE1) LINESIZE(121);

Created by Sanjay Sinha96

3. Process information in the file via READ or
WRITE or REWRITE or GET or PUT
statements.
Default of pre-defined files :
When not mentioned in GET or PUT statement
, SYSIN is for the standard input or SYSPRINT
for the output file.
E.g. GET LIST (A,B,C); --- is equivalent to

GET FILE(SYSIN) LIST (A,B,C):

4. Close the file via CLOSE statement.
CLOSE FILE (EMPLOYEE);

Created by Sanjay Sinha97

In the initial design of PL/I , stream I/O was
intended for scientific applications. Now-a-
days stream I/O is used in both scientific and
commercial programming applications ,
although the majority of commercial
applications use record I/O . Stream I/O is
most often used for a terminal or printer files ,
although it could also be used for tape or disk
unblocked records in consecutive files.

Created by Sanjay Sinha98

Stream I/O :
All input and output data items are in the form of
stream of characters. In input stream , characters are
converted to the internal attributes of the identifiers
specified in the GET statement. On output , coded
arithmetic data items are automatically converted back
to character form before the output takes place.
There are three types :
1. List-directed I/O
2. Edit-directed I/O
3. Data-directed I/O

Created by Sanjay Sinha99

Edit-directed I/O:
1. The format of the data items must be
mentioned.
2. General format :

GET EDIT (data list)(format list);
PUT EDIT (data list)(format list);
e.g. GET EDIT (EMP_NO , EMP_NAME,

BASIC, INDIA_ALLOW, MED_MONTH)
(COLUMN(1), F(5) , A(20),F (9,2), F(9,2),

F(9,2));
e.g. GET EDIT (EMP_NO , EMP_NAME,

BASIC, INDIA_ALLOW, MED_MONTH)
(R(RFMT));

Created by Sanjay Sinha100

:
RFMT: FORMAT(COLUMN(1), F(5) , A(20),F (9,2),
F(9,2), F(9,2));
Rules :
a) All data list items have corresponding format
items
b) If there are more format than data items , there

is a return to the beginning of the format list.
E.g. GET EDIT(A,B,C) (F(4),F(5));

c) The data list item need not have the same width
specification as the corresponding format items.

Created by Sanjay Sinha101

E.g. DCL NAME CHAR(15);
GET EDIT (NAME) (A(20));

d) I/O continues until the data list is
exhausted.

e) Input data items may be pseudo-variables
e.g. DCL NAME CHAR(20);

GET EDIT (SUBSTR(NAME,5,10)) (A(20));
f) Data list items may be names of data

aggregates.
E.g. DCL TABLE(10) FLOAT DEC(6);

GET EDIT(TABLE)
(COLUMN(1),F(6,2));

Created by Sanjay Sinha102

Equivalent to :
E.g. GET EDIT ((TABLE (I) DO I=1 TO 10))

(COLUMN(1),F(6,2));
E.g.DCL TABLE(2,5) FLOAT DEC(6);

PUT EDIT (TABLE) (F(10));

Equivalent to:
e.g. GET EDIT (((TABLE(I,J) DO J=1 TO 5)

DO I=1 TO 2)) (F10));

Created by Sanjay Sinha103

Equivalent to :
DO I=1 TO 2;

DO J=1 TO 5;
GET EDIT (TABLE(I,J)) (F10));

END;
END;

g) Output data items may be built-in functions
h) Output data items may be PL/I constant
i) Data items may consists of Element Expression
j) More than one data list and corresponding format list
may be specified

Created by Sanjay Sinha104

e.g. GET EDIT (data list1) (format list1) (data list2)
(format list2) …;

3. A file name could also be specified :
GET FILE(filename) EDIT (data list)(format

list);
PUT FILE(filename) EDIT (data list)(format
list);

Created by Sanjay Sinha105

Data-directed I/O:
Data-directed Input:
Each item in the input is in the form of an

assignment that specifies both the value and
the variable to which it is to be assigned.

E.g. GET DATA (list of items); -- its optional and
maxm 320 items can be mentioned.
A=12.3, B=23, C=‘ABCDEF’,D=‘10101’B;
GET DATA (C,B,A,D);
GET DATA (A,B,C,D,E); --- E is not altered by the
input operation.

Created by Sanjay Sinha106

GET DATA (A,B); --- error as C,D are in the input
stream but not in the data list. And raises the NAME
condition.
ON NAME (SYSIN)
BEGIN;
:
:
END;
GET DATA; --the names in the stream may be any
names known at the pint of the GET statement. A data
list in the GET statement is optional ,because the
semi-colon determines the number if items to be
obtained from the stream.

Created by Sanjay Sinha107

If the data includes the name of an array , subscripted
references to the array may appear in the stream,
although subscripted names cannot appear in the data
list. The entire array need not appear in the stream ,
only those elements that actually appear in the stream
will be assigned .
E.g. DCL TABLE(10) FIXED (5,2);

GET DATA (TABLE);
the input stream consists of the following assignment
statements:
TABLE(3)=34.34; TABLE(10)=12.12;

Created by Sanjay Sinha108

Data-directed output :
Each data item is placed in the stream in the form of
assignment statements separated by blanks. The last
item output by each PUT statement followed by a
semicolon.Fixed point binary and floating point binary
data appear in fixed-point decimal format.
DCL A FIXED DEC(5) INIT(0);
DCL B FIXED DEC(5) INIT(0);
DCL C FIXED BIN(5) INIT(170);
PUT DATA(A,B,C); PUT PAGE DATA(A,B,C);
PUT SKIP(3) DATA(A,B,C); PUT LINE(5)

DATA (A,B,C);

Created by Sanjay Sinha109

The output to the default file SYSPRINT in the
format :
A=0 B=0 C=170;
If the output is to other than a printer , one
blank is placed between each assignment
statement.
The data list may be an element , array , a
subscripted name, structure or a repetitive
specification involving any of these elements or
further repetitive specification.
PUT DATA;

PUT PAGE DATA (‘SALES REPORT’); --error

Created by Sanjay Sinha110

GET FILE (filename) DATA(A,B,C);
Data to be entered as:
: A=……, B=…… , C=…….

PUT FILE(filename) DATA(A,B,C);
The COUNT Built-in function:
DCL INFILE FILE INPUT STREAM;
GET FILE (INFILE) DATA;

I=COUNT(INFILE); /* no of elements is stored */
Output data item may be Built-in function:

PUT EDIT (DATE)(P’99/99/99’);

Created by Sanjay Sinha111

Example:
ON ENDFILE (DATA)

MORE_RECORDS=NO;
MORE_RECORDS=YES;
READ FILE(DATA) INTO(DATA_AREA);
DO WHILE (MORE_RECORDS);

WRITE FILE(PRINT_FILE) FROM (DATA_AREA);
READ FILE(DATA) INTO(DATA_AREA);

END;

Created by Sanjay Sinha112

Conditions and On-Units :
The ERROR condition is raised as a result of the

standard system action and terminate the program
and return control to the O.S.

The ON statements are used to specify action to be
taken when a specified condition causes a program to
interrupt.

E.g. ON condition on-unit;
In absence of any of these On-Units specified in the

program, system will raise ERROR condition.The
following conditions are by default enabled , can not
be disabled.

Created by Sanjay Sinha113

1.ENDFILE(filename) 2. ENDPAGE(filename)

3. RECORD(filename) 4.TRANSMIT(filename)
5. CONVERSION 6. SIZE

ON ENDFILE : This condition is raised during a
GET or READ operation.

ON ENDPAGE :This condition is raised when a
PUT statement results in an attempt to start a
new line beyond the limit specified for
PAGESIZE(specified in OPEN statement).

Created by Sanjay Sinha114

ON KEY condition : Raised during operations on
keyed records in any of the following cases:
1. The keyed record can not be found for a READ or
REWRITE statement.
2. An attempt is made to add a duplicate key by a
WRITE statement.
3. The key has not been correctly specified.
4. No space is available to add the keyed record.
E.g. ON KEY(FILE1)

BEGIN;
FLAG=YES;

Created by Sanjay Sinha115

CODE=ONCODE;
PUT SKIP EDIT(‘KEY ERROR FOR
FILE1 , ONCODE IS’,CODE) (A);
END;

:
:
READ FILE(FILE1) INTO(DATA_AREA)
KEY(PARTNO);
IF FLAG THEN

CALL ERR-ROUTINE;
ELSE

CALL UPDATE_ROUTINE;

Created by Sanjay Sinha116

ON UNDEFINEDFILE condition : Raised whenever an
attempt to open a file is unsuccessful.
1. A conflict in attributes exists.
2. Attributes are incomplete.

ON RECORD condition : Raised during a
READ,WRITE , REWRITE operation. The input
operations it is raised by either of the following :
1. The size of the record on the data set is greater
than the size of the variable into which the record is to
be read (for F,V,U format).

Created by Sanjay Sinha117

2. The size of the record is less than the size of
the variable (for F format).
For a WRITE or REWRITE operations:
1. When the size of the variable from which the
record is to be written is greater than the
maximum size specified for the record (F,V,U
formats).
2. When the size of the variable is less than the
size specified for the record (F format).

ON TRANSMIT condition :This condition is
raised due to any hardware malfunction . It
indicates that the data transmitted is incorrect.

Created by Sanjay Sinha118

Built-In Functions :
ONKEY : It extracts the value of the key for the

record that caused an I/O condition to be
raised.
E.g. DCL KEY_ERRCHAR(9) VARYING;

DCL ONKEY BUILTIN;
ON KEY(FILE1)

BEGIN;
KEY_ERR=ONKEY;
:
:

END;

Created by Sanjay Sinha119

ONFILE : It determines the name of the file for which an
I/O or CONVERSION condition was raised and
returns that name to point of invocation.
E.g. DCL NAM CHAR(3) VARYING;

DCL ONFILEBUILTIN;
ON KEY(FILE2)

BEGIN;
NAME=ONFILE;
:
:

END;

Created by Sanjay Sinha120

Record I/O :
1. Declare the file by DECLARE statement :

e.g. DCL DATA FILE INPUT RECORD ENV
(F RECSIZE (80));

DCL PRINT_FILE OUTPUT RECORD ENV
(F RECSIZE (80));

DCL DATA_AREA CHAR(80);
2. The keyword RECORD specifies the type of

I/O .
3. The record I/O statements that are used to

communicate with files include READ, WRITE,
REWRITE and DELETE.

Created by Sanjay Sinha121

Carriage control in Record I/O :
1. The program counter is automatically incremented as

and when a WRITE command is used.
2. When program counter reaches the maximum line per

page , the program gives the command to skip the
page to the printer.

3. To accomplish the carriage control for record output ,
append an extra character to the beginning of each
record.

4. A keyword must be added to the ENVIRONMET
section of the file declaration to notify PL/I that

Created by Sanjay Sinha122

these carriage control characters are being
used in the program and that the I/O routines
are to interpret the first character of each record
accordingly.

5. Two different sets are CTLASA or CTL360 .
6. If CTLASA is used , the carriage control

operation is performed before the printing , in
case of CTL360 , after printing.

7. Generally CTL360 characters are faster than
CTLASA.

Created by Sanjay Sinha123

Example :
LINECNT: PROC OPTIONS(MAIN);

DCL DATAIN FILE INPUT RECORD ENV(F
RECSIZE(80));

DCL FILE INPUT RECORD ENV
(F RECSIZE(80));

DCL PRINT_FILE FILE OUTPUT RECORD ENV
(F RECSIZE(81) CTLASA);

DCL DATA_AREA CHAR(80);
DCL LCTR FIXED(3);
DCL MORE_RECORDS BIT(1);

Created by Sanjay Sinha124

DCL NO BIT(1);
DCL PRINT_AREA CHAR(81);
ON ENDFILE(DATAIN)

MORE_RECORDS=NO;
OPEN FILE(DATAIN), FILE(PRINT_FILE);
LCTR=55;
READ FILE(DATAIN) INTO(DATA_AREA);
DO WHILE (MORE_RECORDS);

LCTR=LCTR+1;
IF LCTR>55 THEN

DO;

Created by Sanjay Sinha125

PRINT_AREA=‘1’ || DATA_AREA;
LCTR=0;

END;
ELSE

PRINT_AREA=‘ ‘ ||DATA_ARE;
WRITE FILE(PRINT_FILE) FROM

(PRINT_AREA);
READ FILE(DATAIN) INTO(DATA_AREA);

END;

Created by Sanjay Sinha126

File Organization :
1. Types of file access are ,SEQUENTIAL and
DIRECT.
2. Types of file organization are ,
CONSECUTIVE (sequential) , INDEXED(
indexed sequential) , REGIONAL(direct or
random) , VSAM(ESDS, KSDS, RRDS).
3.Different file attributes :

a) FILE b) EXTERNAL/INTERNAL
c) STREAM/RECORD
d) INPUT/ OUTPUT/ UPDATE

Created by Sanjay Sinha127

/*AN EXAMPLE TO CREATE AN INDEXED FILE FOR
STUDENT DATA */

WRprogram : PROC OPTIONS(MAIN);
DCL STUD FILE OUTPUT INDEXED RECORD;
DCL 1 STUD_DATA,

2 STUD_ROLL FIXED BINARY(15),
2 STUD_NAME CHAR(20),
2 STUD_MARKS FIXED BIN(15);

DCL CONT CHAR(1) INIT('Y');

Created by Sanjay Sinha128

DO WHILE (CONT='Y');
PUT SKIP LIST ('ENTER DATA FOR STUDENT');
PUT SKIP LIST ('ENTER ROLL FOR STUDENT');
GET LIST (STUD_ROLL);
PUT SKIP LIST ('ENTER NAME FOR STUDENT');

GET LIST(STUD_NAME);
PUT SKIP LIST ('ENTER MARKS FOR STUDENT');
GET LIST (STUD_MARKS);
WRITE FILE(STUD) FROM (STUD_DATA)
KEYFROM(STUD_ROLL) ;

Created by Sanjay Sinha129

PUT SKIP LIST ('WANT TO CONT(Y/N)?');
GET SKIP LIST (CONT);

END;
CLOSE FILE(STUD);
END WRprogram;

Created by Sanjay Sinha130

/* MENU PROGRAM TO CALL DIFF. PROGRAMS */
MENUprogram: PROC OPTIONS(MAIN);
DCL RDprogram EXT ENTRY;
DCL WRprogram EXT ENTRY;
DCL MODprogram EXT ENTRY;

DCL CH CHAR(1);
PUT SKIP LIST (' MENU ');
PUT SKIP LIST (' 1. TO ADD A RECORD');
PUT SKIP LIST (' 2. TO READ A RECORD');
PUT SKIP LIST (' 3. TO MODIFY A RECORD');
PUT SKIP LIST (' 4. EXIT ');

Created by Sanjay Sinha131

PUT SKIP(2) LIST ('ENTER YOUR CHOICE(1-4):');
GET LIST(CH);
IF CH='1’ THEN

CALL WRprogram;
ELSE

IF CH='2' THEN
CALL RDprogram;

ELSE
IF CH='3' THEN

CALL MODprogram;

Created by Sanjay Sinha132

ELSE
IF CH='4' THEN

RETURN;
ELSE

PUT LIST ('WRONG CHOICE');
END MENUprogram;

Created by Sanjay Sinha133

/* TO CREATE A FILE FOR STUDENT DATA */
WRprogram : PROC ;

DCL STUD FILE OUTPUT RECORD;
DCL 1 STUD_DATA,

2 STUD_ROLL FIXED BINARY(15),
2 STUD_NAME CHAR(20),
2 STUD_MARKS FIXED BIN(15);

/*OPEN FILE STUD OUTPUT;*/
DCL CONT CHAR(1) INIT('Y');
DO WHILE (CONT='Y');

PUT SKIP LIST ('ENTER DATA FOR STUDENT');
PUT SKIP LIST ('ENTER ROLL FOR STUDENT');

Created by Sanjay Sinha134

GET LIST (STUD_ROLL);
PUT SKIP LIST ('ENTER NAME FOR STUDENT');
GET LIST(STUD_NAME);
PUT SKIP LIST ('ENTER MARKS FOR STUDENT');
GET LIST (STUD_MARKS);
WRITE FILE(STUD) FROM (STUD_DATA) ;

PUT SKIP LIST ('WANT TO CONT(Y/N)?');
GET SKIP LIST (CONT);

END;
CLOSE FILE(STUD);
END WRprogram;

Created by Sanjay Sinha135

/* TO MODIFY FILE FOR STUDENT DATA */
MODprogram : PROC ;

DCL STUD FILE UPDATE RECORD;
DCL 1 STUD_DATA,

2 STUD_ROLL FIXED BINARY(15),
2 STUD_NAME CHAR(20),
2 STUD_MARKS FIXED BIN(15);

/*OPEN FILE STUD INPUT;*/
DCL RNO FIXED BINARY(15);
DCL CONT CHAR(1) INIT('Y');

Created by Sanjay Sinha136

ON ENDFILE(STUD)
BEGIN;

PUT SKIP LIST('RECORD NOT FOUND');
GO TO OUT;

END;
DO WHILE (CONT='Y');

PUT SKIP LIST('ENTER ROLL NO TO BE
MODIFIED');

GET LIST(RNO);
READ FILE(STUD) INTO (STUD_DATA) ;

SEARCH : IF STUD_ROLL=RNO THEN
BEGIN;

Created by Sanjay Sinha137

PUT LIST ('ENTER NEW DATA');
PUT SKIP LIST ('ENTER NEW ROLL FOR

STUDENT');
GET LIST (STUD_ROLL);
PUT SKIP LIST ('ENTER NEW NAME FOR

STUDENT');
GET LIST(STUD_NAME);
PUT SKIP LIST ('ENTER NEW MARKS FOR

STUDENT');
GET LIST (STUD_MARKS);
REWRITE FILE(STUD) FROM (STUD_DATA) ;
GO TO OUT;

Created by Sanjay Sinha138

END;
ELSE

BEGIN;
READ FILE(STUD) INTO (STUD_DATA) ;
GOTO SEARCH;

END;
OUT: PUT SKIP LIST('WANT TO CONT(Y/N):');
GET LIST(CONT);

END;
CLOSE FILE(STUD);

END MODprogram;

Created by Sanjay Sinha139

/* TO READ FILE FOR STUDENT DATA */
RDprogram : PROC ;
DCL STUD FILE INPUT RECORD;
DCL 1 STUD_DATA,

2 STUD_ROLL FIXED BINARY(15),
2 STUD_NAME CHAR(20),
2 STUD_MARKS FIXED BIN(15);

/*OPEN FILE STUD INPUT;*/
DCL FLAG CHAR(1) INIT('Y');
ON ENDFILE(STUD)

FLAG='N';
PUT SKIP LIST('END OF FILE');

Created by Sanjay Sinha140

READ FILE(STUD) INTO (STUD_DATA) ;
DO WHILE (FLAG='Y');

PUT SKIP LIST(STUD_ROLL);
PUT SKIP LIST(STUD_NAME);
PUT SKIP LIST(STUD_MARKS);
READ FILE(STDATA) INTO (STUD_DATA) ;

END;
CLOSE FILE(STUD);

END RDprogram;

