Practical Guide to
building an
with

Wim Deblauwe

InfoQ

ENTERPRISE SOFTWARE

DEVELOPMENT SERIES

Practical Guide to Building an API Back End with Spring Boot
© 2018 Wim Deblauwe. All rights reserved. Version 1.0.
Published by C4Media, publisher of InfoQ.com.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recoding, scanning or otherwise except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written
permission of the publisher.

Production Editor: Ana Ciobotaru
Copy Editor: Lawrence Nyveen
Cover and Interior Design: Dragos Balasoiu

Library of Congress Cataloguing-in-Publication Data: ISBN: 978-0-359-04452-8

Table of Contents

Practical Guide to Building an API Back End with Spring Boot
Dedication
Acknowledgements
Preface
What is in an InfoQ mini-book?
Who this book is for
What you need for this book
Conventions
Reader feedback
Introduction
What Is Spring Boot?
Spring Framework
Spring Boot
Getting Started
Preparation
Spring Initializr
Properties
Spring profiles
Configure logging
CopsBoot
Explanation of the sample project
Generating the project skeleton
User Management
User domain
User repository
User-domain refactoring
Summary
REST API Security
Spring Security OAuth2
UserDetailsService
Supporting beans
Test getting an access token
Summary
User REST Controller
Basics

Get mapping

© © ©O© 00 0 00 I O W+ b b= b b W DN

A D DA D U Ul b W W W NDNDNDNDNDDNDN R
=R R W N NN 00 00U NN O O O Uk Ww

POST mapping
Writing API documentation
Refactoring to avoid duplication
Summary
Working with a Real Database
Installation of PostgreSQL
Using PostgreSQL
Updates
Integration testing
Summary
Validation
Built-in validators
Unit test for a built-in validator
Handling validation errors via an exception handler
Custom field validator
Custom object validator
Custom object validator using a Spring service
Summary
File Upload
Upload a file
File-size validation
Summary
Action!
Additional reading
About the Author
Appendix A: OAuth Database Schema
PostgreSQL
MySQL
Microsoft SQL Server
H2

73

76

92

95

96

96

97
101
101
105
107
107
109
110
112
119
122
126
127
127
130
134
135
135
136
137
137
138
139
140

Practical Guide to Building an API Back End
with Spring Boot

Dedication

I would like to dedicate this book to my wife Sofie and sons Victor and Jules, as I was more absent
while trying to put my knowledge into this book. Their continued support for all my endeavours
means the world to me.

Acknowledgements

I would also like to thank all the people that made Spring and Spring Boot a reality. It is really an
amazing piece of software.

I also want to send a big thank you to the people that created Asciidoctor. It made writing this book
extremely enjoyable.

Finally, I also want to thank the book’s editors, Ben Evans and Lawrence Nyveen. Their feedback has
been invaluable for making this book the best it can be.

Preface

This book is the culmination of two years of working with Spring Boot on a variety of projects. This is
the book I wished I had when starting out building back-end applications with Java and Spring Boot.

Through the creation of a fictional application called CopsBoot, you will learn about Spring, Spring
Boot, Spring Security, and Spring Data. You will also learn to use unit and integration tests to ensure
the proper code functionality and build a maintainable code base that you can expand upon.

This book assumes you have enough basic Java knowledge to be able to follow. However, proficiency in
similar languages like C# should be sufficient.

What is in an InfoQ mini-book?

InfoQ mini-books are designed to be concise, intending to serve technical architects looking to get a
firm conceptual understanding of a new technology or technique in a quick yet in-depth fashion. You
can think of these books as covering a topic strategically or essentially. After reading a mini-book, the
reader should have a fundamental understanding of a technology, including when and where to apply
it, how it relates to other technologies, and an overall feeling that they have assimilated the combined
knowledge of other professionals who have already figured out what this technology is about. The
reader will then be able to make intelligent decisions about the technology once their projects require
it, and can delve into sources of more detailed information (such as larger books or tutorials) at that
time.

Who this book is for

This book is for Java developers that want to quickly start creating a REST API using Spring Boot.

What you need for this book

To try code samples in this book, you will need a computer running an up-to-date operating system
(Windows, Linux, or macOS). You will need Java installed. The book code was tested against JDK 8, but
newer versions should also work.

Conventions

We use a number of typographical conventions within this book that distinguish between different
kinds of information.

Code in the text, including commands, variables, file names, CSS class names, and property names are
shown as follows:

chapter-03.pdf#chapter-03

Preface

Spring Boot uses a public static void main entry point that launches an embedded web server for
you.

A block of code is set out as follows. It may be coloured, depending on the format in which you’re
reading this book.

sr¢/main/java/demo/DemoApplication.java

@RestController
class BlogController {
private final BlogRepository repository;

// Yay! No annotations needed for constructor injection in Spring 4.3+.
public BlogController(BlogRepository repository) {
this.repository = repository;

}

@RequestMapping("/blogs")
Collection<Blog> list() {

return repository.findA11l();
}

When we want to draw your attention to certain lines of code, those lines are annotated using
numbers accompanied by brief descriptions.

@SpringBootApplication @
public class Application {

public static void main(String[] args) {

SpringApplication.run(Application.class, args);

}

@ The @SpringBootApplication annotation marks this class as the main class when starting with Spring
Boot.

Q Tips are shown using callouts like this.

A Warnings are shown using callouts like this.

Sidebar

Additional information about a certain topic may be displayed in a sidebar like this one.

Finally, this text shows what a quote looks like:

In the end, it’s not the years in your life that count. It’s the life in your years.

— Abraham Lincoln

Reader feedback

We always welcome feedback from our readers. Let us know what you thought about this book —
what you liked or disliked. Reader feedback helps us develop titles that deliver the most value to you.

To send us feedback, e-mail us at feedback@infoq.com.

If you’re interested in writing a mini-book for InfoQ, see http://www.infoq.com/minibook-guidelines.

mailto:feedback@infoq.com
http://www.infoq.com/minibook-guidelines

Introduction

I have been working with Spring Boot for over two years and it has made development a tremendous
joy. It is important in our fast-paced world to be able to prototype quickly, but also to ensure that you
are not doing any wasted work.

For me, this is one of the major strengths of Spring Boot. The smallest application can fit in a tweet, yet
your application will scale to Internet scale with the greatest of ease.

Combine Spring Boot with Spring Data and Spring Security and you can have something up and
running in no time. And it is not just "something", it is a solid base to build upon.

https://twitter.com/rob_winch/status/364871658483351552

What Is Spring Boot?

Spring Framework

Spring Boot is based upon the Spring Framework, which is at its core a dependency-injection
container. Spring makes it easy to define everything in your application as loosely coupled components
which Spring will tie together at run time. Spring also has a programming model that allows you to
make abstractions from specific deployment environments.

One of the key things you need to understand is that Spring is based on the concept of "beans" or
"components"”, which are basically singletons without the drawbacks of the traditional singleton
pattern.

With dependency injection, each component just declares the collaborators it needs, and Spring
provides them at run time. The biggest advantage is that you can easily inject different instances for
different deployment scenarios of your application (e.g., staging versus production versus unit tests).

Spring Boot

The Spring Boot website explains itself succinctly:

Spring Boot makes it easy to create stand-alone, production-grade Spring based
Applications that you can "just run". We take an opinionated view of the Spring
platform and third-party libraries so you can get started with minimum fuss.
Most Spring Boot applications need very little Spring configuration.

With Spring Boot, you get up and running with your Spring application in no time, without the need to
deploy to a container like Tomcat or Jetty. You can just run the application right from your IDE.

Spring Boot also ensures that you get a list of versions of libraries inside and outside of the Spring
portfolio that are guaranteed to work together without problems.

https://projects.spring.io/spring-framework/
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern

Getting Started

Preparation

Before you can start, you need to install some things:

1. Java: Download the JDK 8 from http:/www.oracle.com/technetwork/java/javase/downloads/
index.html

2. Maven: Follow the instructions at https://maven.apache.org/install.html to install Maven. If you are
on a UNIX-based platform, you might want to use SDKMAN! to make this easier.

Spring Initializr

The easiest way to get started with Spring Boot is to create a project using Spring Initializr. This web
application allows you to generate a Spring Boot project with the option of including all the
dependencies you need.

To get started, open your favorite browser at https://start.spring.io/

SPRING INITIALIZR

Generate a wawnroea: With 2= ¢ and Spring Boot 150

Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies
com.example | Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies

demo

Generate Project # + &

Don't know what to look for? Want more options? Switch to the full version.

start.spring.io is powered by and

Figure 1. The Spring Initializr website.
Start with the defaults:

* Maven as build system;

* Java 8 as programming language; and

©

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://maven.apache.org/install.html
https://sdkman.io/install
https://start.spring.io/
https://maven.apache.org/
https://www.oracle.com/java/index.html

* Spring Boot version 2.0.3, as this is the most recent version at the time of writing.

0 You can use Gradle as your build system or one of the other supported JVM languages
if you prefer to. The main principles explained in the book remain the same.

Start out simple and only include Web and Lombok as dependencies.

0 Project Lombok lets you avoid having to write boilerplate code in Java like getters,
setters, equals(), hashCode(), ...

Press "Generate Project" and unzip the file to a location of your choice.

The generated project contains the following files and directories:

pom.xml @
mvnw @
mvnw.cmd
src
|-- main
|-- java
|-- com.springbook.application
|-- Application ®
|-- resources
|-- application.properties
|-- test
|-- java
|-- com.springbook.application
|-- ApplicationTests @

@ pom.xml defines the Maven configuration of the project.

@ mvnw and mvnw.cmd allows the project to build even if you don’t have Maven installed via the Maven
Wrapper.

® The starting point of the application having a main() that lets you run and debug the application.
from your favorite IDE without having to deploy to a container like Tomcat.

@ A unit test that starts your application to check if at least the Spring context loads properly.

Let’s take a closer look at Application.java:

10

https://projectlombok.org/
https://github.com/takari/maven-wrapper
https://github.com/takari/maven-wrapper

Application.java

@
public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

@ The @SpringBootApplication annotation marks this class as the main class when starting with Spring
Boot.

Not much code, right? However, if you run this main, you will notice that a lot of things are happening
under the hood.

You can run the application from your IDE or through Maven with mvn spring-boot:run. See Running
your application in the Spring Boot documentation for more information.

AN V2R (D MR W U U
CONC T2l T2 2V YNV
A\VZRD [SO [O O N OO B AP AP B
[N N [I N T O D NP I A
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v2.0.3.RELEASE)
2018-07-07 14:32:28.272 INFO 4838 --- [main]
com.springbook.application.Application : Starting Application on Wims-MacBook-Pro.local

with PID 4838 (started by wdb in /Users/wdb/Projects/spring-boot-book/src/example-
code/chapter02/01 - Generated project)

2018-07-07 14:32:28.276 INFO 4838 --- [main]
com.springbook.application.Application : No active profile set, falling back to default
profiles: default

2018-07-07 14:32:28.319 1INFO 4838 --- [main]
ConfigServletWebServerApplicationContext : Refreshing
org.springframework.boot.web.servlet.context.AnnotationConfigServletWebServerApplicationC
ontext@288c63fb: startup date [Sat Jul 07 14:32:28 CEST 2018]; root of context hierarchy

2018-07-07 14:32:29.179 INFO 4838 --- [main]
0.5.b.w.embedded.tomcat.TomcatWebServer : Tomcat initialized with port(s): 8080 (http)
2018-07-07 14:32:29.204 1INFO 4838 --- [main]
0.apache.catalina.core.StandardService : Starting service [Tomcat]

2018-07-07 14:32:29.205 INFO 4838 --- [main]

org.apache.catalina.core.StandardEngine : Starting Servlet Engine: Apache Tomcat/8.5.31

2018-07-07 14:32:29.214 INFO 4838 --- [ost-startStop-1]
0.a.catalina.core.AprLifecycleListener : The APR based Apache Tomcat Native library
which allows optimal performance in production environments was not found on the

11

https://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-running-your-application.html
https://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-running-your-application.html

12

java.library.path:
[/Users/wdb/Library/Java/Extensions:/Library/Java/Extensions:/Network/Library/Java/Extens
ions:/System/Library/Java/Extensions:/usr/1lib/java:.]

2018-07-07 14:32:29.285 INFO 4838 --- [ost-startStop-1]
0.a.c.c.C.[Tomcat].[localhost].[/] : Initializing Spring embedded
WebApplicationContext

2018-07-07 14:32:29.285 1INFO 4838 --- [ost-startStop-1] o.s.web.context.ContextlLoader
: Root WebApplicationContext: initialization completed in 969 ms

2018-07-07 14:32:29.386 INFO 4838 --- [ost-startStop-1]
0.s.b.w.servlet.ServletRegistrationBean : Servlet dispatcherServlet mapped to [/]

2018-07-07 14:32:29.388 INFO 4838 --- [ost-startStop-1]
0.s.b.w.servlet.FilterRegistrationBean : Mapping filter: 'characterEncodingFilter' to:
[/*]

2018-07-07 14:32:29.389 INFO 4838 --- [ost-startStop-1]
0.s.b.w.servlet.FilterRegistrationBean : Mapping filter: 'hiddenHttpMethodFilter' to:
[/*]

2018-07-07 14:32:29.389 INFO 4838 --- [ost-startStop-1]
0.s.b.w.servlet.FilterRegistrationBean : Mapping filter: "httpPutFormContentFilter' to:
[/*]

2018-07-07 14:32:29.389 INFO 4838 --- [ost-startStop-1]

0.s.b.w.servlet.FilterRegistrationBean : Mapping filter: 'requestContextFilter' to:
[/*]
2018-07-07 14:32:29.482 1INFO 4838 --- [main]

0.s.w.s.handler.SimpleUr1lHandlerMapping : Mapped URL path [/**/favicon.ico] onto handler
of type [class org.springframework.web.servlet.resource.ResourceHttpRequestHandler]

2018-07-07 14:32:29.624 1INFO 4838 --- [main]
s.w.s.m.m.a.RequestMappingHandlerAdapter : Looking for @ControllerAdvice:
org.springframework.boot.web.servlet.context.AnnotationConfigServletWebServerApplicationC
ontext@288c63fb: startup date [Sat Jul 07 14:32:28 CEST 2018]; root of context hierarchy

2018-07-07 14:32:29.689 INFO 4838 --- [main]
s.w.s.m.m.a.RequestMappingHandlerMapping : Mapped "{[/error]}" onto public
org.springframework.http.ResponseEntity<java.util.Map<java.lang.String,
java.lang.Object>>
org.springframework.boot.autoconfigure.web.servlet.error.BasicErrorController.error(javax
.servlet.http.HttpServletRequest)

2018-07-07 14:32:29.690 INFO 4838 --- [main]
s.w.s.m.m.a.RequestMappingHandlerMapping : Mapped "{[/error],produces=[text/html]}" onto
public org.springframework.web.servlet.ModelAndView
org.springframework.boot.autoconfigure.web.servlet.error.BasicErrorController.errorHtml(j
avax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)

2018-07-07 14:32:29.714 INFO 4838 --- [main]
0.s.w.s.handler.SimpleUrlHandlerMapping : Mapped URL path [/webjars/**] onto handler of
type [class org.springframework.web.servlet.resource.ResourceHttpRequestHandler]

2018-07-07 14:32:29.714 INFO 4838 --- [main]
0.s.w.s.handler.SimpleUr1HandlerMapping : Mapped URL path [/**] onto handler of type
[class org.springframework.web.servlet.resource.ResourceHttpRequestHandler]

2018-07-07 14:32:29.835 1INFO 4838 --- [main]
0.5.j.e.a.AnnotationMBeanExporter : Registering beans for JMX exposure on startup

2018-07-07 14:32:29.880 INFO 4838 --- [main]
0.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat started on port(s): 8080 (http) with
context path "'

2018-07-07 14:32:29.884 1INFO 4838 --- [main]

com.springbook.application.Application : Started Application in 1.826 seconds (JVM
running for 4.227)

You have a fully working application that starts an embedded Tomcat on port 8080. It also configures
logging to the console.

Spring Boot analyses what is on the class path and will enable functionality based on this. In this case,
you have Tomcat on the class path due to the spring-boot-starter-web dependency in the pom.xml:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>

Properties

Spring Boot lets you configure various parts of your application via the application.properties file. To
try this out, add the following line in the file:

server.port=8888

After restarting the application, the logging output will show that your application now runs on that
different port:

Tomcat started on port(s): 8888 (http)

Q You can view a list of the most common properties at Appendix A. Common
application properties of the Spring Boot reference documentation.

There are two other important ways to configure properties: with the command line or with
environment variables

To change the port using the command line, do the following:
java -jar application.jar --server.port=8888

To change the port with an environment variable, you can define SERVER_PORT and your application will

13

https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html

pick this up. Notice how you can use capitals and an underscore in the environment variable and
Spring Boot will still pick it up. This feature is called relaxed binding.

See Externalized Configuration for all the ways you can configure properties with Spring Boot.

Spring profiles

Spring profiles let you selectively enable or disable parts of your application. The Spring Boot
documentation says that Spring profiles "provide a way to segregate parts of your application
configuration and make it only available in certain environments".

For example, you can have an EmailGateway interface with a LoggingEmailGateway, SendGridEmailGateway
and SmtpEmailGateway implementations. You could then use the LoggingEmailGateway during
development, SmtpEmailGateway in staging, and SendGridEmailGateway for production.

The staging and production environment should be as closely aligned as possible. So
A this example is more for the purposes of illustration rather than a recommendation of
best practice.
Only enabling a class if a profile is active
This code shows how to define a singleton in Spring and have Spring create an instance only if the dev

profile is active:

@Component
@Profile("dev")
public class LoggingEmailGateway implements EmailGateway {

}

To test this, you must set the active profile when running your application. You can do this by setting
spring.profiles.active in application.properties or you can pass it as a program argument. For
example:

java -jar application.jar --spring.profiles.active=dev

14

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-profiles.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-profiles.html

Some IDEs have built-in support for activating profiles. This is a screenshot of the run
configuration dialogue of Jetbrains' Intelli] IDEA:

JRE: Default (<no JRE> - module not specified)

Spring Boot Settings
Q Enable debug output Hide Banner Enable launch optimization

Active Profiles: dev|

Override parameters
Enabled Name

No parameters

Spring profile-specific properties

By default, Spring Boot will apply the properties defined in application.properties on the root of the
class path. If you want to set specific settings only for when a certain profile is active, you can use the
naming convention application-<profileName>.properties.

For example, to set the web listening port to 5000 for production:
application-prod.properties

server.port=5000

Another common use case for this is specifying the database connection URL since this changes in the
various environments your application will run in.

Configure logging

Logging for the production code

Spring Boot uses Logback for logging by default, and logs everything to the console. While this is great
when running in your IDE, you might want to log things to a file for staging or production.

To configure this, create a logback-spring.xml file:

15

Practical Guide to Building an API Back End with Spring Boot

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<include resource="org/springframework/boot/logging/logback/defaults.xml"/> @
<springProfile name="dev,local">®@
<include resource="org/springframework/boot/1logging/logback/console-appender.xml"

/>
<root level="INFO">
<appender-ref ref="CONSOLE" />
</root>
</springProfile>
<springProfile name="staging,prod">®
<include resource="org/springframework/boot/logging/logback/file-appender.xml"/>
<root level="INF0">
<appender-ref ref="FILE"/>
</root>
</springProfile>
</configuration>

@ These are the Spring Boot defaults.
@ If the Spring profile dev or local is enabled, then log to console.

® If the Spring profile staging or prod is enabled, then log to file.

This is the minimal configuration needed to easily switch between console and file and still allow
Spring Boot properties to influence what is logged.

To set the name of the log file, adjust application-staging.properties or application-prod.properties:
logging.file=my-application.log
logging.level.root=INFO

Logging for the test code

To configure the logging for the test code, we can rely on the default behaviour of Logback to search
for a logback-test.xml file on the class path.

By putting this file in src/test/resources, it will be first on the class path when the tests are run and
used automatically by Logback.

This is a sample file that logs to the console and sets the default level for the loggers of your own
application to DEBUG:

16

Getting Started

<confiquration>
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>%date{YYYY-MM-dd HH:mm:ss} %level [%thread] %logger{0} -
%msg%n%ex</pattern>
</encoder>
</appender>

<root level="WARN">
<appender-ref ref="STDOUT"/>
</root>
<logger name="com.springbook.application"> @
<level value="DEBUG"/>
</logger>
<logger name="org.hibernate">
<level value="WARN"/>
</logger>
<logger name="org.hibernate.type">
<level value="WARN"/> <!-- set to TRACE to view parameter binding in queries -->
</logger>
<logger name="org.springframework.security">
<level value="WARN"/>
</logger>

</configuration>

@ This configures loggers of com.springbook.application and its sub-packages to DEBUG.

If you run mvn clean install now, you will get lots of output. If you were to add some logging of your
own, it would also show in the Maven output:

[INFO] --- maven-surefire-plugin:2.21.0:test (default-test) @ application ---

[INFO]

[INFO] -----mmmmmmmmmm e

[INFO] TESTS

[INFO] -------mmmmmmmmmm e

[INFO] Running com.springbook.application.ApplicationTests

14:42:57.455 [main] DEBUG org.springframework.test.context.junit4.SpringlUnit4ClassRunner
- SpringJUnit4ClassRunner constructor called with [class
com.springbook.application.ApplicationTests]

14:42:57.460 [main] DEBUG org.springframework.test.context.BootstrapUtils - Instantiating
CacheAwareContextLoaderDelegate from class
[org.springframework.test.context.cache.DefaultCacheAwareContextLoaderDelegate]

<snip>

17

18

VANV G MR U W W
(GRG0) VY I N I I VAR I U W U
A\VARRSDY B 10) o O O A IO O A D A2
[S O I O W O A A
=========I| | ==============|| 001 /=/0/ 0/ 1/
:: Spring Boot :: (v2.0.3.RELEASE)
2018-07-07 14:42:58.023 1INFO 9617 --- [main] c.s.application.ApplicationTests

: Starting ApplicationTests on Wims-MacBook-Pro.local with PID 9617 (started by wdb in
/Users/wdb/Projects/spring-boot-book/src/example-code/chapter@2/01 - Generated project)

2018-07-07 14:42:58.025 INFO 9617 --- [main] c.s.application.ApplicationTests
: No active profile set, falling back to default profiles: default

2018-07-07 14:42:58.066 INFO 9617 --- [main]
0.s.w.c.s.GenericWebApplicationContext : Refreshing

org.springframework.web.context.support.GenericWebApplicationContext@53aac487: startup
date [Sat Jul @7 14:42:58 CEST 2018]; root of context hierarchy

2018-07-07 14:42:58.942 INFO 9617 --- [main]
0.s.w.s.handler.SimpleUr1lHandlerMapping : Mapped URL path [/**/favicon.ico] onto handler
of type [class org.springframework.web.servlet.resource.ResourceHttpRequestHandler]
2018-07-07 14:42:59.115 INFO 9617 --- [main]
s.w.s.m.m.a.RequestMappingHandlerAdapter : Looking for @ControllerAdvice:
org.springframework.web.context.support.GenericWebApplicationContext@53aac487: startup
date [Sat Jul @7 14:42:58 CEST 2018]; root of context hierarchy

2018-07-07 14:42:59.172 INFO 9617 --- [main]
s.w.s.m.m.a.RequestMappingHandlerMapping : Mapped "{[/error]}" onto public
org.springframework.http.ResponseEntity<java.util.Map<java.lang.String,
java.lang.Object>>
org.springframework.boot.autoconfigure.web.servlet.error.BasicErrorController.error(javax
.servlet.http.HttpServletRequest)

2018-07-07 14:42:59.173 INFO 9617 --- [main]
s.w.s.m.m.a.RequestMappingHandlerMapping : Mapped "{[/error],produces=[text/html]}" onto
public org.springframework.web.servlet.ModelAndView
org.springframework.boot.autoconfigure.web.servlet.error.BasicErrorController.errorHtml(j
avax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)

2018-07-07 14:42:59.191 INFO 9617 --- [main]
0.s.w.s.handler.SimpleUrlHandlerMapping : Mapped URL path [/webjars/**] onto handler of
type [class org.springframework.web.servlet.resource.ResourceHttpRequestHandler]
2018-07-07 14:42:59.191 INFO 9617 --- [main]
0.s.w.s.handler.SimpleUr1HandlerMapping : Mapped URL path [/**] onto handler of type
[class org.springframework.web.servlet.resource.ResourceHttpRequestHandler]

2018-07-07 14:42:59.302 INFO 9617 --- [main] c.s.application.ApplicationTests
: Started ApplicationTests in 1.506 seconds (JVM running for 2.194)

[INFO] Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: 2.064 s - in
com.springbook.application.ApplicationTests

2018-07-07 14:42:59.390 INFO 9617 --- [Thread-2]
0.s.w.c.s.GenericWebApplicationContext : Closing
org.springframework.web.context.support.GenericWebApplicationContext@53aac487: startup

Getting Started
date [Sat Jul @7 14:42:58 CEST 2018]; root of context hierarchy
[INFO]
[INFO] Results:
[INFO]

[INFO] Tests run: 1, Failures: @, Errors: @, Skipped: 0

You probably don’t want the output of your tests to appear when running with Maven. To have Maven
put all the output in a file, use the following configuration for the Maven Surefire Plugin:

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>

<redirectTestOutputToFile>true</redirectTestOutputToFile> @
<printSummary>false</printSummary>
</confiquration>
</plugin>

@ Set the redirectTestOutputToFile to true so Surefire will put the output of each test in a separate file.

19

http://maven.apache.org/surefire/maven-surefire-plugin/

CopsBoot

Explanation of the sample project

The sample application upon which the examples in this this book are based is entirely fictional but
will serve well to demonstrate all the important concepts.

The application, called CopsBoot, supports a police force in their daily work. It allows officers on the
road to interact with the server via a mobile application. Through the mobile app, officers can report
crimes and attach images to their reports.

This book will not deal with the development of the mobile application itself but will show how the API
will work using Postman. Spring REST Docs will generate some beautiful documentation that should
contain all the info an app developer would need to get started.

Generating the project skeleton

To get started, use Spring Initializr at https://start.spring.io with the following values:

Property Value

Build system Maven Project
Programming language Java

Spring Boot version 2.0.3

Artifact Group com.example
Artifact copsboot

Search for dependencies Web, Security, JPA

Unzip the generated .zip file to a location of your choice.

The dependencies section of the pom.xml will look like this:

20

https://www.getpostman.com/
https://projects.spring.io/spring-restdocs/
https://start.spring.io

CopsBoot

<dependencies>
<dependency>
<groupIld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>®
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-security</artifactId>®@
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>®
</dependency>

<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<scope>runtime</scope>
</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupld>org.springframework.security</groupId>
<artifactId>spring-security-test</artifactId>@
<scope>test</scope>

</dependency>

</dependencies>

@ JPA is the Java Persistence API. This starter pulls in Hibernate, which you will use to persist your
entities to the database.

@ This adds support for Spring Security so you can have authorization and authentication.
® THis adds support for web and REST controllers for building your APL

@ These are helper classes for testing your Spring Security configuration.

21

User Management

The first thing to add your application is user management and security.

User domain

Create a class User to hold all properties of your users. For now, start out simple and use only the
following properties:

Property Description
Name The full name of the user.
Email The email address of the user, which will also

serve as the username for login.
Password The user’s password.

Role The user’s role in the system, which defines what
a user can and can’t do.

Start with the following code for User:

22

User.java

package com.example.copsboot.user;

import java.util.Set;
import java.util.UUID;

public class User {
private UUID 1id;
private String email;
private String password;
private Set<UserRole> roles;

public User(UUID id, String email, String password, Set<UserRole> roles) {
this.id = id;
this.email = email;
this.password = password;
this.roles = roles;

}

public UUID getId() {
return id;

}

public String getEmail() {
return email;

}

public String getPassword() {
return password;

}

public Set<UserRole> getRoles() {
return roles;

}

UserRole defines the roles of users in the application:

23

UserRole.java
package com.example.copsboot.user;

public enum UserRole {
OFFICER,
CAPTAIN,
ADMIN

To keep the example simple, create only three roles:

» Officer is a police officer who does the field work.
» Captainis the boss of the officers.

* Admin is an administrative role that has access to all parts of the application.

Notice how we use the com.example.copsboot.user package for our domain class. Some
developers prefer packages by layer, which groups types of similar classes like

Q domain classes in a domain package, services in a service package, etc. Using packages
by feature, however, makes the core abstractions of the project immediately visible on
the package tree.

To persist your first domain class using Spring Boot Data JPA, you must add some annotations from the
Java Persistence API (JPA) specification:

24

@
(name = "copsboot_user") @
public class User {

private UUID id; ®

private String email;
private String password;

(fetch = FetchType.EAGER)
(EnumType.STRING)

private Set<UserRole> roles; @
protected User() { ®

}

public User(UUID id, String email, String password, Set<UserRole> roles) {
this.id = id;
this.email = email;
this.password = password;
this.roles = roles;

@ @Entity marks the class as a persistable entity for JPA.

@ The @Table annotation is optional. It allows you to explicitly set the name to be used for the database
table. If you do not specify a name, Spring Boot will convert the name of the class to snake_case.

® The 1id field is annotated with @Id to mark it as a primary key of the entity.

@ The roles field is a collection of enum values. @Enumerated(EnumType.STRING) ensures the enum
values are stored as string values.

® Hibernate needs a no-argument constructor, so this adds one. It does not need to be public, so this
keeps it protected.

This application uses "early primary key" generation. This means that it does not rely on the database
to provide a primary key, but first creates a primary key, which passes into the constructor of your User
object. The main advantages of this are that you never have "incomplete" objects and it makes it easier
to implement equals.

User repository

The actual persistence happens through a repository. The heavy lifting for the repository pattern has
been implemented in Spring Data. Using it is as simple as defining an interface that extends from
CrudRepository:

25

https://martinfowler.com/eaaCatalog/repository.html

Practical Guide to Building an API Back End with Spring Boot

package com.example.copsboot.user;
import org.springframework.data.repository.CrudRepository;
import java.util.UUID;

public interface UserRepository extends CrudRepository<User, UUID> {

}

By creating this interface, you have a repository at run time that allows you to save, edit, delete, and
find User entities.

To check that everything works, create a test for it:

26

package com.example.copsboot.user;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.autoconfiqgure.orm.jpa.DatalpaTest;
import org.springframework.test.context.junit4.SpringRunner;

import java.util.HashSet;
import java.util.UUID;

import static org.assertj.core.api.Assertions.assertThat;

(SpringRunner.class) @

@
public class UserRepositoryTest {

private UserRepository repository; @

public void testStoreUser() { @

HashSet<UserRole> roles = new HashSet<>();

roles.add(UserRole.OFFICER);

User user = repository.save(new User(UUID.randomUUID(), ®
"alex.foley@beverly-hills.com",
"my-secret-pwd",
roles));

assertThat(user).isNotNull(); ®

assertThat(repository.count()).isEqualTo(1L); @

@ You need to annotate the JUnit test class with @RunWith(SpringRunner.class) to enable the testing
support of Spring Boot.

@ @DatalpaTest instructs the testing support to start only the part of the application responsible for
everything related to JPA.

® Inject the UserRepository so you can use it in the unit test.

@ This is the method that contains your test.

® Save the User entity in the database here.

® The object returned from the save method of the repository should return a non-null object.

@ If you count the number of User entities in the database, you should have one.

27

The act of starting only part of the application context in a unit test is what Spring
calls test slicing. Doing it makes the unit tests faster and more focused as fewer

components need to be bootstrapped.

The unit test uses Assert] as an assertions framework. It’s tagline is "fluent assertions for Java" and that
is exactly what it is and why I like it so much. To use it, update pom.xml with the extra dependency:

<dependency>
<groupld>org.assertj</groupld>
<artifactId>assertj-core</artifactId>
<scope>test</scope>

</dependency>

0 You don’t have to specify a version for Assert] as the base pom of Spring Boot has a
version specified for it.

You need a database before you can run the test. For tests like these, the easiest way to get one is by
putting the H2 database on the classpath. If we do that, Spring Boot will create an instance of it and use
it in the test. Add the new dependency in the pom.xml:

<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<scope>runtime</scope> @
</dependency>

® The dependency has been added with runtime scope (as opposed to test scope) as you will also start
the application itself with H2 if you run it with the dev profile.

Running the test should succeed:

Run UserRepositoryTest.testStoreUser B L
» @2 = < @ % 1 test passed - 272ms
- > . ZU10=UZ=11 10:iZ03i3Z:103 INFU QUZIY ——— [HITEAU=2] 5+ Lads ANNU LA CLUNCUNTT LYAPP CLLALLUNCUNLEXL & CLUSLIY UTYsSPT LY T allewo K
.context.annotation.AnnotationConfigApplicationContext@c35e847: startup date [Sun Feb 11 18:28:29 CET 2018]; root of context +
i @ testStoreUser 272ms hierarchy "
2018-02-11 18:28:32.166 INFO 60279 —— [Thread-2] j.LocalContainerEntityManagerFactoryBean : Closing JPA
EntityManagerFactory for persistence unit 'default’' lf_‘;
2018-02-11 18:28:32.166 INFO 60279 — [Thread-2] org.hibernate.tool.hbm2ddl.SchemaExport : HHH@00227: Running hbm2ddl
schema export =
Hibernate: drop table copsboot_user if exists =
Hibernate: drop table user_roles if exists
2018-02-11 18:28:32.177 INFO 60279 — [Thread-2] org.hibernate.tool.hbm2ddl.SchemaExport : HHH@0@230: Schema export i}

=) complete

Process finished with exit code @

User-domain refactoring

You can now save your User entities in the database. However, implementing the following changes
can improve the maintainability of the code:

1. Use a dedicated class for the primary key.

28

https://spring.io/blog/2016/04/15/testing-improvements-in-spring-boot-1-4
http://joel-costigliola.github.io/assertj/

2. Extract a superclass for all entities so that the primary key is defined in a consistent way.

3. Centralize the primary-key generation in the repository.

Dedicated primary-key class

Most examples use either a long or a UUID as the primary key for an entity. One alternative, as
described in Implementing Domain Drive Design by Vaughn Vernon, is to use a dedicated class for
primary keys. This has the following advantages:

It more clearly expresses the intent. If a variable is of type UserId, it is clear what you are are
talking about, as opposed to a simple 1ong or UUID.

* It is impossible to assign a value that is a UserId to an OrderId or a BookId. This reduces the chance
of putting a wrong ID somewhere.

* If you want to change from UUID to long or vice versa for the primary key, you will be able to do so
with minimal changes to the application code.

Create this AbstractEntityId class as the basis for all the ID classes in your application:

AbstractEntityld.java
package com.example.orm.jpa;
import com.example.util.ArtifactForFramework;
import javax.persistence.MappedSuperclass;
import java.io.Serializable;
import java.util.Objects;
import static com.google.common.base.MoreObjects.toStringHelper;
public abstract class AbstractEntityId<T extends Serializable> implements Serializable,

EntityId<T> {
private T id;

protected AbstractEntityId() {
}

protected AbstractEntityId(T id) {
this.id = Objects.requireNonNull(id);
}

public T getId() {
return id;

29

https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577

30

}

Practical Guide to Building an API Back End with Spring Boot

@Override
public String asString() {

}

return id.toString();

@0verride
public boolean equals(Object o) {

boolean result = false;

if (this == 0) {
result = true;

} else if (o instanceof AbstractEntityId) {
AbstractEntityId other = (AbstractEntityId) o;
result = Objects.equals(id, other.id);

}

return result;
}
@0verride

public int hashCode() {

}

return Objects.hash(id);

@Override
public String toString() {

return toStringHelper(this)
.add("id", id)
.toString();

User Management

The empty constructor is annotated with @ArtifactForFramework. Create this
annotation to indicate that the constructor is solely there for a framework that needs
it but is not intended to be used by the application itself.

The code of the annotation itself is simple:

import java.lang.annotation.Retention;
0 import java.lang.annotation.RetentionPolicy;

@Retention(value = RetentionPolicy.SOURCE)
public @interface ArtifactForFramework {

}

An extra benefit is that in Intelli] IDEA, for example, you can indicate that elements
annotated with this annotation should not be marked as unused.

Next, define AbstractEntity. This will be the base class for your entities and ensures that they will use

your EntityId:

AbstractEntity.java
package com.example.orm.jpa;
import com.example.util.ArtifactForFramework;

import javax.persistence.EmbeddedId;
import javax.persistence.MappedSuperclass;
import java.util.Objects;

import static com.google.common.base.MoreObjects.toStringHelper;
import static com.google.common.base.Preconditions.checkNotNull;

/**

* Abstract super class for entities. We are assuming that early primary key

* generation will be used.
*

* @param <T> the type of {@link EntityId} that will be used for this entity

*/

@MappedSuperclass

public abstract class AbstractEntity<T extends EntityId> implements Entity<T> {

@EmbeddedId
private T id;

@ArtifactForFramework

31

protected AbstractEntity() {
}

public AbstractEntity(T id) {
this.id = checkNotNull(id);
}

public T getId() {
return id;

}

public boolean equals(Object obj) {
boolean result = false;

if (this == obj) {
result = true;

} else if (obj instanceof AbstractEntity) {
AbstractEntity other = (AbstractEntity) obj;
result = Objects.equals(id, other.id);

}

return result;

public int hashCode() {
return Objects.hash(id);
}

public String toString() {
return toStringHelper(this)
.add("id", id)
.toString();

For completeness, here is the interface implementation of EntityId and Entity:

32

User Management

Entityld.java
package com.example.orm.jpa;

import java.io.Serializable;

/**

* Interface for primary keys of entities.
*

* @param <T> the underlying type of the entity id
*/
public interface EntityId<T> extends Serializable {

T getld();

String asString(); @

@ The asString method returns the ID as a string representation, for use in an URL for example. You
are not using toString because that is usually for debugging purposes while you will need to use
this as part of your application logic.

Entityjava
package com.example.orm.jpa;

/**

* Interface for entity objects.
*

* @param <T> the type of {@link EntityId} that will be used in this entity
*/
public interface Entity<T extends EntityId> {

T getId();

With all this in place, you can now refactor your User class. First, create a UserId:

33

Userld.java
package com.example.copsboot.user;
import com.example.orm.jpa.AbstractEntityld;
import java.util.UUID;
public class UserId extends AbstractEntityId<UUID> {
protected UserId() { ®

}

public UserId(UUID id) { @
super(id);
}

@ Hibernate needs the protected no-args constructor to work.

@ This is the constructor that the application code should use.

In the User class itself, you can remove the id field and its getter. The constructor just calls super
instead. This is how it looks after the refactoring:

public User(UserId id, String email, String password, Set<UserRole> roles) {
super(id);
this.email = email;
this.password = password;
this.roles = roles;

Centralize primary-key generation

In your unit test, you manually created the primary key by calling UUID.randomUUID(). This could be fine
for a UUID, but certainly not if you want to use long, for example. For this reason, add a method on the
UserRepository that will give you the "next" ID to use if you want to create an entity.

Since UserRepository is an interface, you need to do some additional work to make this possible. To get
started, you need to create a UserRepositoryCustom interface:

34

package com.example.copsboot.user;

public interface UserRepositoryCustom {
UserId nextId();
}

The nextId method will return a new UserId instance each time it is called. Step 2 adds this interface to
the UserRepository interface:

public interface UserRepository extends CrudRepository<User, UUID>, UserRepositoryCustom

{
}

Step 3 creates a UserRepositoryImpl class that implements the UserRepositoryCustom interface method:

package com.example.copsboot.user;
import com.example.orm.jpa.UniqueldGenerator;
import java.util.UUID;

public class UserRepositoryImpl implements UserRepositoryCustom {
private final UniqueldGenerator<UUID> generator;

public UserRepositoryImpl(UniqueldGenerator<UUID> generator) {
this.generator = generator;

}

public UserId nextId() {
return new UserId(generator.getNextUniquelId());

}

When the application runs, Spring Data will combine your own UserRepositoryImpl code with Spring
Data’s CrudRepository code so the methods from both UserRepositoryCustom and CrudRepository are
available everywhere you inject a UserRepository.

The generation of the unique UUID is put behind the UniqueIdGenerator. This might seem like a bit
overkill for the UUID case but you certainly need it if you want to use long values. You might want to get
them from the database or maybe from some distributed component that can hand out unique IDs
across connected JVMs. In that case, having this generation centralized in the UniqueIdGenerator is a big
plus.

35

Updating the unit test

The test method itself now needs to change to use the nextId method from the repository:

public void testStoreUser() {

HashSet<UserRole> roles = new HashSet<>();

roles.add(UserRole.OFFICER);

User user = repository.save(new User(repository.nextId(),
"alex.foley@beverly-hills.com",
"my-secret-pwd",
roles));

assertThat(user).isNotNull();

assertThat(repository.count()).isEqualTo(1L);

However, this is not enough, as you quickly see when you try to run the test:
java.lang.IllegalStateException: Failed to load ApplicationContext
Digging a bit more in the stacktrace will reveal this:

org.springframework.beans.factory.NoSuchBeanDefinitionException: No qualifying bean of
type 'com.example.orm.jpa.UniqueIdGenerator<java.util.UUID>' available: expected at least
1 bean which qualifies as autowire candidate.

The cause of the error is straightforward. Your UserRepositoryImpl needs a UniquelDGenerator for
constructor injection, but there does not seem to be an instance in the application context. Spring Boot
will not create an instance of UniqueldGenerator because you did not ask it to.

You could annotate InMemoryUniquelIdGenerator with @Component, but there is a different way especially
for unit tests. You can create a static inner class in your unit-test class and annotate it with
@TestConfiguration. You can then use @Bean annotated methods to define singletons that should be
available in the unit test. For your test, that looks like this:

36

UserRepositoryTest.java

static class TestConfig {

public UniqueldGenerator<UUID> generator() {
return new InMemoryUniqueldGenerator();

}

After this, your unit test will be green.

As a final step, you also need to make such a bean available in your application. To do this, add the
same bean declaration to CopsbootApplication.java:

public UniqueldGenerator<UUID> uniqueldGenerator() {
return new InMemoryUniqueldGenerator();

}

Summary

You have seen how to store an entity using Spring Data JPA and how to test it.

37

REST API Security

Spring Security OAuth2

The mobile application will use OAuth2 for security. If you are not familiar with OAuth2, you can read
a good introduction to it at https:/medium.com/@darutk/the-simplest-guide-to-oauth-2-0-
8c71bd9a15bb

Let’s allow authentication using OAuth2 password flow. In this flow, you validate the client application
that does the request, as well as the user. With OAuth2, you use a client secret and client ID to validate
the client application along with a username and password to validate the user. In exchange, you get
an access token to use for all future requests towards the API (until the access token expires).

Here’s an example of a request to get an access token:

curl -i \
-X POST \
-H 'Content-Type: application/x-www-form-urlencoded' \
-u the-client-id:the-client-secret \
-d 'grant_type=password&username=the-user-name&password=the-users-
password&client_id=the-client-id&client_secret=the-client-secret' \
http://localhost:8080/0auth/token

A OAuth2 must run over HTTPS to be secure. Always use HTTPS in production!

The server should return a response similar to this:

HTTP/1.1 200 0K

"access_token": "4ff47dcc-c00a-4604-905d-de5708d13ce8",
"token_type": "bearer",

"refresh_token": "d709ff89-3892-4416-a3227-8dd8e4152ebc",
"expires_in": 43199,

"scope": "server"

This example uses Spring Security OAuth2 AutoConfigure to implement this. Start with adding the
needed dependency to pom. xml:

38

https://medium.com/@darutk/the-simplest-guide-to-oauth-2-0-8c71bd9a15bb
https://medium.com/@darutk/the-simplest-guide-to-oauth-2-0-8c71bd9a15bb

<dependency>

<groupld>org.springframework.security.oauth.boot</groupId>
<artifactId>spring-security-oauth2-autoconfigure</artifactId>
<version>2.0.1.RELEASE</version>

</dependency>

To make things clear and the security configuration simpler, all REST API endpoints will be under /api.
If you would want to add a CMS, for example, in the same Spring Boot application, you could serve that
at /cms or /admin.

OAuth has two parts:

* The authorization server is responsible for the authorization of the client application and the users.

* The resource server is responsible for defining what parts of the application are accessible by the
different types of authenticated and unauthenticated users.

To configure the authorization server, create the following class:

39

0]
protected static class AuthorizationServerConfiguration extends
AuthorizationServerConfigurerAdapter {

private AuthenticationManager authenticationManager;

private UserDetailsService userDetailsService; @

private PasswordEncoder passwordEncoder; &

private TokenStore tokenStore; @

public void configure(AuthorizationServerSecurityConfiqgurer security) throws
Exception {
security.passwordEncoder (passwordEncoder); ®

}

public void configure(ClientDetailsServiceConfigurer clients) throws Exception {
clients.inMemory() ®
.withClient("copsboot-mobile-client") ®
.authorizedGrantTypes("password", "refresh_token") @
.scopes("mobile_app")
.resourcelds(RESOURCE_ID)
.secret(passwordEncoder.encode("ccUyb6vS4S8nxfbKPCrN")); @

public void configure(AuthorizationServerEndpointsConfigurer endpoints) throws
Exception {
endpoints.tokenStore(tokenStore)
.authenticationManager (authenticationManager)
.userDetailsService(userDetailsService);

® The @EnableAuthorizationServer annotation ensures that you have an authorization server started.

@ UserDetailsService is the contact point between your application and Spring Security. You will have
to create a class that implements this interface, which will use the previously created
UserRepository to know what users you have in your application.

40

® You obviously should not store user passwords in plain text. This example uses an implementation
of PasswordEncoder to encrypt passwords when storing them in the database. PasswordEncoder hashes
the password so that there is no way to recover the original password, even when the complete
database leaks out. Spring Security needs access to the same class to be able to validate passwords.

@ The TokenStore is what Spring will use to store the generated access tokens.

® You define one client application that will be allowed to get an access token in memory. Since you
only have one mobile app for now, you don’t need anything more elaborate. You may define this in
the database if you want. You would then use clients.jdbc(dataSource).

® Hard-code the client ID for authentication of the client application to copsboot-mobile-client.

@ This has to be "password" to allow password flow using the defined client application. Also add
"refresh_token" so that the client application can use the refresh token to get a new access token.

The scopes allow you to define what "part" of the application is allowed by the received token. Let’s
not do anything based on that value for now, so its exact value does not really matter.

© This defines the client secret to authenticate the client application.

Before seeing how to get to the various instances that are injected here, take a look at the resource-
server configuration:

@
(prePostEnabled = true, securedEnabled = true)
protected static class ResourceServerConfiguration extends
ResourceServerConfigurerAdapter {

public void configure(ResourceServerSecurityConfigurer resources) throws Exception {
resources.resourceId(RESOURCE_ID);

}

public void configure(HttpSecurity http) throws Exception {

http.authorizeRequests()
.antMatchers(HttpMethod.OPTIONS, "/api/**").permitA11() @
.and()
.antMatcher ("/api/**").authorizeRequests()
.anyRequest().authenticated(); ®

@ The @EnableResourceServer annotation ensures that you have a resource server.

@ You define via the fluent API that any OPTIONS request to any sub-path of /api is allowed by
everybody. This allows a client to issue a so-called "preflight request". See https://stackoverflow.com/

41

https://stackoverflow.com/questions/15381105/cors-what-is-the-motivation-behind-introducing-preflight-requests

questions/15381105/cors-what-is-the-motivation-behind-introducing-preflight-requests for more
info on that. This is something that the Angular framework, for example, does by default.

® This defines that any request to /api should be authenticated (unless it is an OPTIONS request).

UserDetailsService

To tie your application to Spring Security, you need to implement the UserDetailsService interface
from Spring Security. It has only one method (comments omitted):

org.springframework.security.core.userdetails.UserDetailsService.java

public interface UserDetailsService {
UserDetails loadUserByUsername(String username) throws UsernameNotFoundException;

}

The interface explicitly declares the UsernameNotFoundException, although that is not
needed since it is a RuntimeException (per Spring’s convention of using a
RuntimeException for everything.

i

Most likely, this is done to clearly state what kind of Exception the Spring Security
framework expects to receive when you implement this interface and the user cannot
be found.

Spring Security will pass in a username and we need to provide a UserDetails implementation if there is
such a user in our application. If not, we throw a UsernameNotFoundException.

To make such a class for our application, we need two things:
* a finder method to get a user based on username (which is the email address in our case), and
* an implementation of UserDetails that contains information on the found user.

Find user by email address

Finding the user by email address is extremely simple since you are using Spring Data JPA. This library
allows you to define query methods in the repository for which you don’t have to provide an
implementation. By simply following the naming convention of findByPropertyName, Spring Data will
properly query your database.

In your case, the code looks like this:

42

https://stackoverflow.com/questions/15381105/cors-what-is-the-motivation-behind-introducing-preflight-requests
https://github.com/spring-projects/spring-security/blob/master/core/src/main/java/org/springframework/security/core/userdetails/UserDetailsService.java
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#repositories.query-methods.details

public interface UserRepository extends CrudRepository<User, UUID>, UserRepositoryCustom

{
Optional<User> findByEmailIgnoreCase(String email);

You could have used findByEmail as well, but chose findByEmailIgnoreCase to make the query case
insensitive. As the return type, use Optional<User>, since the user might or might not be there. You
could also use User. In that case, Spring Data would return a null reference when there is no user with
the given email address.

Optional

Since Java 8, Java has an Optional type that is intended to be used as a return type of a

0 method. It signals to the caller that an actual value might be present or not. It helps to
avoid having a NullPointerException by making it explicit that a value might not be
there. See "Guide to Java 8 Optional" for more info.

To make sure this finder method works, add three unit tests for it:

43

http://www.baeldung.com/java-optional

UserRepositoryTest.java

public void testFindByEmail() {
User user = Users.newRandomOfficer();
repository.save(user);
Optional<User> optional = repository.findByEmailIgnoreCase(user.getEmail());

assertThat(optional).isNotEmpty()
.contains(user);

public void testFindByEmailIgnoringCase() {
User user = Users.newRandomOfficer();
repository.save(user);
Optional<User> optional = repository.findByEmailIgnoreCase(user.getEmail()

.toUpperCase
(Locale.US));

assertThat(optional).isNotEmpty()
.contains(user);

public void testFindByEmail_unknownEmail() {
User user = Users.newRandomOfficer();
repository.save(user);
Optional<User> optional = repository.findByEmailIgnoreCase("will.not@find.me");

assertThat(optional).isEmpty();

Create a new class called Users to support the unit test. This is a factory class that makes it easy to
create random users for testing:

Users.java
package com.example.copsboot.user;

import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;
import org.springframework.security.crypto.password.PasswordEncoder;

import java.util.UUID;

public class Users {
private static final PasswordEncoder PASSWORD_ENCODER = new BCryptPasswordEncoder();

44

public static final String OFFICER_EMAIL = "officer@example.com";
public static final String OFFICER_PASSWORD = "officer";
public static final String CAPTAIN_EMAIL = "captain@example.com";
public static final String CAPTAIN_PASSWORD = "captain";

private static User OFFICER

User.createOfficer(newRandomId(),
OFFICER_EMAIL,
PASSWORD_ENCODER. encode
(OFFICER_PASSWORD));

private static User CAPTAIN

User.createCaptain(newRandomId(),
CAPTAIN_EMAIL,
PASSWORD_ENCODER. encode
(CAPTAIN_PASSWORD));

public static UserId newRandomId() {
return new UserId(UUID.randomUUID());

}

public static User newRandomOfficer() {
return newRandomOfficer(newRandomId());

}

public static User newRandomOfficer(UserId userId) {
String uniqueld = userId.asString().substring(0, 5);
return User.createOfficer(userld,
"user-" + uniqueld +
"@example.com",
PASSWORD _ENCODER.encode("user"));

}

public static User officer() {
return OFFICER;
}

public static User captain() {
return CAPTAIN;

}

private Users() {

}

45

Using BCryptPasswordEncoder here does not mean your passwords are safe, as
0 decompilation of the class will reveal those password strings. But since this is just for
testing, that is not a problem here.

I will always create a factory class for each entity in an application. The advantage of having a factory
class like that is twofold:

* You centralize the creation, so that if the constructor of User changes, you just have to change it in
the Users class itself as opposed to each and every unit test that uses that entity.

* The method names make it describe the kind of user object you are creating.

UserDetails implementation

The return type of the method in UserDetailsService needs to be an implementation of
org.springframework.security.core.userdetails.UserDetails. This interface has seven methods, which
you can quite easily implement if you want to. But an even easier option is to create a subclass of
org.springframework.security.core.userdetails.User with a constructor that takes an instance of your
application’s User object:

46

package com.example.copsboot.infrastructure.security;

import com.example.copsboot.user.User;

import com.example.copsboot.user.Userld;

import com.example.copsboot.user.UserRole;

import org.springframework.security.core.authority.SimpleGrantedAuthority;

import java.util.Collection;
import java.util.Set;
import java.util.stream.Collectors;

public class ApplicationUserDetails extends org.springframework.security.core.
userdetails.User { @

private static final String ROLE_PREFIX = "ROLE_";
private final UserId userld;

public ApplicationUserDetails(User user) {
super (user.getEmail(), user.getPassword(), createAuthorities(user.getRoles()));
this.userId = user.getId();

}

public UserId getUserId() {
return userld;

}

private static Collection<SimpleGrantedAuthority> createAuthorities(Set<UserRole>
roles) {
return roles.stream()
.map(userRole -> new SimpleGrantedAuthority(ROLE_PREFIX + userRole

.name()))
.collect(Collectors.toSet());

}

® You need to fully qualify org.springframework.security.core.userdetails.User since you already
import com.example.copsboot.user.User.

The only actual logic you need to implement is the conversion from UserRole to SimpleGrantedAuthority,
which ensures that Spring Security is aware of the role of each user.

47

Alternative implementation

You could have instead directly implemented UserDetails in the User object:
public class User extends AbstractEntity<UserId> implements UserDetails {

If you do that, you need to be aware of three caveats:
0 1. getAuthorities() should return the authorities sorted. Check the source code of
org.springframework.security.core.userdetails.User to see exactly how to do this.

2. You need to make AbstractEntity implement Serializable (because the UserDetails
interface implements it) and thus all AbstractEntity classes going forward will
have to take that into account.

3. Spring Security caches the UserDetails object so you need to be careful if you use
the object you get from @AuthenticationPrincipal User user in a Controller.

ApplicationUserDetailsService

Now that you have your finder method and the ApplicationUserDetails class, you can implement
ApplicationUserDetailsService:

48

package com.example.copsboot.infrastructure.security;

import
import
import
import
import
import
import

import

public

com.example.copsboot.user.User;
com.example.copsboot.user.UserRepository;
org.springframework.beans.factory.annotation.Autowired;
org.springframework.security.core.userdetails.UserDetails;
org.springframework.security.core.userdetails.UserDetailsService;
org.springframework.security.core.userdetails.UsernameNotFoundException;
org.springframework.stereotype.Service;

static java.lang.String.format;

@

class ApplicationUserDetailsService implements UserDetailsService {

private final UserRepository userRepository;

public ApplicationUserDetailsService(UserRepository userRepository) { @

}

this.userRepository = userRepository;

public UserDetails loadUserByUsername(String username) {

String.

User user = userRepository.findByEmailIgnoreCase(username) ®
.orElseThrow(() -> new UsernameNotFoundException(@

format("User with email %s could not be found",

username)));

return new ApplicationUserDetails(user); ®

@ @Service tells Spring’s component scanning to create a singleton instance of this class.

@ You inject UserRepository into your class since you need it.

® Use the findByEmailIgnoreCase method to find the user.

@ Since you get an Optional, you can use orElseThrow to return the value if it is present or throw an
exception if it is not present.

® Wrap your User object in the ApplicationUserDetails object and return it for Spring Security to
further handle it.

The code is straightforward so your unit test can be quite simple as well. You have two code paths to

test:

49

* If the requested username/email address exists, return the correct ApplicationUserDetails object.

e The username is unknown, the code throws UsernameNotFoundException.

package com.example.copsboot.infrastructure.security;

import com.example.copsboot.user.UserRepository;

import com.example.copsboot.user.Users;

import org.junit.Test;

import org.springframework.security.core.GrantedAuthority;

import org.springframework.security.core.userdetails.UserDetails;

import org.springframework.security.core.userdetails.UsernameNotFoundException;

import java.util.Optional;

import static
import static
import static
import static
import static

org.
org.
org.
org.
org.

assertj.core.api.Assertions.assertThat;
assertj.core.api.Assertions.assertThatThrownBy;
mockito.Matchers.anyString;
mockito.Mockito.mock;

mockito.Mockito.when;

public class ApplicationUserDetailsServiceTest {

public void givenExistingUsername_whenLoadingUser_userIsReturned() {
UserRepository repository = mock(UserRepository.class);
ApplicationUserDetailsService service = new ApplicationUserDetailsService

(repository);

@

when(repository.findByEmailIgnoreCase(Users.OFFICER_EMAIL)) @

.thenReturn(Optional

.of(Users.officer()));

UserDetails userDetails = service.loadUserByUsername(Users.OFFICER_EMAIL); ®
assertThat(userDetails).isNotNull();
assertThat(userDetails.getUsername()).isEqualTo(Users.OFFICER_EMAIL); @
assertThat(userDetails.getAuthorities()).extracting(GrantedAuthority:

:getAuthority)

.contains("ROLE_OFFICER"); ®

assertThat(userDetails).isInstance0fSatisfying(ApplicationUserDetails.class, ®

applicationUserDetails -> {
assertThat

(applicationUserDetails.getUserId())

.isEqualTo(Users

.officer().qgetId());

}

50

b

(expected = UsernameNotFoundException.class) @

public void givenNotExistingUsername_whenLoadingUser_exceptionThrown() {

UserRepository repository = mock(UserRepository.class);
ApplicationUserDetailsService service = new ApplicationUserDetailsService

(repository);

when(repository.findByEmailIgnoreCase(anyString())).thenReturn(Optional.empty());

service.loadUserByUsername("i@donotexist.com");

@ You create your object under test, injecting a mock UserRepository.

@1If a user with email address Users.OFFICER_EMAIL is requested to the repository, return the
appropriate User object.

® Execute the method.

@ Check the returned object for the appropriate username.

® Check that the granted authorities are what they should be.

® Validate that you return an instance of ApplicationUserDetails and that the userId property is

correct.

@ This test tries to find a user that does not exist, so you expect an exception to be thrown.

Since this example uses JUnit with Assert], there are two ways to assert that an
exception is thrown. You can use the expected attribute on the @Test annotation as
done here or you can use assertThatThrownBy from Assert]. In that case, the code

would look like this:

public void givenNotExistingUsername_whenLoadingUser_exceptionThrown() {
UserRepository repository = mock(UserRepository.class);
ApplicationUserDetailsService service = new
ApplicationUserDetailsService(repository);
when(repository.findByEmailIgnoreCase(anyString())).thenReturn
(Optional.empty());

assertThatThrownBy(() -> service.loadUserByUsername("i@donotexist.com

")

.isInstance0f(UsernameNotFoundException.class);

Choose whatever you feel is more readable for the test you are writing.

51

Supporting beans

To get your application up and running, you need two more implementations:
* a PasswordEncoder for encoding a user-supplied password into something that can be safely stored
in the database, and
 a TokenStore for storing generated access and refresh tokens.

Luckily, you don’t have to write these yourself. You can use the implementations that Spring provides.
To do so, add the following two bean declarations to CopsbootApplication:

public PasswordEncoder passwordEncoder() {
return new BCryptPasswordEncoder();

}

public TokenStore tokenStore() {
return new InMemoryTokenStore();

}

Use the InMemoryTokenStore to get started. Later on, you will use the JdbcTokenStore to store the tokens
in the database.

Test getting an access token

Test using Postman

You’re almost ready to test the first piece of your application: try to get an access token from it
(although you won’t be able to do anything with the token since you have not written a REST controller
yet). For this, you just need to wire up a bit more infrastructure.

You need to create a user so you have a username and password to test with. For this purpose, create a
DevelopmentDbInitializer class that implements the ApplicationRunner interface. Spring Boot will run
all classes that have this interface after the application starts, a perfect time to add your test user:

52

package com.example.copsboot;

import com.example.copsboot.infrastructure.SpringProfiles;
import com.example.copsboot.user.UserService;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.ApplicationArquments;

import org.springframework.boot.ApplicationRunner;

import org.springframework.context.annotation.Profile;

import org.springframework.stereotype.Component;

@
(SpringProfiles.DEV) @
public class DevelopmentDbInitializer implements ApplicationRunner {

private final UserService userService;

public DevelopmentDbInitializer(UserService userService) { ®
this.userService = userService;

}

public void run(ApplicationArguments applicationArguments) { @
createTestUsers();

}

private void createTestUsers() {
userService.createOfficer("officer@example.com", "officer"); ®

}

@ Mark the class with @Component so the component scanning picks it up.

@ The @Profile annotation ensures that this ApplicationRunner only executes if the dev profile is active.
See Spring Profiles for more information.

® Inject the UserService interface, which you will use to create the users.
@ This is the method of the ApplicationRunner interface that you need to implement.

® This is the actual creation of the test user.
You could also opt to create the test user account using SQL by adding an import.sql at
t’ the root of the class path. However, it is easier to use Java code to write simple loops
to generate a lot of test data, if you want to test pagination for example. On top of that,

it is also easier to enable/disable using the Spring Profile.

To support your DevelopmentDbInitializer, create a new interface UserService with its default

33

chapter-02.pdf#spring-profiles

implementation UserServiceImpl:

UserService.java
package com.example.copsboot.user;

public interface UserService {
User createOfficer(String email, String password);

}

UserServiceImpl.java
package com.example.copsboot.user;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.security.crypto.password.PasswordEncoder;
import org.springframework.stereotype.Service;

public class UserServiceImpl implements UserService {
private final UserRepository repository;
private final PasswordEncoder passwordEncoder;

public UserServiceImpl(UserRepository repository, PasswordEncoder passwordEncoder) {
this.repository = repository;
this.passwordEncoder = passwordEncoder;

public User createOfficer(String email, String password) {

User user = User.createOfficer(repository.nextId(), email, passwordEncoder.
encode(password));

return repository.save(user);

}

Now that you have everything in place, you can start your application and try to get an access token. I
like to use Postman as it has a nice UI and you can use it to store requests for future reference, but you
can use any tool you like of course.

Follow these steps in Postman to set up the request:

1. Select POST instead of the default GET.
2. Set the URL to http://localhost:8080/0auth/token.

3. On the Authorization tab, select Basic Auth.

54

https://www.getpostman.com/
http://localhost:8080/oauth/token
http://localhost:8080/oauth/token
http://localhost:8080/oauth/token
http://localhost:8080/oauth/token
http://localhost:8080/oauth/token

0 See "Basic access authentication” on Wikipedia to learn more about that.

4. For username, type copsboot-mobile-client. As password, type ccUybbvS4S8nxfbKPCrN. See
OAuth2ServerConfiguration on where to get those values.

5. Click on Preview Request. This will add the Authorization header to the request.
6. Select the Body tab.
7. Select x-www-form-urlencoded from the radio-button selection.
8. Add the following keys and values:
Key Value
username officer@example.com
password officer
grant_type password
client_id copsboot-mobile-client
client_secret ccUybbvS4S8nxfbKPCrN

The client_id and client_secret are in fact optional in the request body since you
already used that in the Basic Authentication header. However, if you add them,
they need to match the credentials used in the Basic Authentication header.

9. Press "Send".

Don’t forget to start the application with the dev profile. Otherwise, you will get a 400
BAD REQUEST with the following response:

"error": "invalid_grant",
9 "error_description": "Bad credentials"

You can check which profiles are active at startup since Spring Boot prints them:

The following profiles are active: dev

If all went well, you should get the following JSON response:

35

https://en.wikipedia.org/wiki/Basic_access_authentication
mailto:officer@example.com

Practical Guide to Building an API Back End with Spring Boot

"access_token": "4329339a-ea%b-4781-86d1-1f49193fa5b3",
"token_type": "bearer",
"refresh_token": "90d46c41-9aa0-4c23-88e3-8d4cade77b30",
"expires_in": 43199,
"scope": "mobile_app"
o0 ® Postman
New ~ Import Runner Builder @
Local 9
http://localhost:8080/ @ oca {}
POST http://localhost:B080/oauth/token Params m Save
ation @ Headers (2) Body @ Pre-request Script Cookies Code
form-data ‘® x-www-form-urlencoded raw binary
Key Value Description Bulk Edit
username officer@example.com
password officer
grant_type password
client_id copsboot-mobile-client
client_secret cclUybBvS4SBnxfbKPCrN
Body Cookies Headers (11) Test Results Status: 20006 Time: 472ms Size: 527 B
Pretty Raw Preview JSON =
1~
2 "access_token": "a7cZV424-ba75-40oc-a3@c-bf98cRefalie”,
3 "token_type": "bearer”,
4 "refresh_token": "f3123624-4dee-4899-a7c3-46b3a%eZ28e3”,
5 "expires_in": 43199,
6 "scope": "mobile_app”
7 1

Figure 2. Screenshot of Postman

The response contains an access_token as well as a refresh_token. The access_token is what you need to
use in your requests. However, the access_token expires after a configurable amount of time. This is
indicated by the expires_in field that returns how many seconds the access_token can still be used.
When the access_token expires, the refresh_token can be used to obtain a new access_token without the
need for the user’s password.

56

Note that the refresh_token can also expire (or be revoked at the server). In that case, the client
application will need to request the user’s username and password again to obtain a new access_token
and refresh_token from the server.

Unit test to get access token

To ensure your /oauth/token works as expected, write a unit test for it. You will start the whole
application and hit the endpoint to see if you get an access token back.

i

Unit test?

You might be thinking that unit testing and starting the whole application are not
things that really go well together. And you are right. But JUnit is a very capable test
framework. It can do so much more than just unit testing, including a full component
test, which is what we’re doing here.

You will later on see some more techniques for avoiding starting the whole
application like you did in the User Repository chapter with @DataJpaTest.

Let’s take a look at the test:

package com.example.copsboot.infrastructure.security;

import
import
import
import
import
import
import
import
import
import
import
import
import

com

com.
org.
org.
org.
org.
.springframework.
org.
.springframework.
org.
.springframework.
org.

org

org

org

.example.copsboot.infrastructure.SpringProfiles;
com.

example.copsboot.user.UserService;
example.copsboot.user.Users;

junit.Test;

junit.runner.RunWith;

springframework.
springframework.

springframework.
springframework.

springframework.

import static
org.springframework.security.test.web.servlet.request.SecurityMockMvcRequestPostProcessor
s.httpBasic;
import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.post;
import static org.springframework.test.web.servlet.result.MockMvcResultHandlers.print;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.*;

beans.factory.annotation.Autowired;
boot.test.autoconfigure.web.servlet.AutoConfigureMockMvc;
boot.test.context.SpringBootTest;
test.context.ActiveProfiles;
test.context.junit4.SpringRunner;
test.web.servlet.MockMvc;

util.LinkedMultiValueMap;

util.MultiValueMap;

(SpringRunner.class)

0]
@

57

chapter-04.pdf#user-repository

(SpringProfiles.TEST)
public class OAuth2ServerConfigurationTest {

private MockMvc mvc; ®

private UserService userService; @

public void testGetAccessTokenAsOfficer() throws Exception {
userService.createOfficer(Users.OFFICER_EMAIL, Users.OFFICER_PASSWORD); ®

String clientId = "copsboot-mobile-client";
String clientSecret = "ccUybbvS4S8nxfbKPCrN";

MultiValueMap<String, String> params = new LinkedMultiValueMap<>();
params.add("grant_type", "password");

params.add("client_id", clientId);

params.add("client_secret", clientSecret);

params.add("username", Users.OFFICER_EMAIL);

params.add("password", Users.OFFICER_PASSWORD);

mvc.perform(post("/oauth/token") ®

.params(params) @

.with(httpBasic(clientId, clientSecret)) ®

.accept("application/json;charset=UTF-8"))
.andExpect(status().is0k())
.andExpect(content().contentType("application/json;charset=UTF-8"))
.andDo(print()) ©
.andExpect(jsonPath("access_token").isString()) @@
.andExpect(jsonPath("token_type").value("bearer"))
.andExpect(jsonPath("refresh_token").isString())
.andExpect(jsonPath("expires_in").isNumber())
.andExpect(jsonPath("scope").value("mobile_app"))

@ @SpringBootTest indicates that the complete application should be started with a mock servlet
environment.

@ The mock servlet environment can be automatically configured as you don’t require any special
configuration for this test.

® Autowire the MockMvc instance so you can test your endpoint.

58

@ Also autowire UserService to create a test user for authentication.

® Create a user for testing. Note that your user from DevelopmentDbInitializer is not created here as
you are not running with the dev profile.

® Perform a HTTP POST on /oauth/token like you did in Postman.
@ Add the various parameters like username, password, client_id, etc.
Add the basic authentication header to authenticate the client application.

© This call will print out the request and response. This is not needed at all for the unit test, but can be
quite useful to debug what is going on.

Use these assertions to see if you get back what you expect.

Refactoring for configurability

While everything now works fine, it feels wrong to have your production client_id and client_secret
in your unit test. Luckily, Spring Boot makes externalizing configuration a breeze. You can define a
class to hold your own properties and use them like the built-in properties of Spring Boot, like
server.port for example. See the Properties chapter if you want to revisit that information.

First, you need to add an extra dependency to Maven’s pom.xml:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-configuration-processor</artifactId>
<optional>true</optional>

</dependency>

This dependency adds an annotation-configuration processor in the build process that adds metadata
about the properties so your IDE might offer coding assistance for them.

After this, create a POJO to hold your two properties:

59

chapter-02.pdf#properties
https://docs.spring.io/spring-boot/docs/current/reference/html/configuration-metadata.html

Practical Guide to Building an API Back End with Spring Boot

package com.example.copsboot.infrastructure.security;

import org.springframework.boot.context.properties.ConfiqgurationProperties;
import org.springframework.stereotype.Component;

@Component @
@ConfigurationProperties(prefix = "copsboot-security") @
public class SecurityConfiguration {

private String mobileAppClientld;

private String mobileAppClientSecret;

public String getMobileAppClientId() {
return mobileAppClientId;
}

public void setMobileAppClientId(String mobileAppClientId) {
this.mobileAppClientId = mobileAppClientId;
}

public String getMobileAppClientSecret() {
return mobileAppClientSecret;

}

public void setMobileAppClientSecret(String mobileAppClientSecret) {
this.mobileAppClientSecret = mobileAppClientSecret;
}

@ @Component creates an instance to autowire later on.

@ @ConfigurationProperties indicates to the configuration processor that the properties of this class
must be made available for externalized configuration.

Now, you can autowire the SecurityConfiguration into the AuthorizationServerConfiguration inner class
of OAuth2ServerConfiguration:

60

protected static class AuthorizationServerConfiguration extends
AuthorizationServerConfigurerAdapter {

private AuthenticationManager authenticationManager;

private UserDetailsService userDetailsService;

private PasswordEncoder passwordEncoder;

private TokenStore tokenStore;

private SecurityConfiguration securityConfiguration; @

public void configure(AuthorizationServerSecurityConfigurer security) throws
Exception {
security.passwordEncoder (passwordEncoder);

}

public void configure(ClientDetailsServiceConfigurer clients) throws Exception {
clients.inMemory()
.withClient(securityConfiguration.getMobileAppClientId()) @
.authorizedGrantTypes("password", "refresh_token")
.scopes("mobile_app")
.resourceIds(RESOURCE_ID)
.secret(passwordEncoder.encode(securityConfiguration
.getMobileAppClientSecret())); @
}

public void configure(AuthorizationServerEndpointsConfigurer endpoints) throws
Exception {
endpoints.tokenStore(tokenStore)
.authenticationManager (authenticationManager)
.userDetailsService(userDetailsService);

@ Autowire the SecurityConfiguration instance.

61

Practical Guide to Building an API Back End with Spring Boot

@ Use the client ID from the configuration.

® Use the client secret from the configuration.

All that is left now is to define the properties using one of the many options Spring Boot has for
externalized configuration. You want different client IDs and secrets for development, staging,
production, and testing, so create application-dev.properties, application-staging.properties,

application-prod.properties, and application-test.properties. Since that last one is only needed for
unit testing, create it in the src/test/resources folder.

Due to the configuration processor, your IDE can offer coding assistance:

%‘ application-dev.properties

1 _copshoot-security.|
p copsboot-security.mobile-app-client-id String
P copsboot-security.mobile-app-client-secret String

Press ~. to choose the selected (or first) suggestion and insert a dot afterwards >>

This is application-dev.properties:

copsboot-security.mobile-app-client-id=copsboot-mobile-client
copsboot-security.mobile-app-client-secret=ccUybbvS4S8nxfbKPCrN

And this is application-test.properties:

copsboot-security.mobile-app-client-id=test-client-id
copsboot-security.mobile-app-client-secret=test-client-secret

You can now update your testGetAccessTokenAsOfficer method in OAuth2ServerConfigurationTest to use
the values defined in application-test.properties by replacing:

String clientId = "copsboot-mobile-client";
String clientSecret = "ccUybbvS4S8nxfbKPCrN";

with:

62

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html

String clientId = "test-client-id";
String clientSecret = "test-client-secret";

Note that the test profile is active in the test due to the @ActiveProfiles annotation at the class level.

Summary

In this chapter, you have added OAuth2 authentication to your application. You also created unit tests
for it.

63

User REST Controller

Next up in the application is allowing users to create an account via the mobile app. To make this
possible, you will add a REST controller.

Basics

Spring Boot allows you to create Controller or RestController classes to expose the services of your
application over HTTP. The main difference between them is that Controller is for building server-side
generated HTML. It is mostly used with Thymeleaf, for example.

RestController is what this example will use, since you want to expose JSON over HTTP.

Get mapping

Production code

Start by creating a UserRestController class in the com.example.copsboot.user.web package. Group all
controller-related classes in a web package below the functional package (user in this example) to keep
things cleanly organised.

Add a single route /api/users/me to return information on the currently logged-on user. This is nothing
spectacular but shows you how a GET mapping works and how to get information on the user that is
doing the request.

64

https://www.thymeleaf.org/

package com.example.copsboot.user.web;

import com.example.copsboot.infrastructure.security.ApplicationUserDetails;
import com.example.copsboot.user.User;

import com.example.copsboot.user.UserNotFoundException;

import com.example.copsboot.user.UserService;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.security.core.annotation.AuthenticationPrincipal;
import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RestController;

®
("/api/users") @
public class UserRestController {

private final UserService service;

public UserRestController(UserService service) { @
this.service = service;

}
("/me") @

public UserDto currentUser(ApplicationUserDetails
userDetails) { ®
User user = service.getUser(userDetails.getUserId()) ®
.orElseThrow(() -> new UserNotFoundException(userDetails
.getUserId()));
return UserDto.fromUser(user); @

}

@ Annotate the class with RestController so Spring will pick this class up in component scanning and
register the routes for it.

@ Set the base route for all methods in this class to /api/user.
® Autowire the UserService since that class will do the actual work.

@ This indicates that this method should be called when a get is done on /me (appended to the base
route of the class, so the full path will be /api/users/me).

® Add a parameter of type ApplicationUserDetails and annotate it with @AuthenticationPrincipal to
get information on the user that is doing the request.

® Ask the UserService for the user that matches the given ID. Since the service returns an Optional,
this throws a custom exception UserNotFoundException when there is no user with the given ID
(which would be quite rare since it is the ID of the currently logged-on user).

65

@ Convert the User entity into a UserDto object for serialization to JSON.

For that @AuthenticationPrincipal, the type of the class has to match with the object returned in the
ApplicationUserDetailsService. Otherwise, the object will be null. (You can also set errorOnInvalidType
on the annotation to make Spring fail if the type does not match.)

If there is no authenticated user, the parameter might also be null. However, in this case, the route is
protected (see OAuth2ServerConfiguration) so this parameter will never be null.

Why not return the User entity object?

It is perfectly possible to return the User object directly in the controller method. The
advantage of that is you don’t need to create an extra object with fields that closely
resemble the entity. However, you most likely want to format the data a bit differently,

O you want to hide some information, or you want to add extra information from
somewhere else.

Changes are so much easier if you directly use a data transfer object (DTO) and avoid
annotating your entity with Jackson annotations, which can lead to more annotations
than code if you are not careful.

The UserDto object is straightforward:

package com.example.copsboot.user.web;

import com.example.copsboot.user.User;
import com.example.copsboot.user.Userld;
import com.example.copsboot.user.UserRole;
import lombok.Value;

import java.util.Set;

public class UserDto {
private final UserId id;
private final String email;
private final Set<UserRole> roles;

public static UserDto fromUser(User user) {
return new UserDto(user.getId(),

user.getEmail(),
user.getRoles());

You notice the fields and a single static factory method to convert from a User entity object to a UserDto.

66

One special thing that is done is the @Value annotation from the Project Lombok. This annotation adds
getters for each field and a single constructor for taking each field. It will also generate a proper
equals() and hashCode implementation.

To make it work, add the following dependency to your Maven build:

<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
</dependency>

Be sure to install the Lombok plugin for your IDE as well so that it is aware of the
generated code.

v

One of the downsides of Lombok is that the IDE must support it, as the code of UserDto
is not valid Java without taking into account what the library does.

For completeness, this is the implementation of the UserNotFoundException:

package com.example.copsboot.user;

import org.springframework.http.HttpStatus;
import org.springframework.web.bind.annotation.ResponseStatus;

(HttpStatus.NOT_FOUND) @
public class UserNotFoundException extends RuntimeException {
public UserNotFoundException(UserId userId) {
super(String.format("Could not find user with id %s", userId.asString()));

}

@ By annotating the exception with @ResponseStatus, Spring will use that status code in the response
when this exception gets thrown in a controller.

That is all that there is to it to creating your own REST API. To ensure it works correctly, add a unit test
for it, of course.

Testing

To test the functionality, again use Spring Boot’s test slicing. This time, use the @WebMvcTest annotation
to start a mock servlet environment for testing.

67

https://projectlombok.org/

UserRestControllerTest.java

(SpringRunner.class) @
(UserRestController.class) @
(SpringProfiles.TEST) ®
public class UserRestControllerTest {

private MockMvc mvc; @

private UserService service; ®

@ Use the Spring Runner to enable test slicing.
@ Use @WebMvcTest with a reference to the controller you want to test.
® Activate the test profile.

@ This is the MockMvc instance that the testing framework will autowire to drive the mock servlet
environment.

® This is the mocked instance of the UserService since the controller needs to get it autowired.

To make your unit test as realistic as possible, ensure that it uses the same security configuration as
your actual application. For this purpose, add an inner class for the testing framework to use as the
Spring context for the test. Any static inner class that is annotated with @TestConfiguration will be

picked up when the test runs and the beans defined there will be put in the Spring context together
with the automatically created beans from the @WebMvcTest annotation.

This is the inner class for this test:

68

UserRestControllerTest.java

®
(OAuth2ServerConfiguration.class) @
static class TestConfig {

public UserDetailsService userDetailsService() {
return new StubUserDetailsService(); ®

}

public TokenStore tokenStore() {
return new InMemoryTokenStore(); @

}

public SecurityConfiguration securityConfiguration() {
return new SecurityConfiguration(); ®

}

@ Annotate the inner class with @TestConfiguration so the testing framework picks it up.
@ Import your actual security configuration from the application.

® The security configuration needs a UserDetailsService. Provide a mock implementation where you
know the available users, just for testing.

@ Use the in-memory variant of the TokenStore for testing.

® Use the default SecurityConfiguration bean. As you are running with the test profile, this will be
filled with the values from application-test.properties.

The StubUserDetailsService class looks like this:

69

package com.example.copsboot.infrastructure.security;

import com.example.copsboot.user.Users;
import org.springframework.security.core.userdetails.UserDetails;

import org.springframework.security.core.userdetails.UserDetailsService;
import org.springframework.security.core.userdetails.UsernameNotFoundException;

public class StubUserDetailsService implements UserDetailsService {

public UserDetails loadUserByUsername(String username) throws
UsernameNotFoundException {
switch (username) {
case Users.OFFICER_EMAIL:
return new ApplicationUserDetails(Users.officer());
case Users.CAPTAIN_EMAIL:
return new ApplicationUserDetails(Users.captain());
default:
throw new UsernameNotFoundException(username);

So there are two possible users to authenticate in your unit test.

With this configuration in place, you can write your first test, which is if there is no authorization

header, then the application should return a 401 Unauthorized status code:

public void givenNotAuthenticated_whenAskingMyDetails_forbidden() throws Exception {

mvc.perform(get("/api/users/me")) @
.andExpect(status().isUnauthorized()); @

® Perform a GET on /api/users/me (the get() is a static import from MockMvcRequestBuilders).

@ Validate that you get back a 401 Unauthorized status code (status() is statically imported from

MockMvcResultMatchers).

If you authorize as an officer, you should get back some JSON:

70

public void givenAuthenticatedAsOfficer_whenAskingMyDetails_detailsReturned() throws
Exception {
String accessToken = obtainAccessToken(mve, Users.OFFICER_EMAIL, Users
.OFFICER_PASSWORD); @™

when(service.getUser(Users.officer().getId())).thenReturn(Optional.of(Users
.officer())); @

mvc.perform(get("/api/users/me") @
.header (HEADER_AUTHORIZATION, bearer(accessToken))) @
.andExpect(status().is0k()) ®
.andExpect(jsonPath("id").exists()) ®
.andExpect(jsonPath("email").value(Users.OFFICER_EMAIL))
.andExpect(jsonPath("roles").isArray())
.andExpect(jsonPath("roles[0]").value("OFFICER"))

@ Get an access token using the known email and password of the officer that you also used in
StubUserDetailsService.

@ Set up the UserService mock to behave like the actual service would. Given the correct user ID,
return the user object.

® Perform a GET on /api/users/me.

@ Add the authorization header with Bearer <access_token> as value.

® Check if the response status code is 200 Ok.

® Check the JSON response structure using MockMvcResultMatchers.jsonPath().

To make the test so succinct, you need a helper class, SecurityHelperForMockMve, that can statically
import obtainAccessToken to get an OAuth2 access token for a given email and password. There is also a

constant defined for the Authorization header and a bearer method to prepend "Bearer" to the access
token, as this is required for the Authorization header.

This is the full code of this supporting class:

package com.example.copsboot.infrastructure.security;

import org.springframework.boot.json.JacksonJsonParser;
import org.springframework.test.web.servlet.MockMvc;
import org.springframework.test.web.servlet.ResultActions;
import org.springframework.util.LinkedMultiValueMap;
import org.springframework.util.MultiValueMap;

import static

71

72

Practical Guide to Building an API Back End with Spring Boot

org.springframework.security.test.web.servlet.request.SecurityMockMvcRequestPostProcessor
s.httpBasic;

import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.post;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.content;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;

public class SecurityHelperForMockMve {

private static final String UNIT_TEST_CLIENT_ID = "test-client-id"; @
private static final String UNIT_TEST_CLIENT_SECRET = "test-client-secret"; @

public static final String HEADER_AUTHORIZATION = "Authorization";

/**
* Allows to get an access token for the given user in the context of a spring (unit)

test
* using MockMVC.

* @param mvc the MockMvec instance

* @param username the username

* @param password the password

* @return the <code>access_token</code> to be used in the <code>Authorization</code>
header

* @throws Exception if no token could be obtained.

*/

public static String obtainAccessToken(MockMve mve, String username, String password)
throws Exception {

MultiValueMap<String, String> params = new LinkedMultiValueMap<>();
params.add("grant_type", "password");

params.add("client_id", UNIT_TEST_CLIENT_ID);
params.add("client_secret”, UNIT_TEST_CLIENT_SECRET);
params.add("username", username);

params.add("password", password);

ResultActions result
= mvc.perform(post("/oauth/token")
.params(params)
.with(httpBasic(UNIT_TEST_CLIENT_ID,
UNIT_TEST_CLIENT_SECRET))

.accept("application/json;charset=UTF-8"))

.andExpect(status().is0k())

.andExpect(content().contentType("application/json;charset=UTF-8"));

String resultString = result.andReturn().getResponse().getContentAsString();

JacksonJsonParser jsonParser = new JacksonJsonParser();
return jsonParser.parseMap(resultString).get("access_token").toString();

public static String bearer(String accessToken) {
return "Bearer " + accessToken;

}

@ The client id used for testing. This has to match with the value in application-test.properties.

@ The client secret used for testing. This has to match with the value in application-test.properties.

Having started with this simple GET request, take this a step further and do a POST.

POST mapping

You want your mobile-app users to be able to create an account via the REST API. For this purpose, you
will expose the /api/users endpoint. This endpoint will accept a JSON body with the parameters
needed to create the user account.

To get started, first create a class to hold the parameters:

package com.example.copsboot.user.web;

import lombok.Data;
import org.hibernate.validator.constraints.Email;

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
public class CreateOfficerParameters {

private String email;

(min = 6, max = 1000)
private String password;

Notice how each field has annotations that are used for validation. Spring will map the received JSON
onto the CreateOfficerParameters class (using Jackson), but if the validation fails, a 400 Bad Request will
automatically be returned to the client.

We have three annotations here:

73

* @NotNull ensures the field is present in the JSON.
» @Email validates the String value as an email address.

» @Size validates that the String length falls between the min and max values.

Now add your endpoint to UserRestController:

®
(HttpStatus.CREATED) @
public UserDto createOfficer(CreateOfficerParameters parameters)
{®
User officer = service.createOfficer(parameters.getkmail(), @
parameters.getPassword());
return UserDto.fromUser(officer); ®
}

(@ Mark this method to react to a HTTP POST request. As there is no path specified here, it uses the one
specified on the class level in the @RequestMapping("/api/users") annotation.

@ Upon successful execution of this method, return a status code 201 Created to the client.

® @RequestBody tells Spring to deserialize the JSON that gets posted to the CreateOfficerParameters
object. The @Valid annotation before that will make Spring validate the parameters object as well.

@ Call the UserService to do the actual work of creating a new user account.

® Return the created user object as a UserDto to the client. This object is in turn serialized by Jackson
into a JSON representation.

The controller should be as lightweight as possible. All the actual logic should be done
in a service class, and the controller should only be concerned with HTTP concerns

like serialization, validation, etc....

Now add a new test case in UserRestControllerTest to ensure all is well:

74

public void testCreateOfficer() throws Exception {
String email = "wim.deblauwe@example.com";
String password = "my-super-secret-pwd";

CreateOfficerParameters parameters = new CreateOfficerParameters();
parameters.setEmail(email);
parameters.setPassword(password);

when(service.createOfficer(email, password)).thenReturn(Users.newOfficer(email,
password)); @

mvc.perform(post("/api/users") @

.contentType(MediaType.APPLICATION_JSON_UTF8) ®
.content(objectMapper.writeValueAsString(parameters))) @

.andExpect(status().isCreated()) ®

.andExpect(jsonPath("id").exists()) ®

.andExpect(jsonPath("email").value(email))

.andExpect(jsonPath("roles").isArray())

.andExpect(jsonPath("roles[0]").value("OFFICER"));

verify(service).createOfficer(email, password); @

@ Instruct the mock UserService to return a new User object when the createOfficer method is called,
just like the actual UserService would do.

@ Perform a POST request on /api/users.
® Set the Content-Type header to indicate that you are going to send JSON.

@ Use the Jackson objectMapper to turn the CreateOfficerParameters object into JSON and use it as the
body of the request.

® Check if the response status is 201 Created.
® Check if the response JSON has the proper fields using jsonPath.

@ Verify that the UserService has been called with the correct arguments.

To support your test method, you need to add two extra fields in the class:

private ObjectMapper objectMapper; @

private UserService service; @

@ Jackson’s ObjectMapper handles conversion from and to JSON. You can autowire this as the testing
infrastructure creates an instance for you.

75

@ The controller needs an instance of UserService. You can use @MockBean to ask Mockito to
automatically create a mock object so you can verify if certain methods are called on the service
when an endpoint is hit.

If you now try to run the test, you will notice that it fails with the following problem:

java.lang.AssertionError: Status
Expected :201
Actual :401

You get 401 Unauthorized instead of the expected 201 Created. This is normal as your security
configuration requires that all calls below /api need to be authenticated. As a "create user" call cannot
be authenticated (you have no account to authenticate with yet, of course), you need to change the
configuration as follows:

OAuth2ServerConfiguration.java

public void configure(HttpSecurity http) throws Exception {

http.authorizeRequests()
.antMatchers(HttpMethod.OPTIONS, "/api/**").permitAll()
.and()
.antMatcher ("/api/**")
.authorizeRequests()
.antMatchers(HttpMethod.POST, "/api/users").permitA11() @®
.anyRequest().authenticated();

@ Allow anybody to do a POST on /api/users.

Running the test now will result in a green bar.

Writing API documentation

You now have two API endpoints and need to provide documentation so that clients that want to use
these endpoints know what to expect from your API. There are various options for documentation
(e.g., Swagger or Postman) but I really like what Spring REST Docs offers in this regard.

Spring REST Docs allows you to generate AsciiDoc-formatted snippets that you can include in
documentation you write in Asciidoctor. You can generate these snippets by running unit tests with
Spring MVC Test.

Your documentation is always up to date, since the JSON in the documentation is the actual JSON that
your code produces. You can explain the API in your documentation and include those current J[SON

76

https://swagger.io/
https://www.getpostman.com/docs/v6/postman_for_publishers/public_api_docs
https://projects.spring.io/spring-restdocs/
http://asciidoc.org/
http://asciidoctor.org/
https://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle#spring-mvc-test-framework

User REST Controller

snippets as part of the final HTML or PDF document.

Maven setup

The first thing you need to add is the spring-restdocs-mockmvc dependency so that you can write unit

tests using Mock MVC to generate the JSON snippets:

<dependency>
<groupId>org.springframework.restdocs</groupId>
<artifactId>spring-restdocs-mockmve</artifactId>
<scope>test</scope>

</dependency>

To set up the HTML and PDF output generation, you need to configure the asciidoctor-maven-plugin

(you can leave out one or the other if you want only HTML or only PDF output):

<build>
<pluginManagement>
<plugins>
<plugin>
<groupId>org.asciidoctor</groupId>
<artifactId>asciidoctor-maven-plugin</artifactId>
<version>${asciidoctor-maven-plugin.version}</version>
<dependencies>
<dependency>
<groupld>org.asciidoctor</groupId>
<artifactId>asciidoctorj-pdf</artifactId>
<version>1.5.0-alpha.16</version>
</dependency>
<dependency>
<groupld>org.asciidoctor</groupId>
<artifactId>asciidoctorj</artifactId>
<version>1.5.7</version>
</dependency>
<dependency>
<groupId>org.springframework.restdocs</groupIld>
<artifactId>spring-restdocs-asciidoctor</artifactId>
<version>${spring-restdocs.version}</version>
</dependency>
<dependency>
<groupId>org.jruby</groupld>
<artifactId>jruby-complete</artifactId>
<version>9.1.17.0</version>
</dependency>
</dependencies>
<executions>

77

Practical Guide to Building an API Back End with Spring Boot

<execution>
<id>generate-docs</id>
<phase>prepare-package</phase>
<goals>
<goal>process-asciidoc</goal>
</goals>
<confiquration>
<backend>html</backend>
</configuration>
</execution>
<execution>
<id>generate-docs-pdf</id>
<phase>prepare-package</phase>
<goals>
<goal>process-asciidoc</goal>
</goals>
<confiquration>
<backend>pdf</backend>
</configuration>
</execution>
</executions>
<configuration>
<backend>html</backend>
<doctype>book</doctype>
<attributes>
<project-version>${project.version}</project-version>
</attributes>
</confiquration>
</plugin>
</plugins>
</pluginManagement>

You are adding this in the pluginManagement section of Maven, and the plugin is yet active. This is
deliberate as you only want to generate the documentation when running with a certain Maven
profile. In this case, I am calling this profile ci, as it will be run on our continuous-integration server:

78

User REST Controller

<profiles>
<profile>
<id>ci</id>
<build>
<plugins>
<plugin>
<groupId>org.asciidoctor</groupId>
<artifactId>asciidoctor-maven-plugin</artifactId>
<version>${asciidoctor-maven-plugin.version}</version>
<executions>
<execution>
<id>generate-docs</id>
<phase>prepare-package</phase>
<goals>
<goal>process-asciidoc</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</profile>
</profiles>

By binding the process-asciidoc goal to the prepare-package, you ensure that the documentation is built

whenever somebody runs mvn package -Pci (-P allows you to activate a Maven profile via the
command line).

The last step is adding the version-number properties for asciidoctor-maven-plugin.version and

spring-restdocs.version:

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>

<java.version>1.8</java.version>

<!-- Maven Plugin versions -->

<asciidoctor-maven-plugin.version>1.5.6</asciidoctor-maven-plugin.version>

<!-- Project dependencies versions -->
<guava.version>25.1-jre</guava.version>

<!-- Test dependencies versions -->
<spring-restdocs.version>2.0.1.RELEASE</spring-restdocs.version>
</properties>

79

It might seem that using a Maven profile just to generate documentation is a bit of

0 overkill at this point, but you are doing this now to prepare for including more build
steps that should only be done on the build server like code coverage and static code
analysis.

Asciidoctor document

The Maven setup now allows you to create HTML and PDF output but of course you need a source file.
To get started, create Copsboot REST API Guide.adoc in the src/main/asciidoc folder:

Copsboot REST API Guide.adoc

= Copsboot REST API Guide
:icons: font

:toc:

:toclevels: 2

:numbered:

== Introduction

The Copsboot project uses a REST API for interfacing with the server.

This documentation covers version {project-version} of the application.

Don’t worry about the AsciiDoc syntax for now. If you want, you can read the AsciiDoc Syntax Quick
Reference or the Asciidoctor User Manual for more information.

Notice how you have {project-version} in the source document. If you now run mvn package -Pci on
the command line, you will get the HTML and PDF output in the target/generated-docs folder. There,
{project-version} is replaced with 0.0.1-SNAPSHOT, which is the current version of your Maven project.

Chapter 1. Introduction

The Copsboot project uses a REST API for interfacing with the server.

This documentation covers version 0.0.1-SNAPSHOT of the application.

Figure 3. Copsboot REST API Guide.pdf

This works because you have made the Maven project version available to Asciidoctor in the Maven
configuration of the plugin:

80

https://asciidoctor.org/docs/asciidoc-syntax-quick-reference/
https://asciidoctor.org/docs/asciidoc-syntax-quick-reference/
http://asciidoctor.org/docs/user-manual/

<attributes>
<project-version>${project.version}</project-version>
</attributes>

The name of the XML element is the name of the variable to be used in the Asciidoctor document. The
text inside the element is the value, for which this example uses the built-in Maven variable
project.version.

This ensures that you always know what version of the software the documentation refers to.

UserRestController documentation

With all of that out of the way, you can create the unit test that will generate the JSON snippets for your
documentation. First, create a test class called UserRestControllerDocumentation. The class annotations
and the fields you have are almost the same as those you already have in UserRestControllerTest.

UserRestControllerDocumentation.java

@RunWith(SpringRunner.class)
@WebMvcTest(UserRestController.class)
@ActiveProfiles(SpringProfiles.TEST)
public class UserRestControllerDocumentation {

@Rule

public final JUnitRestDocumentation restDocumentation = new
JUnitRestDocumentation("target/generated-snippets");

private MockMvc mvc;

@Autowired

private ObjectMapper objectMapper;
@MockBean

private UserService service;

There are two differences between this and UserRestControllerTest:

1. The JUnit rule, JUnitRestDocumentation, generates the code snippets and needs to know where to put
them. The path here is the default if you are using Maven.

2. The MockMvc field is no longer annotated with @Autowired as you will build the proper instance on
which you can apply your own security and documentation concerns.

In the setUp method of the class, define how you want to generate the snippets:

81

UserRestControllerDocumentation.java

@Autowired
private WebApplicationContext context; @
private RestDocumentationResultHandler resultHandler; @

@Before
public void setUp() {
resultHandler = document("{method-name}", ®
preprocessRequest(prettyPrint()), @
preprocessResponse(prettyPrint(), ®
removeMatchingHeaders("X.*", ®
"Pragma"”,
"Expires")));
mvc = MockMvcBuilders.webAppContextSetup(context) @
.apply(springSecurity())
.apply(documentationConfiguration(restDocumentation)) ©
.alwaysDo(resultHandler) @
.build();

@ Ask Spring to autowire the WebApplicationContext as you need to this build your MockMvc instance.

@ This is a reference to RestDocumentationResultHandler, for which you will need to add
documentation information in the unit tests themselves

® Build the resultHandler reference. Use the unit-test method to name the directory where the
snippets will be generated (relative to the directory already specified by the JUnitRestDocumentation
rule.

@ To ensure the JSON in the documentation looks nice, preprocess all request bodies to pretty-print
them.

® Pretty-print the response body too.

® In addition to using pretty printing, remove some of the headers of the response as you don’t want
them in your documentation.

@ Using the webAppContextSetup factory method from MockMvcBuilders, build your MockMvc instance.
Ensure that the MockMvc instance is aware of Spring Security.
© Apply the JUnit rule.

Ensure the documentation is always generated.

Finally, you need to add the inner class to define the application context of the test:

82

UserRestControllerDocumentation.java

@TestConfiguration
@Import(OAuth2ServerConfiguration.class)
static class TestConfig {
@Bean
public UserDetailsService userDetailsService() {
return new StubUserDetailsService();

}

@Bean
public TokenStore tokenStore() {
return new InMemoryTokenStore();

}

@Bean
public SecurityConfiguration securityConfiguration() {
return new SecurityConfiquration();

}

Documentation of GET

With this in place, you can write your first documentation test:

UserRestControllerDocumentation.java

@Test
public void ownUserDetailsWhenNotLoggedInExample() throws Exception {
mvc.perform(get("/api/users/me"))
.andExpect(status().isUnauthorized());

This basically is just a simple wunit test. The only difference is that you import
org.springframework.restdocs.mockmvc.RestDocumentationRequestBuilders.get instead of
org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get

Try running this test. It should generate a directory called own-user-details-when-not-logged-in-
example in target/generated-snippets with six files inside it:

* curl-request.adoc,

* http-request.adoc,

* http-response.adoc,

* httpie-request.adoc,

83

* request-body.adoc, and

* response-body.adoc.

The most important file for your current test is http-response.adoc as this shows the failure response to
be expected when calling /api/users/me if you are not authenticated:

[source,http,options="nowrap"]

HTTP/1.1 401 Unauthorized

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Cache-Control: no-store

WWW-Authenticate: Bearer realm="copsboot-service", error="unauthorized",
error_description="Full authentication is required to access this resource"
Content-Type: application/json;charset=UTF-8

Content-Length: 113

{

"error" : "unauthorized",
"error_description" : "Full authentication is required to access this resource"

}

You can now include this snippet of Asciidoctor in your API documentation. To split the documentation
into small pieces, create the _users.adoc file with this content:

_users.adoc
== User Management
=== User information

The API allows to get information on the currently logged on user
via a ‘GET" on ‘/api/users/me‘. If you are not a logged on user, the
following response will be returned:

operation::own-user-details-when-not-logged-in-example[snippets="http-request,http-
response ']

Notice the operation:: line at the end of your document. It has two important parts:

1. The part between the :: and the [(own-user-details-when-not-logged-in-example in this example)
needs to match the name of the generated directory in the target/generated-snippets folder.

2. The snippets="curl-request,http-response’ part defines which of the files in the folder should be
included in your documentation. The names match the file names, minus the .adoc extension.

84

ﬁ Start the include file’s name with an underscore (_) so that the AsciiDoc Maven plugin
will not try to create a separate output file for the include file.

This results in the following PDF after running mvn clean package -Pci:

2.1. User information

The API allows to get information on the currently logged on user via a GET on /api/users/me. If you
are not a logged on user, the following response will be returned:

HTTP request

GET /api/users/me HTTP/1.1
Host: localhost:8080

HTTP response

HTTP/1.1 401 Unauthorized

Cache-Control: no-cache, no-store, max-age=@, must-revalidate
Cache-Control: no-store

WWW-Authenticate: Bearer realm="copsboot-service", error="unauthorized",
error_description="Full authentication is required to access this resource"
Content-Type: application/json;charset=UTF-8

Content-Length: 113

{

"error" : "unauthorized",
"error_description” : "Full authentication is required to access this resource"

l

Documentation of GET with response fields

Your first documentation test could remain simple because you did not need to document the JSON
response. The 401 Unauthorized status code was the most important part.

Now, expand your documentation with a case that involves response fields. Here is a test for an
authenticated user with the OFFICER role:

85

UserRestControllerDocumentation.java

public void authenticatedOfficerDetailsExample() throws Exception {
String accessToken = obtainAccessToken(mve, Users.OFFICER_EMAIL, Users
.OFFICER_PASSWORD);

when(service.getUser(Users.officer().getId())).thenReturn(Optional.of(Users
.officer()));

mvc.perform(get("/api/users/me")
.header (HEADER_AUTHORIZATION, bearer(accessToken)))
.andExpect(status().is0k())
.andDo(resultHandler.document(
responseFields(
fieldWithPath("id")
.description("The unique id of the user."),
fieldWithPath("email")
.description("The email address of the user."),
fieldWithPath("roles")
.description("The security roles of the user."))));

Using the static methods responseFields and fieldWithPath, document the reponse fields in the
response body. Using fieldWithPath not only instructs Spring REST Docs to output a table with the
name and description of each field, but also checks if the fields are really present in the returned JSON.
Spring REST Docs will also fail the unit test if there are fields in the response that are not documented.

In fact, when you run the test now, it fails:

org.springframework.restdocs.snippet.SnippetException: The following parts of the payload
were not documented:

{
"id" {
"id" : "02c22858-2e85-4279-85db-3912ae05cab3"
}
}

The problem is that the JSON is generated from UserDto where id is of type UserId, resulting in the
nested id fields. Luckily, you can easily fix this with Spring Boot by creating a @JsonComponent annotated
bean:

86

com.example.copsboot.infrastructure.json.EntityldJsonSerializer

package com.example.copsboot.infrastructure.json;

import com.example.orm.jpa.EntityId;

import com.fasterxml.jackson.core.JsonGenerator;

import com.fasterxml.jackson.databind.JsonSerializer;
import com.fasterxml.jackson.databind.SerializerProvider;
import org.springframework.boot.jackson.JsonComponent;

import java.io.IOException;

@
public class EntityIdJsonSerializer extends JsonSerializer<EntityId> { @

public void serialize(EntityId entityId, JsonGenerator jsonGenerator,
SerializerProvider serializerProvider) throws IOException {
jsonGenerator.writeString(entityId.asString()); ®
}

@ The @JsonComponent will force Spring Boot’s component scanning to pick up the bean and register it
with Jackson.

@ Extend from com.fasterxml.jackson.databind.JsonSerializer since you want to influence only the
serialization process (and not the deserialization).

® Write the string representation of the entity ID into the JSON (not creating a nested id like Jackson
does by default).

With this added, the test succeeds and generates a new snippet called response-fields.adoc, which
looks like this:

87

|Path|Type|Description

|\1'd\

| *String®

|The unique id of the user.

| ‘email®

| *String*

|The email address of the user
| ‘roles®

| ‘Array’
|The security roles of the user

This is an AsciiDoc table to which you can add to your _users.doc. You can for example add something
like this:

If you do log on as a user, you get more information on that user:

operation::authenticated-officer-details-example[snippets="http-request, http-
response,response-fields']

Note how we added response-fields as third item in the snippets parameter. This results in the
following output (with a HTML example for a change):

88

If you do log on as a user, you get more information on that user:
HTTP request

GET /api/users/me HTTP/1.1
Authorization: Bearer 31168125-7fc8-4bd6-b8c9-196ebbe699fc
Host: localhost:8080

HTTP response

HTTP/1.1 200 OK

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Content-Type: application/json;charset=UTF-8

Content-Length: 113

{
"id" : "422d0735-9dd8-4710-8e3b-dd047ce62ffe",
"email" : "officer@example.com",
"roles" : ["OFFICER"]

¥

Response fields

Path Type Description

id String The unique id of the user.
email String The email address of the user
roles Array The security roles of the user

Figure 4. Copsboot REST API Guide.html

Documentation of POST with response fields

As a final example of writing documentation for a REST API, you will document the POST call to create
a new user account. Remember, this is how the UserRestController defines the POST method:

UserRestController.java

@®
(HttpStatus.CREATED) @
public UserDto createOfficer(CreateOfficerParameters parameters)
{®
User officer = service.createOfficer(parameters.getEmail(), @
parameters.getPassword());
return UserDto.fromUser (officer); ®
}

In this case, you need to document the request body as well as the response body. The test method that
will generate the documentation snippets looks like this:

89

UserRestControllerDocumentation.java

public void createOfficerExample() throws Exception {

String email = "wim.deblauwe@example.com";
String password = "my-super-secret-pwd";

CreateOfficerParameters parameters =
parameters.setEmail(email);
parameters.setPassword(password);

when(service.createOfficer(email, password)).

password)); @

mvc.perform(post("/api/users") @

new CreateOfficerParameters(); @

thenReturn(Users.newOfficer(email,

.contentType(MediaType.APPLICATION_JSON_UTF8)
.content(objectMapper.writeValueAsString(parameters))) @

.andExpect(status().isCreated()) ®
.andDo(resultHandler.document(
requestFields(®
fieldWithPath("email")
.description("The
created."),
fieldWithPath("password")
.description("The
)
responseFields(@
fieldWithPath("id")
.description("The
fieldWithPath("email")
.description("The
fieldWithPath("roles")
.description("The

email address of the user to be

password for the new user.")

unique id of the user."),

email address of the user."),

security roles of the user."))));

@ Create the request body object that will be serialized to JSON.

@ Set up the mock UserService to behave as the real service would.

® Execute a POST on /api/users.

@ Serialze the CreateOfficerParameters to JSON using Jackson’s ObjectMapper.

® This sanity check ensures that you get the proper response status code.

® Document the request body using fieldWithPath static methods.

@ Document the response body as you did in Documentation of GET with response fields.

With this test in place, update your _user.adoc documentation file again:

90

_users.adoc
=== (Create a user

To create an new user, do a ‘POST' on ‘/api/users':

operation::create-officer-example[snippets="http-request,request-fields, http-

response,response-fields']

Note how you added request-fields to the snippets parameter.

The resulting PDF looks like this:

2.2. Create a user

To create an new user, do a POST on /api/users:

HTTP request

POST /api/users HTTP/1.1

Content-Type: application/json;charset=UTF-8
Host: localhost:8080

Content-Length: 8@

{
"email" : "wim.deblauwe@example.com",
"password" : "my-super-secret-pwd"
}
Request fields
Path Type
email String
password String
HTTP response

Description

The email address of the user to
be created.

The password for the new user.

91

If you’d like to add more text in your documentation for each of the snippets, you can
include individual snippets one by one by using the include macro instead of the
operation macro.

For example:

The request fields for the create user call are documented in this table:

include::{snippets}/create-officer-example/request-fields.adoc[]
To make this work, you need to define the snippets variable in Maven as follows:

<plugin>
<groupIld>org.asciidoctor</groupId>
<artifactId>asciidoctor-maven-plugin</artifactId>

<configuration>
Q <backend>html</backend>
<doctype>book</doctype>
<attributes>
<snippets>${snippetsDirectory}</snippets> @
<project-version>${project.version}</project-version>
</attributes>
</confiquration>

@ Define the snippets variable.

${snippetsDirectory} is a Maven variable that is defined in the <properties/> section
of the pom. xml:

<properties>
<snippetsDirectory>${project.build.directory}/generated-

snippets</snippetsDirectory>
</properties>

Refactoring to avoid duplication

So far, you have built a unit test and some nice documentation for your RestController. However, there
is some duplication that you should avoid before it gets out of hand:

* Both UserRestControllerTest and UserRestControllerDocumentation define that the test profile as
active (via @ActiveProfiles(SpringProfiles.TEST)).

92

* Both have the exact same inner class to define the Spring context that should be active during the
test.

If you were to create other unit tests and documentation tests for other controllers, you would also
duplicate all that there. Luckily, Spring supports meta-annotations so that you can compose your own
annotation with defaults like you want them.

The first step is creating your own annotation:

(RetentionPolicy.RUNTIME) @
@

(classes = CopsbootControllerTestConfiguration.class) @
(SpringProfiles.TEST) @
public CopsbootControllerTest {

"value") ®

(annotation = WebMvcTest.class, attribute
Class<?>[] value() default {};

(annotation = WebMvcTest.class, attribute = "controllers") ®
Class<?>[] controllers() default {};

@ Set the retention of the annotation to RUNTIME so that Spring can "view" the annotation.
@ Add @WebMvcTest so that your own annotation gets all the magic of that annotation as well.

® Define that CopsbootControllerTestConfiguration should be the default Spring context that will be
loaded.

@ Activate the test profile by default.

® Allow the user of your annotation to pass in the controller under test and pass it in your turn to
@WebMvcTest.

® Allow the user of your annotation to also use controllers as parameter (next to value as they are
just aliases of each other).

The CopsbootControllerTestConfiguration that is loaded by default via the annotation is the inner class
from UserControllerTest extracted into a top-level class:

93

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-meta-annotations

package com.example.copsboot.infrastructure.test;

import
import
import
import
import
import
import
import
import

public

com.example.copsboot.infrastructure.security.OAuth2ServerConfiguration;
com.example.copsboot.infrastructure.security.SecurityConfiguration;
com.example.copsboot.infrastructure.security.StubUserDetailsService;
org.springframework.boot.test.context.TestConfiguration;
org.springframework.context.annotation.Bean;
org.springframework.context.annotation.Import;
org.springframework.security.core.userdetails.UserDetailsService;
org.springframework.security.oauth2.provider.token.TokenStore;
org.springframework.security.oauth2.provider.token.store.InMemoryTokenStore;

(OAuth2ServerConfiguration.class)
class CopsbootControllerTestConfiguration {

public UserDetailsService userDetailsService() {

}

return new StubUserDetailsService();

public TokenStore tokenStore() {

}

return new InMemoryTokenStore();

public SecurityConfiguration securityConfiguration() {

}

return new SecurityConfiquration();

You can now update your UserControllerTest from:

public

to:

94

public

(SpringRunner.class)
(UserRestController.class)
(SpringProfiles.TEST)
class UserRestControllerTest {

(SpringRunner.class)
(UserRestController.class)
class UserRestControllerTest {

Additionally, your new UserRestControllerTest no longer needs the inner class at the bottom!

In the same way, you can update UserRestControllerDocumentation to:

(SpringRunner.class)
(UserRestController.class)
public class UserRestControllerDocumentation {

Summary

You have seen how to add GET and POST endpoints to your application and how to map the JSON that
is sent to a Java class for further processing in your application.

You have written unit tests and documentation for those endpoints.

This concludes your first encounter with the REST API. It’s time to focus on getting a "real" database
working.

95

Working with a Real Database

So far, you have been developing with H2, an in-memory database. If you want to take your
application to production, you need to use a "real" database like MySQL, PostgreSQL, or Microsoft SQL
Server.

Q For the sake of this article, we’re assuming that the database is relational and not a
NoSQL database, although Spring Data supports many NoSQL databases.

For this example, we will use PostgreSQL, an open-source database, as it is free to use and runs on all
major operating systems. It also natively supports UUID columns, which is why I like it over MySQL.

Installation of PostgreSQL

It’s easy to install PostgreSQL through Docker so let’s do that. Using the official Postgres Docker
repository, you can install it as follows:
1. Run docker pull postgres:10.3.

2. Run docker run -e 'POSTGRES_PASSWORD=my-postgres-db-pwd" -p 5432:5432 --name my-postgres-db -d
postgres:10.3.

- Replace my-postgres-db-pwd with your password of choice.
> You can also change my-postgres-db to any name you like to use.

3. Running docker ps should show that the container is running:

Wims-MacBook-Pro:~ wdb$ docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

b8e872a7f117 postgres:10.3 "docker-entrypoint.s--+" 4 seconds ago
Up 5 seconds 0.0.0.0:5432->5432/tcp my-postgres-db

That is basically all there is to it. If you want to access the database via command line, you can do this
via docker exec -it my-postgres-db bash.

This command brings you into the Docker container that runs PostgreSQL. You can now start the client
with psql -U postgres.

Here, you can create the database: CREATE DATABASE copsbootdb;.
Exit from the PostgreSQL client: \q.

And exit from the Docker container: exit.

96

https://www.postgresql.org/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/

Using PostgreSQL

Starting up with the local PostgreSQL

The best way to select which database to connect to is with Spring Profiles. You will be using a profile
that youw’ll call local for the connection to your location database. The first thing you need to do is
create an application-local.properties file to hold your connection details.

application-local.properties

copsboot-security.mobile-app-client-id=copsboot-mobile-client
copsboot-security.mobile-app-client-secret=ccUybbvS4S8nxfbKPCrN

spring.datasource.url=jdbc:postgresql://localhost/copsbootdb @™
spring.datasource.driverClassName=org.postgresql.Driver @
spring.datasource.username=postgres @
spring.datasource.password=my-postgres-db-pwd @
spring.jpa.database-platform=org.hibernate.dialect.PostgreSQLDialect ®
spring.jpa.hibernate.ddl-auto=none ®

® The JDBC URL defines the kind of database (postgresql), where it is running (localhost), and the
name of the database (copsbootdb).

@ This is the JDBC driver to use.

® This is the user that has the appropriate rights on the database.

@ This is the password of the user.

® This is the dialect that our JPA implementation (in our case, Hibernate) should use

® Disable the automatic creation of the database tables by setting this property to none.
This file should never be added to version control as it contains your personal setup

and password. A good practise is committing a application-local.properties.template
so there is a sample file to start from.

Q If you are using git, create a .gitignore file and add application-local.properties to it
like this:

/src/main/resources/application-local.properties

Next, you need to update your pom.xml to include the PostgreSQL driver:

97

<dependency>
<groupIld>org.postgresql</groupId>
<artifactId>postgresql</artifactId>
</dependency>

Database table creation
If you now start the application and try to create a user, you would get errors that tell you that you
have no tables in your database. With PostgreSQL, this message looks like this:

org.postgresql.util.PSQLException: ERROR: relation "copsboot_user" does not exist

Spring Boot supports two libraries that allow SQL scripts to run automatically at startup to ensure that
your database is up to date: Flyway and Liquibase.

The biggest difference between the two is that Flyways uses SQL scripts while Liquibase uses XML
syntax. This project will use Flyway but Liquibase is an equally valid choice. JHipster for example uses
Liquibase.

Start by adding the dependency in the pom.xmL:

<dependency>
<groupId>org.flywaydb</groupIld>
<artifactId>flyway-core</artifactId>
</dependency>

Now, create a db/migration directory inside src/main/resources as this is the default location for Flyway.

Inside that directory, create one directory for H2 and one for PostgreSQL that will contain the actual
migration scripts. The directory tree will look like this:

98

https://flywaydb.org/
https://www.liquibase.org/
https://www.jhipster.tech/

pom.xml

mvnw
mvnw. cmd
src
|-- main
|-- java
|-- com.springbook.application
|-- Application
|-- resources
|-- application.properties
|-- db
|-- migration
|-- h2
|-- V1.0.0.1__authentication.sql @
|-- postgresql
|-- V1.0.0.1__authentication.sql @
|-- V1.0.0.2__users.sql ®
|-- test
|-- java
|-- com.springbook.application

|-- ApplicationTests

@ This is the migration script to create the OAuth related tables for H2.
@ This is the migration script to create the OAuth related tables for PostgreSQL.

® This is the migration script to create the copsboot_user table for PostgreSQL.

The H2 directory only has the script to create the tables for OAuth. All other tables will
A be created by Hibernate automatically when we run on H2 (by using the dev or test
profile).

The name of the script itself is important as Flyway will use that to determine the order in which the
scripts are run. See Naming at the Flyway site for more on that.

Generate DDL scripts

You can manually write those SQL scripts for Flyway, but you can also get a little help from Spring
Boot.

Add the following properties to application-local.properties:

spring.jpa.properties.javax.persistence.schema-generation.create-source=metadata
spring.jpa.properties.javax.persistence.schema-generation.scripts.action=create
spring.jpa.properties.javax.persistence.schema-generation.scripts.create-
target=create.sql

99

https://flywaydb.org/documentation/migrations#naming

Now start the application with the local profile active. Spring Boot will create a file called create.sql
that contains creation scripts for all entities in your application:

create table copsboot_user (id uuid not null, email varchar(255), password varchar(255),
primary key (id))

create table user_roles (user_id uuid not null, roles varchar(255))

alter table user_roles add constraint FK7je59ku3x462eqxudss3dasls foreign key (user_id)
references copsboot_user

If your application does not start because there are entities for which there is no

ﬁ database table yet, you can temporarily set spring.jpa.hibernate.ddl-auto to create-
drop. Once you have the create.sql file to serve as a basis for your migration file,
change spring.jpa.hibernate.ddl-auto back to validate.

After copying this to your migration file, add a semicolon at the end of each line and some
reformatting to end up with this migration file for the users table:

V1.0.0.2__users.sql

CREATE TABLE copsboot_user (
id UUID NOT NULL,
email VARCHAR(255),
password VARCHAR(255),
PRIMARY KEY (id)

)i

CREATE TABLE user_roles (
user_id UUID NOT NULL,
roles VARCHAR(255)

)

ALTER TABLE user_roles

ADD CONSTRAINT FK7je59ku3x462eqxudss3dasis
FOREIGN KEY (user_id)
REFERENCES copsboot_user;

See OAuth Database Schema for the contents of V1.0.0.1__authentication.sql.

To finish, you need to let Spring Boot know which migration scripts to use when. In development, you
run with H2, so set spring.flyway.locations accordingly:

100

appendix-01.pdf#postgresql

application-dev.properties

spring.flyway.locations=classpath:db/migration/h2
spring.jpa.hibernate.dd1-auto=create-drop

Note that you need to set spring.jpa.hibernate.dd1l-auto to create-drop so Hibernate will create the
non-auth tables automatically for us.

With the local PostgreSQL, change spring.flyway.locations to use the relevant migrations scripts for
that database:

application-local.properties

spring.flyway.locations=classpath:db/migration/postgresql

Database initialization

Before, you started the application with the dev profile. This triggered Spring Boot to run the
DevelopmentDbInitializer bean to create a test user in your system. To get this default test user while
using PostgreSQL, you can start up with dev, local as Spring Profiles.

Note that the order is important. You put dev first so that local can overwrite the database properties.
With that, you are wusing your local PostgreSQL database. Since dev is also active, the
DevelopmentDbInitializer will run and create your test user.

You only need to start like this once. After that first time, the database will remember the test user so
you can start the application with local only.

Updates

Flyway will store a schema_version table in your database so it knows which migrations have already
run and which have not. It also stores a checksum of the migration file that was used.

It is very important to never update a migration file in your project once you have released this
migration to production because Flyway will notice that the checksum no longer matches and will
refuse to run anything anymore. This will effectively prevent the startup of your application.

During development, you can just drop all tables and perform the migrations again. But in production,
that would be a really bad idea. Once you have released version 1.0 for example, you should not
change anything in the migration scripts that already exist. If you want to remove a column or change
a column type, you should always create an additional migration file that applies those changes.

Integration testing

H2 is great for testing but it has two major drawbacks:

101

1. The migrations of PostgreSQL are not run, so they are not tested.

2. H2 is not a perfect replacement for PostgreSQL, so there might be differences in behaviour.

To mitigate these drawbacks, we can use the Testcontainers project. It uses Docker to start the actual
database from a unit test.

To get started, add the dependencies in pom. xml:

<dependency>
<groupId>org.testcontainers</groupIld>
<artifactId>testcontainers</artifactId>
<version>${testcontainers.version}</version>
<scope>test</scope>

</dependency>

<dependency>
<groupld>org.testcontainers</groupIld>
<artifactId>postgresql</artifactId>
<version>${testcontainers.version}</version>
<scope>test</scope>

</dependency>

Use a new Spring Profile integration-test to connect to the Testcontainers-managed PostgreSQL
instance. For this, create a new file application-integration-test.properties in the src/test/resources
folder:

application-integration-test.properties

spring.datasource.url=jdbc:tc:postgresql://localhost/copsbootdb
spring.datasource.driverClassName=org.testcontainers.jdbc.ContainerDatabaseDriver
spring.datasource.username=user

spring.datasource.password=password
spring.jpa.database-platform=org.hibernate.dialect.PostgreSQLDialect
spring.jpa.hibernate.dd1-auto=none

copsboot-security.mobile-app-client-id=test-client-id
copsboot-security.mobile-app-client-secret=test-client-secret

spring.flyway.locations=classpath:db/migration/postgresql

Here are some points of interest:

* spring.datasource.url uses the tc prefix. The hostname (localhost) and database name (copsbootdb)
don’t matter; Testcontainers ignores them.

* spring.datasource.driverClassName uses the Testcontainers JDBC driver. This driver will start a
Docker instance with your PostgreSQL database.

102

https://www.testcontainers.org

* spring.datasource.username is always user and spring.datasource.password is always password.

* spring.jpa.hibernate.dd1l-auto is set to none since you want Flyway to create the tables.

» flyway.locations points to the Flyway migrations for PostgreSQL.

v

See JDBC URL for more on different options. For instance, you can choose a specific
version like this:

jdbc:tc:mysql:5.6.23://somehostname: someport/databasename

With this in place, you can now create an integration test that will use PostgreSQL:

package com.example.copsboot.user;

import
import
import
import
import
import
import
import
import

import
import
import
import

import

com.example.copsboot.infrastructure.SpringProfiles;

org.junit.Test;

org.junit.runner.RunWith;
org.springframework.beans.factory.annotation.Autowired;
org.springframework.boot.test.autoconfigure.jdbc.AutoConfigureTestDatabase;
org.springframework.boot.test.autoconfiqure.orm.jpa.DatalpaTest;
org.springframework.jdbc.core.JdbcTemplate;
org.springframework.test.context.ActiveProfiles;
org.springframework.test.context.junit4.SpringRunner;

javax.persistence.EntityManager;
javax.persistence.PersistenceContext;
java.util.HashSet;

java.util.Set;

static org.assertj.core.api.Assertions.assertThat;

@RunWith(SpringRunner.class)

@DatalpaTest

@AutoConfigureTestDatabase(replace = AutoConfigureTestDatabase.Replace.NONE) @D
@ActiveProfiles(SpringProfiles.INTEGRATION_TEST) @

public class UserRepositoryIntegrationTest {
@Autowired
private UserRepository repository;
@PersistenceContext
private EntityManager entityManager;
@Autowired

private JdbcTemplate jdbcTemplate;

@Test
public void testSaveUser() {

Set<UserRole> roles = new HashSet<>();
roles.add(UserRole.OFFICER);

103

https://www.testcontainers.org/usage/database_containers.html#jdbc-url

User user = repository.save(new User(repository.nextId(),
"alex.foley@beverly-hills.com",
"my-secret-pwd",
roles));
assertThat(user).isNotNull();

assertThat(repository.count()).isEqualTo(1L);

entityManager.flush(); ®

assertThat(jdbcTemplate.queryForObject("SELECT count(*) FROM copsboot_user"”,
Long.class)).isEqualTo(1L); @

assertThat(jdbcTemplate.queryForObject("SELECT count(*) FROM user_roles",
Long.class)).isEqualTo(1L);

assertThat(jdbcTemplate.queryForObject("SELECT roles FROM user_roles",
String.class)).isEqualTo("OFFICER");

}

}

@ Configure the testing framework to not replace the database with a test database (since you want to
use your Testcontainer database).

@ Activate the integration-test profile so that the testing framework starts and uses the Testcontainer
PostgreSQL database.

® Make the JPA framework flush all changes to the database so you can inspect the database tables.

@ Run some JDBC queries to validate if the user was properly saved.

Running the test will show output similar to this:

104

2018-07-07 17:25:43 INFO [main] UserRepositoryIntegrationTest - Starting
UserRepositoryIntegrationTest on Wims-MacBook-Pro.local with PID 76847 (started by wdb in
/Users/wdb/Projects/spring-boot-book/src/example-code/chapter@7/02 - testcontainers)
2018-07-07 17:25:43 DEBUG [main] UserRepositoryIntegrationTest - Running with Spring Boot
v2.0.3.RELEASE, Spring v5.0.7.RELEASE
2018-07-07 17:25:43 INFO [main] UserRepositoryIntegrationTest - The following profiles
are active: integration-test
2018-07-07 17:25:43 INFO [main] AnnotationConfigApplicationContext - Refreshing
org.springframework.context.annotation.AnnotationConfigApplicationContext@26dfbe3a:
startup date [Sat Jul @7 17:25:43 CEST 2018]; root of context hierarchy
2018-07-07 17:25:44 INFO [main] VersionPrinter - Flyway Community Edition 5.0.7 by
Boxfuse
Checking the system...

Docker version should be at least 1.6.0

Docker environment should have more than 2GB free disk space

File should be mountable
2018-07-07 17:26:17 INFO [main] DatabaseFactory - Database:
jdbc:postgresql://localhost:32769/test (PostgreSQL 9.6)
2018-07-07 17:26:18 INFO [main] DbValidate - Successfully validated 2 migrations
(execution time 00:00.012s)
2018-07-07 17:26:18 INFO [main] JdbcTableSchemaHistory - Creating Schema History table:
"public"."flyway_schema_history"
2018-07-07 17:26:18 INFO [main] DbMigrate

Current version of schema "public": << Empty

Schema >>

2018-07-07 17:26:18 INFO [main] DbMigrate - Migrating schema "public" to version 1.0.0.1
- authentication

2018-07-07 17:26:18 INFO [main] DbMigrate - Migrating schema "public" to version 1.0.0.2
- users

2018-07-07 17:26:18 INFO [main] DbMigrate
"public" (execution time 00:00.102s)

Successfully applied 2 migrations to schema

If you would now change something to the migration scripts (e.g., change the email field to email2 in
V1.0.0.2__users.sql) and run the test again, you should see it fail, thus proving that you are using the
migration scripts you will use in staging and production.

If you don’t want to run these integration tests together with the other unit tests, you

Q will need to configure Maven for that. The easiest way is to have a naming convention
(e.g., ending all the integration tests with IntegrationTest) and wusing the
includes/excludes functionality of the Maven Surefire Plugin.

Summary

This chapter has shown how to use a relational database with Spring Boot, and how to ensure that the
database is properly initialized by leveraging the Flyway integration in Spring Boot.

105

Practical Guide to Building an API Back End with Spring Boot

Further, you saw how to easily run an integration test against PostgreSQL with Testcontainers.

106

Validation

An important part of a good API is having proper validation. Nothing is more frustrating than not
knowing why the API is not working because everything you try gives a generic 500 Server Error with
no clear indication of the actual problem.

This chapter will show how to apply the standard validators, how to write your own custom validator
for a single field or a group of fields on a class, and how to unit-test all that.

Built-in validators

You have already used a few built-in validators in chapter 6 when you implemented a POST call to
create a new officer account. To recap, this was the controller method:

(HttpStatus.CREATED)
public UserDto createOfficer(CreateOfficerParameters parameters)

User officer = service.createOfficer(parameters.getEmail(),

parameters.getPassword());
return UserDto.fromUser(officer);

And this is CreateOfficerParameters, which contains the validation annotations:

package com.example.copsboot.user.web;

import lombok.Data;
import org.hibernate.validator.constraints.Email;

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
public class CreateOfficerParameters {
private String email;
(min = 6, max = 1000)

private String password;

107

Practical Guide to Building an API Back End with Spring Boot

Validation basically is as simple as adding the @Valid annotation in the controller method and using the
validation annotations on the parameter object.

The default validation annotations of the validation API can be found in the
javax.validation.constraints package:

¢ @AssertFalse,

* @AssertTrue,

e @DecimalMax,

* @Digits,

e @Future,

e @Max,

e @Min,

» @NotNull,

* @Null,

e @Past,

e @Pattern, and

* @Size.
Because you have Hibernate Validator on the classpath, you also have access to the following in the
org.hibernate.validator.constraints package:

e @CreditCardNumber,

* QEAN,

e @Email,

* @Length,

e @LuhnCheck,

e @Mod10Check,

e @Mod11Check,

e @NotBlank,

* @NotEmpty,

* @Range,

e @SafeHtml, and

* QURL.

108

Unit test for a built-in validator

You can perform a unit test on this in the UserRestControllerTest:

public void testCreateOfficerIfPasswordIsTooShort() throws Exception {
String email = "wim.deblauwe@example.com";
String password = "pwd"; @®

CreateOfficerParameters parameters = new CreateOfficerParameters();
parameters.setEmail(email);
parameters.setPassword(password);

mvc.perform(post("/api/users")
.contentType(MediaType.APPLICATION_JSON_UTF8)
.content(objectMapper.writeValueAsString(parameters)))
.andExpect(status().isBadRequest()) @
.andDo(print()); ®

verify(service, never()).createOfficer(email, password); @

@ Use a password that is too short to trigger the validation error.
@ Check that you get back a 400 Bad Request.
® Print the request and response so you can have a look.

@ Ensure the user service is never called. If there is a validation error, no user should be created.

Print the response using the static MockMvcResultHandlers.print() method. When running, it will output
something like this:

109

Resolved Exception:
Type = org.springframework.web.bind.MethodArgumentNotValidException

ModelAndView:
View name = null
View = null
Model = null
FlashMap:
Attributes = null

MockHttpServletResponse:

Status = 400
Error message = null
Headers = {X-Content-Type-Options=[nosniff], X-XSS-Protection=[1; mode=block],

Cache-Control=[no-cache, no-store, max-age=0, must-revalidate], Pragma=[no-cache],
Expires=[0], X-Frame-Options=[DENY]}
Content type = null
Body

Forwarded URL = null
Redirected URL = null
Cookies = []

Note how the body is empty. You have protected your server against invalid input and you notify the
client of this fact with the 400 Bad Request status code. However, it is impolite not to tell your
consumer what the problem is.

To do this, implement an exception handler.

Handling validation errors via an exception handler

With Spring Boot, you can react to the validation exception by means of an @ExceptionHandler. Since
the exception handler in this case can be reused for all controllers, you can define it in a separate class
annotated with @ControllerAdvice:

110

0]

public class RestControllerExceptionHandler {

@
®
(HttpStatus.BAD_REQUEST) @
public Map<String, List<FieldErrorResponse>> handle(MethodArgumentNotValidException
exception) { ®
return error(exception.getBindingResult()
.getFieldErrors()
.stream()
.map(fieldError -> new FieldErrorResponse(fieldError
.getField(), ®
fieldError
.getDefaultMessage()))
.collect(Collectors.tolList()));

}
private Map<String, List<FieldErrorResponse>> error(List<FieldErrorResponse> errors)
{
return Collections.singletonMap("errors", errors);
}
}

® Mark this class as code that will apply to all controllers in the project.
@ Mark this method as a method that should be called when an exception is thrown in a controller.

® This indicates that the return value of the method should be directly used as the response body
(after being serialized to JSON).

@ Return this status code when this exception handler is triggered.

® The method name can be anything, but the type of the argument determines the exception to which
this method will react. You want to react to MethodArgumentNotValidException here. Note that the
response output of the unit test above printed this exception class as Resolved Exception.

® Using Java 8 stream operations, create a list of FieldErrorResponse objects so that the consumer of
your API will receive the name of the field that has a problem and an explanation of what is wrong.

Your exception handler uses the following simple data holder:

public class FieldErrorResponse {
private String fieldName;
private String errorMessage;

111

Running the test again results in the following output:

MockHttpServletResponse:

Status = 400
Error message = null
Headers = {X-Content-Type-Options=[nosniff], X-XSS-Protection=[1; mode=block],

Cache-Control=[no-cache, no-store, max-age=0, must-revalidate], Pragma=[no-cache],
Expires=[0], X-Frame-Options=[DENY], Content-Type=[application/json;charset=UTF-8]}
Content type = application/json;charset=UTF-8
Body = {"errors":[{"fieldName": "password","errorMessage":"size must be
between 6 and 1000"}1}
Forwarded URL = null
Redirected URL = null
Cookies = []

You can now extend the unit test to check the fieldName property to ensure that your validation reports
the correct fault to your API consumer

public void testCreateOfficerIfPasswordIsTooShort() throws Exception {
String email = "wim.deblauwe@example.com";
String password = "pwd";

CreateOfficerParameters parameters = new CreateOfficerParameters();
parameters.setEmail(email);
parameters.setPassword(password);

mvc.perform(post("/api/users")
.contentType(MediaType.APPLICATION_JSON_UTF8)
.content(objectMapper.writeValueAsString(parameters)))
.andExpect(status().isBadRequest())
.andExpect(jsonPath("errors[@].fieldName").value("password")); @

verify(service, never()).createOfficer(email, password);

@ Assert the response body to return the field name that has the validation error.

Custom field validator

It is also possible to write your own custom validator. In this chapter, you will create a validator for
single field. The next chapter will show how to validate a complete object for when you need to
consider multiple fields in the validation.

To make things a bit more interesting, let’s extend your application to allow a police officer to post a

112

report to your API. Create the following entity for this:

public class Report extends AbstractEntity<ReportId> {
private User reporter;

private ZonedDateTime dateTime;
private String description;

protected Report() {
}

public Report(ReportId id, User reporter, ZonedDateTime dateTime, String description)

{
super(id);
this.reporter = reporter;
this.dateTime = dateTime;
this.description = description;
}
public User getReporter() {
return reporter;
}
public ZonedDateTime getDateTime() {
return dateTime;
}
public String getDescription() {
return description;
}
¥

Now create the following classes/interfaces according to the same principles you used when creating
the User entity counterparts:

* Reportld,

* ReportRepository,

* ReportRepositoryCustom,

* ReportRepositoryImpl,

* ReportService, and

* ReportServiceImpl.

113

Practical Guide to Building an API Back End with Spring Boot

Finally, in a web subpackage, create the ReportRestController:

@RestController

@RequestMapping("/api/reports")

public class ReportRestController {
private final ReportService service;

public ReportRestController(ReportService service) {
this.service = service;

}

@PostMapping

@ResponseStatus(HttpStatus.CREATED)

public ReportDto createReport(@AuthenticationPrincipal ApplicationUserDetails

userDetails,
@Valid @RequestBody CreateReportParameters parameters) {
return ReportDto.fromReport(service.createReport(userDetails.getUserId(),

parameters.getDateTime(),
parameters.getDescription()));

This has the following parameter object:

@Data

@Al1ArgsConstructor

@NoArgsConstructor

public class CreateReportParameters {
private ZonedDateTime dateTime;
private String description;

The POST returns a JSON response modelled by the ReportDto class:

114

public class ReportDto {
private Reportld id;
private String reporter;
private ZonedDateTime dateTime;
private String description;

public static ReportDto fromReport(Report report) {
return new ReportDto(report.getId(),
report.getReporter().getEmail(),
report.getDateTime(),
report.getDescription());

This is the accompanying unit test that will show that the basic flow works:

115

(SpringRunner.class)
(ReportRestController.class)
public class ReportRestControllerTest {

private MockMvc mvc;

private ObjectMapper objectMapper;

private ReportService service;

public void officerIsAbleToPostAReport() throws Exception {

String accessToken = obtainAccessToken(mve, Users.OFFICER_EMAIL, Users
.OFFICER_PASSWORD);

ZonedDateTime dateTime = ZonedDateTime.parse("2018-04-11722:59:03.189+02:00");

String description = "This is a test report description."”;

CreateReportParameters parameters = new CreateReportParameters(dateTime,

description);

when(service.createReport(eq(Users.officer().getId()), any(ZonedDateTime.class),

eq(description)))
.thenReturn(new Report(new ReportId(UUID.randomUUID()), Users.officer(),

dateTime, description));

mvc.perform(post("/api/reports")
.header (HEADER_AUTHORIZATION, bearer(accessToken))
.contentType(MediaType.APPLICATION_JSON_UTF8)
.content(objectMapper.writeValueAsString(parameters)))
.andExpect(status().isCreated())
.andExpect(jsonPath("id").exists())
.andExpect(jsonPath("reporter").value(Users.OFFICER_EMAIL))
.andExpect(jsonPath("dateTime").value("2018-04-11722:59:03.189+02:00"))
.andExpect(jsonPath("description”).value(description));

To show how to create a custom validator, let’s create a check of whether or not the police officer
described a suspect in the submitted report. To do this, you will simply check if the word suspect
appears in the report’s description field.

The first thing you need to do is to create an annotation that you can then add to the description field.
For this example, call it @ValidReportDescription:

116

Validation

package com.example.copsboot.report.web;

import javax.validation.Constraint;

import javax.validation.Payload;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Target(ElementType.FIELD) @
@Retention(RetentionPolicy.RUNTIME) @
@Constraint(validatedBy = {ReportDescriptionValidator.class}) @
public @interface ValidReportDescription {

String message() default "Invalid report description”; @

Class<?>[] groups() default {}; ®

(lass<? extends Payload>[] payload() default {}; ®

@ Your annotation can be applied to a field of a class.
@ The annotation must be available at run time.

® The ReportDescriptionValidator class will contain your custom validation logic and will validate the
field.

@ This is the default message if validation fails.
® Allows to specify validation groups for our constraints

® Can be used by clients of the Bean Validation API to assign custom payload objects to a constraint

ReportDescriptionValidator validates the @ValidReportDescription annotation:

117

Practical Guide to Building an API Back End with Spring Boot

package com.example.copsboot.report.web;

import javax.validation.ConstraintValidator;
import javax.validation.ConstraintValidatorContext;

public class ReportDescriptionValidator implements ConstraintValidator
<ValidReportDescription, String> { @

@0verride
public void initialize(ValidReportDescription constraintAnnotation) { @

}

@0verride
public boolean isValid(String value, ConstraintValidatorContext context) {
boolean result = true;
if (!value.tolLowerCase().contains("suspect")) { ®
result = false;

}

return result;

® A validator must implement the ConstraintValidator interface with two generic types. The first one
is the used annotation. The second is the type that the annotation can be attached to.

@ The initialize method allows you to take information from the annotation to parameterize the
validation process.

® Do the actual validation logic and return false if the validation fails.

The final step is using the annotation on your CreateReportParameters class:

@Data

@A11ArgsConstructor

@NoArgsConstructor

public class CreateReportParameters {
private ZonedDateTime dateTime;

@ValidReportDescription
private String description;

To ensure that everything is working, write the following unit test:

118

ReportDescriptionValidatorTest.java

public void givenEmptyString_notValid() {
ValidatorFactory factory = Validation.buildDefaultValidatorFactory(); @®
Validator validator = factory.getValidator(); @

CreateReportParameters parameters = new CreateReportParameters(ZonedDateTime.now

O, "");

Set<ConstraintViolation<CreateReportParameters>> violationSet = validator

.validate(parameters); ®
assertThat(violationSet).hasViolationOnPath("description"); @

}

@ Get the default ValidatorFactory.
@ Ask for the Validator.
® Using the Validator, validate the object.

@ Assert that there is a validation error on the description field.
You should of course also test the valid case:

ReportDescriptionValidatorTest.java

public void givenSuspectWordPresent_valid() {
ValidatorFactory factory = Validation.buildDefaultValidatorFactory();
Validator validator = factory.getValidator();

CreateReportParameters parameters = new CreateReportParameters(ZonedDateTime.now

0,

"The suspect was

wearing a black hat.");
Set<ConstraintViolation<CreateReportParameters>> violationSet = validator

.validate(parameters);
assertThat(violationSet).hasNoViolations();

}

0 The assert statement uses a custom Assert] assertion. See my blog for how that works.

Custom object validator

You can also validate a whole object instead of a single field. To do this, add two new properties to
report creation: trafficIncident and numberOfInvolvedCars. The logic will be that if trafficIncident is
true then numberOfInvolvedCars is supposed to be 1 or more.

119

https://wimdeblauwe.wordpress.com/2017/01/22/assertj-custom-assertion-for-constraintvalidator-tests/

Practical Guide to Building an API Back End with Spring Boot

First, adjust CreateReportsParameters:

@Data

@A11ArgsConstructor

@NoArgsConstructor

@ValidCreateReportParameters

public class CreateReportParameters {
private ZonedDateTime dateTime;

@ValidReportDescription
private String description;

private boolean trafficIncident;
private int numberOfInvolvedCars;

Note that your new annotation @ValidCreateReportParameters has been added as a class-level
annotation. This is the code you need for it:

@Target(ElementType.TYPE) @
@Retention(RetentionPolicy.RUNTIME)
@Constraint(validatedBy = {CreateReportParametersValidator.class}) @
public @interface ValidCreateReportParameters {
String message() default "Invalid report"”;

(lass<?>[] groups() default {};

(lass<? extends Payload>[] payload() default {};

@ Indicate this annotation should be added to the class.

@ The validator to use is CreateReportParametersValidator.

Finally, here is the validator itself:

120

public class CreateReportParametersValidator implements ConstraintValidator
<ValidCreateReportParameters, CreateReportParameters> { @

public void initialize(ValidCreateReportParameters constraintAnnotation) {

}

public boolean isValid(CreateReportParameters value, ConstraintValidatorContext
context) {
boolean result = true;
if (value.isTrafficIncident() && value.getNumberOfInvolvedCars() <= 0) { @
result = false;

}

return result;

@ Use the correct generic types for the used annotation and class that is annotated.

@ Do the correct test and return false when the combination of parameters is invalid.

Next up, write a test to validate your validation logic.

If trafficIncident is true and numberOfInvolvedCars is @, then you should get a violation on the root path

(indicated with the empty string):

public void givenTrafficIndicentButInvolvedCarsZero_invalid() {
ValidatorFactory factory = Validation.buildDefaultValidatorFactory();
Validator validator = factory.getValidator();

CreateReportParameters parameters = new CreateReportParameters(ZonedDateTime.now(),
"The suspect was
wearing a black hat",
true,
0);
Set<ConstraintViolation<CreateReportParameters>> violationSet = validator.validate
(parameters);
assertThat(violationSet).hasViolationOnPath("");

}

If trafficIncident is true and numberOfInvolvedCars is 2, then there is no violation:

121

public void givenTrafficIndicent_involvedCarsMustBePositive() {
ValidatorFactory factory = Validation.buildDefaultValidatorFactory();
Validator validator = factory.getValidator();

CreateReportParameters parameters = new CreateReportParameters(ZonedDateTime.now(),
"The suspect was

wearing a black hat.",
true,

2);
Set<ConstraintViolation<CreateReportParameters>> violationSet = validator.validate
(parameters);
assertThat(violationSet).hasNoViolations();

}

If trafficIncident is false, then there is also no violation:

public void givenNoTrafficIndicent_involvedCarsDoesNotMatter() {
ValidatorFactory factory = Validation.buildDefaultValidatorFactory();
Validator validator = factory.getValidator();

CreateReportParameters parameters = new CreateReportParameters(ZonedDateTime.now(),
"The suspect was

wearing a black hat.",
false,
0);
Set<ConstraintViolation<CreateReportParameters>> violationSet = validator.validate
(parameters);
assertThat(violationSet).hasNoViolations();

}

Custom object validator using a Spring service

ReportDescriptionValidator and CreateReportParametersValidator are fairly simple as they do not need
any other class to perform the validation. But what if, when creating a new user, you need to validate
that there is no existing user in the database with the new user’s requested email address?

Your validator will need a reference to the UserService to check this. Luckily, this is easy using Spring
Boot.

To get started, create a new annotation @ValidCreateUserParameters:

122

Validation

@Target(ElementType.TYPE) @®
@Retention(RetentionPolicy.RUNTIME)
@Constraint(validatedBy = {CreateUserParametersValidator.class}) @
public @interface ValidCreateUserParameters {
String message() default "Invalid user";

Class<?>[] groups() default {};

(lass<? extends Payload>[] payload() default {};

@ This is a class-level annotation, so use ElementType.TYPE.

@ Validation will be handled by CreateUserParametersValidator.

Next, create your actual validator:

123

public class CreateUserParametersValidator implements ConstraintValidator
<ValidCreateUserParameters, CreateOfficerParameters> {

private final UserService userService;

public CreateUserParametersValidator(UserService userService) { @
this.userService = userService;

}

public void initialize(ValidCreateUserParameters constraintAnnotation) {

}

public boolean isValid(CreateOfficerParameters userParameters,
ConstraintValidatorContext context) {

boolean result = true;

if (userService.findUserByEmail(userParameters.getEmail()).isPresent()) { @
context.buildConstraintViolationWithTemplate(
"There is already a user with the given email address.")
.addPropertyNode("email").addConstraintViolation(); ®

result = false; @

return result;

@ Autowire the UserService so you can ask it if there already is a user with the given email address.
@ Check for the presence of a user.
® If so, update the context object with the error.

@ Return false to indicate that the validation has failed.

And that is all there is to it. To prove it all works, create the following test:

(SpringRunner.class)

@
(SpringProfiles.TEST)
public class CreateUserParametersValidatorTest {

124

private UserService userService; @
private PasswordEncoder encoder;

private ValidatorFactory factory; ®

public void invalidIfAlreadyUserWithGivenEmail() {

String email = "wim.deblauwe@example.com";
when(userService.findUserByEmail(email))
.thenReturn(Optional.of(
User.createOfficer(new UserId(UUID.randomUUID()),
email,
encoder.encode("testing1234"))));

Validator validator = factory.getValidator(); @

CreateOfficerParameters userParameters = new CreateOfficerParameters();
userParameters.setEmail(email);
userParameters.setPassword("my-secret-pwd-1234");
Set<ConstraintViolation<CreateOfficerParameters>> violationSet = validator
.validate(userParameters); ®
assertThat(violationSet).hasViolationSize(2)
.hasViolationOnPath("email"); ®

public void validIfNoUserWithGivenEmail() {
String email = "wim.deblauwe@example.com";
when(userService.findUserByEmail(email))
.thenReturn(Optional.empty());

Validator validator = factory.getValidator();

CreateOfficerParameters userParameters = new CreateOfficerParameters();

userParameters.setEmail(email);

userParameters.setPassword("my-secret-pwd-1234");

Set<ConstraintViolation<CreateOfficerParameters>> violationSet = validator
.validate(userParameters);

assertThat(violationSet).hasNoViolations();

}

@ Start the full application context in the test.

@ Create a mock UserService so you can tell it how to behave.

125

® Autowire the ValidatorFactory so you can do your validation test.
@ Get the actual Validator from the factory.
® Validate the CreateOfficerParameters object.

® Check if there is indeed a validator error on the email path.

There are two validation errors in violationSet because the object itself is invalid
(since your annotation applies to the object) and you have manually added a violation
on the email field in your validator.

Summary

You have seen how to use validators and how to implement your own custom validation. You have
written unit tests to ensure the validators are correct.

In the next chapter, you will learn about uploading files.

126

File Upload

Many APIs need to support file uploads. In many cases, these are images but could be any kind of file.
This chapter will show how to support this, and give some pointers on how to validate the incoming
file.

Upload a file

As an example, you will allow the user of your API to add an image when creating a new report. The
first thing you must do is to add an extra field to CreateReportParameters:

public class CreateReportParameters {
(iso = DateTimeFormat.ISO.DATE TIME)
private ZonedDateTime dateTime;

private String description;

private MultipartFile image; @

@ This is the image field of type org.springframework.web.multipart.MultipartFile.
Next, update the method signature of your controller. This is what you had:

com.example.copsboot.report.web.ReportRestController

(HttpStatus.CREATED)
public ReportDto createReport(ApplicationUserDetails

userDetails,
CreateReportParameters parameters) {

Because you now want to allow files to be uploaded, you can no longer use a JSON body. By removing
@RequestBody, the method will permit the use of multipart/form-data instead:

127

Practical Guide to Building an API Back End with Spring Boot

com.example.copsboot.report.web.ReportRestController

@PostMapping
@ResponseStatus(HttpStatus.CREATED)
public ReportDto createReport(@AuthenticationPrincipal ApplicationUserDetails
userDetails,
@Valid CreateReportParameters parameters) {

To ensure that this all works properly, update ReportRestControllerTest to validate it:

128

(SpringRunner.class)
(ReportRestController.class)
public class ReportRestControllerTest {

private MockMvc mvc;

private ReportService service;

public void officerIsAbleToPostAReport() throws Exception {
String accessToken = obtainAccessToken(mve, Users.OFFICER_EMAIL, Users
.OFFICER_PASSWORD);
String dateTime = "2018-04-11722:59:03.189+02:00";
String description = "The suspect is wearing a black hat.";
MockMultipartFile image = createMockImage();
when(service.createReport(eq(Users.officer().qetId()),
any(ZonedDateTime.class),
eq(description),
any(MockMultipartFile.class)))
.thenReturn(new Report(new ReportId(UUID.randomUUID()), Users.officer(),
ZonedDateTime.parse(dateTime), description));

mvc.perform(fileUpload("/api/reports") @
.file(image) @
.header (HEADER_AUTHORIZATION, bearer(accessToken))
.param("dateTime", dateTime) ®
.param("description”, description))
.andExpect(status().isCreated())
.andExpect(jsonPath("id").exists())
.andExpect(jsonPath("reporter").value(Users.OFFICER_EMAIL))
.andExpect(jsonPath("dateTime").value(dateTime))
.andExpect(jsonPath("description”).value(description));

}

private MockMultipartFile createMockImage() { @
return new MockMultipartFile("image",
"picture.png",
"image/png",
new byte[]{1, 2, 3});

@ Use MockMvcRequestBuilders.fileUpload() to simulate uploading a file.
@ Specify the MultipartFile via the file() method.

® Other fields from the CreateReportParameters object are added via the param() method.

129

@ Use MockMultipartFile from Spring Test for your testing. Note that it is important that the first
argument ("image") of the constructor matches the field name in CreateReportParameters.

File-size validation

One common task is ensuring that the file size does not exceed a certain limit to protect your server.
Spring Boot lets you easily configure this. Just add the following lines to application.properties:

spring.servlet.multipart.max-file-size=1MB
spring.servlet.multipart.max-request-size=10MB

* spring.servlet.multipart.max-file-size specifies the maximum size per file in megabytes (MB),
kilobytes (KB), or bytes (no suffix).

* spring.servlet.multipart.max-request-size specifies the maximum size for the whole multipart

request.

You can no longer use MockMvc to test this. As Tomecat, not Spring Boot itself, handles this, you need to
set up an integration test with an embedded Tomcat for testing. Instead of MockMvc, use the REST
Assured library.

First, add the dependency to your Maven pom.xml:

<dependency>
<groupld>io.rest-assured</groupId>
<artifactId>rest-assured</artifactId>
<version>${rest-assured.version}</version>
<scope>test</scope>

</dependency>

Set the version to 3.1.0, the most recent version at the time of writing:

<properties>

<rest-assured.version>3.1.0</rest-assured.version>
</properties>

You can now create your integration test:

130

http://rest-assured.io/
http://rest-assured.io/

(SpringRunner.class)
(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT) @
(SpringProfiles.TEST)
public class ReportRestControllerIntegrationTest {

private int serverport; @

private UserService userService;

public void setup() {
RestAssured.port = serverport; ®
RestAssured.enablelLoggingOfRequestAndResponseIfValidationFails(); @

public void officerIsUnableToPostAReportIfFileSizeIsTooBig() {
userService.createOfficer(Users.OFFICER_EMAIL, Users.OFFICER_PASSWORD); ®

String dateTime = "2018-04-11722:59:03.189+02:00";
String description = "The suspect is wearing a black hat.";

SecurityHelperForRestAssured.givenAuthenticatedUser(serverport, Users
.OFFICER_EMAIL, Users.OFFICER_PASSWORD) ®
.when()
.multiPart("image", new MultiPartSpecBuilder(new
byte[2_000_000]) @
.fileName("picture.png")
.mimeType("image/png")
.build())
.formParam("dateTime", dateTime)
.formParam("description”, description)
.post("/api/reports")
.then()
.statusCode(HttpStatus.BAD_REQUEST.value()); ®

@ Set the webEnvironment to a random free port so that the embedded Tomcat is started.
@ Inject the random port into the serverport field via the @LocalServerPort annotation.
® Configure REST Assured to use the random port for doing the calls.

@ Configure REST Assured to log requests and responses when validation fails so you can see what is

131

Practical Guide to Building an API Back End with Spring Boot
going on.
® Create your test user.
® Get an authentication token for doing the call using SecurityHelperForRestAssured (see below).

@ Specify the file size via the byte array to be larger than that allowed in your
spring.http.multipart.max-file-size setting.

Validate that you get a 400 Bad Request back.

However, when you run this, you don’t get the 400 Bad Request but instead get a 500 Internal Server
Error:

"timestamp": "2018-04-24T15:23:06.516+0000",

"status": 500,

"error": "Internal Server Error",

"exception"”: "org.springframework.web.multipart.MultipartException",

"message"”: "Could not parse multipart servlet request; nested exception is
java.lang.I1llegalStateException:
org.apache.tomcat.util.http.fileupload.FileUploadBase$FileSizelLimitExceededException: The
field image exceeds its maximum permitted size of 1048576 bytes.",

"path": "/api/reports"”

}

Before learning how to fix this, look at SecurityHelperForRestAssured:

132

package com.example.copsboot.infrastructure.security;

import io.restassured.specification.RequestSpecification;

import org.springframework.security.oauth2.client.OAuth2RestTemplate;

import
org.springframework.security.oauth2.client.token.grant.password.ResourceOwnerPasswordReso
urceDetails;

import org.springframework.security.oauth2.common.0Auth2AccessToken;

import static io.restassured.RestAssured.given;
import static java.lang.String.format;

public class SecurityHelperForRestAssured {
private static final String UNIT_TEST_CLIENT_ID = "test-client-id"; @®
private static final String UNIT_TEST_CLIENT_SECRET = "test-client-secret"; @

public static RequestSpecification givenAuthenticatedUser(int serverPort, String
username, String password) {
OAuth2RestTemplate template = new OAuth2RestTemplate
(createResourceOwnerPasswordResourceDetails(serverPort,

username,

password));
OAuth2AccessToken accessToken = template.getAccessToken();

return given().auth().preemptive().oauth2(accessToken.getValue());
}

private static ResourceOwnerPasswordResourceDetails

createResourceOwnerPasswordResourceDetails(int serverPort, String username, String
password) {

ResourceOwnerPasswordResourceDetails details = new
ResourceOwnerPasswordResourceDetails();

details.setAccessTokenUri(String.format("http://localhost:%s/oauth/token"”,
serverPort));

details.setUsername(username);

details.setPassword(password);

details.setClientId(UNIT_TEST_CLIENT_ID);

details.setClientSecret(UNIT_TEST_CLIENT_SECRET);

return details;

@ This needs to match what you specify in application-test.properties.

@ This needs to match what you specify in application-test.properties.

133

As you can see, you get the OAuth2 access token for the given user/password combination and use that
one for the actual call that the unit/integration test wants to do.

To fix your test so that the controller returns a 400 Bad Request, you need to update
RestControllerExceptionHandler. In the JSON response in your test, you see that you get an exception of
type org.springframework.web.multipart.MultipartException. If you now add a method that catches that
exception and turns it into a proper response code, your unit test will pass.

com.example.copsboot.infrastructure.mvc.RestControllerExceptionHandler
(MultipartException.class)
public ResponseEntity handleMultipartException(MultipartException e, Model model) {
model.addAttribute("exception”, e);
return ResponseEntity

.badRequest()
.body(e.getMessage());

If you now run the test again, all will be green.

Summary

This chapter has shown how to implement file upload for your API and how to set a maximum file size.

134

Action!

I hope you have learned a lot from this book and I am looking forward to seeing more great
applications using the amazing Spring Boot framework.

Additional reading

If you want to learn more, here are some suggestions:

* Spring Boot Reference Guide — Phillip Webb, Dave Syer, Josh Long, Stéphane Nicoll, Rob Winch,
Andy Wilkinson, Marcel Overdijk, Christian Dupuis, Sébastien Deleuze, Michael Simons, Vedran
Pavic, Jay Bryant, Madhura Bhave

Learning Spring Boot 2.0 — Greg L. Turnquist (Packt Publishing, 2017)

» Spring in Action (Fifth edition) — Craig Walls (Manning, expected 2018)
» Spring Tips — YouTube playlist

» Spring Boot in Action — Craig Walls (Manning, 2015)

o Spring Boot in Action covers Spring Boot 1.x.

135

https://docs.spring.io/spring-boot/docs/2.0.3.RELEASE/reference/htmlsingle/
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.manning.com/books/spring-in-action-fifth-edition
https://www.manning.com/books/spring-in-action-fifth-edition
https://www.youtube.com/playlist?list=PLgGXSWYM2FpPw8rV0tZoMiJYSCiLhPnOc
https://www.manning.com/books/spring-boot-in-action

About the Author

Wim Deblauwe is a software engineer who has been working mainly with Java for the past 20 years.
He has developed and designed various IoT-related projects that have seen deployments worldwide.
He also works with JavaScript, Python, PHP, and ActionScript if the project calls for it.

In the last three years, he has worked for PegusApps, a Belgium-based remote-first company that
focuses on being an innovation partner to other companies for software development. Implementing
various challenging projects with Spring Boot and mobile applications at PegusApps has really
accelerated his learning.

If Deblauwe is not programming, he is playing the guitar, writing songs, or enjoying a good meal.

136

Appendix A: OAuth Database Schema

This contains the scripts for creating various databases for the OAuth tables.

PostgreSQL
CREATE TABLE oauth_client details (
client_id VARCHAR(256) PRIMARY KEY,
resource_ids VARCHAR(256),
client_secret VARCHAR(256),
scope VARCHAR(256),

authorized_grant_types VARCHAR(256),
web_server_redirect_uri VARCHAR(256),
authorities VARCHAR(256),
access_token_validity INTEGER,
refresh_token_validity INTEGER,
additional_information VARCHAR(4096),

autoapprove VARCHAR(256)
E
CREATE TABLE oauth_client_token (
token_id VARCHAR(256),
token BYTEA,
authentication_id VARCHAR(256) PRIMARY KEY,
user_name VARCHAR(256),
client_id VARCHAR(256)
)i
CREATE TABLE oauth_access_token (
token_id VARCHAR(256),
token BYTEA,
authentication_id VARCHAR(256) PRIMARY KEY,
user_name VARCHAR(256),
client_id VARCHAR(256),

authentication BYTEA,
refresh_token VARCHAR(256)

)

CREATE TABLE oauth_refresh_token (
token_id VARCHAR(256),
token BYTEA,
authentication BYTEA

);

CREATE TABLE oauth_code (

137

Practical Guide to Building an API Back End with Spring Boot

code VARCHAR(256),
authentication BYTEA

)i

CREATE TABLE oauth_approvals (
userld VARCHAR(256),
clientId VARCHAR(256),
scope VARCHAR(256),
status VARCHAR(10),
expiresAt TIMESTAMP,
lastModifiedAt TIMESTAMP

)i

MySQL

138

Appendix A: OAuth Database Schema

CREATE TABLE oauth_client_details (

client_id VARCHAR(255) PRIMARY KEY,
resource_ids VARCHAR(255),
client_secret VARCHAR(255),
scope VARCHAR(255),

authorized_grant_types VARCHAR(255),
web_server_redirect_uri VARCHAR(255),
authorities VARCHAR(255),
access_token_validity INTEGER,
refresh_token_validity INTEGER,
additional_information VARCHAR(4096),

autoapprove TINYINT
e
CREATE TABLE oauth_client_token (
token_id VARCHAR(255),
token BLOB,
authentication_id VARCHAR(255) PRIMARY KEY,
user_name VARCHAR(255),
client_id VARCHAR(255)
e
CREATE TABLE oauth_access_token (
token_id VARCHAR(255),
token BLOB,
authentication_id VARCHAR(255) PRIMARY KEY,
user_name VARCHAR(255),
client_id VARCHAR(255),

authentication BLOB,
refresh_token VARCHAR(255)

Ik

CREATE TABLE oauth_refresh_token (
token_id VARCHAR(255),
token BLOB,

authentication BLOB
)i

CREATE TABLE oauth_code (
activationCode VARCHAR(255),
authentication BLOB

)i

Microsoft SQL Server

139

Practical Guide to Building an API Back End with Spring Boot

CREATE TABLE oauth_client_details (

client_id VARCHAR(255) PRIMARY KEY,
resource_ids VARCHAR(255),
client_secret VARCHAR(255),
scope VARCHAR(255),

authorized_grant_types VARCHAR(255),
web_server_redirect_uri VARCHAR(255),
authorities VARCHAR(255),
access_token_validity INTEGER,
refresh_token_validity INTEGER,
additional_information VARCHAR(4096),

autoapprove TINYINT

e

CREATE TABLE oauth_client_token (
token_id VARCHAR(255),
token VARBINARY (max),
authentication_id VARCHAR(255) PRIMARY KEY,
user_name VARCHAR(255),
client_id VARCHAR(255)

e

CREATE TABLE oauth_access_token (
token_id VARCHAR(255),
token VARBINARY (max),
authentication_id VARCHAR(255) PRIMARY KEY,
user_name VARCHAR(255),
client_id VARCHAR(255),

authentication VARBINARY (max),
refresh_token VARCHAR(255)

IE

CREATE TABLE oauth_refresh_token (
token_id VARCHAR(255),
token VARBINARY (max),

authentication VARBINARY(max)
)

CREATE TABLE oauth_code (
activationCode VARCHAR(255),

authentication VARBINARY(max)
)

H2

140

Appendix A: OAuth Database Schema

CREATE TABLE oauth_client_details (

client_id

VARCHAR(255) PRIMARY KEY,

resource_ids VARCHAR(255),
client_secret VARCHAR(255),
scope VARCHAR(255),
authorized_grant_types VARCHAR(255),
web_server_redirect_uri VARCHAR(255),
authorities VARCHAR(255),
access_token_validity INTEGER,
refresh_token_validity INTEGER,
additional_information VARCHAR(4096),
autoapprove VARCHAR(255)

e

CREATE TABLE oauth_client_token (
token_id VARCHAR(255),
token BLOB,
authentication_id VARCHAR(255) PRIMARY KEY,
user_name VARCHAR(255),
client_id VARCHAR(255)

e

CREATE TABLE oauth_access_token (
token_id VARCHAR(255),
token BLOB,
authentication_id VARCHAR(255) PRIMARY KEY,
user_name VARCHAR(255),
client_id VARCHAR(255),

authentication BLOB,

refresh_token VARCHAR(255)

Ik

CREATE TABLE oauth_refresh_token (
token_id VARCHAR(255),
token BLOB,

authentication BLOB
)i

CREATE TABLE oauth_code (

activationCode VARCHAR(255),

authentication BLOB
)i

141

	Practical Guide to Building an API Back End with Spring Boot
	Table of Contents
	Practical Guide to Building an API Back End with Spring Boot
	Dedication
	Acknowledgements
	Preface
	What is in an InfoQ mini-book?
	Who this book is for
	What you need for this book
	Conventions
	Reader feedback

	Introduction
	What Is Spring Boot?
	Spring Framework
	Spring Boot

	Getting Started
	Preparation
	Spring Initializr
	Properties
	Spring profiles
	Configure logging

	CopsBoot
	Explanation of the sample project
	Generating the project skeleton

	User Management
	User domain
	User repository
	User-domain refactoring
	Summary

	REST API Security
	Spring Security OAuth2
	UserDetailsService
	Supporting beans
	Test getting an access token
	Summary

	User REST Controller
	Basics
	Get mapping
	POST mapping
	Writing API documentation
	Refactoring to avoid duplication
	Summary

	Working with a Real Database
	Installation of PostgreSQL
	Using PostgreSQL
	Updates
	Integration testing
	Summary

	Validation
	Built-in validators
	Unit test for a built-in validator
	Handling validation errors via an exception handler
	Custom field validator
	Custom object validator
	Custom object validator using a Spring service
	Summary

	File Upload
	Upload a file
	File-size validation
	Summary

	Action!
	Additional reading

	About the Author
	Appendix A: OAuth Database Schema
	PostgreSQL
	MySQL
	Microsoft SQL Server
	H2

