

1

CPSC 304 Project Instructions: Formal Specifications

Due Date: Monday, October 23, 2017 at 23:59

Last Update: October 17, 2017

Details

This part of the project will be worth 7% of your project grade.

The goal of this project checkpoint is for you to tell us what to expect from your final application.

Note that we expect your final project to have, or make use of, some sort of rudimentary Graphical
User Interface (UI); but, it doesn't have to be fancy.

Hand in the following information about the functionality that your application will have:

1. What will the different users be able to do with your system? You don’t have to write the
queries in SQL yet, but describe the data and output that each user will see and work with.
You’ll want to provide different functionality for different users, even if it’s all driven from
the same menu or front-end in your application. Don’t bother creating separate sign-on
screens for different users; it is OK if you share the same main menu. Here are some
examples of what we mean:

 In a banking application, bank employees and customers can see and update
different things. We might have one set of SQL statements for the bank employees,
and one set for the customers. We don’t expect different users to start with different
logon IDs—the different users can just select or click on different menu options
(like 1 for a withdrawal, 2 for a deposit, 3 to see a monthly statement, etc.)

 In an airport application, the users might be passengers and airline employees.
Employees might assign planes to gates, but passengers wouldn’t do this.

 In a medical application, the users might be patients, lab personnel, doctors, etc.
 Even if your application doesn’t naturally lend itself to different “classes” of users,

then you can still have different features: different windows, different views, and
different update activities that junior or less-privileged employees might see.

Deliverables for this part:

a) Deliverable 1: Identify the different kinds of users that your application will
service.

b) Itemize the kinds of queries, reports, or changes to the database that you expect
these users to be able to do. You can add to, or modify, these queries in the future,
but at this stage, we want to get a sense of what your application is going to do.

2

You don’t need to provide the SQL, yet; but what you have learned about Relational
Algebra or SQL so far in the course may help you decide on some of these queries.

 You need to have at least 10 SQL data manipulation queries and

changes: some simple, and some complex. You don’t have to create the
SQL statements yet, but describe in words what they will be.

 More about this requirement and its deliverables are listed below.
 We expect your application to have the ability to update at least some part

of the database, and the ability to have some queries that depends on the
user’s input.

 For example, in a banking domain, I might want the customer to be
able to update the database by transferring money from one account
to the other, and I might also want a bank employee (e.g., teller) to
be able to ask for all of the account information for a given customer.
In both cases, the customer number needs to be specified, along with
any needed amounts, etc. Don’t hard-code these parameters; the
user will be entering them.

 You need to have two or more modification operations that each use a
WHERE clause in their respective SQL statements. Describe each of these
for your application:

i. Deliverable 2: You need to have at least one INSERT statement.
ii. Deliverable 3: You need to have at least one DELETE statement.

iii. Deliverable 4: You need to have at least one UPDATE statement.
 Queries involving joins: We expect that some of your queries will be

something interesting, that is, something beyond a simple select, project, or
join from a single relation. In other words, you need to have some
meaningful queries that join multiple tables. Describe them:

i. Deliverable 5: At least one query must join 3 or more tables.
ii. Deliverables 6 and 7: At least 2 other queries need to join 2 or more

tables.
 Deliverable 8: At least one query must be an interesting GROUP BY query

(aggregation). Describe it.
 Deliverables 9-11: Describe the other queries you plan to have (these can

be simpler queries), so that you have at least 10 SQL statements overall.
 Deliverable 12: You need to have at least one view for your database,

created using the CREATE VIEW statement in SQL. It should be a proper
subset of a table. When the user wants to display all the data from this view,
they will get all the columns specified by the view, but not all of the columns
in the underlying table.

 You don’t have to give the SQL for the view yet; just indicate the
subset of which table(s) that will be used, and for which kind of user.

 If you anticipate having any triggers or assertions, this would also be
functionality that would be useful to present as part of your project; but if
you don’t have any triggers or assertions or procedures, don’t worry about
it because you won’t be deducted marks.

3

2. Deliverable 13: What will the division of labour be like among your group? We want
to know how you’re planning on splitting up the work. You should plan for approximately
equal number of tasks, or an equal amount of time required, for each member of your group.
Certain members of your group might want to go over and above this for their own area of
responsibility. That’s fine; however, don’t do another member’s work. For example, you
might have these tasks (and possibly others):

a) Create the tables and other database objects. Be sure to save your SQL scripts, as
you are very likely to DROP and re-create your work. In fact, we may ask you to
do this, during your demo.

1. Tutorial #6 (and its reference material) provides some examples of SQL
DDL.

b) Create data for the tables. Then, populate (load) the tables. Be sure to save your
scripts. You might want to create a bunch of SQL INSERT statements to load the
data. You might even want to write a short program that loops and creates those
SQL INSERT statements based on data being read from a file, or that generates the
data from scratch (possibly via random number generators).

c) Code each set of queries and test them in SQL (e.g., Oracle’s SQL*Plus or another
DBMS of your choice).

d) Embed the SQL statements in a program, and code the programming logic. Use a
graphical user interface. Format the output appropriately (e.g., in the form of a
results window, an HTML page, etc.)

1. The application logic is likely to take up more of the time than any other
individual task.

2. All of your group members must take part in this talk because embedded
SQL in a host language should be practiced by everyone. However, it is
OK if some group members do more programming than others, providing
those other group members do more of the other tasks.

3. Be prepared to DROP your tables and re-create them, if something
significant goes wrong during the UPDATE, INSERT, and DELETE
operations.

e) Test each set of queries. Determine how errors will be handled. Take appropriate
action. For example, what happens if a user inserts a duplicate key?

f) Document the project.
g) All group members must be present to demo your application to a TA. This will

take place near the end of the term.

If you wish to update your schema at this checkpoint, or even your ER-diagram, that’s OK.
After thinking about your queries and reports, you might have a better idea of what’s
missing.

If you think something’s going to be too much work, ask your TA before committing to it. But,
please don’t ask your TA to pre-mark your project deliverables. We won’t be able to answer
questions like, “Is this correct?” “Is our solution worth full marks?”

4

If you want to see a preview of both the formal specifications (and the ER diagram which you
already handed in), take a look at the following Bookstore (UBStore) example. (You may need to
copy-and-paste the following links, if you can’t get there by clicking on the links.)

 https://www.ugrad.cs.ubc.ca/~cs304/2017W1/project/p1/p1-desc.html

 https://www.ugrad.cs.ubc.ca/~cs304/2017W1/project/p1/p1-solution.html

 Note that this example is based on a previous offering of this course—so, be sure that

you follow the current instructions given to you earlier in this course. You may not
model any previous UBC example data (e.g., discussed in lectures—although the
music/radio case is fine), employee supervision (discussed in a textbook), a bookstore
(project topic in this example), MP3 storage (may be discussed in class), Motor
Vehicles Branch application, or a project given to you in the tutorials. Additionally,
this must be a new project—you may not reuse a pre-existing project like something
you got from someone else, a book, the Internet, a co-op term, etc.

What to Turn In

 A cover page: https://www.ugrad.cs.ubc.ca/~cs304/2017W1/project/CoverPage.html.

 Your specifications in the form of a PDF file. Do not submit a photo; instead, paste it into

Word (or other application) and generate a PDF file. If you hand-draw them, or write them
by hand, that’s OK; but turn them into PDF before submitting them via handin.

 Keep your PDF files to under 1 MB each.

 A README.txt can be included to list any special instructions or comments to be given to
the marker. Be sure to include your teammates’ names in this file.

 Summary: Submit 2-3 things in all: 1 PDF file (specs, required); a README.txt file (if
necessary); and your cover page (required).

How to Use Handin

One group member should be the person doing all the electronic handin submissions. This will
simplify things when the TAs have to check off the deliverables and associate them with the correct
group. This person should be the same person who submitted the Project Proposal and the ER-
diagram.

To submit your Cover Page and your PDF files, perform the following steps:

5

 On an undergraduate machine (e.g., using ssh on remote.ugrad.cs.ubc.ca), copy the

file(s) that you want to hand in, to the directory ~/cs304/project_specs (note that it
will wind up in your home directory). You can create this directory using:

o mkdir ~/cs304/project_specs

 Copy your file(s) into this directory.

 Then, from your home directory, run:

o handin cs304 project_specs

 Take a screen shot of your successful submission, in case any problems exist. Without

this, it may be difficult for us to give part marks if something went wrong.

Only one group member should submit the assignment. It should be the same group member as
for previous project deliverables. Group members: verify with your group that the submission has
actually taken place!

