

Python 3 Object-oriented
Programming
Second Edition

Unleash the power of Python 3 objects

Dusty Phillips

BIRMINGHAM - MUMBAI

Python 3 Object-oriented Programming
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2010

Second edition: August 2015

Production reference: 1130815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-878-1

www.packtpub.com

www.packtpub.com

Credits

Author
Dusty Phillips

Reviewers
AMahdy AbdElAziz

Grigoriy Beziuk

Krishna Bharadwaj

Justin Cano

Anthony Petitbois

Claudio Rodriguez

Commissioning Editor
Edward Gordon

Acquisition Editors
Indrajit Das

Rebecca Pedley

Greg Wild

Content Development Editors
Divij Kotian

Arvind Koul

Anila Vincent

Technical Editor
Siddhi Rane

Copy Editor
Janbal Dharmaraj

Project Coordinator
Neha Bhatnagar

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Jason Monteiro

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

About the Author

Dusty Phillips is a Canadian software developer and author currently living in
Seattle, Washington. He has been active in the open source community for a decade
and a half and programming in Python for nearly all of it. He cofounded the popular
Puget Sound Programming Python meetup group; drop by and say hi if you're in
the area.

Python 3 Object Oriented Programming, Packt Publishing, was the first of his books. He
has also written Creating Apps In Kivy, O'Reilly, the mobile Python library, and self-
published Hacking Happy, a journey to mental wellness for the technically inclined.
He was hospitalized for suicidal tendencies shortly after the first edition of this book
was published and has been an outspoken proponent for positive mental health
ever since.

About the Reviewers

AMahdy AbdElAziz has more than 8 years of experience in software engineering
using several languages and frameworks. Over the last 5 years, he has focused
on Android and mobile development, including cross-platform tools, and
Android internals, such as building custom ROMs and customizing AOSP
for embedded devices.

He is currently teaching Python at Information Technology Institution. You can
visit his website, http://www.amahdy.net/, to find out more about him.

Grigoriy Beziuk is a former CIO of Crowdage Foundation, acting as an
independent software developer as this book was being written. He has worked
with a wide variety of programming languages and technologies, including
different versions of Python in different environments, ranging from purely
scientific ones to modern production-scale web development issues.

I would like to thank my mom, Larisa Beziuk, for giving me the
gift of life; all of my teachers and friends for making my life more
interesting; and all of my beloved ones, former and present for…
well, everything.

http://www.amahdy.net/

Krishna Bharadwaj is the cofounder of SMERGERS (https://www.smergers.
com/), a Fintech start-up helping small and medium businesses raise capital from
investors and different financial institutions. In the past, he has worked with early
stage start-ups such as BlockBeacon (Santa Monica) and PricePoint (CA) and large
organizations such as National Instruments, Bangalore, and Google, New York.
Krishna got introduced to Python and FOSS during his college days and has continued
to use it extensively in his personal projects and also professionally at work. Because
of his liking for teaching and mentoring, he visits different universities, conducting
workshops whenever he gets an opportunity.

He holds a master's degree in computer science from the University of Southern
California, Los Angeles, and a bachelor's degree in information science and
engineering from the BMS College of Engineering, Bangalore. He can be reached
through his e-mail, krishna@krishnabharadwaj.info, or his website,
http://www.krishnabharadwaj.info/.

Justin Cano is a recent graduate from the University of California, Riverside,
with a BS in computer engineering and is currently working as a software engineer
in the Silicon Valley area with hopes of moving to a big tech company such as
Google or Apple.

He first started programming in the sixth grade, creating small, primitive websites
in HTML and CSS. He started to learn computer science theory and C++ in his first
year at UC Riverside and then started learning Python in his third year.

Justin admits that at first, he wasn't immediately attracted to Python, since abstractions
between C++ and Python are very different. It wasn't until he began to express more of
an interest in coding contests and challenges that he began to show interest in Python,
mainly because he feels that the readability and elegance of the Python syntax allows
him to quickly and more naturally turn ideas and thought processes into Python
code. He now writes Python code regularly, often to create mock-ups or prototypes of
software applications before moving on to a more domain-specific language.

I would like to thank the author for taking the time to write this book
as I have received a lot of valuable insights and information on the
Python language and design patterns. This book has strengthened
my understanding of Python, and I believe that I am now a more
knowledgeable Python programmer.

https://www.smergers.com/
https://www.smergers.com/
http://www.krishnabharadwaj.info/

Anthony Petitbois is an online architect in the video game industry with 13 years
of professional experience in operations and development and more than 20 years
of software development experience. He is passionate about new technologies and
loves to take creative approaches to solve complex problems.

In his spare time, he learns new languages and new platforms, plays video games,
and spends time with his family in the beautiful region of British Columbia, Canada,
where he now lives after emigrating from France in 2009.

Claudio Rodriguez started working on PLCs for GE, but his main goal has always
been research and development and turning dreams into reality. This made him
move from automation engineering to software engineering and the structured way
of software, OOD; the remote team working from the comfort of his computer was
just too powerful not to take advantage of. During his master's, he got to learn the
proper place to look for resources and found a friend in books and research papers
and conferences. Eventually, he started working on a system to control an electric
arc furnace, but the needs of his clients moved him into taking further control of
technology. He has a deep love for complex AI and can be seen surrounded by
papers, books, and a computer to test things, but he keeps things real by delivering
beautiful and dynamic applications for his customers.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

Introduction to
the second edition

I have a confession to make. When I wrote the first edition of this book, I didn't
have a clue what I was doing. I thought I knew Python and I thought I knew how
to write. I quickly learned that this was false. Luckily, I became adept at both by
finishing the book!

I was so afraid that people wouldn't like Python 3 Object Oriented Programming that
I skipped Pycon for two years straight. After a couple dozen positive reviews, my
confidence was boosted and I finally attended Pycon 2012 in Santa Clara. I soon
discovered that nobody had ever heard of me or my book. So much for arrogance!

I was also afraid to reread the book after completing it. So while it has received many
accolades, the copy on my shelf has remained firmly shut, save for when I open it for
reference to answer a reader's query. In preparing this second edition, I was finally
forced to face my demons. To my surprise and joy, I discovered that the book I wrote
five years ago was both accurate and enjoyable, just as many reviewers had suggested.

Shortly after that initial rereading, I got my first ever negative review on Amazon.
It would have been devastating had I read it directly after completing the project.
Fortunately, four years of good reviews and my own confidence in the writing
allowed me to ignore the vitriol and take the remainder as constructive feedback.
The truth is many of the flaws the reviewer had pointed out were features at the
time the book was originally published. Python 3 Object Oriented Programming was
showing its age, and it was clearly time for an update. You're holding the result in
your hands (or flipping through it on your e-reader).

I've often wondered why authors describe in detail what has changed between the
editions of a technical book. I mean, seriously, how many people reading this second
edition have read the first one? As with software versions, you safely assume the
latest edition is the best, and you don't really care about the project's history. And
yet, this project has consumed so much of my life over the past year that I can't
leave without a few words about how much better the book has become.

The original book was a little disorganized. Many chapters flowed directly into
the next one, but there were a few key places where the topic change was jarring,
or worse, irrelevant. The two chapters preceding the discussions about design
patterns have been reorganized, reversed, and split into three chapters that flow
cleanly into the next topic.

I've also removed an entire chapter on third-party libraries for Python 3. This chapter
made more sense when both the book and Python 3 were new. There were only a
few libraries that had been ported to Python 3 and it was reasonable to have a best
of breed discussion about each of them. However, I was unable to cover any of those
topics in detail, and frankly, I could write an entire book on any one of them.

Finally, I've added an entire new chapter on concurrency. I struggled with this
chapter and I can freely admit that it's not directly related to object-oriented
programming. However, much like the chapter on unit testing, I think that
understanding concurrency is an integral part of all programming and especially
of object-oriented programming in the Python ecosystem. You are, of course, free
to skip those chapters if you disagree (or until you discover a reason to change
your mind).

Enjoy the book and your journey into the world of object-oriented programming.

Dusty Phillips

[i]

Table of Contents
Preface vii
Chapter 1: Object-oriented Design 1

Introducing object-oriented 1
Objects and classes 3
Specifying attributes and behaviors 5

Data describes objects 6
Behaviors are actions 7

Hiding details and creating the public interface 9
Composition 11
Inheritance 14

Inheritance provides abstraction 16
Multiple inheritance 17

Case study 18
Exercises 25
Summary 26

Chapter 2: Objects in Python 27
Creating Python classes 27

Adding attributes 29
Making it do something 30

Talking to yourself 30
More arguments 31

Initializing the object 33
Explaining yourself 35

Modules and packages 37
Organizing the modules 40

Absolute imports 40
Relative imports 41

Organizing module contents 43

Table of Contents

[ii]

Who can access my data? 46
Third-party libraries 48
Case study 49
Exercises 58
Summary 58

Chapter 3: When Objects Are Alike 59
Basic inheritance 59

Extending built-ins 62
Overriding and super 63

Multiple inheritance 65
The diamond problem 67
Different sets of arguments 72

Polymorphism 75
Abstract base classes 78

Using an abstract base class 78
Creating an abstract base class 79
Demystifying the magic 81

Case study 82
Exercises 95
Summary 96

Chapter 4: Expecting the Unexpected 97
Raising exceptions 98

Raising an exception 99
The effects of an exception 101
Handling exceptions 102
The exception hierarchy 108
Defining our own exceptions 109

Case study 114
Exercises 123
Summary 124

Chapter 5: When to Use Object-oriented Programming 125
Treat objects as objects 125
Adding behavior to class data with properties 129

Properties in detail 132
Decorators – another way to create properties 134
Deciding when to use properties 136

Manager objects 138
Removing duplicate code 140
In practice 142

Table of Contents

[iii]

Case study 145
Exercises 153
Summary 154

Chapter 6: Python Data Structures 155
Empty objects 155
Tuples and named tuples 157

Named tuples 159
Dictionaries 160

Dictionary use cases 164
Using defaultdict 164

Counter 166
Lists 167

Sorting lists 169
Sets 173
Extending built-ins 177
Queues 182

FIFO queues 183
LIFO queues 185
Priority queues 186

Case study 188
Exercises 194
Summary 195

Chapter 7: Python Object-oriented Shortcuts 197
Python built-in functions 197

The len() function 198
Reversed 198
Enumerate 200
File I/O 201
Placing it in context 203

An alternative to method overloading 205
Default arguments 206
Variable argument lists 208
Unpacking arguments 212

Functions are objects too 213
Using functions as attributes 217
Callable objects 218

Case study 219
Exercises 226
Summary 227

Table of Contents

[iv]

Chapter 8: Strings and Serialization 229
Strings 229

String manipulation 230
String formatting 232

Escaping braces 233
Keyword arguments 234
Container lookups 235
Object lookups 236
Making it look right 237

Strings are Unicode 239
Converting bytes to text 240
Converting text to bytes 241

Mutable byte strings 243
Regular expressions 244

Matching patterns 245
Matching a selection of characters 246
Escaping characters 247
Matching multiple characters 248
Grouping patterns together 249

Getting information from regular expressions 250
Making repeated regular expressions efficient 252

Serializing objects 252
Customizing pickles 254
Serializing web objects 257

Case study 260
Exercises 265
Summary 267

Chapter 9: The Iterator Pattern 269
Design patterns in brief 269
Iterators 270

The iterator protocol 271
Comprehensions 273

List comprehensions 273
Set and dictionary comprehensions 276
Generator expressions 277

Generators 279
Yield items from another iterable 281

Coroutines 284
Back to log parsing 287
Closing coroutines and throwing exceptions 289
The relationship between coroutines, generators, and functions 290

Table of Contents

[v]

Case study 291
Exercises 298
Summary 299

Chapter 10: Python Design Patterns I 301
The decorator pattern 301

A decorator example 302
Decorators in Python 305

The observer pattern 307
An observer example 308

The strategy pattern 310
A strategy example 311
Strategy in Python 313

The state pattern 313
A state example 314
State versus strategy 320
State transition as coroutines 320

The singleton pattern 320
Singleton implementation 321

The template pattern 325
A template example 325

Exercises 329
Summary 329

Chapter 11: Python Design Patterns II 331
The adapter pattern 331
The facade pattern 335
The flyweight pattern 337
The command pattern 341
The abstract factory pattern 346
The composite pattern 351
Exercises 355
Summary 356

Chapter 12: Testing Object-oriented Programs 357
Why test? 357

Test-driven development 359
Unit testing 360

Assertion methods 362
Reducing boilerplate and cleaning up 364
Organizing and running tests 365
Ignoring broken tests 366

Table of Contents

[vi]

Testing with py.test 368
One way to do setup and cleanup 370
A completely different way to set up variables 373
Skipping tests with py.test 377

Imitating expensive objects 378
How much testing is enough? 382
Case study 385

Implementing it 386
Exercises 391
Summary 392

Chapter 13: Concurrency 393
Threads 394

The many problems with threads 397
Shared memory 397
The global interpreter lock 398

Thread overhead 399
Multiprocessing 399

Multiprocessing pools 401
Queues 404
The problems with multiprocessing 406

Futures 406
AsyncIO 409

AsyncIO in action 410
Reading an AsyncIO future 411
AsyncIO for networking 412
Using executors to wrap blocking code 415
Streams 417

Executors 417
Case study 418
Exercises 425
Summary 426

Index 427

[vii]

Preface
This book introduces the terminology of the object-oriented paradigm. It focuses
on object-oriented design with step-by-step examples. It guides us from simple
inheritance, one of the most useful tools in the object-oriented programmer's toolbox
through exception handling to design patterns, an object-oriented way of looking
at object-oriented concepts.

Along the way, we'll learn to integrate the object-oriented and not-so-object-oriented
aspects of the Python programming language. We will learn the complexities of
string and file manipulation, emphasizing (as Python 3 does) the difference between
binary and textual data.

We'll then cover the joys of unit testing, using not one, but two unit testing
frameworks. Finally, we'll explore, through Python's various concurrency
paradigms, how to make objects work well together at the same time.

What this book covers
This book is loosely divided into four major parts. In the first four chapters, we will
dive into the formal principles of object-oriented programming and how Python
leverages them. In chapters 5 through 8, we will cover some of Python's idiosyncratic
applications of these principles by learning how they are applied to a variety of
Python's built-in functions. Chapters 9 through 11 cover design patterns, and the
final two chapters discuss two bonus topics related to Python programming that
may be of interest.

Chapter 1, Object-oriented Design, covers important object-oriented concepts. It deals
mainly with terminology such as abstraction, classes, encapsulation, and inheritance.
We also briefly look at UML to model our classes and objects.

Preface

[viii]

Chapter 2, Objects in Python, discusses classes and objects and how they are used in
Python. We will learn about attributes and behaviors on Python objects, and also
the organization of classes into packages and modules. Lastly, we will see how to
protect our data.

Chapter 3, When Objects Are Alike, gives us a more in-depth look into inheritance. It
covers multiple inheritance and shows us how to extend built-ins. This chapter also
covers how polymorphism and duck typing work in Python.

Chapter 4, Expecting the Unexpected, looks into exceptions and exception handling.
We will learn how to create our own exceptions and how to use exceptions for
program flow control.

Chapter 5, When to Use Object-oriented Programming, deals with creating and using
objects. We will see how to wrap data using properties and restrict data access.
This chapter also discusses the DRY principle and how not to repeat code.

Chapter 6, Python Data Structures, covers the object-oriented features of Python's
built-in classes. We'll cover tuples, dictionaries, lists, and sets, as well as a few
more advanced collections. We'll also see how to extend these standard objects.

Chapter 7, Python Object-oriented Shortcuts, as the name suggests, deals with
time-savers in Python. We will look at many useful built-in functions such as
method overloading using default arguments. We'll also see that functions
themselves are objects and how this is useful.

Chapter 8, Strings and Serialization, looks at strings, files, and formatting. We'll
discuss the difference between strings, bytes, and bytearrays, as well as various ways
to serialize textual, object, and binary data to several canonical representations.

Chapter 9, The Iterator Pattern, introduces us to the concept of design patterns and
covers Python's iconic implementation of the iterator pattern. We'll learn about list,
set, and dictionary comprehensions. We'll also demystify generators and coroutines.

Chapter 10, Python Design Patterns I, covers several design patterns, including the
decorator, observer, strategy, state, singleton, and template patterns. Each pattern is
discussed with suitable examples and programs implemented in Python.

Chapter 11, Python Design Patterns II, wraps up our discussion of design patterns
with coverage of the adapter, facade, flyweight, command, abstract, and composite
patterns. More examples of how idiomatic Python code differs from canonical
implementations are provided.

Preface

[ix]

Chapter 12, Testing Object-oriented Programs, opens with why testing is so important
in Python applications. It emphasizes test-driven development and introduces two
different testing suites: unittest and py.test. Finally, it discusses mocking test objects
and code coverage.

Chapter 13, Concurrency, is a whirlwind tour of Python's support (and lack thereof)
of concurrency patterns. It discusses threads, multiprocessing, futures, and the new
AsyncIO library.

Each chapter includes relevant examples and a case study that collects the chapter's
contents into a working (if not complete) program.

What you need for this book
All the examples in this book rely on the Python 3 interpreter. Make sure you are not
using Python 2.7 or earlier. At the time of writing, Python 3.4 was the latest release
of Python. Most examples will work on earlier revisions of Python 3, but you are
encouraged to use the latest version to minimize frustration.

All of the examples should run on any operating system supported by Python.
If this is not the case, please report it as a bug.

Some of the examples need a working Internet connection. You'll probably want
to have one of these for extracurricular research and debugging anyway!

In addition, some of the examples in this book rely on third-party libraries that do
not ship with Python. These are introduced within the book at the time they are
used, so you do not need to install them in advance. However, for completeness,
here is a list:

• pip
• requests
• pillow
• bitarray

Preface

[x]

Who this book is for
This book specifically targets people who are new to object-oriented programming.
It assumes you have basic Python skills. You'll learn object-oriented principles in
depth. It is particularly useful for system administrator types who have used
Python as a "glue" language and would like to improve their programming skills.

If you are familiar with object-oriented programming in other languages, then this
book will help you understand the idiomatic ways to apply your knowledge in the
Python ecosystem.

Conventions
This book uses a variety of text styles to distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We
look up the class in the dictionary and store it in a variable named PropertyClass."

A block of code is set as follows:

 def add_property(self):
 property_type = get_valid_input(
 "What type of property? ",
 ("house", "apartment")).lower()
 payment_type = get_valid_input(
 "What payment type? ",
 ("purchase", "rental")).lower()

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 def add_property(self):
 property_type = get_valid_input(
 "What type of property? ",
 ("house", "apartment")).lower()
 payment_type = get_valid_input(
 "What payment type? ",
 ("purchase", "rental")).lower()

Preface

[xi]

Any command-line input or output is written as follows:

>>> c1 = Contact("John A", "johna@example.net")

>>> c2 = Contact("John B", "johnb@example.net")

>>> c3 = Contact("Jenna C", "jennac@example.net")

>>> [c.name for c in Contact.all_contacts.search('John')]

['John A', 'John B']

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "It will
fail with a not enough arguments error similar to the one we received earlier
when we forgot the self argument."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[xii]

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Object-oriented Design
In software development, design is often considered as the step done before
programming. This isn't true; in reality, analysis, programming, and design tend to
overlap, combine, and interweave. In this chapter, we will cover the following topics:

• What object-oriented means
• The difference between object-oriented design and object-oriented

programming
• The basic principles of an object-oriented design
• Basic Unified Modeling Language (UML) and when it isn't evil

Introducing object-oriented
Everyone knows what an object is—a tangible thing that we can sense, feel,
and manipulate. The earliest objects we interact with are typically baby toys.
Wooden blocks, plastic shapes, and over-sized puzzle pieces are common first
objects. Babies learn quickly that certain objects do certain things: bells ring,
buttons press, and levers pull.

The definition of an object in software development is not terribly different. Software
objects are not typically tangible things that you can pick up, sense, or feel, but they
are models of something that can do certain things and have certain things done to
them. Formally, an object is a collection of data and associated behaviors.

So, knowing what an object is, what does it mean to be object-oriented? Oriented
simply means directed toward. So object-oriented means functionally directed towards
modeling objects. This is one of the many techniques used for modeling complex
systems by describing a collection of interacting objects via their data and behavior.

Object-oriented Design

[2]

If you've read any hype, you've probably come across the terms object-oriented
analysis, object-oriented design, object-oriented analysis and design, and object-
oriented programming. These are all highly related concepts under the general
object-oriented umbrella.

In fact, analysis, design, and programming are all stages of software development.
Calling them object-oriented simply specifies what style of software development
is being pursued.

Object-oriented analysis (OOA) is the process of looking at a problem, system, or
task (that somebody wants to turn into an application) and identifying the objects
and interactions between those objects. The analysis stage is all about what needs
to be done.

The output of the analysis stage is a set of requirements. If we were to complete the
analysis stage in one step, we would have turned a task, such as, I need a website,
into a set of requirements. For example:

Website visitors need to be able to (italic represents actions, bold represents objects):

• review our history
• apply for jobs
• browse, compare, and order products

In some ways, analysis is a misnomer. The baby we discussed earlier doesn't
analyze the blocks and puzzle pieces. Rather, it will explore its environment,
manipulate shapes, and see where they might fit. A better turn of phrase might
be object-oriented exploration. In software development, the initial stages
of analysis include interviewing customers, studying their processes, and
eliminating possibilities.

Object-oriented design (OOD) is the process of converting such requirements into
an implementation specification. The designer must name the objects, define the
behaviors, and formally specify which objects can activate specific behaviors on
other objects. The design stage is all about how things should be done.

The output of the design stage is an implementation specification. If we were
to complete the design stage in a single step, we would have turned the requirements
defined during object-oriented analysis into a set of classes and interfaces that could
be implemented in (ideally) any object-oriented programming language.

Object-oriented programming (OOP) is the process of converting this perfectly
defined design into a working program that does exactly what the CEO
originally requested.

Chapter 1

[3]

Yeah, right! It would be lovely if the world met this ideal and we could follow these
stages one by one, in perfect order, like all the old textbooks told us to. As usual, the
real world is much murkier. No matter how hard we try to separate these stages,
we'll always find things that need further analysis while we're designing. When
we're programming, we find features that need clarification in the design.

Most twenty-first century development happens in an iterative development
model. In iterative development, a small part of the task is modeled, designed,
and programmed, then the program is reviewed and expanded to improve each
feature and include new features in a series of short development cycles.

The rest of this book is about object-oriented programming, but in this chapter,
we will cover the basic object-oriented principles in the context of design. This
allows us to understand these (rather simple) concepts without having to argue
with software syntax or Python interpreters.

Objects and classes
So, an object is a collection of data with associated behaviors. How do we differentiate
between types of objects? Apples and oranges are both objects, but it is a common
adage that they cannot be compared. Apples and oranges aren't modeled very often
in computer programming, but let's pretend we're doing an inventory application for
a fruit farm. To facilitate the example, we can assume that apples go in barrels and
oranges go in baskets.

Now, we have four kinds of objects: apples, oranges, baskets, and barrels. In
object-oriented modeling, the term used for kind of object is class. So, in technical
terms, we now have four classes of objects.

What's the difference between an object and a class? Classes describe objects. They
are like blueprints for creating an object. You might have three oranges sitting on
the table in front of you. Each orange is a distinct object, but all three have the
attributes and behaviors associated with one class: the general class of oranges.

The relationship between the four classes of objects in our inventory system can
be described using a Unified Modeling Language (invariably referred to as UML,
because three letter acronyms never go out of style) class diagram. Here is our first
class diagram:

Orange Basket

Apple Barrel

Object-oriented Design

[4]

This diagram shows that an Orange is somehow associated with a Basket and that
an Apple is also somehow associated with a Barrel. Association is the most basic
way for two classes to be related.

UML is very popular among managers, and occasionally disparaged by programmers.
The syntax of a UML diagram is generally pretty obvious; you don't have to read a
tutorial to (mostly) understand what is going on when you see one. UML is also fairly
easy to draw, and quite intuitive. After all, many people, when describing classes
and their relationships, will naturally draw boxes with lines between them. Having
a standard based on these intuitive diagrams makes it easy for programmers to
communicate with designers, managers, and each other.

However, some programmers think UML is a waste of time. Citing iterative
development, they will argue that formal specifications done up in fancy UML
diagrams are going to be redundant before they're implemented, and that
maintaining these formal diagrams will only waste time and not benefit anyone.

Depending on the corporate structure involved, this may or may not be true. However,
every programming team consisting of more than one person will occasionally has to
sit down and hash out the details of the subsystem it is currently working on. UML is
extremely useful in these brainstorming sessions for quick and easy communication.
Even those organizations that scoff at formal class diagrams tend to use some informal
version of UML in their design meetings or team discussions.

Further, the most important person you will ever have to communicate with is
yourself. We all think we can remember the design decisions we've made, but there
will always be the Why did I do that? moments hiding in our future. If we keep the
scraps of papers we did our initial diagramming on when we started a design,
we'll eventually find them a useful reference.

This chapter, however, is not meant to be a tutorial in UML. There are many of these
available on the Internet, as well as numerous books available on the topic. UML
covers far more than class and object diagrams; it also has a syntax for use cases,
deployment, state changes, and activities. We'll be dealing with some common
class diagram syntax in this discussion of object-oriented design. You'll find that
you can pick up the structure by example, and you'll subconsciously choose the
UML-inspired syntax in your own team or personal design sessions.

Our initial diagram, while correct, does not remind us that apples go in barrels or
how many barrels a single apple can go in. It only tells us that apples are somehow
associated with barrels. The association between classes is often obvious and needs
no further explanation, but we have the option to add further clarification as needed.

Chapter 1

[5]

The beauty of UML is that most things are optional. We only need to specify as
much information in a diagram as makes sense for the current situation. In a quick
whiteboard session, we might just quickly draw lines between boxes. In a formal
document, we might go into more detail. In the case of apples and barrels, we can
be fairly confident that the association is, many apples go in one barrel, but just to
make sure nobody confuses it with, one apple spoils one barrel, we can enhance
the diagram as shown:

Orange Basket

Apple Barrel

* 1go in�

* 1

go in�

This diagram tells us that oranges go in baskets with a little arrow showing what goes
in what. It also tells us the number of that object that can be used in the association on
both sides of the relationship. One Basket can hold many (represented by a *) Orange
objects. Any one Orange can go in exactly one Basket. This number is referred to as the
multiplicity of the object. You may also hear it described as the cardinality. These are
actually slightly distinct terms. Cardinality refers to the actual number of items in the
set, whereas multiplicity specifies how small or how large this number could be.

I frequently forget which side of a relationship the multiplicity goes on. The
multiplicity nearest to a class is the number of objects of that class that can be
associated with any one object at the other end of the association. For the apple
goes in barrel association, reading from left to right, many instances of the Apple
class (that is many Apple objects) can go in any one Barrel. Reading from right to
left, exactly one Barrel can be associated with any one Apple.

Specifying attributes and behaviors
We now have a grasp of some basic object-oriented terminology. Objects are
instances of classes that can be associated with each other. An object instance is a
specific object with its own set of data and behaviors; a specific orange on the table
in front of us is said to be an instance of the general class of oranges. That's simple
enough, but what are these data and behaviors that are associated with each object?

Object-oriented Design

[6]

Data describes objects
Let's start with data. Data typically represents the individual characteristics of a
certain object. A class can define specific sets of characteristics that are shared by all
objects of that class. Any specific object can have different data values for the given
characteristics. For example, our three oranges on the table (if we haven't eaten any)
could each weigh a different amount. The orange class could then have a weight
attribute. All instances of the orange class have a weight attribute, but each orange
has a different value for this attribute. Attributes don't have to be unique, though; any
two oranges may weigh the same amount. As a more realistic example, two objects
representing different customers might have the same value for a first name attribute.

Attributes are frequently referred to as members or properties. Some authors
suggest that the terms have different meanings, usually that attributes are settable,
while properties are read-only. In Python, the concept of "read-only" is rather
pointless, so throughout this book, we'll see the two terms used interchangeably. In
addition, as we'll discuss in Chapter 5, When to Use Object-oriented Programming, the
property keyword has a special meaning in Python for a particular kind of attribute.

+Weight
+Orchard
+Date_Picked

Orange

+location

Basket

+Color
+Weight

Apple

+size

Barrel

go in�

go in�*

1

* 1

In our fruit inventory application, the fruit farmer may want to know what orchard
the orange came from, when it was picked, and how much it weighs. They might
also want to keep track of where each basket is stored. Apples might have a color
attribute, and barrels might come in different sizes. Some of these properties may
also belong to multiple classes (we may want to know when apples are picked, too),
but for this first example, let's just add a few different attributes to our class diagram:

Chapter 1

[7]

Orange

Basket

Apple Barrel

go in�

go in�*

1

* 1

+Color: string
+Weight: float
+barrel: Barrel

+size: int
+apples: list

+location: string
+oranges: list

+Weight: float
+Orchard: string
+Date_Picked: date
+basket: Basket

Depending on how detailed our design needs to be, we can also specify the type
for each attribute. Attribute types are often primitives that are standard to most
programming languages, such as integer, floating-point number, string, byte, or
Boolean. However, they can also represent data structures such as lists, trees, or
graphs, or most notably, other classes. This is one area where the design stage can
overlap with the programming stage. The various primitives or objects available in
one programming language may be somewhat different from what is available in
other languages.

Usually, we don't need to be overly concerned with data types at the design stage, as
implementation-specific details are chosen during the programming stage. Generic
names are normally sufficient for design. If our design calls for a list container type,
the Java programmers can choose to use a LinkedList or an ArrayList when
implementing it, while the Python programmers (that's us!) can choose between the
list built-in and a tuple.

In our fruit-farming example so far, our attributes are all basic primitives. However,
there are some implicit attributes that we can make explicit—the associations.
For a given orange, we might have an attribute containing the basket that holds
that orange.

Behaviors are actions
Now, we know what data is, but what are behaviors? Behaviors are actions that
can occur on an object. The behaviors that can be performed on a specific class of
objects are called methods. At the programming level, methods are like functions in
structured programming, but they magically have access to all the data associated with
this object. Like functions, methods can also accept parameters and return values.

Object-oriented Design

[8]

Parameters to a method are a list of objects that need to be passed into the method
that is being called (the objects that are passed in from the calling object are usually
referred to as arguments). These objects are used by the method to perform whatever
behavior or task it is meant to do. Returned values are the results of that task.

We've stretched our "comparing apples and oranges" example into a basic (if far-
fetched) inventory application. Let's stretch it a little further and see if it breaks.
One action that can be associated with oranges is the pick action. If you think about
implementation, pick would place the orange in a basket by updating the basket
attribute of the orange, and by adding the orange to the oranges list on the Basket.
So, pick needs to know what basket it is dealing with. We do this by giving the pick
method a basket parameter. Since our fruit farmer also sells juice, we can add a
squeeze method to Orange. When squeezed, squeeze might return the amount of
juice retrieved, while also removing the Orange from the basket it was in.

Basket can have a sell action. When a basket is sold, our inventory system
might update some data on as-yet unspecified objects for accounting and profit
calculations. Alternatively, our basket of oranges might go bad before we can sell
them, so we add a discard method. Let's add these methods to our diagram:

Orange
Basket

go in�*

1

+location: string
+oranges: list

+Weight: float
+Orchard: string
+Date_Picked: date
+basket: Basket

+pick(basket:Basket)
+squeeze(): amount_of_juice

+sell(customer:Customer)
+discard()

Adding models and methods to individual objects allows us to create a system of
interacting objects. Each object in the system is a member of a certain class. These
classes specify what types of data the object can hold and what methods can be
invoked on it. The data in each object can be in a different state from other objects
of the same class, and each object may react to method calls differently because of
the differences in state.

Object-oriented analysis and design is all about figuring out what those objects are
and how they should interact. The next section describes principles that can be used
to make those interactions as simple and intuitive as possible.

Chapter 1

[9]

Hiding details and creating the
public interface
The key purpose of modeling an object in object-oriented design is to determine what
the public interface of that object will be. The interface is the collection of attributes
and methods that other objects can use to interact with that object. They do not need,
and are often not allowed, to access the internal workings of the object. A common
real-world example is the television. Our interface to the television is the remote
control. Each button on the remote control represents a method that can be called on
the television object. When we, as the calling object, access these methods, we do not
know or care if the television is getting its signal from an antenna, a cable connection,
or a satellite dish. We don't care what electronic signals are being sent to adjust the
volume, or whether the sound is destined to speakers or headphones. If we open the
television to access the internal workings, for example, to split the output signal to
both external speakers and a set of headphones, we will void the warranty.

This process of hiding the implementation, or functional details, of an object is
suitably called information hiding. It is also sometimes referred to as encapsulation,
but encapsulation is actually a more all-encompassing term. Encapsulated data is
not necessarily hidden. Encapsulation is, literally, creating a capsule and so think
of creating a time capsule. If you put a bunch of information into a time capsule,
lock and bury it, it is both encapsulated and the information is hidden. On the other
hand, if the time capsule has not been buried and is unlocked or made of clear
plastic, the items inside it are still encapsulated, but there is no information hiding.

The distinction between encapsulation and information hiding is largely
irrelevant, especially at the design level. Many practical references use these terms
interchangeably. As Python programmers, we don't actually have or need true
information hiding, (we'll discuss the reasons for this in Chapter 2, Objects in
Python) so the more encompassing definition for encapsulation is suitable.

The public interface, however, is very important. It needs to be carefully designed
as it is difficult to change it in the future. Changing the interface will break any client
objects that are calling it. We can change the internals all we like, for example, to
make it more efficient, or to access data over the network as well as locally, and the
client objects will still be able to talk to it, unmodified, using the public interface.
On the other hand, if we change the interface by changing attribute names that are
publicly accessed, or by altering the order or types of arguments that a method can
accept, all client objects will also have to be modified. While on the topic of public
interfaces, keep it simple. Always design the interface of an object based on how easy
it is to use, not how hard it is to code (this advice applies to user interfaces as well).

Object-oriented Design

[10]

Remember, program objects may represent real objects, but that does not make
them real objects. They are models. One of the greatest gifts of modeling is the
ability to ignore irrelevant details. The model car I built as a child may look like a
real 1956 Thunderbird on the outside, but it doesn't run and the driveshaft doesn't
turn. These details were overly complex and irrelevant before I started driving.
The model is an abstraction of a real concept.

Abstraction is another object-oriented concept related to encapsulation and
information hiding. Simply put, abstraction means dealing with the level of detail
that is most appropriate to a given task. It is the process of extracting a public
interface from the inner details. A driver of a car needs to interact with steering,
gas pedal, and brakes. The workings of the motor, drive train, and brake subsystem
don't matter to the driver. A mechanic, on the other hand, works at a different level
of abstraction, tuning the engine and bleeding the breaks. Here's an example of two
abstraction levels for a car:

+disc_brakes
+fuel_injected_engine
+automatic_transmission

+adjust_brake()
+change_oil()

Car

Car

+steer()
+change_gears()
+apply_brake()

+brakes
+gas_pedal

Driver

Mechanic

drives�

fixes�

Now, we have several new terms that refer to similar concepts. Condensing all
this jargon into a couple of sentences: abstraction is the process of encapsulating
information with separate public and private interfaces. The private interfaces can
be subject to information hiding.

The important lesson to take from all these definitions is to make our models
understandable to other objects that have to interact with them. This means paying
careful attention to small details. Ensure methods and properties have sensible names.
When analyzing a system, objects typically represent nouns in the original problem,
while methods are normally verbs. Attributes can often be picked up as adjectives,
although if the attribute refers to another object that is part of the current object, it
will still likely be a noun. Name classes, attributes, and methods accordingly.

Chapter 1

[11]

Don't try to model objects or actions that might be useful in the future. Model exactly
those tasks that the system needs to perform, and the design will naturally gravitate
towards the one that has an appropriate level of abstraction. This is not to say we
should not think about possible future design modifications. Our designs should be
open ended so that future requirements can be satisfied. However, when abstracting
interfaces, try to model exactly what needs to be modeled and nothing more.

When designing the interface, try placing yourself in the object's shoes and imagine
that the object has a strong preference for privacy. Don't let other objects have access
to data about you unless you feel it is in your best interest for them to have it. Don't
give them an interface to force you to perform a specific task unless you are certain
you want them to be able to do that to you.

Composition
So far, we learned to design systems as a group of interacting objects, where each
interaction involves viewing objects at an appropriate level of abstraction. But we
don't know yet how to create these levels of abstraction. There are a variety of ways
to do this; we'll discuss some advanced design patterns in Chapter 8, Strings and
Serialization and Chapter 9, The Iterator Pattern. But even most design patterns rely
on two basic object-oriented principles known as composition and inheritance.
Composition is simpler, so let's start with it.

Composition is the act of collecting several objects together to create a new one.
Composition is usually a good choice when one object is part of another object.
We've already seen a first hint of composition in the mechanic example. A car is
composed of an engine, transmission, starter, headlights, and windshield, among
numerous other parts. The engine, in turn, is composed of pistons, a crank shaft, and
valves. In this example, composition is a good way to provide levels of abstraction.
The car object can provide the interface required by a driver, while also providing
access to its component parts, which offers the deeper level of abstraction suitable
for a mechanic. Those component parts can, of course, be further broken down if the
mechanic needs more information to diagnose a problem or tune the engine.

This is a common introductory example of composition, but it's not overly useful
when it comes to designing computer systems. Physical objects are easy to break
into component objects. People have been doing this at least since the ancient Greeks
originally postulated that atoms were the smallest units of matter (they, of course,
didn't have access to particle accelerators). Computer systems are generally less
complicated than physical objects, yet identifying the component objects in such
systems does not happen as naturally.

Object-oriented Design

[12]

The objects in an object-oriented system occasionally represent physical objects such
as people, books, or telephones. More often, however, they represent abstract ideas.
People have names, books have titles, and telephones are used to make calls. Calls,
titles, accounts, names, appointments, and payments are not usually considered
objects in the physical world, but they are all frequently-modeled components in
computer systems.

Let's try modeling a more computer-oriented example to see composition in
action. We'll be looking at the design of a computerized chess game. This was a
very popular pastime among academics in the 80s and 90s. People were predicting
that computers would one day be able to defeat a human chess master. When
this happened in 1997 (IBM's Deep Blue defeated world chess champion, Gary
Kasparov), interest in the problem waned, although there are still contests between
computer and human chess players. (The computers usually win.)

As a basic, high-level analysis, a game of chess is played between two players,
using a chess set featuring a board containing sixty-four positions in an 8 X 8 grid.
The board can have two sets of sixteen pieces that can be moved, in alternating
turns by the two players in different ways. Each piece can take other pieces. The
board will be required to draw itself on the computer screen after each turn.

I've identified some of the possible objects in the description using italics, and a few
key methods using bold. This is a common first step in turning an object-oriented
analysis into a design. At this point, to emphasize composition, we'll focus on the
board, without worrying too much about the players or the different types of pieces.

Let's start at the highest level of abstraction possible. We have two players
interacting with a chess set by taking turns making moves:

Player 1 Player 2

Chess Set

make_move

make_move

Chapter 1

[13]

What is this? It doesn't quite look like our earlier class diagrams. That's because it
isn't a class diagram! This is an object diagram, also called an instance diagram. It
describes the system at a specific state in time, and is describing specific instances
of objects, not the interaction between classes. Remember, both players are members
of the same class, so the class diagram looks a little different:

Make Move�

Chess SetPlayer
12

The diagram shows that exactly two players can interact with one chess set. It also
indicates that any one player can be playing with only one chess set at a time.

However, we're discussing composition, not UML, so let's think about what the
Chess Set is composed of. We don't care what the player is composed of at this time.
We can assume that the player has a heart and brain, among other organs, but these
are irrelevant to our model. Indeed, there is nothing stopping said player from being
Deep Blue itself, which has neither a heart nor a brain.

The chess set, then, is composed of a board and 32 pieces. The board further
comprises 64 positions. You could argue that pieces are not part of the chess set
because you could replace the pieces in a chess set with a different set of pieces.
While this is unlikely or impossible in a computerized version of chess, it introduces
us to aggregation.

Aggregation is almost exactly like composition. The difference is that aggregate
objects can exist independently. It would be impossible for a position to be associated
with a different chess board, so we say the board is composed of positions. But the
pieces, which might exist independently of the chess set, are said to be in an aggregate
relationship with that set.

Another way to differentiate between aggregation and composition is to think about
the lifespan of the object. If the composite (outside) object controls when the related
(inside) objects are created and destroyed, composition is most suitable. If the related
object is created independently of the composite object, or can outlast that object,
an aggregate relationship makes more sense. Also, keep in mind that composition
is aggregation; aggregation is simply a more general form of composition. Any
composite relationship is also an aggregate relationship, but not vice versa.

Object-oriented Design

[14]

Let's describe our current chess set composition and add some attributes to the
objects to hold the composite relationships:

+chess_set: ChessSet
+positions: Position

+chess_set: ChessSet

Player
Position

Piece

Chess Set

Board

+chess_board: Board

+pieces: list
+board: Board

Make Move�
2

1

64

32

1

1

1

The composition relationship is represented in UML as a solid diamond. The hollow
diamond represents the aggregate relationship. You'll notice that the board and
pieces are stored as part of the chess set in exactly the same way a reference to them
is stored as an attribute on the chess set. This shows that, once again, in practice,
the distinction between aggregation and composition is often irrelevant once you
get past the design stage. When implemented, they behave in much the same way.
However, it can help to differentiate between the two when your team is discussing
how the different objects interact. Often, you can treat them as the same thing, but
when you need to distinguish between them, it's great to know the difference (this
is abstraction at work).

Inheritance
We discussed three types of relationships between objects: association, composition,
and aggregation. However, we have not fully specified our chess set, and these tools
don't seem to give us all the power we need. We discussed the possibility that a player
might be a human or it might be a piece of software featuring artificial intelligence. It
doesn't seem right to say that a player is associated with a human, or that the artificial
intelligence implementation is part of the player object. What we really need is the
ability to say that "Deep Blue is a player" or that "Gary Kasparov is a player".

The is a relationship is formed by inheritance. Inheritance is the most famous, well-
known, and over-used relationship in object-oriented programming. Inheritance is sort
of like a family tree. My grandfather's last name was Phillips and my father inherited
that name. I inherited it from him (along with blue eyes and a penchant for writing).
In object-oriented programming, instead of inheriting features and behaviors from a
person, one class can inherit attributes and methods from another class.

Chapter 1

[15]

For example, there are 32 chess pieces in our chess set, but there are only six different
types of pieces (pawns, rooks, bishops, knights, king, and queen), each of which
behaves differently when it is moved. All of these classes of piece have properties,
such as color and the chess set they are part of, but they also have unique shapes
when drawn on the chess board, and make different moves. Let's see how the six
types of pieces can inherit from a Piece class:

+chess_set: ChessSet
+color

+shape

+move(board)

+move(board)

+move(board) +move(board)

+move(board)

+move(board)

+shape

+shape +shape

+shape

+shape

Rook

Bishop

Piece

Pawn

Queen

King Knight

The hollow arrows indicate that the individual classes of pieces inherit from the Piece
class. All the subtypes automatically have a chess_set and color attribute inherited
from the base class. Each piece provides a different shape property (to be drawn on the
screen when rendering the board), and a different move method to move the piece to a
new position on the board at each turn.

We actually know that all subclasses of the Piece class need to have a move method;
otherwise, when the board tries to move the piece, it will get confused. It is possible
that we would want to create a new version of the game of chess that has one
additional piece (the wizard). Our current design allows us to design this piece
without giving it a move method. The board would then choke when it asked the
piece to move itself.

We can implement this by creating a dummy move method on the Piece class. The
subclasses can then override this method with a more specific implementation. The
default implementation might, for example, pop up an error message that says: That
piece cannot be moved.

Object-oriented Design

[16]

Overriding methods in subtypes allows very powerful object-oriented systems to
be developed. For example, if we wanted to implement a player class with artificial
intelligence, we might provide a calculate_move method that takes a Board object
and decides which piece to move where. A very basic class might randomly choose
a piece and direction and move it accordingly. We could then override this method
in a subclass with the Deep Blue implementation. The first class would be suitable
for play against a raw beginner, the latter would challenge a grand master. The
important thing is that other methods in the class, such as the ones that inform the
board as to which move was chose need not be changed; this implementation can
be shared between the two classes.

In the case of chess pieces, it doesn't really make sense to provide a default
implementation of the move method. All we need to do is specify that the move
method is required in any subclasses. This can be done by making Piece an abstract
class with the move method declared abstract. Abstract methods basically say, "We
demand this method exist in any non-abstract subclass, but we are declining to
specify an implementation in this class."

Indeed, it is possible to make a class that does not implement any methods at all. Such
a class would simply tell us what the class should do, but provides absolutely no
advice on how to do it. In object-oriented parlance, such classes are called interfaces.

Inheritance provides abstraction
Let's explore the longest word in object-oriented argot. Polymorphism is the ability to
treat a class differently depending on which subclass is implemented. We've already
seen it in action with the pieces system we've described. If we took the design a bit
further, we'd probably see that the Board object can accept a move from the player and
call the move function on the piece. The board need not ever know what type of piece
it is dealing with. All it has to do is call the move method, and the proper subclass will
take care of moving it as a Knight or a Pawn.

Polymorphism is pretty cool, but it is a word that is rarely used in Python
programming. Python goes an extra step past allowing a subclass of an object to be
treated like a parent class. A board implemented in Python could take any object that
has a move method, whether it is a bishop piece, a car, or a duck. When move is called,
the Bishop will move diagonally on the board, the car will drive someplace, and the
duck will swim or fly, depending on its mood.

Chapter 1

[17]

This sort of polymorphism in Python is typically referred to as duck typing: "If it
walks like a duck or swims like a duck, it's a duck". We don't care if it really is a duck
(inheritance), only that it swims or walks. Geese and swans might easily be able to
provide the duck-like behavior we are looking for. This allows future designers to
create new types of birds without actually specifying an inheritance hierarchy for
aquatic birds. It also allows them to create completely different drop-in behaviors that
the original designers never planned for. For example, future designers might be able
to make a walking, swimming penguin that works with the same interface without
ever suggesting that penguins are ducks.

Multiple inheritance
When we think of inheritance in our own family tree, we can see that we inherit
features from more than just one parent. When strangers tell a proud mother that her
son has, "his fathers eyes", she will typically respond along the lines of, "yes, but he
got my nose."

Object-oriented design can also feature such multiple inheritance, which allows a
subclass to inherit functionality from multiple parent classes. In practice, multiple
inheritance can be a tricky business, and some programming languages (most
notably, Java) strictly prohibit it. However, multiple inheritance can have its uses.
Most often, it can be used to create objects that have two distinct sets of behaviors.
For example, an object designed to connect to a scanner and send a fax of the
scanned document might be created by inheriting from two separate scanner and
faxer objects.

As long as two classes have distinct interfaces, it is not normally harmful for a
subclass to inherit from both of them. However, it gets messy if we inherit from two
classes that provide overlapping interfaces. For example, if we have a motorcycle
class that has a move method, and a boat class also featuring a move method,
and we want to merge them into the ultimate amphibious vehicle, how does the
resulting class know what to do when we call move? At the design level, this needs
to be explained, and at the implementation level, each programming language has
different ways of deciding which parent class's method is called, or in what order.

Often, the best way to deal with it is to avoid it. If you have a design showing up like
this, you're probably doing it wrong. Take a step back, analyze the system again, and
see if you can remove the multiple inheritance relationship in favor of some other
association or composite design.

Object-oriented Design

[18]

Inheritance is a very powerful tool for extending behavior. It is also one of the most
marketable advancements of object-oriented design over earlier paradigms. Therefore,
it is often the first tool that object-oriented programmers reach for. However, it
is important to recognize that owning a hammer does not turn screws into nails.
Inheritance is the perfect solution for obvious is a relationships, but it can be abused.
Programmers often use inheritance to share code between two kinds of objects that are
only distantly related, with no is a relationship in sight. While this is not necessarily
a bad design, it is a terrific opportunity to ask just why they decided to design it that
way, and whether a different relationship or design pattern would have been more
suitable.

Case study
Let's tie all our new object-oriented knowledge together by going through a few
iterations of object-oriented design on a somewhat real-world example. The system
we'll be modeling is a library catalog. Libraries have been tracking their inventory for
centuries, originally using card catalogs, and more recently, electronic inventories.
Modern libraries have web-based catalogs that we can query from our homes.

Let's start with an analysis. The local librarian has asked us to write a new card
catalog program because their ancient DOS-based program is ugly and out of date.
That doesn't give us much detail, but before we start asking for more information,
let's consider what we already know about library catalogs.

Catalogs contain lists of books. People search them to find books on certain subjects,
with specific titles, or by a particular author. Books can be uniquely identified by an
International Standard Book Number (ISBN). Each book has a Dewey Decimal
System (DDS) number assigned to help find it on a particular shelf.

This simple analysis tells us some of the obvious objects in the system. We quickly
identify Book as the most important object, with several attributes already
mentioned, such as author, title, subject, ISBN, and DDS number, and catalog as a
sort of manager for books.

We also notice a few other objects that may or may not need to be modeled in the
system. For cataloging purposes, all we need to search a book by author is an author_
name attribute on the book. However, authors are also objects, and we might want to
store some other data about the author. As we ponder this, we might remember that
some books have multiple authors. Suddenly, the idea of having a single author_name
attribute on objects seems a bit silly. A list of authors associated with each book is
clearly a better idea.

Chapter 1

[19]

The relationship between author and book is clearly association, since you would
never say, "a book is an author" (it's not inheritance), and saying "a book has an
author", though grammatically correct, does not imply that authors are part of books
(it's not aggregation). Indeed, any one author may be associated with multiple books.

We should also pay attention to the noun (nouns are always good candidates for
objects) shelf. Is a shelf an object that needs to be modeled in a cataloging system?
How do we identify an individual shelf? What happens if a book is stored at the
end of one shelf, and later moved to the beginning of the next shelf because another
book was inserted in the previous shelf?

DDS was designed to help locate physical books in a library. As such, storing a
DDS attribute with the book should be enough to locate it, regardless of which shelf
it is stored on. So we can, at least for the moment, remove shelf from our list of
contending objects.

Another questionable object in the system is the user. Do we need to know anything
about a specific user, such as their name, address, or list of overdue books? So far, the
librarian has told us only that they want a catalog; they said nothing about tracking
subscriptions or overdue notices. In the back of our minds, we also note that authors
and users are both specific kinds of people; there might be a useful inheritance
relationship here in the future.

For cataloging purposes, we decide we don't need to identify the user for now. We
can assume that a user will be searching the catalog, but we don't have to actively
model them in the system, beyond providing an interface that allows them to search.

We have identified a few attributes on the book, but what properties does a catalog
have? Does any one library have more than one catalog? Do we need to uniquely
identify them? Obviously, the catalog has to have a collection of the books it
contains, somehow, but this list is probably not part of the public interface.

What about behaviors? The catalog clearly needs a search method, possibly separate
ones for authors, titles, and subjects. Are there any behaviors on books? Would it
need a preview method? Or could preview be identified by a first pages attribute
instead of a method?

The questions in the preceding discussion are all part of the object-oriented analysis
phase. But intermixed with the questions, we have already identified a few key
objects that are part of the design. Indeed, what you have just seen are several
microiterations between analysis and design.

Object-oriented Design

[20]

Likely, these iterations would all occur in an initial meeting with the librarian. Before
this meeting, however, we can already sketch out a most basic design for the objects
we have concretely identified:

+Search()

+ISBN
+Authors
+Title
+Subject
+DDS number

+Name

Catalog

Author
Book

Armed with this basic diagram and a pencil to interactively improve it, we meet
up with the librarian. They tell us that this is a good start, but libraries don't serve
only books, they also have DVDs, magazines, and CDs, none of which have an ISBN
or DDS number. All of these types of items can be uniquely identified by a UPC
number though. We remind the librarian that they have to find the items on the
shelf, and these items probably aren't organized by UPC. The librarian explains that
each type is organized in a different way. The CDs are mostly audio books, and they
only have a couple of dozen in stock, so they are organized by the author's last name.
DVDs are divided into genre and further organized by title. Magazines are organized
by title and then refined by the volume and issue number. Books are, as we had
guessed, organized by the DDS number.

With no previous object-oriented design experience, we might consider adding
separate lists of DVDs, CDs, magazines, and books to our catalog, and search each
one in turn. The trouble is, except for certain extended attributes, and identifying the
physical location of the item, these items all behave as much the same. This is a job
for inheritance! We quickly update our UML diagram:

Catalog

LibraryItem

Author
Book

+ISBN
+Authors
+Title
+Subject
+DDS number

+Name

Magazine

+Volume
+Issue

DVD

+Actors
+Director
+Genre

CD

+Artist

+Search()

+Title
+UPC
+Subject

+locate()

1
*

Chapter 1

[21]

The librarian understands the gist of our sketched diagram, but is a bit confused by the
locate functionality. We explain using a specific use case where the user is searching
for the word "bunnies". The user first sends a search request to the catalog. The catalog
queries its internal list of items and finds a book and a DVD with "bunnies" in the title.
At this point, the catalog doesn't care if it is holding a DVD, book, CD, or magazine; all
items are the same, as far as the catalog is concerned. However, the user wants to know
how to find the physical items, so the catalog would be remiss if it simply returned a
list of titles. So, it calls the locate method on the two items it has uncovered. The book's
locate method returns a DDS number that can be used to find the shelf holding the
book. The DVD is located by returning the genre and title of the DVD. The user can
then visit the DVD section, find the section containing that genre, and find the specific
DVD as sorted by the titles.

As we explain, we sketch a UML sequence diagram explaining how the various
objects are communicating:

Bunnies BookCatalog Bunnies DVD

User

Search

Locate

Results

Genre, Title

DDS Number

Locate

Where, class diagrams describe the relationships between classes, and sequence
diagrams describe specific sequences of messages passed between objects. The dashed
line hanging from each object is a lifeline describing the lifetime of the object. The
wider boxes on each lifeline represent active processing in that object (where there's
no box, the object is basically sitting idle, waiting for something to happen). The
horizontal arrows between the lifelines indicate specific messages. The solid arrows
represent methods being called, while the dashed arrows with solid heads represent
the method return values.

Object-oriented Design

[22]

The half arrowheads indicate asynchronous messages sent to or from an object. An
asynchronous message typically means the first object calls a method on the second
object, which returns immediately. After some processing, the second object calls a
method on the first object to give it a value. This is in contrast to normal method
calls, which do the processing in the method, and return a value immediately.

Sequence diagrams, like all UML diagrams, are best used only when they are
needed. There is no point in drawing a UML diagram for the sake of drawing
a diagram. However, when you need to communicate a series of interactions
between two objects, the sequence diagram is a very useful tool.

Unfortunately, our class diagram so far is still a messy design. We notice that actors
on DVDs and artists on CDs are all types of people, but are being treated differently
from the book authors. The librarian also reminds us that most of their CDs are
audio books, which have authors instead of artists.

How can we deal with different kinds of people that contribute to a title? An obvious
implementation is to create a Person class with the person's name and other relevant
details, and then create subclasses of this for the artists, authors, and actors. However,
is inheritance really necessary here? For searching and cataloging purposes, we don't
really care that acting and writing are two very different activities. If we were doing
an economic simulation, it would make sense to give separate actor and author classes,
and different calculate_income and perform_job methods, but for cataloging
purposes, it is probably enough to know how the person contributed to the item.
We recognize that all items have one or more Contributor objects, so we move the
author relationship from the book to its parent class:

+Title
+UPC
+Subject
+Contributors

LibraryItem

CD

Catalog

Contributor

Book

DVD Magazine

+Locate()

+Name

+Search()

+ISBN
+Title
+Subject
+DDS number

+Genre +Volume
+Issue

1
* *

*

Chapter 1

[23]

The multiplicity of the Contributor/LibraryItem relationship is many-to-many, as
indicated by the * character at both ends of one relationship. Any one library item
might have more than one contributor (for example, several actors and a director
on a DVD). And many authors write many books, so they would be attached to
multiple library items.

This little change, while it looks a bit cleaner and simpler, has lost some vital
information. We can still tell who contributed to a specific library item, but we don't
know how they contributed. Were they the director or an actor? Did they write the
audio book, or were they the voice that narrated the book?

It would be nice if we could just add a contributor_type attribute on the
Contributor class, but this will fall apart when dealing with multitalented people
who have both authored books and directed movies.

One option is to add attributes to each of our LibraryItem subclasses that hold the
information we need, such as Author on Book, or Artist on CD, and then make the
relationship to those properties all point to the Contributor class. The problem with
this is that we lose a lot of polymorphic elegance. If we want to list the contributors to
an item, we have to look for specific attributes on that item, such as Authors or Actors.
We can alleviate this by adding a GetContributors method on the LibraryItem class
that subclasses can override. Then the catalog never has to know what attributes the
objects are querying; we've abstracted the public interface:

+Title
+UPC
+Subject
+Contributors

Catalog

Book

DVD Magazine
CD

Contributor

LibraryItem

+Search()

+ISBN
+Title
+Subject
+DDS number
+Authors

+Locate()
+GetContributors()

+Genre
+Actors
+Directors

+Volume
+Issue
+Editors

+Artists

+Name

1

*

*
* *

*
**

*

Object-oriented Design

[24]

Just looking at this class diagram, it feels like we are doing something wrong. It is
bulky and fragile. It may do everything we need, but it feels like it will be hard to
maintain or extend. There are too many relationships, and too many classes would
be affected by modifications to any one class. It looks like spaghetti and meatballs.

Now that we've explored inheritance as an option, and found it wanting, we might
look back at our previous composition-based diagram, where Contributor was
attached directly to LibraryItem. With some thought, we can see that we actually
only need to add one more relationship to a brand-new class to identify the type of
contributor. This is an important step in object-oriented design. We are now adding a
class to the design that is intended to support the other objects, rather than modeling
any part of the initial requirements. We are refactoring the design to facilitate the
objects in the system, rather than objects in real life. Refactoring is an essential process
in the maintenance of a program or design. The goal of refactoring is to improve the
design by moving code around, removing duplicate code or complex relationships in
favor of simpler, more elegant designs.

This new class is composed of a Contributor and an extra attribute identifying
the type of contribution the person has made to the given LibraryItem. There can
be many such contributions to a particular LibraryItem, and one contributor can
contribute in the same way to different items. The diagram communicates this
design very well:

+Title
+UPC
+Subject
+Contributors

+ISBN
+Title
+Subject
+DDS number

Catalog

Book

CD
DVD

Magazine

Contributor

ContributorWithType
LibraryItem

+Locate()
+Search()

+Contributor
+Type

+Name

+Volume
+Issue+Genre

1

*

*

*

Chapter 1

[25]

At first, this composition relationship looks less natural than the inheritance-based
relationships. However, it has the advantage of allowing us to add new types of
contributions without adding a new class to the design. Inheritance is most useful
when the subclasses have some kind of specialization. Specialization is creating
or changing attributes or behaviors on the subclass to make it somehow different
from the parent class. It seems silly to create a bunch of empty classes solely for
identifying different types of objects (this attitude is less prevalent among Java and
other "everything is an object" programmers, but it is common among more practical
Python designers). If we look at the inheritance version of the diagram, we can see a
bunch of subclasses that don't actually do anything:

+Title
+UPC
+Subject
+Contributors

LibraryItem

Author

Contributor

Actor

Director

EditorArtist
+Locate()

+Name

*

*

Sometimes it is important to recognize when not to use object-oriented principles.
This example of when not to use inheritance is a good reminder that objects are just
tools, and not rules.

Exercises
This is a practical book, not a textbook. As such, I'm not about to assign you a
bunch of fake object-oriented analysis problems to create designs for bunch of fake
object-oriented problems to analyze and design. Instead, I want to give you some
thoughts that you can apply to your own projects. If you have previous object-
oriented experience, you won't need to put much effort into these. However, they
are useful mental exercises if you've been using Python for a while, but never really
cared about all that class stuff.

Object-oriented Design

[26]

First, think about a recent programming project you've completed. Identify the most
prominent object in the design. Try to think of as many attributes for this object as
possible. Did it have: Color? Weight? Size? Profit? Cost? Name? ID number? Price?
Style? Think about the attribute types. Were they primitives or classes? Were some
of those attributes actually behaviors in disguise? Sometimes what looks like data is
actually calculated from other data on the object, and you can use a method to do those
calculations. What other methods or behaviors did the object have? Which objects
called those methods? What kinds of relationships did they have with this object?

Now, think about an upcoming project. It doesn't matter what the project is; it might
be a fun free-time project or a multimillion dollar contract. It doesn't have to be a
complete application; it could just be one subsystem. Perform a basic object-oriented
analysis. Identify the requirements and the interacting objects. Sketch out a class
diagram featuring the highest level of abstraction on that system. Identify the major
interacting objects. Identify minor supporting objects. Go into detail for the attributes
and methods of some of the most interesting ones. Take different objects to different
levels of abstraction. Look for places you can use inheritance or composition. Look
for places you should avoid inheritance.

The goal is not to design a system (although you're certainly welcome to do so if
inclination meets both ambition and available time). The goal is to think about object-
oriented designs. Focusing on projects that you have worked on, or are expecting to
work on in the future, simply makes it real.

Now, visit your favorite search engine and look up some tutorials on UML. There
are dozens, so find the one that suits your preferred method of study. Sketch some
class diagrams or a sequence diagram for the objects you identified earlier. Don't get
too hung up on memorizing the syntax (after all, if it is important, you can always
look it up again), just get a feel for the language. Something will stay lodged in
your brain, and it can make communicating a bit easier if you can quickly sketch a
diagram for your next OOP discussion.

Summary
In this chapter, we took a whirlwind tour through the terminology of the object-
oriented paradigm, focusing on object-oriented design. We can separate different
objects into a taxonomy of different classes and describe the attributes and behaviors
of those objects via the class interface. Classes describe objects, abstraction,
encapsulation, and information hiding are highly related concepts. There are many
different kinds of relationships between objects, including association, composition,
and inheritance. UML syntax can be useful for fun and communication.

In the next chapter, we'll explore how to implement classes and methods in Python.

[27]

Objects in Python
So, we now have a design in hand and are ready to turn that design into a working
program! Of course, it doesn't usually happen this way. We'll be seeing examples and
hints for good software design throughout the book, but our focus is object-oriented
programming. So, let's have a look at the Python syntax that allows us to create
object-oriented software.

After completing this chapter, we will understand:

• How to create classes and instantiate objects in Python
• How to add attributes and behaviors to Python objects
• How to organize classes into packages and modules
• How to suggest people don't clobber our data

Creating Python classes
We don't have to write much Python code to realize that Python is a very "clean"
language. When we want to do something, we just do it, without having to go
through a lot of setup. The ubiquitous "hello world" in Python, as you've likely
seen, is only one line.

Similarly, the simplest class in Python 3 looks like this:

class MyFirstClass:
 pass

There's our first object-oriented program! The class definition starts with the class
keyword. This is followed by a name (of our choice) identifying the class, and is
terminated with a colon.

Objects in Python

[28]

The class name must follow standard Python variable naming rules (it
must start with a letter or underscore, and can only be comprised of
letters, underscores, or numbers). In addition, the Python style guide
(search the web for "PEP 8") recommends that classes should be named
using CamelCase notation (start with a capital letter; any subsequent
words should also start with a capital).

The class definition line is followed by the class contents indented. As with other
Python constructs, indentation is used to delimit the classes, rather than braces or
brackets as many other languages use. Use four spaces for indentation unless you
have a compelling reason not to (such as fitting in with somebody else's code that
uses tabs for indents). Any decent programming editor can be configured to insert
four spaces whenever the Tab key is pressed.

Since our first class doesn't actually do anything, we simply use the pass keyword
on the second line to indicate that no further action needs to be taken.

We might think there isn't much we can do with this most basic class, but it does
allow us to instantiate objects of that class. We can load the class into the Python 3
interpreter, so we can interactively play with it. To do this, save the class definition
mentioned earlier into a file named first_class.py and then run the command
python -i first_class.py. The -i argument tells Python to "run the code
and then drop to the interactive interpreter". The following interpreter session
demonstrates basic interaction with this class:

>>> a = MyFirstClass()

>>> b = MyFirstClass()

>>> print(a)

<__main__.MyFirstClass object at 0xb7b7faec>

>>> print(b)

<__main__.MyFirstClass object at 0xb7b7fbac>

>>>

This code instantiates two objects from the new class, named a and b. Creating an
instance of a class is a simple matter of typing the class name followed by a pair
of parentheses. It looks much like a normal function call, but Python knows we're
"calling" a class and not a function, so it understands that its job is to create a new
object. When printed, the two objects tell us which class they are and what memory
address they live at. Memory addresses aren't used much in Python code, but here,
they demonstrate that there are two distinct objects involved.

Chapter 2

[29]

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Adding attributes
Now, we have a basic class, but it's fairly useless. It doesn't contain any data, and it
doesn't do anything. What do we have to do to assign an attribute to a given object?

It turns out that we don't have to do anything special in the class definition. We can
set arbitrary attributes on an instantiated object using the dot notation:

class Point:
 pass

p1 = Point()
p2 = Point()

p1.x = 5
p1.y = 4

p2.x = 3
p2.y = 6

print(p1.x, p1.y)
print(p2.x, p2.y)

If we run this code, the two print statements at the end tell us the new attribute
values on the two objects:

5 4

3 6

This code creates an empty Point class with no data or behaviors. Then it creates
two instances of that class and assigns each of those instances x and y coordinates to
identify a point in two dimensions. All we need to do to assign a value to an attribute
on an object is use the <object>.<attribute> = <value> syntax. This is sometimes referred
to as dot notation. The value can be anything: a Python primitive, a built-in data type,
or another object. It can even be a function or another class!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Objects in Python

[30]

Making it do something
Now, having objects with attributes is great, but object-oriented programming is
really about the interaction between objects. We're interested in invoking actions that
cause things to happen to those attributes. It is time to add behaviors to our classes.

Let's model a couple of actions on our Point class. We can start with a
 called reset that moves the point to the origin (the origin is the point where x and
y are both zero). This is a good introductory action because it doesn't require any
parameters:

class Point:
 def reset(self):
 self.x = 0
 self.y = 0

p = Point()
p.reset()
print(p.x, p.y)

This print statement shows us the two zeros on the attributes:

0 0

A method in Python is formatted identically to a function. It starts with the keyword
def followed by a space and the name of the method. This is followed by a set of
parentheses containing the parameter list (we'll discuss that self parameter in
just a moment), and terminated with a colon. The next line is indented to contain
the statements inside the method. These statements can be arbitrary Python code
operating on the object itself and any parameters passed in as the method sees fit.

Talking to yourself
The one difference between methods and normal functions is that all methods have
one required argument. This argument is conventionally named self; I've never seen
a programmer use any other name for this variable (convention is a very powerful
thing). There's nothing stopping you, however, from calling it this or even Martha.

The self argument to a method is simply a reference to the object that the method
is being invoked on. We can access attributes and methods of that object as if it were
any another object. This is exactly what we do inside the reset method when we set
the x and y attributes of the self object.

Chapter 2

[31]

Notice that when we call the p.reset() method, we do not have to pass the self
argument into it. Python automatically takes care of this for us. It knows we're calling
a method on the p object, so it automatically passes that object to the method.

However, the method really is just a function that happens to be on a class. Instead
of calling the method on the object, we can invoke the function on the class, explicitly
passing our object as the self argument:

p = Point()
Point.reset(p)
print(p.x, p.y)

The output is the same as the previous example because internally, the exact same
process has occurred.

What happens if we forget to include the self argument in our class definition?
Python will bail with an error message:

>>> class Point:

... def reset():

... pass

...

>>> p = Point()

>>> p.reset()

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: reset() takes no arguments (1 given)

The error message is not as clear as it could be ("You silly fool, you forgot the self
argument" would be more informative). Just remember that when you see an error
message that indicates missing arguments, the first thing to check is whether you
forgot self in the method definition.

More arguments
So, how do we pass multiple arguments to a method? Let's add a new method that
allows us to move a point to an arbitrary position, not just to the origin. We can
also include one that accepts another Point object as input and returns the distance
between them:

import math

class Point:

Objects in Python

[32]

 def move(self, x, y):
 self.x = x
 self.y = y

 def reset(self):
 self.move(0, 0)

 def calculate_distance(self, other_point):
 return math.sqrt(
 (self.x - other_point.x)**2 +
 (self.y - other_point.y)**2)

how to use it:
point1 = Point()
point2 = Point()

point1.reset()
point2.move(5,0)
print(point2.calculate_distance(point1))
assert (point2.calculate_distance(point1) ==
 point1.calculate_distance(point2))
point1.move(3,4)
print(point1.calculate_distance(point2))
print(point1.calculate_distance(point1))

The print statements at the end give us the following output:

5.0

4.472135955

0.0

A lot has happened here. The class now has three methods. The move method
accepts two arguments, x and y, and sets the values on the self object, much like
the old reset method from the previous example. The old reset method now
calls move, since a reset is just a move to a specific known location.

The calculate_distance method uses the not-too-complex Pythagorean theorem
to calculate the distance between two points. I hope you understand the math (**
means squared, and math.sqrt calculates a square root), but it's not a requirement
for our current focus, learning how to write methods.

Chapter 2

[33]

The sample code at the end of the preceding example shows how to call a method
with arguments: simply include the arguments inside the parentheses, and use the
same dot notation to access the method. I just picked some random positions to test
the methods. The test code calls each method and prints the results on the console.
The assert function is a simple test tool; the program will bail if the statement after
assert is False (or zero, empty, or None). In this case, we use it to ensure that the
distance is the same regardless of which point called the other point's calculate_
distance method.

Initializing the object
If we don't explicitly set the x and y positions on our Point object, either using
move or by accessing them directly, we have a broken point with no real position.
What will happen when we try to access it?

Well, let's just try it and see. "Try it and see" is an extremely useful tool for Python
study. Open up your interactive interpreter and type away. The following interactive
session shows what happens if we try to access a missing attribute. If you saved the
previous example as a file or are using the examples distributed with the book, you
can load it into the Python interpreter with the command python -i filename.py:

>>> point = Point()

>>> point.x = 5

>>> print(point.x)

5

>>> print(point.y)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: 'Point' object has no attribute 'y'

Well, at least it threw a useful exception. We'll cover exceptions in detail in Chapter 4,
Expecting the Unexpected. You've probably seen them before (especially the ubiquitous
SyntaxError, which means you typed something incorrectly!). At this point, simply
be aware that it means something went wrong.

The output is useful for debugging. In the interactive interpreter, it tells us the
error occurred at line 1, which is only partially true (in an interactive session, only
one line is executed at a time). If we were running a script in a file, it would tell us
the exact line number, making it easy to find the offending code. In addition, it tells
us the error is an AttributeError, and gives a helpful message telling us what that
error means.

Objects in Python

[34]

We can catch and recover from this error, but in this case, it feels like we should
have specified some sort of default value. Perhaps every new object should be
reset() by default, or maybe it would be nice if we could force the user to tell
us what those positions should be when they create the object.

Most object-oriented programming languages have the concept of a constructor,
a special method that creates and initializes the object when it is created. Python is
a little different; it has a constructor and an initializer. The constructor function is
rarely used unless you're doing something exotic. So, we'll start our discussion
with the initialization method.

The Python initialization method is the same as any other method, except it has a
special name, __init__. The leading and trailing double underscores mean this is
a special method that the Python interpreter will treat as a special case.

Never name a function of your own with leading and trailing double
underscores. It may mean nothing to Python, but there's always the
possibility that the designers of Python will add a function that has a
special purpose with that name in the future, and when they do, your
code will break.

Let's start with an initialization function on our Point class that requires the user to
supply x and y coordinates when the Point object is instantiated:

class Point:
 def __init__(self, x, y):
 self.move(x, y)

 def move(self, x, y):
 self.x = x
 self.y = y

 def reset(self):
 self.move(0, 0)

Constructing a Point
point = Point(3, 5)
print(point.x, point.y)

Now, our point can never go without a y coordinate! If we try to construct a
point without including the proper initialization parameters, it will fail with a not
enough arguments error similar to the one we received earlier when we forgot the
self argument.

Chapter 2

[35]

What if we don't want to make those two arguments required? Well, then we can
use the same syntax Python functions use to provide default arguments. The
keyword argument syntax appends an equals sign after each variable name. If the
calling object does not provide this argument, then the default argument is used
instead. The variables will still be available to the function, but they will have the
values specified in the argument list. Here's an example:

 class Point:
 def __init__(self, x=0, y=0):
 self.move(x, y)

Most of the time, we put our initialization statements in an __init__ function. But as
mentioned earlier, Python has a constructor in addition to its initialization function.
You may never need to use the other Python constructor, but it helps to know it
exists, so we'll cover it briefly.

The constructor function is called __new__ as opposed to __init__, and accepts
exactly one argument; the class that is being constructed (it is called before the object
is constructed, so there is no self argument). It also has to return the newly created
object. This has interesting possibilities when it comes to the complicated art of
metaprogramming, but is not very useful in day-to-day programming. In practice,
you will rarely, if ever, need to use __new__ and __init__ will be sufficient.

Explaining yourself
Python is an extremely easy-to-read programming language; some might say it
is self-documenting. However, when doing object-oriented programming, it is
important to write API documentation that clearly summarizes what each object
and method does. Keeping documentation up-to-date is difficult; the best way to
do it is to write it right into our code.

Python supports this through the use of docstrings. Each class, function, or
method header can have a standard Python string as the first line following the
definition (the line that ends in a colon). This line should be indented the same
as the following code.

Docstrings are simply Python strings enclosed with apostrophe (') or quote (")
characters. Often, docstrings are quite long and span multiple lines (the style guide
suggests that the line length should not exceed 80 characters), which can
be formatted as multi-line strings, enclosed in matching triple apostrophe (''')
or triple quote (""") characters.

Objects in Python

[36]

A docstring should clearly and concisely summarize the purpose of the class or
method it is describing. It should explain any parameters whose usage is not
immediately obvious, and is also a good place to include short examples of how to
use the API. Any caveats or problems an unsuspecting user of the API should be
aware of should also be noted.

To illustrate the use of docstrings, we will end this section with our completely
documented Point class:

import math

class Point:
 'Represents a point in two-dimensional geometric coordinates'

 def __init__(self, x=0, y=0):
 '''Initialize the position of a new point. The x and y
coordinates can be specified. If they are not, the
 point defaults to the origin.'''
 self.move(x, y)

 def move(self, x, y):
 "Move the point to a new location in 2D space."
 self.x = x
 self.y = y

 def reset(self):
 'Reset the point back to the geometric origin: 0, 0'
 self.move(0, 0)

 def calculate_distance(self, other_point):
 """Calculate the distance from this point to a second
 point passed as a parameter.

 This function uses the Pythagorean Theorem to calculate
the distance between the two points. The distance is
 returned as a float."""

 return math.sqrt(
 (self.x - other_point.x)**2 +
 (self.y - other_point.y)**2)

Chapter 2

[37]

Try typing or loading (remember, it's python -i filename.py) this file into the
interactive interpreter. Then, enter help(Point)<enter> at the Python prompt.
You should see nicely formatted documentation for the class, as shown in the
following screenshot:

Modules and packages
Now, we know how to create classes and instantiate objects, but how do we organize
them? For small programs, we can just put all our classes into one file and add a little
script at the end of the file to start them interacting. However, as our projects grow,
it can become difficult to find the one class that needs to be edited among the many
classes we've defined. This is where modules come in. Modules are simply Python
files, nothing more. The single file in our small program is a module. Two Python
files are two modules. If we have two files in the same folder, we can load a class
from one module for use in the other module.

For example, if we are building an e-commerce system, we will likely be storing a
lot of data in a database. We can put all the classes and functions related to database
access into a separate file (we'll call it something sensible: database.py). Then, our
other modules (for example, customer models, product information, and inventory)
can import classes from that module in order to access the database.

Objects in Python

[38]

The import statement is used for importing modules or specific classes or functions
from modules. We've already seen an example of this in our Point class in the
previous section. We used the import statement to get Python's built-in math
module and use its sqrt function in our distance calculation.

Here's a concrete example. Assume we have a module called database.py that
contains a class called Database, and a second module called products.py that is
responsible for product-related queries. At this point, we don't need to think too
much about the contents of these files. What we know is that products.py needs to
instantiate the Database class from database.py so that it can execute queries on
the product table in the database.

There are several variations on the import statement syntax that can be used to
access the class:

import database
db = database.Database()
Do queries on db

This version imports the database module into the products namespace (the list
of names currently accessible in a module or function), so any class or function in
the database module can be accessed using the database.<something> notation.
Alternatively, we can import just the one class we need using the from...import
syntax:

from database import Database
db = Database()
Do queries on db

If, for some reason, products already has a class called Database, and we don't
want the two names to be confused, we can rename the class when used inside the
products module:

from database import Database as DB
db = DB()
Do queries on db

We can also import multiple items in one statement. If our database module also
contains a Query class, we can import both classes using:

from database import Database, Query

Chapter 2

[39]

Some sources say that we can import all classes and functions from the database
module using this syntax:

from database import *

Don't do this. Every experienced Python programmer will tell you that you should
never use this syntax. They'll use obscure justifications such as "it clutters up the
namespace", which doesn't make much sense to beginners. One way to learn why
to avoid this syntax is to use it and try to understand your code two years later.
But we can save some time and two years of poorly written code with a quick
explanation now!

When we explicitly import the database class at the top of our file using from
database import Database, we can easily see where the Database class comes from.
We might use db = Database() 400 lines later in the file, and we can quickly look at
the imports to see where that Database class came from. Then, if we need clarification
as to how to use the Database class, we can visit the original file (or import the module
in the interactive interpreter and use the help(database.Database) command).
However, if we use the from database import * syntax, it takes a lot longer to find
where that class is located. Code maintenance becomes a nightmare.

In addition, most editors are able to provide extra functionality, such as reliable code
completion, the ability to jump to the definition of a class, or inline documentation,
if normal imports are used. The import * syntax usually completely destroys their
ability to do this reliably.

Finally, using the import * syntax can bring unexpected objects into our local
namespace. Sure, it will import all the classes and functions defined in the module
being imported from, but it will also import any classes or modules that were
themselves imported into that file!

Every name used in a module should come from a well-specified place, whether it is
defined in that module, or explicitly imported from another module. There should
be no magic variables that seem to come out of thin air. We should always be able
to immediately identify where the names in our current namespace originated. I
promise that if you use this evil syntax, you will one day have extremely frustrating
moments of "where on earth can this class be coming from?".

Objects in Python

[40]

Organizing the modules
As a project grows into a collection of more and more modules, we may find that
we want to add another level of abstraction, some kind of nested hierarchy on our
modules' levels. However, we can't put modules inside modules; one file can hold
only one file after all, and modules are nothing more than Python files.

Files, however, can go in folders and so can modules. A package is a collection of
modules in a folder. The name of the package is the name of the folder. All we need to
do to tell Python that a folder is a package is place a (normally empty) file in the folder
named __init__.py. If we forget this file, we won't be able to import modules from
that folder.

Let's put our modules inside an ecommerce package in our working folder, which
will also contain a main.py file to start the program. Let's additionally add another
package in the ecommerce package for various payment options. The folder
hierarchy will look like this:

parent_directory/
 main.py
 ecommerce/
 __init__.py
 database.py
 products.py
 payments/
 __init__.py
 square.py
 stripe.py

When importing modules or classes between packages, we have to be cautious about
the syntax. In Python 3, there are two ways of importing modules: absolute imports
and relative imports.

Absolute imports
Absolute imports specify the complete path to the module, function, or path we
want to import. If we need access to the Product class inside the products module,
we could use any of these syntaxes to do an absolute import:

import ecommerce.products
product = ecommerce.products.Product()

or

from ecommerce.products import Product
product = Product()

Chapter 2

[41]

or

from ecommerce import products
product = products.Product()

The import statements use the period operator to separate packages or modules.

These statements will work from any module. We could instantiate a Product
class using this syntax in main.py, in the database module, or in either of the two
payment modules. Indeed, assuming the packages are available to Python, it will be
able to import them. For example, the packages can also be installed to the Python
site packages folder, or the PYTHONPATH environment variable could be customized
to dynamically tell Python what folders to search for packages and modules it is
going to import.

So, with these choices, which syntax do we choose? It depends on your personal taste
and the application at hand. If there are dozens of classes and functions inside the
products module that I want to use, I generally import the module name using the
from ecommerce import products syntax, and then access the individual classes
using products.Product. If I only need one or two classes from the products
module, I can import them directly using the from ecommerce.proucts import
Product syntax. I don't personally use the first syntax very often unless I have
some kind of name conflict (for example, I need to access two completely different
modules called products and I need to separate them). Do whatever you think
makes your code look more elegant.

Relative imports
When working with related modules in a package, it seems kind of silly to specify
the full path; we know what our parent module is named. This is where relative
imports come in. Relative imports are basically a way of saying find a class, function,
or module as it is positioned relative to the current module. For example, if we are
working in the products module and we want to import the Database class from
the database module next to it, we could use a relative import:

from .database import Database

The period in front of database says "use the database module inside the current
package". In this case, the current package is the package containing the
products.py file we are currently editing, that is, the ecommerce package.

If we were editing the paypal module inside the ecommerce.payments package,
we would want to say "use the database package inside the parent package" instead.
This is easily done with two periods, as shown here:

from ..database import Database

Objects in Python

[42]

We can use more periods to go further up the hierarchy. Of course, we can also
go down one side and back up the other. We don't have a deep enough example
hierarchy to illustrate this properly, but the following would be a valid import if
we had an ecommerce.contact package containing an email module and wanted
to import the send_mail function into our paypal module:

from ..contact.email import send_mail

This import uses two periods to say, the parent of the payments package, and then uses
the normal package.module syntax to go back up into the contact package.

Finally, we can import code directly from packages, as opposed to just modules inside
packages. In this example, we have an ecommerce package containing two modules
named database.py and products.py. The database module contains a db variable
that is accessed from a lot of places. Wouldn't it be convenient if this could be imported
as import ecommerce.db instead of import ecommerce.database.db?

Remember the __init__.py file that defines a directory as a package? This file can
contain any variable or class declarations we like, and they will be available as part of
the package. In our example, if the ecommerce/__init__.py file contained this line:

from .database import db

We can then access the db attribute from main.py or any other file using this import:

from ecommerce import db

It might help to think of the __init__.py file as if it was an ecommerce.py file if that
file were a module instead of a package. This can also be useful if you put all your
code in a single module and later decide to break it up into a package of modules.
The __init__.py file for the new package can still be the main point of contact for
other modules talking to it, but the code can be internally organized into several
different modules or subpackages.

I recommend not putting all your code in an __init__.py file, though. Programmers
do not expect actual logic to happen in this file, and much like with from x import
*, it can trip them up if they are looking for the declaration of a particular piece of
code and can't find it until they check __init__.py.

Chapter 2

[43]

Organizing module contents
Inside any one module, we can specify variables, classes, or functions. They can be
a handy way to store the global state without namespace conflicts. For example, we
have been importing the Database class into various modules and then instantiating
it, but it might make more sense to have only one database object globally available
from the database module. The database module might look like this:

class Database:
 # the database implementation
 pass

database = Database()

Then we can use any of the import methods we've discussed to access the database
object, for example:

from ecommerce.database import database

A problem with the preceding class is that the database object is created
immediately when the module is first imported, which is usually when the program
starts up. This isn't always ideal since connecting to a database can take a while,
slowing down startup, or the database connection information may not yet be
available. We could delay creating the database until it is actually needed by calling
an initialize_database function to create the module-level variable:

class Database:
 # the database implementation
 pass

database = None

def initialize_database():
 global database
 database = Database()

The global keyword tells Python that the database variable inside initialize_
database is the module level one we just defined. If we had not specified the
variable as global, Python would have created a new local variable that would be
discarded when the method exits, leaving the module-level value unchanged.

Objects in Python

[44]

As these two examples illustrate, all module-level code is executed immediately at
the time it is imported. However, if it is inside a method or function, the function will
be created, but its internal code will not be executed until the function is called. This
can be a tricky thing for scripts (such as the main script in our e-commerce example)
that perform execution. Often, we will write a program that does something useful,
and then later find that we want to import a function or class from that module in a
different program. However, as soon as we import it, any code at the module level is
immediately executed. If we are not careful, we can end up running the first program
when we really only meant to access a couple functions inside that module.

To solve this, we should always put our startup code in a function (conventionally,
called main) and only execute that function when we know we are running the
module as a script, but not when our code is being imported from a different script.
But how do we know this?

class UsefulClass:
 '''This class might be useful to other modules.'''
 pass

def main():
 '''creates a useful class and does something with it for our
module.'''
 useful = UsefulClass()
 print(useful)

if __name__ == "__main__":
 main()

Every module has a __name__ special variable (remember, Python uses double
underscores for special variables, such as a class's __init__ method) that specifies
the name of the module when it was imported. When the module is executed directly
with python module.py, it is never imported, so the __name__ is arbitrarily set to the
string "__main__". Make it a policy to wrap all your scripts in an if __name__ ==
"__main__": test, just in case you write a function you will find useful to be imported
by other code someday.

So, methods go in classes, which go in modules, which go in packages. Is that all
there is to it?

Chapter 2

[45]

Actually, no. This is the typical order of things in a Python program, but it's not the
only possible layout. Classes can be defined anywhere. They are typically defined at
the module level, but they can also be defined inside a function or method, like this:

def format_string(string, formatter=None):
 '''Format a string using the formatter object, which
 is expected to have a format() method that accepts
 a string.'''
 class DefaultFormatter:
 '''Format a string in title case.'''
 def format(self, string):
 return str(string).title()

 if not formatter:
 formatter = DefaultFormatter()

 return formatter.format(string)

hello_string = "hello world, how are you today?"
print(" input: " + hello_string)
print("output: " + format_string(hello_string))

The output will be as follows:

input: hello world, how are you today?

output: Hello World, How Are You Today?

The format_string function accepts a string and optional formatter object, and then
applies the formatter to that string. If no formatter is supplied, it creates a formatter
of its own as a local class and instantiates it. Since it is created inside the scope of
the function, this class cannot be accessed from anywhere outside of that function.
Similarly, functions can be defined inside other functions as well; in general, any
Python statement can be executed at any time.

These inner classes and functions are occasionally useful for one-off items that don't
require or deserve their own scope at the module level, or only make sense inside a
single method. However, it is not common to see Python code that frequently uses
this technique.

Objects in Python

[46]

Who can access my data?
Most object-oriented programming languages have a concept of access control.
This is related to abstraction. Some attributes and methods on an object are marked
private, meaning only that object can access them. Others are marked protected,
meaning only that class and any subclasses have access. The rest are public, meaning
any other object is allowed to access them.

Python doesn't do this. Python doesn't really believe in enforcing laws that might
someday get in your way. Instead, it provides unenforced guidelines and best
practices. Technically, all methods and attributes on a class are publicly available. If
we want to suggest that a method should not be used publicly, we can put a note in
docstrings indicating that the method is meant for internal use only (preferably, with
an explanation of how the public-facing API works!).

By convention, we should also prefix an attribute or method with an underscore
character, _. Python programmers will interpret this as "this is an internal variable,
think three times before accessing it directly". But there is nothing inside the interpreter
to stop them from accessing it if they think it is in their best interest to do so. Because
if they think so, why should we stop them? We may not have any idea what future
uses our classes may be put to.

There's another thing you can do to strongly suggest that outside objects don't access
a property or method: prefix it with a double underscore, __. This will perform name
mangling on the attribute in question. This basically means that the method can still be
called by outside objects if they really want to do it, but it requires extra work and is a
strong indicator that you demand that your attribute remains private. For example:

class SecretString:
 '''A not-at-all secure way to store a secret string.'''

 def __init__(self, plain_string, pass_phrase):
 self.__plain_string = plain_string
 self.__pass_phrase = pass_phrase

 def decrypt(self, pass_phrase):
 '''Only show the string if the pass_phrase is correct.'''
 if pass_phrase == self.__pass_phrase:
 return self.__plain_string
 else:
 return ''

Chapter 2

[47]

If we load this class and test it in the interactive interpreter, we can see that it hides
the plain text string from the outside world:

>>> secret_string = SecretString("ACME: Top Secret", "antwerp")

>>> print(secret_string.decrypt("antwerp"))

ACME: Top Secret

>>> print(secret_string.__plain_text)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: 'SecretString' object has no attribute

'__plain_text'

It looks like it works; nobody can access our plain_text attribute without the
passphrase, so it must be safe. Before we get too excited, though, let's see how
easy it can be to hack our security:

>>> print(secret_string._SecretString__plain_string)

ACME: Top Secret

Oh no! Somebody has hacked our secret string. Good thing we checked! This is
Python name mangling at work. When we use a double underscore, the property
is prefixed with _<classname>. When methods in the class internally access the
variable, they are automatically unmangled. When external classes wish to access
it, they have to do the name mangling themselves. So, name mangling does not
guarantee privacy, it only strongly recommends it. Most Python programmers
will not touch a double underscore variable on another object unless they have an
extremely compelling reason to do so.

However, most Python programmers will not touch a single underscore variable
without a compelling reason either. Therefore, there are very few good reasons to
use a name-mangled variable in Python, and doing so can cause grief. For example,
a name-mangled variable may be useful to a subclass, and it would have to do the
mangling itself. Let other objects access your hidden information if they want to, just
let them know, using a single-underscore prefix or some clear docstrings, that you
think this is not a good idea.

Objects in Python

[48]

Third-party libraries
Python ships with a lovely standard library, which is a collection of packages
and modules that are available on every machine that runs Python. However,
you'll soon find that it doesn't contain everything you need. When this happens,
you have two options:

• Write a supporting package yourself
• Use somebody else's code

We won't be covering the details about turning your packages into libraries, but
if you have a problem you need to solve and you don't feel like coding it (the best
programmers are extremely lazy and prefer to reuse existing, proven code, rather than
write their own), you can probably find the library you want on the Python Package
Index (PyPI) at http://pypi.python.org/. Once you've identified a package that
you want to install, you can use a tool called pip to install it. However, pip does not
come with Python, but Python 3.4 contains a useful tool called ensurepip, which
will install it:

python -m ensurepip

This may fail for you on Linux, Mac OS, or other Unix systems, in which case,
you'll need to become root to make it work. On most modern Unix systems, this
can be done with sudo python -m ensurepip.

If you are using an older version of Python than Python 3.4, you'll
need to download and install pip yourself, since ensurepip doesn't
exist. You can do this by following the instructions at http://pip.
readthedocs.org/.

Once pip is installed and you know the name of the package you want to install,
you can install it using syntax such as:

pip install requests

However, if you do this, you'll either be installing the third-party library directly
into your system Python directory, or more likely, get an error that you don't
have permission to do so. You could force the installation as an administrator, but
common consensus in the Python community is that you should only use system
installers to install the third-party library to your system Python directory.

http://pypi.python.org/
http://pip.readthedocs.org/
http://pip.readthedocs.org/

Chapter 2

[49]

Instead, Python 3.4 supplies the venv tool. This utility basically gives you a mini
Python installation called a virtual environment in your working directory. When you
activate the mini Python, commands related to Python will work on that directory
instead of the system directory. So when you run pip or python, it won't touch the
system Python at all. Here's how to use it:

cd project_directory

python -m venv env

source env/bin/activate # on Linux or MacOS

env/bin/activate.bat # on Windows

Typically, you'll create a different virtual environment for each Python project you
work on. You can store your virtual environments anywhere, but I keep mine in
the same directory as the rest of my project files (but ignored in version control),
so first we cd into that directory. Then we run the venv utility to create a virtual
environment named env. Finally, we use one of the last two lines (depending on the
operating system, as indicated in the comments) to activate the environment. We'll
need to execute this line each time we want to use that particular virtualenv, and
then use the command deactivate when we are done working on this project.

Virtual environments are a terrific way to keep your third-party dependencies
separate. It is common to have different projects that depend on different versions
of a particular library (for example, an older website might run on Django 1.5, while
newer versions run on Django 1.8). Keeping each project in separate virtualenvs
makes it easy to work in either version of Django. Further, it prevents conflicts
between system-installed packages and pip installed packages if you try to install
the same package using different tools.

Case study
To tie it all together, let's build a simple command-line notebook application. This is
a fairly simple task, so we won't be experimenting with multiple packages. We will,
however, see common usage of classes, functions, methods, and docstrings.

Let's start with a quick analysis: notes are short memos stored in a notebook. Each
note should record the day it was written and can have tags added for easy querying.
It should be possible to modify notes. We also need to be able to search for notes.
All of these things should be done from the command line.

Objects in Python

[50]

The obvious object is the Note object; less obvious one is a Notebook container object.
Tags and dates also seem to be objects, but we can use dates from Python's standard
library and a comma-separated string for tags. To avoid complexity, in the prototype,
let's not define separate classes for these objects.

Note objects have attributes for memo itself, tags, and creation_date. Each note will
also need a unique integer id so that users can select them in a menu interface. Notes
could have a method to modify note content and another for tags, or we could just
let the notebook access those attributes directly. To make searching easier, we should
put a match method on the Note object. This method will accept a string and can tell
us if a note matches the string without accessing the attributes directly. This way, if
we want to modify the search parameters (to search tags instead of note contents, for
example, or to make the search case-insensitive), we only have to do it in one place.

The Notebook object obviously has the list of notes as an attribute. It will also need
a search method that returns a list of filtered notes.

But how do we interact with these objects? We've specified a command-line app,
which can mean either that we run the program with different options to add or edit
commands, or we have some kind of a menu that allows us to pick different things to
do to the notebook. We should try to design it such that either interface is supported
and future interfaces, such as a GUI toolkit or web-based interface, could be added in
the future.

As a design decision, we'll implement the menu interface now, but will keep the
command-line options version in mind to ensure we design our Notebook class with
extensibility in mind.

If we have two command-line interfaces, each interacting with the Notebook object,
then Notebook will need some methods for those interfaces to interact with. We need
to be able to add a new note, and modify an existing note by id, in addition to the
search method we've already discussed. The interfaces will also need to be able to
list all notes, but they can do that by accessing the notes list attribute directly.

We may be missing a few details, but that gives us a really good overview of the
code we need to write. We can summarize all this in a simple class diagram:

Chapter 2

[51]

Notebook

+notes: list

+search(filter:str): list

+new_note(memo,tags=")

+modify_memo(note_id,memo)

+modify_tags(note_id,tags)

CommandOption

Menu

Note

+memo

+creation_date

+tags

+match(search_filter:str): boolean

1

*

Before writing any code, let's define the folder structure for this project. The menu
interface should clearly be in its own module, since it will be an executable script,
and we may have other executable scripts accessing the notebook in the future. The
Notebook and Note objects can live together in one module. These modules can both
exist in the same top-level directory without having to put them in a package. An
empty command_option.py module can help remind us in the future that we were
planning to add new user interfaces.

parent_directory/
 notebook.py
 menu.py
 command_option.py

Now let's see some code. We start by defining the Note class as it seems simplest.
The following example presents Note in its entirety. Docstrings within the example
explain how it all fits together.

import datetime

Store the next available id for all new notes
last_id = 0

class Note:
 '''Represent a note in the notebook. Match against a

Objects in Python

[52]

 string in searches and store tags for each note.'''

 def __init__(self, memo, tags=''):
 '''initialize a note with memo and optional
 space-separated tags. Automatically set the note's
 creation date and a unique id.'''
 self.memo = memo
 self.tags = tags
 self.creation_date = datetime.date.today()
 global last_id
 last_id += 1
 self.id = last_id

 def match(self, filter):
 '''Determine if this note matches the filter
 text. Return True if it matches, False otherwise.

 Search is case sensitive and matches both text and
 tags.'''
 return filter in self.memo or filter in self.tags

Before continuing, we should quickly fire up the interactive interpreter and test our
code so far. Test frequently and often because things never work the way you expect
them to. Indeed, when I tested my first version of this example, I found out I had
forgotten the self argument in the match function! We'll discuss automated testing
in Chapter 10, Python Design Patterns I. For now, it suffices to check a few things
using the interpreter:

>>> from notebook import Note

>>> n1 = Note("hello first")

>>> n2 = Note("hello again")

>>> n1.id

1

>>> n2.id

2

>>> n1.match('hello')

True

>>> n2.match('second')

False

Chapter 2

[53]

It looks like everything is behaving as expected. Let's create our notebook next:

class Notebook:
 '''Represent a collection of notes that can be tagged,
 modified, and searched.'''

 def __init__(self):
 '''Initialize a notebook with an empty list.'''
 self.notes = []

 def new_note(self, memo, tags=''):
 '''Create a new note and add it to the list.'''
 self.notes.append(Note(memo, tags))

 def modify_memo(self, note_id, memo):
 '''Find the note with the given id and change its
 memo to the given value.'''
 for note in self.notes:
 if note.id == note_id:
 note.memo = memo
 break

 def modify_tags(self, note_id, tags):
 '''Find the note with the given id and change its
 tags to the given value.'''
 for note in self.notes:
 if note.id == note_id:
 note.tags = tags
 break

 def search(self, filter):
 '''Find all notes that match the given filter
 string.'''
 return [note for note in self.notes if
 note.match(filter)]

We'll clean this up in a minute. First, let's test it to make sure it works:

>>> from notebook import Note, Notebook

>>> n = Notebook()

>>> n.new_note("hello world")

>>> n.new_note("hello again")

>>> n.notes

[<notebook.Note object at 0xb730a78c>, <notebook.Note object at

 0xb73103ac>]

Objects in Python

[54]

>>> n.notes[0].id

1

>>> n.notes[1].id

2

>>> n.notes[0].memo

'hello world'

>>> n.search("hello")

[<notebook.Note object at 0xb730a78c>, <notebook.Note object at

 0xb73103ac>]

>>> n.search("world")

[<notebook.Note object at 0xb730a78c>]

>>> n.modify_memo(1, "hi world")

>>> n.notes[0].memo

'hi world'

It does work. The code is a little messy though; our modify_tags and modify_memo
methods are almost identical. That's not good coding practice. Let's see how we can
improve it.

Both methods are trying to identify the note with a given ID before doing something
to that note. So, let's add a method to locate the note with a specific ID. We'll prefix
the method name with an underscore to suggest that the method is for internal use
only, but of course, our menu interface can access the method if it wants to:

 def _find_note(self, note_id):
 '''Locate the note with the given id.'''
 for note in self.notes:
 if note.id == note_id:
 return note
 return None

 def modify_memo(self, note_id, memo):
 '''Find the note with the given id and change its
 memo to the given value.'''
 self._find_note(note_id).memo = memo

This should work for now. Let's have a look at the menu interface. The interface
simply needs to present a menu and allow the user to input choices. Here's our
first try:

import sys

Chapter 2

[55]

from notebook import Notebook, Note

class Menu:
 '''Display a menu and respond to choices when run.'''
 def __init__(self):
 self.notebook = Notebook()
 self.choices = {
 "1": self.show_notes,
 "2": self.search_notes,
 "3": self.add_note,
 "4": self.modify_note,
 "5": self.quit
 }

 def display_menu(self):
 print("""
Notebook Menu

1. Show all Notes
2. Search Notes
3. Add Note
4. Modify Note
5. Quit
""")

 def run(self):
 '''Display the menu and respond to choices.'''
 while True:
 self.display_menu()
 choice = input("Enter an option: ")
 action = self.choices.get(choice)
 if action:
 action()
 else:
 print("{0} is not a valid choice".format(choice))

 def show_notes(self, notes=None):
 if not notes:
 notes = self.notebook.notes
 for note in notes:
 print("{0}: {1}\n{2}".format(
 note.id, note.tags, note.memo))

 def search_notes(self):

Objects in Python

[56]

 filter = input("Search for: ")
 notes = self.notebook.search(filter)
 self.show_notes(notes)

 def add_note(self):
 memo = input("Enter a memo: ")
 self.notebook.new_note(memo)
 print("Your note has been added.")

 def modify_note(self):
 id = input("Enter a note id: ")
 memo = input("Enter a memo: ")
 tags = input("Enter tags: ")
 if memo:
 self.notebook.modify_memo(id, memo)
 if tags:
 self.notebook.modify_tags(id, tags)

 def quit(self):
 print("Thank you for using your notebook today.")
 sys.exit(0)

if __name__ == "__main__":
 Menu().run()

This code first imports the notebook objects using an absolute import. Relative
imports wouldn't work because we haven't placed our code inside a package. The
Menu class's run method repeatedly displays a menu and responds to choices by
calling functions on the notebook. This is done using an idiom that is rather peculiar
to Python; it is a lightweight version of the command pattern that we will discuss in
Chapter 10, Python Design Patterns I. The choices entered by the user are strings. In
the menu's __init__ method, we create a dictionary that maps strings to functions
on the menu object itself. Then, when the user makes a choice, we retrieve the object
from the dictionary. The action variable actually refers to a specific method, and is
called by appending empty brackets (since none of the methods require parameters)
to the variable. Of course, the user might have entered an inappropriate choice, so
we check if the action really exists before calling it.

Each of the various methods request user input and call appropriate methods on
the Notebook object associated with it. For the search implementation, we notice
that after we've filtered the notes, we need to show them to the user, so we make
the show_notes function serve double duty; it accepts an optional notes parameter.
If it's supplied, it displays only the filtered notes, but if it's not, it displays all notes.
Since the notes parameter is optional, show_notes can still be called with no
parameters as an empty menu item.

Chapter 2

[57]

If we test this code, we'll find that modifying notes doesn't work. There are two
bugs, namely:

• The notebook crashes when we enter a note ID that does not exist.
We should never trust our users to enter correct data!

• Even if we enter a correct ID, it will crash because the note IDs are
integers, but our menu is passing a string.

The latter bug can be solved by modifying the Notebook class's _find_note
method to compare the values using strings instead of the integers stored in the
note, as follows:

 def _find_note(self, note_id):
 '''Locate the note with the given id.'''
 for note in self.notes:
 if str(note.id) == str(note_id):
 return note
 return None

We simply convert both the input (note_id) and the note's ID to strings before
comparing them. We could also convert the input to an integer, but then we'd have
trouble if the user had entered the letter "a" instead of the number "1".

The problem with users entering note IDs that don't exist can be fixed by changing
the two modify methods on the notebook to check whether _find_note returned a
note or not, like this:

 def modify_memo(self, note_id, memo):
 '''Find the note with the given id and change its
 memo to the given value.'''
 note = self._find_note(note_id)
 if note:
 note.memo = memo
 return True
 return False

This method has been updated to return True or False, depending on whether a note
has been found. The menu could use this return value to display an error if the user
entered an invalid note. This code is a bit unwieldy though; it would look a bit better if
it raised an exception instead. We'll cover those in Chapter 4, Expecting the Unexpected.

Objects in Python

[58]

Exercises
Write some object-oriented code. The goal is to use the principles and syntax you
learned in this chapter to ensure you can use it, instead of just reading about it. If
you've been working on a Python project, go back over it and see if there are some
objects you can create and add properties or methods to. If it's large, try dividing it
into a few modules or even packages and play with the syntax.

If you don't have such a project, try starting a new one. It doesn't have to be
something you intend to finish, just stub out some basic design parts. You don't
need to fully implement everything, often just a print("this method will do
something") is all you need to get the overall design in place. This is called top-
down design, in which you work out the different interactions and describe how
they should work before actually implementing what they do. The converse, bottom-
up design, implements details first and then ties them all together. Both patterns
are useful at different times, but for understanding object-oriented principles, a
top-down workflow is more suitable.

If you're having trouble coming up with ideas, try writing a to-do application.
(Hint: It would be similar to the design of the notebook application, but with extra
date management methods.) It can keep track of things you want to do each day,
and allow you to mark them as completed.

Now, try designing a bigger project. It doesn't have to actually do anything, but
make sure you experiment with the package and module importing syntax. Add
some functions in various modules and try importing them from other modules
and packages. Use relative and absolute imports. See the difference, and try to
imagine scenarios where you would want to use each one.

Summary
In this chapter, we learned how simple it is to create classes and assign properties
and methods in Python. Unlike many languages, Python differentiates between
a constructor and an initializer. It has a relaxed attitude toward access control.
There are many different levels of scope, including packages, modules, classes,
and functions. We understood the difference between relative and absolute imports,
and how to manage third-party packages that don't come with Python.

In the next chapter, we'll learn how to share implementation using inheritance.

[59]

When Objects Are Alike
In the programming world, duplicate code is considered evil. We should not have
multiple copies of the same, or similar, code in different places.

There are many ways to merge pieces of code or objects that have a similar
functionality. In this chapter, we'll be covering the most famous object-oriented
principle: inheritance. As discussed in Chapter 1, Object-oriented Design, inheritance
allows us to create is a relationships between two or more classes, abstracting
common logic into superclasses and managing specific details in the subclass.
In particular, we'll be covering the Python syntax and principles for:

• Basic inheritance
• Inheriting from built-ins
• Multiple inheritance
• Polymorphism and duck typing

Basic inheritance
Technically, every class we create uses inheritance. All Python classes are subclasses
of the special class named object. This class provides very little in terms of data and
behaviors (the behaviors it does provide are all double-underscore methods intended
for internal use only), but it does allow Python to treat all objects in the same way.

If we don't explicitly inherit from a different class, our classes will automatically
inherit from object. However, we can openly state that our class derives from
object using the following syntax:

class MySubClass(object):
 pass

When Objects Are Alike

[60]

This is inheritance! This example is, technically, no different from our very first
example in Chapter 2, Objects in Python, since Python 3 automatically inherits from
object if we don't explicitly provide a different superclass. A superclass, or parent
class, is a class that is being inherited from. A subclass is a class that is inheriting
from a superclass. In this case, the superclass is object, and MySubClass is the
subclass. A subclass is also said to be derived from its parent class or that the
subclass extends the parent.

As you've probably figured out from the example, inheritance requires a minimal
amount of extra syntax over a basic class definition. Simply include the name of the
parent class inside parentheses after the class name but before the colon terminating
the class definition. This is all we have to do to tell Python that the new class should
be derived from the given superclass.

How do we apply inheritance in practice? The simplest and most obvious use of
inheritance is to add functionality to an existing class. Let's start with a simple
contact manager that tracks the name and e-mail address of several people. The
contact class is responsible for maintaining a list of all contacts in a class variable,
and for initializing the name and address for an individual contact:

class Contact:
 all_contacts = []

 def __init__(self, name, email):
 self.name = name
 self.email = email
 Contact.all_contacts.append(self)

This example introduces us to class variables. The all_contacts list, because it is
part of the class definition, is shared by all instances of this class. This means that
there is only one Contact.all_contacts list, which we can access as Contact.all_
contacts. Less obviously, we can also access it as self.all_contacts on any object
instantiated from Contact. If the field can't be found on the object, then it
will be found on the class and thus refer to the same single list.

Be careful with this syntax, for if you ever set the variable using
self.all_contacts, you will actually be creating a new instance
variable associated only with that object. The class variable will still
be unchanged and accessible as Contact.all_contacts.

Chapter 3

[61]

This is a simple class that allows us to track a couple pieces of data about each
contact. But what if some of our contacts are also suppliers that we need to order
supplies from? We could add an order method to the Contact class, but that would
allow people to accidentally order things from contacts who are customers or family
friends. Instead, let's create a new Supplier class that acts like our Contact class,
but has an additional order method:

class Supplier(Contact):
 def order(self, order):
 print("If this were a real system we would send "
 "'{}' order to '{}'".format(order, self.name))

Now, if we test this class in our trusty interpreter, we see that all contacts, including
suppliers, accept a name and e-mail address in their __init__, but only suppliers
have a functional order method:

>>> c = Contact("Some Body", "somebody@example.net")

>>> s = Supplier("Sup Plier", "supplier@example.net")

>>> print(c.name, c.email, s.name, s.email)

Some Body somebody@example.net Sup Plier supplier@example.net

>>> c.all_contacts

[<__main__.Contact object at 0xb7375ecc>,

 <__main__.Supplier object at 0xb7375f8c>]

>>> c.order("I need pliers")

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: 'Contact' object has no attribute 'order'

>>> s.order("I need pliers")

If this were a real system we would send 'I need pliers' order to

'Sup Plier '

So, now our Supplier class can do everything a contact can do (including adding
itself to the list of all_contacts) and all the special things it needs to handle as a
supplier. This is the beauty of inheritance.

When Objects Are Alike

[62]

Extending built-ins
One interesting use of this kind of inheritance is adding functionality to built-in
classes. In the Contact class seen earlier, we are adding contacts to a list of all
contacts. What if we also wanted to search that list by name? Well, we could add
a method on the Contact class to search it, but it feels like this method actually
belongs to the list itself. We can do this using inheritance:

class ContactList(list):
 def search(self, name):
 '''Return all contacts that contain the search value
 in their name.'''
 matching_contacts = []
 for contact in self:
 if name in contact.name:
 matching_contacts.append(contact)
 return matching_contacts

class Contact:
 all_contacts = ContactList()

 def __init__(self, name, email):
 self.name = name
 self.email = email
 self.all_contacts.append(self)

Instead of instantiating a normal list as our class variable, we create a new
ContactList class that extends the built-in list. Then, we instantiate this subclass
as our all_contacts list. We can test the new search functionality as follows:

>>> c1 = Contact("John A", "johna@example.net")

>>> c2 = Contact("John B", "johnb@example.net")

>>> c3 = Contact("Jenna C", "jennac@example.net")

>>> [c.name for c in Contact.all_contacts.search('John')]

['John A', 'John B']

Are you wondering how we changed the built-in syntax [] into something we can
inherit from? Creating an empty list with [] is actually a shorthand for creating an
empty list using list(); the two syntaxes behave identically:

>>> [] == list()

True

Chapter 3

[63]

In reality, the [] syntax is actually so-called syntax sugar that calls the list()
constructor under the hood. The list data type is a class that we can extend.
In fact, the list itself extends the object class:

>>> isinstance([], object)

True

As a second example, we can extend the dict class, which is, similar to the list, the
class that is constructed when using the {} syntax shorthand:

class LongNameDict(dict):
 def longest_key(self):
 longest = None
 for key in self:
 if not longest or len(key) > len(longest):
 longest = key
 return longest

This is easy to test in the interactive interpreter:

>>> longkeys = LongNameDict()

>>> longkeys['hello'] = 1

>>> longkeys['longest yet'] = 5

>>> longkeys['hello2'] = 'world'

>>> longkeys.longest_key()

'longest yet'

Most built-in types can be similarly extended. Commonly extended built-ins are
object, list, set, dict, file, and str. Numerical types such as int and float
are also occasionally inherited from.

Overriding and super
So, inheritance is great for adding new behavior to existing classes, but what about
changing behavior? Our contact class allows only a name and an e-mail address.
This may be sufficient for most contacts, but what if we want to add a phone
number for our close friends?

When Objects Are Alike

[64]

As we saw in Chapter 2, Objects in Python, we can do this easily by just setting a
phone attribute on the contact after it is constructed. But if we want to make this
third variable available on initialization, we have to override __init__. Overriding
means altering or replacing a method of the superclass with a new method (with
the same name) in the subclass. No special syntax is needed to do this; the subclass's
newly created method is automatically called instead of the superclass's method. For
example:

class Friend(Contact):
 def __init__(self, name, email, phone):
 self.name = name
 self.email = email
 self.phone = phone

Any method can be overridden, not just __init__. Before we go on, however, we
need to address some problems in this example. Our Contact and Friend classes
have duplicate code to set up the name and email properties; this can make code
maintenance complicated as we have to update the code in two or more places.
More alarmingly, our Friend class is neglecting to add itself to the all_contacts
list we have created on the Contact class.

What we really need is a way to execute the original __init__ method on the
Contact class. This is what the super function does; it returns the object as an
instance of the parent class, allowing us to call the parent method directly:

class Friend(Contact):
 def __init__(self, name, email, phone):
 super().__init__(name, email)
 self.phone = phone

This example first gets the instance of the parent object using super, and calls
__init__ on that object, passing in the expected arguments. It then does its own
initialization, namely, setting the phone attribute.

Note that the super() syntax does not work in older versions of
Python. Like the [] and {} syntaxes for lists and dictionaries, it is a
shorthand for a more complicated construct. We'll learn more about
this shortly when we discuss multiple inheritance, but know for now
that in Python 2, you would have to call super(EmailContact,
self).__init__(). Specifically notice that the first argument is the
name of the child class, not the name as the parent class you want to
call, as some might expect. Also, remember the class comes before the
object. I always forget the order, so the new syntax in Python 3 has
saved me hours of having to look it up.

Chapter 3

[65]

A super() call can be made inside any method, not just __init__. This means all
methods can be modified via overriding and calls to super. The call to super can
also be made at any point in the method; we don't have to make the call as the first
line in the method. For example, we may need to manipulate or validate incoming
parameters before forwarding them to the superclass.

Multiple inheritance
Multiple inheritance is a touchy subject. In principle, it's very simple: a subclass that
inherits from more than one parent class is able to access functionality from both of
them. In practice, this is less useful than it sounds and many expert programmers
recommend against using it.

As a rule of thumb, if you think you need multiple inheritance, you're
probably wrong, but if you know you need it, you're probably right.

The simplest and most useful form of multiple inheritance is called a mixin. A mixin
is generally a superclass that is not meant to exist on its own, but is meant to be
inherited by some other class to provide extra functionality. For example, let's say
we wanted to add functionality to our Contact class that allows sending an e-mail
to self.email. Sending e-mail is a common task that we might want to use on many
other classes. So, we can write a simple mixin class to do the e-mailing for us:

class MailSender:
 def send_mail(self, message):
 print("Sending mail to " + self.email)
 # Add e-mail logic here

For brevity, we won't include the actual e-mail logic here; if you're interested in
studying how it's done, see the smtplib module in the Python standard library.

This class doesn't do anything special (in fact, it can barely function as a standalone
class), but it does allow us to define a new class that describes both a Contact and
a MailSender, using multiple inheritance:

class EmailableContact(Contact, MailSender):
 pass

The syntax for multiple inheritance looks like a parameter list in the class definition.
Instead of including one base class inside the parentheses, we include two (or more),
separated by a comma. We can test this new hybrid to see the mixin at work:

>>> e = EmailableContact("John Smith", "jsmith@example.net")

When Objects Are Alike

[66]

>>> Contact.all_contacts

[<__main__.EmailableContact object at 0xb7205fac>]

>>> e.send_mail("Hello, test e-mail here")

Sending mail to jsmith@example.net

The Contact initializer is still adding the new contact to the all_contacts list, and
the mixin is able to send mail to self.email so we know everything is working.

This wasn't so hard, and you're probably wondering what the dire warnings
about multiple inheritance are. We'll get into the complexities in a minute, but
let's consider some other options we had, rather than using a mixin here:

• We could have used single inheritance and added the send_mail function
to the subclass. The disadvantage here is that the e-mail functionality then
has to be duplicated for any other classes that need e-mail.

• We can create a standalone Python function for sending an e-mail, and just
call that function with the correct e-mail address supplied as a parameter
when the e-mail needs to be sent.

• We could have explored a few ways of using composition instead of
inheritance. For example, EmailableContact could have a MailSender
object instead of inheriting from it.

• We could monkey-patch (we'll briefly cover monkey-patching in Chapter 7,
Python Object-oriented Shortcuts) the Contact class to have a send_mail method
after the class has been created. This is done by defining a function that accepts
the self argument, and setting it as an attribute on an existing class.

Multiple inheritance works all right when mixing methods from different classes,
but it gets very messy when we have to call methods on the superclass. There are
multiple superclasses. How do we know which one to call? How do we know
what order to call them in?

Let's explore these questions by adding a home address to our Friend class.
There are a few approaches we might take. An address is a collection of strings
representing the street, city, country, and other related details of the contact. We
could pass each of these strings as a parameter into the Friend class's __init__
method. We could also store these strings in a tuple or dictionary and pass them
into __init__ as a single argument. This is probably the best course of action if
there are no methods that need to be added to the address.

Chapter 3

[67]

Another option would be to create a new Address class to hold those strings together,
and then pass an instance of this class into the __init__ method of our Friend class.
The advantage of this solution is that we can add behavior (say, a method to give
directions or to print a map) to the data instead of just storing it statically. This is an
example of composition, as we discussed in Chapter 1, Object-oriented Design. The
"has a" relationship of composition is a perfectly viable solution to this problem and
allows us to reuse Address classes in other entities such as buildings, businesses,
or organizations.

However, inheritance is also a viable solution, and that's what we want to explore.
Let's add a new class that holds an address. We'll call this new class "AddressHolder"
instead of "Address" because inheritance defines an is a relationship. It is not correct
to say a "Friend" is an "Address" , but since a friend can have an "Address" , we can
argue that a "Friend" is an "AddressHolder". Later, we could create other entities
(companies, buildings) that also hold addresses. Here's our AddressHolder class:

class AddressHolder:
 def __init__(self, street, city, state, code):
 self.street = street
 self.city = city
 self.state = state
 self.code = code

Very simple; we just take all the data and toss it into instance variables
upon initialization.

The diamond problem
We can use multiple inheritance to add this new class as a parent of our existing
Friend class. The tricky part is that we now have two parent __init__ methods
both of which need to be initialized. And they need to be initialized with different
arguments. How do we do this? Well, we could start with a naive approach:

class Friend(Contact, AddressHolder):
 def __init__(
 self, name, email, phone,street, city, state, code):
 Contact.__init__(self, name, email)
 AddressHolder.__init__(self, street, city, state, code)
 self.phone = phone

When Objects Are Alike

[68]

In this example, we directly call the __init__ function on each of the superclasses
and explicitly pass the self argument. This example technically works; we can
access the different variables directly on the class. But there are a few problems.

First, it is possible for a superclass to go uninitialized if we neglect to explicitly call
the initializer. That wouldn't break this example, but it could cause hard-to-debug
program crashes in common scenarios. Imagine trying to insert data into a database
that has not been connected to, for example.

Second, and more sinister, is the possibility of a superclass being called multiple times
because of the organization of the class hierarchy. Look at this inheritance diagram:

Friend

+_init_()

Object

+_init_()

Contact

+_init_()

AddressHolder

+_init_)

The __init__ method from the Friend class first calls __init__ on Contact,
which implicitly initializes the object superclass (remember, all classes derive from
object). Friend then calls __init__ on AddressHolder, which implicitly initializes
the object superclass again. This means the parent class has been set up twice. With
the object class, that's relatively harmless, but in some situations, it could spell
disaster. Imagine trying to connect to a database twice for every request!

The base class should only be called once. Once, yes, but when? Do we call Friend,
then Contact, then Object, then AddressHolder? Or Friend, then Contact, then
AddressHolder, then Object?

The order in which methods can be called can be adapted on the fly
by modifying the __mro__ (Method Resolution Order) attribute on
the class. This is beyond the scope of this book. If you think you need
to understand it, I recommend Expert Python Programming, Tarek Ziadé,
Packt Publishing, or read the original documentation on the topic at
http://www.python.org/download/releases/2.3/mro/.

http://www.python.org/download/releases/2.3/mro/

Chapter 3

[69]

Let's look at a second contrived example that illustrates this problem more clearly.
Here we have a base class that has a method named call_me. Two subclasses
override that method, and then another subclass extends both of these using multiple
inheritance. This is called diamond inheritance because of the diamond shape of the
class diagram:

Subclass

BaseClass

+call_me()

LeftSubclass RightSubclass

+call_me() +call_me()

+call_me()

Let's convert this diagram to code; this example shows when the methods are called:

class BaseClass:
 num_base_calls = 0
 def call_me(self):
 print("Calling method on Base Class")
 self.num_base_calls += 1

class LeftSubclass(BaseClass):
 num_left_calls = 0
 def call_me(self):
 BaseClass.call_me(self)
 print("Calling method on Left Subclass")
 self.num_left_calls += 1

class RightSubclass(BaseClass):
 num_right_calls = 0
 def call_me(self):
 BaseClass.call_me(self)
 print("Calling method on Right Subclass")
 self.num_right_calls += 1

class Subclass(LeftSubclass, RightSubclass):

When Objects Are Alike

[70]

 num_sub_calls = 0
 def call_me(self):
 LeftSubclass.call_me(self)
 RightSubclass.call_me(self)
 print("Calling method on Subclass")
 self.num_sub_calls += 1

This example simply ensures that each overridden call_me method directly calls the
parent method with the same name. It lets us know each time a method is called by
printing the information to the screen. It also updates a static variable on the class to
show how many times it has been called. If we instantiate one Subclass object and
call the method on it once, we get this output:

>>> s = Subclass()

>>> s.call_me()

Calling method on Base Class

Calling method on Left Subclass

Calling method on Base Class

Calling method on Right Subclass

Calling method on Subclass

>>> print(

... s.num_sub_calls,

... s.num_left_calls,

... s.num_right_calls,

... s.num_base_calls)

1 1 1 2

Thus we can clearly see the base class's call_me method being called twice. This
could lead to some insidious bugs if that method is doing actual work—like
depositing into a bank account—twice.

The thing to keep in mind with multiple inheritance is that we only want to call
the "next" method in the class hierarchy, not the "parent" method. In fact, that next
method may not be on a parent or ancestor of the current class. The super keyword
comes to our rescue once again. Indeed, super was originally developed to make
complicated forms of multiple inheritance possible. Here is the same code written
using super:

class BaseClass:
 num_base_calls = 0
 def call_me(self):

Chapter 3

[71]

 print("Calling method on Base Class")
 self.num_base_calls += 1

class LeftSubclass(BaseClass):
 num_left_calls = 0
 def call_me(self):
 super().call_me()
 print("Calling method on Left Subclass")
 self.num_left_calls += 1

class RightSubclass(BaseClass):
 num_right_calls = 0
 def call_me(self):
 super().call_me()
 print("Calling method on Right Subclass")
 self.num_right_calls += 1

class Subclass(LeftSubclass, RightSubclass):
 num_sub_calls = 0
 def call_me(self):
 super().call_me()
 print("Calling method on Subclass")
 self.num_sub_calls += 1

The change is pretty minor; we simply replaced the naive direct calls with calls to
super(), although the bottom subclass only calls super once rather than having to
make the calls for both the left and right. The change is simple enough, but look at
the difference when we execute it:

>>> s = Subclass()

>>> s.call_me()

Calling method on Base Class

Calling method on Right Subclass

Calling method on Left Subclass

Calling method on Subclass

>>> print(s.num_sub_calls, s.num_left_calls, s.num_right_calls,

s.num_base_calls)

1 1 1 1

Looks good, our base method is only being called once. But what is super() actually
doing here? Since the print statements are executed after the super calls, the printed
output is in the order each method is actually executed. Let's look at the output from
back to front to see who is calling what.

When Objects Are Alike

[72]

First, call_me of Subclass calls super().call_me(), which happens to refer
to LeftSubclass.call_me(). The LeftSubclass.call_me() method then calls
super().call_me(), but in this case, super() is referring to RightSubclass.call_
me().

Pay particular attention to this: the super call is not calling the method on the
superclass of LeftSubclass (which is BaseClass). Rather, it is calling RightSubclass,
even though it is not a direct parent of LeftSubclass! This is the next method, not
the parent method. RightSubclass then calls BaseClass and the super calls have
ensured each method in the class hierarchy is executed once.

Different sets of arguments
This is going to make things complicated as we return to our Friend multiple
inheritance example. In the __init__ method for Friend, we were originally
calling __init__ for both parent classes, with different sets of arguments:

Contact.__init__(self, name, email)
AddressHolder.__init__(self, street, city, state, code)

How can we manage different sets of arguments when using super? We don't
necessarily know which class super is going to try to initialize first. Even if we
did, we need a way to pass the "extra" arguments so that subsequent calls to
super, on other subclasses, receive the right arguments.

Specifically, if the first call to super passes the name and email arguments
to Contact.__init__, and Contact.__init__ then calls super, it needs to
be able to pass the address-related arguments to the "next" method, which is
AddressHolder.__init__.

This is a problem whenever we want to call superclass methods with the same
name, but with different sets of arguments. Most often, the only time you
would want to call a superclass with a completely different set of arguments is
in __init__, as we're doing here. Even with regular methods, though, we may want
to add optional parameters that only make sense to one subclass or set of subclasses.

Sadly, the only way to solve this problem is to plan for it from the beginning. We
have to design our base class parameter lists to accept keyword arguments for any
parameters that are not required by every subclass implementation. Finally, we must
ensure the method freely accepts unexpected arguments and passes them on to its
super call, in case they are necessary to later methods in the inheritance order.

Chapter 3

[73]

Python's function parameter syntax provides all the tools we need to do this, but it
makes the overall code look cumbersome. Have a look at the proper version of the
Friend multiple inheritance code:

class Contact:
 all_contacts = []

 def __init__(self, name='', email='', **kwargs):
 super().__init__(**kwargs)
 self.name = name
 self.email = email
 self.all_contacts.append(self)

class AddressHolder:
 def __init__(self, street='', city='', state='', code='',
 **kwargs):
 super().__init__(**kwargs)
 self.street = street
 self.city = city
 self.state = state
 self.code = code

class Friend(Contact, AddressHolder):
 def __init__(self, phone='', **kwargs):
 super().__init__(**kwargs)
 self.phone = phone

We've changed all arguments to keyword arguments by giving them an empty
string as a default value. We've also ensured that a **kwargs parameter is included
to capture any additional parameters that our particular method doesn't know what
to do with. It passes these parameters up to the next class with the super call.

If you aren't familiar with the **kwargs syntax, it basically collects
any keyword arguments passed into the method that were not
explicitly listed in the parameter list. These arguments are stored in a
dictionary named kwargs (we can call the variable whatever we like,
but convention suggests kw, or kwargs). When we call a different
method (for example, super().__init__) with a **kwargs
syntax, it unpacks the dictionary and passes the results to the method
as normal keyword arguments. We'll cover this in detail in Chapter 7,
Python Object-oriented Shortcuts.

When Objects Are Alike

[74]

The previous example does what it is supposed to do. But it's starting to look messy,
and it has become difficult to answer the question, What arguments do we need to pass
into Friend.__init__? This is the foremost question for anyone planning to use the
class, so a docstring should be added to the method to explain what is happening.

Further, even this implementation is insufficient if we want to reuse variables in
parent classes. When we pass the **kwargs variable to super, the dictionary does
not include any of the variables that were included as explicit keyword arguments.
For example, in Friend.__init__, the call to super does not have phone in the
kwargs dictionary. If any of the other classes need the phone parameter, we need
to ensure it is in the dictionary that is passed. Worse, if we forget to do this, it will
be tough to debug because the superclass will not complain, but will simply assign
the default value (in this case, an empty string) to the variable.

There are a few ways to ensure that the variable is passed upwards. Assume the
Contact class does, for some reason, need to be initialized with a phone parameter,
and the Friend class will also need access to it. We can do any of the following:

• Don't include phone as an explicit keyword argument. Instead, leave
it in the kwargs dictionary. Friend can look it up using the syntax
kwargs['phone']. When it passes **kwargs to the super call, phone
will still be in the dictionary.

• Make phone an explicit keyword argument but update the kwargs
dictionary before passing it to super, using the standard dictionary
syntax kwargs['phone'] = phone.

• Make phone an explicit keyword argument, but update the kwargs
dictionary using the kwargs.update method. This is useful if you have
several arguments to update. You can create the dictionary passed into
update using either the dict(phone=phone) constructor, or the dictionary
syntax {'phone': phone}.

• Make phone an explicit keyword argument, but pass it to the super call
explicitly with the syntax super().__init__(phone=phone, **kwargs).

We have covered many of the caveats involved with multiple inheritance in Python.
When we need to account for all the possible situations, we have to plan for them
and our code will get messy. Basic multiple inheritance can be handy but, in many
cases, we may want to choose a more transparent way of combining two disparate
classes, usually using composition or one of the design patterns we'll be covering
in Chapter 10, Python Design Patterns I and Chapter 11, Python Design Patterns II.

Chapter 3

[75]

Polymorphism
We were introduced to polymorphism in Chapter 1, Object-oriented Design. It is a
fancy name describing a simple concept: different behaviors happen depending on
which subclass is being used, without having to explicitly know what the subclass
actually is. As an example, imagine a program that plays audio files. A media player
might need to load an AudioFile object and then play it. We'd put a play() method
on the object, which is responsible for decompressing or extracting the audio and
routing it to the sound card and speakers. The act of playing an AudioFile could
feasibly be as simple as:

audio_file.play()

However, the process of decompressing and extracting an audio file is very different
for different types of files. The .wav files are stored uncompressed, while .mp3, .wma,
and .ogg files all have totally different compression algorithms.

We can use inheritance with polymorphism to simplify the design. Each type of
file can be represented by a different subclass of AudioFile, for example, WavFile,
MP3File. Each of these would have a play() method, but that method would be
implemented differently for each file to ensure the correct extraction procedure is
followed. The media player object would never need to know which subclass of
AudioFile it is referring to; it just calls play() and polymorphically lets the object
take care of the actual details of playing. Let's look at a quick skeleton showing how
this might look:

class AudioFile:
 def __init__(self, filename):
 if not filename.endswith(self.ext):
 raise Exception("Invalid file format")

 self.filename = filename

class MP3File(AudioFile):
 ext = "mp3"
 def play(self):
 print("playing {} as mp3".format(self.filename))

class WavFile(AudioFile):
 ext = "wav"
 def play(self):

When Objects Are Alike

[76]

 print("playing {} as wav".format(self.filename))

class OggFile(AudioFile):
 ext = "ogg"
 def play(self):
 print("playing {} as ogg".format(self.filename))

All audio files check to ensure that a valid extension was given upon initialization.
But did you notice how the __init__ method in the parent class is able to access
the ext class variable from different subclasses? That's polymorphism at work. If
the filename doesn't end with the correct name, it raises an exception (exceptions
will be covered in detail in the next chapter). The fact that AudioFile doesn't
actually store a reference to the ext variable doesn't stop it from being able to
access it on the subclass.

In addition, each subclass of AudioFile implements play() in a different way
(this example doesn't actually play the music; audio compression algorithms really
deserve a separate book!). This is also polymorphism in action. The media player
can use the exact same code to play a file, no matter what type it is; it doesn't care
what subclass of AudioFile it is looking at. The details of decompressing the audio
file are encapsulated. If we test this example, it works as we would hope:

>>> ogg = OggFile("myfile.ogg")

>>> ogg.play()

playing myfile.ogg as ogg

>>> mp3 = MP3File("myfile.mp3")

>>> mp3.play()

playing myfile.mp3 as mp3

>>> not_an_mp3 = MP3File("myfile.ogg")

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "polymorphic_audio.py", line 4, in __init__

 raise Exception("Invalid file format")

Exception: Invalid file format

See how AudioFile.__init__ is able to check the file type without actually
knowing what subclass it is referring to?

Chapter 3

[77]

Polymorphism is actually one of the coolest things about object-oriented programming,
and it makes some programming designs obvious that weren't possible in earlier
paradigms. However, Python makes polymorphism less cool because of duck typing.
Duck typing in Python allows us to use any object that provides the required behavior
without forcing it to be a subclass. The dynamic nature of Python makes this trivial.
The following example does not extend AudioFile, but it can be interacted with in
Python using the exact same interface:

class FlacFile:
 def __init__(self, filename):
 if not filename.endswith(".flac"):
 raise Exception("Invalid file format")

 self.filename = filename

 def play(self):
 print("playing {} as flac".format(self.filename))

Our media player can play this object just as easily as one that extends AudioFile.

Polymorphism is one of the most important reasons to use inheritance in many
object-oriented contexts. Because any objects that supply the correct interface can
be used interchangeably in Python, it reduces the need for polymorphic common
superclasses. Inheritance can still be useful for sharing code but, if all that is being
shared is the public interface, duck typing is all that is required. This reduced need
for inheritance also reduces the need for multiple inheritance; often, when multiple
inheritance appears to be a valid solution, we can just use duck typing to mimic one
of the multiple superclasses.

Of course, just because an object satisfies a particular interface (by providing required
methods or attributes) does not mean it will simply work in all situations. It has to
fulfill that interface in a way that makes sense in the overall system. Just because an
object provides a play() method does not mean it will automatically work with a
media player. For example, our chess AI object from Chapter 1, Object-oriented Design,
may have a play() method that moves a chess piece. Even though it satisfies the
interface, this class would likely break in spectacular ways if we tried to plug it into
a media player!

Another useful feature of duck typing is that the duck-typed object only needs to
provide those methods and attributes that are actually being accessed. For example,
if we needed to create a fake file object to read data from, we can create a new object
that has a read() method; we don't have to override the write method if the code
that is going to interact with the object will only be reading from the file. More
succinctly, duck typing doesn't need to provide the entire interface of an object that
is available, it only needs to fulfill the interface that is actually accessed.

When Objects Are Alike

[78]

Abstract base classes
While duck typing is useful, it is not always easy to tell in advance if a class is going
to fulfill the protocol you require. Therefore, Python introduced the idea of abstract
base classes. Abstract base classes, or ABCs, define a set of methods and properties
that a class must implement in order to be considered a duck-type instance of that
class. The class can extend the abstract base class itself in order to be used as an
instance of that class, but it must supply all the appropriate methods.

In practice, it's rarely necessary to create new abstract base classes, but we may find
occasions to implement instances of existing ABCs. We'll cover implementing ABCs
first, and then briefly see how to create your own if you should ever need to.

Using an abstract base class
Most of the abstract base classes that exist in the Python Standard Library live in the
collections module. One of the simplest ones is the Container class. Let's inspect
it in the Python interpreter to see what methods this class requires:

>>> from collections import Container
>>> Container.__abstractmethods__
frozenset(['__contains__'])

So, the Container class has exactly one abstract method that needs to be
implemented, __contains__. You can issue help(Container.__contains__)
to see what the function signature should look like:

Help on method __contains__ in module _abcoll:
__contains__(self, x) unbound _abcoll.Container method

So, we see that __contains__ needs to take a single argument. Unfortunately, the
help file doesn't tell us much about what that argument should be, but it's pretty
obvious from the name of the ABC and the single method it implements that this
argument is the value the user is checking to see if the container holds.

This method is implemented by list, str, and dict to indicate whether or not a
given value is in that data structure. However, we can also define a silly container
that tells us whether a given value is in the set of odd integers:

class OddContainer:
 def __contains__(self, x):
 if not isinstance(x, int) or not x % 2:
 return False
 return True

Chapter 3

[79]

Now, we can instantiate an OddContainer object and determine that, even though
we did not extend Container, the class is a Container object:

>>> from collections import Container
>>> odd_container = OddContainer()
>>> isinstance(odd_container, Container)
True
>>> issubclass(OddContainer, Container)
True

And that is why duck typing is way more awesome than classical polymorphism.
We can create is a relationships without the overhead of using inheritance (or
worse, multiple inheritance).

The interesting thing about the Container ABC is that any class that implements
it gets to use the in keyword for free. In fact, in is just syntax sugar that delegates
to the __contains__ method. Any class that has a __contains__ method is a
Container and can therefore be queried by the in keyword, for example:

>>> 1 in odd_container
True
>>> 2 in odd_container
False
>>> 3 in odd_container
True
>>> "a string" in odd_container
False

Creating an abstract base class
As we saw earlier, it's not necessary to have an abstract base class to enable duck
typing. However, imagine we were creating a media player with third-party plugins. It
is advisable to create an abstract base class in this case to document what API the third-
party plugins should provide. The abc module provides the tools you need to do this,
but I'll warn you in advance, this requires some of Python's most arcane concepts:

import abc

class MediaLoader(metaclass=abc.ABCMeta):
 @abc.abstractmethod
 def play(self):
 pass

 @abc.abstractproperty
 def ext(self):

When Objects Are Alike

[80]

 pass

 @classmethod
 def __subclasshook__(cls, C):
 if cls is MediaLoader:
 attrs = set(dir(C))
 if set(cls.__abstractmethods__) <= attrs:
 return True

 return NotImplemented

This is a complicated example that includes several Python features that won't be
explained until later in this book. It is included here for completeness, but you don't
need to understand all of it to get the gist of how to create your own ABC.

The first weird thing is the metaclass keyword argument that is passed into the
class where you would normally see the list of parent classes. This is a rarely used
construct from the mystic art of metaclass programming. We won't be covering
metaclasses in this book, so all you need to know is that by assigning the ABCMeta
metaclass, you are giving your class superpower (or at least superclass) abilities.

Next, we see the @abc.abstractmethod and @abc.abstractproperty constructs.
These are Python decorators. We'll discuss those in Chapter 5, When to Use
Object-oriented Programming. For now, just know that by marking a method or
property as being abstract, you are stating that any subclass of this class must
implement that method or supply that property in order to be considered a
proper member of the class.

See what happens if you implement subclasses that do or don't supply
those properties:

>>> class Wav(MediaLoader):
... pass
...
>>> x = Wav()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Wav with abstract methods
ext, play
>>> class Ogg(MediaLoader):
... ext = '.ogg'
... def play(self):
... pass
...
>>> o = Ogg()

Chapter 3

[81]

Since the Wav class fails to implement the abstract attributes, it is not possible to
instantiate that class. The class is still a legal abstract class, but you'd have to subclass it
to actually do anything. The Ogg class supplies both attributes, so it instantiates cleanly.

Going back to the MediaLoader ABC, let's dissect that __subclasshook__ method.
It is basically saying that any class that supplies concrete implementations of all the
abstract attributes of this ABC should be considered a subclass of MediaLoader,
even if it doesn't actually inherit from the MediaLoader class.

More common object-oriented languages have a clear separation between the
interface and the implementation of a class. For example, some languages provide
an explicit interface keyword that allows us to define the methods that a class
must have without any implementation. In such an environment, an abstract class is
one that provides both an interface and a concrete implementation of some but not
all methods. Any class can explicitly state that it implements a given interface.

Python's ABCs help to supply the functionality of interfaces without compromising
on the benefits of duck typing.

Demystifying the magic
You can copy and paste the subclass code without understanding it if you want
to make abstract classes that fulfill this particular contract. We'll cover most of
the unusual syntaxes throughout the book, but let's go over it line by line to get
an overview.

 @classmethod

This decorator marks the method as a class method. It essentially says that the
method can be called on a class instead of an instantiated object:

 def __subclasshook__(cls, C):

This defines the __subclasshook__ class method. This special method is called by
the Python interpreter to answer the question, Is the class C a subclass of this class?

 if cls is MediaLoader:

We check to see if the method was called specifically on this class, rather than, say a
subclass of this class. This prevents, for example, the Wav class from being thought of
as a parent class of the Ogg class:

 attrs = set(dir(C))

When Objects Are Alike

[82]

All this line does is get the set of methods and properties that the class has, including
any parent classes in its class hierarchy:

 if set(cls.__abstractmethods__) <= attrs:

This line uses set notation to see whether the set of abstract methods in this class
have been supplied in the candidate class. Note that it doesn't check to see whether
the methods have been implemented, just if they are there. Thus, it's possible for a
class to be a subclass and yet still be an abstract class itself.

 return True

If all the abstract methods have been supplied, then the candidate class is a subclass
of this class and we return True. The method can legally return one of the three
values: True, False, or NotImplemented. True and False indicate that the class is
or is not definitively a subclass of this class:

 return NotImplemented

If any of the conditionals have not been met (that is, the class is not MediaLoader
or not all abstract methods have been supplied), then return NotImplemented. This
tells the Python machinery to use the default mechanism (does the candidate class
explicitly extend this class?) for subclass detection.

In short, we can now define the Ogg class as a subclass of the MediaLoader class
without actually extending the MediaLoader class:

>>> class Ogg():
... ext = '.ogg'
... def play(self):
... print("this will play an ogg file")
...
>>> issubclass(Ogg, MediaLoader)
True
>>> isinstance(Ogg(), MediaLoader)
True

Case study
Let's try to tie everything we've learned together with a larger example. We'll be
designing a simple real estate application that allows an agent to manage properties
available for purchase or rent. There will be two types of properties: apartments and
houses. The agent needs to be able to enter a few relevant details about new properties,
list all currently available properties, and mark a property as sold or rented. For
brevity, we won't worry about editing property details or reactivating a property
after it is sold.

Chapter 3

[83]

The project will allow the agent to interact with the objects using the Python interpreter
prompt. In this world of graphical user interfaces and web applications, you might
be wondering why we're creating such old-fashioned looking programs. Simply put,
both windowed programs and web applications require a lot of overhead knowledge
and boilerplate code to make them do what is required. If we were developing
software using either of these paradigms, we'd get so lost in GUI programming or web
programming that we'd lose sight of the object-oriented principles we're trying
to master.

Luckily, most GUI and web frameworks utilize an object-oriented approach, and
the principles we're studying now will help in understanding those systems in the
future. We'll discuss them both briefly in Chapter 13, Concurrency, but complete
details are far beyond the scope of a single book.

Looking at our requirements, it seems like there are quite a few nouns that might
represent classes of objects in our system. Clearly, we'll need to represent a property.
Houses and apartments may need separate classes. Rentals and purchases also seem
to require separate representation. Since we're focusing on inheritance right now,
we'll be looking at ways to share behavior using inheritance or multiple inheritance.

House and Apartment are both types of properties, so Property can be a superclass
of those two classes. Rental and Purchase will need some extra thought; if we use
inheritance, we'll need to have separate classes, for example, for HouseRental and
HousePurchase, and use multiple inheritance to combine them. This feels a little
clunky compared to a composition or association-based design, but let's run with
it and see what we come up with.

Now then, what attributes might be associated with a Property class? Regardless
of whether it is an apartment or a house, most people will want to know the square
footage, number of bedrooms, and number of bathrooms. (There are numerous
other attributes that might be modeled, but we'll keep it simple for our prototype.)

If the property is a house, it will want to advertise the number of stories, whether
it has a garage (attached, detached, or none), and whether the yard is fenced. An
apartment will want to indicate if it has a balcony, and if the laundry is ensuite,
coin, or off-site.

Both property types will require a method to display the characteristics of that
property. At the moment, no other behaviors are apparent.

Rental properties will need to store the rent per month, whether the property is
furnished, and whether utilities are included, and if not, what they are estimated to
be. Properties for purchase will need to store the purchase price and estimated annual
property taxes. For our application, we'll only need to display this data, so we can get
away with just adding a display() method similar to that used in the other classes.

When Objects Are Alike

[84]

Finally, we'll need an Agent object that holds a list of all properties, displays those
properties, and allows us to create new ones. Creating properties will entail prompting
the user for the relevant details for each property type. This could be done in the Agent
object, but then Agent would need to know a lot of information about the types of
properties. This is not taking advantage of polymorphism. Another alternative would
be to put the prompts in the initializer or even a constructor for each class, but this
would not allow the classes to be applied in a GUI or web application in the future. A
better idea is to create a static method that does the prompting and returns a dictionary
of the prompted parameters. Then, all the Agent has to do is prompt the user for the
type of property and payment method, and ask the correct class to instantiate itself.

That's a lot of designing! The following class diagram may communicate our design
decisions a little more clearly:

Agent
+property_list

+list_properties(show_all=False)

+add_property(property_type,purchase_type)

Apartment

+balcony

+laundry

+display()

+prompt_init()

Property

+square_feet

+num_bedrooms

+num_bathrooms

+display()

+prompt_init()

House

+num_stories

+garage

+fenced_yard: boolean

+display()

+prompt_init()

Purchase

+price

+taxes

+display()

+prompt_init()

Rental

+furnished

+utilities

+rent

+display()

+prompt_init()

HouseRental

HousePurchase

ApartmentPurchase

ApartmentRental

Chapter 3

[85]

Wow, that's a lot of inheritance arrows! I don't think it would be possible to add
another level of inheritance without crossing arrows. Multiple inheritance is a messy
business, even at the design stage.

The trickiest aspects of these classes is going to be ensuring superclass methods get
called in the inheritance hierarchy. Let's start with the Property implementation:

class Property:
 def __init__(self, square_feet='', beds='',
 baths='', **kwargs):
 super().__init__(**kwargs)
 self.square_feet = square_feet
 self.num_bedrooms = beds
 self.num_baths = baths

 def display(self):
 print("PROPERTY DETAILS")
 print("================")
 print("square footage: {}".format(self.square_feet))
 print("bedrooms: {}".format(self.num_bedrooms))
 print("bathrooms: {}".format(self.num_baths))
 print()

 def prompt_init():
 return dict(square_feet=input("Enter the square feet: "),
 beds=input("Enter number of bedrooms: "),
 baths=input("Enter number of baths: "))
 prompt_init = staticmethod(prompt_init)

This class is pretty straightforward. We've already added the extra **kwargs
parameter to __init__ because we know it's going to be used in a multiple
inheritance situation. We've also included a call to super().__init__ in case we
are not the last call in the multiple inheritance chain. In this case, we're consuming
the keyword arguments because we know they won't be needed at other levels of
the inheritance hierarchy.

We see something new in the prompt_init method. This method is made into a
static method immediately after it is initially created. Static methods are associated
only with a class (something like class variables), rather than a specific object
instance. Hence, they have no self argument. Because of this, the super keyword
won't work (there is no parent object, only a parent class), so we simply call the static
method on the parent class directly. This method uses the Python dict constructor
to create a dictionary of values that can be passed into __init__. The value for each
key is prompted with a call to input.

When Objects Are Alike

[86]

The Apartment class extends Property, and is similar in structure:

class Apartment(Property):
 valid_laundries = ("coin", "ensuite", "none")
 valid_balconies = ("yes", "no", "solarium")

 def __init__(self, balcony='', laundry='', **kwargs):
 super().__init__(**kwargs)
 self.balcony = balcony
 self.laundry = laundry

 def display(self):
 super().display()
 print("APARTMENT DETAILS")
 print("laundry: %s" % self.laundry)
 print("has balcony: %s" % self.balcony)

 def prompt_init():
 parent_init = Property.prompt_init()
 laundry = ''
 while laundry.lower() not in \
 Apartment.valid_laundries:
 laundry = input("What laundry facilities does "
 "the property have? ({})".format(
 ", ".join(Apartment.valid_laundries)))
 balcony = ''
 while balcony.lower() not in \
 Apartment.valid_balconies:
 balcony = input(
 "Does the property have a balcony? "
 "({})".format(
 ", ".join(Apartment.valid_balconies)))
 parent_init.update({
 "laundry": laundry,
 "balcony": balcony
 })
 return parent_init
 prompt_init = staticmethod(prompt_init)

The display() and __init__() methods call their respective parent class methods
using super() to ensure the Property class is properly initialized.

Chapter 3

[87]

The prompt_init static method is now getting dictionary values from the parent
class, and then adding some additional values of its own. It calls the dict.update
method to merge the new dictionary values into the first one. However, that
prompt_init method is looking pretty ugly; it loops twice until the user enters a
valid input using structurally similar code but different variables. It would be nice
to extract this validation logic so we can maintain it in only one location; it will likely
also be useful to later classes.

With all the talk on inheritance, we might think this is a good place to use a mixin.
Instead, we have a chance to study a situation where inheritance is not the best
solution. The method we want to create will be used in a static method. If we were
to inherit from a class that provided validation functionality, the functionality would
also have to be provided as a static method that did not access any instance variables
on the class. If it doesn't access any instance variables, what's the point of making it
a class at all? Why don't we just make this validation functionality a module-level
function that accepts an input string and a list of valid answers, and leave it at that?

Let's explore what this validation function would look like:

def get_valid_input(input_string, valid_options):
 input_string += " ({}) ".format(", ".join(valid_options))
 response = input(input_string)
 while response.lower() not in valid_options:
 response = input(input_string)
 return response

We can test this function in the interpreter, independent of all the other classes we've
been working on. This is a good sign, it means different pieces of our design are not
tightly coupled to each other and can later be improved independently, without
affecting other pieces of code.

>>> get_valid_input("what laundry?", ("coin", "ensuite", "none"))

what laundry? (coin, ensuite, none) hi

what laundry? (coin, ensuite, none) COIN

'COIN'

Now, let's quickly update our Apartment.prompt_init method to use this new
function for validation:

 def prompt_init():
 parent_init = Property.prompt_init()
 laundry = get_valid_input(

When Objects Are Alike

[88]

 "What laundry facilities does "
 "the property have? ",
 Apartment.valid_laundries)
 balcony = get_valid_input(
 "Does the property have a balcony? ",
 Apartment.valid_balconies)
 parent_init.update({
 "laundry": laundry,
 "balcony": balcony
 })
 return parent_init
 prompt_init = staticmethod(prompt_init)

That's much easier to read (and maintain!) than our original version. Now we're
ready to build the House class. This class has a parallel structure to Apartment,
but refers to different prompts and variables:

class House(Property):
 valid_garage = ("attached", "detached", "none")
 valid_fenced = ("yes", "no")

 def __init__(self, num_stories='',
 garage='', fenced='', **kwargs):
 super().__init__(**kwargs)
 self.garage = garage
 self.fenced = fenced
 self.num_stories = num_stories

 def display(self):
 super().display()
 print("HOUSE DETAILS")
 print("# of stories: {}".format(self.num_stories))
 print("garage: {}".format(self.garage))
 print("fenced yard: {}".format(self.fenced))

 def prompt_init():
 parent_init = Property.prompt_init()
 fenced = get_valid_input("Is the yard fenced? ",
 House.valid_fenced)
 garage = get_valid_input("Is there a garage? ",
 House.valid_garage)

Chapter 3

[89]

 num_stories = input("How many stories? ")

 parent_init.update({
 "fenced": fenced,
 "garage": garage,
 "num_stories": num_stories
 })
 return parent_init
 prompt_init = staticmethod(prompt_init)

There's nothing new to explore here, so let's move on to the Purchase and Rental
classes. In spite of having apparently different purposes, they are also similar in
design to the ones we just discussed:

class Purchase:
 def __init__(self, price='', taxes='', **kwargs):
 super().__init__(**kwargs)
 self.price = price
 self.taxes = taxes

 def display(self):
 super().display()
 print("PURCHASE DETAILS")
 print("selling price: {}".format(self.price))
 print("estimated taxes: {}".format(self.taxes))

 def prompt_init():
 return dict(
 price=input("What is the selling price? "),
 taxes=input("What are the estimated taxes? "))
 prompt_init = staticmethod(prompt_init)

class Rental:
 def __init__(self, furnished='', utilities='',
 rent='', **kwargs):
 super().__init__(**kwargs)
 self.furnished = furnished
 self.rent = rent
 self.utilities = utilities

 def display(self):
 super().display()
 print("RENTAL DETAILS")

When Objects Are Alike

[90]

 print("rent: {}".format(self.rent))
 print("estimated utilities: {}".format(
 self.utilities))
 print("furnished: {}".format(self.furnished))

 def prompt_init():
 return dict(
 rent=input("What is the monthly rent? "),
 utilities=input(
 "What are the estimated utilities? "),
 furnished = get_valid_input(
 "Is the property furnished? ",
 ("yes", "no")))
 prompt_init = staticmethod(prompt_init)

These two classes don't have a superclass (other than object), but we still call
super().__init__ because they are going to be combined with the other classes, and
we don't know what order the super calls will be made in. The interface is similar
to that used for House and Apartment, which is very useful when we combine the
functionality of these four classes in separate subclasses. For example:

class HouseRental(Rental, House):
 def prompt_init():
 init = House.prompt_init()
 init.update(Rental.prompt_init())
 return init
 prompt_init = staticmethod(prompt_init)

This is slightly surprising, as the class on its own has neither an __init__ nor display
method! Because both parent classes appropriately call super in these methods, we
only have to extend those classes and the classes will behave in the correct order. This
is not the case with prompt_init, of course, since it is a static method that does not call
super, so we implement this one explicitly. We should test this class to make sure it is
behaving properly before we write the other three combinations:

>>> init = HouseRental.prompt_init()

Enter the square feet: 1

Enter number of bedrooms: 2

Enter number of baths: 3

Is the yard fenced? (yes, no) no

Is there a garage? (attached, detached, none) none

How many stories? 4

What is the monthly rent? 5

What are the estimated utilities? 6

Chapter 3

[91]

Is the property furnished? (yes, no) no

>>> house = HouseRental(**init)

>>> house.display()

PROPERTY DETAILS

================

square footage: 1

bedrooms: 2

bathrooms: 3

HOUSE DETAILS

of stories: 4

garage: none

fenced yard: no

RENTAL DETAILS

rent: 5

estimated utilities: 6

furnished: no

It looks like it is working fine. The prompt_init method is prompting for initializers to
all the super classes, and display() is also cooperatively calling all three superclasses.

The order of the inherited classes in the preceding example is important.
If we had written class HouseRental(House, Rental) instead of
class HouseRental(Rental, House), display() would not have
called Rental.display()! When display is called on our version of
HouseRental, it refers to the Rental version of the method, which calls
super.display() to get the House version, which again calls super.
display() to get the property version. If we reversed it, display
would refer to the House class's display(). When super is called, it
calls the method on the Property parent class. But Property does
not have a call to super in its display method. This means Rental
class's display method would not be called! By placing the inheritance
list in the order we did, we ensure that Rental calls super, which then
takes care of the House side of the hierarchy. You might think we could
have added a super call to Property.display(), but that will fail
because the next superclass of Property is object, and object does
not have a display method. Another way to fix this is to allow Rental
and Purchase to extend the Property class instead of deriving
directly from object. (Or we could modify the method resolution order
dynamically, but that is beyond the scope of this book.)

When Objects Are Alike

[92]

Now that we have tested it, we are prepared to create the rest of our
combined subclasses:

class ApartmentRental(Rental, Apartment):
 def prompt_init():
 init = Apartment.prompt_init()
 init.update(Rental.prompt_init())
 return init
 prompt_init = staticmethod(prompt_init)

class ApartmentPurchase(Purchase, Apartment):
 def prompt_init():
 init = Apartment.prompt_init()
 init.update(Purchase.prompt_init())
 return init
 prompt_init = staticmethod(prompt_init)

class HousePurchase(Purchase, House):
 def prompt_init():
 init = House.prompt_init()
 init.update(Purchase.prompt_init())
 return init
 prompt_init = staticmethod(prompt_init)

That should be the most intense designing out of our way! Now all we have to do is
create the Agent class, which is responsible for creating new listings and displaying
existing ones. Let's start with the simpler storing and listing of properties:

class Agent:
 def __init__(self):
 self.property_list = []

 def display_properties(self):
 for property in self.property_list:
 property.display()

Adding a property will require first querying the type of property and whether
property is for purchase or rental. We can do this by displaying a simple menu.
Once this has been determined, we can extract the correct subclass and prompt for
all the details using the prompt_init hierarchy we've already developed. Sounds
simple? It is. Let's start by adding a dictionary class variable to the Agent class:

 type_map = {
 ("house", "rental"): HouseRental,
 ("house", "purchase"): HousePurchase,

Chapter 3

[93]

 ("apartment", "rental"): ApartmentRental,
 ("apartment", "purchase"): ApartmentPurchase
 }

That's some pretty funny looking code. This is a dictionary, where the keys are tuples
of two distinct strings, and the values are class objects. Class objects? Yes, classes
can be passed around, renamed, and stored in containers just like normal objects or
primitive data types. With this simple dictionary, we can simply hijack our earlier
get_valid_input method to ensure we get the correct dictionary keys and look up
the appropriate class, like this:

 def add_property(self):
 property_type = get_valid_input(
 "What type of property? ",
 ("house", "apartment")).lower()
 payment_type = get_valid_input(
 "What payment type? ",
 ("purchase", "rental")).lower()

 PropertyClass = self.type_map[
 (property_type, payment_type)]
 init_args = PropertyClass.prompt_init()
 self.property_list.append(PropertyClass(**init_args))

This may look a bit funny too! We look up the class in the dictionary and store it in
a variable named PropertyClass. We don't know exactly which class is available,
but the class knows itself, so we can polymorphically call prompt_init to get a
dictionary of values appropriate to pass into the constructor. Then we use the
keyword argument syntax to convert the dictionary into arguments and construct
the new object to load the correct data.

Now our user can use this Agent class to add and view lists of properties. It wouldn't
take much work to add features to mark a property as available or unavailable or
to edit and remove properties. Our prototype is now in a good enough state to take
to a real estate agent and demonstrate its functionality. Here's how a demo session
might work:

>>> agent = Agent()

>>> agent.add_property()

What type of property? (house, apartment) house

What payment type? (purchase, rental) rental

Enter the square feet: 900

Enter number of bedrooms: 2

Enter number of baths: one and a half

When Objects Are Alike

[94]

Is the yard fenced? (yes, no) yes

Is there a garage? (attached, detached, none) detached

How many stories? 1

What is the monthly rent? 1200

What are the estimated utilities? included

Is the property furnished? (yes, no) no

>>> agent.add_property()

What type of property? (house, apartment) apartment

What payment type? (purchase, rental) purchase

Enter the square feet: 800

Enter number of bedrooms: 3

Enter number of baths: 2

What laundry facilities does the property have? (coin, ensuite,

one) ensuite

Does the property have a balcony? (yes, no, solarium) yes

What is the selling price? $200,000

What are the estimated taxes? 1500

>>> agent.display_properties()

PROPERTY DETAILS

================

square footage: 900

bedrooms: 2

bathrooms: one and a half

HOUSE DETAILS

of stories: 1

garage: detached

fenced yard: yes

RENTAL DETAILS

rent: 1200

estimated utilities: included

furnished: no

PROPERTY DETAILS

================

square footage: 800

bedrooms: 3

Chapter 3

[95]

bathrooms: 2

APARTMENT DETAILS

laundry: ensuite

has balcony: yes

PURCHASE DETAILS

selling price: $200,000

estimated taxes: 1500

Exercises
Look around you at some of the physical objects in your workspace and see if you
can describe them in an inheritance hierarchy. Humans have been dividing the
world into taxonomies like this for centuries, so it shouldn't be difficult. Are there
any non-obvious inheritance relationships between classes of objects? If you were to
model these objects in a computer application, what properties and methods would
they share? Which ones would have to be polymorphically overridden?
What properties would be completely different between them?

Now, write some code. No, not for the physical hierarchy; that's boring. Physical
items have more properties than methods. Just think about a pet programming
project you've wanted to tackle in the past year, but never got around to. For
whatever problem you want to solve, try to think of some basic inheritance
relationships. Then implement them. Make sure that you also pay attention to the
sorts of relationships that you actually don't need to use inheritance for. Are there
any places where you might want to use multiple inheritance? Are you sure? Can
you see any place you would want to use a mixin? Try to knock together a quick
prototype. It doesn't have to be useful or even partially working. You've seen how
you can test code using python -i already; just write some code and test it in the
interactive interpreter. If it works, write some more. If it doesn't, fix it!

Now, take a look at the real estate example. This turned out to be quite an effective use
of multiple inheritance. I have to admit though, I had my doubts when I started the
design. Have a look at the original problem and see if you can come up with another
design to solve it that uses only single inheritance. How would you do it with abstract
base classes? What about a design that doesn't use inheritance at all? Which do you
think is the most elegant solution? Elegance is a primary goal in Python development,
but each programmer has a different opinion as to what is the most elegant solution.
Some people tend to think and understand problems most clearly using composition,
while others find multiple inheritance to be the most useful model.

When Objects Are Alike

[96]

Finally, try adding some new features to the three designs. Whatever features strike
your fancy are fine. I'd like to see a way to differentiate between available and
unavailable properties, for starters. It's not of much use to me if it's already rented!

Which design is easiest to extend? Which is hardest? If somebody asked you why
you thought this, would you be able to explain yourself?

Summary
We've gone from simple inheritance, one of the most useful tools in the object-oriented
programmer's toolbox, all the way through to multiple inheritance, one of the most
complicated. Inheritance can be used to add functionality to existing classes and built-
ins using inheritance. Abstracting similar code into a parent class can help increase
maintainability. Methods on parent classes can be called using super and argument
lists must be formatted safely for these calls to work when using multiple inheritance.

In the next chapter, we'll cover the subtle art of handling exceptional circumstances.

[97]

Expecting the Unexpected
Programs are very fragile. It would be ideal if code always returned a valid result,
but sometimes a valid result can't be calculated. For example, it's not possible to
divide by zero, or to access the eighth item in a five-item list.

In the old days, the only way around this was to rigorously check the inputs for every
function to make sure they made sense. Typically, functions had special return values
to indicate an error condition; for example, they could return a negative number to
indicate that a positive value couldn't be calculated. Different numbers might mean
different errors occurred. Any code that called this function would have to explicitly
check for an error condition and act accordingly. A lot of code didn't bother to do this,
and programs simply crashed. However, in the object-oriented world, this is not
the case.

In this chapter, we will study exceptions, special error objects that only need to be
handled when it makes sense to handle them. In particular, we will cover:

• How to cause an exception to occur
• How to recover when an exception has occurred
• How to handle different exception types in different ways
• Cleaning up when an exception has occurred
• Creating new types of exception
• Using the exception syntax for flow control

Expecting the Unexpected

[98]

Raising exceptions
In principle, an exception is just an object. There are many different exception classes
available, and we can easily define more of our own. The one thing they all have
in common is that they inherit from a built-in class called BaseException. These
exception objects become special when they are handled inside the program's flow of
control. When an exception occurs, everything that was supposed to happen doesn't
happen, unless it was supposed to happen when an exception occurred. Make sense?
Don't worry, it will!

The easiest way to cause an exception to occur is to do something silly! Chances
are you've done this already and seen the exception output. For example, any time
Python encounters a line in your program that it can't understand, it bails with
SyntaxError, which is a type of exception. Here's a common one:

>>> print "hello world"

 File "<stdin>", line 1

 print "hello world"

 ^

SyntaxError: invalid syntax

This print statement was a valid command in Python 2 and previous versions,
but in Python 3, because print is now a function, we have to enclose the arguments
in parenthesis. So, if we type the preceding command into a Python 3 interpreter,
we get the SyntaxError.

In addition to SyntaxError, some other common exceptions, which we can handle,
are shown in the following example:

>>> x = 5 / 0

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ZeroDivisionError: int division or modulo by zero

>>> lst = [1,2,3]

>>> print(lst[3])

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: list index out of range

>>> lst + 2

Traceback (most recent call last):

Chapter 4

[99]

 File "<stdin>", line 1, in <module>

TypeError: can only concatenate list (not "int") to list

>>> lst.add

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: 'list' object has no attribute 'add'

>>> d = {'a': 'hello'}

>>> d['b']

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

KeyError: 'b'

>>> print(this_is_not_a_var)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'this_is_not_a_var' is not defined

Sometimes these exceptions are indicators of something wrong in our program
(in which case we would go to the indicated line number and fix it), but they also
occur in legitimate situations. A ZeroDivisionError doesn't always mean we
received an invalid input. It could also mean we have received a different input.
The user may have entered a zero by mistake, or on purpose, or it may represent
a legitimate value, such as an empty bank account or the age of a newborn child.

You may have noticed all the preceding built-in exceptions end with the name
Error. In Python, the words error and exception are used almost interchangeably.
Errors are sometimes considered more dire than exceptions, but they are dealt with
in exactly the same way. Indeed, all the error classes in the preceding example have
Exception (which extends BaseException) as their superclass.

Raising an exception
We'll get to handling exceptions in a minute, but first, let's discover what we should
do if we're writing a program that needs to inform the user or a calling function
that the inputs are somehow invalid. Wouldn't it be great if we could use the same
mechanism that Python uses? Well, we can! Here's a simple class that adds items
to a list only if they are even numbered integers:

Expecting the Unexpected

[100]

class EvenOnly(list):
 def append(self, integer):
 if not isinstance(integer, int):
 raise TypeError("Only integers can be added")
 if integer % 2:
 raise ValueError("Only even numbers can be added")
 super().append(integer)

This class extends the list built-in, as we discussed in Chapter 2, Objects in Python,
and overrides the append method to check two conditions that ensure the item is an
even integer. We first check if the input is an instance of the int type, and then use the
modulus operator to ensure it is divisible by two. If either of the two conditions is not
met, the raise keyword causes an exception to occur. The raise keyword is simply
followed by the object being raised as an exception. In the preceding example, two
objects are newly constructed from the built-in classes TypeError and ValueError.
The raised object could just as easily be an instance of a new exception class we create
ourselves (we'll see how shortly), an exception that was defined elsewhere, or even an
exception object that has been previously raised and handled. If we test this class in
the Python interpreter, we can see that it is outputting useful error information when
exceptions occur, just as before:

>>> e = EvenOnly()

>>> e.append("a string")

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "even_integers.py", line 7, in add

 raise TypeError("Only integers can be added")

TypeError: Only integers can be added

>>> e.append(3)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "even_integers.py", line 9, in add

 raise ValueError("Only even numbers can be added")

ValueError: Only even numbers can be added

>>> e.append(2)

Chapter 4

[101]

While this class is effective for demonstrating exceptions in action,
it isn't very good at its job. It is still possible to get other values
into the list using index notation or slice notation. This can all be
avoided by overriding other appropriate methods, some of which
are double-underscore methods.

The effects of an exception
When an exception is raised, it appears to stop program execution immediately.
Any lines that were supposed to run after the exception is raised are not executed,
and unless the exception is dealt with, the program will exit with an error message.
Take a look at this simple function:

def no_return():
 print("I am about to raise an exception")
 raise Exception("This is always raised")
 print("This line will never execute")
 return "I won't be returned"

If we execute this function, we see that the first print call is executed and then the
exception is raised. The second print statement is never executed, and the return
statement never executes either:

>>> no_return()

I am about to raise an exception

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "exception_quits.py", line 3, in no_return

 raise Exception("This is always raised")

Exception: This is always raised

Furthermore, if we have a function that calls another function that raises an exception,
nothing will be executed in the first function after the point where the second function
was called. Raising an exception stops all execution right up through the function call
stack until it is either handled or forces the interpreter to exit. To demonstrate, let's add
a second function that calls the earlier one:

def call_exceptor():
 print("call_exceptor starts here...")
 no_return()
 print("an exception was raised...")
 print("...so these lines don't run")

Expecting the Unexpected

[102]

When we call this function, we see that the first print statement executes, as well
as the first line in the no_return function. But once the exception is raised, nothing
else executes:

>>> call_exceptor()

call_exceptor starts here...

I am about to raise an exception

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "method_calls_excepting.py", line 9, in call_exceptor

 no_return()

 File "method_calls_excepting.py", line 3, in no_return

 raise Exception("This is always raised")

Exception: This is always raised

We'll soon see that when the interpreter is not actually taking a shortcut and exiting
immediately, we can react to and deal with the exception inside either method.
Indeed, exceptions can be handled at any level after they are initially raised.

Look at the exception's output (called a traceback) from bottom to top, and notice
how both methods are listed. Inside no_return, the exception is initially raised.
Then, just above that, we see that inside call_exceptor, that pesky no_return
function was called and the exception bubbled up to the calling method. From
there, it went up one more level to the main interpreter, which, not knowing
what else to do with it, gave up and printed a traceback.

Handling exceptions
Now let's look at the tail side of the exception coin. If we encounter an exception
situation, how should our code react to or recover from it? We handle exceptions
by wrapping any code that might throw one (whether it is exception code itself, or
a call to any function or method that may have an exception raised inside it) inside
a try...except clause. The most basic syntax looks like this:

try:
 no_return()
except:
 print("I caught an exception")
print("executed after the exception")

Chapter 4

[103]

If we run this simple script using our existing no_return function, which as we
know very well, always throws an exception, we get this output:

I am about to raise an exception
I caught an exception
executed after the exception

The no_return function happily informs us that it is about to raise an exception,
but we fooled it and caught the exception. Once caught, we were able to clean up
after ourselves (in this case, by outputting that we were handling the situation),
and continue on our way, with no interference from that offensive function. The
remainder of the code in the no_return function still went unexecuted, but the
code that called the function was able to recover and continue.

Note the indentation around try and except. The try clause wraps any code that
might throw an exception. The except clause is then back on the same indentation
level as the try line. Any code to handle the exception is indented after the except
clause. Then normal code resumes at the original indentation level.

The problem with the preceding code is that it will catch any type of exception.
What if we were writing some code that could raise both a TypeError and a
ZeroDivisionError? We might want to catch the ZeroDivisionError, but
let the TypeError propagate to the console. Can you guess the syntax?

Here's a rather silly function that does just that:

def funny_division(divider):
 try:
 return 100 / divider
 except ZeroDivisionError:
 return "Zero is not a good idea!"

print(funny_division(0))
print(funny_division(50.0))
print(funny_division("hello"))

The function is tested with print statements that show it behaving as expected:

Zero is not a good idea!

2.0

Traceback (most recent call last):

 File "catch_specific_exception.py", line 9, in <module>

 print(funny_division("hello"))

 File "catch_specific_exception.py", line 3, in funny_division

 return 100 / anumber

TypeError: unsupported operand type(s) for /: 'int' and 'str'.

Expecting the Unexpected

[104]

The first line of output shows that if we enter 0, we get properly mocked. If we
call with a valid number (note that it's not an integer, but it's still a valid divisor),
it operates correctly. Yet if we enter a string (you were wondering how to get a
TypeError, weren't you?), it fails with an exception. If we had used an empty
except clause that didn't specify a ZeroDivisionError, it would have accused us
of dividing by zero when we sent it a string, which is not a proper behavior at all.

We can even catch two or more different exceptions and handle them with the same
code. Here's an example that raises three different types of exception. It handles
TypeError and ZeroDivisionError with the same exception handler, but it may
also raise a ValueError if you supply the number 13:

def funny_division2(anumber):
 try:
 if anumber == 13:
 raise ValueError("13 is an unlucky number")
 return 100 / anumber
 except (ZeroDivisionError, TypeError):
 return "Enter a number other than zero"

for val in (0, "hello", 50.0, 13):

 print("Testing {}:".format(val), end=" ")
 print(funny_division2(val))

The for loop at the bottom loops over several test inputs and prints the results.
If you're wondering about that end argument in the print statement, it just turns
the default trailing newline into a space so that it's joined with the output from the
next line. Here's a run of the program:

Testing 0: Enter a number other than zero

Testing hello: Enter a number other than zero

Testing 50.0: 2.0

Testing 13: Traceback (most recent call last):

 File "catch_multiple_exceptions.py", line 11, in <module>

 print(funny_division2(val))

 File "catch_multiple_exceptions.py", line 4, in funny_division2

 raise ValueError("13 is an unlucky number")

ValueError: 13 is an unlucky number

Chapter 4

[105]

The number 0 and the string are both caught by the except clause, and a suitable
error message is printed. The exception from the number 13 is not caught because it
is a ValueError, which was not included in the types of exceptions being handled.
This is all well and good, but what if we want to catch different exceptions and do
different things with them? Or maybe we want to do something with an exception
and then allow it to continue to bubble up to the parent function, as if it had never
been caught? We don't need any new syntax to deal with these cases. It's possible
to stack except clauses, and only the first match will be executed. For the second
question, the raise keyword, with no arguments, will reraise the last exception if
we're already inside an exception handler. Observe in the following code:

def funny_division3(anumber):
 try:
 if anumber == 13:
 raise ValueError("13 is an unlucky number")
 return 100 / anumber
 except ZeroDivisionError:
 return "Enter a number other than zero"
 except TypeError:
 return "Enter a numerical value"
 except ValueError:
 print("No, No, not 13!")
 raise

The last line reraises the ValueError, so after outputting No, No, not 13!, it will
raise the exception again; we'll still get the original stack trace on the console.

If we stack exception clauses like we did in the preceding example, only the first
matching clause will be run, even if more than one of them fits. How can more
than one clause match? Remember that exceptions are objects, and can therefore be
subclassed. As we'll see in the next section, most exceptions extend the Exception
class (which is itself derived from BaseException). If we catch Exception before
we catch TypeError, then only the Exception handler will be executed, because
TypeError is an Exception by inheritance.

This can come in handy in cases where we want to handle some exceptions specifically,
and then handle all remaining exceptions as a more general case. We can simply catch
Exception after catching all the specific exceptions and handle the general case there.

Expecting the Unexpected

[106]

Sometimes, when we catch an exception, we need a reference to the Exception object
itself. This most often happens when we define our own exceptions with custom
arguments, but can also be relevant with standard exceptions. Most exception classes
accept a set of arguments in their constructor, and we might want to access those
attributes in the exception handler. If we define our own exception class, we can even
call custom methods on it when we catch it. The syntax for capturing an exception as
a variable uses the as keyword:

try:
 raise ValueError("This is an argument")
except ValueError as e:
 print("The exception arguments were", e.args)

If we run this simple snippet, it prints out the string argument that we passed into
ValueError upon initialization.

We've seen several variations on the syntax for handling exceptions, but we still
don't know how to execute code regardless of whether or not an exception has
occurred. We also can't specify code that should be executed only if an exception
does not occur. Two more keywords, finally and else, can provide the missing
pieces. Neither one takes any extra arguments. The following example randomly
picks an exception to throw and raises it. Then some not-so-complicated exception
handling code is run that illustrates the newly introduced syntax:

import random
some_exceptions = [ValueError, TypeError, IndexError, None]

try:
 choice = random.choice(some_exceptions)
 print("raising {}".format(choice))
 if choice:
 raise choice("An error")
except ValueError:
 print("Caught a ValueError")
except TypeError:
 print("Caught a TypeError")
except Exception as e:
 print("Caught some other error: %s" %
 (e.__class__.__name__))
else:
 print("This code called if there is no exception")
finally:
 print("This cleanup code is always called")

Chapter 4

[107]

If we run this example—which illustrates almost every conceivable exception
handling scenario—a few times, we'll get different output each time, depending
on which exception random chooses. Here are some example runs:

$ python finally_and_else.py

raising None

This code called if there is no exception

This cleanup code is always called

$ python finally_and_else.py

raising <class 'TypeError'>

Caught a TypeError

This cleanup code is always called

$ python finally_and_else.py

raising <class 'IndexError'>

Caught some other error: IndexError

This cleanup code is always called

$ python finally_and_else.py

raising <class 'ValueError'>

Caught a ValueError

This cleanup code is always called

Note how the print statement in the finally clause is executed no matter what
happens. This is extremely useful when we need to perform certain tasks after
our code has finished running (even if an exception has occurred). Some common
examples include:

• Cleaning up an open database connection
• Closing an open file
• Sending a closing handshake over the network

The finally clause is also very important when we execute a return statement
from inside a try clause. The finally handle will still be executed before the
value is returned.

Expecting the Unexpected

[108]

Also, pay attention to the output when no exception is raised: both the else and the
finally clauses are executed. The else clause may seem redundant, as the code that
should be executed only when no exception is raised could just be placed after the
entire try...except block. The difference is that the else block will still be executed
if an exception is caught and handled. We'll see more on this when we discuss using
exceptions as flow control later.

Any of the except, else, and finally clauses can be omitted after a try block
(although else by itself is invalid). If you include more than one, the except clauses
must come first, then the else clause, with the finally clause at the end. The order
of the except clauses normally goes from most specific to most generic.

The exception hierarchy
We've already seen several of the most common built-in exceptions, and you'll
probably encounter the rest over the course of your regular Python development.
As we noticed earlier, most exceptions are subclasses of the Exception class. But
this is not true of all exceptions. Exception itself actually inherits from a class called
BaseException. In fact, all exceptions must extend the BaseException class or one
of its subclasses.

There are two key exceptions, SystemExit and KeyboardInterrupt, that derive
directly from BaseException instead of Exception. The SystemExit exception is
raised whenever the program exits naturally, typically because we called the sys.
exit function somewhere in our code (for example, when the user selected an exit
menu item, clicked the "close" button on a window, or entered a command to shut
down a server). The exception is designed to allow us to clean up code before the
program ultimately exits, so we generally don't need to handle it explicitly (because
cleanup code happens inside a finally clause).

If we do handle it, we would normally reraise the exception, since catching it would
stop the program from exiting. There are, of course, situations where we might want
to stop the program exiting, for example, if there are unsaved changes and we want
to prompt the user if they really want to exit. Usually, if we handle SystemExit at
all, it's because we want to do something special with it, or are anticipating it directly.
We especially don't want it to be accidentally caught in generic clauses that catch all
normal exceptions. This is why it derives directly from BaseException.

The KeyboardInterrupt exception is common in command-line programs.
It is thrown when the user explicitly interrupts program execution with an
OS-dependent key combination (normally, Ctrl + C). This is a standard way for
the user to deliberately interrupt a running program, and like SystemExit, it
should almost always respond by terminating the program. Also, like SystemExit,
it should handle any cleanup tasks inside finally blocks.

Chapter 4

[109]

Here is a class diagram that fully illustrates the exception hierarchy:

SystemExit

BaseException KeyboardInterrupt

Exception

Most Other Exception

When we use the except: clause without specifying any type of exception, it will
catch all subclasses of BaseException; which is to say, it will catch all exceptions,
including the two special ones. Since we almost always want these to get special
treatment, it is unwise to use the except: statement without arguments. If you want
to catch all exceptions other than SystemExit and KeyboardInterrupt, explicitly
catch Exception.

Furthermore, if you do want to catch all exceptions, I suggest using the syntax
except BaseException: instead of a raw except:. This helps explicitly tell future
readers of your code that you are intentionally handling the special case exceptions.

Defining our own exceptions
Often, when we want to raise an exception, we find that none of the built-in exceptions
are suitable. Luckily, it's trivial to define new exceptions of our own. The name of
the class is usually designed to communicate what went wrong, and we can provide
arbitrary arguments in the initializer to include additional information.

All we have to do is inherit from the Exception class. We don't even have to add any
content to the class! We can, of course, extend BaseException directly, but then it
will not be caught by generic except Exception clauses.

Here's a simple exception we might use in a banking application:

class InvalidWithdrawal(Exception):
 pass

raise InvalidWithdrawal("You don't have $50 in your account")

The last line illustrates how to raise the newly defined exception. We are able to pass
an arbitrary number of arguments into the exception. Often a string message is used,
but any object that might be useful in a later exception handler can be stored. The
Exception.__init__ method is designed to accept any arguments and store them
as a tuple in an attribute named args. This makes exceptions easier to define without
needing to override __init__.

Expecting the Unexpected

[110]

Of course, if we do want to customize the initializer, we are free to do so. Here's
an exception whose initializer accepts the current balance and the amount the user
wanted to withdraw. In addition, it adds a method to calculate how overdrawn the
request was:

class InvalidWithdrawal(Exception):
 def __init__(self, balance, amount):
 super().__init__("account doesn't have ${}".format(
 amount))
 self.amount = amount
 self.balance = balance

 def overage(self):
 return self.amount - self.balance

raise InvalidWithdrawal(25, 50)

The raise statement at the end illustrates how to construct this exception. As you
can see, we can do anything with an exception that we would do with other objects.
We could catch an exception and pass it around as a working object, although it
is more common to include a reference to the working object as an attribute on an
exception and pass that around instead.

Here's how we would handle an InvalidWithdrawal exception if one was raised:

try:
 raise InvalidWithdrawal(25, 50)
except InvalidWithdrawal as e:
 print("I'm sorry, but your withdrawal is "
 "more than your balance by "
 "${}".format(e.overage()))

Here we see a valid use of the as keyword. By convention, most Python coders
name the exception variable e, although, as usual, you are free to call it ex,
exception, or aunt_sally if you prefer.

There are many reasons for defining our own exceptions. It is often useful to add
information to the exception or log it in some way. But the utility of custom exceptions
truly comes to light when creating a framework, library, or API that is intended for
access by other programmers. In that case, be careful to ensure your code is raising
exceptions that make sense to the client programmer. They should be easy to handle
and clearly describe what went on. The client programmer should easily see how to
fix the error (if it reflects a bug in their code) or handle the exception (if it's a situation
they need to be made aware of).

Chapter 4

[111]

Exceptions aren't exceptional. Novice programmers tend to think of exceptions as
only useful for exceptional circumstances. However, the definition of exceptional
circumstances can be vague and subject to interpretation. Consider the following
two functions:

def divide_with_exception(number, divisor):
 try:
 print("{} / {} = {}".format(
 number, divisor, number / divisor * 1.0))
 except ZeroDivisionError:
 print("You can't divide by zero")

def divide_with_if(number, divisor):
 if divisor == 0:
 print("You can't divide by zero")
 else:
 print("{} / {} = {}".format(
 number, divisor, number / divisor * 1.0))

These two functions behave identically. If divisor is zero, an error message is
printed; otherwise, a message printing the result of division is displayed. We
could avoid a ZeroDivisionError ever being thrown by testing for it with an if
statement. Similarly, we can avoid an IndexError by explicitly checking whether
or not the parameter is within the confines of the list, and a KeyError by checking
if the key is in a dictionary.

But we shouldn't do this. For one thing, we might write an if statement that checks
whether or not the index is lower than the parameters of the list, but forget to check
negative values.

Remember, Python lists support negative indexing; -1 refers to the
last element in the list.

Eventually, we would discover this and have to find all the places where we were
checking code. But if we had simply caught the IndexError and handled it, our
code would just work.

Expecting the Unexpected

[112]

Python programmers tend to follow a model of Ask forgiveness rather than permission,
which is to say, they execute code and then deal with anything that goes wrong. The
alternative, to look before you leap, is generally frowned upon. There are a few reasons
for this, but the main one is that it shouldn't be necessary to burn CPU cycles looking
for an unusual situation that is not going to arise in the normal path through the
code. Therefore, it is wise to use exceptions for exceptional circumstances, even if
those circumstances are only a little bit exceptional. Taking this argument further,
we can actually see that the exception syntax is also effective for flow control. Like
an if statement, exceptions can be used for decision making, branching, and
message passing.

Imagine an inventory application for a company that sells widgets and gadgets. When
a customer makes a purchase, the item can either be available, in which case the item
is removed from inventory and the number of items left is returned, or it might be out
of stock. Now, being out of stock is a perfectly normal thing to happen in an inventory
application. It is certainly not an exceptional circumstance. But what do we return if
it's out of stock? A string saying out of stock? A negative number? In both cases, the
calling method would have to check whether the return value is a positive integer or
something else, to determine if it is out of stock. That seems a bit messy. Instead, we
can raise OutOfStockException and use the try statement to direct program flow
control. Make sense? In addition, we want to make sure we don't sell the same item to
two different customers, or sell an item that isn't in stock yet. One way to facilitate this
is to lock each type of item to ensure only one person can update it at a time. The user
must lock the item, manipulate the item (purchase, add stock, count items left…), and
then unlock the item. Here's an incomplete Inventory example with docstrings that
describes what some of the methods should do:

class Inventory:
 def lock(self, item_type):
 '''Select the type of item that is going to
 be manipulated. This method will lock the
 item so nobody else can manipulate the
 inventory until it's returned. This prevents
 selling the same item to two different
 customers.'''
 pass

 def unlock(self, item_type):
 '''Release the given type so that other
 customers can access it.'''
 pass

 def purchase(self, item_type):

Chapter 4

[113]

 '''If the item is not locked, raise an
 exception. If the item_type does not exist,
 raise an exception. If the item is currently
 out of stock, raise an exception. If the item
 is available, subtract one item and return
 the number of items left.'''
 pass

We could hand this object prototype to a developer and have them implement the
methods to do exactly as they say while we work on the code that needs to make
a purchase. We'll use Python's robust exception handling to consider different
branches, depending on how the purchase was made:

item_type = 'widget'
inv = Inventory()
inv.lock(item_type)
try:
 num_left = inv.purchase(item_type)
except InvalidItemType:
 print("Sorry, we don't sell {}".format(item_type))
except OutOfStock:
 print("Sorry, that item is out of stock.")
else:
 print("Purchase complete. There are "
 "{} {}s left".format(num_left, item_type))
finally:
 inv.unlock(item_type)

Pay attention to how all the possible exception handling clauses are used to ensure
the correct actions happen at the correct time. Even though OutOfStock is not
a terribly exceptional circumstance, we are able to use an exception to handle it
suitably. This same code could be written with an if...elif...else structure, but it
wouldn't be as easy to read or maintain.

We can also use exceptions to pass messages between different methods. For
example, if we wanted to inform the customer as to what date the item is expected to
be in stock again, we could ensure our OutOfStock object requires a back_in_stock
parameter when it is constructed. Then, when we handle the exception, we can check
that value and provide additional information to the customer. The information
attached to the object can be easily passed between two different parts of the
program. The exception could even provide a method that instructs the inventory
object to reorder or backorder an item.

Expecting the Unexpected

[114]

Using exceptions for flow control can make for some handy program designs. The
important thing to take from this discussion is that exceptions are not a bad thing
that we should try to avoid. Having an exception occur does not mean that you
should have prevented this exceptional circumstance from happening. Rather, it is
just a powerful way to communicate information between two sections of code that
may not be directly calling each other.

Case study
We've been looking at the use and handling of exceptions at a fairly low level
of detail—syntax and definitions. This case study will help tie it all in with our
previous chapters so we can see how exceptions are used in the larger context of
objects, inheritance, and modules.

Today, we'll be designing a simple central authentication and authorization system.
The entire system will be placed in one module, and other code will be able to query
that module object for authentication and authorization purposes. We should admit,
from the start, that we aren't security experts, and that the system we are designing
may be full of security holes. Our purpose is to study exceptions, not to secure a
system. It will be sufficient, however, for a basic login and permission system that
other code can interact with. Later, if that other code needs to be made more secure,
we can have a security or cryptography expert review or rewrite our module,
preferably without changing the API.

Authentication is the process of ensuring a user is really the person they say they
are. We'll follow the lead of common web systems today, which use a username
and private password combination. Other methods of authentication include voice
recognition, fingerprint or retinal scanners, and identification cards.

Authorization, on the other hand, is all about determining whether a given
(authenticated) user is permitted to perform a specific action. We'll create a basic
permission list system that stores a list of the specific people allowed to perform
each action.

In addition, we'll add some administrative features to allow new users to be added
to the system. For brevity, we'll leave out editing of passwords or changing of
permissions once they've been added, but these (highly necessary) features can
certainly be added in the future.

Chapter 4

[115]

There's a simple analysis; now let's proceed with design. We're obviously going to
need a User class that stores the username and an encrypted password. This class
will also allow a user to log in by checking whether a supplied password is valid. We
probably won't need a Permission class, as those can just be strings mapped to a list
of users using a dictionary. We should have a central Authenticator class that
handles user management and logging in or out. The last piece of the puzzle is an
Authorizor class that deals with permissions and checking whether a user can
perform an activity. We'll provide a single instance of each of these classes in the
auth module so that other modules can use this central mechanism for all their
authentication and authorization needs. Of course, if they want to instantiate private
instances of these classes, for non-central authorization activities, they are free to do so.

We'll also be defining several exceptions as we go along. We'll start with a special
AuthException base class that accepts a username and optional user object as
parameters; most of our self-defined exceptions will inherit from this one.

Let's build the User class first; it seems simple enough. A new user can be initialized
with a username and password. The password will be stored encrypted to reduce
the chances of its being stolen. We'll also need a check_password method to test
whether a supplied password is the correct one. Here is the class in full:

import hashlib

class User:
 def __init__(self, username, password):
 '''Create a new user object. The password
 will be encrypted before storing.'''
 self.username = username
 self.password = self._encrypt_pw(password)
 self.is_logged_in = False

 def _encrypt_pw(self, password):
 '''Encrypt the password with the username and return
 the sha digest.'''
 hash_string = (self.username + password)
 hash_string = hash_string.encode("utf8")
 return hashlib.sha256(hash_string).hexdigest()

 def check_password(self, password):
 '''Return True if the password is valid for this
 user, false otherwise.'''
 encrypted = self._encrypt_pw(password)
 return encrypted == self.password

Expecting the Unexpected

[116]

Since the code for encrypting a password is required in both __init__ and check_
password, we pull it out to its own method. This way, it only needs to be changed
in one place if someone realizes it is insecure and needs improvement. This class
could easily be extended to include mandatory or optional personal details, such
as names, contact information, and birth dates.

Before we write code to add users (which will happen in the as-yet undefined
Authenticator class), we should examine some use cases. If all goes well, we can
add a user with a username and password; the User object is created and inserted
into a dictionary. But in what ways can all not go well? Well, clearly we don't want
to add a user with a username that already exists in the dictionary. If we did so, we'd
overwrite an existing user's data and the new user might have access to that user's
privileges. So, we'll need a UsernameAlreadyExists exception. Also, for security's
sake, we should probably raise an exception if the password is too short. Both of
these exceptions will extend AuthException, which we mentioned earlier. So,
before writing the Authenticator class, let's define these three exception classes:

class AuthException(Exception):
 def __init__(self, username, user=None):
 super().__init__(username, user)
 self.username = username
 self.user = user

class UsernameAlreadyExists(AuthException):
 pass

class PasswordTooShort(AuthException):
 pass

The AuthException requires a username and has an optional user parameter.
This second parameter should be an instance of the User class associated with
that username. The two specific exceptions we're defining simply need to inform
the calling class of an exceptional circumstance, so we don't need to add any extra
methods to them.

Now let's start on the Authenticator class. It can simply be a mapping of usernames
to user objects, so we'll start with a dictionary in the initialization function. The method
for adding a user needs to check the two conditions (password length and previously
existing users) before creating a new User instance and adding it to the dictionary:

class Authenticator:
 def __init__(self):
 '''Construct an authenticator to manage

Chapter 4

[117]

 users logging in and out.'''
 self.users = {}

 def add_user(self, username, password):
 if username in self.users:
 raise UsernameAlreadyExists(username)
 if len(password) < 6:
 raise PasswordTooShort(username)
 self.users[username] = User(username, password)

We could, of course, extend the password validation to raise exceptions for passwords
that are too easy to crack in other ways, if we desired. Now let's prepare the login
method. If we weren't thinking about exceptions just now, we might just want the
method to return True or False, depending on whether the login was successful or
not. But we are thinking about exceptions, and this could be a good place to use them
for a not-so-exceptional circumstance. We could raise different exceptions, for example,
if the username does not exist or the password does not match. This will allow anyone
trying to log a user in to elegantly handle the situation using a try/except/else
clause. So, first we add these new exceptions:

class InvalidUsername(AuthException):
 pass

class InvalidPassword(AuthException):
 pass

Then we can define a simple login method to our Authenticator class that raises
these exceptions if necessary. If not, it flags the user as logged in and returns:

 def login(self, username, password):
 try:
 user = self.users[username]
 except KeyError:
 raise InvalidUsername(username)

 if not user.check_password(password):
 raise InvalidPassword(username, user)

 user.is_logged_in = True
 return True

Notice how the KeyError is handled. This could have been handled using if
username not in self.users: instead, but we chose to handle the exception
directly. We end up eating up this first exception and raising a brand new one of
our own that better suits the user-facing API.

Expecting the Unexpected

[118]

We can also add a method to check whether a particular username is logged in.
Deciding whether to use an exception here is trickier. Should we raise an exception if
the username does not exist? Should we raise an exception if the user is not logged in?

To answer these questions, we need to think about how the method would be
accessed. Most often, this method will be used to answer the yes/no question,
"Should I allow them access to <something>?" The answer will either be, "Yes, the
username is valid and they are logged in", or "No, the username is not valid or they
are not logged in". Therefore, a Boolean return value is sufficient. There is no need
to use exceptions here, just for the sake of using an exception.

 def is_logged_in(self, username):
 if username in self.users:
 return self.users[username].is_logged_in
 return False

Finally, we can add a default authenticator instance to our module so that the client
code can access it easily using auth.authenticator:

authenticator = Authenticator()

This line goes at the module level, outside any class definition, so the authenticator
variable can be accessed as auth.authenticator. Now we can start on the
Authorizor class, which maps permissions to users. The Authorizor class should
not permit user access to a permission if they are not logged in, so they'll need
a reference to a specific authenticator. We'll also need to set up the permission
dictionary upon initialization:

class Authorizor:
 def __init__(self, authenticator):
 self.authenticator = authenticator
 self.permissions = {}

Now we can write methods to add new permissions and to set up which users are
associated with each permission:

 def add_permission(self, perm_name):
 '''Create a new permission that users
 can be added to'''
 try:
 perm_set = self.permissions[perm_name]
 except KeyError:
 self.permissions[perm_name] = set()
 else:

Chapter 4

[119]

 raise PermissionError("Permission Exists")

 def permit_user(self, perm_name, username):
 '''Grant the given permission to the user'''
 try:
 perm_set = self.permissions[perm_name]
 except KeyError:
 raise PermissionError("Permission does not exist")
 else:
 if username not in self.authenticator.users:
 raise InvalidUsername(username)
 perm_set.add(username)

The first method allows us to create a new permission, unless it already exists, in
which case an exception is raised. The second allows us to add a username to a
permission, unless either the permission or the username doesn't yet exist.

We use set instead of list for usernames, so that even if you grant a user
permission more than once, the nature of sets means the user is only in the set
once. We'll discuss sets further in a later chapter.

A PermissionError is raised in both methods. This new error doesn't require
a username, so we'll make it extend Exception directly, instead of our custom
AuthException:

class PermissionError(Exception):
 pass

Finally, we can add a method to check whether a user has a specific permission
or not. In order for them to be granted access, they have to be both logged into the
authenticator and in the set of people who have been granted access to that privilege.
If either of these conditions is unsatisfied, an exception is raised:

 def check_permission(self, perm_name, username):
 if not self.authenticator.is_logged_in(username):
 raise NotLoggedInError(username)
 try:
 perm_set = self.permissions[perm_name]
 except KeyError:
 raise PermissionError("Permission does not exist")
 else:
 if username not in perm_set:
 raise NotPermittedError(username)
 else:
 return True

Expecting the Unexpected

[120]

There are two new exceptions in here; they both take usernames, so we'll define
them as subclasses of AuthException:

class NotLoggedInError(AuthException):
 pass

class NotPermittedError(AuthException):
 pass

Finally, we can add a default authorizor to go with our default authenticator:

authorizor = Authorizor(authenticator)

That completes a basic authentication/authorization system. We can test the system
at the Python prompt, checking to see whether a user, joe, is permitted to do tasks in
the paint department:

>>> import auth

>>> auth.authenticator.add_user("joe", "joepassword")

>>> auth.authorizor.add_permission("paint")

>>> auth.authorizor.check_permission("paint", "joe")

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "auth.py", line 109, in check_permission

 raise NotLoggedInError(username)

auth.NotLoggedInError: joe

>>> auth.authenticator.is_logged_in("joe")

False

>>> auth.authenticator.login("joe", "joepassword")

True

>>> auth.authorizor.check_permission("paint", "joe")

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "auth.py", line 116, in check_permission

 raise NotPermittedError(username)

auth.NotPermittedError: joe

>>> auth.authorizor.check_permission("mix", "joe")

Traceback (most recent call last):

 File "auth.py", line 111, in check_permission

 perm_set = self.permissions[perm_name]

Chapter 4

[121]

KeyError: 'mix'

During handling of the above exception, another exception occurred:

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "auth.py", line 113, in check_permission

 raise PermissionError("Permission does not exist")

auth.PermissionError: Permission does not exist

>>> auth.authorizor.permit_user("mix", "joe")

Traceback (most recent call last):

 File "auth.py", line 99, in permit_user

 perm_set = self.permissions[perm_name]

KeyError: 'mix'

During handling of the above exception, another exception occurred:

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "auth.py", line 101, in permit_user

 raise PermissionError("Permission does not exist")

auth.PermissionError: Permission does not exist

>>> auth.authorizor.permit_user("paint", "joe")

>>> auth.authorizor.check_permission("paint", "joe")

True

While verbose, the preceding output shows all of our code and most of our
exceptions in action, but to really understand the API we've defined, we should
write some exception handling code that actually uses it. Here's a basic menu
interface that allows certain users to change or test a program:

import auth

Set up a test user and permission
auth.authenticator.add_user("joe", "joepassword")
auth.authorizor.add_permission("test program")
auth.authorizor.add_permission("change program")
auth.authorizor.permit_user("test program", "joe")

class Editor:

Expecting the Unexpected

[122]

 def __init__(self):
 self.username = None
 self.menu_map = {
 "login": self.login,
 "test": self.test,
 "change": self.change,
 "quit": self.quit
 }

 def login(self):
 logged_in = False
 while not logged_in:
 username = input("username: ")
 password = input("password: ")
 try:
 logged_in = auth.authenticator.login(
 username, password)
 except auth.InvalidUsername:
 print("Sorry, that username does not exist")
 except auth.InvalidPassword:
 print("Sorry, incorrect password")
 else:
 self.username = username
 def is_permitted(self, permission):
 try:
 auth.authorizor.check_permission(
 permission, self.username)
 except auth.NotLoggedInError as e:
 print("{} is not logged in".format(e.username))
 return False
 except auth.NotPermittedError as e:
 print("{} cannot {}".format(
 e.username, permission))
 return False
 else:
 return True

 def test(self):
 if self.is_permitted("test program"):
 print("Testing program now...")

 def change(self):
 if self.is_permitted("change program"):
 print("Changing program now...")

 def quit(self):

Chapter 4

[123]

 raise SystemExit()

 def menu(self):
 try:
 answer = ""
 while True:
 print("""
Please enter a command:
\tlogin\tLogin
\ttest\tTest the program
\tchange\tChange the program
\tquit\tQuit
""")
 answer = input("enter a command: ").lower()
 try:
 func = self.menu_map[answer]
 except KeyError:
 print("{} is not a valid option".format(
 answer))
 else:
 func()
 finally:
 print("Thank you for testing the auth module")

Editor().menu()

This rather long example is conceptually very simple. The is_permitted method is
probably the most interesting; this is a mostly internal method that is called by both
test and change to ensure the user is permitted access before continuing. Of course,
those two methods are stubs, but we aren't writing an editor here; we're illustrating
the use of exceptions and exception handlers by testing an authentication and
authorization framework!

Exercises
If you've never dealt with exceptions before, the first thing you need to do is look at
any old Python code you've written and notice if there are places you should have
been handling exceptions. How would you handle them? Do you need to handle
them at all? Sometimes, letting the exception propagate to the console is the best way
to communicate to the user, especially if the user is also the script's coder. Sometimes,
you can recover from the error and allow the program to continue. Sometimes, you can
only reformat the error into something the user can understand and display it to them.

Expecting the Unexpected

[124]

Some common places to look are file I/O (is it possible your code will try to read a
file that doesn't exist?), mathematical expressions (is it possible that a value you are
dividing by is zero?), list indices (is the list empty?), and dictionaries (does the key
exist?). Ask yourself if you should ignore the problem, handle it by checking values
first, or handle it with an exception. Pay special attention to areas where you might
have used finally and else to ensure the correct code is executed under
all conditions.

Now write some new code. Think of a program that requires authentication and
authorization, and try writing some code that uses the auth module we built in the
case study. Feel free to modify the module if it's not flexible enough. Try to handle
all the exceptions in a sensible way. If you're having trouble coming up with
something that requires authentication, try adding authorization to the notepad
example from Chapter 2, Objects in Python, or add authorization to the auth module
itself—it's not a terribly useful module if just anybody can start adding permissions!
Maybe require an administrator username and password before allowing privileges
to be added or changed.

Finally, try to think of places in your code where you can raise exceptions. It can be in
code you've written or are working on; or you can write a new project as an exercise.
You'll probably have the best luck for designing a small framework or API that is
meant to be used by other people; exceptions are a terrific communication tool between
your code and someone else's. Remember to design and document any self-raised
exceptions as part of the API, or they won't know whether or how to handle them!

Summary
In this chapter, we went into the gritty details of raising, handling, defining, and
manipulating exceptions. Exceptions are a powerful way to communicate unusual
circumstances or error conditions without requiring a calling function to explicitly
check return values. There are many built-in exceptions and raising them is trivially
easy. There are several different syntaxes for handling different exception events.

In the next chapter, everything we've studied so far will come together as we discuss
how object-oriented programming principles and structures should best be applied
in Python applications.

[125]

When to Use Object-oriented
Programming

In previous chapters, we've covered many of the defining features of object-oriented
programming. We now know the principles and paradigms of object-oriented
design, and we've covered the syntax of object-oriented programming in Python.

Yet, we don't know exactly how and when to utilize these principles and syntax in
practice. In this chapter, we'll discuss some useful applications of the knowledge
we've gained, picking up some new topics along the way:

• How to recognize objects
• Data and behaviors, once again
• Wrapping data in behavior using properties
• Restricting data using behavior
• The Don't Repeat Yourself principle
• Recognizing repeated code

Treat objects as objects
This may seem obvious; you should generally give separate objects in your problem
domain a special class in your code. We've seen examples of this in the case studies
in previous chapters; first, we identify objects in the problem and then model their
data and behaviors.

When to Use Object-oriented Programming

[126]

Identifying objects is a very important task in object-oriented analysis and
programming. But it isn't always as easy as counting the nouns in a short paragraph,
as we've been doing. Remember, objects are things that have both data and behavior.
If we are working only with data, we are often better off storing it in a list, set,
dictionary, or some other Python data structure (which we'll be covering thoroughly
in Chapter 6, Python Data Structures). On the other hand, if we are working only with
behavior, but no stored data, a simple function is more suitable.

An object, however, has both data and behavior. Proficient Python programmers
use built-in data structures unless (or until) there is an obvious need to define a class.
There is no reason to add an extra level of abstraction if it doesn't help organize
our code. On the other hand, the "obvious" need is not always self-evident.

We can often start our Python programs by storing data in a few variables. As the
program expands, we will later find that we are passing the same set of related
variables to a set of functions. This is the time to think about grouping both variables
and functions into a class. If we are designing a program to model polygons in two-
dimensional space, we might start with each polygon being represented as a list of
points. The points would be modeled as two-tuples (x, y) describing where that point
is located. This is all data, stored in a set of nested data structures (specifically, a list
of tuples):

square = [(1,1), (1,2), (2,2), (2,1)]

Now, if we want to calculate the distance around the perimeter of the polygon, we
simply need to sum the distances between the two points. To do this, we also need a
function to calculate the distance between two points. Here are two such functions:

import math

def distance(p1, p2):
 return math.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)

def perimeter(polygon):
 perimeter = 0
 points = polygon + [polygon[0]]
 for i in range(len(polygon)):
 perimeter += distance(points[i], points[i+1])
 return perimeter

Now, as object-oriented programmers, we clearly recognize that a polygon class
could encapsulate the list of points (data) and the perimeter function (behavior).
Further, a point class, such as we defined in Chapter 2, Objects in Python, might
encapsulate the x and y coordinates and the distance method. The question is:
is it valuable to do this?

Chapter 5

[127]

For the previous code, maybe yes, maybe no. With our recent experience in
object-oriented principles, we can write an object-oriented version in record
time. Let's compare them

import math

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def distance(self, p2):
 return math.sqrt((self.x-p2.x)**2 + (self.y-p2.y)**2)

class Polygon:
 def __init__(self):
 self.vertices = []

 def add_point(self, point):
 self.vertices.append((point))

 def perimeter(self):
 perimeter = 0
 points = self.vertices + [self.vertices[0]]
 for i in range(len(self.vertices)):
 perimeter += points[i].distance(points[i+1])
 return perimeter

As we can see from the highlighted sections, there is twice as much code here
as there was in our earlier version, although we could argue that the add_point
method is not strictly necessary.

Now, to understand the differences a little better, let's compare the two APIs in use.
Here's how to calculate the perimeter of a square using the object-oriented code:

>>> square = Polygon()

>>> square.add_point(Point(1,1))

>>> square.add_point(Point(1,2))

>>> square.add_point(Point(2,2))

>>> square.add_point(Point(2,1))

>>> square.perimeter()

4.0

When to Use Object-oriented Programming

[128]

That's fairly succinct and easy to read, you might think, but let's compare it to the
function-based code:

>>> square = [(1,1), (1,2), (2,2), (2,1)]

>>> perimeter(square)

4.0

Hmm, maybe the object-oriented API isn't so compact! That said, I'd argue that it
was easier to read than the functional example: How do we know what the list of
tuples is supposed to represent in the second version? How do we remember what
kind of object (a list of two-tuples? That's not intuitive!) we're supposed to pass into
the perimeter function? We would need a lot of documentation to explain how
these functions should be used.

In contrast, the object-oriented code is relatively self-documenting, we just have to
look at the list of methods and their parameters to know what the object does and
how to use it. By the time we wrote all the documentation for the functional version,
it would probably be longer than the object-oriented code.

Finally, code length is not a good indicator of code complexity. Some programmers
get hung up on complicated "one liners" that do an incredible amount of work in one
line of code. This can be a fun exercise, but the result is often unreadable, even to the
original author the following day. Minimizing the amount of code can often make a
program easier to read, but do not blindly assume this is the case.

Luckily, this trade-off isn't necessary. We can make the object-oriented Polygon
API as easy to use as the functional implementation. All we have to do is alter our
Polygon class so that it can be constructed with multiple points. Let's give it an
initializer that accepts a list of Point objects. In fact, let's allow it to accept tuples
too, and we can construct the Point objects ourselves, if needed:

 def __init__(self, points=None):
 points = points if points else []
 self.vertices = []
 for point in points:
 if isinstance(point, tuple):
 point = Point(*point)
 self.vertices.append(point)

This initializer goes through the list and ensures that any tuples are converted to
points. If the object is not a tuple, we leave it as is, assuming that it is either a Point
object already, or an unknown duck-typed object that can act like a Point object.

Chapter 5

[129]

Still, there's no clear winner between the object-oriented and more data-oriented
versions of this code. They both do the same thing. If we have new functions that
accept a polygon argument, such as area(polygon) or point_in_polygon(polygon,
x, y), the benefits of the object-oriented code become increasingly obvious. Likewise,
if we add other attributes to the polygon, such as color or texture, it makes more and
more sense to encapsulate that data into a single class.

The distinction is a design decision, but in general, the more complicated a set of
data is, the more likely it is to have multiple functions specific to that data, and the
more useful it is to use a class with attributes and methods instead.

When making this decision, it also pays to consider how the class will be used. If
we're only trying to calculate the perimeter of one polygon in the context of a much
greater problem, using a function will probably be quickest to code and easier to use
"one time only". On the other hand, if our program needs to manipulate numerous
polygons in a wide variety of ways (calculate perimeter, area, intersection with other
polygons, move or scale them, and so on), we have most certainly identified an
object; one that needs to be extremely versatile.

Additionally, pay attention to the interaction between objects. Look for inheritance
relationships; inheritance is impossible to model elegantly without classes, so make
sure to use them. Look for the other types of relationships we discussed in Chapter 1,
Object-oriented Design, association and composition. Composition can, technically, be
modeled using only data structures; for example, we can have a list of dictionaries
holding tuple values, but it is often less complicated to create a few classes of objects,
especially if there is behavior associated with the data.

Don't rush to use an object just because you can use an object, but
never neglect to create a class when you need to use a class.

Adding behavior to class data with
properties
Throughout this book, we've been focusing on the separation of behavior and data.
This is very important in object-oriented programming, but we're about to see that,
in Python, the distinction can be uncannily blurry. Python is very good at blurring
distinctions; it doesn't exactly help us to "think outside the box". Rather, it teaches
us to stop thinking about the box.

When to Use Object-oriented Programming

[130]

Before we get into the details, let's discuss some bad object-oriented theory. Many
object-oriented languages (Java is the most notorious) teach us to never access
attributes directly. They insist that we write attribute access like this:

class Color:
 def __init__(self, rgb_value, name):
 self._rgb_value = rgb_value
 self._name = name

 def set_name(self, name):
 self._name = name

 def get_name(self):
 return self._name

The variables are prefixed with an underscore to suggest that they are private (other
languages would actually force them to be private). Then the get and set methods
provide access to each variable. This class would be used in practice as follows:

>>> c = Color("#ff0000", "bright red")

>>> c.get_name()

'bright red'

>>> c.set_name("red")

>>> c.get_name()

'red'

This is not nearly as readable as the direct access version that Python favors:

class Color:
 def __init__(self, rgb_value, name):
 self.rgb_value = rgb_value
 self.name = name

c = Color("#ff0000", "bright red")
print(c.name)
c.name = "red"

So why would anyone insist upon the method-based syntax? Their reasoning is
that someday we may want to add extra code when a value is set or retrieved.
For example, we could decide to cache a value and return the cached value, or
we might want to validate that the value is a suitable input.

Chapter 5

[131]

In code, we could decide to change the set_name() method as follows:

def set_name(self, name):
 if not name:
 raise Exception("Invalid Name")
 self._name = name

Now, in Java and similar languages, if we had written our original code to do direct
attribute access, and then later changed it to a method like the preceding one, we'd
have a problem: anyone who had written code that accessed the attribute directly
would now have to access the method. If they don't change the access style from
attribute access to a function call, their code will be broken. The mantra in these
languages is that we should never make public members private. This doesn't make
much sense in Python since there isn't any real concept of private members!

Python gives us the property keyword to make methods look like attributes. We
can therefore write our code to use direct member access, and if we unexpectedly
need to alter the implementation to do some calculation when getting or setting that
attribute's value, we can do so without changing the interface. Let's see how it looks:

class Color:
 def __init__(self, rgb_value, name):
 self.rgb_value = rgb_value
 self._name = name

 def _set_name(self, name):
 if not name:
 raise Exception("Invalid Name")
 self._name = name

 def _get_name(self):
 return self._name

 name = property(_get_name, _set_name)

If we had started with the earlier non-method-based class, which set the name
attribute directly, we could later change the code to look like the preceding one.
We first change the name attribute into a (semi-) private _name attribute. Then
we add two more (semi-) private methods to get and set that variable, doing our
validation when we set it.

When to Use Object-oriented Programming

[132]

Finally, we have the property declaration at the bottom. This is the magic. It creates
a new attribute on the Color class called name, which now replaces the previous name
attribute. It sets this attribute to be a property, which calls the two methods we just
created whenever the property is accessed or changed. This new version of the Color
class can be used exactly the same way as the previous version, yet it now
does validation when we set the name attribute:

>>> c = Color("#0000ff", "bright red")

>>> print(c.name)

bright red

>>> c.name = "red"

>>> print(c.name)

red

>>> c.name = ""

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "setting_name_property.py", line 8, in _set_name

 raise Exception("Invalid Name")

Exception: Invalid Name

So, if we'd previously written code to access the name attribute, and then changed
it to use our property object, the previous code would still work, unless it was
sending an empty property value, which is the behavior we wanted to forbid in
the first place. Success!

Bear in mind that even with the name property, the previous code is not 100 percent
safe. People can still access the _name attribute directly and set it to an empty
string if they want to. But if they access a variable we've explicitly marked with
an underscore to suggest it is private, they're the ones that have to deal with the
consequences, not us.

Properties in detail
Think of the property function as returning an object that proxies any requests to set
or access the attribute value through the methods we have specified. The property
keyword is like a constructor for such an object, and that object is set as the public
facing member for the given attribute.

Chapter 5

[133]

This property constructor can actually accept two additional arguments, a deletion
function and a docstring for the property. The delete function is rarely supplied in
practice, but it can be useful for logging that a value has been deleted, or possibly
to veto deleting if we have reason to do so. The docstring is just a string describing
what the property does, no different from the docstrings we discussed in Chapter 2,
Objects in Python. If we do not supply this parameter, the docstring will instead be
copied from the docstring for the first argument: the getter method. Here is a silly
example that simply states whenever any of the methods are called:

class Silly:
 def _get_silly(self):
 print("You are getting silly")
 return self._silly
 def _set_silly(self, value):
 print("You are making silly {}".format(value))
 self._silly = value
 def _del_silly(self):
 print("Whoah, you killed silly!")
 del self._silly

 silly = property(_get_silly, _set_silly,
 _del_silly, "This is a silly property")

If we actually use this class, it does indeed print out the correct strings when we
ask it to:

>>> s = Silly()

>>> s.silly = "funny"

You are making silly funny

>>> s.silly

You are getting silly

'funny'

>>> del s.silly

Whoah, you killed silly!

Further, if we look at the help file for the Silly class (by issuing help(silly) at
the interpreter prompt), it shows us the custom docstring for our silly attribute:

Help on class Silly in module __main__:

class Silly(builtins.object)

When to Use Object-oriented Programming

[134]

 | Data descriptors defined here:
 |
 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)
 |
 | silly
 | This is a silly property

Once again, everything is working as we planned. In practice, properties are normally
only defined with the first two parameters: the getter and setter functions. If we
want to supply a docstring for a property, we can define it on the getter function;
the property proxy will copy it into its own docstring. The deletion function is often
left empty because object attributes are rarely deleted. If a coder does try to delete
a property that doesn't have a deletion function specified, it will raise an exception.
Therefore, if there is a legitimate reason to delete our property, we should supply
that function.

Decorators – another way to create properties
If you've never used Python decorators before, you might want to skip this section
and come back to it after we've discussed the decorator pattern in Chapter 10, Python
Design Patterns I. However, you don't need to understand what's going on to use the
decorator syntax to make property methods more readable.

The property function can be used with the decorator syntax to turn a get function
into a property:

class Foo:
 @property
 def foo(self):
 return "bar"

This applies the property function as a decorator, and is equivalent to the previous
foo = property(foo) syntax. The main difference, from a readability perspective,
is that we get to mark the foo function as a property at the top of the method, instead
of after it is defined, where it can be easily overlooked. It also means we don't have
to create private methods with underscore prefixes just to define a property.

Chapter 5

[135]

Going one step further, we can specify a setter function for the new property
as follows:

class Foo:
 @property
 def foo(self):
 return self._foo

 @foo.setter
 def foo(self, value):
 self._foo = value

This syntax looks pretty odd, although the intent is obvious. First, we decorate the
foo method as a getter. Then, we decorate a second method with exactly the same
name by applying the setter attribute of the originally decorated foo method! The
property function returns an object; this object always comes with its own setter
attribute, which can then be applied as a decorator to other functions. Using the same
name for the get and set methods is not required, but it does help group the multiple
methods that access one property together.

We can also specify a deletion function with @foo.deleter. We cannot specify a
docstring using property decorators, so we need to rely on the property copying
the docstring from the initial getter method.

Here's our previous Silly class rewritten to use property as a decorator:

class Silly:
 @property
 def silly(self):
 "This is a silly property"
 print("You are getting silly")
 return self._silly

 @silly.setter
 def silly(self, value):
 print("You are making silly {}".format(value))
 self._silly = value

 @silly.deleter
 def silly(self):
 print("Whoah, you killed silly!")
 del self._silly

This class operates exactly the same as our earlier version, including the help text.
You can use whichever syntax you feel is more readable and elegant.

When to Use Object-oriented Programming

[136]

Deciding when to use properties
With the property built-in clouding the division between behavior and data, it can
be confusing to know which one to choose. The example use case we saw earlier is
one of the most common uses of properties; we have some data on a class that we
later want to add behavior to. There are also other factors to take into account when
deciding to use a property.

Technically, in Python, data, properties, and methods are all attributes on a class.
The fact that a method is callable does not distinguish it from other types of
attributes; indeed, we'll see in Chapter 7, Python Object-oriented Shortcuts, that it
is possible to create normal objects that can be called like functions. We'll also
discover that functions and methods are themselves normal objects.

The fact that methods are just callable attributes, and properties are just customizable
attributes can help us make this decision. Methods should typically represent actions;
things that can be done to, or performed by, the object. When you call a method, even
with only one argument, it should do something. Method names are generally verbs.

Once confirming that an attribute is not an action, we need to decide between
standard data attributes and properties. In general, always use a standard attribute
until you need to control access to that property in some way. In either case, your
attribute is usually a noun. The only difference between an attribute and a property
is that we can invoke custom actions automatically when a property is retrieved, set,
or deleted.

Let's look at a more realistic example. A common need for custom behavior is caching
a value that is difficult to calculate or expensive to look up (requiring, for example,
a network request or database query). The goal is to store the value locally to avoid
repeated calls to the expensive calculation.

We can do this with a custom getter on the property. The first time the value is
retrieved, we perform the lookup or calculation. Then we could locally cache the
value as a private attribute on our object (or in dedicated caching software), and the
next time the value is requested, we return the stored data. Here's how we might
cache a web page:

from urllib.request import urlopen

class WebPage:
 def __init__(self, url):
 self.url = url
 self._content = None

 @property

Chapter 5

[137]

 def content(self):
 if not self._content:
 print("Retrieving New Page...")
 self._content = urlopen(self.url).read()
 return self._content

We can test this code to see that the page is only retrieved once:

>>> import time

>>> webpage = WebPage("http://ccphillips.net/")

>>> now = time.time()

>>> content1 = webpage.content

Retrieving New Page...

>>> time.time() - now

22.43316888809204

>>> now = time.time()

>>> content2 = webpage.content

>>> time.time() - now

1.9266459941864014

>>> content2 == content1

True

I was on an awful satellite connection when I originally tested this code and it
took 20 seconds the first time I loaded the content. The second time, I got the result
in 2 seconds (which is really just the amount of time it took to type the lines into
the interpreter).

Custom getters are also useful for attributes that need to be calculated on the fly,
based on other object attributes. For example, we might want to calculate the
average for a list of integers:

class AverageList(list):
 @property
 def average(self):
 return sum(self) / len(self)

This very simple class inherits from list, so we get list-like behavior for free.
We just add a property to the class, and presto, our list can have an average:

>>> a = AverageList([1,2,3,4])

>>> a.average

2.5

When to Use Object-oriented Programming

[138]

Of course, we could have made this a method instead, but then we should call it
calculate_average(), since methods represent actions. But a property called
average is more suitable, both easier to type, and easier to read.

Custom setters are useful for validation, as we've already seen, but they can also
be used to proxy a value to another location. For example, we could add a content
setter to the WebPage class that automatically logs into our web server and uploads
a new page whenever the value is set.

Manager objects
We've been focused on objects and their attributes and methods. Now, we'll take a
look at designing higher-level objects: the kinds of objects that manage other objects.
The objects that tie everything together.

The difference between these objects and most of the examples we've seen so far is
that our examples tend to represent concrete ideas. Management objects are more
like office managers; they don't do the actual "visible" work out on the floor, but
without them, there would be no communication between departments and nobody
would know what they are supposed to do (although, this can be true anyway if the
organization is badly managed!). Analogously, the attributes on a management class
tend to refer to other objects that do the "visible" work; the behaviors on such a class
delegate to those other classes at the right time, and pass messages between them.

As an example, we'll write a program that does a find and replace action for text files
stored in a compressed ZIP file. We'll need objects to represent the ZIP file and each
individual text file (luckily, we don't have to write these classes, they're available in
the Python standard library). The manager object will be responsible for ensuring
three steps occur in order:

1. Unzipping the compressed file.
2. Performing the find and replace action.
3. Zipping up the new files.

The class is initialized with the .zip filename and search and replace strings. We
create a temporary directory to store the unzipped files in, so that the folder stays
clean. The Python 3.4 pathlib library helps out with file and directory manipulation.
We'll learn more about that in Chapter 8, Strings and Serialization, but the interface
should be pretty clear in the following example:

import sys
import shutil
import zipfile

Chapter 5

[139]

from pathlib import Path

class ZipReplace:
 def __init__(self, filename, search_string, replace_string):
 self.filename = filename
 self.search_string = search_string
 self.replace_string = replace_string
 self.temp_directory = Path("unzipped-{}".format(
 filename))

Then, we create an overall "manager" method for each of the three steps. This
method delegates responsibility to other methods. Obviously, we could do all
three steps in one method, or indeed, in one script without ever creating an object.
There are several advantages to separating the three steps:

• Readability: The code for each step is in a self-contained unit that is easy to
read and understand. The method names describe what the method does, and
less additional documentation is required to understand what is going on.

• Extensibility: If a subclass wanted to use compressed TAR files instead of
ZIP files, it could override the zip and unzip methods without having to
duplicate the find_replace method.

• Partitioning: An external class could create an instance of this class and
call the find_replace method directly on some folder without having to
zip the content.

The delegation method is the first in the following code; the rest of the methods are
included for completeness:

 def zip_find_replace(self):
 self.unzip_files()
 self.find_replace()
 self.zip_files()

 def unzip_files(self):
 self.temp_directory.mkdir()
 with zipfile.ZipFile(self.filename) as zip:
 zip.extractall(str(self.temp_directory))

 def find_replace(self):
 for filename in self.temp_directory.iterdir():
 with filename.open() as file:
 contents = file.read()
 contents = contents.replace(
 self.search_string, self.replace_string)

When to Use Object-oriented Programming

[140]

 with filename.open("w") as file:
 file.write(contents)

 def zip_files(self):
 with zipfile.ZipFile(self.filename, 'w') as file:
 for filename in self.temp_directory.iterdir():
 file.write(str(filename), filename.name)
 shutil.rmtree(str(self.temp_directory))

if __name__ == "__main__":
 ZipReplace(*sys.argv[1:4]).zip_find_replace()

For brevity, the code for zipping and unzipping files is sparsely documented. Our
current focus is on object-oriented design; if you are interested in the inner details of
the zipfile module, refer to the documentation in the standard library, either online
or by typing import zipfile ; help(zipfile) into your interactive interpreter.
Note that this example only searches the top-level files in a ZIP file; if there are any
folders in the unzipped content, they will not be scanned, nor will any files inside
those folders.

The last two lines in the example allow us to run the program from the command
line by passing the zip filename, search string, and replace string as arguments:

python zipsearch.py hello.zip hello hi

Of course, this object does not have to be created from the command line; it could be
imported from another module (to perform batch ZIP file processing) or accessed as
part of a GUI interface or even a higher-level management object that knows where
to get ZIP files (for example, to retrieve them from an FTP server or back them up to
an external disk).

As programs become more and more complex, the objects being modeled become less
and less like physical objects. Properties are other abstract objects and methods are
actions that change the state of those abstract objects. But at the heart of every object,
no matter how complex, is a set of concrete properties and well-defined behaviors.

Removing duplicate code
Often the code in management style classes such as ZipReplace is quite generic
and can be applied in a variety of ways. It is possible to use either composition or
inheritance to help keep this code in one place, thus eliminating duplicate code.
Before we look at any examples of this, let's discuss a tiny bit of theory. Specifically,
why is duplicate code a bad thing?

Chapter 5

[141]

There are several reasons, but they all boil down to readability and maintainability.
When we're writing a new piece of code that is similar to an earlier piece, the easiest
thing to do is copy the old code and change whatever needs to be changed (variable
names, logic, comments) to make it work in the new location. Alternatively, if we're
writing new code that seems similar, but not identical to code elsewhere in the project,
it is often easier to write fresh code with similar behavior, rather than figure out how
to extract the overlapping functionality.

But as soon as someone has to read and understand the code and they come across
duplicate blocks, they are faced with a dilemma. Code that might have made sense
suddenly has to be understood. How is one section different from the other? How
are they the same? Under what conditions is one section called? When do we call
the other? You might argue that you're the only one reading your code, but if you
don't touch that code for eight months it will be as incomprehensible to you as it is
to a fresh coder. When we're trying to read two similar pieces of code, we have to
understand why they're different, as well as how they're different. This wastes the
reader's time; code should always be written to be readable first.

I once had to try to understand someone's code that had three identical
copies of the same 300 lines of very poorly written code. I had been
working with the code for a month before I finally comprehended that
the three "identical" versions were actually performing slightly different
tax calculations. Some of the subtle differences were intentional, but
there were also obvious areas where someone had updated a calculation
in one function without updating the other two. The number of subtle,
incomprehensible bugs in the code could not be counted. I eventually
replaced all 900 lines with an easy-to-read function of 20 lines or so.

Reading such duplicate code can be tiresome, but code maintenance is even more
tormenting. As the preceding story suggests, keeping two similar pieces of code up
to date can be a nightmare. We have to remember to update both sections whenever
we update one of them, and we have to remember how the multiple sections differ so
we can modify our changes when we are editing each of them. If we forget to update
both sections, we will end up with extremely annoying bugs that usually manifest
themselves as, "but I fixed that already, why is it still happening?"

The result is that people who are reading or maintaining our code have to spend
astronomical amounts of time understanding and testing it compared to if we
had written the code in a nonrepetitive manner in the first place. It's even more
frustrating when we are the ones doing the maintenance; we find ourselves saying,
"why didn't I do this right the first time?" The time we save by copy-pasting existing
code is lost the very first time we have to maintain it. Code is both read and modified
many more times and much more often than it is written. Comprehensible code
should always be paramount.

When to Use Object-oriented Programming

[142]

This is why programmers, especially Python programmers (who tend to value elegant
code more than average), follow what is known as the Don't Repeat Yourself (DRY)
principle. DRY code is maintainable code. My advice to beginning programmers is to
never use the copy and paste feature of their editor. To intermediate programmers, I
suggest they think thrice before they hit Ctrl + C.

But what should we do instead of code duplication? The simplest solution is often to
move the code into a function that accepts parameters to account for whatever parts
are different. This isn't a terribly object-oriented solution, but it is frequently optimal.

For example, if we have two pieces of code that unzip a ZIP file into two different
directories, we can easily write a function that accepts a parameter for the directory
to which it should be unzipped instead. This may make the function itself slightly
more difficult to read, but a good function name and docstring can easily make up
for that, and any code that invokes the function will be easier to read.

That's certainly enough theory! The moral of the story is: always make the effort to
refactor your code to be easier to read instead of writing bad code that is only easier
to write.

In practice
Let's explore two ways we can reuse existing code. After writing our code to replace
strings in a ZIP file full of text files, we are later contracted to scale all the images in
a ZIP file to 640 x 480. Looks like we could use a very similar paradigm to what we
used in ZipReplace. The first impulse might be to save a copy of that file and change
the find_replace method to scale_image or something similar.

But, that's uncool. What if someday we want to change the unzip and zip methods to
also open TAR files? Or maybe we want to use a guaranteed unique directory name for
temporary files. In either case, we'd have to change it in two different places!

We'll start by demonstrating an inheritance-based solution to this problem. First
we'll modify our original ZipReplace class into a superclass for processing generic
ZIP files:

import os
import shutil
import zipfile
from pathlib import Path

class ZipProcessor:
 def __init__(self, zipname):
 self.zipname = zipname

Chapter 5

[143]

 self.temp_directory = Path("unzipped-{}".format(
 zipname[:-4]))

 def process_zip(self):
 self.unzip_files()
 self.process_files()
 self.zip_files()

 def unzip_files(self):
 self.temp_directory.mkdir()
 with zipfile.ZipFile(self.zipname) as zip:
 zip.extractall(str(self.temp_directory))

 def zip_files(self):
 with zipfile.ZipFile(self.zipname, 'w') as file:
 for filename in self.temp_directory.iterdir():
 file.write(str(filename), filename.name)
 shutil.rmtree(str(self.temp_directory))

We changed the filename property to zipname to avoid confusion with the
filename local variables inside the various methods. This helps make the code
more readable even though it isn't actually a change in design.

We also dropped the two parameters to __init__ (search_string and replace_
string) that were specific to ZipReplace. Then we renamed the zip_find_replace
method to process_zip and made it call an (as yet undefined) process_files
method instead of find_replace; these name changes help demonstrate the more
generalized nature of our new class. Notice that we have removed the find_replace
method altogether; that code is specific to ZipReplace and has no business here.

This new ZipProcessor class doesn't actually define a process_files method;
so if we ran it directly, it would raise an exception. Because it isn't meant to run
directly, we removed the main call at the bottom of the original script.

Now, before we move on to our image processing app, let's fix up our original
zipsearch class to make use of this parent class:

from zip_processor import ZipProcessor
import sys
import os

class ZipReplace(ZipProcessor):
 def __init__(self, filename, search_string,
 replace_string):
 super().__init__(filename)

When to Use Object-oriented Programming

[144]

 self.search_string = search_string
 self.replace_string = replace_string

 def process_files(self):
 '''perform a search and replace on all files in the
 temporary directory'''
 for filename in self.temp_directory.iterdir():
 with filename.open() as file:
 contents = file.read()
 contents = contents.replace(
 self.search_string, self.replace_string)
 with filename.open("w") as file:
 file.write(contents)

if __name__ == "__main__":
 ZipReplace(*sys.argv[1:4]).process_zip()

This code is a bit shorter than the original version, since it inherits its ZIP processing
abilities from the parent class. We first import the base class we just wrote and make
ZipReplace extend that class. Then we use super() to initialize the parent class.
The find_replace method is still here, but we renamed it to process_files so
the parent class can call it from its management interface. Because this name isn't
as descriptive as the old one, we added a docstring to describe what it is doing.

Now, that was quite a bit of work, considering that all we have now is a program
that is functionally not different from the one we started with! But having done that
work, it is now much easier for us to write other classes that operate on files in a ZIP
archive, such as the (hypothetically requested) photo scaler. Further, if we ever want
to improve or bug fix the zip functionality, we can do it for all classes by changing
only the one ZipProcessor base class. Maintenance will be much more effective.

See how simple it is now to create a photo scaling class that takes advantage of the
ZipProcessor functionality. (Note: this class requires the third-party pillow library
to get the PIL module. You can install it with pip install pillow.)

from zip_processor import ZipProcessor
import sys
from PIL import Image

class ScaleZip(ZipProcessor):

 def process_files(self):
 '''Scale each image in the directory to 640x480'''
 for filename in self.temp_directory.iterdir():
 im = Image.open(str(filename))

Chapter 5

[145]

 scaled = im.resize((640, 480))
 scaled.save(str(filename))

if __name__ == "__main__":
 ScaleZip(*sys.argv[1:4]).process_zip()

Look how simple this class is! All that work we did earlier paid off. All we do is
open each file (assuming that it is an image; it will unceremoniously crash if a file
cannot be opened), scale it, and save it back. The ZipProcessor class takes care of
the zipping and unzipping without any extra work on our part.

Case study
For this case study, we'll try to delve further into the question, "when should I choose
an object versus a built-in type?" We'll be modeling a Document class that might be
used in a text editor or word processor. What objects, functions, or properties should
it have?

We might start with a str for the Document contents, but in Python, strings aren't
mutable (able to be changed). Once a str is defined, it is forever. We can't insert
a character into it or remove one without creating a brand new string object. That
would be leaving a lot of str objects taking up memory until Python's garbage
collector sees fit to clean up behind us.

So, instead of a string, we'll use a list of characters, which we can modify at will. In
addition, a Document class would need to know the current cursor position within
the list, and should probably also store a filename for the document.

Real text editors use a binary-tree based data structure called a
rope to model their document contents. This book's title isn't
"advanced data structures", so if you're interested in learning more
about this fascinating topic, you may want to search the web for the
rope data structure.

Now, what methods should it have? There are a lot of things we might want to
do to a text document, including inserting, deleting, and selecting characters, cut,
copy, paste, the selection, and saving or closing the document. It looks like there
are copious amounts of both data and behavior, so it makes sense to put all this
stuff into its own Document class.

A pertinent question is: should this class be composed of a bunch of basic Python
objects such as str filenames, int cursor positions, and a list of characters? Or
should some or all of those things be specially defined objects in their own right?
What about individual lines and characters, do they need to have classes of their own?

When to Use Object-oriented Programming

[146]

We'll answer these questions as we go, but let's start with the simplest possible
Document class first and see what it can do:

class Document:
 def __init__(self):
 self.characters = []
 self.cursor = 0
 self.filename = ''

 def insert(self, character):
 self.characters.insert(self.cursor, character)
 self.cursor += 1

 def delete(self):
 del self.characters[self.cursor]

 def save(self):
 with open(self.filename, 'w') as f:
 f.write(''.join(self.characters))

 def forward(self):
 self.cursor += 1

 def back(self):
 self.cursor -= 1

This simple class allows us full control over editing a basic document. Have a look
at it in action:

>>> doc = Document()

>>> doc.filename = "test_document"

>>> doc.insert('h')

>>> doc.insert('e')

>>> doc.insert('l')

>>> doc.insert('l')

>>> doc.insert('o')

>>> "".join(doc.characters)

'hello'

>>> doc.back()

>>> doc.delete()

>>> doc.insert('p')

>>> "".join(doc.characters)

'hellp'

Chapter 5

[147]

Looks like it's working. We could connect a keyboard's letter and arrow keys to these
methods and the document would track everything just fine.

But what if we want to connect more than just arrow keys. What if we want to connect
the Home and End keys as well? We could add more methods to the Document class
that search forward or backwards for newline characters (in Python, a newline
character, or \n represents the end of one line and the beginning of a new one) in
the string and jump to them, but if we did that for every possible movement action
(move by words, move by sentences, Page Up, Page Down, end of line, beginning of
whitespace, and more), the class would be huge. Maybe it would be better to put those
methods on a separate object. So, let us turn the cursor attribute into an object that is
aware of its position and can manipulate that position. We can move the forward and
back methods to that class, and add a couple more for the Home and End keys:

class Cursor:
 def __init__(self, document):
 self.document = document
 self.position = 0

 def forward(self):
 self.position += 1

 def back(self):
 self.position -= 1

 def home(self):
 while self.document.characters[
 self.position-1] != '\n':
 self.position -= 1
 if self.position == 0:
 # Got to beginning of file before newline
 break

 def end(self):
 while self.position < len(self.document.characters
) and self.document.characters[
 self.position] != '\n':
 self.position += 1

This class takes the document as an initialization parameter so the methods have
access to the content of the document's character list. It then provides simple
methods for moving backwards and forwards, as before, and for moving to the
home and end positions.

When to Use Object-oriented Programming

[148]

This code is not very safe. You can very easily move past the ending
position, and if you try to go home on an empty file, it will crash.
These examples are kept short to make them readable, but that doesn't
mean they are defensive! You can improve the error checking of this
code as an exercise; it might be a great opportunity to expand your
exception handling skills.

The Document class itself is hardly changed, except for removing the two methods
that were moved to the Cursor class:

class Document:
 def __init__(self):
 self.characters = []
 self.cursor = Cursor(self)
 self.filename = ''

 def insert(self, character):
 self.characters.insert(self.cursor.position,
 character)
 self.cursor.forward()

 def delete(self):
 del self.characters[self.cursor.position]

 def save(self):
 f = open(self.filename, 'w')
 f.write(''.join(self.characters))
 f.close()

We simply updated anything that accessed the old cursor integer to use the new object
instead. We can test that the home method is really moving to the newline character:

>>> d = Document()

>>> d.insert('h')

>>> d.insert('e')

>>> d.insert('l')

>>> d.insert('l')

>>> d.insert('o')

>>> d.insert('\n')

>>> d.insert('w')

Chapter 5

[149]

>>> d.insert('o')

>>> d.insert('r')

>>> d.insert('l')

>>> d.insert('d')

>>> d.cursor.home()

>>> d.insert("*")

>>> print("".join(d.characters))

hello

*world

Now, since we've been using that string join function a lot (to concatenate the
characters so we can see the actual document contents), we can add a property
to the Document class to give us the complete string:

 @property
 def string(self):
 return "".join(self.characters)

This makes our testing a little simpler:

>>> print(d.string)

hello

world

This framework is simple (though it might be a bit time consuming!) to extend to
create and edit a complete plaintext document. Now, let's extend it to work for rich
text; text that can have bold, underlined, or italic characters.

There are two ways we could process this; the first is to insert "fake" characters into
our character list that act like instructions, such as "bold characters until you find a
stop bold character". The second is to add information to each character indicating
what formatting it should have. While the former method is probably more common,
we'll implement the latter solution. To do that, we're obviously going to need a class
for characters. This class will have an attribute representing the character, as well as
three Boolean attributes representing whether it is bold, italic, or underlined.

Hmm, wait! Is this Character class going to have any methods? If not, maybe we
should use one of the many Python data structures instead; a tuple or named tuple
would probably be sufficient. Are there any actions that we would want to do to,
or invoke on a character?

When to Use Object-oriented Programming

[150]

Well, clearly, we might want to do things with characters, such as delete or copy
them, but those are things that need to be handled at the Document level, since they
are really modifying the list of characters. Are there things that need to be done to
individual characters?

Actually, now that we're thinking about what a Character class actually is... what
is it? Would it be safe to say that a Character class is a string? Maybe we should
use an inheritance relationship here? Then we can take advantage of the numerous
methods that str instances come with.

What sorts of methods are we talking about? There's startswith, strip, find,
lower, and many more. Most of these methods expect to be working on strings
that contain more than one character. In contrast, if Character were to subclass str,
we'd probably be wise to override __init__ to raise an exception if a multi-character
string were supplied. Since all those methods we'd get for free wouldn't really apply
to our Character class, it seems we needn't use inheritance, after all.

This brings us back to our original question; should Character even be a class?
There is a very important special method on the object class that we can take
advantage of to represent our characters. This method, called __str__ (two
underscores, like __init__), is used in string manipulation functions like print
and the str constructor to convert any class to a string. The default implementation
does some boring stuff like printing the name of the module and class and its
address in memory. But if we override it, we can make it print whatever we like.
For our implementation, we could make it prefix characters with special characters
to represent whether they are bold, italic, or underlined. So, we will create a class
to represent a character, and here it is:

class Character:
 def __init__(self, character,
 bold=False, italic=False, underline=False):
 assert len(character) == 1
 self.character = character
 self.bold = bold
 self.italic = italic
 self.underline = underline

 def __str__(self):
 bold = "*" if self.bold else ''
 italic = "/" if self.italic else ''
 underline = "_" if self.underline else ''
 return bold + italic + underline + self.character

Chapter 5

[151]

This class allows us to create characters and prefix them with a special character
when the str() function is applied to them. Nothing too exciting there. We only
have to make a few minor modifications to the Document and Cursor classes to
work with this class. In the Document class, we add these two lines at the
beginning of the insert method:

 def insert(self, character):
 if not hasattr(character, 'character'):
 character = Character(character)

This is a rather strange bit of code. Its basic purpose is to check whether the character
being passed in is a Character or a str. If it is a string, it is wrapped in a Character
class so all objects in the list are Character objects. However, it is entirely possible
that someone using our code would want to use a class that is neither Character
nor string, using duck typing. If the object has a character attribute, we assume it is
a "Character-like" object. But if it does not, we assume it is a "str-like" object and
wrap it in Character. This helps the program take advantage of duck typing as well
as polymorphism; as long as an object has a character attribute, it can be used in the
Document class.

This generic check could be very useful, for example, if we wanted to make a
programmer's editor with syntax highlighting: we'd need extra data on the character,
such as what type of syntax token the character belongs to. Note that if we are doing
a lot of this kind of comparison, it's probably better to implement Character as an
abstract base class with an appropriate __subclasshook__, as discussed in Chapter 3,
When Objects Are Alike.

In addition, we need to modify the string property on Document to accept the new
Character values. All we need to do is call str() on each character before we join it:

 @property
 def string(self):
 return "".join((str(c) for c in self.characters))

This code uses a generator expression, which we'll discuss in Chapter 9, The Iterator
Pattern. It's a shortcut to perform a specific action on all the objects in a sequence.

Finally, we also need to check Character.character, instead of just the string
character we were storing before, in the home and end functions when we're looking
to see whether it matches a newline character:

 def home(self):
 while self.document.characters[
 self.position-1].character != '\n':
 self.position -= 1
 if self.position == 0:

When to Use Object-oriented Programming

[152]

 # Got to beginning of file before newline
 break

 def end(self):
 while self.position < len(
 self.document.characters) and \
 self.document.characters[
 self.position
].character != '\n':
 self.position += 1

This completes the formatting of characters. We can test it to see that it works:

>>> d = Document()

>>> d.insert('h')

>>> d.insert('e')

>>> d.insert(Character('l', bold=True))

>>> d.insert(Character('l', bold=True))

>>> d.insert('o')

>>> d.insert('\n')

>>> d.insert(Character('w', italic=True))

>>> d.insert(Character('o', italic=True))

>>> d.insert(Character('r', underline=True))

>>> d.insert('l')

>>> d.insert('d')

>>> print(d.string)

he*l*lo

/w/o_rld

>>> d.cursor.home()

>>> d.delete()

>>> d.insert('W')

>>> print(d.string)

he*l*lo

W/o_rld

>>> d.characters[0].underline = True

>>> print(d.string)

_he*l*lo

W/o_rld

Chapter 5

[153]

As expected, whenever we print the string, each bold character is preceded by a
* character, each italic character by a / character, and each underlined character
by a _ character. All our functions seem to work, and we can modify characters in
the list after the fact. We have a working rich text document object that could be
plugged into a proper user interface and hooked up with a keyboard for input and
a screen for output. Naturally, we'd want to display real bold, italic, and underlined
characters on the screen, instead of using our __str__ method, but it was sufficient
for the basic testing we demanded of it.

Exercises
We've looked at various ways that objects, data, and methods can interact with each
other in an object-oriented Python program. As usual, your first thoughts should
be how you can apply these principles to your own work. Do you have any messy
scripts lying around that could be rewritten using an object-oriented manager?
Look through some of your old code and look for methods that are not actions.
If the name isn't a verb, try rewriting it as a property.

Think about code you've written in any language. Does it break the DRY principle?
Is there any duplicate code? Did you copy and paste code? Did you write two
versions of similar pieces of code because you didn't feel like understanding the
original code? Go back over some of your recent code now and see whether you
can refactor the duplicate code using inheritance or composition. Try to pick a
project you're still interested in maintaining; not code so old that you never want
to touch it again. It helps keep your interest up when you do the improvements!

Now, look back over some of the examples we saw in this chapter. Start with the
cached web page example that uses a property to cache the retrieved data. An
obvious problem with this example is that the cache is never refreshed. Add a
timeout to the property's getter, and only return the cached page if the page has
been requested before the timeout has expired. You can use the time module
(time.time() - an_old_time returns the number of seconds that have elapsed
since an_old_time) to determine whether the cache has expired.

Now look at the inheritance-based ZipProcessor. It might be reasonable to use
composition instead of inheritance here. Instead of extending the class in the
ZipReplace and ScaleZip classes, you could pass instances of those classes into the
ZipProcessor constructor and call them to do the processing part. Implement this.

When to Use Object-oriented Programming

[154]

Which version do you find easier to use? Which is more elegant? What is easier to
read? These are subjective questions; the answer varies for each of us. Knowing the
answer, however, is important; if you find you prefer inheritance over composition,
you have to pay attention that you don't overuse inheritance in your daily coding. If
you prefer composition, make sure you don't miss opportunities to create an elegant
inheritance-based solution.

Finally, add some error handlers to the various classes we created in the case study.
They should ensure single characters are entered, that you don't try to move the
cursor past the end or beginning of the file, that you don't delete a character that
doesn't exist, and that you don't save a file without a filename. Try to think of as
many edge cases as you can, and account for them (thinking about edge cases is
about 90 percent of a professional programmer's job!) Consider different ways to
handle them; should you raise an exception when the user tries to move past the
end of the file, or just stay on the last character?

Pay attention, in your daily coding, to the copy and paste commands. Every time
you use them in your editor, consider whether it would be a good idea to improve
your program's organization so that you only have one version of the code you are
about to copy.

Summary
In this chapter, we focused on identifying objects, especially objects that are not
immediately apparent; objects that manage and control. Objects should have both
data and behavior, but properties can be used to blur the distinction between the
two. The DRY principle is an important indicator of code quality and inheritance
and composition can be applied to reduce code duplication.

In the next chapter, we'll cover several of the built-in Python data structures and
objects, focusing on their object-oriented properties and how they can be extended
or adapted.

[155]

Python Data Structures
In our examples so far, we've already seen many of the built-in Python data
structures in action. You've probably also covered many of them in introductory
books or tutorials. In this chapter, we'll be discussing the object-oriented features
of these data structures, when they should be used instead of a regular class, and
when they should not be used. In particular, we'll be covering:

• Tuples and named tuples
• Dictionaries
• Lists and sets
• How and why to extend built-in objects
• Three types of queues

Empty objects
Let's start with the most basic Python built-in, one that we've seen many times
already, the one that we've extended in every class we have created: the object.
Technically, we can instantiate an object without writing a subclass:

>>> o = object()

>>> o.x = 5

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: 'object' object has no attribute 'x'

Python Data Structures

[156]

Unfortunately, as you can see, it's not possible to set any attributes on an object that
was instantiated directly. This isn't because the Python developers wanted to force
us to write our own classes, or anything so sinister. They did this to save memory; a
lot of memory. When Python allows an object to have arbitrary attributes, it takes a
certain amount of system memory to keep track of what attributes each object has, for
storing both the attribute name and its value. Even if no attributes are stored, memory
is allocated for potential new attributes. Given the dozens, hundreds, or thousands of
objects (every class extends object) in a typical Python program; this small amount
of memory would quickly become a large amount of memory. So, Python disables
arbitrary properties on object, and several other built-ins, by default.

It is possible to restrict arbitrary properties on our own classes using
slots. Slots are beyond the scope of this book, but you now have a
search term if you are looking for more information. In normal use,
there isn't much benefit to using slots, but if you're writing an object
that will be duplicated thousands of times throughout the system,
they can help save memory, just as they do for object.

It is, however, trivial to create an empty object class of our own; we saw it in our
earliest example:

class MyObject:
 pass

And, as we've already seen, it's possible to set attributes on such classes:

>>> m = MyObject()

>>> m.x = "hello"

>>> m.x

'hello'

If we wanted to group properties together, we could store them in an empty object like
this. But we are usually better off using other built-ins designed for storing data. It has
been stressed throughout this book that classes and objects should only be used when
you want to specify both data and behaviors. The main reason to write an empty class
is to quickly block something out, knowing we'll come back later to add behavior. It
is much easier to adapt behaviors to a class than it is to replace a data structure with
an object and change all references to it. Therefore, it is important to decide from the
outset if the data is just data, or if it is an object in disguise. Once that design decision
is made, the rest of the design naturally falls into place.

Chapter 6

[157]

Tuples and named tuples
Tuples are objects that can store a specific number of other objects in order. They
are immutable, so we can't add, remove, or replace objects on the fly. This may seem
like a massive restriction, but the truth is, if you need to modify a tuple, you're using
the wrong data type (usually a list would be more suitable). The primary benefit
of tuples' immutability is that we can use them as keys in dictionaries, and in other
locations where an object requires a hash value.

Tuples are used to store data; behavior cannot be stored in a tuple. If we require
behavior to manipulate a tuple, we have to pass the tuple into a function (or
method on another object) that performs the action.

Tuples should generally store values that are somehow different from each other.
For example, we would not put three stock symbols in a tuple, but we might create
a tuple of stock symbol, current price, high, and low for the day. The primary
purpose of a tuple is to aggregate different pieces of data together into one container.
Thus, a tuple can be the easiest tool to replace the "object with no data" idiom.

We can create a tuple by separating the values with a comma. Usually, tuples are
wrapped in parentheses to make them easy to read and to separate them from
other parts of an expression, but this is not always mandatory. The following two
assignments are identical (they record a stock, the current price, the high, and the
low for a rather profitable company):

>>> stock = "FB", 75.00, 75.03, 74.90

>>> stock2 = ("FB", 75.00, 75.03, 74.90)

If we're grouping a tuple inside of some other object, such as a function call, list
comprehension, or generator, the parentheses are required. Otherwise, it would
be impossible for the interpreter to know whether it is a tuple or the next function
parameter. For example, the following function accepts a tuple and a date, and returns
a tuple of the date and the middle value between the stock's high and low value:

import datetime
def middle(stock, date):
 symbol, current, high, low = stock
 return (((high + low) / 2), date)

mid_value, date = middle(("FB", 75.00, 75.03, 74.90),
 datetime.date(2014, 10, 31))

The tuple is created directly inside the function call by separating the values with
commas and enclosing the entire tuple in parenthesis. This tuple is then followed
by a comma to separate it from the second argument.

Python Data Structures

[158]

This example also illustrates tuple unpacking. The first line inside the function
unpacks the stock parameter into four different variables. The tuple has to be
exactly the same length as the number of variables, or it will raise an exception. We
can also see an example of tuple unpacking on the last line, where the tuple returned
inside the function is unpacked into two values, mid_value and date. Granted, this
is a strange thing to do, since we supplied the date to the function in the first place,
but it gave us a chance to see unpacking at work.

Unpacking is a very useful feature in Python. We can group variables together to
make storing and passing them around simpler, but the moment we need to access
all of them, we can unpack them into separate variables. Of course, sometimes we
only need access to one of the variables in the tuple. We can use the same syntax
that we use for other sequence types (lists and strings, for example) to access an
individual value:

>>> stock = "FB", 75.00, 75.03, 74.90

>>> high = stock[2]

>>> high

75.03

We can even use slice notation to extract larger pieces of tuples:

>>> stock[1:3]

(75.00, 75.03)

These examples, while illustrating how flexible tuples can be, also demonstrate one
of their major disadvantages: readability. How does someone reading this code
know what is in the second position of a specific tuple? They can guess, from the
name of the variable we assigned it to, that it is high of some sort, but if we had just
accessed the tuple value in a calculation without assigning it, there would be no such
indication. They would have to paw through the code to find where the tuple was
declared before they could discover what it does.

Accessing tuple members directly is fine in some circumstances, but don't make
a habit of it. Such so-called "magic numbers" (numbers that seem to come out of
thin air with no apparent meaning within the code) are the source of many coding
errors and lead to hours of frustrated debugging. Try to use tuples only when you
know that all the values are going to be useful at once and it's normally going to be
unpacked when it is accessed. If you have to access a member directly or using a slice
and the purpose of that value is not immediately obvious, at least include a comment
explaining where it came from.

Chapter 6

[159]

Named tuples
So, what do we do when we want to group values together, but know we're frequently
going to need to access them individually? Well, we could use an empty object, as
discussed in the previous section (but that is rarely useful unless we anticipate adding
behavior later), or we could use a dictionary (most useful if we don't know exactly how
many or which specific data will be stored), as we'll cover in the next section.

If, however, we do not need to add behavior to the object, and we know in advance
what attributes we need to store, we can use a named tuple. Named tuples are tuples
with attitude. They are a great way to group read-only data together.

Constructing a named tuple takes a bit more work than a normal tuple. First, we
have to import namedtuple, as it is not in the namespace by default. Then, we
describe the named tuple by giving it a name and outlining its attributes. This
returns a class-like object that we can instantiate with the required values as many
times as we want:

from collections import namedtuple
Stock = namedtuple("Stock", "symbol current high low")
stock = Stock("FB", 75.00, high=75.03, low=74.90)

The namedtuple constructor accepts two arguments. The first is an identifier for the
named tuple. The second is a string of space-separated attributes that the named
tuple can have. The first attribute should be listed, followed by a space (or comma
if you prefer), then the second attribute, then another space, and so on. The result is
an object that can be called just like a normal class to instantiate other objects. The
constructor must have exactly the right number of arguments that can be passed in
as arguments or keyword arguments. As with normal objects, we can create as many
instances of this "class" as we like, with different values for each.

The resulting namedtuple can then be packed, unpacked, and otherwise treated like a
normal tuple, but we can also access individual attributes on it as if it were an object:

>>> stock.high

75.03

>>> symbol, current, high, low = stock

>>> current

75.00

Remember that creating named tuples is a two-step process.
First, use collections.namedtuple to create a class, and
then construct instances of that class.

Python Data Structures

[160]

Named tuples are perfect for many "data only" representations, but they are not ideal
for all situations. Like tuples and strings, named tuples are immutable, so we cannot
modify an attribute once it has been set. For example, the current value of
my company's stock has gone down since we started this discussion, but we can't
set the new value:

>>> stock.current = 74.98

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: can't set attribute

If we need to be able to change stored data, a dictionary may be what we
need instead.

Dictionaries
Dictionaries are incredibly useful containers that allow us to map objects directly to
other objects. An empty object with attributes to it is a sort of dictionary; the names
of the properties map to the property values. This is actually closer to the truth than
it sounds; internally, objects normally represent attributes as a dictionary, where the
values are properties or methods on the objects (see the __dict__ attribute if you don't
believe me). Even the attributes on a module are stored, internally, in a dictionary.

Dictionaries are extremely efficient at looking up a value, given a specific key
object that maps to that value. They should always be used when you want to find
one object based on some other object. The object that is being stored is called the
value; the object that is being used as an index is called the key. We've already seen
dictionary syntax in some of our previous examples.

Dictionaries can be created either using the dict() constructor or using the {} syntax
shortcut. In practice, the latter format is almost always used. We can prepopulate a
dictionary by separating the keys from the values using a colon, and separating the key
value pairs using a comma.

For example, in a stock application, we would most often want to look up prices by
the stock symbol. We can create a dictionary that uses stock symbols as keys, and
tuples of current, high, and low as values like this:

stocks = {"GOOG": (613.30, 625.86, 610.50),
 "MSFT": (30.25, 30.70, 30.19)}

Chapter 6

[161]

As we've seen in previous examples, we can then look up values in the dictionary
by requesting a key inside square brackets. If the key is not in the dictionary, it will
raise an exception:

>>> stocks["GOOG"]

(613.3, 625.86, 610.5)

>>> stocks["RIM"]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

KeyError: 'RIM'

We can, of course, catch the KeyError and handle it. But we have other options.
Remember, dictionaries are objects, even if their primary purpose is to hold other
objects. As such, they have several behaviors associated with them. One of the most
useful of these methods is the get method; it accepts a key as the first parameter
and an optional default value if the key doesn't exist:

>>> print(stocks.get("RIM"))

None

>>> stocks.get("RIM", "NOT FOUND")

'NOT FOUND'

For even more control, we can use the setdefault method. If the key is in the
dictionary, this method behaves just like get; it returns the value for that key.
Otherwise, if the key is not in the dictionary, it will not only return the default value
we supply in the method call (just like get does), it will also set the key to that same
value. Another way to think of it is that setdefault sets a value in the dictionary only
if that value has not previously been set. Then it returns the value in the dictionary,
either the one that was already there, or the newly provided default value.

>>> stocks.setdefault("GOOG", "INVALID")

(613.3, 625.86, 610.5)

>>> stocks.setdefault("BBRY", (10.50, 10.62, 10.39))

(10.50, 10.62, 10.39)

>>> stocks["BBRY"]

(10.50, 10.62, 10.39)

Python Data Structures

[162]

The GOOG stock was already in the dictionary, so when we tried to setdefault it to
an invalid value, it just returned the value already in the dictionary. BBRY was not in
the dictionary, so setdefault returned the default value and set the new value in
the dictionary for us. We then check that the new stock is, indeed, in the dictionary.

Three other very useful dictionary methods are keys(), values(), and items(). The
first two return an iterator over all the keys and all the values in the dictionary. We
can use these like lists or in for loops if we want to process all the keys or values. The
items() method is probably the most useful; it returns an iterator over tuples of (key,
value) pairs for every item in the dictionary. This works great with tuple unpacking
in a for loop to loop over associated keys and values. This example does just that to
print each stock in the dictionary with its current value:

>>> for stock, values in stocks.items():

... print("{} last value is {}".format(stock, values[0]))

...

GOOG last value is 613.3

BBRY last value is 10.50

MSFT last value is 30.25

Each key/value tuple is unpacked into two variables named stock and values
(we could use any variable names we wanted, but these both seem appropriate)
and then printed in a formatted string.

Notice that the stocks do not show up in the same order in which they were inserted.
Dictionaries, due to the efficient algorithm (known as hashing) that is used to make
key lookup so fast, are inherently unsorted.

So, there are numerous ways to retrieve data from a dictionary once it has been
instantiated; we can use square brackets as index syntax, the get method, the
setdefault method, or iterate over the items method, among others.

Finally, as you likely already know, we can set a value in a dictionary using the
same indexing syntax we use to retrieve a value:

>>> stocks["GOOG"] = (597.63, 610.00, 596.28)

>>> stocks['GOOG']

(597.63, 610.0, 596.28)

Google's price is lower today, so I've updated the tuple value in the dictionary.
We can use this index syntax to set a value for any key, regardless of whether the
key is in the dictionary. If it is in the dictionary, the old value will be replaced
with the new one; otherwise, a new key/value pair will be created.

Chapter 6

[163]

We've been using strings as dictionary keys, so far, but we aren't limited to string
keys. It is common to use strings as keys, especially when we're storing data in a
dictionary to gather it together (instead of using an object with named properties).
But we can also use tuples, numbers, or even objects we've defined ourselves as
dictionary keys. We can even use different types of keys in a single dictionary:

random_keys = {}
random_keys["astring"] = "somestring"
random_keys[5] = "aninteger"
random_keys[25.2] = "floats work too"
random_keys[("abc", 123)] = "so do tuples"

class AnObject:
 def __init__(self, avalue):
 self.avalue = avalue

my_object = AnObject(14)
random_keys[my_object] = "We can even store objects"
my_object.avalue = 12
try:
 random_keys[[1,2,3]] = "we can't store lists though"
except:
 print("unable to store list\n")

for key, value in random_keys.items():
 print("{} has value {}".format(key, value))

This code shows several different types of keys we can supply to a dictionary. It also
shows one type of object that cannot be used. We've already used lists extensively,
and we'll be seeing many more details of them in the next section. Because lists can
change at any time (by adding or removing items, for example), they cannot hash to
a specific value.

Objects that are hashable basically have a defined algorithm that converts the object
into a unique integer value for rapid lookup. This hash is what is actually used to
look up values in a dictionary. For example, strings map to integers based on the
characters in the string, while tuples combine hashes of the items inside the tuple.
Any two objects that are somehow considered equal (like strings with the same
characters or tuples with the same values) should have the same hash value, and the
hash value for an object should never ever change. Lists, however, can have their
contents changed, which would change their hash value (two lists should only be
equal if their contents are the same). Because of this, they can't be used as dictionary
keys. For the same reason, dictionaries cannot be used as keys into other dictionaries.

Python Data Structures

[164]

In contrast, there are no limits on the types of objects that can be used as dictionary
values. We can use a string key that maps to a list value, for example, or we can
have a nested dictionary as a value in another dictionary.

Dictionary use cases
Dictionaries are extremely versatile and have numerous uses. There are two major
ways that dictionaries can be used. The first is dictionaries where all the keys
represent different instances of similar objects; for example, our stock dictionary.
This is an indexing system. We use the stock symbol as an index to the values.
The values could even have been complicated self-defined objects that made buy
and sell decisions or set a stop-loss, rather than our simple tuples.

The second design is dictionaries where each key represents some aspect of a single
structure; in this case, we'd probably use a separate dictionary for each object, and
they'd all have similar (though often not identical) sets of keys. This latter situation
can often also be solved with named tuples. These should typically be used when
we know exactly what attributes the data must store, and we know that all pieces of
the data must be supplied at once (when the item is constructed). But if we need to
create or change dictionary keys over time or we don't know exactly what the keys
might be, a dictionary is more suitable.

Using defaultdict
We've seen how to use setdefault to set a default value if a key doesn't exist, but
this can get a bit monotonous if we need to set a default value every time we look
up a value. For example, if we're writing code that counts the number of times a
letter occurs in a given sentence, we could do this:

def letter_frequency(sentence):
 frequencies = {}
 for letter in sentence:
 frequency = frequencies.setdefault(letter, 0)
 frequencies[letter] = frequency + 1
 return frequencies

Every time we access the dictionary, we need to check that it has a value already,
and if not, set it to zero. When something like this needs to be done every time an
empty key is requested, we can use a different version of the dictionary, called
defaultdict:

from collections import defaultdict
def letter_frequency(sentence):
 frequencies = defaultdict(int)

Chapter 6

[165]

 for letter in sentence:
 frequencies[letter] += 1
 return frequencies

This code looks like it couldn't possibly work. The defaultdict accepts a function in
its constructor. Whenever a key is accessed that is not already in the dictionary,
it calls that function, with no parameters, to create a default value.

In this case, the function it calls is int, which is the constructor for an integer object.
Normally, integers are created simply by typing an integer number into our code, and
if we do create one using the int constructor, we pass it the item we want to create (for
example, to convert a string of digits into an integer). But if we call int without any
arguments, it returns, conveniently, the number zero. In this code, if the letter doesn't
exist in the defaultdict, the number zero is returned when we access it. Then we add
one to this number to indicate we've found an instance of that letter, and the next time
we find one, that number will be returned and we can increment the value again.

The defaultdict is useful for creating dictionaries of containers. If we want to
create a dictionary of stock prices for the past 30 days, we could use a stock symbol
as the key and store the prices in list; the first time we access the stock price, we
would want it to create an empty list. Simply pass list into the defaultdict, and
it will be called every time an empty key is accessed. We can do similar things with
sets or even empty dictionaries if we want to associate one with a key.

Of course, we can also write our own functions and pass them into the defaultdict.
Suppose we want to create a defaultdict where each new element contains a tuple
of the number of items inserted into the dictionary at that time and an empty list to
hold other things. Nobody knows why we would want to create such an object, but
let's have a look:

from collections import defaultdict
num_items = 0
def tuple_counter():
 global num_items
 num_items += 1
 return (num_items, [])

d = defaultdict(tuple_counter)

When we run this code, we can access empty keys and insert into the list all in
one statement:

>>> d = defaultdict(tuple_counter)

>>> d['a'][1].append("hello")

>>> d['b'][1].append('world')

Python Data Structures

[166]

>>> d

defaultdict(<function tuple_counter at 0x82f2c6c>,

{'a': (1, ['hello']), 'b': (2, ['world'])})

When we print dict at the end, we see that the counter really was working.

This example, while succinctly demonstrating how to create our own
function for defaultdict, is not actually very good code; using a
global variable means that if we created four different defaultdict
segments that each used tuple_counter, it would count the number
of entries in all dictionaries, rather than having a different count for
each one. It would be better to create a class and pass a method on that
class to defaultdict.

Counter
You'd think that you couldn't get much simpler than defaultdict(int), but the
"I want to count specific instances in an iterable" use case is common enough that
the Python developers created a specific class for it. The previous code that counts
characters in a string can easily be calculated in a single line:

from collections import Counter
def letter_frequency(sentence):
 return Counter(sentence)

The Counter object behaves like a beefed up dictionary where the keys are the items
being counted and the values are the number of such items. One of the most useful
functions is the most_common() method. It returns a list of (key, count) tuples ordered
by the count. You can optionally pass an integer argument into most_common() to
request only the top most common elements. For example, you could write a simple
polling application as follows:

from collections import Counter

responses = [
 "vanilla",
 "chocolate",
 "vanilla",
 "vanilla",
 "caramel",
 "strawberry",
 "vanilla"
]

print(

Chapter 6

[167]

 "The children voted for {} ice cream".format(
 Counter(responses).most_common(1)[0][0]
)
)

Presumably, you'd get the responses from a database or by using a complicated
vision algorithm to count the kids who raised their hands. Here, we hardcode it so
that we can test the most_common method. It returns a list that has only one element
(because we requested one element in the parameter). This element stores the name
of the top choice at position zero, hence the double [0][0] at the end of the call. I
think they look like a surprised face, don't you? Your computer is probably amazed
it can count data so easily. It's ancestor, Hollerith's Tabulating Machine for the 1890
US census, must be so jealous!

Lists
Lists are the least object-oriented of Python's data structures. While lists are,
themselves, objects, there is a lot of syntax in Python to make using them as painless
as possible. Unlike many other object-oriented languages, lists in Python are
simply available. We don't need to import them and rarely need to call methods
on them. We can loop over a list without explicitly requesting an iterator object,
and we can construct a list (as with a dictionary) with custom syntax. Further, list
comprehensions and generator expressions turn them into a veritable Swiss-army
knife of computing functionality.

We won't go into too much detail of the syntax; you've seen it in introductory tutorials
across the Web and in previous examples in this book. You can't code Python very
long without learning how to use lists! Instead, we'll be covering when lists should be
used, and their nature as objects. If you don't know how to create or append to a list,
how to retrieve items from a list, or what "slice notation" is, I direct you to the official
Python tutorial, post-haste. It can be found online at http://docs.python.org/3/
tutorial/.

In Python, lists should normally be used when we want to store several instances of
the "same" type of object; lists of strings or lists of numbers; most often, lists of objects
we've defined ourselves. Lists should always be used when we want to store items in
some kind of order. Often, this is the order in which they were inserted, but they can
also be sorted by some criteria.

As we saw in the case study from the previous chapter, lists are also very useful
when we need to modify the contents: insert to or delete from an arbitrary location
of the list, or update a value within the list.

http://docs.python.org/3/tutorial/
http://docs.python.org/3/tutorial/

Python Data Structures

[168]

Like dictionaries, Python lists use an extremely efficient and well-tuned internal data
structure so we can worry about what we're storing, rather than how we're storing
it. Many object-oriented languages provide different data structures for queues,
stacks, linked lists, and array-based lists. Python does provide special instances of
some of these classes, if optimizing access to huge sets of data is required. Normally,
however, the list data structure can serve all these purposes at once, and the coder
has complete control over how they access it.

Don't use lists for collecting different attributes of individual items. We do not
want, for example, a list of the properties a particular shape has. Tuples, named
tuples, dictionaries, and objects would all be more suitable for this purpose. In some
languages, they might create a list in which each alternate item is a different type; for
example, they might write ['a', 1, 'b', 3] for our letter frequency list. They'd
have to use a strange loop that accesses two elements in the list at once or a modulus
operator to determine which position was being accessed.

Don't do this in Python. We can group related items together using a dictionary, as
we did in the previous section (if sort order doesn't matter), or using a list of tuples.
Here's a rather convoluted example that demonstrates how we could do the frequency
example using a list. It is much more complicated than the dictionary examples, and
illustrates the effect choosing the right (or wrong) data structure can have on the
readability of our code:

import string
CHARACTERS = list(string.ascii_letters) + [" "]

def letter_frequency(sentence):
 frequencies = [(c, 0) for c in CHARACTERS]
 for letter in sentence:
 index = CHARACTERS.index(letter)
 frequencies[index] = (letter,frequencies[index][1]+1)
 return frequencies

This code starts with a list of possible characters. The string.ascii_letters
attribute provides a string of all the letters, lowercase and uppercase, in order. We
convert this to a list, and then use list concatenation (the plus operator causes two
lists to be merged into one) to add one more character, the space. These are the
available characters in our frequency list (the code would break if we tried to add
a letter that wasn't in the list, but an exception handler could solve this).

Chapter 6

[169]

The first line inside the function uses a list comprehension to turn the CHARACTERS
list into a list of tuples. List comprehensions are an important, non-object-oriented
tool in Python; we'll be covering them in detail in the next chapter.

Then we loop over each of the characters in the sentence. We first look up the index
of the character in the CHARACTERS list, which we know has the same index in our
frequencies list, since we just created the second list from the first. We then update that
index in the frequencies list by creating a new tuple, discarding the original one. Aside
from the garbage collection and memory waste concerns, this is rather difficult to read!

Like dictionaries, lists are objects too, and they have several methods that can be
invoked upon them. Here are some common ones:

• The append(element) method adds an element to the end of the list
• The insert(index, element) method inserts an item at a specific position
• The count(element) method tells us how many times an element appears

in the list
• The index()method tells us the index of an item in the list, raising an

exception if it can't find it
• The find()method does the same thing, but returns -1 instead of raising

an exception for missing items
• The reverse() method does exactly what it says—turns the list around
• The sort() method has some rather intricate object-oriented behaviors,

which we'll cover now

Sorting lists
Without any parameters, sort will generally do the expected thing. If it's a list of
strings, it will place them in alphabetical order. This operation is case sensitive, so
all capital letters will be sorted before lowercase letters, that is Z comes before a.
If it is a list of numbers, they will be sorted in numerical order. If a list of tuples is
provided, the list is sorted by the first element in each tuple. If a mixture containing
unsortable items is supplied, the sort will raise a TypeError exception.

Python Data Structures

[170]

If we want to place objects we define ourselves into a list and make those objects
sortable, we have to do a bit more work. The special method __lt__, which stands for
"less than", should be defined on the class to make instances of that class comparable.
The sort method on list will access this method on each object to determine where it
goes in the list. This method should return True if our class is somehow less than the
passed parameter, and False otherwise. Here's a rather silly class that can be sorted
based on either a string or a number:

class WeirdSortee:
 def __init__(self, string, number, sort_num):
 self.string = string
 self.number = number
 self.sort_num = sort_num

 def __lt__(self, object):
 if self.sort_num:
 return self.number < object.number
 return self.string < object.string

 def __repr__(self):
 return"{}:{}".format(self.string, self.number)

The __repr__ method makes it easy to see the two values when we print a list.
The __lt__ method's implementation compares the object to another instance of
the same class (or any duck typed object that has string, number, and sort_num
attributes; it will fail if those attributes are missing). The following output illustrates
this class in action, when it comes to sorting:

>>> a = WeirdSortee('a', 4, True)

>>> b = WeirdSortee('b', 3, True)

>>> c = WeirdSortee('c', 2, True)

>>> d = WeirdSortee('d', 1, True)

>>> l = [a,b,c,d]

>>> l

[a:4, b:3, c:2, d:1]

>>> l.sort()

>>> l

[d:1, c:2, b:3, a:4]

Chapter 6

[171]

>>> for i in l:

... i.sort_num = False

...

>>> l.sort()

>>> l

[a:4, b:3, c:2, d:1]

The first time we call sort, it sorts by numbers because sort_num is True on all the
objects being compared. The second time, it sorts by letters. The __lt__ method
is the only one we need to implement to enable sorting. Technically, however, if it
is implemented, the class should normally also implement the similar __gt__, __
eq__, __ne__, __ge__, and __le__ methods so that all of the <, >, ==, !=, >=, and <=
operators also work properly. You can get this for free by implementing __lt__ and
__eq__, and then applying the @total_ordering class decorator to supply the rest:

from functools import total_ordering

@total_ordering
class WeirdSortee:
 def __init__(self, string, number, sort_num):
 self.string = string
 self.number = number
 self.sort_num = sort_num

 def __lt__(self, object):
 if self.sort_num:
 return self.number < object.number
 return self.string < object.string

 def __repr__(self):
 return"{}:{}".format(self.string, self.number)

 def __eq__(self, object):
 return all((
 self.string == object.string,
 self.number == object.number,
 self.sort_num == object.number
))

Python Data Structures

[172]

This is useful if we want to be able to use operators on our objects. However, if all we
want to do is customize our sort orders, even this is overkill. For such a use case, the
sort method can take an optional key argument. This argument is a function that
can translate each object in a list into an object that can somehow be compared. For
example, we can use str.lower as the key argument to perform a case-insensitive
sort on a list of strings:

>>> l = ["hello", "HELP", "Helo"]

>>> l.sort()

>>> l

['HELP', 'Helo', 'hello']

>>> l.sort(key=str.lower)

>>> l

['hello', 'Helo', 'HELP']

Remember, even though lower is a method on string objects, it is also a function that
can accept a single argument, self. In other words, str.lower(item) is equivalent
to item.lower(). When we pass this function as a key, it performs the comparison
on lowercase values instead of doing the default case-sensitive comparison.

There are a few sort key operations that are so common that the Python team has
supplied them so you don't have to write them yourself. For example, it is often
common to sort a list of tuples by something other than the first item in the list.
The operator.itemgetter method can be used as a key to do this:

>>> from operator import itemgetter

>>> l = [('h', 4), ('n', 6), ('o', 5), ('p', 1), ('t', 3), ('y', 2)]

>>> l.sort(key=itemgetter(1))

>>> l

[('p', 1), ('y', 2), ('t', 3), ('h', 4), ('o', 5), ('n', 6)]

The itemgetter function is the most commonly used one (it works if the objects are
dictionaries, too), but you will sometimes find use for attrgetter and methodcaller,
which return attributes on an object and the results of method calls on objects for the
same purpose. See the operator module documentation for more information.

Chapter 6

[173]

Sets
Lists are extremely versatile tools that suit most container object applications.
But they are not useful when we want to ensure objects in the list are unique. For
example, a song library may contain many songs by the same artist. If we want to
sort through the library and create a list of all the artists, we would have to check
the list to see if we've added the artist already, before we add them again.

This is where sets come in. Sets come from mathematics, where they represent an
unordered group of (usually) unique numbers. We can add a number to a set five
times, but it will show up in the set only once.

In Python, sets can hold any hashable object, not just numbers. Hashable objects
are the same objects that can be used as keys in dictionaries; so again, lists and
dictionaries are out. Like mathematical sets, they can store only one copy of each
object. So if we're trying to create a list of song artists, we can create a set of string
names and simply add them to the set. This example starts with a list of (song, artist)
tuples and creates a set of the artists:

song_library = [("Phantom Of The Opera", "Sarah Brightman"),
 ("Knocking On Heaven's Door", "Guns N' Roses"),
 ("Captain Nemo", "Sarah Brightman"),
 ("Patterns In The Ivy", "Opeth"),
 ("November Rain", "Guns N' Roses"),
 ("Beautiful", "Sarah Brightman"),
 ("Mal's Song", "Vixy and Tony")]

artists = set()
for song, artist in song_library:
 artists.add(artist)

print(artists)

There is no built-in syntax for an empty set as there is for lists and dictionaries;
we create a set using the set() constructor. However, we can use the curly braces
(borrowed from dictionary syntax) to create a set, so long as the set contains
values. If we use colons to separate pairs of values, it's a dictionary, as in {'key':
'value', 'key2': 'value2'}. If we just separate values with commas, it's a set, as
in {'value', 'value2'}. Items can be added individually to the set using its add
method. If we run this script, we see that the set works as advertised:

{'Sarah Brightman', "Guns N' Roses", 'Vixy and Tony', 'Opeth'}

Python Data Structures

[174]

If you're paying attention to the output, you'll notice that the items are not printed
in the order they were added to the sets. Sets, like dictionaries, are unordered. They
both use an underlying hash-based data structure for efficiency. Because they are
unordered, sets cannot have items looked up by index. The primary purpose of a set
is to divide the world into two groups: "things that are in the set", and, "things that
are not in the set". It is easy to check whether an item is in the set or to loop over the
items in a set, but if we want to sort or order them, we'll have to convert the set to a
list. This output shows all three of these activities:

>>> "Opeth" in artists

True

>>> for artist in artists:

... print("{} plays good music".format(artist))

...

Sarah Brightman plays good music

Guns N' Roses plays good music

Vixy and Tony play good music

Opeth plays good music

>>> alphabetical = list(artists)

>>> alphabetical.sort()

>>> alphabetical

["Guns N' Roses", 'Opeth', 'Sarah Brightman', 'Vixy and Tony']

While the primary feature of a set is uniqueness, that is not its primary purpose. Sets
are most useful when two or more of them are used in combination. Most of the
methods on the set type operate on other sets, allowing us to efficiently combine or
compare the items in two or more sets. These methods have strange names, since
they use the same terminology used in mathematics. We'll start with three methods
that return the same result, regardless of which is the calling set and which is the
called set.

The union method is the most common and easiest to understand. It takes a second
set as a parameter and returns a new set that contains all elements that are in either
of the two sets; if an element is in both original sets, it will, of course, only show up
once in the new set. Union is like a logical or operation, indeed, the | operator can
be used on two sets to perform the union operation, if you don't like calling methods.

Chapter 6

[175]

Conversely, the intersection method accepts a second set and returns a new set that
contains only those elements that are in both sets. It is like a logical and operation,
and can also be referenced using the & operator.

Finally, the symmetric_difference method tells us what's left; it is the set of objects
that are in one set or the other, but not both. The following example illustrates these
methods by comparing some artists from my song library to those in my sister's:

my_artists = {"Sarah Brightman", "Guns N' Roses",
 "Opeth", "Vixy and Tony"}

auburns_artists = {"Nickelback", "Guns N' Roses",
 "Savage Garden"}

print("All: {}".format(my_artists.union(auburns_artists)))
print("Both: {}".format(auburns_artists.intersection(my_artists)))
print("Either but not both: {}".format(
 my_artists.symmetric_difference(auburns_artists)))

If we run this code, we see that these three methods do what the print statements
suggest they will do:

All: {'Sarah Brightman', "Guns N' Roses", 'Vixy and Tony',

'Savage Garden', 'Opeth', 'Nickelback'}

Both: {"Guns N' Roses"}

Either but not both: {'Savage Garden', 'Opeth', 'Nickelback',

'Sarah Brightman', 'Vixy and Tony'}

These methods all return the same result, regardless of which set calls the other.
We can say my_artists.union(auburns_artists) or auburns_artists.
union(my_artists) and get the same result. There are also methods that return
different results depending on who is the caller and who is the argument.

These methods include issubset and issuperset, which are the inverse of each
other. Both return a bool. The issubset method returns True, if all of the items in
the calling set are also in the set passed as an argument. The issuperset method
returns True if all of the items in the argument are also in the calling set. Thus
s.issubset(t) and t.issuperset(s) are identical. They will both return True
if t contains all the elements in s.

Python Data Structures

[176]

Finally, the difference method returns all the elements that are in the calling set,
but not in the set passed as an argument; this is like half a symmetric_difference.
The difference method can also be represented by the - operator. The following
code illustrates these methods in action:

my_artists = {"Sarah Brightman", "Guns N' Roses",
 "Opeth", "Vixy and Tony"}

bands = {"Guns N' Roses", "Opeth"}

print("my_artists is to bands:")
print("issuperset: {}".format(my_artists.issuperset(bands)))
print("issubset: {}".format(my_artists.issubset(bands)))
print("difference: {}".format(my_artists.difference(bands)))
print("*"*20)
print("bands is to my_artists:")
print("issuperset: {}".format(bands.issuperset(my_artists)))
print("issubset: {}".format(bands.issubset(my_artists)))
print("difference: {}".format(bands.difference(my_artists)))

This code simply prints out the response of each method when called from one set
on the other. Running it gives us the following output:

my_artists is to bands:

issuperset: True

issubset: False

difference: {'Sarah Brightman', 'Vixy and Tony'}

bands is to my_artists:

issuperset: False

issubset: True

difference: set()

The difference method, in the second case, returns an empty set, since there are
no items in bands that are not in my_artists.

The union, intersection, and difference methods can all take multiple sets as
arguments; they will return, as we might expect, the set that is created when the
operation is called on all the parameters.

Chapter 6

[177]

So the methods on sets clearly suggest that sets are meant to operate on other sets,
and that they are not just containers. If we have data coming in from two different
sources and need to quickly combine them in some way, to determine where the data
overlaps or is different, we can use set operations to efficiently compare them. Or
if we have data incoming that may contain duplicates of data that has already been
processed, we can use sets to compare the two and process only the new data.

Finally, it is valuable to know that sets are much more efficient than lists when
checking for membership using the in keyword. If you use the syntax value in
container on a set or a list, it will return True if one of the elements in container is
equal to value and False otherwise. However, in a list, it will look at every object in
the container until it finds the value, whereas in a set, it simply hashes the value and
checks for membership. This means that a set will find the value in the same amount
of time no matter how big the container is, but a list will take longer and longer to
search for a value as the list contains more and more values.

Extending built-ins
We discussed briefly in Chapter 3, When Objects Are Alike, how built-in data types can
be extended using inheritance. Now, we'll go into more detail as to when we would
want to do that.

When we have a built-in container object that we want to add functionality to, we
have two options. We can either create a new object, which holds that container as
an attribute (composition), or we can subclass the built-in object and add or adapt
methods on it to do what we want (inheritance).

Composition is usually the best alternative if all we want to do is use the container
to store some objects using that container's features. That way, it's easy to pass that
data structure into other methods and they will know how to interact with it. But we
need to use inheritance if we want to change the way the container actually works.
For example, if we want to ensure every item in a list is a string with exactly five
characters, we need to extend list and override the append() method to raise an
exception for invalid input. We'd also minimally have to override __setitem__
(self, index, value), a special method on lists that is called whenever we use the
x[index] = "value" syntax, and the extend() method.

Python Data Structures

[178]

Yes, lists are objects. All that special non-object-oriented looking syntax we've
been looking at for accessing lists or dictionary keys, looping over containers,
and similar tasks is actually "syntactic sugar" that maps to an object-oriented
paradigm underneath. We might ask the Python designers why they did this.
Isn't object-oriented programming always better? That question is easy to answer.
In the following hypothetical examples, which is easier to read, as a programmer?
Which requires less typing?

c = a + b
c = a.add(b)

l[0] = 5
l.setitem(0, 5)
d[key] = value
d.setitem(key, value)

for x in alist:
 #do something with x
it = alist.iterator()
while it.has_next():
 x = it.next()
 #do something with x

The highlighted sections show what object-oriented code might look like (in practice,
these methods actually exist as special double-underscore methods on associated
objects). Python programmers agree that the non-object-oriented syntax is easier
both to read and to write. Yet all of the preceding Python syntaxes map to object-
oriented methods underneath the hood. These methods have special names (with
double-underscores before and after) to remind us that there is a better syntax out
there. However, it gives us the means to override these behaviors. For example, we
can make a special integer that always returns 0 when we add two of them together:

class SillyInt(int):
 def __add__(self, num):
 return 0

This is an extremely bizarre thing to do, granted, but it perfectly illustrates these
object-oriented principles in action:

>>> a = SillyInt(1)

>>> b = SillyInt(2)

>>> a + b

0

Chapter 6

[179]

The awesome thing about the __add__ method is that we can add it to any class we
write, and if we use the + operator on instances of that class, it will be called. This is
how string, tuple, and list concatenation works, for example.

This is true of all the special methods. If we want to use x in myobj syntax for
a custom-defined object, we can implement __contains__. If we want to use
myobj[i] = value syntax, we supply a __setitem__ method and if we want to
use something = myobj[i], we implement __getitem__.

There are 33 of these special methods on the list class. We can use the dir
function to see all of them:

>>> dir(list)

['__add__', '__class__', '__contains__', '__delattr__','__delitem__',
'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__
getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__',
'__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__
new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__',
'__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__
subclasshook__', 'append', 'count', 'extend', 'index', 'insert', 'pop',
'remove', 'reverse', 'sort'

Further, if we desire additional information on how any of these methods works,
we can use the help function:

>>> help(list.__add__)

Help on wrapper_descriptor:

__add__(self, value, /)

 Return self+value.

The plus operator on lists concatenates two lists. We don't have room to discuss all
of the available special functions in this book, but you are now able to explore all
this functionality with dir and help. The official online Python reference (https://
docs.python.org/3/) has plenty of useful information as well. Focus, especially,
on the abstract base classes discussed in the collections module.

So, to get back to the earlier point about when we would want to use composition
versus inheritance: if we need to somehow change any of the methods on the class—
including the special methods—we definitely need to use inheritance. If we used
composition, we could write methods that do the validation or alterations and ask
the caller to use those methods, but there is nothing stopping them from accessing
the property directly. They could insert an item into our list that does not have five
characters, and that might confuse other methods in the list.

https://docs.python.org/3/
https://docs.python.org/3/

Python Data Structures

[180]

Often, the need to extend a built-in data type is an indication that we're using the
wrong sort of data type. It is not always the case, but if we are looking to extend
a built-in, we should carefully consider whether or not a different data structure
would be more suitable.

For example, consider what it takes to create a dictionary that remembers the order in
which keys were inserted. One way to do this is to keep an ordered list of keys that is
stored in a specially derived subclass of dict. Then we can override the methods keys,
values, __iter__, and items to return everything in order. Of course, we'll also have
to override __setitem__ and setdefault to keep our list up to date. There are likely
to be a few other methods in the output of dir(dict) that need overriding to keep the
list and dictionary consistent (clear and __delitem__ come to mind, to track when
items are removed), but we won't worry about them for this example.

So we'll be extending dict and adding a list of ordered keys. Trivial enough, but
where do we create the actual list? We could include it in the __init__ method,
which would work just fine, but we have no guarantees that any subclass will call
that initializer. Remember the __new__ method we discussed in Chapter 2, Objects in
Python? I said it was generally only useful in very special cases. This is one of those
special cases. We know __new__ will be called exactly once, and we can create a list
on the new instance that will always be available to our class. With that in mind, here
is our entire sorted dictionary:

from collections import KeysView, ItemsView, ValuesView
class DictSorted(dict):
 def __new__(*args, **kwargs):
 new_dict = dict.__new__(*args, **kwargs)
 new_dict.ordered_keys = []
 return new_dict

 def __setitem__(self, key, value):
 '''self[key] = value syntax'''
 if key not in self.ordered_keys:
 self.ordered_keys.append(key)
 super().__setitem__(key, value)

 def setdefault(self, key, value):
 if key not in self.ordered_keys:
 self.ordered_keys.append(key)
 return super().setdefault(key, value)

 def keys(self):
 return KeysView(self)

 def values(self):

Chapter 6

[181]

 return ValuesView(self)

 def items(self):
 return ItemsView(self)

 def __iter__(self):
 '''for x in self syntax'''
 return self.ordered_keys.__iter__()

The __new__ method creates a new dictionary and then puts an empty list on that
object. We don't override __init__, as the default implementation works (actually,
this is only true if we initialize an empty DictSorted object, which is standard
behavior. If we want to support other variations of the dict constructor, which accept
dictionaries or lists of tuples, we'd need to fix __init__ to also update our ordered_
keys list). The two methods for setting items are very similar; they both update the list
of keys, but only if the item hasn't been added before. We don't want duplicates in the
list, but we can't use a set here; it's unordered!

The keys, items, and values methods all return views onto the dictionary. The
collections library provides three read-only View objects onto the dictionary; they use
the __iter__ method to loop over the keys, and then use __getitem__ (which we
didn't need to override) to retrieve the values. So, we only need to define our custom
__iter__ method to make these three views work. You would think the superclass
would create these views properly using polymorphism, but if we don't override these
three methods, they don't return properly ordered views.

Finally, the __iter__ method is the really special one; it ensures that if we loop over
the dictionary's keys (using for...in syntax), it will return the values in the correct
order. It does this by returning the __iter__ of the ordered_keys list, which returns
the same iterator object that would be used if we used for...in on the list instead.
Since ordered_keys is a list of all available keys (due to the way we overrode other
methods), this is the correct iterator object for the dictionary as well.

Let's look at a few of these methods in action, compared to a normal dictionary:

>>> ds = DictSorted()

>>> d = {}

>>> ds['a'] = 1

>>> ds['b'] = 2

>>> ds.setdefault('c', 3)

3

>>> d['a'] = 1

>>> d['b'] = 2

>>> d.setdefault('c', 3)

3

Python Data Structures

[182]

>>> for k,v in ds.items():

... print(k,v)

...

a 1

b 2

c 3

>>> for k,v in d.items():

... print(k,v)

...

a 1

c 3

b 2

Ah, our dictionary is sorted and the normal dictionary is not. Hurray!

If you wanted to use this class in production, you'd have to override
several other special methods to ensure the keys are up to date in all
cases. However, you don't need to do this; the functionality this class
provides is already available in Python, using the OrderedDict object in
the collections module. Try importing the class from collections,
and use help(OrderedDict) to find out more about it.

Queues
Queues are peculiar data structures because, like sets, their functionality can
be handled entirely using lists. However, while lists are extremely versatile
general-purpose tools, they are occasionally not the most efficient data structure for
container operations. If your program is using a small dataset (up to hundreds or even
thousands of elements on today's processors), then lists will probably cover all your
use cases. However, if you need to scale your data into the millions, you may need a
more efficient container for your particular use case. Python therefore provides three
types of queue data structures, depending on what kind of access you are looking for.
All three utilize the same API, but differ in both behavior and data structure.

Before we start our queues, however, consider the trusty list data structure.
Python lists are the most advantageous data structure for many use cases:

• They support efficient random access to any element in the list

Chapter 6

[183]

• They have strict ordering of elements
• They support the append operation efficiently

They tend to be slow, however, if you are inserting elements anywhere but the end of
the list (especially so if it's the beginning of the list). As we discussed in the section on
sets, they are also slow for checking if an element exists in the list, and by extension,
searching. Storing data in a sorted order or reordering the data can also be inefficient.

Let's look at the three types of containers provided by the Python queue module.

FIFO queues
FIFO stands for First In First Out and represents the most commonly understood
definition of the word "queue". Imagine a line of people standing in line at a bank or
cash register. The first person to enter the line gets served first, the second person in
line gets served second, and if a new person desires service, they join the end of the
line and wait their turn.

The Python Queue class is just like that. It is typically used as a sort of communication
medium when one or more objects is producing data and one or more other objects is
consuming the data in some way, probably at a different rate. Think of a messaging
application that is receiving messages from the network, but can only display one
message at a time to the user. The other messages can be buffered in a queue in the
order they are received. FIFO queues are utilized a lot in such concurrent applications.
(We'll talk more about concurrency in Chapter 12, Testing Object-oriented Programs.)

The Queue class is a good choice when you don't need to access any data inside
the data structure except the next object to be consumed. Using a list for this would
be less efficient because under the hood, inserting data at (or removing from) the
beginning of a list can require shifting every other element in the list.

Queues have a very simple API. A Queue can have "infinite" (until the computer runs
out of memory) capacity, but it is more commonly bounded to some maximum size.
The primary methods are put() and get(), which add an element to the back of
the line, as it were, and retrieve them from the front, in order. Both of these methods
accept optional arguments to govern what happens if the operation cannot successfully
complete because the queue is either empty (can't get) or full (can't put). The default
behavior is to block or idly wait until the Queue object has data or room available
to complete the operation. You can have it raise exceptions instead by passing the
block=False parameter. Or you can have it wait a defined amount of time before
raising an exception by passing a timeout parameter.

Python Data Structures

[184]

The class also has methods to check whether the Queue is full() or empty() and
there are a few additional methods to deal with concurrent access that we won't
discuss here. Here is a interactive session demonstrating these principles:

>>> from queue import Queue

>>> lineup = Queue(maxsize=3)

>>> lineup.get(block=False)

Traceback (most recent call last):

 File "<ipython-input-5-a1c8d8492c59>", line 1, in <module>

 lineup.get(block=False)

 File "/usr/lib64/python3.3/queue.py", line 164, in get

 raise Empty

queue.Empty

>>> lineup.put("one")

>>> lineup.put("two")

>>> lineup.put("three")

>>> lineup.put("four", timeout=1)

Traceback (most recent call last):

 File "<ipython-input-9-4b9db399883d>", line 1, in <module>

 lineup.put("four", timeout=1)

 File "/usr/lib64/python3.3/queue.py", line 144, in put

raise Full

queue.Full

>>> lineup.full()

True

>>> lineup.get()

'one'

>>> lineup.get()

'two'

>>> lineup.get()

'three'

>>> lineup.empty()

True

Chapter 6

[185]

Underneath the hood, Python implements queues on top of the collections.deque
data structure. Deques are advanced data structures that permits efficient access to
both ends of the collection. It provides a more flexible interface than is exposed by
Queue. I refer you to the Python documentation if you'd like to experiment more
with it.

LIFO queues
LIFO (Last In First Out) queues are more frequently called stacks. Think of a stack
of papers where you can only access the top-most paper. You can put another paper
on top of the stack, making it the new top-most paper, or you can take the top-most
paper away to reveal the one beneath it.

Traditionally, the operations on stacks are named push and pop, but the Python
queue module uses the exact same API as for FIFO queues: put() and get().
However, in a LIFO queue, these methods operate on the "top" of the stack instead
of at the front and back of a line. This is an excellent example of polymorphism. If you
look at the Queue source code in the Python standard library, you'll actually see that
there is a superclass with subclasses for FIFO and LIFO queues that implement the
few operations (operating on the top of a stack instead of front and back of a deque
instance) that are critically different between the two.

Here's an example of the LIFO queue in action:

>>> from queue import LifoQueue

>>> stack = LifoQueue(maxsize=3)

>>> stack.put("one")

>>> stack.put("two")

>>> stack.put("three")

>>> stack.put("four", block=False)

Traceback (most recent call last):

 File "<ipython-input-21-5473b359e5a8>", line 1, in <module>

 stack.put("four", block=False)

 File "/usr/lib64/python3.3/queue.py", line 133, in put

 raise Full

queue.Full

>>> stack.get()

'three'

>>> stack.get()

Python Data Structures

[186]

'two'

>>> stack.get()

'one'

>>> stack.empty()

True

>>> stack.get(timeout=1)

Traceback (most recent call last):

 File "<ipython-input-26-28e084a84a10>", line 1, in <module>

 stack.get(timeout=1)

 File "/usr/lib64/python3.3/queue.py", line 175, in get

 raise Empty

queue.Empty

You might wonder why you couldn't just use the append() and pop() methods on a
standard list. Quite frankly, that's probably what I would do. I rarely have occasion
to use the LifoQueue class in production code. Working with the end of a list is an
efficient operation; so efficient, in fact, that the LifoQueue uses a standard list under
the hood!

There are a couple of reasons that you might want to use LifoQueue instead of a
list. The most important one is that LifoQueue supports clean concurrent access
from multiple threads. If you need stack-like behavior in a concurrent setting, you
should leave the list at home. Second, LifoQueue enforces the stack interface. You
can't unwittingly insert a value to the wrong position in a LifoQueue, for example
(although, as an exercise, you can work out how to do this completely wittingly).

Priority queues
The priority queue enforces a very different style of ordering from the previous queue
implementations. Once again, they follow the exact same get() and put() API, but
instead of relying on the order that items arrive to determine when they should be
returned, the most "important" item is returned. By convention, the most important,
or highest priority item is the one that sorts lowest using the less than operator.

A common convention is to store tuples in the priority queue, where the first element
in the tuple is the priority for that element, and the second element is the data. Another
common paradigm is to implement the __lt__ method, as we discussed earlier in this
chapter. It is perfectly acceptable to have multiple elements with the same priority in
the queue, although there are no guarantees on which one will be returned first.

Chapter 6

[187]

A priority queue might be used, for example, by a search engine to ensure it refreshes
the content of the most popular web pages before crawling sites that are less likely to
be searched for. A product recommendation tool might use one to display information
about the most highly ranked products while still loading data for the lower ranks.

Note that a priority queue will always return the most important element currently
in the queue. The get() method will block (by default) if the queue is empty, but it
will not block and wait for a higher priority element to be added if there is already
something in the queue. The queue knows nothing about elements that have not
been added yet (or even about elements that have been previously extracted), and
only makes decisions based on the current contents of the queue.

This interactive session shows a priority queue in action, using tuples as weights to
determine what order items are processed in:

>>> heap.put((3, "three"))

>>> heap.put((4, "four"))

>>> heap.put((1, "one"))

>>> heap.put((2, "two"))

>>> heap.put((5, "five"), block=False)

Traceback (most recent call last):

 File "<ipython-input-23-d4209db364ed>", line 1, in <module>

 heap.put((5, "five"), block=False)

 File "/usr/lib64/python3.3/queue.py", line 133, in put

 raise Full

Full

>>> while not heap.empty():

 print(heap.get())

(1, 'one')

(2, 'two')

(3, 'three')

(4, 'four')

Priority queues are almost universally implemented using the heap data structure.
Python's implementation utilizes the heapq module to effectively store a heap inside
a normal list. I direct you to an algorithm and data-structure's textbook for more
information on heaps, not to mention many other fascinating structures we haven't
covered here. No matter what the data structure, you can use object-oriented principles
to wrap relevant algorithms (behaviors), such as those supplied in the heapq module,
around the data they are structuring in the computer's memory, just as the queue
module has done on our behalf in the standard library.

Python Data Structures

[188]

Case study
To tie everything together, we'll be writing a simple link collector, which will visit
a website and collect every link on every page it finds in that site. Before we start,
though, we'll need some test data to work with. Simply write some HTML files
to work with that contain links to each other and to other sites on the Internet,
something like this:

<html>
 <body>
 Contact us
 Blog
 My Dog
 Some hobbies
 Contact AGAIN
 Favorite OS
 </body>
</html>

Name one of the files index.html so it shows up first when pages are served.
Make sure the other files exist, and keep things complicated so there is lots of
linking between them. The examples for this chapter include a directory called
case_study_serve (one of the lamest personal websites in existence!) if you
would rather not set them up yourself.

Now, start a simple web server by entering the directory containing all these
files and run the following command:

python3 -m http.server

This will start a server running on port 8000; you can see the pages you made
by visiting http://localhost:8000/ in your web browser.

I doubt anyone can get a website up and running with less work!
Never let it be said, "you can't do that easily with Python."

The goal will be to pass our collector the base URL for the site (in this case: http://
localhost:8000/), and have it create a list containing every unique link on the site.
We'll need to take into account three types of URLs (links to external sites, which
start with http://, absolute internal links, which start with a / character, and
relative links, for everything else). We also need to be aware that pages may link to
each other in a loop; we need to be sure we don't process the same page multiple
times, or it may never end. With all this uniqueness going on, it sounds like we're
going to need some sets.

Chapter 6

[189]

Before we get into that, let's start with the basics. What code do we need to connect
to a page and parse all the links from that page?

from urllib.request import urlopen
from urllib.parse import urlparse
import re
import sys
LINK_REGEX = re.compile(
 "<a [^>]*href=['\"]([^'\"]+)['\"][^>]*>")

class LinkCollector:
 def __init__(self, url):
 self.url = "" + urlparse(url).netloc

 def collect_links(self, path="/"):
 full_url = self.url + path
 page = str(urlopen(full_url).read())
 links = LINK_REGEX.findall(page)
 print(links)

if __name__ == "__main__":
 LinkCollector(sys.argv[1]).collect_links()

This is a short piece of code, considering what it's doing. It connects to the server in
the argument passed on the command line, downloads the page, and extracts all the
links on that page. The __init__ method uses the urlparse function to extract just the
hostname from the URL; so even if we pass in http://localhost:8000/some/page.
html, it will still operate on the top level of the host http://localhost:8000/. This
makes sense, because we want to collect all the links on the site, although it assumes
every page is connected to the index by some sequence of links.

The collect_links method connects to and downloads the specified page from
the server, and uses a regular expression to find all the links in the page. Regular
expressions are an extremely powerful string processing tool. Unfortunately, they
have a steep learning curve; if you haven't used them before, I strongly recommend
studying any of the entire books or websites on the topic. If you don't think they're
worth knowing, try writing the preceding code without them and you'll change
your mind.

The example also stops in the middle of the collect_links method to print the value
of links. This is a common way to test a program as we're writing it: stop and output
the value to ensure it is the value we expect. Here's what it outputs for our example:

['contact.html', 'blog.html', 'esme.html', '/hobbies.html',
'/contact.html', 'http://www.archlinux.org/']

Python Data Structures

[190]

So now we have a collection of all the links in the first page. What can we do with
it? We can't just pop the links into a set to remove duplicates because links may be
relative or absolute. For example, contact.html and /contact.html point to the
same page. So the first thing we should do is normalize all the links to their full URL,
including hostname and relative path. We can do this by adding a normalize_url
method to our object:

 def normalize_url(self, path, link):
 if link.startswith("http://"):
 return link
 elif link.startswith("/"):
 return self.url + link
 else:
 return self.url + path.rpartition(
 '/')[0] + '/' + link

This method converts each URL to a complete address that includes protocol and
hostname. Now the two contact pages have the same value and we can store them
in a set. We'll have to modify __init__ to create the set, and collect_links to put
all the links into it.

Then, we'll have to visit all the non-external links and collect them too. But wait a
minute; if we do this, how do we keep from revisiting a link when we encounter the
same page twice? It looks like we're actually going to need two sets: a set of collected
links, and a set of visited links. This suggests that we were wise to choose a set to
represent our data; we know that sets are most useful when we're manipulating
more than one of them. Let's set these up:

class LinkCollector:
 def __init__(self, url):
 self.url = "http://+" + urlparse(url).netloc
 self.collected_links = set()
 self.visited_links = set()

 def collect_links(self, path="/"):
 full_url = self.url + path
 self.visited_links.add(full_url)
 page = str(urlopen(full_url).read())
 links = LINK_REGEX.findall(page)
 links = {self.normalize_url(path, link
) for link in links}
 self.collected_links = links.union(
 self.collected_links)
 unvisited_links = links.difference(
 self.visited_links)

Chapter 6

[191]

 print(links, self.visited_links,
 self.collected_links, unvisited_links)

The line that creates the normalized list of links uses a set comprehension, no
different from a list comprehension, except that the result is a set of values. We'll be
covering these in detail in the next chapter. Once again, the method stops to print out
the current values, so we can verify that we don't have our sets confused, and that
difference really was the method we wanted to call to collect unvisited_links.
We can then add a few lines of code that loop over all the unvisited links and add
them to the collection as well:

 for link in unvisited_links:
 if link.startswith(self.url):
 self.collect_links(urlparse(link).path)

The if statement ensures that we are only collecting links from the one website; we
don't want to go off and collect all the links from all the pages on the Internet (unless
we're Google or the Internet Archive!). If we modify the main code at the bottom of the
program to output the collected links, we can see it seems to have collected them all:

if __name__ == "__main__":
 collector = LinkCollector(sys.argv[1])
 collector.collect_links()
 for link in collector.collected_links:
 print(link)

It displays all the links we've collected, and only once, even though many of the
pages in my example linked to each other multiple times:

$ python3 link_collector.py http://localhost:8000

http://localhost:8000/

http://en.wikipedia.org/wiki/Cavalier_King_Charles_Spaniel

http://beluminousyoga.com

http://archlinux.me/dusty/

http://localhost:8000/blog.html

http://ccphillips.net/

http://localhost:8000/contact.html

http://localhost:8000/taichi.html

http://www.archlinux.org/

http://localhost:8000/esme.html

http://localhost:8000/hobbies.html

Python Data Structures

[192]

Even though it collected links to external pages, it didn't go off collecting links from any
of the external pages we linked to. This is a great little program if we want to collect
all the links in a site. But it doesn't give me all the information I might need to build a
site map; it tells me which pages I have, but it doesn't tell me which pages link to other
pages. If we want to do that instead, we're going to have to make some modifications.

The first thing we should do is look at our data structures. The set of collected links
doesn't work anymore; we want to know which links were linked to from which
pages. The first thing we could do, then, is turn that set into a dictionary of sets for
each page we visit. The dictionary keys will represent the exact same data that is
currently in the set. The values will be sets of all the links on that page. Here are
the changes:

from urllib.request import urlopen
from urllib.parse import urlparse
import re
import sys
LINK_REGEX = re.compile(
 "<a [^>]*href=['\"]([^'\"]+)['\"][^>]*>")

class LinkCollector:
 def __init__(self, url):
 self.url = "http://%s" % urlparse(url).netloc
 self.collected_links = {}
 self.visited_links = set()

 def collect_links(self, path="/"):
 full_url = self.url + path
 self.visited_links.add(full_url)
 page = str(urlopen(full_url).read())
 links = LINK_REGEX.findall(page)
 links = {self.normalize_url(path, link
) for link in links}
 self.collected_links[full_url] = links
 for link in links:
 self.collected_links.setdefault(link, set())
 unvisited_links = links.difference(
 self.visited_links)
 for link in unvisited_links:
 if link.startswith(self.url):
 self.collect_links(urlparse(link).path)

 def normalize_url(self, path, link):
 if link.startswith("http://"):

Chapter 6

[193]

 return link
 elif link.startswith("/"):
 return self.url + link
 else:
 return self.url + path.rpartition('/'
)[0] + '/' + link
if __name__ == "__main__":
 collector = LinkCollector(sys.argv[1])
 collector.collect_links()
 for link, item in collector.collected_links.items():
 print("{}: {}".format(link, item))

It is a surprisingly small change; the line that originally created a union of two sets has
been replaced with three lines that update the dictionary. The first of these simply tells
the dictionary what the collected links for that page are. The second creates an empty
set for any items in the dictionary that have not already been added to the dictionary,
using setdefault. The result is a dictionary that contains all the links as its keys,
mapped to sets of links for all the internal links, and empty sets for the external links.

Finally, instead of recursively calling collect_links, we can use a queue to store
the links that haven't been processed yet. This implementation won't support it,
but this would be a good first step to creating a multithreaded version that makes
multiple requests in parallel to save time.

from urllib.request import urlopen
from urllib.parse import urlparse
import re
import sys
from queue import Queue
LINK_REGEX = re.compile("<a [^>]*href=['\"]([^'\"]+)['\"][^>]*>")

class LinkCollector:
 def __init__(self, url):
 self.url = "http://%s" % urlparse(url).netloc
 self.collected_links = {}
 self.visited_links = set()

 def collect_links(self):
 queue = Queue()
 queue.put(self.url)
 while not queue.empty():
 url = queue.get().rstrip('/')
 self.visited_links.add(url)
 page = str(urlopen(url).read())

Python Data Structures

[194]

 links = LINK_REGEX.findall(page)
 links = {
 self.normalize_url(urlparse(url).path, link)
 for link in links
 }
 self.collected_links[url] = links
 for link in links:
 self.collected_links.setdefault(link, set())
 unvisited_links = links.difference(self.visited_links)
 for link in unvisited_links:
 if link.startswith(self.url):
 queue.put(link)

 def normalize_url(self, path, link):
 if link.startswith("http://"):
 return link.rstrip('/')
 elif link.startswith("/"):
 return self.url + link.rstrip('/')
 else:
 return self.url + path.rpartition('/')[0] + '/' + link.
rstrip('/')

if __name__ == "__main__":
 collector = LinkCollector(sys.argv[1])
 collector.collect_links()
 for link, item in collector.collected_links.items():
 print("%s: %s" % (link, item))

I had to manually strip any trailing forward slashes in the normalize_url method
to remove duplicates in this version of the code.

Because the end result is an unsorted dictionary, there is no restriction on what order
the links should be processed in. Therefore, we could just as easily have used
a LifoQueue instead of a Queue here. A priority queue probably wouldn't make a
lot of sense since there is no obvious priority to attach to a link in this case.

Exercises
The best way to learn how to choose the correct data structure is to do it wrong a
few times. Take some code you've recently written, or write some new code that
uses a list. Try rewriting it using some different data structures. Which ones make
more sense? Which ones don't? Which have the most elegant code?

Chapter 6

[195]

Try this with a few different pairs of data structures. You can look at examples
you've done for previous chapter exercises. Are there objects with methods where
you could have used namedtuple or dict instead? Attempt both and see. Are there
dictionaries that could have been sets because you don't really access the values? Do
you have lists that check for duplicates? Would a set suffice? Or maybe several sets?
Would one of the queue implementations be more efficient? Is it useful to restrict the
API to the top of a stack rather than allowing random access to the list?

If you want some specific examples to work with, try adapting the link collector to
also save the title used for each link. Perhaps you can generate a site map in HTML
that lists all the pages on the site, and contains a list of links to other pages, named
with the same link titles.

Have you written any container objects recently that you could improve by
inheriting a built-in and overriding some of the "special" double-underscore
methods? You may have to do some research (using dir and help, or the Python
library reference) to find out which methods need overriding. Are you sure
inheritance is the correct tool to apply; could a composition-based solution be more
effective? Try both (if it's possible) before you decide. Try to find different situations
where each method is better than the other.

If you were familiar with the various Python data structures and their uses before
you started this chapter, you may have been bored. But if that is the case, there's a
good chance you use data structures too much! Look at some of your old code and
rewrite it to use more self-made objects. Carefully consider the alternatives and try
them all out; which one makes for the most readable and maintainable system?

Always critically evaluate your code and design decisions. Make a habit of reviewing
old code and take note if your understanding of "good design" has changed since
you've written it. Software design has a large aesthetic component, and like artists
with oil on canvas, we all have to find the style that suits us best.

Summary
We've covered several built-in data structures and attempted to understand how to
choose one for specific applications. Sometimes, the best thing we can do is create a
new class of objects, but often, one of the built-ins provides exactly what we need.
When it doesn't, we can always use inheritance or composition to adapt them to our
use cases. We can even override special methods to completely change the behavior
of built-in syntaxes.

In the next chapter, we'll discuss how to integrate the object-oriented and not-so-object-
oriented aspects of Python. Along the way, we'll discover that it's more object-oriented
than it looks at first sight!

[197]

Python Object-oriented
Shortcuts

There are many aspects of Python that appear more reminiscent of structural or
functional programming than object-oriented programming. Although object-oriented
programming has been the most visible paradigm of the past two decades, the old
models have seen a recent resurgence. As with Python's data structures, most of these
tools are syntactic sugar over an underlying object-oriented implementation; we can
think of them as a further abstraction layer built on top of the (already abstracted)
object-oriented paradigm. In this chapter, we'll be covering a grab bag of Python
features that are not strictly object-oriented:

• Built-in functions that take care of common tasks in one call
• File I/O and context managers
• An alternative to method overloading
• Functions as objects

Python built-in functions
There are numerous functions in Python that perform a task or calculate a result
on certain types of objects without being methods on the underlying class. They
usually abstract common calculations that apply to multiple types of classes. This is
duck typing at its best; these functions accept objects that have certain attributes or
methods, and are able to perform generic operations using those methods. Many,
but not all, of these are special double underscore methods. We've used many of the
built-in functions already, but let's quickly go through the important ones and pick
up a few neat tricks along the way.

Python Object-oriented Shortcuts

[198]

The len() function
The simplest example is the len() function, which counts the number of items in
some kind of container object, such as a dictionary or list. You've seen it before:

>>> len([1,2,3,4])

4

Why don't these objects have a length property instead of having to call a function
on them? Technically, they do. Most objects that len() will apply to have a method
called __len__() that returns the same value. So len(myobj) seems to call
myobj.__len__().

Why should we use the len() function instead of the __len__ method? Obviously
__len__ is a special double-underscore method, suggesting that we shouldn't call it
directly. There must be an explanation for this. The Python developers don't make
such design decisions lightly.

The main reason is efficiency. When we call __len__ on an object, the object has
to look the method up in its namespace, and, if the special __getattribute__
method (which is called every time an attribute or method on an object is accessed)
is defined on that object, it has to be called as well. Further, __getattribute__ for
that particular method may have been written to do something nasty, like refusing
to give us access to special methods such as __len__! The len() function doesn't
encounter any of this. It actually calls the __len__ function on the underlying class,
so len(myobj) maps to MyObj.__len__(myobj).

Another reason is maintainability. In the future, the Python developers may want to
change len() so that it can calculate the length of objects that don't have __len__,
for example, by counting the number of items returned in an iterator. They'll only
have to change one function instead of countless __len__ methods across the board.

There is one other extremely important and often overlooked reason for len() being
an external function: backwards compatibility. This is often cited in articles as "for
historical reasons", which is a mildly dismissive phrase that an author will use to say
something is the way it is because a mistake was made long ago and we're stuck with
it. Strictly speaking, len() isn't a mistake, it's a design decision, but that decision
was made in a less object-oriented time. It has stood the test of time and has some
benefits, so do get used to it.

Reversed
The reversed() function takes any sequence as input, and returns a copy of that
sequence in reverse order. It is normally used in for loops when we want to loop
over items from back to front.

Chapter 7

[199]

Similar to len, reversed calls the __reversed__() function on the class for the
parameter. If that method does not exist, reversed builds the reversed sequence
itself using calls to __len__ and __getitem__, which are used to define a sequence.
We only need to override __reversed__ if we want to somehow customize or
optimize the process:

normal_list=[1,2,3,4,5]

class CustomSequence():
 def __len__(self):
 return 5

 def __getitem__(self, index):
 return "x{0}".format(index)

class FunkyBackwards():

 def __reversed__(self):
 return "BACKWARDS!"

for seq in normal_list, CustomSequence(), FunkyBackwards():
 print("\n{}: ".format(seq.__class__.__name__), end="")
 for item in reversed(seq):
 print(item, end=", ")

The for loops at the end print the reversed versions of a normal list, and instances
of the two custom sequences. The output shows that reversed works on all three
of them, but has very different results when we define __reversed__ ourselves:

list: 5, 4, 3, 2, 1,

CustomSequence: x4, x3, x2, x1, x0,

FunkyBackwards: B, A, C, K, W, A, R, D, S, !,

When we reverse CustomSequence, the __getitem__ method is called for each item,
which just inserts an x before the index. For FunkyBackwards, the __reversed__
method returns a string, each character of which is output individually in the for loop.

The preceding two classes aren't very good sequences as they don't
define a proper version of __iter__, so a forward for loop over
them will never end.

Python Object-oriented Shortcuts

[200]

Enumerate
Sometimes, when we're looping over a container in a for loop, we want access to the
index (the current position in the list) of the current item being processed. The for
loop doesn't provide us with indexes, but the enumerate function gives us something
better: it creates a sequence of tuples, where the first object in each tuple is the index
and the second is the original item.

This is useful if we need to use index numbers directly. Consider some simple code
that outputs each of the lines in a file with line numbers:

import sys
filename = sys.argv[1]

with open(filename) as file:
 for index, line in enumerate(file):
 print("{0}: {1}".format(index+1, line), end='')

Running this code using it's own filename as the input file shows how it works:

1: import sys
2: filename = sys.argv[1]
3:
4: with open(filename) as file:
5: for index, line in enumerate(file):
6: print("{0}: {1}".format(index+1, line), end='')

The enumerate function returns a sequence of tuples, our for loop splits each tuple
into two values, and the print statement formats them together. It adds one to the
index for each line number, since enumerate, like all sequences, is zero-based.

We've only touched on a few of the more important Python built-in functions. As
you can see, many of them call into object-oriented concepts, while others subscribe
to purely functional or procedural paradigms. There are numerous others in the
standard library; some of the more interesting ones include:

• all and any, which accept an iterable object and return True if all, or any,
of the items evaluate to true (such as a nonempty string or list, a nonzero
number, an object that is not None, or the literal True).

• eval, exec, and compile, which execute string as code inside the interpreter.
Be careful with these ones; they are not safe, so don't execute code an
unknown user has supplied to you (in general, assume all unknown users
are malicious, foolish, or both).

Chapter 7

[201]

• hasattr, getattr, setattr, and delattr, which allow attributes on an
object to be manipulated by their string names.

• zip, which takes two or more sequences and returns a new sequence of
tuples, where each tuple contains a single value from each sequence.

• And many more! See the interpreter help documentation for each of the
functions listed in dir(__builtins__).

File I/O
Our examples so far that touch the filesystem have operated entirely on text files
without much thought to what is going on under the hood. Operating systems,
however, actually represent files as a sequence of bytes, not text. We'll do a deep
dive into the relationship between bytes and text in Chapter 8, Strings and Serialization.
For now, be aware that reading textual data from a file is a fairly involved process.
Python, especially Python 3, takes care of most of this work for us behind the
scenes. Aren't we lucky?

The concept of files has been around since long before anyone coined the term
object-oriented programming. However, Python has wrapped the interface that
operating systems provide in a sweet abstraction that allows us to work with file
(or file-like, vis-á-vis duck typing) objects.

The open() built-in function is used to open a file and return a file object. For
reading text from a file, we only need to pass the name of the file into the function.
The file will be opened for reading, and the bytes will be converted to text using
the platform default encoding.

Of course, we don't always want to read files; often we want to write data to them!
To open a file for writing, we need to pass a mode argument as the second positional
argument, with a value of "w":

contents = "Some file contents"
file = open("filename", "w")
file.write(contents)
file.close()

We could also supply the value "a" as a mode argument, to append to the end of
the file, rather than completely overwriting existing file contents.

These files with built-in wrappers for converting bytes to text are great, but it'd be
awfully inconvenient if the file we wanted to open was an image, executable, or
other binary file, wouldn't it?

Python Object-oriented Shortcuts

[202]

To open a binary file, we modify the mode string to append 'b'. So, 'wb' would
open a file for writing bytes, while 'rb' allows us to read them. They will behave
like text files, but without the automatic encoding of text to bytes. When we read
such a file, it will return bytes objects instead of str, and when we write to it, it
will fail if we try to pass a text object.

These mode strings for controlling how files are opened are rather
cryptic and are neither pythonic nor object-oriented. However, they
are consistent with virtually every other programming language out
there. File I/O is one of the fundamental jobs an operating system
has to handle, and all programming languages have to talk to the OS
using the same system calls. Just be glad that Python returns a file
object with useful methods instead of the integer that most major
operating systems use to identify a file handle!

Once a file is opened for reading, we can call the read, readline, or readlines
methods to get the contents of the file. The read method returns the entire contents
of the file as a str or bytes object, depending on whether there is 'b' in the mode.
Be careful not to use this method without arguments on huge files. You don't want
to find out what happens if you try to load that much data into memory!

It is also possible to read a fixed number of bytes from a file; we pass an integer
argument to the read method describing how many bytes we want to read. The
next call to read will load the next sequence of bytes, and so on. We can do this
inside a while loop to read the entire file in manageable chunks.

The readline method returns a single line from the file (where each line ends in a
newline, a carriage return, or both, depending on the operating system on which
the file was created). We can call it repeatedly to get additional lines. The plural
readlines method returns a list of all the lines in the file. Like the read method,
it's not safe to use on very large files. These two methods even work when the file
is open in bytes mode, but it only makes sense if we are parsing text-like data that
has newlines at reasonable positions. An image or audio file, for example, will not
have newline characters in it (unless the newline byte happened to represent a
certain pixel or sound), so applying readline wouldn't make sense.

For readability, and to avoid reading a large file into memory at once, it is often
better to use a for loop directly on a file object. For text files, it will read each line,
one at a time, and we can process it inside the loop body. For binary files, it's better
to read fixed-sized chunks of data using the read() method, passing a parameter
for the maximum number of bytes to read.

Chapter 7

[203]

Writing to a file is just as easy; the write method on file objects writes a string (or
bytes, for binary data) object to the file. It can be called repeatedly to write multiple
strings, one after the other. The writelines method accepts a sequence of strings
and writes each of the iterated values to the file. The writelines method does not
append a new line after each item in the sequence. It is basically a poorly named
convenience function to write the contents of a sequence of strings without having
to explicitly iterate over it using a for loop.

Lastly, and I do mean lastly, we come to the close method. This method should
be called when we are finished reading or writing the file, to ensure any buffered
writes are written to the disk, that the file has been properly cleaned up, and that
all resources associated with the file are released back to the operating system.
Technically, this will happen automatically when the script exits, but it's better to
be explicit and clean up after ourselves, especially in long-running processes.

Placing it in context
The need to close files when we are finished with them can make our code quite
ugly. Because an exception may occur at any time during file I/O, we ought to
wrap all calls to a file in a try...finally clause. The file should be closed in the
finally clause, regardless of whether I/O was successful. This isn't very
Pythonic. Of course, there is a more elegant way to do it.

If we run dir on a file-like object, we see that it has two special methods named
__enter__ and __exit__. These methods turn the file object into what is known as
a context manager. Basically, if we use a special syntax called the with statement,
these methods will be called before and after nested code is executed. On file objects,
the __exit__ method ensures the file is closed, even if an exception is raised. We
no longer have to explicitly manage the closing of the file. Here is what the with
statement looks like in practice:

with open('filename') as file:
 for line in file:
 print(line, end='')

The open call returns a file object, which has __enter__ and __exit__ methods.
The returned object is assigned to the variable named file by the as clause. We
know the file will be closed when the code returns to the outer indentation level,
and that this will happen even if an exception is raised.

Python Object-oriented Shortcuts

[204]

The with statement is used in several places in the standard library where startup
or cleanup code needs to be executed. For example, the urlopen call returns an
object that can be used in a with statement to clean up the socket when we're
done. Locks in the threading module can automatically release the lock when the
statement has been executed.

Most interestingly, because the with statement can apply to any object that has the
appropriate special methods, we can use it in our own frameworks. For example,
remember that strings are immutable, but sometimes you need to build a string from
multiple parts. For efficiency, this is usually done by storing the component strings
in a list and joining them at the end. Let's create a simple context manager that
allows us to construct a sequence of characters and automatically convert it to
a string upon exit:

class StringJoiner(list):
 def __enter__(self):
 return self

 def __exit__(self, type, value, tb):
 self.result = "".join(self)

This code adds the two special methods required of a context manager to the list
class it inherits from. The __enter__ method performs any required setup code (in this
case, there isn't any) and then returns the object that will be assigned to the variable
after as in the with statement. Often, as we've done here, this is just the context
manager object itself. The __exit__ method accepts three arguments. In a normal
situation, these are all given a value of None. However, if an exception occurs inside
the with block, they will be set to values related to the type, value, and traceback for
the exception. This allows the __exit__ method to do any cleanup code that may be
required, even if an exception occurred. In our example, we take the irresponsible path
and create a result string by joining the characters in the string, regardless of whether
an exception was thrown.

While this is one of the simplest context managers we could write, and its usefulness
is dubious, it does work with a with statement. Have a look at it in action:

import random, string
with StringJoiner() as joiner:
 for i in range(15):
 joiner.append(random.choice(string.ascii_letters))

print(joiner.result)

Chapter 7

[205]

This code constructs a string of 15 random characters. It appends these to a
StringJoiner using the append method it inherited from list. When the with
statement goes out of scope (back to the outer indentation level), the __exit__
method is called, and the result attribute becomes available on the joiner object.
We print this value to see a random string.

An alternative to method overloading
One prominent feature of many object-oriented programming languages is a tool
called method overloading. Method overloading simply refers to having multiple
methods with the same name that accept different sets of arguments. In statically
typed languages, this is useful if we want to have a method that accepts either an
integer or a string, for example. In non-object-oriented languages, we might need
two functions, called add_s and add_i, to accommodate such situations. In statically
typed object-oriented languages, we'd need two methods, both called add, one that
accepts strings, and one that accepts integers.

In Python, we only need one method, which accepts any type of object. It may have
to do some testing on the object type (for example, if it is a string, convert it to an
integer), but only one method is required.

However, method overloading is also useful when we want a method with the
same name to accept different numbers or sets of arguments. For example, an e-mail
message method might come in two versions, one of which accepts an argument for
the "from" e-mail address. The other method might look up a default "from" e-mail
address instead. Python doesn't permit multiple methods with the same name,
but it does provide a different, equally flexible, interface.

We've seen some of the possible ways to send arguments to methods and functions in
previous examples, but now we'll cover all the details. The simplest function accepts
no arguments. We probably don't need an example, but here's one for completeness:

def no_args():
 pass

Here's how it's called:

no_args()

A function that does accept arguments will provide the names of those arguments
in a comma-separated list. Only the name of each argument needs to be supplied.

Python Object-oriented Shortcuts

[206]

When calling the function, these positional arguments must be specified in order,
and none can be missed or skipped. This is the most common way we've specified
arguments in our previous examples:

def mandatory_args(x, y, z):
 pass

To call it:

mandatory_args("a string", a_variable, 5)

Any type of object can be passed as an argument: an object, a container, a primitive,
even functions and classes. The preceding call shows a hardcoded string, an
unknown variable, and an integer passed into the function.

Default arguments
If we want to make an argument optional, rather than creating a second method with
a different set of arguments, we can specify a default value in a single method, using
an equals sign. If the calling code does not supply this argument, it will be assigned
a default value. However, the calling code can still choose to override the default by
passing in a different value. Often, a default value of None, or an empty string or list
is suitable.

Here's a function definition with default arguments:

def default_arguments(x, y, z, a="Some String", b=False):
 pass

The first three arguments are still mandatory and must be passed by the calling
code. The last two parameters have default arguments supplied.

There are several ways we can call this function. We can supply all arguments in
order as though all the arguments were positional arguments:

default_arguments("a string", variable, 8, "", True)

Alternatively, we can supply just the mandatory arguments in order, leaving the
keyword arguments to be assigned their default values:

default_arguments("a longer string", some_variable, 14)

We can also use the equals sign syntax when calling a function to provide values
in a different order, or to skip default values that we aren't interested in. For
example, we can skip the first keyword arguments and supply the second one:

default_arguments("a string", variable, 14, b=True)

Chapter 7

[207]

Surprisingly, we can even use the equals sign syntax to mix up the order of
positional arguments, so long as all of them are supplied:

>>> default_arguments(y=1,z=2,x=3,a="hi")

3 1 2 hi False

With so many options, it may seem hard to pick one, but if you think of the
positional arguments as an ordered list, and keyword arguments as sort of like a
dictionary, you'll find that the correct layout tends to fall into place. If you need to
require the caller to specify an argument, make it mandatory; if you have a sensible
default, then make it a keyword argument. Choosing how to call the method
normally takes care of itself, depending on which values need to be supplied, and
which can be left at their defaults.

One thing to take note of with keyword arguments is that anything we provide as a
default argument is evaluated when the function is first interpreted, not when it is
called. This means we can't have dynamically generated default values. For example,
the following code won't behave quite as expected:

number = 5
def funky_function(number=number):
 print(number)

number=6
funky_function(8)
funky_function()
print(number)

If we run this code, it outputs the number 8 first, but then it outputs the number 5 for
the call with no arguments. We had set the variable to the number 6, as evidenced by
the last line of output, but when the function is called, the number 5 is printed; the
default value was calculated when the function was defined, not when it was called.

This is tricky with empty containers such as lists, sets, and dictionaries. For
example, it is common to ask calling code to supply a list that our function is
going to manipulate, but the list is optional. We'd like to make an empty list as a
default argument. We can't do this; it will create only one list, when the code is first
constructed:

>>> def hello(b=[]):

... b.append('a')

... print(b)

...

Python Object-oriented Shortcuts

[208]

>>> hello()

['a']

>>> hello()

['a', 'a']

Whoops, that's not quite what we expected! The usual way to get around this is to
make the default value None, and then use the idiom iargument = argument if
argument else [] inside the method. Pay close attention!

Variable argument lists
Default values alone do not allow us all the flexible benefits of method overloading.
The thing that makes Python really slick is the ability to write methods that accept
an arbitrary number of positional or keyword arguments without explicitly naming
them. We can also pass arbitrary lists and dictionaries into such functions.

For example, a function to accept a link or list of links and download the web pages
could use such variadic arguments, or varargs. Instead of accepting a single value
that is expected to be a list of links, we can accept an arbitrary number of arguments,
where each argument is a different link. We do this by specifying the * operator in
the function definition:

def get_pages(*links):
 for link in links:
 #download the link with urllib
 print(link)

The *links parameter says "I'll accept any number of arguments and put them
all in a list named links". If we supply only one argument, it'll be a list with one
element; if we supply no arguments, it'll be an empty list. Thus, all these function
calls are valid:

get_pages()
get_pages('http://www.archlinux.org')
get_pages('http://www.archlinux.org',
 'http://ccphillips.net/')

We can also accept arbitrary keyword arguments. These arrive into the function as
a dictionary. They are specified with two asterisks (as in **kwargs) in the function
declaration. This tool is commonly used in configuration setups. The following class
allows us to specify a set of options with default values:

class Options:
 default_options = {

Chapter 7

[209]

 'port': 21,
 'host': 'localhost',
 'username': None,
 'password': None,
 'debug': False,
 }
 def __init__(self, **kwargs):
 self.options = dict(Options.default_options)
 self.options.update(kwargs)

 def __getitem__(self, key):
 return self.options[key]

All the interesting stuff in this class happens in the __init__ method. We have a
dictionary of default options and values at the class level. The first thing the __init__
method does is make a copy of this dictionary. We do that instead of modifying the
dictionary directly in case we instantiate two separate sets of options. (Remember,
class-level variables are shared between instances of the class.) Then, __init__ uses
the update method on the new dictionary to change any non-default values to those
supplied as keyword arguments. The __getitem__ method simply allows us to use
the new class using indexing syntax. Here's a session demonstrating the class in action:

>>> options = Options(username="dusty", password="drowssap",

 debug=True)

>>> options['debug']

True

>>> options['port']

21

>>> options['username']

'dusty'

We're able to access our options instance using dictionary indexing syntax, and the
dictionary includes both default values and the ones we set using keyword arguments.

The keyword argument syntax can be dangerous, as it may break the "explicit is
better than implicit" rule. In the preceding example, it's possible to pass arbitrary
keyword arguments to the Options initializer to represent options that don't exist in
the default dictionary. This may not be a bad thing, depending on the purpose of the
class, but it makes it hard for someone using the class to discover what valid options
are available. It also makes it easy to enter a confusing typo ("Debug" instead of
"debug", for example) that adds two options where only one should have existed.

Python Object-oriented Shortcuts

[210]

Keyword arguments are also very useful when we need to accept arbitrary
arguments to pass to a second function, but we don't know what those arguments
will be. We saw this in action in Chapter 3, When Objects Are Alike, when we were
building support for multiple inheritance. We can, of course, combine the variable
argument and variable keyword argument syntax in one function call, and we can
use normal positional and default arguments as well. The following example is
somewhat contrived, but demonstrates the four types in action:

import shutil
import os.path
def augmented_move(target_folder, *filenames,
 verbose=False, **specific):
 '''Move all filenames into the target_folder, allowing
 specific treatment of certain files.'''

 def print_verbose(message, filename):
 '''print the message only if verbose is enabled'''
 if verbose:
 print(message.format(filename))

 for filename in filenames:
 target_path = os.path.join(target_folder, filename)
 if filename in specific:
 if specific[filename] == 'ignore':
 print_verbose("Ignoring {0}", filename)
 elif specific[filename] == 'copy':
 print_verbose("Copying {0}", filename)
 shutil.copyfile(filename, target_path)
 else:
 print_verbose("Moving {0}", filename)
 shutil.move(filename, target_path)

This example will process an arbitrary list of files. The first argument is a target folder,
and the default behavior is to move all remaining non-keyword argument files into
that folder. Then there is a keyword-only argument, verbose, which tells us whether
to print information on each file processed. Finally, we can supply a dictionary
containing actions to perform on specific filenames; the default behavior is to move
the file, but if a valid string action has been specified in the keyword arguments, it can
be ignored or copied instead. Notice the ordering of the parameters in the function;
first the positional argument is specified, then the *filenames list, then any specific
keyword-only arguments, and finally, a **specific dictionary to hold remaining
keyword arguments.

Chapter 7

[211]

We create an inner helper function, print_verbose, which will print messages only
if the verbose key has been set. This function keeps code readable by encapsulating
this functionality into a single location.

In common cases, assuming the files in question exist, this function could be
called as:

>>> augmented_move("move_here", "one", "two")

This command would move the files one and two into the move_here directory,
assuming they exist (there's no error checking or exception handling in the function,
so it would fail spectacularly if the files or target directory didn't exist). The move
would occur without any output, since verbose is False by default.

If we want to see the output, we can call it with:

>>> augmented_move("move_here", "three", verbose=True)

Moving three

This moves one file named three, and tells us what it's doing. Notice that it is
impossible to specify verbose as a positional argument in this example; we must
pass a keyword argument. Otherwise, Python would think it was another filename
in the *filenames list.

If we want to copy or ignore some of the files in the list, instead of moving them,
we can pass additional keyword arguments:

>>> augmented_move("move_here", "four", "five", "six",

 four="copy", five="ignore")

This will move the sixth file and copy the fourth, but won't display any output, since
we didn't specify verbose. Of course, we can do that too, and keyword arguments
can be supplied in any order:

>>> augmented_move("move_here", "seven", "eight", "nine",

 seven="copy", verbose=True, eight="ignore")

Copying seven

Ignoring eight

Moving nine

Python Object-oriented Shortcuts

[212]

Unpacking arguments
There's one more nifty trick involving variable arguments and keyword arguments.
We've used it in some of our previous examples, but it's never too late for an
explanation. Given a list or dictionary of values, we can pass those values into a
function as if they were normal positional or keyword arguments. Have a look
at this code:

def show_args(arg1, arg2, arg3="THREE"):
 print(arg1, arg2, arg3)

some_args = range(3)
more_args = {
 "arg1": "ONE",
 "arg2": "TWO"}

print("Unpacking a sequence:", end=" ")

show_args(*some_args)
print("Unpacking a dict:", end=" ")

show_args(**more_args)

Here's what it looks like when we run it:

Unpacking a sequence: 0 1 2

Unpacking a dict: ONE TWO THREE

The function accepts three arguments, one of which has a default value. But when
we have a list of three arguments, we can use the * operator inside a function call
to unpack it into the three arguments. If we have a dictionary of arguments, we can
use the ** syntax to unpack it as a collection of keyword arguments.

This is most often useful when mapping information that has been collected from
user input or from an outside source (for example, an Internet page or a text file)
to a function or method call.

Remember our earlier example that used headers and lines in a text file to create a
list of dictionaries with contact information? Instead of just adding the dictionaries
to a list, we could use keyword unpacking to pass the arguments to the __init__
method on a specially built Contact object that accepts the same set of arguments.
See if you can adapt the example to make this work.

Chapter 7

[213]

Functions are objects too
Programming languages that overemphasize object-oriented principles tend to frown
on functions that are not methods. In such languages, you're expected to create an
object to sort of wrap the single method involved. There are numerous situations
where we'd like to pass around a small object that is simply called to perform an
action. This is most frequently done in event-driven programming, such as graphical
toolkits or asynchronous servers; we'll see some design patterns that use it in
Chapter 10, Python Design Patterns I and Chapter 11, Python Design Patterns II.

In Python, we don't need to wrap such methods in an object, because functions already
are objects! We can set attributes on functions (though this isn't a common activity),
and we can pass them around to be called at a later date. They even have a few special
properties that can be accessed directly. Here's yet another contrived example:

def my_function():
 print("The Function Was Called")
my_function.description = "A silly function"

def second_function():
 print("The second was called")
second_function.description = "A sillier function."

def another_function(function):
 print("The description:", end=" ")
 print(function.description)
 print("The name:", end=" ")
 print(function.__name__)
 print("The class:", end=" ")
 print(function.__class__)
 print("Now I'll call the function passed in")
 function()

another_function(my_function)
another_function(second_function)

If we run this code, we can see that we were able to pass two different functions
into our third function, and get different output for each one:

The description: A silly function
The name: my_function
The class: <class 'function'>
Now I'll call the function passed in

Python Object-oriented Shortcuts

[214]

The Function Was Called
The description: A sillier function.
The name: second_function
The class: <class 'function'>
Now I'll call the function passed in
The second was called

We set an attribute on the function, named description (not very good descriptions,
admittedly). We were also able to see the function's __name__ attribute, and to access
its class, demonstrating that the function really is an object with attributes. Then we
called the function by using the callable syntax (the parentheses).

The fact that functions are top-level objects is most often used to pass them around to
be executed at a later date, for example, when a certain condition has been satisfied.
Let's build an event-driven timer that does just this:

import datetime
import time

class TimedEvent:
 def __init__(self, endtime, callback):
 self.endtime = endtime
 self.callback = callback

 def ready(self):
 return self.endtime <= datetime.datetime.now()

class Timer:
 def __init__(self):
 self.events = []

 def call_after(self, delay, callback):
 end_time = datetime.datetime.now() + \
 datetime.timedelta(seconds=delay)

 self.events.append(TimedEvent(end_time, callback))

 def run(self):
 while True:
 ready_events = (e for e in self.events if e.ready())
 for event in ready_events:
 event.callback(self)
 self.events.remove(event)
 time.sleep(0.5)

Chapter 7

[215]

In production, this code should definitely have extra documentation using docstrings!
The call_after method should at least mention that the delay parameter is in
seconds, and that the callback function should accept one argument: the timer
doing the calling.

We have two classes here. The TimedEvent class is not really meant to be accessed by
other classes; all it does is store endtime and callback. We could even use a tuple
or namedtuple here, but as it is convenient to give the object a behavior that tells us
whether or not the event is ready to run, we use a class instead.

The Timer class simply stores a list of upcoming events. It has a call_after method
to add a new event. This method accepts a delay parameter representing the number
of seconds to wait before executing the callback, and the callback function itself: a
function to be executed at the correct time. This callback function should accept
one argument.

The run method is very simple; it uses a generator expression to filter out any events
whose time has come, and executes them in order. The timer loop then continues
indefinitely, so it has to be interrupted with a keyboard interrupt (Ctrl + C or Ctrl +
Break). We sleep for half a second after each iteration so as to not grind the system
to a halt.

The important things to note here are the lines that touch callback functions. The
function is passed around like any other object and the timer never knows or cares
what the original name of the function is or where it was defined. When it's time to call
the function, the timer simply applies the parenthesis syntax to the stored variable.

Here's a set of callbacks that test the timer:

from timer import Timer
import datetime

def format_time(message, *args):
 now = datetime.datetime.now().strftime("%I:%M:%S")
 print(message.format(*args, now=now))

def one(timer):
 format_time("{now}: Called One")

def two(timer):
 format_time("{now}: Called Two")

def three(timer):

Python Object-oriented Shortcuts

[216]

 format_time("{now}: Called Three")

class Repeater:
 def __init__(self):
 self.count = 0
 def repeater(self, timer):
 format_time("{now}: repeat {0}", self.count)
 self.count += 1
 timer.call_after(5, self.repeater)

timer = Timer()
timer.call_after(1, one)
timer.call_after(2, one)
timer.call_after(2, two)
timer.call_after(4, two)
timer.call_after(3, three)
timer.call_after(6, three)
repeater = Repeater()
timer.call_after(5, repeater.repeater)
format_time("{now}: Starting")
timer.run()

This example allows us to see how multiple callbacks interact with the timer. The
first function is the format_time function. It uses the string format method to add
the current time to the message, and illustrates variable arguments in action. The
format_time method will accept any number of positional arguments, using variable
argument syntax, which are then forwarded as positional arguments to the string's
format method. After this, we create three simple callback methods that simply
output the current time and a short message telling us which callback has been fired.

The Repeater class demonstrates that methods can be used as callbacks too, since
they are really just functions. It also shows why the timer argument to the callback
functions is useful: we can add a new timed event to the timer from inside a presently
running callback. We then create a timer and add several events to it that are called
after different amounts of time. Finally, we start the timer running; the output shows
that events are run in the expected order:

02:53:35: Starting
02:53:36: Called One
02:53:37: Called One
02:53:37: Called Two
02:53:38: Called Three
02:53:39: Called Two
02:53:40: repeat 0

Chapter 7

[217]

02:53:41: Called Three
02:53:45: repeat 1
02:53:50: repeat 2
02:53:55: repeat 3
02:54:00: repeat 4

Python 3.4 introduces a generic event-loop architecture similar to this. We'll be
discussing it later in Chapter 13, Concurrency.

Using functions as attributes
One of the interesting effects of functions being objects is that they can be set as
callable attributes on other objects. It is possible to add or change a function to
an instantiated object:

class A:
 def print(self):
 print("my class is A")

def fake_print():
 print("my class is not A")

a = A()
a.print()
a.print = fake_print
a.print()

This code creates a very simple class with a print method that doesn't tell us
anything we didn't know. Then we create a new function that tells us something
we don't believe.

When we call print on an instance of the A class, it behaves as expected. If we then
set the print method to point at a new function, it tells us something different:

my class is A
my class is not A

It is also possible to replace methods on classes instead of objects, although in that
case we have to add the self argument to the parameter list. This will change the
method for all instances of that object, even ones that have already been instantiated.
Obviously, replacing methods like this can be both dangerous and confusing to
maintain. Somebody reading the code will see that a method has been called and
look up that method on the original class. But the method on the original class is
not the one that was called. Figuring out what really happened can become a tricky,
frustrating debugging session.

Python Object-oriented Shortcuts

[218]

It does have its uses though. Often, replacing or adding methods at run time (called
monkey-patching) is used in automated testing. If testing a client-server application,
we may not want to actually connect to the server while testing the client; this may
result in accidental transfers of funds or embarrassing test e-mails being sent to real
people. Instead, we can set up our test code to replace some of the key methods on
the object that sends requests to the server, so it only records that the methods have
been called.

Monkey-patching can also be used to fix bugs or add features in third-party code that
we are interacting with, and does not behave quite the way we need it to. It should,
however, be applied sparingly; it's almost always a "messy hack". Sometimes,
though, it is the only way to adapt an existing library to suit our needs.

Callable objects
Just as functions are objects that can have attributes set on them, it is possible to
create an object that can be called as though it were a function.

Any object can be made callable by simply giving it a __call__ method that accepts
the required arguments. Let's make our Repeater class, from the timer example, a
little easier to use by making it a callable:

class Repeater:
 def __init__(self):
 self.count = 0

 def __call__(self, timer):
 format_time("{now}: repeat {0}", self.count)
 self.count += 1

 timer.call_after(5, self)

timer = Timer()

timer.call_after(5, Repeater())
format_time("{now}: Starting")
timer.run()

Chapter 7

[219]

This example isn't much different from the earlier class; all we did was change the
name of the repeater function to __call__ and pass the object itself as a callable.
Note that when we make the call_after call, we pass the argument Repeater().
Those two parentheses are creating a new instance of the class; they are not explicitly
calling the class. This happens later, inside the timer. If we want to execute the
__call__ method on a newly instantiated object, we'd use a rather odd syntax:
Repeater()(). The first set of parentheses constructs the object; the second set
executes the __call__ method. If we find ourselves doing this, we may not be using
the correct abstraction. Only implement the __call__ function on an object if the
object is meant to be treated like a function.

Case study
To tie together some of the principles presented in this chapter, let's build a
mailing list manager. The manager will keep track of e-mail addresses categorized
into named groups. When it's time to send a message, we can pick a group and
send the message to all e-mail addresses assigned to that group.

Now, before we start working on this project, we ought to have a safe way to test
it, without sending e-mails to a bunch of real people. Luckily, Python has our back
here; like the test HTTP server, it has a built-in Simple Mail Transfer Protocol
(SMTP) server that we can instruct to capture any messages we send without
actually sending them. We can run the server with the following command:

python -m smtpd -n -c DebuggingServer localhost:1025

Running this command at a command prompt will start an SMTP server running on
port 1025 on the local machine. But we've instructed it to use the DebuggingServer
class (it comes with the built-in SMTP module), which, instead of sending mails
to the intended recipients, simply prints them on the terminal screen as it receives
them. Neat, eh?

Now, before writing our mailing list, let's write some code that actually sends mail.
Of course, Python supports this in the standard library, too, but it's a bit of an odd
interface, so we'll write a new function to wrap it all cleanly:

import smtplib
from email.mime.text import MIMEText

def send_email(subject, message, from_addr, *to_addrs,

Python Object-oriented Shortcuts

[220]

 host="localhost", port=1025, **headers):

 email = MIMEText(message)
 email['Subject'] = subject
 email['From'] = from_addr
 for header, value in headers.items():
 email[header] = value

 sender = smtplib.SMTP(host, port)
 for addr in to_addrs:
 del email['To']
 email['To'] = addr
 sender.sendmail(from_addr, addr, email.as_string())
 sender.quit()

We won't cover the code inside this method too thoroughly; the documentation in
the standard library can give you all the information you need to use the smtplib
and email modules effectively.

We've used both variable argument and keyword argument syntax in the function
call. The variable argument list allows us to supply a single string in the default
case of having a single to address, as well as permitting multiple addresses to be
supplied if required. Any extra keyword arguments are mapped to e-mail headers.
This is an exciting use of variable arguments and keyword arguments, but it's not
really a great interface for the person calling the function. In fact, it makes many
things the programmer will want to do impossible.

The headers passed into the function represent auxiliary headers that can be
attached to a method. Such headers might include Reply-To, Return-Path,
or X-pretty-much-anything. But in order to be a valid identifier in Python, a name
cannot include the - character. In general, that character represents subtraction.
So, it's not possible to call a function with Reply-To = my@email.com. It appears
we were too eager to use keyword arguments because they are a new tool we
just learned about in this chapter.

We'll have to change the argument to a normal dictionary; this will work because
any string can be used as a key in a dictionary. By default, we'd want this dictionary
to be empty, but we can't make the default parameter an empty dictionary. So,
we'll have to make the default argument None, and then set up the dictionary at
the beginning of the method:

def send_email(subject, message, from_addr, *to_addrs,

Chapter 7

[221]

 host="localhost", port=1025, headers=None):

 headers = {} if headers is None else headers

If we have our debugging SMTP server running in one terminal, we can test this
code in a Python interpreter:

>>> send_email("A model subject", "The message contents",

 "from@example.com", "to1@example.com", "to2@example.com")

Then, if we check the output from the debugging SMTP server, we get the following:

---------- MESSAGE FOLLOWS ----------

Content-Type: text/plain; charset="us-ascii"

MIME-Version: 1.0

Content-Transfer-Encoding: 7bit

Subject: A model subject

From: from@example.com

To: to1@example.com

X-Peer: 127.0.0.1

The message contents

------------ END MESSAGE ------------

---------- MESSAGE FOLLOWS ----------

Content-Type: text/plain; charset="us-ascii"

MIME-Version: 1.0

Content-Transfer-Encoding: 7bit

Subject: A model subject

From: from@example.com

To: to2@example.com

X-Peer: 127.0.0.1

The message contents

------------ END MESSAGE ------------

Python Object-oriented Shortcuts

[222]

Excellent, it has "sent" our e-mail to the two expected addresses with subject and
message contents included. Now that we can send messages, let's work on the e-mail
group management system. We'll need an object that somehow matches e-mail
addresses with the groups they are in. Since this is a many-to-many relationship
(any one e-mail address can be in multiple groups; any one group can be associated
with multiple e-mail addresses), none of the data structures we've studied seems
quite ideal. We could try a dictionary of group-names matched to a list of associated
e-mail addresses, but that would duplicate e-mail addresses. We could also try
a dictionary of e-mail addresses matched to groups, resulting in a duplication of
groups. Neither seems optimal. Let's try this latter version, even though intuition
tells me the groups to e-mail address solution would be more straightforward.

Since the values in our dictionary will always be collections of unique e-mail
addresses, we should probably store them in a set container. We can use
defaultdict to ensure that there is always a set container available for each key:

from collections import defaultdict
class MailingList:
 '''Manage groups of e-mail addresses for sending e-mails.'''
 def __init__(self):
 self.email_map = defaultdict(set)

 def add_to_group(self, email, group):
 self.email_map[email].add(group)

Now, let's add a method that allows us to collect all the e-mail addresses in one or
more groups. This can be done by converting the list of groups to a set:

 def emails_in_groups(self, *groups):
 groups = set(groups)
 emails = set()
 for e, g in self.email_map.items():
 if g & groups:
 emails.add(e)
 return emails

First, look at what we're iterating over: self.email_map.items(). This method, of
course, returns a tuple of key-value pairs for each item in the dictionary. The values
are sets of strings representing the groups. We split these into two variables named
e and g, short for e-mail and groups. We add the e-mail address to the set of return
values only if the passed in groups intersect with the e-mail address groups. The g &
groups syntax is a shortcut for g.intersection(groups); the set class does this by
implementing the special __and__ method to call intersection.

Chapter 7

[223]

This code could be made a wee bit more concise using a set
comprehension, which we'll discuss in Chapter 9, The Iterator Pattern.

Now, with these building blocks, we can trivially add a method to our MailingList
class that sends messages to specific groups:

def send_mailing(self, subject, message, from_addr,
 *groups, headers=None):
 emails = self.emails_in_groups(*groups)
 send_email(subject, message, from_addr,
 *emails, headers=headers)

This function relies on variable argument lists. As input, it takes a list of groups
as variable arguments. It gets the list of e-mails for the specified groups and passes
those as variable arguments into send_email, along with other arguments that
were passed into this method.

The program can be tested by ensuring the SMTP debugging server is running in
one command prompt, and, in a second prompt, loading the code using:

python -i mailing_list.py

Create a MailingList object with:

>>> m = MailingList()

Then create a few fake e-mail addresses and groups, along the lines of:

>>> m.add_to_group("friend1@example.com", "friends")

>>> m.add_to_group("friend2@example.com", "friends")

>>> m.add_to_group("family1@example.com", "family")

>>> m.add_to_group("pro1@example.com", "professional")

Finally, use a command like this to send e-mails to specific groups:

>>> m.send_mailing("A Party",

"Friends and family only: a party", "me@example.com", "friends",

"family", headers={"Reply-To": "me2@example.com"})

E-mails to each of the addresses in the specified groups should show up in the
console on the SMTP server.

The mailing list works fine as it is, but it's kind of useless; as soon as we exit
the program, our database of information is lost. Let's modify it to add a
couple of methods to load and save the list of e-mail groups from and to a file.

Python Object-oriented Shortcuts

[224]

In general, when storing structured data on disk, it is a good idea to put a lot of
thought into how it is stored. One of the reasons myriad database systems exist is that
if someone else has put this thought into how data is stored, you don't have to. We'll
be looking at some data serialization mechanisms in the next chapter, but for this
example, let's keep it simple and go with the first solution that could possibly work.

The data format I have in mind is to store each e-mail address followed by a space,
followed by a comma-separated list of groups. This format seems reasonable, and
we're going to go with it because data formatting isn't the topic of this chapter.
However, to illustrate just why you need to think hard about how you format
data on disk, let's highlight a few problems with the format.

First, the space character is technically legal in e-mail addresses. Most e-mail providers
prohibit it (with good reason), but the specification defining e-mail addresses says
an e-mail can contain a space if it is in quotation marks. If we are to use a space as a
sentinel in our data format, we should technically be able to differentiate between that
space and a space that is part of an e-mail. We're going to pretend this isn't true, for
simplicity's sake, but real-life data encoding is full of stupid issues like this. Second,
consider the comma-separated list of groups. What happens if someone decides to put
a comma in a group name? If we decide to make commas illegal in group names, we
should add validation to ensure this to our add_to_group method. For pedagogical
clarity, we'll ignore this problem too. Finally, there are many security implications we
need to consider: can someone get themselves into the wrong group by putting a fake
comma in their e-mail address? What does the parser do if it encounters an invalid file?

The takeaway from this discussion is to try to use a data-storage method that has
been field tested, rather than designing your own data serialization protocol. There
are a ton of bizarre edge cases you might overlook, and it's better to use code that
has already encountered and fixed those edge cases.

But forget that, let's just write some basic code that uses an unhealthy dose of
wishful thinking to pretend this simple data format is safe:

email1@mydomain.com group1,group2

email2@mydomain.com group2,group3

The code to do this is as follows:

 def save(self):
 with open(self.data_file, 'w') as file:
 for email, groups in self.email_map.items():
 file.write(

Chapter 7

[225]

 '{} {}\n'.format(email, ','.join(groups))
)

 def load(self):
 self.email_map = defaultdict(set)
 try:
 with open(self.data_file) as file:
 for line in file:
 email, groups = line.strip().split(' ')
 groups = set(groups.split(','))
 self.email_map[email] = groups
 except IOError:
 pass

In the save method, we open the file in a context manager and write the file as a
formatted string. Remember the newline character; Python doesn't add that for us.
The load method first resets the dictionary (in case it contains data from a previous
call to load) uses the for...in syntax, which loops over each line in the file. Again,
the newline character is included in the line variable, so we have to call .strip()
to take it off. We'll learn more about such string manipulation in the next chapter.

Before using these methods, we need to make sure the object has a self.data_file
attribute, which can be done by modifying __init__:

 def __init__(self, data_file):
 self.data_file = data_file
 self.email_map = defaultdict(set)

We can test these two methods in the interpreter as follows:

>>> m = MailingList('addresses.db')

>>> m.add_to_group('friend1@example.com', 'friends')

>>> m.add_to_group('family1@example.com', 'friends')

>>> m.add_to_group('family1@example.com', 'family')

>>> m.save()

The resulting addresses.db file contains the following lines, as expected:

friend1@example.com friends

family1@example.com friends,family

Python Object-oriented Shortcuts

[226]

We can also load this data back into a MailingList object successfully:

>>> m = MailingList('addresses.db')

>>> m.email_map

defaultdict(<class 'set'>, {})

>>> m.load()

>>> m.email_map

defaultdict(<class 'set'>, {'friend2@example.com': {'friends\n'},
'family1@example.com': {'family\n'}, 'friend1@example.com':
{'friends\n'}})

As you can see, I forgot to do the load command, and it might be easy to forget
the save command as well. To make this a little easier for anyone who wants to
use our MailingList API in their own code, let's provide the methods to support
a context manager:

 def __enter__(self):
 self.load()
 return self

 def __exit__(self, type, value, tb):
 self.save()

These simple methods just delegate their work to load and save, but we can now
write code like this in the interactive interpreter and know that all the previously
stored addresses were loaded on our behalf, and that the whole list will be saved
to the file when we are done:

>>> with MailingList('addresses.db') as ml:

... ml.add_to_group('friend2@example.com', 'friends')

... ml.send_mailing("What's up", "hey friends, how's it going", 'me@
example.com', 'friends')

Exercises
If you haven't encountered the with statements and context managers before, I
encourage you, as usual, to go through your old code and find all the places you
were opening files, and make sure they are safely closed using the with statement.
Look for places that you could write your own context managers as well. Ugly or
repetitive try...finally clauses are a good place to start, but you may find them
useful any time you need to do before and/or after tasks in context.

Chapter 7

[227]

You've probably used many of the basic built-in functions before now. We covered
several of them, but didn't go into a great deal of detail. Play with enumerate, zip,
reversed, any and all, until you know you'll remember to use them when they are
the right tool for the job. The enumerate function is especially important; because
not using it results in some pretty ugly code.

Also explore some applications that pass functions around as callable objects, as well
as using the __call__ method to make your own objects callable. You can get the
same effect by attaching attributes to functions or by creating a __call__ method
on an object. In which case would you use one syntax, and when would it be more
suitable to use the other?

Our mailing list object could overwhelm an e-mail server if there is a massive
number of e-mails to be sent out. Try refactoring it so that you can use different
send_email functions for different purposes. One such function could be the version
we used here. A different version might put the e-mails in a queue to be sent by a
server in a different thread or process. A third version could just output the data to
the terminal, obviating the need for a dummy SMTP server. Can you construct the
mailing list with a callback such that the send_mailing function uses whatever is
passed in? It would default to the current version if no callback is supplied.

The relationship between arguments, keyword arguments, variable arguments, and
variable keyword arguments can be a bit confusing. We saw how painfully they can
interact when we covered multiple inheritance. Devise some other examples to see
how they can work well together, as well as to understand when they don't.

Summary
We covered a grab bag of topics in this chapter. Each represented an important
non-object-oriented feature that is popular in Python. Just because we can use
object-oriented principles does not always mean we should!

However, we also saw that Python typically implements such features by
providing a syntax shortcut to traditional object-oriented syntax. Knowing the
object-oriented principles underlying these tools allows us to use them more
effectively in our own classes.

We discussed a series of built-in functions and file I/O operations. There are a whole
bunch of different syntaxes available to us when calling functions with arguments,
keyword arguments, and variable argument lists. Context managers are useful for
the common pattern of sandwiching a piece of code between two method calls. Even
functions are objects, and, conversely, any normal object can be made callable.

Python Object-oriented Shortcuts

[228]

In the next chapter, we'll learn more about string and file manipulation, and even
spend some time with one of the least object-oriented topics in the standard library:
regular expressions.

[229]

Strings and Serialization
Before we get involved with higher level design patterns, let's take a deep dive into
one of Python's most common objects: the string. We'll see that there is a lot more
to the string than meets the eye, and also cover searching strings for patterns and
serializing data for storage or transmission.

In particular, we'll visit:

• The complexities of strings, bytes, and byte arrays
• The ins and outs of string formatting
• A few ways to serialize data
• The mysterious regular expression

Strings
Strings are a basic primitive in Python; we've used them in nearly every example
we've discussed so far. All they do is represent an immutable sequence of characters.
However, though you may not have considered it before, "character" is a bit of an
ambiguous word; can Python strings represent sequences of accented characters?
Chinese characters? What about Greek, Cyrillic, or Farsi?

In Python 3, the answer is yes. Python strings are all represented in Unicode, a
character definition standard that can represent virtually any character in any
language on the planet (and some made-up languages and random characters
as well). This is done seamlessly, for the most part. So, let's think of Python 3
strings as an immutable sequence of Unicode characters. So what can we do with
this immutable sequence? We've touched on many of the ways strings can be
manipulated in previous examples, but let's quickly cover it all in one place: a
crash course in string theory!

Strings and Serialization

[230]

String manipulation
As you know, strings can be created in Python by wrapping a sequence of characters
in single or double quotes. Multiline strings can easily be created using three quote
characters, and multiple hardcoded strings can be concatenated together by placing
them side by side. Here are some examples:

a = "hello"
b = 'world'
c = '''a multiple
line string'''
d = """More
multiple"""
e = ("Three " "Strings "
 "Together")

That last string is automatically composed into a single string by the interpreter.
It is also possible to concatenate strings using the + operator (as in "hello " +
"world"). Of course, strings don't have to be hardcoded. They can also come from
various outside sources such as text files, user input, or encoded on the network.

The automatic concatenation of adjacent strings can make for some
hilarious bugs when a comma is missed. It is, however, extremely
useful when a long string needs to be placed inside a function call
without exceeding the 79 character line-length limit suggested by
the Python style guide.

Like other sequences, strings can be iterated over (character by character),
indexed, sliced, or concatenated. The syntax is the same as for lists.

The str class has numerous methods on it to make manipulating strings easier.
The dir and help commands in the Python interpreter can tell us how to use all
of them; we'll consider some of the more common ones directly.

Several Boolean convenience methods help us identify whether or not the characters
in a string match a certain pattern. Here is a summary of these methods. Most
of these, such as isalpha, isupper/islower, and startswith/endswith have
obvious interpretations. The isspace method is also fairly obvious, but remember
that all whitespace characters (including tab, newline) are considered, not just the
space character.

Chapter 8

[231]

The istitle method returns True if the first character of each word is capitalized
and all other characters are lowercase. Note that it does not strictly enforce the
English grammatical definition of title formatting. For example, Leigh Hunt's poem
"The Glove and the Lions" should be a valid title, even though not all words are
capitalized. Robert Service's "The Cremation of Sam McGee" should also be a valid
title, even though there is an uppercase letter in the middle of the last word.

Be careful with the isdigit, isdecimal, and isnumeric methods, as they are
more nuanced than you would expect. Many Unicode characters are considered
numbers besides the ten digits we are used to. Worse, the period character that we
use to construct floats from strings is not considered a decimal character, so '45.2'.
isdecimal() returns False. The real decimal character is represented by Unicode
value 0660, as in 45.2, (or 45\u06602). Further, these methods do not verify whether
the strings are valid numbers; "127.0.0.1" returns True for all three methods. We
might think we should use that decimal character instead of a period for all numeric
quantities, but passing that character into the float() or int() constructor converts
that decimal character to a zero:

>>> float('45\u06602')

4502.0

Other methods useful for pattern matching do not return Booleans. The count
method tells us how many times a given substring shows up in the string, while
find, index, rfind, and rindex tell us the position of a given substring within the
original string. The two 'r' (for 'right' or 'reverse') methods start searching from the
end of the string. The find methods return -1 if the substring can't be found, while
index raises a ValueError in this situation. Have a look at some of these methods
in action:

>>> s = "hello world"

>>> s.count('l')

3

>>> s.find('l')

2

>>> s.rindex('m')

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: substring not found

Most of the remaining string methods return transformations of the string. The
upper, lower, capitalize, and title methods create new strings with all alphabetic
characters in the given format. The translate method can use a dictionary to map
arbitrary input characters to specified output characters.

Strings and Serialization

[232]

For all of these methods, note that the input string remains unmodified; a brand new
str instance is returned instead. If we need to manipulate the resultant string, we
should assign it to a new variable, as in new_value = value.capitalize(). Often,
once we've performed the transformation, we don't need the old value anymore, so
a common idiom is to assign it to the same variable, as in value = value.title().

Finally, a couple of string methods return or operate on lists. The split method
accepts a substring and splits the string into a list of strings wherever that substring
occurs. You can pass a number as a second parameter to limit the number of resultant
strings. The rsplit behaves identically to split if you don't limit the number of
strings, but if you do supply a limit, it starts splitting from the end of the string.
The partition and rpartition methods split the string at only the first or last
occurrence of the substring, and return a tuple of three values: characters before
the substring, the substring itself, and the characters after the substring.

As the inverse of split, the join method accepts a list of strings, and returns all of
those strings combined together by placing the original string between them. The
replace method accepts two arguments, and returns a string where each instance
of the first argument has been replaced with the second. Here are some of these
methods in action:

>>> s = "hello world, how are you"

>>> s2 = s.split(' ')

>>> s2

['hello', 'world,', 'how', 'are', 'you']

>>> '#'.join(s2)

'hello#world,#how#are#you'

>>> s.replace(' ', '**')

'hello**world,**how**are**you'

>>> s.partition(' ')

('hello', ' ', 'world, how are you')

There you have it, a whirlwind tour of the most common methods on the str class!
Now, let's look at Python 3's method for composing strings and variables to create
new strings.

String formatting
Python 3 has a powerful string formatting and templating mechanism that allows us
to construct strings comprised of hardcoded text and interspersed variables. We've
used it in many previous examples, but it is much more versatile than the simple
formatting specifiers we've used.

Chapter 8

[233]

Any string can be turned into a format string by calling the format() method on it.
This method returns a new string where specific characters in the input string have
been replaced with values provided as arguments and keyword arguments passed
into the function. The format method does not require a fixed set of arguments;
internally, it uses the *args and **kwargs syntax that we discussed in Chapter 7,
Python Object-oriented Shortcuts.

The special characters that are replaced in formatted strings are the opening and
closing brace characters: { and }. We can insert pairs of these in a string and they will
be replaced, in order, by any positional arguments passed to the str.format method:

template = "Hello {}, you are currently {}."
print(template.format('Dusty', 'writing'))

If we run these statements, it replaces the braces with variables, in order:

Hello Dusty, you are currently writing.

This basic syntax is not terribly useful if we want to reuse variables within one string
or decide to use them in a different position. We can place zero-indexed integers
inside the curly braces to tell the formatter which positional variable gets inserted
at a given position in the string. Let's repeat the name:

template = "Hello {0}, you are {1}. Your name is {0}."
print(template.format('Dusty', 'writing'))

If we use these integer indexes, we have to use them in all the variables. We can't
mix empty braces with positional indexes. For example, this code fails with an
appropriate ValueError exception:

template = "Hello {}, you are {}. Your name is {0}."
print(template.format('Dusty', 'writing'))

Escaping braces
Brace characters are often useful in strings, aside from formatting. We need a way to
escape them in situations where we want them to be displayed as themselves, rather
than being replaced. This can be done by doubling the braces. For example, we can
use Python to format a basic Java program:

template = """
public class {0} {{
 public static void main(String[] args) {{
 System.out.println("{1}");
 }}
}}"""

print(template.format("MyClass", "print('hello world')"));

Strings and Serialization

[234]

Wherever we see the {{ or }} sequence in the template, that is, the braces enclosing
the Java class and method definition, we know the format method will replace them
with single braces, rather than some argument passed into the format method.
Here's the output:

public class MyClass {

 public static void main(String[] args) {

 System.out.println("print('hello world')");

 }

}

The class name and contents of the output have been replaced with two parameters,
while the double braces have been replaced with single braces, giving us a valid
Java file. Turns out, this is about the simplest possible Python program to print the
simplest possible Java program that can print the simplest possible Python program!

Keyword arguments
If we're formatting complex strings, it can become tedious to remember the order
of the arguments or to update the template if we choose to insert a new argument.
The format method therefore allows us to specify names inside the braces instead
of numbers. The named variables are then passed to the format method as keyword
arguments:

template = """
From: <{from_email}>
To: <{to_email}>
Subject: {subject}

{message}"""
print(template.format(
 from_email = "a@example.com",
 to_email = "b@example.com",
 message = "Here's some mail for you. "
 " Hope you enjoy the message!",
 subject = "You have mail!"
))

We can also mix index and keyword arguments (as with all Python function calls,
the keyword arguments must follow the positional ones). We can even mix
unlabeled positional braces with keyword arguments:

print("{} {label} {}".format("x", "y", label="z"))

Chapter 8

[235]

As expected, this code outputs:

x z y

Container lookups
We aren't restricted to passing simple string variables into the format method.
Any primitive, such as integers or floats can be printed. More interestingly, complex
objects, including lists, tuples, dictionaries, and arbitrary objects can be used, and
we can access indexes and variables (but not methods) on those objects from
within the format string.

For example, if our e-mail message had grouped the from and to e-mail addresses
into a tuple, and placed the subject and message in a dictionary, for some reason
(perhaps because that's the input required for an existing send_mail function we
want to use), we can format it like this:

emails = ("a@example.com", "b@example.com")
message = {
 'subject': "You Have Mail!",
 'message': "Here's some mail for you!"
 }
template = """
From: <{0[0]}>
To: <{0[1]}>
Subject: {message[subject]}
{message[message]}"""
print(template.format(emails, message=message))

The variables inside the braces in the template string look a little weird, so let's look
at what they're doing. We have passed one argument as a position-based parameter
and one as a keyword argument. The two e-mail addresses are looked up by 0[x],
where x is either 0 or 1. The initial zero represents, as with other position-based
arguments, the first positional argument passed to format (the emails tuple, in
this case).

The square brackets with a number inside are the same kind of index lookup we
see in regular Python code, so 0[0] maps to emails[0], in the emails tuple. The
indexing syntax works with any indexable object, so we see similar behavior when
we access message[subject], except this time we are looking up a string key in a
dictionary. Notice that unlike in Python code, we do not need to put quotes around
the string in the dictionary lookup.

Strings and Serialization

[236]

We can even do multiple levels of lookup if we have nested data structures. I would
recommend against doing this often, as template strings rapidly become difficult to
understand. If we have a dictionary that contains a tuple, we can do this:

emails = ("a@example.com", "b@example.com")
message = {
 'emails': emails,
 'subject': "You Have Mail!",
 'message': "Here's some mail for you!"
 }
template = """
From: <{0[emails][0]}>
To: <{0[emails][1]}>
Subject: {0[subject]}
{0[message]}"""
print(template.format(message))

Object lookups
Indexing makes format lookup powerful, but we're not done yet! We can also pass
arbitrary objects as parameters, and use the dot notation to look up attributes on
those objects. Let's change our e-mail message data once again, this time to a class:

class EMail:
 def __init__(self, from_addr, to_addr, subject, message):
 self.from_addr = from_addr
 self.to_addr = to_addr
 self.subject = subject
 self.message = message

email = EMail("a@example.com", "b@example.com",
 "You Have Mail!",
 "Here's some mail for you!")

template = """
From: <{0.from_addr}>
To: <{0.to_addr}>
Subject: {0.subject}

{0.message}"""
print(template.format(email))

Chapter 8

[237]

The template in this example may be more readable than the previous examples,
but the overhead of creating an e-mail class adds complexity to the Python code. It
would be foolish to create a class for the express purpose of including the object in a
template. Typically, we'd use this sort of lookup if the object we are trying to format
already exists. This is true of all the examples; if we have a tuple, list, or dictionary,
we'll pass it into the template directly. Otherwise, we'd just create a simple set of
positional and keyword arguments.

Making it look right
It's nice to be able to include variables in template strings, but sometimes the
variables need a bit of coercion to make them look right in the output. For example,
if we are doing calculations with currency, we may end up with a long decimal that
we don't want to show up in our template:

subtotal = 12.32
tax = subtotal * 0.07
total = subtotal + tax

print("Sub: ${0} Tax: ${1} Total: ${total}".format(
 subtotal, tax, total=total))

If we run this formatting code, the output doesn't quite look like proper currency:

Sub: $12.32 Tax: $0.8624 Total: $13.182400000000001

Technically, we should never use floating-point numbers in currency
calculations like this; we should construct decimal.Decimal() objects
instead. Floats are dangerous because their calculations are inherently
inaccurate beyond a specific level of precision. But we're looking at
strings, not floats, and currency is a great example for formatting!

To fix the preceding format string, we can include some additional information
inside the curly braces to adjust the formatting of the parameters. There are tons of
things we can customize, but the basic syntax inside the braces is the same; first, we
use whichever of the earlier layouts (positional, keyword, index, attribute access)
is suitable to specify the variable that we want to place in the template string. We
follow this with a colon, and then the specific syntax for the formatting. Here's an
improved version:

print("Sub: ${0:0.2f} Tax: ${1:0.2f} "
 "Total: ${total:0.2f}".format(
 subtotal, tax, total=total))

Strings and Serialization

[238]

The 0.2f format specifier after the colons basically says, from left to right: for values
lower than one, make sure a zero is displayed on the left side of the decimal point;
show two places after the decimal; format the input value as a float.

We can also specify that each number should take up a particular number of
characters on the screen by placing a value before the period in the precision.
This can be useful for outputting tabular data, for example:

orders = [('burger', 2, 5),
 ('fries', 3.5, 1),
 ('cola', 1.75, 3)]

print("PRODUCT QUANTITY PRICE SUBTOTAL")
for product, price, quantity in orders:
 subtotal = price * quantity
 print("{0:10s}{1: ^9d} ${2: <8.2f}${3: >7.2f}".format(
 product, quantity, price, subtotal))

Ok, that's a pretty scary looking format string, so let's see how it works before
we break it down into understandable parts:

PRODUCT QUANTITY PRICE SUBTOTAL

burger 5 $2.00 $ 10.00

fries 1 $3.50 $ 3.50

cola 3 $1.75 $ 5.25

Nifty! So, how is this actually happening? We have four variables we are formatting,
in each line in the for loop. The first variable is a string and is formatted with
{0:10s}. The s means it is a string variable, and the 10 means it should take up ten
characters. By default, with strings, if the string is shorter than the specified number
of characters, it appends spaces to the right side of the string to make it long enough
(beware, however: if the original string is too long, it won't be truncated!). We can
change this behavior (to fill with other characters or change the alignment in the
format string), as we do for the next value, quantity.

The formatter for the quantity value is {1: ^9d}. The d represents an integer value.
The 9 tells us the value should take up nine characters. But with integers, instead
of spaces, the extra characters are zeros, by default. That looks kind of weird. So
we explicitly specify a space (immediately after the colon) as a padding character.
The caret character ^ tells us that the number should be aligned in the center of this
available padding; this makes the column look a bit more professional. The specifiers
have to be in the right order, although all are optional: fill first, then align, then the
size, and finally, the type.

Chapter 8

[239]

We do similar things with the specifiers for price and subtotal. For price, we use
{2: <8.2f} and for subtotal, {3: >7.2f}. In both cases, we're specifying a space
as the fill character, but we use the < and > symbols, respectively, to represent that
the numbers should be aligned to the left or right within the minimum space of eight
or seven characters. Further, each float should be formatted to two decimal places.

The "type" character for different types can affect formatting output as well. We've
seen the s, d, and f types, for strings, integers, and floats. Most of the other format
specifiers are alternative versions of these; for example, o represents octal format
and X represents hexadecimal for integers. The n type specifier can be useful for
formatting integer separators in the current locale's format. For floating-point
numbers, the % type will multiply by 100 and format a float as a percentage.

While these standard formatters apply to most built-in objects, it is also possible for
other objects to define nonstandard specifiers. For example, if we pass a datetime
object into format, we can use the specifiers used in the datetime.strftime
function, as follows:

import datetime
print("{0:%Y-%m-%d %I:%M%p }".format(
 datetime.datetime.now()))

It is even possible to write custom formatters for objects we create ourselves, but
that is beyond the scope of this book. Look into overriding the __format__ special
method if you need to do this in your code. The most comprehensive instructions can
be found in PEP 3101 at http://www.python.org/dev/peps/pep-3101/, although
the details are a bit dry. You can find more digestible tutorials using a web search.

The Python formatting syntax is quite flexible but it is a difficult mini-language to
remember. I use it every day and still occasionally have to look up forgotten concepts
in the documentation. It also isn't powerful enough for serious templating needs,
such as generating web pages. There are several third-party templating libraries
you can look into if you need to do more than basic formatting of a few strings.

Strings are Unicode
At the beginning of this section, we defined strings as collections of immutable
Unicode characters. This actually makes things very complicated at times, because
Unicode isn't really a storage format. If you get a string of bytes from a file or a
socket, for example, they won't be in Unicode. They will, in fact, be the built-in type
bytes. Bytes are immutable sequences of... well, bytes. Bytes are the lowest-level
storage format in computing. They represent 8 bits, usually described as an integer
between 0 and 255, or a hexadecimal equivalent between 0 and FF. Bytes don't
represent anything specific; a sequence of bytes may store characters of an encoded
string, or pixels in an image.

http://www.python.org/dev/peps/pep-3101/

Strings and Serialization

[240]

If we print a byte object, any bytes that map to ASCII representations will be printed
as their original character, while non-ASCII bytes (whether they are binary data or
other characters) are printed as hex codes escaped by the \x escape sequence. You
may find it odd that a byte, represented as an integer, can map to an ASCII character.
But ASCII is really just a code where each letter is represented by a different byte
pattern, and therefore, a different integer. The character "a" is represented by the
same byte as the integer 97, which is the hexadecimal number 0x61. Specifically,
all of these are an interpretation of the binary pattern 01100001.

Many I/O operations only know how to deal with bytes, even if the bytes object
refers to textual data. It is therefore vital to know how to convert between bytes
and Unicode.

The problem is that there are many ways to map bytes to Unicode text. Bytes are
machine-readable values, while text is a human-readable format. Sitting in between
is an encoding that maps a given sequence of bytes to a given sequence of text
characters.

However, there are multiple such encodings (ASCII is only one of them). The same
sequence of bytes represents completely different text characters when mapped
using different encodings! So, bytes must be decoded using the same character
set with which they were encoded. It's not possible to get text from bytes without
knowing how the bytes should be decoded. If we receive unknown bytes without
a specified encoding, the best we can do is guess what format they are encoded in,
and we may be wrong.

Converting bytes to text
If we have an array of bytes from somewhere, we can convert it to Unicode using
the .decode method on the bytes class. This method accepts a string for the name
of the character encoding. There are many such names; common ones for Western
languages include ASCII, UTF-8, and latin-1.

The sequence of bytes (in hex), 63 6c 69 63 68 e9, actually represents the characters
of the word cliché in the latin-1 encoding. The following example will encode this
sequence of bytes and convert it to a Unicode string using the latin-1 encoding:

characters = b'\x63\x6c\x69\x63\x68\xe9'
print(characters)
print(characters.decode("latin-1"))

Chapter 8

[241]

The first line creates a bytes object; the b character immediately before the string
tells us that we are defining a bytes object instead of a normal Unicode string.
Within the string, each byte is specified using—in this case—a hexadecimal number.
The \x character escapes within the byte string, and each say, "the next two
characters represent a byte using hexadecimal digits."

Provided we are using a shell that understands the latin-1 encoding, the two print
calls will output the following strings:

b'clich\xe9'

cliché

The first print statement renders the bytes for ASCII characters as themselves. The
unknown (unknown to ASCII, that is) character stays in its escaped hex format. The
output includes a b character at the beginning of the line to remind us that it is a
bytes representation, not a string.

The next call decodes the string using latin-1 encoding. The decode method returns
a normal (Unicode) string with the correct characters. However, if we had decoded
this same string using the Cyrillic "iso8859-5" encoding, we'd have ended up with
the string 'clichщ'! This is because the \xe9 byte maps to different characters in the
two encodings.

Converting text to bytes
If we need to convert incoming bytes into Unicode, clearly we're also going to have
situations where we convert outgoing Unicode into byte sequences. This is done
with the encode method on the str class, which, like the decode method, requires a
character set. The following code creates a Unicode string and encodes it in different
character sets:

characters = "cliché"
print(characters.encode("UTF-8"))
print(characters.encode("latin-1"))
print(characters.encode("CP437"))
print(characters.encode("ascii"))

The first three encodings create a different set of bytes for the accented character.
The fourth one can't even handle that byte:

b'clich\xc3\xa9'

b'clich\xe9'

b'clich\x82'

Traceback (most recent call last):

Strings and Serialization

[242]

 File "1261_10_16_decode_unicode.py", line 5, in <module>

 print(characters.encode("ascii"))

UnicodeEncodeError: 'ascii' codec can't encode character '\xe9' in
position 5: ordinal not in range(128)

Do you understand the importance of encoding now? The accented character is
represented as a different byte for each encoding; if we use the wrong one when
we are decoding bytes to text, we get the wrong character.

The exception in the last case is not always the desired behavior; there may be cases
where we want the unknown characters to be handled in a different way. The encode
method takes an optional string argument named errors that can define how such
characters should be handled. This string can be one of the following:

• strict

• replace

• ignore

• xmlcharrefreplace

The strict replacement strategy is the default we just saw. When a byte sequence
is encountered that does not have a valid representation in the requested encoding,
an exception is raised. When the replace strategy is used, the character is replaced
with a different character; in ASCII, it is a question mark; other encodings may
use different symbols, such as an empty box. The ignore strategy simply discards
any bytes it doesn't understand, while the xmlcharrefreplace strategy creates an
xml entity representing the Unicode character. This can be useful when converting
unknown strings for use in an XML document. Here's how each of the strategies
affects our sample word:

Strategy "cliché".encode("ascii", strategy)
replace b'clich?'

ignore b'clich'

xmlcharrefreplace b'cliché'

It is possible to call the str.encode and bytes.decode methods without passing
an encoding string. The encoding will be set to the default encoding for the current
platform. This will depend on the current operating system and locale or regional
settings; you can look it up using the sys.getdefaultencoding() function. It is
usually a good idea to specify the encoding explicitly, though, since the default
encoding for a platform may change, or the program may one day be extended to
work on text from a wider variety of sources.

Chapter 8

[243]

If you are encoding text and don't know which encoding to use, it is best to use
the UTF-8 encoding. UTF-8 is able to represent any Unicode character. In modern
software, it is a de facto standard encoding to ensure documents in any language—or
even multiple languages—can be exchanged. The various other possible encodings
are useful for legacy documents or in regions that still use different character sets
by default.

The UTF-8 encoding uses one byte to represent ASCII and other common characters,
and up to four bytes for more complex characters. UTF-8 is special because it is
backwards-compatible with ASCII; any ASCII document encoded using UTF-8
will be identical to the original ASCII document.

I can never remember whether to use encode or decode to convert from
binary bytes to Unicode. I always wished these methods were named
"to_binary" and "from_binary" instead. If you have the same problem,
try mentally replacing the word "code" with "binary"; "enbinary" and
"debinary" are pretty close to "to_binary" and "from_binary". I have saved
a lot of time by not looking up the method help files since devising this
mnemonic.

Mutable byte strings
The bytes type, like str, is immutable. We can use index and slice notation on a
bytes object and search for a particular sequence of bytes, but we can't extend or
modify them. This can be very inconvenient when dealing with I/O, as it is often
necessary to buffer incoming or outgoing bytes until they are ready to be sent.
For example, if we are receiving data from a socket, it may take several recv calls
before we have received an entire message.

This is where the bytearray built-in comes in. This type behaves something like
a list, except it only holds bytes. The constructor for the class can accept a bytes
object to initialize it. The extend method can be used to append another bytes
object to the existing array (for example, when more data comes from a socket
or other I/O channel).

Slice notation can be used on bytearray to modify the item inline. For example,
this code constructs a bytearray from a bytes object and then replaces two bytes:

b = bytearray(b"abcdefgh")
b[4:6] = b"\x15\xa3"
print(b)

The output looks like this:

bytearray(b'abcd\x15\xa3gh')

Strings and Serialization

[244]

Be careful; if we want to manipulate a single element in the bytearray, it will
expect us to pass an integer between 0 and 255 inclusive as the value. This integer
represents a specific bytes pattern. If we try to pass a character or bytes object,
it will raise an exception.

A single byte character can be converted to an integer using the ord (short for ordinal)
function. This function returns the integer representation of a single character:

b = bytearray(b'abcdef')
b[3] = ord(b'g')
b[4] = 68
print(b)

The output looks like this:

bytearray(b'abcgDf')

After constructing the array, we replace the character at index 3 (the fourth character,
as indexing starts at 0, as with lists) with byte 103. This integer was returned by the
ord function and is the ASCII character for the lowercase g. For illustration, we also
replaced the next character up with the byte number 68, which maps to the ASCII
character for the uppercase D.

The bytearray type has methods that allow it to behave like a list (we can append
integer bytes to it, for example), but also like a bytes object; we can use methods
like count and find the same way they would behave on a bytes or str object.
The difference is that bytearray is a mutable type, which can be useful for
building up complex sequences of bytes from a specific input source.

Regular expressions
You know what's really hard to do using object-oriented principles? Parsing strings
to match arbitrary patterns, that's what. There have been a fair number of academic
papers written in which object-oriented design is used to set up string parsing, but
the result is always very verbose and hard to read, and they are not widely used
in practice.

In the real world, string parsing in most programming languages is handled by
regular expressions. These are not verbose, but, boy, are they ever hard to read,
at least until you learn the syntax. Even though regular expressions are not object
oriented, the Python regular expression library provides a few classes and objects
that you can use to construct and run regular expressions.

Chapter 8

[245]

Regular expressions are used to solve a common problem: Given a string, determine
whether that string matches a given pattern and, optionally, collect substrings that
contain relevant information. They can be used to answer questions like:

• Is this string a valid URL?
• What is the date and time of all warning messages in a log file?
• Which users in /etc/passwd are in a given group?
• What username and document were requested by the URL a visitor typed?

There are many similar scenarios where regular expressions are the correct answer.
Many programmers have made the mistake of implementing complicated and
fragile string parsing libraries because they didn't know or wouldn't learn regular
expressions. In this section, we'll gain enough knowledge of regular expressions
to not make such mistakes!

Matching patterns
Regular expressions are a complicated mini-language. They rely on special
characters to match unknown strings, but let's start with literal characters, such
as letters, numbers, and the space character, which always match themselves. Let's
see a basic example:

import re

search_string = "hello world"
pattern = "hello world"

match = re.match(pattern, search_string)

if match:
 print("regex matches")

The Python Standard Library module for regular expressions is called re. We import
it and set up a search string and pattern to search for; in this case, they are the same
string. Since the search string matches the given pattern, the conditional passes and
the print statement executes.

Bear in mind that the match function matches the pattern to the beginning of the
string. Thus, if the pattern were "ello world", no match would be found. With
confusing asymmetry, the parser stops searching as soon as it finds a match, so the
pattern "hello wo" matches successfully. Let's build a small example program to
demonstrate these differences and help us learn other regular expression syntax:

import sys

Strings and Serialization

[246]

import re

pattern = sys.argv[1]
search_string = sys.argv[2]
match = re.match(pattern, search_string)

if match:
 template = "'{}' matches pattern '{}'"
else:
 template = "'{}' does not match pattern '{}'"

print(template.format(search_string, pattern))

This is just a generic version of the earlier example that accepts the pattern and
search string from the command line. We can see how the start of the pattern
must match, but a value is returned as soon as a match is found in the following
command-line interaction:

$ python regex_generic.py "hello worl" "hello world"

'hello world' matches pattern 'hello worl'

$ python regex_generic.py "ello world" "hello world"

'hello world' does not match pattern 'ello world'

We'll be using this script throughout the next few sections. While the script is
always invoked with the command line python regex_generic.py "<pattern>"
"<string>", we'll only see the output in the following examples, to conserve space.

If you need control over whether items happen at the beginning or end of a line (or if
there are no newlines in the string, at the beginning and end of the string), you can use
the ^ and $ characters to represent the start and end of the string respectively. If you
want a pattern to match an entire string, it's a good idea to include both of these:

'hello world' matches pattern '^hello world$'

'hello worl' does not match pattern '^hello world$'

Matching a selection of characters
Let's start with matching an arbitrary character. The period character, when used in
a regular expression pattern, can match any single character. Using a period in the
string means you don't care what the character is, just that there is a character there.
For example:

'hello world' matches pattern 'hel.o world'

'helpo world' matches pattern 'hel.o world'

Chapter 8

[247]

'hel o world' matches pattern 'hel.o world'

'helo world' does not match pattern 'hel.o world'

Notice how the last example does not match because there is no character at the
period's position in the pattern.

That's all well and good, but what if we only want a few specific characters to match?
We can put a set of characters inside square brackets to match any one of those
characters. So if we encounter the string [abc] in a regular expression pattern, we
know that those five (including the two square brackets) characters will only match
one character in the string being searched, and further, that this one character will be
either an a, a b, or a c. See a few examples:

'hello world' matches pattern 'hel[lp]o world'

'helpo world' matches pattern 'hel[lp]o world'

'helPo world' does not match pattern 'hel[lp]o world'

These square bracket sets should be named character sets, but they are more often
referred to as character classes. Often, we want to include a large range of characters
inside these sets, and typing them all out can be monotonous and error-prone.
Fortunately, the regular expression designers thought of this and gave us a shortcut.
The dash character, in a character set, will create a range. This is especially useful if
you want to match "all lower case letters", "all letters", or "all numbers" as follows:

'hello world' does not match pattern 'hello [a-z] world'

'hello b world' matches pattern 'hello [a-z] world'

'hello B world' matches pattern 'hello [a-zA-Z] world'

'hello 2 world' matches pattern 'hello [a-zA-Z0-9] world'

There are other ways to match or exclude individual characters, but you'll need to
find a more comprehensive tutorial via a web search if you want to find out what
they are!

Escaping characters
If putting a period character in a pattern matches any arbitrary character, how
do we match just a period in a string? One way might be to put the period inside
square brackets to make a character class, but a more generic method is to use
backslashes to escape it. Here's a regular expression to match two digit decimal
numbers between 0.00 and 0.99:

'0.05' matches pattern '0\.[0-9][0-9]'

'005' does not match pattern '0\.[0-9][0-9]'

'0,05' does not match pattern '0\.[0-9][0-9]'

Strings and Serialization

[248]

For this pattern, the two characters \. match the single . character. If the period
character is missing or is a different character, it does not match.

This backslash escape sequence is used for a variety of special characters in regular
expressions. You can use \[to insert a square bracket without starting a character
class, and \(to insert a parenthesis, which we'll later see is also a special character.

More interestingly, we can also use the escape symbol followed by a character to
represent special characters such as newlines (\n), and tabs (\t). Further, some
character classes can be represented more succinctly using escape strings; \s
represents whitespace characters, \w represents letters, numbers, and underscore,
and \d represents a digit:

'(abc]' matches pattern '\(abc\]'

' 1a' matches pattern '\s\d\w'

'\t5n' does not match pattern '\s\d\w'

'5n' matches pattern '\s\d\w'

Matching multiple characters
With this information, we can match most strings of a known length, but most of
the time we don't know how many characters to match inside a pattern. Regular
expressions can take care of this, too. We can modify a pattern by appending one
of several hard-to-remember punctuation symbols to match multiple characters.

The asterisk (*) character says that the previous pattern can be matched zero or more
times. This probably sounds silly, but it's one of the most useful repetition characters.
Before we explore why, consider some silly examples to make sure we understand
what it does:

'hello' matches pattern 'hel*o'

'heo' matches pattern 'hel*o'

'helllllo' matches pattern 'hel*o'

So, the * character in the pattern says that the previous pattern (the l character) is
optional, and if present, can be repeated as many times as possible to match the
pattern. The rest of the characters (h, e, and o) have to appear exactly once.

It's pretty rare to want to match a single letter multiple times, but it gets more
interesting if we combine the asterisk with patterns that match multiple characters.
.*, for example, will match any string, whereas [a-z]* matches any collection
of lowercase words, including the empty string.

Chapter 8

[249]

For example:

'A string.' matches pattern '[A-Z][a-z]* [a-z]*\.'

'No .' matches pattern '[A-Z][a-z]* [a-z]*\.'

'' matches pattern '[a-z]*.*'

The plus (+) sign in a pattern behaves similarly to an asterisk; it states that the
previous pattern can be repeated one or more times, but, unlike the asterisk is
not optional. The question mark (?) ensures a pattern shows up exactly zero or
one times, but not more. Let's explore some of these by playing with numbers
(remember that \d matches the same character class as [0-9]:

'0.4' matches pattern '\d+\.\d+'

'1.002' matches pattern '\d+\.\d+'

'1.' does not match pattern '\d+\.\d+'

'1%' matches pattern '\d?\d%'

'99%' matches pattern '\d?\d%'

'999%' does not match pattern '\d?\d%'

Grouping patterns together
So far we've seen how we can repeat a pattern multiple times, but we are restricted
in what patterns we can repeat. If we want to repeat individual characters, we're
covered, but what if we want a repeating sequence of characters? Enclosing any
set of patterns in parenthesis allows them to be treated as a single pattern when
applying repetition operations. Compare these patterns:

'abccc' matches pattern 'abc{3}'

'abccc' does not match pattern '(abc){3}'

'abcabcabc' matches pattern '(abc){3}'

Combined with complex patterns, this grouping feature greatly expands our
pattern-matching repertoire. Here's a regular expression that matches simple
English sentences:

'Eat.' matches pattern '[A-Z][a-z]*([a-z]+)*\.$'

'Eat more good food.' matches pattern '[A-Z][a-z]*([a-z]+)*\.$'

'A good meal.' matches pattern '[A-Z][a-z]*([a-z]+)*\.$'

The first word starts with a capital, followed by zero or more lowercase letters.
Then, we enter a parenthetical that matches a single space followed by a word of
one or more lowercase letters. This entire parenthetical is repeated zero or more
times, and the pattern is terminated with a period. There cannot be any other
characters after the period, as indicated by the $ matching the end of string.

Strings and Serialization

[250]

We've seen many of the most basic patterns, but the regular expression language
supports many more. I spent my first few years using regular expressions looking up
the syntax every time I needed to do something. It is worth bookmarking Python's
documentation for the re module and reviewing it frequently. There are very few
things that regular expressions cannot match, and they should be the first tool you
reach for when parsing strings.

Getting information from regular expressions
Let's now focus on the Python side of things. The regular expression syntax is the
furthest thing from object-oriented programming. However, Python's re module
provides an object-oriented interface to enter the regular expression engine.

We've been checking whether the re.match function returns a valid object or not.
If a pattern does not match, that function returns None. If it does match, however,
it returns a useful object that we can introspect for information about the pattern.

So far, our regular expressions have answered questions such as "Does this string
match this pattern?" Matching patterns is useful, but in many cases, a more
interesting question is, "If this string matches this pattern, what is the value of a
relevant substring?" If you use groups to identify parts of the pattern that you want
to reference later, you can get them out of the match return value as illustrated in
the next example:

pattern = "^[a-zA-Z.]+@([a-z.]*\.[a-z]+)$"
search_string = "some.user@example.com"
match = re.match(pattern, search_string)

if match:
 domain = match.groups()[0]
 print(domain)

The specification describing valid e-mail addresses is extremely complicated, and the
regular expression that accurately matches all possibilities is obscenely long. So we
cheated and made a simple regular expression that matches some common e-mail
addresses; the point is that we want to access the domain name (after the @ sign) so we
can connect to that address. This is done easily by wrapping that part of the pattern in
parenthesis and calling the groups() method on the object returned by match.

The groups method returns a tuple of all the groups matched inside the pattern,
which you can index to access a specific value. The groups are ordered from left to
right. However, bear in mind that groups can be nested, meaning you can have one
or more groups inside another group. In this case, the groups are returned in the
order of their left-most brackets, so the outermost group will be returned before
its inner matching groups.

Chapter 8

[251]

In addition to the match function, the re module provides a couple other useful
functions, search, and findall. The search function finds the first instance of a
matching pattern, relaxing the restriction that the pattern start at the first letter of
the string. Note that you can get a similar effect by using match and putting a ^.*
character at the front of the pattern to match any characters between the start of
the string and the pattern you are looking for.

The findall function behaves similarly to search, except that it finds all
non-overlapping instances of the matching pattern, not just the first one. Basically,
it finds the first match, then it resets the search to the end of that matching string
and finds the next one.

Instead of returning a list of match objects, as you would expect, it returns a list of
matching strings. Or tuples. Sometimes it's strings, sometimes it's tuples. It's not a
very good API at all! As with all bad APIs, you'll have to memorize the differences
and not rely on intuition. The type of the return value depends on the number of
bracketed groups inside the regular expression:

• If there are no groups in the pattern, re.findall will return a list of
strings, where each value is a complete substring from the source string
that matches the pattern

• If there is exactly one group in the pattern, re.findall will return a list
of strings where each value is the contents of that group

• If there are multiple groups in the pattern, then re.findall will return a list
of tuples where each tuple contains a value from a matching group, in order

When you are designing function calls in your own Python libraries,
try to make the function always return a consistent data structure. It
is often good to design functions that can take arbitrary inputs and
process them, but the return value should not switch from single
value to a list, or a list of values to a list of tuples depending on the
input. Let re.findall be a lesson!

The examples in the following interactive session will hopefully clarify the differences:

>>> import re

>>> re.findall('a.', 'abacadefagah')

['ab', 'ac', 'ad', 'ag', 'ah']

>>> re.findall('a(.)', 'abacadefagah')

['b', 'c', 'd', 'g', 'h']

>>> re.findall('(a)(.)', 'abacadefagah')

Strings and Serialization

[252]

[('a', 'b'), ('a', 'c'), ('a', 'd'), ('a', 'g'), ('a', 'h')]

>>> re.findall('((a)(.))', 'abacadefagah')

[('ab', 'a', 'b'), ('ac', 'a', 'c'), ('ad', 'a', 'd'), ('ag', 'a', 'g'),
('ah', 'a', 'h')]

Making repeated regular expressions efficient
Whenever you call one of the regular expression methods, the engine has to
convert the pattern string into an internal structure that makes searching strings
fast. This conversion takes a non-trivial amount of time. If a regular expression
pattern is going to be reused multiple times (for example, inside a for or while
loop), it would be better if this conversion step could be done only once.

This is possible with the re.compile method. It returns an object-oriented version
of the regular expression that has been compiled down and has the methods we've
explored (match, search, findall) already, among others. We'll see examples of
this in the case study.

This has definitely been a condensed introduction to regular expressions. At this
point, we have a good feel for the basics and will recognize when we need to do
further research. If we have a string pattern matching problem, regular expressions
will almost certainly be able to solve them for us. However, we may need to look up
new syntaxes in a more comprehensive coverage of the topic. But now we know what
to look for! Let's move on to a completely different topic: serializing data for storage.

Serializing objects
Nowadays, we take the ability to write data to a file and retrieve it at an arbitrary later
date for granted. As convenient as this is (imagine the state of computing if we couldn't
store anything!), we often find ourselves converting data we have stored in a nice
object or design pattern in memory into some kind of clunky text or binary format
for storage, transfer over the network, or remote invocation on a distant server.

The Python pickle module is an object-oriented way to store objects directly in a
special storage format. It essentially converts an object (and all the objects it holds
as attributes) into a sequence of bytes that can be stored or transported however
we see fit.

For basic work, the pickle module has an extremely simple interface. It is comprised
of four basic functions for storing and loading data; two for manipulating file-like
objects, and two for manipulating bytes objects (the latter are just shortcuts to the
file-like interface, so we don't have to create a BytesIO file-like object ourselves).

Chapter 8

[253]

The dump method accepts an object to be written and a file-like object to write the
serialized bytes to. This object must have a write method (or it wouldn't be file-like),
and that method must know how to handle a bytes argument (so a file opened for
text output wouldn't work).

The load method does exactly the opposite; it reads a serialized object from a file-like
object. This object must have the proper file-like read and readline arguments, each
of which must, of course, return bytes. The pickle module will load the object from
these bytes and the load method will return the fully reconstructed object. Here's an
example that stores and then loads some data in a list object:

import pickle

some_data = ["a list", "containing", 5,
 "values including another list",
 ["inner", "list"]]

with open("pickled_list", 'wb') as file:
 pickle.dump(some_data, file)

with open("pickled_list", 'rb') as file:
 loaded_data = pickle.load(file)

print(loaded_data)
assert loaded_data == some_data

This code works as advertised: the objects are stored in the file and then loaded
from the same file. In each case, we open the file using a with statement so that it is
automatically closed. The file is first opened for writing and then a second time for
reading, depending on whether we are storing or loading data.

The assert statement at the end would raise an error if the newly loaded object is
not equal to the original object. Equality does not imply that they are the same object.
Indeed, if we print the id() of both objects, we would discover they are different.
However, because they are both lists whose contents are equal, the two lists are also
considered equal.

The dumps and loads functions behave much like their file-like counterparts, except
they return or accept bytes instead of file-like objects. The dumps function requires
only one argument, the object to be stored, and it returns a serialized bytes object.
The loads function requires a bytes object and returns the restored object. The 's'
character in the method names is short for string; it's a legacy name from ancient
versions of Python, where str objects were used instead of bytes.

Strings and Serialization

[254]

Both dump methods accept an optional protocol argument. If we are saving and
loading pickled objects that are only going to be used in Python 3 programs, we don't
need to supply this argument. Unfortunately, if we are storing objects that may be
loaded by older versions of Python, we have to use an older and less efficient protocol.
This should not normally be an issue. Usually, the only program that would load a
pickled object would be the same one that stored it. Pickle is an unsafe format, so we
don't want to be sending it unsecured over the Internet to unknown interpreters.

The argument supplied is an integer version number. The default version is number
3, representing the current highly efficient storage system used by Python 3 pickling.
The number 2 is the older version, which will store an object that can be loaded on all
interpreters back to Python 2.3. As 2.6 is the oldest of Python that is still widely used
in the wild, version 2 pickling is normally sufficient. Versions 0 and 1 are supported
on older interpreters; 0 is an ASCII format, while 1 is a binary format. There is also
an optimized version 4 that may one day become the default.

As a rule of thumb, then, if you know that the objects you are pickling will only be
loaded by a Python 3 program (for example, only your program will be loading them),
use the default pickling protocol. If they may be loaded by unknown interpreters, pass
a protocol value of 2, unless you really believe they may need to be loaded by
an archaic version of Python.

If we do pass a protocol to dump or dumps, we should use a keyword argument to
specify it: pickle.dumps(my_object, protocol=2). This is not strictly necessary,
as the method only accepts two arguments, but typing out the full keyword
argument reminds readers of our code what the purpose of the number is. Having
a random integer in the method call would be hard to read. Two what? Store two
copies of the object, maybe? Remember, code should always be readable. In Python,
less code is often more readable than longer code, but not always. Be explicit.

It is possible to call dump or load on a single open file more than once. Each call to
dump will store a single object (plus any objects it is composed of or contains), while
a call to load will load and return just one object. So for a single file, each separate
call to dump when storing the object should have an associated call to load when
restoring at a later date.

Customizing pickles
With most common Python objects, pickling "just works". Basic primitives such
as integers, floats, and strings can be pickled, as can any container object, such as
lists or dictionaries, provided the contents of those containers are also picklable.
Further, and importantly, any object can be pickled, so long as all of its attributes
are also picklable.

Chapter 8

[255]

So what makes an attribute unpicklable? Usually, it has something to do with time-
sensitive attributes that it would not make sense to load in the future. For example, if
we have an open network socket, open file, running thread, or database connection
stored as an attribute on an object, it would not make sense to pickle these objects; a lot
of operating system state would simply be gone when we attempted to reload them
later. We can't just pretend a thread or socket connection exists and make it appear!
No, we need to somehow customize how such transient data is stored and restored.

Here's a class that loads the contents of a web page every hour to ensure that they
stay up to date. It uses the threading.Timer class to schedule the next update:

from threading import Timer
import datetime
from urllib.request import urlopen

class UpdatedURL:
 def __init__(self, url):
 self.url = url
 self.contents = ''
 self.last_updated = None
 self.update()

 def update(self):
 self.contents = urlopen(self.url).read()
 self.last_updated = datetime.datetime.now()
 self.schedule()

 def schedule(self):
 self.timer = Timer(3600, self.update)
 self.timer.setDaemon(True)
 self.timer.start()

The url, contents, and last_updated are all pickleable, but if we try to pickle
an instance of this class, things go a little nutty on the self.timer instance:

>>> u = UpdatedURL("http://news.yahoo.com/")

>>> import pickle

>>> serialized = pickle.dumps(u)

Traceback (most recent call last):

 File "<pyshell#3>", line 1, in <module>

 serialized = pickle.dumps(u)

_pickle.PicklingError: Can't pickle <class '_thread.lock'>: attribute
lookup lock on _thread failed

Strings and Serialization

[256]

That's not a very useful error, but it looks like we're trying to pickle something we
shouldn't be. That would be the Timer instance; we're storing a reference to self.
timer in the schedule method, and that attribute cannot be serialized.

When pickle tries to serialize an object, it simply tries to store the object's __dict__
attribute; __dict__ is a dictionary mapping all the attribute names on the object to
their values. Luckily, before checking __dict__, pickle checks to see whether a
__getstate__ method exists. If it does, it will store the return value of that method
instead of the __dict__.

Let's add a __getstate__ method to our UpdatedURL class that simply returns a
copy of the __dict__ without a timer:

 def __getstate__(self):
 new_state = self.__dict__.copy()
 if 'timer' in new_state:
 del new_state['timer']
 return new_state

If we pickle the object now, it will no longer fail. And we can even successfully
restore that object using loads. However, the restored object doesn't have a timer
attribute, so it will not be refreshing the content like it is designed to do. We need
to somehow create a new timer (to replace the missing one) when the object is
unpickled.

As we might expect, there is a complementary __setstate__ method that can be
implemented to customize unpickling. This method accepts a single argument,
which is the object returned by __getstate__. If we implement both methods, __
getstate__ is not required to return a dictionary, since __setstate__ will know
what to do with whatever object __getstate__ chooses to return. In our case, we
simply want to restore the __dict__, and then create a new timer:

 def __setstate__(self, data):
 self.__dict__ = data
 self.schedule()

The pickle module is very flexible and provides other tools to further customize
the pickling process if you need them. However, these are beyond the scope of this
book. The tools we've covered are sufficient for many basic pickling tasks. Objects
to be pickled are normally relatively simple data objects; we would not likely
pickle an entire running program or complicated design pattern, for example.

Chapter 8

[257]

Serializing web objects
It is not a good idea to load a pickled object from an unknown or untrusted source.
It is possible to inject arbitrary code into a pickled file to maliciously attack a
computer via the pickle. Another disadvantage of pickles is that they can only
be loaded by other Python programs, and cannot be easily shared with services
written in other languages.

There are many formats that have been used for this purpose over the years.
XML (Extensible Markup Language) used to be very popular, especially with Java
developers. YAML (Yet Another Markup Language) is another format that you
may see referenced occasionally. Tabular data is frequently exchanged in the CSV
(Comma Separated Value) format. Many of these are fading into obscurity and
there are many more that you will encounter over time. Python has solid standard
or third-party libraries for all of them.

Before using such libraries on untrusted data, make sure to investigate security
concerns with each of them. XML and YAML, for example, both have obscure features
that, used maliciously, can allow arbitrary commands to be executed on the host
machine. These features may not be turned off by default. Do your research.

JavaScript Object Notation (JSON) is a human readable format for exchanging
primitive data. JSON is a standard format that can be interpreted by a wide array
of heterogeneous client systems. Hence, JSON is extremely useful for transmitting
data between completely decoupled systems. Further, JSON does not have any
support for executable code, only data can be serialized; thus, it is more difficult
to inject malicious statements into it.

Because JSON can be easily interpreted by JavaScript engines, it is often used for
transmitting data from a web server to a JavaScript-capable web browser. If the
web application serving the data is written in Python, it needs a way to convert
internal data into the JSON format.

There is a module to do this, predictably named json. This module provides a similar
interface to the pickle module, with dump, load, dumps, and loads functions. The
default calls to these functions are nearly identical to those in pickle, so let us not
repeat the details. There are a couple differences; obviously, the output of these calls
is valid JSON notation, rather than a pickled object. In addition, the json functions
operate on str objects, rather than bytes. Therefore, when dumping to or loading
from a file, we need to create text files rather than binary ones.

Strings and Serialization

[258]

The JSON serializer is not as robust as the pickle module; it can only serialize basic
types such as integers, floats, and strings, and simple containers such as dictionaries
and lists. Each of these has a direct mapping to a JSON representation, but JSON
is unable to represent classes, methods, or functions. It is not possible to transmit
complete objects in this format. Because the receiver of an object we have dumped
to JSON format is normally not a Python object, it would not be able to understand
classes or methods in the same way that Python does, anyway. In spite of the O for
Object in its name, JSON is a data notation; objects, as you recall, are composed of
both data and behavior.

If we do have objects for which we want to serialize only the data, we can always
serialize the object's __dict__ attribute. Or we can semiautomate this task by
supplying custom code to create or parse a JSON serializable dictionary from
certain types of objects.

In the json module, both the object storing and loading functions accept optional
arguments to customize the behavior. The dump and dumps methods accept a poorly
named cls (short for class, which is a reserved keyword) keyword argument. If
passed, this should be a subclass of the JSONEncoder class, with the default method
overridden. This method accepts an arbitrary object and converts it to a dictionary
that json can digest. If it doesn't know how to process the object, we should call the
super() method, so that it can take care of serializing basic types in the normal way.

The load and loads methods also accept such a cls argument that can be a
subclass of the inverse class, JSONDecoder. However, it is normally sufficient to
pass a function into these methods using the object_hook keyword argument.
This function accepts a dictionary and returns an object; if it doesn't know what
to do with the input dictionary, it can return it unmodified.

Let's look at an example. Imagine we have the following simple contact class
that we want to serialize:

class Contact:
 def __init__(self, first, last):
 self.first = first
 self.last = last

 @property
 def full_name(self):
 return("{} {}".format(self.first, self.last))

Chapter 8

[259]

We could just serialize the __dict__ attribute:

>>> c = Contact("John", "Smith")

>>> json.dumps(c.__dict__)

'{"last": "Smith", "first": "John"}'

But accessing special (double-underscore) attributes in this fashion is kind of
crude. Also, what if the receiving code (perhaps some JavaScript on a web page)
wanted that full_name property to be supplied? Of course, we could construct the
dictionary by hand, but let's create a custom encoder instead:

import json
class ContactEncoder(json.JSONEncoder):
 def default(self, obj):
 if isinstance(obj, Contact):
 return {'is_contact': True,
 'first': obj.first,
 'last': obj.last,
 'full': obj.full_name}
 return super().default(obj)

The default method basically checks to see what kind of object we're trying to
serialize; if it's a contact, we convert it to a dictionary manually; otherwise, we let
the parent class handle serialization (by assuming that it is a basic type, which json
knows how to handle). Notice that we pass an extra attribute to identify this object
as a contact, since there would be no way to tell upon loading it. This is just
a convention; for a more generic serialization mechanism, it might make more sense
to store a string type in the dictionary, or possibly even the full class name, including
package and module. Remember that the format of the dictionary depends on the
code at the receiving end; there has to be an agreement as to how the data is going
to be specified.

We can use this class to encode a contact by passing the class (not an instantiated
object) to the dump or dumps function:

>>> c = Contact("John", "Smith")

>>> json.dumps(c, cls=ContactEncoder)

'{"is_contact": true, "last": "Smith", "full": "John Smith",

"first": "John"}'

Strings and Serialization

[260]

For decoding, we can write a function that accepts a dictionary and checks the
existence of the is_contact variable to decide whether to convert it to a contact:

def decode_contact(dic):
 if dic.get('is_contact'):
 return Contact(dic['first'], dic['last'])
 else:
 return dic

We can pass this function to the load or loads function using the object_hook
keyword argument:

>>> data = ('{"is_contact": true, "last": "smith",'

 '"full": "john smith", "first": "john"}')

>>> c = json.loads(data, object_hook=decode_contact)

>>> c

<__main__.Contact object at 0xa02918c>

>>> c.full_name

'john smith'

Case study
Let's build a basic regular expression-powered templating engine in Python. This
engine will parse a text file (such as an HTML page) and replace certain directives with
text calculated from the input to those directives. This is about the most complicated
task we would want to do with regular expressions; indeed, a full-fledged version of
this would likely utilize a proper language parsing mechanism.

Consider the following input file:

/** include header.html **/
<h1>This is the title of the front page</h1>
/** include menu.html **/
<p>My name is /** variable name **/.
This is the content of my front page. It goes below the menu.</p>
<table>
<tr><th>Favourite Books</th></tr>
/** loopover book_list **/
<tr><td>/** loopvar **/</td></tr>

/** endloop **/
</table>
/** include footer.html **/
Copyright © Today

Chapter 8

[261]

This file contains "tags" of the form /** <directive> <data> **/ where the data is
an optional single word and the directives are:

• include: Copy the contents of another file here
• variable: Insert the contents of a variable here
• loopover: Repeat the contents of the loop for a variable that is a list
• endloop: Signal the end of looped text
• loopvar: Insert a single value from the list being looped over

This template will render a different page depending which variables are passed into
it. These variables will be passed in from a so-called context file. This will be encoded
as a json object with keys representing the variables in question. My context file
might look like this, but you would derive your own:

{
 "name": "Dusty",
 "book_list": [
 "Thief Of Time",
 "The Thief",
 "Snow Crash",
 "Lathe Of Heaven"
]
}

Before we get into the actual string processing, let's throw together some
object-oriented boilerplate code for processing files and grabbing data from
the command line:

import re
import sys
import json
from pathlib import Path

DIRECTIVE_RE = re.compile(
 r'/**\s*(include|variable|loopover|endloop|loopvar)'
 r'\s*([^ *]*)\s***/')

class TemplateEngine:
 def __init__(self, infilename, outfilename, contextfilename):
 self.template = open(infilename).read()
 self.working_dir = Path(infilename).absolute().parent
 self.pos = 0
 self.outfile = open(outfilename, 'w')

Strings and Serialization

[262]

 with open(contextfilename) as contextfile:
 self.context = json.load(contextfile)

 def process(self):
 print("PROCESSING...")

if __name__ == '__main__':
 infilename, outfilename, contextfilename = sys.argv[1:]
 engine = TemplateEngine(infilename, outfilename, contextfilename)
 engine.process()

This is all pretty basic, we create a class and initialize it with some variables
passed in on the command line.

Notice how we try to make the regular expression a little bit more readable by
breaking it across two lines? We use raw strings (the r prefix), so we don't have
to double escape all our backslashes. This is common in regular expressions,
but it's still a mess. (Regular expressions always are, but they're often worth it.)

The pos indicates the current character in the content that we are processing;
we'll see a lot more of it in a moment.

Now "all that's left" is to implement that process method. There are a few ways
to do this. Let's do it in a fairly explicit way.

The process method has to find each directive that matches the regular expression and
do the appropriate work with it. However, it also has to take care of outputting the
normal text before, after, and between each directive to the output file, unmodified.

One good feature of the compiled version of regular expressions is that we can
tell the search method to start searching at a specific position by passing the pos
keyword argument. If we temporarily define doing the appropriate work with a
directive as "ignore the directive and delete it from the output file", our process
loop looks quite simple:

def process(self):
 match = DIRECTIVE_RE.search(self.template, pos=self.pos)
 while match:
 self.outfile.write(self.template[self.pos:match.start()])
 self.pos = match.end()
 match = DIRECTIVE_RE.search(self.template, pos=self.pos)
 self.outfile.write(self.template[self.pos:])

Chapter 8

[263]

In English, this function finds the first string in the text that matches the regular
expression, outputs everything from the current position to the start of that match,
and then advances the position to the end of aforesaid match. Once it's out of
matches, it outputs everything since the last position.

Of course, ignoring the directive is pretty useless in a templating engine, so let's
set up replace that position advancing line with code that delegates to a different
method on the class depending on the directive:

def process(self):
 match = DIRECTIVE_RE.search(self.template, pos=self.pos)
 while match:
 self.outfile.write(self.template[self.pos:match.start()])
 directive, argument = match.groups()
 method_name = 'process_{}'.format(directive)
 getattr(self, method_name)(match, argument)
 match = DIRECTIVE_RE.search(self.template, pos=self.pos)
 self.outfile.write(self.template[self.pos:])

So we grab the directive and the single argument from the regular expression. The
directive becomes a method name and we dynamically look up that method name on
the self object (a little error processing here in case the template writer provides an
invalid directive would be better). We pass the match object and argument into that
method and assume that method will deal with everything appropriately, including
moving the pos pointer.

Now that we've got our object-oriented architecture this far, it's actually pretty
simple to implement the methods that are delegated to. The include and variable
directives are totally straightforward:

def process_include(self, match, argument):
 with (self.working_dir / argument).open() as includefile:
 self.outfile.write(includefile.read())
 self.pos = match.end()

def process_variable(self, match, argument):
 self.outfile.write(self.context.get(argument, ''))
 self.pos = match.end()

The first simply looks up the included file and inserts the file contents, while the
second looks up the variable name in the context dictionary (which was loaded from
json in the __init__ method), defaulting to an empty string if it doesn't exist.

Strings and Serialization

[264]

The three methods that deal with looping are a bit more intense, as they have to
share state between the three of them. For simplicity (I'm sure you're eager to see
the end of this long chapter, we're almost there!), we'll handle this as instance
variables on the class itself. As an exercise, you might want to consider better ways
to architect this, especially after reading the next three chapters.

 def process_loopover(self, match, argument):
 self.loop_index = 0
 self.loop_list = self.context.get(argument, [])
 self.pos = self.loop_pos = match.end()

 def process_loopvar(self, match, argument):
 self.outfile.write(self.loop_list[self.loop_index])
 self.pos = match.end()

 def process_endloop(self, match, argument):
 self.loop_index += 1
 if self.loop_index >= len(self.loop_list):
 self.pos = match.end()
 del self.loop_index
 del self.loop_list
 del self.loop_pos
 else:
 self.pos = self.loop_pos

When we encounter the loopover directive, we don't have to output anything,
but we do have to set the initial state on three variables. The loop_list variable is
assumed to be a list pulled from the context dictionary. The loop_index variable
indicates what position in that list should be output in this iteration of the loop,
while loop_pos is stored so we know where to jump back to when we get to the
end of the loop.

The loopvar directive outputs the value at the current position in the loop_list
variable and skips to the end of the directive. Note that it doesn't increment the loop
index because the loopvar directive could be called multiple times inside a loop.

The endloop directive is more complicated. It determines whether there are more
elements in the loop_list; if there are, it just jumps back to the start of the loop,
incrementing the index. Otherwise, it resets all the variables that were being used
to process the loop and jumps to the end of the directive so the engine can carry on
with the next match.

Chapter 8

[265]

Note that this particular looping mechanism is very fragile; if a template designer
were to try nesting loops or forget an endloop call, it would go poorly for them.
We would need a lot more error checking and probably want to store more loop
state to make this a production platform. But I promised that the end of the chapter
was nigh, so let's just head to the exercises, after seeing how our sample template
is rendered with its context:

<html>
 <body>

<h1>This is the title of the front page</h1>
First Link
Second Link

<p>My name is Dusty.
This is the content of my front page. It goes below the menu.</p>
<table>
<tr><th>Favourite Books</th></tr>

<tr><td>Thief Of Time</td></tr>

<tr><td>The Thief</td></tr>

<tr><td>Snow Crash</td></tr>

<tr><td>Lathe Of Heaven</td></tr>

</table>
 </body>
</html>

Copyright © Today

There are some weird newline effects due to the way we planned our template,
but it works as expected.

Exercises
We've covered a wide variety of topics in this chapter, from strings to regular
expressions, to object serialization, and back again. Now it's time to consider how
these ideas can be applied to your own code.

Strings and Serialization

[266]

Python strings are very flexible, and Python is an extremely powerful tool for
string-based manipulations. If you don't do a lot of string processing in your daily
work, try designing a tool that is exclusively intended for manipulating strings. Try
to come up with something innovative, but if you're stuck, consider writing a web log
analyzer (how many requests per hour? How many people visit more than five pages?)
or a template tool that replaces certain variable names with the contents of other files.

Spend a lot of time toying with the string formatting operators until you've got the
syntax memorized. Write a bunch of template strings and objects to pass into the
format function, and see what kind of output you get. Try the exotic formatting
operators, such as percentage or hexadecimal notation. Try out the fill and alignment
operators, and see how they behave differently for integers, strings, and floats.
Consider writing a class of your own that has a __format__ method; we didn't
discuss this in detail, but explore just how much you can customize formatting.

Make sure you understand the difference between bytes and str objects. The
distinction is very complicated in older versions of Python (there was no bytes, and
str acted like both bytes and str unless we needed non-ASCII characters in which
case there was a separate unicode object, which was similar to Python 3's str class.
It's even more confusing than it sounds!). It's clearer nowadays; bytes is for binary
data, and str is for character data. The only tricky part is knowing how and when
to convert between the two. For practice, try writing text data to a file opened for
writing bytes (you'll have to encode the text yourself), and then reading from the
same file.

Do some experimenting with bytearray; see how it can act both like a bytes object
and a list or container object at the same time. Try writing to a buffer that holds data
in the bytes array until it is a certain length before returning it. You can simulate the
code that puts data into the buffer by using time.sleep calls to ensure data doesn't
arrive too quickly.

Study regular expressions online. Study them some more. Especially learn about
named groups greedy versus lazy matching, and regex flags, three features that
we didn't cover in this chapter. Make conscious decisions about when not to use
them. Many people have very strong opinions about regular expressions and either
overuse them or refuse to use them at all. Try to convince yourself to use them only
when appropriate, and figure out when that is.

If you've ever written an adapter to load small amounts of data from a file or
database and convert it to an object, consider using a pickle instead. Pickles are not
efficient for storing massive amounts of data, but they can be useful for loading
configuration or other simple objects. Try coding it multiple ways: using a pickle,
a text file, or a small database. Which do you find easiest to work with?

Chapter 8

[267]

Try experimenting with pickling data, then modifying the class that holds the data,
and loading the pickle into the new class. What works? What doesn't? Is there a way
to make drastic changes to a class, such as renaming an attribute or splitting it into
two new attributes and still get the data out of an older pickle? (Hint: try placing a
private pickle version number on each object and update it each time you change
the class; you can then put a migration path in __setstate__.)

If you do any web development at all, do some experimenting with the JSON
serializer. Personally, I prefer to serialize only standard JSON serializable objects,
rather than writing custom encoders or object_hooks, but the desired effect really
depends on the interaction between the frontend (JavaScript, typically) and
backend code.

Create some new directives in the templating engine that take more than one or an
arbitrary number of arguments. You might need to modify the regular expression or
add new ones. Have a look at the Django project's online documentation, and see if
there are any other template tags you'd like to work with. Try mimicking their filter
syntax instead of using the variable tag. Revisit this chapter when you've studied
iteration and coroutines and see if you can come up with a more compact way of
representing the state between related directives, such as the loop.

Summary
We've covered string manipulation, regular expressions, and object serialization
in this chapter. Hardcoded strings and program variables can be combined into
outputtable strings using the powerful string formatting system. It is important
to distinguish between binary and textual data and bytes and str have specific
purposes that must be understood. Both are immutable, but the bytearray type
can be used when manipulating bytes.

Regular expressions are a complex topic, but we scratched the surface. There are
many ways to serialize Python data; pickles and JSON are two of the most popular.

In the next chapter, we'll look at a design pattern that is so fundamental to Python
programming that it has been given special syntax support: the iterator pattern.

[269]

The Iterator Pattern
We've discussed how many of Python's built-ins and idioms that seem, at first blush,
to be non-object-oriented are actually providing access to major objects under the
hood. In this chapter, we'll discuss how the for loop that seems so structured is
actually a lightweight wrapper around a set of object-oriented principles. We'll also
see a variety of extensions to this syntax that automatically create even more types
of object. We will cover:

• What design patterns are
• The iterator protocol—one of the most powerful design patterns
• List, set, and dictionary comprehensions
• Generators and coroutines

Design patterns in brief
When engineers and architects decide to build a bridge, or a tower, or a building,
they follow certain principles to ensure structural integrity. There are various
possible designs for bridges (suspension or cantilever, for example), but if the
engineer doesn't use one of the standard designs, and doesn't have a brilliant new
design, it is likely the bridge he/she designs will collapse.

Design patterns are an attempt to bring this same formal definition for correctly
designed structures to software engineering. There are many different design patterns
to solve different general problems. People who create design patterns first identify
a common problem faced by developers in a wide variety of situations. They then
suggest what might be considered the ideal solution for that problem, in terms of
object-oriented design.

The Iterator Pattern

[270]

Knowing a design pattern and choosing to use it in our software does not, however,
guarantee that we are creating a "correct" solution. In 1907, the Québec Bridge (to
this day, the longest cantilever bridge in the world) collapsed before construction
was completed, because the engineers who designed it grossly underestimated the
weight of the steel used to construct it. Similarly, in software development, we may
incorrectly choose or apply a design pattern, and create software that "collapses"
under normal operating situations or when stressed beyond its original design limits.

Any one design pattern proposes a set of objects interacting in a specific way to solve
a general problem. The job of the programmer is to recognize when they are facing
a specific version of that problem, and to adapt the general design in their solution.

In this chapter, we'll be covering the iterator design pattern. This pattern is so powerful
and pervasive that the Python developers have provided multiple syntaxes to access
the object-oriented principles underlying the pattern. We will be covering other design
patterns in the next two chapters. Some of them have language support and some
don't, but none of them is as intrinsically a part of the Python coder's daily life as
the iterator pattern.

Iterators
In typical design pattern parlance, an iterator is an object with a next() method and
a done() method; the latter returns True if there are no items left in the sequence. In
a programming language without built-in support for iterators, the iterator would be
looped over like this:

while not iterator.done():
 item = iterator.next()
 # do something with the item

In Python, iteration is a special feature, so the method gets a special name, __next__.
This method can be accessed using the next(iterator) built-in. Rather than a done
method, the iterator protocol raises StopIteration to notify the loop that it has
completed. Finally, we have the much more readable for item in iterator syntax
to actually access items in an iterator instead of messing around with a while loop.
Let's look at these in more detail.

Chapter 9

[271]

The iterator protocol
The abstract base class Iterator, in the collections.abc module, defines the iterator
protocol in Python. As mentioned, it must have a __next__ method that the for
loop (and other features that support iteration) can call to get a new element from the
sequence. In addition, every iterator must also fulfill the Iterable interface. Any class
that provides an __iter__ method is iterable; that method must return an Iterator
instance that will cover all the elements in that class. Since an iterator is already
looping over elements, its __iter__ function traditionally returns itself.

This might sound a bit confusing, so have a look at the following example, but note
that this is a very verbose way to solve this problem. It clearly explains iteration and
the two protocols in question, but we'll be looking at several more readable ways to
get this effect later in this chapter:

class CapitalIterable:
 def __init__(self, string):
 self.string = string

 def __iter__(self):
 return CapitalIterator(self.string)

class CapitalIterator:
 def __init__(self, string):
 self.words = [w.capitalize() for w in string.split()]
 self.index = 0

 def __next__(self):
 if self.index == len(self.words):
 raise StopIteration()

 word = self.words[self.index]
 self.index += 1
 return word

 def __iter__(self):
 return self

The Iterator Pattern

[272]

This example defines an CapitalIterable class whose job is to loop over each of the
words in a string and output them with the first letter capitalized. Most of the work
of that iterable is passed to the CapitalIterator implementation. The canonical
way to interact with this iterator is as follows:

>>> iterable = CapitalIterable('the quick brown fox jumps over the lazy
dog')

>>> iterator = iter(iterable)

>>> while True:

... try:

... print(next(iterator))

... except StopIteration:

... break

...

The

Quick

Brown

Fox

Jumps

Over

The

Lazy

Dog

This example first constructs an iterable and retrieves an iterator from it. The
distinction may need explanation; the iterable is an object with elements that can
be looped over. Normally, these elements can be looped over multiple times, maybe
even at the same time or in overlapping code. The iterator, on the other hand,
represents a specific location in that iterable; some of the items have been consumed
and some have not. Two different iterators might be at different places in the list of
words, but any one iterator can mark only one place.

Each time next() is called on the iterator, it returns another token from the iterable,
in order. Eventually, the iterator will be exhausted (won't have any more elements
to return), in which case Stopiteration is raised, and we break out of the loop.

Chapter 9

[273]

Of course, we already know a much simpler syntax for constructing an iterator
from an iterable:

>>> for i in iterable:

... print(i)

...

The

Quick

Brown

Fox

Jumps

Over

The

Lazy

Dog

As you can see, the for statement, in spite of not looking terribly object-oriented, is
actually a shortcut to some obviously object-oriented design principles. Keep this in
mind as we discuss comprehensions, as they, too, appear to be the polar opposite of
an object-oriented tool. Yet, they use the exact same iteration protocol as for loops
and are just another kind of shortcut.

Comprehensions
Comprehensions are simple, but powerful, syntaxes that allow us to transform or
filter an iterable object in as little as one line of code. The resultant object can be a
perfectly normal list, set, or dictionary, or it can be a generator expression that can
be efficiently consumed in one go.

List comprehensions
List comprehensions are one of the most powerful tools in Python, so people tend
to think of them as advanced. They're not. Indeed, I've taken the liberty of littering
previous examples with comprehensions and assuming you'd understand them.
While it's true that advanced programmers use comprehensions a lot, it's not because
they're advanced, it's because they're trivial, and handle some of the most common
operations in software development.

The Iterator Pattern

[274]

Let's have a look at one of those common operations; namely, converting a list of
items into a list of related items. Specifically, let's assume we just read a list of strings
from a file, and now we want to convert it to a list of integers. We know every item
in the list is an integer, and we want to do some activity (say, calculate an average)
on those numbers. Here's one simple way to approach it:

input_strings = ['1', '5', '28', '131', '3']

output_integers = []
for num in input_strings:
 output_integers.append(int(num))

This works fine and it's only three lines of code. If you aren't used to comprehensions,
you may not even think it looks ugly! Now, look at the same code using a
list comprehension:

input_strings = ['1', '5', '28', '131', '3']output_integers =
[int(num) for num in input_strings]

We're down to one line and, importantly for performance, we've dropped an append
method call for each item in the list. Overall, it's pretty easy to tell what's going on,
even if you're not used to comprehension syntax.

The square brackets indicate, as always, that we're creating a list. Inside this list is a
for loop that iterates over each item in the input sequence. The only thing that may
be confusing is what's happening between the list's opening brace and the start of the
for loop. Whatever happens here is applied to each of the items in the input list. The
item in question is referenced by the num variable from the loop. So, it's converting
each individual element to an int data type.

That's all there is to a basic list comprehension. They are not so advanced after all.
Comprehensions are highly optimized C code; list comprehensions are far faster
than for loops when looping over a huge number of items. If readability alone isn't
a convincing reason to use them as much as possible, speed should be.

Converting one list of items into a related list isn't the only thing we can do with a
list comprehension. We can also choose to exclude certain values by adding an if
statement inside the comprehension. Have a look:

output_ints = [int(n) for n in input_strings if len(n) < 3]

Chapter 9

[275]

I shortened the name of the variable from num to n and the result variable to output_
ints so it would still fit on one line. Other than this, all that's different between this
example and the previous one is the if len(n) < 3 part. This extra code excludes any
strings with more than two characters. The if statement is applied before the int
function, so it's testing the length of a string. Since our input strings are all integers at
heart, it excludes any number over 99. Now that is all there is to list comprehensions!
We use them to map input values to output values, applying a filter along the way to
include or exclude any values that meet a specific condition.

Any iterable can be the input to a list comprehension; anything we can wrap in a for
loop can also be placed inside a comprehension. For example, text files are iterable;
each call to __next__ on the file's iterator will return one line of the file. We could
load a tab delimited file where the first line is a header row into a dictionary using
the zip function:

import sys
filename = sys.argv[1]

with open(filename) as file:
 header = file.readline().strip().split('\t')
 contacts = [
 dict(
 zip(header, line.strip().split('\t'))
) for line in file
]

for contact in contacts:
 print("email: {email} -- {last}, {first}".format(
 **contact))

This time, I've added some whitespace to make it somewhat more readable
(list comprehensions don't have to fit on one line). This example creates a list of
dictionaries from the zipped header and split lines for each line in the file.

Er, what? Don't worry if that code or explanation doesn't make sense; it's a bit
confusing. One list comprehension is doing a pile of work here, and the code is
hard to understand, read, and ultimately, maintain. This example shows that list
comprehensions aren't always the best solution; most programmers would agree
that a for loop would be more readable than this version.

The Iterator Pattern

[276]

Remember: the tools we are provided with should not be abused! Always
pick the right tool for the job, which is always to write maintainable code.

Set and dictionary comprehensions
Comprehensions aren't restricted to lists. We can use a similar syntax with braces to
create sets and dictionaries as well. Let's start with sets. One way to create a set is to
wrap a list comprehension in the set() constructor, which converts it to a set. But
why waste memory on an intermediate list that gets discarded, when we can create
a set directly?

Here's an example that uses a named tuple to model author/title/genre triads, and
then retrieves a set of all the authors that write in a specific genre:

from collections import namedtuple

Book = namedtuple("Book", "author title genre")
books = [
 Book("Pratchett", "Nightwatch", "fantasy"),
 Book("Pratchett", "Thief Of Time", "fantasy"),
 Book("Le Guin", "The Dispossessed", "scifi"),
 Book("Le Guin", "A Wizard Of Earthsea", "fantasy"),
 Book("Turner", "The Thief", "fantasy"),
 Book("Phillips", "Preston Diamond", "western"),
 Book("Phillips", "Twice Upon A Time", "scifi"),
]

fantasy_authors = {
 b.author for b in books if b.genre == 'fantasy'}

The highlighted set comprehension sure is short in comparison to the demo-data
setup! If we were to use a list comprehension, of course, Terry Pratchett would
have been listed twice.. As it is, the nature of sets removes the duplicates, and we
end up with:

>>> fantasy_authors

{'Turner', 'Pratchett', 'Le Guin'}

We can introduce a colon to create a dictionary comprehension. This converts a
sequence into a dictionary using key: value pairs. For example, it may be useful to
quickly look up the author or genre in a dictionary if we know the title. We can use
a dictionary comprehension to map titles to book objects:

fantasy_titles = {
 b.title: b for b in books if b.genre == 'fantasy'}

Chapter 9

[277]

Now, we have a dictionary, and can look up books by title using the normal syntax.

In summary, comprehensions are not advanced Python, nor are they "non-object-
oriented" tools that should be avoided. They are simply a more concise and
optimized syntax for creating a list, set, or dictionary from an existing sequence.

Generator expressions
Sometimes we want to process a new sequence without placing a new list, set, or
dictionary into system memory. If we're just looping over items one at a time, and
don't actually care about having a final container object created, creating that container
is a waste of memory. When processing one item at a time, we only need the current
object stored in memory at any one moment. But when we create a container, all the
objects have to be stored in that container before we start processing them.

For example, consider a program that processes log files. A very simple log might
contain information in this format:

Jan 26, 2015 11:25:25 DEBUG This is a debugging message.
Jan 26, 2015 11:25:36 INFO This is an information method.
Jan 26, 2015 11:25:46 WARNING This is a warning. It could be
serious.
Jan 26, 2015 11:25:52 WARNING Another warning sent.
Jan 26, 2015 11:25:59 INFO Here's some information.
Jan 26, 2015 11:26:13 DEBUG Debug messages are only useful
if you want to figure something out.
Jan 26, 2015 11:26:32 INFO Information is usually harmless,
but helpful.
Jan 26, 2015 11:26:40 WARNING Warnings should be heeded.
Jan 26, 2015 11:26:54 WARNING Watch for warnings.

Log files for popular web servers, databases, or e-mail servers can contain many
gigabytes of data (I recently had to clean nearly 2 terabytes of logs off a misbehaving
system). If we want to process each line in the log, we can't use a list comprehension;
it would create a list containing every line in the file. This probably wouldn't fit in
RAM and could bring the computer to its knees, depending on the operating system.

If we used a for loop on the log file, we could process one line at a time before
reading the next one into memory. Wouldn't be nice if we could use comprehension
syntax to get the same effect?

This is where generator expressions come in. They use the same syntax as
comprehensions, but they don't create a final container object. To create a
generator expression, wrap the comprehension in () instead of [] or {}.

The Iterator Pattern

[278]

The following code parses a log file in the previously presented format, and outputs
a new log file that contains only the WARNING lines:

import sys

inname = sys.argv[1]
outname = sys.argv[2]

with open(inname) as infile:
 with open(outname, "w") as outfile:
 warnings = (l for l in infile if 'WARNING' in l)
 for l in warnings:
 outfile.write(l)

This program takes the two filenames on the command line, uses a generator
expression to filter out the warnings (in this case, it uses the if syntax, and leaves
the line unmodified), and then outputs the warnings to another file. If we run it on
our sample file, the output looks like this:

Jan 26, 2015 11:25:46 WARNING This is a warning. It could be
serious.
Jan 26, 2015 11:25:52 WARNING Another warning sent.
Jan 26, 2015 11:26:40 WARNING Warnings should be heeded.
Jan 26, 2015 11:26:54 WARNING Watch for warnings.

Of course, with such a short input file, we could have safely used a list
comprehension, but if the file is millions of lines long, the generator expression will
have a huge impact on both memory and speed.

Generator expressions are frequently most useful inside function calls. For example,
we can call sum, min, or max, on a generator expression instead of a list, since these
functions process one object at a time. We're only interested in the result, not any
intermediate container.

In general, a generator expression should be used whenever possible. If we don't
actually need a list, set, or dictionary, but simply need to filter or convert items in
a sequence, a generator expression will be most efficient. If we need to know the
length of a list, or sort the result, remove duplicates, or create a dictionary, we'll
have to use the comprehension syntax.

Chapter 9

[279]

Generators
Generator expressions are actually a sort of comprehension too; they compress the
more advanced (this time it really is more advanced!) generator syntax into one line.
The greater generator syntax looks even less object-oriented than anything we've
seen, but we'll discover that once again, it is a simple syntax shortcut to create a
kind of object.

Let's take the log file example a little further. If we want to delete the WARNING
column from our output file (since it's redundant: this file contains only warnings),
we have several options, at various levels of readability. We can do it with a
generator expression:

import sys
inname, outname = sys.argv[1:3]

with open(inname) as infile:
 with open(outname, "w") as outfile:
 warnings = (l.replace('\tWARNING', '')
 for l in infile if 'WARNING' in l)
 for l in warnings:
 outfile.write(l)

That's perfectly readable, though I wouldn't want to make the expression much
more complicated than that. We could also do it with a normal for loop:

import sys
inname, outname = sys.argv[1:3]

with open(inname) as infile:
 with open(outname, "w") as outfile:
 for l in infile:
 if 'WARNING' in l:
 outfile.write(l.replace('\tWARNING', ''))

That's maintainable, but so many levels of indent in so few lines is kind of ugly.
More alarmingly, if we wanted to do something different with the lines, rather than
just printing them out, we'd have to duplicate the looping and conditional code, too.
Now let's consider a truly object-oriented solution, without any shortcuts:

import sys
inname, outname = sys.argv[1:3]

class WarningFilter:
 def __init__(self, insequence):

The Iterator Pattern

[280]

 self.insequence = insequence
 def __iter__(self):
 return self
 def __next__(self):
 l = self.insequence.readline()
 while l and 'WARNING' not in l:
 l = self.insequence.readline()
 if not l:
 raise StopIteration
 return l.replace('\tWARNING', '')

with open(inname) as infile:
 with open(outname, "w") as outfile:
 filter = WarningFilter(infile)
 for l in filter:
 outfile.write(l)

No doubt about it: that is so ugly and difficult to read that
you may not even be able to tell what's going on. We created an object that takes
a file object as input, and provides a __next__ method like any iterator.

This __next__ method reads lines from the file, discarding them if they are not
WARNING lines. When it encounters a WARNING line, it returns it. Then the for loop
will call __next__ again to process the next WARNING line. When we run out of lines,
we raise StopIteration to tell the loop we're finished iterating. It's pretty ugly
compared to the other examples, but it's also powerful; now that we have a class
in our hands, we can do whatever we want with it.

With that background behind us, we finally get to see generators in action. This
next example does exactly the same thing as the previous one: it creates an object
with a __next__ method that raises StopIteration when it's out of inputs:

import sys
inname, outname = sys.argv[1:3]

def warnings_filter(insequence):
 for l in insequence:
 if 'WARNING' in l:
 yield l.replace('\tWARNING', '')

with open(inname) as infile:
 with open(outname, "w") as outfile:

Chapter 9

[281]

 filter = warnings_filter(infile)
 for l in filter:
 outfile.write(l)

OK, that's pretty readable, maybe... at least it's short. But what on earth is going on
here, it makes no sense whatsoever. And what is yield, anyway?

In fact, yield is the key to generators. When Python sees yield in a function, it takes
that function and wraps it up in an object not unlike the one in our previous example.
Think of the yield statement as similar to the return statement; it exits the function
and returns a line. Unlike return, however, when the function is called again (via
next()), it will start where it left off―on the line after the yield statement―instead
of at the beginning of the function. In this example, there is no line "after" the yield
statement, so it jumps to the next iteration of the for loop. Since the yield statement
is inside an if statement, it only yields lines that contain WARNING.

While it looks like this is just a function looping over the lines, it is actually creating
a special type of object, a generator object:

>>> print(warnings_filter([]))

<generator object warnings_filter at 0xb728c6bc>

I passed an empty list into the function to act as an iterator. All the function
does is create and return a generator object. That object has __iter__ and __
next__ methods on it, just like the one we created in the previous example.
Whenever __next__ is called, the generator runs the function until it finds a
yield statement. It then returns the value from yield, and the next
time __next__ is called, it picks up where it left off.

This use of generators isn't that advanced, but if you don't realize the function is
creating an object, it can seem like magic. This example was quite simple, but you can
get really powerful effects by making multiple calls to yield in a single function; the
generator will simply pick up at the most recent yield and continue to the next one.

Yield items from another iterable
Often, when we build a generator function, we end up in a situation where we want
to yield data from another iterable object, possibly a list comprehension or generator
expression we constructed inside the generator, or perhaps some external items that
were passed into the function. This has always been possible by looping over the
iterable and individually yielding each item. However, in Python version 3.3, the
Python developers introduced a new syntax to make this a little more elegant.

The Iterator Pattern

[282]

Let's adapt the generator example a bit so that instead of accepting a sequence
of lines, it accepts a filename. This would normally be frowned upon as it ties the
object to a particular paradigm. When possible we should operate on iterators as
input; this way the same function could be used regardless of whether the log lines
came from a file, memory, or a web-based log aggregator. So the following example
is contrived for pedagogical reasons.

This version of the code illustrates that your generator can do some basic setup before
yielding information from another iterable (in this case, a generator expression):

import sys
inname, outname = sys.argv[1:3]

def warnings_filter(infilename):
 with open(infilename) as infile:
 yield from (
 l.replace('\tWARNING', '')
 for l in infile
 if 'WARNING' in l
)

filter = warnings_filter(inname)
with open(outname, "w") as outfile:
 for l in filter:
 outfile.write(l)

This code combines the for loop from the previous example into a generator
expression. Notice how I put the three clauses of the generator expression (the
transformation, the loop, and the filter) on separate lines to make them more
readable. Notice also that this transformation didn't help enough; the previous
example with a for loop was more readable.

So let's consider an example that is more readable than its alternative. It can be
useful to construct a generator that yields data from multiple other generators.
The itertools.chain function, for example, yields data from iterables in sequence
until they have all been exhausted. This can be implemented far too easily using the
yield from syntax, so let's consider a classic computer science problem: walking a
general tree.

A common implementation of the general tree data structure is a computer's
filesystem. Let's model a few folders and files in a Unix filesystem so we can
use yield from to walk them effectively:

class File:
 def __init__(self, name):

Chapter 9

[283]

 self.name = name

class Folder(File):
 def __init__(self, name):
 super().__init__(name)
 self.children = []

root = Folder('')
etc = Folder('etc')
root.children.append(etc)
etc.children.append(File('passwd'))
etc.children.append(File('groups'))
httpd = Folder('httpd')
etc.children.append(httpd)
httpd.children.append(File('http.conf'))
var = Folder('var')
root.children.append(var)
log = Folder('log')
var.children.append(log)
log.children.append(File('messages'))
log.children.append(File('kernel'))

This setup code looks like a lot of work, but in a real filesystem, it would be even
more involved. We'd have to read data from the hard drive and structure it into the
tree. Once in memory, however, the code that outputs every file in the filesystem is
quite elegant:

def walk(file):
 if isinstance(file, Folder):
 yield file.name + '/'
 for f in file.children:
 yield from walk(f)
 else:
 yield file.name

If this code encounters a directory, it recursively asks walk() to generate a list of
all files subordinate to each of its children, and then yields all that data plus its
own filename. In the simple case that it has encountered a normal file, it just
yields that name.

The Iterator Pattern

[284]

As an aside, solving the preceding problem without using a generator is tricky
enough that this problem is a common interview question. If you answer it as shown
like this, be prepared for your interviewer to be both impressed and somewhat
irritated that you answered it so easily. They will likely demand that you explain
exactly what is going on. Of course, armed with the principles you've leaned in
this chapter, you won't have any problem.

The yield from syntax is a useful shortcut when writing chained generators, but
it is more commonly used for a different purpose: piping data through coroutines.
We'll see many examples of this in Chapter 13, Concurrency, but for now, let's
discover what a coroutine is.

Coroutines
Coroutines are extremely powerful constructs that are often confused with generators.
Many authors inappropriately describe coroutines as "generators with a bit of extra
syntax." This is an easy mistake to make, as, way back in Python 2.5, when coroutines
were introduced, they were presented as "we added a send method to the generator
syntax." This is further complicated by the fact that when you create a coroutine in
Python, the object returned is a generator. The difference is actually a lot more
nuanced and will make more sense after you've seen a few examples.

While coroutines in Python are currently tightly coupled to the
generator syntax, they are only superficially related to the iterator
protocol we have been discussing. The upcoming (as this is published)
Python 3.5 release makes coroutines a truly standalone object and will
provide a new syntax to work with them.

The other thing to bear in mind is that coroutines are pretty hard to understand.
They are not used all that often in the wild, and you could likely skip this section
and happily develop in Python for years without missing or even encountering
them. There are a couple libraries that use coroutines extensively (mostly for
concurrent or asynchronous programming), but they are normally written such
that you can use coroutines without actually understanding how they work! So
if you get lost in this section, don't despair.

But you won't get lost, having studied the following examples. Here's one of
the simplest possible coroutines; it allows us to keep a running tally that can
be increased by arbitrary values:

def tally():
 score = 0

Chapter 9

[285]

 while True:
 increment = yield score
 score += increment

This code looks like black magic that couldn't possibly work, so we'll see it working
before going into a line-by-line description. This simple object could be used by a
scoring application for a baseball team. Separate tallies could be kept for each team,
and their score could be incremented by the number of runs accumulated at the end
of every half-inning. Look at this interactive session:

>>> white_sox = tally()

>>> blue_jays = tally()

>>> next(white_sox)

0

>>> next(blue_jays)

0

>>> white_sox.send(3)

3

>>> blue_jays.send(2)

2

>>> white_sox.send(2)

5

>>> blue_jays.send(4)

6

First we construct two tally objects, one for each team. Yes, they look like functions,
but as with the generator objects in the previous section, the fact that there is a yield
statement inside the function tells Python to put a great deal of effort into turning
the simple function into an object.

We then call next() on each of the coroutine objects. This does the same thing as
calling next on any generator, which is to say, it executes each line of code until it
encounters a yield statement, returns the value at that point, and then pauses until
the next next() call.

So far, then, there's nothing new. But look back at the yield statement in
our coroutine:

increment = yield score

The Iterator Pattern

[286]

Unlike with generators, this yield function looks like it's supposed to return a value
and assign it to a variable. This is, in fact, exactly what's happening. The coroutine is
still paused at the yield statement and waiting to be activated again by another call
to next().

Or rather, as you see in the interactive session, a call to a method called send().
The send() method does exactly the same thing as next() except that in addition
to advancing the generator to the next yield statement. It also allows you to pass
in a value from outside the generator. This value is assigned to the left side of the
yield statement.

The thing that is really confusing for many people is the order in which this happens:

• yield occurs and the generator pauses
• send() occurs from outside the function and the generator wakes up
• The value sent in is assigned to the left side of the yield statement
• The generator continues processing until it encounters another

yield statement

So, in this particular example, after we construct the coroutine and advance it to
the yield statement with a call to next(), each successive call to send() passes a
value into the coroutine, which adds this value to its score, goes back to the top of
the while loop, and keeps processing until it hits the yield statement. The yield
statement returns a value, and this value becomes the return value of the most recent
call to send. Don't miss that: the send() method does not just submit a value to the
generator, it also returns the value from the upcoming yield statement, just like
next(). This is how we define the difference between a generator and a coroutine:
a generator only produces values, while a coroutine can also consume them.

The behavior and syntax of next(i), i.__next__(), and
i.send(value) are rather unintuitive and frustrating. The first is a
normal function, the second is a special method, and the last is a normal
method. But all three do the same thing: advance the generator until it
yields a value and pause. Further, the next() function and associated
method can be replicated by calling i.send(None). There is value to
having two different method names here, since it helps the reader of
our code easily see whether they are interacting with a coroutine or a
generator. I just find the fact that in one case it's a function call and in
the other it's a normal method somewhat irritating.

Chapter 9

[287]

Back to log parsing
Of course, the previous example could easily have been coded using a couple integer
variables and calling x += increment on them. Let's look at a second example where
coroutines actually save us some code. This example is a somewhat simplified (for
pedagogical reasons) version of a problem I had to solve in my real job. The fact that it
logically follows from the earlier discussions about processing a log file is completely
serendipitous; those examples were written for the first edition of this book, whereas
this problem came up four years later!

The Linux kernel log contains lines that look somewhat, but not quite completely,
unlike this:

unrelated log messages
sd 0:0:0:0 Attached Disk Drive
unrelated log messages
sd 0:0:0:0 (SERIAL=ZZ12345)
unrelated log messages
sd 0:0:0:0 [sda] Options
unrelated log messages
XFS ERROR [sda]
unrelated log messages
sd 2:0:0:1 Attached Disk Drive
unrelated log messages
sd 2:0:0:1 (SERIAL=ZZ67890)
unrelated log messages
sd 2:0:0:1 [sdb] Options
unrelated log messages
sd 3:0:1:8 Attached Disk Drive
unrelated log messages
sd 3:0:1:8 (SERIAL=WW11111)
unrelated log messages
sd 3:0:1:8 [sdc] Options
unrelated log messages
XFS ERROR [sdc]
unrelated log messages

There are a whole bunch of interspersed kernel log messages, some of which pertain
to hard disks. The hard disk messages might be interspersed with other messages,
but they occur in a predictable format and order, in which a specific drive with a
known serial number is associated with a bus identifier (such as 0:0:0:0), and a
block device identifier (such as sda) is associated with that bus. Finally, if the drive
has a corrupt filesystem, it might fail with an XFS error.

The Iterator Pattern

[288]

Now, given the preceding log file, the problem we need to solve is how to obtain
the serial number of any drives that have XFS errors on them. This serial number
might later be used by a data center technician to identify and replace the drive.

We know we can identify the individual lines using regular expressions, but we'll
have to change the regular expressions as we loop through the lines, since we'll be
looking for different things depending on what we found previously. The other
difficult bit is that if we find an error string, the information about which bus
contains that string, and what serial number is attached to the drive on that bus
has already been processed. This can easily be solved by iterating through the
lines of the file in reverse order.

Before you look at this example, be warned—the amount of code required for a
coroutine-based solution is scarily small:

import re

def match_regex(filename, regex):
 with open(filename) as file:
 lines = file.readlines()
 for line in reversed(lines):
 match = re.match(regex, line)
 if match:
 regex = yield match.groups()[0]

def get_serials(filename):
 ERROR_RE = 'XFS ERROR (\[sd[a-z]\])'
 matcher = match_regex(filename, ERROR_RE)
 device = next(matcher)
 while True:
 bus = matcher.send(
 '(sd \S+) {}.*'.format(re.escape(device)))
 serial = matcher.send('{} \(SERIAL=([^)]*)\)'.format(bus))
 yield serial
 device = matcher.send(ERROR_RE)

for serial_number in get_serials('EXAMPLE_LOG.log'):
 print(serial_number)

This code neatly divides the job into two separate tasks. The first task is to loop
over all the lines and spit out any lines that match a given regular expression. The
second task is to interact with the first task and give it guidance as to what regular
expression it is supposed to be searching for at any given time.

Chapter 9

[289]

Look at the match_regex coroutine first. Remember, it doesn't execute any code
when it is constructed; rather, it just creates a coroutine object. Once constructed,
someone outside the coroutine will eventually call next() to start the code running,
at which point it stores the state of two variables, filename and regex. It then reads
all the lines in the file and iterates over them in reverse. Each line is compared to
the regular expression that was passed in until it finds a match. When the match is
found, the coroutine yields the first group from the regular expression and waits.

At some point in the future, other code will send in a new regular expression to
search for. Note that the coroutine never cares what regular expression it is trying
to match; it's just looping over lines and comparing them to a regular expression.
It's somebody else's responsibility to decide what regular expression to supply.

In this case, that somebody else is the get_serials generator. It doesn't care about
the lines in the file, in fact it isn't even aware of them. The first thing it does is create
a matcher object from the match_regex coroutine constructor, giving it a default
regular expression to search for. It advances the coroutine to its first yield and stores
the value it returns. It then goes into a loop that instructs the matcher object to search
for a bus ID based on the stored device ID, and then a serial number based on that
bus ID.

It idly yields that serial number to the outside for loop before instructing the
matcher to find another device ID and repeat the cycle.

Basically, the coroutine's (match_regex, as it uses the regex = yield syntax) job is to
search for the next important line in the file, while the generator's (get_serial, which
uses the yield syntax without assignment) job is to decide which line is important.
The generator has information about this particular problem, such as what order lines
will appear in the file. The coroutine, on the other hand, could be plugged into any
problem that required searching a file for given regular expressions.

Closing coroutines and throwing exceptions
Normal generators signal their exit from inside by raising StopIteration. If we
chain multiple generators together (for example, by iterating over one generator
from inside another), the StopIteration exception will be propagated outward.
Eventually, it will hit a for loop that will see the exception and know that it's time
to exit the loop.

Coroutines don't normally follow the iteration mechanism; rather than pulling
data through one until an exception is encountered, data is usually pushed into it
(using send). The entity doing the pushing is normally the one in charge of telling
the coroutine when it's finished; it does this by calling the close() method on the
coroutine in question.

The Iterator Pattern

[290]

When called, the close() method will raise a GeneratorExit exception at the
point the coroutine was waiting for a value to be sent in. It is normally good policy
for coroutines to wrap their yield statements in a try...finally block so that any
cleanup tasks (such as closing associated files or sockets) can be performed.

If we need to raise an exception inside a coroutine, we can use the throw() method
in a similar way. It accepts an exception type with optional value and traceback
arguments. The latter is useful when we encounter an exception in one coroutine
and want to cause an exception to occur in an adjacent coroutine while maintaining
the traceback.

Both of these features are vital if you're building robust coroutine-based libraries,
but we are unlikely to encounter them in our day-to-day coding lives.

The relationship between coroutines,
generators, and functions
We've seen coroutines in action, so now let's go back to that discussion of how
they are related to generators. In Python, as is so often the case, the distinction
is quite blurry. In fact, all coroutines are generator objects, and authors often use
the two terms interchangeably. Sometimes, they describe coroutines as a subset
of generators (only generators that return values from yield are considered
coroutines). This is technically true in Python, as we've seen in the previous sections.

However, in the greater sphere of theoretical computer science, coroutines are
considered the more general principles, and generators are a specific type of
coroutine. Further, normal functions are yet another distinct subset of coroutines.

A coroutine is a routine that can have data passed in at one or more points and get
it out at one or more points. In Python, the point where data is passed in and out is
the yield statement.

A function, or subroutine, is the simplest type of coroutine. You can pass data in at
one point, and get data out at one other point when the function returns. While a
function can have multiple return statements, only one of them can be called for
any given invocation of the function.

Finally, a generator is a type of coroutine that can have data passed in at one point,
but can pass data out at multiple points. In Python, the data would be passed out at a
yield statement, but you can't pass data back in. If you called send, the data would
be silently discarded.

Chapter 9

[291]

So in theory, generators are types of coroutines, functions are types of coroutines, and
there are coroutines that are neither functions nor generators. That's simple enough,
eh? So why does it feel more complicated in Python?

In Python, generators and coroutines are both constructed using a syntax that looks
like we are constructing a function. But the resulting object is not a function at all; it's
a totally different kind of object. Functions are, of course, also objects. But they have
a different interface; functions are callable and return values, generators have data
pulled out using next(), and coroutines have data pushed in using send.

Case study
One of the fields in which Python is the most popular these days is data science.
Let's implement a basic machine learning algorithm! Machine learning is a huge
topic, but the general idea is to make predictions or classifications about future data
by using knowledge gained from past data. Uses of such algorithms abound, and
data scientists are finding new ways to apply machine learning every day. Some
important machine learning applications include computer vision (such as image
classification or facial recognition), product recommendation, identifying spam, and
speech recognition. We'll look at a simpler problem: given an RGB color definition,
what name would humans identify that color as?

There are more than 16 million colors in the standard RGB color space, and humans
have come up with names for only a fraction of them. While there are thousands of
names (some quite ridiculous; just go to any car dealership or makeup store), let's
build a classifier that attempts to divide the RGB space into the basic colors:

• Red
• Purple
• Blue
• Green
• Yellow
• Orange
• Grey
• White
• Pink

The Iterator Pattern

[292]

The first thing we need is a dataset to train our algorithm on. In a production system,
you might scrape a list of colors website or survey thousands of people. Instead, I
created a simple application that renders a random color and asks the user to select
one of the preceding nine options to classify it. This application is included with
the example code for this chapter in the kivy_color_classifier directory, but we
won't be going into the details of this code as its only purpose here is to generate
sample data.

Kivy has an incredibly well-engineered object-oriented API that you may
want to explore on your own time. If you would like to develop graphical
programs that run on many systems, from your laptop to your cell phone,
you might want to check out my book, Creating Apps In Kivy, O'Reilly.

For the purposes of this case study, the important thing about that application is
the output, which is a comma-separated value (CSV) file that contains four values
per row: the red, green, and blue values (represented as a floating-point number
between zero and one), and one of the preceding nine names that the user assigned
to that color. The dataset looks something like this:

0.30928279150905513,0.7536768153744394,0.3244011790604804,Green
0.4991001855115986,0.6394567277907686,0.6340502030888825,Grey
0.21132621004927998,0.3307376167520666,0.704037576789711,Blue
0.7260420945787928,0.4025279573860123,0.49781705131696363,Pink
0.706469868610228,0.28530423638868196,0.7880240251003464,Purple
0.692243900051664,0.7053550777777416,0.1845069151913028,Yellow
0.3628979381122397,0.11079495501215897,0.26924540840045075,Purple
0.611273677646518,0.48798521783547677,0.5346130557761224,Purple
.
.
.
0.4014121109376566,0.42176706818252674,0.9601866228083298,Blue
0.17750449496124632,0.8008214961070862,0.5073944321437429,Green

I made 200 datapoints (a very few of them untrue) before I got bored and decided
it was time to start machine learning on this dataset. These datapoints are shipped
with the examples for this chapter if you would like to use my data (nobody's ever
told me I'm color-blind, so it should be somewhat reasonable).

We'll be implementing one of the simpler machine-learning algorithms, referred to
as k-nearest neighbor. This algorithm relies on some kind of "distance" calculation
between points in the dataset (in our case, we can use a three-dimensional version of
the Pythagorean theorem). Given a new datapoint, it finds a certain number (referred
to as k, as in k-nearest neighbors) of datapoints that are closest to it when measured
by that distance calculation. Then it combines those datapoints in some way (an
average might work for linear calculations; for our classification problem, we'll use
the mode), and returns the result.

Chapter 9

[293]

We won't go into too much detail about what the algorithm does; rather, we'll focus on
some of the ways we can apply the iterator pattern or iterator protocol to this problem.

Let's now write a program that performs the following steps in order:

1. Load the sample data from the file and construct a model from it.
2. Generate 100 random colors.
3. Classify each color and output it to a file in the same format as the input.

Once we have this second CSV file, another Kivy program can load the file and
render each color, asking a human user to confirm or deny the accuracy of the
prediction, thus informing us of how accurate our algorithm and initial data set are.

The first step is a fairly simple generator that loads CSV data and converts it into a
format that is amenable to our needs:

import csv

dataset_filename = 'colors.csv'

def load_colors(filename):
 with open(filename) as dataset_file:
 lines = csv.reader(dataset_file)
 for line in lines:
 yield tuple(float(y) for y in line[0:3]), line[3]

We haven't seen the csv.reader function before. It returns an iterator over the lines
in the file. Each value returned by the iterator is a list of strings. In our case, we could
have just split on commas and been fine, but csv.reader also takes care of managing
quotation marks and various other nuances of the comma-separated value format.

We then loop over these lines and convert them to a tuple of color and name, where
the color is a tuple of three floating value integers. This tuple is constructed using
a generator expression. There might be more readable ways to construct this tuple;
do you think the code brevity and the speed of a generator expression is worth the
obfuscation? Instead of returning a list of color tuples, it yields them one at a time,
thus constructing a generator object.

Now, we need a hundred random colors. There are so many ways this can be done:

• A list comprehension with a nested generator expression: [tuple(random()
for r in range(3)) for r in range(100)]

• A basic generator function
• A class that implements the __iter__ and __next__ protocols

The Iterator Pattern

[294]

• Push the data through a pipeline of coroutines
• Even just a basic for loop

The generator version seems to be most readable, so let's add that function to
our program:

from random import random

def generate_colors(count=100):
 for i in range(count):
 yield (random(), random(), random())

Notice how we parameterize the number of colors to generate. We can now reuse
this function for other color-generating tasks in the future.

Now, before we do the classification step, we need a function to calculate the
"distance" between two colors. Since it's possible to think of colors as being three
dimensional (red, green, and blue could map to x, y, and z axes, for example), let's
use a little basic math:

import math

def color_distance(color1, color2):
 channels = zip(color1, color2)
 sum_distance_squared = 0
 for c1, c2 in channels:
 sum_distance_squared += (c1 - c2) ** 2
 return math.sqrt(sum_distance_squared)

This is a pretty basic-looking function; it doesn't look like it's even using the iterator
protocol. There's no yield function, no comprehensions. However, there is a for loop,
and that call to the zip function is doing some real iteration as well (remember that
zip yields tuples containing one element from each input iterator).

Note, however, that this function is going to be called a lot of times inside our
k-nearest neighbors algorithm. If our code ran too slow and we were able to identify
this function as a bottleneck, we might want to replace it with a less readable, but
more optimized, generator expression:

def color_distance(color1, color2):
 return math.sqrt(sum((x[0] - x[1]) ** 2 for x in zip(
 color1, color2)))

Chapter 9

[295]

However, I strongly recommend not making such optimizations until you have
proven that the readable version is too slow.

Now that we have some plumbing in place, let's do the actual k-nearest neighbor
implementation. This seems like a good place to use a coroutine. Here it is with
some test code to ensure it's yielding sensible values:

def nearest_neighbors(model_colors, num_neighbors):
 model = list(model_colors)
 target = yield
 while True:
 distances = sorted(
 ((color_distance(c[0], target), c) for c in model),
)
 target = yield [
 d[1] for d in distances[0:num_neighbors]
]

model_colors = load_colors(dataset_filename)
target_colors = generate_colors(3)
get_neighbors = nearest_neighbors(model_colors, 5)
next(get_neighbors)

for color in target_colors:
 distances = get_neighbors.send(color)
 print(color)
 for d in distances:
 print(color_distance(color, d[0]), d[1])

The coroutine accepts two arguments, the list of colors to be used as a model, and
the number of neighbors to query. It converts the model to a list because it's going
to be iterated over multiple times. In the body of the coroutine, it accepts a tuple of
RGB color values using the yield syntax. Then it combines a call to sorted with an
odd generator expression. See if you can figure out what that generator expression
is doing.

It returns a tuple of (distance, color_data) for each color in the model. Remember,
the model itself contains tuples of (color, name), where color is a tuple of three
RGB values. Therefore, the generator is returning an iterator over a weird data
structure that looks like this:

(distance, (r, g, b), color_name)

The Iterator Pattern

[296]

The sorted call then sorts the results by their first element, which is distance. This is
a complicated piece of code and isn't object-oriented at all. You may want to break it
down into a normal for loop to ensure you understand what the generator expression
is doing. It might also be a good exercise to imagine how this code would look if you
were to pass a key argument into the sorted function instead of constructing a tuple.

The yield statement is a bit less complicated; it pulls the second value from each of
the first k (distance, color_data) tuples. In more concrete terms, it yields the ((r,
g, b), color_name) tuple for the k values with the lowest distance. Or, if you prefer
more abstract terms, it yields the target's k-nearest neighbors in the given model.

The remaining code is just boilerplate to test this method; it constructs the model
and a color generator, primes the coroutine, and prints the results in a for loop.

The two remaining tasks are to choose a color based on the nearest neighbors, and
to output the results to a CSV file. Let's make two more coroutines to take care of
these tasks. Let's do the output first because it can be tested independently:

def write_results(filename="output.csv"):
 with open(filename, "w") as file:
 writer = csv.writer(file)
 while True:
 color, name = yield
 writer.writerow(list(color) + [name])

results = write_results()
next(results)
for i in range(3):
 print(i)
 results.send(((i, i, i), i * 10))

This coroutine maintains an open file as state and writes lines of code to it as they
are sent in using send(). The test code ensures the coroutine is working correctly,
so now we can connect the two coroutines with a third one.

The second coroutine uses a bit of an odd trick:

from collections import Counter
def name_colors(get_neighbors):
 color = yield
 while True:
 near = get_neighbors.send(color)
 name_guess = Counter(
 n[1] for n in near).most_common(1)[0][0]
 color = yield name_guess

Chapter 9

[297]

This coroutine accepts, as its argument, an existing coroutine. In this case, it's an
instance of nearest_neighbors. This code basically proxies all the values sent into
it through that nearest_neighbors instance. Then it does some processing on the
result to get the most common color out of the values that were returned. In this case,
it would probably make just as much sense to adapt the original coroutine to return
a name, since it isn't being used for anything else. However, there are many cases
where it is useful to pass coroutines around; this is how we do it.

Now all we have to do is connect these various coroutines and pipelines together,
and kick off the process with a single function call:

def process_colors(dataset_filename="colors.csv"):
 model_colors = load_colors(dataset_filename)
 get_neighbors = nearest_neighbors(model_colors, 5)
 get_color_name = name_colors(get_neighbors)
 output = write_results()
 next(output)
 next(get_neighbors)
 next(get_color_name)

 for color in generate_colors():
 name = get_color_name.send(color)
 output.send((color, name))

process_colors()

So, this function, unlike almost every other function we've defined, is a perfectly
normal function without any yield statements. It doesn't get turned into a coroutine or
generator object. It does, however, construct a generator and three coroutines. Notice
how the get_neighbors coroutine is passed into the constructor for name_colors?
Pay attention to how all three coroutines are advanced to their first yield statements
by calls to next.

Once all the pipes are created, we use a for loop to send each of the generated colors
into the get_color_name coroutine, and then we pipe each of the values yielded by
that coroutine to the output coroutine, which writes it to a file.

And that's it! I created a second Kivy app that loads the resulting CSV file and
presents the colors to the user. The user can select either Yes or No depending on
whether they think the choice made by the machine-learning algorithm matches
the choice they would have made. This is not scientifically accurate (it's ripe for
observation bias), but it's good enough for playing around. Using my eyes, it
succeeded about 84 percent of the time, which is better than my grade 12 average.
Not bad for our first ever machine learning experience, eh?

The Iterator Pattern

[298]

You might be wondering, "what does this have to do with object-oriented
programming? There isn't even one class in this code!". In some ways, you'd be right;
neither coroutines nor generators are commonly considered object-oriented. However,
the functions that create them return objects; in fact, you could think of those functions
as constructors. The constructed object has appropriate send() and __next__()
methods. Basically, the coroutine/generator syntax is a syntax shortcut for a particular
kind of object that would be quite verbose to create without it.

This case study has been an exercise in bottom-up design. We created various low-
level objects that did specific tasks and hooked them all together at the end. I find
this to be a common practice when developing with coroutines. The alternative, top-
down design sometimes results in more monolithic pieces of code instead of unique
individual pieces. In general, we want to find a happy medium between methods
that are too large and methods that are too small and it's hard to see how they fit
together. This is true, of course, regardless of whether the iterator protocol is being
used as we did here.

Exercises
If you don't use comprehensions in your daily coding very often, the first thing
you should do is search through some existing code and find some for loops. See
if any of them can be trivially converted to a generator expression or a list, set, or
dictionary comprehension.

Test the claim that list comprehensions are faster than for loops. This can be done
with the built-in timeit module. Use the help documentation for the timeit.
timeit function to find out how to use it. Basically, write two functions that do the
same thing, one using a list comprehension, and one using a for loop. Pass each
function into timeit.timeit, and compare the results. If you're feeling adventurous,
compare generators and generator expressions as well. Testing code using timeit
can become addictive, so bear in mind that code does not need to be hyperfast unless
it's being executed an immense number of times, such as on a huge input list or file.

Play around with generator functions. Start with basic iterators that require multiple
values (mathematical sequences are canonical examples; the Fibonacci sequence is
overused if you can't think of anything better). Try some more advanced generators
that do things like take multiple input lists and somehow yield values that merge
them. Generators can also be used on files; can you write a simple generator that
shows those lines that are identical in two files?

Chapter 9

[299]

Coroutines abuse the iterator protocol but don't actually fulfill the iterator pattern.
Can you build a non-coroutine version of the code that gets a serial number from a
log file? Take an object-oriented approach so that you can store an additional state
on a class. You'll learn a lot about coroutines if you can create an object that is a
drop-in replacement for the existing coroutine.

See if you can abstract the coroutines used in the case study so that the
k-nearest-neighbor algorithm can be used on a variety of datasets. You'll likely
want to construct a coroutine that accepts other coroutines or functions that do
the distance and recombination calculations as parameters, and then calls into
those functions to find the actual nearest neighbors.

Summary
In this chapter, we learned that design patterns are useful abstractions that provide
"best practice" solutions for common programming problems. We covered our first
design pattern, the iterator, as well as numerous ways that Python uses and abuses
this pattern for its own nefarious purposes. The original iterator pattern is extremely
object-oriented, but it is also rather ugly and verbose to code around. However,
Python's built-in syntax abstracts the ugliness away, leaving us with a clean interface
to these object-oriented constructs.

Comprehensions and generator expressions can combine container construction with
iteration in a single line. Generator objects can be constructed using the yield syntax.
Coroutines look like generators on the outside but serve a much different purpose.

We'll cover several more design patterns in the next two chapters.

[301]

Python Design Patterns I
In the last chapter, we were briefly introduced to design patterns, and covered the
iterator pattern, a pattern so useful and common that it has been abstracted into the
core of the programming language itself. In this chapter, we'll be reviewing other
common patterns, and how they are implemented in Python. As with iteration,
Python often provides an alternative syntax to make working with such problems
simpler. We will cover both the "traditional" design, and the Python version for
these patterns. In summary, we'll see:

• Numerous specific patterns
• A canonical implementation of each pattern in Python
• Python syntax to replace certain patterns

The decorator pattern
The decorator pattern allows us to "wrap" an object that provides core functionality
with other objects that alter this functionality. Any object that uses the decorated
object will interact with it in exactly the same way as if it were undecorated (that is,
the interface of the decorated object is identical to that of the core object).

There are two primary uses of the decorator pattern:

• Enhancing the response of a component as it sends data to a second
component

• Supporting multiple optional behaviors

Python Design Patterns I

[302]

The second option is often a suitable alternative to multiple inheritance. We can
construct a core object, and then create a decorator around that core. Since the
decorator object has the same interface as the core object, we can even wrap the
new object in other decorators. Here's how it looks in UML:

Core Decorator1 Decorator2

Interface
+someAction()

+someAction() +someAction()+someAction()

Here, Core and all the decorators implement a specific Interface. The decorators
maintain a reference to another instance of that Interface via composition. When
called, the decorator does some added processing before or after calling its wrapped
interface. The wrapped object may be another decorator, or the core functionality.
While multiple decorators may wrap each other, the object in the "center" of all
those decorators provides the core functionality.

A decorator example
Let's look at an example from network programming. We'll be using a TCP socket.
The socket.send() method takes a string of input bytes and outputs them to the
receiving socket at the other end. There are plenty of libraries that accept sockets and
access this function to send data on the stream. Let's create such an object; it will be
an interactive shell that waits for a connection from a client and then prompts the
user for a string response:

import socket

def respond(client):
 response = input("Enter a value: ")
 client.send(bytes(response, 'utf8'))
 client.close()

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind(('localhost',2401))
server.listen(1)
try:
 while True:

Chapter 10

[303]

 client, addr = server.accept()
 respond(client)
finally:
 server.close()

The respond function accepts a socket parameter and prompts for data to be sent
as a reply, then sends it. To use it, we construct a server socket and tell it to listen
on port 2401 (I picked the port randomly) on the local computer. When a client
connects, it calls the respond function, which requests data interactively and
responds appropriately. The important thing to notice is that the respond function
only cares about two methods of the socket interface: send and close. To test this,
we can write a very simple client that connects to the same port and outputs the
response before exiting:

import socket

client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client.connect(('localhost', 2401))
print("Received: {0}".format(client.recv(1024)))
client.close()

To use these programs:

1. Start the server in one terminal.
2. Open a second terminal window and run the client.
3. At the Enter a value: prompt in the server window, type a value and press

enter.
4. The client will receive what you typed, print it to the console, and exit. Run

the client a second time; the server will prompt for a second value.

Now, looking again at our server code, we see two sections. The respond function
sends data into a socket object. The remaining script is responsible for creating that
socket object. We'll create a pair of decorators that customize the socket behavior
without having to extend or modify the socket itself.

Let's start with a "logging" decorator. This object outputs any data being sent to
the server's console before it sends it to the client:

class LogSocket:
 def __init__(self, socket):
 self.socket = socket

 def send(self, data):

Python Design Patterns I

[304]

 print("Sending {0} to {1}".format(
 data, self.socket.getpeername()[0]))
 self.socket.send(data)

 def close(self):
 self.socket.close()

This class decorates a socket object and presents the send and close interface to
client sockets. A better decorator would also implement (and possibly customize) all
of the remaining socket methods. It should properly implement all of the arguments
to send, (which actually accepts an optional flags argument) as well, but let's keep
our example simple! Whenever send is called on this object, it logs the output to the
screen before sending data to the client using the original socket.

We only have to change one line in our original code to use this decorator. Instead
of calling respond with the socket, we call it with a decorated socket:

respond(LogSocket(client))

While that's quite simple, we have to ask ourselves why we didn't just extend the
socket class and override the send method. We could call super().send to do the
actual sending, after we logged it. There is nothing wrong with this design either.

When faced with a choice between decorators and inheritance, we should only use
decorators if we need to modify the object dynamically, according to some condition.
For example, we may only want to enable the logging decorator if the server is
currently in debugging mode. Decorators also beat multiple inheritance when
we have more than one optional behavior. As an example, we can write a second
decorator that compresses data using gzip compression whenever send is called:

import gzip
from io import BytesIO

class GzipSocket:
 def __init__(self, socket):
 self.socket = socket

 def send(self, data):
 buf = BytesIO()
 zipfile = gzip.GzipFile(fileobj=buf, mode="w")
 zipfile.write(data)
 zipfile.close()
 self.socket.send(buf.getvalue())

 def close(self):
 self.socket.close()

Chapter 10

[305]

The send method in this version compresses the incoming data before sending it on
to the client.

Now that we have these two decorators, we can write code that dynamically
switches between them when responding. This example is not complete, but it
illustrates the logic we might follow to mix and match decorators:

 client, addr = server.accept()
 if log_send:
 client = LoggingSocket(client)
 if client.getpeername()[0] in compress_hosts:
 client = GzipSocket(client)
 respond(client)

This code checks a hypothetical configuration variable named log_send. If it's
enabled, it wraps the socket in a LoggingSocket decorator. Similarly, it checks
whether the client that has connected is in a list of addresses known to accept
compressed content. If so, it wraps the client in a GzipSocket decorator. Notice
that none, either, or both of the decorators may be enabled, depending on the
configuration and connecting client. Try writing this using multiple inheritance
and see how confused you get!

Decorators in Python
The decorator pattern is useful in Python, but there are other options. For example,
we may be able to use monkey-patching, which we discussed in Chapter 7, Python
Object-oriented Shortcuts, to get a similar effect. Single inheritance, where the
"optional" calculations are done in one large method can be an option, and multiple
inheritance should not be written off just because it's not suitable for the specific
example seen previously!

In Python, it is very common to use this pattern on functions. As we saw in a previous
chapter, functions are objects too. In fact, function decoration is so common that
Python provides a special syntax to make it easy to apply such decorators to functions.

For example, we can look at the logging example in a more general way. Instead
of logging, only send calls on sockets, we may find it helpful to log all calls to certain
functions or methods. The following example implements a decorator that does
just this:

import time

def log_calls(func):
 def wrapper(*args, **kwargs):
 now = time.time()

Python Design Patterns I

[306]

 print("Calling {0} with {1} and {2}".format(
 func.__name__, args, kwargs))
 return_value = func(*args, **kwargs)
 print("Executed {0} in {1}ms".format(
 func.__name__, time.time() - now))
 return return_value
 return wrapper

def test1(a,b,c):
 print("\ttest1 called")

def test2(a,b):
 print("\ttest2 called")

def test3(a,b):
 print("\ttest3 called")
 time.sleep(1)

test1 = log_calls(test1)
test2 = log_calls(test2)
test3 = log_calls(test3)

test1(1,2,3)
test2(4,b=5)
test3(6,7)

This decorator function is very similar to the example we explored earlier; in those
cases, the decorator took a socket-like object and created a socket-like object. This
time, our decorator takes a function object and returns a new function object. This
code is comprised of three separate tasks:

• A function, log_calls, that accepts another function
• This function defines (internally) a new function, named wrapper,

that does some extra work before calling the original function
• This new function is returned

Three sample functions demonstrate the decorator in use. The third one includes a
sleep call to demonstrate the timing test. We pass each function into the decorator,
which returns a new function. We assign this new function to the original variable
name, effectively replacing the original function with a decorated one.

Chapter 10

[307]

This syntax allows us to build up decorated function objects dynamically, just as
we did with the socket example; if we don't replace the name, we can even keep
decorated and non-decorated versions for different situations.

Often these decorators are general modifications that are applied permanently to
different functions. In this situation, Python supports a special syntax to apply the
decorator at the time the function is defined. We've already seen this syntax when we
discussed the property decorator; now, let's understand how it works.

Instead of applying the decorator function after the method definition, we can use
the @decorator syntax to do it all at once:

@log_calls
def test1(a,b,c):
 print("\ttest1 called")

The primary benefit of this syntax is that we can easily see that the function has been
decorated at the time it is defined. If the decorator is applied later, someone reading
the code may miss that the function has been altered at all. Answering a question
like, "Why is my program logging function calls to the console?" can become much
more difficult! However, the syntax can only be applied to functions we define, since
we don't have access to the source code of other modules. If we need to decorate
functions that are part of somebody else's third-party library, we have to use the
earlier syntax.

There is more to the decorator syntax than we've seen here. We don't have room
to cover the advanced topics here, so check the Python reference manual or other
tutorials for more information. Decorators can be created as callable objects, not
just functions that return functions. Classes can also be decorated; in that case, the
decorator returns a new class instead of a new function. Finally, decorators can
take arguments to customize them on a per-function basis.

The observer pattern
The observer pattern is useful for state monitoring and event handling situations.
This pattern allows a given object to be monitored by an unknown and dynamic
group of "observer" objects.

Whenever a value on the core object changes, it lets all the observer objects know
that a change has occurred, by calling an update() method. Each observer may
be responsible for different tasks whenever the core object changes; the core object
doesn't know or care what those tasks are, and the observers don't typically know
or care what other observers are doing.

Python Design Patterns I

[308]

Here, it is in UML:

ObserverInterface

Core Observer1

Observer2

An observer example
The observer pattern might be useful in a redundant backup system. We can write a
core object that maintains certain values, and then have one or more observers create
serialized copies of that object. These copies might be stored in a database, on a remote
host, or in a local file, for example. Let's implement the core object using properties:

class Inventory:
 def __init__(self):
 self.observers = []
 self._product = None
 self._quantity = 0

 def attach(self, observer):
 self.observers.append(observer)

 @property
 def product(self):
 return self._product
 @product.setter
 def product(self, value):
 self._product = value
 self._update_observers()

 @property
 def quantity(self):
 return self._quantity
 @quantity.setter
 def quantity(self, value):
 self._quantity = value

Chapter 10

[309]

 self._update_observers()

 def _update_observers(self):
 for observer in self.observers:
 observer()

This object has two properties that, when set, call the _update_observers method
on itself. All this method does is loop over the available observers and let each one
know that something has changed. In this case, we call the observer object directly;
the object will have to implement __call__ to process the update. This would not be
possible in many object-oriented programming languages, but it's a useful shortcut
in Python that can help make our code more readable.

Now let's implement a simple observer object; this one will just print out some state
to the console:

class ConsoleObserver:
 def __init__(self, inventory):
 self.inventory = inventory

 def __call__(self):
 print(self.inventory.product)
 print(self.inventory.quantity)

There's nothing terribly exciting here; the observed object is set up in the initializer,
and when the observer is called, we do "something." We can test the observer in an
interactive console:

>>> i = Inventory()

>>> c = ConsoleObserver(i)

>>> i.attach(c)

>>> i.product = "Widget"

Widget

0

>>> i.quantity = 5

Widget

5

After attaching the observer to the inventory object, whenever we change one of the
two observed properties, the observer is called and its action is invoked. We can even
add two different observer instances:

>>> i = Inventory()

>>> c1 = ConsoleObserver(i)

Python Design Patterns I

[310]

>>> c2 = ConsoleObserver(i)

>>> i.attach(c1)

>>> i.attach(c2)

>>> i.product = "Gadget"

Gadget

0

Gadget

0

This time when we change the product, there are two sets of output, one for each
observer. The key idea here is that we can easily add totally different types of
observers that back up the data in a file, database, or Internet application at the
same time.

The observer pattern detaches the code being observed from the code doing the
observing. If we were not using this pattern, we would have had to put code in each of
the properties to handle the different cases that might come up; logging to the console,
updating a database or file, and so on. The code for each of these tasks would all be
mixed in with the observed object. Maintaining it would be a nightmare, and adding
new monitoring functionality at a later date would be painful.

The strategy pattern
The strategy pattern is a common demonstration of abstraction in object-oriented
programming. The pattern implements different solutions to a single problem,
each in a different object. The client code can then choose the most appropriate
implementation dynamically at runtime.

Typically, different algorithms have different trade-offs; one might be faster than
another, but uses a lot more memory, while a third algorithm may be most suitable
when multiple CPUs are present or a distributed system is provided. Here is the
strategy pattern in UML:

Implementation1
+someAction()

Implementation2
+someAction()

Abstraction
+someAction()User

Chapter 10

[311]

The User code connecting to the strategy pattern simply needs to know that it is
dealing with the Abstraction interface. The actual implementation chosen performs
the same task, but in different ways; either way, the interface is identical.

A strategy example
The canonical example of the strategy pattern is sort routines; over the years,
numerous algorithms have been invented for sorting a collection of objects; quick
sort, merge sort, and heap sort are all fast sort algorithms with different features,
each useful in its own right, depending on the size and type of inputs, how out of
order they are, and the requirements of the system.

If we have client code that needs to sort a collection, we could pass it to an object
with a sort() method. This object may be a QuickSorter or MergeSorter object,
but the result will be the same in either case: a sorted list. The strategy used to do
the sorting is abstracted from the calling code, making it modular and replaceable.

Of course, in Python, we typically just call the sorted function or list.sort
method and trust that it will do the sorting in a near-optimal fashion. So, we really
need to look at a better example.

Let's consider a desktop wallpaper manager. When an image is displayed on a desktop
background, it can be adjusted to the screen size in different ways. For example,
assuming the image is smaller than the screen, it can be tiled across the screen,
centered on it, or scaled to fit. There are other, more complicated, strategies that can
be used as well, such as scaling to the maximum height or width, combining it with a
solid, semi-transparent, or gradient background color, or other manipulations. While
we may want to add these strategies later, let's start with the basic ones.

Our strategy objects takes two inputs; the image to be displayed, and a tuple of the
width and height of the screen. They each return a new image the size of the screen,
with the image manipulated to fit according to the given strategy. You'll need to
install the pillow module with pip3 install pillow for this example to work:

from PIL import Image

class TiledStrategy:
 def make_background(self, img_file, desktop_size):
 in_img = Image.open(img_file)
 out_img = Image.new('RGB', desktop_size)
 num_tiles = [

Python Design Patterns I

[312]

 o // i + 1 for o, i in
 zip(out_img.size, in_img.size)
]
 for x in range(num_tiles[0]):
 for y in range(num_tiles[1]):
 out_img.paste(
 in_img,
 (
 in_img.size[0] * x,
 in_img.size[1] * y,
 in_img.size[0] * (x+1),
 in_img.size[1] * (y+1)
)
)
 return out_img

class CenteredStrategy:
 def make_background(self, img_file, desktop_size):
 in_img = Image.open(img_file)
 out_img = Image.new('RGB', desktop_size)
 left = (out_img.size[0] - in_img.size[0]) // 2
 top = (out_img.size[1] - in_img.size[1]) // 2
 out_img.paste(
 in_img,
 (
 left,
 top,
 left+in_img.size[0],
 top + in_img.size[1]
)
)
 return out_img

class ScaledStrategy:
 def make_background(self, img_file, desktop_size):
 in_img = Image.open(img_file)
 out_img = in_img.resize(desktop_size)
 return out_img

Chapter 10

[313]

Here we have three strategies, each using PIL to perform their task. Individual
strategies have a make_background method that accepts the same set of parameters.
Once selected, the appropriate strategy can be called to create a correctly sized
version of the desktop image. TiledStrategy loops over the number of input
images that would fit in the width and height of the image and copies it into each
location, repeatedly. CenteredStrategy figures out how much space needs to be
left on the four edges of the image to center it. ScaledStrategy forces the image to
the output size (ignoring aspect ratio).

Consider how switching between these options would be implemented without the
strategy pattern. We'd need to put all the code inside one great big method and use
an awkward if statement to select the expected one. Every time we wanted to add
a new strategy, we'd have to make the method even more ungainly.

Strategy in Python
The preceding canonical implementation of the strategy pattern, while very common
in most object-oriented libraries, is rarely seen in Python programming.

These classes each represent objects that do nothing but provide a single function. We
could just as easily call that function __call__ and make the object callable directly.
Since there is no other data associated with the object, we need do no more than create
a set of top-level functions and pass them around as our strategies instead.

Opponents of design pattern philosophy will therefore say, "because Python has
first-class functions, the strategy pattern is unnecessary". In truth, Python's first-class
functions allow us to implement the strategy pattern in a more straightforward way.
Knowing the pattern exists can still help us choose a correct design for our program,
but implement it using a more readable syntax. The strategy pattern, or a top-level
function implementation of it, should be used when we need to allow client code or
the end user to select from multiple implementations of the same interface.

The state pattern
The state pattern is structurally similar to the strategy pattern, but its intent and
purpose are very different. The goal of the state pattern is to represent state-transition
systems: systems where it is obvious that an object can be in a specific state, and that
certain activities may drive it to a different state.

To make this work, we need a manager, or context class that provides an interface
for switching states. Internally, this class contains a pointer to the current state; each
state knows what other states it is allowed to be in and will transition to those states
depending on actions invoked upon it.

Python Design Patterns I

[314]

So we have two types of classes, the context class and multiple state classes. The
context class maintains the current state, and forwards actions to the state classes.
The state classes are typically hidden from any other objects that are calling the
context; it acts like a black box that happens to perform state management internally.
Here's how it looks in UML:

User

State
+process(context) +process(context)+current_state

+process()

Context State2

+process(context)

State3

+process(context)

State1

A state example
To illustrate the state pattern, let's build an XML parsing tool. The context class will
be the parser itself. It will take a string as input and place the tool in an initial parsing
state. The various parsing states will eat characters, looking for a specific value, and
when that value is found, change to a different state. The goal is to create a tree of
node objects for each tag and its contents. To keep things manageable, we'll parse
only a subset of XML - tags and tag names. We won't be able to handle attributes on
tags. It will parse text content of tags, but won't attempt to parse "mixed" content,
which has tags inside of text. Here is an example "simplified XML" file that we'll
be able to parse:

<book>
 <author>Dusty Phillips</author>
 <publisher>Packt Publishing</publisher>
 <title>Python 3 Object Oriented Programming</title>
 <content>
 <chapter>
 <number>1</number>
 <title>Object Oriented Design</title>
 </chapter>
 <chapter>
 <number>2</number>
 <title>Objects In Python</title>
 </chapter>
 </content>
</book>

Chapter 10

[315]

Before we look at the states and the parser, let's consider the output of this program.
We know we want a tree of Node objects, but what does a Node look like? Well, clearly
it'll need to know the name of the tag it is parsing, and since it's a tree, it should
probably maintain a pointer to the parent node and a list of the node's children in
order. Some nodes have a text value, but not all of them. Let's look at this Node
class first:

class Node:
 def __init__(self, tag_name, parent=None):
 self.parent = parent
 self.tag_name = tag_name
 self.children = []
 self.text=""

 def __str__(self):
 if self.text:
 return self.tag_name + ": " + self.text
 else:
 return self.tag_name

This class sets default attribute values upon initialization. The __str__ method is
supplied to help visualize the tree structure when we're finished.

Now, looking at the example document, we need to consider what states our
parser can be in. Clearly it's going to start in a state where no nodes have yet been
processed. We'll need a state for processing opening tags and closing tags. And when
we're inside a tag with text contents, we'll have to process that as a separate state,
too.

Switching states can be tricky; how do we know if the next node is an opening tag, a
closing tag, or a text node? We could put a little logic in each state to work this out,
but it actually makes more sense to create a new state whose sole purpose is figuring
out which state we'll be switching to next. If we call this transition state ChildNode,
we end up with the following states:

• FirstTag
• ChildNode
• OpenTag
• CloseTag
• Text

Python Design Patterns I

[316]

The FirstTag state will switch to ChildNode, which is responsible for deciding which
of the other three states to switch to; when those states are finished, they'll switch back
to ChildNode. The following state-transition diagram shows the available
state changes:

FirstTag

ChildNode

CloseTag

Text

OpenTag

The states are responsible for taking "what's left of the string", processing as much
of it as they know what to do with, and then telling the parser to take care of the
rest of it. Let's construct the Parser class first:

class Parser:
 def __init__(self, parse_string):
 self.parse_string = parse_string
 self.root = None
 self.current_node = None

 self.state = FirstTag()

 def process(self, remaining_string):
 remaining = self.state.process(remaining_string, self)
 if remaining:
 self.process(remaining)

 def start(self):
 self.process(self.parse_string)

The initializer sets up a few variables on the class that the individual states will
access. The parse_string instance variable is the text that we are trying to parse.
The root node is the "top" node in the XML structure. The current_node instance
variable is the one that we are currently adding children to.

Chapter 10

[317]

The important feature of this parser is the process method, which accepts the
remaining string, and passes it off to the current state. The parser (the self argument)
is also passed into the state's process method so that the state can manipulate it. The
state is expected to return the remainder of the unparsed string when it is finished
processing. The parser then recursively calls the process method on this remaining
string to construct the rest of the tree.

Now, let's have a look at the FirstTag state:

class FirstTag:
 def process(self, remaining_string, parser):
 i_start_tag = remaining_string.find('<')
 i_end_tag = remaining_string.find('>')
 tag_name = remaining_string[i_start_tag+1:i_end_tag]
 root = Node(tag_name)
 parser.root = parser.current_node = root
 parser.state = ChildNode()
 return remaining_string[i_end_tag+1:]

This state finds the index (the i_ stands for index) of the opening and closing angle
brackets on the first tag. You may think this state is unnecessary, since XML requires
that there be no text before an opening tag. However, there may be whitespace that
needs to be consumed; this is why we search for the opening angle bracket instead
of assuming it is the first character in the document. Note that this code is assuming
a valid input file. A proper implementation would be rigorously testing for
invalid input, and would attempt to recover or display an extremely descriptive
error message.

The method extracts the name of the tag and assigns it to the root node of the
parser. It also assigns it to current_node, since that's the one we'll be adding
children to next.

Then comes the important part: the method changes the current state on the parser
object to a ChildNode state. It then returns the remainder of the string (after the
opening tag) to allow it to be processed.

The ChildNode state, which seems quite complicated, turns out to require nothing
but a simple conditional:

class ChildNode:
 def process(self, remaining_string, parser):
 stripped = remaining_string.strip()
 if stripped.startswith("</"):
 parser.state = CloseTag()

Python Design Patterns I

[318]

 elif stripped.startswith("<"):
 parser.state = OpenTag()
 else:
 parser.state = TextNode()
 return stripped

The strip() call removes whitespace from the string. Then the parser determines
if the next item is an opening or closing tag, or a string of text. Depending on which
possibility occurs, it sets the parser to a particular state, and then tells it to parse the
remainder of the string.

The OpenTag state is similar to the FirstTag state, except that it adds the newly
created node to the previous current_node object's children and sets it as the new
current_node. It places the processor back in the ChildNode state before continuing:

class OpenTag:
 def process(self, remaining_string, parser):
 i_start_tag = remaining_string.find('<')
 i_end_tag = remaining_string.find('>')
 tag_name = remaining_string[i_start_tag+1:i_end_tag]
 node = Node(tag_name, parser.current_node)
 parser.current_node.children.append(node)
 parser.current_node = node
 parser.state = ChildNode()
 return remaining_string[i_end_tag+1:]

The CloseTag state basically does the opposite; it sets the parser's current_node
back to the parent node so any further children in the outside tag can be added to it:

class CloseTag:
 def process(self, remaining_string, parser):
 i_start_tag = remaining_string.find('<')
 i_end_tag = remaining_string.find('>')
 assert remaining_string[i_start_tag+1] == "/"
 tag_name = remaining_string[i_start_tag+2:i_end_tag]
 assert tag_name == parser.current_node.tag_name
 parser.current_node = parser.current_node.parent
 parser.state = ChildNode()
 return remaining_string[i_end_tag+1:].strip()

The two assert statements help ensure that the parse strings are consistent. The if
statement at the end of the method ensures that the processor terminates when it is
finished. If the parent of a node is None, it means that we are working on the root node.

Chapter 10

[319]

Finally, the TextNode state very simply extracts the text before the next close tag and
sets it as a value on the current node:

class TextNode:
 def process(self, remaining_string, parser):
 i_start_tag = remaining_string.find('<')
 text = remaining_string[:i_start_tag]
 parser.current_node.text = text
 parser.state = ChildNode()
 return remaining_string[i_start_tag:]

Now we just have to set up the initial state on the parser object we created. The initial
state is a FirstTag object, so just add the following to the __init__ method:

 self.state = FirstTag()

To test the class, let's add a main script that opens an file from the command line,
parses it, and prints the nodes:

if __name__ == "__main__":
 import sys
 with open(sys.argv[1]) as file:
 contents = file.read()
 p = Parser(contents)
 p.start()

 nodes = [p.root]
 while nodes:
 node = nodes.pop(0)
 print(node)
 nodes = node.children + nodes

This code opens the file, loads the contents, and parses the result. Then it prints each
node and its children in order. The __str__ method we originally added on the node
class takes care of formatting the nodes for printing. If we run the script on the earlier
example, it outputs the tree as follows:

book

author: Dusty Phillips

publisher: Packt Publishing

title: Python 3 Object Oriented Programming

content

chapter

number: 1

Python Design Patterns I

[320]

title: Object Oriented Design

chapter

number: 2

title: Objects In Python

Comparing this to the original simplified XML document tells us the parser is working.

State versus strategy
The state pattern looks very similar to the strategy pattern; indeed, the UML
diagrams for the two are identical. The implementation, too, is identical; we could
even have written our states as first-class functions instead of wrapping them in
objects, as was suggested for strategy.

While the two patterns have identical structures, they solve completely different
problems. The strategy pattern is used to choose an algorithm at runtime; generally,
only one of those algorithms is going to be chosen for a particular use case. The state
pattern, on the other hand is designed to allow switching between different states
dynamically, as some process evolves. In code, the primary difference is that the
strategy pattern is not typically aware of other strategy objects. In the state pattern,
either the state or the context needs to know which other states that it can switch to.

State transition as coroutines
The state pattern is the canonical object-oriented solution to state-transition problems.
However, the syntax for this pattern is rather verbose. You can get a similar effect
by constructing your objects as coroutines. Remember the regular expression log file
parser we built in Chapter 9, The Iterator Pattern? That was a state-transition problem in
disguise. The main difference between that implementation and one that defines
all the objects (or functions) used in the state pattern is that the coroutine solution
allows us to encode more of the boilerplate in language constructs. There are two
implementations, but neither one is inherently better than the other, but you may
find that coroutines are more readable, for a given definition of "readable" (you
have to understand the syntax of coroutines, first!).

The singleton pattern
The singleton pattern is one of the most controversial patterns; many have accused it
of being an "anti-pattern", a pattern that should be avoided, not promoted. In Python,
if someone is using the singleton pattern, they're almost certainly doing something
wrong, probably because they're coming from a more restrictive programming
language.

Chapter 10

[321]

So why discuss it at all? Singleton is one of the most famous of all design patterns. It
is useful in overly object-oriented languages, and is a vital part of traditional object-
oriented programming. More relevantly, the idea behind singleton is useful, even if
we implement that idea in a totally different way in Python.

The basic idea behind the singleton pattern is to allow exactly one instance of a
certain object to exist. Typically, this object is a sort of manager class like those we
discussed in Chapter 5, When to Use Object-oriented Programming. Such objects often
need to be referenced by a wide variety of other objects, and passing references to
the manager object around to the methods and constructors that need them can
make code hard to read.

Instead, when a singleton is used, the separate objects request the single instance of
the manager object from the class, so a reference to it need not to be passed around.
The UML diagram doesn't fully describe it, but here it is for completeness:

Singleton
+instance: static

+get_instance(): static

In most programming environments, singletons are enforced by making the
constructor private (so no one can create additional instances of it), and then providing
a static method to retrieve the single instance. This method creates a new instance the
first time it is called, and then returns that same instance each time it is called again.

Singleton implementation
Python doesn't have private constructors, but for this purpose, it has something
even better. We can use the __new__ class method to ensure that only one instance
is ever created:

class OneOnly:
 _singleton = None
 def __new__(cls, *args, **kwargs):
 if not cls._singleton:
 cls._singleton = super(OneOnly, cls
).__new__(cls, *args, **kwargs)
 return cls._singleton

Python Design Patterns I

[322]

When __new__ is called, it normally constructs a new instance of that class. When we
override it, we first check if our singleton instance has been created; if not, we create
it using a super call. Thus, whenever we call the constructor on OneOnly, we always
get the exact same instance:

>>> o1 = OneOnly()

>>> o2 = OneOnly()

>>> o1 == o2

True

>>> o1

<__main__.OneOnly object at 0xb71c008c>

>>> o2

<__main__.OneOnly object at 0xb71c008c>

The two objects are equal and located at the same address; thus, they are the same
object. This particular implementation isn't very transparent, since it's not obvious that
a singleton object has been created. Whenever we call a constructor, we expect a new
instance of that object; in this case, that contract is violated. Perhaps, good docstrings
on the class could alleviate this problem if we really think we need a singleton.

But we don't need it. Python coders frown on forcing the users of their code into a
specific mindset. We may think only one instance of a class will ever be required, but
other programmers may have different ideas. Singletons can interfere with distributed
computing, parallel programming, and automated testing, for example. In all those
cases, it can be very useful to have multiple or alternative instances of a specific object,
even though a "normal' operation may never require one.

Module variables can mimic singletons

Normally, in Python, the singleton pattern can be sufficiently mimicked using
module-level variables. It's not as "safe" as a singleton in that people could reassign
those variables at any time, but as with the private variables we discussed in
Chapter 2, Objects in Python, this is acceptable in Python. If someone has a valid
reason to change those variables, why should we stop them? It also doesn't stop
people from instantiating multiple instances of the object, but again, if they have
a valid reason to do so, why interfere?

Ideally, we should give them a mechanism to get access to the "default singleton"
value, while also allowing them to create other instances if they need them. While
technically not a singleton at all, it provides the most Pythonic mechanism for
singleton-like behavior.

Chapter 10

[323]

To use module-level variables instead of a singleton, we instantiate an instance of
the class after we've defined it. We can improve our state pattern to use singletons.
Instead of creating a new object every time we change states, we can create a
module-level variable that is always accessible:

class FirstTag:
 def process(self, remaining_string, parser):
 i_start_tag = remaining_string.find('<')
 i_end_tag = remaining_string.find('>')
 tag_name = remaining_string[i_start_tag+1:i_end_tag]
 root = Node(tag_name)
 parser.root = parser.current_node = root
 parser.state = child_node
 return remaining_string[i_end_tag+1:]

class ChildNode:
 def process(self, remaining_string, parser):
 stripped = remaining_string.strip()
 if stripped.startswith("</"):
 parser.state = close_tag
 elif stripped.startswith("<"):
 parser.state = open_tag
 else:
 parser.state = text_node
 return stripped

class OpenTag:
 def process(self, remaining_string, parser):
 i_start_tag = remaining_string.find('<')
 i_end_tag = remaining_string.find('>')
 tag_name = remaining_string[i_start_tag+1:i_end_tag]
 node = Node(tag_name, parser.current_node)
 parser.current_node.children.append(node)
 parser.current_node = node
 parser.state = child_node
 return remaining_string[i_end_tag+1:]
class TextNode:
 def process(self, remaining_string, parser):
 i_start_tag = remaining_string.find('<')
 text = remaining_string[:i_start_tag]
 parser.current_node.text = text
 parser.state = child_node

Python Design Patterns I

[324]

 return remaining_string[i_start_tag:]

class CloseTag:
 def process(self, remaining_string, parser):
 i_start_tag = remaining_string.find('<')
 i_end_tag = remaining_string.find('>')
 assert remaining_string[i_start_tag+1] == "/"
 tag_name = remaining_string[i_start_tag+2:i_end_tag]
 assert tag_name == parser.current_node.tag_name
 parser.current_node = parser.current_node.parent
 parser.state = child_node
 return remaining_string[i_end_tag+1:].strip()

first_tag = FirstTag()
child_node = ChildNode()
text_node = TextNode()
open_tag = OpenTag()

close_tag = CloseTag()

All we've done is create instances of the various state classes that can be reused.
Notice how we can access these module variables inside the classes, even before
the variables have been defined? This is because the code inside the classes is not
executed until the method is called, and by this point, the entire module will have
been defined.

The difference in this example is that instead of wasting memory creating a bunch
of new instances that must be garbage collected, we are reusing a single state object
for each state. Even if multiple parsers are running at once, only these state classes
need to be used.

When we originally created the state-based parser, you may have wondered why
we didn't pass the parser object to __init__ on each individual state, instead
of passing it into the process method as we did. The state could then have been
referenced as self.parser. This is a perfectly valid implementation of the state
pattern, but it would not have allowed leveraging the singleton pattern. If the state
objects maintain a reference to the parser, then they cannot be used simultaneously
to reference other parsers.

Remember, these are two different patterns with different purposes; the
fact that singleton's purpose may be useful for implementing the state
pattern does not mean the two patterns are related.

Chapter 10

[325]

The template pattern
The template pattern is useful for removing duplicate code; it's an implementation
to support the Don't Repeat Yourself principle we discussed in Chapter 5, When to
Use Object-oriented Programming. It is designed for situations where we have several
different tasks to accomplish that have some, but not all, steps in common. The
common steps are implemented in a base class, and the distinct steps are overridden
in subclasses to provide custom behavior. In some ways, it's like a generalized
strategy pattern, except similar sections of the algorithms are shared using a base
class. Here it is in the UML format:

Task1
+step2()

Task2
+step2()

BaseClass
+do_process()

+step1()

+step2()

+step3()

+step4()

A template example
Let's create a car sales reporter as an example. We can store records of sales in an
SQLite database table. SQLite is a simple file-based database engine that allows us
to store records using SQL syntax. Python 3 includes SQLite in its standard library,
so there are no extra modules required.

We have two common tasks we need to perform:

• Select all sales of new vehicles and output them to the screen in a
comma-delimited format

• Output a comma-delimited list of all salespeople with their gross sales
and save it to a file that can be imported to a spreadsheet

These seem like quite different tasks, but they have some common features. In both
cases, we need to perform the following steps:

1. Connect to the database.
2. Construct a query for new vehicles or gross sales.

Python Design Patterns I

[326]

3. Issue the query.
4. Format the results into a comma-delimited string.
5. Output the data to a file or e-mail.

The query construction and output steps are different for the two tasks, but the
remaining steps are identical. We can use the template pattern to put the common
steps in a base class, and the varying steps in two subclasses.

Before we start, let's create a database and put some sample data in it, using a few
lines of SQL:

import sqlite3

conn = sqlite3.connect("sales.db")

conn.execute("CREATE TABLE Sales (salesperson text, "
 "amt currency, year integer, model text, new boolean)")
conn.execute("INSERT INTO Sales values"
 " ('Tim', 16000, 2010, 'Honda Fit', 'true')")
conn.execute("INSERT INTO Sales values"
 " ('Tim', 9000, 2006, 'Ford Focus', 'false')")
conn.execute("INSERT INTO Sales values"
 " ('Gayle', 8000, 2004, 'Dodge Neon', 'false')")
conn.execute("INSERT INTO Sales values"
 " ('Gayle', 28000, 2009, 'Ford Mustang', 'true')")
conn.execute("INSERT INTO Sales values"
 " ('Gayle', 50000, 2010, 'Lincoln Navigator', 'true')")
conn.execute("INSERT INTO Sales values"
 " ('Don', 20000, 2008, 'Toyota Prius', 'false')")
conn.commit()
conn.close()

Hopefully you can see what's going on here even if you don't know SQL; we've
created a table to hold the data, and used six insert statements to add sales records.
The data is stored in a file named sales.db. Now we have a sample we can work
with in developing our template pattern.

Since we've already outlined the steps that the template has to perform, we can start by
defining the base class that contains the steps. Each step gets its own method (to make
it easy to selectively override any one step), and we have one more managerial method
that calls the steps in turn. Without any method content, here's how it might look:

class QueryTemplate:
 def connect(self):
 pass

Chapter 10

[327]

 def construct_query(self):
 pass
 def do_query(self):
 pass
 def format_results(self):
 pass
 def output_results(self):
 pass

 def process_format(self):
 self.connect()
 self.construct_query()
 self.do_query()
 self.format_results()
 self.output_results()

The process_format method is the primary method to be called by an outside
client. It ensures each step is executed in order, but it does not care if that step is
implemented in this class or in a subclass. For our examples, we know that three
methods are going to be identical between our two classes:

import sqlite3

class QueryTemplate:
 def connect(self):
 self.conn = sqlite3.connect("sales.db")

 def construct_query(self):
 raise NotImplementedError()

 def do_query(self):
 results = self.conn.execute(self.query)
 self.results = results.fetchall()

 def format_results(self):
 output = []
 for row in self.results:
 row =[str(i) for i in row]
 output.append(", ".join(row))
 self.formatted_results = "\n".join(output)

 def output_results(self):
 raise NotImplementedError()

Python Design Patterns I

[328]

To help with implementing subclasses, the two methods that are not specified
raise NotImplementedError. This is a common way to specify abstract interfaces
in Python when abstract base classes seem too heavyweight. The methods could
have empty implementations (with pass), or could be fully unspecified. Raising
NotImplementedError, however, helps the programmer understand that the class is
meant to be subclassed and these methods overridden; empty methods or methods
that do not exist are harder to identify as needing to be implemented and to debug if
we forget to implement them.

Now we have a template class that takes care of the boring details, but is flexible enough
to allow the execution and formatting of a wide variety of queries. The best part is, if we
ever want to change our database engine from SQLite to another database engine (such
as py-postgresql), we only have to do it here, in this template class, and we don't have to
touch the two (or two hundred) subclasses we might have written.

Let's have a look at the concrete classes now:

import datetime
class NewVehiclesQuery(QueryTemplate):
 def construct_query(self):
 self.query = "select * from Sales where new='true'"

 def output_results(self):
 print(self.formatted_results)

class UserGrossQuery(QueryTemplate):
 def construct_query(self):
 self.query = ("select salesperson, sum(amt) " +
 " from Sales group by salesperson")

 def output_results(self):
 filename = "gross_sales_{0}".format(
 datetime.date.today().strftime("%Y%m%d")
)
 with open(filename, 'w') as outfile:
 outfile.write(self.formatted_results)

These two classes are actually pretty short, considering what they're doing:
connecting to a database, executing a query, formatting the results, and outputting
them. The superclass takes care of the repetitive work, but lets us easily specify
those steps that vary between tasks. Further, we can also easily change steps that
are provided in the base class. For example, if we wanted to output something other
than a comma-delimited string (for example: an HTML report to be uploaded to a
website), we can still override format_results.

Chapter 10

[329]

Exercises
While writing this chapter, I discovered that it can be very difficult, and extremely
educational, to come up with good examples where specific design patterns should
be used. Instead of going over current or old projects to see where you can apply
these patterns, as I've suggested in previous chapters, think about the patterns
and different situations where they might come up. Try to think outside your own
experiences. If your current projects are in the banking business, consider how you'd
apply these design patterns in a retail or point-of-sale application. If you normally
write web applications, think about using design patterns while writing a compiler.

Look at the decorator pattern and come up with some good examples of when to
apply it. Focus on the pattern itself, not the Python syntax we discussed; it's a bit
more general than the actual pattern. The special syntax for decorators is, however,
something you may want to look for places to apply in existing projects too.

What are some good areas to use the observer pattern? Why? Think about not only
how you'd apply the pattern, but how you would implement the same task without
using observer? What do you gain, or lose, by choosing to use it?

Consider the difference between the strategy and state patterns. Implementation-wise,
they look very similar, yet they have different purposes. Can you think of cases where
the patterns could be interchanged? Would it be reasonable to redesign a state-based
system to use strategy instead, or vice versa? How different would the design
actually be?

The template pattern is such an obvious application of inheritance to reduce duplicate
code that you may have used it before, without knowing its name. Try to think of at
least half a dozen different scenarios where it would be useful. If you can do this,
you'll be finding places for it in your daily coding all the time.

Summary
This chapter discussed several common design patterns in detail, with examples,
UML diagrams, and a discussion of the differences between Python and statically
typed object-oriented languages. The decorator pattern is often implemented using
Python's more generic decorator syntax. The observer pattern is a useful way to
decouple events from actions taken on those events. The strategy pattern allows
different algorithms to be chosen to accomplish the same task. The state pattern
looks similar, but is used instead to represent systems can move between different
states using well-defined actions. The singleton pattern, popular in some statically
typed languages, is almost always an anti-pattern in Python.

In the next chapter, we'll wrap up our discussion of design patterns.

[331]

Python Design Patterns II
In this chapter we will be introduced to several more design patterns. Once
again, we'll cover the canonical examples as well as any common alternative
implementations in Python. We'll be discussing:

• The adapter pattern
• The facade pattern
• Lazy initialization and the flyweight pattern
• The command pattern
• The abstract factory pattern
• The composition pattern

The adapter pattern
Unlike most of the patterns we reviewed in Chapter 8, Strings and Serialization, the
adapter pattern is designed to interact with existing code. We would not design
a brand new set of objects that implement the adapter pattern. Adapters are used
to allow two pre-existing objects to work together, even if their interfaces are not
compatible. Like the display adapters that allow VGA projectors to be plugged into
HDMI ports, an adapter object sits between two different interfaces, translating
between them on the fly. The adapter object's sole purpose is to perform this
translation job. Adapting may entail a variety of tasks, such as converting arguments
to a different format, rearranging the order of arguments, calling a differently named
method, or supplying default arguments.

Python Design Patterns II

[332]

In structure, the adapter pattern is similar to a simplified decorator pattern. Decorators
typically provide the same interface that they replace, whereas adapters map between
two different interfaces. Here it is in UML form:

Interface1

Adapter

Interface2
+different_action(other,arguments)

+make_action(some,arguments)

Here, Interface1 is expecting to call a method called make_action(some, arguments).
We already have this perfect Interface2 class that does everything we want (and
to avoid duplication, we don't want to rewrite it!), but it provides a method called
different_action(other, arguments) instead. The Adapter class implements the
make_action interface and maps the arguments to the existing interface.

The advantage here is that the code that maps from one interface to another is all in
one place. The alternative would be really ugly; we'd have to perform the translation
in multiple places whenever we need to access this code.

For example, imagine we have the following preexisting class, which takes a string
date in the format "YYYY-MM-DD" and calculates a person's age on that day:

class AgeCalculator:
 def __init__(self, birthday):
 self.year, self.month, self.day = (
 int(x) for x in birthday.split('-'))

 def calculate_age(self, date):
 year, month, day = (
 int(x) for x in date.split('-'))
 age = year - self.year
 if (month,day) < (self.month,self.day):
 age -= 1
 return age

Chapter 11

[333]

This is a pretty simple class that does what it's supposed to do. But we have to
wonder what the programmer was thinking, using a specifically formatted string
instead of using Python's incredibly useful built-in datetime library. As conscientious
programmers who reuse code whenever possible, most of the programs we write will
interact with datetime objects, not strings.

We have several options to address this scenario; we could rewrite the class to
accept datetime objects, which would probably be more accurate anyway. But if
this class had been provided by a third party and we don't know or can't change its
internal structure, we need to try something else. We could use the class as it is, and
whenever we want to calculate the age on a datetime.date object, we could call
datetime.date.strftime('%Y-%m-%d') to convert it to the proper format. But that
conversion would be happening in a lot of places, and worse, if we mistyped the %m
as %M, it would give us the current minute instead of the entered month! Imagine
if you wrote that in a dozen different places only to have to go back and change it
when you realized your mistake. It's not maintainable code, and it breaks the DRY
principle.

Instead, we can write an adapter that allows a normal date to be plugged into a
normal AgeCalculator class:

import datetime
class DateAgeAdapter:
 def _str_date(self, date):
 return date.strftime("%Y-%m-%d")

 def __init__(self, birthday):
 birthday = self._str_date(birthday)
 self.calculator = AgeCalculator(birthday)

 def get_age(self, date):
 date = self._str_date(date)
 return self.calculator.calculate_age(date)

This adapter converts datetime.date and datetime.time (they have the same
interface to strftime) into a string that our original AgeCalculator can use. Now
we can use the original code with our new interface. I changed the method signature
to get_age to demonstrate that the calling interface may also be looking for a
different method name, not just a different type of argument.

Python Design Patterns II

[334]

Creating a class as an adapter is the usual way to implement this pattern, but, as
usual, there are other ways to do it in Python. Inheritance and multiple inheritance
can be used to add functionality to a class. For example, we could add an adapter
on the date class so that it works with the original AgeCalculator class:

import datetime
class AgeableDate(datetime.date):
 def split(self, char):
 return self.year, self.month, self.day

It's code like this that makes one wonder if Python should even be legal. We have
added a split method to our subclass that takes a single argument (which we ignore)
and returns a tuple of year, month, and day. This works flawlessly with the original
AgeCalculator class because the code calls strip on a specially formatted string,
and strip, in that case, returns a tuple of year, month, and day. The AgeCalculator
code only cares if strip exists and returns acceptable values; it doesn't care if we really
passed in a string. It really works:

>>> bd = AgeableDate(1975, 6, 14)

>>> today = AgeableDate.today()

>>> today

AgeableDate(2015, 8, 4)

>>> a = AgeCalculator(bd)

>>> a.calculate_age(today)

40

It works but it's a stupid idea. In this particular instance, such an adapter would be
hard to maintain. We'd soon forget why we needed to add a strip method to a date
class. The method name is ambiguous. That can be the nature of adapters, but creating
an adapter explicitly instead of using inheritance usually clarifies its purpose.

Instead of inheritance, we can sometimes also use monkey-patching to add a method
to an existing class. It won't work with the datetime object, as it doesn't allow
attributes to be added at runtime, but in normal classes, we can just add a new method
that provides the adapted interface that is required by calling code. Alternatively, we
could extend or monkey-patch the AgeCalculator itself to replace the calculate_age
method with something more amenable to our needs.

Finally, it is often possible to use a function as an adapter; this doesn't obviously fit
the actual design of the adapter pattern, but if we recall that functions are essentially
objects with a __call__ method, it becomes an obvious adapter adaptation.

Chapter 11

[335]

The facade pattern
The facade pattern is designed to provide a simple interface to a complex system of
components. For complex tasks, we may need to interact with these objects directly,
but there is often a "typical" usage for the system for which these complicated
interactions aren't necessary. The facade pattern allows us to define a new object that
encapsulates this typical usage of the system. Any time we want access to common
functionality, we can use the single object's simplified interface. If another part of the
project needs access to more complicated functionality, it is still able to interact with
the system directly. The UML diagram for the facade pattern is really dependent on
the subsystem, but in a cloudy way, it looks like this:

Facade

BIG SYSTEM

Complex Component

+simple_task()()
+other_simple_task()

Another component

A facade is, in many ways, like an adapter. The primary difference is that the facade
is trying to abstract a simpler interface out of a complex one, while the adapter is
only trying to map one existing interface to another.

Let's write a simple facade for an e-mail application. The low-level library for
sending e-mail in Python, as we saw in Chapter 7, Python Object-oriented Shortcuts,
is quite complicated. The two libraries for receiving messages are even worse.

It would be nice to have a simple class that allows us to send a single e-mail, and
list the e-mails currently in the inbox on an IMAP or POP3 connection. To keep our
example short, we'll stick with IMAP and SMTP: two totally different subsystems
that happen to deal with e-mail. Our facade performs only two tasks: sending an
e-mail to a specific address, and checking the inbox on an IMAP connection. It makes
some common assumptions about the connection, such as the host for both SMTP
and IMAP is at the same address, that the username and password for both is the
same, and that they use standard ports. This covers the case for many e-mail servers,
but if a programmer needs more flexibility, they can always bypass the facade and
access the two subsystems directly.

Python Design Patterns II

[336]

The class is initialized with the hostname of the e-mail server, a username, and a
password to log in:

import smtplib
import imaplib

class EmailFacade:
 def __init__(self, host, username, password):
 self.host = host
 self.username = username
 self.password = password

The send_email method formats the e-mail address and message, and sends it
using smtplib. This isn't a complicated task, but it requires quite a bit of fiddling
to massage the "natural" input parameters that are passed into the facade to the
correct format to enable smtplib to send the message:

 def send_email(self, to_email, subject, message):
 if not "@" in self.username:
 from_email = "{0}@{1}".format(
 self.username, self.host)
 else:
 from_email = self.username
 message = ("From: {0}\r\n"
 "To: {1}\r\n"
 "Subject: {2}\r\n\r\n{3}").format(
 from_email,
 to_email,
 subject,
 message)

 smtp = smtplib.SMTP(self.host)
 smtp.login(self.username, self.password)
 smtp.sendmail(from_email, [to_email], message)

The if statement at the beginning of the method is catching whether or not the
username is the entire "from" e-mail address or just the part on the left side of the
@ symbol; different hosts treat the login details differently.

Finally, the code to get the messages currently in the inbox is a ruddy mess; the
IMAP protocol is painfully over-engineered, and the imaplib standard library is
only a thin layer over the protocol:

 def get_inbox(self):
 mailbox = imaplib.IMAP4(self.host)

Chapter 11

[337]

 mailbox.login(bytes(self.username, 'utf8'),
 bytes(self.password, 'utf8'))
 mailbox.select()
 x, data = mailbox.search(None, 'ALL')
 messages = []
 for num in data[0].split():
 x, message = mailbox.fetch(num, '(RFC822)')
 messages.append(message[0][1])
 return messages

Now, if we add all this together, we have a simple facade class that can send and
receive messages in a fairly straightforward manner, much simpler than if we had
to interact with these complex libraries directly.

Although it is rarely named in the Python community, the facade pattern is an
integral part of the Python ecosystem. Because Python emphasizes language
readability, both the language and its libraries tend to provide easy-to-comprehend
interfaces to complicated tasks. For example, for loops, list comprehensions, and
generators are all facades into a more complicated iterator protocol. The defaultdict
implementation is a facade that abstracts away annoying corner cases when a key
doesn't exist in a dictionary. The third-party requests library is a powerful facade
over less readable libraries for HTTP requests.

The flyweight pattern
The flyweight pattern is a memory optimization pattern. Novice Python programmers
tend to ignore memory optimization, assuming the built-in garbage collector will
take care of them. This is often perfectly acceptable, but when developing larger
applications with many related objects, paying attention to memory concerns can
have a huge payoff.

The flyweight pattern basically ensures that objects that share a state can use the
same memory for that shared state. It is often implemented only after a program
has demonstrated memory problems. It may make sense to design an optimal
configuration from the beginning in some situations, but bear in mind that
premature optimization is the most effective way to create a program that is too
complicated to maintain.

Python Design Patterns II

[338]

Let's have a look at the UML diagram for the flyweight pattern:

FlyweightFactory

Flyweight

SpecificState

+getFlyweight()

+shared_state

+shared_action(specific_state)

Each Flyweight has no specific state; any time it needs to perform an operation on
SpecificState, that state needs to be passed into the Flyweight by the calling code.
Traditionally, the factory that returns a flyweight is a separate object; its purpose
is to return a flyweight for a given key identifying that flyweight. It works like the
singleton pattern we discussed in Chapter 10, Python Design Patterns I; if the flyweight
exists, we return it; otherwise, we create a new one. In many languages, the factory is
implemented, not as a separate object, but as a static method on the Flyweight
class itself.

Think of an inventory system for car sales. Each individual car has a specific serial
number and is a specific color. But most of the details about that car are the same for
all cars of a particular model. For example, the Honda Fit DX model is a bare-bones
car with few features. The LX model has A/C, tilt, cruise, and power windows and
locks. The Sport model has fancy wheels, a USB charger, and a spoiler. Without the
flyweight pattern, each individual car object would have to store a long list of which
features it did and did not have. Considering the number of cars Honda sells in a
year, this would add up to a huge amount of wasted memory. Using the flyweight
pattern, we can instead have shared objects for the list of features associated with a
model, and then simply reference that model, along with a serial number and color,
for individual vehicles. In Python, the flyweight factory is often implemented using
that funky __new__ constructor, similar to what we did with the singleton pattern.
Unlike singleton, which only needs to return one instance of the class, we need to be
able to return different instances depending on the keys. We could store the items
in a dictionary and look them up based on the key. This solution is problematic,
however, because the item will remain in memory as long as it is in the dictionary. If
we sold out of LX model Fits, the Fit flyweight is no longer necessary, yet it will still
be in the dictionary. We could, of course, clean this up whenever we sell a car, but
isn't that what a garbage collector is for?

Chapter 11

[339]

We can solve this by taking advantage of Python's weakref module. This module
provides a WeakValueDictionary object, which basically allows us to store items
in a dictionary without the garbage collector caring about them. If a value is in a
weak referenced dictionary and there are no other references to that object stored
anywhere in the application (that is, we sold out of LX models), the garbage
collector will eventually clean up for us.

Let's build the factory for our car flyweights first:

import weakref

class CarModel:
 _models = weakref.WeakValueDictionary()

 def __new__(cls, model_name, *args, **kwargs):
 model = cls._models.get(model_name)
 if not model:
 model = super().__new__(cls)
 cls._models[model_name] = model

 return model

Basically, whenever we construct a new flyweight with a given name, we first look
up that name in the weak referenced dictionary; if it exists, we return that model;
if not, we create a new one. Either way, we know the __init__ method on the
flyweight will be called every time, regardless of whether it is a new or existing
object. Our __init__ method can therefore look like this:

 def __init__(self, model_name, air=False, tilt=False,
 cruise_control=False, power_locks=False,
 alloy_wheels=False, usb_charger=False):
 if not hasattr(self, "initted"):
 self.model_name = model_name
 self.air = air
 self.tilt = tilt
 self.cruise_control = cruise_control
 self.power_locks = power_locks
 self.alloy_wheels = alloy_wheels
 self.usb_charger = usb_charger
 self.initted=True

The if statement ensures that we only initialize the object the first time __init__
is called. This means we can call the factory later with just the model name and get
the same flyweight object back. However, because the flyweight will be garbage-
collected if no external references to it exist, we have to be careful not to accidentally
create a new flyweight with null values.

Python Design Patterns II

[340]

Let's add a method to our flyweight that hypothetically looks up a serial number on
a specific model of vehicle, and determines if it has been involved in any accidents.
This method needs access to the car's serial number, which varies from car to car;
it cannot be stored with the flyweight. Therefore, this data must be passed into the
method by the calling code:

 def check_serial(self, serial_number):
 print("Sorry, we are unable to check "
 "the serial number {0} on the {1} "
 "at this time".format(
 serial_number, self.model_name))

We can define a class that stores the additional information, as well as a reference
to the flyweight:

class Car:
 def __init__(self, model, color, serial):
 self.model = model
 self.color = color
 self.serial = serial

 def check_serial(self):
 return self.model.check_serial(self.serial)

We can also keep track of the available models as well as the individual cars on
the lot:

>>> dx = CarModel("FIT DX")

>>> lx = CarModel("FIT LX", air=True, cruise_control=True,

... power_locks=True, tilt=True)

>>> car1 = Car(dx, "blue", "12345")

>>> car2 = Car(dx, "black", "12346")

>>> car3 = Car(lx, "red", "12347")

Now, let's demonstrate the weak referencing at work:

>>> id(lx)

3071620300

>>> del lx

>>> del car3

>>> import gc

>>> gc.collect()

0

Chapter 11

[341]

>>> lx = CarModel("FIT LX", air=True, cruise_control=True,

... power_locks=True, tilt=True)

>>> id(lx)

3071576140

>>> lx = CarModel("FIT LX")

>>> id(lx)

3071576140

>>> lx.air

True

The id function tells us the unique identifier for an object. When we call it a second
time, after deleting all references to the LX model and forcing garbage collection, we
see that the ID has changed. The value in the CarModel __new__ factory dictionary
was deleted and a fresh one created. If we then try to construct a second CarModel
instance, however, it returns the same object (the IDs are the same), and, even though
we did not supply any arguments in the second call, the air variable is still set to
True. This means the object was not initialized the second time, just as we designed.

Obviously, using the flyweight pattern can be more complicated than just storing
features on a single car class. When should we choose to use it? The flyweight pattern
is designed for conserving memory; if we have hundreds of thousands of similar
objects, combining similar properties into a flyweight can have an enormous impact
on memory consumption. It is common for programming solutions that optimize
CPU, memory, or disk space result in more complicated code than their unoptimized
brethren. It is therefore important to weigh up the tradeoffs when deciding between
code maintainability and optimization. When choosing optimization, try to use
patterns such as flyweight to ensure that the complexity introduced by optimization
is confined to a single (well documented) section of the code.

The command pattern
The command pattern adds a level of abstraction between actions that must be done,
and the object that invokes those actions, normally at a later time. In the command
pattern, client code creates a Command object that can be executed at a later date.
This object knows about a receiver object that manages its own internal state when
the command is executed on it. The Command object implements a specific interface
(typically it has an execute or do_action method, and also keeps track of any
arguments required to perform the action. Finally, one or more Invoker objects
execute the command at the correct time.

Python Design Patterns II

[342]

Here's the UML diagram:

CommandInterface
+execute()

Client
+execute()

Command

Receiver

Invoker

��

�

A common example of the command pattern is actions on a graphical window.
Often, an action can be invoked by a menu item on the menu bar, a keyboard
shortcut, a toolbar icon, or a context menu. These are all examples of Invoker objects.
The actions that actually occur, such as Exit, Save, or Copy, are implementations
of CommandInterface. A GUI window to receive exit, a document to receive save,
and ClipboardManager to receive copy commands, are all examples of possible
Receivers.

Let's implement a simple command pattern that provides commands for Save and
Exit actions. We'll start with some modest receiver classes:

import sys

class Window:
 def exit(self):
 sys.exit(0)

class Document:
 def __init__(self, filename):
 self.filename = filename
 self.contents = "This file cannot be modified"

 def save(self):
 with open(self.filename, 'w') as file:
 file.write(self.contents)

These mock classes model objects that would likely be doing a lot more in a working
environment. The window would need to handle mouse movement and keyboard
events, and the document would need to handle character insertion, deletion, and
selection. But for our example these two classes will do what we need.

Chapter 11

[343]

Now let's define some invoker classes. These will model toolbar, menu, and
keyboard events that can happen; again, they aren't actually hooked up to anything,
but we can see how they are decoupled from the command, receiver, and client code:

class ToolbarButton:
 def __init__(self, name, iconname):
 self.name = name
 self.iconname = iconname

 def click(self):
 self.command.execute()

class MenuItem:
 def __init__(self, menu_name, menuitem_name):
 self.menu = menu_name
 self.item = menuitem_name

 def click(self):
 self.command.execute()

class KeyboardShortcut:
 def __init__(self, key, modifier):
 self.key = key
 self.modifier = modifier

 def keypress(self):
 self.command.execute()

Notice how the various action methods each call the execute method on their
respective commands? This code doesn't show the command attribute being set on
each object. They could be passed into the __init__ function, but because they may
be changed (for example, with a customizable keybinding editor), it makes more
sense to set the attributes on the objects afterwards.

Now, let's hook up the commands themselves:

class SaveCommand:
 def __init__(self, document):
 self.document = document

 def execute(self):
 self.document.save()

class ExitCommand:

Python Design Patterns II

[344]

 def __init__(self, window):
 self.window = window

 def execute(self):
 self.window.exit()

These commands are straightforward; they demonstrate the basic pattern, but it is
important to note that we can store state and other information with the command
if necessary. For example, if we had a command to insert a character, we could
maintain state for the character currently being inserted.

Now all we have to do is hook up some client and test code to make the commands
work. For basic testing, we can just include this at the end of the script:

window = Window()
document = Document("a_document.txt")
save = SaveCommand(document)
exit = ExitCommand(window)

save_button = ToolbarButton('save', 'save.png')
save_button.command = save
save_keystroke = KeyboardShortcut("s", "ctrl")
save_keystroke.command = save
exit_menu = MenuItem("File", "Exit")
exit_menu.command = exit

First we create two receivers and two commands. Then we create several of the
available invokers and set the correct command on each of them. To test, we can use
python3 -i filename.py and run code like exit_menu.click(), which will end the
program, or save_keystroke.keystroke(), which will save the fake file.

Unfortunately, the preceding examples do not feel terribly Pythonic. They have a
lot of "boilerplate code" (code that does not accomplish anything, but only provides
structure to the pattern), and the Command classes are all eerily similar to each other.
Perhaps we could create a generic command object that takes a function
as a callback?

In fact, why bother? Can we just use a function or method object for each
command? Instead of an object with an execute() method, we can write a function
and use that as the command directly. This is a common paradigm for the command
pattern in Python:

import sys

class Window:

Chapter 11

[345]

 def exit(self):
 sys.exit(0)

class MenuItem:
 def click(self):
 self.command()

window = Window()
menu_item = MenuItem()
menu_item.command = window.exit

Now that looks a lot more like Python. At first glance, it looks like we've removed the
command pattern altogether, and we've tightly connected the menu_item and Window
classes. But if we look closer, we find there is no tight coupling at all. Any callable
can be set up as the command on the MenuItem, just as before. And the Window.exit
method can be attached to any invoker. Most of the flexibility of the command pattern
has been maintained. We have sacrificed complete decoupling for readability, but this
code is, in my opinion, and that of many Python programmers, more maintainable
than the fully abstracted version.

Of course, since we can add a __call__ method to any object, we aren't restricted
to functions. The previous example is a useful shortcut when the method being
called doesn't have to maintain state, but in more advanced usage, we can use this
code as well:

class Document:
 def __init__(self, filename):
 self.filename = filename
 self.contents = "This file cannot be modified"

 def save(self):
 with open(self.filename, 'w') as file:
 file.write(self.contents)

class KeyboardShortcut:
 def keypress(self):
 self.command()
class SaveCommand:
 def __init__(self, document):
 self.document = document

 def __call__(self):

Python Design Patterns II

[346]

 self.document.save()

document = Document("a_file.txt")
shortcut = KeyboardShortcut()
save_command = SaveCommand(document)
shortcut.command = save_command

Here we have something that looks like the first command pattern, but a bit more
idiomatic. As you can see, making the invoker call a callable instead of a command
object with an execute method has not restricted us in any way. In fact, it's given us
more flexibility. We can link to functions directly when that works, yet we can build
a complete callable command object when the situation calls for it.

The command pattern is often extended to support undoable commands. For example,
a text program may wrap each insertion in a separate command with not only an
execute method, but also an undo method that will delete that insertion. A graphics
program may wrap each drawing action (rectangle, line, freehand pixels, and so on)
in a command that has an undo method that resets the pixels to their original state.
In such cases, the decoupling of the command pattern is much more obviously useful,
because each action has to maintain enough of its state to undo that action at a
later date.

The abstract factory pattern
The abstract factory pattern is normally used when we have multiple possible
implementations of a system that depend on some configuration or platform issue.
The calling code requests an object from the abstract factory, not knowing exactly
what class of object will be returned. The underlying implementation returned may
depend on a variety of factors, such as current locale, operating system, or local
configuration.

Common examples of the abstract factory pattern include code for
operating-system independent toolkits, database backends, and country-specific
formatters or calculators. An operating-system-independent GUI toolkit might use an
abstract factory pattern that returns a set of WinForm widgets under Windows, Cocoa
widgets under Mac, GTK widgets under Gnome, and QT widgets under KDE. Django
provides an abstract factory that returns a set of object relational classes for interacting
with a specific database backend (MySQL, PostgreSQL, SQLite, and others) depending
on a configuration setting for the current site. If the application needs to be deployed
in multiple places, each one can use a different database backend by changing only one
configuration variable. Different countries have different systems for calculating taxes,
subtotals, and totals on retail merchandise; an abstract factory can return a particular
tax calculation object.

Chapter 11

[347]

The UML class diagram for an abstract factory pattern is hard to understand without
a specific example, so let's turn things around and create a concrete example first.
We'll create a set of formatters that depend on a specific locale and help us format
dates and currencies. There will be an abstract factory class that picks the specific
factory, as well as a couple example concrete factories, one for France and one for
the USA. Each of these will create formatter objects for dates and times, which can
be queried to format a specific value. Here's the diagram:

CurrencyFormatterDateFormatter
+format_date() +format_currency()

USADateFormatter FranceDateFormatter
+format_date() +format_date()

USACurrencyFormatter FranceCurrencyFormatter
+format_currency() +format_currency()

UsaFormatterFactory FranceFormatterFactory
+create_date_formatter()

+create_currency_formatter()

+create_date_formatter()

+create_currency_formatter()

FormatterFactory
+create_date_formatter()

+create_currency_formatter()

Comparing that image to the earlier simpler text shows that a picture is not always
worth a thousand words, especially considering we haven't even allowed for factory
selection code here.

Of course, in Python, we don't have to implement any interface classes, so we
can discard DateFormatter, CurrencyFormatter, and FormatterFactory.
The formatting classes themselves are pretty straightforward, if verbose:

class FranceDateFormatter:
 def format_date(self, y, m, d):
 y, m, d = (str(x) for x in (y,m,d))
 y = '20' + y if len(y) == 2 else y
 m = '0' + m if len(m) == 1 else m
 d = '0' + d if len(d) == 1 else d
 return("{0}/{1}/{2}".format(d,m,y))

class USADateFormatter:

Python Design Patterns II

[348]

 def format_date(self, y, m, d):
 y, m, d = (str(x) for x in (y,m,d))
 y = '20' + y if len(y) == 2 else y
 m = '0' + m if len(m) == 1 else m
 d = '0' + d if len(d) == 1 else d
 return("{0}-{1}-{2}".format(m,d,y))

class FranceCurrencyFormatter:
 def format_currency(self, base, cents):
 base, cents = (str(x) for x in (base, cents))
 if len(cents) == 0:
 cents = '00'
 elif len(cents) == 1:
 cents = '0' + cents

 digits = []
 for i,c in enumerate(reversed(base)):
 if i and not i % 3:
 digits.append(' ')
 digits.append(c)
 base = ''.join(reversed(digits))
 return "{0}€{1}".format(base, cents)

class USACurrencyFormatter:
 def format_currency(self, base, cents):
 base, cents = (str(x) for x in (base, cents))
 if len(cents) == 0:
 cents = '00'
 elif len(cents) == 1:
 cents = '0' + cents
 digits = []
 for i,c in enumerate(reversed(base)):
 if i and not i % 3:
 digits.append(',')
 digits.append(c)
 base = ''.join(reversed(digits))
 return "${0}.{1}".format(base, cents)

Chapter 11

[349]

These classes use some basic string manipulation to try to turn a variety of possible
inputs (integers, strings of different lengths, and others) into the following formats:

USA France
Date mm-dd-yyyy dd/mm/yyyy
Currency $14,500.50 14 500€50

There could obviously be more validation on the input in this code, but let's keep it
simple and dumb for this example.

Now that we have the formatters set up, we just need to create the formatter factories:

class USAFormatterFactory:
 def create_date_formatter(self):
 return USADateFormatter()
 def create_currency_formatter(self):
 return USACurrencyFormatter()

class FranceFormatterFactory:
 def create_date_formatter(self):
 return FranceDateFormatter()
 def create_currency_formatter(self):
 return FranceCurrencyFormatter()

Now we set up the code that picks the appropriate formatter. Since this is the kind
of thing that only needs to be set up once, we could make it a singleton—except
singletons aren't very useful in Python. Let's just make the current formatter a
module-level variable instead:

country_code = "US"
factory_map = {
 "US": USAFormatterFactory,
 "FR": FranceFormatterFactory}
formatter_factory = factory_map.get(country_code)()

In this example, we hardcode the current country code; in practice, it would likely
introspect the locale, the operating system, or a configuration file to choose the code.
This example uses a dictionary to associate the country codes with factory classes.
Then we grab the correct class from the dictionary and instantiate it.

Python Design Patterns II

[350]

It is easy to see what needs to be done when we want to add support for more
countries: create the new formatter classes and the abstract factory itself. Bear in mind
that Formatter classes might be reused; for example, Canada formats its currency the
same way as the USA, but its date format is more sensible than its Southern neighbor.

Abstract factories often return a singleton object, but this is not required; in our code,
it's returning a new instance of each formatter every time it's called. There's no reason
the formatters couldn't be stored as instance variables and the same instance returned
for each factory.

Looking back at these examples, we see that, once again, there appears to be a lot
of boilerplate code for factories that just doesn't feel necessary in Python. Often, the
requirements that might call for an abstract factory can be more easily fulfilled by
using a separate module for each factory type (for example: the USA and France),
and then ensuring that the correct module is being accessed in a factory module. The
package structure for such modules might look like this:

localize/
 __init__.py
 backends/
 __init__.py
 USA.py
 France.py
 …

The trick is that __init__.py in the localize package can contain logic that redirects
all requests to the correct backend. There is a variety of ways this could be done.

If we know that the backend is never going to change dynamically (that is, without
a restart), we can just put some if statements in __init__.py that check the current
country code, and use the usually unacceptable from .backends.USA import * syntax
to import all variables from the appropriate backend. Or, we could import each of the
backends and set a current_backend variable to point at a specific module:

from .backends import USA, France

if country_code == "US":
 current_backend = USA

Depending on which solution we choose, our client code would have to call either
localize.format_date or localize.current_backend.format_date to get a date
formatted in the current country's locale. The end result is much more Pythonic than
the original abstract factory pattern, and, in typical usage, just as flexible.

Chapter 11

[351]

The composite pattern
The composite pattern allows complex tree-like structures to be built from simple
components. These components, called composite objects, are able to behave sort
of like a container and sort of like a variable depending on whether they have child
components. Composite objects are container objects, where the content may actually
be another composite object.

Traditionally, each component in a composite object must be either a leaf node (that
cannot contain other objects) or a composite node. The key is that both composite
and leaf nodes can have the same interface. The UML diagram is very simple:

Component

Leaf Composite

+some_action()

+some_action() +some_action()
+add_child()

This simple pattern, however, allows us to create complex arrangements of elements,
all of which satisfy the interface of the component object. Here is a concrete instance
of such a complicated arrangement:

Composite Composite

Composite

CompositeComposite

Leaf

LeafLeaf Leaf

Leaf LeafLeaf LeafLeafLeaf

The composite pattern is commonly useful in file/folder-like trees. Regardless of
whether a node in the tree is a normal file or a folder, it is still subject to operations
such as moving, copying, or deleting the node. We can create a component interface
that supports these operations, and then use a composite object to represent folders,
and leaf nodes to represent normal files.

Python Design Patterns II

[352]

Of course, in Python, once again, we can take advantage of duck typing to implicitly
provide the interface, so we only need to write two classes. Let's define these
interfaces first:

class Folder:
 def __init__(self, name):
 self.name = name
 self.children = {}

 def add_child(self, child):
 pass

 def move(self, new_path):
 pass

 def copy(self, new_path):
 pass

 def delete(self):
 pass

class File:
 def __init__(self, name, contents):
 self.name = name
 self.contents = contents

 def move(self, new_path):
 pass

 def copy(self, new_path):
 pass

 def delete(self):
 pass

For each folder (composite) object, we maintain a dictionary of children. Often, a
list is sufficient, but in this case, a dictionary will be useful for looking up children
by name. Our paths will be specified as node names separated by the / character,
similar to paths in a Unix shell.

Chapter 11

[353]

Thinking about the methods involved, we can see that moving or deleting a node
behaves in a similar way, regardless of whether or not it is a file or folder node.
Copying, however, has to do a recursive copy for folder nodes, while copying
a file node is a trivial operation.

To take advantage of the similar operations, we can extract some of the common
methods into a parent class. Let's take that discarded Component interface and
change it to a base class:

class Component:
 def __init__(self, name):
 self.name = name

 def move(self, new_path):
 new_folder =get_path(new_path)
 del self.parent.children[self.name]
 new_folder.children[self.name] = self
 self.parent = new_folder

 def delete(self):
 del self.parent.children[self.name]

class Folder(Component):
 def __init__(self, name):
 super().__init__(name)
 self.children = {}

 def add_child(self, child):
 pass

 def copy(self, new_path):
 pass

class File(Component):
 def __init__(self, name, contents):
 super().__init__(name)
 self.contents = contents

 def copy(self, new_path):
 pass

root = Folder('')
def get_path(path):

Python Design Patterns II

[354]

 names = path.split('/')[1:]
 node = root
 for name in names:
 node = node.children[name]
 return node

We've created the move and delete methods on the Component class. Both of them
access a mysterious parent variable that we haven't set yet. The move method uses a
module-level get_path function that finds a node from a predefined root node, given
a path. All files will be added to this root node or a child of that node. For the move
method, the target should be a currently existing folder, or we'll get an error. As with
many of the examples in technical books, error handling is woefully absent, to help
focus on the principles under consideration.

Let's set up that mysterious parent variable first; this happens, in the folder's
add_child method:

 def add_child(self, child):
 child.parent = self
 self.children[child.name] = child

Well, that was easy enough. Let's see if our composite file hierarchy is
working properly:

$ python3 -i 1261_09_18_add_child.py

>>> folder1 = Folder('folder1')

>>> folder2 = Folder('folder2')

>>> root.add_child(folder1)

>>> root.add_child(folder2)

>>> folder11 = Folder('folder11')

>>> folder1.add_child(folder11)

>>> file111 = File('file111', 'contents')

>>> folder11.add_child(file111)

>>> file21 = File('file21', 'other contents')

>>> folder2.add_child(file21)

>>> folder2.children

{'file21': <__main__.File object at 0xb7220a4c>}

>>> folder2.move('/folder1/folder11')

>>> folder11.children

{'folder2': <__main__.Folder object at 0xb722080c>, 'file111': <__main__.
File object at 0xb72209ec>}

Chapter 11

[355]

>>> file21.move('/folder1')

>>> folder1.children

{'file21': <__main__.File object at 0xb7220a4c>, 'folder11': <__main__.
Folder object at 0xb722084c>}

Yes, we can create folders, add folders to other folders, add files to folders, and
move them around! What more could we ask for in a file hierarchy?

Well, we could ask for copying to be implemented, but to conserve trees, let's leave
that as an exercise.

The composite pattern is extremely useful for a variety of tree-like structures,
including GUI widget hierarchies, file hierarchies, tree sets, graphs, and HTML
DOM. It can be a useful pattern in Python when implemented according to the
traditional implementation, as the example earlier demonstrated. Sometimes, if only
a shallow tree is being created, we can get away with a list of lists or a dictionary of
dictionaries, and do not need to implement custom component, leaf, and composite
classes. Other times, we can get away with implementing only one composite class,
and treating leaf and composite objects as a single class. Alternatively, Python's duck
typing can make it easy to add other objects to a composite hierarchy, as long as they
have the correct interface.

Exercises
Before diving into exercises for each design pattern, take a moment to implement
the copy method for the File and Folder objects in the previous section. The File
method should be quite trivial; just create a new node with the same name and
contents, and add it to the new parent folder. The copy method on Folder is quite a
bit more complicated, as you first have to duplicate the folder, and then recursively
copy each of its children to the new location. You can call the copy() method on the
children indiscriminately, regardless of whether each is a file or a folder object. This
will drive home just how powerful the composite pattern can be.

Now, as with the previous chapter, look at the patterns we've discussed, and consider
ideal places where you might implement them. You may want to apply the adapter
pattern to existing code, as it is usually applicable when interfacing with existing
libraries, rather than new code. How can you use an adapter to force two interfaces to
interact with each other correctly?

Can you think of a system complex enough to justify using the facade pattern?
Consider how facades are used in real-life situations, such as the driver-facing interface
of a car, or the control panel in a factory. It is similar in software, except the users of the
facade interface are other programmers, rather than people trained to use them. Are
there complex systems in your latest project that could benefit from the facade pattern?

Python Design Patterns II

[356]

It's possible you don't have any huge, memory-consuming code that would benefit
from the flyweight pattern, but can you think of situations where it might be useful?
Anywhere that large amounts of overlapping data need to be processed, a flyweight is
waiting to be used. Would it be useful in the banking industry? In web applications?
At what point does the flyweight pattern make sense? When is it overkill?

What about the command pattern? Can you think of any common (or better yet,
uncommon) examples of places where the decoupling of action from invocation
would be useful? Look at the programs you use on a daily basis, and imagine how
they are implemented internally. It's likely that many of them use the command
pattern for one purpose or another.

The abstract factory pattern, or the somewhat more Pythonic derivatives we discussed,
can be very useful for creating one-touch-configurable systems. Can you think of
places where such systems are useful?

Finally, consider the composite pattern. There are tree-like structures all around us
in programming; some of them, like our file hierarchy example, are blatant; others
are fairly subtle. What situations might arise where the composite pattern would
be useful? Can you think of places where you can use it in your own code? What if
you adapted the pattern slightly; for example, to contain different types of leaf or
composite nodes for different types of objects?

Summary
In this chapter, we went into detail on several more design patterns, covering their
canonical descriptions as well as alternatives for implementing them in Python,
which is often more flexible and versatile than traditional object-oriented languages.
The adapter pattern is useful for matching interfaces, while the facade pattern is
suited to simplifying them. Flyweight is a complicated pattern and only useful if
memory optimization is required. In Python, the command pattern is often more
aptly implemented using first class functions as callbacks. Abstract factories allow
run-time separation of implementations depending on configuration or system
information. The composite pattern is used universally for tree-like structures.

In the next chapter, we'll discuss how important it is to test Python programs,
and how to do it.

[357]

Testing Object-oriented
Programs

Skilled Python programmers agree that testing is one of the most important aspects
of software development. Even though this chapter is placed near the end of the
book, it is not an afterthought; everything we have studied so far will help us when
writing tests. We'll be studying:

• The importance of unit testing and test-driven development
• The standard unittest module
• The py.test automated testing suite
• The mock module
• Code coverage
• Cross-platform testing with tox

Why test?
A large collection of programmers already know how important it is to test
their code. If you're among them, feel free to skim this section. You'll find the
next section—where we actually see how to do the tests in Python—much more
scintillating. If you're not convinced of the importance of testing, I promise that
your code is broken, you just don't know it. Read on!

Testing Object-oriented Programs

[358]

Some people argue that testing is more important in Python code because of its
dynamic nature; compiled languages such as Java and C++ are occasionally thought
to be somehow "safer" because they enforce type checking at compile time. However,
Python tests rarely check types. They're checking values. They're making sure that
the right attributes have been set at the right time or that the sequence has the right
length, order, and values. These higher-level things need to be tested in
any language. The real reason Python programmers test more than programmers
of other languages is that it is so easy to test in Python!

But why test? Do we really need to test? What if we didn't test? To answer those
questions, write a tic-tac-toe game from scratch without any testing at all. Don't
run it until it is completely written, start to finish. Tic-tac-toe is fairly simple to
implement if you make both players human players (no artificial intelligence).
You don't even have to try to calculate who the winner is. Now run your program.
And fix all the errors. How many were there? I recorded eight on my tic-tac-toe
implementation, and I'm not sure I caught them all. Did you?

We need to test our code to make sure it works. Running the program, as we just
did, and fixing the errors is one crude form of testing. Python programmers are able
to write a few lines of code and run the program to make sure those lines are doing
what they expect. But changing a few lines of code can affect parts of the program
that the developer hadn't realized will be influenced by the changes, and therefore
won't test it. Furthermore, as a program grows, the various paths that the interpreter
can take through that code also grow, and it quickly becomes impossible to manually
test all of them.

To handle this, we write automated tests. These are programs that automatically
run certain inputs through other programs or parts of programs. We can run
these test programs in seconds and cover more possible input situations than
one programmer would think to test every time they change something.

There are four main reasons to write tests:

• To ensure that code is working the way the developer thinks it should
• To ensure that code continues working when we make changes
• To ensure that the developer understood the requirements
• To ensure that the code we are writing has a maintainable interface

Chapter 12

[359]

The first point really doesn't justify the time it takes to write a test; we can simply test
the code directly in the interactive interpreter. But when we have to perform the same
sequence of test actions multiple times, it takes less time to automate those steps once
and then run them whenever necessary. It is a good idea to run tests whenever we
change code, whether it is during initial development or maintenance releases. When
we have a comprehensive set of automated tests, we can run them after code changes
and know that we didn't inadvertently break anything that was tested.

The last two points are more interesting. When we write tests for code, it helps us
design the API, interface, or pattern that code takes. Thus, if we misunderstood the
requirements, writing a test can help highlight that misunderstanding. On the other
side, if we're not certain how we want to design a class, we can write a test that
interacts with that class so we have an idea what the most natural way to test
it would be. In fact, it is often beneficial to write the tests before we write the code
we are testing.

Test-driven development
"Write tests first" is the mantra of test-driven development. Test-driven development
takes the "untested code is broken code" concept one step further and suggests that
only unwritten code should be untested. Do not write any code until you have written
the tests for this code. So the first step is to write a test that proves the code would
work. Obviously, the test is going to fail, since the code hasn't been written. Then
write the code that ensures the test passes. Then write another test for the next
segment of code.

Test-driven development is fun. It allows us to build little puzzles to solve. Then we
implement the code to solve the puzzles. Then we make a more complicated puzzle,
and we write code that solves the new puzzle without unsolving the previous one.

There are two goals to the test-driven methodology. The first is to ensure that tests
really get written. It's so very easy, after we have written code, to say: "Hmm, it
seems to work. I don't have to write any tests for this. It was just a small change,
nothing could have broken." If the test is already written before we write the code,
we will know exactly when it works (because the test will pass), and we'll know
in the future if it is ever broken by a change we, or someone else has made.

Secondly, writing tests first forces us to consider exactly how the code will be
interacted with. It tells us what methods objects need to have and how attributes will
be accessed. It helps us break up the initial problem into smaller, testable problems,
and then to recombine the tested solutions into larger, also tested, solutions. Writing
tests can thus become a part of the design process. Often, if we're writing a test for a
new object, we discover anomalies in the design that force us to consider new aspects
of the software.

Testing Object-oriented Programs

[360]

As a concrete example, imagine writing code that uses an object-relational mapper to
store object properties in a database. It is common to use an automatically assigned
database ID in such objects. Our code might use this ID for various purposes. If we
are writing a test for such code, before we write it, we may realize that our design
is faulty because objects do not have these IDs until they have been saved to the
database. If we want to manipulate an object without saving it in our test, it will
highlight this problem before we have written code based on the faulty premise.

Testing makes software better. Writing tests before we release the software makes
it better before the end user sees or purchases the buggy version (I have worked
for companies that thrive on the "the users can test it" philosophy. It's not a healthy
business model!). Writing tests before we write software makes it better the first
time it is written.

Unit testing
Let's start our exploration with Python's built-in test library. This library provides
a common interface for unit tests. Unit tests focus on testing the least amount of
code possible in any one test. Each one tests a single unit of the total amount of
available code.

The Python library for this is called, unsurprisingly, unittest. It provides several
tools for creating and running unit tests, the most important being the TestCase
class. This class provides a set of methods that allow us to compare values, set up
tests, and clean up when they have finished.

When we want to write a set of unit tests for a specific task, we create a subclass
of TestCase, and write individual methods to do the actual testing. These methods
must all start with the name test. When this convention is followed, the tests
automatically run as part of the test process. Normally, the tests set some values
on an object and then run a method, and use the built-in comparison methods to
ensure that the right results were calculated. Here's a very simple example:

import unittest

class CheckNumbers(unittest.TestCase):
 def test_int_float(self):
 self.assertEqual(1, 1.0)

if __name__ == "__main__":
 unittest.main()

Chapter 12

[361]

This code simply subclasses the TestCase class and adds a method that calls the
TestCase.assertEqual method. This method will either succeed or raise an
exception, depending on whether the two parameters are equal. If we run this
code, the main function from unittest will give us the following output:

.

--

Ran 1 test in 0.000s

OK

Did you know that floats and integers can compare as equal? Let's add a failing test:

 def test_str_float(self):
 self.assertEqual(1, "1")

The output of this code is more sinister, as integers and strings are not
considered equal:

.F

==

FAIL: test_str_float (__main__.CheckNumbers)

--

Traceback (most recent call last):

 File "simplest_unittest.py", line 8, in test_str_float

 self.assertEqual(1, "1")

AssertionError: 1 != '1'

--

Ran 2 tests in 0.001s

FAILED (failures=1)

The dot on the first line indicates that the first test (the one we wrote before)
passed successfully; the letter F after it shows that the second test failed. Then, at
the end, it gives us some informative output telling us how and where the test
failed, along with a summary of the number of failures.

Testing Object-oriented Programs

[362]

We can have as many test methods on one TestCase class as we like; as long as
the method name begins with test, the test runner will execute each one as a
separate test. Each test should be completely independent of other tests. Results or
calculations from a previous test should have no impact on the current test. The key
to writing good unit tests is to keep each test method as short as possible, testing a
small unit of code with each test case. If your code does not seem to naturally break
up into such testable units, it's probably a sign that your design needs rethinking.

Assertion methods
The general layout of a test case is to set certain variables to known values, run one
or more functions, methods, or processes, and then "prove" that correct expected
results were returned or calculated by using TestCase assertion methods.

There are a few different assertion methods available to confirm that specific results
have been achieved. We just saw assertEqual, which will cause a test failure if the
two parameters do not pass an equality check. The inverse, assertNotEqual, will
fail if the two parameters do compare as equal. The assertTrue and assertFalse
methods each accept a single expression, and fail if the expression does not pass an
if test. These tests are not checking for the Boolean values True or False. Rather,
they test the same condition as though an if statement were used: False, None, 0,
or an empty list, dictionary, string, set, or tuple would pass a call to the assertFalse
method, while nonzero numbers, containers with values in them, or the value True
would succeed when calling the assertTrue method.

There is an assertRaises method that can be used to ensure a specific function call
raises a specific exception or, optionally, it can be used as a context manager to wrap
inline code. The test passes if the code inside the with statement raises the proper
exception; otherwise, it fails. Here's an example of both versions:

import unittest

def average(seq):
 return sum(seq) / len(seq)

class TestAverage(unittest.TestCase):
 def test_zero(self):
 self.assertRaises(ZeroDivisionError,
 average,

Chapter 12

[363]

 [])

 def test_with_zero(self):
 with self.assertRaises(ZeroDivisionError):
 average([])

if __name__ == "__main__":
 unittest.main()

The context manager allows us to write the code the way we would normally write
it (by calling functions or executing code directly), rather than having to wrap the
function call in another function call.

There are also several other assertion methods, summarized in the following table:

Methods Description
assertGreater

assertGreaterEqual

assertLess

assertLessEqual

Accept two comparable objects and
ensure the named inequality holds.

assertIn

assertNotIn

Ensure an element is (or is not) an
element in a container object.

assertIsNone

assertIsNotNone

Ensure an element is (or is not) the
exact value None (but not another
falsey value).

assertSameElements Ensure two container objects have the
same elements, ignoring the order.

assertSequenceEqualassertDictEqual

assertSetEqual

assertListEqual

assertTupleEqual

Ensure two containers have the same
elements in the same order. If there's a
failure, show a code diff comparing the
two lists to see where they differ. The
last four methods also test the type of
the list.

Each of the assertion methods accepts an optional argument named msg. If supplied,
it is included in the error message if the assertion fails. This is useful for clarifying
what was expected or explaining where a bug may have occurred to cause the
assertion to fail.

Testing Object-oriented Programs

[364]

Reducing boilerplate and cleaning up
After writing a few small tests, we often find that we have to do the same setup code
for several related tests. For example, the following list subclass has three methods
for statistical calculations:

from collections import defaultdict

class StatsList(list):
 def mean(self):
 return sum(self) / len(self)

 def median(self):
 if len(self) % 2:
 return self[int(len(self) / 2)]
 else:
 idx = int(len(self) / 2)
 return (self[idx] + self[idx-1]) / 2

 def mode(self):
 freqs = defaultdict(int)
 for item in self:
 freqs[item] += 1
 mode_freq = max(freqs.values())
 modes = []
 for item, value in freqs.items():
 if value == mode_freq:
 modes.append(item)
 return modes

Clearly, we're going to want to test situations with each of these three methods that
have very similar inputs; we'll want to see what happens with empty lists or with lists
containing non-numeric values or with lists containing a normal dataset. We can use
the setUp method on the TestCase class to do initialization for each test. This method
accepts no arguments, and allows us to do arbitrary setup before each test is run. For
example, we can test all three methods on identical lists of integers as follows:

from stats import StatsList
import unittest

class TestValidInputs(unittest.TestCase):
 def setUp(self):
 self.stats = StatsList([1,2,2,3,3,4])

 def test_mean(self):

Chapter 12

[365]

 self.assertEqual(self.stats.mean(), 2.5)

 def test_median(self):
 self.assertEqual(self.stats.median(), 2.5)
 self.stats.append(4)
 self.assertEqual(self.stats.median(), 3)

 def test_mode(self):
 self.assertEqual(self.stats.mode(), [2,3])
 self.stats.remove(2)
 self.assertEqual(self.stats.mode(), [3])

if __name__ == "__main__":
 unittest.main()

If we run this example, it indicates that all tests pass. Notice first that the setUp
method is never explicitly called inside the three test_* methods. The test suite
does this on our behalf. More importantly notice how test_median alters the list,
by adding an additional 4 to it, yet when test_mode is called, the list has returned
to the values specified in setUp (if it had not, there would be two fours in the list,
and the mode method would have returned three values). This shows that setUp is
called individually before each test, to ensure the test class starts with a clean slate.
Tests can be executed in any order, and the results of one test should not depend
on any other tests.

In addition to the setUp method, TestCase offers a no-argument tearDown method,
which can be used for cleaning up after each and every test on the class has run.
This is useful if cleanup requires anything other than letting an object be garbage
collected. For example, if we are testing code that does file I/O, our tests may create
new files as a side effect of testing; the tearDown method can remove these files and
ensure the system is in the same state it was before the tests ran. Test cases should
never have side effects. In general, we group test methods into separate TestCase
subclasses depending on what setup code they have in common. Several tests that
require the same or similar setup will be placed in one class, while tests that require
unrelated setup go in another class.

Organizing and running tests
It doesn't take long for a collection of unit tests to grow very large and unwieldy.
It quickly becomes complicated to load and run all the tests at once. This is a
primary goal of unit testing; it should be trivial to run all tests on our program
and get a quick "yes or no" answer to the question, "Did my recent changes
break any existing tests?".

Testing Object-oriented Programs

[366]

Python's discover module basically looks for any modules in the current folder or
subfolders with names that start with the characters test. If it finds any TestCase
objects in these modules, the tests are executed. It's a painless way to ensure
we don't miss running any tests. To use it, ensure your test modules are named
test_<something>.py and then run the command python3 -m unittest discover.

Ignoring broken tests
Sometimes, a test is known to fail, but we don't want the test suite to report the
failure. This may be because a broken or unfinished feature has had tests written,
but we aren't currently focusing on improving it. More often, it happens because
a feature is only available on a certain platform, Python version, or for advanced
versions of a specific library. Python provides us with a few decorators to mark
tests as expected to fail or to be skipped under known conditions.

The decorators are:

• expectedFailure()

• skip(reason)

• skipIf(condition, reason)

• skipUnless(condition, reason)

These are applied using the Python decorator syntax. The first one accepts no
arguments, and simply tells the test runner not to record the test as a failure when
it fails. The skip method goes one step further and doesn't even bother to run the
test. It expects a single string argument describing why the test was skipped. The
other two decorators accept two arguments, one a Boolean expression that indicates
whether or not the test should be run, and a similar description. In use, these three
decorators might be applied like this:

import unittest
import sys

class SkipTests(unittest.TestCase):
 @unittest.expectedFailure
 def test_fails(self):
 self.assertEqual(False, True)

 @unittest.skip("Test is useless")

Chapter 12

[367]

 def test_skip(self):
 self.assertEqual(False, True)

 @unittest.skipIf(sys.version_info.minor == 4,
 "broken on 3.4")
 def test_skipif(self):
 self.assertEqual(False, True)

 @unittest.skipUnless(sys.platform.startswith('linux'),
 "broken unless on linux")
 def test_skipunless(self):
 self.assertEqual(False, True)

if __name__ == "__main__":
 unittest.main()

The first test fails, but it is reported as an expected failure; the second test is never
run. The other two tests may or may not be run depending on the current Python
version and operating system. On my Linux system running Python 3.4, the
output looks like this:

xssF

===

FAIL: test_skipunless (__main__.SkipTests)

--

Traceback (most recent call last):

 File "skipping_tests.py", line 21, in test_skipunless

 self.assertEqual(False, True)

AssertionError: False != True

--

Ran 4 tests in 0.001s

FAILED (failures=1, skipped=2, expected failures=1)

The x on the first line indicates an expected failure; the two s characters represent
skipped tests, and the F indicates a real failure, since the conditional to skipUnless
was True on my system.

Testing Object-oriented Programs

[368]

Testing with py.test
The Python unittest module requires a lot of boilerplate code to set up and
initialize tests. It is based on the very popular JUnit testing framework for Java. It
even uses the same method names (you may have noticed they don't conform to
the PEP-8 naming standard, which suggests underscores rather than CamelCase to
separate words in a method name) and test layout. While this is effective for testing
in Java, it's not necessarily the best design for Python testing.

Because Python programmers like their code to be elegant and simple, other test
frameworks have been developed, outside the standard library. Two of the more
popular ones are py.test and nose. The former is more robust and has had Python
3 support for much longer, so we'll discuss it here.

Since py.test is not part of the standard library, you'll need to download and install
it yourself; you can get it from the py.test home page at http://pytest.org/. The
website has comprehensive installation instructions for a variety of interpreters and
platforms, but you can usually get away with the more common python package
installer, pip. Just type pip install pytest on your command line and you'll be
good to go.

py.test has a substantially different layout from the unittest module. It doesn't
require test cases to be classes. Instead, it takes advantage of the fact that Python
functions are objects, and allows any properly named function to behave like a test.
Rather than providing a bunch of custom methods for asserting equality, it uses the
assert statement to verify results. This makes tests more readable and maintainable.
When we run py.test, it will start in the current folder and search for any modules
in that folder or subpackages whose names start with the characters test_. If any
functions in this module also start with test, they will be executed as individual
tests. Furthermore, if there are any classes in the module whose name starts with
Test, any methods on that class that start with test_ will also be executed in the
test environment.

Let's port the simplest possible unittest example we wrote earlier to py.test:

def test_int_float():
 assert 1 == 1.0

For the exact same test, we've written two lines of more readable code, in
comparison to the six lines required in our first unittest example.

http://pytest.org/

Chapter 12

[369]

However, we are not forbidden from writing class-based tests. Classes can be useful
for grouping related tests together or for tests that need to access related attributes
or methods on the class. This example shows an extended class with a passing and a
failing test; we'll see that the error output is more comprehensive than that provided
by the unittest module:

class TestNumbers:
 def test_int_float(self):
 assert 1 == 1.0

 def test_int_str(self):
 assert 1 == "1"

Notice that the class doesn't have to extend any special objects to be picked up as a
test (although py.test will run standard unittest TestCases just fine). If we run
py.test <filename>, the output looks like this:

============== test session starts ==============

python: platform linux2 -- Python 3.4.1 -- pytest-2.6.4

test object 1: class_pytest.py

class_pytest.py .F

=================== FAILURES====================

___________ TestNumbers.test_int_str ____________

self = <class_pytest.TestNumbers object at 0x85b4fac>

 def test_int_str(self):

> assert 1 == "1"

E assert 1 == '1'

class_pytest.py:7: AssertionError

====== 1 failed, 1 passed in 0.10 seconds =======

Testing Object-oriented Programs

[370]

The output starts with some useful information about the platform and interpreter.
This can be useful for sharing bugs across disparate systems. The third line tells us
the name of the file being tested (if there are multiple test modules picked up, they
will all be displayed), followed by the familiar .F we saw in the unittest module;
the . character indicates a passing test, while the letter F demonstrates a failure.

After all tests have run, the error output for each of them is displayed. It presents a
summary of local variables (there is only one in this example: the self parameter
passed into the function), the source code where the error occurred, and a summary of
the error message. In addition, if an exception other than an AssertionError is raised,
py.test will present us with a complete traceback, including source code references.

By default, py.test suppresses output from print statements if the test is
successful. This is useful for test debugging; when a test is failing, we can add
print statements to the test to check the values of specific variables and attributes
as the test runs. If the test fails, these values are output to help with diagnosis.
However, once the test is successful, the print statement output is not displayed,
and they can be easily ignored. We don't have to "clean up" the output by removing
print statements. If the tests ever fail again, due to future changes, the debugging
output will be immediately available.

One way to do setup and cleanup
py.test supports setup and teardown methods similar to those used in unittest,
but it provides even more flexibility. We'll discuss these briefly, since they are
familiar, but they are not used as extensively as in the unittest module, as py.test
provides us with a powerful funcargs facility, which we'll discuss in the next section.

If we are writing class-based tests, we can use two methods called setup_method
and teardown_method in basically the same way that setUp and tearDown are
called in unittest. They are called before and after each test method in the class
to perform setup and cleanup duties. There is one difference from the unittest
methods though. Both methods accept an argument: the function object representing
the method being called.

In addition, py.test provides other setup and teardown functions to give us more
control over when setup and cleanup code is executed. The setup_class and
teardown_class methods are expected to be class methods; they accept a single
argument (there is no self argument) representing the class in question.

Chapter 12

[371]

Finally, we have the setup_module and teardown_module functions, which are run
immediately before and after all tests (in functions or classes) in that module. These
can be useful for "one time" setup, such as creating a socket or database connection that
will be used by all tests in the module. Be careful with this one, as it can accidentally
introduce dependencies between tests if the object being set up stores the state.

That short description doesn't do a great job of explaining exactly when these methods
are called, so let's look at an example that illustrates exactly when it happens:

def setup_module(module):
 print("setting up MODULE {0}".format(
 module.__name__))

def teardown_module(module):
 print("tearing down MODULE {0}".format(
 module.__name__))

def test_a_function():
 print("RUNNING TEST FUNCTION")

class BaseTest:
 def setup_class(cls):
 print("setting up CLASS {0}".format(
 cls.__name__))

 def teardown_class(cls):
 print("tearing down CLASS {0}\n".format(
 cls.__name__))

 def setup_method(self, method):
 print("setting up METHOD {0}".format(
 method.__name__))

 def teardown_method(self, method):
 print("tearing down METHOD {0}".format(
 method.__name__))

class TestClass1(BaseTest):
 def test_method_1(self):
 print("RUNNING METHOD 1-1")

 def test_method_2(self):

Testing Object-oriented Programs

[372]

 print("RUNNING METHOD 1-2")

class TestClass2(BaseTest):
 def test_method_1(self):
 print("RUNNING METHOD 2-1")

 def test_method_2(self):
 print("RUNNING METHOD 2-2")

The sole purpose of the BaseTest class is to extract four methods that would be
otherwise identical to the test classes, and use inheritance to reduce the amount of
duplicate code. So, from the point of view of py.test, the two subclasses have not
only two test methods each, but also two setup and two teardown methods (one at
the class level, one at the method level).

If we run these tests using py.test with the print function output suppression
disabled (by passing the -s or --capture=no flag), they show us when the various
functions are called in relation to the tests themselves:

py.test setup_teardown.py -s

setup_teardown.py

setting up MODULE setup_teardown

RUNNING TEST FUNCTION

.setting up CLASS TestClass1

setting up METHOD test_method_1

RUNNING METHOD 1-1

.tearing down METHOD test_method_1

setting up METHOD test_method_2

RUNNING METHOD 1-2

.tearing down METHOD test_method_2

tearing down CLASS TestClass1

setting up CLASS TestClass2

setting up METHOD test_method_1

RUNNING METHOD 2-1

.tearing down METHOD test_method_1

setting up METHOD test_method_2

RUNNING METHOD 2-2

.tearing down METHOD test_method_2

tearing down CLASS TestClass2

tearing down MODULE setup_teardown

Chapter 12

[373]

The setup and teardown methods for the module are executed at the beginning and
end of the session. Then the lone module-level test function is run. Next, the setup
method for the first class is executed, followed by the two tests for that class. These
tests are each individually wrapped in separate setup_method and teardown_method
calls. After the tests have executed, the class teardown method is called. The same
sequence happens for the second class, before the teardown_module method is finally
called, exactly once.

A completely different way to set up variables
One of the most common uses for the various setup and teardown functions is to
ensure certain class or module variables are available with a known value before
each test method is run.

py.test offers a completely different way to do this using what are known as
funcargs, short for function arguments. Funcargs are basically named variables that
are predefined in a test configuration file. This allows us to separate configuration
from execution of tests, and allows the funcargs to be used across multiple classes
and modules.

To use them, we add parameters to our test function. The names of the parameters
are used to look up specific arguments in specially named functions. For example,
if we wanted to test the StatsList class we used while demonstrating unittest,
we would again want to repeatedly test a list of valid integers. But we can write
our tests like so instead of using a setup method:

from stats import StatsList

def pytest_funcarg__valid_stats(request):
 return StatsList([1,2,2,3,3,4])

def test_mean(valid_stats):
 assert valid_stats.mean() == 2.5

def test_median(valid_stats):
 assert valid_stats.median() == 2.5
 valid_stats.append(4)
 assert valid_stats.median() == 3

def test_mode(valid_stats):
 assert valid_stats.mode() == [2,3]
 valid_stats.remove(2)
 assert valid_stats.mode() == [3]

Testing Object-oriented Programs

[374]

Each of the three test methods accepts a parameter named valid_stats; this
parameter is created by calling the pytest_funcarg__valid_stats function defined
at the top of the file. It can also be defined in a file called conftest.py if the funcarg
is needed by multiple modules. The conftest.py file is parsed by py.test to
load any "global" test configuration; it is a sort of catch-all for customizing the
py.test experience.

As with other py.test features, the name of the factory for returning a funcarg is
important; funcargs are functions that are named pytest_funcarg__<identifier>,
where <identifier> is a valid variable name that can be used as a parameter in a
test function. This function accepts a mysterious request parameter, and returns the
object to be passed as an argument into the individual test functions. The funcarg is
created afresh for each call to an individual test function; this allows us, for example,
to change the list in one test and know that it will be reset to its original values in
the next test.

Funcargs can do a lot more than return basic variables. That request object passed
into the funcarg factory provides some extremely useful methods and attributes to
modify the funcarg's behavior. The module, cls, and function attributes allow us
to see exactly which test is requesting the funcarg. The config attribute allows us
to check command-line arguments and other configuration data.

More interestingly, the request object provides methods that allow us to do
additional cleanup on the funcarg, or to reuse it across tests, activities that would
otherwise be relegated to setup and teardown methods of a specific scope.

The request.addfinalizer method accepts a callback function that performs
cleanup after each test function that uses the funcarg has been called. This provides
the equivalent of a teardown method, allowing us to clean up files, close connections,
empty lists, or reset queues. For example, the following code tests the os.mkdir
functionality by creating a temporary directory funcarg:

import tempfile
import shutil
import os.path

def pytest_funcarg__temp_dir(request):
 dir = tempfile.mkdtemp()
 print(dir)

 def cleanup():
 shutil.rmtree(dir)
 request.addfinalizer(cleanup)

Chapter 12

[375]

 return dir

def test_osfiles(temp_dir):
 os.mkdir(os.path.join(temp_dir, 'a'))
 os.mkdir(os.path.join(temp_dir, 'b'))
 dir_contents = os.listdir(temp_dir)
 assert len(dir_contents) == 2
 assert 'a' in dir_contents
 assert 'b' in dir_contents

The funcarg creates a new empty temporary directory for files to be created in.
Then it adds a finalizer call to remove that directory (using shutil.rmtree, which
recursively removes a directory and anything inside it) after the test has completed.
The filesystem is then left in the same state in which it started.

We can use the request.cached_setup method to create function argument
variables that last longer than one test. This is useful when setting up an expensive
operation that can be reused by multiple tests as long as the resource reuse doesn't
break the atomic or unit nature of the tests (so that one test does not rely on and is
not impacted by a previous one). For example, if we were to test the following echo
server, we may want to run only one instance of the server in a separate process,
and then have multiple tests connect to that instance:

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind(('localhost',1028))
s.listen(1)

 while True:
 client, address = s.accept()
 data = client.recv(1024)
 client.send(data)
 client.close()

All this code does is listen on a specific port and wait for input from a client socket.
When it receives input, it sends the same value back. To test this, we can start the
server in a separate process and cache the result for use in multiple tests. Here's
how the test code might look:

import subprocess
import socket

Testing Object-oriented Programs

[376]

import time

def pytest_funcarg__echoserver(request):
 def setup():
 p = subprocess.Popen(
 ['python3', 'echo_server.py'])
 time.sleep(1)
 return p

 def cleanup(p):
 p.terminate()

 return request.cached_setup(
 setup=setup,
 teardown=cleanup,
 scope="session")

def pytest_funcarg__clientsocket(request):
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.connect(('localhost', 1028))
 request.addfinalizer(lambda: s.close())
 return s

def test_echo(echoserver, clientsocket):
 clientsocket.send(b"abc")
 assert clientsocket.recv(3) == b'abc'

def test_echo2(echoserver, clientsocket):
 clientsocket.send(b"def")
 assert clientsocket.recv(3) == b'def'

We've created two funcargs here. The first runs the echo server in a separate process,
and returns the process object. The second instantiates a new socket object for each
test, and closes it when the test has completed, using addfinalizer. The first funcarg
is the one we're currently interested in. It looks much like a traditional unit test setup
and teardown. We create a setup function that accepts no parameters and returns
the correct argument; in this case, a process object that is actually ignored by the tests,
since they only care that the server is running. Then, we create a cleanup function (the
name of the function is arbitrary since it's just an object we pass into another function),
which accepts a single argument: the argument returned by setup. This cleanup code
terminates the process.

Chapter 12

[377]

Instead of returning a funcarg directly, the parent function returns the results of a call
to request.cached_setup. It accepts two arguments for the setup and teardown
functions (which we just created), and a scope argument. This last argument should be
one of the three strings "function", "module", or "session"; it determines just how long
the argument will be cached. We set it to "session" in this example, so it is cached for
the duration of the entire py.test run. The process will not be terminated or restarted
until all tests have run. The "module" scope, of course, caches it only for tests in that
module, and the "function" scope treats the object more like a normal funcarg, in that
it is reset after each test function is run.

Skipping tests with py.test
As with the unittest module, it is frequently necessary to skip tests in py.test,
for a variety of reasons: the code being tested hasn't been written yet, the test only
runs on certain interpreters or operating systems, or the test is time consuming and
should only be run under certain circumstances.

We can skip tests at any point in our code using the py.test.skip function.
It accepts a single argument: a string describing why it has been skipped. This
function can be called anywhere; if we call it inside a test function, the test will be
skipped. If we call it at the module level, all the tests in that module will be skipped.
If we call it inside a funcarg function, all tests that call that funcarg will be skipped.

Of course, in all these locations, it is often desirable to skip tests only if certain
conditions are or are not met. Since we can execute the skip function at any place
in Python code, we can execute it inside an if statement. So we may write a test
that looks like this:

import sys
import py.test

def test_simple_skip():
 if sys.platform != "fakeos":
 py.test.skip("Test works only on fakeOS")

 fakeos.do_something_fake()
 assert fakeos.did_not_happen

That's some pretty silly code, really. There is no Python platform named fakeos, so
this test will skip on all operating systems. It shows how we can skip conditionally,
and since the if statement can check any valid conditional, we have a lot of power
over when tests are skipped. Often, we check sys.version_info to check the Python
interpreter version, sys.platform to check the operating system, or some_library.__
version__ to check whether we have a recent enough version of a given API.

Testing Object-oriented Programs

[378]

Since skipping an individual test method or function based on a certain conditional
is one of the most common uses of test skipping, py.test provides a convenience
decorator that allows us to do this in one line. The decorator accepts a single string,
which can contain any executable Python code that evaluates to a Boolean value.
For example, the following test will only run on Python 3 or higher:

import py.test

@py.test.mark.skipif("sys.version_info <= (3,0)")
def test_python3():
 assert b"hello".decode() == "hello"

The py.test.mark.xfail decorator behaves similarly, except that it marks a test as
expected to fail, similar to unittest.expectedFailure(). If the test is successful, it
will be recorded as a failure; if it fails, it will be reported as expected behavior. In the
case of xfail, the conditional argument is optional; if it is not supplied, the test will
be marked as expected to fail under all conditions.

Imitating expensive objects
Sometimes, we want to test code that requires an object be supplied that is either
expensive or difficult to construct. While this may mean your API needs rethinking
to have a more testable interface (which typically means a more usable interface), we
sometimes find ourselves writing test code that has a ton of boilerplate to set
up objects that are only incidentally related to the code under test.

For example, imagine we have some code that keeps track of flight statuses in a
key-value store (such as redis or memcache) such that we can store the timestamp
and the most recent status. A basic version of such code might look like this:

import datetime
import redis

class FlightStatusTracker:
 ALLOWED_STATUSES = {'CANCELLED', 'DELAYED', 'ON TIME'}

 def __init__(self):
 self.redis = redis.StrictRedis()

 def change_status(self, flight, status):

Chapter 12

[379]

 status = status.upper()
 if status not in self.ALLOWED_STATUSES:
 raise ValueError(
 "{} is not a valid status".format(status))

 key = "flightno:{}".format(flight)
 value = "{}|{}".format(
 datetime.datetime.now().isoformat(), status)
 self.redis.set(key, value)

There are a lot of things we ought to test in that change_status method. We should
check that it raises the appropriate error if a bad status is passed in. We need to
ensure that it converts statuses to uppercase. We can see that the key and value
have the correct formatting when the set() method is called on the redis object.

One thing we don't have to check in our unit tests, however, is that the redis object
is properly storing the data. This is something that absolutely should be tested in
integration or application testing, but at the unit test level, we can assume that the
py-redis developers have tested their code and that this method does what we want
it to. As a rule, unit tests should be self-contained and not rely on the existence of
outside resources, such as a running Redis instance.

Instead, we only need to test that the set() method was called the appropriate
number of times and with the appropriate arguments. We can use Mock() objects
in our tests to replace the troublesome method with an object we can introspect.
The following example illustrates the use of mock:

from unittest.mock import Mock
import py.test
def pytest_funcarg__tracker():
 return FlightStatusTracker()

def test_mock_method(tracker):
 tracker.redis.set = Mock()
 with py.test.raises(ValueError) as ex:
 tracker.change_status("AC101", "lost")
 assert ex.value.args[0] == "LOST is not a valid status"
 assert tracker.redis.set.call_count == 0

Testing Object-oriented Programs

[380]

This test, written using py.test syntax, asserts that the correct exception is raised
when an inappropriate argument is passed in. In addition, it creates a mock object
for the set method and makes sure that it is never called. If it was, it would mean
there was a bug in our exception handling code.

Simply replacing the method worked fine in this case, since the object being replaced
was destroyed in the end. However, we often want to replace a function or method
only for the duration of a test. For example, if we want to test the timestamp
formatting in the mock method, we need to know exactly what datetime.
datetime.now() is going to return. However, this value changes from run to run.
We need some way to pin it to a specific value so we can test it deterministically.

Remember monkey-patching? Temporarily setting a library function to a specific
value is an excellent use of it. The mock library provides a patch context manager
that allows us to replace attributes on existing libraries with mock objects. When
the context manager exits, the original attribute is automatically restored so as not
to impact other test cases. Here's an example:

from unittest.mock import patch
def test_patch(tracker):
 tracker.redis.set = Mock()
 fake_now = datetime.datetime(2015, 4, 1)
 with patch('datetime.datetime') as dt:
 dt.now.return_value = fake_now
 tracker.change_status("AC102", "on time")
 dt.now.assert_called_once_with()
 tracker.redis.set.assert_called_once_with(
 "flightno:AC102",
 "2015-04-01T00:00:00|ON TIME")

In this example, we first construct a value called fake_now, which we will set as the
return value of the datetime.datetime.now function. We have to construct this
object before we patch datetime.datetime because otherwise we'd be calling the
patched now function before we constructed it!

The with statement invites the patch to replace the datetime.datetime module
with a mock object, which is returned as the value dt. The neat thing about mock
objects is that any time you access an attribute or method on that object, it returns
another mock object. Thus when we access dt.now, it gives us a new mock object.
We set the return_value of that object to our fake_now object; that way, whenever
the datetime.datetime.now function is called, it will return our object instead of a
new mock object.

Chapter 12

[381]

Then, after calling our change_status method with known values, we use the mock
class's assert_called_once_with function to ensure that the now function was indeed
called exactly once with no arguments. We then call it a second time to prove that the
redis.set method was called with arguments that were formatted as we expected
them to be.

The previous example is a good indication of how writing tests can guide our API
design. The FlightStatusTracker object looks sensible at first glance; we construct
a redis connection when the object is constructed, and we call into it when we need
it. When we write tests for this code, however, we discover that even if we mock out
that self.redis variable on a FlightStatusTracker, the redis connection still has
to be constructed. This call actually fails if there is no Redis server running, and our
tests also fail.

We could solve this problem by mocking out the redis.StrictRedis class to return
a mock in a setUp method. A better idea, however, might be to rethink our example.
Instead of constructing the redis instance inside__init__, perhaps we should allow
the user to pass one in, as in the following example:

 def __init__(self, redis_instance=None):
 self.redis = redis_instance if redis_instance else redis.
StrictRedis()

This allows us to pass a mock in when we are testing, so the StrictRedis method
never gets constructed. However, it also allows any client code that talks to
FlightStatusTracker to pass in their own redis instance. There are a variety of
reasons they might want to do this. They may have already constructed one for other
parts of their code. They may have created an optimized implementation of the redis
API. Perhaps they have one that logs metrics to their internal monitoring systems. By
writing a unit test, we've uncovered a use case that makes our API more flexible from
the start, rather than waiting for clients to demand we support their exotic needs.

This has been a brief introduction to the wonders of mocking code. Mocks are part of
the standard unittest library since Python 3.3, but as you see from these examples,
they can also be used with py.test and other libraries. Mocks have other more
advanced features that you may need to take advantage of as your code gets more
complicated. For example, you can use the spec argument to invite a mock to imitate
an existing class so that it raises an error if code tries to access an attribute that does not
exist on the imitated class. You can also construct mock methods that return different
arguments each time they are called by passing a list as the side_effect argument.
The side_effect parameter is quite versatile; you can also use it to execute arbitrary
functions when the mock is called or to raise an exception.

Testing Object-oriented Programs

[382]

In general, we should be quite stingy with mocks. If we find ourselves mocking out
multiple elements in a given unit test, we may end up testing the mock framework
rather than our real code. This serves no useful purpose whatsoever; after all, mocks
are well-tested already! If our code is doing a lot of this, it's probably another sign
that the API we are testing is poorly designed. Mocks should exist at the boundaries
between the code under test and the libraries they interface with. If this isn't
happening, we may need to change the API so that the boundaries are redrawn
in a different place.

How much testing is enough?
We've already established that untested code is broken code. But how can we tell
how well our code is tested? How do we know how much of our code is actually
being tested and how much is broken? The first question is the more important one,
but it's hard to answer. Even if we know we have tested every line of code in our
application, we do not know that we have tested it properly. For example, if we
write a stats test that only checks what happens when we provide a list of integers,
it may still fail spectacularly if used on a list of floats or strings or self-made objects.
The onus of designing complete test suites still lies with the programmer.

The second question—how much of our code is actually being tested—is easy to
verify. Code coverage is essentially an estimate of the number of lines of code that
are executed by a program. If we know that number and the number of lines that
are in the program, we can get an estimate of what percentage of the code was really
tested, or covered. If we additionally have an indicator as to which lines were not
tested, we can more easily write new tests to ensure those lines are less broken.

The most popular tool for testing code coverage is called, memorably enough,
coverage.py. It can be installed like most other third-party libraries using the
command pip install coverage.

We don't have space to cover all the details of the coverage API, so we'll just look
at a few typical examples. If we have a Python script that runs all our unit tests for
us (for example, using unittest.main, a custom test runner or discover), we can
use the following command to perform a coverage analysis:

coverage run coverage_unittest.py

This command will exit normally, but it creates a file named .coverage that holds
the data from the run. We can now use the coverage report command to get an
analysis of code coverage:

>>> coverage report

Chapter 12

[383]

The output is as follows:

Name Stmts Exec Cover

--

coverage_unittest 7 7 100%

stats 19 6 31%

--

TOTAL 26 13 50%

This basic report lists the files that were executed (our unit test and a module it
imported). The number of lines of code in each file, and the number that were
executed by the test are also listed. The two numbers are then combined to estimate
the amount of code coverage. If we pass the -m option to the report command,
it will additionally add a column that looks like this:

Missing

8-12, 15-23

The ranges of lines listed here identify lines in the stats module that were not
executed during the test run.

The example we just ran the code coverage tool on uses the same stats module we
created earlier in the chapter. However, it deliberately uses a single test that fails to
test a lot of code in the file. Here's the test:

from stats import StatsList
import unittest

class TestMean(unittest.TestCase):
 def test_mean(self):
 self.assertEqual(StatsList([1,2,2,3,3,4]).mean(), 2.5)

if __name__ == "__main__":

 unittest.main()

This code doesn't test the median or mode functions, which correspond to the line
numbers that the coverage output told us were missing.

Testing Object-oriented Programs

[384]

The textual report is sufficient, but if we use the command coverage html, we can
get an even fancier interactive HTML report that we can view in a web browser. The
web page even highlights which lines in the source code were and were not tested.
Here's how it looks:

We can use the coverage.py module with py.test as well. We'll need to install
the py.test plugin for code coverage, using pip install pytest-coverage.
The plugin adds several command-line options to py.test, the most useful being
--cover-report, which can be set to html, report, or annotate (the latter actually
modifies the source code to highlight any lines that were not covered).

Unfortunately, if we could somehow run a coverage report on this section of the
chapter, we'd find that we have not covered most of what there is to know about code
coverage! It is possible to use the coverage API to manage code coverage from within
our own programs (or test suites), and coverage.py accepts numerous configuration
options that we haven't touched on. We also haven't discussed the difference between
statement coverage and branch coverage (the latter is much more useful, and the
default in recent versions of coverage.py) or other styles of code coverage.

Chapter 12

[385]

Bear in mind that while 100 percent code coverage is a lofty goal that we should all
strive for, 100 percent coverage is not enough! Just because a statement was tested
does not mean that it was tested properly for all possible inputs.

Case study
Let's walk through test-driven development by writing a small, tested, cryptography
application. Don't worry, you won't need to understand the mathematics behind
complicated modern encryption algorithms such as Threefish or RSA. Instead,
we'll be implementing a sixteenth-century algorithm known as the Vigenère cipher.
The application simply needs to be able to encode and decode a message, given
an encoding keyword, using this cipher.

First, we need to understand how the cipher works if we apply it manually
(without a computer). We start with a table like this:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Testing Object-oriented Programs

[386]

Given a keyword, TRAIN, we can encode the message ENCODED IN PYTHON
as follows:

1. Repeat the keyword and message together such that it is easy to map letters
from one to the other:
E N C O D E D I N P Y T H O N T R A I N T R A I N T R A I N

2. For each letter in the plain text, find the row that begins with that letter
in the table.

3. Find the column with the letter associated with the keyword letter for the
chosen plaintext letter.

4. The encoded character is at the intersection of this row and column.

For example, the row starting with E intersects the column starting with T at
the character X. So, the first letter in the ciphertext is X. The row starting with N
intersects the column starting with R at the character E, leading to the ciphertext
XE. C intersects A at C, and O intersects I at W. D and N map to Q while E and T
map to X. The full encoded message is XECWQXUIVCRKHWA.

Decoding basically follows the opposite procedure. First, find the row with the
character for the shared keyword (the T row), then find the location in that row
where the encoded character (the X) is located. The plaintext character is at the
top of the column for that row (the E).

Implementing it
Our program will need an encode method that takes a keyword and plaintext and
returns the ciphertext, and a decode method that accepts a keyword and ciphertext
and returns the original message.

But rather than just writing those methods, let's follow a test-driven development
strategy. We'll be using py.test for our unit testing. We need an encode method,
and we know what it has to do; let's write a test for that method first:

def test_encode():
 cipher = VigenereCipher("TRAIN")
 encoded = cipher.encode("ENCODEDINPYTHON")
 assert encoded == "XECWQXUIVCRKHWA"

Chapter 12

[387]

This test fails, naturally, because we aren't importing a VigenereCipher class
anywhere. Let's create a new module to hold that class.

Let's start with the following VigenereCipher class:

class VigenereCipher:
 def __init__(self, keyword):
 self.keyword = keyword

 def encode(self, plaintext):
 return "XECWQXUIVCRKHWA"

If we add a from vigenere_cipher import VigenereCipher line to the top of our
test class and run py.test, the preceding test will pass! We've finished our first
test-driven development cycle.

Obviously, returning a hardcoded string is not the most sensible implementation
of a cipher class, so let's add a second test:

def test_encode_character():
 cipher = VigenereCipher("TRAIN")
 encoded = cipher.encode("E")
 assert encoded == "X"

Ah, now that test will fail. It looks like we're going to have to work harder. But I
just thought of something: what if someone tries to encode a string with spaces or
lowercase characters? Before we start implementing the encoding, let's add some
tests for these cases, so we don't we forget them. The expected behavior will be to
remove spaces, and to convert lowercase letters to capitals:

def test_encode_spaces():
 cipher = VigenereCipher("TRAIN")
 encoded = cipher.encode("ENCODED IN PYTHON")
 assert encoded == "XECWQXUIVCRKHWA"

def test_encode_lowercase():
 cipher = VigenereCipher("TRain")
 encoded = cipher.encode("encoded in Python")
 assert encoded == "XECWQXUIVCRKHWA"

If we run the new test suite, we find that the new tests pass (they expect the same
hardcoded string). But they ought to fail later if we forget to account for these cases.

Testing Object-oriented Programs

[388]

Now that we have some test cases, let's think about how to implement our encoding
algorithm. Writing code to use a table like we used in the earlier manual algorithm is
possible, but seems complicated, considering that each row is just an alphabet rotated
by an offset number of characters. It turns out (I asked Wikipedia) that we can use
modulo arithmetic to combine the characters instead of doing a table lookup. Given
plaintext and keyword characters, if we convert the two letters to their numerical
values (with A being 0 and Z being 25), add them together, and take the remainder
mod 26, we get the ciphertext character! This is a straightforward calculation, but since
it happens on a character-by-character basis, we should probably put it in its own
function. And before we do that, we should write a test for the new function:

from vigenere_cipher import combine_character
def test_combine_character():
 assert combine_character("E", "T") == "X"
 assert combine_character("N", "R") == "E"

Now we can write the code to make this function work. In all honesty, I had to run
the test several times before I got this function completely correct; first I returned
an integer, and then I forgot to shift the character back up to the normal ASCII scale
from the zero-based scale. Having the test available made it easy to test and debug
these errors. This is another bonus of test-driven development.

def combine_character(plain, keyword):
 plain = plain.upper()
 keyword = keyword.upper()
 plain_num = ord(plain) - ord('A')
 keyword_num = ord(keyword) - ord('A')
 return chr(ord('A') + (plain_num + keyword_num) % 26)

Now that combine_characters is tested, I thought we'd be ready to implement our
encode function. However, the first thing we want inside that function is a repeating
version of the keyword string that is as long as the plaintext. Let's implement a
function for that first. Oops, I mean let's implement the test first!

def test_extend_keyword():
 cipher = VigenereCipher("TRAIN")
 extended = cipher.extend_keyword(16)
 assert extended == "TRAINTRAINTRAINT"

Chapter 12

[389]

Before writing this test, I expected to write extend_keyword as a standalone function
that accepted a keyword and an integer. But as I started drafting the test, I realized
it made more sense to use it as a helper method on the VigenereCipher class. This
shows how test-driven development can help design more sensible APIs. Here's
the method implementation:

 def extend_keyword(self, number):
 repeats = number // len(self.keyword) + 1
 return (self.keyword * repeats)[:number]

Once again, this took a few runs of the test to get right. I ended up adding a second
versions of the test, one with fifteen and one with sixteen letters, to make sure it
works if the integer division has an even number.

Now we're finally ready to write our encode method:

 def encode(self, plaintext):
 cipher = []
 keyword = self.extend_keyword(len(plaintext))
 for p,k in zip(plaintext, keyword):
 cipher.append(combine_character(p,k))
 return "".join(cipher)

That looks correct. Our test suite should pass now, right?

Actually, if we run it, we'll find that two tests are still failing. We totally forgot about
the spaces and lowercase characters! It is a good thing we wrote those tests to remind
us. We'll have to add this line at the beginning of the method:

 plaintext = plaintext.replace(" ", "").upper()

If we have an idea about a corner case in the middle of implementing
something, we can create a test describing that idea. We don't even
have to implement the test; we can just run assert False to remind
us to implement it later. The failing test will never let us forget the
corner case and it can't be ignored like filing a task can. If it takes a
while to get around to fixing the implementation, we can mark the test
as an expected failure.

Now all the tests pass successfully. This chapter is pretty long, so we'll condense
the examples for decoding. Here are a couple tests:

def test_separate_character():
 assert separate_character("X", "T") == "E"

Testing Object-oriented Programs

[390]

 assert separate_character("E", "R") == "N"

def test_decode():
 cipher = VigenereCipher("TRAIN")
 decoded = cipher.decode("XECWQXUIVCRKHWA")
 assert decoded == "ENCODEDINPYTHON"

Here's the separate_character function:

def separate_character(cypher, keyword):
 cypher = cypher.upper()
 keyword = keyword.upper()
 cypher_num = ord(cypher) - ord('A')
 keyword_num = ord(keyword) - ord('A')
 return chr(ord('A') + (cypher_num - keyword_num) % 26)

And the decode method:

 def decode(self, ciphertext):
 plain = []
 keyword = self.extend_keyword(len(ciphertext))
 for p,k in zip(ciphertext, keyword):
 plain.append(separate_character(p,k))
 return "".join(plain)

These methods have a lot of similarity to those used for encoding. The great thing
about having all these tests written and passing is that we can now go back and
modify our code, knowing it is still safely passing the tests. For example, if we
replace our existing encode and decode methods with these refactored methods,
our tests still pass:

 def _code(self, text, combine_func):
 text = text.replace(" ", "").upper()
 combined = []
 keyword = self.extend_keyword(len(text))
 for p,k in zip(text, keyword):
 combined.append(combine_func(p,k))
 return "".join(combined)

 def encode(self, plaintext):
 return self._code(plaintext, combine_character)

 def decode(self, ciphertext):
 return self._code(ciphertext, separate_character)

Chapter 12

[391]

This is the final benefit of test-driven development, and the most important. Once the
tests are written, we can improve our code as much as we like and be confident that
our changes didn't break anything we have been testing for. Furthermore, we know
exactly when our refactor is finished: when the tests all pass.

Of course, our tests may not comprehensively test everything we need them to;
maintenance or code refactoring can still cause undiagnosed bugs that don't show
up in testing. Automated tests are not foolproof. If bugs do occur, however, it is still
possible to follow a test-driven plan; step one is to write a test (or multiple tests) that
duplicates or "proves" that the bug in question is occurring. This will, of course, fail.
Then write the code to make the tests stop failing. If the tests were comprehensive,
the bug will be fixed, and we will know if it ever happens again, as soon as we run
the test suite.

Finally, we can try to determine how well our tests operate on this code. With the
py.test coverage plugin installed, py.test –coverage-report=report tells
us that our test suite has 100 percent code coverage. This is a great statistic, but
we shouldn't get too cocky about it. Our code hasn't been tested when encoding
messages that have numbers, and its behavior with such inputs is thus undefined.

Exercises
Practice test-driven development. That is your first exercise. It's easier to do this if
you're starting a new project, but if you have existing code you need to work on,
you can start by writing tests for each new feature you implement. This can become
frustrating as you become more enamored with automated tests. The old, untested
code will start to feel rigid and tightly coupled, and will become uncomfortable to
maintain; you'll start feeling like changes you make are breaking the code and you
have no way of knowing, for lack of tests. But if you start small, adding tests will
improve, the codebase improves over time.

So to get your feet wet with test-driven development, start a fresh project. Once
you've started to appreciate the benefits (you will) and realize that the time spent
writing tests is quickly regained in terms of more maintainable code, you'll want
to start writing tests for existing code. This is when you should start doing it, not
before. Writing tests for code that we "know" works is boring. It is hard to get
interested in the project until you realize just how broken the code we thought
was working really is.

Try writing the same set of tests using both the built-in unittest module and
py.test. Which do you prefer? unittest is more similar to test frameworks in
other languages, while py.test is arguably more Pythonic. Both allow us to write
object-oriented tests and to test object-oriented programs with ease.

Testing Object-oriented Programs

[392]

We used py.test in our case study, but we didn't touch on any features that
wouldn't have been easily testable using unittest. Try adapting the tests to use
test skipping or funcargs. Try the various setup and teardown methods, and
compare their use to funcargs. Which feels more natural to you?

In our case study, we have a lot of tests that use a similar VigenereCipher object;
try reworking this code to use a funcarg. How many lines of code does it save?

Try running a coverage report on the tests you've written. Did you miss testing
any lines of code? Even if you have 100 percent coverage, have you tested all the
possible inputs? If you're doing test-driven development, 100 percent coverage
should follow quite naturally, as you will write a test before the code that satisfies
that test. However, if writing tests for existing code, it is more likely that there
will be edge conditions that go untested.

Think carefully about the values that are somehow different: empty lists when you
expect full ones, zero or one or infinity compared to intermediate integers, floats
that don't round to an exact decimal place, strings when you expected numerals,
or the ubiquitous None value when you expected something meaningful. If your
tests cover such edge cases, your code will be in good shape.

Summary
We have finally covered the most important topic in Python programming:
automated testing. Test-driven development is considered a best practice. The
standard library unittest module provides a great out-of-the-box solution for
testing, while the py.test framework has some more Pythonic syntaxes. Mocks
can be used to emulate complex classes in our tests. Code coverage gives us an
estimate of how much of our code is being run by our tests, but it does not tell
us that we have tested the right things.

In the next chapter, we'll jump into a completely different topic: concurrency.

[393]

Concurrency
Concurrency is the art of making a computer do (or appear to do) multiple things
at once. Historically, this meant inviting the processor to switch between different
tasks many times per second. In modern systems, it can also literally mean doing
two or more things simultaneously on separate processor cores.

Concurrency is not inherently an object-oriented topic, but Python's concurrent
systems are built on top of the object-oriented constructs we've covered throughout
the book. This chapter will introduce you to the following topics:

• Threads
• Multiprocessing
• Futures
• AsyncIO

Concurrency is complicated. The basic concepts are fairly simple, but the bugs
that can occur are notoriously difficult to track down. However, for many projects,
concurrency is the only way to get the performance we need. Imagine if a web server
couldn't respond to a user's request until the previous one was completed! We
won't be going into all the details of just how hard it is (another full book would
be required) but we'll see how to do basic concurrency in Python, and some of the
most common pitfalls to avoid.

Concurrency

[394]

Threads
Most often, concurrency is created so that work can continue happening while the
program is waiting for I/O to happen. For example, a server can start processing a
new network request while it waits for data from a previous request to arrive. An
interactive program might render an animation or perform a calculation while waiting
for the user to press a key. Bear in mind that while a person can type more than 500
characters per minute, a computer can perform billions of instructions per second.
Thus, a ton of processing can happen between individual key presses, even when
typing quickly.

It's theoretically possible to manage all this switching between activities within your
program, but it would be virtually impossible to get right. Instead, we can rely on
Python and the operating system to take care of the tricky switching part, while we
create objects that appear to be running independently, but simultaneously. These
objects are called threads; in Python they have a very simple API. Let's take a look
at a basic example:

from threading import Thread

class InputReader(Thread):
 def run(self):
 self.line_of_text = input()

print("Enter some text and press enter: ")
thread = InputReader()
thread.start()

count = result = 1
while thread.is_alive():
 result = count * count
 count += 1

print("calculated squares up to {0} * {0} = {1}".format(
 count, result))
print("while you typed '{}'".format(thread.line_of_text))

This example runs two threads. Can you see them? Every program has one thread,
called the main thread. The code that executes from the beginning is happening in
this thread. The second thread, more obviously, exists as the InputReader class.

To construct a thread, we must extend the Thread class and implement the run
method. Any code inside the run method (or that is called from within that
method) is executed in a separate thread.

Chapter 13

[395]

The new thread doesn't start running until we call the start() method on the object.
In this case, the thread immediately pauses to wait for input from the keyboard.
In the meantime, the original thread continues executing at the point start was
called. It starts calculating squares inside a while loop. The condition in the while
loop checks if the InputReader thread has exited its run method yet; once it does, it
outputs some summary information to the screen.

If we run the example and type the string "hello world", the output looks as follows:

Enter some text and press enter:

hello world

calculated squares up to 1044477 * 1044477 = 1090930114576

while you typed 'hello world'

You will, of course, calculate more or less squares while typing the string as the
numbers are related to both our relative typing speeds, and to the processor speeds
of the computers we are running.

A thread only starts running in concurrent mode when we call the start method. If
we want to take out the concurrent call to see how it compares, we can call thread.
run() in the place that we originally called thread.start(). The output is telling:

Enter some text and press enter:

hello world

calculated squares up to 1 * 1 = 1

while you typed 'hello world'

In this case, the thread never becomes alive and the while loop never executes.
We wasted a lot of CPU power sitting idle while we were typing.

There are a lot of different patterns for using threads effectively. We won't be covering
all of them, but we will look at a common one so we can learn about the join method.
Let's check the current temperature in the capital city of every province in Canada:

from threading import Thread
import json
from urllib.request import urlopen
import time

CITIES = [
 'Edmonton', 'Victoria', 'Winnipeg', 'Fredericton',
 "St. John's", 'Halifax', 'Toronto', 'Charlottetown',

Concurrency

[396]

 'Quebec City', 'Regina'
]

class TempGetter(Thread):
 def __init__(self, city):
 super().__init__()
 self.city = city

 def run(self):
 url_template = (
 'http://api.openweathermap.org/data/2.5/'
 'weather?q={},CA&units=metric')
 response = urlopen(url_template.format(self.city))
 data = json.loads(response.read().decode())
 self.temperature = data['main']['temp']

threads = [TempGetter(c) for c in CITIES]
start = time.time()
for thread in threads:
 thread.start()

for thread in threads:
 thread.join()

for thread in threads:
 print(
 "it is {0.temperature:.0f}°C in {0.city}".format(thread))
print(
 "Got {} temps in {} seconds".format(
 len(threads), time.time() - start))

This code constructs 10 threads before starting them. Notice how we can override the
constructor to pass them into the Thread object, remembering to call super to ensure
the Thread is properly initialized. Pay attention to this: the new thread isn't running
yet, so the __init__ method is still executing from inside the main thread. Data we
construct in one thread is accessible from other running threads.

After the 10 threads have been started, we loop over them again, calling the join()
method on each. This method essentially says "wait for the thread to complete before
doing anything". We call this ten times in sequence; the for loop won't exit until all
ten threads have completed.

Chapter 13

[397]

At this point, we can print the temperature that was stored on each thread object.
Notice once again that we can access data that was constructed within the thread
from the main thread. In threads, all state is shared by default.

Executing this code on my 100 mbit connection takes about two tenths of a second:

it is 5°C in Edmonton

it is 11°C in Victoria

it is 0°C in Winnipeg

it is -10°C in Fredericton

it is -12°C in St. John's

it is -8°C in Halifax

it is -6°C in Toronto

it is -13°C in Charlottetown

it is -12°C in Quebec City

it is 2°C in Regina

 Got 10 temps in 0.18970298767089844 seconds

If we run this code in a single thread (by changing the start() call to run() and
commenting out the join() call), it takes closer to 2 seconds because each 0.2 second
request has to complete before the next one begins. This speedup of 10 times shows
just how useful concurrent programming can be.

The many problems with threads
Threads can be useful, especially in other programming languages, but modern
Python programmers tend to avoid them for several reasons. As we'll see, there
are other ways to do concurrent programming that are receiving more attention
from the Python developers. Let's discuss some of these pitfalls before moving
on to more salient topics.

Shared memory
The main problem with threads is also their primary advantage. Threads have
access to all the memory and thus all the variables in the program. This can too
easily cause inconsistencies in the program state. Have you ever encountered a
room where a single light has two switches and two different people turn them
on at the same time? Each person (thread) expects their action to turn the lamp
(a variable) on, but the resulting value (the lamp is off) is inconsistent with those
expectations. Now imagine if those two threads were transferring funds between
bank accounts or managing the cruise control in a vehicle.

Concurrency

[398]

The solution to this problem in threaded programming is to "synchronize" access to
any code that reads or writes a shared variable. There are a few different ways to do
this, but we won't go into them here so we can focus on more Pythonic constructs. The
synchronization solution works, but it is way too easy to forget to apply it. Worse, bugs
due to inappropriate use of synchronization are really hard to track down because the
order in which threads perform operations is inconsistent. We can't easily reproduce
the error. Usually, it is safest to force communication between threads to happen
using a lightweight data structure that already uses locks appropriately. Python
offers the queue.Queue class to do this; it's functionality is basically the same as the
multiprocessing.Queue that we will discuss in the next section.

In some cases, these disadvantages might be outweighed by the one advantage of
allowing shared memory: it's fast. If multiple threads need access to a huge data
structure, shared memory can provide that access quickly. However, this advantage is
usually nullified by the fact that, in Python, it is impossible for two threads running on
different CPU cores to be performing calculations at exactly the same time. This brings
us to our second problem with threads.

The global interpreter lock
In order to efficiently manage memory, garbage collection, and calls to machine
code in libraries, Python has a utility called the global interpreter lock, or GIL. It's
impossible to turn off, and it means that threads are useless in Python for one thing
that they excel at in other languages: parallel processing. The GIL's primary effect,
for our purposes is to prevent any two threads from doing work at the exact same
time, even if they have work to do. In this case, "doing work" means using the CPU,
so it's perfectly ok for multiple threads to access the disk or network; the GIL is
released as soon as the thread starts to wait for something.

The GIL is quite highly disparaged, mostly by people who don't understand what it is
or all the benefits it brings to Python. It would definitely be nice if our language didn't
have this restriction, but the Python reference developers have determined that, for
now at least, it brings more value than it costs. It makes the reference implementation
easier to maintain and develop, and during the single-core processor days when
Python was originally developed, it actually made the interpreter faster. The net
result of the GIL, however, is that it limits the benefits that threads bring us, without
alleviating the costs.

Chapter 13

[399]

While the GIL is a problem in the reference implementation of Python
that most people use, it has been solved in some of the nonstandard
implementations such as IronPython and Jython. Unfortunately, at the
time of publication, none of these support Python 3.

Thread overhead
One final limitation of threads as compared to the asynchronous system we will be
discussing later is the cost of maintaining the thread. Each thread takes up a certain
amount of memory (both in the Python process and the operating system kernel)
to record the state of that thread. Switching between the threads also uses a (small)
amount of CPU time. This work happens seamlessly without any extra coding (we
just have to call start() and the rest is taken care of), but the work still has to
 happen somewhere.

This can be alleviated somewhat by structuring our workload so that threads can
be reused to perform multiple jobs. Python provides a ThreadPool feature to handle
this. It is shipped as part of the multiprocessing library and behaves identically to
the ProcessPool, that we will discuss shortly, so let's defer discussion until the
next section.

Multiprocessing
The multiprocessing API was originally designed to mimic the thread API. However,
it has evolved and in recent versions of Python 3, it supports more features more
robustly. The multiprocessing library is designed when CPU-intensive jobs need to
happen in parallel and multiple cores are available (given that a four core Raspberry
Pi can currently be purchased for $35, there are usually multiple cores available).
Multiprocessing is not useful when the processes spend a majority of their time
waiting on I/O (for example, network, disk, database, or keyboard), but they are
the way to go for parallel computation.

The multiprocessing module spins up new operating system processes to do the
work. On Windows machines, this is a relatively expensive operation; on Linux,
processes are implemented in the kernel the same way threads are, so the overhead
is limited to the cost of running separate Python interpreters in each process.

Concurrency

[400]

Let's try to parallelize a compute-heavy operation using similar constructs to those
provided by the threading API:

from multiprocessing import Process, cpu_count
import time
import os

class MuchCPU(Process):
 def run(self):
 print(os.getpid())
 for i in range(200000000):
 pass

if __name__ == '__main__':
 procs = [MuchCPU() for f in range(cpu_count())]
 t = time.time()
 for p in procs:
 p.start()
 for p in procs:
 p.join()
 print('work took {} seconds'.format(time.time() - t))

This example just ties up the CPU for 200 million iterations. You may not consider
this to be useful work, but it's a cold day and I appreciate the heat my laptop
generates under such load.

The API should be familiar; we implement a subclass of Process (instead of Thread)
and implement a run method. This method prints out the process ID (a unique number
the operating system assigns to each process on the machine) before doing some
intense (if misguided) work.

Pay special attention to the if __name__ == '__main__': guard around the module
level code that prevents it to run if the module is being imported, rather than run
as a program. This is good practice in general, but when using multiprocessing on
some operating systems, it is essential. Behind the scenes, multiprocessing may have
to import the module inside the new process in order to execute the run() method.
If we allowed the entire module to execute at that point, it would start creating new
processes recursively until the operating system ran out of resources.

We construct one process for each processor core on our machine, then start and join
each of those processes. On my 2014 era quad-core laptop, the output looks like this:

6987

6988

Chapter 13

[401]

6989

6990

work took 12.96659541130066 seconds

The first four lines are the process ID that was printed inside each MuchCPU instance.
The last line shows that the 200 million iterations can run in about 13 seconds on my
machine. During that 13 seconds, my process monitor indicated that all four of my
cores were running at 100 percent.

If we subclass threading.Thread instead of multiprocessing.Process in
MuchCPU, the output looks like this:

7235

7235

7235

7235

work took 28.577413082122803 seconds

This time, the four threads are running inside the same process and take close to three
times as long to run. This is the cost of the global interpreter lock; in other languages
or implementations of Python, the threaded version would run at least as fast as the
multiprocessing version, We might expect it to be four times as long, but remember
that many other programs are running on my laptop. In the multiprocessing version,
these programs also need a share of the four CPUs. In the threading version, those
programs can use the other three CPUs instead.

Multiprocessing pools
In general, there is no reason to have more processes than there are processors on the
computer. There are a few reasons for this:

• Only cpu_count() processes can run simultaneously
• Each process consumes resources with a full copy of the Python interpreter
• Communication between processes is expensive
• Creating processes takes a nonzero amount of time

Given these constraints, it makes sense to create at most cpu_count() processes
when the program starts and then have them execute tasks as needed. It is not
difficult to implement a basic series of communicating processes that does this,
but it can be tricky to debug, test, and get right. Of course, Python being Python,
we don't have to do all this work because the Python developers have already
done it for us in the form of multiprocessing pools.

Concurrency

[402]

The primary advantage of pools is that they abstract away the overhead of figuring
out what code is executing in the main process and which code is running in the
subprocess. As with the threading API that multiprocessing mimics, it can often be
hard to remember who is executing what. The pool abstraction restricts the number
of places that code in different processes interact with each other, making it much
easier to keep track of.

• Pools also seamlessly hide the process of passing data between processes.
Using a pool looks much like a function call; you pass data into a function,
it is executed in another process or processes, and when the work is done, a
value is returned. It is important to understand that under the hood, a lot of
work is being done to support this: objects in one process are being pickled
and passed into a pipe.

• Another process retrieves data from the pipe and unpickles it. Work is done
in the subprocess and a result is produced. The result is pickled and passed
into a pipe. Eventually, the original process unpickles it and returns it.

All this pickling and passing data into pipes takes time and memory. Therefore, it is
ideal to keep the amount and size of data passed into and returned from the pool to
a minimum, and it is only advantageous to use the pool if a lot of processing has to
be done on the data in question.

Armed with this knowledge, the code to make all this machinery work is surprisingly
simple. Let's look at the problem of calculating all the prime factors of a list of random
numbers. This is a common and expensive part of a variety of cryptography algorithms
(not to mention attacks on those algorithms!). It requires years of processing power to
crack the extremely large numbers used to secure your bank accounts. The following
implementation, while readable, is not at all efficient, but that's ok because we want
to see it using lots of CPU time:

import random
from multiprocessing.pool import Pool

def prime_factor(value):
 factors = []
 for divisor in range(2, value-1):
 quotient, remainder = divmod(value, divisor)
 if not remainder:
 factors.extend(prime_factor(divisor))
 factors.extend(prime_factor(quotient))
 break

Chapter 13

[403]

 else:
 factors = [value]
 return factors

if __name__ == '__main__':
 pool = Pool()

 to_factor = [
 random.randint(100000, 50000000) for i in range(20)
]
 results = pool.map(prime_factor, to_factor)
 for value, factors in zip(to_factor, results):
 print("The factors of {} are {}".format(value, factors))

Let's focus on the parallel processing aspects as the brute force recursive algorithm
for calculating factors is pretty clear. We first construct a multiprocessing pool
instance. By default, this pool creates a separate process for each of the CPU
cores in the machine it is running on.

The map method accepts a function and an iterable. The pool pickles each of the values
in the iterable and passes it into an available process, which executes the function on it.
When that process is finished doing it's work, it pickles the resulting list of factors and
passes it back to the pool. Once all the pools are finished processing work (which could
take some time), the results list is passed back to the original process, which has been
waiting patiently for all this work to complete.

It is often more useful to use the similar map_async method, which returns
immediately even though the processes are still working. In that case, the results
variable would not be a list of values, but a promise to return a list of values later
by calling results.get(). This promise object also has methods like ready(),
and wait(), which allow us to check whether all the results are in yet.

Alternatively, if we don't know all the values we want to get results for in advance,
we can use the apply_async method to queue up a single job. If the pool has a
process that isn't already working, it will start immediately; otherwise, it will hold
onto the task until there is a free process available.

Pools can also be closed, which refuses to take any further tasks, but processes
everything currently in the queue, or terminated, which goes one step further and
refuses to start any jobs still on the queue, although any jobs currently running are
still permitted to complete.

Concurrency

[404]

Queues
If we need more control over communication between processes, we can use a Queue.
Queue data structures are useful for sending messages from one process into one or
more other processes. Any picklable object can be sent into a Queue, but remember
that pickling can be a costly operation, so keep such objects small. To illustrate
queues, let's build a little search engine for text content that stores all relevant
entries in memory.

This is not the most sensible way to build a text-based search engine, but I have
used this pattern to query numerical data that needed to use CPU-intensive
processes to construct a chart that was then rendered to the user.

This particular search engine scans all files in the current directory in parallel. A
process is constructed for each core on the CPU. Each of these is instructed to load
some of the files into memory. Let's look at the function that does the loading
and searching:

def search(paths, query_q, results_q):
 lines = []
 for path in paths:
 lines.extend(l.strip() for l in path.open())

 query = query_q.get()
 while query:
 results_q.put([l for l in lines if query in l])
 query = query_q.get()

Remember, this function is run in a different process (in fact, it is run in cpucount()
different processes) from the main thread. It is passes a list of path.path objects
and two multiprocessing.Queue objects; one for incoming queries and one to
send outgoing results. These queues have a similar interface to the Queue class we
discussed in Chapter 6, Python Data Structures. However, they are doing extra work
to pickle the data in the queue and pass it into the subprocess over a pipe. These two
queues are set up in the main process and passed through the pipes into the search
function inside the child processes.

The search code is pretty dumb, both in terms of efficiency and of capabilities; it loops
over every line stored in memory and puts the matching ones in a list. The list is placed
on a queue and passed back to the main process.

Let's look at the main process, which sets up these queues:

if __name__ == '__main__':
 from multiprocessing import Process, Queue, cpu_count
 from path import path
 cpus = cpu_count()

Chapter 13

[405]

 pathnames = [f for f in path('.').listdir() if f.isfile()]
 paths = [pathnames[i::cpus] for i in range(cpus)]
 query_queues = [Queue() for p in range(cpus)]
 results_queue = Queue()

 search_procs = [
 Process(target=search, args=(p, q, results_queue))
 for p, q in zip(paths, query_queues)
]
 for proc in search_procs: proc.start()

For easier description, let's assume cpu_count is four. Notice how the import
statements are placed inside the if guard? This is a small optimization that prevents
them from being imported in each subprocess (where they aren't needed) on certain
operating systems. We list all the paths in the current directory and then split the list
into four approximately equal parts. We also construct a list of four Queue objects to
send data into each subprocess. Finally, we construct a single results queue; this
is passed into all four of the subprocesses. Each of them can put data into the queue
and it will be aggregated in the main process.

Now let's look at the code that makes a search actually happen:

 for q in query_queues:
 q.put("def")
 q.put(None) # Signal process termination

 for i in range(cpus):
 for match in results_queue.get():
 print(match)
 for proc in search_procs: proc.join()

This code performs a single search for "def" (because it's a common phrase in
a directory full of Python files!). In a more production ready system, we would
probably hook a socket up to this search code. In that case, we'd have to change
the inter-process protocol so that the message coming back on the return queue
contained enough information to identify which of many queries the results were
attached to.

This use of queues is actually a local version of what could become a distributed
system. Imagine if the searches were being sent out to multiple computers and then
recombined. We won't discuss it here, but the multiprocessing module includes a
manager class that can take a lot of the boilerplate out of the preceding code. There
is even a version of the multiprocessing.Manager that can manage subprocesses
on remote systems to construct a rudimentary distributed application. Check the
Python multiprocessing documentation if you are interested in pursuing this further.

Concurrency

[406]

The problems with multiprocessing
As threads do, multiprocessing also has problems, some of which we have already
discussed. There is no best way to do concurrency; this is especially true in Python. We
always need to examine the parallel problem to figure out which of the many available
solutions is the best one for that problem. Sometimes, there is no best solution.

In the case of multiprocessing, the primary drawback is that sharing data between
processes is very costly. As we have discussed, all communication between processes,
whether by queues, pipes, or a more implicit mechanism requires pickling the objects.
Excessive pickling quickly dominates processing time. Multiprocessing works best
when relatively small objects are passed between processes and a tremendous amount
of work needs to be done on each one. On the other hand, if no communication
between processes is required, there may not be any point in using the module at all;
we can spin up four separate Python processes and use them independently.

The other major problem with multiprocessing is that, like threads, it can be hard to
tell which process a variable or method is being accessed in. In multiprocessing, if
you access a variable from another process it will usually overwrite the variable in the
currently running process while the other process keeps the old value. This is really
confusing to maintain, so don't do it.

Futures
Let's start looking at a more asynchronous way of doing concurrency. Futures wrap
either multiprocessing or threading depending on what kind of concurrency we need
(tending towards I/O versus tending towards CPU). They don't completely solve the
problem of accidentally altering shared state, but they allow us to structure our code
such that it is easier to track down when we do so. Futures provide distinct boundaries
between the different threads or processes. Similar to the multiprocessing pool, they
are useful for "call and answer" type interactions in which processing can happen in
another thread and then at some point in the future (they are aptly named, after all),
you can ask it for the result. It's really just a wrapper around multiprocessing pools
and thread pools, but it provides a cleaner API and encourages nicer code.

A future is an object that basically wraps a function call. That function call is run in
the background in a thread or process. The future object has methods to check if the
future has completed and to get the results after it has completed.

Chapter 13

[407]

Let's do another file search example. In the last section, we implemented a version
of the unix grep command. This time, let's do a simple version of the find
command. The example will search the entire filesystem for paths that contain
a given string of characters:

from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
from os.path import sep as pathsep
from collections import deque

def find_files(path, query_string):
 subdirs = []
 for p in path.iterdir():
 full_path = str(p.absolute())
 if p.is_dir() and not p.is_symlink():
 subdirs.append(p)
 if query_string in full_path:
 print(full_path)

 return subdirs

query = '.py'
futures = deque()
basedir = Path(pathsep).absolute()

with ThreadPoolExecutor(max_workers=10) as executor:
 futures.append(
 executor.submit(find_files, basedir, query))
 while futures:
 future = futures.popleft()
 if future.exception():
 continue
 elif future.done():
 subdirs = future.result()
 for subdir in subdirs:
 futures.append(executor.submit(
 find_files, subdir, query))
 else:
 futures.append(future)

Concurrency

[408]

This code consists of a function named find_files that is run in a separate thread (or
process, if we used ProcessPoolExecutor). There isn't anything particularly special
about this function, but note how it does not access any global variables. All interaction
with the external environment is passed into the function or returned from it. This is
not a technical requirement, but it is the best way to keep your brain inside your skull
when programming with futures.

Accessing outside variables without proper synchronization results
in something called a race condition. For example, imagine two
concurrent writes trying to increment an integer counter. They start at
the same time and both read the value as 5. Then they both increment
the value and write back the result as 6. But if two processes are
trying to increment a variable, the expected result would be that it
gets incremented by two, so the result should be 7. Modern wisdom
is that the easiest way to avoid doing this is to keep as much state as
possible private and share them through known-safe constructs, such
as queues.

We set up a couple variables before we get started; we'll be searching for all files that
contain the characters '.py' for this example. We have a queue of futures that we'll
discuss shortly. The basedir variable points to the root of the filesystem; '/' on
Unix machines and probably C:\ on Windows.

First, let's have a short course on search theory. This algorithm implements breadth
first search in parallel. Rather than recursively searching every directory using a depth
first search, it adds all the subdirectories in the current folder to the queue, then all the
subdirectories of each of those folders and so on.

The meat of the program is known as an event loop. We can construct a
ThreadPoolExecutor as a context manager so that it is automatically cleaned up
and its threads closed when it is done. It requires a max_workers argument to
indicate the number of threads running at a time; if more than this many jobs are
submitted, it queues up the rest until a worker thread becomes available. When using
ProcessPoolExecutor, this is normally constrained to the number of CPUs on the
machine, but with threads, it can be much higher, depending how many are waiting
on I/O at a time. Each thread takes up a certain amount of memory, so it shouldn't be
too high; it doesn't take all that many threads before the speed of the disk, rather than
number of parallel requests, is the bottleneck.

Chapter 13

[409]

Once the executor has been constructed, we submit a job to it using the root directory.
The submit() method immediately returns a Future object, which promises to give
us a result eventually. The future is placed on the queue. The loop then repeatedly
removes the first future from the queue and inspects it. If it is still running, it gets
added back to the end of the queue. Otherwise, we check if the function raised an
exception with a call to future.exception(). If it did, we just ignore it (it's usually a
permission error, although a real app would need to be more careful about what the
exception was). If we didn't check this exception here, it would be raised when we
called result() and could be handled through the normal try...except mechanism.

Assuming no exception occurred, we can call result() to get the return value of the
function call. Since the function returns a list of subdirectories that are not symbolic
links (my lazy way of preventing an infinite loop), result() returns the same thing.
These new subdirectories are submitted to the executor and the resulting futures are
tossed onto the queue to have their contents searched in a later iteration.

So that's all that is required to develop a future-based I/O-bound application. Under
the hood, it's using the same thread or process APIs we've already discussed, but it
provides a more understandable interface and makes it easier to see the boundaries
between concurrently running functions (just don't try to access global variables
from inside the future!).

AsyncIO
AsyncIO is the current state of the art in Python concurrent programming. It
combines the concept of futures and an event loop with the coroutines we discussed
in Chapter 9, The Iterator Pattern. The result is about as elegant and easy to understand
as it is possible to get when writing concurrent code, though that isn't saying a lot!

AsyncIO can be used for a few different concurrent tasks, but it was specifically
designed for network I/O. Most networking applications, especially on the server
side, spend a lot of time waiting for data to come in from the network. This can be
solved by handling each client in a separate thread, but threads use up memory and
other resources. AsyncIO uses coroutines instead of threads.

The library also provides its own event loop, obviating the need for the several
lines long while loop in the previous example. However, event loops come with a
cost. When we run code in an async task on the event loop, that code must return
immediately, blocking neither on I/O nor on long-running calculations. This is a
minor thing when writing our own code, but it means that any standard library or
third-party functions that block on I/O have to have non-blocking versions created.

Concurrency

[410]

AsyncIO solves this by creating a set of coroutines that use the yield from syntax to
return control to the event loop immediately. The event loop takes care of checking
whether the blocking call has completed and performing any subsequent tasks, just
like we did manually in the previous section.

AsyncIO in action
A canonical example of a blocking function is the time.sleep call. Let's use the
asynchronous version of this call to illustrate the basics of an AsyncIO event loop:

import asyncio
import random

@asyncio.coroutine
def random_sleep(counter):
 delay = random.random() * 5
 print("{} sleeps for {:.2f} seconds".format(counter, delay))
 yield from asyncio.sleep(delay)
 print("{} awakens".format(counter))

@asyncio.coroutine
def five_sleepers():
 print("Creating five tasks")
 tasks = [
 asyncio.async(random_sleep(i)) for i in range(5)]
 print("Sleeping after starting five tasks")
 yield from asyncio.sleep(2)
 print("Waking and waiting for five tasks")
 yield from asyncio.wait(tasks)

asyncio.get_event_loop().run_until_complete(five_sleepers())
print("Done five tasks")

This is a fairly basic example, but it covers several features of AsyncIO programming.
It is easiest to understand in the order that it executes, which is more or less bottom
to top.

The second last line gets the event loop and instructs it to run a future until it is
finished. The future in question is named five_sleepers. Once that future has
done its work, the loop will exit and our code will terminate. As asynchronous
programmers, we don't need to know too much about what happens inside that run_
until_complete call, but be aware that a lot is going on. It's a souped up coroutine
version of the futures loop we wrote in the previous chapter that knows how to deal
with iteration, exceptions, function returns, parallel calls, and more.

Chapter 13

[411]

Now look a little more closely at that five_sleepers future. Ignore the decorator for
a few paragraphs; we'll get back to it. The coroutine first constructs five instances of
the random_sleep future. The resulting futures are wrapped in an asyncio.async
task, which adds them to the loop's task queue so they can execute concurrently
when control is returned to the event loop.

That control is returned whenever we call yield from. In this case, we call yield
from asyncio.sleep to pause execution of this coroutine for two seconds. During
this break, the event loop executes the tasks that it has queued up; namely the five
random_sleep futures. These coroutines each print a starting message, then send
control back to the event loop for a specific amount of time. If any of the sleep calls
inside random_sleep are shorter than two seconds, the event loop passes control back
into the relevant future, which prints its awakening message before returning. When
the sleep call inside five_sleepers wakes up, it executes up to the next yield from
call, which waits for the remaining random_sleep tasks to complete. When all the
sleep calls have finished executing, the random_sleep tasks return, which removes
them from the event queue. Once all five of those are completed, the asyncio.wait
call and then the five_sleepers method also return. Finally, since the event queue is
now empty, the run_until_complete call is able to terminate and the program ends.

The asyncio.coroutine decorator mostly just documents that this coroutine is meant
to be used as a future in an event loop. In this case, the program would run just fine
without the decorator. However, the asyncio.coroutine decorator can also be used
to wrap a normal function (one that doesn't yield) so that it can be treated as a future.
In this case, the entire function executes before returning control to the event loop; the
decorator just forces the function to fulfill the coroutine API so the event loop knows
how to handle it.

Reading an AsyncIO future
An AsyncIO coroutine executes each line in order until it encounters a yield from
statement, at which point it returns control to the event loop. The event loop then
executes any other tasks that are ready to run, including the one that the original
coroutine was waiting on. Whenever that child task completes, the event loop sends
the result back into the coroutine so that it can pick up executing until it encounters
another yield from statement or returns.

This allows us to write code that executes synchronously until we explicitly need to
wait for something. This removes the nondeterministic behavior of threads, so we
don't need to worry nearly so much about shared state.

Concurrency

[412]

It's still a good idea to avoid accessing shared state from inside a
coroutine. It makes your code much easier to reason about. More
importantly, even though an ideal world might have all asynchronous
execution happen inside coroutines, the reality is that some futures
are executed behind the scenes inside threads or processes. Stick to a
"share nothing" philosophy to avoid a ton of difficult bugs.

In addition, AsyncIO allows us to collect logical sections of code together inside
a single coroutine, even if we are waiting for other work elsewhere. As a specific
instance, even though the yield from asyncio.sleep call in the random_sleep
coroutine is allowing a ton of stuff to happen inside the event loop, the coroutine
itself looks like it's doing everything in order. This ability to read related pieces of
asynchronous code without worrying about the machinery that waits for tasks to
complete is the primary benefit of the AsyncIO module.

AsyncIO for networking
AsyncIO was specifically designed for use with network sockets, so let's implement
a DNS server. More accurately, let's implement one extremely basic feature of a
DNS server.

The domain name system's basic purpose is to translate domain names, such as
www.amazon.com into IP addresses such as 72.21.206.6. It has to be able to perform
many types of queries and know how to contact other DNS servers if it doesn't
have the answer required. We won't be implementing any of this, but the following
example is able to respond directly to a standard DNS query to look up IPs for my
three most recent employers:

import asyncio
from contextlib import suppress

ip_map = {
 b'facebook.com.': '173.252.120.6',
 b'yougov.com.': '213.52.133.246',
 b'wipo.int.': '193.5.93.80'
}

def lookup_dns(data):
 domain = b''
 pointer, part_length = 13, data[12]
 while part_length:

Chapter 13

[413]

 domain += data[pointer:pointer+part_length] + b'.'
 pointer += part_length + 1
 part_length = data[pointer - 1]

 ip = ip_map.get(domain, '127.0.0.1')

 return domain, ip

def create_response(data, ip):
 ba = bytearray
 packet = ba(data[:2]) + ba([129, 128]) + data[4:6] * 2
 packet += ba(4) + data[12:]
 packet += ba([192, 12, 0, 1, 0, 1, 0, 0, 0, 60, 0, 4])
 for x in ip.split('.'): packet.append(int(x))
 return packet

class DNSProtocol(asyncio.DatagramProtocol):
 def connection_made(self, transport):
 self.transport = transport

 def datagram_received(self, data, addr):
 print("Received request from {}".format(addr[0]))
 domain, ip = lookup_dns(data)
 print("Sending IP {} for {} to {}".format(
 domain.decode(), ip, addr[0]))
 self.transport.sendto(
 create_response(data, ip), addr)

loop = asyncio.get_event_loop()
transport, protocol = loop.run_until_complete(
 loop.create_datagram_endpoint(
 DNSProtocol, local_addr=('127.0.0.1', 4343)))
print("DNS Server running")

with suppress(KeyboardInterrupt):
 loop.run_forever()
transport.close()
loop.close()

Concurrency

[414]

This example sets up a dictionary that dumbly maps a few domains to IPv4
addresses. It is followed by two functions that extract information from a binary
DNS query packet and construct the response. We won't be discussing these; if you
want to know more about DNS read RFC ("request for comment", the format for
defining most Internet protocols) 1034 and 1035.

You can test this service by running the following command in another terminal:

nslookup -port=4343 facebook.com localhost

Let's get on with the entrée. AsyncIO networking revolves around the intimately
linked concepts of transports and protocols. A protocol is a class that has specific
methods that are called when relevant events happen. Since DNS runs on top
of UDP (User Datagram Protocol); we build our protocol class as a subclass of
DatagramProtocol. This class has a variety of events that it can respond to; we are
specifically interested in the initial connection occurring (solely so we can store the
transport for future use) and the datagram_received event. For DNS, each received
datagram must be parsed and responded to, at which point the interaction is over.

So, when a datagram is received, we process the packet, look up the IP, and construct
a response using the functions we aren't talking about (they're black sheep in the
family). Then we instruct the underlying transport to send the resulting packet back
to the requesting client using its sendto method.

The transport essentially represents a communication stream. In this case, it abstracts
away all the fuss of sending and receiving data on a UDP socket on an event loop.
There are similar transports for interacting with TCP sockets and subprocesses,
for example.

The UDP transport is constructed by calling the loop's create_datagram_endpoint
coroutine. This constructs the appropriate UDP socket and starts listening on it. We
pass it the address that the socket needs to listen on, and importantly, the protocol
class we created so that the transport knows what to call when it receives data.

Since the process of initializing a socket takes a non-trivial amount of time and would
block the event loop, the create_datagram_endpoint function is a coroutine. In our
example, we don't really need to do anything while we wait for this initialization,
so we wrap the call in loop.run_until_complete. The event loop takes care of
managing the future, and when it's complete, it returns a tuple of two values: the
newly initialized transport and the protocol object that was constructed from the
class we passed in.

Chapter 13

[415]

Behind the scenes, the transport has set up a task on the event loop that is listening for
incoming UDP connections. All we have to do, then, is start the event loop running
with the call to loop.run_forever() so that task can process these packets. When the
packets arrive, they are processed on the protocol and everything just works.

The only other major thing to pay attention to is that transports (and, indeed, event
loops) are supposed to be closed when we are finished with them. In this case, the code
runs just fine without the two calls to close(), but if we were constructing transports
on the fly (or just doing proper error handling!), we'd need to be quite a bit more
conscious of it.

You may have been dismayed to see how much boilerplate is required in setting up
a protocol class and underlying transport. AsyncIO provides an abstraction on top
of these two key concepts called streams. We'll see an example of streams in the TCP
server in the next example.

Using executors to wrap blocking code
AsyncIO provides its own version of the futures library to allow us to run code
in a separate thread or process when there isn't an appropriate non-blocking call
to be made. This essentially allows us to combine threads and processes with the
asynchronous model. One of the more useful applications of this feature is to get
the best of both worlds when an application has bursts of I/O-bound and CPU-
bound activity. The I/O-bound portions can happen in the event-loop while the
CPU-intensive work can be spun off to a different process. To illustrate this, let's
implement "sorting as a service" using AsyncIO:

import asyncio
import json
from concurrent.futures import ProcessPoolExecutor

def sort_in_process(data):
 nums = json.loads(data.decode())
 curr = 1
 while curr < len(nums):
 if nums[curr] >= nums[curr-1]:
 curr += 1
 else:
 nums[curr], nums[curr-1] = \
 nums[curr-1], nums[curr]
 if curr > 1:

Concurrency

[416]

 curr -= 1

 return json.dumps(nums).encode()

@asyncio.coroutine
def sort_request(reader, writer):
 print("Received connection")
 length = yield from reader.read(8)
 data = yield from reader.readexactly(
 int.from_bytes(length, 'big'))
 result = yield from asyncio.get_event_loop().run_in_executor(
 None, sort_in_process, data)
 print("Sorted list")
 writer.write(result)
 writer.close()
 print("Connection closed")

loop = asyncio.get_event_loop()
loop.set_default_executor(ProcessPoolExecutor())
server = loop.run_until_complete(
 asyncio.start_server(sort_request, '127.0.0.1', 2015))
print("Sort Service running")

loop.run_forever()
server.close()
loop.run_until_complete(server.wait_closed())
loop.close()

This is an example of good code implementing some really stupid ideas. The whole
idea of sort as a service is pretty ridiculous. Using our own sorting algorithm instead
of calling Python's sorted is even worse. The algorithm we used is called gnome sort,
or in some cases, "stupid sort". It is a slow sort algorithm implemented in pure Python.
We defined our own protocol instead of using one of the many perfectly suitable
application protocols that exist in the wild. Even the idea of using multiprocessing for
parallelism might be suspect here; we still end up passing all the data into and out of
the subprocesses. Sometimes, it's important to take a step back from the program you
are writing and ask yourself if you are trying to meet the right goals.

But let's look at some of the smart features of this design. First, we are passing bytes
into and out of the subprocess. This is a lot smarter than decoding the JSON in the
main process. It means the (relatively expensive) decoding can happen on a different
CPU. Also, pickled JSON strings are generally smaller than pickled lists, so less data
is passing between processes.

Chapter 13

[417]

Second, the two methods are very linear; it looks like code is being executed one line
after another. Of course, in AsyncIO, this is an illusion, but we don't have to worry
about shared memory or concurrency primitives.

Streams
The previous example should look familiar by now as it has a similar boilerplate
to other AsyncIO programs. However, there are a few differences. You'll notice we
called start_server instead of create_server. This method hooks into AsyncIO's
streams instead of using the underlying transport/protocol code. Instead of passing
in a protocol class, we can pass in a normal coroutine, which receives reader and
writer parameters. These both represent streams of bytes that can be read from and
written like files or sockets. Second, because this is a TCP server instead of UDP,
there is some socket cleanup required when the program finishes. This cleanup is
a blocking call, so we have to run the wait_closed coroutine on the event loop.

Streams are fairly simple to understand. Reading is a potentially blocking call so
we have to call it with yield from. Writing doesn't block; it just puts the data on
a queue, which AsyncIO sends out in the background.

Our code inside the sort_request method makes two read requests. First, it reads 8
bytes from the wire and converts them to an integer using big endian notation. This
integer represents the number of bytes of data the client intends to send. So in the
next call, to readexactly, it reads that many bytes. The difference between read and
readexactly is that the former will read up to the requested number of bytes, while
the latter will buffer reads until it receives all of them, or until the connection closes.

Executors
Now let's look at the executor code. We import the exact same ProcessPoolExecutor
that we used in the previous section. Notice that we don't need a special AsyncIO
version of it. The event loop has a handy run_in_executor coroutine that we can
use to run futures on. By default, the loop runs code in ThreadPoolExecutor, but
we can pass in a different executor if we wish. Or, as we did in this example, we can
set a different default when we set up the event loop by calling loop.set_default_
executor().

As you probably recall from the previous section, there is not a lot of boilerplate for
using futures with an executor. However, when we use them with AsyncIO, there is
none at all! The coroutine automatically wraps the function call in a future and submits
it to the executor. Our code blocks until the future completes, while the event loop
continues processing other connections, tasks, or futures. When the future is done,
the coroutine wakes up and continues on to write the data back to the client.

Concurrency

[418]

You may be wondering if, instead of running multiple processes inside an event
loop, it might be better to run multiple event loops in different processes. The answer
is: "maybe". However, depending on the exact problem space, we are probably better
off running independent copies of a program with a single event loop than to try to
coordinate everything with a master multiprocessing process.

We've hit most of the high points of AsyncIO in this section, and the chapter has
covered many other concurrency primitives. Concurrency is a hard problem to
solve, and no one solution fits all use cases. The most important part of designing a
concurrent system is deciding which of the available tools is the correct one to use
for the problem. We have seen advantages and disadvantages of several concurrent
systems, and now have some insights into which are the better choices for different
types of requirements.

Case study
To wrap up this chapter, and the book, let's build a basic image compression tool. It
will take black and white images (with 1 bit per pixel, either on or off) and attempt to
compress it using a very basic form of compression known as run-length encoding.
You may find black and white images a bit far-fetched. If so, you haven't enjoyed
enough hours at http://xkcd.com!

I've included some sample black and white BMP images (which are easy to read data
into and leave a lot of opportunity to improve on file size) with the example code for
this chapter.

We'll be compressing the images using a simple technique called run-length
encoding. This technique basically takes a sequence of bits and replaces any strings
of repeated bits with the number of bits that are repeated. For example, the string
000011000 might be replaced with 04 12 03 to indicate that 4 zeros are followed by 2
ones and then 3 more zeroes. To make things a little more interesting, we will break
each row into 127 bit chunks.

I didn't pick 127 bits arbitrarily. 127 different values can be encoded into 7 bits,
which means that if a row contains all ones or all zeros, we can store it in a single
byte; the first bit indicating whether it is a row of 0s or a row of 1s, and the
remaining 7 bits indicating how many of that bit exists.

Breaking up the image into blocks has another advantage; we can process individual
blocks in parallel without them depending on each other. However, there's a major
disadvantage as well; if a run has just a few ones or zeros in it, then it will take up
more space in the compressed file. When we break up long runs into blocks, we may
end up creating more of these small runs and bloat the size of the file.

http://xkcd.com

Chapter 13

[419]

When dealing with files, we have to think about the exact layout of the bytes in the
compressed file. Our file will store two byte little-endian integers at the beginning
of the file representing the width and height of the completed file. Then it will write
bytes representing the 127 bit chunks of each row.

Now before we start designing a concurrent system to build such compressed
images, we should ask a fundamental question: Is this application I/O-bound
or CPU-bound?

My answer, honestly, is "I don't know". I'm not sure whether the app will spend
more time loading data from disk and writing it back or doing the compression in
memory. I suspect that it is a CPU bound app in principle, but once we start passing
image strings into subprocesses, we may lose any benefit of parallelism. The optimal
solution to this problem is probably to write a C or Cython extension, but let's see
how far we can get in pure Python.

We'll build this application using bottom-up design. That way we'll have some
building blocks that we can combine into different concurrency patterns to see
how they compare. Let's start with the code that compresses a 127-bit chunk using
run-length encoding:

from bitarray import bitarray
def compress_chunk(chunk):
 compressed = bytearray()
 count = 1
 last = chunk[0]
 for bit in chunk[1:]:
 if bit != last:
 compressed.append(count | (128 * last))
 count = 0
 last = bit
 count += 1
 compressed.append(count | (128 * last))
 return compressed

This code uses the bitarray class for manipulating individual zeros and ones. It is
distributed as a third-party module, which you can install with the command pip
install bitarray. The chunk that is passed into compress_chunks is an instance
of this class (although the example would work just as well with a list of Booleans).
The primary benefit of the bitarray in this case is that when pickling them between
processes, they take up an 8th of the space of a list of Booleans or a bytestring of 1s
and 0s. Therefore, they pickle faster. They are also a bit (pun intended) easier to
work with than doing a ton of bitwise operations.

Concurrency

[420]

The method compresses the data using run-length encoding and returns a bytearray
containing the packed data. Where a bitarray is like a list of ones and zeros, a bytearray
is like a list of byte objects (each byte, of course, containing 8 ones or zeros).

The algorithm that performs the compression is pretty simple (although I'd like to
point out that it took me two days to implement and debug it. Simple to understand
does not necessarily imply easy to write!). It first sets the last variable to the type
of bit in the current run (either True or False). It then loops over the bits, counting
each one, until it finds one that is different. When it does, it constructs a new byte by
making the leftmost bit of the byte (the 128 position) either a zero or a one, depending
on what the last variable contained. Then it resets the counter and repeats the
operation. Once the loop is done, it creates one last byte for the last run, and returns
the result.

While we're creating building blocks, let's make a function that compresses a row
of image data:

def compress_row(row):
 compressed = bytearray()
 chunks = split_bits(row, 127)
 for chunk in chunks:
 compressed.extend(compress_chunk(chunk))
 return compressed

This function accepts a bitarray named row. It splits it into chunks that are each 127
bits wide using a function that we'll define very shortly. Then it compresses each
of those chunks using the previously defined compress_chunk, concatenating the
results into a bytearray, which it returns.

We define split_bits as a simple generator:

def split_bits(bits, width):
 for i in range(0, len(bits), width):
 yield bits[i:i+width]

Now, since we aren't certain yet whether this will run more effectively in threads
or processes, let's wrap these functions in a method that runs everything in a
provided executor:

def compress_in_executor(executor, bits, width):
 row_compressors = []
 for row in split_bits(bits, width):
 compressor = executor.submit(compress_row, row)

Chapter 13

[421]

 row_compressors.append(compressor)

 compressed = bytearray()
 for compressor in row_compressors:
 compressed.extend(compressor.result())
 return compressed

This example barely needs explaining; it splits the incoming bits into rows based
on the width of the image using the same split_bits function we have already
defined (hooray for bottom-up design!).

Note that this code will compress any sequence of bits, although it would bloat,
rather than compress binary data that has frequent changes in bit values. Black
and white images are definitely good candidates for the compression algorithm in
question. Let's now create a function that loads an image file using the third-party
pillow module, converts it to bits, and compresses it. We can easily switch between
executors using the venerable comment statement:

from PIL import Image
def compress_image(in_filename, out_filename, executor=None):
 executor = executor if executor else ProcessPoolExecutor()
 with Image.open(in_filename) as image:
 bits = bitarray(image.convert('1').getdata())
 width, height = image.size

 compressed = compress_in_executor(executor, bits, width)

 with open(out_filename, 'wb') as file:
 file.write(width.to_bytes(2, 'little'))
 file.write(height.to_bytes(2, 'little'))
 file.write(compressed)

def single_image_main():
 in_filename, out_filename = sys.argv[1:3]
 #executor = ThreadPoolExecutor(4)
 executor = ProcessPoolExecutor()
 compress_image(in_filename, out_filename, executor)

The image.convert() call changes the image to black and white (one bit) mode,
while getdata() returns an iterator over those values. We pack the results into
a bitarray so they transfer across the wire more quickly. When we output the
compressed file, we first write the width and height of the image followed by the
compressed data, which arrives as a bytearray, which can be written directly to
the binary file.

Concurrency

[422]

Having written all this code, we are finally able to test whether thread pools or process
pools give us better performance. I created a large (7200 x 5600 pixels) black and
white image and ran it through both pools. The ProcessPool takes about 7.5 seconds
to process the image on my system, while the ThreadPool consistently takes about
9. Thus, as we suspected, the cost of pickling bits and bytes back and forth between
processes is eating almost all the efficiency gains from running on multiple processors
(though looking at my CPU monitor, it does fully utilize all four cores on my machine).

So it looks like compressing a single image is most effectively done in a separate
process, but only barely because we are passing so much data back and forth
between the parent and subprocesses. Multiprocessing is more effective when the
amount of data passed between processes is quite low.

So let's extend the app to compress all the bitmaps in a directory in parallel. The
only thing we'll have to pass into the subprocesses are filenames, so we should
get a speed gain compared to using threads. Also, to be kind of crazy, we'll use
the existing code to compress individual images. This means we'll be running a
ProcessPoolExecutor inside each subprocess to create even more subprocesses.
I don't recommend doing this in real life!

from pathlib import Path
def compress_dir(in_dir, out_dir):
 if not out_dir.exists():
 out_dir.mkdir()

 executor = ProcessPoolExecutor()
 for file in (
 f for f in in_dir.iterdir() if f.suffix == '.bmp'):
 out_file = (out_dir / file.name).with_suffix('.rle')
 executor.submit(
 compress_image, str(file), str(out_file))

def dir_images_main():
 in_dir, out_dir = (Path(p) for p in sys.argv[1:3])
 compress_dir(in_dir, out_dir)

This code uses the compress_image function we defined previously, but runs it
in a separate process for each image. It doesn't pass an executor into the function,
so compress_image creates a ProcessPoolExecutor once the new process has
started running.

Chapter 13

[423]

Now that we are running executors inside executors, there are four combinations of
threads and process pools that we can be using to compress images. They each have
quite different timing profiles:

Process pool per image Thread pool per image
Process pool per row 42 seconds 53 seconds
Thread pool per row 34 seconds 64 seconds

As we might expect, using threads for each image and again using threads for each
row is the slowest, since the GIL prevents us from doing any work in parallel. Given
that we were slightly faster when using separate processes for each row when we
were using a single image, you may be surprised to see that it is faster to use a
ThreadPool feature for rows if we are processing each image in a separate process.
Take some time to understand why this might be.

My machine contains only four processor cores. Each row in each image is being
processed in a separate pool, which means that all those rows are competing for
processing power. When there is only one image, we get a (very modest) speedup by
running each row in parallel. However, when we increase the number of images being
processed at once, the cost of passing all that row data into and out of a subprocess is
actively stealing processing time from each of the other images. So, if we can process
each image on a separate processor, where the only thing that has to get pickled into
the subprocess pipe is a couple filenames, we get a solid speedup.

Thus, we see that different workloads require different concurrency paradigms.
Even if we are just using futures we have to make informed decisions about what
kind of executor to use.

Also note that for typically-sized images, the program runs quickly enough that
it really doesn't matter which concurrency structures we use. In fact, even if we
didn't use any concurrency at all, we'd probably end up with about the same
user experience.

This problem could also have been solved using the threading and/or
multiprocessing modules directly, though there would have been quite a bit more
boilerplate code to write. You may be wondering whether or not AsyncIO would be
useful here. The answer is: "probably not". Most operating systems don't have a good
way to do non-blocking reads from the filesystem, so the library ends up wrapping
all the calls in futures anyway.

Concurrency

[424]

For completeness, here's the code that I used to decompress the RLE images to
confirm that the algorithm was working correctly (indeed, it wasn't until I fixed
bugs in both compression and decompression, and I'm still not sure if it is perfect.
I should have used test-driven development!):

from PIL import Image
import sys

def decompress(width, height, bytes):
 image = Image.new('1', (width, height))

 col = 0
 row = 0
 for byte in bytes:
 color = (byte & 128) >> 7
 count = byte & ~128
 for i in range(count):
 image.putpixel((row, col), color)
 row += 1
 if not row % width:
 col += 1
 row = 0
 return image

with open(sys.argv[1], 'rb') as file:
 width = int.from_bytes(file.read(2), 'little')
 height = int.from_bytes(file.read(2), 'little')

 image = decompress(width, height, file.read())
 image.save(sys.argv[2], 'bmp')

This code is fairly straightforward. Each run is encoded in a single byte. It uses some
bitwise math to extract the color of the pixel and the length of the run. Then it sets
each pixel from that run in the image, incrementing the row and column of the next
pixel to check at appropriate intervals.

Chapter 13

[425]

Exercises
We've covered several different concurrency paradigms in this chapter and still don't
have a clear idea of when each one is useful. As we saw in the case study, it is often a
good idea to prototype a few different strategies before committing to one.

Concurrency in Python 3 is a huge topic and an entire book of this size could not
cover everything there is to know about it. As your first exercise, I encourage you to
check out several third-party libraries that may provide additional context:

• execnet, a library that permits local and remote share-nothing concurrency
• Parallel python, an alternative interpreter that can execute threads in parallel
• Cython, a python-compatible language that compiles to C and has primitives

to release the gil and take advantage of fully parallel multi-threading.
• PyPy-STM, an experimental implementation of software transactional memory

on top of the ultra-fast PyPy implementation of the Python interpreter
• Gevent

If you have used threads in a recent application, take a look at the code and see if you
can make it more readable and less bug-prone by using futures. Compare thread and
multiprocessing futures to see if you can gain anything by using multiple CPUs.

Try implementing an AsyncIO service for some basic HTTP requests. You may
need to look up the structure of an HTTP request on the web; they are fairly simple
ASCII packets to decipher. If you can get it to the point that a web browser can
render a simple GET request, you'll have a good understanding of AsyncIO network
transports and protocols.

Make sure you understand the race conditions that happen in threads when you
access shared data. Try to come up with a program that uses multiple threads to set
shared values in such a way that the data deliberately becomes corrupt or invalid.

Remember the link collector we covered for the case study in Chapter 6, Python Data
Structures? Can you make it run faster by making requests in parallel? Is it better to
use raw threads, futures, or AsyncIO for this?

Try writing the run-length encoding example using threads or multiprocessing
directly. Do you get any speed gains? Is the code easier or harder to reason about?
Is there any way to speed up the decompression script by using concurrency
or parallelism?

Concurrency

[426]

Summary
This chapter ends our exploration of object-oriented programming with a topic
that isn't very object-oriented. Concurrency is a difficult problem and we've only
scratched the surface. While the underlying OS abstractions of processes and threads
do not provide an API that is remotely object-oriented, Python offers some really good
object-oriented abstractions around them. The threading and multiprocessing packages
both provide an object-oriented interface to the underlying mechanics. Futures are able
to encapsulate a lot of the messy details into a single object. AsyncIO uses coroutine
objects to make our code read as though it runs synchronously, while hiding ugly
and complicated implementation details behind a very simple loop abstraction.

Thank you for reading Python 3 Object-oriented Programming, Second Edition. I hope
you've enjoyed the ride and are eager to start implementing object-oriented software
in all your future projects!

[427]

Index
A
absolute imports 40, 41
abstract base classes (ABCs)

@classmethod 81, 82
about 78
creating 79-81
using 78, 79

abstract factory pattern 346-350
abstraction

about 10
defining 16
examples 10

abstract methods 16
access control 46, 47
adapter pattern

about 331-334
Adapter class 332
Interface1 332
Interface2 332

aggregation
about 13
comparing, with composition 13

assertion methods 362, 363
AsyncIO

about 409, 410
AsyncIO future, reading 411, 412
executors 417, 418
executors, using to wrap blocking

code 415, 416
for networking 412-415
implementing 410, 411
streams 417

attributes
specifying 5

B
basic inheritance

about 59-61
built-ins, extending 62, 63
overriding 63, 64
super function 64, 65

behaviors
about 1
defining 7, 8
specifying 5

bottom-up design 58
built-ins

extending 177-182

C
CamelCase notation 28
case study, object-oriented design 18-25
character classes 247
class 3, 4
code coverage 382
code coverage test

verifying 382-385
command pattern 341-346
composite pattern 351-355
composition 11-13
comprehensions

dictionary comprehension 276
generator expressions 277, 278
list comprehensions 273-275

concurrency
about 393
case study 418-424

constructor 34
context manager 203-205

[428]

coroutines
about 284-286
closing 289, 290
exception, raising 290
log parsing 287-289
relationship, with functions 290, 291
relationship, with generators 290, 291

Counter object 166, 167
coverage.py 382

D
data

about 1
defining 6, 7
objects, defining 6, 7

data notation 258
decorator pattern

about 301, 302
Core 302
example 302-305
Interface 302
uses 301
using, in Python 305-307

decorators 134, 135
design patterns

about 269-301
abstract factory pattern 346-350
adapter pattern 331-334
command pattern 341-346
composite pattern 351-355
decorator pattern 301, 302
facade pattern 335-337
flyweight pattern 337-341
observer pattern 307
singleton pattern 320
state pattern 313
strategy pattern 310
template pattern 325

Dewey Decimal System (DDS) 18
dictionaries

about 160-164
Counter object 166, 167
defaultdict, using 164-166
use cases 164

dictionary comprehension 276
docstrings

about 35
using 36, 37

dot notation 29
duck typing 17

E
empty objects 155, 156
encapsulation 9
exceptions

about 97
case study 114-123
custom exceptions, defining 109-114
effects 101, 102
handling 102-108
hierarchy 108, 109
raising 98-100

expensive objects
imitating 378-382

F
facade pattern 335-337
FIFO (First In First Out) queues 183, 184
file I/O 201-203
flyweight pattern 337-341
funcargs 373
functions

about 213-217
callable objects 218, 219
using, as attributes 217, 218

futures 406-409

G
generators

about 279-281
data, yielding from another iterable 281-284

global interpreter lock (GIL) 398

H
hashable 163

[429]

I
information hiding

about 9
defining 9, 10

inheritance
about 11-16
case study 82-93

instance diagram 13
interfaces 16
International Standard Book Number

(ISBN) 18
iterator pattern

case study 291-298
iterators

about 270
iterator protocol 271-273

J
JavaScript Object Notation (JSON) 257

L
LIFO (Last In First Out) queues 185, 186
list comprehensions 273-275
lists

about 167-169
sorting 169-172

M
mailing list manager, case study

building 219-226
members 6
method overloading

about 205, 206
default arguments 206-208
unpacking arguments 212
variable argument lists 208-211

methods 7
module contents

organizing 43-45
modules

about 37
absolute imports 40, 41

example 38, 39
organizing 40
relative imports 41, 42

multiple inheritance
about 17, 18, 65
diamond problem 67-72
sets of arguments 72-74

multiprocessing
about 399-401
drawbacks 406
pools 402, 403
queues 404, 405

mutable byte strings 243, 244

O
object-oriented

defining 1-3
object-oriented programming

case study 145-153
examples 14

objects
about 125
comparing, with class 3
defining 3, 4
duplicate code, removing 140-142
existing code, reusing 142-145
identifying 126-129
managing 138-140
pickles, customizing 254-256
serializing 252-254
web objects, serializing 257-260

observer pattern
about 307
example 308-310

P
package 40
parameters 8
patterns matching, regular expression

about 245, 246
characters, escaping 247, 248
multiple characters, matching 248, 249
patterns, grouping 249, 250
selection of characters, matching 246, 247

[430]

PEP 3101
URL 239

pick action 8
pitfalls, threads

about 397
global interpreter lock 398
shared memory 397, 398

polymorphism 16, 75
priority queue 186, 187
properties

about 6
using 136-138
using, for adding behavior to

class data 129-132
property constructor 133
property function 132
public interface

creating 9, 10
py.test

about 368
cleanup 370-373
setup 370-373
testing with 368-370
tests, skipping with 377, 378
variables, setting up 373-377

Python 35
Python built-in functions

about 197
enumerate function 200, 201
len() function 198
reversed() function 198, 199

Python classes
arguments 31-33
attributes, adding 29
creating 27, 28
implementing 30
object, initializing 33-35

Python data structures
built-ins, extending 177-181
case study 188-194
dictionaries 160-163
empty objects 155, 156
lists 167-169
named tuples 159, 160
queues 182, 183
sets 173-177
tuples 157, 158

Q
queues

about 182, 183
FIFO queues 183-185
LIFO queues 185, 186
priority queues 186, 187

R
regular expressions

about 244, 245
case study 260-265
information, obtaining from 250, 251
patterns, matching 245, 246
repeated regular expressions,

making efficient 252
relative imports 41, 42

S
self argument 30, 31
sequence diagram 22
sets 173-177
simple command-line notebook application

building 49-57
singleton pattern

about 320, 321
implementing 321-324

slots 156
stacks 185
state pattern

about 313, 314
example 314-320
state transition as coroutines 320
versus, strategy pattern 320

strategy pattern
about 310
Abstraction interface 311
example 311, 313
User code 311
using, in Python 313

string formatting
about 232
braces, escaping 233, 234
container lookups 235, 236
keyword arguments 234
object lookups 236, 237

[431]

string manipulation 230-232
strings

about 229-240
bytes, converting to text 240, 241
mutable byte strings 243, 244
text, converting to bytes 241-243

SyntaxError 33

T
template pattern

about 325
example 325-328

test
need for 357-359

test-driven development
about 359, 360
case study 385-391

third-party libraries 48, 49
threads

about 394-397
pitfalls 397
thread overhead 399

top-down design 58
tuples

about 157, 158
named tuples 159, 160

U
UDP (User Datagram Protocol) 414
UML sequence diagram 21
Unified Modeling Language (UML)

about 1-4
example 4, 5

unit tests
about 360-362
assertion methods 362, 363
boilerplate, reducing 364, 365
broken tests, ignoring 366, 367
organizing 365, 366
running 365, 366

W
web objects

serializing 257-260

Thank you for buying
Python 3 Object-oriented Programming

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Expert Python Programming
ISBN: 978-1-84719-494-7 Paperback: 372 pages

Best practices for designing, coding, and distributing
your Python software

1. Learn Python development best practices
from an expert, with detailed coverage of
naming and coding conventions.

2. Apply object-oriented principles, design
patterns, and advanced syntax tricks.

3. Manage your code with distributed
version control.

Python Data Visualization
Cookbook
ISBN: 978-1-78216-336-7 Paperback: 280 pages

Over 60 recipes that will enable you to learn how to
create attractive visualizations using Python's most
popular libraries

1. Learn how to set up an optimal Python
environment for data visualization.

2. Understand the topics such as importing
data for visualization and formatting data
for visualization.

3. Understand the underlying data and how
to use the right visualizations.

Please check www.PacktPub.com for information on our titles

wxPython 2.8 Application
Development Cookbook
ISBN: 978-1-84951-178-0 Paperback: 308 pages

Quickly create robust, reliable, and reusable
wxPython applications

1. Develop flexible applications in wxPython.

2. Create interface translatable applications
that will run on Windows, Macintosh OSX,
Linux, and other UNIX like environments.

3. Learn basic and advanced user
interface controls.

Learning Object Oriented
Programming
ISBN: 978-1-78528-963-7 Paperback: 280 pages

Explore and crack the OOP code in Python,
JavaScript, and C#

1. Write reusable code that defines and
makes objects interact with one another.

2. Discover the differences in inheritance
 and polymorphism in Python, JavaScript,
and C#.

3. Capture objects from real-world elements
and create object-oriented code that
represents them.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Introduction tothe second edition
	Table of Contents
	Preface
	Chapter 1: Object-oriented Design
	Introducing object-oriented
	Objects and classes
	Specifying attributes and behaviors
	Data describes objects
	Behaviors are actions

	Hiding details and creating the
public interface
	Composition
	Inheritance
	Inheritance provides abstraction
	Multiple inheritance

	Case study
	Exercises
	Summary

	Chapter 2: Objects in Python
	Creating Python classes
	Adding attributes
	Making it do something
	Talking to yourself
	More arguments

	Initializing the object
	Explaining yourself

	Modules and packages
	Organizing the modules
	Absolute imports
	Relative imports

	Organizing module contents
	Who can access my data?
	Third-party libraries
	Case study
	Exercises
	Summary

	Chapter 3: When Objects Are Alike
	Basic inheritance
	Extending built-ins
	Overriding and super

	Multiple inheritance
	The diamond problem
	Different sets of arguments

	Polymorphism
	Abstract base classes
	Using an abstract base class
	Creating an abstract base class
	Demystifying the magic

	Case study
	Exercises
	Summary

	Chapter 4: Expecting the Unexpected
	Raising exceptions
	Raising an exception
	The effects of an exception
	Handling exceptions
	The Exception hierarchy
	Defining our own exceptions

	Case study
	Exercises
	Summary

	Chapter 5: When to Use Object-oriented Programming
	Treat objects as objects
	Adding behavior to class data with properties
	Properties in detail
	Decorators – another way to create properties
	Deciding when to use properties

	Manager objects
	Removing duplicate code
	In practice

	Case study
	Exercises
	Summary

	Chapter 6: Python Data Structures
	Empty objects
	Tuples and named tuples
	Named tuples

	Dictionaries
	Dictionary use cases
	Using defaultdict
	Counter

	Lists
	Sorting lists

	Sets
	Extending built-ins
	Queues
	FIFO queues
	LIFO queues
	Priority queues

	Case study
	Exercises
	Summary

	Chapter 7: Python Object-oriented Shortcuts
	Python built-in functions
	The len() function
	Reversed
	Enumerate
	File I/O
	Placing it in context

	An alternative to method overloading
	Default arguments
	Variable argument lists
	Unpacking arguments

	Functions are objects too
	Using functions as attributes
	Callable objects

	Case study
	Exercises
	Summary

	Chapter 8: Strings and Serialization
	Strings
	String manipulation
	String formatting
	Escaping braces
	Keyword arguments
	Container lookups
	Object lookups
	Making it look right

	Strings are Unicode
	Converting bytes to text
	Converting text to bytes

	Mutable byte strings

	Regular expressions
	Matching patterns
	Matching a selection of characters
	Escaping characters
	Matching multiple characters
	Grouping patterns together

	Getting information from regular expressions
	Making repeated regular expressions efficient

	Serializing objects
	Customizing pickles
	Serializing web objects

	Case study
	Exercises
	Summary

	Chapter 9: The Iterator Pattern
	Design patterns in brief
	Iterators
	The iterator protocol

	Comprehensions
	List comprehensions
	Set and dictionary comprehensions
	Generator expressions

	Generators
	Yield items from another iterable

	Coroutines
	Back to log parsing
	Closing coroutines and throwing exceptions
	The relationship between coroutines, generators, and functions

	Case study
	Exercises
	Summary

	Chapter 10: Python Design Patterns I
	The decorator pattern
	A decorator example
	Decorators in Python

	The observer pattern
	An observer example

	The strategy pattern
	A strategy example
	Strategy in Python

	The state pattern
	A state example
	State versus strategy
	State transition as coroutines

	The singleton pattern
	Singleton implementation

	The template pattern
	A template example

	Exercises
	Summary

	Chapter 11: Python Design Patterns II
	The adapter pattern
	The facade pattern
	The flyweight pattern
	The command pattern
	The abstract factory pattern
	The composite pattern
	Exercises
	Summary

	Chapter 12: Testing Object-oriented Programs
	Why test?
	Test-driven development

	Unit testing
	Assertion methods
	Reducing boilerplate and cleaning up
	Organizing and running tests
	Ignoring broken tests

	Testing with py.test
	One way to do setup and cleanup
	A completely different way to set up variables
	Skipping tests with py.test

	Imitating expensive objects
	How much testing is enough?
	Case study
	Implementing it

	Exercises
	Summary

	Chapter 13: Concurrency
	Threads
	The many problems with threads
	Shared memory
	The global interpreter lock

	Thread overhead

	Multiprocessing
	Multiprocessing pools
	Queues
	The problems with multiprocessing

	Futures
	AsyncIO
	AsyncIO in action
	Reading an AsyncIO Future
	AsyncIO for networking
	Using executors to wrap blocking code
	Streams
	Executors

	Case study
	Exercises
	Summary

	Index

