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1 RobiNA – RNA-Seq analysis 

1.1 Introduction 
Before going into detail on the newly introduced workflow for RNA-Seq based 

analysis of differential gene expression, we want to point out that the RobiNA software 
package also contains the microarray workflows described in section 2. If you installed 
RobiNA you will thus have access to all the functionality that was until now provided by 
Robin. If you want to use RobiNA to analyse microarray data, please continue reading in 
section 2. 
 

Analysis of differential gene expression using sequencing data is a relatively new 
approach that takes advantage of the new high-throughput (HT) sequencing technologies 
developed e.g. by Illumina/Solexa. The basic assumption of this approach is that the 
frequency with which a certain RNA molecule in a given RNA mixture is sequenced is 
proportional to the number of copies of this RNA molecule in the mixture. Using this 
assumption it is possible to extract transcript profiles from HT RNA sequencing (RNA-
Seq) data both at a high sensitivity (when using a sufficiently high number of sequence 
reads) and specificity, because the reads can be directly mapped to a reference 
transcriptome or genome. Of course, the amount of reads that can be uniquely mapped to 
specific transcripts also depends on the length of the reads: The longer the reads are the 
more likely it is to be able to unambiguously find the transcript they originate from. 
Hence, a large amount of tens of millions of very long (e.g. 1kb) reads would be the ideal 
data set for RNA-Seq. Unfortunately, current sequencing technology does not yet allow 
the generation of such datasets (at affordable prices). To perform RNA-Seq based 
transcriptomics, the “depth” of sequencing is more important than the length of the 
individual sequence reads because it defines the dynamic range of the transcript profile 
that can be extracted from the data, given the length is long enough to disambiguate 
different isoforms in most of the cases, which is usually the case even with shorter reads 
(as of 2012) Therefore, the most frequently used technique for RNA-Seq is currently 
Illumina/Solexa sequencing that provides up to 200 million reads of a length of up to 
100bp per RNA sample library. The Roche/454 sequencing technology usually yields 
much longer reads of up to 1kb but a smaller total number of reads (around 1 million) per 
sample and is thus much better suited for transcriptome and genome assembly. 

 
Analogous to the microarray analysis workflows, the RNA-Seq workflow allows you to: 
 

1) Thoroughly quality check the raw sequencing data 
2) Filter out low quality reads based on a range of freely combinable criteria 
3) Map the reads to a user-provided genome- or transcriptome reference sequence 
4) Detect differentially expressed genes using state of the art statistical methods 
5) Generate graphical summary plots and detailed tabular results that can be browsed 

directly inside the application and exported to downstream tools like MapMan 
and PageMan (or any other tool that can read simple tab-separated tables) 

 
 



1.2 Input data format 
The raw data has to be provided in FASTQ format [1], which is the standard output 

format for Illumina/Solexa data. It is also possible to use bzip2- or gzip-compressed 
FASTQ files – however, RobiNA will extract the files during the workflow and write the 
uncompressed data to the project directory (which will require extra disk space). So it is 
recommended to use uncompressed data directly.  

 
Alternatively, users who have already aligned their reads to a reference, using a tool that 
generates BAM or SAM files, can directly import these by checking the “Alternative 
inputs” box on the import panel (see Figure 2). Using BAM/SAM files will skip the 
quality checking, filtering and mapping steps. 
 
 

1.3 RNA-Seq Walkthrough 
The following section will guide through all steps of a RNA-Seq analysis starting 

from raw data input. When reanalysing data from third parties that was obtained from the 
NCBI Short Read Archive (SRA), you’ll first need to extract the reads as FASTQ files. 
This is easily done using the sratoolkits’ “fastq-dump” tool 
(http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s
=software). Files from the European Nucleotide Archive (ENA) can used directly Before 
actually starting the analysis workflow, the user has to define a project directory in which 
all data, that is generated during the analysis is saved (see Figure 1). 

 

 
Figure 1: Project setup dialog. Create a new directory in which the analysis results and all other relevant 
data will be stored 

 
 
 
 



1.3.1 Quality checking 
The first step in the workflow is the import of raw sequencing data – so after 

choosing the RNA-Seq workflow, clicking the “Add” button will open a file browser in 
which the input files can be selected. To-date, RobiNA accepts Illumina/Solexa-type 
FASTQ files only, since this is the preferred data type for RNA-Seq based analysis of 
differential gene expression. However, in future releases, FASTA sequence files with 
separate FASTA quality file originating from other technologies like e.g. 454/Roche will 
also be supported (although the depth of sequencing provided by standard runs at the 
current state of this technology is, to our knowledge, not sufficient for in-depth sensitive 
analysis of differential gene expression). Upon clicking “Next” the workflow moves on 
to the quality checking step (see Figure 1). RobiNA offers a choice of quality test 
modules that cover a range of quality aspects of the data: 
 

 
Figure 2: Raw data import panel. RobiNA accepts Illumina/Solexa fastq files as input. The quality 
encoding version will automatically be deduced from the data. Alternatively, BAM/SAM alignment files or 
precomputed counts tables can be imported. 

 
 
 
 
 
 
 



 
 

 
Figure 3: Quality checking options for raw deep sequencing data. 

 
1) Base call quality: This module summarizes the base call quality scores included in 

the FASTQ file. All high-throughput sequencing technologies include a base 
calling step in their processing pipelines. The purpose of this step is to transform 
the raw signals recorded by, e.g. in the case of Illumina/Solexa sequencing, the 
fluorescence scanner into nucleotide base calls (i.e. A, C, G, T or N).  The 
software component that accomplishes this step evaluates the raw signal and tries 
to assign a nucleotide to each signal. For each assignment, an error probability is 
computed, which, in turn, is transformed into a quality score according to the 
following equations:  
 

Equation 1: PHRED score 

! 

QPHRED = "10* log10(Pe )  
 
 
 

Equation 2: Solexa score 
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QSolexa = "10* log10(
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Figure 4: Plot showing the difference between quality scores computed according to equation 1 and 
equation 2. The blue dashed line denotes p=0.05. The diversion for higher error probabilities is stronger 
while quality of approx. Q=13 and greater have almost identical error probabilities in both equations. 

 
with Pe being the probability of error. Depending on the processing pipeline 
version used to generate the data, either Equation 1 (version >= 1.3) or Equation 2 
(prior to pipeline version 1.3) are used for computing the quality scores. In 
FASTAQ files, these quality scores are usually encoded as ASCII characters. 
Again depending on the pipeline version used, the scores are encoded by adding 
either 64 (Illumina pipeline until version 1.5+) or 33 (version 1.8+) to the quality 
score. For example a quality score of 35 would be encoded as ASCII character 
64+35=99, i.e. a lower case ‘c’ in all versions prior to 1.8 and as 33+35=68 i.e. an 
upper case ‘D’ in version 1.8+. 
 

 
 
 

Note: When working with RobiNA, the user usually does not have to deal with the 
quality encoding manually. RobiNA tries to extrapolate the encoding version by 
scanning the first 10000 entries of each file and evaluating the range of encoding 
characters observed. In most cases this yields a correct guess of the version used in the 
data. In case, however, this approach fails, the user can override the version manually 
on the “General” settings tab of the quality checking options panel (Figure 3) 



 
1) Consecutive homopolymers. In rare cases, we have encountered raw sequencing 

data that showed the occurrence of short homopolymer stretches in every or 
almost every read starting at a specific nucleotide position that was the same 
across all reads. The base that was called, however, was not the same across the 
reads, i.e. read X might show a AAAAA pentamer starting at position 22 while 
read Y contains a GGGGG stretch at the same position. We are not sure what 
technical defect is causing this effect, but it will manifest itself as a clear spike 
towards a value of 1.0 on the consecutive homopolymer plot (see Figure 5) 

 
 

 
Figure 5: Example of homopolymer plots. Panel A) shows the homopolymer plot of a sequence set 
whose quality deteriorates strongly at the end of the reads leading to “N”-only base calls at the end of all 
reads from approximately position 75 on. This is a rather expected and, in the case shown, hardly alarming 
result, since there is no indication of an increased fraction of homopolymer base calls until the very low 
quality end of the reads. Panel B) shows a severe case with two blocks of homopolymer calls caused by a 
defect in the sequencing pipeline. 

 
2) Kmer frequency scan. Sequence biases in a large set of reads can be detected by 

breaking up the reads into shorter fragments of a defined size K (i.e. Kmers) and 
conting the frequency of occurrence of each such fragment. The expected 
frequency of occurrence of each Kmer can be computed from the nucleotide 
composition of the sampled sequences. If the observed frequency of a specific 
Kmer exceeds its expected frequency by a factor of 3, the Kmer is considered as 
enriched and recorded. The 10 most enriched Kmers will be reported in the 
quality results summary, also graphically showing the positional enrichment 
within the reads. By default, RobiNA will only scan for enriched 5mer Kmers. 
The user can, however, choose to record a wider range of Kmer lengths and also 
restrict the maximal number of individual Kmers to record for the enrichment 
analysis by changing the settings on the “Kmer” settings tab. Changing the 
settings there to higher values will also lead to a strongly increased computation 
time and memory consumption of the Java Virtual Machine (JVM) – so please 



make sure that you have a fast computer that provides the necessary. Please note 
that the Kmer enrichment analysis is computed for each input file individually – 
so if you run the quality checks in more than one parallel thread (see “parallel 
processes” in the “general” settings tab), the memory requirement is multiplied by 
the number of threads. 

 
3) Base call frequencies. This module simply records the frequency in which each 

base (A, C, G, T and N) was seen at each position in the reads. Depending on the 
sample that was sequenced, the expected result will vary. Usually, when 
sequencing poly-A mRNA, you would expect to see roughly the same nucleotide 
composition as that of the underlying genome. In the case of many plant genomes, 
the composition usually shows a slight AT bias. 

 
4) Overrepresented sequences. Analogous to the Kmer frequency module, this 

module identifies longer sequences that occur more often than expected. Usually 
these would be adapter sequences carried over from the library generation etc. 

 
After choosing the quality check modules, clicking “Next” will start the processing of 
the input sequences. The “General” section of the settings tab allows to control some 
technical aspects related to the performance of the quality checking modules. The left 
part of the tab shows how much random access memory (RAM) is available and free 
on the machine in total, how much is available and free for RobiNA and how many 
processors (CPU) have been detected on the system. Based on these measurements, 
RobiNA automatically sets up the number of parallel quality checking and filtering 
processes in a very conservative way: The number of parallel processes automatically 
configured equals the number of CPUs found. On a machine with a lot of memory, it 
should usually be safe to run more parallel processes than CPUs – e.g. on a 32GB 8-
core machine it would be safe to run 10-12 parallel quality checking threads. The 
more threads run in parallel, the faster the quality checking step will finish, given the 
underlying hardware supports it. 
RobiNA will display the progress of each quality checking process – as soon as a 
process is finished, you can view the results by clicking on the respective status box 
(see Figure 6). In case a file is corrupted and cannot be processed, RobiNA will 
display a warning triangle and highlight file in red. Clicking it will display an error 
message indicating why the processing failed. 
 
 
 



 

 
Figure 6: The quality check progress (upper half) and result browser panel (lower half). 



 

1.3.2 Read filtering 
 
When importing raw next generation sequencing data, it is very important to filter out 
low quality data and (identifiable) contaminating sequences. RobiNA provides a flexible 
way of doing this by offering a range of trimmer modules that can be combined freely to 
build a filtering pipeline that best suits the users’ needs. The trimmer pipeline is also 
available as a stand-alone command line tool at 
http://www.usadellab.org/cms/index.php?page=trimmomatic. The trimming pipeline can 
be pieced together simply by dragging individual modules from the list on the lower left 
side of the Trimmomatic panel and dropping them into the white area on the right side 
with the mouse. For users who are unsure about what modules to use, we have included a 
default set of trimmers that can be added by clicking the “Standard” button on the lower 
right. The following trimmer modules are available: 
 
 
 
 

 
Figure 7: The barcode splitter module 

 
1) Barcode Splitter: This module is not really a trimmer, because it does not remove 

any reads from the input. Instead, it splits the reads based on user-supplied 
barcode sequences. When working with multiplexed data, that means several 
different sample libraries have been sequenced in one sequencing run (e.g. one 
lane on a Illumina/Solexa platform), the different sample libraries are usually 
tagged by a short barcode sequence at the 5' end of the reads. To further analyse 
the data, the multiplexed reads need to be split into different files - one for each of 
the samples. To do so, you have to supply the barcodes used plus a short human 
readable label either by typing the information in the table provided in the 
barcode splitter box or by loading it from a tab-separated text file. You can set the 
barcode splitter to accept mismatches in the barcode sequence, however this is not 
really recommended. Reads that have a barcode that does not match to any of the 



user-provided ones will be collected in a separated file with the file name prefix 
"UNKNOWN". 
 

 
Figure 8: The adapter clipper module 

2) Adapter clipper. In many cases, the raw sequence data contains a significant 
amount of reads that originate from adapter molecules that were used during the 
library preparation protocol. These reads should be removed prior to analyses 
since they constitute an artificial contamination and could, depending on their 
abundance, bias downstream analyses. The adapter clipper module clipper 
modules can be used to remove known adapter (and other short nucleotide 
sequences with a length <= the read length) sequences from the input data. These 
sequences can be provided by the user as a standard FASTA file. The "max. seed 
mismatch" and "match stringency" settings can be used to tweak the adapter 
search performance. The settings chosen should work robustly for most cases. 
However, if you expect very short adapters, the match stringency might have to 
be reduced in order to reliably detect them. For legal reasons we are not allowed 
to bundle known adapter sequences with the RobiNA software bundle. Feel free 
to contact us for further information on adapter sequences (please visit 
http://mapman.gabipd.org/web/guest/forum).  
 

 

 
Figure 9: The leading trimmer module. 

3) Leading trimmer. The leading trimmer simply removes bases below the specified 
minimal quality score from the start of each read, leaving the rest of the read 
untouched (even if there are more low quality reads in the middle of the end of the 
read – see “Trailing trimmer” and “sliding window trimmer” below). 
 

 



 
Figure 10: The read length cropper module. 

4) Read cropper. The read cropper is very simply only cutting off all bases beyond 
the specified maximal length from all reads in the input. In the example given in 
Figure 10 this would mean that after processing all reads are 35 bases long or 
shorter. 
 

 

 
Figure 11: The trailing trimmer module. 

5) Trailing trimmer. This trimmer module works analogous to the leading trimmer, 
but starts removing bases from the end. In its default setting, the trimmer is very 
conservative in only removing very low quality (score <= 3) bases. 

 

 
Figure 12: The sliding window trimmer module. 

6) Sliding window trimmer. The sliding window trimmer will scan across each read 
in a window of the specified length and trim the read if the average quality within 
the window drops below the specified threshold. That means that long reads that 
contain a low base call quality stretch might get truncated at this stretch even if 
the quality downstream of this stretch is acceptable again. Depending on whether 
you want to be more conservative or stricter you might consider increasing (more 
conservative) or decreasing (stricter) the window size. 

 



 
Figure 13: The read length filter module. 

7) Read length filter. Removes all reads that are shorter than the specified minimal 
length. This module is very useful (and recommended) as the last processing step 
in a multistep pipeline that removes bases based on quality. If it is omitted, reads 
that are very short – possibly too short to be unambiguously mappable to a 
reference gene or transcript – will be carried through to the mapping step (which 
would unnecessarily extend the computation time). 

 
 

 

1.3.3 Sample definition 
 
Now that low quality reads and detectable contaminants have been removed, the next step 
in the analysis is the definition of the different treatments and samples. Every individual 
sequence file was generated by sequencing an RNA sample that was taken from 
biological material treated in a defined way. This information has to be entered on the 
“Experiment set up” panel (see Figure 14). First, all experimental conditions, or 
treatments, have to be listed in box in the lower left corner of the panel. For example, 
when different tissues are to be compared, the user would have to list which tissues these 
are (e.g. “root”, “flower”; or “liver”, “brain” etc.). After all conditions have been entered, 
the samples can be defined simply by selecting an input file and a condition and then 
clicking the “add” button. 
 



 
Figure 14: Experiment set up panel.  In order to continue to the mapping step and generate a counts table 
for each sample, the samples and treatments in the experiment have to be defined. 

 
More than one sequence file can be chosen per sample to account for raw data that was 
generated by sequencing the same original RNA sample more than once to obtain a 
sufficient amount of reads. 
 

1.3.4 Read mapping 
 
Since the final aim of the RobiNA analysis is to identify differentially expressed genes 
that are significantly responding to the different experimental treatments, it is necessary 
to compute a measure of transcript abundance from the reads in each of the defined 
samples. This is done by mapping the reads in each sample separately to a reference 
sequence (genome or transcriptome) and subsequently counting the number of reads that 
aligned unambiguously to each of the transcripts or genes of the reference. The 
intermediate result of this step is a counts table that contains a column for each sample 
and a row for each gene that has been see at least once in at least one of the samples. This 
table will be saved in the “detailed_results” folder of the project directory and can be 
easily imported into e.g. spreadsheet applications or other tools. The counts table will be 
used as the basis to estimate the expression level of each of the genes contained and 
hence is the most important input into the statistical analysis of differential gene 
expression. Figure 15 shows the mapping panel user interface – First, the user has to 



choose whether a transcriptome or a genome is to be used as the reference sequence. 
When using a transcriptome, the data has to be supplied in the form of a multiple FASTA 
file containing the nucleotide sequences of all transcripts. While working with a 
transcriptome usually makes the mapping process faster, it is also biased, because only 
reads that are mapping to the known transcripts supplied in the FASTA file will be 
recorded. If the reference transcript set is incomplete and / or inaccurate (as might very 
well be the case for an ill described organism or a primary transcriptome assembly), a 
substantial fraction of the input reads might be lost because they map to transcripts that 
are not included in the reference set. 
 

 
Figure 15: Mapping panel. In the mapping step, the filtered reads are aligned to a user-supplied reference 
sequence to determine how “often” each transcript was sequenced. 

 
When working with a genome sequence as the reference, both the raw sequence data 
(again in FASTA format) and a matching annotation file in GFF3 format 
(http://www.sequenceontology.org/gff3.shtml) has to be supplied. After choosing your 
desired reference format, the next step is to configure the mapping tool. The current 
version of RobiNA uses BOWTIE [2] to align the reads. The settings for the alignment 
can be modified using the “Bowtie settings” panel. While there are a lot of options 
available for tweaking BOWTIE, RobiNA limits itself to controlling the mapping by 1) 
setting an option that will ignore any non-ambiguously mappable reads (-m1) and 2) 
allowing the user to control the alignment stringency by explicitly setting a) the maximal 
number of mismatches allowed in the seed region, b) the seed region length and c) the 
maximal sum of mismatch quality scores. The default setting will accept no mismatches 



at all which is very conservative and might lead to a lot of well-aligning reads being 
discarded just because of 1 mismatch. Especially when working with reads that originate 
from e.g. a different ecotype (or other genetic variant) than the reference, this setting 
might be too strict. So we recommend to either use the ‘up to 2 mismatches’ preset or 
change the settings manually to even more permissive values. 
 

 
Figure 16: Reference genome panel. Users can either provide new genomic sequence ( in a FASTA file) 

and annotation (in a GFF3 file) or choose an already generated reference index from the drop box. 

 
To confirm the alignment settings and continue the workflow, click ‘use these settings’. 
Before starting the actual mapping process, the reference sequence has to be provided. 
Since the generation of a BOWTIE sequence index can be quite time consuming when 
working with large reference files, RobiNA requires the user to do this only once. All 
indices that have been generated via the RobiNA application will be saved and are 
subsequently available via the drop-down box in the reference data panel (see Figure 16) 
so that the indices don’t have to be created every time a new analysis is run. If a new 
genomic reference was entered, the indexing procedure will start as soon as the input is 
complete. If an existing index was chosen, the main mapping process can directly be 
started by clicking the ‘start mapping’ button.  
 

 
Figure 17: Short summary of single sample mapping. The graph on the left shows a scaled histogram of 
count observations. The expected shape of the plot would be similar to an exponential decay curve, since 



most of the genes have a low count while only a few are counted very often. The right half shows a textual 
summary of the mapping process as reported by the BOWTIE alignment tool. 

 
As soon as the mapping process is finished, the ‘Mapping result overview’ box in the 
lower right corner will show a short result summary for each of the samples. The 
summary consists of a count frequency histogram and further textual summary data 
giving the number of reads processed, discarded and unambiguously mapped to the 
reference. Figure 17 shows a typical count frequency histogram.  
 
 

1.3.5 Statistical assessment of differential gene expression 
 
After the mapping step, the counts table is computed and can be found in the 
‘detailed_results’ subfolder of the project. To identify genes that are expressed 
differentially between two experimental conditions, the user first has to define which 
conditions or treatments are to be compared. This is done on the experiment designer 
panel (Figure 18). Each of the conditions or treatments entered previously will be 
represented by a blue box on the experiment designer panel. To define a comparison 
between two of them you simply have to draw an arrow by holding down the control key 
and then click-dragging from one box to the other. After releasing the mouse and control 
key, you will see a picture similar to Figure 18, which means that the comparison 
STRESS minus CONTROL has been defined. You can define any number of 
comparisons you are interested in. To delete an arrow, simply right-click on it and choose 
delete from the context menu. 
 
The lower half of the experiment designer panel allows you to choose the statistical 
analysis method and modify the settings of the analysis. To-date, two different methods, 
based on two different Bioconductor libraries, are available: 
 

1) edgeR [3] 
The statistical assessment methods implemented in the edgeR package are based 
on the assumption that the read counts recorded in a RNA-Seq experiment follow 
a negative binomial distribution. It uses the discrete reads counts recorded in the 
counts table for the assessment of differential gene expression (including 
correction for library size and compositional bias). edgeR employs empirical 
Bayes methods to estimate the gene-specific biological variation and thereby can 
also be used for experiments with little or even no biological replicate samples. 
However, we want to emphasize that true biological replication should 
always be a main focus when designing an experiment. The edgeR-based 
statistics computed by RobiNA uses exact tests as described by [4, 5]. Future 
releases of RobiNA will also provide the option to compute more complex 
multifactorial statistics based on generalized linear models according to [6]. For 
further in-depth information on the statistical approaches implemented in edgeR, 
please see the edgeR User’s Guide 



(http://www.bioconductor.org/packages/2.9/bioc/vignettes/edgeR/inst/doc/edgeR
UsersGuide.pdf) 
 
 

2) DESeq [7] 
The method implemented in the DESeq package is essentially based on the same 
assumption of a negative binomial distribution of RNA-Seq data as the edgeR 
method. However it uses a slightly different approach for the computation of 
differentially expressed genes. Please see the publication cited above for an in-
depth description of the method. 
 

When the main analysis step is finished successfully, you can annotate the result data 
given that a matching MapMan mapping is available – please refer to section 4.4 for 
details as the process is identical for microarray and RNA-Seq data sets). 
 

1.3.6 Result Browser 
 
Once the analysis is finished, you can browse a summary of the whole analysis directly 
within the RobiNA application. The summary gives an overview of all steps of the 
workflow comprising input data, trimming, settings of the statistical analysis and various 
overview plots visualizing the results of the differential expression analysis. Additionally, 
full lists of differentially expressed genes, including the log fold change, and p-values are 
given. 
 
 



 
Figure 18: Experiment designer panel. Comparisons of interest between the different treatments that 
were entered earlier can be defined by simply drawing arrows between the boxes representing the different 
treatments. The lower part of the panel allows modifying the settings of the statistical assessment. 

 
 

1.4 RobiNA Troubleshooting 

1.4.1 Installation on Linux 
When using RobiNA on Linux (or any other UNIX-based operating system), the RobiNA 
installer package will not include an embedded R engine and hence requires that R (R 
version 2.14.2 when working with RobiNA version  1.1.0) be installed.  
 
The first time RobiNA is started, it will ask the user for the location of an R installation 
on the host system and try to install all required packages (if not already present). 
Depending on the configuration of the R installation and the permissions owned by the 
user running RobiNA this might cause problems, e.g. when the user lacks the permissions 
to install R packages in the standard R library path. This, however, can be resolved by 
setting a user-specific library path: Start an R session and type 
 
> Sys.getenv("R_LIBS_USER") 
[1] "~/Library/R/2.14/library" 



to have R report the default location for the user specific library. In a standard 
installation, the reported directory might not exist, so you’ll have to switch to a terminal 
and create the directory first. In e.g. a bash shell this would be accomplished by typing 
 
mkdir ~/Library/R/2.14/library 
 
(make sure to replace the path with the actual path reported on your system). If you 
subsequently try to install new packages, these should be installed in the user-specific 
library path. The next time RobiNA is started, it should be able to install all required 
packages and set up your local R environment for being used with RobiNA. 
  
 
 
 



 
 

2 Analysing microarray data with Robin  

2.1 Introduction 
 
Robin represents an easy to use graphical interface for microarray (Affymetrix GeneChip, 
other single channel (e.g. Agilent) and two colour) analysis functions from 
R/BioConductor. It is available on all Java-enabled computer platforms that are also 
supported by the R Development team. The main objective of Robin is enabling the 
individual biologist to use state of the art microarray pre-processing and analysis tools 
that are provided by the BioConductor project without in-depth knowledge of 
programming in R. To this end Robin provides documented, standard workflows for the 
quality assessment, normalization and statistical analysis of microarray data originating 
from many commonly used technical platforms. These workflows should allow for the 
analysis of most experimental setups that are conducted in microarray experiments 
carried out in labs around the world.  
This manual gives a detailed guideline through the Robin analysis workflows for 
different types of microarray experiments (e.g. Affymetrix, two colour, Agilent single 
channel…) and explains the concepts and methods of quality assessment, normalization 
and analysis of differential gene expression. The output that is generated by Robin can 
directly be imported into meta-analysis tools like MapMan and PageMan for further 
visualization and analysis of the data in a biological context or into Microsoft Excel. 

2.2 In brief: What can Robin do for you? 
You can use Robin for… 

(i) quality assessment of your data 
(ii) normalization of your microarray data 
(iii) detection of differentially expressed genes 
(iv) preparation of the data for an import into MapMan and/or excel 
(v) generation of informative plots on your experiment 

 

3 Preconditions and Glossary 

3.1 Commonly used Terms 
Robin helps in evaluating microarrays using advanced normalization strategies and 
statistics from R/BioConductor. Nevertheless, please bear in mind that most statistics and 
most normalization techniques make some strong assumptions and have some general 
terminology. 
When dealing with microarrays, almost always one will deal with values which have 
been transformed by taking the logarithm to the base of 2. The reason is, that by logging 
the data, the data becomes roughly normally distributed (Gauss shaped), which then 
allows using tests, like student’s t-test, making assumption about standard deviations etc.. 
Unlogged data is almost always NOT normally distributed, meaning t-tests are NOT 



applicable (even though they might still perform reasonably well). Thus, a difference of 1 
unit means a two-fold increase or decrease in expression. 
Often data is not represented as treatment value and control value, but instead of M and 
A. Here, M stands for treatment minus control (on the log scale, being a division on the 
normal scale), and A stands for (treatment plus control)/2. So M is a measure of your 
treatment effect and A of the expression level of that gene. 
(Actually another reason for using M and A values is that it is easier to see if values 
deviate from the zero line as if they were deviating from a line with a slope of one. Please 
see Figure 19)  
 

 

3.2 Affymetrix Files 
 
When dealing with Affymetrix chips, you will be confronted with .CEL and .CDF files, 
the former describes the scanned intensity for every spot (usually there are 2 times ~11 
spots per gene). The CDF file describes where the spots for a probe-set are to be found on 
the chip, since these are not clustered to compensate for local effects such as bubbles, 
smears, etc. 
 

3.3 Other single channel and two color data files 
Data derived from other microarray experiments may come in a variety of different file 
formats depending on the microarray scanner hardware and software used. Robin 
supports direct import of generic file types that contain the data in text files with each 
column of data points separated by a special character (e.g. semicolon, TAB etc.). Import 
of generic data is managed by a generic data import dialog that allows you to specify 

Figure 19: Comparison of MA plot versus Scatter plot of normalized expression values. The left 
panel shows an MA plot of the log2-fold changes when comparing two chips (M) plotted on the Y 
axis and the average log2 intensities (A) plotted on the X axis. On the right panel the same two chips’ 
expression values have been plotted against each other. The MA plots gives a clearer representation 
of the cganges in gene expression when comparing the two chips. 



which column contains what kind of data. Using this dialog it should be possible to 
import arbitrary microarray data. Since the generic import mechanism does not work for 
some data formats (like the tab-separated raw text files produced by Agilent scanners), 
customized settings have been supplied to allow import of these formats. Please set the 
import type on the file import panel according to your microarray data type if it is listed. 
If not, try generic import settings. If these fail we will be happy to create a customized 
filter for your data, if you supply us with a sample of the format. When working with 
generic data you’ll also have to know the layout of the chips you want to analyze – 
presets for commonly used chip types are already included in Robin. This list can be 
completed with your custom layouts. 
 

3.4 Assumptions 
The strongest assumption probably being, that not much changes in your experiment. I.e. 
the assumption is that let’s say not more than 5, 10 % of your genes are changing and that 
thus everything is comparable. 
If this assumption is violated, you may not get satisfactory results, or worse wrong 
results. To demonstrate this issue, just consider the probably oldest, easiest 
normalization, namely median centering. Here, one just subtracts the median of one 
experiment from each data point. In this extreme example, Gene1 and Gene2 are 
completely switched off. 
 
 XP1 XP2 
Gene1 10.2 0 
Gene2 3.2 0 
Gene3 4.5 4.7 
Gene4 7.8 7.9 
Gene5 9.9 9.8 
Gene6 10 10.2 
median 8.85 6.3 
Table 1: Experiment before normalization 
 
 
 XP1 XP2 
Gene1 1.35 -6.3 
Gene2 -5.65 -6.3 
Gene3 -4.35 -1.6 
Gene4 -1.05 1.6 
Gene5 1.05 3.5 
Gene6 1.15 3.9 
 Table 2: Experiment after normalization 
 
As an effect, Genes 5 and 6 seem to be upregulated, even though they were unchanged. 
These effects would disappear in this case, if also some genes were turned on, which 
often might be the case, but if you have strong suspicions, that very many genes change, 
and/or that these change in one direction only, you might have to consult an expert 
statistician. 



 

4 Walkthroughs 
The following sections of the manual provide step-by-step walkthroughs through 
microarray data analysis using Robin. Since Affymetrix data analysis is the most 
common task it is described in all detail. The workflows for two color and generic single 
channel analysis resemble the Affymetrix workflow and are hence described in an 
abbreviated fashion, focusing on the steps that are different from the Affymetrix analysis 
procedure. 
 
A common step at the beginning of all workflows is choosing the project directory. This 
directory will be used to store all data and results related to the analysis at hand. If you 
want to continue or modify a previous analysis, you can do that by simply choosing an 
existing project directory. Robin will import the data and settings from the project folder 
allowing you to conveniently modify the settings and run a new analysis. To distinguish 
the new analysis results from the imported data, Robin requires you to specify a name 
extension that will be appended to the imported project’s name to generate a new folder 
holding the results of the modified analysis run. If you import e.g. project AFFYTEST 
and specify “NEW” to be the extension, the new results will be placed into the directory 
AFFYTEST_NEW to make sure that previous results won’t be overwritten. 
 

 

4.1 Using Robin to analyze Affymetrix microarray data 
 
Firstly, when using Robin, you have to localize your CEL files. Robin comes preinstalled 
with specialized CDF files for a small selection of organisms (arabidopsis, maize, lotus, 
yeast etc.), when dealing with other organisms, you will need an internet connection, so 
Robin can use the Bioconductor framework to install missing CDF files. The INFO 
button can be used to display some details about the imported CEL files such as 
microarray type, algorithm parameters and all the technical data included in the header 
section of the CEL file. 
 

PLEASE NOTE that the project import feature only works with analysis projects that  
have been generated using Robin version 1.1 or higher. Trying to import a project 
from an older version will generate an error message. The version number is always 
displayed in the title bar of Robin’s main window. 



 
Figure 20: Importing CEL files into Robin 



 
After having selected your CEL files, you are presented with various options to 
investigate into the quality of the arrays.  
 

 
Figure 21: Quality control options available for Affymetrix(r) arrays in Robin. 

The ”expert options“ box is not shown by default – the preselected values there can be 
used to correctly analyze most standard experiments. If you activate the expert settings 
box you can explicitly choose which normalization method, p-value correction and 
general analysis strategy is to be used on your data.  
 

4.1.1 Quality Control 
After running the chosen quality control methods on your data, Robin will present a 
summary page showing thumbnails of the generated plots (see Figure 22). Clicking on 
the individual rows will open the images in full size and offer a possibility to save the 
image. PLEASE NOTE: You don’t have to open each image individually and save them 
manually – all generated quality control plots will automatically be saved together with 
the results of your analysis. 



 
Figure 22: Quality analysis summary page. 

Some of the quality assessments functions may have issued warnings – clicking on the 
small warning icon will open an info panel that tells you more specifically why the 
warning was generated. For example the RNA degradation analysis may have identified 
chips that display slopes higher than the accepted threshold or whose slopes deviate by 
more than 10 per cent from the median slope (see section 5.1.5 for details). Individual 
chips displaying an extraordinarily bad quality in the PLM-Plot (see 5.1.3) or MA Plot 
(see 5.1.2) can be excluded from further analyses by checking the “Exclude” box. Section 
5 describes all available quality control methods in detail and gives examples of good and 
bad quality check results. 
 

4.1.2 Experiment design and statistical analysis 
The next step in the analysis workflow is the assignment of the chips to groups of 
biological replicates. NOTE: Robin analyses all replicates as biological replicates – there 
is no way implemented yet that allows for proper consideration of technical replicates. 
Please be aware that if technical replicates are imported the statistical test outputs will not 
be sound any more.  
You can choose a descriptive unique name for each group of replicates (like “mutant”, 
“wildtpye” etc : see Figure 23). After sorting the chips, clicking “next” will proceed to 
the graphical experiment designer. Here the user can set up the comparisons that are to be 
made by CTRL-click-dragging connections between the groups (see Figure 24).  
 



Figure 23: Sorting of replicate experiments into named groups. 
 

4.1.2.1 Single factor analysis 
If only a single experimental factor is varied in the experiment (e.g. when comparing 
“wildtype” and a “mutant” genotype under identical environmental conditions), direct 
comparisons between the groups are defined by simply dragging an arrow from the 
“wildtype” to the “mutants” box on the left panel of the graphical designer screen (Figure 
24.1).  
 

4.1.2.2 Two factor analysis 
If experiments with more than one varying experimental condition are to be analysed the 
user can combine groups into “meta groups” and define comparisons of meta groups by 
dragging connections between them. First, the user has to link two groups of replicate 
chips by an arrow defining the direction of the comparison between them. To define a 
“meta group”, the user has to select these two simple groups of replicates by clicking or 
dragging a box around them and then click “create metagroup”. An orange box that is 
named after the comparison between the two selected groups will be added to the 
designer pane (see Figure 24, panel 3). Subsequently, comparisons can be defined 
between “meta groups” by simply drawing arrows accordingly. 
In the example experiment shown in Figure 24, mutant and wild type plants were 
compared both under stress and normal conditions  - so the experiment varies in two 
dimensions with genotype (wild type or mutant) being one factor and treatment (stress, 



no stress) being the other. The first four direct comparisons (Figure 24.2) will yield the 
genes that are responding to the treatment in the wild type (“wildtype – wildtype stressed) 
and the mutant (“mutant – mutant stressed”), which genes respond differently between 
the genotypes under normal conditions (“wildtype – mutant”) and stress conditions. The 
fifth comparison defined between the meta groups named “widtype – wildtyope stressed” 
and “mutant – mutant stressed” will extract genes that generally respond differentially to 
stress in the two genotypes (“(wildtype – wildtype stressed) – (mutant – mutant stressed”) 
– this is also referred to as the interaction term; see Figure 24.3).  
 

 

 
Figure 24: Setting up the experiment using Robins graphical designer. 

 
The experiment designer panel also offers an expert option box that enables the 
experienced user to influence specific parameters of the statistical inference. By default, 
the normalization method used for the main analysis will be the same that was chosen on 
the quality check panel (see Figure 24; if nothing was changed the default will be robust 

PLEASE NOTE: The direction of the arrow specifies the direction of the 
comparison. When the arrow points from the wildtype to the mutant this should be 
read as “wildtype minus mutant”. Genes showing a higher expression in the mutant 
when compared to the wildtype will accordingly yield a negative log2-fold change 
value as a result! 
 



multi array averaging - RMA) to ensure consistency between the quality check and 
differential expression statistics. The user can define significance cut-offs like discarding 
genes that show a log2 fold change in expression lesser than 1 (i.e. less than 2-fold up- or 
down regulation) and genes showing a p-value greater than e.g. 0.05 (i.e. 5% false 
discovery rate is accepted). A choice of multiple testing methods is available for the 
inference of differentially expressed genes:  
 

1) “separate” – Does the multiple testing for each comparison (contrast) separately. 
Using this method, each specific comparison will always give the same result 
irrespective of the set of comparisons being made in the analysis. It is the simplest 
method available as it does not consider multiple testing adjustment between the 
comparisons and assumes the same raw p-value cut-off for all comparisons 
(which might be very different). 
 
 

2) “global” -  Implements multiple testing correction across all comparisons and 
probes simultaneously ensuring a consistent p-value cut-off across all 
comparisons. 

 
3) “hierarchical” – Does p-value adjustment first for all genes and then across 

comparisons, which offers more statistical power to control the family-wise error 
rate when using the method described by [8] for p-value adjustment. 

 
4) “nestedF” – First does p-value adjustment for all genes and uses a nested F test to 

classify the comparisons as significant or not for the selected genes. 
 
 
Users that are familiar with R programming can activate the “preview R script”-mode in 
which all scripts generated by Robin are shown in an internal editor for review and 
modification prior to execution. Even if this option was not chosen, all R scripts 
generated by Robin will be written to the “source” folder in the final output directory. 
When the design step is completed, clicking the “Next” button will first open a file 
browser asking for a location to save the results to and then move on to the execution of 
the analysis. After completing the calculations, Robin will show a summary of the 
warnings generated during the workflow (if any) and offer options to exit, restart or 
modify the current experiment. 
 
 



 

 
Figure 25: Two color data import wizard. Robin automatically removes header sections from 
different tabular file formats and extracts the column headers. The user has to define which column 
contains which data (1) by assigning the proper column names to the required column fields. After 
choosing a chip layout from the list of layout presets (or defining a new layout and saving it as a 
preset; see 2), the user can save the import settings (3) and reuse them later when importing data of 
the same format. 

4.2 Analysing two-colour microarray data 
The first step when working with two colour microarray data is data import. Robin 
provides a wizard dialog that helps the user to import various import formats with the 
only restriction that the data has to be provided in plain text format (.csv, .tab etc). 
Loading MS Excel worksheets directly is not supported (yet). Aside from this any kind of 
tabular data can be used. When importing data, the user only needs to know which 
column separator was used. Layouts of frequently used microarray types are included as 
clickable presets in the layout preset list – if the layout of your favorite chips is not 
included in the list, you can define a new layout and save it for later use. The minimal 
data required to analyze two color chips is an identifier uniquely identifying the oligos / 
cDNAs spotted on the chip and the red and green channel foreground and background 
signal intensities. The table view on the left half of the import dialog facilitates choosing 
the column containing the required data, and after specifying the column names under 
“Required columns” the information needed to import the data is complete. Robin will 
create copies of the input files that are stripped off any header text and checked row-wise 



for data format consistency. The processed input files will be placed in a separate folder 
in the output folder.  

 
Figure 26: Defining the RNA targets table for two-color microarrays 

 
The next piece of information Robin needs is which different RNA samples (RNA 
targets) have been hybridized to which channel on which chip. This can be conveniently 
entered on the targets table panel (see Figure 26). Robin will run some checks on the 
input to assert consistency.  Analogous to Affymetrix data analysis the next panel 
provides a choice of quality check methods adapted to two color arrays and an expert 
settings box granting deeper control of the analysis parameters (See Figure 27).  
Each step of the normalization process, namely background correction, within-array 
normalization and between-array normalization can be configured separately to o 
 
Quality check results will be summarized in a list resembling Figure 22. Depending on 
the amount of factors being varied in the experiment (i.e. the amount of different RNA 
samples hybridized) clicking “Next” on the quality check panel will either directly start 
the main analysis (e.g. in a simple two sample comparison) or open the graphical 
experiment designer panel (see Figure 24). Experiment layout is done exactly as for 
Affymetrix arrays – please refer to section “Experiment design“ for a detailed 
description. 
 
 



 
 

 
Figure 27: Quality check and expert settings for two color microarrays 

 
 
 
 
 

4.3 Analysis of generic single channel arrays (e.g. Agilent) 
Analysis of generic single channel arrays resembles the workflow for two color chip 
analysis in the largest part. The flexible import dialog (see Figure 28) allows for 
configuration of any tabular text file based data. Please note that you have to specify 
whether the data originates from an Agilent scanner prior to import to make sure that 
Robin can correctly remove the header section of the data files. Robin will process the 
input according the configuration chosen in the import dialog and create cleaned-up 
working copies, leaving the original data untouched. In the next step, analogous to 
Affymetrix data analysis, several assessment methods can be chosen to investigate into 
the chips’ quality. Since most generic single channel chips are not based on a probeset 
design (several probes per target) but only contain one probe per target transcript, the 
probeset specific quality checks available for Affymetrix arrays (i.e. PLM-based 
analyses, RNA degradation plot) cannot be used.  
 



 

Following the review of quality check results as depicted on Figure 22 and described in 
section 4.1.1, the individual chips have to be organized into groups of biological 
replicates. Depending on the statistical analysis strategy chosen (rank product- or linear 
model-based) two or more groups can  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28: Import dialog for generic single channel microarray data. 



 

4.4 Functional annotation of the results  
The MapMan project provides functional classifications, so called “Bins”, for a wide 
range of completed genomes and microarray platforms. These classifications are 
available in the form of mapping files that contain entries for each gene (probe; probeset) 
assigning them to functional Bins. Multiple assignments are possible in cases where e.g. a 
transcription factor is member of a certain family of transcription factors (e.g. MADS box 
factors) and is known to be involved in a specific biological process (e.g. flower 
development). All available mapping files can be freely downloaded by academic users 
via the MapManStore webpage (http://mapman.gabipd.org/web/guest/mapmanstore). At 
the end of the analysis workflow, Robin will show the result annotation dialog (see 
Figure 30) asking the user whether functional annotation information should be merged 
into the results. To integrate the annotation, the user simply has to choose the correct 
mapping file from the drop-down list and click “Annotate”. If an appropriate file 
matching the microarrays platform used is not included in the list, it might be available 
for download in the MapManStore. In case the MapManStore is also not containing a 
mapping file for your favorite platform please contact us via the MapMen website’s 
support forum (http://mapman.gabipd.org/web/guest/forum). Robin tries to interleave the 
chosen mapping file with the results and finally displays an informative summary giving 
the numbers of identifiers found in the mapping and the results file that could be 
matched. If the mapping file that was chosen is not compatible with the microarray 
platform that was used to generate the data Robin will issue a warning. Theoretically, if 

Figure 29: Quality check and expert settings panel for non-Affymetrix single channel microarrays 



mapping file and chip type match perfectly, 100% of the identifiers in the result file 
should be contained in the mapping, however raw result files often contain several 
control spots/probesets that are not included in the mapping files (that are only containing 
functional information for genes). This might lead to numbers lower than 100% but 
usually above 90%. 
 

 
Figure 30: Result annotation dialog. If the microarray platform is supported by the MapMan project, the 
results can be augmented by adding MapMan functional classification information. The Robin installer 
package contains a variety of annotation files for common microarray platforms – more can be downloaded 
from the MapManStore repository 

 

5 Chip quality assessment 
 
When analysing your own primary microarray data or reanalysing data that is publicly 
available the first step is quality assessment. Individual chips displaying a very bad 
quality might strongly impact the final results of your microarray experiment and hence 
lead to incorrect biological assumptions. Chip quality can be affected on different levels 
and Robin offers a range of informative plots that cover many different aspects of the 
chip data quality. In the following section these methods will be described in detail. 
 
 
 
 
 
 
 
 
 
 
 
 



5.1 Affymetrix chip quality checks 
 

5.1.1 Analysis of signal intensity distribution 
 

  

Figure 31: Box plots (left panel) and smoothed signal intensity densities (right panel). The red circles 
highlight individual chips that show strong outlier behaviour indicating low quality. 

Box plots of the unnormalized expression values on each chip give a global overview of 
the signal intensity distributions. Ideally all chips should have a comparable distribution 
already before normalization (see Figure 31, left panel). Another way to visualize the 
distribution of signal intensities is plotting smoothed histograms of the (log2) signal 
intensity of all perfect match (PM) probes (see Figure 31, right panel). The red circles 
point out outliers.  
 

5.1.2 MA plots 

 



Figure 32: MA plots and box plots. The left panel shows an unobjectionable behavior while the data 
displayed on the right panel strongly deviates from normal values. In the box plot (see Figure 31) the 
two highlighted chips are also clearly showing an outlying intensity distribution. 

 
On the MA plots, the average log2 probe signal intensity A = ½ * (logR + logG) is 
plotted against the log2 fold change in expression M = logR – logG. In the case of 
Affymetrix and other single channel chips G is a synthetic chip created from the median 
expression values of all chips in the input. For two-color chips the M values are 
calculated as the log2-fold ratio of the normalized red and green signal intensity. Based 
on the assumption that most of the genes will not show differential expression. Robin will 
issue a warning if more than 10% of the genes show a greater than two-fold change (log2 
fold change of 1, resp. M >= 1 or M <= -1) in expression. The actual percentage of genes 
showing a higher than two-fold change in expression is shown on the plot as “%>LFC1”. 
To capture artifacts that are related to the signal intensity A, a lowess fit curve over the 
data points is calculated (see Figure 32). If the integral of the absolute values of the 
lowess curve over the zero line is greater than 1 another warning is generated indicating 
that there seems to be a signal intensity-dependent artifactual effect (the integrals value is 
shown on the plot as “I”). The median M value also given on each plot is usually less 
informative as can be seen on the right panel of Figure 32 where the median shows a 
normal value while the data quality is severely affected. MA plots are available for all 
microarray types. 
 
 

5.1.3  False color images of probe level model weights 
A linear model is fitted (using RMA style, more later) to your probeset (i.e. your 11 
probes), using the boundary, that the effect of all probes in each probeset is zero.  
Weights are attached to the different probes in each probeset, low weights are colored in 
green (i.e. they were not important for the model), and high values in white. 
 



 
Figure 33: PLM weight image. Here a potential artifact is visible in the upper right corner. 

For some examples of probe level model (PLM) image plots showing different artifact 
have a look at: http://plmimagegallery.bmbolstad.com/. The weights applied to each 
probe are visualized as pseudo chip images (see Figure 33). Areas on the chip that show 
consistently low probe weights might indicate technical problems cause e.g. by washing, 
dust on the chips or scanner malfunction. PLM-based analyses (pseudo images, NUSE 
and RLE, see next section) are only available for Affymetrix chips. 
 

5.1.4 Normalized unscaled standard error and relative logarithmic expression 
The normalized unscaled standard error (NUSE)  plots show the standard error estimates 
of probe level models for each probeset standardized across all chips so that the median 
standard error for each probeset is 1. The NUSE plot visualizes the distribution of the 
standard errors for each individual chip. Chips showing a consistently increased standard 
error are probably of lower quality. The relative logarithmic expression (RLE) is 
computed by comparing the logarithmic expression of each probeset on each chip to the 
median expression of this probeset across all chips. According to the assumption that 
most of the genes are not differentially expressed under a given treatment, the median 
RLE value should be zero. Individual arrays showing a deviation of the median from the 
zero line and/or increased spread on a box plot of the RLE values are presumably of low 
quality. 
 



 
Figure 34: Relative logarithmic expression and normalized unscaled standard error plots. Note the 

two arrays that are consistently showing low quality behaviour across both plots 

 
 

5.1.5 RNA degradation 
In each probeset the probes are ordered directionally from the 5’ to the 3’ end. Average 
probe intensities are plotted by probe number. The resulting plot visualizes the global 
RNA degradation state of the samples used. Generally, RNA degradation is more active 
at the 5’ terminus  - signal intensities of the probes closer to this terminus are accordingly 
lower. If the slope of the probe intensity curve is exceeding a certain threshold value or 
the slopes of individual chips are deviating from the median by more than 10% Robin 
issues a warning (see Figure 35 ). As this kind of analysis relies on probesets consisting 
of more than one probe, it is only available for Affymetrix arrays. 

 
Figure 35: RNA degradation plot. 



 

5.1.6 Scatter plots 
If the scatter plot option is chosen, Robin plots pair wise comparisons of the normalized 
expression values of all possible combinations of two chips. NOTE: Using this feature on 
a large number of input chips will generate a lot of images and might increase calculation 
time and memory demand significantly. The scatter plots are useful for assessing whether 
two replicate chips are showing similar behavior. If they do, the points should lie on a 
perfect diagonal line. Replicate samples that are not showing this behavior strongly 
suggest a problem (e.g. accidentally swapped or mislabeled samples, technical problems 
on one individual chip, strong RNA degradation effects etc. ) 
 
 

 
Figure 36: Scatter plots of normalized expression values. The left panel shows two biological 
replicates of acceptable reproducibility plotted against each other while the right panel shows two 
chips with very different expression profiles. Identical values are plotted on the blue (0) line; The red 
lines indicate a log2-fold difference of 1. 

 

5.1.7 Principal component analysis and hierarchical clustering 
The data generated in a microarray experiment can be understood as a matrix of p 
columns, where p is the number of chips used, and n rows, where n is the number of 
genes (probesets, probes) measured. Such a dataset could be visualized as a set of n 
points in a p-dimensional space. The principal component analysis reduces the 
dimensionality of the dataset by finding a small number of linear combinations of the 
data that explain most of the variance in the dataset. These are the principal components 
(PCs). The principal components are ordered by the amount of variance explained and 
subsequently the first two PCs are plotted against each other. The example on the right 
panel of Figure 37 shows a PCA on eight samples, six of which are grouping closely 
together on two groups of three replicates while the last two are completely unrelated.  
 
The hierarchical clustering method performs a clustering of the Pearson correlation of 
raw normalized expression estimates for each chip a the distance measure for the 



clustering. Chips that show similar expression profiles should cluster together when using 
this approach. The results are shown as a dendrogram where the branch length depicts 1-
correlation score. The hierarchical clustering gives an overview of the internal structure 
of the data and identifies experimental conditions that generate similar global responses 
in gene expression. Replicate chips should always cluster closely. Accordingly, the 
samples six samples belonging to two groups of three replicates form distinct clusters 
while the last two are very distant from them and each other. The PCA and hierarchical 
clustering analyses are only available for Affymetrix and generic single channel 
experiments. 
 

 
Figure 37: Principal component analysis and hierarchical clustering of normalized expression values. 
The red circles highlight chips with strongly deviating behavior. 

 

5.2 Two color microarray quality checks 
Quality check methods that are specific to two color arrays are described in the following 
section. Some quality checks that can be run for all chip types – these will not be 
described again below (e.g. MA plots). 
 
 
 
 
 
 
 
 
 
 
 
 



5.2.1 Image plots of two-color background intensities and unnormalized M values 
 

 
Figure 38: Two-color microarray background signal intensities and unnormalized M value plots. 

 
The background signal intensities measured on two-color and generic single channel 
chips (not shown here) can be visualized as false-color images. This is very useful for the 
identification of washing artifacts like those visible on the two left plots in Figure 38. 
Both color channels display obvious traces of droplets, so called washing artifacts. In the 
worst case these artifacts carry over to the foreground signal and cannot be eliminated by 
background subtraction. If this happens they would also be visible on the M value plot 
shown on the right side of Figure 38 (in the example given, however, this is not the case). 
The M value plots is simply a false-color image of the merged red and green foreground 
signal intensities measured on the chip prior to normalization.  



5.2.2 Overview of two color signal intensity distribution 

 
 
Figure 39: Two color microarray signal intensity distribution assessment. Upper left: Smoothed 
signal intensity distributions are shown for the red and green channel separately for each chip. 
Lower left: Box plots of the raw foreground signal intensities for each chip and color channel. The 
left hand plots show data prior to normalization while the plots on the right half show normalized 
data. The title of the right hand intensity distribution plot reflects the chosen normalization settings. 
For the shown example within-array printtiploess normalization without background correction and 
between-array scaling were performed. 

 
Analogous to the box plots and smoothed histograms that are generated for Affymetrix 
arrays (see section “Analysis of signal intensity distribution” and Figure 31). 
 
 
 
 
 



6 Data normalization 
 
When analyzing microarray experiments, the raw data obtained by scanning probe 
intensities on the chips can be strongly influenced by different technical effects. These 
can be different levels of background signal due to inhomogeneous washing, 
systematically deviating probe signal intensities due to different scanner settings (or even 
same settings on different devices), probe-specific hybridization affinity effects etc. 
To make sure that the microarrays you are going to analyze in a differential expression 
experiment can actually be compared it is very important to eliminate these effects. This 
process is called normalization. Since the first application of microarray technology many 
different normalization techniques have been proposed - the most widely used ones are 
available in Robin. If your favorite method is not among them feel free to contact us. 
 
Generally, all normalization methods consist of two (three in the case of Affymetrix 
GeneChip microarrays) major steps: (I) background correction, (II) normalization of 
background-corrected probe level data and (III) summarization of probe-level data to 
yield one expression measure per probeset. 

6.1 Single channel microarray normalization 

6.1.1 Normalization methods for Affymetrix arrays 

6.1.1.1 RMA [9] 
The robust multi-array average (RMA) normalization method proposed by [9] has been 
widely used and accepted as a well-performing approach for inference of differential 
gene expression from Affymetrix GeneChip(R)-based experiments. The RMA procedure 
first does background correction based on the assumption that the background signal is 
normally distributed while the real probe signal is exponentially distributed (convolution 
model). The background-corrected data is then quantile normalized. Quantile 
normalization assumes that the distribution of gene abundances is nearly the same across 
all chips. A reference distribution is created using the pooled intensity probe distribution 
on all chips. To normalize each chip, the quantile of each intensity value is computed and 
then the original value is transformed to the corresponding quantile’s value on the pooled 
reference chip (that is created by averaging the values of each probe across all chips in 
the experiment). In the last step, a linear model is fitted to the corrected, normalized and 
log2-transformed probe intensities:  with  being 
a probe affinity effect, µi representing the log2 expression level on array I and 

representing a noise error with mean = 0. The model parameters are estimated using 
the median polish procedure that is robust against outliers.  
  

6.1.1.2 GCRMA [10] 
The GCRMA method adds a more refined background adjustment to the standard RMA 
normalization. This background adjustment method models the different hybridization 
affinities for each PM-MM probe pair based on its nucleotide sequence which results in a 
more precise estimate of the background. While the standard RMA approach ignores the 



MM probe-derived signal, GCRMA subtracts a shrunken MM value that was corrected 
for its binding affinity from the PM signal. More specifically, the model assumes: 

 and  with O being the optical noise, N 
being the non-specific binding effect and S being proportional to the real concentration of 
the target transcript. Hence, the model takes into account the observation, that the MM 
signal may contain real transcript signal.  

6.1.1.3 MAS 5.0 (Affymetrix Microarray Analysis Suite 5.0 ) 
In contrast to the other normalization methods described here, MAS 5.0 works on a single 
chip basis. Briefly, each chip is divided into 16 (4x4) equally sized grid regions and a 
background and noise signal value is calculated based on the lowest 2% of measured 
probe intensities for each grid region. The probe intensities in each grid block are 
adjusted to the weighted average of the background signal where the weight is dependent 
on the (euclidean) distance of the probe to the centroid of the grid block. In the next step 
the perfect match (PM) and mismatch (MM) probe pairs are considered. The original 
purpose of the PM/MM probe pair design was to use the MM probe signal intensity as 
unspecific signal intensity and subtract it from the PM probe to generate a reliable probe 
signal. However it turned out that up to 30% of the MM probes display a signal intensity 
that is higher than the corresponding PM probe so that a simple subtraction would yield 
negative values. To work around this problem, the so called ideal mismatch (IM) was 
introduced. If the PM intensity is larger than MM, IM equals the MM value. In cases 
where PM=MM or PM<MM, IM is calculated using the PM value and a specific 
background (SB) value that is computed by taking a robust average of the log ratios of 
PM and MM. The summarized expression measure is computed using a Tukey biweight 
of PM and IM values in each probe set on the log2 scale. In MAS 5.0, the normalization 
is performed after summarization. A scaling normalization is used to adjust intensity 
values on each array. MAS 5.0 provides final expression values on the original scale. The 
Robin analysis workflow takes this into account and logarithmizes the values prior to 
statistical analysis to provide uniform output independent of the normalization method 
chosen. For a more detailed description of the method, please see the Affymetrix 
technical documentation (Affymetrix GeneChip® Expression Analysis, 2004). 
 

6.1.1.4 PLIER (Affymetrix,  Probe Logarithmic Intensity Error Estimation, 2005) 
The PLIER method was developed by Affymetrix as an improved estimator of signal 
intensity. It is, unlike MAS 5.0, a multi-array method but includes the summarization 
algorithm that is also used in the MAS 5.0 method. Like RMA it uses a global model but 
bases this on a different set of assumptions. Unlike RMA it takes the MM probe signal 
into account when computing expression values. The observed PM and MM probe signal 
intensities for the ith probe on the jth array are assumed to be  
and  with µij being the binding level of probe i and array j, ai being the 
probe specific binding affinity, cj the RNA concentration in the sample hybridized to 
array j and Bij the background binding intensity of probe I on array j. 



PLIER also  assumes that the error of the PM and MM probe signals are reciprocal (while 

MAS 5.0 assumes them to be equal):  with  being the error of the ith 

perfect match probe in the jth array and  the error of the corresponding mismatch 

probe. This results in the following equation: . 

Based on the above assumptions, the PLIER algorithm computes the values of a  and c by 
setting the residual r = log(ε) to zero using a minimization of a robust average of the r2 

values. PLIER performs slightly better than MAS 5.0 when comparing the analysis of 
spike-in experiments where RNA of known concentration was added to the sample, 
possibly due to a better error estimation procedure. For further details and an in-depth 
discussion of the PLIER algorithms and performance, please see Affymetrix’s Guide to 
PLIER esitimation, 2005 and Therneau and Ballmann, 2008. 

6.1.2 Normalization of generic single channel and two color arrays 
Since most of the non-Affymetrix microarrays do not adopt a probeset design where 
multiple probes are matching one target transcript, the summarization step necessary for 
Affymetrix raw data is omitted. The two remaining steps, background correction and 
normalization, can be flexibly configured according to the experiments’ requirements and 
users’ preferences. 
 

6.1.2.1 Background correction 
Several methods to correct the measured probe intensity for background signal intensity 
are available. The background signal intensity values themselves have to be provided in a 
separate column in the raw data file and have to be specified upon import of the data 
(please see 4.2 and 4.3). Aside from “subtract” all background correction procedures are 
designed to produce positive corrected signal intensities. All methods listed below are 
implemented in the limma package – please refers to [11] for further details. 
 

1) “subtract”– Simply subtracts the background intensities from the foreground 
intensity values.  

 
2) “half” – All foreground signal intensities that are less than 0.5 of the original 

intensity after background subtraction will be set to 0.5 of the uncorrected value. 
 

3) “minimum” – Values that are zero or negative after simple background 
subtraction are set to 0.5 times the smallest positive corrected value. 

 
4) “edwards” – Uses a log-linear interpolation to adjust low intensity values (see 

Edwards, 2003) 
 

5) “normexp” – Uses the same convolution model that is applied in the RMA 
method to model the background intensity with two modifications to make it 
better applicable for two color arrays. First, the model is fitted to the background 



subtracted foreground values of each color channel separately and second, instead 
of using a kernel density parameter estimator for the model parameters, a 
maximum-likelihood estimator is used See (Ritchie et al., 2007) for details. 

 
6) “rma” – Employs the background correction step of the RMA method for 

Affymetrix arrays. 
 
 

6.1.2.2 Within-array normalization 
This option is only available for two color microarrays and normalizes the log2 ratios of 
expression of the red and green channel signals so that the average log2-ratio is zero. This 
is again based on the assumption that most of the genes do not show differential 
expression in a given experiment. The options made available are implemented in the 
limma package and will be described in the following: 
 

1) “median” – Simply subtracts the median from the calculated M values. 
 

2) “loess” – Uses global loess regression (a robust smoothing algorithm based on 
local polynomial regression) to compute a trend in the data. Each M value is 
normalized by subtracting the corresponding the corresponding value of the loess 
curve from it according to , where N is the normalized value, M 
the raw value and loess(A) the loess curve as a function of the average signal 
intensity A. 

 
3) “printtiploess” – Performs the loess normalization separately for each print tip 

group. This approach accounts better for local spatial variation in background 
signal intensity and it therefore used as the default method for within-array 
normalization in Robin. 

 
4) “robustspline” – This method does also normalize print tip group-wise but uses 

regression splines and empirical Bayes-based shrinkage instead of loess curves for 
normalization. 

 

6.1.2.3 Between-array normalization 
In addition to normalizing within each two color array, the user can choose to also 
perform between array normalization. When analyzing single channel arrays, this is the 
only normalization approach available. Applying between array normalization makes 
sure that the expression intensities (resp. log2 ratios on two color arrays) have equal 
distributions across a series of chips. Several options are available for two color arrays 
while the list is limited to scale and quantile normalization for single channel arrays 
(again, the methods listed are provided by the limma Bioconductor package).  
 

1) “scale” – Log2 ratios of expression are scaled to have the same median absolute 
deviation (MAD) across arrays. 



 
2) “quantile” – Adjusts to intensities to have the same empirical distribution across 

chips. This is the normalization method that is also used by the RMA procedure 
for Affymetrix chips.  

 
3) “Aquantile” – Is a variation  of the quantile method that only adjusts the A values 

to display the same distribution. 
 

4) “Tquantile” – Does a quantile normalization separately for each of the target 
groups defined on the  targets designer panel in the two color chip analysis 
workflow (see 4.2). 

 
5) “Gquantile” and “Rquantile” – Quantile normalization is performed for the green 

(“G”) or red (“R”) color channel only. This approach makes sense if a common 
reference design has been employed in the experiment that is being analyzed and 
the reference sample was always hybridized in the same color channel. 

 
Both normalization approaches can be combined when working with two color channels. 
In this case, within array normalization and background correction are performed prior to 
between array normalization steps. The preset default settings should give robust 
expression estimates in most cases. However, given the heterogeneity of two color and 
single color technical chip platforms, different settings may perform better for individual 
chip types. When trying to assess whether the chosen settings give decent results in a 
given experiment, it helps to inspect the shape of the MA plots after normalization. If the 
distribution of values displays the expected (often “trumpet”-like) shape and the plot is 
centered on the M = 0 line (see Figure 32), the settings seem to be sound. If in doubt, 
please seek advice from an experienced statistician.  
For more in-depth information on the normalization methods in general, please refer to 
[12] 
 

7 Analysis of differential gene expression 
The statistical methods Robin employs to identify differentially expressed genes are 
based on two different approaches: Linear modeling (limma, [13]) and rank product-
based analysis (RankProd, [14, 15]). When analyzing Affymetrix data, the user can 
choose between these two options with the restriction that rank product-based inference 
of differential expression is only available when two groups are to be compared. When 
working with two color microarrays, rank product-based analysis is not available yet. The 
two methods differ in that they take two completely different approaches to the detection 
of differentially expressed genes. While the linear model-based method relies on 
advanced statistical modelling and Bayesian inference, the rank product approach more 
resembles biological reasoning on the data. More specifically, limma assumes a linear 
model  where yj contains the expression data for each gene, X is the design 
matrix describing the systematic part of the data and αj is a vector of coefficients 
(representing the response level for gene j on chip g). The biologically interesting 



contrasts of the coefficients are defined by , where C is the contrast matrix (for 
a more detailed in-depth discussion please refer to [13]).  
 
The rank product approach, on the other hand, assumes for an experiment in which n 
genes are investigated in k replicates, that the probability to find a gene at the top position 
of a ranked list of up- or down regulated genes is exactly . The combined probability 
of finding a gene at a certain position in the ranked list, when k replicates i and ni genes 
are measured can be expressed as the rank product , where 

is the position of gene g in the ranked list of decreasing (up) or increasing (down) 
fold changes in the ith replicate (see [14] for further details not to be reproduced here).  
Since rank product-based analysis is limited to comparing two experimental conditions, 
the linear model-based analysis offers far more options and flexibility with respect to the 
available settings and design of the experiment (e.g. if two factors, like genotype and 
treatment, are being varied in an experiment and the user is interested in the interaction 
effect).  
 

8 Output 
 
At the end of each analysis run, Robin asks for a directory to save all files that are 
relevant to the experiment. These include processed raw input data files (only in the case 
of two color and generic single channel analysis), R source code for quality assessment 
and main analysis, various informative plots illustrating the quality check results and 
main analysis results and tabular text data files containing the full results in all detail. The 
following table lists all files that are generated. The “Type” column refers to the 
microarray type for which this kind of output file can be generated (G = all platforms, 
A=Affymetrix, T=two color microarrays, S=generic single channel arrays). Parts of the 
file names written in italics refer to variable text: EXP_NAME: The name of the 
experiment as entered by the user when choosing the name of the output folder. TMP: An 
automatically generated unique identifier used for temporary files (the quality check 
output files are first stored in the system’s temporary folder and are later copied to the 
quality checks folder of the output directory). GRP: Reference to the group names as 
assigned by the user when sorting individual raw files (e.g. .cel files) into groups of 
biological replicates. 
 
 
Filename Folder Description Type 
EXP_NAME_results.txt . This file contains the normalized log2 fold 

change in expression values for all 
comparisons defined in the design step of 
the experiment. In addition, a second column 
containing a flag value denoting the 
statistical significance of each log fold 
change is generated for each gene. A value 
of 0 means not significant, while -1 and 1 
mean significantly up- or down-regulated. 
 

G 



 
EXP_NAME_summary.txt . A text file summarizing and documenting 

the analysis inputs, program settings and 
warnings generated during the workflow.   
 

G 

EXP_NAME_design.png . PNG representation of the experiment 
design as configured on the graphical 
designer panel in the last step of the analysis 
workflow. 
 

G 

redundant.probes.info.txt detailed_results If redundant probe names are found in the 
input data of the generic single channel rank 
product analysis, this file is generated. It 
contains the redundant identifiers, number of 
spots found and the median values for each 
of the identifiers on each chip. 
 

S 

full_table_GRPa-
GRPb.txt 

detailed_results Tables giving the complete statistical results 
for each of the comparisons made. The 
columns contain from left to right: 
(Feature.ID) A unique identifier for the 
oligonucleotide probes or probe sets on the 
chips; (logFC) the log2-fold change in 
expression; (AveExpr) average normalized 
expression value; (t) t-statistic; (P.Value, 
adj.P.Val) raw and Benjamini-Hochberg-
corrected p-values for differential 
expression; (B) the log-odds for differential 
expression. 
 

G 

top100table_GRPa-
GRPb.txt 

detailed_results Contains the same data columns as the full 
tables but excludes probes / probesets that 
do not fulfill the chosen p-value and or 
minimal log2-fold change cut offs.  
 

 

EXP_NAME.PAcalls.table
.txt 

detailed_results Only generated when analyzing Affymetrix 
chips. Table containing the present / absent 
calls for each probeset on each chip in the 
experiment plus the attached p-values that 
are calculated using the MAS5calls function. 
 

A 

raw_METHOD_normalize
d_expression_values.txt 

. Expression estimates for each 
probe/probeset on each chip after 
normalization. 
 

A 

TMP_hclust.png qualitychecks Hierarchical clustering of the normalized 
expression values. The clustering is based on 
1-pearson correlation of expression as the 
distance measure. Full linkage hierarchical 
clustering is performed. 
 

A, S 

TMP_pcaplot.png qualitychecks 
 

Scatter plot of the first two components 
obtained in a principal component analysis 
of the normalized expression values. 
 

A, S 



 
TMP_boxplot.png qualitychecks 

 
Boxplots of the unnormalized signal 
intensities on each chip 
 

G 

TMP_hist.png qualitychecks Smoothed density plots showing the signal 
intensity distribution on each chip prior to 
normalization. 
 

A, S 

TMP_density.png qualitychecks These plots display the signal intensity 
distribution for two color arrays analogous 
to the ”hist” plots for Affymetrix and other 
single channel arrays. Smoothed 
distributions are plotted separately for both 
color channels 
 

T 

TMP_maplot1..n.png qualitychecks MA plots of chip 1 to n. When analyzing 
single channel chips, these plots show the 
log2-fold change in expression of each 
individual chip when compared to a 
synthetic chip constructed from the median 
expression values of all chips in the 
experiment. In the case of two color arrays 
the M values correspond to log log2 ratio 
between the green and red channel signal 
intensities prior to and after normalization. 
Each plot also shows the following quality-
associated parameters: 
 
“I” – Absolute value of the numerical 
integral of the lowess fit curve over the M=0 
line. Values greater than 1 are considered to 
indicate lower quality. 
 
“%>LFC1”  - Percentage of 
probes/probesets displaying a log2-fold 
change greater than 1. Based on the 
assumption that most of the genes will not 
show differential expression, a warning will 
be issued of more than 5% of the probes 
show an absolute log2 fold change higher 
than 1 (meaning 2-fold up- or 
downregulation). 
 
“median” – Gives the median value of M. In 
an ideal experiment this should be zero. 
 

G 

TMP_plm1..n.png qualitychecks Shows pseudo images of the model weights 
for each probe after fitting linear probe level 
models. Low weights are indicated by 
stronger red or green color 
 

A 

TMP_rle.png qualitychecks Boxplots of the relative logarithmic 
expression (RLE) values on each chip. The 
boxes should be centered around zero. 
 
 

A 



 
TMP_nuse.png qualitychecks Boxplots of the normalized unscaled 

standard errors (NUSE) of the probe level 
models on each chip. The plots should be 
centered around zero and display 
comparable spread. 
 

A 

TMP_scat1..n1..m.png qualitychecks Scatter plots of all possible combinations of 
two chips. The normalized expression values 
are plotted against each other.  
 

A, S 

TMP_rna.png qualitychecks RNA degradation plot (only available for 
Affymetrix arrays). Shows mean intensities 
of probes in all probesets ordered from the 
5’ to the 3’ end of the target sequence. This 
plot allows a good overview of the global 
RNA quality on the chips.  
 

A 

TMP_bground.png qualitychecks Pseudo images of the background signal 
intensities measured on two color or non-
Affymetrix single channel arrays.  
 

T, S 

TMP_mvalues.png qualitychecks Pseudo image plots of the unnormalized M 
(= log2 ratios of green and red signal) values 
of two color chips. 
 

T 

XYZ_robin input Cleaned-up copies of the input raw data files T, S 
 

EXP_NAME.main.analysis
.R 

source The R script file containing code for the 
main analysis. The file can be used as a 
starting point for customizations of the 
analysis. Please note that the file contains 
some hard coded paths. 
 

G 

qualityChecks.R source Quality checks R source code file. 
 

G 

MAplot_GRPa-GRPb.png plots The plots folder contains some informative 
plots on the results of the main analysis. MA 
plots are generated for each contrast that was 
defined on the experiment designer panel. 
Genes that are significantly differentially 
expressed according to the statistical 
analysis are highlighted by red circles. 
 

G 

vennDiagram_down/total/
up.png 

plots Venn diagrams showing the number of  
significantly up- down- and total regulated 
genes for up to four contrasts. 
 

G 

PCAplot.png plots Principal component analysis plot analogous 
to the plots generated in the quality checks 
section. This plot does in addition  highlight 
the groups of replicate experiments as 
defined on the groups panel. 

A, S 
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