
Rusted PackFile Manager
By Ismael Gutiérrez González, A.K.A “Frodo45127”

Version 1.4.2, available here: https://github.com/Frodo45127/rpfm

Introduction

This is Rusted PackFile Manager, or RPFM, a modding tool for modern Total War Games. If

you've used PFM before, you can see it has a similar UI. It's done that way to make it easier to

use for modders coming from PFM. We are going to do the initial configuration first, and then

we are going to take a look at the different features RPFM has to offer.

Remember that, since version 1.0, this manual should always be in RPFM’s folder, or accessible

from “About/Open Manual” in RPFM’s Menu Bar, in case you want to check it later.

https://github.com/Frodo45127/rpfm

Initial Configuration

After the first start, we need to go to “PackFile/Preferences”, and configure the stuff we want.

First, the “MyMod” Path. This is the path where "MyMods" and their data will be stored. We'll

see later in the tutorial what this "MyMods" thing is. For this tutorial, we'll pick an empty

folder. Then, the games paths. These are the folders where each game is installed. We'll fill the

ones for the games we have installed.

In the end, it should look something like this:

Now we choose our “Default Game”. RPFM uses a "Game Selected" setting to configure

certain parts of the program to work with one game or another. For example, it changes the

way the mods are saved, the default folder to save them, the schema used for the tables,....

Here you can set the game that'll be selected by default when you open the program. We'll

leave it in “Warhammer 2” for this tutorial. Next, all these checkboxes. You can get an

explanation about what they do just by hovering them with the mouse, like this.

One special setting is the “Use Dark Theme” checkbox. That setting is only available in

Windows. The Linux version uses the system’s Qt Theme instead.

And finally, the “Shortcuts” button. Hitting it will open the “Shortcuts” window, were you can

see and edit all the shortcuts currently used by RPFM.

Just keep in mind that some of the shortcuts are applied when the program starts, so you’ll

have to close and re-open RPFM for the changes to take effect.

When you're done with the settings, just hit "Save". You can restore them to the defaults with

the button of the left (same for the shortcuts with their “Restore Defaults” button).

Now the last step. This is optional, but recommendable and it requires you to have the

Assembly Kit for your games installed. We have to go to “Special Stuff” and, for each game we

have, hit “Generate PAK File”. This will create a special file that will help RPFM with reference

data for table columns. It’s not enabled for Empire and Napoleon for now, but it should work

for every other game.

With that, we have completed the initial configuration. Starting on version 1.0, new updates

should continue to work with the same settings/shortcuts (as long as new big things aren’t

added), updating them automatically in case a new setting/shortcut is introduced, storing the

saved configurations in the files “settings.json” and “shortcuts.json”, in RPFM’s folder.

So now that we’re done configuring RPFM, let's take a look at the features it has to offer.

Menu Bar Features
Any action in the Menu Bar has a little tip that'll show up in the Status Bar when selecting it,

just in case you want to know what them do. So, we are going to explain here the…. Not very

common features, menu by menu.

PackFile Menu

Here, we can find the "Basic" actions: New, Open, Save, Save As, Preferences and Quit. Then

we have some extra actions:

• Open From Content…/xxx.pack: Open the selected PackFile from the “Content” folder

(Workshop mods) of the game. Requires the game’s path to be configured.

• Open From Data…/xxx.pack: Open the selected PackFile from the “Data” folder of the

game. Requires the game’s path to be configured.

• Load All CA PackFiles: Creates a fake PackFile in memory and tries to load into it all the

data from every Vanilla PackFile of the game. Keep in mind that this takes a while and

may fail to work with PackFile with any kind of encryption.

• Change PackFile Type: Allows you to change the open PackFile’s Type and configure

some options for it. About the types, for modding you’ll only want to use the “Mod”

type, and maybe, in very specific situations, the “Movie” type. “Boot”, “Release”, and

“Patch” are types used by CA PackFiles, not suitable for modding. “Other” is for weird

or special PackFiles. Do not use it.

Something to remember is that, by default, RPFM doesn’t let you save a PackFile if it’s “Boot”,

“Release” or “Patch”. If you still want to do it, enable the “Allow Editing of CA PackFiles”

setting. “Other” PackFiles and PackFiles with “Data Is Encrypted”, “Index Is Encrypted” or

“Header Is Extended” cannot be saved in any way.

MyMod’s Menu

MyMods are a way to keep data organized when creating a mod. The system is almost a 1:1

clone of PFM's “MyMods” feature so it should be easy to use for veterans too.

To those new with the concept, each “MyMod” has a PackFile (the mod) and a folder. Each

time you extract something from the PackFile, it’ll be automatically extracted in his folder,

mirroring the structure it has in the PackFile. For example, extracting a table will result in the

table being extracted at “mymod_folder/db/table_name/file”. Adding Files/Folders from the

MyMod folder will also add them mirroring the path they have. For example, adding a file from

“mymod_folder/db/table_name/file” will add the file in “PackFile/db/table_name/file”.

This makes easier to keep track of the mod files, and you can even put that folder under .git, or

any other version control system.

To create a MyMod, just hit “MyMod/New MyMod” and this dialog will appear:

Here you can configure the name and game the mod is for. Once you hit save, your new

MyMod will be created and opened.

To delete a MyMod, open it and hit “MyMod/Delete Selected MyMod”. As this operation will

delete the MyMod and the folder, a warning will popup, just in case.

Once you want to test your mod in the game, hit “MyMod/Install” and the PackFile will

automatically be copied to the /data folder of the game, ready to test. If you make any change

in the mod, you’ll need to hit install again to update the /data copy of the mod.

If you don’t want your mod to show up ingame anymore, hit “MyMod/Uninstall”. This will

remove your mod from the data folder.

Keep in mind that, to execute those last two commands, you need to have your MyMod open.

Under them you’ll find the list of MyMods you’ve created, separated by game. Only MyMod

PackFiles opened from these submenus or created using “MyMod/New MyMod” will enjoy

the features like keeping the paths when adding/extracting files. Manually opened MyMods

will be treated as regular PackFiles.

Game Selected Menu

This is where you choose the “Game Selected” we talked before. When opening PackFiles,

RPFM tries to be smart and auto-select a game, but there are some PackFiles that are the same

between games (for example, Attila and Warhammer 1 PackFiles are identical), so... just make

sure the right game is selected after opening a PackFile, as that affects how many parts of the

program work. Also, Arena support is READ-ONLY. You can’t save Arena PackFiles.

Special Stuff Menu

This has special features implemented for specific games. Here we have:

• "Patch SiegeAI": used in Warhammer 1&2 for creating siege maps that the AI can

handle.

• “Optimize PackFile”: reduces the size of your PackFile by “cleaning” your tables from

data that’s the same as the one present in the game. It also does the same for Loc

PackedFiles, if you have the game’s language set to “English”. For example, if you have

a table where all rows but one are exactly the same as the ones in vanilla tables and

another table that’s a 1:1 copy of a vanilla table without changes, RPFM remove all

the rows but the one you changed from the first table, and it’ll remove the second

table. This is meant to improve compatibility with other mods, and to reduce the size

of the PackFile.

• “Generate PAK File”: generates a file from raw data from the Assembly Kit that allows

RPFM to provide a ton of reference data from tables not in the game. Or easier to

understand, if you use the dependency checker, you’ll have far fewer blue columns.

Doesn’t work for Empire and Napoleon, yet.

About Menu

Here you can find info “About Qt” (the UI toolkit use to make RPFM), “About RPFM”, a button

to open this manual in an PDF Reader, a link to RPFM's Patreon that I'm using for important

releases, and as a kind of dev blog, and the updaters. The “Check Updates” checks if there is

any update available for RPFM, and it gives you a link to download it if it finds one. And “Check

Schema Updates” checks for schema updates and downloads and applies them if you wish.

The “Schema” is what tells RPFM how to decode the tables of the game. It's very common that

after an update a few tables change his structure and are no longer decodables. To get them

to work again, the schema has to be updated.

And that's all for the Menu Bar. Now we'll take a look at the TreeView. The TreeView is where

all the files inside the PackFile will show up.

PackFile’s TreeView

That thing on the left with folders and stuff is the “TreeView”. When you Right-Click on any of

that stuff, it shows this context menu:

These are the actions we can use to alter the PackFile. Each one of them has a hotkey, in case

you’re a lazy bastard. These are all the actions in the menu:

• Add…/Add File: Allows you to add one or more files to the PackFile.

• Add…/Add Folder: Allows you to add a folder to the PackFile.

• Add…/Add from PackFile: Allows you to add files or folders from another PackFile.

Just, select whatever you want to add, double click it and it’ll be added to your

PackFile, keeping his path.

• Create…/Create Folder: Allows you to create an empty folder. Due to how PackFiles

work empty folders are not saved so, if you want to keep the folder, add a file to it.

• Create …/Create Loc: Allows you to create an empty Loc PackedFile.

• Create …/Create DB: Allows you to create an empty DB Table.

• Create …/Create Text: Allows you to create an empty text file.

• Create …/Mass-Import TSV: Allows you to import a bunch of TSV files at once. The

system is able to distinguish between DB and Loc TSV files, so you can import all of

them at the same time, and RPFM will create all the files needed, in their correct place.

• Create …/Mass-Export TSV: Allows you to export as TSV every DB Table and Loc

PackedFiles inside your PackFile at once.

• Open …/Open with Decoder: Allows you to open a table in the DB Decoder. Only used

to decode new tables, so…. You shouldn’t touch this.

• Open …/Open Dependency Manager: Allows you to open the list of dependencies

included in the PackFile. Read a bit more to see what this Dependency Manager thing

is about.

• Open …/Open with External Program: Allows you to open a PackedFile with an

external program. Keep in mind that, if you modify the file, changes will NOT BE

INCLUDED in the PackedFile itself, but in a file in the TMP folder of your system. If you

want to conserve these changes, save that file somewhere, edit it and then add it back

to the PackFile.

• Open…/Open in Multi-View: Allows you to open a PackFile in a “secondary view”, so

you can have up to two PackedFiles open side-by-side.

• Rename …/Rename Current: Allows you to rename whatever is selected, except the

PackFile.

• Rename …/Apply Prefix to Selected: Allows you to apply a prefix to every file inside

the selected folder.

• Rename …/Apply Prefix to All: Allows you to apply a prefix to every file in the PackFile.

• Delete: Allows you to delete whatever is selected. If the PackFile is selected, it

removes every file from it.

• Extract: Allows you to extract whatever is selected out of the PackFile.

• Global Search: Allows you to perform a simple search across every DB Table or Loc

PackedFile inside your PackFile, providing you with a filterable list of results.

Additionally, with the shortcuts “Ctrl++” and “Ctrl+-” you can expand/collapse the entire

TreeView. This action is shortcut only, it’s not in the Contextual Menu.

Keep in mind that the availability of these actions depends on what is selected, and on the

currently loaded schemas and Dependency PackFile. For example, you can’t add anything if

you have selected a PackedFile. Also, keep in mind that if there is a “MyMod” loaded, some of

these actions may work different.

Also, when you add/modify a file, it changes in the TreeView with the following colour code:

• Green/Dark Green: added file.

• Yellow/Dark Yellow: modified file.

• Magenta/Dark Magenta: added AND modified file.

This colour code is applied to the parents too, up to the PackFile, so you easily know what you

changed since the last time you saved the PackFile.

And last, the TreeView Filter. It’s that thing with buttons at the bottom of the TreeView. It

allows you to filter the contents of the TreeView by a pattern (Works with Regex!). The

buttons below the filter bar where you write the pattern are:

• Auto-Expand Matches: automatically expand all the matched folders/files. This

combined with a ton of matches (empty pattern and +60k files in data.pack) can hang

the program for a while, so be cautious on when do you use it.

• AaI: the case sensitive button. Not too much to explain here.

• Filter By Folder: in case you want to find a folder and not a file (for example, searching

a table) tick this. I’ll show you the matched folder and all his contents.

Dependency Manager

The Dependency Manager allows you to modify a special list of PackFiles saved inside your

mod’s PackFile. When starting the game, the launcher will try to load the PackFiles in this list

BEFORE your PackFile. If a PackFile is not found, it’ll be ignored. This list can be used to

hardcode dependencies into your PackFile. In his Contextual Menu (right-click) you can find

some basic commands to manipulate the list, like Add Row, Insert Row, Copy, Paste…

Global Search

Global Search allows you to perform a simple search (accepts Regex) across every DB Table or

Loc PackedFile inside your PackFile, providing you with a filterable list of results in the right of

the screen. You can use it from the TreeView’s Context Menu, or with the shortcut

“Ctrl+Shift+F” while the TreeView is focused.

The “Matches” lists on the right of the screen shows every match for your search in DB Tables

(top table) and Loc PackedFiles (bottom table). Both lists are filterable (with regex support)

and contain the path to the PackedFile, Column, Row, and Matched Text. If you double-click on

them, their PackedFile will be open and the match selected. Also, these lists are updated

when you make changes, so if you, for example, remove a match from a table, that match will

be removed on-the-fly from the list.

The only inconvenient is that doing this in PackFiles with an enormous number of tables and a

brutal number of matches will cause RPFM to hang a second after each edit.

PackedFile’s Views
Now, time to see the views of each PackedFile’s Type RPFM can open.

DB PackedFiles

These are encoded tables with most of the “data” of the games. This is how a DB Table shows

up in RPFM. First, if you hover over the header of any column that references another table, is

referenced on another table, or has a “description” in the schema, you can see in the tooltip to

what that column references. All columns are also movable, so you can arrange them however

you want. Also, numeric columns have a numeric-only editor, and reference columns allows

you to choose from the referenced data or to write your own data (no more swapping tables

trying to copy paste a key).

In the bottom of the window you have a real-time filter. Select the column you want to use to

filter, if you want it to filter as “Case Sensitive”, and just write and see how the table gets

filtered as you type. It works with Regex too. For example, the following will only show up the

rows that contain in their “Key” column “v_b” or “fake”:

Here you have a “Regex Cheatsheet” in case you want to use more complex filters:

https://www.cheatography.com/davechild/cheat-sheets/regular-expressions/

One last thing to consider is that the “Filter” settings you use on a table, along with the

“Search&Replace” settings (and the “Column State” if you enabled it in the “Preferences”

dialog) are remembered so, if you close the table and open it again later, it’ll have the “Filter”

and the “Search&Replace” panels just like you left them. This memory lasts only until the open

PackFile changes, but you can configure RPFM to remember it even in that case by enabling

“Remember Table State Across PackFiles” in the “Preferences” dialog.

About sorting, you can sort columns one way or another, or remove the sorting with a third

click.

Now, with the Right-Click Menu:

These are all the actions available for tables:

https://www.cheatography.com/davechild/cheat-sheets/regular-expressions/

• Add Row: Appends an empty row at the end of the table.

• Insert Row: Insert an empty row after every row with a selected cell.

• Delete Row: Uses the computational power of your GPU to mine cryptocurrencies.

Joking, it deletes any row with a selected cell.

• Apply…/Apply Maths to Selection: Allows you to apply a mathemathical operation to

the selected cells. Only enabled if all the selected cells are numeric cells.

• Apply…/Apply Prefix to Selection: Allows you to apply a prefix to the text in the

selected cells. Only enabled if all the selected cells are text cells.

• Clone…/Clone and Insert: Creates a duplicate of every row with a selected cell and

inserts the duplicate just below the original row.

• Clone…/Clone and Append: Creates a duplicate of every row with a selected cell and

appends the duplicates at the end of the table.

• Copy …/Copy: It copies whatever is selected to the Clipboard, in a format compatible

with Excel, LibreOffice Calc and others.

• Copy …/Copy as LUA Table: It copies the entire table as a Lua “Map<String,

Vector<data>>” if the table has a key field, or as a series of Vectors if it hasn’t, ready to

paste it in a script. For scripters.

• Paste…/Paste in Selection: It tries to paste whatever is in the Clipboard to the selected

cells. It does nothing if there are no selected cells, or the clipboard’s contents cannot

be pasted into the selected cells without errors. This works by pasting until it ran out

of selected cells, or contents to paste.

• Paste…/Paste as New Rows: It tries to paste whatever is in the Clipboard as new rows,

appended at the end of the table. It doesn’t do anything if the contents of the

Clipboard cannot be pasted without errors. In case the contents could be pasted as a

“Partial” row, it creates an empty row, and paste what it can paste, leaving the rest of

the row empty.

• Paste…/Paste to Fill Selection: It tries to paste whatever is in the in every selected cell.

• Search: Open the “Search&Replace” panel, that you can use to search any text pattern

you want in the table, and replace it if you want. It works in combination with the

filter, so you can even do more precise searches combining them!

• Import: Allows you to import TSV files to the table, overwriting whatever the table

currently has. IT’S NOT COMPATIBLE WITH PFM TSV FILES.

• Export: Allows you to export the table as a TSV File, compatible with Excel, Calc….

• Hide/Show…/xxx: Allows you to hide/show the columns of the table at will. If the right

setting is enabled in the preferences, this configuration is remembered when changing

between tables.

• Undo: Allows you to undo… almost every action done in the table. Even TSV Imports.

• Redo: Allows you to undo every undo action. This goes deeper into the rabbit hole…

Tables uses the same colour code for cells and rows as the TreeView. And that’s more or less

what you can do with a DB Table.

Apart of these, the “Del” key in DB Tables and PackedFiles acts as an “Smart Delete” key. This

means depending on what you have selected when you press “Delete” it’ll delete:

• If you have selected random cells, it’ll delete their contents.

• If you have selected a full row, it’ll remove the row from the table.

• If you have a combination of both, it’ll delete rows where all cells are selected, and

it’ll delete the contents of the cells where not all cells in a row are selected. Fancy.

LOC PackedFiles

Loc PackedFiles are files that end in “.loc”, and contain most of the texts you see ingame.

When you open them, you can see they work like a… minimal DB Table. The only real

difference with tables is that it doesn’t have a “Apply Maths to Selection” action. Other than

that, it’s just a little table. Loc PackedFiles uses the same colour code for cells and rows as the

TreeView.

One thing to take into account is that if you want to write multiple lines in a cell (for example,

for multiple paragraphs in one single cell) you can write “\n” and RPFM will take care of saving

it properly, so you see multiple lines ingame. Same with “\t” for tablulations.

Text PackedFiles

RPFM can open and edit a wide variety of Text PackedFiles, such as XML, HTML, LUA, TXT,…. It

has native Undo/Redo support, Copy/Paste support… the normal things for a basic text editor.

Also, exclusive for Warhammer 2 Lua files, there is an option to “Check Syntax”. This will pass

the file through Kailua (if installed and in the Path) and return you a list of errors encountered.

Keep in mind this is experimental, exclusive to Warhammer 2 Lua Files and it may fail.

Rigid Model PackedFiles

RPFM allows some limited editing of RigidModels (3D models). It allows you to change any of

the textures each model uses and to patch Attila’s RigidModels for being loadable in

Warhammer games (just the model, it doesn’t patch collisions or logic). It doesn’t work with all

the RigidModels.

Image PackedFiles

RPFM can open a variety of image formats, such as PNG, JPG, TGA, DDS (most of them)… Just

select the image you want to see, and it’ll open in the right side of the window.

DB Decoder

RPFM has an integrated database decoder, to speed up a lot the decoding process of the

“structure” (or “Definition”) of a table. It can be opened by right-clicking on a table and

selecting “Open/Open with Decoder”. Only works on tables.

Starting by the left we have this:

This is the “PackedFile’s Data” view. It’s similar to a hexadecimal editor, but far less powerful,

and it’s not editable. In the middle you have “Raw Hexadecimal Data”, and in the right, you

have a “Decoded” version of that data. To make it easier to work with it, both scrolling and

selection are synchronised between both TextViews. So you can select a byte in the middle

view, and it’ll get selected in the right one too. The colour code here means:

• Red: header of the table. It contains certain info about what’s in the table.

• Yellow: the part of the table already decoded following the structure from the fields

table.

• Magenta: the byte where the next field after all the fields from the fields table starts.

For performance reasons, this view is limited to 60 lines, which should be more than enough

the decode the first row of almost every table.

Next, to the right, we have this:

This is the “Fields List”. Here are all the columns this table has, including their title, type, if they

are a “key” column, their relation with other tables/columns, the decoded data on each field of

the first row of the table, and a “Description” field, to add commentaries that’ll show up when

hovering a cell of that column with the mouse.

If we right-click in any field of the table, we have these three self-explanatory options to help

us with the decoding:

And finally, under the table, we have this:

The “Current Field Decoded” will show up the field that starts in the magenta byte of the

“PackedFile’s Data” View, decoded in the different types the tables use. His use is simple:

check what type makes more sense (for example, in the screenshot, it’s evidently a

“StringU8”), and click the “Use this” button in his row. Doing that will add a field of that type

to the “Fields List”, and it’ll update the “PackedFile’s Data” View to show where the next field

starts. Keep doing that until you think you’ve decoded the complete first row of the table, hit

“Finish It!” at the right bottom corner, and select the table again. If the decoding is correct, the

table will open. And that’s how I met your mother you decode a table.

Under “Current Field Decoded” we have “Selected Field Decoded”. It does the same that

“Current Field Decoded”, but from the byte you selected in the “PackedFile’s Data” View. Just

select a byte and it’ll try to decode any possible field starting from it. It’s for helping decoding

complex tables.

To the right, we have a list of data about the table, and the list of versions of that table we

have a definition for. If we right-click in one of them, we can load that version (useful to have

something to start when a table gets “updated” in a patch) or delete it (in case we make a

totally disaster and don’t want it to be in the schema).

And at the bottom, we have the “Remove all fields” and “Finish It!” buttons. The first one

clears the “Fields List” and reset the decoding process. The second one saves the current

“Fields List” into the game’s schema and reloads the schema, so the changes can be used

immediately.

Extras
• Basic shortcuts (non-editable) for EVERY Table View provided by Qt:

• If RPFM crashes, it’ll generate an error log in his folder called “error-report-

xxxxxxx.toml”. That file can help me find the problem, so if you want to help reporting

the bug, send me that file too.

	Introduction
	Initial Configuration
	Menu Bar Features
	PackFile Menu
	MyMod’s Menu
	Game Selected Menu
	Special Stuff Menu
	About Menu

	PackFile’s TreeView
	Dependency Manager
	Global Search
	PackedFile’s Views
	DB PackedFiles
	LOC PackedFiles
	Text PackedFiles
	Rigid Model PackedFiles
	Image PackedFiles

	DB Decoder
	Extras

