scikit-learn user guide
Release 0.19.1

scikit-learn developers

Nov 21, 2017

CONTENTS

1 Welcome to scikit-learn 1
1.1 Installing scikit-learn L 1
1.2 Frequently Asked QuUestions Lo e e e e e e e e e e e 2
1.3 Support . . . o e e e e e e e 7
1.4 Related Projects e e e e e e e e e e 8
L5 AboutUS o e e e e 11
1.6 Whoisusing scikit-learn? 16
1.7 Release history L L e e e e e e e e e 24
2 scikit-learn Tutorials 107
2.1 Anintroduction to machine learning with scikit-learn00 0oL L. 107
2.2 A tutorial on statistical-learning for scientific data processing L. 113
23 Working With Text Data 0o 141
2.4 Choosing the right eStimator o v i i e e e e e e e e e e e e 148
2.5 External Resources, Videosand Talks e 148
3 User Guide 151
3.1 Supervised learning L L e e e e e e e e e 151
3.2 Unsupervised learning o Lo e e e e e e e e e 282
3.3 Model selection and evaluation oL e e e e e e e e 372
3.4 Dataset transformations oL L oL e e e e e e e e e 502
3.5 Dataset loading utilities e e e e 540
3.6 Strategies to scale computationally: biggerdata L o . 566
3.7 Computational Performance L e e e e 570
4 Examples 581
4.1 General examples e e e e e 581
4.2 Examples based on real world datasets oL 625
43 Biclustering e e e e e 683
4.4 Calibration e e e e e e e e e e e e 691
4.5 Classification oo i e e e e e e 705
4.6 CIUSErING . . v v v o v e 720
4.7 Covariance estimation v v vttt e e e e e e e e e e e e e e e e 783
4.8 Cross decomposition it e 800
4.9 Datasetexamples e e e 804
4.10 Decomposition e e e e e 812
4.11 Ensemblemethods e 842
4.12 Tutorial XeICISES . . .« v v v v vt e e e e e e e e e e e e e e e e e e e 891
4.13 Feature Selection e e e e 898
4.14 Gaussian Process for Machine Learning 908

4.15 Generalized Linear Models e 932

4.16 Manifold learning e e e e e e e e e e 1002
4.17 Gaussian Mixture Models L e e e e e 1024
4.18 Model Selection L e e e e e e e e e 1041
4.19 Multioutput methods e 1079
4.20 Nearest Neighbors L . e e 1081
421 Neural Networks o o o L e e e 1096
422 PreproCessing . . . v v v v v v i e 1109
4.23 Semi Supervised Classification L L e e e e 1121
4.24 Support Vector Machines e 1133
4.25 Working with text documents e e e 1162
426 Decision Trees o i e e e e e e e e e 1173
API Reference 1183

5.1 sklearn.base: Base classes and utility functions Lo, 1183
5.2 sklearn.calibration: Probability Calibration 1189
5.3 sklearn.cluster: CIUStEring v i v v v i i et e e e e e e 1193
54 sklearn.cluster.bicluster: Biclustering 1231
5.5 sklearn.covariance: Covariance Estimators 1237
5.6 sklearn.cross_decomposition: Crossdecomposition 1267
5.7 sklearn.datasets: Datasets o it e e e e e e e e e e e 1281
5.8 sklearn.decomposition: Matrix Decomposition 1330
5.9 sklearn.discriminant_analysis: Discriminant Analysis 1383
5.10 sklearn.dummy: Dummy estimators e 1391
5.11 sklearn.ensemble: Ensemble Methods 1396
5.12 sklearn.exceptions: Exceptions and warningso 1426
5.13 sklearn.feature_extraction: Feature Extraction. 1431
5.14 sklearn.feature_selection: Feature Selection 1457
5.15 sklearn.gaussian_process: Gaussian Processes 1489
5.16 sklearn.isotonic: Isotonicregressiono e e 1527
5.17 sklearn.kernel_approximation Kernel Approximation 1531
5.18 sklearn.kernel_ridge Kernel Ridge Regression 1540
5.19 sklearn.linear_model: Generalized Linear Models 1543
5.20 sklearn.manifold: Manifold Learning 1642
521 sklearn.metrics: MetriCs o o i i i i i it e e e e 1661
5.22 sklearn.mixture: Gaussian Mixture Models, 1728
523 sklearn.model_selection: Model Selection e 1739
5.24 sklearn.multiclass: Multiclass and multilabel classification 1795
5.25 sklearn.multioutput: Multioutput regression and classification 1803
526 sklearn.naive_bayes:NaiveBayes o oo, 1810
527 sklearn.neighbors: Nearest Neighbors 1821
5.28 sklearn.neural_network: Neural network models 1870
5.29 sklearn.pipeline:Pipeline e e e 1884
5.30 sklearn.preprocessing: Preprocessing and Normalization 1892
5.31 sklearn.random_projection: Random projection 1936
532 sklearn.semi_supervised Semi-Supervised Learning 1942
5.33 sklearn.svm: Support Vector Machineso oo 1948
5.34 sklearn.tree:Decision Trees o v v v i i i e e e e e e e e e e 1981
5.35 sklearn.utils: Utilities. o o i o e e e e e e e 2006
5.36 Recently deprecated e 2019
Developer’s Guide 2085

6.1 Contributing e e e e 2085
6.2 Developers’ Tips and Tricks o o 0 e e e e e 2102

6.3 Utilities for Developers o o i e e e e e e e e e e 2104
6.4 Howtooptimize forspeed e e e e e e 2107
6.5 Advanced installation inStruCtions oL e e e e e e e e e e e e e e e 2113
6.6 Maintainer / core-developer informationo 0oL 2119
Bibliography 2121
Index 2129

CHAPTER
ONE

WELCOME TO SCIKIT-LEARN

1.1 Installing scikit-learn

Note: If you wish to contribute to the project, it’s recommended you install the latest development version.

1.1.1 Installing the latest release

Scikit-learn requires:
* Python (>=2.7 or >=3.3),
e NumPy (>=1.8.2),
* SciPy (>=0.13.3).

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip

’pip install -U scikit-learn

or conda:

’conda install scikit-learn

If you have not installed NumPy or SciPy yet, you can also install these using conda or pip. When using pip, please
ensure that binary wheels are used, and NumPy and SciPy are not recompiled from source, which can happen when
using particular configurations of operating system and hardware (such as Linux on a Raspberry Pi). Building numpy
and scipy from source can be complex (especially on Windows) and requires careful configuration to ensure that they
link against an optimized implementation of linear algebra routines. Instead, use a third-party distribution as described
below.

If you must install scikit-learn and its dependencies with pip, you can install itas scikit—learn[alldeps]. The
most common use case for this is in a requirements.txt file used as part of an automated build process for a
PaaS application or a Docker image. This option is not intended for manual installation from the command line.

1.1.2 Third-party Distributions

If you don’t already have a python installation with numpy and scipy, we recommend to install either via your package
manager or via a python bundle. These come with numpy, scipy, scikit-learn, matplotlib and many other helpful

scikit-learn user guide, Release 0.19.1

scientific and data processing libraries.

Available options are:

Canopy and Anaconda for all supported platforms

Canopy and Anaconda both ship a recent version of scikit-learn, in addition to a large set of scientific python library
for Windows, Mac OSX and Linux.

Anaconda offers scikit-learn as part of its free distribution.

Warning: To upgrade or uninstall scikit-learn installed with Anaconda or conda you should not use the pip
command. Instead:

To upgrade scikit-learn:

’conda update scikit-learn ‘

To uninstall scikit-learn:

’conda remove scikit-learn ‘

Upgrading with pip install -U scikit-learn oruninstalling pip uninstall scikit-learnis
likely fail to properly remove files installed by the conda command.

pip upgrade and uninstall operations only work on packages installed via pip install.

WinPython for Windows

The WinPython project distributes scikit-learn as an additional plugin.

For installation instructions for particular operating systems or for compiling the bleeding edge version, see the Ad-
vanced installation instructions.

1.2 Frequently Asked Questions

Here we try to give some answers to questions that regularly pop up on the mailing list.

1.2.1 What is the project name (a lot of people get it wrong)?

scikit-learn, but not scikit or SciKit nor sci-kit learn. Also not scikits.learn or scikits-learn, which were previously
used.

1.2.2 How do you pronounce the project name?

sy-kit learn. sci stands for science!

1.2.3 Why scikit?

There are multiple scikits, which are scientific toolboxes built around SciPy. You can find a list at https://scikits.
appspot.com/scikits. Apart from scikit-learn, another popular one is scikit-image.

2 Chapter 1. Welcome to scikit-learn

https://www.enthought.com/products/canopy
https://www.continuum.io/downloads
https://winpython.github.io/
https://scikits.appspot.com/scikits
https://scikits.appspot.com/scikits
http://scikit-image.org/

scikit-learn user guide, Release 0.19.1

1.2.4 How can | contribute to scikit-learn?

See Contributing. Before wanting to add a new algorithm, which is usually a major and lengthy undertaking, it is
recommended to start with known issues. Please do not contact the contributors of scikit-learn directly regarding
contributing to scikit-learn.

1.2.5 What’s the best way to get help on scikit-learn usage?

For general machine learning questions, please use Cross Validated with the [machine-learning] tag.

For scikit-learn usage questions, please use Stack Overflow with the [scikit—-learn] and [python] tags. You
can alternatively use the mailing list.

Please make sure to include a minimal reproduction code snippet (ideally shorter than 10 lines) that highlights your
problem on a toy dataset (for instance from sklearn.datasets or randomly generated with functions of numpy .
random with a fixed random seed). Please remove any line of code that is not necessary to reproduce your problem.

The problem should be reproducible by simply copy-pasting your code snippet in a Python shell with scikit-learn
installed. Do not forget to include the import statements.

More guidance to write good reproduction code snippets can be found at:
http://stackoverflow.com/help/mcve

If your problem raises an exception that you do not understand (even after googling it), please make sure to include
the full traceback that you obtain when running the reproduction script.

For bug reports or feature requests, please make use of the issue tracker on GitHub.
There is also a scikit-learn Gitter channel where some users and developers might be found.

Please do not email any authors directly to ask for assistance, report bugs, or for any other issue related to
scikit-learn.

1.2.6 How can | create a bunch object?
Don’t make a bunch object! They are not part of the scikit-learn API. Bunch objects are just a way to package some
numpy arrays. As a scikit-learn user you only ever need numpy arrays to feed your model with data.

For instance to train a classifier, all you need is a 2D array X for the input variables and a 1D array y for the target
variables. The array X holds the features as columns and samples as rows . The array y contains integer values to
encode the class membership of each sample in X.

1.2.7 How can | load my own datasets into a format usable by scikit-learn?
Generally, scikit-learn works on any numeric data stored as numpy arrays or scipy sparse matrices. Other types that
are convertible to numeric arrays such as pandas DataFrame are also acceptable.

For more information on loading your data files into these usable data structures, please refer to loading external
datasets.

1.2.8 What are the inclusion criteria for new algorithms ?

We only consider well-established algorithms for inclusion. A rule of thumb is at least 3 years since publication, 200+
citations and wide use and usefulness. A technique that provides a clear-cut improvement (e.g. an enhanced data
structure or a more efficient approximation technique) on a widely-used method will also be considered for inclusion.

1.2. Frequently Asked Questions 3

http://stats.stackexchange.com
http://stackoverflow.com/questions/tagged/scikit-learn
https://mail.python.org/mailman/listinfo/scikit-learn
http://stackoverflow.com/help/mcve
https://github.com/scikit-learn/scikit-learn/issues
https://gitter.im/scikit-learn/scikit-learn

scikit-learn user guide, Release 0.19.1

From the algorithms or techniques that meet the above criteria, only those which fit well within the current API of
scikit-learn, thatis a fit, predict/transform interface and ordinarily having input/output that is a numpy array
or sparse matrix, are accepted.

The contributor should support the importance of the proposed addition with research papers and/or implementations
in other similar packages, demonstrate its usefulness via common use-cases/applications and corroborate performance
improvements, if any, with benchmarks and/or plots. It is expected that the proposed algorithm should outperform the
methods that are already implemented in scikit-learn at least in some areas.

Also note that your implementation need not be in scikit-learn to be used together with scikit-learn tools. You can
implement your favorite algorithm in a scikit-learn compatible way, upload it to github and let us know. We will list it
under Related Projects.

1.2.9 Why are you so selective on what algorithms you include in scikit-learn?

Code is maintenance cost, and we need to balance the amount of code we have with the size of the team (and add to
this the fact that complexity scales non linearly with the number of features). The package relies on core developers
using their free time to fix bugs, maintain code and review contributions. Any algorithm that is added needs future
attention by the developers, at which point the original author might long have lost interest. Also see this thread on the
mailing list.

1.2.10 Why did you remove HMMs from scikit-learn?

See Will you add graphical models or sequence prediction to scikit-learn?.

1.2.11 Will you add graphical models or sequence prediction to scikit-learn?

Not in the foreseeable future. scikit-learn tries to provide a unified API for the basic tasks in machine learning, with
pipelines and meta-algorithms like grid search to tie everything together. The required concepts, APIs, algorithms
and expertise required for structured learning are different from what scikit-learn has to offer. If we started doing
arbitrary structured learning, we’d need to redesign the whole package and the project would likely collapse under its
own weight.

There are two project with API similar to scikit-learn that do structured prediction:

* pystruct handles general structured learning (focuses on SSVMs on arbitrary graph structures with approximate
inference; defines the notion of sample as an instance of the graph structure)

* seqlearn handles sequences only (focuses on exact inference; has HMMs, but mostly for the sake of complete-
ness; treats a feature vector as a sample and uses an offset encoding for the dependencies between feature
vectors)

1.2.12 Will you add GPU support?

No, or at least not in the near future. The main reason is that GPU support will introduce many software dependencies
and introduce platform specific issues. scikit-learn is designed to be easy to install on a wide variety of platforms.
Outside of neural networks, GPUs don’t play a large role in machine learning today, and much larger gains in speed
can often be achieved by a careful choice of algorithms.

4 Chapter 1. Welcome to scikit-learn

https://sourceforge.net/p/scikit-learn/mailman/scikit-learn-general/thread/CAAkaFLWcBG+gtsFQzpTLfZoCsHMDv9UG5WaqT0LwUApte0TVzg@mail.gmail.com/#msg33104380
https://sourceforge.net/p/scikit-learn/mailman/scikit-learn-general/thread/CAAkaFLWcBG+gtsFQzpTLfZoCsHMDv9UG5WaqT0LwUApte0TVzg@mail.gmail.com/#msg33104380
http://pystruct.github.io/
http://larsmans.github.io/seqlearn/

scikit-learn user guide, Release 0.19.1

1.2.13 Do you support PyPy?

In case you didn’t know, PyPy is the new, fast, just-in-time compiling Python implementation. We don’t support it.
When the NumPy support in PyPy is complete or near-complete, and SciPy is ported over as well, we can start thinking
of a port. We use too much of NumPy to work with a partial implementation.

1.2.14 How do | deal with string data (or trees, graphs...)?

scikit-learn estimators assume you’ll feed them real-valued feature vectors. This assumption is hard-coded in pretty
much all of the library. However, you can feed non-numerical inputs to estimators in several ways.

If you have text documents, you can use a term frequency features; see Text feature extraction for the built-in text
vectorizers. For more general feature extraction from any kind of data, see Loading features from dicts and Feature
hashing.

Another common case is when you have non-numerical data and a custom distance (or similarity) metric on these data.
Examples include strings with edit distance (aka. Levenshtein distance; e.g., DNA or RNA sequences). These can be
encoded as numbers, but doing so is painful and error-prone. Working with distance metrics on arbitrary data can be
done in two ways.

Firstly, many estimators take precomputed distance/similarity matrices, so if the dataset is not too large, you can
compute distances for all pairs of inputs. If the dataset is large, you can use feature vectors with only one “feature”,
which is an index into a separate data structure, and supply a custom metric function that looks up the actual data in
this data structure. E.g., to use DBSCAN with Levenshtein distances:

>>> from leven import levenshtein
>>> import numpy as np
>>> from sklearn.cluster import dbscan
>>> data = ["ACCTCCTAGAAG", "ACCTACTAGAAGTT", "GAATATTAGGCCGA"]
>>> def lev_metric(x, y):
i, j = int(x[0]1), int(y[0]) # extract indices
return levenshtein(datal[i], datalj])

>>> X = np.arange(len(data)) .reshape(-1, 1)

>>> X

array ([[0],
[11,
(211

>>> dbscan (X, metric=lev_metric, eps=5, min_samples=2)
([0, 1], array([0, 0, -11))

(This uses the third-party edit distance package leven.)

Similar tricks can be used, with some care, for tree kernels, graph kernels, etc.

1.2.15 Why do | sometime get a crash/freeze with n_jobs > 1 under OSX or Linux?

Several scikit-learn tools such as GridSearchCV and cross_val_score rely internally on Python’s multipro-
cessing module to parallelize execution onto several Python processes by passing n_jobs > 1 as argument.

The problem is that Python multiprocessing does a fork system call without following it with an exec system
call for performance reasons. Many libraries like (some versions of) Accelerate / vecLib under OSX, (some versions
of) MKL, the OpenMP runtime of GCC, nvidia’s Cuda (and probably many others), manage their own internal thread
pool. Upon a call to fork, the thread pool state in the child process is corrupted: the thread pool believes it has many
threads while only the main thread state has been forked. It is possible to change the libraries to make them detect

1.2. Frequently Asked Questions 5

http://pypy.org/
http://buildbot.pypy.org/numpy-status/latest.html

scikit-learn user guide, Release 0.19.1

when a fork happens and reinitialize the thread pool in that case: we did that for OpenBLAS (merged upstream in
master since 0.2.10) and we contributed a patch to GCC’s OpenMP runtime (not yet reviewed).

But in the end the real culprit is Python’s multiprocessing that does fork without exec to reduce the overhead
of starting and using new Python processes for parallel computing. Unfortunately this is a violation of the POSIX
standard and therefore some software editors like Apple refuse to consider the lack of fork-safety in Accelerate /
vecLib as a bug.

In Python 3.4+ it is now possible to configure multiprocessing to use the ‘forkserver’ or ‘spawn’ start methods
(instead of the default ‘fork’) to manage the process pools. To work around this issue when using scikit-learn, you
can set the JOBLIB_START_ METHOD environment variable to ‘forkserver’. However the user should be aware that
using the ‘forkserver’ method prevents joblib.Parallel to call function interactively defined in a shell session.

If you have custom code that uses multiprocessing directly instead of using it via joblib you can enable the
‘forkserver’ mode globally for your program: Insert the following instructions in your main script:

import multiprocessing

other imports, custom code, load data, define model...

v L

__main_ ':
multiprocessing.set_start_method('forkserver")

if name ==

call scikit-learn utils with n_jobs > 1 here

You can find more default on the new start methods in the multiprocessing documentation.

1.2.16 Why is there no support for deep or reinforcement learning / Will there be
support for deep or reinforcement learning in scikit-learn?

Deep learning and reinforcement learning both require a rich vocabulary to define an architecture, with deep learning
additionally requiring GPUs for efficient computing. However, neither of these fit within the design constraints of
scikit-learn; as a result, deep learning and reinforcement learning are currently out of scope for what scikit-learn seeks
to achieve.

You can find more information about addition of gpu support at Will you add GPU support?.

1.2.17 Why is my pull request not getting any attention?

The scikit-learn review process takes a significant amount of time, and contributors should not be discouraged by a
lack of activity or review on their pull request. We care a lot about getting things right the first time, as maintenance
and later change comes at a high cost. We rarely release any “experimental” code, so all of our contributions will be
subject to high use immediately and should be of the highest quality possible initially.

Beyond that, scikit-learn is limited in its reviewing bandwidth; many of the reviewers and core developers are working
on scikit-learn on their own time. If a review of your pull request comes slowly, it is likely because the reviewers are
busy. We ask for your understanding and request that you not close your pull request or discontinue your work solely
because of this reason.

1.2.18 How do | set a random state for an entire execution?

For testing and replicability, it is often important to have the entire execution controlled by a single seed for the pseudo-
random number generator used in algorithms that have a randomized component. Scikit-learn does not use its own
global random state; whenever a RandomState instance or an integer random seed is not provided as an argument, it

6 Chapter 1. Welcome to scikit-learn

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=60035
https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods

scikit-learn user guide, Release 0.19.1

relies on the numpy global random state, which can be set using numpy . random. seed. For example, to set an
execution’s numpy global random state to 42, one could execute the following in his or her script:

import numpy as np
np.random.seed (42)

However, a global random state is prone to modification by other code during execution. Thus, the only way to ensure
replicability is to pass RandomState instances everywhere and ensure that both estimators and cross-validation
splitters have their random_state parameter set.

1.3 Support

There are several ways to get in touch with the developers.

1.3.1 Mailing List

* The main mailing list is scikit-learn.

e There is also a commit list scikit-learn-commits, where updates to the main repository and test failures get
notified.

1.3.2 User questions

* Some scikit-learn developers support users on StackOverflow using the [scikit-learn] tag.

* For general theoretical or methodological Machine Learning questions stack exchange is probably a more suit-
able venue.

In both cases please use a descriptive question in the title field (e.g. no “Please help with scikit-learn!” as this is not a
question) and put details on what you tried to achieve, what were the expected results and what you observed instead
in the details field.

Code and data snippets are welcome. Minimalistic (up to ~20 lines long) reproduction script very helpful.

Please describe the nature of your data and the how you preprocessed it: what is the number of samples, what is the
number and type of features (i.d. categorical or numerical) and for supervised learning tasks, what target are your
trying to predict: binary, multiclass (1 out of n_classes) or multilabel (k out of n_classes) classification or
continuous variable regression.

1.3.3 Bug tracker

If you think you’ve encountered a bug, please report it to the issue tracker:
https://github.com/scikit-learn/scikit-learn/issues
Don’t forget to include:

* steps (or better script) to reproduce,

* expected outcome,

 observed outcome or python (or gdb) tracebacks

1.3. Support 7

https://mail.python.org/mailman/listinfo/scikit-learn
https://lists.sourceforge.net/lists/listinfo/scikit-learn-commits
http://stackoverflow.com/questions/tagged/scikit-learn
http://stats.stackexchange.com/
https://github.com/scikit-learn/scikit-learn/issues

scikit-learn user guide, Release 0.19.1

To help developers fix your bug faster, please link to a https://gist.github.com holding a standalone minimalistic python
script that reproduces your bug and optionally a minimalistic subsample of your dataset (for instance exported as CSV
files using numpy . savetxt).

Note: gists are git cloneable repositories and thus you can use git to push datafiles to them.

1.3.4 IRC

Some developers like to hang out on channel #scikit-learnonirc.freenode.net.

If you do not have an IRC client or are behind a firewall this web client works fine: http://webchat.freenode.net

1.3.5 Documentation resources

This documentation is relative to 0.19.1. Documentation for other versions can be found here.

Printable pdf documentation for old versions can be found here.

1.4 Related Projects

Projects implementing the scikit-learn estimator API are encouraged to use the scikit-learn-contrib template which
facilitates best practices for testing and documenting estimators. The scikit-learn-contrib GitHub organisation also
accepts high-quality contributions of repositories conforming to this template.

Below is a list of sister-projects, extensions and domain specific packages.

1.4.1 Interoperability and framework enhancements
These tools adapt scikit-learn for use with other technologies or otherwise enhance the functionality of scikit-learn’s
estimators.
Data formats
* sklearn_pandas bridge for scikit-learn pipelines and pandas data frame with dedicated transformers.
Auto-ML

e auto_ml Automated machine learning for production and analytics, built on scikit-learn and related projects.
Trains a pipeline wth all the standard machine learning steps. Tuned for prediction speed and ease of transfer to
production environments.

e auto-sklearn An automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator

e TPOT An automated machine learning toolkit that optimizes a series of scikit-learn operators to design a ma-
chine learning pipeline, including data and feature preprocessors as well as the estimators. Works as a drop-in
replacement for a scikit-learn estimator.

Experimentation frameworks
* REP Environment for conducting data-driven research in a consistent and reproducible way

e ML Frontend provides dataset management and SVM fitting/prediction through web-based and programmatic
interfaces.

e Scikit-Learn Laboratory A command-line wrapper around scikit-learn that makes it easy to run machine learning
experiments with multiple learners and large feature sets.

8 Chapter 1. Welcome to scikit-learn

https://gist.github.com
http://webchat.freenode.net
http://scikit-learn.org/dev/versions.html
https://sourceforge.net/projects/scikit-learn/files/documentation/
https://github.com/scikit-learn-contrib/project-template
https://github.com/scikit-learn-contrib/scikit-learn-contrib
https://github.com/paulgb/sklearn-pandas/
https://github.com/ClimbsRocks/auto_ml/
https://github.com/automl/auto-sklearn/
https://github.com/rhiever/tpot
https://github.com/yandex/REP
https://github.com/jeff1evesque/machine-learning
https://github.com/jeff1evesque/machine-learning#web-interface
https://github.com/jeff1evesque/machine-learning#programmatic-interface
https://skll.readthedocs.io/en/latest/index.html

scikit-learn user guide, Release 0.19.1

Xcessiv is a notebook-like application for quick, scalable, and automated hyperparameter tuning and stacked
ensembling. Provides a framework for keeping track of model-hyperparameter combinations.

Model inspection and visualisation

eli5 A library for debugging/inspecting machine learning models and explaining their predictions.
mixtend Includes model visualization utilities.

scikit-plot A visualization library for quick and easy generation of common plots in data analysis and machine
learning.

yellowbrick A suite of custom matplotlib visualizers for scikit-learn estimators to support visual feature analysis,
model selection, evaluation, and diagnostics.

Model export for production

sklearn-pmml Serialization of (some) scikit-learn estimators into PMML.

sklearn2pmml Serialization of a wide variety of scikit-learn estimators and transformers into PMML with the
help of JPMML-SkLearn library.

sklearn-porter Transpile trained scikit-learn models to C, Java, Javascript and others.

sklearn-compiledtrees Generate a C++ implementation of the predict function for decision trees (and ensembles)
trained by sklearn. Useful for latency-sensitive production environments.

1.4.2 Other estimators and tasks

Not everything belongs or is mature enough for the central scikit-learn project. The following are projects providing
interfaces similar to scikit-learn for additional learning algorithms, infrastructures and tasks.

Structured learning

Seqglearn Sequence classification using HMMs or structured perceptron.

HMMLearn Implementation of hidden markov models that was previously part of scikit-learn.
PyStruct General conditional random fields and structured prediction.

pomegranate Probabilistic modelling for Python, with an emphasis on hidden Markov models.

sklearn-crfsuite Linear-chain conditional random fields (CRFsuite wrapper with sklearn-like API).

Deep neural networks etc.

pylearn2 A deep learning and neural network library build on theano with scikit-learn like interface.
sklearn_theano scikit-learn compatible estimators, transformers, and datasets which use Theano internally
nolearn A number of wrappers and abstractions around existing neural network libraries

keras Deep Learning library capable of running on top of either TensorFlow or Theano.

lasagne A lightweight library to build and train neural networks in Theano.

Broad scope

mlxtend Includes a number of additional estimators as well as model visualization utilities.

sparkit-learn Scikit-learn API and functionality for PySpark’s distributed modelling.

Other regression and classification

xgboost Optimised gradient boosted decision tree library.

lightning Fast state-of-the-art linear model solvers (SDCA, AdaGrad, SVRG, SAG, etc...).

1.4. Related Projects 9

https://github.com/reiinakano/xcessiv
https://github.com/TeamHG-Memex/eli5/
https://github.com/rasbt/mlxtend
https://github.com/reiinakano/scikit-plot
https://github.com/DistrictDataLabs/yellowbrick
https://github.com/alex-pirozhenko/sklearn-pmml
https://github.com/jpmml/sklearn2pmml
https://github.com/jpmml/jpmml-sklearn
https://github.com/nok/sklearn-porter
https://github.com/ajtulloch/sklearn-compiledtrees/
https://github.com/larsmans/seqlearn
https://github.com/hmmlearn/hmmlearn
https://pystruct.github.io
https://github.com/jmschrei/pomegranate
https://github.com/TeamHG-Memex/sklearn-crfsuite
http://www.chokkan.org/software/crfsuite/
http://deeplearning.net/software/pylearn2/
http://sklearn-theano.github.io/
https://github.com/dnouri/nolearn
https://github.com/fchollet/keras
https://github.com/Lasagne/Lasagne
https://github.com/rasbt/mlxtend
https://github.com/lensacom/sparkit-learn
https://github.com/dmlc/xgboost
https://github.com/scikit-learn-contrib/lightning

scikit-learn user guide, Release 0.19.1

* py-earth Multivariate adaptive regression splines
» Kernel Regression Implementation of Nadaraya-Watson kernel regression with automatic bandwidth selection
* gplearn Genetic Programming for symbolic regression tasks.

» multiisotonic Isotonic regression on multidimensional features.

Decomposition and clustering

e Ida: Fast implementation of latent Dirichlet allocation in Cython which wuses Gibbs sampling
to sample from the true posterior distribution. (scikit-learn’s sklearn.decomposition.
LatentDirichletAllocation implementation uses variational inference to sample from a tractable
approximation of a topic model’s posterior distribution.)

* Sparse Filtering Unsupervised feature learning based on sparse-filtering
* kmodes k-modes clustering algorithm for categorical data, and several of its variations.
¢ hdbscan HDBSCAN and Robust Single Linkage clustering algorithms for robust variable density clustering.

* spherecluster Spherical K-means and mixture of von Mises Fisher clustering routines for data on the unit hyper-
sphere.

Pre-processing

* categorical-encoding A library of sklearn compatible categorical variable encoders.

* imbalanced-learn Various methods to under- and over-sample datasets.

1.4.3 Statistical learning with Python

Other packages useful for data analysis and machine learning.

 Pandas Tools for working with heterogeneous and columnar data, relational queries, time series and basic statis-
tics.

e theano A CPU/GPU array processing framework geared towards deep learning research.

* statsmodels Estimating and analysing statistical models. More focused on statistical tests and less on prediction
than scikit-learn.

* PyMC Bayesian statistical models and fitting algorithms.
 Sacred Tool to help you configure, organize, log and reproduce experiments

» Seaborn Visualization library based on matplotlib. It provides a high-level interface for drawing attractive
statistical graphics.

* Deep Learning A curated list of deep learning software libraries.

Domain specific packages

* scikit-image Image processing and computer vision in python.

» Natural language toolkit (nltk) Natural language processing and some machine learning.
* gensim A library for topic modelling, document indexing and similarity retrieval

» NilLearn Machine learning for neuro-imaging.

¢ AstroML Machine learning for astronomy.

* MSMBuilder Machine learning for protein conformational dynamics time series.

10

Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn-contrib/py-earth
https://github.com/jmetzen/kernel_regression
https://github.com/trevorstephens/gplearn
https://github.com/alexfields/multiisotonic
https://github.com/ariddell/lda/
https://en.wikipedia.org/wiki/Gibbs_sampling
https://en.wikipedia.org/wiki/Variational_Bayesian_methods
https://github.com/jmetzen/sparse-filtering
https://github.com/nicodv/kmodes
https://github.com/scikit-learn-contrib/hdbscan
https://github.com/clara-labs/spherecluster
https://github.com/scikit-learn-contrib/categorical-encoding
https://github.com/scikit-learn-contrib/imbalanced-learn
http://pandas.pydata.org
http://deeplearning.net/software/theano/
http://www.statsmodels.org
http://pymc-devs.github.io/pymc/
https://github.com/IDSIA/Sacred
http://stanford.edu/~mwaskom/software/seaborn/
http://deeplearning.net/software_links/
http://scikit-image.org/
http://www.nltk.org/
https://radimrehurek.com/gensim/
https://nilearn.github.io/
http://www.astroml.org/
http://msmbuilder.org/

scikit-learn user guide, Release 0.19.1

1.4.4 Snippets and tidbits

The wiki has more!

1.5 About us

This is a community effort, and as such many people have contributed to it over the years.

1.5.1 History

This project was started in 2007 as a Google Summer of Code project by David Cournapeau. Later that year, Matthieu
Brucher started work on this project as part of his thesis.

In 2010 Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort and Vincent Michel of INRIA took leadership of the
project and made the first public release, February the 1st 2010. Since then, several releases have appeared following
a ~3 month cycle, and a thriving international community has been leading the development.

1.5.2 People

The following people have been core contributors to scikit-learn’s development and maintenance:

Mathieu Blondel
Matthieu Brucher
Lars Buitinck

David Cournapeau
Noel Dawe

Vincent Dubourg
Edouard Duchesnay
Tom Dupré la Tour
Alexander Fabisch
Virgile Fritsch

Satra Ghosh

Angel Soler Gollonet
Chris Filo Gorgolewski
Alexandre Gramfort
Olivier Grisel

Jaques Grobler
Yaroslav Halchenko
Brian Holt

Arnaud Joly

Thouis (Ray) Jones
Kyle Kastner

Manoj Kumar
Robert Layton

Wei Li

Paolo Losi

Gilles Louppe

Jan Hendrik Metzen
Vincent Michel
Jarrod Millman
Andreas Miiller (release manager)

1.5. About us 11

https://github.com/scikit-learn/scikit-learn/wiki/Third-party-projects-and-code-snippets
http://mblondel.org
http://matt.eifelle.com/
http://noel.dawe.me
https://github.com/TomDLT
https://team.inria.fr/parietal/vfritsch/
http://www.mit.edu/~satra
http://webylimonada.com
http://alexandre.gramfort.net
https://twitter.com/ogrisel
https://github.com/jaquesgrobler
http://www.onerussian.com/
http://personal.ee.surrey.ac.uk/Personal/B.Holt/
http://www.ajoly.org
http://kastnerkyle.github.io
https://manojbits.wordpress.com
http://kuantkid.github.io/
http://glouppe.github.io/
https://github.com/jmetzen
http://peekaboo-vision.blogspot.com

scikit-learn user guide, Release 0.19.1

Vlad Niculae

Joel Nothman
Alexandre Passos
Fabian Pedregosa
Peter Prettenhofer
Bertrand Thirion
Jake VanderPlas
Nelle Varoquaux
Gael Varoquaux
Ron Weiss

Please do not email the authors directly to ask for assistance or report issues. Instead, please see What’s the best way
to ask questions about scikit-learn in the FAQ.

See also:

How you can contribute to the project

1.5.3 Citing scikit-learn

If you use scikit-learn in a scientific publication, we would appreciate citations to the following paper:

Scikit-learn: Machine Learning in Python, Pedregosa et al., IMLR 12, pp. 2825-2830, 2011.
Bibtex entry:

@article{scikit-learn,

title={Scikit-learn: Machine Learning in {P}ython},

author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},

journal={Journal of Machine Learning Research},

volume={12},

pages={2825--2830},

year={2011}

If you want to cite scikit-learn for its API or design, you may also want to consider the following paper:

API design for machine learning software: experiences from the scikit-learn project, Buitinck et al., 2013.

Bibtex entry:

@inproceedings{sklearn_api,
author = {Lars Buitinck and Gilles Louppe and Mathieu Blondel and
Fabian Pedregosa and Andreas Mueller and Olivier Grisel and
Vlad Niculae and Peter Prettenhofer and Alexandre Gramfort
and Jaques Grobler and Robert Layton and Jake VanderPlas and

Arnaud Joly and Brian Holt and Ga{\"{e)}1l Varoquaux},
title = {{API} design for machine learning software: experiences from
—the scikit-learn
project},

booktitle = {ECML PKDD Workshop: Languages for Data Mining and Machine
—Learning},

year {2013},

pages = {108--122},

12

Chapter 1. Welcome to scikit-learn

http://vene.ro
http://joelnothman.com
http://atpassos.posterous.com
http://fa.bianp.net/blog/
https://sites.google.com/site/peterprettenhofer/
http://staff.washington.edu/jakevdp/
http://gael-varoquaux.info/
http://scikit-learn.org/stable/faq.html#what-s-the-best-way-to-get-help-on-scikit-learn-usage
http://scikit-learn.org/stable/faq.html#what-s-the-best-way-to-get-help-on-scikit-learn-usage
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
http://arxiv.org/abs/1309.0238

scikit-learn user guide, Release 0.19.1

1.5.4 Artwork

High quality PNG and SVG logos are available in the doc/logos/ source directory.

.fewm

INRIA actively supports this project. It has provided funding for Fabian Pedregosa (2010-2012), Jaques Grobler
(2012-2013) and Olivier Grisel (2013-2017) to work on this project full-time. It also hosts coding sprints and other

”

1.5.5 Funding

rd

A

INVENTORS FOR THE DIGITAL WORLD
events. Paris-Saclay Center for Data Science funded one year for a

developer to work on the project full-time (2014-2015) and 50% of the time of Guillaume Lemaitre (2016-2017).

c Paris-Saclay
J Center for Data Science

NYU Moore-Sloan Data Science Environment funded Andreas
Mueller (2014-2016) to work on this project. The Moore-Sloan Data Science Environment also funds several stu-

dents to work on the project part-time. . Télécom Paristech funded

Manoj Kumar (2014), Tom Dupré la Tour (2015), Raghav RV (2015-2017), Thierry Guillemot (2016-2017) and Albert

TELECOM

ParislTech

il
- Columbia University funds Andreas Miiller since

Thomas (2017) to work on scikit-learn.

1.5. About us 13

https://github.com/scikit-learn/scikit-learn/tree/master/doc/logos
https://www.inria.fr
https://www.inria.fr
http://www.datascience-paris-saclay.fr
http://www.datascience-paris-saclay.fr
http://cds.nyu.edu/mooresloan/
http://cds.nyu.edu/mooresloan/
http://www.telecom-paristech.com
http://www.telecom-paristech.fr/
http://columbia.edu

scikit-learn user guide, Release 0.19.1

COLUMBIA

Alfred P. Sloan

FOUNDATION

Foundation in 2017. The University of Sydney funds Joel Nothman

THE UNIVERSITY OF

SYDNEY

since July 2017. The following students were sponsored by Google
to work on scikit-learn through the Google Summer of Code program.

* 2007 - David Cournapeau

e 2011 - Vlad Niculae

e 2012 - Vlad Niculae, Immanuel Bayer.

* 2013 - Kemal Eren, Nicolas Trésegnie

e 2014 - Hamzeh Alsalhi, Issam Laradji, Maheshakya Wijewardena, Manoj Kumar.
2015 - Raghav RV, Wei Xue

e 2016 - Nelson Liu, YenChen Lin

It also provided funding for sprints and events around scikit-learn. If you would like to participate in the next Google
Summer of code program, please see this page.

The NeuroDebian project providing Debian packaging and contributions is supported by Dr. James V. Haxby (Dart-
mouth College).

The PSF helped find and manage funding for our 2011 Granada sprint. More information can be found here

tinyclues funded the 2011 international Granada sprint.

Donating to the project
If you are interested in donating to the project or to one of our code-sprints, you can use the Paypal button below or the
NumFOCUS Donations Page (if you use the latter, please indicate that you are donating for the scikit-learn project).

All donations will be handled by NumFOCUS, a non-profit-organization which is managed by a board of Scipy
community members. NumFOCUS’s mission is to foster scientific computing software, in particular in Python. As

14 Chapter 1. Welcome to scikit-learn

http://www.columbia.edu/
https://sloan.org
https://sloan.org
https://sloan.org/
http://sydney.edu.au
http://www.sydney.edu.au/
https://developers.google.com/open-source/
https://en.wikipedia.org/wiki/Google_Summer_of_Code
http://vene.ro
http://vene.ro
https://github.com/raghavrv
http://nelsonliu.me
http://yclin.me
https://github.com/scikit-learn/scikit-learn/wiki/SummerOfCode
http://neuro.debian.net
http://www.debian.org
http://haxbylab.dartmouth.edu/
http://pbs.dartmouth.edu
http://pbs.dartmouth.edu
https://www.python.org/psf/
https://github.com/scikit-learn/scikit-learn/wiki/Past-sprints#granada-19th-21th-dec-2011
https://www.tinyclues.com/
http://www.numfocus.org/support-numfocus.html
http://www.numfocus.org
http://www.numfocus.org/board.html
http://www.numfocus.org/board.html

scikit-learn user guide, Release 0.19.1

a fiscal home of scikit-learn, it ensures that money is available when needed to keep the project funded and available
while in compliance with tax regulations.

The received donations for the scikit-learn project mostly will go towards covering travel-expenses for code sprints, as
well as towards the organization budget of the project'.

Notes

The 2013 Paris international sprint

TELECOM

Parislech
—¥ed i

nis

LA LIBERTE DE CHERCHER

tinyclues’ @ arpy

Association Francophone Python

(

Fig. 1.1: IAP VII/19 - DYSCO

For more information on this sprint, see here

1.5.6 Infrastructure support

* We would like to thank Rackspace for providing us with a free Rackspace Cloud account to automatically build
the documentation and the example gallery from for the development version of scikit-learn using this tool.

* We would also like to thank Shining Panda for free CPU time on their Continuous Integration server.

! Regarding the organization budget in particular, we might use some of the donated funds to pay for other project expenses such as DNS,
hosting or continuous integration services.

1.5. About us 15

http://www.telecom-paristech.fr/
https://www.tinyclues.com/
https://www.afpy.org
http://www.frs-fnrs.be/
http://sites.uclouvain.be/dysco/
https://github.com/scikit-learn/administrative/blob/master/sprint_paris_2013/proposal.rst
https://www.rackspace.com
https://www.rackspace.com/cloud/
https://github.com/scikit-learn/sklearn-docbuilder
http://shiningpanda.com/

scikit-learn user guide, Release 0.19.1

1.6 Who is using scikit-learn?

1.6.1 Spotify

Spotify’

Scikit-learn provides a toolbox with solid implementations of a bunch of state-of-the-art models and makes it easy to
plug them into existing applications. We’ve been using it quite a lot for music recommendations at Spotify and I think
it’s the most well-designed ML package I’ve seen so far.

Erik Bernhardsson, Engineering Manager Music Discovery & Machine Learning, Spotify

1.6.2 Inria

”~

lrrzia —

NVENTORS FOR THE DIGITAL WORLD

At INRIA, we use scikit-learn to support leading-edge basic research in many teams: Parietal for neuroimaging, Lear
for computer vision, Visages for medical image analysis, Privatics for security. The project is a fantastic tool to
address difficult applications of machine learning in an academic environment as it is performant and versatile, but all
easy-to-use and well documented, which makes it well suited to grad students.

Gaél Varoquaux, research at Parietal

1.6.3 betaworks

betaworks

Betaworks is a NYC-based startup studio that builds new products, grows companies, and invests in others. Over
the past 8 years we’ve launched a handful of social data analytics-driven services, such as Bitly, Chartbeat, digg and
Scale Model. Consistently the betaworks data science team uses Scikit-learn for a variety of tasks. From exploratory
analysis, to product development, it is an essential part of our toolkit. Recent uses are included in digg’s new video
recommender system, and Poncho’s dynamic heuristic subspace clustering.

Gilad Lotan, Chief Data Scientist

16 Chapter 1. Welcome to scikit-learn

http://www.spotify.com
http://www.inria.fr
https://team.inria.fr/parietal/
http://lear.inrialpes.fr/
https://team.inria.fr/visages/
https://team.inria.fr/privatics
https://betaworks.com
https://medium.com/i-data/the-digg-video-recommender-2f9ade7c4ba3#.g5kk2u89v
https://medium.com/i-data/the-digg-video-recommender-2f9ade7c4ba3#.g5kk2u89v
http://data.betaworks.com/a-data-driven-approach-to-verbalize-weather-forecasts-at-scale/

scikit-learn user guide, Release 0.19.1

1.6.4 Evernote

A

Building a classifier is typically an iterative process of exploring the data, selecting the features (the attributes of the
data believed to be predictive in some way), training the models, and finally evaluating them. For many of these tasks,
we relied on the excellent scikit-learn package for Python.

Read more

Mark Ayzenshtat, VP, Augmented Intelligence

1.6.5 Télécom ParisTech

TELECOM

Parislech

o 55
)it
At Telecom ParisTech, scikit-learn is used for hands-on sessions and home assignments in introductory and advanced

machine learning courses. The classes are for undergrads and masters students. The great benefit of scikit-learn is its
fast learning curve that allows students to quickly start working on interesting and motivating problems.

Alexandre Gramfort, Assistant Professor
1.6.6 Booking.com

Booking.com

At Booking.com, we use machine learning algorithms for many different applications, such as recommending ho-
tels and destinations to our customers, detecting fraudulent reservations, or scheduling our customer service agents.
Scikit-learn is one of the tools we use when implementing standard algorithms for prediction tasks. Its API and doc-
umentations are excellent and make it easy to use. The scikit-learn developers do a great job of incorporating state of
the art implementations and new algorithms into the package. Thus, scikit-learn provides convenient access to a wide
spectrum of algorithms, and allows us to readily find the right tool for the right job.

Melanie Mueller, Data Scientist

1.6.7 AWeber

AWeber

COMMUNICATIONS

1.6. Who is using scikit-learn? 17

https://evernote.com
http://blog.evernote.com/tech/2013/01/22/stay-classified/
https://www.telecom-paristech.fr
http://www.booking.com
http://www.aweber.com

scikit-learn user guide, Release 0.19.1

The scikit-learn toolkit is indispensable for the Data Analysis and Management team at AWeber. It allows us to do
AWesome stuff we would not otherwise have the time or resources to accomplish. The documentation is excellent,
allowing new engineers to quickly evaluate and apply many different algorithms to our data. The text feature extraction
utilities are useful when working with the large volume of email content we have at AWeber. The RandomizedPCA
implementation, along with Pipelining and FeatureUnions, allows us to develop complex machine learning algorithms
efficiently and reliably.

Anyone interested in learning more about how AWeber deploys scikit-learn in a production environment should check
out talks from PyData Boston by AWeber’s Michael Becker available at https://github.com/mdbecker/pydata_2013

Michael Becker, Software Engineer, Data Analysis and Management Ninjas

1.6.8 Yhat

The combination of consistent APIs, thorough documentation, and top notch implementation make scikit-learn our
favorite machine learning package in Python. scikit-learn makes doing advanced analysis in Python accessible to
anyone. At Yhat, we make it easy to integrate these models into your production applications. Thus eliminating the
unnecessary dev time encountered productionizing analytical work.

Greg Lamp, Co-founder Yhat

1.6.9 Rangespan

The Python scikit-learn toolkit is a core tool in the data science group at Rangespan. Its large collection of well
documented models and algorithms allow our team of data scientists to prototype fast and quickly iterate to find the
right solution to our learning problems. We find that scikit-learn is not only the right tool for prototyping, but its
careful and well tested implementation give us the confidence to run scikit-learn models in production.

Jurgen Van Gael, Data Science Director at Rangespan Ltd

18 Chapter 1. Welcome to scikit-learn

https://github.com/mdbecker/pydata_2013
https://www.yhat.com
http://www.rangespan.com

scikit-learn user guide, Release 0.19.1

1.6.10 Birchbox

At Birchbox, we face a range of machine learning problems typical to E-commerce: product recommendation, user
clustering, inventory prediction, trends detection, etc. Scikit-learn lets us experiment with many models, especially in
the exploration phase of a new project: the data can be passed around in a consistent way; models are easy to save and
reuse; updates keep us informed of new developments from the pattern discovery research community. Scikit-learn is
an important tool for our team, built the right way in the right language.

Thierry Bertin-Mahieux, Birchbox, Data Scientist

1.6.11 Bestofmedia Group

Bestof
MEDIA

3

Scikit-learn is our #1 toolkit for all things machine learning at Bestofmedia. We use it for a variety of tasks (e.g. spam
fighting, ad click prediction, various ranking models) thanks to the varied, state-of-the-art algorithm implementations
packaged into it. In the lab it accelerates prototyping of complex pipelines. In production I can say it has proven to be
robust and efficient enough to be deployed for business critical components.

Eustache Diemert, Lead Scientist Bestofmedia Group

1.6.12 Change.org

1.6. Who is using scikit-learn? 19

https://www.birchbox.com
http://www.bestofmedia.com
https://www.change.org

scikit-learn user guide, Release 0.19.1

At change.org we automate the use of scikit-learn’s RandomForestClassifier in our production systems to drive email
targeting that reaches millions of users across the world each week. In the lab, scikit-learn’s ease-of-use, performance,
and overall variety of algorithms implemented has proved invaluable in giving us a single reliable source to turn to for
our machine-learning needs.

Vijay Ramesh, Software Engineer in Data/science at Change.org

1.6.13 PHIMECA Engineering

MECA

At PHIMECA Engineering, we use scikit-learn estimators as surrogates for expensive-to-evaluate numerical models
(mostly but not exclusively finite-element mechanical models) for speeding up the intensive post-processing operations
involved in our simulation-based decision making framework. Scikit-learn’s fit/predict API together with its efficient
cross-validation tools considerably eases the task of selecting the best-fit estimator. We are also using scikit-learn for
illustrating concepts in our training sessions. Trainees are always impressed by the ease-of-use of scikit-learn despite
the apparent theoretical complexity of machine learning.

Vincent Dubourg, PHIMECA Engineering, PhD Engineer

1.6.14 HowAboutWe

how

about
we

At HowAboutWe, scikit-learn lets us implement a wide array of machine learning techniques in analysis and in pro-
duction, despite having a small team. We use scikit-learn’s classification algorithms to predict user behavior, enabling
us to (for example) estimate the value of leads from a given traffic source early in the lead’s tenure on our site. Also, our
users’ profiles consist of primarily unstructured data (answers to open-ended questions), so we use scikit-learn’s fea-
ture extraction and dimensionality reduction tools to translate these unstructured data into inputs for our matchmaking
system.

Daniel Weitzenfeld, Senior Data Scientist at HowAboutWe

1.6.15 Peerindex

¢ Peerindex

At PeerIndex we use scientific methodology to build the Influence Graph - a unique dataset that allows us to identify
who’s really influential and in which context. To do this, we have to tackle a range of machine learning and predic-
tive modeling problems. Scikit-learn has emerged as our primary tool for developing prototypes and making quick
progress. From predicting missing data and classifying tweets to clustering communities of social media users, scikit-

20 Chapter 1. Welcome to scikit-learn

http://www.phimeca.com/?lang=en
http://www.howaboutwe.com/
https://www.brandwatch.com/peerindex-and-brandwatch

scikit-learn user guide, Release 0.19.1

learn proved useful in a variety of applications. Its very intuitive interface and excellent compatibility with other
python tools makes it and indispensable tool in our daily research efforts.

Ferenc Huszar - Senior Data Scientist at Peerindex

1.6.16 DataRobot

& DataRobot

DataRobot is building next generation predictive analytics software to make data scientists more productive, and
scikit-learn is an integral part of our system. The variety of machine learning techniques in combination with the
solid implementations that scikit-learn offers makes it a one-stop-shopping library for machine learning in Python.
Moreover, its consistent API, well-tested code and permissive licensing allow us to use it in a production environment.
Scikit-learn has literally saved us years of work we would have had to do ourselves to bring our product to market.

Jeremy Achin, CEO & Co-founder DataRobot Inc.

1.6.17 OkCupid

We’re using scikit-learn at OkCupid to evaluate and improve our matchmaking system. The range of features it has,
especially preprocessing utilities, means we can use it for a wide variety of projects, and it’s performant enough to

handle the volume of data that we need to sort through. The documentation is really thorough, as well, which makes
the library quite easy to use.

David Koh - Senior Data Scientist at OkCupid

1.6.18 Lovely

lovely

At Lovely, we strive to deliver the best apartment marketplace, with respect to our users and our listings. From
understanding user behavior, improving data quality, and detecting fraud, scikit-learn is a regular tool for gathering
insights, predictive modeling and improving our product. The easy-to-read documentation and intuitive architecture of
the API makes machine learning both explorable and accessible to a wide range of python developers. I’'m constantly
recommending that more developers and scientists try scikit-learn.

Simon Frid - Data Scientist, Lead at Lovely

1.6. Who is using scikit-learn? 21

https://www.datarobot.com
https://www.okcupid.com
https://livelovely.com

scikit-learn user guide, Release 0.19.1

1.6.19 Data Publica

DATA PUBLICA

Data Publica builds a new predictive sales tool for commercial and marketing teams called C-Radar. We extensively
use scikit-learn to build segmentations of customers through clustering, and to predict future customers based on past
partnerships success or failure. We also categorize companies using their website communication thanks to scikit-learn
and its machine learning algorithm implementations. Eventually, machine learning makes it possible to detect weak
signals that traditional tools cannot see. All these complex tasks are performed in an easy and straightforward way
thanks to the great quality of the scikit-learn framework.

Guillaume Lebourgeois & Samuel Charron - Data Scientists at Data Publica

1.6.20 Machinalis

Scikit-learn is the cornerstone of all the machine learning projects carried at Machinalis. It has a consistent API, a
wide selection of algorithms and lots of auxiliary tools to deal with the boilerplate. We have used it in production en-
vironments on a variety of projects including click-through rate prediction, information extraction, and even counting
sheep!

In fact, we use it so much that we’ve started to freeze our common use cases into Python packages, some of them
open-sourced, like FeatureForge . Scikit-learn in one word: Awesome.

Rafael Carrascosa, Lead developer

1.6.21 solido

solido

DESIGN AUTOMATION

Scikit-learn is helping to drive Moore’s Law, via Solido. Solido creates computer-aided design tools used by the
majority of top-20 semiconductor companies and fabs, to design the bleeding-edge chips inside smartphones, auto-
mobiles, and more. Scikit-learn helps to power Solido’s algorithms for rare-event estimation, worst-case verification,
optimization, and more. At Solido, we are particularly fond of scikit-learn’s libraries for Gaussian Process models,
large-scale regularized linear regression, and classification. Scikit-learn has increased our productivity, because for
many ML problems we no longer need to “roll our own” code. This PyData 2014 talk has details.

Trent McConaghy, founder, Solido Design Automation Inc.

22 Chapter 1. Welcome to scikit-learn

http://www.data-publica.com/
http://www.machinalis.com
https://github.com/machinalis/iepy
https://github.com/machinalis/featureforge
http://www.solidodesign.com
https://www.youtube.com/watch?v=Jm-eBD9xR3w

scikit-learn user guide, Release 0.19.1

1.6.22 INFONEA
INFONEA H.

Comma Soft AG

We employ scikit-learn for rapid prototyping and custom-made Data Science solutions within our in-memory based
Business Intelligence Software INFONEA®. As a well-documented and comprehensive collection of state-of-the-art
algorithms and pipelining methods, scikit-learn enables us to provide flexible and scalable scientific analysis solutions.
Thus, scikit-learn is immensely valuable in realizing a powerful integration of Data Science technology within self-
service business analytics.

Thorsten Kranz, Data Scientist, Coma Soft AG.

1.6.23 Dataiku

ddatail

Our software, Data Science Studio (DSS), enables users to create data services that combine ETL with Machine
Learning. Our Machine Learning module integrates many scikit-learn algorithms. The scikit-learn library is a perfect
integration with DSS because it offers algorithms for virtually all business cases. Our goal is to offer a transparent and
flexible tool that makes it easier to optimize time consuming aspects of building a data service, preparing data, and
training machine learning algorithms on all types of data.

Florian Douetteau, CEO, Dataiku

1.6.24 Otto Group

otto group

Here at Otto Group, one of global Big Five B2C online retailers, we are using scikit-learn in all aspects of our daily
work from data exploration to development of machine learning application to the productive deployment of those
services. It helps us to tackle machine learning problems ranging from e-commerce to logistics. It consistent APIs
enabled us to build the Palladium REST-API framework around it and continuously deliver scikit-learn based services.

Christian Rammig, Head of Data Science, Otto Group

1.6.25 Zopa

At Zopa, the first ever Peer-to-Peer lending platform, we extensively use scikit-learn to run the business and optimize
our users’ experience. It powers our Machine Learning models involved in credit risk, fraud risk, marketing, and
pricing, and has been used for originating at least 1 billion GBP worth of Zopa loans. It is very well documented,
powerful, and simple to use. We are grateful for the capabilities it has provided, and for allowing us to deliver on our
mission of making money simple and fair.

1.6. Who is using scikit-learn? 23

http://www.infonea.com/en
http://www.dataiku.com
https://en.wikipedia.org/wiki/Extract,_transform,_load
https://ottogroup.com
https://github.com/ottogroup/palladium/
https://zopa.com

scikit-learn user guide, Release 0.19.1

Vlasios Vasileiou, Head of Data Science, Zopa

1.7 Release history

1.7.1 Version 0.19.1

October, 2017

This is a bug-fix release with some minor documentation improvements and enhancements to features released in
0.19.0.

Note there may be minor differences in TSNE output in this release (due to #9623), in the case where multiple samples
have equal distance to some sample.

Changelog

API changes

* Reverted the addition of metrics.ndcg_score and metrics.dcg_score which had been merged into
version 0.19.0 by error. The implementations were broken and undocumented.

e return_train_score which was added to model_ selection.GridSearchCV,
model_selection.RandomizedSearchCV and model_selection.cross_validate in
version 0.19.0 will be changing its default value from True to False in version 0.21. We found that calculating
training score could have a great effect on cross validation runtime in some cases. Users should explicitly
set return_train_score to False if prediction or scoring functions are slow, resulting in a deleterious
effect on CV runtime, or to True if they wish to use the calculated scores. #9677 by Kumar Ashutosh and Joel
Nothman.

* correlation_models and regression_models from the legacy gaussian processes implementation
have been belatedly deprecated. #9717 by Kumar Ashutosh.

Bug fixes

* Avoid integer overflows in metrics.matthews_corrcoef. #9693 by Sam Steingold.

¢ Fix ValueError in preprocessing.LabelEncoder when using inverse_transform on unseen la-
bels. #9816 by Charlie Newey.

* Fixed a bug in the objective function for manifold. TSNE (both exact and with the Barnes-Hut approximation)
when n_components >= 3. #9711 by @goncalo-rodrigues.

e Fix regression in model_selection.cross_val_predict where it raised an error with
method="predict_proba' for some probabilistic classifiers. #9641 by James Bourbeau.

* Fixed a bug where datasets.make classification modified its input weights. #9865 by Sachin
Kelkar.

e model_selection.StratifiedShuffleSplit now works with multioutput multiclass or multilabel
data with more than 1000 columns. #9922 by Charlie Brummitt.

* Fixed a bug with nested and conditional parameter setting, e.g. setting a pipeline step and its parameter at the
same time. #9945 by Andreas Miiller and Joel Nothman.

Regressions in 0.19.0 fixed in 0.19.1:

24 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/9623
https://github.com/scikit-learn/scikit-learn/issues/9677
https://github.com/thechargedneutron
http://joelnothman.com
http://joelnothman.com
https://github.com/scikit-learn/scikit-learn/issues/9717
https://github.com/thechargedneutron
https://github.com/scikit-learn/scikit-learn/issues/9693
https://github.com/sam-s
https://github.com/scikit-learn/scikit-learn/issues/9816
https://github.com/newey01c
https://github.com/scikit-learn/scikit-learn/issues/9711
https://github.com/goncalo-rodrigues
https://github.com/scikit-learn/scikit-learn/issues/9641
https://github.com/jrbourbeau
https://github.com/scikit-learn/scikit-learn/issues/9865
https://github.com/s4chin
https://github.com/s4chin
https://github.com/scikit-learn/scikit-learn/issues/9922
https://github.com/crbrummitt
https://github.com/scikit-learn/scikit-learn/issues/9945
http://peekaboo-vision.blogspot.com
http://joelnothman.com

scikit-learn user guide, Release 0.19.1

* Fixed a bug where parallelised prediction in random forests was not thread-safe and could (rarely) result in
arbitrary errors. #9830 by Joel Nothman.

* Fix regression in model_selection.cross_val_predict where it no longer accepted X as a list.
#9600 by Rasul Kerimov.

e Fixed handling of model selection.cross_val_predict for binary classification with
method="decision_function"'. #9593 by Reiichiro Nakano and core devs.

* Fix regression in pipeline.Pipeline where it no longer accepted steps as a tuple. #9604 by Joris Van
den Bossche.

e Fix bug where n_iter was not properly deprecated, leaving n_iter unavailable for interim use
in linear model.SGDClassifier, linear._model.SGDRegressor, linear model.
PassiveAggressiveClassifier, linear_model.PassiveAggressiveRegressor and
linear_model.Perceptron. #9558 by Andreas Miiller.

 Dataset fetchers make sure temporary files are closed before removing them, which caused errors on Windows.
#9847 by Joan Massich.

* Fixed a regression in manifold. TSNE where it no longer supported metrics other than ‘euclidean’ and ‘pre-
computed’. #9623 by Oli Blum.

Enhancements

e Qur test suite and utils.estimator_checks.check_estimators can now be run without Nose in-
stalled. #9697 by Joan Massich.

* To improve usability of version 0.19°s pipeline.Pipeline caching, memory now allows joblib.
Memory instances. This make use of the new utils.validation.check _memory helper. #9584 by
Kumar Ashutosh

* Some fixes to examples: #9750, #9788, #9815
¢ Made a FutureWarning in SGD-based estimators less verbose. #9802 by Vrishank Bhardwa;.

Code and Documentation Contributors

With thanks to:

Joel Nothman, Loic Esteve, Andreas Mueller, Kumar Ashutosh, Vrishank Bhardwaj, Hanmin Qin, Rasul Kerimov,
James Bourbeau, Nagarjuna Kumar, Nathaniel Saul, Olivier Grisel, Roman Yurchak, Reiichiro Nakano, Sachin Kelkar,
Sam Steingold, Yaroslav Halchenko, diegodlh, felix, goncalo-rodrigues, jkleint, oliblum90, pasbi, Anthony Gitter, Ben
Lawson, Charlie Brummitt, Didi Bar-Zev, Gael Varoquaux, Joan Massich, Joris Van den Bossche, nielsenmarkus11

1.7.2 Version 0.19

August 12, 2017

Highlights

We are excited to release a number of great new features including neighbors.LocalOutlierFactor
for anomaly detection, preprocessing.QuantileTransformer for robust feature transformation, and
the multioutput.ClassifierChain meta-estimator to simply account for dependencies between classes

1.7. Release history 25

https://github.com/scikit-learn/scikit-learn/issues/9830
http://joelnothman.com
https://github.com/scikit-learn/scikit-learn/issues/9600
https://github.com/CoderINusE
https://github.com/scikit-learn/scikit-learn/issues/9593
https://github.com/reiinakano
https://github.com/scikit-learn/scikit-learn/issues/9604
https://github.com/jorisvandenbossche
https://github.com/jorisvandenbossche
https://github.com/scikit-learn/scikit-learn/issues/9558
http://peekaboo-vision.blogspot.com
https://github.com/scikit-learn/scikit-learn/issues/9847
https://github.com/massich
https://github.com/scikit-learn/scikit-learn/issues/9623
https://github.com/oliblum90
https://github.com/scikit-learn/scikit-learn/issues/9697
https://github.com/massich
https://github.com/scikit-learn/scikit-learn/issues/9584
https://github.com/thechargedneutron
https://github.com/scikit-learn/scikit-learn/issues/9750
https://github.com/scikit-learn/scikit-learn/issues/9788
https://github.com/scikit-learn/scikit-learn/issues/9815
https://github.com/scikit-learn/scikit-learn/issues/9802
https://github.com/vrishank97

scikit-learn user guide, Release 0.19.1

in multilabel problems. We have some new algorithms in existing estimators, such as multiplicative up-
date in decomposition.NMF and multinomial 1inear model.LogisticRegression with L1 loss (use
solver="'saga').

Cross validation is now able to return the results from multiple metric evaluations. The new model_selection.
cross_validate can return many scores on the test data as well as training set performance and timings, and we
have extended the scoring and refit parameters for grid/randomized search ro handle multiple metrics.

You can also learn faster. For instance, the new option to cache transformations in pipeline.Pipeline makes
grid search over pipelines including slow transformations much more efficient. And you can predict faster: if you’re
sure you know what you’re doing, you can turn off validating that the input is finite using config_context.

We’ve made some important fixes too. We've fixed a longstanding implementation error in metrics.
average_precision_score, so please be cautious with prior results reported from that function. A number
of errors in the manifold. TSNE implementation have been fixed, particularly in the default Barnes-Hut approx-
imation. semi_supervised.LabelSpreading and semi_supervised.LabelPropagation have had
substantial fixes. LabelPropagation was previously broken. LabelSpreading should now correctly respect its alpha
parameter.

Changed models

The following estimators and functions, when fit with the same data and parameters, may produce different models
from the previous version. This often occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

* cluster.KMeans with sparse X and initial centroids given (bug fix)
* cross_decomposition.PLSRegression with scale=True (bug fix)

e ensemble.GradientBoostingClassifier and ensemble.GradientBoostingRegressor
where min_impurity_split is used (bug fix)

 gradient boosting loss="quantile' (bug fix)

* ensemble.IsolationForest (bug fix)

e feature_selection.SelectFdr (bug fix)

e linear_model.RANSACRegressor (bug fix)

e Jinear _model.LassoLars (bug fix)

e linear_model.LassoLarsIC (bug fix)

* manifold. TSNE (bug fix)

* neighbors.NearestCentroid (bug fix)

* semi_supervised.LabelSpreading (bug fix)

e semi_supervised.LabelPropagation (bug fix)

¢ tree based models where min_weight_fraction_leaf is used (enhancement)
Details are listed in the changelog below.

(While we are trying to better inform users by providing this information, we cannot assure that this list is complete.)

26 Chapter 1. Welcome to scikit-learn

scikit-learn user guide, Release 0.19.1

Changelog

New features

Classifiers and regressors
e Added multioutput.ClassifierChain for multi-label classification. By Adam Kleczewski.

e Added solver 'saga' that implements the improved version of Stochastic Average Gradient, in
linear_model.LogisticRegressionand 1inear._model.Ridge. It allows the use of L1 penalty
with multinomial logistic loss, and behaves marginally better than ‘sag’ during the first epochs of ridge and
logistic regression. #8446 by Arthur Mensch.

Other estimators

e Added the neighbors.LocalOutlierFactor class for anomaly detection based on nearest neighbors.
#5279 by Nicolas Goix and Alexandre Gramfort.

e Added preprocessing.QuantileTransformer class and preprocessing.
quantile transform function for features normalization based on quantiles. #8363 by Denis Engemann,
Guillaume Lemaitre, Olivier Grisel, Raghav RV, Thierry Guillemot, and Gael Varoquaux.

e The new solver 'mu' implements a Multiplicate Update in decomposition. NMF, allowing the optimization
of all beta-divergences, including the Frobenius norm, the generalized Kullback-Leibler divergence and the
Itakura-Saito divergence. #5295 by Tom Dupre la Tour.

Model selection and evaluation

* model_selection.GridSearchCV and model_ selection.RandomizedSearchCV now support
simultaneous evaluation of multiple metrics. Refer to the Specifying multiple metrics for evaluation section of
the user guide for more information. #7388 by Raghav RV

e Added the model_selection.cross_validate which allows evaluation of multiple metrics. This func-
tion returns a dict with more useful information from cross-validation such as the train scores, fit times and score
times. Refer to The cross_validate function and multiple metric evaluation section of the userguide for more
information. #7388 by Raghav RV

e Added metrics.mean_squared_log_error, which computes the mean square error of the logarithmic
transformation of targets, particularly useful for targets with an exponential trend. #7655 by Karan Desai.

* Added metrics.dcg_score and metrics.ndcg_score, which compute Discounted cumulative gain
(DCG) and Normalized discounted cumulative gain (NDCG). #7739 by David Gasquez.

e Added the model_selection.RepeatedKFold and model_selection.
RepeatedStratifiedKFold. #8120 by Neeraj Gangwar.

* Added a scorer based on metrics.explained_variance_score. #9259 by Hanmin Qin.
Miscellaneous

* Validation that input data contains no NaN or inf can now be suppressed using config context, at your
own risk. This will save on runtime, and may be particularly useful for prediction time. #7548 by Joel Nothman.

* Added a test to ensure parameter listing in docstrings match the function/class signature. #9206 by Alexandre
Gramfort and Raghav RV.

Enhancements

Trees and ensembles

1.7. Release history 27

https://github.com/scikit-learn/scikit-learn/issues/8446
https://amensch.fr
https://github.com/scikit-learn/scikit-learn/issues/5279
https://perso.telecom-paristech.fr/~goix/
http://alexandre.gramfort.net
https://github.com/scikit-learn/scikit-learn/issues/8363
https://github.com/dengemann
https://github.com/glemaitre
https://twitter.com/ogrisel
https://github.com/raghavrv
https://github.com/tguillemot
http://gael-varoquaux.info
https://github.com/scikit-learn/scikit-learn/issues/5295
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/7388
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/7388
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/7655
https://github.com/karandesai-96
https://github.com/scikit-learn/scikit-learn/issues/7739
https://github.com/davidgasquez
https://github.com/scikit-learn/scikit-learn/issues/8120
http://neerajgangwar.in
https://github.com/scikit-learn/scikit-learn/issues/9259
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/7548
http://joelnothman.com
https://github.com/scikit-learn/scikit-learn/issues/9206
http://alexandre.gramfort.net
http://alexandre.gramfort.net
https://github.com/raghavrv

scikit-learn user guide, Release 0.19.1

The min_weight_fraction_leaf constraint in tree construction is now more efficient, taking a fast path
to declare a node a leaf if its weight is less than 2 * the minimum. Note that the constructed tree will be different
from previous versions where min_weight_fraction_leaf is used. #7441 by Nelson Liu.

ensemble.GradientBoostingClassifier and ensemble.GradientBoostingRegressor
now support sparse input for prediction. #6101 by Ibraim Ganiev.

ensemble.VotingClassifier mnow allows changing estimators by using ensemble.
VotingClassifier.set_params. An estimator can also be removed by setting it to None. #7674 by
Yichuan Liu.

tree.export_graphviz now shows configurable number of decimal places. #8698 by Guillaume
Lemaitre.

Added flatten_transform parameter to ensemble.VotingClassifier to change output shape of
transform method to 2 dimensional. #7794 by Ibraim Ganiev and Herilalaina Rakotoarison.

Linear, kernelized and related models

linear _model.SGDClassifier, linear._model.SGDRegressor, linear model.
PassiveAggressiveClassifier, linear _model.PassiveAggressiveRegressor and
linear_model.Perceptron now expose max_iter and tol parameters, to handle convergence more
precisely. n_iter parameter is deprecated, and the fitted estimator exposes a n_iter__ attribute, with actual
number of iterations before convergence. #5036 by Tom Dupre la Tour.

Added average parameter to perform weight averaging in linear _model.
PassiveAggressiveClassifier. #4939 by Andrea Esuli.

linear _model.RANSACRegressor no longer throws an error when calling £1it if no inliers are found in
its first iteration. Furthermore, causes of skipped iterations are tracked in newly added attributes, n_skips_ .
#7914 by Michael Horrell.

In gaussian_process.GaussianProcessRegressor, method predict is a lot faster with
return_std=True. #8591 by Hadrien Bertrand.

Added return_stdto predict method of 1 inear _model.ARDRegressionand linear_model.
BayesianRidge. #7838 by Sergey Feldman.

Memory usage enhancements: Prevent cast from float32 to float64 in: linear_model.
MultiTaskElasticNet; linear_model.LogisticRegression when using newton-cg solver; and
linear_model.Ridge when using svd, sparse_cg, cholesky or Isqr solvers. #8835, #8061 by Joan Massich
and Nicolas Cordier and Thierry Guillemot.

Other predictors

Custom metrics for the neighbors binary trees now have fewer constraints: they must take two 1d-arrays and
return a float. #6288 by Jake Vanderplas.

algorithm="'auto in neighbors estimators now chooses the most appropriate algorithm for all input
types and metrics. #9145 by Herilalaina Rakotoarison and Reddy Chinthala.

Decomposition, manifold learning and clustering

cluster.MiniBatchKMeans and cluster.KMeans now use significantly less memory when assigning
data points to their nearest cluster center. #7721 by Jon Crall.

decomposition.PCA, decomposition.IncrementalPCA and decomposition.
TruncatedSVD now expose the singular values from the underlying SVD. They are stored in the
attribute singular_values_, like in decomposition. IncrementalPCA. #7685 by Tommy Lofstedt

Fixed the implementation of noise_variance_ in decomposition.PCA. #9108 by Hanmin Qin.

decomposition.NMF now faster when beta_loss=0. #9277 by @hongkahjun.

28

Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/7441
https://github.com/nelson-liu
https://github.com/scikit-learn/scikit-learn/issues/6101
https://github.com/olologin
https://github.com/scikit-learn/scikit-learn/issues/7674
https://github.com/yl565
https://github.com/scikit-learn/scikit-learn/issues/8698
https://github.com/glemaitre
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/7794
https://github.com/olologin
https://github.com/herilalaina
https://github.com/scikit-learn/scikit-learn/issues/5036
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/4939
https://github.com/aesuli
https://github.com/scikit-learn/scikit-learn/issues/7914
https://github.com/mthorrell
https://github.com/scikit-learn/scikit-learn/issues/8591
https://github.com/hbertrand
https://github.com/scikit-learn/scikit-learn/issues/7838
https://github.com/sergeyf
https://github.com/scikit-learn/scikit-learn/issues/8835
https://github.com/scikit-learn/scikit-learn/issues/8061
https://github.com/massich
https://github.com/ncordier
https://github.com/tguillemot
https://github.com/scikit-learn/scikit-learn/issues/6288
http://staff.washington.edu/jakevdp/
https://github.com/scikit-learn/scikit-learn/issues/9145
https://github.com/herilalaina
https://github.com/preddy5Pradyumna
https://github.com/scikit-learn/scikit-learn/issues/7721
https://github.com/Erotemic
https://github.com/scikit-learn/scikit-learn/issues/7685
https://github.com/tomlof
https://github.com/scikit-learn/scikit-learn/issues/9108
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/9277
https://github.com/hongkahjun

scikit-learn user guide, Release 0.19.1

Memory improvements for method barnes_hut in manifold. TSNE #7089 by Thomas Moreau and Olivier
Grisel.

Optimization schedule improvements for Barnes-Hut manifold. TSNE so the results are closer to the one
from the reference implementation lvdmaaten/bhtsne by Thomas Moreau and Olivier Grisel.

Memory usage enhancements: Prevent cast from float32 to float64 in decomposition.PCA and
decomposition.randomized_svd_low_rank. #9067 by Raghav RV.

Preprocessing and feature selection

Added norm_order parameter to feature_selection.SelectFromModel to enable selection of the
norm order when coef_ is more than 1D. #6181 by Antoine Wendlinger.

Added ability to use sparse matrices in feature selection.f regression with center=True.
#8065 by Daniel LeJeune.

Small performance improvement to n-gram creation in feature_extraction.text by binding methods
for loops and special-casing unigrams. #7567 by Jaye Doepke

Relax assumption on the data for the kernel approximation.SkewedChiZ2Sampler. Since the
Skewed-Chi2 kernel is defined on the open interval (—skewedness; +00)%, the transform function should not
check whether X < 0 but whether X < -self.skewedness. #7573 by Romain Brault.

Made default kernel parameters kernel-dependent in kernel approximation.Nystroem. #5229 by
Saurabh Bansod and Andreas Miiller.

Model evaluation and meta-estimators

pipeline.Pipeline is now able to cache transformers within a pipeline by using the memory constructor
parameter. #7990 by Guillaume Lemaitre.

pipeline.Pipeline steps can now be accessed as attributes of its named_steps attribute. #8586 by
Herilalaina Rakotoarison.

Added sample_weight parameter to pipeline.Pipeline.score. #7723 by Mikhail Korobov.

Added ability to set n_jobs parameter to pipeline.make _union. A TypeError will be raised for any
other kwargs. #8028 by Alexander Booth.

model_selection.GridSearchCV, model_selection.RandomizedSearchCV and
model_selection.cross_val_score now allow estimators with callable kernels which were
previously prohibited. #8005 by Andreas Miiller .

model_selection.cross_val_ predict now returns output of the correct shape for all values of the
argument method. #7863 by Aman Dalmia.

Added shuffle and random_state parameters to shuffle training data before taking prefixes of it based on
training sizes in model_selection.learning curve. #7506 by Narine Kokhlikyan.

model_selection.StratifiedShuffleSplit now works with multioutput multiclass (or multilabel)
data. #9044 by Vlad Niculae.

Speed improvements to model_selection.StratifiedShuffleSplit. #5991 by Arthur Mensch and
Joel Nothman.

Add shuffle parameter to model_selection.train test_split. #8845 by themrmax

multioutput.MultiOutputRegressor and multioutput.MultiOutputClassifier now
support online learning using partial_fit. :issue: 8053 by Peng Yu.

Addmax_train_size parameter to model selection.TimeSeriesSplit #8282 by Aman Dalmia.

More clustering metrics are now available through metrics. get_scorer and scoring parameters. #8117
by Raghav RV.

1.7.

Release history 29

https://github.com/scikit-learn/scikit-learn/issues/7089
https://github.com/tomMoral
https://twitter.com/ogrisel
https://twitter.com/ogrisel
https://github.com/lvdmaaten/bhtsne
https://github.com/tomMoral
https://twitter.com/ogrisel
https://github.com/scikit-learn/scikit-learn/issues/9067
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/6181
https://github.com/antoinewdg
https://github.com/scikit-learn/scikit-learn/issues/8065
https://github.com/acadiansith
https://github.com/scikit-learn/scikit-learn/issues/7567
https://github.com/jtdoepke
https://github.com/scikit-learn/scikit-learn/issues/7573
https://github.com/RomainBrault
https://github.com/scikit-learn/scikit-learn/issues/5229
https://github.com/mth4saurabh
http://peekaboo-vision.blogspot.com
https://github.com/scikit-learn/scikit-learn/issues/7990
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/8586
https://github.com/herilalaina
https://github.com/scikit-learn/scikit-learn/issues/7723
https://github.com/kmike
https://github.com/scikit-learn/scikit-learn/issues/8028
https://github.com/alexandercbooth
https://github.com/scikit-learn/scikit-learn/issues/8005
http://peekaboo-vision.blogspot.com
https://github.com/scikit-learn/scikit-learn/issues/7863
https://github.com/dalmia
https://github.com/scikit-learn/scikit-learn/issues/7506
https://github.com/NarineK
https://github.com/scikit-learn/scikit-learn/issues/9044
http://vene.ro
https://github.com/scikit-learn/scikit-learn/issues/5991
https://github.com/arthurmensch
http://joelnothman.com
https://github.com/scikit-learn/scikit-learn/issues/8845
https://github.com/themrmax
https://github.com/yupbank
https://github.com/scikit-learn/scikit-learn/issues/8282
https://github.com/dalmia
https://github.com/scikit-learn/scikit-learn/issues/8117
https://github.com/raghavrv

scikit-learn user guide, Release 0.19.1

Metrics

* metrics.matthews_corrcoef now support multiclass classification. #8094 by Jon Crall.

* Add sample_weight parameter to metrics.cohen_kappa_score. #3335 by Victor Poughon.
Miscellaneous

* utils.check_estimator now attempts to ensure that methods transform, predict, etc. do not set attributes
on the estimator. #7533 by Ekaterina Krivich.

* Added type checking to the accept_sparse parameter in utils.validation methods. This parameter
now accepts only boolean, string, or list/tuple of strings. accept_sparse=None is deprecated and should
be replaced by accept_sparse=False. #7880 by Josh Karnofsky.

* Make it possible to load a chunk of an svmlight formatted file by passing a range of bytes to datasets.
load_svmlight_file. #935 by Olivier Grisel.

e dummy.DummyClassifier and dummy.DummyRegressor now accept non-finite features. #8931 by
@ Attractadore.

Bug fixes

Trees and ensembles
* Fixed a memory leak in trees when using trees with criterion="'mae"'. #8002 by Raghav RV.

* Fixed a bug where ensemble. IsolationForest uses an an incorrect formula for the average path length
#8549 by Peter Wang.

* Fixed a bug where ensemble.AdaBoostClassifier throws ZeroDivisionError while fitting data
with single class labels. #7501 by Dominik Krzeminski.

* Fixed a bug in ensemble.GradientBoostingClassifier and ensemble.
GradientBoostingRegressor where a float being compared to 0.0 using == caused a divide by
zero error. #7970 by He Chen.

* Fix a bug where ensemble.GradientBoostingClassifier and ensemble.
GradientBoostingRegressor ignored the min_impurity_split parameter. #8006 by Sebastian
Polsterl.

* Fixed oob_scorein ensemble.BaggingClassifier. #8936 by Michael Lewis
* Fixed excessive memory usage in prediction for random forests estimators. #8672 by Mike Benfield.
* Fixed a bug where sample_weight as a list broke random forests in Python 2 #8068 by @xor.

* Fixed a bug where ensemble. IsolationForest fails when max_features is less than 1. #5732 by
Ishank Gulati.

* Fix a bug where gradient boosting with 1oss="'quantile' computed negative errors for negative values of
ytrue - ypred leading to wrong values when calling __call__. #8087 by Alexis Mignon

* Fix a bug where ensemble.VotingClassifier raises an error when a numpy array is passed in for
weights. #7983 by Vincent Pham.

* Fixed a bug where t ree.export_graphviz raised an error when the length of features_names does not
match n_features in the decision tree. #8512 by Li Li.

Linear, kernelized and related models

* Fixed a bug where 1inear model.RANSACRegressor.fit may run until max_iter if it finds a large
inlier group early. #8251 by @aivision2020.

30 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/8094
https://github.com/Erotemic
https://github.com/scikit-learn/scikit-learn/issues/8335
https://github.com/vpoughon
https://github.com/scikit-learn/scikit-learn/issues/7533
https://github.com/kiote
https://github.com/scikit-learn/scikit-learn/issues/7880
https://github.com/jkarno
https://github.com/scikit-learn/scikit-learn/issues/935
https://github.com/ogrisel
https://github.com/scikit-learn/scikit-learn/issues/8931
https://github.com/Attractadore
https://github.com/scikit-learn/scikit-learn/issues/8002
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/8549
https://github.com/PTRWang
https://github.com/scikit-learn/scikit-learn/issues/7501
https://github.com/dokato
https://github.com/scikit-learn/scikit-learn/issues/7970
https://github.com/chenhe95
https://github.com/scikit-learn/scikit-learn/issues/8006
https://github.com/sebp
https://github.com/sebp
https://github.com/scikit-learn/scikit-learn/issues/8936
https://github.com/mlewis1729
https://github.com/scikit-learn/scikit-learn/issues/8672
https://github.com/mikebenfield
https://github.com/scikit-learn/scikit-learn/issues/8068
https://github.com/xor
https://github.com/scikit-learn/scikit-learn/issues/5732
https://github.com/IshankGulati
https://github.com/scikit-learn/scikit-learn/issues/8087
https://github.com/AlexisMignon
https://github.com/scikit-learn/scikit-learn/issues/7983
https://github.com/vincentpham1991
https://github.com/scikit-learn/scikit-learn/issues/8512
https://github.com/aikinogard
https://github.com/scikit-learn/scikit-learn/issues/8251
https://github.com/aivision2020

scikit-learn user guide, Release 0.19.1

Fixed a bug where naive bayes.MultinomialNB and naive_bayes.BernoulliNB failed when
alpha=0. #5814 by Yichuan Liu and Herilalaina Rakotoarison.

Fixed a bug where 1inear_model.LassoLars does not give the same result as the LassoLars implemen-
tation available in R (lars library). #7849 by Jair Montoya Martinez.

Fixed a bug in linear model.RandomizedLasso, linear_model.Lars, linear _model.
LassoLars, linear_model.LarsCV and linear_model.LassoLarsCV, where the parameter
precompute was not used consistently across classes, and some values proposed in the docstring could raise
errors. #5359 by Tom Dupre la Tour.

Fix inconsistent results between linear model.RidgeCV and linear_model.Ridge when using
normalize=True. #9302 by Alexandre Gramfort.

Fix a bug where 1 inear_model.LassoLars.fit sometimes left coef_ as a list, rather than an ndarray.
#8160 by CJ Carey.

Fix linear_model.BayesianRidge. fit to return ridge parameter alpha_ and lambda_ consistent
with calculated coefficients coef__and intercept_. #8224 by Peter Gedeck.

Fixed a bug in svm.OneClassSVM where it returned floats instead of integer classes. #8676 by Vathsala
Achar.

Fix AIC/BIC criterion computation in 1 inear model.LassoLarsIC.#9022 by Alexandre Gramfort and
Mehmet Basbug.

Fixed a memory leak in our LibLinear implementation. #9024 by Sergei Lebedev
Fix bug where stratified CV splitters did not work with 1 inear model.LassoCV. #8973 by Paulo Haddad.

Fixed a bug in gaussian_process.GaussianProcessRegressor when the standard deviation and
covariance predicted without fit would fail with a unmeaningful error by default. #6573 by Quazi Marufur
Rahman and Manoj Kumar.

Other predictors

Fix semi_supervised.BaseLabelPropagation to correctly implement LabelPropagation and
LabelSpreading as done in the referenced papers. #9239 by Andre Ambrosio Boechat, Utkarsh Upadhyay,
and Joel Nothman.

Decomposition, manifold learning and clustering

Fixed the implementation of manifold. TSNE:
early_exageration parameter had no effect and is now used for the first 250 optimization iterations.
Fixed the AssertionError: Tree consistency failed exception reported in #8992,
Improve the learning schedule to match the one from the reference implementation lvdmaaten/bhtsne.

by Thomas Moreau and Olivier Grisel.

Fix a bug in decomposition.LatentDirichletAllocation where the perplexity method was
returning incorrect results because the t rans form method returns normalized document topic distributions as
of version 0.18. #7954 by Gary Foreman.

Fix output shape and bugs with n_jobs > 1 in decomposition.SparseCoder transform and
decomposition.sparse_encode for one-dimensional data and one component. This also impacts the
output shape of decomposition.DictionaryLearning. #3086 by Andreas Miiller.

Fixed the implementation of explained_variance_ in decomposition.PCA, decomposition.
RandomizedPCA and decomposition.IncrementalPCA. #9105 by Hanmin Qin.

Fixed the implementation of noise_variance_in decomposition.PCA. #9108 by Hanmin Qin.

1.7.

Release history 31

https://github.com/scikit-learn/scikit-learn/issues/5814
https://github.com/yl565
https://github.com/herilalaina
https://github.com/scikit-learn/scikit-learn/issues/7849
https://github.com/jmontoyam
https://github.com/scikit-learn/scikit-learn/issues/5359
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/9302
http://alexandre.gramfort.net
https://github.com/scikit-learn/scikit-learn/issues/8160
https://github.com/perimosocordiae
https://github.com/scikit-learn/scikit-learn/issues/8224
https://github.com/gedeck
https://github.com/scikit-learn/scikit-learn/issues/8676
https://github.com/VathsalaAchar
https://github.com/VathsalaAchar
https://github.com/scikit-learn/scikit-learn/issues/9022
http://alexandre.gramfort.net
https://github.com/mehmetbasbug
https://github.com/scikit-learn/scikit-learn/issues/9024
https://github.com/superbobry
https://github.com/scikit-learn/scikit-learn/issues/8973
https://github.com/paulochf
https://github.com/scikit-learn/scikit-learn/issues/6573
https://github.com/qmaruf
https://github.com/qmaruf
https://manojbits.wordpress.com
https://github.com/scikit-learn/scikit-learn/issues/9239
https://github.com/boechat107
https://github.com/musically-ut
http://joelnothman.com
https://github.com/scikit-learn/scikit-learn/issues/8992
https://github.com/lvdmaaten/bhtsne
https://github.com/tomMoral
https://twitter.com/ogrisel
https://github.com/scikit-learn/scikit-learn/issues/7954
https://github.com/garyForeman
https://github.com/scikit-learn/scikit-learn/issues/8086
http://peekaboo-vision.blogspot.com
https://github.com/scikit-learn/scikit-learn/issues/9105
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/9108
https://github.com/qinhanmin2014

scikit-learn user guide, Release 0.19.1

Fixed a bug where cluster.DBSCAN gives incorrect result when input is a precomputed sparse matrix with
initial rows all zero. #8306 by Akshay Gupta

Fix a bug regarding fitting cluster.KMeans with a sparse array X and initial centroids, where X’s means
were unnecessarily being subtracted from the centroids. #7872 by Josh Karnofsky.

Fixes to the input validation in covariance.EllipticEnvelope. #8086 by Andreas Miiller.

Fixed a bug in covariance.MinCovDet where inputting data that produced a singular covariance matrix
would cause the helper method _c_step to throw an exception. #3367 by Jeremy Steward

Fixed a bug in manifold. TSNE affecting convergence of the gradient descent. #8768 by David DeTomaso.

Fixed a bug in manifold. TSNE where it stored the incorrect k1_divergence_. #6507 by Sebastian
Saeger.

Fixed improper scaling in cross_decomposition.PLSRegression with scale=True. #7819 by
jayzed82.

cluster.bicluster.SpectralCoclustering and cluster.bicluster.
SpectralBiclustering fit method conforms with API by accepting y and returning the object.
#6126, #7814 by Laurent Direr and Maniteja Nandana.

Fix bug where mixture sample methods did not return as many samples as requested. #7702 by Levi John
Wolf.

Fixed the shrinkage implementation in neighbors.NearestCentroid. #9219 by Hanmin Qin.

Preprocessing and feature selection

For sparse matrices, preprocessing.normalize with return_norm=True will now raise a
NotImplementedError with 11° or ‘12’ norm and with norm ‘max’ the norms returned will be the same as
for dense matrices. #7771 by Ang Lu.

Fix a bug where feature_selection.SelectFdr did not exactly implement Benjamini-Hochberg pro-
cedure. It formerly may have selected fewer features than it should. #7490 by Peng Meng.

Fixed a bug where linear _model.RandomizedLasso and linear model.
RandomizedLogisticRegression breaks for sparse input. #8259 by Aman Dalmia.

Fix a bug where feature_extraction.FeatureHasher mandatorily applied a sparse random projec-
tion to the hashed features, preventing the use of feature extraction.text.HashingVectorizer
in a pipeline with feature extraction.text.TfidfTransformer. #7565 by Roman Yurchak.

Fix a bug where feature selection.mutual_info_regression did not correctly use
n_neighbors. #8181 by Guillaume Lemaitre.

Model evaluation and meta-estimators

Fixed a bug where model_selection.BaseSearchCV.inverse_transform re-
turns self.best_estimator_.transform() instead of self.best_estimator_.
inverse_transform(). #8344 by Akshay Gupta and Rasmus Eriksson.

Added classes_ attribute to model selection.GridSearchCV, model_ selection.
RandomizedSearchCV, grid_search.GridSearchCV, and grid_search.
RandomizedSearchCV that matches the classes_ attribute of best_estimator_. #7661 and

#8295 by Alyssa Batula, Dylan Werner-Meier, and Stephen Hoover.

Fixed a bug where model_selection.validation_curve reused the same estimator for each parame-
ter value. #7365 by Aleksandr Sandrovskii.

model_selection.permutation test_score now works with Pandas types. #5697 by Stijn Tonk.

Several fixes to input validation in multiclass.OutputCodeClassifier #8086 by Andreas Miiller.

32

Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/8306
https://github.com/Akshay0724
https://github.com/scikit-learn/scikit-learn/issues/7872
https://github.com/jkarno
https://github.com/scikit-learn/scikit-learn/issues/8086
http://peekaboo-vision.blogspot.com
https://github.com/scikit-learn/scikit-learn/issues/3367
https://github.com/ThatGeoGuy
https://github.com/scikit-learn/scikit-learn/issues/8768
https://github.com/deto
https://github.com/scikit-learn/scikit-learn/issues/6507
https://github.com/ssaeger
https://github.com/ssaeger
https://github.com/scikit-learn/scikit-learn/issues/7819
https://github.com/jayzed82
https://github.com/scikit-learn/scikit-learn/issues/6126
https://github.com/scikit-learn/scikit-learn/issues/7814
https://github.com/ldirer
https://github.com/maniteja123
https://github.com/scikit-learn/scikit-learn/issues/7702
https://github.com/ljwolf
https://github.com/ljwolf
https://github.com/scikit-learn/scikit-learn/issues/9219
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/7771
https://github.com/luang008
https://github.com/scikit-learn/scikit-learn/issues/7490
https://github.com/mpjlu
https://github.com/scikit-learn/scikit-learn/issues/8259
https://github.com/dalmia
https://github.com/scikit-learn/scikit-learn/issues/7565
https://github.com/rth
https://github.com/scikit-learn/scikit-learn/issues/8181
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/8344
https://github.com/Akshay0724
https://github.com/MrMjauh
https://github.com/scikit-learn/scikit-learn/issues/7661
https://github.com/scikit-learn/scikit-learn/issues/8295
https://github.com/abatula
https://github.com/unautre
https://github.com/stephen-hoover
https://github.com/scikit-learn/scikit-learn/issues/7365
https://github.com/Sundrique
https://github.com/scikit-learn/scikit-learn/issues/5697
https://github.com/equialgo
https://github.com/scikit-learn/scikit-learn/issues/8086
http://peekaboo-vision.blogspot.com

scikit-learn user guide, Release 0.19.1

e multiclass.OneVsOneClassifier’s partial_fit now ensures all classes are provided up-front.
#6250 by Asish Panda.

* Fix multioutput.MultiOutputClassifier.predict_proba to return a list of 2d arrays, rather
than a 3d array. In the case where different target columns had different numbers of classes, a ValueError
would be raised on trying to stack matrices with different dimensions. #8093 by Peter Bull.

* Cross validation now works with Pandas datatypes that that have a read-only index. #9507 by Loic Esteve.
Metrics

* metrics.average_ precision_score no longer linearly interpolates between operating points, and in-
stead weighs precisions by the change in recall since the last operating point, as per the Wikipedia entry. (#7356).
By Nick Dingwall and Gael Varoquaux.

* Fixabuginmetrics.classification._check_targets whichwouldreturn 'binary'ify_true
and y_pred were both 'binary' but the union of y_true and y_pred was 'multiclass"'. #8377 by
Loic Esteve.

e Fixed an integer overflow bug in metrics.confusion_matrix and hence metrics.
cohen_kappa_score. #8354, #7929 by Joel Nothman and Jon Crall.

* Fixed passing of gamma parameter to the chi2 kernel in metrics.pairwise.pairwise_kernels
#5211 by Nick Rhinehart, Saurabh Bansod and Andreas Miiller.

Miscellaneous

* Fixedabug when datasets.make_classification fails when generating more than 30 features. #8159
by Herilalaina Rakotoarison.

* Fixed a bug where datasets.make _moons gives an incorrect result when n_samples is odd. #8198 by
Josh Levy.

* Some fetch_ functions in datasets were ignoring the download_if_missing keyword. #7944 by
Ralf Gommers.

 Fix estimators to accept a sample_weight parameter of type pandas.Series in their £it function.
#7825 by Kathleen Chen.

* Fix a bug in cases where numpy . cumsum may be numerically unstable, raising an exception if instability is
identified. #7376 and #7331 by Joel Nothman and @yangarbiter.

* Fix a bug where base.BaseEstimator._ _getstate__ obstructed pickling customizations of child-
classes, when used in a multiple inheritance context. #8316 by Holger Peters.

* Update Sphinx-Gallery from 0.1.4 to 0.1.7 for resolving links in documentation build with Sphinx>1.5 #8010,
#7986 by Oscar Najera

* Add data_home parameter to sklearn.datasets. fetch_kddcup99. #9289 by Loic Esteve.
* Fix dataset loaders using Python 3 version of makedirs to also work in Python 2. #9284 by Sebastin Santy.

* Several minor issues were fixed with thanks to the alerts of [lgtm.com](http://Igtm.com). #9278 by Jean Helie,
among others.

API changes summary

Trees and ensembles
» Gradient boosting base models are no longer estimators. By Andreas Miiller.

e All tree based estimators now accept a min_impurity_decrease parameter in lieu of the
min_impurity_split, which is now deprecated. @~ The min_impurity_decrease helps stop

1.7. Release history 33

https://github.com/scikit-learn/scikit-learn/issues/6250
https://github.com/kaichogami
https://github.com/scikit-learn/scikit-learn/issues/8093
https://github.com/pjbull
https://github.com/scikit-learn/scikit-learn/issues/9507
https://github.com/lesteve
http://en.wikipedia.org/wiki/Average_precision
https://github.com/scikit-learn/scikit-learn/pull/7356
https://github.com/ndingwall
http://gael-varoquaux.info
https://github.com/scikit-learn/scikit-learn/issues/8377
https://github.com/lesteve
https://github.com/scikit-learn/scikit-learn/issues/8354
https://github.com/scikit-learn/scikit-learn/issues/7929
http://joelnothman.com
https://github.com/Erotemic
https://github.com/scikit-learn/scikit-learn/issues/5211
https://github.com/nrhine1
https://github.com/mth4saurabh
http://peekaboo-vision.blogspot.com
https://github.com/scikit-learn/scikit-learn/issues/8159
https://github.com/herilalaina
https://github.com/scikit-learn/scikit-learn/issues/8198
https://github.com/levy5674
https://github.com/scikit-learn/scikit-learn/issues/7944
https://github.com/rgommers
https://github.com/scikit-learn/scikit-learn/issues/7825
https://github.com/kchen17
https://github.com/scikit-learn/scikit-learn/issues/7376
https://github.com/scikit-learn/scikit-learn/issues/7331
http://joelnothman.com
https://github.com/yangarbiter
https://github.com/scikit-learn/scikit-learn/issues/8316
https://github.com/HolgerPeters
https://github.com/scikit-learn/scikit-learn/issues/8010
https://github.com/scikit-learn/scikit-learn/issues/7986
https://github.com/Titan-C
https://github.com/scikit-learn/scikit-learn/issues/9289
https://github.com/lesteve
https://github.com/scikit-learn/scikit-learn/issues/9284
https://github.com/SebastinSanty
http://lgtm.com
https://github.com/scikit-learn/scikit-learn/issues/9278
https://github.com/jhelie
http://peekaboo-vision.blogspot.com

scikit-learn user guide, Release 0.19.1

splitting the nodes in which the weighted impurity decrease from splitting is no longer alteast
min_impurity_decrease. #8449 by Raghav RV.

Linear, kernelized and related models

e n_iter parameter is deprecated in Iinear_model.SGDClassifier, linear_model.
SGDRegressor, linear._model.PassiveAggressiveClassifier, linear model.
PassiveAggressiveRegressor and 1inear_model.Perceptron. By Tom Dupre la Tour.

Other predictors

* neighbors.LSHForest has been deprecated and will be removed in 0.21 due to poor performance. #9078
by Laurent Direr.

* neighbors.NearestCentroid no longer purports to support metric="'precomputed' which now
raises an error. #8515 by Sergul Aydore.

e The alpha parameter of semi_supervised.LabelPropagation now has no effect and is deprecated
to be removed in 0.21. #9239 by Andre Ambrosio Boechat, Utkarsh Upadhyay, and Joel Nothman.

Decomposition, manifold learning and clustering

* Deprecate the doc_topic_distr argument of the perplexity method in decomposition.
LatentDirichletAllocationbecause the user no longer has access to the unnormalized document topic
distribution needed for the perplexity calculation. #7954 by Gary Foreman.

e The n_topics parameter of decomposition.LatentDirichletAllocation has been renamed to
n_components and will be removed in version 0.21. #8922 by @ Attractadore.

* decomposition.SparsePCA.transform’s ridge_alpha parameter is deprecated in preference for
class parameter. #8137 by Naoya Kanai.

e cluster.DBSCAN now has ametric_params parameter. #8139 by Naoya Kanai.
Preprocessing and feature selection

* feature selection.SelectFromModel now hasapartial_fit method only if the underlying es-
timator does. By Andreas Miiller.

e feature_selection.SelectFromModel now validates the threshold parameter and sets the
threshold_ attribute during the call to £it, and no longer during the call to transform’. By Andreas
Miiller.

e The non_negative parameter in feature extraction.FeatureHasher has been deprecated, and
replaced with a more principled alternative, alternate_sign. #7565 by Roman Yurchak.

e linear _model.RandomizedlLogisticRegression, and linear_ model.RandomizedlLasso
have been deprecated and will be removed in version 0.21. #8995 by Ramana.S.

Model evaluation and meta-estimators

e Deprecate the fit_params constructor input to the model_selection.GridSearchCV and
model_selection.RandomizedSearchCV infavor of passing keyword parameters to the £1it methods
of those classes. Data-dependent parameters needed for model training should be passed as keyword arguments
to £it, and conforming to this convention will allow the hyperparameter selection classes to be used with tools
such as model_selection.cross_val_predict. #2879 by Stephen Hoover.

¢ In version 0.21, the default behavior of splitters that use the test_size and train_size parameter will
change, such that specifying t rain_size alone will cause test_size to be the remainder. #7459 by Nelson
Liu.

e multiclass.OneVsRestClassifier now has partial_fit, decision_function and
predict_proba methods only when the underlying estimator does. #7812 by Andreas Miiller and Mikhail
Korobov.

34 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/8449
https://github.com/raghavrv
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/9078
https://github.com/ldirer
https://github.com/scikit-learn/scikit-learn/issues/8515
https://github.com/sergulaydore
https://github.com/scikit-learn/scikit-learn/issues/9239
https://github.com/boechat107
https://github.com/musically-ut
http://joelnothman.com
https://github.com/scikit-learn/scikit-learn/issues/7954
https://github.com/garyForeman
https://github.com/scikit-learn/scikit-learn/issues/8922
https://github.com/Attractadore
https://github.com/scikit-learn/scikit-learn/issues/8137
https://github.com/naoyak
https://github.com/scikit-learn/scikit-learn/issues/8139
https://github.com/naoyak
http://peekaboo-vision.blogspot.com
http://peekaboo-vision.blogspot.com
http://peekaboo-vision.blogspot.com
https://github.com/scikit-learn/scikit-learn/issues/7565
https://github.com/rth
https://github.com/scikit-learn/scikit-learn/issues/8995
https://github.com/sentient07
https://github.com/scikit-learn/scikit-learn/issues/2879
https://github.com/stephen-hoover
https://github.com/scikit-learn/scikit-learn/issues/7459
https://github.com/nelson-liu
https://github.com/nelson-liu
https://github.com/scikit-learn/scikit-learn/issues/7812
http://peekaboo-vision.blogspot.com
https://github.com/kmike
https://github.com/kmike

scikit-learn user guide, Release 0.19.1

e multiclass.OneVsRestClassifier now hasapartial_fit method only if the underlying estima-
tor does. By Andreas Miiller.

e The decision_function output shape for Dbinary classification in multiclass.
OneVsRestClassifier and multiclass.OneVsOneClassifier is now (n_samples,) to
conform to scikit-learn conventions. #9100 by Andreas Miiller.

e The multioutput.MultiOutputClassifier.predict_proba function used to return a 3d array
(n_samples, n_classes, n_outputs). In the case where different target columns had different numbers
of classes, a ValueError would be raised on trying to stack matrices with different dimensions. This func-
tion now returns a list of arrays where the length of the list is n_outputs, and each array is (n_samples,
n_classes) for that particular output. #8093 by Peter Bull.

* Replace attribute named_steps dict to utils.Bunch in pipeline.Pipeline to enable tab com-
pletion in interactive environment. In the case conflict value on named_steps and dict attribute, dict
behavior will be prioritized. #8481 by Herilalaina Rakotoarison.

Miscellaneous

* Deprecate the y parameter in transform and inverse_transform. The method should not accept y
parameter, as it’s used at the prediction time. #8174 by Tahar Zanouda, Alexandre Gramfort and Raghav RV.

e SciPy >=0.13.3 and NumPy >= 1.8.2 are now the minimum supported versions for scikit-learn. The following
backported functions in utils have been removed or deprecated accordingly. #8854 and #8874 by Naoya
Kanai

e The store_covariances and covariances_ parameters of discriminant_analysis.
QuadraticDiscriminantAnalysis has been renamed to store_covariance and covariance_
to be consistent with the corresponding parameter names of the discriminant_analysis.
LinearDiscriminantAnalysis. They will be removed in version 0.21. #7998 by Jiacheng

Removed in 0.19:
— utils.fixes.argpartition
— utils.fixes.array_equal
— utils.fixes.astype
— utils.fixes.bincount
— utils.fixes.expit
— utils.fixes.frombuffer_empty
— utils.fixes.inld
— utils.fixes.norm
— utils.fixes.rankdata
— utils.fixes.safe_copy
Deprecated in 0.19, to be removed in 0.21:
— utils.arpack.eigs
— utils.arpack.eigsh
— utils.arpack.svds
— utils.extmath.fast_dot
— utils.extmath.logsumexp

— utils.extmath.norm

1.7. Release history 35

http://peekaboo-vision.blogspot.com
https://github.com/scikit-learn/scikit-learn/issues/9100
http://peekaboo-vision.blogspot.com
https://github.com/scikit-learn/scikit-learn/issues/8093
https://github.com/pjbull
https://github.com/scikit-learn/scikit-learn/issues/8481
https://github.com/herilalaina
https://github.com/scikit-learn/scikit-learn/issues/8174
https://github.com/tzano
http://alexandre.gramfort.net
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/8854
https://github.com/scikit-learn/scikit-learn/issues/8874
https://github.com/naoyak
https://github.com/naoyak
https://github.com/scikit-learn/scikit-learn/issues/7998
https://github.com/mrbeann

scikit-learn user guide, Release 0.19.1

— utils.extmath.pinvh

— utils.graph.graph_laplacian

— utils.random.choice

— utils.sparsetools.connected_components
— utils.stats.rankdata

» Estimators with both methods decision_function and predict_proba are now required to have a
monotonic relation between them. The method check_decision_proba_consistency has been added
in utils.estimator_checks to check their consistency. #7578 by Shubham Bhardwaj

e All checks in utils.estimator_checks, in particular utils.estimator_checks.
check_estimator now accept estimator instances. Most other checks do not accept estimator classes any
more. #9019 by Andreas Miiller.

* Ensure that estimators’ attributes ending with _ are not set in the constructor but only in the £it method.
Most notably, ensemble estimators (deriving from ensemble.BaseEnsemble) now only have self.
estimators_ available after £it. #7464 by Lars Buitinck and Loic Esteve.

Code and Documentation Contributors

Thanks to everyone who has contributed to the maintenance and improvement of the project since version 0.18, in-
cluding:

Joel Nothman, Loic Esteve, Andreas Mueller, Guillaume Lemaitre, Olivier Grisel, Hanmin Qin, Raghav RV, Alexandre
Gramfort, themrmax, Aman Dalmia, Gael Varoquaux, Naoya Kanai, Tom Dupré la Tour, Rishikesh, Nelson Liu, Tae-
hoon Lee, Nelle Varoquaux, Aashil, Mikhail Korobov, Sebastin Santy, Joan Massich, Roman Yurchak, RAKOTOARI-
SON Herilalaina, Thierry Guillemot, Alexandre Abadie, Carol Willing, Balakumaran Manoharan, Josh Karnofsky,
Vlad Niculae, Utkarsh Upadhyay, Dmitry Petrov, Minghui Liu, Srivatsan, Vincent Pham, Albert Thomas, Jake Van-
derPlas, Attractadore, JC Liu, alexandercbooth, chkoar, Oscar N4jera, Aarshay Jain, Kyle Gilliam, Ramana Subra-
manyam, CJ Carey, Clement Joudet, David Robles, He Chen, Joris Van den Bossche, Karan Desai, Katie Luangkote,
Leland MclInnes, Maniteja Nandana, Michele Lacchia, Sergei Lebedev, Shubham Bhardwaj, akshay0724, omtcyfz,
rickiepark, waterponey, Vathsala Achar, jbDelafosse, Ralf Gommers, Ekaterina Krivich, Vivek Kumar, Ishank Gulati,
Dave Elliott, ldirer, Reiichiro Nakano, Levi John Wolf, Mathieu Blondel, Sid Kapur, Dougal J. Sutherland, midinas,
mikebenfield, Sourav Singh, Aseem Bansal, Ibraim Ganiev, Stephen Hoover, AishwaryaRK, Steven C. Howell, Gary
Foreman, Neeraj Gangwar, Tahar, Jon Crall, dokato, Kathy Chen, ferria, Thomas Moreau, Charlie Brummitt, Nicolas
Goix, Adam Kleczewski, Sam Shleifer, Nikita Singh, Basil Beirouti, Giorgio Patrini, Manoj Kumar, Rafael Possas,
James Bourbeau, James A. Bednar, Janine Harper, Jaye, Jean Helie, Jeremy Steward, Artsiom, John Wei, Jonathan
LIgo, Jonathan Rahn, seanpwilliams, Arthur Mensch, Josh Levy, Julian Kuhlmann, Julien Aubert, J6rn Hees, Kai,
shivamgargsya, Kat Hempstalk, Kaushik Lakshmikanth, Kennedy, Kenneth Lyons, Kenneth Myers, Kevin Yap, Kir-
ill Bobyrev, Konstantin Podshumok, Arthur Imbert, Lee Murray, toastedcornflakes, Lera, Li Li, Arthur Douillard,
Mainak Jas, tobycheese, Manraj Singh, Manvendra Singh, Marc Meketon, MarcoFalke, Matthew Brett, Matthias
Gilch, Mehul Ahuja, Melanie Goetz, Meng, Peng, Michael Dezube, Michal Baumgartner, vibrantabhil9, Artem Golu-
bin, Milen Paskov, Antonin Carette, Morikko, MrMjauh, NALEPA Emmanuel, Namiya, Antoine Wendlinger, Narine
Kokhlikyan, NarineK, Nate Guerin, Angus Williams, Ang Lu, Nicole Vavrova, Nitish Pandey, Okhlopkov Daniil
Olegovich, Andy Craze, Om Prakash, Parminder Singh, Patrick Carlson, Patrick Pei, Paul Ganssle, Paulo Haddad,
Pawet Lorek, Peng Yu, Pete Bachant, Peter Bull, Peter Csizsek, Peter Wang, Pieter Arthur de Jong, Ping-Yao, Chang,
Preston Parry, Puneet Mathur, Quentin Hibon, Andrew Smith, Andrew Jackson, 1kastner, Rameshwar Bhaskaran, Re-
becca Bilbro, Remi Rampin, Andrea Esuli, Rob Hall, Robert Bradshaw, Romain Brault, Aman Pratik, Ruifeng Zheng,
Russell Smith, Sachin Agarwal, Sailesh Choyal, Samson Tan, Samué&l Weber, Sarah Brown, Sebastian Polsterl, Se-
bastian Raschka, Sebastian Saeger, Alyssa Batula, Abhyuday Pratap Singh, Sergey Feldman, Sergul Aydore, Sharan
Yalburgi, willduan, Siddharth Gupta, Sri Krishna, Almer, Stijn Tonk, Allen Riddell, Theofilos Papapanagiotou, Alison,
Alexis Mignon, Tommy Boucher, Tommy Lofstedt, Toshihiro Kamishima, Tyler Folkman, Tyler Lanigan, Alexander
Junge, Varun Shenoy, Victor Poughon, Vilhelm von Ehrenheim, Aleksandr Sandrovskii, Alan Yee, Vlasios Vasileiou,

36 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/7578
https://github.com/shubham0704
https://github.com/scikit-learn/scikit-learn/issues/9019
http://peekaboo-vision.blogspot.com
https://github.com/scikit-learn/scikit-learn/issues/7464
https://github.com/larsmans
https://github.com/lesteve

scikit-learn user guide, Release 0.19.1

Warut Vijitbenjaronk, Yang Zhang, Yaroslav Halchenko, Yichuan Liu, Yuichi Fujikawa, affanv14, aivision2020, xor,
andreh7, brady salz, campustrampus, Agamemnon Krasoulis, ditenberg, elena-sharova, filipj8, fukatani, gedeck, guin-
iol, guoci, hakaal, hongkahjun, i-am-xhy, jakirkham, jaroslaw-weber, jayzed82, jeroko, jmontoyam, jonathan.striebel,
josephsalmon, jschendel, leereeves, martin-hahn, mathurinm, mehak-sachdeva, mlewis1729, mllioul12, mthorrell,
ndingwall, nuffe, yangarbiter, plagree, pldtc325, Breno Freitas, Brett Olsen, Brian A. Alfano, Brian Burns, polmauri,
Brandon Carter, Charlton Austin, Chayant T15h, Chinmaya Pancholi, Christian Danielsen, Chung Yen, Chyi-Kwei
Yau, pravarmahajan, DOHMATOB Elvis, Daniel LeJeune, Daniel Hnyk, Darius Morawiec, David DeTomaso, David
Gasquez, David Haberthiir, David Heryanto, David Kirkby, David Nicholson, rashchedrin, Deborah Gertrude Digges,
Denis Engemann, Devansh D, Dickson, Bob Baxley, Don86, E. Lynch-Klarup, Ed Rogers, Elizabeth Ferriss, Ellen-
Co2, Fabian Egli, Fang-Chieh Chou, Bing Tian Dai, Greg Stupp, Grzegorz Szpak, Bertrand Thirion, Hadrien Bertrand,
Harizo Rajaona, zxcvbnius, Henry Lin, Holger Peters, Icyblade Dai, Igor Andriushchenko, Ilya, Isaac Laughlin, Ivan
Vallés, Aurélien Bellet, JPFrancoia, Jacob Schreiber, Asish Mahapatra

1.7.3 Version 0.18.2

June 20, 2017

Last release with Python 2.6 support

Scikit-learn 0.18 is the last major release of scikit-learn to support Python 2.6. Later versions of scikit-learn will
require Python 2.7 or above.

Changelog

* Fixes for compatibility with NumPy 1.13.0: #7946 #8355 by Loic Esteve.
* Minor compatibility changes in the examples #9010 #8040 #9149.

Code Contributors

Aman Dalmia, Loic Esteve, Nate Guerin, Sergei Lebedev

1.7.4 Version 0.18.1

November 11, 2016
Changelog
Enhancements

e Improved sample_without_replacement speed by utilizing numpy.random.permutation for most cases.
As a result, samples may differ in this release for a fixed random state. Affected estimators:

ensemble.BaggingClassifier

ensemble.BaggingRegressor
— linear_model.RANSACRegressor

— model_selection.RandomizedSearchCV

1.7. Release history 37

https://github.com/scikit-learn/scikit-learn/issues/7946
https://github.com/scikit-learn/scikit-learn/issues/8355
https://github.com/lesteve
https://github.com/scikit-learn/scikit-learn/issues/9010
https://github.com/scikit-learn/scikit-learn/issues/8040
https://github.com/scikit-learn/scikit-learn/issues/9149

scikit-learn user guide, Release 0.19.1

— random_projection.SparseRandomProjection

This also affects the datasets.make classification method.

Bug fixes

Fix issue where min_grad_normand n_iter_without_progress parameters were not being utilised
by manifold. TSNE. #6497 by Sebastian Siger

Fix bug for svm’s decision values when decision_function_shape is ovr in svm. SVC. svm. SVC’s
decision_function was incorrect from versions 0.17.0 through 0.18.0. #7724 by Bing Tian Dai

Attribute explained_variance_ratio of discriminant_analysis.
LinearDiscriminantAnalysis calculated with SVD and Eigen solver are now of the same length.
#7632 by JPFrancoia

Fixes issue in Univariate feature selection where score functions were not accepting multi-label targets. #7676
by Mohammed Affan

Fixed setting parameters when calling £ it multiple times on feature selection.SelectFromModel.
#7756 by Andreas Miiller

Fixes issue in partial_fit method of multiclass.OneVsRestClassifier when number of classes
used in partial_fit was less than the total number of classes in the data. #7786 by Srivatsan Ramesh

Fixes issue in calibration.CalibratedClassifierCV where the sum of probabilities of each class
for a data was not 1, and CalibratedClassifierCV now handles the case where the training set has less
number of classes than the total data. #7799 by Srivatsan Ramesh

Fix a bug where sklearn.feature selection.SelectFdr did not exactly implement Benjamini-
Hochberg procedure. It formerly may have selected fewer features than it should. #7490 by Peng Meng.

sklearn.manifold.LocallyLinearEmbedding now correctly handles integer inputs. #6282 by Jake
Vanderplas.

Themin_weight_fraction_leaf parameter of tree-based classifiers and regressors now assumes uniform
sample weights by default if the sample_weight argument is not passed to the £it function. Previously, the
parameter was silently ignored. #7301 by Nelson Liu.

Numerical issue with 1 inear model.RidgeCV on centered data when n_features > n_samples. #6178 by
Bertrand Thirion

Tree splitting criterion classes’ cloning/pickling is now memory safe #7680 by Ibraim Ganiev.

Fixed a bug where decomposition.NMF sets its n_iters_ attribute in transform(). #7553 by Ekaterina
Krivich.

sklearn.linear_model.LogisticRegressionCV now correctly handles string labels. #5874 by
Raghav RV.

Fixed a bug where sklearn.model selection.train_test_split raised an error when
stratify is alist of string labels. #7593 by Raghav RV.

Fixed a bug where sklearn.model selection.GridSearchCV and sklearn.
model_selection.RandomizedSearchCV were not pickleable because of a pickling bug in np.
ma.MaskedArray. #7594 by Raghav RV.

All cross-validation utilities in sklearn.model_selection now permitone time cross-validation splitters
for the cv parameter. Also non-deterministic cross-validation splitters (where multiple calls to split produce
dissimilar splits) can be used as cv parameter. The sklearn.model selection.GridSearchCV will

38

Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/6497
https://github.com/ssaeger
https://github.com/scikit-learn/scikit-learn/issues/7724
https://github.com/btdai
https://github.com/scikit-learn/scikit-learn/issues/7632
https://github.com/JPFrancoia
https://github.com/scikit-learn/scikit-learn/issues/7676
https://github.com/affanv14
https://github.com/scikit-learn/scikit-learn/issues/7756
http://peekaboo-vision.blogspot.com
https://github.com/scikit-learn/scikit-learn/issues/7786
https://github.com/srivatsan-ramesh
https://github.com/scikit-learn/scikit-learn/issues/7799
https://github.com/srivatsan-ramesh
https://github.com/scikit-learn/scikit-learn/issues/7490
https://github.com/mpjlu
https://github.com/scikit-learn/scikit-learn/issues/6282
http://staff.washington.edu/jakevdp/
http://staff.washington.edu/jakevdp/
https://github.com/scikit-learn/scikit-learn/issues/7301
https://github.com/nelson-liu
https://github.com/scikit-learn/scikit-learn/issues/6178
https://team.inria.fr/parietal/bertrand-thirions-page
https://github.com/scikit-learn/scikit-learn/issues/7680
https://github.com/olologin
https://github.com/scikit-learn/scikit-learn/issues/7553
https://github.com/kiote
https://github.com/kiote
https://github.com/scikit-learn/scikit-learn/issues/5874
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/7593
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/7594
https://github.com/raghavrv

scikit-learn user guide, Release 0.19.1

cross-validate each parameter setting on the split produced by the first split call to the cross-validation splitter.
#7660 by Raghav RV.

* Fix bug where preprocessing.MultilLabelBinarizer.fit_transform returned an invalid CSR
matrix. #7750 by CJ Carey.

* Fixed a bug where metrics.pairwise.cosine distances could return a small negative distance.
#7732 by Artsion.

API changes summary

Trees and forests

e Themin_weight_fraction_leaf parameter of tree-based classifiers and regressors now assumes uniform
sample weights by default if the sample_weight argument is not passed to the £it function. Previously, the
parameter was silently ignored. #7301 by Nelson Liu.

* Tree splitting criterion classes’ cloning/pickling is now memory safe. #7680 by Ibraim Ganiev.
Linear, kernelized and related models

* Length of explained_variance_ratio of discriminant_analysis.
LinearDiscriminantAnalysis changed for both Eigen and SVD solvers. The attribute has now
a length of min(n_components, n_classes - 1). #7632 by JPFrancoia

¢ Numerical issue with 1inear model.RidgeCV on centered data when n_features > n_samples.
#6178 by Bertrand Thirion

1.7.5 Version 0.18

September 28, 2016

Last release with Python 2.6 support

Scikit-learn 0.18 will be the last version of scikit-learn to support Python 2.6. Later versions of scikit-learn will
require Python 2.7 or above.

Model Selection Enhancements and APl Changes

¢ The model_selection module

The new module sklearn.model selection, which groups together the functionalities of formerly
sklearn.cross_validation, sklearn.grid_search and sklearn.learning_curve, intro-
duces new possibilities such as nested cross-validation and better manipulation of parameter searches with Pan-
das.

Many things will stay the same but there are some key differences. Read below to know more about the changes.
¢ Data-independent CV splitters enabling nested cross-validation

The new cross-validation splitters, defined in the sklearn.model_selection, are no longer initialized
with any data-dependent parameters such as y. Instead they expose a split method that takes in the data and
yields a generator for the different splits.

This change makes it possible to use the cross-validation splitters to perform nested cross-validation, facilitated
by model_ selection.GridSearchCV and model_selection.RandomizedSearchCV utilities.

1.7. Release history 39

https://github.com/scikit-learn/scikit-learn/issues/7660
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/7750
https://github.com/perimosocordiae
https://github.com/scikit-learn/scikit-learn/issues/7732
https://github.com/asanakoy
https://github.com/scikit-learn/scikit-learn/issues/7301
https://github.com/nelson-liu
https://github.com/scikit-learn/scikit-learn/issues/7680
https://github.com/olologin
https://github.com/scikit-learn/scikit-learn/issues/7632
https://github.com/JPFrancoia
https://github.com/scikit-learn/scikit-learn/issues/6178
https://team.inria.fr/parietal/bertrand-thirions-page

scikit-learn user guide, Release 0.19.1

¢ The enhanced cv_results_ attribute

The new cv_results_ attribute (of model_ selection.GridSearchCV and model_ selection.
RandomizedSearchCV) introduced in lieu of the grid_scores_ attribute is a dict of 1D arrays with
elements in each array corresponding to the parameter settings (i.e. search candidates).

The cv_results_ dictcan be easily imported into pandas as a Dat aFrame for exploring the search results.

The cv_results_ arrays include scores for each cross-validation split (with keys such as
'splitO_test_score'), as well as their mean ('mean_test_score') and standard deviation
('std_test_score').

The ranks for the search candidates (based on their mean cross-validation score) is available at
cv_results_['rank_test_score'].

The parameter values for each parameter is stored separately as numpy masked object arrays. The value, for
that search candidate, is masked if the corresponding parameter is not applicable. Additionally a list of all the
parameter dicts are stored at cv_results_['params'].

e Parameters n_folds and n_iter renamed to n_splits

Some parameter names have changed: The n_folds parameter in new model selection.KFold,
model_selection.GroupKFold (see below for the name change), and model_ selection.
StratifiedKFold is now renamed to n_splits. The n_iter parameter in model selection.
ShuffleSplit,the new class model_ selection.GroupShuffleSplit and model_selection.
StratifiedShuffleSplit isnow renamedton_splits.

* Rename of splitter classes which accepts group labels along with data

The cross-validation splitters LabelKFold, LabelShuffleSplit, LeaveOnelLabelOut and
LeavePLabelOut have been renamed to model_ selection.GroupKFold, model_ selection.
GroupShuffleSplit, model_selection.LeaveOneGroupOut and model_selection.
LeavePGroupsOut respectively.

Note the change from singular to plural form in model selection.LeavePGroupsOut.
¢ Fit parameter labels renamed to groups

The labels parameter in the split method of the newly renamed splitters model selection.
GroupKFold, model_selection.LeaveOneGroupOut, model_selection.
LeavePGroupsOut, model_selection.GroupShuffleSplit isrenamed to groups following the
new nomenclature of their class names.

* Parameter n_labels renamed to n_groups

The parameter n_labels in the newly renamed model_selection.LeavePGroupsOut is changed to
n_groups.

¢ Training scores and Timing information

cv_results_ also includes the training scores for each cross-validation split (with keys such
as 'splitO_train_score'), as well as their mean ('mean_train_score') and stan-
dard deviation ('std_train_score'). To avoid the cost of evaluating training score, set
return_train_score=False.

Additionally the mean and standard deviation of the times taken to split, train and score the model across all the
cross-validation splits is available at the key 'mean_time' and 'std_time' respectively.

40 Chapter 1. Welcome to scikit-learn

scikit-learn user guide, Release 0.19.1

Changelog

New features

Classifiers and Regressors

* The Gaussian Process module has been reimplemented and now offers classification and regression esti-
mators through gaussian process.GaussianProcessClassifier and gaussian_process.
GaussianProcessRegressor. Among other things, the new implementation supports kernel engineering,
gradient-based hyperparameter optimization or sampling of functions from GP prior and GP posterior. Extensive
documentation and examples are provided. By Jan Hendrik Metzen.

* Added new supervised learning algorithm: Multi-layer Perceptron #3204 by Issam H. Laradji
e Added I1inear._model.HuberRegressor, a linear model robust to outliers. #5291 by Manoj Kumar.

e Added the multioutput.MultiOutputRegressor meta-estimator. It converts single output regressors
to multi-output regressors by fitting one regressor per output. By Tim Head.

Other estimators

* New mixture.GaussianMixtureand mixture.BayesianGaussianMixture replace former mix-
ture models, employing faster inference for sounder results. #7295 by Wei Xue and Thierry Guillemot.

e Class decomposition.RandomizedPCA is now factored into decomposition.PCA and it is avail-
able calling with parameter svd_solver='randomized'. The default number of n_iter for
'randomized' has changed to 4. The old behavior of PCA is recovered by svd_solver='full'. An
additional solver calls arpack and performs truncated (non-randomized) SVD. By default, the best solver is
selected depending on the size of the input and the number of components requested. #5299 by Giorgio Patrini.

e Added two functions for mutual information estimation: feature_selection.
mutual_info_classif and feature_selection.mutual_info_regression. These
functions can be used in feature selection.SelectKBest and feature selection.
SelectPercentile as score functions. By Andrea Bravi and Nikolay Mayorov.

* Addedthe ensemble. IsolationForest class for anomaly detection based on random forests. By Nicolas
Goix.

* Added algorithm="elkan" to cluster.KMeans implementing Elkan’s fast K-Means algorithm. By
Andreas Miiller.

Model selection and evaluation

e Addedmetrics.cluster.fowlkes_mallows_score, the Fowlkes Mallows Index which measures the
similarity of two clusterings of a set of points By Arnaud Fouchet and Thierry Guillemot.

e Added metrics.calinski_harabaz_score, which computes the Calinski and Harabaz score to evalu-
ate the resulting clustering of a set of points. By Arnaud Fouchet and Thierry Guillemot.

* Added new cross-validation splitter model_selection.TimeSeriesSplit to handle time series data.
#6586 by YenChen Lin

e The cross-validation iterators are replaced by cross-validation splitters available from sklearn.
model_selection, allowing for nested cross-validation. See Model Selection Enhancements and API
Changes for more information. #4294 by Raghav RV.

Enhancements

Trees and ensembles

1.7. Release history 41

https://jmetzen.github.io/
https://github.com/scikit-learn/scikit-learn/issues/3204
https://github.com/IssamLaradji
https://github.com/scikit-learn/scikit-learn/issues/5291
https://manojbits.wordpress.com
https://github.com/betatim
https://github.com/scikit-learn/scikit-learn/issues/7295
https://github.com/xuewei4d
https://github.com/tguillemot
https://github.com/scikit-learn/scikit-learn/issues/5299
https://github.com/giorgiop
https://github.com/AndreaBravi
https://github.com/nmayorov
https://perso.telecom-paristech.fr/~goix/
https://perso.telecom-paristech.fr/~goix/
http://peekaboo-vision.blogspot.com
https://github.com/afouchet
https://github.com/tguillemot
https://github.com/afouchet
https://github.com/tguillemot
https://github.com/scikit-learn/scikit-learn/issues/6586
https://github.com/yenchenlin
https://github.com/scikit-learn/scikit-learn/issues/4294
https://github.com/raghavrv

scikit-learn user guide, Release 0.19.1

e Added a new splitting criterion for tree.DecisionTreeRegressor, the mean absolute er-
TOr. This criterion can also be used in ensemble.ExtralTreesRegressor, ensemble.
RandomForestRegressor, and the gradient boosting estimators. #6667 by Nelson Liu.

¢ Added weighted impurity-based early stopping criterion for decision tree growth. #6954 by Nelson Liu

¢ The random forest, extra tree and decision tree estimators now has a method decision_path which returns
the decision path of samples in the tree. By Arnaud Joly.

* A new example has been added unveiling the decision tree structure. By Arnaud Joly.

e Random forest, extra trees, decision trees and gradient boosting estimator accept the parameter
min_samples_split and min_samples_leaf provided as a percentage of the training samples. By
yelite and Arnaud Joly.

» Gradient boosting estimators accept the parameter criterion to specify to splitting criterion used in built
decision trees. #6667 by Nelson Liu.

* The memory footprint is reduced (sometimes greatly) for ensemble.bagging.BaseBagging and classes
that inherit from it, i.e, ensemble.BaggingClassifier, ensemble.BaggingRegressor, and
ensemble.IsolationForest, by dynamically generating attribute estimators_samples_ only
when it is needed. By David Staub.

¢ Added n_jobs and sample_weight parameters for ensemble. VotingClassifier to fit underlying
estimators in parallel. #5805 by Ibraim Ganiev.

Linear, kernelized and related models

* In linear _model.LogisticRegression, the SAG solver is now available in the multinomial case.
#5251 by Tom Dupre la Tour.

e linear_model.RANSACRegressor, svm.LinearSVC and svm.LinearSVR now support
sample_weight. By Imaculate.

* Add parameter loss to Iinear model.RANSACRegressor to measure the error on the samples for every
trial. By Manoj Kumar.

¢ Prediction of out-of-sample events with Isotonic Regression (i sotonic. IsotonicRegression) is now
much faster (over 1000x in tests with synthetic data). By Jonathan Arfa.

¢ Isotonic regression (i sotonic.IsotonicRegression) now uses a better algorithm to avoid O(n"2) be-
havior in pathological cases, and is also generally faster (##6691). By Antony Lee.

* naive bayes.GaussianNB now accepts data-independent class-priors through the parameter priors.
By Guillaume Lemaitre.

e Jinear_model.ElasticNet and linear._model.Lasso now works with np.float32 input data
without converting it into np . f1oat 64. This allows to reduce the memory consumption. #6913 by YenChen
Lin.

* semi_supervised.LabelPropagation and semi_supervised.LabelSpreading now accept
arbitrary kernel functions in addition to strings knn and rbf. #5762 by Utkarsh Upadhyay.

Decomposition, manifold learning and clustering

* Added inverse_transformfunctionto decomposition. NMF tocompute data matrix of original shape.
By Anish Shah.

e cluster.KMeans and cluster.MiniBatchKMeans now works with np.float32 and np.
float64 input data without converting it. This allows to reduce the memory consumption by using np.
float32. #6846 by Sebastian Siger and YenChen Lin.

Preprocessing and feature selection

42

Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/6667
https://github.com/nelson-liu
https://github.com/scikit-learn/scikit-learn/issues/6954
https://github.com/nelson-liu
http://www.ajoly.org
http://www.ajoly.org
https://github.com/yelite
http://www.ajoly.org
https://github.com/scikit-learn/scikit-learn/issues/6667
https://github.com/nelson-liu
https://github.com/staubda
https://github.com/scikit-learn/scikit-learn/issues/5805
https://github.com/olologin
https://github.com/scikit-learn/scikit-learn/issues/5251
https://github.com/TomDLT
https://github.com/Imaculate
https://manojbits.wordpress.com
https://github.com/jarfa
https://github.com/scikit-learn/scikit-learn/issues/#6691
https://www.ocf.berkeley.edu/~antonyl/
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/6913
https://github.com/yenchenlin
https://github.com/yenchenlin
https://github.com/scikit-learn/scikit-learn/issues/5762
https://github.com/musically-ut
https://github.com/AnishShah
https://github.com/scikit-learn/scikit-learn/issues/6846
https://github.com/ssaeger
https://github.com/yenchenlin

scikit-learn user guide, Release 0.19.1

preprocessing.RobustScaler now accepts quantile_range parameter. #5929 by Konstantin Pod-
shumok.

feature_extraction.FeatureHasher now accepts string values. #6173 by Ryad Zenine and
Devashish Deshpande.

Keyword arguments can now be supplied to func in preprocessing.FunctionTransformer by
means of the kw_args parameter. By Brian McFee.

feature_selection.SelectKBest and feature_selection.SelectPercentile now accept
score functions that take X, y as input and return only the scores. By Nikolay Mayorov.

Model evaluation and meta-estimators

multiclass.OneVsOneClassifier and multiclass.OneVsRestClassifier now support
partial_fit. By Asish Panda and Philipp Dowling.

Added support for substituting or disabling pipeline.Pipeline and pipeline.FeatureUnion com-
ponents using the set_params interface that powers sklearn.grid_search. See Selecting dimension-
ality reduction with Pipeline and GridSearchCV By Joel Nothman and Robert McGibbon.

The new cv_results_ attribute of model_ selection.GridSearchCV (and model_ selection.
RandomizedSearchCV) can be easily imported into pandas as a DataFrame. Ref Model Selection En-
hancements and API Changes for more information. #6697 by Raghav RV.

Generalization of model selection.cross_val_ predict. One can pass method names such as pre-
dict_proba to be used in the cross validation framework instead of the default predict. By Ori Ziv and Sears
Merritt.

The training scores and time taken for training followed by scoring for each search candidate are now available
atthe cv_results_ dict. See Model Selection Enhancements and API Changes for more information. #7325
by Eugene Chen and Raghav RV.

Metrics

Added labels flag to metrics.log_loss to explicitly provide the labels when the number of classes in
y_true and y_pred differ. #7239 by Hong Guangguo with help from Mads Jensen and Nelson Liu.

Support sparse contingency matrices in cluster evaluation (metrics.cluster. supervised) to scale to a
large number of clusters. #7419 by Gregory Stupp and Joel Nothman.

Add sample_weight parameter to metrics.matthews_corrcoef. By Jatin Shah and Raghav RV.
Speed up metrics.silhouette_score by using vectorized operations. By Manoj Kumar.

Add sample_weight parameter to metrics.confusion_matrix. By Bernardo Stein.

Miscellaneous

Added n_ jobs parameter to feature selection.RFECV to compute the score on the test folds in par-
allel. By Manoj Kumar

Codebase does not contain C/C++ cython generated files: they are generated during build. Distribution packages
will still contain generated C/C++ files. By Arthur Mensch.

Reduce the memory usage for 32-bit float input arrays of utils.sparse_func.mean_variance_axis
and utils.sparse_func.incr_mean_variance_axis by supporting cython fused types. By
YenChen Lin.

The ignore_warnings now accept a category argument to ignore only the warnings of a specified type. By
Thierry Guillemot.

1.7. Release history 43

https://github.com/scikit-learn/scikit-learn/issues/5929
https://github.com/podshumok
https://github.com/podshumok
https://github.com/scikit-learn/scikit-learn/issues/6173
https://github.com/ryadzenine
https://github.com/dsquareindia
https://bmcfee.github.io
https://github.com/nmayorov
https://github.com/kaichogami
https://github.com/phdowling
http://joelnothman.com
https://github.com/rmcgibbo
https://github.com/scikit-learn/scikit-learn/issues/6697
https://github.com/raghavrv
https://github.com/zivori
https://github.com/merritts
https://github.com/merritts
https://github.com/scikit-learn/scikit-learn/issues/7325
https://github.com/eyc88
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/7239
https://github.com/hongguangguo
https://github.com/indianajensen
https://github.com/nelson-liu
https://github.com/scikit-learn/scikit-learn/issues/7419
https://github.com/stuppie
http://joelnothman.com
https://github.com/jatinshah
https://github.com/raghavrv
https://manojbits.wordpress.com
https://github.com/DanielSidhion
https://manojbits.wordpress.com
https://github.com/arthurmensch
https://github.com/yenchenlin
https://github.com/tguillemot

scikit-learn user guide, Release 0.19.1

e Added parameter return_X_y and return type (data, target) : tuple option to load_iris

dataset #7049, 1oad_breast_cancer dataset #7152, 1load_digits dataset, load_diabetes dataset,
load_linnerud dataset, load_boston dataset #7154 by Manvendra Singh.

« Simplification of the clone function, deprecate support for estimators that modify parameters in __init .

#5540 by Andreas Miiller.

e When unpickling a scikit-learn estimator in a different version than the one the estimator was trained with, a

UserWarning is raised, see the documentation on model persistence for more details. (#7248) By Andreas
Miiller.

Bug fixes

Trees and ensembles

* Random forest, extra trees, decision trees and gradient boosting won’t accept anymore

min_samples_split=1 as at least 2 samples are required to split a decision tree node. By Arnaud
Joly

ensemble.VotingClassifier now raises NotFittedError if predict, transform or
predict_proba are called on the non-fitted estimator. by Sebastian Raschka.

Fix bug where ensemble.AdaBoostClassifier and ensemble.AdaBoostRegressor would per-
form poorly if the random_state was fixed (#7411). By Joel Nothman.

Fix bug in ensembles with randomization where the ensemble would not set random_state
on base estimators in a pipeline or similar nesting. (#7411). Note, results for ensemble.
BaggingClassifier ensemble.BaggingRegressor, ensemble.AdaBoostClassifier and
ensemble.AdaBoostRegressor will now differ from previous versions. By Joel Nothman.

Linear, kernelized and related models

* Fixed incorrect gradient computation for loss='squared_epsilon_insensitive' in

linear_model.SGDClassifier and linear._model.SGDRegressor (#6764). By Wenhua
Yang.

e Fix bug in linear_model.LogisticRegressionCV where solver="'liblinear' did not accept

class_weights="balanced. (#6817). By Tom Dupre la Tour.

* Fix bug in neighbors.RadiusNeighborsClassifier where an error occurred when there were out-

liers being labelled and a weight function specified (#6902). By LeonieBorne.

e Fix linear _model.ElasticNet sparse decision function to match output with dense in the multioutput

case.

Decomposition, manifold learning and clustering

e decomposition.RandomizedPCA default number of iterated_power is 4 instead of 3. #5141 by Giorgio

Patrini.

utils.extmath.randomized_svd performs 4 power iterations by default, instead or 0. In practice this
is enough for obtaining a good approximation of the true eigenvalues/vectors in the presence of noise. When
n_componentsissmall (< .1 x min (X.shape))n_ifterissetto 7, unless the user specifies a higher number.
This improves precision with few components. #5299 by Giorgio Patrini.

Whiten/non-whiten inconsistency between components of decomposition.PCA and decomposition.
RandomizedPCA (now factored into PCA, see the New features) is fixed. components_ are stored with no
whitening. #5299 by Giorgio Patrini.

Fixed bug in manifold. spectral_ embedding where diagonal of unnormalized Laplacian matrix was
incorrectly set to 1. #4995 by Peter Fischer.

44

Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/7049
https://github.com/scikit-learn/scikit-learn/issues/7152
https://github.com/scikit-learn/scikit-learn/issues/7154
https://github.com/manu-chroma
https://github.com/scikit-learn/scikit-learn/issues/5540
http://peekaboo-vision.blogspot.com
https://github.com/scikit-learn/scikit-learn/issues/7248
http://peekaboo-vision.blogspot.com
http://peekaboo-vision.blogspot.com
http://www.ajoly.org
http://www.ajoly.org
http://sebastianraschka.com
https://github.com/scikit-learn/scikit-learn/issues/7411
http://joelnothman.com
https://github.com/scikit-learn/scikit-learn/issues/7411
http://joelnothman.com
https://github.com/scikit-learn/scikit-learn/issues/6764
https://github.com/geekoala
https://github.com/geekoala
https://github.com/scikit-learn/scikit-learn/issues/6817
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/6902
https://github.com/LeonieBorne
https://github.com/scikit-learn/scikit-learn/issues/5141
https://github.com/giorgiop
https://github.com/giorgiop
https://github.com/scikit-learn/scikit-learn/issues/5299
https://github.com/giorgiop
https://github.com/scikit-learn/scikit-learn/issues/5299
https://github.com/giorgiop
https://github.com/scikit-learn/scikit-learn/issues/4995
https://github.com/yanlend

scikit-learn user guide, Release 0.19.1

Fixed incorrect initialization of utils.arpack.eigsh on all occurrences. Affects cluster.
bicluster.SpectralBiclustering, decomposition.KernelPCA, manifold.
LocallyLinearEmbedding, and manifold. SpectralEmbedding (#5012). By Peter Fischer.

Attribute explained_variance_ratio_ calculated with the SVD solver of
discriminant_analysis.LinearDiscriminantAnalysis now returns correct results. By
JPFrancoia

Preprocessing and feature selection

preprocessing.data._transform_selected now always passes a copy of X to transform function
when copy=True (#7194). By Caio Oliveira.

Model evaluation and meta-estimators

model_selection.StratifiedKFold now raises error if all n_labels for individual classes is less than
n_folds. #6182 by Devashish Deshpande.

Fixed bug in model_selection.StratifiedShuffleSplit where train and test sample could overlap
in some edge cases, see #6121 for more details. By Loic Esteve.

Fix in sklearn.model_selection.StratifiedShuffleSplit to return splits of size
train_size and test_size in all cases (#6472). By Andreas Miiller.

Cross-validation of OneVsOneClassifier and OneVsRestClassifier now works with precomputed
kernels. #7350 by Russell Smith.

Fix incomplete predict_proba method delegation from model_ selection.GridSearchCV to
linear_model.SGDClassifier (#7159) by Yichuan Liu.

Metrics

Fix bugin metrics.silhouette_score in which clusters of size 1 were incorrectly scored. They should
get a score of 0. By Joel Nothman.

Fix bug in metrics.silhouette_samples so that it now works with arbitrary labels, not just those
ranging from O to n_clusters - 1.

Fix bug where expected and adjusted mutual information were incorrect if cluster contingency cells exceeded
2x+16. By Joel Nothman.

metrics.palrwise.palirwise distances now converts arrays to boolean arrays when required in
scipy.spatial.distance. #5460 by Tom Dupre la Tour.

Fix sparse input support in metrics.silhouette_score as well as example exam-
ples/text/document_clustering.py. By YenChen Lin.

metrics.roc_curve and metrics.precision_recall_curve no longer round y_score values
when creating ROC curves; this was causing problems for users with very small differences in scores (#7353).

Miscellaneous

model_selection.tests._search._check_param_grid now works correctly with all types that
extends/implements Sequence (except string), including range (Python 3.x) and xrange (Python 2.x). #7323 by
Viacheslav Kovalevskyi.

utils.extmath.randomized_range_finder is more numerically stable when many power iterations
are requested, since it applies LU normalization by default. If n_iter<2 numerical issues are unlikely, thus
no normalization is applied. Other normalization options are available: 'none', 'LU' and 'QR'. #5141 by
Giorgio Patrini.

Fix a bug where some formats of scipy.sparse matrix, and estimators with them as parameters, could not
be passed to base. clone. By Loic Esteve.

1.7. Release history 45

https://github.com/scikit-learn/scikit-learn/issues/5012
https://github.com/yanlend
https://github.com/JPFrancoia
https://github.com/scikit-learn/scikit-learn/issues/7194
https://github.com/caioaao
https://github.com/scikit-learn/scikit-learn/issues/6182
https://github.com/dsquareindia
https://github.com/scikit-learn/scikit-learn/issues/6121
https://github.com/lesteve
https://github.com/scikit-learn/scikit-learn/issues/6472
http://peekaboo-vision.blogspot.com
https://github.com/scikit-learn/scikit-learn/issues/7350
https://github.com/rsmith54
https://github.com/scikit-learn/scikit-learn/issues/7159
https://github.com/yl565
http://joelnothman.com
http://joelnothman.com
https://github.com/scikit-learn/scikit-learn/issues/5460
https://github.com/TomDLT
https://github.com/yenchenlin
https://github.com/scikit-learn/scikit-learn/issues/7353
https://github.com/scikit-learn/scikit-learn/issues/7323
https://github.com/scikit-learn/scikit-learn/issues/5141
https://github.com/giorgiop
https://github.com/lesteve

scikit-learn user guide, Release 0.19.1

e datasets.load_svmlight_file now is able to read long int QID values. #7101 by Ibraim Ganiev.

API changes summary

Linear, kernelized and related models

e residual_metric has been deprecated in I inear. model.RANSACRegressor. Use loss instead.
By Manoj Kumar.

» Access to public attributes . X_ and .y_ has been deprecated in i sotonic.IsotonicRegression. By
Jonathan Arfa.

Decomposition, manifold learning and clustering

e The old mixture.DPGMM is deprecated in favor of the new mixture.BayesianGaussianMixture
(with the parameter weight_concentration_prior_type='dirichlet_process'). The new
class solves the computational problems of the old class and computes the Gaussian mixture with a Dirich-
let process prior faster than before. #7295 by Wei Xue and Thierry Guillemot.

e The old mixture.VBGMM is deprecated in favor of the new mixture.BayesianGaussianMixture
(with the parameter weight_concentration_prior_type='dirichlet_distribution'). The
new class solves the computational problems of the old class and computes the Variational Bayesian Gaussian
mixture faster than before. #6651 by Wei Xue and Thierry Guillemot.

e The old mixture.GMM is deprecated in favor of the new mixture.GaussianMixture. The new class
computes the Gaussian mixture faster than before and some of computational problems have been solved. #6666
by Wei Xue and Thierry Guillemot.

Model evaluation and meta-estimators

* The sklearn.cross_validation, sklearn.grid_search and sklearn.learning_curve
have been deprecated and the classes and functions have been reorganized into the sklearn.
model_selection module. Ref Model Selection Enhancements and API Changes for more information.
#4294 by Raghav RV.

e The grid_scores_ attribute of model_selection.GridSearchCV and model_selection.
RandomizedSearchCV is deprecated in favor of the attribute cv_results_. Ref Model Selection En-
hancements and API Changes for more information. #6697 by Raghav RV.

* The parameters n_iter or n_folds in old CV splitters are replaced by the new parameter n_splits since
it can provide a consistent and unambiguous interface to represent the number of train-test splits. #7187 by
YenChen Lin.

e classes parameter was renamed to labels in metrics.hamming_loss. #7260 by Sebastian Vanrell.

e The splitter classes LabelKFold, LabelShuffleSplit, LeaveOneLabelOut and
LeavePLabelsOut are renamed to model_selection.GroupKFold, model_ selection.
GroupShuffleSplit, model_selection.LeaveOneGroupOut and model_selection.
LeavePGroupsOut respectively. Also the parameter 1abels in the split method of the newly renamed
splitters model_selection.LeaveOneGroupOut and model_ selection.LeavePGroupsOut
is renamed to groups. Additionally in model_ selection.LeavePGroupsOut, the parameter
n_labels is renamed to n_groups. #6660 by Raghav RV.

e Error and loss names for scoring parameters are now prefixed by 'neg_', such as
neg_mean_squared_error. The unprefixed versions are deprecated and will be removed in version 0.20.
#7261 by Tim Head.

46

Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/7101
https://github.com/olologin
https://manojbits.wordpress.com
https://github.com/jarfa
https://github.com/scikit-learn/scikit-learn/issues/7295
https://github.com/xuewei4d
https://github.com/tguillemot
https://github.com/scikit-learn/scikit-learn/issues/6651
https://github.com/xuewei4d
https://github.com/tguillemot
https://github.com/scikit-learn/scikit-learn/issues/6666
https://github.com/xuewei4d
https://github.com/tguillemot
https://github.com/scikit-learn/scikit-learn/issues/4294
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/6697
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/7187
https://github.com/yenchenlin
https://github.com/scikit-learn/scikit-learn/issues/7260
https://github.com/srvanrell
https://github.com/scikit-learn/scikit-learn/issues/6660
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/7261
https://github.com/betatim

scikit-learn user guide, Release 0.19.1

Code Contributors

Aditya Joshi, Alejandro, Alexander Fabisch, Alexander Loginov, Alexander Minyushkin, Alexander Rudy, Alexan-
dre Abadie, Alexandre Abraham, Alexandre Gramfort, Alexandre Saint, alexfields, Alvaro Ulloa, alyssaq, Amlan
Kar, Andreas Mueller, andrew giessel, Andrew Jackson, Andrew McCulloh, Andrew Murray, Anish Shah, Arafat,
Archit Sharma, Ariel Rokem, Arnaud Joly, Arnaud Rachez, Arthur Mensch, Ash Hoover, asnt, bOnol, Behzad Tabib-
ian, Bernardo, Bernhard Kratzwald, Bhargav Mangipudi, blakeflei, Boyuan Deng, Brandon Carter, Brett Naul, Brian
McFee, Caio Oliveira, Camilo Lamus, Carol Willing, Cass, CeShine Lee, Charles Truong, Chyi-Kwei Yau, CJ Carey,
codevig, Colin Ni, Dan Shiebler, Daniel, Daniel Hnyk, David Ellis, David Nicholson, David Staub, David Thaler,
David Warshaw, Davide Lasagna, Deborah, definitelyuncertain, Didi Bar-Zev, djipey, dsquareindia, edwinENSAE,
Elias Kuthe, Elvis DOHMATOB, Ethan White, Fabian Pedregosa, Fabio Ticconi, fisache, Florian Wilhelm, Francis,
Francis O’Donovan, Gael Varoquaux, Ganiev Ibraim, ghg, Gilles Louppe, Giorgio Patrini, Giovanni Cherubin, Gio-
vanni Lanzani, Glenn Qian, Gordon Mohr, govin-vatsan, Graham Clenaghan, Greg Reda, Greg Stupp, Guillaume
Lemaitre, Gustav Mortberg, halwai, Harizo Rajaona, Harry Mavroforakis, hashcode55, hdmetor, Henry Lin, Hob-
son Lane, Hugo Bowne-Anderson, Igor Andriushchenko, Imaculate, Inki Hwang, Isaac Sijaranamual, Ishank Gulati,
Issam Laradji, Iver Jordal, jackmartin, Jacob Schreiber, Jake Vanderplas, James Fiedler, James Routley, Jan Zikes,
Janna Brettingen, jarfa, Jason Laska, jblackburne, jeff levesque, Jeffrey Blackburne, Jeffrey04, Jeremy Hintz, jere-
mynixon, Jeroen, Jessica Yung, Jill-Jé&nn Vie, Jimmy Jia, Jiyuan Qian, Joel Nothman, johannah, John, John Boersma,
John Kirkham, John Moeller, jonathan.striebel, joncrall, Jordi, Joseph Munoz, Joshua Cook, JPFrancoia, jrfiedler,
JulianKahnert, juliathebrave, kaichogami, KamalakerDadi, Kenneth Lyons, Kevin Wang, kingjr, kjell, Konstantin
Podshumok, Kornel Kielczewski, Krishna Kalyan, krishnakalyan3, Kvle Putnam, Kyle Jackson, Lars Buitinck, 1david,
LeiG, LeightonZhang, Leland Mclnnes, Liang-Chi Hsieh, Lilian Besson, lizsz, Loic Esteve, Louis Tiao, Léonie Borne,
Mads Jensen, Maniteja Nandana, Manoj Kumar, Manvendra Singh, Marco, Mario Krell, Mark Bao, Mark Szepieniec,
Martin Madsen, MartinBpr, MaryanMorel, Massil, Matheus, Mathieu Blondel, Mathieu Dubois, Matteo, Matthias Ek-
man, Max Moroz, Michael Scherer, michiaki ariga, Mikhail Korobov, Moussa Taifi, mrandrewandrade, Mridul Seth,
nadya-p, Naoya Kanai, Nate George, Nelle Varoquaux, Nelson Liu, Nick James, NickleDave, Nico, Nicolas Goix,
Nikolay Mayorov, ningchi, nlathia, okbalefthanded, Okhlopkov, Olivier Grisel, Panos Louridas, Paul Strickland, Per-
rine Letellier, pestrickland, Peter Fischer, Pieter, Ping-Yao, Chang, practicalswift, Preston Parry, Qimu Zheng, Rachit
Kansal, Raghav RV, Ralf Gommers, Ramana.S, Rammig, Randy Olson, Rob Alexander, Robert Lutz, Robin Schucker,
Rohan Jain, Ruifeng Zheng, Ryan Yu, Rémy Léone, saihttam, Saiwing Yeung, Sam Shleifer, Samuel St-Jean, Sar-
taj Singh, Sasank Chilamkurthy, saurabh.bansod, Scott Andrews, Scott Lowe, seales, Sebastian Raschka, Sebastian
Saeger, Sebastian Vanrell, Sergei Lebedev, shagun Sodhani, shanmuga cv, Shashank Shekhar, shawpan, shengxid-
uan, Shota, shuckle16, Skipper Seabold, sklearn-ci, SmedbergM, srvanrell, Sébastien Lerique, Taranjeet, themrmax,
Thierry, Thierry Guillemot, Thomas, Thomas Hallock, Thomas Moreau, Tim Head, tKammy, toastedcornflakes, Tom,
TomDLT, Toshihiro Kamishima, tracerOtong, Trent Hauck, trevorstephens, Tue Vo, Varun, Varun Jewalikar, Viach-
eslav, Vighnesh Birodkar, Vikram, Villu Ruusmann, Vinayak Mehta, walter, waterponey, Wenhua Yang, Wenjian
Huang, Will Welch, wyseguy7, xyguo, yanlend, Yaroslav Halchenko, yelite, Yen, YenChenLin, Yichuan Liu, Yoav
Ram, Yoshiki, Zheng RuiFeng, zivori, Oscar Nijera

1.7.6 Version 0.17.1

February 18, 2016

Changelog

Bug fixes

* Upgrade vendored joblib to version 0.9.4 that fixes an important bug in joblib.Parallel that can silently
yield to wrong results when working on datasets larger than 1MB: https://github.com/joblib/joblib/blob/0.9.4/
CHANGES.rst

1.7. Release history 47

https://github.com/joblib/joblib/blob/0.9.4/CHANGES.rst
https://github.com/joblib/joblib/blob/0.9.4/CHANGES.rst

scikit-learn user guide, Release 0.19.1

Fixed reading of Bunch pickles generated with scikit-learn version <= 0.16. This can affect users who have
already downloaded a dataset with scikit-learn 0.16 and are loading it with scikit-learn 0.17. See #6196 for how
this affected datasets. fetch_20newsgroups. By Loic Esteve.

Fixed a bug that prevented using ROC AUC score to perform grid search on several CPU / cores on large arrays.
See #6147 By Olivier Grisel.

Fixed a bug that prevented to properly set the presort parameter in ensemble.
GradientBoostingRegressor. See #5857 By Andrew McCulloh.

Fixed a joblib error when evaluating the perplexity of a decomposition.
LatentDirichletAllocation model. See #6258 By Chyi-Kwei Yau.

1.7.7 Version 0.17

November 5, 2015

Changelog

New features

All the Scaler classes but preprocessing.RobustScaler can be fitted online by calling partial_fit. By
Giorgio Patrini.

The new class ensemble.VotingClassifier implements a “majority rule” / “soft voting” ensemble
classifier to combine estimators for classification. By Sebastian Raschka.

The new class preprocessing.RobustScaler provides an alternative to preprocessing.
StandardScaler for feature-wise centering and range normalization that is robust to outliers. By Thomas
Unterthiner.

The new class preprocessing.MaxAbsScaler provides an alternative to preprocessing.
MinMaxScaler for feature-wise range normalization when the data is already centered or sparse. By Thomas
Unterthiner.

The new class preprocessing.FunctionTransformer turns a Python function into a Pipeline-
compatible transformer object. By Joe Jevnik.

The new classes cross_validation.LabelKFold and cross_validation.
LabelShuffleSplit generate train-test folds, respectively similar to cross_validation.KFold and
cross_validation.ShuffleSplit, except that the folds are conditioned on a label array. By Brian
McFee, Jean Kossaifi and Gilles Louppe.

decomposition.LatentDirichletAllocation implements the Latent Dirichlet Allocation topic
model with online variational inference. By Chyi-Kwei Yau, with code based on an implementation by Matt
Hoffman. (#3659)

The new solver sag implements a Stochastic Average Gradient descent and is available in both
linear_model.LogisticRegressionand 1inear_model.Ridge. This solver is very efficient for
large datasets. By Danny Sullivan and Tom Dupre la Tour. (#4738)

The new solver cd implements a Coordinate Descent in decomposition.NMF. Previous solver based on
Projected Gradient is still available setting new parameter solver to pg, but is deprecated and will be removed
in 0.19, along with decomposition.ProjectedGradientNMF and parameters sparseness, eta,
beta and nls_max_iter. New parameters alpha and 11_ratio control L1 and L2 regularization, and
shuffle adds a shuffling step in the cd solver. By Tom Dupre la Tour and Mathieu Blondel.

48

Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/6196
https://github.com/lesteve
https://github.com/scikit-learn/scikit-learn/issues/6147
https://twitter.com/ogrisel
https://github.com/scikit-learn/scikit-learn/issues/5857
https://github.com/scikit-learn/scikit-learn/issues/6258
https://github.com/giorgiop
http://sebastianraschka.com
https://github.com/untom
https://github.com/untom
https://github.com/untom
https://github.com/untom
https://bmcfee.github.io
https://bmcfee.github.io
https://github.com/JeanKossaifi
http://www.montefiore.ulg.ac.be/~glouppe/
https://github.com/chyikwei
https://github.com/scikit-learn/scikit-learn/issues/3659
https://github.com/dsullivan7
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/4738
https://github.com/TomDLT
http://www.mblondel.org

scikit-learn user guide, Release 0.19.1

Enhancements

manifold.TSNE now supports approximate optimization via the Barnes-Hut method, leading to much faster
fitting. By Christopher Erick Moody. (#4025)

cluster.mean_shift_.MeanShift now supports parallel execution, as implemented in the
mean_shift function. By Martino Sorbaro.

naive_bayes.GaussianNB now supports fitting with sample_weight. By Jan Hendrik Metzen.
dummy . DummyClassifier now supports a prior fitting strategy. By Arnaud Joly.

Added a fit_predict method for mixture.GMM and subclasses. By Cory Lorenz.

Added the metrics.label_ ranking loss metric. By Arnaud Joly.

Added the metrics.cohen_kappa_score metric.

Added a warm_start constructor parameter to the bagging ensemble models to increase the size of the en-
semble. By Tim Head.

Added option to use multi-output regression metrics without averaging. By Konstantin Shmelkov and Michael
Eickenberg.

Added stratify option to cross_validation.train test_split for stratified splitting. By
Miroslav Batchkarov.

The tree.export_graphviz function now supports aesthetic improvements for tree.
DecisionTreeClassifier and tree.DecisionTreeRegressor, including options for coloring
nodes by their majority class or impurity, showing variable names, and using node proportions instead of raw
sample counts. By Trevor Stephens.

Improved speed of newton—-cg solverin 1 inear_model.LogisticRegression,by avoiding loss com-
putation. By Mathieu Blondel and Tom Dupre la Tour.

The class_weight="auto" heuristic in classifiers supporting class_weight was deprecated and re-
placed by the class_weight="balanced" option, which has a simpler formula and interpretation. By
Hanna Wallach and Andreas Miiller.

Add class_weight parameter to automatically weight samples by class frequency for 1inear_model.
PassiveAgressiveClassifier. By Trevor Stephens.

Added backlinks from the API reference pages to the user guide. By Andreas Miiller.

The labels parameter to sklearn.metrics.fl_score, sklearn.metrics.fbeta_score,
sklearn.metrics.recall score and sklearn.metrics.precision_score has been ex-
tended. It is now possible to ignore one or more labels, such as where a multiclass problem has a majority
class to ignore. By Joel Nothman.

Add sample_weight supportto I inear _model.RidgeClassifier. By Trevor Stephens.

Provide an option for sparse output from sklearn.metrics.pairwise.cosine_similarity. By
Jaidev Deshpande.

Add minmax_scale to provide a function interface for MinMaxScaler. By Thomas Unterthiner.
dump_svmlight_file now handles multi-label datasets. By Chih-Wei Chang.
RCV1 dataset loader (sklearn.datasets.fetch_rcvl). By Tom Dupre la Tour.

The “Wisconsin Breast Cancer” classical two-class classification dataset is now included in scikit-learn, avail-
able with sklearn.dataset.load_breast_cancer.

1.7.

Release history 49

https://github.com/scikit-learn/scikit-learn/issues/4025
https://github.com/martinosorb
https://jmetzen.github.io/
http://www.ajoly.org
https://github.com/clorenz7
http://www.ajoly.org
https://github.com/betatim
https://github.com/eickenberg
https://github.com/eickenberg
http://trevorstephens.com/
http://www.mblondel.org
https://github.com/TomDLT
http://dirichlet.net/
http://peekaboo-vision.blogspot.com
http://trevorstephens.com/
http://peekaboo-vision.blogspot.com
http://joelnothman.com
http://trevorstephens.com/
https://github.com/jaidevd
https://github.com/untom
https://github.com/TomDLT

scikit-learn user guide, Release 0.19.1

Upgraded to joblib 0.9.3 to benefit from the new automatic batching of short tasks. This makes it possible for
scikit-learn to benefit from parallelism when many very short tasks are executed in parallel, for instance by the
grid_search.GridSearchCV meta-estimator with n_jobs > 1 used with a large grid of parameters
on a small dataset. By Vlad Niculae, Olivier Grisel and Loic Esteve.

For more details about changes in joblib 0.9.3 see the release notes: https://github.com/joblib/joblib/blob/master/
CHANGES .rst#release-093

Improved speed (3 times per iteration) of decomposition.DictLearning with coordinate descent
method from Iinear _model.Lasso. By Arthur Mensch.

Parallel processing (threaded) for queries of nearest neighbors (using the ball-tree) by Nikolay Mayorov.
Allow datasets.make _multilabel classification tooutputa sparsey. By Kashif Rasul.

cluster.DBSCAN now accepts a sparse matrix of precomputed distances, allowing memory-efficient distance
precomputation. By Joel Nothman.

tree.DecisionTreeClassifier now exposes an apply method for retrieving the leaf indices samples
are predicted as. By Daniel Galvez and Gilles Louppe.

Speed up decision tree regressors, random forest regressors, extra trees regressors and gradient boosting estima-
tors by computing a proxy of the impurity improvement during the tree growth. The proxy quantity is such that
the split that maximizes this value also maximizes the impurity improvement. By Arnaud Joly, Jacob Schreiber
and Gilles Louppe.

Speed up tree based methods by reducing the number of computations needed when computing the impurity
measure taking into account linear relationship of the computed statistics. The effect is particularly visible with
extra trees and on datasets with categorical or sparse features. By Arnaud Joly.

ensemble.GradientBoostingRegressor and ensemble.GradientBoostingClassifier
now expose an apply method for retrieving the leaf indices each sample ends up in under each try. By Ja-
cob Schreiber.

Add sample_weight supportto I inear _model.LinearRegression. By Sonny Hu. (##4881)

Add n_iter_ without_progress to manifold.TSNE to control the stopping criterion. By Santi Vil-
lalba. (#5186)

Added optional parameter random_statein linear_model.Ridge, to setthe seed of the pseudo random
generator used in sag solver. By Tom Dupre la Tour.

Added optional parameter warm_start in linear_model.LogisticRegression. If set to True, the
solvers 1bfgs, newton—-cg and sag will be initialized with the coefficients computed in the previous fit. By
Tom Dupre la Tour.

Added sample_weight support to Iinear model.LogisticRegression for the 1lbfgs,
newton-cg, and sag solvers. By Valentin Stolbunov. Support added to the 1iblinear solver. By Manoj
Kumar.

Added optional parameter presort to ensemble.GradientBoostingRegressor and ensemble.
GradientBoostingClassifier, keeping default behavior the same. This allows gradient boosters to
turn off presorting when building deep trees or using sparse data. By Jacob Schreiber.

Altered metrics. roc_curve to drop unnecessary thresholds by default. By Graham Clenaghan.

Added feature_selection.SelectFromModel meta-transformer which can be used along with es-
timators that have coef_ or feature_importances_ attribute to select important features of the input data. By
Maheshakya Wijewardena, Joel Nothman and Manoj Kumar.

Added metrics.pairwise.laplacian kernel. By Clyde Fare.

50

Chapter 1. Welcome to scikit-learn

http://vene.ro
https://twitter.com/ogrisel
https://github.com/lesteve
https://github.com/joblib/joblib/blob/master/CHANGES.rst#release-093
https://github.com/joblib/joblib/blob/master/CHANGES.rst#release-093
https://github.com/arthurmensch
http://joelnothman.com
https://github.com/galv
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.ajoly.org
https://github.com/jmschrei
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.ajoly.org
https://github.com/jmschrei
https://github.com/jmschrei
https://github.com/scikit-learn/scikit-learn/issues/#4881
https://github.com/scikit-learn/scikit-learn/issues/5186
https://github.com/TomDLT
https://github.com/TomDLT
http://www.vstolbunov.com
https://manojbits.wordpress.com
https://manojbits.wordpress.com
https://github.com/jmschrei
https://github.com/gclenaghan
https://github.com/maheshakya
http://joelnothman.com
https://manojbits.wordpress.com
https://github.com/Clyde-fare

scikit-learn user guide, Release 0.19.1

covariance.GraphLasso allows separate control of the convergence criterion for the Elastic-Net subprob-
lem via the enet_tol parameter.

Improved verbosity in decomposition.DictionaryLearning.

ensemble.RandomForestClassifier and ensemble.RandomForestRegressor no longer ex-
plicitly store the samples used in bagging, resulting in a much reduced memory footprint for storing random
forest models.

Added positive option to linear _model.Lars and linear _model.lars_path to force coeffi-
cients to be positive. (#5131)

Added the X_norm_squared parameter to metrics.pairwise.euclidean_distances to provide
precomputed squared norms for X.

Added the fit_predict methodto pipeline.Pipeline.

Added the preprocessing.min_max_scale function.

Bug fixes

Fixed non-determinism in dummy . DummyClassifier with sparse multi-label output. By Andreas Miiller.
Fixed the output shape of 1 inear. model.RANSACRegressorto (n_samples,).By Andreas Miiller.
Fixed bug in decomposition.DictLearning when n_jobs < 0. By Andreas Miiller.

Fixed bug where grid_search.RandomizedSearchCV could consume a lot of memory for large discrete
grids. By Joel Nothman.

Fixed bug in 1inear. _model.LogisticRegressionCV where penalty was ignored in the final fit. By
Manoj Kumar.

Fixed bug in ensemble.forest.ForestClassifier while computing oob_score and X is a
sparse.csc_matrix. By Ankur Ankan.

All regressors now consistently handle and warn when given y that is of shape (n_samples, 1).By Andreas
Miiller and Henry Lin. (#5431)

Fix in cluster.KMeans cluster reassignment for sparse input by Lars Buitinck.

Fixed a bug in 1da.LDA that could cause asymmetric covariance matrices when using shrinkage. By Martin
Billinger.

Fixed cross_validation.cross_val_ predict for estimators with sparse predictions. By Buddha
Prakash.

Fixed the predict_proba method of 1 inear model.LogisticRegression to use soft-max instead
of one-vs-rest normalization. By Manoj Kumar. (#5182)

Fixed the partial_fit method of Iinear model.SGDClassifier when called with
average=True. By Andrew Lamb. (#5282)

Dataset fetchers use different filenames under Python 2 and Python 3 to avoid pickling compatibility issues. By
Olivier Grisel. (#5355)

Fixed abugin naive_bayes.GaussianNB which caused classification results to depend on scale. By Jake
Vanderplas.

Fixed temporarily 1inear _model.Ridge, which was incorrect when fitting the intercept in the case of
sparse data. The fix automatically changes the solver to ‘sag’ in this case. #5360 by Tom Dupre la Tour.

1.7.

Release history 51

https://github.com/scikit-learn/scikit-learn/issues/5131
http://peekaboo-vision.blogspot.com
http://peekaboo-vision.blogspot.com
http://peekaboo-vision.blogspot.com
http://joelnothman.com
https://manojbits.wordpress.com
https://github.com/ankurankan
http://peekaboo-vision.blogspot.com
http://peekaboo-vision.blogspot.com
https://github.com/scikit-learn/scikit-learn/issues/5431
https://github.com/larsmans
http://tnsre.embs.org/author/martinbillinger
http://tnsre.embs.org/author/martinbillinger
https://manojbits.wordpress.com
https://github.com/scikit-learn/scikit-learn/issues/5182
https://github.com/andylamb
https://github.com/scikit-learn/scikit-learn/issues/5282
https://twitter.com/ogrisel
https://github.com/scikit-learn/scikit-learn/issues/5355
http://staff.washington.edu/jakevdp/
http://staff.washington.edu/jakevdp/
https://github.com/scikit-learn/scikit-learn/issues/5360
https://github.com/TomDLT

scikit-learn user guide, Release 0.19.1

Fixed a performance bug in decomposition.RandomizedPCA on data with a large number of features
and fewer samples. (#4478) By Andreas Miiller, Loic Esteve and Giorgio Patrini.

Fixed bug in cross_decomposition.PLS that yielded unstable and platform dependent output, and failed
on fit_transform. By Arthur Mensch.

Fixes to the Bunch class used to store datasets.
Fixed ensemble.plot_partial_dependence ignoring the percentiles parameter.
Providing a set as vocabulary in CountVectorizer no longer leads to inconsistent results when pickling.

Fixed the conditions on when a precomputed Gram matrix needs to be recomputed in Iinear model.
LinearRegression, 1inear._model.OrthogonalMatchingPursuit, linear._model.Lasso
and Iinear _model.ElasticNet.

Fixed inconsistent memory layout in the coordinate descent solver that affected linear_model.
DictionaryLearningand covariance.GraphLasso. (#5337) By Olivier Grisel.

manifold.LocallyLinearEmbedding no longer ignores the reg parameter.
Nearest Neighbor estimators with custom distance metrics can now be pickled. (#4362)

Fixed a bug in pipeline.FeatureUnion where transformer_weights were not properly handled
when performing grid-searches.

Fixed a bug in linear_model.LogisticRegression and linear _model.
LogisticRegressionCV when using class_weight='balanced' " “or
" “class_weight="'auto'. By Tom Dupre la Tour.

Fixed bug #5495 when doing OVR(SVC(decision_function_shape="ovr”)). Fixed by Elvis Dohmatob.

API changes summary

Attribute data_min, data_max and data_range in preprocessing.MinMaxScaler are deprecated and
won’t be available from 0.19. Instead, the class now exposes data_min_, data_max_ and data_range_. By
Giorgio Patrini.

All Scaler classes now have an scale_ attribute, the feature-wise rescaling applied by their transform methods.
The old attribute std_ in preprocessing.StandardScaler is deprecated and superseded by scale_; it
won’t be available in 0.19. By Giorgio Patrini.

svm.SVC" and svm. NuSVC now have an decision_function_shape parameter to make their decision
function of shape (n_samples, n_classes) bysetting decision_function_shape='ovr'. This
will be the default behavior starting in 0.19. By Andreas Miiller.

Passing 1D data arrays as input to estimators is now deprecated as it caused confusion in how the array ele-
ments should be interpreted as features or as samples. All data arrays are now expected to be explicitly shaped
(n_samples, n_features). By Vighnesh Birodkar.

lda.LDA and gda.QDA have been moved to discriminant_analysis.
LinearDiscriminantAnalysis and discriminant_analysis.
QuadraticDiscriminantAnalysis.

The store_covariance and tol parameters have been moved from the fit method to the constructor in
discriminant_analysis.LinearDiscriminantAnalysis and the store_covariances and
tol parameters have been moved from the fit method to the constructor in discriminant_analysis.
QuadraticDiscriminantAnalysis.

Models inheriting from _LearntSelectorMixin will no longer support the transform methods. (i.e, Ran-
domForests, GradientBoosting, LogisticRegression, DecisionTrees, SVMs and SGD related models). Wrap

52

Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/4478
http://peekaboo-vision.blogspot.com
https://github.com/lesteve
https://github.com/giorgiop
https://github.com/arthurmensch
https://github.com/scikit-learn/scikit-learn/issues/5337
https://twitter.com/ogrisel
https://github.com/scikit-learn/scikit-learn/issues/4362
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/5495
https://github.com/dohmatob
https://github.com/giorgiop
https://github.com/giorgiop
http://peekaboo-vision.blogspot.com
https://github.com/vighneshbirodkar

scikit-learn user guide, Release 0.19.1

these models around the metatransfomer feature selection.SelectFromModel to remove features
(according to coefs_ or feature_importances_) which are below a certain threshold value instead.

* cluster.KMeans re-runs cluster-assignments in case of non-convergence, to ensure consistency of
predict (X) and labels_. By Vighnesh Birodkar.

¢ Classifier and Regressor models are now tagged as such using the _estimator_type attribute.
» Cross-validation iterators always provide indices into training and test set, not boolean masks.

* The decision_function on all regressors was deprecated and will be removed in 0.19. Use predict
instead.

* datasets.load_lfw_pairs is deprecated and will be removed in 0.19. Use datasets.
fetch_1fw_pairs instead.

* The deprecated hmm module was removed.
 The deprecated Boot st rap cross-validation iterator was removed.

* The deprecated Ward and WardAgglomerative classes have been removed. Use clustering.
AgglomerativeClustering instead.

* cross_validation.check_cv is now a public function.

e The property residues_ of linear_model.LinearRegression is deprecated and will be removed in
0.19.

* The deprecated n_jobs parameter of 1inear model.LinearRegression has been moved to the con-
structor.

¢ Removed deprecated class_weight parameter from 1 inear._model.SGDClassifier’s £it method.
Use the construction parameter instead.

» The deprecated support for the sequence of sequences (or list of lists) multilabel format was removed. To convert
to and from the supported binary indicator matrix format, use MultiLabelBinarizer.

* The behavior of calling the inverse_transform method of Pipeline.pipeline will change in 0.19.
It will no longer reshape one-dimensional input to two-dimensional input.

* The deprecated attributes indicator_matrix_,multilabel_and classes_ of preprocessing.
LabelBinarizer were removed.

* Using gamma=0 in svm. SVC and svm. SVR to automatically set the gammato 1. / n_features isdep-
recated and will be removed in 0.19. Use gamma="auto" instead.

Code Contributors

Aaron Schumacher, Adithya Ganesh, akitty, Alexandre Gramfort, Alexey Grigorev, Ali Baharev, Allen Riddell, Ando
Saabas, Andreas Mueller, Andrew Lamb, Anish Shah, Ankur Ankan, Anthony Erlinger, Ari Rouvinen, Arnaud Joly,
Arnaud Rachez, Arthur Mensch, banilo, Barmaley.exe, benjaminirving, Boyuan Deng, Brett Naul, Brian McFee,
Buddha Prakash, Chi Zhang, Chih-Wei Chang, Christof Angermueller, Christoph Gohlke, Christophe Bourguignat,
Christopher Erick Moody, Chyi-Kwei Yau, Cindy Sridharan, CJ Carey, Clyde-fare, Cory Lorenz, Dan Blanchard,
Daniel Galvez, Daniel Kronovet, Danny Sullivan, Datal010, David, David D Lowe, David Dotson, djipey, Dmitry
Spikhalskiy, Donne Martin, Dougal J. Sutherland, Dougal Sutherland, edson duarte, Eduardo Caro, Eric Larson, Eric
Martin, Erich Schubert, Fernando Carrillo, Frank C. Eckert, Frank Zalkow, Gael Varoquaux, Ganiev Ibraim, Gilles
Louppe, Giorgio Patrini, giorgiop, Graham Clenaghan, Gryllos Prokopis, gwulfs, Henry Lin, Hsuan-Tien Lin, Im-
manuel Bayer, Ishank Gulati, Jack Martin, Jacob Schreiber, Jaidev Deshpande, Jake Vanderplas, Jan Hendrik Metzen,
Jean Kossaifi, Jeffrey04, Jeremy, jfraj, Jiali Mei, Joe Jevnik, Joel Nothman, John Kirkham, John Wittenauer, Joseph,
Joshua Loyal, Jungkook Park, KamalakerDadi, Kashif Rasul, Keith Goodman, Kian Ho, Konstantin Shmelkov, Kyler

1.7. Release history 53

https://github.com/vighneshbirodkar

scikit-learn user guide, Release 0.19.1

Brown, Lars Buitinck, Lilian Besson, Loic Esteve, Louis Tiao, maheshakya, Maheshakya Wijewardena, Manoj Ku-
mar, MarkTab marktab.net, Martin Ku, Martin Spacek, MartinBpr, martinosorb, MaryanMorel, Masafumi Oyamada,
Mathieu Blondel, Matt Krump, Matti Lyra, Maxim Kolganov, mbillinger, mhg, Michael Heilman, Michael Patterson,
Miroslav Batchkarov, Nelle Varoquaux, Nicolas, Nikolay Mayorov, Olivier Grisel, Omer Katz, Oscar Néjera, Pauli
Virtanen, Peter Fischer, Peter Prettenhofer, Phil Roth, pianomania, Preston Parry, Raghav RV, Rob Zinkov, Robert
Layton, Rohan Ramanath, Saket Choudhary, Sam Zhang, santi, saurabh.bansod, scls19fr, Sebastian Raschka, Sebas-
tian Saeger, Shivan Sornarajah, SimonPL, sinhrks, Skipper Seabold, Sonny Hu, sseg, Stephen Hoover, Steven De
Gryze, Steven Seguin, Theodore Vasiloudis, Thomas Unterthiner, Tiago Freitas Pereira, Tian Wang, Tim Head, Timo-
thy Hopper, tokoroten, Tom Dupré la Tour, Trevor Stephens, Valentin Stolbunov, Vighnesh Birodkar, Vinayak Mehta,
Vincent, Vincent Michel, vstolbunov, wangz10, Wei Xue, Yucheng Low, Yury Zhauniarovich, Zac Stewart, zhai_pro,
Zichen Wang

1.7.8 Version 0.16.1

April 14, 2015

Changelog

Bug fixes

* Allow input data larger than block_size in covariance. LedoitWolf by Andreas Miiller.

e Fix a bug in isotonic.IsotonicRegression deduplication that caused unstable result in
calibration.CalibratedClassifierCV by Jan Hendrik Metzen.

* Fix sorting of labels in func:preprocessing.label_binarize by Michael Heilman.

e Fix several stability and convergence issues in cross_decomposition.CCA and
cross_decomposition.PLSCanonical by Andreas Miiller

e Fixabugin cluster.KMeans when precompute_distances=False on fortran-ordered data.

* Fix a speed regression in ensemble.RandomForestClassifier’s predict and predict_proba
by Andreas Miiller.

* Fix aregression where utils.shuffle converted lists and dataframes to arrays, by Olivier Grisel

1.7.9 Version 0.16

March 26, 2015

Highlights
* Speed improvements (notably in cluster.DBSCAN), reduced memory requirements, bug-fixes and better
default settings.
* Multinomial Logistic regression and a path algorithm in I inear model.LogisticRegressionCV.
* Out-of core learning of PCA via decomposition. IncrementalPCA.
* Probability callibration of classifiers using calibration.CalibratedClassifierCV.
* cluster.Birch clustering method for large-scale datasets.

» Scalable approximate nearest neighbors search with Locality-sensitive hashing forests in neighbors.
LSHForest.

54 Chapter 1. Welcome to scikit-learn

http://peekaboo-vision.blogspot.com
https://jmetzen.github.io/
http://peekaboo-vision.blogspot.com
http://peekaboo-vision.blogspot.com
https://twitter.com/ogrisel

scikit-learn user guide, Release 0.19.1

Improved error messages and better validation when using malformed input data.

More robust integration with pandas dataframes.

Changelog

New features

The new neighbors. LSHForest implements locality-sensitive hashing for approximate nearest neighbors
search. By Maheshakya Wijewardena.

Added svm. LinearSVR. This class uses the liblinear implementation of Support Vector Regression which is
much faster for large sample sizes than svm. SVR with linear kernel. By Fabian Pedregosa and Qiang Luo.

Incremental fit for GaussianNB.

Added sample_weight support to dummy.DummyClassifier and dummy.DummyRegressor. By
Arnaud Joly.

Added the metrics.label ranking average precision_score metrics. By Arnaud Joly.
Add the metrics.coverage_error metrics. By Arnaud Joly.

Added linear_model.LogisticRegressionCV.ByManoj Kumar, Fabian Pedregosa, Gael Varoquaux
and Alexandre Gramfort.

Added warm_start constructor parameter to make it possible for any trained forest model to grow additional
trees incrementally. By Laurent Direr.

Added sample_weight support to ensemble.GradientBoostingClassifier and ensemble.
GradientBoostingRegressor. By Peter Prettenhofer.

Added decomposition.IncrementalPCA, an implementation of the PCA algorithm that supports out-
of-core learning with apartial_ fit method. By Kyle Kastner.

Averaged SGD for SGDClassifier and SGDRegressor By Danny Sullivan.
Added cross_val_predict function which computes cross-validated estimates. By Luis Pedro Coelho

Added l1inear _model.TheilSenRegressor, arobust generalized-median-based estimator. By Florian
Wilhelm.

Added metrics.median_absolute_error, arobust metric. By Gael Varoquaux and Florian Wilhelm.

Add cluster.Birch, an online clustering algorithm. By Manoj Kumar, Alexandre Gramfort and Joel Noth-
man.

Added shrinkage support to discriminant_analysis.LinearDiscriminantAnalysis using two
new solvers. By Clemens Brunner and Martin Billinger.

Added kernel_ ridge.KernelRidge, an implementation of kernelized ridge regression. By Mathieu
Blondel and Jan Hendrik Metzen.

All solvers in 1inear model.Ridge now support sample_weight. By Mathieu Blondel.

Added cross_validation.PredefinedSplit cross-validation for fixed user-provided cross-validation
folds. By Thomas Unterthiner.

Added calibration.CalibratedClassifierCV, an approach for calibrating the predicted probabili-
ties of a classifier. By Alexandre Gramfort, Jan Hendrik Metzen, Mathieu Blondel and Balazs Kegl.

1.7.

Release history 55

https://github.com/maheshakya
http://fa.bianp.net
http://www.ajoly.org
http://www.ajoly.org
http://www.ajoly.org
https://manojbits.wordpress.com
http://fa.bianp.net
http://gael-varoquaux.info
http://alexandre.gramfort.net
https://github.com/ldirer
https://sites.google.com/site/peterprettenhofer/
http://kastnerkyle.github.io
https://github.com/dsullivan7
http://luispedro.org
https://github.com/FlorianWilhelm
https://github.com/FlorianWilhelm
http://gael-varoquaux.info
https://github.com/FlorianWilhelm
https://manojbits.wordpress.com
http://alexandre.gramfort.net
http://joelnothman.com
http://joelnothman.com
https://github.com/cle1109
http://tnsre.embs.org/author/martinbillinger
http://www.mblondel.org
http://www.mblondel.org
https://jmetzen.github.io/
http://www.mblondel.org
https://github.com/untom
http://alexandre.gramfort.net
https://jmetzen.github.io/
http://www.mblondel.org
https://github.com/kegl

scikit-learn user guide, Release 0.19.1

Enhancements

Add option return_distance in hierarchical.ward_tree to return distances between nodes for
both structured and unstructured versions of the algorithm. By Matteo Visconti di Oleggio Castello. The same
option was added in hierarchical.linkage_tree. By Manoj Kumar

Add support for sample weights in scorer objects. Metrics with sample weight support will automatically benefit
from it. By Noel Dawe and Vlad Niculae.

Added newt on-cg and Ibfgs solver support in 1 inear._model.LogisticRegression. By Manoj Ku-
mar.

Add selection="random" parameter to implement stochastic coordinate descent for 1 inear_model.
Lasso, 1inear_model.ElasticNet and related. By Manoj Kumar.

Add sample_weight parameter to metrics. jaccard similarity_score and metrics.
log_loss. By Jatin Shah.

Support sparse multilabel indicator representation in preprocessing.LabelBinarizer and
multiclass.OneVsRestClassifier (by Hamzeh Alsalhi with thanks to Rohit Sivaprasad), as
well as evaluation metrics (by Joel Nothman).

Add sample_weight parameter to metrics.jaccard_similarity_score. By Jatin Shah.

Add support for multiclass in metrics.hinge_loss. Added 1abels=None as optional parameter. By Saurabh
Jha.

Add sample_weight parameter to metrics.hinge_loss. By Saurabh Jha.

Add multi_class="multinomial" option in linear _model.LogisticRegression to imple-
ment a Logistic Regression solver that minimizes the cross-entropy or multinomial loss instead of the default
One-vs-Rest setting. Supports lbfgs and newton-cg solvers. By Lars Buitinck and Manoj Kumar. Solver option
newton-cg by Simon Wu.

DictVectorizer cannow perform fit_transformon aniterable in a single pass, when giving the option
sort=False. By Dan Blanchard.

GridSearchCV and RandomizedSearchCV can now be configured to work with estimators that may fail
and raise errors on individual folds. This option is controlled by the error_score parameter. This does not affect
errors raised on re-fit. By Michal Romaniuk.

Add digits parameter to metrics.classification_report to allow report to show different precision of floating
point numbers. By Ian Gilmore.

Add a quantile prediction strategy to the dummy . DummyRegressor. By Aaron Staple.

Add handle_unknown optionto preprocessing.OneHotEncoder tohandle unknown categorical fea-
tures more gracefully during transform. By Manoj Kumar.

Added support for sparse input data to decision trees and their ensembles. By Fares Hedyati and Arnaud Joly.

Optimized cluster.AffinityPropagation by reducing the number of memory allocations of large
temporary data-structures. By Antony Lee.

Parellization of the computation of feature importances in random forest. By Olivier Grisel and Arnaud Joly.
Add n_iter_ attribute to estimators that accept a max_iter attribute in their constructor. By Manoj Kumar.
Added decision function for multiclass.OneVsOneClassifier By Raghav RV and Kyle Beauchamp.

neighbors.kneighbors_graph and radius_neighbors_graph support non-Euclidean metrics.
By Manoj Kumar

56

Chapter 1. Welcome to scikit-learn

http://www.mvdoc.me
https://manojbits.wordpress.com
https://github.com/ndawe
http://vene.ro
https://manojbits.wordpress.com
https://manojbits.wordpress.com
https://manojbits.wordpress.com
https://github.com/jatinshah
https://github.com/hamsal
http://joelnothman.com
https://github.com/larsmans
https://manojbits.wordpress.com
https://github.com/dan-blanchard
https://github.com/romaniukm
https://github.com/agileminor
https://github.com/staple
https://manojbits.wordpress.com
http://www.eecs.berkeley.edu/~fareshed
http://www.ajoly.org
https://www.ocf.berkeley.edu/~antonyl/
https://twitter.com/ogrisel
http://www.ajoly.org
https://manojbits.wordpress.com
https://github.com/raghavrv
https://github.com/kyleabeauchamp
https://manojbits.wordpress.com

scikit-learn user guide, Release 0.19.1

Parameter connectivityin cluster.AgglomerativeClustering and family now accept callables
that return a connectivity matrix. By Manoj Kumar.

Sparse support for paired_distances. By Joel Nothman.

cluster.DBSCAN now supports sparse input and sample weights and has been optimized: the inner loop has
been rewritten in Cython and radius neighbors queries are now computed in batch. By Joel Nothman and Lars
Buitinck.

Add class_weight parameter to automatically weight samples by class frequency for
ensemble.RandomForestClassifier, tree.DecisionTreeClassifier, ensemble.
ExtraTreesClassifierand tree.ExtraTreeClassifier. By Trevor Stephens.

grid_search.RandomizedSearchCV now does sampling without replacement if all parameters are
given as lists. By Andreas Miiller.

Parallelized calculation of pairwise_distances is now supported for scipy metrics and custom callables.
By Joel Nothman.

Allow the fitting and scoring of all clustering algorithms in pipeline.Pipeline. By Andreas Miiller.
More robust seeding and improved error messages in cluster.MeanShi ft by Andreas Miiller.

Make the stopping criterion for mixture.GMM, mixture.DPGMM and mixture.VBGMM less dependent
on the number of samples by thresholding the average log-likelihood change instead of its sum over all samples.
By Hervé Bredin.

The outcome of manifold. spectral_ embedding was made deterministic by flipping the sign of eigen-
vectors. By Hasil Sharma.

Significant performance and memory usage improvements in preprocessing.PolynomialFeatures.
By Eric Martin.

Numerical stability improvements for preprocessing.StandardScaler and preprocessing.
scale. By Nicolas Goix

svm. SVC fitted on sparse input now implements decision_function. By Rob Zinkov and Andreas
Miiller.

cross_validation.train_test_split now preserves the input type, instead of converting to numpy
arrays.

Documentation improvements

Added example of using FeatureUnion for heterogeneous input. By Matt Terry
Documentation on scorers was improved, to highlight the handling of loss functions. By Matt Pico.
A discrepancy between liblinear output and scikit-learn’s wrappers is now noted. By Manoj Kumar.

Improved documentation generation: examples referring to a class or function are now shown in a gallery on
the class/function’s API reference page. By Joel Nothman.

More explicit documentation of sample generators and of data transformation. By Joel Nothman.

sklearn.neighbors.BallTree and sklearn.neighbors.KDTree used to point to empty pages
stating that they are aliases of BinaryTree. This has been fixed to show the correct class docs. By Manoj Kumar.

Added silhouette plots for analysis of KMeans clustering using metrics.silhouette _samples and
metrics.silhouette_score. See Selecting the number of clusters with silhouette analysis on KMeans
clustering

1.7.

Release history 57

https://manojbits.wordpress.com
http://joelnothman.com
http://joelnothman.com
https://github.com/larsmans
https://github.com/larsmans
http://trevorstephens.com/
http://peekaboo-vision.blogspot.com
http://joelnothman.com
http://peekaboo-vision.blogspot.com
http://peekaboo-vision.blogspot.com
http://herve.niderb.fr/
https://github.com/Hasil-Sharma
http://www.ericmart.in
https://perso.telecom-paristech.fr/~goix/
http://zinkov.com
http://peekaboo-vision.blogspot.com
http://peekaboo-vision.blogspot.com
https://github.com/mrterry
https://github.com/MattpSoftware
https://manojbits.wordpress.com
http://joelnothman.com
http://joelnothman.com
https://manojbits.wordpress.com

scikit-learn user guide, Release 0.19.1

Bug fixes

Metaestimators now support ducktyping for the presence of decision_function,
predict_proba and other methods. This fixes behavior of grid search.GridSearchCV,
grid_search.RandomizedSearchCV, pipeline.Pipeline, feature_selection.RFE,
feature_selection.RFECV when nested. By Joel Nothman

The scoring attribute of grid-search and cross-validation methods is no longer ignored when a
grid_search.GridSearchCV is given as a base estimator or the base estimator doesn’t have predict.

The function hierarchical .ward_tree now returns the children in the same order for both the structured
and unstructured versions. By Matteo Visconti di Oleggio Castello.

feature selection.RFECV now correctly handles cases when step is not equal to 1. By Nikolay
Mayorov

The decomposition.PCAnow undoes whitening in its inverse_transform. Also, its components_
now always have unit length. By Michael Eickenberg.

Fix incomplete download of the dataset when datasets.download_20newsgroups is called. By Manoj
Kumar.

Various fixes to the Gaussian processes subpackage by Vincent Dubourg and Jan Hendrik Metzen.

Calling partial_fit with class_weight=="auto' throws an appropriate error message and suggests
a work around. By Danny Sullivan.

RBFSampler with gamma=g formerly approximated rbf_kernel with gamma=g/2.; the definition of
gamma is now consistent, which may substantially change your results if you use a fixed value. (If you cross-
validated over gamma, it probably doesn’t matter too much.) By Dougal Sutherland.

Pipeline object delegate the classes__ attribute to the underlying estimator. It allows, for instance, to make
bagging of a pipeline object. By Arnaud Joly

neighbors.NearestCentroid now uses the median as the centroid when metric is set to manhattan.
It was using the mean before. By Manoj Kumar

Fix numerical stability issues in Iinear model.SGDClassifier and Iinear model.
SGDRegressor by clipping large gradients and ensuring that weight decay rescaling is always positive (for
large 12 regularization and large learning rate values). By Olivier Grisel

When compute_full_tree is set to “auto”, the full tree is built when n_clusters is high and is early stopped when
n_clusters is low, while the behavior should be vice-versain cluster.AgglomerativeClustering (and
friends). This has been fixed By Manoj Kumar

Fix lazy centering of data in 1 inear _model.enet_path and 1inear_model.lasso_path. It was
centered around one. It has been changed to be centered around the origin. By Manoj Kumar

Fix handling of precomputed affinity matrices in cluster.AgglomerativeClustering when using
connectivity constraints. By Cathy Deng

Correct partial_fit handlingof class_prior for sklearn.naive bayes.MultinomialNBand
sklearn.naive_bayes.BernoulliNB. By Trevor Stephens.

Fixedacrashinmetrics.precision _recall_fscore_support when using unsorted 1abels inthe
multi-label setting. By Andreas Miiller.

Avoid skipping the first nearest neighbor in the methods radius_neighbors, kneighbors,
kneighbors_graph and radius_neighbors_graph in sklearn.neighbors.
NearestNeighbors and family, when the query data is not the same as fit data. By Manoj Kumar.

Fix log-density calculation in the mixture.GMM with tied covariance. By Will Dawson

58

Chapter 1. Welcome to scikit-learn

http://joelnothman.com
http://www.mvdoc.me
https://github.com/nmayorov
https://github.com/nmayorov
https://github.com/eickenberg
https://manojbits.wordpress.com
https://manojbits.wordpress.com
https://github.com/dsullivan7
https://github.com/dougalsutherland
http://www.ajoly.org
https://manojbits.wordpress.com
https://twitter.com/ogrisel
https://manojbits.wordpress.com
https://manojbits.wordpress.com
https://github.com/cathydeng
http://trevorstephens.com/
http://peekaboo-vision.blogspot.com
https://manojbits.wordpress.com
http://www.dawsonresearch.com

scikit-learn user guide, Release 0.19.1

Fixed a scaling error in feature_selection.SelectFdr where afactor n_features was missing. By
Andrew Tulloch

Fix zero division in neighbors.KNeighborsRegressor and related classes when using distance weight-
ing and having identical data points. By Garret-R.

Fixed round off errors with non positive-definite covariance matrices in GMM. By Alexis Mignon.

Fixed a error in the computation of conditional probabilities in naive_ bayes.BernoulliNB. By Hanna
Wallach.

Make the method radius_neighbors of neighbors.NearestNeighbors return the samples lying
on the boundary for algorithm="brute'. By Yan Yi.

Flip sign of dual_coef_ of svm.SVC to make it consistent with the documentation and
decision_function. By Artem Sobolev.

Fixed handling of ties in i sotonic.IsotonicRegression. We now use the weighted average of targets
(secondary method). By Andreas Miiller and Michael Bommarito.

API changes summary

GridSearchCV and cross_val_score and other meta-estimators don’t convert pandas DataFrames into
arrays any more, allowing DataFrame specific operations in custom estimators.

multiclass.fit_ovr, multiclass.predict_ovr, predict_proba_ovr, multiclass.
fit_ovo, multiclass.predict_ovo, multiclass.fit_ecoc and multiclass.
predict_ecoc are deprecated. Use the underlying estimators instead.

Nearest neighbors estimators used to take arbitrary keyword arguments and pass these to their distance metric.
This will no longer be supported in scikit-learn 0.18; use the met ric_params argument instead.

n_jobs parameter of the fit method shifted to the constructor of the LinearRegression class.

The predict_proba method of multiclass.OneVsRestClassifier now returns two probabilities
per sample in the multiclass case; this is consistent with other estimators and with the method’s documenta-
tion, but previous versions accidentally returned only the positive probability. Fixed by Will Lamond and Lars
Buitinck.

Change default value of precompute in ElasticNet and Lasso to False. Setting precompute to “auto” was
found to be slower when n_samples > n_features since the computation of the Gram matrix is computationally
expensive and outweighs the benefit of fitting the Gram for just one alpha. precompute="auto" is now
deprecated and will be removed in 0.18 By Manoj Kumar.

Expose positive option in Iinear model.enet_path and linear model.enet_path which
constrains coefficients to be positive. By Manoj Kumar.

Users should now supply an explicit average parameter to sklearn.metrics.fl_score, sklearn.
metrics.fbeta score, sklearn.metrics.recall_ score and sklearn.metrics.
precision_score when performing multiclass or multilabel (i.e. not binary) classification. By Joel
Nothman.

scoring parameter for cross validation now accepts fI_micro’, fl_macro’ or ‘fl_weighted’. ‘fl’ is now for
binary classification only. Similar changes apply to ‘precision’ and ‘recall’. By Joel Nothman.

The fit_intercept, normalize and return_models parameters in 1 inear_model.enet_path
and Iinear _model.lasso_path have been removed. They were deprecated since 0.14

From now onwards, all estimators will uniformly raise NotFittedError (utils.validation.
NotFittedError), when any of the predict like methods are called before the model is fit. By Raghav
RV.

1.7.

Release history 59

http://tullo.ch/
https://github.com/Garrett-R
https://github.com/AlexisMignon
http://dirichlet.net/
http://dirichlet.net/
http://seowyanyi.org
http://peekaboo-vision.blogspot.com
http://bommaritollc.com/
https://github.com/larsmans
https://github.com/larsmans
https://manojbits.wordpress.com
https://manojbits.wordpress.com
http://joelnothman.com
http://joelnothman.com
http://joelnothman.com
https://github.com/raghavrv
https://github.com/raghavrv

scikit-learn user guide, Release 0.19.1

¢ Input data validation was refactored for more consistent input validation. The check_arrays function was
replaced by check_array and check_X_y. By Andreas Miiller.

e Allow X=None in the methods radius_neighbors, kneighbors, kneighbors_graph and
radius_neighbors_graph in sklearn.neighbors.NearestNeighbors and family. If set to
None, then for every sample this avoids setting the sample itself as the first nearest neighbor. By Manoj Kumar.

e Add parameter include_self in neighbors.kneighbors_graph and neighbors.
radius_neighbors_graph which has to be explicitly set by the user. If set to True, then the
sample itself is considered as the first nearest neighbor.

* thresh parameter is deprecated in favor of new fol parameter in GMM, DPGMM and VBGMM. See Enhancements
section for details. By Hervé Bredin.

» Estimators will treat input with dtype object as numeric when possible. By Andreas Miiller

 Estimators now raise ValueError consistently when fitted on empty data (less than 1 sample or less than 1 feature
for 2D input). By Olivier Grisel.

e The shuffle option of Ilinear model.SGDClassifier, linear_model.SGDRegressor,
linear_model.Perceptron, linear_model.PassiveAgressiveClassifier and
linear_model .PassiveAgressiveRegressor now defaults to True.

* cluster.DBSCAN now uses a deterministic initialization. The random_state parameter is deprecated. By
Erich Schubert.

Code Contributors

A. Flaxman, Aaron Schumacher, Aaron Staple, abhishek thakur, Akshay, akshayah3, Aldrian Obaja, Alexander
Fabisch, Alexandre Gramfort, Alexis Mignon, Anders Aagaard, Andreas Mueller, Andreas van Cranenburgh, An-
drew Tulloch, Andrew Walker, Antony Lee, Arnaud Joly, banilo, Barmaley.exe, Ben Davies, Benedikt Koehler, bhsu,
Boris Feld, Borja Ayerdi, Boyuan Deng, Brent Pedersen, Brian Wignall, Brooke Osborn, Calvin Giles, Cathy Deng,
Celeo, cgohlke, chebee7i, Christian Stade-Schuldt, Christof Angermueller, Chyi-Kwei Yau, CJ Carey, Clemens Brun-
ner, Daiki Aminaka, Dan Blanchard, danfrankj, Danny Sullivan, David Fletcher, Dmitrijs Milajevs, Dougal J. Suther-
land, Erich Schubert, Fabian Pedregosa, Florian Wilhelm, floydsoft, Félix-Antoine Fortin, Gael Varoquaux, Garrett-R,
Gilles Louppe, gpassino, gwulfs, Hampus Bengtsson, Hamzeh Alsalhi, Hanna Wallach, Harry Mavroforakis, Hasil
Sharma, Helder, Herve Bredin, Hsiang-Fu Yu, Hugues SALAMIN, Ian Gilmore, [lambharathi Kanniah, Imran Haque,
isms, Jake VanderPlas, Jan Dlabal, Jan Hendrik Metzen, Jatin Shah, Javier L6pez Pefia, jdcaballero, Jean Kossaifi, Jeff
Hammerbacher, Joel Nothman, Jonathan Helmus, Joseph, Kaicheng Zhang, Kevin Markham, Kyle Beauchamp, Kyle
Kastner, Lagacherie Matthieu, Lars Buitinck, Laurent Direr, leepei, Loic Esteve, Luis Pedro Coelho, Lukas Michel-
bacher, maheshakya, Manoj Kumar, Manuel, Mario Michael Krell, Martin, Martin Billinger, Martin Ku, Mateusz
Susik, Mathieu Blondel, Matt Pico, Matt Terry, Matteo Visconti dOC, Matti Lyra, Max Linke, Mehdi Cherti, Michael
Bommarito, Michael Eickenberg, Michal Romaniuk, MLG, mr.Shu, Nelle Varoquaux, Nicola Montecchio, Nicolas,
Nikolay Mayorov, Noel Dawe, Okal Billy, Olivier Grisel, Oscar Néjera, Paolo Puggioni, Peter Prettenhofer, Pratap
Vardhan, pvnguyen, queqichao, Rafael Carrascosa, Raghav R V, Rahiel Kasim, Randall Mason, Rob Zinkov, Robert
Bradshaw, Saket Choudhary, Sam Nicholls, Samuel Charron, Saurabh Jha, sethdandridge, sinhrks, snuderl, Stefan
Otte, Stefan van der Walt, Steve Tjoa, swu, Sylvain Zimmer, tejesh95, terrycojones, Thomas Delteil, Thomas Un-
terthiner, Tomas Kazmar, trevorstephens, tttthomasssss, Tzu-Ming Kuo, ugurcaliskan, ugurthemaster, Vinayak Mehta,
Vincent Dubourg, Vjacheslav Murashkin, Vlad Niculae, wadawson, Wei Xue, Will Lamond, Wu Jiang, x0l, Xinfan
Meng, Yan Yi, Yu-Chin

1.7.10 Version 0.15.2

September 4, 2014

60 Chapter 1. Welcome to scikit-learn

http://peekaboo-vision.blogspot.com
https://manojbits.wordpress.com
http://herve.niderb.fr/
http://peekaboo-vision.blogspot.com
https://twitter.com/ogrisel
https://github.com/kno10

scikit-learn user guide, Release 0.19.1

Bug fixes

Fixed handling of the p parameter of the Minkowski distance that was previously ignored in nearest neighbors
models. By Nikolay Mayorov.

Fixed duplicated alphas in Iinear _model.LassoLars with early stopping on 32 bit Python. By Olivier
Grisel and Fabian Pedregosa.

Fixed the build under Windows when scikit-learn is built with MSVC while NumPy is built with MinGW. By
Olivier Grisel and Federico Vaggi.

Fixed an array index overflow bug in the coordinate descent solver. By Gael Varoquaux.
Better handling of numpy 1.9 deprecation warnings. By Gael Varoquaux.

Removed unnecessary data copy in cluster.KMeans. By Gael Varoquaux.

Explicitly close open files to avoid ResourceWarnings under Python 3. By Calvin Giles.

The transformof discriminant_analysis.LinearDiscriminantAnalysis now projects the
input on the most discriminant directions. By Martin Billinger.

Fixed potential overflow in _tree.safe_realloc by Lars Buitinck.
Performance optimization in i sotonic. IsotonicRegression. By Robert Bradshaw.
nose is non-longer a runtime dependency to import sklearn, only for running the tests. By Joel Nothman.

Many documentation and website fixes by Joel Nothman, Lars Buitinck Matt Pico, and others.

1.7.11 Version 0.15.1

August 1, 2014

Bug fixes

Made cross_validation.cross_val_score use cross_validation.KFold instead of
cross_validation.StratifiedKFold on multi-output classification problems. By Nikolay Mayorov.

Support unseen labels preprocessing. LabelBinarizer to restore the default behavior of 0.14.1 for
backward compatibility. By Hamzeh Alsalhi.

Fixed the cluster.KMeans stopping criterion that prevented early convergence detection. By Edward Raff
and Gael Varoquaux.

Fixed the behavior of multiclass.OneVsOneClassifier. in case of ties at the per-class vote level by
computing the correct per-class sum of prediction scores. By Andreas Miiller.

Made cross_validation.cross_val_score and grid_search.GridSearchCV accept Python
lists as input data. This is especially useful for cross-validation and model selection of text processing pipelines.
By Andreas Miiller.

Fixed data input checks of most estimators to accept input data that implements the NumPy __array_
protocol. This is the case for for pandas.Series and pandas.DataFrame in recent versions of pandas.
By Gael Varoquaux.

Fixed a regression for 1inear model.SGDClassifier with class_weight="auto" on data with
non-contiguous labels. By Olivier Grisel.

1.7.

Release history 61

https://github.com/nmayorov
https://twitter.com/ogrisel
https://twitter.com/ogrisel
http://fa.bianp.net
https://twitter.com/ogrisel
https://github.com/FedericoV
http://gael-varoquaux.info
http://gael-varoquaux.info
http://gael-varoquaux.info
https://github.com/larsmans
http://joelnothman.com
http://joelnothman.com
https://github.com/larsmans
https://github.com/MattpSoftware
https://github.com/nmayorov
https://github.com/hamsal
http://gael-varoquaux.info
http://peekaboo-vision.blogspot.com
http://peekaboo-vision.blogspot.com
http://gael-varoquaux.info
https://twitter.com/ogrisel

scikit-learn user guide, Release 0.19.1

1.7.12 Version 0.15

July 15, 2014

Highlights

* Many speed and memory improvements all across the code

* Huge speed and memory improvements to random forests (and extra trees) that also benefit better from parallel
computing.

¢ Incremental fit to BernoulliRBM

* Added cluster.AgglomerativeClustering for hierarchical agglomerative clustering with average
linkage, complete linkage and ward strategies.

e Added 1inear._model.RANSACRegressor for robust regression models.

* Added dimensionality reduction with manifold. TSNE which can be used to visualize high-dimensional data.

Changelog

New features

* Added ensemble.BaggingClassifier and ensemble.BaggingRegressor meta-estimators for
ensembling any kind of base estimator. See the Bagging section of the user guide for details and examples.
By Gilles Louppe.

* New unsupervised feature selection algorithm feature selection.VarianceThreshold, by Lars
Buitinck.

* Added 1inear model.RANSACRegressor meta-estimator for the robust fitting of regression models. By
Johannes Schonberger.

e Added cluster.AgglomerativeClustering for hierarchical agglomerative clustering with average
linkage, complete linkage and ward strategies, by Nelle Varoquaux and Gael Varoquaux.

* Shorthand constructors pipeline.make_pipeline and pipeline.make_union were added by Lars
Buitinck.

* Shuffle option for cross_validation.StratifiedKFold. By Jeffrey Blackburne.
* Incremental learning (partial_fit) for Gaussian Naive Bayes by Imran Haque.
* Added partial_fit to BernoulliRBM By Danny Sullivan.

e Added learning_curve utility to chart performance with respect to training size. See Plotting Learning
Curves. By Alexander Fabisch.

* Add positive option in LassoCV and ElasticNetCV. By Brian Wignall and Alexandre Gramfort.

* Added 1inear _model.MultiTaskElasticNetCV and l1inear. model.MultiTaskLassoCV.By
Manoj Kumar.

* Added manifold.TSNE. By Alexander Fabisch.

62 Chapter 1. Welcome to scikit-learn

http://www.montefiore.ulg.ac.be/~glouppe/
https://github.com/larsmans
https://github.com/larsmans
https://github.com/ahojnnes
https://github.com/nellev
http://gael-varoquaux.info
https://github.com/larsmans
https://github.com/larsmans
https://github.com/jblackburne
https://github.com/dsullivan7
http://alexandre.gramfort.net
https://manojbits.wordpress.com

scikit-learn user guide, Release 0.19.1

Enhancements

Add sparse input support to ensemble.AdaBoostClassifier and ensemble.
AdaBoostRegressor meta-estimators. By Hamzeh Alsalhi.

Memory improvements of decision trees, by Arnaud Joly.

Decision trees can now be built in best-first manner by using max_leaf_ nodes as the stopping criteria.
Refactored the tree code to use either a stack or a priority queue for tree building. By Peter Prettenhofer and
Gilles Louppe.

Decision trees can now be fitted on fortran- and c-style arrays, and non-continuous arrays without the need to
make a copy. If the input array has a different dtype than np.float32, a fortran- style copy will be made
since fortran-style memory layout has speed advantages. By Peter Prettenhofer and Gilles Louppe.

Speed improvement of regression trees by optimizing the the computation of the mean square error criterion.
This lead to speed improvement of the tree, forest and gradient boosting tree modules. By Arnaud Joly

The img_to_graph and grid_tograph functions in sklearn. feature_ extraction.image now
return np .ndarray instead of np.matrix when return_as=np.ndarray. See the Notes section for
more information on compatibility.

Changed the internal storage of decision trees to use a struct array. This fixed some small bugs, while improving
code and providing a small speed gain. By Joel Nothman.

Reduce memory usage and overhead when fitting and predicting with forests of randomized trees in parallel
withn_jobs != 1 by leveraging new threading backend of joblib 0.8 and releasing the GIL in the tree fitting
Cython code. By Olivier Grisel and Gilles Louppe.

Speed improvement of the sklearn.ensemble.gradient_boosting module. By Gilles Louppe and
Peter Prettenhofer.

Various enhancements to the sklearn.ensemble.gradient_boosting module: a warm_start ar-
gument to fit additional trees, a max_leaf_nodes argument to fit GBM style trees, a monitor fit argument
to inspect the estimator during training, and refactoring of the verbose code. By Peter Prettenhofer.

Faster sklearn.ensemble.ExtraTrees by caching feature values. By Arnaud Joly.

Faster depth-based tree building algorithm such as decision tree, random forest, extra trees or gradient tree
boosting (with depth based growing strategy) by avoiding trying to split on found constant features in the sample
subset. By Arnaud Joly.

Addmin_weight_fraction_leaf pre-pruning parameter to tree-based methods: the minimum weighted
fraction of the input samples required to be at a leaf node. By Noel Dawe.

Added metrics.pairwise_distances_argmin_min, by Philippe Gervais.

Added predict method to cluster.AffinityPropagation and cluster.MeanShift, by Mathieu
Blondel.

Vector and matrix multiplications have been optimised throughout the library by Denis Engemann, and Alexan-
dre Gramfort. In particular, they should take less memory with older NumPy versions (prior to 1.7.2).

Precision-recall and ROC examples now use train_test_split, and have more explanation of why these metrics
are useful. By Kyle Kastner

The training algorithm for decomposition.NMF is faster for sparse matrices and has much lower memory
complexity, meaning it will scale up gracefully to large datasets. By Lars Buitinck.

Added svd_method option with default value to “randomized” to decomposition.FactorAnalysis to
save memory and significantly speedup computation by Denis Engemann, and Alexandre Gramfort.

1.7.

Release history 63

https://github.com/hamsal
http://www.ajoly.org
https://sites.google.com/site/peterprettenhofer/
http://www.montefiore.ulg.ac.be/~glouppe/
https://sites.google.com/site/peterprettenhofer/
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.ajoly.org
http://joelnothman.com
https://twitter.com/ogrisel
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.montefiore.ulg.ac.be/~glouppe/
https://sites.google.com/site/peterprettenhofer/
https://sites.google.com/site/peterprettenhofer/
http://www.ajoly.org
http://www.ajoly.org
https://github.com/ndawe
http://www.mblondel.org
http://www.mblondel.org
http://denis-engemann.de
http://alexandre.gramfort.net
http://alexandre.gramfort.net
http://kastnerkyle.github.io
https://github.com/larsmans
http://denis-engemann.de
http://alexandre.gramfort.net

scikit-learn user guide, Release 0.19.1

e Changed cross_validation.StratifiedKFoldtotryand preserve as much of the original ordering of
samples as possible so as not to hide overfitting on datasets with a non-negligible level of samples dependency.
By Daniel Nouri and Olivier Grisel.

¢ Add multi-output support to gaussian_process.GaussianProcess by John Novak.
* Support for precomputed distance matrices in nearest neighbor estimators by Robert Layton and Joel Nothman.

e Norm computations optimized for NumPy 1.6 and later versions by Lars Buitinck. In particular, the k-means
algorithm no longer needs a temporary data structure the size of its input.

e dummy.DummyClassifier can now be used to predict a constant output value. By Manoj Kumar.

e dummy.DummyRegressor has now a strategy parameter which allows to predict the mean, the median of the
training set or a constant output value. By Maheshakya Wijewardena.

e Multi-label classification output in multilabel indicator format is now supported by metrics.
roc_auc_scoreand metrics.average precision_score by Arnaud Joly.

* Significant performance improvements (more than 100x speedup for large problems) in isotonic.
IsotonicRegression by Andrew Tulloch.

* Speed and memory usage improvements to the SGD algorithm for linear models: it now uses threads, not
separate processes, when n_ jobs>1. By Lars Buitinck.

e Grid search and cross validation allow NaNs in the input arrays so that preprocessors such as
preprocessing. Imputer can be trained within the cross validation loop, avoiding potentially skewed
results.

» Ridge regression can now deal with sample weights in feature space (only sample space until then). By Michael
Eickenberg. Both solutions are provided by the Cholesky solver.

e Several classification and regression metrics now support weighted samples with the new

sample_weight argument: metrics.accuracy_score, metrics.zero_one_loss,
metrics.precision_score, metrics.average_precision_score, metrics.
fl_score, metrics.fbeta_score, metrics.recall score, metrics.roc_auc_score,
metrics.explained variance_score, metrics.mean _squared_error, metrics.

mean_absolute_error,metrics.r2_score. By Noel Dawe.

» Speed up of the sample generator datasets.make _multilabel classification. ByJoel Nothman.

Documentation improvements

* The Working With Text Data tutorial has now been worked in to the main documentation’s tutorial section.
Includes exercises and skeletons for tutorial presentation. Original tutorial created by several authors including
Olivier Grisel, Lars Buitinck and many others. Tutorial integration into the scikit-learn documentation by Jaques
Grobler

* Added Computational Performance documentation. Discussion and examples of prediction latency / throughput
and different factors that have influence over speed. Additional tips for building faster models and choosing a
relevant compromise between speed and predictive power. By Eustache Diemert.

Bug fixes

* Fixed bug in decomposition.MiniBatchDictionaryLearning : partial_fit was not working
properly.

e Fixedbugin linear_model.stochastic_gradient:11l_ratiowasusedas (1.0 - 11_ratio)

64 Chapter 1. Welcome to scikit-learn

http://danielnouri.org
https://twitter.com/ogrisel
https://twitter.com/robertlayton
http://joelnothman.com
https://github.com/larsmans
https://manojbits.wordpress.com
https://github.com/maheshakya
http://www.ajoly.org
http://tullo.ch/
https://github.com/larsmans
https://github.com/eickenberg
https://github.com/eickenberg
https://github.com/ndawe
http://joelnothman.com
https://twitter.com/ogrisel
https://github.com/jaquesgrobler
https://github.com/jaquesgrobler
https://github.com/oddskool

scikit-learn user guide, Release 0.19.1

Fixed bug in multiclass.OneVsOneClassifier with string labels

Fixed a bug in LassoCV and ElasticNetCV: they would not pre-compute the Gram matrix with
precompute=True or precompute="auto" and n_samples > n_features. By Manoj Kumar.

Fixed incorrect estimation of the degrees of freedom in feature_selection. f_regression when vari-
ates are not centered. By Virgile Fritsch.

Fixed a race condition in parallel processing with pre_dispatch != "all" (for instance, in
cross_val_score). By Olivier Grisel.

Raise error in cluster.FeatureAgglomeration and cluster.WardAgglomeration when no
samples are given, rather than returning meaningless clustering.

Fixed bug in gradient_boosting.GradientBoostingRegressor with loss="huber': gamma
might have not been initialized.

Fixed feature importances as computed with a forest of randomized trees when fit with sample_weight !=
None and/or with boot st rap=True. By Gilles Louppe.

API changes summary

sklearn.hmm is deprecated. Its removal is planned for the 0.17 release.

Use of covariance.EllipticEnvelop has now been removed after deprecation. Please use
covariance.EllipticEnvelope instead.

cluster.Wardis deprecated. Use cluster.AgglomerativeClustering instead.
cluster.WardClustering is deprecated. Use
cluster.AgglomerativeClustering instead.

cross_validation.Bootstrap is deprecated. cross_validation.KFold or
cross_validation.ShuffleSplit are recommended instead.

Direct support for the sequence of sequences (or list of lists) multilabel format is deprecated. To convert to and
from the supported binary indicator matrix format, use MultiLabelBinarizer. By Joel Nothman.

Add score method to PCA following the model of probabilistic PCA and deprecate ProbabilisticPCA
model whose score implementation is not correct. The computation now also exploits the matrix inversion
lemma for faster computation. By Alexandre Gramfort.

The score method of FactorAnalysis now returns the average log-likelihood of the samples. Use
score_samples to get log-likelihood of each sample. By Alexandre Gramfort.

Generating boolean masks (the setting indices=False) from cross-validation generators is deprecated. Sup-
port for masks will be removed in 0.17. The generators have produced arrays of indices by default since 0.10.
By Joel Nothman.

1-d arrays containing strings with dt ype=object (as used in Pandas) are now considered valid classification
targets. This fixes a regression from version 0.13 in some classifiers. By Joel Nothman.

Fix wrong explained_variance_ratio_ attribute in RandomizedPCA. By Alexandre Gramfort.

Fit alphas for each 11_ratio instead of mean_11_ratio in l1inear model.ElasticNetCV and
linear_model.LassoCV. This changes the shape of alphas_ from (n_alphas,) to (n_11_ratio,
n_alphas) ifthe 11_ratio providedis a 1-D array like object of length greater than one. By Manoj Kumar.

Fix Iinear_model.ElasticNetCV and linear_model.LassoCV when fitting intercept and input
data is sparse. The automatic grid of alphas was not computed correctly and the scaling with normalize was
wrong. By Manoj Kumar.

1.7.

Release history 65

https://manojbits.wordpress.com
https://github.com/VirgileFritsch
https://twitter.com/ogrisel
http://www.montefiore.ulg.ac.be/~glouppe/
http://joelnothman.com
http://alexandre.gramfort.net
http://alexandre.gramfort.net
http://joelnothman.com
http://joelnothman.com
http://alexandre.gramfort.net
https://manojbits.wordpress.com
https://manojbits.wordpress.com

scikit-learn user guide, Release 0.19.1

Fix wrong maximal number of features drawn (max_ features) at each split for decision trees, random forests
and gradient tree boosting. Previously, the count for the number of drawn features started only after one non
constant features in the split. This bug fix will affect computational and generalization performance of those
algorithms in the presence of constant features. To get back previous generalization performance, you should
modify the value of max_features. By Arnaud Joly.

Fix wrong maximal number of features drawn (max_features) at each split for ensemblie.
ExtraTreesClassifier and ensemble.ExtraTreesRegressor. Previously, only non constant
features in the split was counted as drawn. Now constant features are counted as drawn. Furthermore at least
one feature must be non constant in order to make a valid split. This bug fix will affect computational and gen-
eralization performance of extra trees in the presence of constant features. To get back previous generalization
performance, you should modify the value of max_features. By Arnaud Joly.

Fix utils.compute_class_weight when class_weight=="auto". Previously it was broken for
input of non-integer dt ype and the weighted array that was returned was wrong. By Manoj Kumar.

Fix cross_validation.Bootstrap to return ValueError when n_train + n_test > n. By
Ronald Phlypo.

People

List of contributors for release 0.15 by number of commits.

312 Olivier Grisel

275 Lars Buitinck

221 Gael Varoquaux
148 Arnaud Joly

134 Johannes Schonberger
119 Gilles Louppe

113 Joel Nothman

111 Alexandre Gramfort
95 Jaques Grobler

89 Denis Engemann

83 Peter Prettenhofer

83 Alexander Fabisch
62 Mathieu Blondel

60 Eustache Diemert

60 Nelle Varoquaux

49 Michael Bommarito
45 Manoj-Kumar-S

28 Kyle Kastner

26 Andreas Mueller

22 Noel Dawe

21 Maheshakya Wijewardena
21 Brooke Osborn

66

Chapter 1. Welcome to scikit-learn

http://www.ajoly.org
http://www.ajoly.org
https://manojbits.wordpress.com
https://github.com/rphlypo

scikit-learn user guide, Release 0.19.1

e 21 Hamzeh Alsalhi

21 Jake VanderPlas

21 Philippe Gervais

19 Bala Subrahmanyam Varanasi
12 Ronald Phlypo
* 10 Mikhail Korobov

* 8 Thomas Unterthiner
* 8 Jeffrey Blackburne
* 8 eltermann

* 8 bwignall

e 7 Ankit Agrawal

* 7 CJ Carey

* 6 Daniel Nouri

* 6 Chen Liu

* 6 Michael Eickenberg
* 6 ugurthemaster

* 5 Aaron Schumacher
* 5 Baptiste Lagarde

* 5 Rajat Khanduja

* 5 Robert McGibbon

* 5 Sergio Pascual

¢ 4 Alexis Metaireau

* 4 Ignacio Rossi

* 4 Virgile Fritsch

* 4 Sebastian Sager

4 Tlambharathi Kanniah

¢ 4 sdenton4

4 Robert Layton

* 4 Alyssa

* 4 Amos Waterland
* 3 Andrew Tulloch
* 3 murad

* 3 Steven Maude

* 3 Karol Pysniak

* 3 Jacques Kvam

e 3 cgohlke

1.7. Release history

67

scikit-learn user guide, Release 0.19.1

3 cjlin

3 Michael Becker
3 hamzeh

3 Eric Jacobsen

3 john collins

3 kaushik94

3 Erwin Marsi

2 csytracy

2 LK

2 Vlad Niculae

2 Laurent Direr

2 Erik Shilts

2 Raul Garreta

2 Yoshiki Vazquez Baeza
2 Yung Siang Liau
2 abhishek thakur
2 James Yu

2 Rohit Sivaprasad
2 Roland Szabo

2 amormachine

2 Alexis Mignon

2 Oscar Carlsson

2 Nantas Nardelli
2 jess010

2 kowalski87

2 Andrew Clegg

2 Federico Vaggi

2 Simon Frid

2 Félix-Antoine Fortin
1 Ralf Gommers

1 t-aft

1 Ronan Amicel

1 Rupesh Kumar Srivastava
1 Ryan Wang

1 Samuel Charron

1 Samuel St-Jean

68

Chapter 1. Welcome to scikit-learn

scikit-learn user guide, Release 0.19.1

1 Fabian Pedregosa

* 1 Skipper Seabold

e 1 Stefan Walk

¢ 1 Stefan van der Walt

1 Stephan Hoyer
1 Allen Riddell

* 1 Valentin Haenel

¢ 1 Vijay Ramesh

* 1 Will Myers

* 1 Yaroslav Halchenko
* 1 Yoni Ben-Meshulam
* 1 Yury V. Zaytsev

* 1 adrinjalali

* 1 ai8rahim

* 1 alemagnani

e 1 alex

* 1 benjamin wilson

¢ 1 chalmerlowe

* 1 dzikie drozdze

* 1 jamestwebber

* 1 matrixorz

* 1 popo

* 1 samuela

* 1 Frangois Boulogne

¢] Alexander Measure

1 Ethan White
¢ 1 Guilherme Trein

1 Hendrik Heuer

¢ 1 IvicalJovic

¢ 1 Jan Hendrik Metzen

* 1 Jean Michel Rouly

1 Eduardo Arifio de la Rubia

1 Jelle Zijlstra
1 Eddy L O Jansson

¢ 1 Denis

¢ 1 John

1.7. Release history

69

scikit-learn user guide, Release 0.19.1

1 John Schmidt

* 1 Jorge Caiiardo Alastuey
* 1 Joseph Perla

¢ 1 Joshua Vredevoogd
* 1 José Ricardo

* 1 Julien Miotte

* 1 Kemal Eren

1 Kenta Sato

1 David Cournapeau
* 1 Kyle Kelley

¢ 1 Daniele Medri

e 1 Laurent Luce

1 Laurent Pierron

* 1 Luis Pedro Coelho
¢ 1 DanielWeitzenfeld
* 1 Craig Thompson

* 1 Chyi-Kwei Yau

e 1 Matthew Brett

* 1 Matthias Feurer

e 1 Max Linke

1 Chris Filo Gorgolewski
¢ 1 Charles Earl

1 Michael Hanke

1 Michele Orru

* 1 Bryan Lunt

* 1 Brian Kearns

* 1 Paul Butler

* 1 Pawel Mandera
e 1 Peter

* 1 Andrew Ash

* 1 Pietro Zambelli

¢] staubda

1.7.13 Version 0.14

August 7, 2013

70 Chapter 1. Welcome to scikit-learn

scikit-learn user guide, Release 0.19.1

Changelog

Missing values with sparse and dense matrices can be imputed with the transformer preprocessing.
Imputer by Nicolas Trésegnie.

The core implementation of decisions trees has been rewritten from scratch, allowing for faster tree induction
and lower memory consumption in all tree-based estimators. By Gilles Louppe.

Added ensemble.AdaBoostClassifier and ensemble.AdaBoostRegressor, by Noel Dawe and
Gilles Louppe. See the AdaBoost section of the user guide for details and examples.

Added grid search.RandomizedSearchCV and grid search.ParameterSampler for ran-
domized hyperparameter optimization. By Andreas Miiller.

Added biclustering algorithms (sklearn.cluster.bicluster.SpectralCoclustering and
sklearn.cluster.bicluster.SpectralBiclustering), data generation methods (sklearn.
datasets.make_biclusters and sklearn.datasets.make_checkerboard), and scoring met-
rics (sklearn.metrics.consensus_score). By Kemal Eren.

Added Restricted Boltzmann Machines (neural_ network.BernoulliRBM). By Yann Dauphin.

Python 3 support by Justin Vincent, Lars Buitinck, Subhodeep Moitra and Olivier Grisel. All tests now pass
under Python 3.3.

Ability to pass one penalty (alpha value) per target in 1 inear_model.Ridge, by @eickenberg and Mathieu
Blondel.

Fixed sklearn.linear_model.stochastic_gradient.py L2 regularization issue (minor practical
significance). By Norbert Crombach and Mathieu Blondel .

Added an interactive version of Andreas Miiller’s Machine Learning Cheat Sheet (for scikit-learn) to the docu-
mentation. See Choosing the right estimator. By Jaques Grobler.

grid_search.GridSearchCV and cross_validation.cross_val_score now support the use
of advanced scoring function such as area under the ROC curve and f-beta scores. See The scoring parameter:
defining model evaluation rules for details. By Andreas Miiller and Lars Buitinck. Passing a function from
sklearn.metrics as score_func is deprecated.

Multi-label classification output is now supported by metrics.accuracy_score,
metrics.zero _one 1loss, metrics.fl_score, metrics.fbeta score, metrics.
classification_report, metrics.precision_score and metrics.recall_ score by
Arnaud Joly.

Two new metrics metrics.hamming loss and metrics. jaccard similarity score are added
with multi-label support by Arnaud Joly.

Speed and memory usage improvements in feature extraction.text.CountVectorizer and
feature_extraction.text.TfidfVectorizer,by Jochen Wersdorfer and Roman Sinayev.

The min_df parameter in feature extraction.text.CountVectorizer and
feature extraction.text.TfidfVectorizer, which used to be 2, has been reset to 1 to
avoid unpleasant surprises (empty vocabularies) for novice users who try it out on tiny document collections. A
value of at least 2 is still recommended for practical use.

svm.LinearSVC, linear _model.SGDClassifier and linear model.SGDRegressor Now
have a sparsify method that converts their coef_ into a sparse matrix, meaning stored models trained
using these estimators can be made much more compact.

linear_model.SGDClassifier now produces multiclass probability estimates when trained under log
loss or modified Huber loss.

Hyperlinks to documentation in example code on the website by Martin Luessi.

1.7.

Release history 71

http://nicolastr.com/
http://www.montefiore.ulg.ac.be/~glouppe/
https://github.com/ndawe
http://www.montefiore.ulg.ac.be/~glouppe/
http://peekaboo-vision.blogspot.com
http://www.kemaleren.com
http://ynd.github.io/
https://github.com/justinvf
https://github.com/larsmans
https://github.com/smoitra87
https://twitter.com/ogrisel
http://www.mblondel.org
http://www.mblondel.org
https://github.com/norbert
http://www.mblondel.org
http://peekaboo-vision.blogspot.com
http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html
https://github.com/jaquesgrobler
http://peekaboo-vision.blogspot.com
https://github.com/larsmans
http://www.ajoly.org
http://www.ajoly.org
https://github.com/mluessi

scikit-learn user guide, Release 0.19.1

Fixed bug in preprocessing.MinMaxScaler causing incorrect scaling of the features for non-default
feature_range settings. By Andreas Miiller.

max_features in tree.DecisionTreeClassifier, tree.DecisionTreeRegressor and all
derived ensemble estimators now supports percentage values. By Gilles Louppe.

Performance improvements in i sotonic. IsotonicRegression by Nelle Varoquaux.

metrics.accuracy_score has an option normalize to return the fraction or the number of correctly clas-
sified sample by Arnaud Joly.

Added metrics.log_loss that computes log loss, aka cross-entropy loss. By Jochen Wersdorfer and Lars
Buitinck.

A bug that caused ensemble.AdaBoostClassifier’sto output incorrect probabilities has been fixed.

Feature selectors now share a mixin providing consistent transform, inverse_transform and
get_support methods. By Joel Nothman.

Afitted grid search.GridSearchCVorgrid _search.RandomizedSearchCV cannow generally
be pickled. By Joel Nothman.

Refactored and vectorized implementation of metrics.roc _curve and metrics.
precision_recall_ curve. By Joel Nothman.

The new estimator sklearn.decomposition. TruncatedSVD performs dimensionality reduction using
SVD on sparse matrices, and can be used for latent semantic analysis (LSA). By Lars Buitinck.

Added self-contained example of out-of-core learning on text data Out-of-core classification of text documents.
By Eustache Diemert.

The default number of components for sklearn.decomposition.RandomizedPCA is now correctly
documented to be n_features. This was the default behavior, so programs using it will continue to work as
they did.

sklearn.cluster.KMeans now fits several orders of magnitude faster on sparse data (the speedup depends
on the sparsity). By Lars Buitinck.

Reduce memory footprint of FastICA by Denis Engemann and Alexandre Gramfort.

Verbose output in sklearn.ensemble.gradient_boosting now uses a column format and prints
progress in decreasing frequency. It also shows the remaining time. By Peter Prettenhofer.

sklearn.ensemble.gradient_boosting provides out-of-bag improvement cob_improvement__
rather than the OOB score for model selection. An example that shows how to use OOB estimates to select the
number of trees was added. By Peter Prettenhofer.

Most metrics now support string labels for multiclass classification by Arnaud Joly and Lars Buitinck.
New OrthogonalMatchingPursuitCV class by Alexandre Gramfort and Vlad Niculae.

Fixed a bug in sklearn.covariance.GraphLassoCV: the ‘alphas’ parameter now works as expected
when given a list of values. By Philippe Gervais.

Fixed an important bug in sklearn.covariance.GraphLassoCV that prevented all folds provided by
a CV object to be used (only the first 3 were used). When providing a CV object, execution time may thus
increase significantly compared to the previous version (bug results are correct now). By Philippe Gervais.

cross_validation.cross_val_score and the grid_search module is now tested with multi-
output data by Arnaud Joly.

datasets.make multilabel classification can now return the output in label indicator multil-
abel format by Arnaud Joly.

72

Chapter 1. Welcome to scikit-learn

http://peekaboo-vision.blogspot.com
http://www.montefiore.ulg.ac.be/~glouppe/
https://github.com/nellev
http://www.ajoly.org
https://github.com/larsmans
https://github.com/larsmans
http://joelnothman.com
http://joelnothman.com
http://joelnothman.com
https://github.com/larsmans
https://github.com/oddskool
https://github.com/larsmans
http://denis-engemann.de
http://alexandre.gramfort.net
https://sites.google.com/site/peterprettenhofer/
https://sites.google.com/site/peterprettenhofer/
http://www.ajoly.org
https://github.com/larsmans
http://alexandre.gramfort.net
http://vene.ro
http://www.ajoly.org
http://www.ajoly.org

scikit-learn user guide, Release 0.19.1

K-nearest neighbors, neighbors.KNeighborsRegressor and neighbors.
RadiusNeighborsRegressor, and radius neighbors, neighbors.RadiusNeighborsRegressor
and neighbors.RadiusNeighborsClassifier support multioutput data by Arnaud Joly.

Random state in LibSVM-based estimators (svm. SVC, NuSVC, OneClassSVM, svm. SVR, svm.NuSVR)
can now be controlled. This is useful to ensure consistency in the probability estimates for the classifiers trained
with probability=True. By Vlad Niculae.

Out-of-core learning support for discrete naive Bayes classifiers sklearn.naive bayes.
MultinomialNB and sklearn.naive bayes.BernoulliNB by adding the partial_ fit
method by Olivier Grisel.

New website design and navigation by Gilles Louppe, Nelle Varoquaux, Vincent Michel and Andreas Miiller.

Improved documentation on multi-class, multi-label and multi-output classification by Yannick Schwartz and
Arnaud Joly.

Better input and error handling in the met rics module by Arnaud Joly and Joel Nothman.
Speed optimization of the hmm module by Mikhail Korobov

Significant speed improvements for sklearn.cluster.DBSCAN by cleverless

API changes summary

The auc_score was renamed roc_auc_score.

Testing scikit-learn with sklearn.test () is deprecated. Use nosetests sklearn from the command
line.

Feature importances in t ree . DecisionTreeClassifier, tree.DecisionTreeRegressor andall
derived ensemble estimators are now computed on the fly when accessing the feature_importances_
attribute. Setting compute_importances=True is no longer required. By Gilles Louppe.

linear_model.lasso_pathand I1inear_model.enet_path canreturn its results in the same format
asthatof 1inear model.lars path. Thisis done by setting the return_models parameterto False.
By Jaques Grobler and Alexandre Gramfort

grid_search.IterGrid wasrenamedto grid search.ParameterGrid.
Fixed bug in KFold causing imperfect class balance in some cases. By Alexandre Gramfort and Tadej Janez.

sklearn.neighbors.BallTree has beenrefactored, and a skliearn.neighbors.KDTree has been
added which shares the same interface. The Ball Tree now works with a wide variety of distance metrics.
Both classes have many new methods, including single-tree and dual-tree queries, breadth-first and depth-first
searching, and more advanced queries such as kernel density estimation and 2-point correlation functions. By
Jake Vanderplas

Support for scipy.spatial.cKDTree within neighbors queries has been removed, and the functionality replaced
with the new KDTree class.

sklearn.neighbors.KernelDensity has been added, which performs efficient kernel density estima-
tion with a variety of kernels.

sklearn.decomposition.KernelPCA now always returns output with n_components components,
unless the new parameter remove_zero_eig is set to True. This new behavior is consistent with the way
kernel PCA was always documented; previously, the removal of components with zero eigenvalues was tacitly
performed on all data.

gcv_mode="auto" no longer tries to perform SVD on a densified sparse matrix in sklearn.
linear.__model.RidgeCV.

1.7.

Release history 73

http://www.ajoly.org
http://vene.ro
https://twitter.com/ogrisel
http://www.montefiore.ulg.ac.be/~glouppe/
https://github.com/nellev
http://peekaboo-vision.blogspot.com
https://team.inria.fr/parietal/schwarty/
http://www.ajoly.org
http://www.ajoly.org
http://joelnothman.com
https://github.com/kmike
https://github.com/cleverless
http://www.montefiore.ulg.ac.be/~glouppe/
https://github.com/jaquesgrobler
http://alexandre.gramfort.net
http://alexandre.gramfort.net
http://staff.washington.edu/jakevdp/

scikit-learn user guide, Release 0.19.1

Sparse matrix support in sklearn.decomposition.RandomizedPCA is now deprecated in favor of the
new TruncatedSVD.

cross_validation.KFoldand cross_validation.StratifiedKFoldnow enforce n_folds >=
2 otherwise a ValueError is raised. By Olivier Grisel.

datasets.load_files’s charset and charset_errors parameters were renamed encoding and
decode_errors.

Attribute oob_score_ in sklearn.ensemble.GradientBoostingRegressor and
sklearn.ensemble.GradientBoostingClassifier is deprecated and has been replaced by
oob_improvement_ .

Attributes in OrthogonalMatchingPursuit have been deprecated (copy_X, Gram, ...) and precompute_gram
renamed precompute for consistency. See #2224.

sklearn.preprocessing.StandardScaler now converts integer input to float, and raises a warning.
Previously it rounded for dense integer input.

sklearn.multiclass.OneVsRestClassifier now has a decision_function method. This
will return the distance of each sample from the decision boundary for each class, as long as the underlying
estimators implement the decision_function method. By Kyle Kastner.

Better input validation, warning on unexpected shapes for y.

People

List of contributors for release 0.14 by number of commits.

277 Gilles Louppe
245 Lars Buitinck
187 Andreas Mueller
124 Arnaud Joly

112 Jaques Grobler
109 Gael Varoquaux
107 Olivier Grisel
102 Noel Dawe

99 Kemal Eren

79 Joel Nothman

75 Jake VanderPlas
73 Nelle Varoquaux
71 Vlad Niculae

65 Peter Prettenhofer
64 Alexandre Gramfort
54 Mathieu Blondel
38 Nicolas Trésegnie
35 eustache

27 Denis Engemann

74

Chapter 1. Welcome to scikit-learn

https://twitter.com/ogrisel
http://kastnerkyle.github.io

scikit-learn user guide, Release 0.19.1

25 Yann N. Dauphin

¢ 19 Justin Vincent

17 Robert Layton
* 15 Doug Coleman
14 Michael Eickenberg

13 Robert Marchman

* 11 Fabian Pedregosa

11 Philippe Gervais
* 10 Jim Holmstrém

10 Tadej Janez

¢ 10 syhw
9 Mikhail Korobov

* 9 Steven De Gryze
* 8 sergeyf

* 7 Ben Root

* 7 Hrishikesh Huilgolkar
* 6 Kyle Kastner

e 6 Martin Luessi

* 6 Rob Speer

* 5 Federico Vaggi

* 5 Raul Garreta

5 Rob Zinkov

* 4 Ken Geis

3 A. Flaxman

* 3 Denton Cockburn
* 3 Dougal Sutherland
* 3 Jan Ozsvald

* 3 Johannes Schonberger
* 3 Robert McGibbon
* 3 Roman Sinayev

* 3 Szabo Roland

2 Diego Molla

* 2 Imran Haque

* 2 Jochen Wersdorfer
» 2 Sergey Karayev

e 2 Yannick Schwartz

1.7. Release history

75

scikit-learn user guide, Release 0.19.1

* 2 jamestwebber
1 Abhijeet Kolhe
¢ 1 Alexander Fabisch

1 Bastiaan van den Berg
* 1 Benjamin Peterson

¢ 1 Daniel Velkov

¢ 1 Fazlul Shahriar

¢ 1 Felix Brockherde

* 1 Félix-Antoine Fortin
1 Harikrishnan S

1 Jack Hale

1 JakeMick

* 1 James McDermott

* 1 John Benediktsson

¢ 1 John Zwinck

* 1 Joshua Vredevoogd

* 1 Justin Pati

¢ 1 Kevin Hughes

* 1 Kyle Kelley

¢ | Matthias Ekman

* 1 Miroslav Shubernetskiy
¢ 1 Naoki Orii

* 1 Norbert Crombach

1 Rafael Cunha de Almeida

1 Rolando Espinoza La fuente
¢ 1 Seamus Abshere

* 1 Sergey Feldman

* 1 Sergio Medina

¢ 1 Stefano Lattarini

* 1 Steve Koch

* 1 Sturla Molden

* 1 Thomas Jarosch

¢ 1 Yaroslav Halchenko

76 Chapter 1. Welcome to scikit-learn

scikit-learn user guide, Release 0.19.1

1.7.14 Version 0.13.1

February 23, 2013

The 0.13.1 release only fixes some bugs and does not add any new functionality.

Changelog
* Fixed a testing error caused by the function cross_validation.train test_split being interpreted
as a test by Yaroslav Halchenko.
* Fixed a bug in the reassignment of small clusters in the cluster.MiniBatchKMeans by Gael Varoquaux.
* Fixed default value of gamma in decomposition.KernelPCA by Lars Buitinck.
» Updated joblib to 0. 7. 0d by Gael Varoquaux.
* Fixed scaling of the deviance in ensemble.GradientBoostingClassifier by Peter Prettenhofer.
* Better tie-breaking in multiclass.OneVsOneClassifier by Andreas Miiller.

* Other small improvements to tests and documentation.

People

List of contributors for release 0.13.1 by number of commits.
e 16 Lars Buitinck
12 Andreas Miiller

8 Gael Varoquaux

5 Robert Marchman

3 Peter Prettenhofer

2 Hrishikesh Huilgolkar

1 Bastiaan van den Berg

1 Diego Molla

1 Gilles Louppe
1 Mathieu Blondel

1 Nelle Varoquaux

1 Rafael Cunha de Almeida

1 Rolando Espinoza La fuente

1 Vlad Niculae

1 Yaroslav Halchenko

1.7.15 Version 0.13

January 21, 2013

1.7. Release history 77

http://www.onerussian.com/
http://gael-varoquaux.info
https://github.com/larsmans
http://gael-varoquaux.info
https://sites.google.com/site/peterprettenhofer/
http://peekaboo-vision.blogspot.com
https://github.com/larsmans
http://peekaboo-vision.blogspot.com
http://gael-varoquaux.info
https://sites.google.com/site/peterprettenhofer/
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.mblondel.org
https://github.com/nellev
http://vene.ro
http://www.onerussian.com/

scikit-learn user guide, Release 0.19.1

New Estimator Classes

dummy .DummyClassifierand dummy.DummyRegressor, two data-independent predictors by Mathieu
Blondel. Useful to sanity-check your estimators. See Dummy estimators in the user guide. Multioutput support
added by Arnaud Joly.

decomposition.FactorAnalysis, a transformer implementing the classical factor analysis, by Chris-
tian Osendorfer and Alexandre Gramfort. See Factor Analysis in the user guide.

feature extraction.FeatureHasher, a transformer implementing the “hashing trick” for fast,
low-memory feature extraction from string fields by Lars Buitinck and feature extraction.text.
HashingVectorizer for text documents by Olivier Grisel See Feature hashing and Vectorizing a large
text corpus with the hashing trick for the documentation and sample usage.

pipeline.FeatureUnion, atransformer that concatenates results of several other transformers by Andreas
Miiller. See FeatureUnion: composite feature spaces in the user guide.

random_projection.GaussianRandomProjection, random_projection.
SparseRandomProjection and the function random_projection.
johnson_lindenstrauss min_dim. The first two are transformers implementing Gaussian and
sparse random projection matrix by Olivier Grisel and Arnaud Joly. See Random Projection in the user guide.

kernel_approximation.Nystroem, a transformer for approximating arbitrary kernels by Andreas
Miiller. See Nystroem Method for Kernel Approximation in the user guide.

preprocessing.OneHotEncoder, a transformer that computes binary encodings of categorical features
by Andreas Miiller. See Encoding categorical features in the user guide.

linear_model.PassiveAggressiveClassifier and linear_model.
PassiveAggressiveRegressor, predictors implementing an efficient stochastic optimization for
linear models by Rob Zinkov and Mathieu Blondel. See Passive Aggressive Algorithms in the user guide.

ensemble.RandomTreesEmbedding, a transformer for creating high-dimensional sparse representations
using ensembles of totally random trees by Andreas Miiller. See Totally Random Trees Embedding in the user
guide.

manifold.SpectralEmbedding and function manifold. spectral_embedding, implementing
the “laplacian eigenmaps” transformation for non-linear dimensionality reduction by Wei Li. See Spectral
Embedding in the user guide.

isotonic.IsotonicRegression by Fabian Pedregosa, Alexandre Gramfort and Nelle Varoquaux,

Changelog

metrics.zero_one_loss (formerly metrics.zero_one) now has option for normalized output that
reports the fraction of misclassifications, rather than the raw number of misclassifications. By Kyle Beauchamp.

tree.DecisionTreeClassifier and all derived ensemble models now support sample weighting, by
Noel Dawe and Gilles Louppe.

Speedup improvement when using bootstrap samples in forests of randomized trees, by Peter Prettenhofer and
Gilles Louppe.

Partial dependence plots for Gradient Tree Boosting in ensemble.partial_dependence.
partial_dependence by Peter Prettenhofer. See Partial Dependence Plots for an example.

The table of contents on the website has now been made expandable by Jaques Grobler.

feature_selection.SelectPercentile now breaks ties deterministically instead of returning all
equally ranked features.

78

Chapter 1. Welcome to scikit-learn

http://www.mblondel.org
http://www.mblondel.org
http://www.ajoly.org
https://osdf.github.io
https://osdf.github.io
http://alexandre.gramfort.net
https://github.com/larsmans
https://twitter.com/ogrisel
http://peekaboo-vision.blogspot.com
http://peekaboo-vision.blogspot.com
https://twitter.com/ogrisel
http://www.ajoly.org
http://peekaboo-vision.blogspot.com
http://peekaboo-vision.blogspot.com
http://peekaboo-vision.blogspot.com
http://zinkov.com
http://www.mblondel.org
http://peekaboo-vision.blogspot.com
http://fa.bianp.net
http://alexandre.gramfort.net
https://github.com/nellev
https://github.com/ndawe
http://www.montefiore.ulg.ac.be/~glouppe/
https://sites.google.com/site/peterprettenhofer/
http://www.montefiore.ulg.ac.be/~glouppe/
https://sites.google.com/site/peterprettenhofer/
https://github.com/jaquesgrobler

scikit-learn user guide, Release 0.19.1

e feature selection.SelectKBest and feature selection.SelectPercentile are more
numerically stable since they use scores, rather than p-values, to rank results. This means that they might
sometimes select different features than they did previously.

* Ridge regression and ridge classification fitting with sparse_ cg solver no longer has quadratic memory com-
plexity, by Lars Buitinck and Fabian Pedregosa.

» Ridge regression and ridge classification now support a new fast solver called 1sqr, by Mathieu Blondel.
e Speedup of metrics.precision_recall curve by Conrad Lee.

¢ Added support for reading/writing svmlight files with pairwise preference attribute (qid in svmlight file format)
in datasets.dump_svmlight_fileand datasets.load_svmlight_file by Fabian Pedregosa.

¢ Faster and more robust metrics.confusion_matrix and Clustering performance evaluation by Wei Li.

* cross_validation.cross_val_score now works with precomputed kernels and affinity matrices, by
Andreas Miiller.

e LARS algorithm made more numerically stable with heuristics to drop regressors too correlated as well as to
stop the path when numerical noise becomes predominant, by Gael Varoquaux.

* Faster implementation of metrics.precision_recall_ curve by Conrad Lee.

e New kernel metrics.chi2_kernel by Andreas Miiller, often used in computer vision applications.

* Fix of longstanding bug in naive bayes.BernoulliNB fixed by Shaun Jackman.

e Implemented predict_probainmulticlass.OneVsRestClassifier,by Andrew Winterman.

» Improve consistency in gradient boosting: estimators ensemble.GradientBoostingRegressor and
ensemble.GradientBoostingClassifier use the estimator t ree.DecisionTreeRegressor
instead of the tree._tree. Tree data structure by Arnaud Joly.

* Fixed a floating point exception in the decision trees module, by Seberg.
* Fix metrics.roc_curve fails when y_true has only one class by Wei Li.

e Add the metrics.mean_absolute_error function which computes the mean absolute error. The
metrics.mean_squared_error, metrics.mean _absolute_error and metrics.r2_score
metrics support multioutput by Arnaud Joly.

» Fixed class_weight support in svm.LinearSVC and linear _model.LogisticRegression by
Andreas Miiller. The meaning of class_weight was reversed as erroneously higher weight meant less
positives of a given class in earlier releases.

* Improve narrative documentation and consistency in sklearn.metrics for regression and classification
metrics by Arnaud Joly.

 Fixed a bug in sklearn.svm.SVC when using csr-matrices with unsorted indices by Xinfan Meng and An-
dreas Miiller.

* MiniBatchKMeans: Add random reassignment of cluster centers with little observations attached to them,
by Gael Varoquaux.

API changes summary

¢ Renamed all occurrences of n_atoms to n_components for consistency.
This applies to decomposition.DictionaryLearning, decomposition.
MiniBatchDictionaryLearning, decomposition.dict_learning, decomposition.

dict_learning_online.

1.7. Release history 79

https://github.com/larsmans
http://fa.bianp.net
http://www.mblondel.org
http://fa.bianp.net
http://peekaboo-vision.blogspot.com
http://gael-varoquaux.info
http://peekaboo-vision.blogspot.com
http://www.ajoly.org
http://www.ajoly.org
http://peekaboo-vision.blogspot.com
http://www.ajoly.org
http://peekaboo-vision.blogspot.com
http://peekaboo-vision.blogspot.com
http://gael-varoquaux.info

scikit-learn user guide, Release 0.19.1

Renamed all occurrences of max_iters to max_iter for -consistency. This applies to
semi_supervised.LabelPropagation and semi_supervised.label_propagation.
LabelSpreading.

Renamed all occurrences of learn_rate to learning_rate for consistency in ensemble.
BaseGradientBoostingand ensemble.GradientBoost ingRegressor.

The module sklearn.linear_model.sparse is gone. Sparse matrix support was already integrated into
the “regular” linear models.

sklearn.metrics.mean_square_error, which incorrectly returned the accumulated error, was re-
moved. Use mean_squared_error instead.

Passing class_weight parameters to £it methods is no longer supported. Pass them to estimator construc-
tors instead.

GMMs no longer have decode and rvs methods. Use the score, predict or sample methods instead.

The solver fit option in Ridge regression and classification is now deprecated and will be removed in v0.14.
Use the constructor option instead.

feature_extraction.text.DictVectorizer now returns sparse matrices in the CSR format, in-
stead of COO.

Renamed k in cross validation.KFold and cross validation.StratifiedKFold to
n_folds, renamed n_bootstrapston_iterincross_validation.Bootstrap.

Renamed all occurrences of n_iterations to n_iter for consistency. This applies to
cross_validation.ShuffleSplit, cross_validation.StratifiedShuffleSplit,
utils.randomized_range_finder and utils.randomized_svd.

Replaced rho in Ilinear model.ElasticNet and Iinear _model.SGDClassifier by
11_ratio. The rho parameter had different meanings; 11_ratio was introduced to avoid confu-
sion. It has the same meaning as previously rho in Iinear._model.FElasticNet and (1-rho) in
linear_model.SGDClassifier.

linear_model.LassoLars and 1inear._model.Lars now store a list of paths in the case of multiple
targets, rather than an array of paths.

The attribute gmm of hmm . GMMHMM was renamed to gmm__ to adhere more strictly with the API.
cluster.spectral_embedding was moved to manifold. spectral embedding.

Renamed eig_tol in manifold.spectral_embedding, cluster.SpectralClustering to
eigen_tol, renamed mode to eigen_solver.

Renamed mode in manifold.spectral_embedding and cluster.SpectralClustering to
eigen_solver.

classes_and n_classes_ attributes of t ree.DecisionTreeClassifier and all derived ensemble
models are now flat in case of single output problems and nested in case of multi-output problems.

The estimators_ attribute of ensemble.gradient_boosting.GradientBoostingRegressor
and ensemble.gradient_boosting.GradientBoostingClassifier is now an array of
:class:’tree.DecisionTreeRegressor’.

Renamed chunk_size to batch_size in decomposition.MiniBatchDictionaryLearning
and decomposition.MiniBatchSparsePCA for consistency.

svm.SVC and svm.NuSVC now provide a classes_ attribute and support arbitrary dtypes for labels y.
Also, the dtype returned by predict now reflects the dtype of y during £it (used to be np.float).

80

Chapter 1. Welcome to scikit-learn

scikit-learn user guide, Release 0.19.1

Changed default test_size in cross_validation.train test_split to None, added pos-
sibility to infer test_size from train_size in cross_validation.ShuffleSplit and
cross_validation.StratifiedShuffleSplit.

Renamed function sklearn.metrics.zero_one to sklearn.metrics.zero_one_loss. Be
aware that the default behavior in sklearn.metrics.zero one loss is different from sklearn.
metrics.zero_one: normalize=False ischanged to normalize=True.

Renamed function metrics.zero_one_scoretometrics.accuracy sScore.
datasets.make_circles now has the same number of inner and outer points.

In the Naive Bayes classifiers, the class_prior parameter was moved from fit to___init_ .

People

List of contributors for release 0.13 by number of commits.

364 Andreas Miiller
143 Arnaud Joly

137 Peter Prettenhofer
131 Gael Varoquaux
117 Mathieu Blondel
108 Lars Buitinck

106 Wei Li

101 Olivier Grisel

65 Vlad Niculae

54 Gilles Louppe

40 Jaques Grobler

38 Alexandre Gramfort
30 Rob Zinkov

19 Aymeric Masurelle
18 Andrew Winterman
17 Fabian Pedregosa
17 Nelle Varoquaux
16 Christian Osendorfer
14 Daniel Nouri

13 Virgile Fritsch

13 syhw

12 Satrajit Ghosh

10 Corey Lynch

10 Kyle Beauchamp

9 Brian Cheung

1.7.

Release history 81

http://peekaboo-vision.blogspot.com
http://www.ajoly.org
https://sites.google.com/site/peterprettenhofer/
http://gael-varoquaux.info
http://www.mblondel.org
https://github.com/larsmans
https://twitter.com/ogrisel
http://vene.ro
http://www.montefiore.ulg.ac.be/~glouppe/
https://github.com/jaquesgrobler
http://alexandre.gramfort.net
http://zinkov.com
http://fa.bianp.net
https://osdf.github.io
http://danielnouri.org
https://github.com/VirgileFritsch
http://www.mit.edu/~satra/

scikit-learn user guide, Release 0.19.1

* 9 Immanuel Bayer
* 9 mr.Shu

e 8 Conrad Lee

e 8 James Bergstra
7 Tadej Janez

* 6 Brian Cajes

* 6 Jake Vanderplas
* 6 Michael

* 6 Noel Dawe

* 6 Tiago Nunes

* 6 cow

* 5 Anze

* 5 Shigiao Du

4 Christian Jauvin
* 4 Jacques Kvam

4 Richard T. Guy

4 Robert Layton

¢ 3 Alexandre Abraham
* 3 Doug Coleman

* 3 Scott Dickerson

* 2 Approximateldentity
¢ 2 John Benediktsson

* 2 Mark Veronda

e 2 Matti Lyra

2 Mikhail Korobov

* 2 Xinfan Meng

* 1 Alejandro Weinstein
* 1 Alexandre Passos

¢ 1 Christoph Deil

* 1 Eugene Nizhibitsky
* 1 Kenneth C. Arnold

¢ 1 Luis Pedro Coelho

* 1 Miroslav Batchkarov
e 1 Pavel

* 1 Sebastian Berg

1 Shaun Jackman

82

Chapter 1. Welcome to scikit-learn

http://www-etud.iro.umontreal.ca/~bergstrj/
http://staff.washington.edu/jakevdp/
https://twitter.com/robertlayton
http://atpassos.me

scikit-learn user guide, Release 0.19.1

1 Subhodeep Moitra
* 1 bob
* 1 dengemann

¢] emanuele

* 1 x006

1.7.16 Version 0.12.1

October 8, 2012

The 0.12.1 release is a bug-fix release with no additional features, but is instead a set of bug fixes

Changelog

» Improved numerical stability in spectral embedding by Gael Varoquaux

* Doctest under windows 64bit by Gael Varoquaux

* Documentation fixes for elastic net by Andreas Miiller and Alexandre Gramfort
* Proper behavior with fortran-ordered NumPy arrays by Gael Varoquaux

* Make GridSearchCV work with non-CSR sparse matrix by Lars Buitinck

* Fix parallel computing in MDS by Gael Varoquaux

* Fix Unicode support in count vectorizer by Andreas Miiller

* Fix MinCovDet breaking with X.shape = (3, 1) by Virgile Fritsch

¢ Fix clone of SGD objects by Peter Prettenhofer

* Stabilize GMM by Virgile Fritsch

People

* 14 Peter Prettenhofer
* 12 Gael Varoquaux

* 10 Andreas Miiller

e 5 Lars Buitinck

* 3 Virgile Fritsch

¢ 1 Alexandre Gramfort

1 Gilles Louppe
¢ 1 Mathieu Blondel

1.7.17 Version 0.12

September 4, 2012

1.7. Release history

83

http://gael-varoquaux.info
http://gael-varoquaux.info
http://peekaboo-vision.blogspot.com
http://alexandre.gramfort.net
http://gael-varoquaux.info
https://github.com/larsmans
http://gael-varoquaux.info
http://peekaboo-vision.blogspot.com
https://github.com/VirgileFritsch
https://sites.google.com/site/peterprettenhofer/
https://github.com/VirgileFritsch
https://sites.google.com/site/peterprettenhofer/
http://gael-varoquaux.info
http://peekaboo-vision.blogspot.com
https://github.com/larsmans
https://github.com/VirgileFritsch
http://alexandre.gramfort.net
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.mblondel.org

scikit-learn user guide, Release 0.19.1

Changelog

* Various speed improvements of the decision trees module, by Gilles Louppe.

e ensemble.GradientBoostingRegressor and ensemble.GradientBoostingClassifier
now support feature subsampling via the max_ features argument, by Peter Prettenhofer.

* Added Huber and Quantile loss functions to ensemble.GradientBoostingRegressor, by Peter Pret-
tenhofer.

* Decision trees and forests of randomized trees now support multi-output classification and regression problems,
by Gilles Louppe.

e Added preprocessing.LabelEncoder, a simple utility class to normalize labels or transform non-
numerical labels, by Mathieu Blondel.

¢ Added the epsilon-insensitive loss and the ability to make probabilistic predictions with the modified huber loss
in Stochastic Gradient Descent, by Mathieu Blondel.

* Added Multi-dimensional Scaling (MDS), by Nelle Varoquaux.

* SVMlight file format loader now detects compressed (gzip/bzip2) files and decompresses them on the fly, by
Lars Buitinck.

¢ SVMlight file format serializer now preserves double precision floating point values, by Olivier Grisel.
* A common testing framework for all estimators was added, by Andreas Miiller.
» Understandable error messages for estimators that do not accept sparse input by Gael Varoquaux

e Speedups in hierarchical clustering by Gael Varoquaux. In particular building the tree now supports early
stopping. This is useful when the number of clusters is not small compared to the number of samples.

* Add MultiTaskLasso and MultiTaskElasticNet for joint feature selection, by Alexandre Gramfort.

* Added metrics.auc_score and metrics.average precision_score convenience functions by
Andreas Miiller.

* Improved sparse matrix support in the Feature selection module by Andreas Miiller.
* New word boundaries-aware character n-gram analyzer for the Text feature extraction module by @kernc.
* Fixed bug in spectral clustering that led to single point clusters by Andreas Miiller.

e In feature_extraction.text.CountVectorizer, added an option to ignore infrequent words,
min_df by Andreas Miiller.

* Add support for multiple targets in some linear models (ElasticNet, Lasso and OrthogonalMatchingPursuit) by
Vlad Niculae and Alexandre Gramfort.

* Fixes in decomposition.ProbabilisticPCA score function by Wei Li.

* Fixed feature importance computation in Gradient Tree Boosting.

API changes summary
e The old scikits.learn package has disappeared; all code should import from sklearn instead, which
was introduced in 0.9.

e Inmetrics.roc_curve, the thresholds array is now returned with it’s order reversed, in order to keep
it consistent with the order of the returned fpr and tpr.

* In hmm objects, like hmm.GaussianHMM, hmm.MultinomialHMM, etc., all parameters must be passed to
the object when initialising it and not through £it. Now f£it will only accept the data as an input parameter.

84 Chapter 1. Welcome to scikit-learn

http://www.montefiore.ulg.ac.be/~glouppe/
https://sites.google.com/site/peterprettenhofer/
https://sites.google.com/site/peterprettenhofer/
https://sites.google.com/site/peterprettenhofer/
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.mblondel.org
http://www.mblondel.org
https://github.com/larsmans
https://twitter.com/ogrisel
http://peekaboo-vision.blogspot.com
http://gael-varoquaux.info
http://gael-varoquaux.info
http://alexandre.gramfort.net
http://peekaboo-vision.blogspot.com
http://peekaboo-vision.blogspot.com
https://github.com/kernc
http://peekaboo-vision.blogspot.com
http://peekaboo-vision.blogspot.com
http://vene.ro
http://alexandre.gramfort.net

scikit-learn user guide, Release 0.19.1

For all SVM classes, a faulty behavior of gamma was fixed. Previously, the default gamma value was only
computed the first time £it was called and then stored. It is now recalculated on every call to £it.

All Base classes are now abstract meta classes so that they can not be instantiated.

cluster.ward_tree now also returns the parent array. This is necessary for early-stopping in which case
the tree is not completely built.

In feature_extraction.text.CountVectorizer the parameters min_n and max_n were joined to
the parameter n_gram_range to enable grid-searching both at once.

In feature _extraction.text.CountVectorizer, words that appear only in one document are now
ignored by default. To reproduce the previous behavior, set min_df=1.

Fixed API inconsistency: linear._model.SGDClassifier.predict_proba now returns 2d array
when fit on two classes.

Fixed API inconsistency: discriminant_analysis.QuadraticDiscriminantAnalysis.
decision function and discriminant_analysis.LinearDiscriminantAnalysis.
decision_functionnow return 1d arrays when fit on two classes.

Grid of alphas used for fitting I inear_model.LassoCV and 1inear._model.ElasticNetCV is now
stored in the attribute a lphas_ rather than overriding the init parameter alphas.

Linear models when alpha is estimated by cross-validation store the estimated value in the alpha__ attribute
rather than just alpha or best_alpha.

ensemble.GradientBoostingClassifier now supports ensemble.
GradientBoostingClassifier.staged predict_proba, and ensemble.
GradientBoostingClassifier.staged predict.

svm. sparse.SVC and other sparse SVM classes are now deprecated. The all classes in the Support Vector
Machines module now automatically select the sparse or dense representation base on the input.

All clustering algorithms now interpret the array X given to f£it as input data, in particular cluster.
SpectralClusteringand cluster.AffinityPropagation which previously expected affinity ma-
trices.

For clustering algorithms that take the desired number of clusters as a parameter, this parameter is now called
n_clusters.

People

267 Andreas Miiller
94 Gilles Louppe

89 Gael Varoquaux
79 Peter Prettenhofer
60 Mathieu Blondel
57 Alexandre Gramfort
52 Vlad Niculae

45 Lars Buitinck

44 Nelle Varoquaux
37 Jaques Grobler
30 Alexis Mignon

1.7. Release history 85

http://peekaboo-vision.blogspot.com
http://www.montefiore.ulg.ac.be/~glouppe/
http://gael-varoquaux.info
https://sites.google.com/site/peterprettenhofer/
http://www.mblondel.org
http://alexandre.gramfort.net
http://vene.ro
https://github.com/larsmans
https://github.com/jaquesgrobler

scikit-learn user guide, Release 0.19.1

* 30 Immanuel Bayer
27 Olivier Grisel
16 Subhodeep Moitra

* 13 Yannick Schwartz
e 12 @kernc

11 Virgile Fritsch

* 9 Daniel Duckworth
* 9 Fabian Pedregosa

* 9 Robert Layton

* 8 John Benediktsson
7 Marko Burjek

* 5 Nicolas Pinto

¢ 4 Alexandre Abraham

4 Jake Vanderplas
* 3 Brian Holt

3 Edouard Duchesnay
* 3 Florian Hoenig

* 3 flyingimmidev

* 2 Francois Savard

e 2 Hannes Schulz

2 Peter Welinder

2 Yaroslav Halchenko
e 2 Wei Li

* 1 Alex Companioni

e 1 Brandyn A. White

* 1 Bussonnier Matthias
* 1 Charles-Pierre Astolfi
e 1 Dan O’Huiginn

¢ 1 David Cournapeau

¢ 1 Keith Goodman

* 1 Ludwig Schwardt

¢ 1 Olivier Hervieu

* 1 Sergio Medina

¢ 1 Shigiao Du

* 1 Tim Sheerman-Chase

* 1 buguen

86 Chapter 1. Welcome to scikit-learn

https://twitter.com/ogrisel
https://github.com/kernc
https://github.com/VirgileFritsch
http://fa.bianp.net
https://twitter.com/robertlayton
https://twitter.com/npinto
http://staff.washington.edu/jakevdp/
http://personal.ee.surrey.ac.uk/Personal/B.Holt
https://sites.google.com/site/duchesnay/home
http://www.onerussian.com/

scikit-learn user guide, Release 0.19.1

1.7.18 Version 0.11

May 7, 2012

Changelog

Highlights

Gradient boosted regression trees (Gradient Tree Boosting) for classification and regression by Peter Pretten-
hofer and Scott White .

Simple dict-based feature loader with support for categorical variables (feature extraction.
DictVectorizer) by Lars Buitinck.

Added Matthews correlation coefficient (met rics.matthews_corrcoef) and added macro and micro av-
erage options to metrics.precision_score,metrics.recall scoreand metrics.fl _score
by Satrajit Ghosh.

Out of Bag Estimates of generalization error for Ensemble methods by Andreas Miiller.
Randomized sparse linear models for feature selection, by Alexandre Gramfort and Gael Varoquaux

Label Propagation for semi-supervised learning, by Clay Woolam. Note the semi-supervised API is still work
in progress, and may change.

Added BIC/AIC model selection to classical Gaussian mixture models and unified the API with the remainder
of scikit-learn, by Bertrand Thirion

Added sklearn.cross validation.StratifiedShuffleSplit, which is a sklearn.
cross_validation.ShuffleSplit with balanced splits, by Yannick Schwartz.

sklearn.neighbors.NearestCentroid classifier added, along with a shrink_threshold param-
eter, which implements shrunken centroid classification, by Robert Layton.

Other changes

Merged dense and sparse implementations of Stochastic Gradient Descent module and exposed utility extension
types for sequential datasets seq_dataset and weight vectors weight_vector by Peter Prettenhofer.

Added partial_fit (support for online/minibatch learning) and warm_start to the Stochastic Gradient De-
scent module by Mathieu Blondel.

Dense and sparse implementations of Support Vector Machines classes and Iinear model.
LogisticRegression merged by Lars Buitinck.

Regressors can now be used as base estimator in the Multiclass and multilabel algorithms module by Mathieu
Blondel.

Added n_jobs option to metrics.pairwise.pairwise distances and metrics.pairwise.
pairwise_kernels for parallel computation, by Mathieu Blondel.

K-means can now be run in parallel, using the n_jobs argument to either K-means or KMeans, by Robert
Layton.

Improved Cross-validation: evaluating estimator performance and Tuning the hyper-parameters of an estima-
tor documentation and introduced the new cross_validation.train_test_split helper function by
Olivier Grisel

1.7.

Release history 87

https://sites.google.com/site/peterprettenhofer/
https://sites.google.com/site/peterprettenhofer/
https://twitter.com/scottblanc
https://github.com/larsmans
http://www.mit.edu/~satra/
http://peekaboo-vision.blogspot.com
http://alexandre.gramfort.net
http://gael-varoquaux.info
https://team.inria.fr/parietal/bertrand-thirions-page
https://twitter.com/robertlayton
https://sites.google.com/site/peterprettenhofer/
http://www.mblondel.org
https://github.com/larsmans
http://www.mblondel.org
http://www.mblondel.org
http://www.mblondel.org
https://twitter.com/robertlayton
https://twitter.com/robertlayton
https://twitter.com/ogrisel

scikit-learn user guide, Release 0.19.1

svm.SVC members coef_ and intercept_ changed sign for consistency with decision_function;
for kernel==1inear, coef_ was fixed in the one-vs-one case, by Andreas Miiller.

Performance improvements to efficient leave-one-out cross-validated Ridge regression, esp. for the
n_samples > n_featurescase,in linear._model.RidgeCV, by Reuben Fletcher-Costin.

Refactoring and simplification of the Text feature extraction API and fixed a bug that caused possible negative
IDF, by Olivier Grisel.

Beam pruning option in _BaseHMM module has been removed since it is difficult to Cythonize. If you are
interested in contributing a Cython version, you can use the python version in the git history as a reference.

Classes in Nearest Neighbors now support arbitrary Minkowski metric for nearest neighbors searches. The
metric can be specified by argument p.

API changes summary

covariance.EllipticEnvelop is now deprecated - Please use covariance.EllipticEnvelope
instead.

NeighborsClassifier and NeighborsRegressor are gone in the module Nearest Neighbors. Use
the classes KNeighborsClassifier, RadiusNeighborsClassifier, KNeighborsRegressor
and/or RadiusNeighborsRegressor instead.

Sparse classes in the Stochastic Gradient Descent module are now deprecated.

In mixture.GMM, mixture.DPGMM and mixture. VBGMM, parameters must be passed to an object when
initialising it and not through £it. Now fit will only accept the data as an input parameter.

methods rvs and decode in GMM module are now deprecated. sample and score or predict should be
used instead.

attribute _scores and _pvalues in univariate feature selection objects are now deprecated. scores_ or
pvalues_ should be used instead.

In LogisticRegression, LinearSVC, SVC and NuSVC, the class_weight parameter is now an ini-
tialization parameter, not a parameter to fit. This makes grid searches over this parameter possible.

LFW data is now always shape (n_samples, n_features) to be consistent with the Olivetti faces
dataset. Use images and pairs attribute to access the natural images shapes instead.

In svm.LinearSVC, the meaning of the multi_class parameter changed. Options now are 'ovr' and
'crammer_singer', with 'ovr' being the default. This does not change the default behavior but hopefully
is less confusing.

Class feature_selection.text.Vectorizer is deprecated and replaced by
feature_selection.text.TfidfVectorizer.

The preprocessor / analyzer nested structure for text feature extraction has been removed. All those features are
now directly passed as flat constructor arguments to feature_selection.text.TfidfVectorizer
and feature_selection.text.CountVectorizer, in particular the following parameters are now
used:

analyzer canbe 'word' or 'char' to switch the default analysis scheme, or use a specific python callable
(as previously).

tokenizer and preprocessor have been introduced to make it still possible to customize those steps with
the new APL.

input explicitly control how to interpret the sequence passed to £it and predict: filenames, file objects or
direct (byte or Unicode) strings.

88

Chapter 1. Welcome to scikit-learn

http://peekaboo-vision.blogspot.com
https://twitter.com/ogrisel

scikit-learn user guide, Release 0.19.1

* charset decoding is explicit and strict by default.

* the vocabulary, fitted or not is now stored in the vocabulary__ attribute to be consistent with the project
conventions.

¢ Class feature_selection.text.TfidfVectorizer now derives directly from
feature_selection.text.CountVectorizer to make grid search trivial.

e methods rvs in _BaseHMM module are now deprecated. sample should be used instead.

* Beam pruning option in _BaseHMM module is removed since it is difficult to be Cythonized. If you are inter-
ested, you can look in the history codes by git.

* The SVMlight format loader now supports files with both zero-based and one-based column indices, since both
occur “in the wild”.

e Arguments in class ShuffleSplit are now consistent with StratifiedShuffleSplit. Arguments
test_fraction and train_fraction are deprecated and renamed to test_size and train_size
and can accept both f1oat and int.

* Arguments in class Bootstrap are now consistent with StratifiedShuffleSplit. Arguments
n_test and n_train are deprecated and renamed to test_size and train_size and can accept both
float and int.

* Argument p added to classes in Nearest Neighbors to specify an arbitrary Minkowski metric for nearest neigh-
bors searches.

People

e 282 Andreas Miiller

* 239 Peter Prettenhofer
* 198 Gael Varoquaux

* 129 Olivier Grisel

* 114 Mathieu Blondel
* 103 Clay Woolam

* 96 Lars Buitinck

» 88 Jaques Grobler

* 82 Alexandre Gramfort
* 50 Bertrand Thirion

e 42 Robert Layton

¢ 28 flyingimmidev

e 26 Jake Vanderplas

* 26 Shigiao Du

21 Satrajit Ghosh

e 17 David Marek

* 17 Gilles Louppe

* 14 Vlad Niculae

¢ 11 Yannick Schwartz

1.7. Release history 89

http://peekaboo-vision.blogspot.com
https://sites.google.com/site/peterprettenhofer/
http://gael-varoquaux.info
https://twitter.com/ogrisel
http://www.mblondel.org
https://github.com/larsmans
https://github.com/jaquesgrobler
http://alexandre.gramfort.net
https://team.inria.fr/parietal/bertrand-thirions-page
https://twitter.com/robertlayton
http://staff.washington.edu/jakevdp/
http://www.mit.edu/~satra/
http://www.davidmarek.cz/
http://www.montefiore.ulg.ac.be/~glouppe/
http://vene.ro

scikit-learn user guide, Release 0.19.1

10 Fabian Pedregosa
* 9 fcostin

7 Nick Wilson

* 5 Adrien Gaidon

* 5 Nicolas Pinto

* 4 David Warde-Farley
* 5 Nelle Varoquaux

* 5 Emmanuelle Gouillart
* 3 Joonas Sillanpdd

* 3 Paolo Losi

¢ 2 Charles McCarthy

* 2 Roy Hyunjin Han

* 2 Scott White

* 2 ibayer

* 1 Brandyn White

1 Carlos Scheidegger
¢ 1 Claire Revillet

e 1 Conrad Lee

* 1 Edouard Duchesnay
¢ 1 Jan Hendrik Metzen
* 1 Meng Xinfan

* 1 Rob Zinkov

* 1 Shigiao

* 1 Udi Weinsberg

* 1 Virgile Fritsch

* 1 Xinfan Meng

* 1 Yaroslav Halchenko
* 1 jansoe

¢ 1 Leon Palafox

1.7.19 Version 0.10

January 11, 2012

920 Chapter 1. Welcome to scikit-learn

http://fa.bianp.net
https://twitter.com/npinto
http://www-etud.iro.umontreal.ca/~wardefar/
https://sites.google.com/site/duchesnay/home
http://zinkov.com

scikit-learn user guide, Release 0.19.1

Changelog

Python 2.5 compatibility was dropped; the minimum Python version needed to use scikit-learn is now 2.6.

Sparse inverse covariance estimation using the graph Lasso, with associated cross-validated estimator, by Gael
Varoquaux

New Tree module by Brian Holt, Peter Prettenhofer, Satrajit Ghosh and Gilles Louppe. The module comes with
complete documentation and examples.

Fixed a bug in the RFE module by Gilles Louppe (issue #378).
Fixed a memory leak in Support Vector Machines module by Brian Holt (issue #367).
Faster tests by Fabian Pedregosa and others.

Silhouette Coefficient cluster analysis evaluation metric added as sklearn.metrics.
silhouette_score by Robert Layton.

Fixed a bug in K-means in the handling of the n_init parameter: the clustering algorithm used to be run
n_init times but the last solution was retained instead of the best solution by Olivier Grisel.

Minor refactoring in Stochastic Gradient Descent module; consolidated dense and sparse predict methods; En-
hanced test time performance by converting model parameters to fortran-style arrays after fitting (only multi-
class).

Adjusted Mutual Information metric added as sklearn.metrics.adjusted_mutual_info_score
by Robert Layton.

Models like SVC/SVR/LinearSVC/LogisticRegression from libsvm/liblinear now support scaling of C regular-
ization parameter by the number of samples by Alexandre Gramfort.

New Ensemble Methods module by Gilles Louppe and Brian Holt. The module comes with the random forest
algorithm and the extra-trees method, along with documentation and examples.

Novelty and Outlier Detection: outlier and novelty detection, by Virgile Fritsch.

Kernel Approximation: a transform implementing kernel approximation for fast SGD on non-linear kernels by
Andreas Miiller.

Fixed a bug due to atom swapping in Orthogonal Matching Pursuit (OMP) by Vlad Niculae.

Sparse coding with a precomputed dictionary by Vlad Niculae.

Mini Batch K-Means performance improvements by Olivier Grisel.

K-means support for sparse matrices by Mathieu Blondel.

Improved documentation for developers and for the sklearn. utils module, by Jake Vanderplas.

Vectorized 20newsgroups dataset loader (sklearn.datasets. fetch_20newsgroups_vectorized)
by Mathieu Blondel.

Multiclass and multilabel algorithms by Lars Buitinck.
Utilities for fast computation of mean and variance for sparse matrices by Mathieu Blondel.

Make sklearn.preprocessing.scale and sklearn.preprocessing.Scaler work on sparse
matrices by Olivier Grisel

Feature importances using decision trees and/or forest of trees, by Gilles Louppe.
Parallel implementation of forests of randomized trees by Gilles Louppe.

sklearn.cross_validation.ShuffleSplit can subsample the train sets as well as the test sets by
Olivier Grisel.

1.7.

Release history 91

http://gael-varoquaux.info
http://gael-varoquaux.info
http://personal.ee.surrey.ac.uk/Personal/B.Holt
https://sites.google.com/site/peterprettenhofer/
http://www.mit.edu/~satra/
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.montefiore.ulg.ac.be/~glouppe/
http://personal.ee.surrey.ac.uk/Personal/B.Holt
http://fa.bianp.net
https://twitter.com/ogrisel
http://alexandre.gramfort.net
http://www.montefiore.ulg.ac.be/~glouppe/
http://personal.ee.surrey.ac.uk/Personal/B.Holt
https://github.com/VirgileFritsch
http://peekaboo-vision.blogspot.com
http://vene.ro
http://vene.ro
https://twitter.com/ogrisel
http://www.mblondel.org
http://staff.washington.edu/jakevdp/
http://www.mblondel.org
https://github.com/larsmans
http://www.mblondel.org
https://twitter.com/ogrisel
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.montefiore.ulg.ac.be/~glouppe/
https://twitter.com/ogrisel

scikit-learn user guide, Release 0.19.1

Errors in the build of the documentation fixed by Andreas Miiller.

API changes summary

Here are the code migration instructions when upgrading from scikit-learn version 0.9:

Some estimators that may overwrite their inputs to save memory previously had overwrite_ parameters;
these have been replaced with copy_ parameters with exactly the opposite meaning.

This particularly affects some of the estimators in 1inear_model. The default behavior is still to copy
everything passed in.

The SVMlight dataset loader sklearn.datasets.load svmlight_file no longer supports loading
two files at once; use load_svmlight_files instead. Also, the (unused) buffer_mb parameter is gone.

Sparse estimators in the Stochastic Gradient Descent module use dense parameter vector coef_ instead of
sparse_coef_. This significantly improves test time performance.

The Covariance estimation module now has a robust estimator of covariance, the Minimum Covariance Deter-
minant estimator.

Cluster evaluation metrics inmetrics.cluster have been refactored but the changes are backwards compat-
ible. They have been moved to the metrics.cluster.supervised, along withmetrics.cluster.
unsupervised which contains the Silhouette Coefficient.

The permutation_test_score function now behaves the same way as cross_val_score (i.e. uses
the mean score across the folds.)

Cross Validation generators now use integer indices (indices=True) by default instead of boolean masks.
This make it more intuitive to use with sparse matrix data.

The functions used for sparse coding, sparse_encode and sparse_encode_parallel have been com-
bined into sklearn.decomposition.sparse_encode, and the shapes of the arrays have been trans-
posed for consistency with the matrix factorization setting, as opposed to the regression setting.

Fixed an off-by-one error in the SVMlight/LibSVM file format handling; files generated using sklearn.
datasets.dump_svmlight_file should be re-generated. (They should continue to work, but acciden-
tally had one extra column of zeros prepended.)

BaseDictionaryLearning class replaced by SparseCodingMixin.

sklearn.utils.extmath.fast_svd has been renamed sklearn.utils.extmath.
randomized_svd and the default oversampling is now fixed to 10 additional random vectors instead
of doubling the number of components to extract. The new behavior follows the reference paper.

People

The following people contributed to scikit-learn since last release:

246 Andreas Miiller
242 Olivier Grisel
220 Gilles Louppe
183 Brian Holt

166 Gael Varoquaux
144 Lars Buitinck
73 Vlad Niculae

92

Chapter 1. Welcome to scikit-learn

http://peekaboo-vision.blogspot.com
http://peekaboo-vision.blogspot.com
https://twitter.com/ogrisel
http://www.montefiore.ulg.ac.be/~glouppe/
http://personal.ee.surrey.ac.uk/Personal/B.Holt
http://gael-varoquaux.info
https://github.com/larsmans
http://vene.ro

scikit-learn user guide, Release 0.19.1

* 65 Peter Prettenhofer

* 64 Fabian Pedregosa

* 60 Robert Layton

* 55 Mathieu Blondel

* 52 Jake Vanderplas

* 44 Noel Dawe

* 38 Alexandre Gramfort
24 Virgile Fritsch

* 23 Satrajit Ghosh

* 3 Jan Hendrik Metzen
¢ 3 Kenneth C. Arnold

* 3 Shigiao Du

* 3 Tim Sheerman-Chase

¢ 3 Yaroslav Halchenko

2 Bala Subrahmanyam Varanasi
e 2 DraXus

2 Michael Eickenberg

* 1 Bogdan Trach

* 1 Félix-Antoine Fortin

¢ 1 Juan Manuel Caicedo Carvajal
* 1 Nelle Varoquaux

¢ 1 Nicolas Pinto

¢ 1 Tiziano Zito

* 1 Xinfan Meng

1.7.20 Version 0.9

September 21, 2011

scikit-learn 0.9 was released on September 2011, three months after the 0.8 release and includes the new modules
Manifold learning, The Dirichlet Process as well as several new algorithms and documentation improvements.

This release also includes the dictionary-learning work developed by Vlad Niculae as part of the Google Summer of
Code program.

1.7. Release history 93

https://sites.google.com/site/peterprettenhofer/
http://fa.bianp.net
http://www.mblondel.org
http://staff.washington.edu/jakevdp/
http://alexandre.gramfort.net
https://github.com/VirgileFritsch
http://www.mit.edu/~satra/
http://www.onerussian.com/
https://twitter.com/npinto
http://vene.ro
https://developers.google.com/open-source/gsoc
https://developers.google.com/open-source/gsoc

scikit-learn user guide, Release 0.19.1

=

Sparie tigral

AR,

a0 a0 w0 e s

Ilundfoic] Laarmire) mith § (0% poinis, 30 rephoon

LAR i LT i BT e | Happiem. ULE %9 wai

Boerifed LK P50 i

FJH

| atmsaneg 1 s

-fdall 10w

94

Chapter 1. Welcome to scikit-learn

auto_examples/linear_model/plot_omp.html
auto_examples/manifold/plot_compare_methods.html

scikit-learn user guide, Release 0.19.1

s Original space Projection by PCA
1.0
1.0 4 s
]
0.5 - g 051 o
&
% 00+ E 0.0 °
[
== B -0.5 \J
=1.0 4 e
—-1.0 4
-15 T T T T T
=1 0 1
X1 15! nncgpal cam r:menE
Projection by KPCA Original spate after inverse fransform
-]
129 0.5 |
10
:.? n.u - 0
1.2 | ""f l;
(1]
i."" 1" 0.5
1.4 " w‘“
: - =1.0 -
-0.75 ~0.50 -0.25 000 0.25 0.50 -05 00 05
15t principal compenent in space induced by & 1
Changelog

New Manifold learning module by Jake Vanderplas and Fabian Pedregosa.
New Dirichlet Process Gaussian Mixture Model by Alexandre Passos

Nearest Neighbors module refactoring by Jake Vanderplas : general refactoring, support for sparse matrices in
input, speed and documentation improvements. See the next section for a full list of API changes.

Improvements on the Feature selection module by Gilles Louppe : refactoring of the RFE classes, documenta-
tion rewrite, increased efficiency and minor API changes.

Sparse principal components analysis (SparsePCA and MiniBatchSparsePCA) by Vlad Niculae, Gael Varo-
quaux and Alexandre Gramfort

Printing an estimator now behaves independently of architectures and Python version thanks to Jean Kossaifi.
Loader for libsvm/svmlight format by Mathieu Blondel and Lars Buitinck

Documentation improvements: thumbnails in example gallery by Fabian Pedregosa.

Important bugfixes in Support Vector Machines module (segfaults, bad performance) by Fabian Pedregosa.
Added Multinomial Naive Bayes and Bernoulli Naive Bayes by Lars Buitinck

Text feature extraction optimizations by Lars Buitinck

Chi-Square feature selection (feature_selection.univariate_selection.chi?2) by Lars Buit-
inck.

Sample generators module refactoring by Gilles Louppe
Multiclass and multilabel algorithms by Mathieu Blondel

Ball tree rewrite by Jake Vanderplas

1.7.

Release history 95

auto_examples/decomposition/plot_kernel_pca.html
http://staff.washington.edu/jakevdp/
http://fa.bianp.net
http://atpassos.me
http://staff.washington.edu/jakevdp/
http://www.montefiore.ulg.ac.be/~glouppe/
http://vene.ro
http://gael-varoquaux.info
http://gael-varoquaux.info
http://alexandre.gramfort.net
https://github.com/JeanKossaifi
http://www.mblondel.org
https://github.com/larsmans
http://fa.bianp.net
http://fa.bianp.net
https://github.com/larsmans
https://github.com/larsmans
https://github.com/larsmans
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.mblondel.org
http://staff.washington.edu/jakevdp/

scikit-learn user guide, Release 0.19.1

* Implementation of DBSCAN algorithm by Robert Layton
* Kmeans predict and transform by Robert Layton

* Preprocessing module refactoring by Olivier Grisel

* Faster mean shift by Conrad Lee

* New Bootstrap, Random permutations cross-validation a.k.a. Shuffle & Split and various other improve-
ments in cross validation schemes by Olivier Grisel and Gael Varoquaux

* Adjusted Rand index and V-Measure clustering evaluation metrics by Olivier Grisel
e Added Orthogonal Matching Pursuit by Vlad Niculae
* Added 2D-patch extractor utilities in the Feature extraction module by Vlad Niculae

* Implementation of 1 inear _model.LassoLarsCV (cross-validated Lasso solver using the Lars algorithm)
and Iinear model.LassoLarsIC (BIC/AIC model selection in Lars) by Gael Varoquaux and Alexandre
Gramfort

¢ Scalability improvements to metrics. roc_curve by Olivier Hervieu

 Distance helper functions metrics.pairwise.pairwise_distances and metrics.pairwise.
pairwise_kernels by Robert Layton

e Mini-Batch K-Means by Nelle Varoquaux and Peter Prettenhofer.
* Downloading datasets from the mldata.org repository utilities by Pietro Berkes.

* The Olivetti faces dataset by David Warde-Farley.

API changes summary

Here are the code migration instructions when upgrading from scikit-learn version 0.8:

* The scikits.learn package was renamed sklearn. Thereis stilla scikits.learn package alias for
backward compatibility.

Third-party projects with a dependency on scikit-learn 0.9+ should upgrade their codebase. For instance, under
Linux / MacOSX just run (make a backup first!):

find —name "x.py" | xargs sed -1 's/\bscikits.learn\b/sklearn/g'

» Estimators no longer accept model parameters as fit arguments: instead all parameters must be only
be passed as constructor arguments or using the now public set_params method inherited from base.
BaseEstimator.

Some estimators can still accept keyword arguments on the £it but this is restricted to data-dependent values
(e.g. a Gram matrix or an affinity matrix that are precomputed from the X data matrix.

* The cross_val package has been renamed to cross_validation although there is also a cross_val
package alias in place for backward compatibility.

Third-party projects with a dependency on scikit-learn 0.9+ should upgrade their codebase. For instance, under
Linux / MacOSX just run (make a backup first!):

find —name "x.py" | xargs sed —-i 's/\bcross_val\b/cross_validation/g'

* The score_func argument of the sklearn.cross_validation.cross_val_score function is
now expected to accept y_test and y_predicted as only arguments for classification and regression tasks
or X_test for unsupervised estimators.

96 Chapter 1. Welcome to scikit-learn

https://twitter.com/ogrisel
https://twitter.com/ogrisel
http://gael-varoquaux.info
https://twitter.com/ogrisel
http://vene.ro
http://vene.ro
http://gael-varoquaux.info
http://alexandre.gramfort.net
http://alexandre.gramfort.net
http://www-etud.iro.umontreal.ca/~wardefar/

scikit-learn user guide, Release 0.19.1

gamma parameter for support vector machine algorithms is setto 1 / n_features by default, instead of 1
/ n_samples.

The sklearn.hmm has been marked as orphaned: it will be removed from scikit-learn in version 0.11 unless
someone steps up to contribute documentation, examples and fix lurking numerical stability issues.

sklearn.neighbors has been made into a submodule. The two previously available estimators,
NeighborsClassifier and NeighborsRegressor have been marked as deprecated. Their function-
ality has been divided among five new classes: NearestNeighbors for unsupervised neighbors searches,
KNeighborsClassifier & RadiusNeighborsClassifier for supervised classification problems,
and KNeighborsRegressor & RadiusNeighborsRegressor for supervised regression problems.

sklearn.ball_tree.BallTree has been moved to sklearn.neighbors.BallTree. Using the
former will generate a warning.

sklearn.linear_model.LARS () and related classes (LassoLARS, LassoLARSCY, etc.) have been re-
named to sklearn.linear_model.Lars ().

All distance metrics and kernels in sklearn.metrics.pairwise now have a Y parameter, which by
default is None. If not given, the result is the distance (or kernel similarity) between each sample in Y. If given,
the result is the pairwise distance (or kernel similarity) between samples in X to Y.

sklearn.metrics.pairwise.ll_distance is now called manhattan_distance, and by default
returns the pairwise distance. For the component wise distance, set the parameter sum_over_features to
False.

Backward compatibility package aliases and other deprecated classes and functions will be removed in version 0.11.

People

38 people contributed to this release.

387 Vlad Niculae

320 Olivier Grisel

192 Lars Buitinck

179 Gael Varoquaux
168 Fabian Pedregosa (INRIA, Parietal Team)
127 Jake Vanderplas
120 Mathieu Blondel
85 Alexandre Passos
67 Alexandre Gramfort
57 Peter Prettenhofer
56 Gilles Louppe

42 Robert Layton

38 Nelle Varoquaux

32 Jean Kossaifi

30 Conrad Lee

22 Pietro Berkes

18 andy

1.7.

Release history 97

http://vene.ro
https://twitter.com/ogrisel
https://github.com/larsmans
http://gael-varoquaux.info
http://fa.bianp.net
http://www.inria.fr
http://parietal.saclay.inria.fr/
http://staff.washington.edu/jakevdp/
http://www.mblondel.org
http://atpassos.me
http://alexandre.gramfort.net
https://sites.google.com/site/peterprettenhofer/
http://www.montefiore.ulg.ac.be/~glouppe/
https://github.com/JeanKossaifi

scikit-learn user guide, Release 0.19.1

17 David Warde-Farley
12 Brian Holt

11 Robert

8 Amit Aides

8 Virgile Fritsch

7 Yaroslav Halchenko
6 Salvatore Masecchia
5 Paolo Losi

4 Vincent Schut

3 Alexis Metaireau

3 Bryan Silverthorn

3 Andreas Miiller

2 Minwoo Jake Lee

1 Emmanuelle Gouillart
1 Keith Goodman

1 Lucas Wiman

1 Nicolas Pinto

1 Thouis (Ray) Jones

1 Tim Sheerman-Chase

1.7.21 Version 0.8

May 11, 2011

scikit-learn 0.8 was released on May 2011, one month after the first “international” scikit-learn coding sprint and is
marked by the inclusion of important modules: Hierarchical clustering, Cross decomposition, Non-negative matrix
Jactorization (NMF or NNMF), initial support for Python 3 and by important enhancements and bug fixes.

Changelog

Several new modules where introduced during this release:

New Hierarchical clustering module by Vincent Michel, Bertrand Thirion, Alexandre Gramfort and Gael Varo-
quaux.

Kernel PCA implementation by Mathieu Blondel

The Labeled Faces in the Wild face recognition dataset by Olivier Grisel.
New Cross decomposition module by Edouard Duchesnay.

Non-negative matrix factorization (NMF or NNMF) module Vlad Niculae

Implementation of the Oracle Approximating Shrinkage algorithm by Virgile Fritsch in the Covariance estima-
tion module.

Some other modules benefited from significant improvements or cleanups.

98

Chapter 1. Welcome to scikit-learn

https://github.com/VirgileFritsch
http://www.onerussian.com/
http://peekaboo-vision.blogspot.com
https://twitter.com/npinto
https://github.com/scikit-learn/scikit-learn/wiki/Upcoming-events
https://team.inria.fr/parietal/bertrand-thirions-page
http://alexandre.gramfort.net
http://gael-varoquaux.info
http://gael-varoquaux.info
http://www.mblondel.org
https://twitter.com/ogrisel
https://sites.google.com/site/duchesnay/home
http://vene.ro
https://github.com/VirgileFritsch

scikit-learn user guide, Release 0.19.1

Initial support for Python 3: builds and imports cleanly, some modules are usable while others have failing tests
by Fabian Pedregosa.

decomposition.PCAis now usable from the Pipeline object by Olivier Grisel.
Guide How to optimize for speed by Olivier Grisel.

Fixes for memory leaks in libsvm bindings, 64-bit safer BallTree by Lars Buitinck.
bug and style fixing in K-means algorithm by Jan Schliiter.

Add attribute converged to Gaussian Mixture Models by Vincent Schut.

Implemented transform, predict_log_proba in discriminant_analysis.
LinearDiscriminantAnalysis By Mathieu Blondel.

Refactoring in the Support Vector Machines module and bug fixes by Fabian Pedregosa, Gael Varoquaux and
Amit Aides.

Refactored SGD module (removed code duplication, better variable naming), added interface for sample weight
by Peter Prettenhofer.

Wrapped BallTree with Cython by Thouis (Ray) Jones.
Added function svm. 11_min_c by Paolo Losi.

Typos, doc style, etc. by Yaroslav Halchenko, Gael Varoquaux, Olivier Grisel, Yann Malet, Nicolas Pinto, Lars
Buitinck and Fabian Pedregosa.

People

People that made this release possible preceded by number of commits:

159 Olivier Grisel

96 Gael Varoquaux

96 Vlad Niculae

94 Fabian Pedregosa
36 Alexandre Gramfort
32 Paolo Losi

31 Edouard Duchesnay
30 Mathieu Blondel

25 Peter Prettenhofer
22 Nicolas Pinto

11 Virgile Fritsch

7 Lars Buitinck

6 Vincent Michel

5 Bertrand Thirion
4 Thouis (Ray) Jones

4 Vincent Schut

3 Jan Schliiter

2 Julien Miotte

1.7. Release history 99

http://fa.bianp.net
https://twitter.com/ogrisel
https://twitter.com/ogrisel
http://www.mblondel.org
http://fa.bianp.net
http://gael-varoquaux.info
https://sites.google.com/site/peterprettenhofer/
http://www.onerussian.com/
http://gael-varoquaux.info
https://twitter.com/ogrisel
https://twitter.com/npinto
http://fa.bianp.net
https://twitter.com/ogrisel
http://gael-varoquaux.info
http://vene.ro
http://fa.bianp.net
http://alexandre.gramfort.net
https://sites.google.com/site/duchesnay/home
http://www.mblondel.org
https://sites.google.com/site/peterprettenhofer/
https://twitter.com/npinto
https://github.com/VirgileFritsch
https://team.inria.fr/parietal/bertrand-thirions-page

scikit-learn user guide, Release 0.19.1

2 Matthieu Perrot

2 Yann Malet
2 Yaroslav Halchenko

1 Amit Aides

1 Andreas Miiller
1 Feth Arezki
1 Meng Xinfan

1.7.22 Version 0.7

March 2, 2011

scikit-learn 0.7 was released in March 2011, roughly three months after the 0.6 release. This release is marked by the
speed improvements in existing algorithms like k-Nearest Neighbors and K-Means algorithm and by the inclusion of
an efficient algorithm for computing the Ridge Generalized Cross Validation solution. Unlike the preceding release,
no new modules where added to this release.

Changelog

Performance improvements for Gaussian Mixture Model sampling [Jan Schliiter].

Implementation of efficient leave-one-out cross-validated Ridge in 1inear._model.RidgeCV [Mathieu
Blondel]

Better handling of collinearity and early stopping in 1 inear._model. lars_path [Alexandre Gramfort and
Fabian Pedregosa].

Fixes for liblinear ordering of labels and sign of coefficients [Dan Yamins, Paolo Losi, Mathieu Blondel and
Fabian Pedregosa].

Performance improvements for Nearest Neighbors algorithm in high-dimensional spaces [Fabian Pedregosa].
Performance improvements for cluster. KMeans [Gael Varoquaux and James Bergstra].
Sanity checks for SVM-based classes [Mathieu Blondel].

Refactoring of neighbors.NeighborsClassifier and neighbors. kneighbors_graph: added
different algorithms for the k-Nearest Neighbor Search and implemented a more stable algorithm for finding
barycenter weights. Also added some developer documentation for this module, see notes_neighbors for more
information [Fabian Pedregosa].

Documentation improvements: Added pca.RandomizedPCA and linear_model.
LogisticRegression to the class reference. Also added references of matrices used for clustering
and other fixes [Gael Varoquaux, Fabian Pedregosa, Mathieu Blondel, Olivier Grisel, Virgile Fritsch ,
Emmanuelle Gouillart]

Binded decision_function in classes that make use of liblinear, dense and sparse variants, like svm.
LinearSVCor linear_model.LogisticRegression [Fabian Pedregosa].

Performance and API improvements to metrics.euclidean_distances and to pca.
RandomizedPCA [James Bergstra].

Fix compilation issues under NetBSD [Kamel Ibn Hassen Derouiche]

Allow input sequences of different lengths in hmm . GaussianHMM [Ron Weiss].

100

Chapter 1. Welcome to scikit-learn

http://brainvisa.info/biblio/lnao/en/Author/PERROT-M.html
http://www.onerussian.com/
http://peekaboo-vision.blogspot.com
http://www.mblondel.org
http://www.mblondel.org
http://alexandre.gramfort.net
http://fa.bianp.net
http://www.mblondel.org
http://fa.bianp.net
http://fa.bianp.net
http://gael-varoquaux.info
http://www-etud.iro.umontreal.ca/~bergstrj/
http://www.mblondel.org
https://github.com/scikit-learn/scikit-learn/wiki/Neighbors-working-notes
http://fa.bianp.net
http://gael-varoquaux.info
http://fa.bianp.net
http://www.mblondel.org
https://twitter.com/ogrisel
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://fa.bianp.net
http://www-etud.iro.umontreal.ca/~bergstrj/
http://www.ee.columbia.edu/~ronw

scikit-learn user guide, Release 0.19.1

Fix bug in affinity propagation caused by incorrect indexing [Xinfan Meng]

People

People that made this release possible preceded by number of commits:

85 Fabian Pedregosa

67 Mathieu Blondel

20 Alexandre Gramfort
19 James Bergstra

14 Dan Yamins

13 Olivier Grisel

12 Gael Varoquaux

4 Edouard Duchesnay

4 Ron Weiss

2 Satrajit Ghosh

2 Vincent Dubourg

1 Emmanuelle Gouillart
1 Kamel Ibn Hassen Derouiche
1 Paolo Losi

1 VirgileFritsch

1 Yaroslav Halchenko

1 Xinfan Meng

1.7.23 Version 0.6

December 21, 2010

scikit-learn 0.6 was released on December 2010. It is marked by the inclusion of several new modules and a general
renaming of old ones. It is also marked by the inclusion of new example, including applications to real-world datasets.

Changelog

New stochastic gradient descent module by Peter Prettenhofer. The module comes with complete documentation
and examples.

Improved svm module: memory consumption has been reduced by 50%, heuristic to automatically set class
weights, possibility to assign weights to samples (see SVM: Weighted samples for an example).

New Gaussian Processes module by Vincent Dubourg. This module also has great documenta-
tion and some very neat examples. See example_gaussian_process_plot_gp_regression.py or exam-
ple_gaussian_process_plot_gp_probabilistic_classification_after_regression.py for a taste of what can be done.

It is now possible to use liblinear’s Multi-class SVC (option multi_class in svm. LinearSVC)

New features and performance improvements of text feature extraction.

1.7.

Release history 101

http://fa.bianp.net
http://www.mblondel.org
http://alexandre.gramfort.net
http://www-etud.iro.umontreal.ca/~bergstrj/
https://twitter.com/ogrisel
http://gael-varoquaux.info
https://sites.google.com/site/duchesnay/home
http://www.ee.columbia.edu/~ronw
http://www.onerussian.com/
http://scikit-learn.org/stable/modules/sgd.html

scikit-learn user guide, Release 0.19.1

Improved sparse matrix support, both in main classes (grid_search.GridSearchCV) as in modules
sklearn.svm.sparse and sklearn.linear_model.sparse.

Lots of cool new examples and a new section that uses real-world datasets was created. These include: Faces
recognition example using eigenfaces and SVMs, Species distribution modeling, Libsvm GUI, Wikipedia princi-
pal eigenvector and others.

Faster Least Angle Regression algorithm. It is now 2x faster than the R version on worst case and up to 10x
times faster on some cases.

Faster coordinate descent algorithm. In particular, the full path version of lasso (Iinear _model.
lasso_path)is more than 200x times faster than before.

It is now possible to get probability estimates from a 1 inear model.LogisticRegression model.

module renaming: the glm module has been renamed to linear_model, the gmm module has been included into
the more general mixture model and the sgd module has been included in linear_model.

Lots of bug fixes and documentation improvements.

People

People that made this release possible preceded by number of commits:

207 Olivier Grisel
167 Fabian Pedregosa
97 Peter Prettenhofer
68 Alexandre Gramfort
59 Mathieu Blondel
55 Gael Varoquaux
33 Vincent Dubourg
21 Ron Weiss

9 Bertrand Thirion

3 Alexandre Passos

3 Anne-Laure Fouque
2 Ronan Amicel

1 Christian Osendorfer

1.7.24 Version 0.5

October 11, 2010

Changelog

New classes

Support for sparse matrices in some classifiers of modules svm and linear_model (see svm.
sparse.SVC, svm.sparse.SVR, svm.sparse.LinearSVC, linear_model.sparse.Lasso,
linear_model.sparse.ElasticNet)

102

Chapter 1. Welcome to scikit-learn

https://twitter.com/ogrisel
http://fa.bianp.net
https://sites.google.com/site/peterprettenhofer/
http://alexandre.gramfort.net
http://www.mblondel.org
http://gael-varoquaux.info
http://www.ee.columbia.edu/~ronw
http://atpassos.me
https://osdf.github.io

scikit-learn user guide, Release 0.19.1

* New pipeline.Pipeline objectto compose different estimators.
¢ Recursive Feature Elimination routines in module Feature selection.

* Addition of various classes capable of cross validation in the linear_model module (Iinear model.
LassoCV, linear_model.ElasticNetCV, etc.).

* New, more efficient LARS algorithm implementation. The Lasso variant of the algorithm is also implemented.
See 1inear _model.lars_path, l1inear_model.Lars and l1inear _model.LassolLars.

¢ New Hidden Markov Models module (see classes hmm.GaussianHMM, hmm.MultinomialHMM, hmm.
GMMHMM)

e New module feature_extraction (see class reference)
* New FastICA algorithm in module sklearn.fastica

Documentation

 Improved documentation for many modules, now separating narrative documentation from the class reference.
As an example, see documentation for the SVM module and the complete class reference.

Fixes
* API changes: adhere variable names to PEP-8, give more meaningful names.
* Fixes for svm module to run on a shared memory context (multiprocessing).
* It is again possible to generate latex (and thus PDF) from the sphinx docs.
Examples

* new examples using some of the mlcomp datasets: sphx_glr_auto_examples_mlcomp_sparse_document_classif
py (since removed) and Classification of text documents using sparse features

* Many more examples. See here the full list of examples.
External dependencies

* Joblib is now a dependency of this package, although it is shipped with (sklearn.externals.joblib).

Removed modules

* Module ann (Artificial Neural Networks) has been removed from the distribution. Users wanting this sort of
algorithms should take a look into pybrain.

Misc

¢ New sphinx theme for the web page.

1.7. Release history 103

http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/classes.html
http://scikit-learn.org/stable/auto_examples/index.html

scikit-learn user guide, Release 0.19.1

Authors

The following is a list of authors for this release, preceded by number of commits:

262 Fabian Pedregosa
240 Gael Varoquaux
149 Alexandre Gramfort
116 Olivier Grisel

40 Vincent Michel

38 Ron Weiss

23 Matthieu Perrot

10 Bertrand Thirion

7 Yaroslav Halchenko
9 VirgileFritsch

6 Edouard Duchesnay
4 Mathieu Blondel

1 Ariel Rokem

1 Matthieu Brucher

1.7.25 Version 0.4

August 26, 2010

Changelog

Major changes in this release include:

Coordinate Descent algorithm (Lasso, ElasticNet) refactoring & speed improvements (roughly 100x times
faster).

Coordinate Descent Refactoring (and bug fixing) for consistency with R’s package GLMNET.
New metrics module.

New GMM module contributed by Ron Weiss.

Implementation of the LARS algorithm (without Lasso variant for now).

feature_selection module redesign.

Migration to GIT as version control system.

Removal of obsolete attrselect module.

Rename of private compiled extensions (added underscore).

Removal of legacy unmaintained code.

Documentation improvements (both docstring and rst).

Improvement of the build system to (optionally) link with MKL. Also, provide a lite BLAS implementation in
case no system-wide BLAS is found.

104

Chapter 1. Welcome to scikit-learn

scikit-learn user guide, Release 0.19.1

* Lots of new examples.

* Many, many bug fixes ...

Authors

The committer list for this release is the following (preceded by number of commits):
* 143 Fabian Pedregosa
* 35 Alexandre Gramfort
* 34 Olivier Grisel
e 11 Gael Varoquaux
* 5 Yaroslav Halchenko
* 2 Vincent Michel
* 1 Chris Filo Gorgolewski

1.7.26 Earlier versions

Earlier versions included contributions by Fred Mailhot, David Cooke, David Huard, Dave Morrill, Ed Schofield,
Travis Oliphant, Pearu Peterson.

1.7. Release history 105

scikit-learn user guide, Release 0.19.1

106 Chapter 1. Welcome to scikit-learn

CHAPTER
TWO

SCIKIT-LEARN TUTORIALS

2.1 An introduction to machine learning with scikit-learn

Section contents

In this section, we introduce the machine learning vocabulary that we use throughout scikit-learn and give a simple
learning example.

2.1.1 Machine learning: the problem setting

In general, a learning problem considers a set of n samples of data and then tries to predict properties of unknown data.
If each sample is more than a single number and, for instance, a multi-dimensional entry (aka multivariate data), it is
said to have several attributes or features.

We can separate learning problems in a few large categories:

* supervised learning, in which the data comes with additional attributes that we want to predict (Click here to go
to the scikit-learn supervised learning page).This problem can be either:

— classification: samples belong to two or more classes and we want to learn from already labeled data how
to predict the class of unlabeled data. An example of classification problem would be the handwritten digit
recognition example, in which the aim is to assign each input vector to one of a finite number of discrete
categories. Another way to think of classification is as a discrete (as opposed to continuous) form of
supervised learning where one has a limited number of categories and for each of the n samples provided,
one is to try to label them with the correct category or class.

— regression: if the desired output consists of one or more continuous variables, then the task is called
regression. An example of a regression problem would be the prediction of the length of a salmon as a
function of its age and weight.

 unsupervised learning, in which the training data consists of a set of input vectors x without any corresponding
target values. The goal in such problems may be to discover groups of similar examples within the data, where
it is called clustering, or to determine the distribution of data within the input space, known as density estima-
tion, or to project the data from a high-dimensional space down to two or three dimensions for the purpose of
visualization (Click here to go to the Scikit-Learn unsupervised learning page).

107

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Sample_(statistics)
https://en.wikipedia.org/wiki/Multivariate_random_variable
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Classification_in_machine_learning
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Density_estimation
https://en.wikipedia.org/wiki/Density_estimation

scikit-learn user guide, Release 0.19.1

Training set and testing set

Machine learning is about learning some properties of a data set and applying them to new data. This is why a
common practice in machine learning to evaluate an algorithm is to split the data at hand into two sets, one that we
call the training set on which we learn data properties and one that we call the testing set on which we test these
properties.

2.1.2 Loading an example dataset
scikit-learn comes with a few standard datasets, for instance the iris and digits datasets for classification and the boston
house prices dataset for regression.

In the following, we start a Python interpreter from our shell and then load the iris and digits datasets. Our
notational convention is that $ denotes the shell prompt while >>> denotes the Python interpreter prompt:

$ python
>>> from sklearn import datasets
>>> iris = datasets.load_iris()

>>> digits = datasets.load_digits /()

A dataset is a dictionary-like object that holds all the data and some metadata about the data. This data is stored in
the . data member, whichisan_samples, n_features array. In the case of supervised problem, one or more
response variables are stored in the .target member. More details on the different datasets can be found in the
dedicated section.

For instance, in the case of the digits dataset, digits.data gives access to the features that can be used to classify
the digits samples:

>>> print (digits.data)

([0. 0. 5. ..., 0. 0. 0.]
[0. 0. 0. ..., 10. 0. 0.]
[0. 0. 0. ..., 1e6. 9. 0.]
[0. 0 1. , 6. 0. 0.]
[0. 0. 2. ..., 12. 0. 0.]
[0. 0. 10. ..., 12. 1. 0.1]

and digits.target gives the ground truth for the digit dataset, that is the number corresponding to each digit
image that we are trying to learn:

>>> digits.target
array ([0, 1, 2, ..., 8, 9, 81)

Shape of the data arrays

The data is always a 2D array, shape (n_samples, n_features), although the original data may have had a
different shape. In the case of the digits, each original sample is an image of shape (8, 8) and can be accessed
using:

>>> digits.images[0]
array ([[-7 0., 5., 13., - 1., . sl

0.
3.
4
5

[
[
[
[

[

-]

.
~
(@)
~
(o)}
~
=
i
~
[
o
~
(@)
~
o
~
(@)

108) Chapter 2. scikit-learn Tutorials

https://en.wikipedia.org/wiki/Iris_flower_data_set
http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
http://archive.ics.uci.edu/ml/datasets/Housing
http://archive.ics.uci.edu/ml/datasets/Housing

scikit-learn user guide, Release 0.19.1

The simple example on this dataset illustrates how starting from the original problem one can shape the data for
consumption in scikit-learn.

Loading from external datasets

To load from an external dataset, please refer to loading external datasets.

2.1.3 Learning and predicting

In the case of the digits dataset, the task is to predict, given an image, which digit it represents. We are given samples
of each of the 10 possible classes (the digits zero through nine) on which we fit an estimator to be able to predict the
classes to which unseen samples belong.

In scikit-learn, an estimator for classification is a Python object that implements the methods fit (X, y) and
predict (T).

An example of an estimator is the class sklearn.svm.SVC that implements support vector classification. The
constructor of an estimator takes as arguments the parameters of the model, but for the time being, we will consider
the estimator as a black box:

>>> from sklearn import svm
>>> clf = svm.SVC(gamma=0.001, C=100.)

Choosing the parameters of the model

In this example we set the value of gamma manually. It is possible to automatically find good values for the
parameters by using tools such as grid search and cross validation.

We call our estimator instance c1 £, as it is a classifier. It now must be fitted to the model, that is, it must learn from
the model. This is done by passing our training set to the £it method. As a training set, let us use all the images of
our dataset apart from the last one. We select this training set with the [: —1] Python syntax, which produces a new
array that contains all but the last entry of digits.data:

>>> clf.fit(digits.datal[:-1], digits.target[:-11])

SVC (C=100.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma=0.001, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
t0l=0.001, verbose=False)

Now you can predict new values, in particular, we can ask to the classifier what is the digit of our last image in the
digits dataset, which we have not used to train the classifier:

>>> clf.predict(digits.datal[-1:1)
array ([8])

2.1. An introduction to machine learning with scikit-learn 109

https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Support_vector_machine

scikit-learn user guide, Release 0.19.1

N o wm bk W N F O
P T S

The corresponding image is the following: et e

images are of poor resolution. Do you agree with the classifier?

As you can see, it is a challenging task: the

A complete example of this classification problem is available as an example that you can run and study: Recognizing
hand-written digits.

2.1.4 Model persistence

It is possible to save a model in the scikit by using Python’s built-in persistence model, namely pickle:

>>> from sklearn import svm
>>> from sklearn import datasets

>>> clf = svm.SVC()
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target

>>> clf.fit (X, vy)

SVC (C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> import pickle

>>> s = pickle.dumps(clf)
>>> clf2 = pickle.loads(s)
>>> clf2.predict (X[0:1])
array ([0])

>>> y[0]

0

In the specific case of the scikit, it may be more interesting to use joblib’s replacement of pickle (joblib.dump &
joblib. load), which is more efficient on big data, but can only pickle to the disk and not to a string:

>>> from sklearn.externals import joblib
>>> joblib.dump (clf, 'filename.pkl')

Later you can load back the pickled model (possibly in another Python process) with:

>>> clf = joblib.load('filename.pkl")

Note: joblib.dump and joblib.load functions also accept file-like object instead of filenames. More infor-
mation on data persistence with Joblib is available here.

Note that pickle has some security and maintainability issues. Please refer to section Model persistence for more
detailed information about model persistence with scikit-learn.

110 Chapter 2. scikit-learn Tutorials

../../auto_examples/datasets/plot_digits_last_image.html
https://docs.python.org/2/library/pickle.html
https://pythonhosted.org/joblib/persistence.html

scikit-learn user guide, Release 0.19.1

2.1.5 Conventions

scikit-learn estimators follow certain rules to make their behavior more predictive.

Type casting

Unless otherwise specified, input will be castto f1oat 64:

>>> import numpy as np
>>> from sklearn import random_projection

>>> rng = np.random.RandomState (0)
>>> X = rng.rand (10, 2000)

>>> X = np.array (X, dtype='float32")
>>> X.dtype

dtype ('float32")

>>> transformer = random_projection.GaussianRandomProjection ()
>>> X_new = transformer.fit_transform(X)

>>> X_new.dtype

dtype ('float64")

In this example, X is f1oat 32, whichis castto float64 by fit_transform (X).

Regression targets are cast to f1oat 64, classification targets are maintained:

>>> from sklearn import datasets

>>> from sklearn.svm import SVC

>>> 1iris = datasets.load_iris{()

>>> clf = SVC()

>>> clf.fit(iris.data, iris.target)

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
t0l=0.001, verbose=False)

>>> list(clf.predict(iris.datal:3]))
[0, 0, 0]

>>> clf.fit(iris.data, iris.target_names[iris.target])

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
to0l=0.001, verbose=False)

>>> list(clf.predict(iris.datal:3]))
['setosa', 'setosa', 'setosa']

Here, the first predict () returns an integer array, since iris.target (an integer array) was used in £it. The
second predict () returns a string array, since iris.target_names was for fitting.

Refitting and updating parameters

Hyper-parameters of an estimator can be updated after it has been constructed via the skliearn.pipeline.
Pipeline.set_params method. Calling £it () more than once will overwrite what was learned by any previous
fit():

2.1. An introduction to machine learning with scikit-learn 111

scikit-learn user guide, Release 0.19.1

>>> import numpy as np
>>> from sklearn.svm import SVC

>>> rng = np.random.RandomState (0)
>>> X = rng.rand (100, 10)

>>> y = rng.binomial(l, 0.5, 100)
>>> X_test = rng.rand(5, 10)

>>> clf = SVC()

>>> clf.set_params (kernel="linear') .fit (X, vy)

SVC (C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> clf.predict (X_test)

array ([1, 0, 1, 1, 01)

>>> clf.set_params (kernel="rbf'").fit (X, vy)

SVC (C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
to0l=0.001, verbose=False)

>>> clf.predict (X_test)

array ([0, 0O, O, 1, 01)

Here, the default kernel rbf is first changed to 1inear after the estimator has been constructed via SVC (), and
changed back to rbf to refit the estimator and to make a second prediction.

Multiclass vs. multilabel fitting

When using multiclass classifiers, the learning and prediction task that is performed is dependent on the
format of the target data fit upon:

>>> from sklearn.svm import SVC
>>> from sklearn.multiclass import OneVsRestClassifier
>>> from sklearn.preprocessing import LabelBinarizer

>>> X = [[
>>>y = [0, 0, 1, 1, 2]

>>> classif = OneVsRestClassifier (estimator=SVC (random_state=0))
>>> classif.fit (X, y) .predict (X)
array ([0, O, 1, 1, 21)

In the above case, the classifier is fit on a 1d array of multiclass labels and the predict () method therefore provides
corresponding multiclass predictions. It is also possible to fit upon a 2d array of binary label indicators:

>>> y = LabelBinarizer().fit_transform(y)
>>> classif.fit (X, y) .predict (X)
array([[1, 0O, O],

(1, o, 01,

[0, 1, 01,

[0, o, 01,

[0, 0, 011

’

Here, the classifier is fit () on a 2d binary label representation of y, using the LabelBinarizer. In this case
predict () returns a 2d array representing the corresponding multilabel predictions.

112 Chapter 2. scikit-learn Tutorials

scikit-learn user guide, Release 0.19.1

Note that the fourth and fifth instances returned all zeroes, indicating that they matched none of the three labels fit
upon. With multilabel outputs, it is similarly possible for an instance to be assigned multiple labels:

>> from sklearn.preprocessing import MultilabelBinarizer
>> vy = ([0, 11, [0, 21, [1, 31, 10, 2, 31, [2, 4]]

>> y = MultilLabelBinarizer () .fit_transform(y)

>> classif.fit (X, y) .predict (X)

array ([, 1, 0, 0, 0],
[, o, 1, o, 01,
(o, 1, o, 1, 01,
fr, o, 1, 1, 01,
o, o, 1, o, 111)

In this case, the classifier is fit upon instances each assigned multiple labels. The MultilLabelBinarizer is
used to binarize the 2d array of multilabels to £it upon. As a result, predict () returns a 2d array with multiple
predicted labels for each instance.

2.2 A tutorial on statistical-learning for scientific data processing

Statistical learning

Machine learning is a technique with a growing importance, as the size of the datasets experimental sciences are fac-
ing is rapidly growing. Problems it tackles range from building a prediction function linking different observations,
to classifying observations, or learning the structure in an unlabeled dataset.

This tutorial will explore statistical learning, the use of machine learning techniques with the goal of statistical
inference: drawing conclusions on the data at hand.

Scikit-learn is a Python module integrating classic machine learning algorithms in the tightly-knit world of scientific
Python packages (NumPy, SciPy, matplotlib).

2.2.1 Statistical learning: the setting and the estimator object in scikit-learn

Datasets

Scikit-learn deals with learning information from one or more datasets that are represented as 2D arrays. They can be
understood as a list of multi-dimensional observations. We say that the first axis of these arrays is the samples axis,
while the second is the features axis.

A simple example shipped with the scikit: iris dataset

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> data = iris.data

>>> data.shape

(150, 4)

It is made of 150 observations of irises, each described by 4 features: their sepal and petal length and width, as
detailed in iris.DESCR.

2.2. A tutorial on statistical-learning for scientific data processing 113

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Statistical_inference
http://www.scipy.org
http://www.scipy.org
http://matplotlib.org

scikit-learn user guide, Release 0.19.1

When the data is not initially in the (n_samples, n_features) shape, it needs to be preprocessed in order to
be used by scikit-learn.

An example of reshaping data would be the digits dataset

The digits dataset is made of 1797 8x8 images of hand-written digits

>>> digits = datasets.load_digits{()

>>> digits.images.shape

(1797, 8, 8)

>>> import matplotlib.pyplot as plt

>>> plt.imshow(digits.images[-1], cmap=plt.cm.gray_r)
<matplotlib.image.AxesImage object at ...>

To use this dataset with the scikit, we transform each 8x8 image into a feature vector of length 64

>>> data = digits.images.reshape((digits.images.shape[0], -1))

Estimators objects

Fitting data: the main API implemented by scikit-learn is that of the estimator. An estimator is any object that learns
from data; it may be a classification, regression or clustering algorithm or a transformer that extracts/filters useful
features from raw data.

All estimator objects expose a £it method that takes a dataset (usually a 2-d array):

>>> estimator.fit (data)

Estimator parameters: All the parameters of an estimator can be set when it is instantiated or by modifying the
corresponding attribute:

>>> estimator = Estimator (paraml=1, param2=2)
>>> estimator.paraml
1

Estimated parameters: When data is fitted with an estimator, parameters are estimated from the data at hand. All the
estimated parameters are attributes of the estimator object ending by an underscore:

>>> estimator.estimated_param_

114 Chapter 2. scikit-learn Tutorials

../../auto_examples/datasets/plot_digits_last_image.html

scikit-learn user guide, Release 0.19.1

2.2.2 Supervised learning: predicting an output variable from high-dimensional ob-
servations

The problem solved in supervised learning

Supervised learning consists in learning the link between two datasets: the observed data X and an external variable
y that we are trying to predict, usually called “target” or “labels”. Most often, y is a 1D array of length n_samples.

All supervised estimators in scikit-learn implement a £it (X, y) method to fit the model and a predict (X)
method that, given unlabeled observations X, returns the predicted labels y.

Vocabulary: classification and regression

If the prediction task is to classify the observations in a set of finite labels, in other words to “name” the objects
observed, the task is said to be a classification task. On the other hand, if the goal is to predict a continuous target
variable, it is said to be a regression task.

When doing classification in scikit-learn, y is a vector of integers or strings.

Note: See the Introduction to machine learning with scikit-learn Tutorial for a quick run-through on the basic
machine learning vocabulary used within scikit-learn.

Nearest neighbor and the curse of dimensionality

Classifying irises: I

2.2. A tutorial on statistical-learning for scientific data processing 115

https://en.wikipedia.org/wiki/Estimator

scikit-learn user guide, Release 0.19.1

First three PCA directions

10122nuabia pIE

15t eigenvecte’

The iris dataset is a
classification task consisting in identifying 3 different types of irises (Setosa, Versicolour, and Virginica) from their
petal and sepal length and width:

>>> import numpy as np

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> iris X = iris.data

>>> iris_y

iris.target
>>> np.unique (iris_y)
array ([0, 1, 21])

k-Nearest neighbors classifier

The simplest possible classifier is the nearest neighbor: given a new observation X_test, find in the training set (i.e.
the data used to train the estimator) the observation with the closest feature vector. (Please see the Nearest Neighbors
section of the online Scikit-learn documentation for more information about this type of classifier.)

Training set and testing set

While experimenting with any learning algorithm, it is important not to test the prediction of an estimator on the

data used to fit the estimator as this would not be evaluating the performance of the estimator on new data. This is
why datasets are often split into train and test data.

116 Chapter 2. scikit-learn Tutorials

../../auto_examples/datasets/plot_iris_dataset.html
https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

scikit-learn user guide, Release 0.19.1

3-Class classification (k = 15, weights = 'uniform’)

5.0
4.5 a
. o
4.0 ° °
e L]
3.5 e 800 o e
° o 2% o o eg .
e 00 @
3.0 4 og rﬂa o §° § ::g:nz u u
Sy
2.5 1 3 o 30.
-] o o 5 oo
2.0 A [}
1.5 4
1..0 T T T T T
4 5 6 7 8

KNN (k nearest neighbors) classification example:

>>> # Split iris data in train and test data
>>> # A random permutation, to split the data randomly
>>> np.random.seed(0)

>>> indices = np.random.permutation(len(iris_X))
>>> iris_X_train = iris_X[indices[:-10]]
>>> iris_y_train = iris_yl[indices](: ,10]]
>>> iris_X_ test = iris_X[indices[-10:]]
>>> iris_y_test = iris_y[indices[-10:1]]

>>> # Create and fit a nearestfneigrbor classifier

>>> from sklearn.neighbors import KNeighborsClassifier

>>> knn = KNeighborsClassifier ()

>>> knn.fit (iris_X_train, iris_y_train)

KNeighborsClassifier (algorithm="auto', leaf_size=30, metric="'minkowski'
metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='uniform')

>>> knn.predict (iris_X_test)

array ([, 2, 1, 0, 0, 0, 2, 1, 2, 0])

>>> iris_y_test

array([(1, 1, 1, 0, 0, O, 2, 1, 2, 0])

The curse of dimensionality

For an estimator to be effective, you need the distance between neighboring points to be less than some value d, which
depends on the problem. In one dimension, this requires on average n ~ 1/d points. In the context of the above k-NN
example, if the data is described by just one feature with values ranging from O to 1 and with n training observations,
then new data will be no further away than 1/n. Therefore, the nearest neighbor decision rule will be efficient as soon
as 1/n is small compared to the scale of between-class feature variations.

If the number of features is p, you now require n ~ 1/dP points. Let’s say that we require 10 points in one dimension:
now 10P points are required in p dimensions to pave the [0, 1] space. As p becomes large, the number of training points
required for a good estimator grows exponentially.

For example, if each point is just a single number (8 bytes), then an effective k-NN estimator in a paltry p ~ 20
dimensions would require more training data than the current estimated size of the entire internet (1000 Exabytes or

2.2. A tutorial on statistical-learning for scientific data processing 117

../../auto_examples/neighbors/plot_classification.html

scikit-learn user guide, Release 0.19.1

SO).

This is called the curse of dimensionality and is a core problem that machine learning addresses.

Linear model: from regression to sparsity

Diabetes dataset

The diabetes dataset consists of 10 physiological variables (age, sex, weight, blood pressure) measure on 442
patients, and an indication of disease progression after one year:

>>> diabetes = datasets.load_diabetes /()

>>> diabetes_X_train = diabetes.datal[:-20]
>>> diabetes_X_test = diabetes.data[-20:]
>>> diabetes_y_train = diabetes.target[:-20]
>>> diabetes_y_test = diabetes.target[-20:]

The task at hand is to predict disease progression from physiological variables.

Linear regression

LinearRegression, in its simplest form, fits a linear model to the data set by adjusting a set
of parameters in order to make the sum of the squared residuals of the model as small as possible.

Linear models: y = X3 + ¢
e X: data
* y: target variable
¢ f3: Coefficients

¢ ¢: Observation noise

>>> from sklearn import linear_model

>>> regr = linear_model.LinearRegression ()

>>> regr.fit (diabetes_X_train, diabetes_y_train)

LinearRegression (copy_X=True, fit_intercept=True, n_Jjobs=1, normalize=False)

>>> print (regr.coef_)

[0.30349955 -237.63931533 510.53060544 327.73698041 -814.13170937
492.81458798 102.84845219 184.60648906 743.51961675 76.09517222]

>>> # The mean square error
>>> np.mean ((regr.predict (diabetes_X_test)-diabetes_y_test) «%2)
2004.56760268. ..

118 Chapter 2. scikit-learn Tutorials

https://en.wikipedia.org/wiki/Curse_of_dimensionality
../../auto_examples/linear_model/plot_ols.html

scikit-learn user guide, Release 0.19.1

>>> # Explained variance score: 1 is perfect prediction
>>> # and 0 means that there is no linear relationship
>>> # between X and y.

>>> regr.score (diabetes_X_test, diabetes_y_test)
0.5850753022690...

Shrinkage

If there are few data points per dimension, noise in the observations induces high variance:

nle

1.0 1
0.8 1
0.6 1
=
0.4 4
0.2 1
0.0 T T T X T T 1
0.0 0.2 0.4 0.6 0.8 1.0
>>> X = np.c_[.5, 1].T
>>> y = [.5, 1]
>>> test = np.c_[0, 2].T
>>> regr = linear_model.LinearRegression ()

>>> import matplotlib.pyplot as plt
>>> plt.figure ()

>>> np.random.seed (0)

>>> for _ in range(6):
this_X = .lxnp.random.normal (size=(2, 1)) + X
regr.fit (this_X, vy)
plt.plot (test, regr.predict (test))
plt.scatter (this_X, y, s=3)

A solution in high-dimensional statistical learning is to shrink the regression coefficients to zero: any
two randomly chosen set of observations are likely to be uncorrelated. This is called Ridge regression:

lataFat=)

1.0 1

0-0 T T T X T T 1
0.0 0.2 0.4 0.6 0.8 1.0

2.2. A tutorial on statistical-learning for scientific data processing 119

../../auto_examples/linear_model/plot_ols_ridge_variance.html
../../auto_examples/linear_model/plot_ols_ridge_variance.html

scikit-learn user guide, Release 0.19.1

>>> regr = linear_model.Ridge (alpha=.1)
>>> plt.figure()

>>> np.random.seed (0)

>>> for _ in range(6):
this_X = .lxnp.random.normal (size=(2, 1)) + X
regr.fit (this_X, vy)
plt.plot (test, regr.predict (test))
plt.scatter (this_X, y, s=3)

This is an example of bias/variance tradeoff: the larger the ridge a1 pha parameter, the higher the bias and the lower
the variance.

We can choose alpha to minimize left out error, this time using the diabetes dataset rather than our synthetic data:

>>> alphas = np.logspace(-4, -1, 6)
>>> from __ future import print_function
>>> print ([regr.set_params (alpha=alpha

) .fit (diabetes_X_train, diabetes_y_train,
C..) .score (diabetes_X_ test, diabetes_y_test) for alpha in alphas])
[0.5851110683883..., 0.5852073015444..., 0.5854677540698..., 0.5855512036503..., 0.
—5830717085554..., 0.57058999437...]

Note: Capturing in the fitted parameters noise that prevents the model to generalize to new data is called overfitting.
The bias introduced by the ridge regression is called a regularization.

Sparsity

Fitting only features 1 and 2

120 Chapter 2. scikit-learn Tutorials

https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Regularization_%28machine_learning%29

scikit-learn user guide, Release 0.19.1

X 2

X 2

Note: A representation of the full diabetes dataset would involve 11 dimensions (10 feature dimensions and one of
the target variable). It is hard to develop an intuition on such representation, but it may be useful to keep in mind that
it would be a fairly empty space.

We can see that, although feature 2 has a strong coefficient on the full model, it conveys little information on y when
considered with feature 1.

To improve the conditioning of the problem (i.e. mitigating the The curse of dimensionality), it would be interesting
to select only the informative features and set non-informative ones, like feature 2 to 0. Ridge regression will decrease
their contribution, but not set them to zero. Another penalization approach, called Lasso (least absolute shrinkage and
selection operator), can set some coefficients to zero. Such methods are called sparse method and sparsity can be
seen as an application of Occam’s razor: prefer simpler models.

>>> regr = linear_model.Lasso ()

>>> scores = [regr.set_params (alpha=alpha
) .fit (diabetes_X_train, diabetes_y_train
) .score (diabetes_X_test, diabetes_y_test)

ce. for alpha in alphas]

>>> best_alpha alphas|[scores.index (max (scores))]

>>> regr.alpha = best_alpha

>>> regr.fit (diabetes_X_train, diabetes_y_train)

Lasso (alpha=0.025118864315095794, copy_X=True, fit_intercept=True,
max_1iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

>>> print (regr.coef_)

[0. -212.43764548 517.19478111 313.77959962 -160.8303982 -0.

-187.19554705 69.38229038 508.66011217 71.84239008]

2.2. A tutorial on statistical-learning for scientific data processing 121

../../auto_examples/linear_model/plot_ols_3d.html
../../auto_examples/linear_model/plot_ols_3d.html
../../auto_examples/linear_model/plot_ols_3d.html

scikit-learn user guide, Release 0.19.1

Different algorithms for the same problem

Different algorithms can be used to solve the same mathematical problem. For instance the La s so object in scikit-
learn solves the lasso regression problem using a coordinate descent method, that is efficient on large datasets.
However, scikit-learn also provides the LassoLars object using the LARS algorithm, which is very efficient for
problems in which the weight vector estimated is very sparse (i.e. problems with very few observations).

Classification

1.0 A
> 0.5
0.0 = | ogistic Regression Model
—— Linear Regression Model

~4-3-2-1012 34567839
For classification, as in the labeling iris task, linear regression is not
the right approach as it Wlll give too much weight to data far from the decision frontier. A linear approach is to fit a

sigmoid function or logistic function:

1
1 +exp(—XJ + offset) te

y = sigmoid(X 3 — offset) + ¢

>>> logistic = linear_model.LogisticRegression (C=1eb)

>>> logistic.fit (iris_X_train, iris_y_train)

LogisticRegression (C=100000.0, class_weight=None, dual=False,
fit_intercept=True, intercept_scaling=1l, max_iter=100,
multi_class='ovr', n_jobs=1l, penalty='1l2', random_state=None,
solver='liblinear', tol=0.0001, verbose=0, warm_start=False)

Sepal width

Sepal length
This is known as LogisticRegression.

122 Chapter 2. scikit-learn Tutorials

https://en.wikipedia.org/wiki/Coordinate_descent
../../auto_examples/linear_model/plot_logistic.html
https://en.wikipedia.org/wiki/Iris_flower_data_set
../../auto_examples/linear_model/plot_iris_logistic.html

scikit-learn user guide, Release 0.19.1

Multiclass classification

If you have several classes to predict, an option often used is to fit one-versus-all classifiers and then use a voting
heuristic for the final decision.

Shrinkage and sparsity with logistic regression

The C parameter controls the amount of regularization in the LogisticRegression object: a large value
for C results in less regularization. penalty="12" gives Shrinkage (i.e. non-sparse coefficients), while
penalty="11" gives Sparsity.

Exercise

Try classifying the digits dataset with nearest neighbors and a linear model. Leave out the last 10% and test
prediction performance on these observations.

from sklearn import datasets, neighbors, linear_model

digits = datasets.load_digits/()
X _digits = digits.data
y_digits = digits.target

Solution: ../../auto_examples/exercises/plot_digits_classification_exercise.py

Support vector machines (SVMs)

Linear SVMs

Support Vector Machines belong to the discriminant model family: they try to find a combination of samples to build
a plane maximizing the margin between the two classes. Regularization is set by the C parameter: a small value for C
means the margin is calculated using many or all of the observations around the separating line (more regularization);
a large value for C means the margin is calculated on observations close to the separating line (less regularization).

Unregularized SVM Regularized SVM (default)

2.2. A tutorial on statistical-learning for scientific data processing 123

../../auto_examples/svm/plot_svm_margin.html
../../auto_examples/svm/plot_svm_margin.html

scikit-learn user guide, Release 0.19.1

Example:

e Plot different SVM classifiers in the iris dataset

SVMs can be used in regression —SVR (Support Vector Regression)—, or in classification —SVC (Support Vector Clas-
sification).

>>> from sklearn import svm

>>> gvc = svm.SVC (kernel="linear')

>>> svc.fit(iris_X_train, iris_y_train)

SVC (C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

Warning: Normalizing data

For many estimators, including the SVMs, having datasets with unit standard deviation for each feature is important
to get good prediction.

Using kernels

Classes are not always linearly separable in feature space. The solution is to build a decision function that is not linear
but may be polynomial instead. This is done using the kernel trick that can be seen as creating a decision energy by
positioning kernels on observations:

Linear kernel Polynomial kernel

>>> svc = svm.SVC (kernel='linear"') >>> svc = svm.SVC (kernel="'poly',
S degree=3)
>>> # degree: polynomial degree

124 Chapter 2. scikit-learn Tutorials

../../auto_examples/svm/plot_svm_kernels.html
../../auto_examples/svm/plot_svm_kernels.html

scikit-learn user guide, Release 0.19.1

RBF kernel (Radial Basis Function)

>>> gvc = svm.SVC (kernel="rbf'")

>>> # gamma: inverse of size of
>>> # radial kernel

Interactive example

See the SVM GUI to download svm_gui . py; add data points of both classes with right and left button, fit the
model and change parameters and data.

First three PCA directions

JopdaAuabIa pIE

enve ctor

1st eig

2.2. A tutorial on statistical-learning for scientific data processing 125

../../auto_examples/svm/plot_svm_kernels.html
../../auto_examples/datasets/plot_iris_dataset.html

scikit-learn user guide, Release 0.19.1

Exercise

Try classifying classes 1 and 2 from the iris dataset with SVMs, with the 2 first features. Leave out 10% of each
class and test prediction performance on these observations.

Warning: the classes are ordered, do not leave out the last 10%, you would be testing on only one class.

Hint: You can use the decision_function method on a grid to get intuitions.

iris = datasets.load_iris/()
X = iris.data

y = iris.target

X = X[y != 0, :2]

y = yly !'= 0]

Solution: ../../auto_examples/exercises/plot_iris_exercise.py

2.2.3 Model selection: choosing estimators and their parameters

Score, and cross-validated scores

As we have seen, every estimator exposes a score method that can judge the quality of the fit (or the prediction) on
new data. Bigger is better.

>>> from sklearn import datasets, svm

>>> digits = datasets.load_digits()

>>> X_digits = digits.data

>>> y_digits = digits.target

>>> gsvc = svm.SVC(C=1, kernel='linear')

>>> sve.fit(X_digits[:-100], y_digits[:-100]) .score(X_digits[-100:], y_digits[-100:])
0.97999999999999998

To get a better measure of prediction accuracy (which we can use as a proxy for goodness of fit of the model), we can
successively split the data in folds that we use for training and testing:

>>> import numpy as np
>>> X_folds = np.array_split (X_digits, 3)
>>> y_folds = np.array_split (y_digits, 3)
>>> gcores = list ()
>>> for k in range(3):
We use 'list' to copy, in order to 'pop' later on
X_train = list (X_folds)
X_test = X_train.pop (k)
X_train = np.concatenate (X_train)
y_train = list (y_folds)
y_test = y_train.pop (k)
y_train = np.concatenate(y_train)
C scores.append(svc.fit (X_train, y_train) .score(X_test, y_test))
>>> print (scores)
[0.93489148580968284, 0.95659432387312182, 0.93989983305509184]

This is called a KF'o1d cross-validation.

126 Chapter 2. scikit-learn Tutorials

scikit-learn user guide, Release 0.19.1

Cross-validation generators
Scikit-learn has a collection of classes which can be used to generate lists of train/test indices for popular cross-
validation strategies.

They expose a split method which accepts the input dataset to be split and yields the train/test set indices for each
iteration of the chosen cross-validation strategy.

This example shows an example usage of the split method.

>>> from sklearn.model_selection import KFold, cross_val_score
>>> X . [lla", "a", "b", "C", Hc", Hc"}

>>> k_fold = KFold(n_splits=3)

>>> for train_indices, test_indices in k_fold.split (X):

C.. print ('Train: | test: ' % (train_indices, test_indices))
Train: [2 3 4 5] | test: [0 1]
Train: [0 1 4 5] | test: [2 3]

Train: [0 1 2 3] test: [4 5]

The cross-validation can then be performed easily:

>>> [svc.fit (X _digits[train], y_digits[train]) .score (X _digits[test], y_digits[test])
C for train, test in k_fold.split (X_digits)]
[0.93489148580968284, 0.95659432387312182, 0.93989983305509184]

The cross-validation score can be directly calculated using the cross_val_score helper. Given an estimator, the
cross-validation object and the input dataset, the cross_val_score splits the data repeatedly into a training and a
testing set, trains the estimator using the training set and computes the scores based on the testing set for each iteration
of cross-validation.

By default the estimator’s score method is used to compute the individual scores.

Refer the metrics module to learn more on the available scoring methods.

>>> cross_val_score(svc, X_digits, y_digits, cv=k_fold, n_jobs=-1)
array ([0.93489149, 0.95659432, 0.93989983])

n_jobs=-1 means that the computation will be dispatched on all the CPUs of the computer.

Alternatively, the scoring argument can be provided to specify an alternative scoring method.

>>> cross_val_score(svc, X_digits, y_digits, cv=k_fold,
C. scoring='precision_macro')
array ([0.93969761, 0.95911415, 0.94041254])

Cross-validation generators

KFold (n_splits, shuffle, ran- | StratifiedKFold (n_splits, | GroupKFold (n_splits)
dom_state) shuffle, random_state)

Splits it into K folds, trains on K-1 | Same as K-Fold but preserves the | Ensures that the same group is not in
and then tests on the left-out. class distribution within each fold. both testing and training sets.
ShuffleSplit (n_splits, | StratifiedShuffleSplit GroupShuffleSplit
test_size, train_size, ran-

dom_state)

Generates train/test indices based | Same as shuffle split but preserves the | Ensures that the same group is not
on random permutation. class distribution within each iteration. | in both testing and training sets.

2.2. A tutorial on statistical-learning for scientific data processing 127

scikit-learn user guide, Release 0.19.1

LeaveOneGroupOut () LeavePGroupsOut (n_groups) | LeaveOneOut ()
Takes a group array to group observations. | Leave P groups out. Leave one observation out.
LeavePOut (p) PredefinedSplit

Leave P observations out. | Generates train/test indices based on predefined splits.

Exercise

0.8 1

0.6 1

CV score

0.4 1

0.2 1

T T T T T
-9 -7 -5 -3 -1
10 10 10 10 10 On the digits dataset, plot the cross-validation

score of a SVC estimator with an linear kernel as a function of parameter C (use a logarithmic grid of points,
from 1 to 10).

import numpy as np
from sklearn.model_selection import cross_val_score
from sklearn import datasets, svm

digits = datasets.load_digits()
X = digits.data
y = digits.target

svc = svm.SVC (kernel="linear"')
C_s = np.logspace(-10, 0, 10)

Solution: Cross-validation on Digits Dataset Exercise

Grid-search and cross-validated estimators

Grid-search

scikit-learn provides an object that, given data, computes the score during the fit of an estimator on a parameter grid and
chooses the parameters to maximize the cross-validation score. This object takes an estimator during the construction
and exposes an estimator API:

>>> from sklearn.model_selection import GridSearchCV, cross_val_score
>>> Cs = np.logspace (-6, -1, 10)

128 Chapter 2. scikit-learn Tutorials

../../auto_examples/exercises/plot_cv_digits.html

scikit-learn user guide, Release 0.19.1

>>> clf = GridSearchCV (estimator=svc, param_grid=dict (C=Cs),
.. n_jobs=-1)

>>> clf.fit(X_digits[:1000], y_digits[:1000])

GridSearchCV (cv=None, ...

>>> clf.best_score_

0.925...

>>> clf.best_estimator_.C

0.0077...

>>> # Prediction performance on test set is not as good as on train set
>>> clf.score (X _digits[1000:], y_digits[1000:])
0.943...

By default, the GridSearchCV uses a 3-fold cross-validation. However, if it detects that a classifier is passed, rather

than a regressor, it uses a stratified 3-fold.

Nested cross-validation

>>> cross_val_score(clf, X_digits, y_digits)

array ([0.938..., 0.963..., 0.944...])

Two cross-validation loops are performed in parallel: one by the GridSearchCV estimator to set gamma and the
other one by cross_val_score to measure the prediction performance of the estimator. The resulting scores
are unbiased estimates of the prediction score on new data.

Warning: You cannot nest objects with parallel computing (n_jobs different than 1).

Cross-validated estimators

Cross-validation to set a parameter can be done more efficiently on an algorithm-by-algorithm basis. This is why, for
certain estimators, scikit-learn exposes Cross-validation: evaluating estimator performance estimators that set their

parameter automatically by cross-validation:

>>> from sklearn import linear model, datasets
>>> lasso = linear_model.LassoCV ()

>>> diabetes = datasets.load_diabetes()

>>> X_diabetes = diabetes.data

>>> y_diabetes = diabetes.target

>>> lasso.fit (X_diabetes, y_diabetes)

LassoCV (alphas=None, copy_X=True, cv=None, eps=0.001, fit_intercept=True,
max_1iter=1000, n_alphas=100, n_jobs=1, normalize=False, positive=False,
precompute='auto', random_state=None, selection='cyclic', tol=0.0001,

verbose=False)
>>> # The estimator chose automatically its lambda:
>>> lasso.alpha_
0.01229...

These estimators are called similarly to their counterparts, with ‘CV’ appended to their name.

2.2. A tutorial on statistical-learning for scientific data processing

129

scikit-learn user guide, Release 0.19.1

Exercise

On the diabetes dataset, find the optimal regularization parameter alpha.

Bonus: How much can you trust the selection of alpha?

from sklearn import datasets

from sklearn.linear model import LassoCV

from sklearn.linear model import Lasso

from sklearn.model_selection import KFold

from sklearn.model_selection import GridSearchCV

diabetes = datasets.load_diabetes /()

Solution: Cross-validation on diabetes Dataset Exercise

2.2.4 Unsupervised learning: seeking representations of the data

Clustering: grouping observations together

The problem solved in clustering

Given the iris dataset, if we knew that there were 3 types of iris, but did not have access to a taxonomist to label
them: we could try a clustering task: split the observations into well-separated group called clusters.

K-means clustering

Note that there exist a lot of different clustering criteria and associated algorithms. The simplest clustering algorithm
3 clusters

Petal length

A {5
G"éf,%_ \\6‘@
/) cJe,Q'b

is K-means.

>>> from sklearn import cluster, datasets

>>> iris = datasets.load_iris()

>>> X_iris = iris.data

>>> y_iris = iris.target

>>> k_means = cluster.KMeans (n_clusters=3)

>>> k_means.fit (X_iris)
KMeans (algorithm="auto', copy_x=True, init='k-means++',
>>> print (k_means.labels_[::10])

130 Chapter 2. scikit-learn Tutorials

../../auto_examples/cluster/plot_cluster_iris.html

scikit-learn user guide, Release 0.19.1

[1 1111000002222 2]
>>> print(y_iris[::10])
[0O0OO0OO0O0O1 11112222 2]

Warning: There is absolutely no guarantee of recovering a ground truth. First, choosing the right number of
clusters is hard. Second, the algorithm is sensitive to initialization, and can fall into local minima, although scikit-

learn employs several tricks to mitigate this issue.

3 clusters, bad initialization 8 clusters Ground Truth
Vlr'gimca
= = ’ sicolour =
5 g f‘”f% £
x L} & <
E E Setosa E
¥ & @r @
efzi/ _ \e\-\Q
Mdtf, c)e,Qb\
Bad initialization 8 clusters Ground truth

Don’t over-interpret clustering results

Application example: vector quantization

Clustering in general and KMeans, in particular, can be seen as a way of choosing a small number of exemplars to
compress the information. The problem is sometimes known as vector quantization. For instance, this can be used

to posterize an image:

>>> import scipy as sp
>>> try:

face = sp.face(gray=True)

except AttributeError:

from scipy import misc
.. face = misc.face (gray=True)
>>> X = face.reshape((-1, 1)) # We need an (n_sample, n_feature) array
>>> k_means = cluster.KMeans (n_clusters=5, n_init=1)
>>> k_means.fit (X)
KMeans (algorithm="auto', copy_x=True,
>>> values = k_means.cluster_centers_.squeeze ()
>>> labels = k_means.labels_
>>> face_compressed = np.choose (labels,
>>> face_compressed.shape = face.shape

init='k-means++"',

values)

200

400

600

1000

] .| 3
250 500 750 1000 750

250 500
Equal bins Image histogram

K-means quantization

Raw image

2.2. A tutorial on statistical-learning for scientific data processing 131

../../auto_examples/cluster/plot_cluster_iris.html
../../auto_examples/cluster/plot_cluster_iris.html
../../auto_examples/cluster/plot_cluster_iris.html
https://en.wikipedia.org/wiki/Vector_quantization
../../auto_examples/cluster/plot_face_compress.html
../../auto_examples/cluster/plot_face_compress.html
../../auto_examples/cluster/plot_face_compress.html
../../auto_examples/cluster/plot_face_compress.html

scikit-learn user guide, Release 0.19.1

Hierarchical agglomerative clustering: Ward

A Hierarchical clustering method is a type of cluster analysis that aims to build a hierarchy of clusters. In general, the
various approaches of this technique are either:

* Agglomerative - bottom-up approaches: each observation starts in its own cluster, and clusters are iteratively
merged in such a way to minimize a linkage criterion. This approach is particularly interesting when the clus-
ters of interest are made of only a few observations. When the number of clusters is large, it is much more
computationally efficient than k-means.

* Divisive - top-down approaches: all observations start in one cluster, which is iteratively split as one moves
down the hierarchy. For estimating large numbers of clusters, this approach is both slow (due to all observations
starting as one cluster, which it splits recursively) and statistically ill-posed.

Connectivity-constrained clustering

With agglomerative clustering, it is possible to specify which samples can be clustered together by giving a connec-
tivity graph. Graphs in the scikit are represented by their adjacency matrix. Often, a sparse matrix is used. This
can be useful, for instance, to retrieve connected regions (sometimes also referred to as connected components) when

clustering an image:

import matplotlib.pyplot as plt

from sklearn.feature_extraction.image import grid_to_graph
from sklearn.cluster import AgglomerativeClustering

HEHAFHAEAFAAEAFAFEAFAFEAFAF A FAF AR F AR F AR F AR F AR H A A A A A A 1A
Generate data
try: # SciPy >= 0.16 have face in misc
from scipy.misc import face
face = face(gray=True)
except ImportError:
face = sp.face(gray=True)

Resize it to 10% of the original size to speed up the processing
face = sp.misc.imresize(face, 0.10) / 255.

X = np.reshape (face, (-1, 1))
HAAFAAHARAAAAHARAHARAFARRFARAA AR A A AR A AR A AR A AR H AR AR A AR AR A H AR E A A

Define the structure A of the data. Pixels connected to their neighbors.
connectivity = grid_to_graph (xface.shape)

132 Chapter 2. scikit-learn Tutorials

../../auto_examples/cluster/plot_face_ward_segmentation.html

scikit-learn user guide, Release 0.19.1

HAHAFAARAAAARAAAAEAAAAEAFAAAAFAAAA A AR R AR AR FAA RS FAF RS AAFEA A A A A

Feature agglomeration

We have seen that sparsity could be used to mitigate the curse of dimensionality, i.e an insufficient amount of ob-
servations compared to the number of features. Another approach is to merge together similar features: feature
agglomeration. This approach can be implemented by clustering in the feature direction, in other words clustering

Original data

Ul]L]s

Agglomerated data

[EAEA RS

Labels

the transposed data.

>>> digits = datasets.load_digits{()

>>> images = digits.images

>>> X = np.reshape (images, (len(images), -1))

>>> connectivity = grid_to_graph(ximages[0] .shape)

>>> agglo = cluster.FeatureAgglomeration (connectivity=connectivity,
C. n_clusters=32)

>>> agglo.fit (X)
FeatureAgglomeration(affinity='euclidean', compute_full_tree='auto', ...
>>> X_reduced = agglo.transform (X)

>>> X_approx = agglo.inverse_transform(X_reduced)
>>> images_approx = np.reshape (X_approx, images.shape)

transformand inverse_ transform methods

Some estimators expose a t rans form method, for instance to reduce the dimensionality of the dataset.

Decompositions: from a signal to components and loadings

Components and loadings

If X is our multivariate data, then the problem that we are trying to solve is to rewrite it on a different observational
basis: we want to learn loadings L and a set of components C such that X = L C. Different criteria exist to choose
the components

2.2. A tutorial on statistical-learning for scientific data processing 133

../../auto_examples/cluster/plot_digits_agglomeration.html

scikit-learn user guide, Release 0.19.1

Principal component analysis: PCA

Principal component analysis (PCA) selects the successive components that explain the maximum variance in the
signal.

The point cloud spanned by the observations above is very flat in one direction: one of the three univariate features
can almost be exactly computed using the other two. PCA finds the directions in which the data is not flat

When used to transform data, PCA can reduce the dimensionality of the data by projecting on a principal subspace.

>>> # Create a signal with only 2 useful dimensions

>>> x1 = np.random.normal (size=100)
>>> x2 = np.random.normal (size=100)
>>> x3 = x1 + x2

>>> X = np.c_|[x1l, x2, x3]

>>> from sklearn import decomposition

>>> pca = decomposition.PCA()

>>> pca.fit (X)

PCA (copy=True, iterated_power='auto', n_components=None, random_state=None,
svd_solver='auto', tol=0.0, whiten=False)

>>> print (pca.explained_variance_)

[2.18565811e+00 1.19346747e+00 8.43026679e-32]

>>> # As we can see, only the 2 first components are useful
>>> pca.n_components = 2

>>> X_reduced = pca.fit_transform(X)

>>> X_reduced.shape

(100, 2)

Independent Component Analysis: ICA

Independent component analysis (ICA) selects components so that the distribution of their loadings carries
a maximum amount of independent information. It is able to recover non-Gaussian independent signals:

134 Chapter 2. scikit-learn Tutorials

../../auto_examples/decomposition/plot_pca_3d.html
../../auto_examples/decomposition/plot_pca_3d.html

scikit-learn user guide, Release 0.19.1

Observations (mixed signal)

5

5

T T T T T T T T
0 250 500 75q- rue]ggﬁ rce%2 50 1500 1750 2000

2.5 A

0.0 4

—2.5

0 250 500 |C£5PECO\;8P8€| Sims 1500 1750 2000

0.05

0.00

—0.05 A

0 2%0 560 P(‘?ﬁ;Qeco&g‘%d SiEIHQIS 15|00 1}'I50 20|C-0

10 ~

—10 - T T T T T T T T T
n 280 SO0 750 100N 1280 1500 1750 200n

>>> # Generate sample data
>>> import numpy as np

>>> from scipy import signal

>>> time = np.linspace (0, 10, 2000)

>>> sl = np.sin(2 x time) # Signal 1 sinusoidal signal

>>> s2 = np.sign(np.sin(3 * time)) # Signal 2 square signal

>>> s3 = signal.sawtooth(2 % np.pi * time) # Signal 3: saw tooth signal
>>> S = np.c_|[sl, s2, s3]

>>> S += 0.2 * np.random.normal (size=S.shape) # Add noise

>>> S /= S.std(axis=0) # Standardize data

>>> # Mix data

>>> A = np.array([[1, 1, 1], [0.5, 2, 11, [1.5, 1, 2]11) # Mixing matrix
>>> X = np.dot (S, A.T) # Generate observations

>>> # Compute ICA

>>> ica = decomposition.FastICA()

>>> S_ = ica.fit_transform(X) # Get the estimated sources

>>> A_ = ica.mixing_.T

>>> np.allclose (X, np.dot (S_, A_) + ica.mean_)

True

2.2. A tutorial on statistical-learning for scientific data processing

135

../../auto_examples/decomposition/plot_ica_blind_source_separation.html

scikit-learn user guide, Release 0.19.1

2.2.5 Putting it all together
Pipelining

We have seen that some estimators can transform data and that some estimators can predict variables. We can also

------ n_components chosen

1150 ~

100 ~

_variance,

50 A

explained

0 20 40 60
n_components
create combined estimators:

import numpy as np
import matplotlib.pyplot as plt

from sklearn import linear_model, decomposition, datasets
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV

logistic = linear_model.LogisticRegression ()

pca = decomposition.PCA()
pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)])

digits = datasets.load_digits{()
X_digits = digits.data
y_digits = digits.target

Plot the PCA spectrum
pca.fit (X_digits)

plt.figure(l, figsize=(4, 3))

plt.clf ()

plt.axes([.2, .2, .7, .71)

plt.plot (pca.explained_variance_, linewidth=2)
plt.axis('tight"')

plt.xlabel ('n_components')

plt.ylabel ('explained_variance_"')

Prediction
n_components = [20, 40, 64]
Cs = np.logspace (-4, 4, 3)

Parameters of pipelines can be set using ‘' ' separated parameter names:
estimator = GridSearchCV (pipe,
dict (pca__n_components=n_components,
logistic__C=Cs))
estimator.fit (X_digits, y_digits)

plt.axvline (estimator.best_estimator_.named_steps|['pca'].n_components,
linestyle=':"', label='n_components chosen')

136 Chapter 2. scikit-learn Tutorials

../../auto_examples/plot_digits_pipe.html

scikit-learn user guide, Release 0.19.1

plt.legend (prop=dict (size=12))
plt.show ()

Face recognition with eigenfaces

The dataset used in this example is a preprocessed excerpt of the “Labeled Faces in the Wild”, also known as LFW:

http://vis-www.cs.umass.edu/Ifw/lfw-funneled.tgz (233MB)

mwn

The dataset used in this example is a preprocessed excerpt of the
"Labeled Faces in the wild", aka LEFW_:

http://vis-www.cs.umass.edu/lfw/1fw-funneled.tgz (233MB)
. _LFW: http://vis-www.cs.umass.edu/lfw/

Expected results for the top 5 most represented people in the dataset:

precision recall fl-score support

Ariel Sharon 0.67 0.92 0.77 13
Colin Powell 0.75 0.78 0.76 60
Donald Rumsfeld 0.78 0.67 0.72 27
George W Bush 0.86 0.86 0.86 146
Gerhard Schroeder 0.76 0.76 0.76 25
Hugo Chavez 0.67 0.67 0.67 15

Tony Blair 0.81 0.69 0.75 36

avg / total 0.80 0.80 0.80 322

mwn

from _ future import print_function

from time import time
import logging
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCVv
from sklearn.datasets import fetch_lfw_people

from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix

from sklearn.decomposition import PCA

from sklearn.svm import SVC

print (__doc__)

Display progress logs on stdout
logging.basicConfig(level=logging.INFO, format='<% (asctime)s ¢ (message)s')

2.2. A tutorial on statistical-learning for scientific data processing 137

http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz

scikit-learn user guide, Release 0.19.1

HAFFRAFFRAFFHAFFRAFFRAFHHAFFAAFHAAFHAAFRAAFHAAFEAAFRAFFEAA R FRAA R A F R A A

Download the data, if not already on disk and load it as numpy arrays
1fw_people = fetch_lfw_people (min_faces_per_person=70, resize=0.4)

introspect the images arrays to find the shapes (for plotting)
n_samples, h, w = lfw_people.images.shape

for machine learning we use the 2 data directly (as relative pixel
positions info is ignored by this model)

X = lfw_people.data

n_features = X.shape[l]

the label to predict is the id of the person
y = 1lfw_people.target

target_names = 1lfw_people.target_names
n_classes = target_names.shape[0]

print ("Total dataset size:")

print ("n_samples: $d" % n_samples)
(
(

print ("n_features: 2d" % n_features)
print ("n_classes: 2d" % n_classes)
HAAFAAEHAAHFAAHA AR HA AR HAARFA R HA AR AR H AR A AR AR H AR RH AR H AR AR A H 4

Split into a training set and a test set using a stratified k fold

split into a training and testing set
X_train, X_test, y_train, y_test = train_test_split (
X, vy, test_size=0.25, random_state=42)

FHARFAAFAAHA AR HAAHFA AR A H AR HF AR HH A A A H A HH AR A A H AR A AR A4 1A
Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
dataset): unsupervised feature extraction / dimensionality reduction

Dok Hk I

_components = 150

print ("Extracting the top $%d eigenfaces from %d faces"
% (n_components, X_train.shape[0]))
t0 = time ()
pca = PCA(n_components=n_components, svd_solver='randomized',
whiten=True) .fit (X_train)
print ("done in 20.3fs" % (time() - t0))

eigenfaces = pca.components_.reshape ((n_components, h, w))

print ("Projecting the input data on the eigenfaces orthonormal basis")
t0 = time ()

X_train_pca = pca.transform(X_train)

X_test_pca = pca.transform(X_test)

)

print ("done in $0.3fs" % (time() - t0))

HAFFRAAFRAFFHAFFRAFFRAFFHAFFAAFHAAFHAAFRAAFHAAFEAAFRAA R R FRAA A F A RS

Train a SVM classification model

138 Chapter 2. scikit-learn Tutorials

scikit-learn user guide, Release 0.19.1

print ("Fitting the classifier to the training set")
t0 = time ()
param_grid = {'C': [le3, 5e3, 1led4, 5e4, 1leb],
'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.11, }
clf = GridSearchCV (SVC (kernel="rbf', class_weight='balanced'), param_grid)
clf = clf.fit (X _train_pca, y_train)
print ("done in 20.3fs" % (time() - t0))
print ("Best estimator found by grid search:")
print (clf.best_estimator_)

HAFFRAFFRAFFHAFFRAFFRAFFHAFFAAFHAAFFAAFRAAFEAAFEAAFRAAFEAAFEAFFRAAFHAAF RS

Quantitative evaluation of the model quality on the test set

print ("Predicting people's names on the test set")

t0 = time ()
y_pred = clf.predict (X_test_pca)
print ("done in 20.3fs" % (time() - t0))

print (classification_report (y_test, y_pred, target_names=target_names))
print (confusion_matrix(y_test, y_pred, labels=range(n_classes)))

HAFFEAAFRAFFHAFFRAFFRAFFHAFFAAFHAAFFAA AR FEAAFEAAFRAAFEAAFEAAFRAFFHAAFRAF RS

Qualitative evaluation of the predictions using matplotlib

def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
"""Helper function to plot a gallery of portraits"""
plt.figure(figsize=(1.8 * n_col, 2.4 % n_row))
plt.subplots_adjust (bottom=0, left=.01, right=.99, top=.90, hspace=.35)
for i in range(n_row * n_col):
plt.subplot (n_row, n_col, i + 1)
plt.imshow (images[i].reshape((h, w)), cmap=plt.cm.gray)
plt.title(titles[i], size=12)
plt.xticks (())
plt.yticks (())

plot the result of the prediction on a portion of the test set

def title(y_pred, y_test, target_names, 1):

pred_name = target_names|[y_pred[i]].rsplit(' ', 1) [-1]
true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
return 'predicted: %s\ntrue: 25" % (pred_name, true_name)

prediction_titles = [title(y_pred, y_test, target_names, 1)
for i in range(y_pred.shape[0])]

plot_gallery (X_test, prediction_titles, h, w)
plot the gallery of the most significative eigenfaces

eigenface_titles = ["eigenface %d" % 1 for i in range(eigenfaces.shape[0])]
plot_gallery(eigenfaces, eigenface_titles, h, w)

plt.show ()

2.2. A tutorial on statistical-learning for scientific data processing 139

scikit-learn user guide, Release 0.19.1

predicted: Powell predicted: Sharon predicted: Bush predicted: Bush . .
true: Powell true: Sharon true: Bush true: Bush eigenface 0 eigenface 1 eigenface 2 eigenface 3
predicted: Bush predicted: Rumsfeld predicted: Rumsfeld predicted: Rumsfeld . .
true: Blair true: Rumsfeld true: Rumsfeld true: Blair eigenface 4 eigenface 5 eigenface 6 eigenface 7
E .
predicted: Bush predicted: Powell predicted: Chavez predicted: Rumsfeld . . .
true: Bush true: Powell true: Chavez true: Powell eigenface 8 eigenface 9 eigenface 11
Y
T .
Prediction Eigenfaces

Expected results for the top 5 most represented people in the dataset:

precision recall fl-score support

Gerhard_Schroeder 0.91 0.75 0.82 28
Donald_Rumsfeld 0.84 0.82 0.83 33
Tony_Blair 0.65 0.82 0.73 34
Colin_Powell 0.78 0.88 0.83 58
George_W_Bush 0.93 0.86 0.90 129

avg / total 0.86 0.84 0.85 282

Open problem: Stock Market Structure

Can we predict the variation in stock prices for Google over a given time frame?

Learning a graph structure

2.2.6 Finding help
The project mailing list

If you encounter a bug with scikit—1learn or something that needs clarification in the docstring or the online
documentation, please feel free to ask on the Mailing List

Q&A communities with Machine Learning practitioners

Quora.com Quora has a topic for Machine Learning related questions that also features some
interesting discussions: https://www.quora.com/topic/Machine-Learning

140 Chapter 2. scikit-learn Tutorials

http://scikit-learn.org/stable/support.html
https://www.quora.com/topic/Machine-Learning

scikit-learn user guide, Release 0.19.1

Stack Exchange The Stack Exchange family of sites hosts multiple subdomains for Machine
Learning questions.

— _’An excellent free online course for Machine Learning taught by Professor Andrew Ng of Stanford’: https://www.
coursera.org/learn/machine-learning

— _’Another excellent free online course that takes a more general approach to Aurtificial Intelligence’:
https://www.udacity.com/course/intro-to-artificial-intelligence—cs271

2.3 Working With Text Data

The goal of this guide is to explore some of the main scikit—-1learn tools on a single practical task: analysing a
collection of text documents (newsgroups posts) on twenty different topics.

In this section we will see how to:
* load the file contents and the categories
* extract feature vectors suitable for machine learning
* train a linear model to perform categorization

* use a grid search strategy to find a good configuration of both the feature extraction components and the classifier

2.3.1 Tutorial setup

To get started with this tutorial, you firstly must have the scikit-learn and all of its required dependencies installed.
Please refer to the installation instructions page for more information and for per-system instructions.

The source of this tutorial can be found within your scikit-learn folder:

scikit-learn/doc/tutorial/text_analytics/

The tutorial folder, should contain the following folders:
* x.rst files - the source of the tutorial document written with sphinx
* data - folder to put the datasets used during the tutorial
* skeletons - sample incomplete scripts for the exercises
* solutions - solutions of the exercises

You can already copy the skeletons into a new folder somewhere on your hard-drive named
sklearn_tut_workspace where you will edit your own files for the exercises while keeping the original
skeletons intact:

o

% cp -r skeletons work_directory/sklearn_tut_workspace

Machine Learning algorithms need data. Go to each $TUTORIAL_HOME/data sub-folder and run the
fetch_data.py script from there (after having read them first).

For instance:

% cd $TUTORIAL_HOME/data/languages
less fetch_data.py
python fetch_data.py

o°

oe

2.3. Working With Text Data 141

http://meta.stackexchange.com/questions/130524/which-stack-exchange-website-for-machine-learning-and-computational-algorithms
http://meta.stackexchange.com/questions/130524/which-stack-exchange-website-for-machine-learning-and-computational-algorithms
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
https://www.udacity.com/course/intro-to-artificial-intelligence--cs271

scikit-learn user guide, Release 0.19.1

2.3.2 Loading the 20 newsgroups dataset

The dataset is called “Twenty Newsgroups”. Here is the official description, quoted from the website:

The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup documents, partitioned
(nearly) evenly across 20 different newsgroups. To the best of our knowledge, it was originally collected
by Ken Lang, probably for his paper “Newsweeder: Learning to filter netnews,” though he does not explic-
itly mention this collection. The 20 newsgroups collection has become a popular data set for experiments
in text applications of machine learning techniques, such as text classification and text clustering.

In the following we will use the built-in dataset loader for 20 newsgroups from scikit-learn. Alternatively, it is possible
to download the dataset manually from the web-site and use the sklearn.datasets. load_files function by
pointing it to the 20news—-bydate-train subfolder of the uncompressed archive folder.

In order to get faster execution times for this first example we will work on a partial dataset with only 4 categories out
of the 20 available in the dataset:

>>> categories = ['alt.atheism', 'soc.religion.christian',
'comp.graphics', 'sci.med']

We can now load the list of files matching those categories as follows:

>>> from sklearn.datasets import fetch_20newsgroups
>>> twenty_train = fetch_20newsgroups (subset='train',
categories=categories, shuffle=True, random_state=42)

The returned dataset is a scikit—1learn “bunch”: a simple holder object with fields that can be both accessed
as python dict keys or object attributes for convenience, for instance the target_names holds the list of the
requested category names:

>>> twenty_train.target_names
['alt.atheism', 'comp.graphics', 'sci.med', 'soc.religion.christian']

The files themselves are loaded in memory in the data attribute. For reference the filenames are also available:

>>> len (twenty_train.data)

2257

>>> len (twenty_train.filenames)
2257

Let’s print the first lines of the first loaded file:

>>> print ("\n".Jjoin(twenty_train.data[0].split ("\n")[:3]))
From: sd345@city.ac.uk (Michael Collier)

Subject: Converting images to HP LaserJet III?
Nntp-Posting-Host: hampton

>>> print (twenty_train.target_names[twenty_train.target[0]])
comp.graphics

Supervised learning algorithms will require a category label for each document in the training set. In this case the cat-
egory is the name of the newsgroup which also happens to be the name of the folder holding the individual documents.

For speed and space efficiency reasons scikit—-1learn loads the target attribute as an array of integers that corre-
sponds to the index of the category name in the target_names list. The category integer id of each sample is stored
in the target attribute:

142 Chapter 2. scikit-learn Tutorials

http://people.csail.mit.edu/jrennie/20Newsgroups/

scikit-learn user guide, Release 0.19.1

>>> twenty_train.target[:10]
arraY([lr lr 3! 3/ 3/ 3! 3! 2/ 2/ 21)

It is possible to get back the category names as follows:

>>> for t in twenty_train.target[:10]:
print (twenty_train.target_names[t])

comp.graphics
comp.graphics
soc.religion.christian
soc.religion.christian
soc.religion.christian
soc.religion.christian
soc.religion.christian
sci.med

sci.med

sci.med

You can notice that the samples have been shuffled randomly (with a fixed RNG seed): this is useful if you select only
the first samples to quickly train a model and get a first idea of the results before re-training on the complete dataset
later.

2.3.3 Extracting features from text files

In order to perform machine learning on text documents, we first need to turn the text content into numerical feature
vectors.

Bags of words

The most intuitive way to do so is the bags of words representation:

1. assign a fixed integer id to each word occurring in any document of the training set (for instance by building a
dictionary from words to integer indices).

2. for each document #1i, count the number of occurrences of each word w and store itin X [i, 7j] as the value
of feature # j where j is the index of word w in the dictionary

The bags of words representation implies that n_features is the number of distinct words in the corpus: this
number is typically larger than 100,000.

If n_samples == 10000, storing X as a numpy array of type float32 would require 10000 x 100000 x 4 bytes =
4GB in RAM which is barely manageable on today’s computers.

Fortunately, most values in X will be zeros since for a given document less than a couple thousands of distinct words
will be used. For this reason we say that bags of words are typically high-dimensional sparse datasets. We can save
a lot of memory by only storing the non-zero parts of the feature vectors in memory.

scipy.sparse matrices are data structures that do exactly this, and scikit—1learn has built-in support for these
structures.

Tokenizing text with scikit-learn

Text preprocessing, tokenizing and filtering of stopwords are included in a high level component that is able to build a
dictionary of features and transform documents to feature vectors:

2.3. Working With Text Data 143

scikit-learn user guide, Release 0.19.1

>>> from sklearn.feature_extraction.text import CountVectorizer
>>> count_vect = CountVectorizer ()

>>> X_train_counts = count_vect.fit_transform(twenty_train.data)
>>> X_train_counts.shape

(2257, 35788)

CountVectorizer supports counts of N-grams of words or consecutive characters. Once fitted, the vectorizer has
built a dictionary of feature indices:

>>> count_vect.vocabulary_.get (u'algorithm')
4690

The index value of a word in the vocabulary is linked to its frequency in the whole training corpus.

From occurrences to frequencies
Occurrence count is a good start but there is an issue: longer documents will have higher average count values than
shorter documents, even though they might talk about the same topics.

To avoid these potential discrepancies it suffices to divide the number of occurrences of each word in a document by
the total number of words in the document: these new features are called t £ for Term Frequencies.

Another refinement on top of tf is to downscale weights for words that occur in many documents in the corpus and are
therefore less informative than those that occur only in a smaller portion of the corpus.

This downscaling is called tf—idf for “Term Frequency times Inverse Document Frequency”.

Both tf and tf-idf can be computed as follows:

>>> from sklearn.feature_extraction.text import TfidfTransformer

>>> tf_ transformer = TfidfTransformer (use_idf=False) .fit (X_train_counts)
>>> X _train_tf = tf _transformer.transform(X_train_counts)

>>> X_train_tf.shape

(2257, 35788)

In the above example-code, we firstly use the £it (..) method to fit our estimator to the data and secondly the
transform(..) method to transform our count-matrix to a tf-idf representation. These two steps can be com-
bined to achieve the same end result faster by skipping redundant processing. This is done through using the
fit_transform(..) method as shown below, and as mentioned in the note in the previous section:

>>> tfidf_transformer = TfidfTransformer ()

>>> X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)
>>> X_train_tfidf.shape

(2257, 35788)

2.3.4 Training a classifier

Now that we have our features, we can train a classifier to try to predict the category of a post. Let’s start with a
naive Bayes classifier, which provides a nice baseline for this task. scikit—-1learn includes several variants of this
classifier; the one most suitable for word counts is the multinomial variant:

>>> from sklearn.naive_bayes import MultinomialNB
>>> clf = MultinomialNB().fit (X_train_tfidf, twenty_train.target)

144 Chapter 2. scikit-learn Tutorials

https://en.wikipedia.org/wiki/Tf\T1\textendash {}idf

scikit-learn user guide, Release 0.19.1

To try to predict the outcome on a new document we need to extract the features using almost the same feature extract-
ing chain as before. The difference is that we call transform instead of fit_transform on the transformers,
since they have already been fit to the training set:

>>> docs_new = ['God is love', 'OpenGL on the GPU is fast']
>>> X_new_counts = count_vect.transform(docs_new)
>>> X_new_tfidf = tfidf_transformer.transform(X_new_counts)

>>> predicted = clf.predict (X_new_tfidf)

>>> for doc, category in zip(docs_new, predicted):
print (' => ' % (doc, twenty_train.target_names[category]))

'God is love' => soc.religion.christian
'OpenGL on the GPU is fast' => comp.graphics

2.3.5 Building a pipeline

In order to make the vectorizer => transformer => classifier easier to work with, scikit-learn provides a
Pipeline class that behaves like a compound classifier:

>>> from sklearn.pipeline import Pipeline
>>> text_clf = Pipeline([('vect', CountVectorizer()),
('"tfidf', TfidfTransformer()),
('clf', MultinomialNB()),
1)

The names vect, t £idf and c1f (classifier) are arbitrary. We shall see their use in the section on grid search, below.
We can now train the model with a single command:

>>> text_clf.fit (twenty_train.data, twenty_train.target)
Pipeline(...)

2.3.6 Evaluation of the performance on the test set

Evaluating the predictive accuracy of the model is equally easy:

>>> import numpy as np
>>> twenty_test = fetch_20newsgroups (subset="test',
.. categories=categories, shuffle=True, random_state=42)
>>> docs_test = twenty_test.data
>>> predicted = text_clf.predict (docs_test)
>>> np.mean (predicted == twenty_test.target)
0.834...

Le., we achieved 83.4% accuracy. Let’s see if we can do better with a linear support vector machine (SVM), which is
widely regarded as one of the best text classification algorithms (although it’s also a bit slower than naive Bayes). We
can change the learner by just plugging a different classifier object into our pipeline:

>>> from sklearn.linear_model import SGDClassifier
>>> text_clf = Pipeline([('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', SGDClassifier(loss='hinge', penalty='1l2",
alpha=le-3, random_state=42,
max_iter=5, tol=None)),

2.3. Working With Text Data 145

scikit-learn user guide, Release 0.19.1

1)

>>> text_clf.fit (twenty_train.data, twenty_train.target)

Pipeline(...)

>>> predicted = text_clf.predict (docs_test)
>>> np.mean (predicted == twenty_test.target)
0.912...

scikit—-learn further provides utilities for more detailed performance analysis of the results:

>>> from sklearn import metrics
>>> print (metrics.classification_report (twenty_test.target, predicted,
target_names=twenty_test.target_names))

precision recall fl-score support

alt.atheism 0.95 0.81 0.87 319
comp.graphics 0.88 0.97 0.92 389

sci.med 0.94 0.90 0.92 396
soc.religion.christian 0.90 0.95 0.93 398
avg / total 0.92 0.91 0.91 1502

>>> metrics.confusion_matrix (twenty_test.target, predicted)
array([[258, 11, 15, 351,
[4, 379, 3, 3]
[5, 33, 355, 3]
[5, 10, 4, 379]

4

1)

As expected the confusion matrix shows that posts from the newsgroups on atheism and christian are more often
confused for one another than with computer graphics.

2.3.7 Parameter tuning using grid search

We’ve already encountered some parameters such as use_idf inthe TfidfTransformer. Classifiers tend to have
many parameters as well; e.g., MultinomialNB includes a smoothing parameter alpha and SGDClassifier
has a penalty parameter alpha and configurable loss and penalty terms in the objective function (see the module
documentation, or use the Python he 1p function, to get a description of these).

Instead of tweaking the parameters of the various components of the chain, it is possible to run an exhaustive search of
the best parameters on a grid of possible values. We try out all classifiers on either words or bigrams, with or without
idf, and with a penalty parameter of either 0.01 or 0.001 for the linear SVM:

>>> from sklearn.model_selection import GridSearchCV

>>> parameters = {'vect__ngram_range': [(1, 1), (1, 2)1,
'tfidf_ use_idf': (True, False),
'clf__alpha': (le-2, le-3),

Obviously, such an exhaustive search can be expensive. If we have multiple CPU cores at our disposal, we can tell
the grid searcher to try these eight parameter combinations in parallel with the n_ jobs parameter. If we give this
parameter a value of —1, grid search will detect how many cores are installed and uses them all:

>>> gs_clf = GridSearchCV (text_clf, parameters, n_jobs=-1)

146 Chapter 2. scikit-learn Tutorials

scikit-learn user guide, Release 0.19.1

The grid search instance behaves like a normal scikit—-1learn model. Let’s perform the search on a smaller subset
of the training data to speed up the computation:

>>> gs_clf = gs_clf.fit (twenty_train.datal[:400], twenty_train.target[:400])

The result of calling fit ona GridSearchCV object is a classifier that we can use to predict:

>>> twenty_train.target_names[gs_clf.predict (['God is love']) [0]]
'soc.religion.christian’

The object’s best_score_ and best_params_ attributes store the best mean score and the parameters setting
corresponding to that score:

>>> gs_clf.best_score_
0.900...
>>> for param_name in sorted(parameters.keys()):
print (" : " % (param_name, gs_clf.best_params_[param_name]))

clf__alpha: 0.001
tfidf_ use_idf: True
vect__ngram_range: (1, 1)

A more detailed summary of the search is available at gs_cl1f.cv_results_.

The cv_results_ parameter can be easily imported into pandas as a DataFrame for further inspection.

Exercises

To do the exercises, copy the content of the ‘skeletons’ folder as a new folder named ‘workspace’:

)

% cp —r skeletons workspace

You can then edit the content of the workspace without fear of loosing the original exercise instructions.

Then fire an ipython shell and run the work-in-progress script with:

[1] %run workspace/exercise_XX_script.py argl arg2 arg3

If an exception is triggered, use $debug to fire-up a post mortem ipdb session.
Refine the implementation and iterate until the exercise is solved.

For each exercise, the skeleton file provides all the necessary import statements, boilerplate code to load the
data and sample code to evaluate the predictive accuracy of the model.

2.3.8 Exercise 1: Language identification
» Write a text classification pipeline using a custom preprocessor and CharNGramAnalyzer using data from
Wikipedia articles as training set.
* Evaluate the performance on some held out test set.

ipython command line:

$run workspace/exercise_01_language_train_model.py data/languages/paragraphs/

2.3. Working With Text Data 147

scikit-learn user guide, Release 0.19.1

2.3.9 Exercise 2: Sentiment Analysis on movie reviews

» Write a text classification pipeline to classify movie reviews as either positive or negative.
* Find a good set of parameters using grid search.
* Evaluate the performance on a held out test set.

ipython command line:

$run workspace/exercise_02_sentiment.py data/movie_reviews/txt_sentoken/

2.3.10 Exercise 3: CLI text classification utility

Using the results of the previous exercises and the cPickle module of the standard library, write a command line
utility that detects the language of some text provided on stdin and estimate the polarity (positive or negative) if the
text is written in English.

Bonus point if the utility is able to give a confidence level for its predictions.

2.3.11 Where to from here

Here are a few suggestions to help further your scikit-learn intuition upon the completion of this tutorial:
* Try playing around with the analyzer and token normalisation under CountVectorizer
* If you don’t have labels, try using Clustering on your problem.
* If you have multiple labels per document, e.g categories, have a look at the Multiclass and multilabel section
e Try using Truncated SVD for latent semantic analysis.

* Have a look at using Out-of-core Classification to learn from data that would not fit into the computer main
memory.

* Have a look at the Hashing Vectorizer as a memory efficient alternative to CountVectorizer.

2.4 Choosing the right estimator

Often the hardest part of solving a machine learning problem can be finding the right estimator for the job.
Different estimators are better suited for different types of data and different problems.

The flowchart below is designed to give users a bit of a rough guide on how to approach problems with regard to which
estimators to try on your data.

Click on any estimator in the chart below to see its documentation.

2.5 External Resources, Videos and Talks

For written tutorials, see the Tutorial section of the documentation.

148 Chapter 2. scikit-learn Tutorials

https://en.wikipedia.org/wiki/Latent_semantic_analysis

scikit-learn user guide, Release 0.19.1

2.5.1 New to Scientific Python?

For those that are still new to the scientific Python ecosystem, we highly recommend the Python Scientific Lecture
Notes. This will help you find your footing a bit and will definitely improve your scikit-learn experience. A basic
understanding of NumPy arrays is recommended to make the most of scikit-learn.

2.5.2 External Tutorials

There are several online tutorials available which are geared toward specific subject areas:
* Machine Learning for Neurolmaging in Python

* Machine Learning for Astronomical Data Analysis

2.5.3 Videos
* An introduction to scikit-learn Part I and Part IT at Scipy 2013 by Gael Varoquaux, Jake Vanderplas and Olivier
Grisel. Notebooks on github.
e Introduction to scikit-learn by Gael Varoquaux at ICML 2010

A three minute video from a very early stage of the scikit, explaining the basic idea and approach we
are following.

* Introduction to statistical learning with scikit-learn by Gael Varoquaux at SciPy 2011

An extensive tutorial, consisting of four sessions of one hour. The tutorial covers the basics of ma-
chine learning, many algorithms and how to apply them using scikit-learn. The material correspond-
ing is now in the scikit-learn documentation section A tutorial on statistical-learning for scientific
data processing.

« Statistical Learning for Text Classification with scikit-learn and NLTK (and slides) by Olivier Grisel at PyCon
2011

Thirty minute introduction to text classification. Explains how to use NLTK and scikit-learn to solve
real-world text classification tasks and compares against cloud-based solutions.

¢ Introduction to Interactive Predictive Analytics in Python with scikit-learn by Olivier Grisel at PyCon 2012
3-hours long introduction to prediction tasks using scikit-learn.

* scikit-learn - Machine Learning in Python by Jake Vanderplas at the 2012 PyData workshop at Google
Interactive demonstration of some scikit-learn features. 75 minutes.

* scikit-learn tutorial by Jake Vanderplas at PyData NYC 2012

Presentation using the online tutorial, 45 minutes.

Note: Doctest Mode

The code-examples in the above tutorials are written in a python-console format. If you wish to easily execute these
examples in IPython, use:

2.5. External Resources, Videos and Talks 149

http://www.scipy-lectures.org/
http://www.scipy-lectures.org/
http://nilearn.github.io/
https://github.com/astroML/sklearn_tutorial
https://conference.scipy.org/scipy2013/tutorial_detail.php?id=107
https://conference.scipy.org/scipy2013/tutorial_detail.php?id=111
http://gael-varoquaux.info
http://staff.washington.edu/jakevdp
https://twitter.com/ogrisel
https://twitter.com/ogrisel
https://github.com/jakevdp/sklearn_scipy2013
http://videolectures.net/icml2010_varaquaux_scik/
http://gael-varoquaux.info
http://archive.org/search.php?query=scikit-learn
http://gael-varoquaux.info
http://www.pyvideo.org/video/417/pycon-2011--statistical-machine-learning-for-text
http://www.slideshare.net/ogrisel/statistical-machine-learning-for-text-classification-with-scikitlearn-and-nltk
https://twitter.com/ogrisel
https://www.youtube.com/watch?v=Zd5dfooZWG4
https://twitter.com/ogrisel
https://newcircle.com/s/post/1152/scikit-learn_machine_learning_in_python
http://staff.washington.edu/jakevdp
https://vimeo.com/53062607
http://staff.washington.edu/jakevdp

scikit-learn user guide, Release 0.19.1

$doctest_mode

in the IPython-console. You can then simply copy and paste the examples directly into IPython without having to
worry about removing the >>> manually.

150 Chapter 2. scikit-learn Tutorials

CHAPTER
THREE

USER GUIDE

3.1 Supervised learning

3.1.1 Generalized Linear Models

The following are a set of methods intended for regression in which the target value is expected to be a linear combi-
nation of the input variables. In mathematical notion, if ¢ is the predicted value.

J(w,x) = wo +wiz1 + ... + wpxp

Across the module, we designate the vector w = (w1, ..., w,) as coef_ and wy as intercept_.

To perform classification with generalized linear models, see Logistic regression.

Ordinary Least Squares

LinearRegression fits a linear model with coefficients w = (w1, ..., w,) to minimize the residual sum of squares
between the observed responses in the dataset, and the responses predicted by the linear approximation. Mathemati-
cally it solves a problem of the form:

min || Xw — Z/H22
w

LinearRegression will take in its £it method arrays X, y and will store the coefficients w of the linear model
in its coef__ member:

151

../auto_examples/linear_model/plot_ols.html

scikit-learn user guide, Release 0.19.1

>>> from sklearn import linear_model

>>> reg = linear_model.LinearRegression/()

>>> reg.fit ([[O, O], (1, 11, [2, 211, [0, 1, 21)

LinearRegression (copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
>>> reg.coef_

array ([0.5, 0.51)

However, coefficient estimates for Ordinary Least Squares rely on the independence of the model terms. When terms
are correlated and the columns of the design matrix X have an approximate linear dependence, the design matrix
becomes close to singular and as a result, the least-squares estimate becomes highly sensitive to random errors in the
observed response, producing a large variance. This situation of multicollinearity can arise, for example, when data
are collected without an experimental design.

Examples:

* Linear Regression Example

Ordinary Least Squares Complexity

This method computes the least squares solution using a singular value decomposition of X. If X is a matrix of size (n,
p) this method has a cost of O(an), assuming that n > p.

Ridge Regression

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of
coefficients. The ridge coefficients minimize a penalized residual sum of squares,

min || Xw — yll2* + allwl]2?

Here, o > 0 is a complexity parameter that controls the amount of shrinkage: the larger the value of «, the greater the
amount of shrinkage and thus the coefficients become more robust to collinearity.

Ridge coefficients as a function of the regularization

200+
100 4 N

=100 4

weights

T T T T T T T T T
102 1073 10% 10 10°% 1077 10°% 1077 10710
alpha

As with other linear models, Ridge will take in its £it method arrays X, y and will store the coefficients w of the
linear model in its coef__ member:

152 Chapter 3. User Guide

../auto_examples/linear_model/plot_ridge_path.html

scikit-learn user guide, Release 0.19.1

>>> from sklearn import linear_model

>>> reg = linear_model.Ridge (alpha = .5)

>>> reg.fit ([(0, 0], [O, O], (1, 111, [0, .1, 11)

Ridge (alpha=0.5, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, random_state=None, solver='auto', tol=0.001)

>>> reg.coef_

array ([0.34545455, 0.34545455])

>>> reg.intercept_

0.13636...

Examples:

* Plot Ridge coefficients as a function of the regularization

* Classification of text documents using sparse features

Ridge Complexity

This method has the same order of complexity than an Ordinary Least Squares.

Setting the regularization parameter: generalized Cross-Validation

RidgeCV implements ridge regression with built-in cross-validation of the alpha parameter. The object works in
the same way as GridSearchCV except that it defaults to Generalized Cross-Validation (GCV), an efficient form of
leave-one-out cross-validation:

>>> from sklearn import linear_model

>>> reg = linear_model.RidgeCV (alphas=[0.1, 1.0, 10.07)

>>> reqg.fit([([0O, O], [O, O], [1, 111, [0, .1, 11)

RidgeCV (alphas=[0.1, 1.0, 10.0], cv=None, fit_intercept=True, scoring=None,
normalize=False)

>>> reg.alpha_

0.1

References

* “Notes on Regularized Least Squares”, Rifkin & Lippert (technical report, course slides).

Lasso

The Lasso is a linear model that estimates sparse coefficients. It is useful in some contexts due to its tendency
to prefer solutions with fewer parameter values, effectively reducing the number of variables upon which the given
solution is dependent. For this reason, the Lasso and its variants are fundamental to the field of compressed sensing.
Under certain conditions, it can recover the exact set of non-zero weights (see Compressive sensing: tomography
reconstruction with L1 prior (Lasso)).

Mathematically, it consists of a linear model trained with ¢; prior as regularizer. The objective function to minimize

3.1. Supervised learning 153

http://cbcl.mit.edu/projects/cbcl/publications/ps/MIT-CSAIL-TR-2007-025.pdf
http://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf

scikit-learn user guide, Release 0.19.1

is:

. 1
min 5————||Xw — y||3 + al|w|]y
W aNsamples

The lasso estimate thus solves the minimization of the least-squares penalty with «||w||; added, where « is a constant
and ||w]|; is the ¢1-norm of the parameter vector.

The implementation in the class Lasso uses coordinate descent as the algorithm to fit the coefficients. See Least
Angle Regression for another implementation:

>>> from sklearn import linear_model

>>> reg = linear_model.Lasso(alpha = 0.1)

>>> reg.fit ([[0, 01, [1, 111, [0, 11)

Lasso (alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=None,
selection='cyclic', tol=0.0001, warm_start=False)

>>> reg.predict ([[1, 111)

array ([0.8])

Also useful for lower-level tasks is the function Iasso_path that computes the coefficients along the full path of
possible values.

Examples:

* Lasso and Elastic Net for Sparse Signals

* Compressive sensing: tomography reconstruction with LI prior (Lasso)

Note: Feature selection with Lasso

As the Lasso regression yields sparse models, it can thus be used to perform feature selection, as detailed in L/-based
feature selection.

Setting regularization parameter

The alpha parameter controls the degree of sparsity of the coefficients estimated.

Using cross-validation

scikit-learn exposes objects that set the Lasso alpha parameter by cross-validation: LassoCV and LassoLarsCV.
LassoLarsCV is based on the Least Angle Regression algorithm explained below.

For high-dimensional datasets with many collinear regressors, LassoCV is most often preferable. However,
LassoLarsCV has the advantage of exploring more relevant values of alpha parameter, and if the number of samples
is very small compared to the number of features, it is often faster than LassoCV.

154 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

hs"ls%%n square error on each fold: coordinate descent (train time: 0.52s) Mean square error on each fold: Lars (train time: 0.23s)

T 3800
3600 3600
3400 3400
s s
5 3200 5 3200
v v
3 3
Z 3000 Z 3000 :
c ! c !
o ! o !
@ 1 @ 1
= 2800 ! = 2800 !
Ao e
‘‘‘‘‘‘‘‘‘‘‘‘ 1 1
2600 4 ! 2600 4 TR LTI T TIP RIS
T T
" == Average across the folds : = Average across the folds
2400 4 === alpha: CV estimate 2400 4) <} === alphacv
5 i 2 h . — T R | T T T
0.0 0.5 1.0 1.5 2.0 2.5 -0.5 0.0 0.5 1.0 15 2.0 2.5 3.0 35

dog(alpha) Hog(alpha)

Information-criteria based model selection

Alternatively, the estimator LassoLarsIC proposes to use the Akaike information criterion (AIC) and the Bayes
Information criterion (BIC). It is a computationally cheaper alternative to find the optimal value of alpha as the regu-
larization path is computed only once instead of k+1 times when using k-fold cross-validation. However, such criteria
needs a proper estimation of the degrees of freedom of the solution, are derived for large samples (asymptotic results)

and assume the model is correct, i.e. that the data are actually generated by this model. They also tend to break when
the problem is badly conditioned (more features than samples).

Information-criterion for model selection (training time 0.012s)

450 A
1 == = AIC criterion
1 = alpha: AIC estimate
1 == = BIC criterion
400 1 == alpha: BIC estimate
1
1
5 350 “
2 e ——————-
‘G‘:J 1 = -
5] 1 P
-~
300 4 ‘\]
\ \ I
\
~ U
AR
250 ST
B ~ — T -
417
T T T T T T T
—0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
-log(alpha)

Examples:

e Lasso model selection: Cross-Validation /AIC / BIC

Comparison with the regularization parameter of SVM

The equivalence between alpha and the regularization parameter of SVM, C is given by alpha = 1 / C or

alpha = 1 / (n_samples * C), depending on the estimator and the exact objective function optimized by
the model.

3.1. Supervised learning 155

../auto_examples/linear_model/plot_lasso_model_selection.html
../auto_examples/linear_model/plot_lasso_model_selection.html
../auto_examples/linear_model/plot_lasso_model_selection.html

scikit-learn user guide, Release 0.19.1

Multi-task Lasso

The MultiTaskLasso is alinear model that estimates sparse coefficients for multiple regression problems jointly:

y is a 2D array, of shape (n_samples, n_tasks). The constraint is that the selected features are the same for all
the regression problems, also called tasks.

The following figure compares the location of the non-zeros in W obtained with a simple Lasso or a MultiTaskLasso.
The Lasso estimates yields scattered non-zeros while the non-zeros of the MultiTaskLasso are full columns.

Coefficient non-zero location

[} 5 10 15 20 25 v} 5 10 15 20 25
o . . L . . o . L L
5 Lasso 5 MultiTaskLasso
10 10
=z 15 Z 15
S S
[[
= =
L 20 S 20
W w
£ £
Fo2s =25
30 30
35 35
T T T T T T T
Feature Feature
1.00 = Ground truth
Lasso
0.75 4 MultiTaskLasso
0.50

0.25 4 \ /
y
-0.25 A /

—0.50

—0.75 A

—1.00

Fitting a time-series model, imposing that any active feature be active at all times.

Examples:

* Joint feature selection with multi-task Lasso

Mathematically, it consists of a linear model trained with a mixed ¢, /5 prior as regularizer. The objective function to
minimize is:
1)
min o———[[XW = Y|[p,, + a|[W||21
W aNsagmples

where F'ro indicates the Frobenius norm:

HA”FTOZ

156 Chapter 3. User Guide

../auto_examples/linear_model/plot_multi_task_lasso_support.html
../auto_examples/linear_model/plot_multi_task_lasso_support.html

scikit-learn user guide, Release 0.19.1

and /1 /5 reads:

The implementation in the class MultiTaskLasso uses coordinate descent as the algorithm to fit the coefficients.

Elastic Net

ElasticNet is a linear regression model trained with L1 and L2 prior as regularizer. This combination allows for
learning a sparse model where few of the weights are non-zero like L.asso, while still maintaining the regularization
properties of Ridge. We control the convex combination of L1 and L2 using the 11_ rat io parameter.

Elastic-net is useful when there are multiple features which are correlated with one another. Lasso is likely to pick one
of these at random, while elastic-net is likely to pick both.

A practical advantage of trading-off between Lasso and Ridge is it allows Elastic-Net to inherit some of Ridge’s
stability under rotation.

The objective function to minimize is in this case

. 1 a(l —
min 5———— 1 Xw —yll3 + ap|lw|h + ———=
w Nsamples

Lasso and Elastic-Net Paths

coefficients

Lasso
Elastic-Net

T
-1.5 -1.0 —0.5 0.0 0.5
-Log(alpha)

The class ElasticNetCV can be used to set the parameters alpha (o) and 11_ratio (p) by cross-validation.

Examples:

* Lasso and Elastic Net for Sparse Signals

e Lasso and Elastic Net

Multi-task Elastic Net

The MultiTaskElasticNet is an elastic-net model that estimates sparse coefficients for multiple regression prob-
lems jointly: Y is a 2D array, of shape (n_samples, n_tasks). The constraint is that the selected features are
the same for all the regression problems, also called tasks.

3.1. Supervised learning 157

../auto_examples/linear_model/plot_lasso_coordinate_descent_path.html

scikit-learn user guide, Release 0.19.1

Mathematically, it consists of a linear model trained with a mixed ¢; /5 prior and /5 prior as regularizer. The objective
function to minimize is:

, 1 a(l —p)
mwn HXW—Y”%'TO—’—OZPHWHQl—’_ ||W|‘%ro
W ZNsamples 2

The implementation in the class MultiTaskElasticNet uses coordinate descent as the algorithm to fit the coef-
ficients.

The class MultiTaskElasticNetCV can be used to set the parameters alpha (o) and 11_ratio (p) by cross-
validation.

Least Angle Regression

Least-angle regression (LARS) is a regression algorithm for high-dimensional data, developed by Bradley Efron,
Trevor Hastie, lain Johnstone and Robert Tibshirani. LARS is similar to forward stepwise regression. At each step,
it finds the predictor most correlated with the response. When there are multiple predictors having equal correlation,
instead of continuing along the same predictor, it proceeds in a direction equiangular between the predictors.

The advantages of LARS are:

* It is numerically efficient in contexts where p >> n (i.e., when the number of dimensions is significantly greater
than the number of points)

« It is computationally just as fast as forward selection and has the same order of complexity as an ordinary least
squares.

¢ It produces a full piecewise linear solution path, which is useful in cross-validation or similar attempts to tune
the model.

* If two variables are almost equally correlated with the response, then their coefficients should increase at ap-
proximately the same rate. The algorithm thus behaves as intuition would expect, and also is more stable.

* It is easily modified to produce solutions for other estimators, like the Lasso.
The disadvantages of the LARS method include:

* Because LARS is based upon an iterative refitting of the residuals, it would appear to be especially sensitive to
the effects of noise. This problem is discussed in detail by Weisberg in the discussion section of the Efron et al.
(2004) Annals of Statistics article.

The LARS model can be used using estimator Lars, or its low-level implementation lars_path.

LARS Lasso

LassoLars is a lasso model implemented using the LARS algorithm, and unlike the implementation based on
coordinate_descent, this yields the exact solution, which is piecewise linear as a function of the norm of its coefficients.

>>> from sklearn import linear_model

>>> reg = linear_model.LassolLars (alpha=.1)

>>> reg.fit ([[0, 01, [1, 111, [0, 11)

LassolLars (alpha=0.1, copy_X=True, eps=..., fit_intercept=True,
fit_path=True, max_iter=500, normalize=True, positive=False,
precompute='auto', verbose=False)

>>> reg.coef_

array ([0.717157..., O. 1)

158 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

LASSO Path

Coefficients

i
1
1
1
1
1
1
1
i
e
T
1
'
|
1
1
1
1
1
1
1
1
1
1
1

T T T T
0.0 0.2 0.4 0.6 0.8 1.0
|coef| / max|coef]|

Examples:

* Lasso path using LARS

The Lars algorithm provides the full path of the coefficients along the regularization parameter almost for free, thus a
common operation consist of retrieving the path with function 1ars_path

Mathematical formulation

The algorithm is similar to forward stepwise regression, but instead of including variables at each step, the estimated
parameters are increased in a direction equiangular to each one’s correlations with the residual.

Instead of giving a vector result, the LARS solution consists of a curve denoting the solution for each value of the
L1 norm of the parameter vector. The full coefficients path is stored in the array coef_path_, which has size
(n_features, max_features+1). The first column is always zero.

References:

* Original Algorithm is detailed in the paper Least Angle Regression by Hastie et al.

Orthogonal Matching Pursuit (OMP)

OrthogonalMatchingPursuit and orthogonal mp implements the OMP algorithm for approximating the
fit of a linear model with constraints imposed on the number of non-zero coefficients (ie. the L (pseudo-norm).

Being a forward feature selection method like Least Angle Regression, orthogonal matching pursuit can approximate
the optimum solution vector with a fixed number of non-zero elements:

argmin ||y — X’V”% subject to ||]|o < Nnonzero_coefs

Alternatively, orthogonal matching pursuit can target a specific error instead of a specific number of non-zero coeffi-
cients. This can be expressed as:

arg min ||| subject to ||y — Xv||3 < tol

3.1. Supervised learning 159

../auto_examples/linear_model/plot_lasso_lars.html
http://www-stat.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf

scikit-learn user guide, Release 0.19.1

OMP is based on a greedy algorithm that includes at each step the atom most highly correlated with the current
residual. It is similar to the simpler matching pursuit (MP) method, but better in that at each iteration, the residual is
recomputed using an orthogonal projection on the space of the previously chosen dictionary elements.

Examples:

* Orthogonal Matching Pursuit

References:

* http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

* Matching pursuits with time-frequency dictionaries, S. G. Mallat, Z. Zhang,

Bayesian Regression
Bayesian regression techniques can be used to include regularization parameters in the estimation procedure: the
regularization parameter is not set in a hard sense but tuned to the data at hand.

This can be done by introducing uninformative priors over the hyper parameters of the model. The ¢, regularization
used in Ridge Regression is equivalent to finding a maximum a posteriori estimation under a Gaussian prior over the
parameters w with precision A~!. Instead of setting lambda manually, it is possible to treat it as a random variable to
be estimated from the data.

To obtain a fully probabilistic model, the output ¥ is assumed to be Gaussian distributed around X w:
Pyl X, w,) = N(y|Xw,a)

Alpha is again treated as a random variable that is to be estimated from the data.
The advantages of Bayesian Regression are:

* It adapts to the data at hand.

e It can be used to include regularization parameters in the estimation procedure.
The disadvantages of Bayesian regression include:

¢ Inference of the model can be time consuming.

References

* A good introduction to Bayesian methods is given in C. Bishop: Pattern Recognition and Machine learning

* Original Algorithm is detailed in the book Bayesian learning for neural networks by Radford M. Neal

Bayesian Ridge Regression

BayesianRidge estimates a probabilistic model of the regression problem as described above. The prior for the
parameter w is given by a spherical Gaussian:

p(w|A) = N (w]0, A7)

160 Chapter 3. User Guide

http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf
https://en.wikipedia.org/wiki/Non-informative_prior#Uninformative_priors

scikit-learn user guide, Release 0.19.1

The priors over o and A are chosen to be gamma distributions, the conjugate prior for the precision of the Gaussian.

The resulting model is called Bayesian Ridge Regression, and is similar to the classical Ridge. The parameters
w, o and A are estimated jointly during the fit of the model. The remaining hyperparameters are the parameters of
the gamma priors over « and A. These are usually chosen to be non-informative. The parameters are estimated by
maximizing the marginal log likelihood.

By default a; = ap = A1 = Ao = 106,

Weights of the model

0.8
0.6 | !| !
0.4

0.2 4 s

Values of the weights
o
o
L)

Bayesian Ridge estimate
Ground truth
=== 0OLS estimate

0 20 40 60 80 100
Features

Bayesian Ridge Regression is used for regression:

>>> from sklearn import linear_model

>>> X = [[0., 0., [1., 1.1, [2., 2.1, [3., 3.1]

>> Y = [0., 1., 2., 3.]

>>> reg = linear_model.BayesianRidge ()

>>> reg.fit (X, Y)

BayesianRidge (alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True,
fit_intercept=True, lambda_l=1e-06, lambda_2=1e-06, n_iter=300,
normalize=False, to0l=0.001, verbose=False)

After being fitted, the model can then be used to predict new values:

>>> reg.predict ([[1, 0.]1])
array ([0.500000137)

The weights w of the model can be access:

>>> reg.coef_
array ([0.49999993, 0.49999993])

Due to the Bayesian framework, the weights found are slightly different to the ones found by Ordinary Least Squares.
However, Bayesian Ridge Regression is more robust to ill-posed problem.

Examples:

* Bayesian Ridge Regression

3.1. Supervised learning 161

https://en.wikipedia.org/wiki/Gamma_distribution
../auto_examples/linear_model/plot_bayesian_ridge.html

scikit-learn user guide, Release 0.19.1

References

* More details can be found in the article Bayesian Interpolation by MacKay, David J. C.

Automatic Relevance Determination - ARD

ARDRegression is very similar to Bayesian Ridge Regression, but can lead to sparser weights w'’.
ARDRegression poses a different prior over w, by dropping the assumption of the Gaussian being spherical.
Instead, the distribution over w is assumed to be an axis-parallel, elliptical Gaussian distribution.

This means each weight w; is drawn from a Gaussian distribution, centered on zero and with a precision \;:
-1
p(w|A) = N (w[0,A™")

with diag (A) = A = {1, ..., \p}

In contrast to Bayesian Ridge Regression, each coordinate of w; has its own standard deviation \;. The prior over all
A; is chosen to be the same gamma distribution given by hyperparameters A\; and As.

Weights of the model

0.8 = ARD estimate
OLS estimate
0.6 - Ground truth
|
0.4 |
o)
=
o
S 0.2 1
=
@ |
S 001 -1 g AN A SR Y AL P
] -] |
A 1 \
3 —0.21 |
o
>
—0.4
—0.6 1
—0.8
T T T T T T
0 20 40 60 80 100

Features

ARD is also known in the literature as Sparse Bayesian Learning and Relevance Vector Machine*.

Examples:

* Automatic Relevance Determination Regression (ARD)

References: I

! Christopher M. Bishop: Pattern Recognition and Machine Learning, Chapter 7.2.1

2 David Wipf and Srikantan Nagarajan: A new view of automatic relevance determination
3 Michael E. Tipping: Sparse Bayesian Learning and the Relevance Vector Machine

4 Tristan Fletcher: Relevance Vector Machines explained

162 Chapter 3. User Guide

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.9072&rep=rep1&type=pdf
../auto_examples/linear_model/plot_ard.html
http://papers.nips.cc/paper/3372-a-new-view-of-automatic-relevance-determination.pdf
http://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf
http://www.tristanfletcher.co.uk/RVM%20Explained.pdf

scikit-learn user guide, Release 0.19.1

Logistic regression

Logistic regression, despite its name, is a linear model for classification rather than regression. Logistic regression is
also known in the literature as logit regression, maximum-entropy classification (MaxEnt) or the log-linear classifier.
In this model, the probabilities describing the possible outcomes of a single trial are modeled using a logistic function.

The implementation of logistic regression in scikit-learn can be accessed from class LogisticRegression. This
implementation can fit binary, One-vs- Rest, or multinomial logistic regression with optional L2 or L1 regularization.

As an optimization problem, binary class L2 penalized logistic regression minimizes the following cost function:

1 n
min §wTw +C E log(exp(—y: (X[w +¢)) + 1).
© i=1

Similarly, L1 regularized logistic regression solves the following optimization problem

min [[wl|y + C> log(exp(—yi (X[w + c)) +1).
- i=1

The solvers implemented in the class LogisticRegression are “liblinear”’, “newton-cg”, “lbfgs”, “sag” and
“saga”:

The solver “liblinear” uses a coordinate descent (CD) algorithm, and relies on the excellent C++ LIBLINEAR library,
which is shipped with scikit-learn. However, the CD algorithm implemented in liblinear cannot learn a true multino-
mial (multiclass) model; instead, the optimization problem is decomposed in a “one-vs-rest” fashion so separate binary
classifiers are trained for all classes. This happens under the hood, so LogisticRegression instances using this
solver behave as multiclass classifiers. For L1 penalization sklearn.svm.11_min_c allows to calculate the lower
bound for C in order to get a non “null” (all feature weights to zero) model.

The “Ibfgs”, “sag” and “newton-cg” solvers only support L2 penalization and are found to converge faster for some
high dimensional data. Setting multi_class to “multinomial” with these solvers learns a true multinomial logistic
regression model’, which means that its probability estimates should be better calibrated than the default “one-vs-
rest” setting.

The “sag” solver uses a Stochastic Average Gradient descent®. It is faster than other solvers for large datasets, when
both the number of samples and the number of features are large.

The “saga” solver’ is a variant of “sag” that also supports the non-smooth penalty="11" option. This is therefore the
solver of choice for sparse multinomial logistic regression.

In a nutshell, one may choose the solver with the following rules:

Case Solver

L1 penalty “liblinear” or “saga”

Multinomial loss “Ibfgs”, “sag”, “saga” or “newton-cg”
Very Large dataset (n_samples) | “sag” or “saga”

The “saga” solver is often the best choice. The “liblinear” solver is used by default for historical reasons.

For large dataset, you may also consider using SGDClassifier with ‘log’ loss.

Examples: I

3 Christopher M. Bishop: Pattern Recognition and Machine Learning, Chapter 4.3.4

6 Mark Schmidt, Nicolas Le Roux, and Francis Bach: Minimizing Finite Sums with the Stochastic Average Gradient.

7 Aaron Defazio, Francis Bach, Simon Lacoste-Julien: SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex
Composite Objectives.

3.1. Supervised learning 163

https://en.wikipedia.org/wiki/Logistic_function
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://hal.inria.fr/hal-00860051/document
https://arxiv.org/abs/1407.0202
https://arxiv.org/abs/1407.0202

scikit-learn user guide, Release 0.19.1

* L1 Penalty and Sparsity in Logistic Regression
* Path with LI1- Logistic Regression
* Plot multinomial and One-vs-Rest Logistic Regression

* Multiclass sparse logisitic regression on newgroups20

MNIST classfification using multinomial logistic + LI

Differences from liblinear:

There might be a difference in the scores obtained between LogisticRegressionwith solver=1liblinear
or LinearSVC and the external liblinear library directly, when fit_intercept=False and the fit coef_
(or) the data to be predicted are zeroes. This is because for the sample(s) with decision_function zero,
LogisticRegression and LinearSVC predict the negative class, while liblinear predicts the positive class.
Note that a model with fit_intercept=False and having many samples with decision_function zero,
is likely to be a underfit, bad model and you are advised to set fit_intercept=True and increase the inter-
cept_scaling.

Note: Feature selection with sparse logistic regression

A logistic regression with L1 penalty yields sparse models, and can thus be used to perform feature selection, as
detailed in L/-based feature selection.

LogisticRegressionCV implements Logistic Regression with builtin cross-validation to find out the optimal C
parameter. “newton-cg”, “sag”, “saga” and “Ibfgs” solvers are found to be faster for high-dimensional dense data, due
to warm-starting. For the multiclass case, if multi_class option is set to “ovr”, an optimal C is obtained for each class

and if the multi_class option is set to “multinomial”, an optimal C is obtained by minimizing the cross-entropy loss.

References: I

Stochastic Gradient Descent - SGD

Stochastic gradient descent is a simple yet very efficient approach to fit linear models. It is particularly useful when the
number of samples (and the number of features) is very large. The partial_fit method allows only/out-of-core
learning.

The classes SGDClassifier and SGDRegressor provide functionality to fit linear models for classifica-
tion and regression using different (convex) loss functions and different penalties. E.g., with loss="1log",
SGDClassifier fits a logistic regression model, while with loss="hinge" it fits a linear support vector ma-
chine (SVM).

References

e Stochastic Gradient Descent

164 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

Perceptron

The Perceptron is another simple algorithm suitable for large scale learning. By default:
* It does not require a learning rate.
* It is not regularized (penalized).
* It updates its model only on mistakes.

The last characteristic implies that the Perceptron is slightly faster to train than SGD with the hinge loss and that the
resulting models are sparser.

Passive Aggressive Algorithms

The passive-aggressive algorithms are a family of algorithms for large-scale learning. They are similar to the Per-
ceptron in that they do not require a learning rate. However, contrary to the Perceptron, they include a regularization
parameter C.

For classification, PassiveAggressiveClassifier can be used with loss='hinge' (PA-I) or
loss="'squared_hinge' (PA-II). For regression, PassiveAggressiveRegressor can be used with
loss='epsilon_insensitive' (PA-I)or loss="'squared_epsilon_insensitive' (PA-II).

References:

* “Online Passive-Aggressive Algorithms” K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer -
JMLR 7 (2006)

Robustness regression: outliers and modeling errors

Robust regression is interested in fitting a regression model in the presence of corrupt data: either outliers, or error in
the model.

Corrupt y
40 4 oL (fit time: 0.00s)
Theil-Sen (fit time: 0.705)
30 4 RANSAC (fit time: 0.00s)
*
204 *
10 s
xS A= T
—
01 sapos x
—10 &&
=201 X
X
_304
X
T
-3 -2 -1 0 1 2 3

Different scenario and useful concepts

There are different things to keep in mind when dealing with data corrupted by outliers:

3.1. Supervised learning 165

http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf
../auto_examples/linear_model/plot_theilsen.html

scikit-learn user guide, Release 0.19.1

¢ Qutliers in X or in y?

Outliers in the y direction Ouitliers in the X direction

Corrupt y, Small Deviants

Corrupt X, Small Deviants

10 Error of Mean 10 Error of Mean
Absolute Deviation Absolute Deviation
8 to Non-corrupt Data to Non-corrupt Data
T OLS: error = 1.009 81 OLS: error = 0.003
Theil-3en: error = 0.034 Theil-Sen: error = 0.002
RANSAC: error = 0.328 RANSAC: error = 0.003
6 4 wm HuberRegressor: error = 0.011 6 wm HuberRegressor: error = 0.002
44 4

 Fraction of outliers versus amplitude of error

The number of outlying points matters, but also how much they are outliers.

Small outliers

Large outliers

Corrupt vy, Small Deviants

Corrupt y, Large Deviants

, B ERLL i e aed
10 Error of Mean 10 Error of Mean
Absolute Deviation Absolute Deviation
s | to Non-corrupt Data a4 to Non-corrupt Data
OLS: error = 1.009 OLS. error = 11.055
Theil-Sen: error = 0.034 Theil-Sen: error = 0234
RANSAC: error = 0.328 RANSAC: error = 0.002
6 mm HuberRegressor: error = 0.011 6 = HuberRegressor: error = 0.011
4 4

An important notion of robust fitting is that of breakdown point: the fraction of data that can be outlying for the fit to
start missing the inlying data.

Note that in general, robust fitting in high-dimensional setting (large n_features) is very hard. The robust models here

will probably not work

in these settings.

Trade-offs: which estimator?

Scikit-learn provides 3 robust regression estimators: RANSAC, Theil Sen and HuberRegressor

* HuberRegressor should be faster than RANSAC and Theil Sen unless the number of samples are
very large, i.e n_samples >> n_features. This is because RANSAC and Theil Sen fit on
smaller subsets of the data. However, both Theil Sen and RANSAC are unlikely to be as robust as
HuberRegressor for the default parameters.

166

Chapter 3. User Guide

../auto_examples/linear_model/plot_robust_fit.html
../auto_examples/linear_model/plot_robust_fit.html
../auto_examples/linear_model/plot_robust_fit.html
../auto_examples/linear_model/plot_robust_fit.html

scikit-learn user guide, Release 0.19.1

* RANSAC is faster than Theil Sen and scales much better with the number of samples
* RANSAC will deal better with large outliers in the y direction (most common situation)

* Theil Sen will cope better with medium-size outliers in the X direction, but this property will
disappear in large dimensional settings.

When in doubt, use RANSAC

RANSAC: RANdom SAmple Consensus

RANSAC (RANdom SAmple Consensus) fits a model from random subsets of inliers from the complete data set.

RANSAC is a non-deterministic algorithm producing only a reasonable result with a certain probability, which is de-
pendent on the number of iterations (see max_trials parameter). It is typically used for linear and non-linear regression
problems and is especially popular in the fields of photogrammetric computer vision.

The algorithm splits the complete input sample data into a set of inliers, which may be subject to noise, and outliers,
which are e.g. caused by erroneous measurements or invalid hypotheses about the data. The resulting model is then
estimated only from the determined inliers.

300 4
200 4

100 4

—100 4
—— Linear regressor

200 4 RANSAC regressor
Inliers
Outliers

Response

-3 =2 -1 0 1 2 3 4

Details of the algorithm

Each iteration performs the following steps:

1. Select min_samples random samples from the original data and check whether the set of data is valid (see
is_data_valid).

2. Fit a model to the random subset (base_estimator.fit) and check whether the estimated model is valid
(see is_model_valid).

3. Classity all data as inliers or outliers by calculating the residuals to the estimated model (base_estimator.
predict (X) - vy) - all data samples with absolute residuals smaller than the residual_threshold are
considered as inliers.

4. Save fitted model as best model if number of inlier samples is maximal. In case the current estimated model has
the same number of inliers, it is only considered as the best model if it has better score.

3.1. Supervised learning 167

../auto_examples/linear_model/plot_ransac.html

scikit-learn user guide, Release 0.19.1

These steps are performed either a maximum number of times (max_trials) or until one of the special stop criteria
are met (see stop_n_inliers and stop_score). The final model is estimated using all inlier samples (consensus
set) of the previously determined best model.

The is_data_valid and is_model_valid functions allow to identify and reject degenerate combinations of
random sub-samples. If the estimated model is not needed for identifying degenerate cases, is_data_valid should
be used as it is called prior to fitting the model and thus leading to better computational performance.

Examples:

* Robust linear model estimation using RANSAC

* Robust linear estimator fitting

References:

* https://en.wikipedia.org/wiki/RANSAC

* “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Auto-
mated Cartography” Martin A. Fischler and Robert C. Bolles - SRI International (1981)

» “Performance Evaluation of RANSAC Family” Sunglok Choi, Taemin Kim and Wonpil Yu - BMVC (2009)

Theil-Sen estimator: generalized-median-based estimator

The TheilSenRegressor estimator uses a generalization of the median in multiple dimensions. It is thus robust
to multivariate outliers. Note however that the robustness of the estimator decreases quickly with the dimensionality of
the problem. It looses its robustness properties and becomes no better than an ordinary least squares in high dimension.

Examples:

* Theil-Sen Regression

* Robust linear estimator fitting

References:

* https://en.wikipedia.org/wiki/Theil %E2%80%93Sen_estimator

Theoretical considerations

TheilSenRegressor is comparable to the Ordinary Least Squares (OLS) in terms of asymptotic efficiency and as
an unbiased estimator. In contrast to OLS, Theil-Sen is a non-parametric method which means it makes no assumption
about the underlying distribution of the data. Since Theil-Sen is a median-based estimator, it is more robust against
corrupted data aka outliers. In univariate setting, Theil-Sen has a breakdown point of about 29.3% in case of a simple
linear regression which means that it can tolerate arbitrary corrupted data of up to 29.3%.

168 Chapter 3. User Guide

https://en.wikipedia.org/wiki/RANSAC
http://www.cs.columbia.edu/~belhumeur/courses/compPhoto/ransac.pdf
http://www.cs.columbia.edu/~belhumeur/courses/compPhoto/ransac.pdf
http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf
https://en.wikipedia.org/wiki/Theil%E2%80%93Sen_estimator

scikit-learn user guide, Release 0.19.1

Corrupt y
40 4 oL (fit time: 0.00s)
Theil-Sen (fit time: 0.705)
304 RANSAC (fit time: 0.00s)
*
204 *
10 A s
X x__..———"""% am S
—
01 sapos x
—101 &&
=201 X
X
_304
X
T
-3 -2 -1 0 1 2 3

The implementation of TheilSenRegressor in scikit-learn follows a generalization to a multivariate linear re-
gression model® using the spatial median which is a generalization of the median to multiple dimensions”.

In terms of time and space complexity, Theil-Sen scales according to

(Nsamples)
Nsubsamples
which makes it infeasible to be applied exhaustively to problems with a large number of samples and features. There-

fore, the magnitude of a subpopulation can be chosen to limit the time and space complexity by considering only a
random subset of all possible combinations.

Examples:

* Theil-Sen Regression

References: I

Huber Regression

The HuberRegressor is different to Ridge because it applies a linear loss to samples that are classified as outliers.
A sample is classified as an inlier if the absolute error of that sample is lesser than a certain threshold. It differs from
TheilSenRegressor and RANSACRegressor because it does not ignore the effect of the outliers but gives a
lesser weight to them.

The loss function that HuberRegressor minimizes is given by

n X _)
miny" (a + Hy (“’Jy> a) + alfwll,’
i

8 Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang: Theil-Sen Estimators in a Multiple Linear Regression Model.
9

20. Kirkkiinen and S. Ayrimé: On Computation of Spatial Median for Robust Data Mining.

3.1. Supervised learning 169

../auto_examples/linear_model/plot_theilsen.html
http://home.olemiss.edu/~xdang/papers/MTSE.pdf
http://users.jyu.fi/~samiayr/pdf/ayramo_eurogen05.pdf

scikit-learn user guide, Release 0.19.1

Comparison of HuberRegressor vs Ridge

160 4 .

140

120 4

100

—— huber loss, 1.35

80 -4 —— huberloss, 1.5
huber loss, 1.75
—— huberloss, 1.9 -
50 — ridge regression .
-1 0 1 2 3
X
where
22 if 2] < e,
H,(z) =)

2¢|z| — €%, otherwise

It is advised to set the parameter epsilon to 1.35 to achieve 95% statistical efficiency.

Notes

The HuberRegressor differs from using SGDRegressor with loss set to huber in the following ways.

* HuberRegressor is scaling invariant. Once epsilon is set, scaling X and y down or up by different values
would produce the same robustness to outliers as before. as compared to SGDRegressor where epsilon
has to be set again when X and y are scaled.

* HuberRegressor should be more efficient to use on data with small number of samples while
SGDRegressor needs a number of passes on the training data to produce the same robustness.

Examples:

* HuberRegressor vs Ridge on dataset with strong outliers

References:

* Peter J. Huber, Elvezio M. Ronchetti: Robust Statistics, Concomitant scale estimates, pg 172

Also, this estimator is different from the R implementation of Robust Regression (http://www.ats.ucla.edu/stat/r/dae/
rreg.htm) because the R implementation does a weighted least squares implementation with weights given to each
sample on the basis of how much the residual is greater than a certain threshold.

Polynomial regression: extending linear models with basis functions

One common pattern within machine learning is to use linear models trained on nonlinear functions of the data. This
approach maintains the generally fast performance of linear methods, while allowing them to fit a much wider range
of data.

170 Chapter 3. User Guide

../auto_examples/linear_model/plot_huber_vs_ridge.html
http://www.ats.ucla.edu/stat/r/dae/rreg.htm
http://www.ats.ucla.edu/stat/r/dae/rreg.htm

scikit-learn user guide, Release 0.19.1

For example, a simple linear regression can be extended by constructing polynomial features from the coefficients.
In the standard linear regression case, you might have a model that looks like this for two-dimensional data:

J(w,) = wo + w1z + was

If we want to fit a paraboloid to the data instead of a plane, we can combine the features in second-order polynomials,
so that the model looks like this:

J(w,) = wo + w11 + ware + wax1T2 + w4xf + w5x§
The (sometimes surprising) observation is that this is still a linear model: to see this, imagine creating a new variable
2 = [x1, X0, T1T9, T2, 23]
With this re-labeling of the data, our problem can be written
J(w, x) = wp + w121 + waze + w323 + Wezg + W525
We see that the resulting polynomial regression is in the same class of linear models we’d considered above (i.e. the

model is linear in w) and can be solved by the same techniques. By considering linear fits within a higher-dimensional
space built with these basis functions, the model has the flexibility to fit a much broader range of data.

Here is an example of applying this idea to one-dimensional data, using polynomial features of varying degrees:

5% A
RN 74 \T\f‘

—— ground truth
—10 7 —— degree 3
degree 4
degree 5
_154 @ training points

T T T T T T
0 2 4 6 8 10

This figure is created using the PolynomialFeatures preprocessor. This preprocessor transforms an input data
matrix into a new data matrix of a given degree. It can be used as follows:

>>> from sklearn.preprocessing import PolynomialFeatures
>>> import numpy as np

>>> X = np.arange (6) .reshape (3, 2)
>>> X
array ([[0, 11,

[2, 31,

[4, 511)

>>> poly = PolynomialFeatures (degree=2)

>>> poly.fit_transform(X)

array ([[1., 0., 1., . .
[1., 2., 3., 4., 6., 9.1
[1., 4., 5.,

3.1. Supervised learning 171

../auto_examples/linear_model/plot_polynomial_interpolation.html

scikit-learn user guide, Release 0.19.1

The features of X have been transformed from [z, 23] to [1, 21, Z2, 23, ¥122, 23], and can now be used within any
linear model.

This sort of preprocessing can be streamlined with the Pipeline tools. A single object representing a simple polynomial
regression can be created and used as follows:

>>> from sklearn.preprocessing import PolynomialFeatures
>>> from sklearn.linear model import LinearRegression
>>> from sklearn.pipeline import Pipeline
>>> import numpy as np
>>> model = Pipeline([('poly', PolynomialFeatures (degree=3)),
("linear', LinearRegression(fit_intercept=False))])
>>> # fit to an order-3 polynomial data

>>> x = np.arange (5)
>>> y = 3 - 2 ¥ X + X xx 2 — X *x 3
>>> model = model.fit(x[:, np.newaxis], vy)

>>> model.named_steps|['linear'].coef_
array ([3., -2., 1., -1.])

The linear model trained on polynomial features is able to exactly recover the input polynomial coefficients.

In some cases it’s not necessary to include higher powers of any single feature, but only the so-called interaction
features that multiply together at most d distinct features. These can be gotten from PolynomialFeatures with
the setting interaction_only=True.

For example, when dealing with boolean features, xj* = x; for all n and is therefore useless; but z;x; represents the
conjunction of two booleans. This way, we can solve the XOR problem with a linear classifier:

>>> from sklearn.linear model import Perceptron

>>> from sklearn.preprocessing import PolynomialFeatures

>>> import numpy as np

>>> X = np.array([[0, O], [0, 11, [1, O], [1, 111)

>>> y = X[:, 0] ©~ X[:, 1]

>>> y

array ([0, 1, 1, 01)

>>> X = PolynomialFeatures (interaction_only=True) .fit_transform(X) .astype (int)

>>> X

[1, o, 0, O

[1, 0, 1, 0

[1, 1, 0, 0

(r, 1, 1, 111)

>>> clf = Perceptron(fit_intercept=False, max_iter=10, tol=None,
shuffle=False) .fit (X, vy)

And the classifier “predictions” are perfect:

>>> clf.predict (X)
array ([0, 1, 1, 01)
>>> clf.score (X, y)
1.0

3.1.2 Linear and Quadratic Discriminant Analysis

Linear Discriminant Analysis (discriminant_analysis.LinearDiscriminantAnalysis) and
Quadratic Discriminant Analysis (discriminant_analysis.QuadraticDiscriminantAnalysis)
are two classic classifiers, with, as their names suggest, a linear and a quadratic decision surface, respectively.

172 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

These classifiers are attractive because they have closed-form solutions that can be easily computed, are inherently
multiclass, have proven to work well in practice and have no hyperparameters to tune.

Linear Discriminant Analysis vs Quadratic DiscriminantAnalysis

Linear Discriminant Analysis Quadratic Discriminant Analysis
@ @

Data with
fixed covariance

Data with
varying covariances

The plot shows decision boundaries for Linear Discriminant Analysis and Quadratic Discriminant Analysis. The
bottom row demonstrates that Linear Discriminant Analysis can only learn linear boundaries, while Quadratic Dis-
criminant Analysis can learn quadratic boundaries and is therefore more flexible.

Examples:

Linear and Quadratic Discriminant Analysis with covariance ellipsoid: Comparison of LDA and QDA on synthetic
data.

Dimensionality reduction using Linear Discriminant Analysis

discriminant_analysis.LinearDiscriminantAnalysis can be used to perform supervised dimen-
sionality reduction, by projecting the input data to a linear subspace consisting of the directions which maximize
the separation between classes (in a precise sense discussed in the mathematics section below). The dimension of the
output is necessarily less than the number of classes, so this is a in general a rather strong dimensionality reduction,
and only makes senses in a multiclass setting.

This is implemented in discriminant_analysis.LinearDiscriminantAnalysis.transform. The
desired dimensionality can be set using the n_component s constructor parameter. This parameter has no influence
ondiscriminant_analysis.LinearDiscriminantAnalysis.fitordiscriminant_analysis.
LinearDiscriminantAnalysis.predict.

Examples: I

3.1. Supervised learning 173

../auto_examples/classification/plot_lda_qda.html

scikit-learn user guide, Release 0.19.1

Comparison of LDA and PCA 2D projection of Iris dataset: Comparison of LDA and PCA for dimensionality

reduction of the Iris dataset

Mathematical formulation of the LDA and QDA classifiers

Both LDA and QDA can be derived from simple probabilistic models which model the class conditional distribution
of the data P(X|y = k) for each class k. Predictions can then be obtained by using Bayes’ rule:
PXly=kPy=Fk) _ PXly=kP(y=F)

Ply=kX)= P(X) =S PXly=1)- Ply=1)

and we select the class k£ which maximizes this conditional probability.

More specifically, for linear and quadratic discriminant analysis, P(X|y) is modelled as a multivariate Gaussian
distribution with density:

1 1 _
W exp (—2(X - Mk)tzk 1(X - Mle))

To use this model as a classifier, we just need to estimate from the training data the class priors P(y = k) (by the
proportion of instances of class k), the class means py (by the empirical sample class means) and the covariance
matrices (either by the empirical sample class covariance matrices, or by a regularized estimator: see the section on
shrinkage below).

p(Xly=k) =

In the case of LDA, the Gaussians for each class are assumed to share the same covariance matrix: >, = 3 for all
k. This leads to linear decision surfaces between, as can be seen by comparing the log-probability ratios log[P(y =
k| X)/P(y = 1| X)):

e

1
S) =08 (e —)T X = S (S e — S
) =0 (=) (u} o)

2

In the case of QDA, there are no assumptions on the covariance matrices >, of the Gaussians, leading to quadratic
decision surfaces. See” for more details.

Note: Relation with Gaussian Naive Bayes

If in the QDA model one assumes that the covariance matrices are diagonal, then the inputs are assumed to be con-
ditionally independent in each class, and the resulting classifier is equivalent to the Gaussian Naive Bayes classifier
naive_bayes.GaussianNB.

Mathematical formulation of LDA dimensionality reduction

To understand the use of LDA in dimensionality reduction, it is useful to start with a geometric reformulation of the
LDA classification rule explained above. We write K for the total number of target classes. Since in LDA we assume
that all classes have the same estimated covariance ¥, we can rescale the data so that this covariance is the identity:

X* = D720t X with ¥ = UDU!

Then one can show that to classify a data point after scaling is equivalent to finding the estimated class mean pj, which
is closest to the data point in the Euclidean distance. But this can be done just as well after projecting on the K — 1
affine subspace Hy generated by all the p7, for all classes. This shows that, implicit in the LDA classifier, there is a
dimensionality reduction by linear projection onto a K — 1 dimensional space.

3 “The Elements of Statistical Learning”, Hastie T., Tibshirani R., Friedman J., Section 4.3, p.106-119, 2008.

174 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

We can reduce the dimension even more, to a chosen L, by projecting onto the linear subspace H; which max-
imize the variance of the puj after projection (in effect, we are doing a form of PCA for the transformed class
means p3). This L corresponds to the n_components parameter used in the discriminant_analysis.
LinearDiscriminantAnalysis.transformmethod. See® for more details.

Shrinkage

Shrinkage is a tool to improve estimation of covariance matrices in situations where the number of training sam-
ples is small compared to the number of features. In this scenario, the empirical sample covariance is a poor es-
timator. Shrinkage LDA can be used by setting the shrinkage parameter of the discriminant_analysis.
LinearDiscriminantAnalysis classto ‘auto’. This automatically determines the optimal shrinkage parameter
in an analytic way following the lemma introduced by Ledoit and Wolf*. Note that currently shrinkage only works
when setting the solver parameter to ‘Isqr’ or ‘eigen’.

The shrinkage parameter can also be manually set between 0 and 1. In particular, a value of O corresponds to
no shrinkage (which means the empirical covariance matrix will be used) and a value of 1 corresponds to complete
shrinkage (which means that the diagonal matrix of variances will be used as an estimate for the covariance matrix).
Setting this parameter to a value between these two extrema will estimate a shrunk version of the covariance matrix.

criminant Analysis vs. shrinkage Linear Discriminant Analysis (1 discriminatiy

1.0
=~ = | inear Discriminant Analysis with shrinkage
Linear Discriminant Analysis

0.9 1 T SNS——
==
()
S 08
()
(%]
[1:]
c
=
w 0.7 -
U
=
@
%]
o
“ 0.6 1

0.5 -

T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
n_features / n_samples

Estimation algorithms

The default solver is ‘svd’. It can perform both classification and transform, and it does not rely on the calculation
of the covariance matrix. This can be an advantage in situations where the number of features is large. However, the
‘svd’ solver cannot be used with shrinkage.

The ‘Isqr’ solver is an efficient algorithm that only works for classification. It supports shrinkage.

The ‘eigen’ solver is based on the optimization of the between class scatter to within class scatter ratio. It can be used
for both classification and transform, and it supports shrinkage. However, the ‘eigen’ solver needs to compute the
covariance matrix, so it might not be suitable for situations with a high number of features.

4 Ledoit O, Wolf M. Honey, I Shrunk the Sample Covariance Matrix. The Journal of Portfolio Management 30(4), 110-119, 2004.

3.1. Supervised learning 175

../auto_examples/classification/plot_lda.html

scikit-learn user guide, Release 0.19.1

Examples:

Normal and Shrinkage Linear Discriminant Analysis for classification: Comparison of LDA classifiers with and
without shrinkage.

References: I

3.1.3 Kernel ridge regression

Kernel ridge regression (KRR) [M2012] combines Ridge Regression (linear least squares with 12-norm regularization)
with the kernel trick. It thus learns a linear function in the space induced by the respective kernel and the data. For
non-linear kernels, this corresponds to a non-linear function in the original space.

The form of the model learned by Kerne1R1idge is identical to support vector regression (SVR). However, different
loss functions are used: KRR uses squared error loss while support vector regression uses e-insensitive loss, both
combined with 12 regularization. In contrast to SVR, fitting Ke rne 1Ridge can be done in closed-form and is typically
faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR, which
learns a sparse model for ¢ > 0, at prediction-time.

The following figure compares KernelRidge and SVR on an artificial dataset, which consists of a sinusoidal target
function and strong noise added to every fifth datapoint. The learned model of KernelRidge and SVR is plotted,
where both complexity/regularization and bandwidth of the RBF kernel have been optimized using grid-search. The
learned functions are very similar; however, fitting KernelRidge is approx. seven times faster than fitting SVR
(both with grid-search). However, prediction of 100000 target values is more than three times faster with SVR since it
has learned a sparse model using only approx. 1/3 of the 100 training datapoints as support vectors.

The next figure compares the time for fitting and prediction of KernelRidge and SVR for different sizes of the
training set. Fitting KernelRidge is faster than SVR for medium-sized training sets (less than 1000 samples);
however, for larger training sets SVR scales better. With regard to prediction time, SVR is faster than KernelRidge
for all sizes of the training set because of the learned sparse solution. Note that the degree of sparsity and thus the
prediction time depends on the parameters € and C of the SVR; ¢ = 0 would correspond to a dense model.

References: I

3.1.4 Support Vector Machines

Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and
outliers detection.

The advantages of support vector machines are:
* Effective in high dimensional spaces.
« Still effective in cases where number of dimensions is greater than the number of samples.
 Uses a subset of training points in the decision function (called support vectors), so it is also memory efficient.

» Versatile: different Kernel functions can be specified for the decision function. Common kernels are provided,
but it is also possible to specify custom kernels.

The disadvantages of support vector machines include:

176 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

SVR versus Kernel Ridge

@ —— SVR (fit: 0.807s, predict: 0.148s)
5 @ @® —— KRR (fit: 0.343s, predict: 0.374s)
i ®] @ SVR support vectors
e data
l .
]
S 0+
i
_1 .
O
_2 .
O
T T T T T T
0 1 2 3 4 5

data

3.1. Supervised learning 177

../auto_examples/plot_kernel_ridge_regression.html

scikit-learn user guide, Release 0.19.1

Time (seconds)

101

107 3

10-1 4

1072

1073

Execution Time

| —&— KRR (train)

-®- KRR (test)

1 —e— SVR (train)

-®- SVR (test)

Train size

1073

104

178

Chapter 3. User Guide

../auto_examples/plot_kernel_ridge_regression.html

scikit-learn user guide, Release 0.19.1

* If the number of features is much greater than the number of samples, avoid over-fitting in choosing Kernel
Junctions and regularization term is crucial.

* SVMs do not directly provide probability estimates, these are calculated using an expensive five-fold cross-
validation (see Scores and probabilities, below).

The support vector machines in scikit-learn support both dense (numpy . ndarray and convertible to that by numpy .
asarray) and sparse (any scipy . sparse) sample vectors as input. However, to use an SVM to make predictions
for sparse data, it must have been fit on such data. For optimal performance, use C-ordered numpy . ndarray (dense)
or scipy.sparse.csr_matrix (sparse) with dtype=float64.

Classification

SVC, NuSVC and LinearSVC are classes capable of performing multi-class classification on a dataset.

SVC with linear kernel LinearSVC (linear kernel)

Sepal width
Sepal width

Sepal length Sepal length

SVC with RBF kernel SVC with polynomial (degree 3) kernel

Sepal width
Sepal width

Sepal length Sepal length

SVC and NuSVC are similar methods, but accept slightly different sets of parameters and have different mathematical
formulations (see section Mathematical formulation). On the other hand, LinearSVC is another implementation
of Support Vector Classification for the case of a linear kernel. Note that LinearSVC does not accept keyword
kernel, as this is assumed to be linear. It also lacks some of the members of SVC and NuSVC, like support_.

As other classifiers, SVC, NuSVC and LinearSVC take as input two arrays: an array X of size [n_samples,
n_features] holding the training samples, and an array y of class labels (strings or integers), size [n_samples]:

>>> from sklearn import svm
>>> X = [[0, 0], [1, 11]

3.1. Supervised learning 179

../auto_examples/svm/plot_iris.html

scikit-learn user guide, Release 0.19.1

>>> y = [0, 1]

>>> clf = svm.SVC ()

>>> clf.fit (X, vy)

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

After being fitted, the model can then be used to predict new values:

>>> clf.predict ([[2., 2.]])
array ([1])

SVMs decision function depends on some subset of the training data, called the support vectors. Some properties of
these support vectors can be found in members support_vectors_, support_ and n_support:

>>> # get support vectors
>>> clf.support_vectors_
array ([[0., 0.1,
[1., 1.11)
>>> # get indices of support vectors
>>> clf.support_
array ([0, 1]...)
>>> # get number of support vectors for each class
>>> clf.n_support_
array ([1, 1]...)

Multi-class classification

SVC and NuSVC implement the “one-against-one” approach (Knerr et al., 1990) for multi- class classifica-
tion. If n_class is the number of classes, then n_class x (n_class — 1) / 2 classifiers are con-
structed and each one trains data from two classes. To provide a consistent interface with other classifiers, the
decision_function_shape option allows to aggregate the results of the “one-against-one” classifiers to a deci-
sion function of shape (n_samples, n_classes):

>>> X = [[0], (1], [2], [3]]
>> Y = [0, 1, 2, 3]
>>> clf = svm.SVC (decision_function_shape='ovo')

>>> clf.fit (X, Y)

SVC (C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovo', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> dec = clf.decision_function([[1]])
>>> dec.shape[l] # 4 classes: 4%3/2 = 6
6

>>> clf.decision_function_shape = "ovr"
>>> dec = clf.decision_function([[1]])
>>> dec.shape[l] # 4 classes

4

On the other hand, LinearSVC implements “one-vs-the-rest” multi-class strategy, thus training n_class models. If
there are only two classes, only one model is trained:

180 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

>>> 1lin_clf = svm.LinearSVC ()

>>> lin_clf.fit (X, Y)

LinearSvC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
intercept_scaling=1, loss='squared_hinge', max_iter=1000,
multi_class='ovr', penalty='12"', random_state=None, tol=0.0001,
verbose=0)

>>> dec = lin_clf.decision_function([[1]])
>>> dec.shape[l]
4

See Mathematical formulation for a complete description of the decision function.

Note that the LinearSVC also implements an alternative multi-class strategy, the so-called multi-class SVM formu-
lated by Crammer and Singer, by using the option multi_class='crammer_singer'. This method is consis-
tent, which is not true for one-vs-rest classification. In practice, one-vs-rest classification is usually preferred, since
the results are mostly similar, but the runtime is significantly less.

For “one-vs-rest” LinearSVC the attributes coef_ and intercept_ have the shape [n_class,
n_features] and [n_class] respectively. Each row of the coefficients corresponds to one of the n_class
many “one-vs-rest” classifiers and similar for the intercepts, in the order of the “one” class.

In the case of “one-vs-one” SVC, the layout of the attributes is a little more involved. In the case of having a linear
kernel, The layout of coef_ and intercept_ is similar to the one described for LinearSVC described above,
except that the shape of coef__is [n_class * (n_class - 1) / 2, n_features], corresponding to as
many binary classifiers. The order for classes O tonis “0Ovs 1”7, “Ovs 27, ... “Ovsn”, “1 vs 27, “1 v§ 37, “1 vsn”, . .
.“n-1vsn”.

The shape of dual_coef_is [n_class—-1, n_SV] with a somewhat hard to grasp layout. The columns corre-
spond to the support vectors involved in any of the n_class » (n_class - 1) / 2 “one-vs-one” classifiers.
Each of the support vectorsisused inn_class - 1 classifiers. Then_class - 1 entriesin each row correspond
to the dual coefficients for these classifiers.

This might be made more clear by an example:

Consider a three class problem with class 0 having three support vectors vy, v$,v3 and class 1 and 2 having two

support vectors v?, v{ and v3, v3 respectively. For each support vector v}, there are two dual coefficients. Let’s call

the coefficient of support vector v/ in the classifier between classes ¢ and k ¢ ;. Then dual_coef_ looks like this:

ad, | af, | Coefficients for SVs of class 0
T T

Qo1 | Qo2
2

51 | G2

¥, a%Q Coefficients for SVs of class 1

a1 0&,2

a9, | a9, | Coefficients for SVs of class 2
I I

A0 | Qo

Scores and probabilities

The SVC method decision_function gives per-class scores for each sample (or a single score per sample in the
binary case). When the constructor option probability is set to True, class membership probability estimates
(from the methods predict_proba and predict_log_proba) are enabled. In the binary case, the probabilities
are calibrated using Platt scaling: logistic regression on the SVM'’s scores, fit by an additional cross-validation on the
training data. In the multiclass case, this is extended as per Wu et al. (2004).

Needless to say, the cross-validation involved in Platt scaling is an expensive operation for large datasets. In addition,
the probability estimates may be inconsistent with the scores, in the sense that the “argmax” of the scores may not be

3.1. Supervised learning 181

scikit-learn user guide, Release 0.19.1

the argmax of the probabilities. (E.g., in binary classification, a sample may be labeled by predict as belonging
to a class that has probability <%2 according to predict_proba.) Platt’s method is also known to have theoret-
ical issues. If confidence scores are required, but these do not have to be probabilities, then it is advisable to set
probability=False and use decision_function instead of predict_proba.

References:

* Wu, Lin and Weng, “Probability estimates for multi-class classification by pairwise coupling”, JIMLR 5:975-
1005, 2004.

e Platt “Probabilistic outputs for SVMs and comparisons to regularized likelihood methods”
<http://www.cs.colorado.edu/~mozer/Teaching/syllabi/6622/papers/Platt1999.pdf>.

Unbalanced problems

In problems where it is desired to give more importance to certain classes or certain individual samples keywords
class_weight and sample_weight can be used.

SVC (but not NuSVC) implement a keyword class_weight in the f£it method. It’s a dictionary of the form
{class_label : wvalue}, where value is a floating point number > O that sets the parameter C of class
class_labeltoC x wvalue.

4 o o —— non weighted
o weighted
21 o
o
fo)
0 |
=]
_2 - O
o 0 o}
(o]0 ©o8 [o)
o0 . 0
—4 o o @
o]
T T T T T
—4 -2 0 2 4

SVC, NuSvVC, SVR, NuSVR and OneClassSVM implement also weights for individual samples in method fit
through keyword sample_weight. Similar to class_weight, these set the parameter C for the i-th example to
C x sample_weight[i].

Examples: I

182 Chapter 3. User Guide

http://www.csie.ntu.edu.tw/~cjlin/papers/svmprob/svmprob.pdf
../auto_examples/svm/plot_separating_hyperplane_unbalanced.html

scikit-learn user guide, Release 0.19.1

Constant weights Modified weights

* Plot different SVM classifiers in the iris dataset,
o SVM: Maximum margin separating hyperplane,

e SVM: Separating hyperplane for unbalanced classes

SVM-Anova: SVM with univariate feature selection,
e Non-linear SVM
SVM: Weighted samples,

Regression

The method of Support Vector Classification can be extended to solve regression problems. This method is called
Support Vector Regression.

The model produced by support vector classification (as described above) depends only on a subset of the training
data, because the cost function for building the model does not care about training points that lie beyond the margin.
Analogously, the model produced by Support Vector Regression depends only on a subset of the training data, because
the cost function for building the model ignores any training data close to the model prediction.

There are three different implementations of Support Vector Regression: SVR, NuSVR and LinearSVR.
LinearSVR provides a faster implementation than SVR but only considers linear kernels, while NuSVR implements
a slightly different formulation than SVR and LinearSVR. See Implementation details for further details.

As with classification classes, the fit method will take as argument vectors X, y, only that in this case y is expected to
have floating point values instead of integer values:

>>> from sklearn import svm

>>> X = [[0, 0], [2, 21]
>>> vy = [0.5, 2.5]
>>> clf = svm.SVR()

>>> clf.fit (X, vy)

SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='auto',
kernel="rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)

>>> clf.predict ([[1, 1]11])

array ([1.5])

3.1. Supervised learning 183

../auto_examples/svm/plot_weighted_samples.html

scikit-learn user guide, Release 0.19.1

Examples:

* Support Vector Regression (SVR) using linear and non-linear kernels

Density estimation, novelty detection
One-class SVM is used for novelty detection, that is, given a set of samples, it will detect the soft boundary of that set
so as to classify new points as belonging to that set or not. The class that implements this is called OneClassSVM.

In this case, as it is a type of unsupervised learning, the fit method will only take as input an array X, as there are no
class labels.

See, section Novelty and Outlier Detection for more details on this usage.

Novelty Detection

— |earned frontier
4 O training observations
@ new regular observations
© new abnormal observations
5 Q
0 -
_2 .
_4 -

-4 -2 0 2 4
error train: 19/200 ; errors novel regular: 5/40 ; errors novel abnormal: 1/40

Examples:

* One-class SVM with non-linear kernel (RBF)

* Species distribution modeling

Complexity

Support Vector Machines are powerful tools, but their compute and storage requirements increase rapidly with the
number of training vectors. The core of an SVM is a quadratic programming problem (QP), separating support
vectors from the rest of the training data. The QP solver used by this libsvm-based implementation scales between
O(nfeatures X Migmpres) A0 O(Nfeatures X N3gpmpies) depending on how efficiently the libsvm cache is used in

184 Chapter 3. User Guide

../auto_examples/svm/plot_oneclass.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

scikit-learn user guide, Release 0.19.1

practice (dataset dependent). If the data is very sparse 1 feqtures Should be replaced by the average number of non-
zero features in a sample vector.

Also note that for the linear case, the algorithm used in LinearSVC by the liblinear implementation is much more
efficient than its libsvm-based SVC counterpart and can scale almost linearly to millions of samples and/or features.

Tips on Practical Use

* Avoiding data copy: For SVC, SVR, NuSVC and NuSVR, if the data passed to certain methods is not C-ordered
contiguous, and double precision, it will be copied before calling the underlying C implementation. You can
check whether a given numpy array is C-contiguous by inspecting its £1ags attribute.

For LinearSVC (and LogisticRegression) any input passed as a numpy array will be copied and con-
verted to the liblinear internal sparse data representation (double precision floats and int32 indices of non-zero
components). If you want to fit a large-scale linear classifier without copying a dense numpy C-contiguous
double precision array as input we suggest to use the SGDClassifier class instead. The objective function
can be configured to be almost the same as the I.i nearSVC model.

* Kernel cache size: For SVC, SVR, nuSVC and NuSVR, the size of the kernel cache has a strong impact on run
times for larger problems. If you have enough RAM available, it is recommended to set cache_size to a
higher value than the default of 200(MB), such as 500(MB) or 1000(MB).

 Setting C: C is 1 by default and it’s a reasonable default choice. If you have a lot of noisy observations you
should decrease it. It corresponds to regularize more the estimation.

* Support Vector Machine algorithms are not scale invariant, so it is highly recommended to scale your data.
For example, scale each attribute on the input vector X to [0,1] or [-1,+1], or standardize it to have mean 0
and variance 1. Note that the same scaling must be applied to the test vector to obtain meaningful results. See
section Preprocessing data for more details on scaling and normalization.

e Parameter nu in NuSVC/OneClassSVM/NuSVR approximates the fraction of training errors and support vec-
tors.

e In svc, if data for classification are unbalanced (e.g. many positive and few negative), set
class_weight="'balanced' and/or try different penalty parameters C.

e The underlying L inearSVC implementation uses a random number generator to select features when fitting
the model. It is thus not uncommon, to have slightly different results for the same input data. If that happens,
try with a smaller tol parameter.

* Using L1 penalization as provided by LinearSvC (loss='12"', penalty='ll', dual=False)
yields a sparse solution, i.e. only a subset of feature weights is different from zero and contribute to the de-
cision function. Increasing C yields a more complex model (more feature are selected). The C value that yields
a “null” model (all weights equal to zero) can be calculated using 11_min_c.

Kernel functions

The kernel function can be any of the following:
o linear: (z,a’).
* polynomial: (y{(x,z’) + r)?. d is specified by keyword degree, r by coefO0.
o 1bf: exp(—v|lz — 2’||?). v is specified by keyword gamma, must be greater than 0.
* sigmoid (tanh(y(x,2’) 4+ r)), where r is specified by coe£0.

Different kernels are specified by keyword kernel at initialization:

3.1. Supervised learning 185

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

scikit-learn user guide, Release 0.19.1

>>> linear_svc = svm.SVC (kernel="linear')
>>> linear_svc.kernel

'linear’

>>> rbf svc = svm.SVC (kernel="rbf')

>>> rbf_svc.kernel

'rbf!

Custom Kernels

You can define your own kernels by either giving the kernel as a python function or by precomputing the Gram matrix.
Classifiers with custom kernels behave the same way as any other classifiers, except that:
* Field support_vectors_ is now empty, only indices of support vectors are stored in support__

* A reference (and not a copy) of the first argument in the £it () method is stored for future reference. If that
array changes between the use of £it () and predict () you will have unexpected results.

Using Python functions as kernels

You can also use your own defined kernels by passing a function to the keyword kernel in the constructor.

Your kernel must take as arguments two matrices of shape (n_samples_1, n_features), (n_samples_2,
n_features) and return a kernel matrix of shape (n_samples_1, n_samples_2).

The following code defines a linear kernel and creates a classifier instance that will use that kernel:

>>> import numpy as np

>>> from sklearn import svm

>>> def my_kernel (X, Y):
return np.dot (X, Y.T)

>>> clf = svm.SVC (kernel=my_kernel)

Examples:

e SVM with custom kernel.

Using the Gram matrix

Set kernel="precomputed' and pass the Gram matrix instead of X in the fit method. At the moment, the kernel
values between all training vectors and the test vectors must be provided.

>>> import numpy as np
>>> from sklearn import svm

>>> X = np.array([[0, 0], [1, 111)
>>> y = [0, 1]
>>> clf = svm.SVC(kernel="precomputed")

>>> # linear kernel computation

>>> gram = np.dot (X, X.T)

>>> clf.fit (gram, vy)

SVC (C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto',

186 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

kernel="'precomputed', max_iter=-1, probability=False,
random_state=None, shrinking=True, tol=0.001, verbose=False)
>>> # predict on training examples
>>> clf.predict (gram)
array ([0, 1])

Parameters of the RBF Kernel

When training an SVM with the Radial Basis Function (RBF) kernel, two parameters must be considered: C and
gamma. The parameter C, common to all SVM kernels, trades off misclassification of training examples against
simplicity of the decision surface. A low C makes the decision surface smooth, while a high C aims at classifying all
training examples correctly. gamma defines how much influence a single training example has. The larger gamma is,
the closer other examples must be to be affected.

Proper choice of C and gamma is critical to the SVM’s performance. One is advised to use sklearn.
model_selection.GridSearchCV with C and gamma spaced exponentially far apart to choose good values.

Examples:

* RBF SVM parameters

Mathematical formulation

A support vector machine constructs a hyper-plane or set of hyper-planes in a high or infinite dimensional space, which
can be used for classification, regression or other tasks. Intuitively, a good separation is achieved by the hyper-plane
that has the largest distance to the nearest training data points of any class (so-called functional margin), since in
general the larger the margin the lower the generalization error of the classifier.

3.1. Supervised learning 187

scikit-learn user guide, Release 0.19.1

SvVC
Given training vectors x; € RP, i=1,..., n, in two classes, and a vector y € {1, —1}", SVC solves the following primal
problem:

min lew + Cic-

w,b,¢ 2 P '

subject to y;(w” ¢(x;) +b) > 1 — G,
¢;>0,i=1,...,n

Its dual is

1
min —a’ Qa — eTa
a 2

subject to yTar =0

0<a; <Cri=1,...n

where e is the vector of all ones, C' > 0 is the upper bound, () is an n by n positive semidefinite matrix, Q;; =
viy; K (z;,2;), where K (z;,7;) = ¢(z;)T¢(x;) is the kernel. Here training vectors are implicitly mapped into a
higher (maybe infinite) dimensional space by the function ¢.

The decision function is:

sgn(z yii K (zi,) + p)
i=1

Note: While SVM models derived from libsvm and liblinear use C as regularization parameter, most other estimators
use alpha. The exact equivalence between the amount of regularization of two models depends on the exact objective
function optimized by the model. For example, when the estimator used is sklearn.linear _model.Ridge

regression, the relation between them is given as C' = alpﬁ.

This parameters can be accessed through the members dual_coef_ which holds the product y;ay,
support_vectors_ which holds the support vectors, and intercept_ which holds the independent term p

References:

* “Automatic Capacity Tuning of Very Large VC-dimension Classifiers”, I. Guyon, B. Boser, V. Vapnik -
Advances in neural information processing 1993.

» “Support-vector networks”, C. Cortes, V. Vapnik - Machine Learning, 20, 273-297 (1995).

NuSvC

We introduce a new parameter ¥ which controls the number of support vectors and training errors. The parameter
v € (0, 1] is an upper bound on the fraction of training errors and a lower bound of the fraction of support vectors.

It can be shown that the v¥-SVC formulation is a reparameterization of the C-SVC and therefore mathematically
equivalent.

188 Chapter 3. User Guide

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.7215
http://link.springer.com/article/10.1007%2FBF00994018

scikit-learn user guide, Release 0.19.1

SVR
Given training vectors x; € RP, i=1,..., n, and a vector y € R™ e-SVR solves the following primal problem:
min lew + Ci((+¢7)
w,b,.C* 2 AR
subject to y; — w? ¢(x;) —b < e+ G,

wlg(z;) +b—y; <e+¢F)
<i7Cf;k > 072 = 17 L

Its dual is

1
min i(oz —a)TQ(a—a*) + el (a+a*) —yT(a — a)

subject to e’ (v — a*) = 0
0<aq;,af <Cii=1,..,n

where e is the vector of all ones, C' > 0 is the upper bound, @ is an n by n positive semidefinite matrix, Q;; =
K(z;,2;) = ¢(x;)T ¢(z;) is the kernel. Here training vectors are implicitly mapped into a higher (maybe infinite)
dimensional space by the function ¢.

The decision function is:

n

> (i — o)) K (zi,7) + p

i=1

These parameters can be accessed through the members dual_coef_ which holds the difference o; — o],
support_vectors_ which holds the support vectors, and intercept_ which holds the independent term p

References:

* “A Tutorial on Support Vector Regression”, Alex J. Smola, Bernhard Scholkopf - Statistics and Computing
archive Volume 14 Issue 3, August 2004, p. 199-222.

Implementation details

Internally, we use libsvm and liblinear to handle all computations. These libraries are wrapped using C and Cython.

References:

For a description of the implementation and details of the algorithms used, please refer to

* LIBSVM: A Library for Support Vector Machines.

* LIBLINEAR — A Library for Large Linear Classification.

3.1.5 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a simple yet very efficient approach to discriminative learning of linear clas-
sifiers under convex loss functions such as (linear) Support Vector Machines and Logistic Regression. Even though

3.1. Supervised learning 189

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.114.4288
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Logistic_regression

scikit-learn user guide, Release 0.19.1

SGD has been around in the machine learning community for a long time, it has received a considerable amount of
attention just recently in the context of large-scale learning.

SGD has been successfully applied to large-scale and sparse machine learning problems often encountered in text
classification and natural language processing. Given that the data is sparse, the classifiers in this module easily scale
to problems with more than 1075 training examples and more than 1075 features.

The advantages of Stochastic Gradient Descent are:
* Efficiency.
 Ease of implementation (lots of opportunities for code tuning).
The disadvantages of Stochastic Gradient Descent include:
* SGD requires a number of hyperparameters such as the regularization parameter and the number of iterations.

* SGD is sensitive to feature scaling.

Classification

Warning: Make sure you permute (shuffle) your training data before fitting the model or use shuffle=True
to shuffle after each iteration.

The class SGDClassifier implements a plain stochastic gradient descent learning routine which supports different
loss functions and penalties for classification.

As other classifiers, SGD has to be fitted with two arrays: an array X of size [n_samples, n_features] holding the
training samples, and an array Y of size [n_samples] holding the target values (class labels) for the training samples:

>>> from sklearn.linear _model import SGDClassifier
>>> X = [[0., O.], [1., 1.]]

190 Chapter 3. User Guide

../auto_examples/linear_model/plot_sgd_separating_hyperplane.html

scikit-learn user guide, Release 0.19.1

>>> y = [0, 1]

>>> clf = SGDClassifier(loss="hinge", penalty="12")

>>> clf.fit (X, vy)

SGDClassifier (alpha=0.0001, average=False, class_weight=None, epsilon=0.1,
eta0=0.0, fit_intercept=True, 1ll_ratio=0.15,
learning_rate='optimal', loss='hinge', max_iter=None, n_iter=None,
n_jobs=1, penalty='l2"', power_t=0.5, random_state=None,
shuffle=True, tol=None, verbose=0, warm_start=False)

After being fitted, the model can then be used to predict new values:

>>> clf.predict([[2., 2.]11)
array ([1])

SGD fits a linear model to the training data. The member coef_ holds the model parameters:

>>> clf.coef_
array ([[9.9..., 9.9...11)

Member intercept_ holds the intercept (aka offset or bias):

>>> clf.intercept_
array ([-9.9...1])

Whether or not the model should use an intercept, i.e. a biased hyperplane, is controlled by the parameter
fit_intercept.

To get the signed distance to the hyperplane use SGDClassifier.decision_function:

>>> clf.decision_function([[2., 2.11)
array ([29.6...1])

The concrete loss function can be set via the 1oss parameter. SGDClassifier supports the following loss func-
tions:

* loss="hinge": (soft-margin) linear Support Vector Machine,
* loss="modified_huber": smoothed hinge loss,

* loss="1log": logistic regression,

* and all regression losses below.

The first two loss functions are lazy, they only update the model parameters if an example violates the margin con-
straint, which makes training very efficient and may result in sparser models, even when L2 penalty is used.

Using loss="1og" or loss="modified_huber" enables the predict_proba method, which gives a vector
of probability estimates P(y|z) per sample x:

>>> clf = SGDClassifier(loss="1log").fit (X, vy)
>>> clf.predict_proba([[1l., 1.11)
array ([[0.00..., 0.99...11)

The concrete penalty can be set via the penalty parameter. SGD supports the following penalties:
* penalty="12": L2 norm penalty on coef_.
* penalty="11": L1 norm penalty on coef_.

e penalty="elasticnet": Convex combination of L2 and LI; (1 - 11_ratio) * L2 +
11_ratio = L1.

3.1. Supervised learning 191

scikit-learn user guide, Release 0.19.1

The default setting is penalty="12". The L1 penalty leads to sparse solutions, driving most coefficients to zero.
The Elastic Net solves some deficiencies of the L1 penalty in the presence of highly correlated attributes. The param-
eter 11_ratio controls the convex combination of L1 and L2 penalty.

SGDClassifier supports multi-class classification by combining multiple binary classifiers in a “one versus all”
(OVA) scheme. For each of the K classes, a binary classifier is learned that discriminates between that and all other
K — 1 classes. At testing time, we compute the confidence score (i.e. the signed distances to the hyperplane) for each
classifier and choose the class with the highest confidence. The Figure below illustrates the OVA approach on the iris
dataset. The dashed lines represent the three OVA classifiers; the background colors show the decision surface induced
by the three classifiers.

Decision surface of multi-class SGD

e setosa
@ versicolor
o \irginica

L e ——————

In the case of multi-class classification coef_ is a two-dimensionally array of shape=[n_classes,
n_features] and intercept_ is a one dimensional array of shape=[n_classes]. The i-th row of coef_
holds the weight vector of the OVA classifier for the i-th class; classes are indexed in ascending order (see at-
tribute classes_). Note that, in principle, since they allow to create a probability model, 1oss="1og" and
loss="modified_huber" are more suitable for one-vs-all classification.

SGDClassifier supports both weighted classes and weighted instances via the fit parameters class_weight
and sample_weight. See the examples below and the doc string of SGDClassifier. fit for further informa-
tion.

Examples:

* SGD: Maximum margin separating hyperplane,

o Plot multi-class SGD on the iris dataset

SGD: Weighted samples

o Comparing various online solvers

SVM: Separating hyperplane for unbalanced classes (See the Note)

192 Chapter 3. User Guide

../auto_examples/linear_model/plot_sgd_iris.html

scikit-learn user guide, Release 0.19.1

SGDClassifier supports averaged SGD (ASGD). Averaging can be enabled by setting "average=True .
ASGD works by averaging the coefficients of the plain SGD over each iteration over a sample. When using ASGD
the learning rate can be larger and even constant leading on some datasets to a speed up in training time.

For classification with a logistic loss, another variant of SGD with an averaging strategy is available with Stochastic
Average Gradient (SAG) algorithm, available as a solver in LogisticRegression.

Regression

The class SGDRegressor implements a plain stochastic gradient descent learning routine which supports different
loss functions and penalties to fit linear regression models. SGDRegressor is well suited for regression prob-
lems with a large number of training samples (> 10.000), for other problems we recommend Ridge, Lasso, or
ElasticNet.

The concrete loss function can be set via the 1 oss parameter. SGDRegressor supports the following loss functions:
¢ loss="squared_loss": Ordinary least squares,
* loss="huber": Huber loss for robust regression,
* loss="epsilon_insensitive": linear Support Vector Regression.

The Huber and epsilon-insensitive loss functions can be used for robust regression. The width of the insensitive region
has to be specified via the parameter epsilon. This parameter depends on the scale of the target variables.

SGDRegressor supports averaged SGD as SGDClassifier. Averaging can be enabled by setting
“average=True .

For regression with a squared loss and a 12 penalty, another variant of SGD with an averaging strategy is available with
Stochastic Average Gradient (SAG) algorithm, available as a solver in Ridge.

Stochastic Gradient Descent for sparse data

Note: The sparse implementation produces slightly different results than the dense implementation due to a shrunk
learning rate for the intercept.

There is built-in support for sparse data given in any matrix in a format supported by scipy.sparse. For maximum
efficiency, however, use the CSR matrix format as defined in scipy.sparse.csr_matrix.

Examples:

* Classification of text documents using sparse features

Complexity

The major advantage of SGD is its efficiency, which is basically linear in the number of training examples. If X is a
matrix of size (n, p) training has a cost of O(knp), where k is the number of iterations (epochs) and p is the average
number of non-zero attributes per sample.

Recent theoretical results, however, show that the runtime to get some desired optimization accuracy does not increase
as the training set size increases.

3.1. Supervised learning 193

https://docs.scipy.org/doc/scipy/reference/sparse.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html

scikit-learn user guide, Release 0.19.1

Tips on Practical Use

* Stochastic Gradient Descent is sensitive to feature scaling, so it is highly recommended to scale your data. For
example, scale each attribute on the input vector X to [0,1] or [-1,+1], or standardize it to have mean O and
variance 1. Note that the same scaling must be applied to the test vector to obtain meaningful results. This can
be easily done using StandardScaler:

from sklearn.preprocessing import StandardScaler

scaler StandardScaler ()

scaler.fit (X_train) # Don't cheat - fit only on training data

X_train = scaler.transform(X_train)

X_test scaler.transform(X_test) # apply same transformation to test data

If your attributes have an intrinsic scale (e.g. word frequencies or indicator features) scaling is not needed.

* Finding a reasonable regularization term « is best done using GridSearchCV, usually in the range 10.
Oxx-np.arange (1,7).

* Empirically, we found that SGD converges after observing approx. 1076 training samples. Thus, a reasonable
first guess for the number of iterations is n_iter = np.ceil (10x%6 / n), where n is the size of the
training set.

¢ If you apply SGD to features extracted using PCA we found that it is often wise to scale the feature values by
some constant ¢ such that the average L2 norm of the training data equals one.

* We found that Averaged SGD works best with a larger number of features and a higher eta0

References:

» “Efficient BackProp” Y. LeCun, L. Bottou, G. Orr, K. Miiller - In Neural Networks: Tricks of the Trade 1998.

Mathematical formulation

Given a set of training examples (z1,%1), ..., (Zn, yn) where z; € R™ and y; € {—1, 1}, our goal is to learn a linear
scoring function f(z) = w”x + b with model parameters w € R™ and intercept b € R. In order to make predictions,
we simply look at the sign of f(x). A common choice to find the model parameters is by minimizing the regularized
training error given by

n

Bw,b) = -3 Llys, /) + aR(w)

i=1

where L is a loss function that measures model (mis)fit and R is a regularization term (aka penalty) that penalizes
model complexity; o > 0 is a non-negative hyperparameter.

Different choices for L entail different classifiers such as
* Hinge: (soft-margin) Support Vector Machines.
* Log: Logistic Regression.
» Least-Squares: Ridge Regression.
* Epsilon-Insensitive: (soft-margin) Support Vector Regression.

All of the above loss functions can be regarded as an upper bound on the misclassification error (Zero-one loss) as
shown in the Figure below.

Popular choices for the regularization term R include:

194 Chapter 3. User Guide

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

scikit-learn user guide, Release 0.19.1

8 Y
\ Zero-one loss
! —— Hinge |
7 1 Hinge loss
\ Perceptron loss
".‘ —— Log loss
6 .
\ Squared hinge loss
\\ == Modified Huber loss
—_— 5]
=
=
- 4
[
]
- 3
2 -
1_ 4
0 f

Decision function f{x)

« L2 norm: R(w) := 13" | w?,
* L1 norm: R(w) := >, |w;|, which leads to sparse solutions.

* Elastic Net: R(w) := £3" ; w? + (1 — p) > |w;l, a convex combination of L2 and L1, where p is given
byl - 11_ratio.

The Figure below shows the contours of the different regularization terms in the parameter space when R(w) = 1.

SGD

Stochastic gradient descent is an optimization method for unconstrained optimization problems. In contrast to (batch)
gradient descent, SGD approximates the true gradient of E(w, b) by considering a single training example at a time.

The class SGDClassifier implements a first-order SGD learning routine. The algorithm iterates over the training
examples and for each example updates the model parameters according to the update rule given by

OR(w) N OL(wTz; + b,y;)

w4+ w—n(a 0 0)

where 7 is the learning rate which controls the step-size in the parameter space. The intercept b is updated similarly
but without regularization.

The learning rate 1) can be either constant or gradually decaying. For classification, the default learning rate schedule
(learning_rate='optimal"')is given by

1

w__ b
T T At + 1)

where ¢ is the time step (there are a total of n_samples * n_iter time steps), to is determined based on a heuristic
proposed by Léon Bottou such that the expected initial updates are comparable with the expected size of the weights
(this assuming that the norm of the training samples is approx. 1). The exact definition can be found in _init_t in
BaseSGD.

3.1. Supervised learning 195

../auto_examples/linear_model/plot_sgd_loss_functions.html

scikit-learn user guide, Release 0.19.1

—_— L1
1.0 - oL
Elastic Net

0.5 1

£ 0.0 —_ —_—
_05 |
_1.0 -

T T T T T T T
-1.5 -1.0 —0.5 0.0 0.5 1.0 15

Wo

For regression the default learning rate schedule is inverse scaling (learning_rate="'invscaling"'), given by

(t) - etao
= tpower_t

where etag and power_t are hyperparameters chosen by the user via eta0 and power_t, resp.
For a constant learning rate use learning_rate='constant' and use eta0 to specify the learning rate.
The model parameters can be accessed through the members coef_ and intercept_:

* Member coef_ holds the weights w

¢ Member intercept_ holds b

References:
* “Solving large scale linear prediction problems using stochastic gradient descent algorithms” T. Zhang - In
Proceedings of ICML ‘04.

» “Regularization and variable selection via the elastic net” H. Zou, T. Hastie - Journal of the Royal Statistical
Society Series B, 67 (2), 301-320.

» “Towards Optimal One Pass Large Scale Learning with Averaged Stochastic Gradient Descent” Xu, Wei

Implementation details

The implementation of SGD is influenced by the Stochastic Gradient SVM of Léon Bottou. Similar to SvmSGD,
the weight vector is represented as the product of a scalar and a vector which allows an efficient weight update in
the case of L2 regularization. In the case of sparse feature vectors, the intercept is updated with a smaller learning
rate (multiplied by 0.01) to account for the fact that it is updated more frequently. Training examples are picked up
sequentially and the learning rate is lowered after each observed example. We adopted the learning rate schedule from

196 Chapter 3. User Guide

../auto_examples/linear_model/plot_sgd_penalties.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.7377
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.124.4696
http://arxiv.org/pdf/1107.2490v2.pdf
http://leon.bottou.org/projects/sgd

scikit-learn user guide, Release 0.19.1

Shalev-Shwartz et al. 2007. For multi-class classification, a “one versus all” approach is used. We use the truncated
gradient algorithm proposed by Tsuruoka et al. 2009 for L1 regularization (and the Elastic Net). The code is written
in Cython.

References:

e “Stochastic Gradient Descent” L. Bottou - Website, 2010.
* “The Tradeoffs of Large Scale Machine Learning” L. Bottou - Website, 2011.

* “Pegasos: Primal estimated sub-gradient solver for svm” S. Shalev-Shwartz, Y. Singer, N. Srebro - In Pro-
ceedings of ICML °07.

* “Stochastic gradient descent training for 11-regularized log-linear models with cumulative penalty” Y. Tsu-
ruoka, J. Tsujii, S. Ananiadou - In Proceedings of the AFNLP/ACL “09.

3.1.6 Nearest Neighbors

sklearn.neighbors provides functionality for unsupervised and supervised neighbors-based learning methods.
Unsupervised nearest neighbors is the foundation of many other learning methods, notably manifold learning and
spectral clustering. Supervised neighbors-based learning comes in two flavors: classification for data with discrete
labels, and regression for data with continuous labels.

The principle behind nearest neighbor methods is to find a predefined number of training samples closest in distance
to the new point, and predict the label from these. The number of samples can be a user-defined constant (k-nearest
neighbor learning), or vary based on the local density of points (radius-based neighbor learning). The distance can,
in general, be any metric measure: standard Euclidean distance is the most common choice. Neighbors-based meth-
ods are known as non-generalizing machine learning methods, since they simply “remember” all of its training data
(possibly transformed into a fast indexing structure such as a Ball Tree or KD Tree.).

Despite its simplicity, nearest neighbors has been successful in a large number of classification and regression prob-
lems, including handwritten digits or satellite image scenes. Being a non-parametric method, it is often successful in
classification situations where the decision boundary is very irregular.

The classes in sklearn.neighbors can handle either Numpy arrays or scipy.sparse matrices as input. For dense
matrices, a large number of possible distance metrics are supported. For sparse matrices, arbitrary Minkowski metrics
are supported for searches.

There are many learning routines which rely on nearest neighbors at their core. One example is kernel density estima-
tion, discussed in the density estimation section.

Unsupervised Nearest Neighbors

NearestNeighbors implements unsupervised nearest neighbors learning. It acts as a uniform interface to three
different nearest neighbors algorithms: BallTree, KDTree, and a brute-force algorithm based on routines in
sklearn.metrics.pairwise. The choice of neighbors search algorithm is controlled through the keyword
'algorithm', which must be one of ['auto', 'ball_tree', 'kd_tree', 'brute']. When the de-
fault value 'auto' is passed, the algorithm attempts to determine the best approach from the training data. For a
discussion of the strengths and weaknesses of each option, see Nearest Neighbor Algorithms.

Warning: Regarding the Nearest Neighbors algorithms, if two neighbors, neighbor £+ 1 and &, have
identical distances but different labels, the results will depend on the ordering of the training data.

3.1. Supervised learning 197

http://leon.bottou.org/projects/sgd
http://leon.bottou.org/slides/largescale/lstut.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.8513
http://www.aclweb.org/anthology/P/P09/P09-1054.pdf

scikit-learn user guide, Release 0.19.1

Finding the Nearest Neighbors

For the simple task of finding the nearest neighbors between two sets of data, the unsupervised algorithms within
sklearn.neighbors can be used:

>>> from sklearn.neighbors import NearestNeighbors
>>> import numpy as np

>>> X = np.array([[-1, -11, [-2, -11, [-3, -21, [1, 11, 12, 11, [3, 211)
>>> nbrs = NearestNeighbors (n_neighbors=2, algorithm='ball tree').fit (X)

>>> distances, indices = nbrs.kneighbors (X)
>>> indices
array ([[0, 17,
[1, 01,
[2, 11,
[3, 41,
[4, 31,
[5, 411...)
>>> distances
array ([[O. , 1. 1,
[O. , 1. 1,
[O. , 1.41421356],
[O. , 1. 1,
[O. , 1. 1,
[O. 1.4142135611)

Because the query set matches the training set, the nearest neighbor of each point is the point itself, at a distance of
Zero.

It is also possible to efficiently produce a sparse graph showing the connections between neighboring points:

>>> nbrs.kneighbors_graph (X) .toarray ()

array ([[1., 1., 0., 0., 0., 0.1,
[1., , 0., 0., 0., 0.1,
ro., 1., 1., 0., 0., 0.1,
[o., 0., 0., 1., 1., 0.1,
ro., 0., 0., 1., 1., 0.1,
[O 0 0 0. 1 1.11)

Our dataset is structured such that points nearby in index order are nearby in parameter space, leading to an ap-
proximately block-diagonal matrix of K-nearest neighbors. Such a sparse graph is useful in a variety of cir-
cumstances which make use of spatial relationships between points for unsupervised learning: in particular,
see sklearn.manifold.Isomap, sklearn.manifold.LocallyLinearEmbedding, and sklearn.
cluster.SpectralClustering.

KDTree and BallTree Classes

Alternatively, one can use the KDTree or BallTree classes directly to find nearest neighbors. This is the function-
ality wrapped by the NearestNeighbors class used above. The Ball Tree and KD Tree have the same interface;
we’ll show an example of using the KD Tree here:

>>> from sklearn.neighbors import KDTree
>>> import numpy as np
>>> X = np.array([([-1, -1], [-2, -1], [-3, -2], [1, 11, [2, 11, [3, 2]])

>>> kdt = KDTree (X, leaf_size=30, metric='euclidean')
>>> kdt.query (X, k=2, return_distance=False)
array ([[0, 17,

198 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

~

~

g W N
~
DWW o PO
~

o~

Refer to the KDTree and BallTree class documentation for more information on the options available for neighbors
searches, including specification of query strategies, of various distance metrics, etc. For a list of available metrics,
see the documentation of the DistanceMetric class.

Nearest Neighbors Classification

Neighbors-based classification is a type of instance-based learning or non-generalizing learning: it does not attempt
to construct a general internal model, but simply stores instances of the training data. Classification is computed from
a simple majority vote of the nearest neighbors of each point: a query point is assigned the data class which has the
most representatives within the nearest neighbors of the point.

scikit-learn implements two different nearest neighbors classifiers: KNeighborsClassifier implements learn-
ing based on the k nearest neighbors of each query point, where k is an integer value specified by the user.
RadiusNeighborsClassifier implements learning based on the number of neighbors within a fixed radius
r of each training point, where r is a floating-point value specified by the user.

The k-neighbors classification in KNeighborsClassifier is the more commonly used of the two techniques.
The optimal choice of the value £ is highly data-dependent: in general a larger &k suppresses the effects of noise, but
makes the classification boundaries less distinct.

In cases where the data is not wuniformly sampled, radius-based neighbors classification in
RadiusNeighborsClassifier can be a better choice. The user specifies a fixed radius r, such that
points in sparser neighborhoods use fewer nearest neighbors for the classification. For high-dimensional parameter
spaces, this method becomes less effective due to the so-called “curse of dimensionality”.

The basic nearest neighbors classification uses uniform weights: that is, the value assigned to a query point is computed
from a simple majority vote of the nearest neighbors. Under some circumstances, it is better to weight the neighbors
such that nearer neighbors contribute more to the fit. This can be accomplished through the weight s keyword. The
default value, weights = 'uniform', assigns uniform weights to each neighbor. weights = 'distance'
assigns weights proportional to the inverse of the distance from the query point. Alternatively, a user-defined function
of the distance can be supplied which is used to compute the weights.

3-Class classification (k = 15, weights = 'uniform’)

3-Class classification (k = 15, weights = 'distance’)

5.0 5.0 4
4.5 o 4.5 o
o © o ©
4.0 e ° 4.0 e °
33 oo ° o ° o 33 e ° . e
331 --:iz o o e 331 o.,i: o® o ®
3 :'83. ° :'3“ . ° u- ° suso 3
3.0 o0 e o o0 e08e oo oo 3.0 1 o0 e o o0 s08e oo oe
(R | A T g R %S
2.5 - go §8° e o ° 25 go $8 %o o *
o (] o o o° L] -] <] o OD
2.0 A o 2.0+ -]
1.5 1541
1.0 T 1.0 T
9 5 6 7 4 5 6 7 8

3.1. Supervised learning

199

../auto_examples/neighbors/plot_classification.html
../auto_examples/neighbors/plot_classification.html

scikit-learn user guide, Release 0.19.1

Examples:

* Nearest Neighbors Classification: an example of classification using nearest neighbors.

Nearest Neighbors Regression

Neighbors-based regression can be used in cases where the data labels are continuous rather than discrete variables.
The label assigned to a query point is computed based the mean of the labels of its nearest neighbors.

scikit-learn implements two different neighbors regressors: KNeighborsRegressor implements learning
based on the k nearest neighbors of each query point, where k is an integer value specified by the user.
RadiusNeighborsRegressor implements learning based on the neighbors within a fixed radius r of the query
point, where 7 is a floating-point value specified by the user.

The basic nearest neighbors regression uses uniform weights: that is, each point in the local neighborhood contributes
uniformly to the classification of a query point. Under some circumstances, it can be advantageous to weight points
such that nearby points contribute more to the regression than faraway points. This can be accomplished through the
weights keyword. The default value, weights = 'uniform', assigns equal weights to all points. weights
= 'distance' assigns weights proportional to the inverse of the distance from the query point. Alternatively, a
user-defined function of the distance can be supplied, which will be used to compute the weights.

KNeighborsRegressor (k = 5, weights = 'uniform’)

1.0
h . —— prediction
0.5 e data
0.0 -
_0.5 -
_1.0 L T T T T T T
0 KNeighbdrsRegressér (k = 5, weights = 'distance') >
1.0 4 —
—— prediction
0.5 1 e data
0.0 A
_0.5 |
_1.0 -

The use of multi-output nearest neighbors for regression is demonstrated in Face completion with a multi-output
estimators. In this example, the inputs X are the pixels of the upper half of faces and the outputs Y are the pixels of
the lower half of those faces.

Examples:

* Nearest Neighbors regression: an example of regression using nearest neighbors.

200 Chapter 3. User Guide

../auto_examples/neighbors/plot_regression.html

scikit-learn user guide, Release 0.19.1

Face completion with multi-output estimators

true faces Extra trees Linear regression

3.1. Supervised learning 201

../auto_examples/plot_multioutput_face_completion.html

scikit-learn user guide, Release 0.19.1

» Face completion with a multi-output estimators: an example of multi-output regression using nearest neigh-

bors.

Nearest Neighbor Algorithms

Brute Force

Fast computation of nearest neighbors is an active area of research in machine learning. The most naive neighbor
search implementation involves the brute-force computation of distances between all pairs of points in the dataset: for
N samples in D dimensions, this approach scales as O DN?|. Efficient brute-force neighbors searches can be very
competitive for small data samples. However, as the number of samples N grows, the brute-force approach quickly
becomes infeasible. In the classes within sklearn.neighbors, brute-force neighbors searches are specified using
the keyword algorithm = 'brute', and are computed using the routines available in sklearn.metrics.
pairwise.

K-D Tree

To address the computational inefficiencies of the brute-force approach, a variety of tree-based data structures have
been invented. In general, these structures attempt to reduce the required number of distance calculations by efficiently
encoding aggregate distance information for the sample. The basic idea is that if point A is very distant from point
B, and point B is very close to point C, then we know that points A and C' are very distant, without having to
explicitly calculate their distance. In this way, the computational cost of a nearest neighbors search can be reduced to
O[DN log(N)] or better. This is a significant improvement over brute-force for large V.

An early approach to taking advantage of this aggregate information was the KD tree data structure (short for K-
dimensional tree), which generalizes two-dimensional Quad-trees and 3-dimensional Oct-trees to an arbitrary number
of dimensions. The KD tree is a binary tree structure which recursively partitions the parameter space along the data
axes, dividing it into nested orthotropic regions into which data points are filed. The construction of a KD tree is very
fast: because partitioning is performed only along the data axes, no D-dimensional distances need to be computed.
Once constructed, the nearest neighbor of a query point can be determined with only O[log(N)] distance computations.
Though the KD tree approach is very fast for low-dimensional (D < 20) neighbors searches, it becomes inefficient
as D grows very large: this is one manifestation of the so-called “curse of dimensionality”. In scikit-learn, KD tree
neighbors searches are specified using the keyword algorithm = 'kd_tree', and are computed using the class
KDTree.

References:

» “Multidimensional binary search trees used for associative searching”, Bentley, J.L., Communications of the
ACM (1975)

Ball Tree

To address the inefficiencies of KD Trees in higher dimensions, the ball tree data structure was developed. Where
KD trees partition data along Cartesian axes, ball trees partition data in a series of nesting hyper-spheres. This makes
tree construction more costly than that of the KD tree, but results in a data structure which can be very efficient on
highly-structured data, even in very high dimensions.

A ball tree recursively divides the data into nodes defined by a centroid C' and radius r, such that each point in the
node lies within the hyper-sphere defined by and C. The number of candidate points for a neighbor search is reduced

202 Chapter 3. User Guide

http://dl.acm.org/citation.cfm?doid=361002.361007

scikit-learn user guide, Release 0.19.1

through use of the triangle inequality:
|z 4yl < ||+ [y

With this setup, a single distance calculation between a test point and the centroid is sufficient to determine a lower
and upper bound on the distance to all points within the node. Because of the spherical geometry of the ball tree nodes,
it can out-perform a KD-tree in high dimensions, though the actual performance is highly dependent on the structure
of the training data. In scikit-learn, ball-tree-based neighbors searches are specified using the keyword algorithm
= 'ball_tree', and are computed using the class sklearn.neighbors.BallTree. Alternatively, the user
can work with the Bal1Tree class directly.

References:

* “Five balltree construction algorithms”, Omohundro, S.M., International Computer Science Institute Techni-
cal Report (1989)

Choice of Nearest Neighbors Algorithm

The optimal algorithm for a given dataset is a complicated choice, and depends on a number of factors:
* number of samples IV (i.e. n_samples) and dimensionality D (i.e. n_features).
— Brute force query time grows as O[D N
— Ball tree query time grows as approximately O[D log(N)]

— KD tree query time changes with D in a way that is difficult to precisely characterise. For small D (less
than 20 or so) the cost is approximately O[D log(N)], and the KD tree query can be very efficient. For
larger D, the cost increases to nearly O[DN, and the overhead due to the tree structure can lead to queries
which are slower than brute force.

For small data sets (IV less than 30 or s0), log(NV) is comparable to IV, and brute force algorithms can be more
efficient than a tree-based approach. Both KDTree and BallTree address this through providing a leaf size
parameter: this controls the number of samples at which a query switches to brute-force. This allows both
algorithms to approach the efficiency of a brute-force computation for small N.

* data structure: intrinsic dimensionality of the data and/or sparsity of the data. Intrinsic dimensionality refers
to the dimension d < D of a manifold on which the data lies, which can be linearly or non-linearly embedded
in the parameter space. Sparsity refers to the degree to which the data fills the parameter space (this is to be
distinguished from the concept as used in “sparse” matrices. The data matrix may have no zero entries, but the
structure can still be “sparse” in this sense).

— Brute force query time is unchanged by data structure.

— Ball tree and KD tree query times can be greatly influenced by data structure. In general, sparser data with a
smaller intrinsic dimensionality leads to faster query times. Because the KD tree internal representation is
aligned with the parameter axes, it will not generally show as much improvement as ball tree for arbitrarily
structured data.

Datasets used in machine learning tend to be very structured, and are very well-suited for tree-based queries.
¢ number of neighbors & requested for a query point.
— Brute force query time is largely unaffected by the value of &

— Ball tree and KD tree query time will become slower as k increases. This is due to two effects: first, a
larger k leads to the necessity to search a larger portion of the parameter space. Second, using k& > 1
requires internal queueing of results as the tree is traversed.

3.1. Supervised learning 203

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.8209

scikit-learn user guide, Release 0.19.1

As k becomes large compared to N, the ability to prune branches in a tree-based query is reduced. In this
situation, Brute force queries can be more efficient.

* number of query points. Both the ball tree and the KD Tree require a construction phase. The cost of this
construction becomes negligible when amortized over many queries. If only a small number of queries will
be performed, however, the construction can make up a significant fraction of the total cost. If very few query
points will be required, brute force is better than a tree-based method.

Currently, algorithm = 'auto' selects 'kd_tree' if k¥ < N/2 and the 'effective_metric_'
is in the 'VALID_METRICS' list of 'kd_tree'. It selects 'ball_tree' if ¥k < N/2 and the
'effective_metric_'isinthe 'VALID_METRICS' listof 'ball_tree'. Itselects 'brute' if k < N/2
and the 'effective_metric_' isnotin the 'VALID METRICS' listof 'kd_tree' or 'ball_tree'. It
selects 'brute"' if k >= N/2. This choice is based on the assumption that the number of query points is at least the
same order as the number of training points, and that 1leaf_size is close to its default value of 30.

Effect of 1eaf size

As noted above, for small sample sizes a brute force search can be more efficient than a tree-based query. This fact is
accounted for in the ball tree and KD tree by internally switching to brute force searches within leaf nodes. The level
of this switch can be specified with the parameter 1eaf_size. This parameter choice has many effects:

construction time A larger leaf_size leads to a faster tree construction time, because fewer nodes need to be
created

query time Both a large or small 1eaf_size can lead to suboptimal query cost. For 1eaf_size approaching
1, the overhead involved in traversing nodes can significantly slow query times. For 1leaf_ size approach-
ing the size of the training set, queries become essentially brute force. A good compromise between these is
leaf_size = 30, the default value of the parameter.

memory As leaf_size increases, the memory required to store a tree structure decreases. This is especially
important in the case of ball tree, which stores a D-dimensional centroid for each node. The required storage
space for BallTree is approximately 1 / leaf_size times the size of the training set.

leaf_size is not referenced for brute force queries.

Nearest Centroid Classifier

The NearestCentroid classifier is a simple algorithm that represents each class by the centroid of its members.
In effect, this makes it similar to the label updating phase of the sklearn.KMeans algorithm. It also has no param-
eters to choose, making it a good baseline classifier. It does, however, suffer on non-convex classes, as well as when
classes have drastically different variances, as equal variance in all dimensions is assumed. See Linear Discrim-
inant Analysis (sklearn.discriminant_analysis.LinearDiscriminantAnalysis) and Quadratic
Discriminant Analysis (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis) for
more complex methods that do not make this assumption. Usage of the default NearestCentroid is simple:

>>> from sklearn.neighbors.nearest_centroid import NearestCentroid

>>> import numpy as np

>>> X = np.array([([-1, -11, [-2, -11, [-3, -21, [, 11, [2, 11, [3, 211)
>>> y = np.array([1l, 1, 1, 2, 2, 21])

>>> clf = NearestCentroid()

>>> clf.fit (X, vy)

NearestCentroid (metric='euclidean', shrink_threshold=None)

>>> print (clf.predict([[-0.8, -111))

[1]

204 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

Nearest Shrunken Centroid

The NearestCentroid classifier has a shrink_threshold parameter, which implements the nearest shrunken
centroid classifier. In effect, the value of each feature for each centroid is divided by the within-class variance of that
feature. The feature values are then reduced by shrink_threshold. Most notably, if a particular feature value
crosses zero, it is set to zero. In effect, this removes the feature from affecting the classification. This is useful, for
example, for removing noisy features.

In the example below, using a small shrink threshold increases the accuracy of the model from 0.81 to 0.82.

3-Class classification (shrink_threshold=None)

3-Class classification (shrink_threshold=0.2)

5.0 4 5.0
4.5 a 4.5 o
‘) ® i L]
4.0 1 o 4.0 o P
: (1] ° .. : oo ° ..
354 ® 8e0 o * 3.5 ® 200 o *
LR ::. ° o .: . L s:. L o ® .
L] =. o o :- .:l:l . o =0 () o :l -:0 .
3.0 4 o2 8 o oo o2 .g:a es_ e 3.0 o3 e o 0o ose og:o LI
e3e °82330° o .o o 83s 28383:° o O
00 gzgs D. .. . o 0008 0. Ll .
2.5 4 8 g L] - 2.54 g o gﬂ. L4 L
° o e Cl 3 ° o o
L L
2.04 ° 2.0 o
1.5 151
1.0 L0 T
4 5 6 7 8 4 5 6 7 8

Examples:

* Nearest Centroid Classification: an example of classification using nearest centroid with different shrink
thresholds.

3.1.7 Gaussian Processes
Gaussian Processes (GP) are a generic supervised learning method designed to solve regression and probabilistic
classification problems.
The advantages of Gaussian processes are:
* The prediction interpolates the observations (at least for regular kernels).

» The prediction is probabilistic (Gaussian) so that one can compute empirical confidence intervals and decide
based on those if one should refit (online fitting, adaptive fitting) the prediction in some region of interest.

* Versatile: different kernels can be specified. Common kernels are provided, but it is also possible to specify
custom kernels.

The disadvantages of Gaussian processes include:
» They are not sparse, i.e., they use the whole samples/features information to perform the prediction.

* They lose efficiency in high dimensional spaces — namely when the number of features exceeds a few dozens.

Gaussian Process Regression (GPR)

The GaussianProcessRegressor implements Gaussian processes (GP) for regression purposes. For this, the
prior of the GP needs to be specified. The prior mean is assumed to be constant and zero (for normalize_y=False)

3.1. Supervised learning 205

../auto_examples/neighbors/plot_nearest_centroid.html
../auto_examples/neighbors/plot_nearest_centroid.html

scikit-learn user guide, Release 0.19.1

or the training data’s mean (for normalize_y=True). The prior’s covariance is specified by a passing a kernel
object. The hyperparameters of the kernel are optimized during fitting of GaussianProcessRegressor by maximizing
the log-marginal-likelihood (LML) based on the passed optimizer. As the LML may have multiple local optima,
the optimizer can be started repeatedly by specifying n_restarts_optimizer. The first run is always conducted
starting from the initial hyperparameter values of the kernel; subsequent runs are conducted from hyperparameter
values that have been chosen randomly from the range of allowed values. If the initial hyperparameters should be kept
fixed, None can be passed as optimizer.

The noise level in the targets can be specified by passing it via the parameter alpha, either globally as a scalar or
per datapoint. Note that a moderate noise level can also be helpful for dealing with numeric issues during fitting as
it is effectively implemented as Tikhonov regularization, i.e., by adding it to the diagonal of the kernel matrix. An
alternative to specifying the noise level explicitly is to include a WhiteKernel component into the kernel, which can
estimate the global noise level from the data (see example below).

The implementation is based on Algorithm 2.1 of /[RW2006]. In addition to the API of standard scikit-learn estimators,
GaussianProcessRegressor:

* allows prediction without prior fitting (based on the GP prior)

e provides an additional method sample_y (X), which evaluates samples drawn from the GPR (prior or poste-
rior) at given inputs

¢ exposes a method 1log_marginal_likelihood (theta), which can be used externally for other ways of
selecting hyperparameters, e.g., via Markov chain Monte Carlo.

GPR examples

GPR with noise-level estimation

This example illustrates that GPR with a sum-kernel including a WhiteKernel can estimate the noise level of data. An
illustration of the log-marginal-likelihood (LML) landscape shows that there exist two local maxima of LML.

The first corresponds to a model with a high noise level and a large length scale, which explains all variations in the
data by noise.

The second one has a smaller noise level and shorter length scale, which explains most of the variation by the noise-
free functional relationship. The second model has a higher likelihood; however, depending on the initial value for the
hyperparameters, the gradient-based optimization might also converge to the high-noise solution. It is thus important
to repeat the optimization several times for different initializations.

Comparison of GPR and Kernel Ridge Regression

Both kernel ridge regression (KRR) and GPR learn a target function by employing internally the “kernel trick”. KRR
learns a linear function in the space induced by the respective kernel which corresponds to a non-linear function in
the original space. The linear function in the kernel space is chosen based on the mean-squared error loss with ridge
regularization. GPR uses the kernel to define the covariance of a prior distribution over the target functions and uses
the observed training data to define a likelihood function. Based on Bayes theorem, a (Gaussian) posterior distribution
over target functions is defined, whose mean is used for prediction.

A major difference is that GPR can choose the kernel’s hyperparameters based on gradient-ascent on the marginal
likelihood function while KRR needs to perform a grid search on a cross-validated loss function (mean-squared error
loss). A further difference is that GPR learns a generative, probabilistic model of the target function and can thus
provide meaningful confidence intervals and posterior samples along with the predictions while KRR only provides
predictions.

206 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

Initial: 1**2 * RBF(length_scale=100) + WhiteKernel(noise level=1)
Zimum: 0.00316**2 * RBF(length _scale=109) + WhiteKernel(noise level=0.6
Log-Marginal-Likelihood: -23.872337362

1.5

10 ®

3.1. Supervised learning 207

../auto_examples/gaussian_process/plot_gpr_noisy.html

scikit-learn user guide, Release 0.19.1

Initial: 1**2 * RBF(length_scale=1) + WhiteKernel(noise level=1e-05)
timum: 0.64**%2 * RBF(length_scale=0.365) + WhiteKernel(noise level=0.29
Log-Marginal-Likelihood: -21.8050908902

208 Chapter 3. User Guide

../auto_examples/gaussian_process/plot_gpr_noisy.html

scikit-learn user guide, Release 0.19.1

Log-marginal-likelihood

107 ;

- 4.75 x 10!

4,37 x 10!

4.01 x 10!

3.69 x 10!

10-1 3.39x 10!

MNoise-level

3.11 x 10!

2.86 x 10!

2.63 x 10!

2.42 x 10!

—— T 2.22 x 10!
102 101 10° 101 102 103
Length-scale

3.1. Supervised learning 209

../auto_examples/gaussian_process/plot_gpr_noisy.html

scikit-learn user guide, Release 0.19.1

The following figure illustrates both methods on an artificial dataset, which consists of a sinusoidal target function
and strong noise. The figure compares the learned model of KRR and GPR based on a ExpSineSquared kernel,
which is suited for learning periodic functions. The kernel’s hyperparameters control the smoothness (length_scale)
and periodicity of the kernel (periodicity). Moreover, the noise level of the data is learned explicitly by GPR by an
additional WhiteKernel component in the kernel and by the regularization parameter alpha of KRR.

GPR versus Kernel Ridge

— True
KRR {{'alpha" 0.001, 'kernel': ExpSineSquared(length_scale=4.64, periodicity=12.9)})

34 GPR (ExpSineSquared(length_scale=1.53, periodicity=6.15) + WhiteKernel(noise_level=0.699))
@ data
G
24 L)
L/
11e & e
9,
® . o
[L] //

target
o

1

L
L
o9
°
e o
.

o

e]
L]
e o.] _S
¢ []
Qe o
-2 4 o L]
L]
—3 4
_4 T T T T T T T
0.0 2.5 5.0 1.5 10.0 12.5 15.0 17.5 20.0
data

The figure shows that both methods learn reasonable models of the target function. GPR correctly identifies the peri-
odicity of the function to be roughly 2 * 7 (6.28), while KRR chooses the doubled periodicity 4 * 7 . Besides that, GPR
provides reasonable confidence bounds on the prediction which are not available for KRR. A major difference between
the two methods is the time required for fitting and predicting: while fitting KRR is fast in principle, the grid-search
for hyperparameter optimization scales exponentially with the number of hyperparameters (“curse of dimensional-
ity”’). The gradient-based optimization of the parameters in GPR does not suffer from this exponential scaling and is
thus considerable faster on this example with 3-dimensional hyperparameter space. The time for predicting is similar;
however, generating the variance of the predictive distribution of GPR takes considerable longer than just predicting
the mean.

GPR on Mauna Loa CO2 data

This example is based on Section 5.4.3 of [RW2006]. 1t illustrates an example of complex kernel engineering and
hyperparameter optimization using gradient ascent on the log-marginal-likelihood. The data consists of the monthly
average atmospheric CO2 concentrations (in parts per million by volume (ppmv)) collected at the Mauna Loa Obser-
vatory in Hawaii, between 1958 and 1997. The objective is to model the CO2 concentration as a function of the time
t.

The kernel is composed of several terms that are responsible for explaining different properties of the signal:

* along term, smooth rising trend is to be explained by an RBF kernel. The RBF kernel with a large length-scale
enforces this component to be smooth; it is not enforced that the trend is rising which leaves this choice to the
GP. The specific length-scale and the amplitude are free hyperparameters.

* a seasonal component, which is to be explained by the periodic ExpSineSquared kernel with a fixed periodicity
of 1 year. The length-scale of this periodic component, controlling its smoothness, is a free parameter. In order
to allow decaying away from exact periodicity, the product with an RBF kernel is taken. The length-scale of this
RBF component controls the decay time and is a further free parameter.

210 Chapter 3. User Guide

../auto_examples/gaussian_process/plot_compare_gpr_krr.html

scikit-learn user guide, Release 0.19.1

* smaller, medium term irregularities are to be explained by a RationalQuadratic kernel component, whose length-
scale and alpha parameter, which determines the diffuseness of the length-scales, are to be determined. Ac-
cording to [RW2006], these irregularities can better be explained by a RationalQuadratic than an RBF kernel
component, probably because it can accommodate several length-scales.

* a “noise” term, consisting of an RBF kernel contribution, which shall explain the correlated noise components
such as local weather phenomena, and a WhiteKernel contribution for the white noise. The relative amplitudes
and the RBF’s length scale are further free parameters.

Maximizing the log-marginal-likelihood after subtracting the target’s mean yields the following kernel with an LML
of -83.214:

34.4%%x2 % RBF (length_scale=41.8)

+ 3.27%%2 » RBF (length_scale=180) * ExpSineSquared(length_scale=1.44,
periodicity=1)

+ 0.446%x%2 » RationalQuadratic(alpha=17.7, length_scale=0.957)

+ 0.197%x%2 * RBF (length_scale=0.138) + WhiteKernel (noise_level=0.0336)

Thus, most of the target signal (34.4ppm) is explained by a long-term rising trend (length-scale 41.8 years). The
periodic component has an amplitude of 3.27ppm, a decay time of 180 years and a length-scale of 1.44. The long
decay time indicates that we have a locally very close to periodic seasonal component. The correlated noise has an
amplitude of 0.197ppm with a length scale of 0.138 years and a white-noise contribution of 0.197ppm. Thus, the
overall noise level is very small, indicating that the data can be very well explained by the model. The figure shows
also that the model makes very confident predictions until around 2015

Atmospheric CO; concentration at Mauna Loa

COz in ppm

T T T T T T T
1960 1370 1980 1990 2000 2010 2020
Year

3.1. Supervised learning 211

../auto_examples/gaussian_process/plot_gpr_co2.html

scikit-learn user guide, Release 0.19.1

Gaussian Process Classification (GPC)

The GaussianProcessClassifier implements Gaussian processes (GP) for classification purposes, more
specifically for probabilistic classification, where test predictions take the form of class probabilities. GaussianPro-
cessClassifier places a GP prior on a latent function f, which is then squashed through a link function to obtain the
probabilistic classification. The latent function f is a so-called nuisance function, whose values are not observed and
are not relevant by themselves. Its purpose is to allow a convenient formulation of the model, and f is removed (inte-
grated out) during prediction. GaussianProcessClassifier implements the logistic link function, for which the integral
cannot be computed analytically but is easily approximated in the binary case.

In contrast to the regression setting, the posterior of the latent function f is not Gaussian even for a GP prior since
a Gaussian likelihood is inappropriate for discrete class labels. Rather, a non-Gaussian likelihood corresponding to
the logistic link function (logit) is used. GaussianProcessClassifier approximates the non-Gaussian posterior with a
Gaussian based on the Laplace approximation. More details can be found in Chapter 3 of [RW2006].

The GP prior mean is assumed to be zero. The prior’s covariance is specified by a passing a kernel object. The hyper-
parameters of the kernel are optimized during fitting of GaussianProcessRegressor by maximizing the log-marginal-
likelihood (LML) based on the passed opt imizer. As the LML may have multiple local optima, the optimizer can
be started repeatedly by specifying n_restarts_optimizer. The first run is always conducted starting from the
initial hyperparameter values of the kernel; subsequent runs are conducted from hyperparameter values that have been
chosen randomly from the range of allowed values. If the initial hyperparameters should be kept fixed, None can be
passed as optimizer.

GaussianProcessClassifier supports multi-class classification by performing either one-versus-rest or one-
versus-one based training and prediction. In one-versus-rest, one binary Gaussian process classifier is fitted for each
class, which is trained to separate this class from the rest. In “one_vs_one”, one binary Gaussian process classifier is
fitted for each pair of classes, which is trained to separate these two classes. The predictions of these binary predictors
are combined into multi-class predictions. See the section on multi-class classification for more details.

In the case of Gaussian process classification, “one_vs_one” might be computationally cheaper since it has to solve
many problems involving only a subset of the whole training set rather than fewer problems on the whole dataset. Since
Gaussian process classification scales cubically with the size of the dataset, this might be considerably faster. How-
ever, note that “one_vs_one” does not support predicting probability estimates but only plain predictions. Moreover,
note that GaussianProcessClassifier does not (yet) implement a true multi-class Laplace approximation in-
ternally, but as discussed above is based on solving several binary classification tasks internally, which are combined
using one-versus-rest or one-versus-one.

GPC examples

Probabilistic predictions with GPC

This example illustrates the predicted probability of GPC for an RBF kernel with different choices of the hyperparam-
eters. The first figure shows the predicted probability of GPC with arbitrarily chosen hyperparameters and with the
hyperparameters corresponding to the maximum log-marginal-likelihood (LML).

While the hyperparameters chosen by optimizing LML have a considerable larger LML, they perform slightly worse
according to the log-loss on test data. The figure shows that this is because they exhibit a steep change of the class
probabilities at the class boundaries (which is good) but have predicted probabilities close to 0.5 far away from the
class boundaries (which is bad) This undesirable effect is caused by the Laplace approximation used internally by
GPC.

The second figure shows the log-marginal-likelihood for different choices of the kernel’s hyperparameters, highlighting
the two choices of the hyperparameters used in the first figure by black dots.

212 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

1.4 —— Initial kernel: 1#*2 * RBF(length_scale=1)
—— Optimized kernel: 66.3%*+2 * RBF(length_scale=1.33)
1.7 @ Train data
@ Testdata

1.0 A O8I EIIC D a8 68 CMD
oy
S 0.8
i}
£
S 0.6
—
0
o 0.4
W]

0.2

o0 POOOCEIDOCCD DO €8 B0

_.[].2 -
T T T T
0 1 2 3 4 5
Feature
3.1. Supervised learning 213

../auto_examples/gaussian_process/plot_gpc.html

scikit-learn user guide, Release 0.19.1

Log-marginal-likelihood

10!

-10

10¢

Length-scale

101
10 10! 10¢ 10 10* 10° 10® 107 10%
Magnitude

214 Chapter 3. User Guide

../auto_examples/gaussian_process/plot_gpc.html

scikit-learn user guide, Release 0.19.1

lllustration of GPC on the XOR dataset

This example illustrates GPC on XOR data. Compared are a stationary, isotropic kernel (RBF") and a non-stationary
kernel (Dot Product). On this particular dataset, the DotProduct kernel obtains considerably better results because
the class-boundaries are linear and coincide with the coordinate axes. In practice, however, stationary kernels such as
RBF often obtain better results.

316**2 * RBF(length_scale=1.25) 316**2 * DotProduct(sigma_0=0.0104) ** 2
Log-Marginal-Likelihood:-23.674 Log-Marginal-Likelihood:-9.284

- 0.6

0.4

Gaussian process classification (GPC) on iris dataset

This example illustrates the predicted probability of GPC for an isotropic and anisotropic RBF kernel on a two-
dimensional version for the iris-dataset. This illustrates the applicability of GPC to non-binary classification. The
anisotropic RBF kernel obtains slightly higher log-marginal-likelihood by assigning different length-scales to the two
feature dimensions.

Kernels for Gaussian Processes

Kernels (also called “covariance functions” in the context of GPs) are a crucial ingredient of GPs which determine
the shape of prior and posterior of the GP. They encode the assumptions on the function being learned by defining the
“similarity” of two datapoints combined with the assumption that similar datapoints should have similar target values.
Two categories of kernels can be distinguished: stationary kernels depend only on the distance of two datapoints
and not on their absolute values k(x;,x;) = k(d(x;,x;)) and are thus invariant to translations in the input space,
while non-stationary kernels depend also on the specific values of the datapoints. Stationary kernels can further be
subdivided into isotropic and anisotropic kernels, where isotropic kernels are also invariant to rotations in the input
space. For more details, we refer to Chapter 4 of [RW2006].

Gaussian Process Kernel API

The main usage of a Kernel is to compute the GP’s covariance between datapoints. For this, the method __call___
of the kernel can be called. This method can either be used to compute the “auto-covariance” of all pairs of datapoints

3.1. Supervised learning 215

../auto_examples/gaussian_process/plot_gpc_xor.html

scikit-learn user guide, Release 0.19.1

Isotropic RBF, LML: -48.333 Anisotropic RBF, LML: -47.901

Sepal width
Sepal width

Sepal length Sepal length

in a 2d array X, or the “cross-covariance” of all combinations of datapoints of a 2d array X with datapoints in a 2d
array Y. The following identity holds true for all kernels k (except for the WhiteKernel): k (X) == K(X, Y=X)

If only the diagonal of the auto-covariance is being used, the method diag () of a kernel can be called, which is more
computationally efficient than the equivalentcallto__call__: np.diag(k (X, X)) == k.diag(X)

Kernels are parameterized by a vector 6 of hyperparameters. These hyperparameters can for instance control length-
scales or periodicity of a kernel (see below). All kernels support computing analytic gradients of of the kernel’s
auto-covariance with respect to 0 via setting eval_gradient=True inthe _ _call__ method. This gradient is
used by the Gaussian process (both regressor and classifier) in computing the gradient of the log-marginal-likelihood,
which in turn is used to determine the value of 6, which maximizes the log-marginal-likelihood, via gradient ascent.
For each hyperparameter, the initial value and the bounds need to be specified when creating an instance of the kernel.
The current value of § can be get and set via the property theta of the kernel object. Moreover, the bounds of the
hyperparameters can be accessed by the property bounds of the kernel. Note that both properties (theta and bounds)
return log-transformed values of the internally used values since those are typically more amenable to gradient-based
optimization. The specification of each hyperparameter is stored in the form of an instance of Hyperparameter
in the respective kernel. Note that a kernel using a hyperparameter with name “x” must have the attributes self.x and
self.x_bounds.

The abstract base class for all kernels is Kernel. Kernel implements a similar interface as Est imator, providing
the methods get_params (), set_params (), and clone (). This allows setting kernel values also via meta-
estimators such as Pipeline or GridSearch. Note that due to the nested structure of kernels (by applying kernel
operators, see below), the names of kernel parameters might become relatively complicated. In general, for a binary
kernel operator, parameters of the left operand are prefixed with k1___ and parameters of the right operand with k2__.
An additional convenience method is clone_with_theta (theta), which returns a cloned version of the kernel
but with the hyperparameters set to theta. An illustrative example:

>>> from sklearn.gaussian_process.kernels import ConstantKernel, RBF

>>> kernel = ConstantKernel (constant_value=1.0, constant_value_bounds=(0.0, 10.0)) =
—RBF (length_scale=0.5, length_scale_bounds=(0.0, 10.0)) + RBF(length_scale=2.0,
—length_scale_bounds=(0.0, 10.0))

>>> for hyperparameter in kernel.hyperparameters: print (hyperparameter)
Hyperparameter (name='kl__kl__constant_value', value_type='numeric', bounds=array ([[
—0., 10.1]), n_elements=1, fixed=False)

Hyperparameter (name="'kl__k2__length_scale', value_type='numeric', bounds=array([[O.,

[

[

= 10.1]J, _Elements=1, [i1Xed=—raise)

216 Chapter 3. User Guide

../auto_examples/gaussian_process/plot_gpc_iris.html

scikit-learn user guide, Release 0.19.1

Hyperparameter (name='k2__length_scale', value_type='numeric', bounds=array([[0., _
—10.1]), n_elements=1, fixed=False)

>>> params = kernel.get_params ()

>>> for key in sorted(params): print (" : " % (key, params([key]))

k1l : 1%%x2 x RBF (length_scale=0.5)

kl__ k1 : 1%x%x2

kl__kl_ constant_value : 1.0

k1__k1_ constant_value_bounds : (0.0, 10.0)
kl__k2 : RBF(length_scale=0.5)
kl__k2__length_scale : 0.5
k1__k2__length_scale_bounds : (0.0, 10.0)
k2 : RBF (length_scale=2)

k2__length_scale : 2.0

k2__length_scale_bounds : (0.0, 10.0)
>>> print (kernel.theta) # Note: log-transformed
[O. -0.69314718 0.69314718]
>>> print (kernel.bounds) # Note: log-transformed

[l -inf 2.30258509]
[—inf 2.30258509]
[-inf 2.30258509]]

All Gaussian process kernels are interoperable with sklearn.metrics.pairwise and vice versa: instances
of subclasses of Kernel can be passed as metric to pairwise_kernels*‘ from sklearn.metrics.pairwise.
Moreover, kernel functions from pairwise can be used as GP kernels by using the wrapper class PairwiseKernel.
The only caveat is that the gradient of the hyperparameters is not analytic but numeric and all those kernels support
only isotropic distances. The parameter gamma is considered to be a hyperparameter and may be optimized. The other
kernel parameters are set directly at initialization and are kept fixed.

Basic kernels

The ConstantKernel kernel can be used as part of a Product kernel where it scales the magnitude of the other
factor (kernel) or as part of a Sum kernel, where it modifies the mean of the Gaussian process. It depends on a
parameter constant_value. It is defined as:

k(z;,z;) = constant_value ¥ x1, z2

The main use-case of the WhiteKernel kernel is as part of a sum-kernel where it explains the noise-component of
the signal. Tuning its parameter notse_level corresponds to estimating the noise-level. It is defined as:e

k(z;, x;) = noise_level if x; == x; else 0

Kernel operators

Kernel operators take one or two base kernels and combine them into a new kernel. The Sum kernel takes two kernels
k1 and k2 and combines them via kg, (X,Y) = k1(X,Y) + k2(X,Y"). The Product kernel takes two kernels k1
and k2 and combines them via kp,yoquct(X,Y) = k1(X,Y) * k2(X,Y"). The Exponentiation kernel takes one
base kernel and a scalar parameter ezponent and combines them via kegp(X,Y) = k(X, Y)exponent,

Radial-basis function (RBF) kernel

The RBF kernel is a stationary kernel. It is also known as the “squared exponential” kernel. It is parameterized by a
length-scale parameter [> 0, which can either be a scalar (isotropic variant of the kernel) or a vector with the same

3.1. Supervised learning 217

scikit-learn user guide, Release 0.19.1

number of dimensions as the inputs x (anisotropic variant of the kernel). The kernel is given by:

1
k(z;,x;) = exp (—Zd(a:i/l, a?j/l)2>
This kernel is infinitely differentiable, which implies that GPs with this kernel as covariance function have mean square

derivatives of all orders, and are thus very smooth. The prior and posterior of a GP resulting from an RBF kernel are
shown in the following figure:

Prior (kernel: 1**2 * RBF(length_scale=1))

_3 T T T T
0 1 2 3 4 5
Posterior (kernel: 0.594**2 * RBF(length_scale=0.279))
3 Log-Likelihood: -0.067

Matérn kernel

The Matern kernel is a stationary kernel and a generalization of the RBF kernel. It has an additional parameter v
which controls the smoothness of the resulting function. It is parameterized by a length-scale parameter [> 0, which

218 Chapter 3. User Guide

../auto_examples/gaussian_process/plot_gpr_prior_posterior.html

scikit-learn user guide, Release 0.19.1

can either be a scalar (isotropic variant of the kernel) or a vector with the same number of dimensions as the inputs x
(anisotropic variant of the kernel). The kernel is given by:

k(i xj) = U2W (V@d(xi/lax]—/l)> K, (’Y@d(%/l@j/l))

As v — oo, the Matérn kernel converges to the RBF kernel. When v = 1/2, the Matérn kernel becomes identical to
the absolute exponential kernel, i.e.,

k(zi,z;) = 0% exp <—7d($i/lvffj/l)> V=3
In particular, v = 3/2:
k(z, x5) = 0 (1 +yV3d(zi/1, J?j/l)> exp (- Vﬁd(zi/lafﬂj/l)> v=3
and v = 5/2:

k(z;,z;) = o? (1 +yV5d(xi/l, x5 /1) + §W2d(xi/l,mj/l)2> exp (— fy\/gd(xi/l,xj/l)> v=2

are popular choices for learning functions that are not infinitely differentiable (as assumed by the RBF kernel) but at
least once (v = 3/2) or twice differentiable (v = 5/2).

The flexibility of controlling the smoothness of the learned function via v allows adapting to the properties of the
true underlying functional relation. The prior and posterior of a GP resulting from a Matérn kernel are shown in the
following figure:

See [RW2006], pp84 for further details regarding the different variants of the Matérn kernel.

Rational quadratic kernel

The RationalQuadratic kernel can be seen as a scale mixture (an infinite sum) of RBF kernels with different
characteristic length-scales. It is parameterized by a length-scale parameter [> 0 and a scale mixture parameter o > 0
Only the isotropic variant where [is a scalar is supported at the moment. The kernel is given by:

dz,z:)2\

The prior and posterior of a GP resulting from an RBF kernel are shown in the following figure:

Exp-Sine-Squared kernel

The ExpSineSquared kernel allows modeling periodic functions. It is parameterized by a length-scale parameter
I > 0 and a periodicity parameter p > 0. Only the isotropic variant where [is a scalar is supported at the moment.
The kernel is given by:

k(x;,x;) = exp (—2 (sin(7/p * d(zx;, xj))/l)2>

The prior and posterior of a GP resulting from an ExpSineSquared kernel are shown in the following figure:

3.1. Supervised learning 219

scikit-learn user guide, Release 0.19.1

Prior (kernel: 1**2 * Matern(length_scale=1, nu=1.5))

_2 - __\.. //' _,/
A
\ /
_3 T T - T T
0 1 2 3 4 5
Posterior (kernel: 0.609%%2 * Matern(length_scale=0.484, nu=1.5})
3 Log-Likelihood: -1.185

220

Chapter 3. User Guide

../auto_examples/gaussian_process/plot_gpr_prior_posterior.html

scikit-learn user guide, Release 0.19.1

Prior (kernel: 1**2 * RationalQuadratic(alpha=0.1, length_scale=1))

0 1 2 3 4 5

Posterior (kernel: 0.594**2 * RationalQuadratic(alpha=1e+05, length_scale=0.279))
Log-Likelihood: -0.067

|
w

3.1. Supervised learning 221

../auto_examples/gaussian_process/plot_gpr_prior_posterior.html

scikit-learn user guide, Release 0.19.1

Prior (kernel: 1**2 * ExpSineSquared(length_scale=1, periodicity=3))

- 3 T T T
0 1 2 3 4 5

Posterior (kernel: 0.799%*2 * ExpSineSquared(length_scale=0.791, periodicity=2.87))
Log-Likelihood: 3.394

3

222 Chapter 3. User Guide

../auto_examples/gaussian_process/plot_gpr_prior_posterior.html

scikit-learn user guide, Release 0.19.1

Dot-Product kernel

The DotProduct kernel is non-stationary and can be obtained from linear regression by putting N (0, 1) priors on
the coefficients of x4(d = 1, ..., D) and a prior of N(0,02) on the bias. The Dot Product kernel is invariant to a
rotation of the coordinates about the origin, but not translations. It is parameterized by a parameter 3. For 03 = 0,

the kernel is called the homogeneous linear kernel, otherwise it is inhomogeneous. The kernel is given by

k(Zi,SCj) = O’g + Z; - CCj

The DotProduct kernel is commonly combined with exponentiation. An example with exponent 2 is shown in the

following figure:

Prior (kernel: 0.316**2 * DotProduct(sigma_0=1) ** 2)

- 3 T T T T
0 1 2 3 4

Posterior (kernel: 0.316**2 * DotProduct(sigma_0=0.368) ** 2)
Log-Likelihood: -7960530368.763

17 e ©® 0®

3.1. Supervised learning

223

../auto_examples/gaussian_process/plot_gpr_prior_posterior.html

scikit-learn user guide, Release 0.19.1

References

3.1.8 Cross decomposition
The cross decomposition module contains two main families of algorithms: the partial least squares (PLS) and the
canonical correlation analysis (CCA).

These families of algorithms are useful to find linear relations between two multivariate datasets: the X and Y argu-
ments of the £it method are 2D arrays.

Comp. 1: X vs Y (test corr = 0.58) X comp. 1 vs X comp. 2 (test corr = 0.04)
e train * train * o * ok o %
e test % test *L*

ol *
C.L N
Q £
7 o
> %
* *k X
" o
.
° *
X scores X comp. 1
Y comp. 1 vs Y comp. 2, (test corr =-0.01) Comp. 2: X vs Y (test corr = 0.65)
e train
e test

Y comp. 2
y scores

X scores

Cross decomposition algorithms find the fundamental relations between two matrices (X and Y). They are latent
variable approaches to modeling the covariance structures in these two spaces. They will try to find the multidi-
mensional direction in the X space that explains the maximum multidimensional variance direction in the Y space.
PLS-regression is particularly suited when the matrix of predictors has more variables than observations, and when
there is multicollinearity among X values. By contrast, standard regression will fail in these cases.

Classes included in this module are PL.SRegression PLSCanonical, CCAand PLSSVD

Reference:

* JA Wegelin A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case

Examples: I

224 Chapter 3. User Guide

../auto_examples/cross_decomposition/plot_compare_cross_decomposition.html
https://www.stat.washington.edu/research/reports/2000/tr371.pdf

scikit-learn user guide, Release 0.19.1

* Compare cross decomposition methods

3.1.9 Naive Bayes

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ theorem with the “naive”
assumption of independence between every pair of features. Given a class variable y and a dependent feature vector
x1 through z,,, Bayes’ theorem states the following relationship:

Py)P(x1,...zn | y)
P(‘rla"'?xn)

P(y|m1,...,xn) =
Using the naive independence assumption that
P(xily, @1, .., i1, Tig, - -+, Tn) = Plai]y),

for all 4, this relationship is simplified to

_ PIIL, Plai | y)
P(xy,...,xy)

Ply|z1,...,zn)

Since P(x1,...,x,) is constant given the input, we can use the following classification rule:

P(y|@1,...,x) o< P(y) [P(as |)
i=1

4

g = arg max P(y) H P(z; | y),
i=1

and we can use Maximum A Posteriori (MAP) estimation to estimate P(y) and P(z; | y); the former is then the
relative frequency of class y in the training set.

The different naive Bayes classifiers differ mainly by the assumptions they make regarding the distribution of P(z; |
Y)-

In spite of their apparently over-simplified assumptions, naive Bayes classifiers have worked quite well in many real-
world situations, famously document classification and spam filtering. They require a small amount of training data to
estimate the necessary parameters. (For theoretical reasons why naive Bayes works well, and on which types of data
it does, see the references below.)

Naive Bayes learners and classifiers can be extremely fast compared to more sophisticated methods. The decoupling
of the class conditional feature distributions means that each distribution can be independently estimated as a one
dimensional distribution. This in turn helps to alleviate problems stemming from the curse of dimensionality.

On the flip side, although naive Bayes is known as a decent classifier, it is known to be a bad estimator, so the
probability outputs from predict_proba are not to be taken too seriously.

References:

* H. Zhang (2004). The optimality of Naive Bayes. Proc. FLAIRS.

3.1. Supervised learning 225

http://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.pdf

scikit-learn user guide, Release 0.19.1

Gaussian Naive Bayes

GaussianNB implements the Gaussian Naive Bayes algorithm for classification. The likelihood of the features is
assumed to be Gaussian:

P(zi|y) = ;exp <_($Z_“y)2>

\/ 27ro§ 20;

The parameters o, and p,, are estimated using maximum likelihood.

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> from sklearn.naive_bayes import GaussianNB

>>> gnb = GaussianNB ()

>>> y_pred = gnb.fit(iris.data, iris.target) .predict (iris.data)

>>> print ("Number of mislabeled points out of a total points : "
% (iris.data.shapel[0], (iris.target != y_pred) .sum()))

Number of mislabeled points out of a total 150 points : 6

Multinomial Naive Bayes

MultinomialNB implements the naive Bayes algorithm for multinomially distributed data, and is one of the two
classic naive Bayes variants used in text classification (where the data are typically represented as word vector counts,
although tf-idf vectors are also known to work well in practice). The distribution is parametrized by vectors 6, =
(Oy1, ... ,0y,) for each class y, where n is the number of features (in text classification, the size of the vocabulary)
and 0,; is the probability P(x; | y) of feature 7 appearing in a sample belonging to class y.

The parameters 0, is estimated by a smoothed version of maximum likelihood, i.e. relative frequency counting:
b= Nuta
vt Ny +an

where Ny; = >
N, = Zg‘l N,; is the total count of all features for class y.

x; is the number of times feature ¢ appears in a sample of class y in the training set 7', and

The smoothing priors oz > 0 accounts for features not present in the learning samples and prevents zero probabilities
in further computations. Setting o = 1 is called Laplace smoothing, while o < 1 is called Lidstone smoothing.

Bernoulli Naive Bayes

BernoulliNB implements the naive Bayes training and classification algorithms for data that is distributed ac-
cording to multivariate Bernoulli distributions; i.e., there may be multiple features but each one is assumed to be a
binary-valued (Bernoulli, boolean) variable. Therefore, this class requires samples to be represented as binary-valued
feature vectors; if handed any other kind of data, a Bernoul1iNB instance may binarize its input (depending on the
binarize parameter).

The decision rule for Bernoulli naive Bayes is based on

P(xi |y) = P(i | y)zi + (1= P(i [y))(1 — z;)
which differs from multinomial NB’s rule in that it explicitly penalizes the non-occurrence of a feature ¢ that is an
indicator for class y, where the multinomial variant would simply ignore a non-occurring feature.

In the case of text classification, word occurrence vectors (rather than word count vectors) may be used to train and
use this classifier. BernoulliNB might perform better on some datasets, especially those with shorter documents.
It is advisable to evaluate both models, if time permits.

226 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

References:
e C.D. Manning, P. Raghavan and H. Schiitze (2008). Introduction to Information Retrieval. Cambridge Uni-
versity Press, pp. 234-265.

* A. McCallum and K. Nigam (1998). A comparison of event models for Naive Bayes text classification. Proc.
AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48.

* V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with Naive Bayes — Which Naive
Bayes? 3rd Conf. on Email and Anti-Spam (CEAS).

Out-of-core naive Bayes model fitting

Naive Bayes models can be used to tackle large scale classification problems for which the full training set might not fit
in memory. To handle this case, MultinomialNB, BernoulliNB, and GaussianNB expose a partial_fit
method that can be used incrementally as done with other classifiers as demonstrated in Out-of-core classification of
text documents. All naive Bayes classifiers support sample weighting.

Contrary to the £it method, the first call to partial_fit needs to be passed the list of all the expected class labels.

For an overview of available strategies in scikit-learn, see also the out-of-core learning documentation.

Note: The partial_fit method call of naive Bayes models introduces some computational overhead. It is
recommended to use data chunk sizes that are as large as possible, that is as the available RAM allows.

3.1.10 Decision Trees

Decision Trees (DTs) are a non-parametric supervised learning method used for classification and regression. The
goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the
data features.

For instance, in the example below, decision trees learn from data to approximate a sine curve with a set of if-then-else
decision rules. The deeper the tree, the more complex the decision rules and the fitter the model.

Some advantages of decision trees are:
 Simple to understand and to interpret. Trees can be visualised.

* Requires little data preparation. Other techniques often require data normalisation, dummy variables need to be
created and blank values to be removed. Note however that this module does not support missing values.

* The cost of using the tree (i.e., predicting data) is logarithmic in the number of data points used to train the tree.

e Able to handle both numerical and categorical data. Other techniques are usually specialised in analysing
datasets that have only one type of variable. See algorithms for more information.

Able to handle multi-output problems.

¢ Uses a white box model. If a given situation is observable in a model, the explanation for the condition is easily
explained by boolean logic. By contrast, in a black box model (e.g., in an artificial neural network), results may
be more difficult to interpret.

* Possible to validate a model using statistical tests. That makes it possible to account for the reliability of the
model.

3.1. Supervised learning 227

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.1529
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.5542
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.5542

scikit-learn user guide, Release 0.19.1

The

Decision Tree Regression

1.5 4 o max_depth=2
o T max_depth=5
o
1.0 4 ol @ o data
flee] o
o o
& °_
0.5 A P e
£ N o
[b] (]
(=]
- o R
¥ 0.0
[] 1 -
B V] 9 \'\C‘l'-_'n 1
—0.5 A 9 Ju
o
b -
-1.0 o T g =z
c
_15 -
(8]
T T T T T T
o] 1 2 3 4 5
data

e Performs well even if its assumptions are somewhat violated by the true model from which the data were
generated.

disadvantages of decision trees include:

Decision-tree learners can create over-complex trees that do not generalise the data well. This is called overfit-
ting. Mechanisms such as pruning (not currently supported), setting the minimum number of samples required
at a leaf node or setting the maximum depth of the tree are necessary to avoid this problem.

Decision trees can be unstable because small variations in the data might result in a completely different tree
being generated. This problem is mitigated by using decision trees within an ensemble.

The problem of learning an optimal decision tree is known to be NP-complete under several aspects of optimality
and even for simple concepts. Consequently, practical decision-tree learning algorithms are based on heuristic
algorithms such as the greedy algorithm where locally optimal decisions are made at each node. Such algorithms
cannot guarantee to return the globally optimal decision tree. This can be mitigated by training multiple trees in
an ensemble learner, where the features and samples are randomly sampled with replacement.

There are concepts that are hard to learn because decision trees do not express them easily, such as XOR, parity
or multiplexer problems.

Decision tree learners create biased trees if some classes dominate. It is therefore recommended to balance the
dataset prior to fitting with the decision tree.

Classification

DecisionTreeClassifier is aclass capable of performing multi-class classification on a dataset.

As with other classifiers, DecisionTreeClassifier takes as input two arrays: an array X, sparse or dense,
of size [n_samples, n_features] holding the training samples, and an array Y of integer values, size

[n_

samples], holding the class labels for the training samples:

228

Chapter 3. User Guide

../auto_examples/tree/plot_tree_regression.html

scikit-learn user guide, Release 0.19.1

>>> from sklearn import tree

>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = tree.DecisionTreeClassifier ()

>>> clf = clf.fit (X, Y)

After being fitted, the model can then be used to predict the class of samples:

>>> clf.predict([[2., 2.]11)
array ([1])

Alternatively, the probability of each class can be predicted, which is the fraction of training samples of the same class
in a leaf:

>>> clf.predict_proba([[2., 2.]1])
array ([[0., 1.11)

DecisionTreeClassifier is capable of both binary (where the labels are [-1, 1]) classification and multiclass
(where the labels are [0, ..., K-1]) classification.

Using the Iris dataset, we can construct a tree as follows:

>>> from sklearn.datasets import load_iris
>>> from sklearn import tree

>>> iris = load_iris()

>>> clf = tree.DecisionTreeClassifier ()
>>> clf = clf.fit(iris.data, iris.target)

Once trained, we can export the tree in Graphviz format using the export_graphviz exporter. If you use the
conda package manager, the graphviz binaries and the python package can be installed with

conda install python-graphviz

Alternatively binaries for graphviz can be downloaded from the graphviz project homepage, and the Python wrapper
installed from pypi with pip install graphviz.

Below is an example graphviz export of the above tree trained on the entire iris dataset; the results are saved in an
output file iris.pdf:

>>> import graphviz

>>> dot_data = tree.export_graphviz(clf, out_file=None)
>>> graph = graphviz.Source (dot_data)

>>> graph.render ("iris")

The export_graphviz exporter also supports a variety of aesthetic options, including coloring nodes by their class
(or value for regression) and using explicit variable and class names if desired. Jupyter notebooks also render these
plots inline automatically:

>>> dot_data = tree.export_graphviz (clf, out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True, rounded=True,
special_characters=True)

>>> graph = graphviz.Source (dot_data)

>>> graph

After being fitted, the model can then be used to predict the class of samples:

3.1. Supervised learning 229

http://www.graphviz.org/
http://conda.io

scikit-learn user guide, Release 0.19.1

samples = 150
value = [50, 50, 50]
class = setosa

True i

petal length (cm) < 2.45
gini = 0.6667

petal width (cm) < 1.75
gini =
samples = 100
value = [0, 50, 50]
class = versicolor

epal Iength cm) <6.95
gini =

S
samples 3
value = [0, 2, 1]
class = versu:olor

230 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

>>> clf.predict (iris.datal:1, :])
array ([0])

Alternatively, the probability of each class can be predicted, which is the fraction of training samples of the same class
in a leaf:

>>> clf.predict_proba(iris.datal:1, :1])
array ([[1., 0., 0.11)

Decision surface of a decision tree using paired features

sepal width (cm)
petal length {cm)
petal width (cm)

4 6 8 4 6 8 4 6 8
sepal length (cm) sepal length (cm) sepal length (cm)
"E“ — —
5 § §
£ £ £
o b=l h=]
b5 = =
= 3 8
9 a a
2 4 2 4 0 5
sepal width (cm) sepal width (cm) petal length (cm)

Examples:

e Plot the decision surface of a decision tree on the iris dataset

Regression

Decision trees can also be applied to regression problems, using the DecisionTreeRegressor class.

As in the classification setting, the fit method will take as argument arrays X and y, only that in this case y is expected
to have floating point values instead of integer values:

>>> from sklearn import tree

>>> X = [[0, 0], [2, 2]]
>>> y = [0.5, 2.5]
>>> clf = tree.DecisionTreeRegressor ()

>>> clf = clf.fit (X, y)
>>> clf.predict ([[1, 111)
array ([0.5])

3.1. Supervised learning 231

../auto_examples/tree/plot_iris.html

scikit-learn user guide, Release 0.19.1

Decision Tree Regression

1.5 4 o max_depth=2
o T max_depth=5
o
1.0 4 ok data
flee] o
a o
& °_
0.5 A P e
£ N o
[b] (]
- o R
¥ 0.0
[
5 o ° Yo I
—0.5 A 9)v
o
@
-1.0 o Us =<
c
_15 -
(8]
T T T T T T
0 1 2 3 4 5
data

Examples:

* Decision Tree Regression

Multi-output problems

A multi-output problem is a supervised learning problem with several outputs to predict, that is when Y is a 2d array
of size [n_samples, n_outputs].

When there is no correlation between the outputs, a very simple way to solve this kind of problem is to build n
independent models, i.e. one for each output, and then to use those models to independently predict each one of the
n outputs. However, because it is likely that the output values related to the same input are themselves correlated, an
often better way is to build a single model capable of predicting simultaneously all n outputs. First, it requires lower
training time since only a single estimator is built. Second, the generalization accuracy of the resulting estimator may
often be increased.

With regard to decision trees, this strategy can readily be used to support multi-output problems. This requires the
following changes:

« Store n output values in leaves, instead of 1;
» Use splitting criteria that compute the average reduction across all n outputs.

This module offers support for multi-output problems by implementing this strategy in both
DecisionTreeClassifier and DecisionTreeRegressor. If a decision tree is fit on an output
array Y of size [n_samples, n_outputs] then the resulting estimator will:

e Qutput n_output values upon predict;
* Output a list of n_output arrays of class probabilities upon predict_proba.

The use of multi-output trees for regression is demonstrated in Multi-output Decision Tree Regression. In this example,
the input X is a single real value and the outputs Y are the sine and cosine of X.

232 Chapter 3. User Guide

../auto_examples/tree/plot_tree_regression.html

scikit-learn user guide, Release 0.19.1

Multi-output Decision Tree Regression

5]
e data
© max_depth=2
44 e max_depth=5
o OO aﬂom o max_depth=8
® (]
o]
i o
2 o0 S0 "%
o ©®
~ 8 o c%
Jg 04 o (-]] oo 8
o
8 e O ® ° o
° Re
=2 A P @ é’
-]
t% o ﬂa) o®
e O
]
_4 -
_6 T T T T T
-6 —4 -2 0 2 4 6
target 1

The use of multi-output trees for classification is demonstrated in Face completion with a multi-output estimators. In
this example, the inputs X are the pixels of the upper half of faces and the outputs Y are the pixels of the lower half of
those faces.

Examples:

* Multi-output Decision Tree Regression

* Face completion with a multi-output estimators

References:

* M. Dumont et al, Fast multi-class image annotation with random subwindows and multiple output randomized
trees, International Conference on Computer Vision Theory and Applications 2009

Complexity

In general, the run time cost to construct a balanced binary tree is O(Ngamples features 108(Msamples)) and query
time O(log(nsamples)). Although the tree construction algorithm attempts to generate balanced trees, they will not
always be balanced. Assuming that the subtrees remain approximately balanced, the cost at each node consists of
searching through O(n feqtures) to find the feature that offers the largest reduction in entropy. This has a cost of
O (N featuresNsamples log(nsamples)) at each node, leading to a total cost over the entire trees (by summing the cost at
each node) of O(nfwturesniamples log(nsamples))-

Scikit-learn offers a more efficient implementation for the construction of decision trees. A naive implementation
(as above) would recompute the class label histograms (for classification) or the means (for regression) at for each
new split point along a given feature. Presorting the feature over all relevant samples, and retaining a running la-
bel count, will reduce the complexity at each node to O(n features 10g(Msampies)), Which results in a total cost of

3.1. Supervised learning 233

../auto_examples/tree/plot_tree_regression_multioutput.html
http://www.montefiore.ulg.ac.be/services/stochastic/pubs/2009/DMWG09/dumont-visapp09-shortpaper.pdf
http://www.montefiore.ulg.ac.be/services/stochastic/pubs/2009/DMWG09/dumont-visapp09-shortpaper.pdf

scikit-learn user guide, Release 0.19.1

Face completion with multi-output estimators

true faces Extra trees Linear regression

234 Chapter 3. User Guide

../auto_examples/plot_multioutput_face_completion.html

scikit-learn user guide, Release 0.19.1

O(nfeaturesMsampies 10g(Nsampies)). This is an option for all tree based algorithms. By default it is turned on for
gradient boosting, where in general it makes training faster, but turned off for all other algorithms as it tends to slow
down training when training deep trees.

Tips on practical use

* Decision trees tend to overfit on data with a large number of features. Getting the right ratio of samples to
number of features is important, since a tree with few samples in high dimensional space is very likely to
overfit.

¢ Consider performing dimensionality reduction (PCA, ICA, or Feature selection) beforehand to give your tree a
better chance of finding features that are discriminative.

* Visualise your tree as you are training by using the export function. Use max_depth=3 as an initial tree
depth to get a feel for how the tree is fitting to your data, and then increase the depth.

* Remember that the number of samples required to populate the tree doubles for each additional level the tree
grows to. Use max_depth to control the size of the tree to prevent overfitting.

e Use min_samples_split or min_samples_leaf to control the number of samples at a leaf node. A
very small number will usually mean the tree will overfit, whereas a large number will prevent the tree from
learning the data. Try min_samples_leaf=5 as an initial value. If the sample size varies greatly, a float
number can be used as percentage in these two parameters. The main difference between the two is that
min_samples_leaf guarantees a minimum number of samples in a leaf, while min_samples_split
can create arbitrary small leaves, though min_samples_split is more common in the literature.

» Balance your dataset before training to prevent the tree from being biased toward the classes that are dominant.
Class balancing can be done by sampling an equal number of samples from each class, or preferably by nor-
malizing the sum of the sample weights (sample_weight) for each class to the same value. Also note that
weight-based pre-pruning criteria, such as min_weight_fraction_leaf, will then be less biased toward
dominant classes than criteria that are not aware of the sample weights, like min_samples_leaf.

* If the samples are weighted, it will be easier to optimize the tree structure using weight-based pre-pruning
criterion such as min_weight_fraction_leaf, which ensure that leaf nodes contain at least a fraction of
the overall sum of the sample weights.

 All decision trees use np . f1oat 32 arrays internally. If training data is not in this format, a copy of the dataset
will be made.

« If the input matrix X is very sparse, it is recommended to convert to sparse csc_mat rix before calling fit and
sparse csr_mat rix before calling predict. Training time can be orders of magnitude faster for a sparse matrix
input compared to a dense matrix when features have zero values in most of the samples.

Tree algorithms: ID3, C4.5, C5.0 and CART

What are all the various decision tree algorithms and how do they differ from each other? Which one is implemented
in scikit-learn?

ID3 (Iterative Dichotomiser 3) was developed in 1986 by Ross Quinlan. The algorithm creates a multiway tree, finding
for each node (i.e. in a greedy manner) the categorical feature that will yield the largest information gain for categorical
targets. Trees are grown to their maximum size and then a pruning step is usually applied to improve the ability of the
tree to generalise to unseen data.

C4.5 is the successor to ID3 and removed the restriction that features must be categorical by dynamically defining
a discrete attribute (based on numerical variables) that partitions the continuous attribute value into a discrete set of
intervals. C4.5 converts the trained trees (i.e. the output of the ID3 algorithm) into sets of if-then rules. These accuracy
of each rule is then evaluated to determine the order in which they should be applied. Pruning is done by removing a
rule’s precondition if the accuracy of the rule improves without it.

3.1. Supervised learning 235

https://en.wikipedia.org/wiki/ID3_algorithm

scikit-learn user guide, Release 0.19.1

C5.0 is Quinlan’s latest version release under a proprietary license. It uses less memory and builds smaller rulesets
than C4.5 while being more accurate.

CART (Classification and Regression Trees) is very similar to C4.5, but it differs in that it supports numerical target
variables (regression) and does not compute rule sets. CART constructs binary trees using the feature and threshold
that yield the largest information gain at each node.

scikit-learn uses an optimised version of the CART algorithm.

Mathematical formulation
Given training vectors z; € R", i=1,..., 1 and a label vector y € R!, a decision tree recursively partitions the space
such that the samples with the same labels are grouped together.
Let the data at node m be represented by (). For each candidate split § = (4, t,,) consisting of a feature j and threshold
t.m, partition the data into Qe () and Qign:(6) subsets
Qleft(g) = (fE, y)|93] <=tm
Qr?‘,ght (9) = Q \ Qleft (9)

The impurity at m is computed using an impurity function H (), the choice of which depends on the task being solved
(classification or regression)

G(Q.0) = S H(Quepn(0)) + "o H(Qrigha (9))

Select the parameters that minimises the impurity
0* = argmin, G(Q, 6)
Recurse for subsets Qe+ (0*) and Qpign:(6*) until the maximum allowable depth is reached, N, < minggmpies Or

N, =1

Classification criteria

If a target is a classification outcome taking on values 0,1,... ,K-1, for node m, representing a region R, with N,
observations, let

Pk =1/Npw > I(yi = k)
T;ERm,

be the proportion of class k observations in node m

Common measures of impurity are Gini
H(Xm) = mek(l - pmk)
k

Cross-Entropy

H(X) == Pk 10g(Dmr)
k

and Misclassification
H(X,;,) =1—max(pmk)

where X, is the training data in node m

236 Chapter 3. User Guide

https://en.wikipedia.org/wiki/Predictive_analytics#Classification_and_regression_trees_.28CART.29

scikit-learn user guide, Release 0.19.1

Regression criteria

If the target is a continuous value, then for node m, representing a region R,,, with N,,, observations, common criteria
to minimise as for determining locations for future splits are Mean Squared Error, which minimizes the L2 error
using mean values at terminal nodes, and Mean Absolute Error, which minimizes the L1 error using median values at
terminal nodes.

Mean Squared Error:

1
H(Xp,) = N Z (yi — Cm)2
™ €N
Mean Absolute Error:
_ 1
Ym = N, Z Yi
1€EN,
1 _
H(Xm) = N Z Yi = Ym|
m iEN,,

where X, is the training data in node m

References:

* https://en.wikipedia.org/wiki/Decision_tree_learning
* https://en.wikipedia.org/wiki/Predictive_analytics

* L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth, Belmont,
CA, 1984.

* J.R. Quinlan. C4. 5: programs for machine learning. Morgan Kaufmann, 1993.

 T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning, Springer, 2009.

3.1.11 Ensemble methods

The goal of ensemble methods is to combine the predictions of several base estimators built with a given learning
algorithm in order to improve generalizability / robustness over a single estimator.

Two families of ensemble methods are usually distinguished:

* In averaging methods, the driving principle is to build several estimators independently and then to average
their predictions. On average, the combined estimator is usually better than any of the single base estimator
because its variance is reduced.

Examples: Bagging methods, Forests of randomized trees, ...

* By contrast, in boosting methods, base estimators are built sequentially and one tries to reduce the bias of the
combined estimator. The motivation is to combine several weak models to produce a powerful ensemble.

Examples: AdaBoost, Gradient Tree Boosting, . ..

3.1. Supervised learning 237

https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Predictive_analytics

scikit-learn user guide, Release 0.19.1

Bagging meta-estimator

In ensemble algorithms, bagging methods form a class of algorithms which build several instances of a black-box
estimator on random subsets of the original training set and then aggregate their individual predictions to form a final
prediction. These methods are used as a way to reduce the variance of a base estimator (e.g., a decision tree), by
introducing randomization into its construction procedure and then making an ensemble out of it. In many cases,
bagging methods constitute a very simple way to improve with respect to a single model, without making it necessary
to adapt the underlying base algorithm. As they provide a way to reduce overfitting, bagging methods work best with
strong and complex models (e.g., fully developed decision trees), in contrast with boosting methods which usually
work best with weak models (e.g., shallow decision trees).

Bagging methods come in many flavours but mostly differ from each other by the way they draw random subsets of
the training set:

* When random subsets of the dataset are drawn as random subsets of the samples, then this algorithm is known
as Pasting /B1999].

* When samples are drawn with replacement, then the method is known as Bagging [B1996].

¢ When random subsets of the dataset are drawn as random subsets of the features, then the method is known as
Random Subspaces [H1998].

* Finally, when base estimators are built on subsets of both samples and features, then the method is known as
Random Patches [LG2012].

In scikit-learn, bagging methods are offered as a unified BaggingClassifier meta-estimator (resp.
BaggingRegressor), taking as input a user-specified base estimator along with parameters specifying the strategy
to draw random subsets. In particular, mnax_samples and max_features control the size of the subsets (in terms
of samples and features), while bootstrap and bootstrap_features control whether samples and features
are drawn with or without replacement. When using a subset of the available samples the generalization accuracy can
be estimated with the out-of-bag samples by setting oolb_score=True. As an example, the snippet below illustrates
how to instantiate a bagging ensemble of KNeighborsClassifier base estimators, each built on random subsets
of 50% of the samples and 50% of the features.

>>> from sklearn.ensemble import BaggingClassifier

>>> from sklearn.neighbors import KNeighborsClassifier

>>> bagging = BaggingClassifier (KNeighborsClassifier(),
max_samples=0.5, max_features=0.5)

Examples:

 Single estimator versus bagging: bias-variance decomposition

References I

Forests of randomized trees

The sklearn.ensemble module includes two averaging algorithms based on randomized decision trees: the Ran-
domForest algorithm and the Extra-Trees method. Both algorithms are perturb-and-combine techniques [B7998]
specifically designed for trees. This means a diverse set of classifiers is created by introducing randomness in the
classifier construction. The prediction of the ensemble is given as the averaged prediction of the individual classifiers.

238 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

As other classifiers, forest classifiers have to be fitted with two arrays: a sparse or dense array X of size [n_samples,
n_features] holding the training samples, and an array Y of size [n_samples] holding the target values (class
labels) for the training samples:

>>> from sklearn.ensemble import RandomForestClassifier

>>> X = [[0, 0], [1, 11]
>>> Y = [0, 1]
>>> clf = RandomForestClassifier (n_estimators=10)

>>> clf = clf.fit (X, Y)

Like decision trees, forests of trees also extend to multi-output problems (if Y is an array of size [n_samples,
n_outputs]).

Random Forests

In random forests (see RandomForestClassifier and RandomForestRegressor classes), each tree in the
ensemble is built from a sample drawn with replacement (i.e., a bootstrap sample) from the training set. In addition,
when splitting a node during the construction of the tree, the split that is chosen is no longer the best split among all
features. Instead, the split that is picked is the best split among a random subset of the features. As a result of this
randomness, the bias of the forest usually slightly increases (with respect to the bias of a single non-random tree) but,
due to averaging, its variance also decreases, usually more than compensating for the increase in bias, hence yielding
an overall better model.

In contrast to the original publication /B2001], the scikit-learn implementation combines classifiers by averaging their
probabilistic prediction, instead of letting each classifier vote for a single class.

Extremely Randomized Trees

In extremely randomized trees (see Ext raTreesClassifier and ExtraTreesRegressor classes), random-
ness goes one step further in the way splits are computed. As in random forests, a random subset of candidate features
is used, but instead of looking for the most discriminative thresholds, thresholds are drawn at random for each candi-
date feature and the best of these randomly-generated thresholds is picked as the splitting rule. This usually allows to
reduce the variance of the model a bit more, at the expense of a slightly greater increase in bias:

>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.datasets import make_blobs

>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.ensemble import ExtraTreesClassifier
>>> from sklearn.tree import DecisionTreeClassifier

>>> X, y = make_blobs (n_samples=10000, n_features=10, centers=100,
random_state=0)

>>> clf = DecisionTreeClassifier (max_depth=None, min_samples_split=2,
random_state=0)

>>> scores = cross_val_score(clf, X, vy)
>>> gcores.mean ()
0.97...

>>> clf = RandomForestClassifier (n_estimators=10, max_depth=None,
min_samples_split=2, random_state=0)

>>> scores = cross_val_score(clf, X, vy)
>>> gcores.mean ()
0.999...

3.1. Supervised learning 239

scikit-learn user guide, Release 0.19.1

>>> clf = ExtraTreesClassifier(n_estimators=10, max_depth=None,
min_samples_split=2, random_state=0)

>>> scores = cross_val_score(clf, X, vy)
>>> gscores.mean () > 0.999
True

Classifiers on feature subsets of the Iris dataset

DecisionTree RandomForest ExtraTrees AdaBoost

Parameters

The main parameters to adjust when using these methods is n_estimators and max_features. The former
is the number of trees in the forest. The larger the better, but also the longer it will take to compute. In addition,
note that results will stop getting significantly better beyond a critical number of trees. The latter is the size of
the random subsets of features to consider when splitting a node. The lower the greater the reduction of variance,
but also the greater the increase in bias. Empirical good default values are max_features=n_~features for
regression problems, and max_ features=sqrt (n_features) for classification tasks (where n_features is
the number of features in the data). Good results are often achieved when setting max_depth=None in combination
with min_samples_split=2 (i.e., when fully developing the trees). Bear in mind though that these values are
usually not optimal, and might result in models that consume a lot of RAM. The best parameter values should always be
cross-validated. In addition, note that in random forests, bootstrap samples are used by default (bootstrap=True)
while the default strategy for extra-trees is to use the whole dataset (bootstrap=False). When using bootstrap
sampling the generalization accuracy can be estimated on the left out or out-of-bag samples. This can be enabled by
setting oob_score=True.

Note: The size of the model with the default parameters is O(M * N * log(N)), where M is the number of
trees and IV is the number of samples. In order to reduce the size of the model, you can change these parameters:
min_samples_split,min_samples_leaf,max_leaf_nodes and max_depth.

240 Chapter 3. User Guide

../auto_examples/ensemble/plot_forest_iris.html

scikit-learn user guide, Release 0.19.1

Parallelization

Finally, this module also features the parallel construction of the trees and the parallel computation of the predictions
through the n_ jobs parameter. If n_ jobs=k then computations are partitioned into k jobs, and run on k cores of
the machine. If n_jobs=-1 then all cores available on the machine are used. Note that because of inter-process
communication overhead, the speedup might not be linear (i.e., using k jobs will unfortunately not be k times as fast).
Significant speedup can still be achieved though when building a large number of trees, or when building a single tree
requires a fair amount of time (e.g., on large datasets).

Examples:

* Plot the decision surfaces of ensembles of trees on the iris dataset

* Pixel importances with a parallel forest of trees

» Face completion with a multi-output estimators

References

* P. Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42, 2006.

Feature importance evaluation

The relative rank (i.e. depth) of a feature used as a decision node in a tree can be used to assess the relative importance
of that feature with respect to the predictability of the target variable. Features used at the top of the tree contribute
to the final prediction decision of a larger fraction of the input samples. The expected fraction of the samples they
contribute to can thus be used as an estimate of the relative importance of the features.

By averaging those expected activity rates over several randomized trees one can reduce the variance of such an
estimate and use it for feature selection.

The following example shows a color-coded representation of the relative importances of each individual pixel for a
face recognition task using a Ext raTreesClassifier model.

In practice those estimates are stored as an attribute named feature_importances_ on the fitted model. This
is an array with shape (n_features,) whose values are positive and sum to 1.0. The higher the value, the more
important is the contribution of the matching feature to the prediction function.

Examples:

* Pixel importances with a parallel forest of trees

» Feature importances with forests of trees

Totally Random Trees Embedding

RandomTreesEmbedding implements an unsupervised transformation of the data. Using a forest of completely
random trees, RandomTreesEmbedding encodes the data by the indices of the leaves a data point ends up in. This
index is then encoded in a one-of-K manner, leading to a high dimensional, sparse binary coding. This coding can be
computed very efficiently and can then be used as a basis for other learning tasks. The size and sparsity of the code

3.1. Supervised learning 241

scikit-learn user guide, Release 0.19.1

Pixel importances with forests of trees
0 10 20 30 40 50 60

can be influenced by choosing the number of trees and the maximum depth per tree. For each tree in the ensemble, the
coding contains one entry of one. The size of the coding is at most n_estimators = 2 *x max_depth, the
maximum number of leaves in the forest.

As neighboring data points are more likely to lie within the same leaf of a tree, the transformation performs an implicit,
non-parametric density estimation.

Examples:

* Hashing feature transformation using Totally Random Trees

* Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. .. compares non-linear dimen-
sionality reduction techniques on handwritten digits.

» Feature transformations with ensembles of trees compares supervised and unsupervised tree based feature
transformations.

See also:

Manifold learning techniques can also be useful to derive non-linear representations of feature space, also these ap-
proaches focus also on dimensionality reduction.

AdaBoost

The module sklearn.ensemble includes the popular boosting algorithm AdaBoost, introduced in 1995 by Freund
and Schapire [FS1995].

The core principle of AdaBoost is to fit a sequence of weak learners (i.e., models that are only slightly better than
random guessing, such as small decision trees) on repeatedly modified versions of the data. The predictions from
all of them are then combined through a weighted majority vote (or sum) to produce the final prediction. The data
modifications at each so-called boosting iteration consist of applying weights w1, wa, ..., wy to each of the training
samples. Initially, those weights are all set to w; = 1/N, so that the first step simply trains a weak learner on the

242 Chapter 3. User Guide

../auto_examples/ensemble/plot_forest_importances_faces.html

scikit-learn user guide, Release 0.19.1

original data. For each successive iteration, the sample weights are individually modified and the learning algorithm is
reapplied to the reweighted data. At a given step, those training examples that were incorrectly predicted by the boosted
model induced at the previous step have their weights increased, whereas the weights are decreased for those that were
predicted correctly. As iterations proceed, examples that are difficult to predict receive ever-increasing influence. Each
subsequent weak learner is thereby forced to concentrate on the examples that are missed by the previous ones in the
sequence [HTF].

0.5
— Decision Stump Error
—=—=- Decision Tree Error
—— Discrete AdaBoost Test Error
0.4 1 —— Discrete AdaBoost Train Error
Real AdaBoost Test Error
—— Real AdaBoost Train Error
9 0.3 1
E
Y 0.2
0.1 1
0.0 T T

T T T T T U T
0 50 100 150 200 250 300 350 400
n_estimators

AdaBoost can be used both for classification and regression problems:

e For multi-class classification, AdaBoostClassifier implements AdaBoost-SAMME and AdaBoost-
SAMME.R [ZZRH2009].

* For regression, AdaBoostRegressor implements AdaBoost.R2 [D]997].

Usage

The following example shows how to fit an AdaBoost classifier with 100 weak learners:

>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.datasets import load_iris
>>> from sklearn.ensemble import AdaBoostClassifier

>>> iris = load_iris()

>>> clf = AdaBoostClassifier (n_estimators=100)

>>> scores = cross_val_score(clf, iris.data, iris.target)
>>> gcores.mean ()

0.9...

The number of weak learners is controlled by the parameter n_estimators. The learning_rate parameter
controls the contribution of the weak learners in the final combination. By default, weak learners are decision stumps.
Different weak learners can be specified through the base_est imator parameter. The main parameters to tune to

3.1. Supervised learning 243

../auto_examples/ensemble/plot_adaboost_hastie_10_2.html

scikit-learn user guide, Release 0.19.1

obtain good results are n_estimators and the complexity of the base estimators (e.g., its depth max_depth or
minimum required number of samples at a leaf min_samples_1leaf in case of decision trees).

Examples:
* Discrete versus Real AdaBoost compares the classification error of a decision stump, decision tree, and a
boosted decision stump using AdaBoost-SAMME and AdaBoost-SAMME.R.

* Multi-class AdaBoosted Decision Trees shows the performance of AdaBoost-SAMME and AdaBoost-
SAMME.R on a multi-class problem.

» Two-class AdaBoost shows the decision boundary and decision function values for a non-linearly separable
two-class problem using AdaBoost-SAMME.

* Decision Tree Regression with AdaBoost demonstrates regression with the AdaBoost.R2 algorithm.

References I

Gradient Tree Boosting

Gradient Tree Boosting or Gradient Boosted Regression Trees (GBRT) is a generalization of boosting to arbitrary
differentiable loss functions. GBRT is an accurate and effective off-the-shelf procedure that can be used for both
regression and classification problems. Gradient Tree Boosting models are used in a variety of areas including Web
search ranking and ecology.

The advantages of GBRT are:
 Natural handling of data of mixed type (= heterogeneous features)
* Predictive power
* Robustness to outliers in output space (via robust loss functions)
The disadvantages of GBRT are:
* Scalability, due to the sequential nature of boosting it can hardly be parallelized.

The module sklearn.ensemble provides methods for both classification and regression via gradient boosted
regression trees.

Classification

GradientBoostingClassifier supports both binary and multi-class classification. The following example
shows how to fit a gradient boosting classifier with 100 decision stumps as weak learners:

>>> from sklearn.datasets import make_hastie_10_2
>>> from sklearn.ensemble import GradientBoostingClassifier

>>> X, y = make_hastie_10_2 (random_state=0)
>>> X_train, X_test = X[:2000], X[2000:]
>>> y_train, y_test = y[:2000], y[2000:]

>>> clf = GradientBoostingClassifier (n_estimators=100, learning_rate=1.0,
max_depth=1, random_state=0).fit (X_train, y_train)

244 Chapter 3. User Guide

https://en.wikipedia.org/wiki/Gradient_boosting

scikit-learn user guide, Release 0.19.1

>>> clf.score (X_test, y_test)
0.913...

The number of weak learners (i.e. regression trees) is controlled by the parameter n_estimators; The size of each
tree can be controlled either by setting the tree depth via max_depth or by setting the number of leaf nodes via
max_leaf_nodes. The learning_rate is a hyper-parameter in the range (0.0, 1.0] that controls overfitting via
shrinkage .

Note: Classification with more than 2 classes requires the induction of n_classes regression trees at each
iteration, thus, the total number of induced trees equals n_classes » n_estimators. For datasets with
a large number of classes we strongly recommend to use RandomForestClassifier as an alternative to
GradientBoostingClassifier.

Regression

GradientBoostingRegressor supports a number of different loss functions for regression which can be speci-
fied via the argument 1oss; the default loss function for regression is least squares (' 1s').

>>> import numpy as np

>>> from sklearn.metrics import mean_squared_error

>>> from sklearn.datasets import make_friedmanl

>>> from sklearn.ensemble import GradientBoostingRegressor

>>> X, y = make_friedmanl (n_samples=1200, random_state=0, noise=1.0)
>>> X_train, X_test = X[:200], X[200:]
>>> y_train, y_test = y[:200], y[200:]

>>> est = GradientBoostingRegressor (n_estimators=100, learning_rate=0.1,
.. max_depth=1, random_state=0, loss='ls').fit(X_train, y_train)
>>> mean_squared_error (y_test, est.predict (X_test))

5.00...

The figure below shows the results of applying GradientBoostingRegressor with least squares loss and 500
base learners to the Boston house price dataset (sklearn.datasets.load _boston). The plot on the left shows
the train and test error at each iteration. The train error at each iteration is stored in the train_score_ attribute
of the gradient boosting model. The test error at each iterations can be obtained via the staged predict method
which returns a generator that yields the predictions at each stage. Plots like these can be used to determine the optimal
number of trees (i.e. n_estimators) by early stopping. The plot on the right shows the feature importances which
can be obtained via the feature_importances_ property.

Examples:

* Gradient Boosting regression

* Gradient Boosting Out-of-Bag estimates

Fitting additional weak-learners

Both GradientBoostingRegressor and GradientBoostingClassifier support
warm_start=True which allows you to add more estimators to an already fitted model.

3.1. Supervised learning 245

scikit-learn user guide, Release 0.19.1

Deviance Variable Importance

—— Training Set Deviance
—— Test Set Deviance LSTAT

RM

DIS

AGE
TAX
PTRATIO
CRIM

Deviance

B

NOX

INDUS

RAD
N
CHAS
0 100 200 300 400 500 0 20 40 60 80 100
Boosting lterations Relative Importance
>>> _ = est.set_params (n_estimators=200, warm_start=True) # set warm_start and new_
—nr of trees
>>> = est.fit(X_train, y_train) # fit additional 100 trees to est
>>> mean_squared_error (y_test, est.predict (X_test))

3.84...

Controlling the tree size

The size of the regression tree base learners defines the level of variable interactions that can be captured by the
gradient boosting model. In general, a tree of depth h can capture interactions of order h . There are two ways in
which the size of the individual regression trees can be controlled.

If you specify max_depth=h then complete binary trees of depth h will be grown. Such trees will have (at most)
2x+h leaf nodes and 2x+h — 1 split nodes.

Alternatively, you can control the tree size by specifying the number of leaf nodes via the parameter
max_leaf nodes. In this case, trees will be grown using best-first search where nodes with the highest improve-
ment in impurity will be expanded first. A tree with max_leaf_ nodes=k has k — 1 split nodes and thus can
model interactions of up to order max_leaf_nodes - 1.

We found that max_leaf_ nodes=k gives comparable results to max_depth=k-1 but is significantly faster to
train at the expense of a slightly higher training error. The parameter max_leaf_ nodes corresponds to the variable
J in the chapter on gradient boosting in [F2001] and is related to the parameter interaction.depthin R’s gbm
package where max_leaf_nodes == interaction.depth + 1.

Mathematical formulation

GBRT considers additive models of the following form:

246 Chapter 3. User Guide

../auto_examples/ensemble/plot_gradient_boosting_regression.html

scikit-learn user guide, Release 0.19.1

F(z) =) Ymhm(z)

iM=

where h.,, (x) are the basis functions which are usually called weak learners in the context of boosting. Gradient Tree
Boosting uses decision trees of fixed size as weak learners. Decision trees have a number of abilities that make them
valuable for boosting, namely the ability to handle data of mixed type and the ability to model complex functions.

Similar to other boosting algorithms GBRT builds the additive model in a forward stagewise fashion:

F, () = Fi—1(2) + Ymhm(x)

At each stage the decision tree h,,, (z) is chosen to minimize the loss function L given the current model F;,,_; and its
fit Fi, 1 (JUZ)

Fo(z) = Fpoa(7) + arg mhinZL(yi, Fin1(x;) + h(z))

i=1

The initial model Fj is problem specific, for least-squares regression one usually chooses the mean of the target values.

Note: The initial model can also be specified via the init argument. The passed object has to implement £it and
predict.

Gradient Boosting attempts to solve this minimization problem numerically via steepest descent: The steepest descent
direction is the negative gradient of the loss function evaluated at the current model F,,,_; which can be calculated for
any differentiable loss function:

Fm(z) - Fm—l(z) — Ym Z VFL(yia Fm—l(xz))

i=1

Where the step length ~,,, is chosen using line search:

OL(yi, Frn—1(z:))
aFm—l(Ii)

n
Vm = argrrl/inZL(yi, Fr1(zg) —
i=1

The algorithms for regression and classification only differ in the concrete loss function used.

Loss Functions

The following loss functions are supported and can be specified using the parameter 1oss:
* Regression

— Least squares (' 1s'): The natural choice for regression due to its superior computational properties. The
initial model is given by the mean of the target values.

3.1. Supervised learning 247

scikit-learn user guide, Release 0.19.1

— Least absolute deviation (' 1ad"): A robust loss function for regression. The initial model is given by the
median of the target values.

— Huber (' huber'): Another robust loss function that combines least squares and least absolute deviation;
use alpha to control the sensitivity with regards to outliers (see [F2001] for more details).

— Quantile ('quantile'): A loss function for quantile regression. Use 0 < alpha < 1 to specify the
quantile. This loss function can be used to create prediction intervals (see Prediction Intervals for Gradient
Boosting Regression).

¢ (Classification

— Binomial deviance ('deviance'): The negative binomial log-likelihood loss function for binary classi-
fication (provides probability estimates). The initial model is given by the log odds-ratio.

— Multinomial deviance ('deviance'): The negative multinomial log-likelihood loss function for multi-
class classification with n_classes mutually exclusive classes. It provides probability estimates. The
initial model is given by the prior probability of each class. At each iteration n_classes regression trees
have to be constructed which makes GBRT rather inefficient for data sets with a large number of classes.

— Exponential loss (' exponential'): The same loss function as AdaBoostClassifier. Less robust
to mislabeled examples than 'deviance'; can only be used for binary classification.

Regularization
Shrinkage

[F2001] proposed a simple regularization strategy that scales the contribution of each weak learner by a factor v:
Fo(z) = F—1(z) + vymbm (x)

The parameter v is also called the learning rate because it scales the step length the gradient descent procedure; it can
be set via the learning_rate parameter.

The parameter learning_rate strongly interacts with the parameter n_est imators, the number of weak learn-
ers to fit. Smaller values of 1learning_rate require larger numbers of weak learners to maintain a constant training
error. Empirical evidence suggests that small values of learning_rate favor better test error. [HTF2009] recom-
mend to set the learning rate to a small constant (e.g. learning_rate <= 0.1)andchoose n_estimators by
early stopping. For a more detailed discussion of the interaction between learning_rate and n_estimators
see [R2007].

Subsampling

[F1999] proposed stochastic gradient boosting, which combines gradient boosting with bootstrap averaging (bagging).
At each iteration the base classifier is trained on a fraction subsample of the available training data. The subsample
is drawn without replacement. A typical value of subsample is 0.5.

The figure below illustrates the effect of shrinkage and subsampling on the goodness-of-fit of the model. We can
clearly see that shrinkage outperforms no-shrinkage. Subsampling with shrinkage can further increase the accuracy of
the model. Subsampling without shrinkage, on the other hand, does poorly.

Another strategy to reduce the variance is by subsampling the features analogous to the random splits in
RandomForestClassifier . The number of subsampled features can be controlled via the max_features
parameter.

248 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

1.4 4 .
No shrinkage
learning_rate=0.1
124 subsample=0.5
’ —— learning_rate=0.1, subsample=0.5
—— learning_rate=0.1, max_features=2

g 1.0+
=
1]
>
@
[a}
= 0.8
[%)]
i
'_

0.6 1

o ——
0.4
T T T T T T
0 200 400 600 800 1000

Boosting Iterations

Note: Using a small max_ features value can significantly decrease the runtime.

Stochastic gradient boosting allows to compute out-of-bag estimates of the test deviance by computing the improve-
ment in deviance on the examples that are not included in the bootstrap sample (i.e. the out-of-bag examples). The
improvements are stored in the attribute cob_improvement_. oob_improvement_ [i] holds the improvement
in terms of the loss on the OOB samples if you add the i-th stage to the current predictions. Out-of-bag estimates can
be used for model selection, for example to determine the optimal number of iterations. OOB estimates are usually
very pessimistic thus we recommend to use cross-validation instead and only use OOB if cross-validation is too time

consuming.

Examples:

* Gradient Boosting regularization

* Gradient Boosting Out-of-Bag estimates

* OOB Errors for Random Forests

Interpretation

Individual decision trees can be interpreted easily by simply visualizing the tree structure. Gradient boosting models,
however, comprise hundreds of regression trees thus they cannot be easily interpreted by visual inspection of the
individual trees. Fortunately, a number of techniques have been proposed to summarize and interpret gradient boosting

models.

3.1. Supervised learning 249

../auto_examples/ensemble/plot_gradient_boosting_regularization.html

scikit-learn user guide, Release 0.19.1

Feature importance

Often features do not contribute equally to predict the target response; in many situations the majority of the features
are in fact irrelevant. When interpreting a model, the first question usually is: what are those important features and
how do they contributing in predicting the target response?

Individual decision trees intrinsically perform feature selection by selecting appropriate split points. This information
can be used to measure the importance of each feature; the basic idea is: the more often a feature is used in the split
points of a tree the more important that feature is. This notion of importance can be extended to decision tree ensembles
by simply averaging the feature importance of each tree (see Feature importance evaluation for more details).

The feature importance scores of a fit gradient boosting model can be accessed via the feature_importances_
property:

>>> from sklearn.datasets import make_hastie_10_2
>>> from sklearn.ensemble import GradientBoostingClassifier

>>> X, y = make_hastie_10_2 (random_state=0)

>>> clf = GradientBoostingClassifier (n_estimators=100, learning_rate=1.0,
max_depth=1, random_state=0).fit (X, vy)

>>> clf.feature_importances_

array ([0.11, 0.1, 0.11,

Examples:

* Gradient Boosting regression

Partial dependence

Partial dependence plots (PDP) show the dependence between the target response and a set of ‘target’ features,
marginalizing over the values of all other features (the ‘complement’ features). Intuitively, we can interpret the partial
dependence as the expected target response' as a function of the ‘target’ features’.

Due to the limits of human perception the size of the target feature set must be small (usually, one or two) thus the
target features are usually chosen among the most important features.

The Figure below shows four one-way and one two-way partial dependence plots for the California housing dataset:

One-way PDPs tell us about the interaction between the target response and the target feature (e.g. linear, non-linear).
The upper left plot in the above Figure shows the effect of the median income in a district on the median house price;
we can clearly see a linear relationship among them.

PDPs with two target features show the interactions among the two features. For example, the two-variable PDP in
the above Figure shows the dependence of median house price on joint values of house age and avg. occupants per
household. We can clearly see an interaction between the two features: For an avg. occupancy greater than two, the
house price is nearly independent of the house age, whereas for values less than two there is a strong dependence on
age.

The module partial_dependence provides a convenience function plot_partial_dependence to cre-
ate one-way and two-way partial dependence plots. In the below example we show how to create a grid of partial
dependence plots: two one-way PDPs for the features 0 and 1 and a two-way PDP between the two features:

! For classification with 1oss="deviance' the target response is logit(p).
2 More precisely its the expectation of the target response after accounting for the initial model; partial dependence plots do not include the
init model.

250 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

Partial dependence of house value on nonlocation features
for the California housing dataset

@ 154 b 15+ 3 157
= € €
@ H
T 101 T 1.0+ T 1.0+
o b
g > :
Z 051 2 054 K QS___,,*F-—*—’J
= K L.
£ 0.0 # 0.0 # 0.0
] [1+]]
o =% =8

AT = o I N N 1IN T N [0 N 1 Y I I 05 L1l iy

1.5 3.0 45 6.0 75 2.0 2.53.0 35 40 10 20 30 40 50
MedInc AveOccup HouseAge
50 +

@ 1.5
3 40
% 1.0 %
[= % @ 30
L 0.5 @
= —_— | 8
£ 0.0 20
a

o5t uipiirn 1 10

4048566.47.2 2.0 25 3.0 35 40
AveRooms AveOccup

>>> from sklearn.datasets import make_hastie_10_2
>>> from sklearn.ensemble import GradientBoostingClassifier
>>> from sklearn.ensemble.partial dependence import plot_partial_dependence

>>> X, y = make_hastie_10_2 (random_state=0)

>>> clf = GradientBoostingClassifier (n_estimators=100, learning_rate=1.0,
max_depth=1, random_state=0).fit (X, vy)

>>> features = [0, 1, (0, 1)]

>>> fig, axs = plot_partial_dependence (clf, X, features)

For multi-class models, you need to set the class label for which the PDPs should be created via the 1abel argument:

>>> from sklearn.datasets import load_iris

>>> iris = load_iris()

>>> mc_clf = GradientBoostingClassifier (n_estimators=10,
max_depth=1) .fit (iris.data, iris.target)

>>> features = [3, 2, (3, 2)]

>>> fig, axs = plot_partial_dependence (mc_clf, X, features, label=0)

If you need the raw values of the partial dependence function rather than the plots you can use the
partial_dependence function:

>>> from sklearn.ensemble.partial dependence import partial_dependence

>>> pdp, axes = partial_dependence(clf, [0], X=X)
>>> pdp

array ([[2.46643157, 2.46643157,

>>> axes

[array ([-1.62497054, -1.59201391,

The function requires either the argument gr id which specifies the values of the target features on which the partial
dependence function should be evaluated or the argument X which is a convenience mode for automatically creating
grid from the training data. If X is given, the axes value returned by the function gives the axis for each target
feature.

3.1. Supervised learning 251

../auto_examples/ensemble/plot_partial_dependence.html

scikit-learn user guide, Release 0.19.1

For each value of the ‘target’ features in the grid the partial dependence function need to marginalize the predictions
of a tree over all possible values of the ‘complement’ features. In decision trees this function can be evaluated effi-
ciently without reference to the training data. For each grid point a weighted tree traversal is performed: if a split node
involves a ‘target’ feature, the corresponding left or right branch is followed, otherwise both branches are followed,
each branch is weighted by the fraction of training samples that entered that branch. Finally, the partial dependence
is given by a weighted average of all visited leaves. For tree ensembles the results of each individual tree are again
averaged.

Examples:

* Partial Dependence Plots

References I

Voting Classifier

The idea behind the Vot ingClassifier is to combine conceptually different machine learning classifiers and use
a majority vote or the average predicted probabilities (soft vote) to predict the class labels. Such a classifier can be
useful for a set of equally well performing model in order to balance out their individual weaknesses.

Majority Class Labels (Majority/Hard Voting)

In majority voting, the predicted class label for a particular sample is the class label that represents the majority (mode)
of the class labels predicted by each individual classifier.

E.g., if the prediction for a given sample is
e classifier 1 ->class 1
e classifier 2 -> class 1
* classifier 3 -> class 2
the VotingClassifier (with vot ing="hard") would classify the sample as “class 1” based on the majority class label.

In the cases of a tie, the VotingClassifier will select the class based on the ascending sort order. E.g., in the following
scenario

e classifier 1 -> class 2
e classifier 2 -> class 1

the class label 1 will be assigned to the sample.

Usage

The following example shows how to fit the majority rule classifier:

>>> from sklearn import datasets

>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.linear _model import LogisticRegression
>>> from sklearn.naive_bayes import GaussianNB

>>> from sklearn.ensemble import RandomForestClassifier

252 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

>>> from sklearn.ensemble import VotingClassifier

>>> iris = datasets.load_iris()

>>> X, y = iris.data[:, 1:3], iris.target

>>> clfl = LogisticRegression (random_state=1)

>>> clf2 = RandomForestClassifier (random_state=1)

>>> clf3 = GaussianNB ()

>>> eclf = VotingClassifier (estimators=[('lr', clfl), ('rf', clf2), ('gnb', clf3)],

—voting="'hard")

>>> for clf, label in zip([clfl, clf2, clf3, eclf], ['Logistic Regression', 'Random,,
—~Forest', 'naive Bayes', 'Ensemble']):
scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy')
. print ("Accuracy: (+/-) [%s]"™ % (scores.mean(), scores.std(),,
—label))
Accuracy: 0.90 (+/- 0.05) [Logistic Regression]
Accuracy: 0.93 (+/- 0.05) [Random Forest]
Accuracy: 0.91 (+/- 0.04) [naive Bayes]
Accuracy: 0.95 (+/- 0.05) [Ensemble]

Weighted Average Probabilities (Soft Voting)

In contrast to majority voting (hard voting), soft voting returns the class label as argmax of the sum of predicted
probabilities.

Specific weights can be assigned to each classifier via the weights parameter. When weights are provided, the
predicted class probabilities for each classifier are collected, multiplied by the classifier weight, and averaged. The
final class label is then derived from the class label with the highest average probability.

To illustrate this with a simple example, let’s assume we have 3 classifiers and a 3-class classification problems where
we assign equal weights to all classifiers: wl=1, w2=1, w3=1.

The weighted average probabilities for a sample would then be calculated as follows:

classifier class1 | class2 | class 3

classifier 1 wl*02 | wl*0.5 | wl *0.3
classifier 2 w2*06 | w2*0.3 | w2*0.1
classifier 3 w3*03 | w3*04 | w3*0.3
weighted average | 0.37 0.4 0.23

Here, the predicted class label is 2, since it has the highest average probability.

The following example illustrates how the decision regions may change when a soft VotingClassifier is used based on
an linear Support Vector Machine, a Decision Tree, and a K-nearest neighbor classifier:

>>> from sklearn import datasets

>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> from sklearn.svm import SVC

>>> from itertools import product

>>> from sklearn.ensemble import VotingClassifier

>>> # Loading some example data
>>> iris = datasets.load_iris()

3.1. Supervised learning 253

scikit-learn user guide, Release 0.19.1

>>> X = iris.datal:, [0,2]]
>>> y iris.target

>>> # Training classifiers

>>> clfl = DecisionTreeClassifier (max_depth=4)

>>> clf2 KNeighborsClassifier (n_neighbors=7)

>>> clf3 SVC (kernel="rbf', probability=True)

>>> eclf VotingClassifier (estimators=[('dt', clfl), ('knn', clf2), ('svc', clf3)],.
—voting='soft', weights=[2,1,2])

>>> clfl = clfl.fit(X,vy)
>>> clf2 = clf2.fit (X,vy)
>>> clf3 = clf3.fit (X,vy)
>>> eclf = eclf.fit (X,vy)

Decision Tree (depth=4) KNN (k=7)

) £°
°¢%‘§D o

Kernel SVM Soft Voting

Using the VotingClassifier with GridSearch

The VotingClassifier can also be used together with GridSearch in order to tune the hyperparameters of the individual
estimators:

254 Chapter 3. User Guide

../auto_examples/ensemble/plot_voting_decision_regions.html

scikit-learn user guide, Release 0.19.1

>>>
>>>
>>>
>>>
>>>

from sklearn.model_selection import GridSearchCV

clfl = LogisticRegression (random_state=1)

clf2 = RandomForestClassifier (random_state=1)

clf3 = GaussianNB ()

eclf = VotingClassifier(estimators=[('lr', clfl), ('rf', clf2), ('gnb', clf3)]1,.

—voting='soft')

>>> params = {'lr_ C': [1.0, 100.0], 'rf__n_estimators': [20, 20071,}

>>>
>>>

grid = GridSearchCV (estimator=eclf, param_grid=params, cv=5)
grid grid.fit (iris.data, iris.target)

Usage

In order to predict the class labels based on the predicted class-probabilities (scikit-learn estimators in the VotingClas-
sifier must support predict_proba method):

>>>

eclf = VotingClassifier(estimators=[('lr', clfl), ('rf', clf2), ('gnb', clf3)]

s

—voting='soft')

Optionally, weights can be provided for the individual classifiers:

>>>

eclf = VotingClassifier(estimators=[('lr', clfl), ('rf', clf2), ('gnb', clf3)]

o

—voting='soft', weights=[2,5,11])

3.1.12 Multiclass and multilabel algorithms

Warning: All classifiers in scikit-learn do multiclass classification out-of-the-box. You don’t need to use the
sklearn.multiclass module unless you want to experiment with different multiclass strategies.

The sklearn.multiclass module implements meta-estimators to solvemulticlass andmultilabel clas-
sification problems by decomposing such problems into binary classification problems. Multitarget regression is also
supported.

Multiclass classification means a classification task with more than two classes; e.g., classify a set of images of
fruits which may be oranges, apples, or pears. Multiclass classification makes the assumption that each sample
is assigned to one and only one label: a fruit can be either an apple or a pear but not both at the same time.

Multilabel classification assigns to each sample a set of target labels. This can be thought as predicting proper-
ties of a data-point that are not mutually exclusive, such as topics that are relevant for a document. A text might
be about any of religion, politics, finance or education at the same time or none of these.

Multioutput regression assigns each sample a set of target values. This can be thought of as predicting several
properties for each data-point, such as wind direction and magnitude at a certain location.

Multioutput-multiclass classification and multi-task classification means that a single estimator has to handle
several joint classification tasks. This is both a generalization of the multi-label classification task, which only
considers binary classification, as well as a generalization of the multi-class classification task. The output
format is a 2d numpy array or sparse matrix.

The set of labels can be different for each output variable. For instance, a sample could be assigned “pear” for

CEINT3

an output variable that takes possible values in a finite set of species such as “pear”, “apple”; and “blue” or

3.1.

Supervised learning 255

scikit-learn user guide, Release 0.19.1

“green” for a second output variable that takes possible values in a finite set of colors such as “green”, “red”,
“blue”, “yellow”...

This means that any classifiers handling multi-output multiclass or multi-task classification tasks, support the
multi-label classification task as a special case. Multi-task classification is similar to the multi-output classifica-

tion task with different model formulations. For more information, see the relevant estimator documentation.

All scikit-learn classifiers are capable of multiclass classification, but the meta-estimators offered by sklearn.
multiclass permit changing the way they handle more than two classes because this may have an effect on classifier
performance (either in terms of generalization error or required computational resources).

Below is a summary of the classifiers supported by scikit-learn grouped by strategy; you don’t need the meta-estimators
in this class if you’re using one of these, unless you want custom multiclass behavior:

¢ Inherently multiclass:

sklearn

sklearn

sklearn.
sklearn.
sklearn.
sklearn.
sklearn.
sklearn.
sklearn.
sklearn.
sklearn.

sklearn.

sklearn

sklearn.
sklearn.
sklearn.
sklearn.
sklearn.

sklearn.

.naive_bayes.BernoulliNB

.tree.DecisionTreeClassifier

tree.ExtraTreeClassifier

ensemble.ExtralTreesClassifier

naive_bayes.GaussianNB

neighbors.KNeighborsClassifier
semi_supervised.LabelPropagation
semi_supervised.LabelSpreading
discriminant_analysis.LinearDiscriminantAnalysis
svm.LinearSVC (setting multi_class="crammer_singer”)
linear_model.LogisticRegression (setting multi_class="multinomial’)
linear_model.LogisticRegressionCV (setting multi_class="multinomial”)
.neural_ network.MLPClassifier

neighbors.NearestCentroid
discriminant_analysis.QuadraticDiscriminantAnalysis
neighbors.RadiusNeighborsClassifier
ensemble.RandomForestClassifier
linear._model.RidgeClassifier

linear._model.RidgeClassifierCV

¢ Multiclass as One-Vs-One:

— sklearn.svm.NuSVC

- sklearn.svm.SVC

— sklearn.gaussian_process.GaussianProcessClassifier (setting multi_class

“one_vs_one”)

¢ Multiclass as One-Vs-All:

— sklearn.ensemble.GradientBoostingClassifier

— sklearn.gaussian_process.GaussianProcessClassifier (setting multi_class

“one_vs_rest”)

256

Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

— sklearn.svm.LinearSVC (setting multi_class="ovr”)

— sklearn.linear_model.LogisticRegression (setting multi_class="ovr”)

— sklearn.linear _model.LogisticRegressionCV (setting multi_class="ovr”

— sklearn.linear _model.SGDClassifier

— sklearn.linear_model.Perceptron

— sklearn.linear _model.PassiveAggressiveClassifier
¢ Support multilabel:

— sklearn.tree.DecisionTreeClassifier

— sklearn.tree.ExtralTreeClassifier

— sklearn.ensemble.ExtraTreesClassifier

— sklearn.neighbors.KNeighborsClassifier

— sklearn.neural_network.MLPClassifier

— sklearn.neighbors.RadiusNeighborsClassifier

— sklearn.ensemble.RandomForestClassifier

— sklearn.linear_model.RidgeClassifierCV
* Support multiclass-multioutput:

— sklearn.tree.DecisionTreeClassifier

— sklearn.tree.ExtraTlreeClassifier

— sklearn.ensemble.ExtralTreesClassifier

— sklearn.neighbors.KNeighborsClassifier

— sklearn.neighbors.RadiusNeighborsClassifier

— sklearn.ensemble.RandomForestClassifier

Warning: At present, no metric in sklearn.metrics supports the multioutput-multiclass classification task.

Multilabel classification format

In multilabel learning, the joint set of binary classification tasks is expressed with label binary indicator array: each
sample is one row of a 2d array of shape (n_samples, n_classes) with binary values: the one, i.e. the non zero elements,
corresponds to the subset of labels. An array such as np.array(((1, 0, 0], [0, 1, 11, [0, O, 011])
represents label O in the first sample, labels 1 and 2 in the second sample, and no labels in the third sample.

Producing multilabel data as a list of sets of labels may be more intuitive. The MultiLabelBinarizer transformer
can be used to convert between a collection of collections of labels and the indicator format.

>>> from sklearn.preprocessing import MultilabelBinarizer
>>> vy = [[2, 3, 41, [2]1, (0O, 1, 31, [0, 1, 2, 3, 41, [0, 1, 21]
>>> MultilabelBinarizer () .fit_transform(y)
array([[0O, O, 1, 1, 171,
(o, o, 1, o, 01,
(., 1, o, 1, 01,

3.1. Supervised learning 257

scikit-learn user guide, Release 0.19.1

One-Vs-The-Rest

This strategy, also known as one-vs-all, is implemented in OneVsRestClassifier. The strategy consists in
fitting one classifier per class. For each classifier, the class is fitted against all the other classes. In addition to its
computational efficiency (only n_classes classifiers are needed), one advantage of this approach is its interpretability.
Since each class is represented by one and only one classifier, it is possible to gain knowledge about the class by
inspecting its corresponding classifier. This is the most commonly used strategy and is a fair default choice.

Multiclass learning

Below is an example of multiclass learning using OvR:

>>> from sklearn import datasets
>>> from sklearn.multiclass import OneVsRestClassifier
>>> from sklearn.svm import LinearSVC

>>> iris = datasets.load_iris{()

>>> X, y = iris.data, iris.target

>>> OneVsRestClassifier (LinearSVC (random_state=0)) .fit (X, y) .predict (X)

array((o, o, o, o, o, o, o, o, o, o, o, o, o, o, 0, 0, o, 0, 0, 0, 0, 0, O,
o, o, o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0O, O, 0, O, 0O, O, O,
o, o, 0o, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,11, 2, 2, 2,1, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 21])

’

~
~
~
~
~
~
~
~

Multilabel learning

OneVsRest(Classifier also supports multilabel classification. To use this feature, feed the classifier an indicator
matrix, in which cell [i, j] indicates the presence of label j in sample i.

Examples:

* Multilabel classification

One-Vs-One

OneVsOneClassifier constructs one classifier per pair of classes. At prediction time, the class which received
the most votes is selected. In the event of a tie (among two classes with an equal number of votes), it selects the class
with the highest aggregate classification confidence by summing over the pair-wise classification confidence levels
computed by the underlying binary classifiers.

Since it requires to fit n_classes x (n_classes - 1) / 2 classifiers, this method is usually slower than
one-vs-the-rest, due to its O(n_classes”2) complexity. However, this method may be advantageous for algorithms
such as kernel algorithms which don’t scale well with n_samples. This is because each individual learning problem
only involves a small subset of the data whereas, with one-vs-the-rest, the complete dataset is used n_classes times.

258 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

With unlabeled samples + CCA With unlabeled samples + PCA
___ Boundary
for class 1 -
__._ Boundary o
J for class 2 4
sy
QO class1 0
L)
Class 2 elc
wF* i
o] 4}

@

Second principal component

First principal component
Without unlabeled samples + PCA

Multiclass learning

Below is an example of multiclass learning using OvO:

>>> from sklearn import datasets
>>> from sklearn.multiclass import OneVsOneClassifier
>>> from sklearn.svm import LinearSVC

>>> iris = datasets.load_iris{()

>>> X, y = iris.data, iris.target

>>> OneVsOneClassifier (LinearSVC (random_state=0)) .fit (X, y) .predict (X)

array((o, o, o, o, o, o, o, o, o, o, o, o, o, o, 0, 0, o, 0, 0, 0, 0, 0, O,
o, o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0O, 0, O, 0O, 0O, 0O, O,
o, o, o, 0, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 2,1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2, 2,2, 2,2, 2,2,2,2,2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

~
~
~
~
~

References:

» “Pattern Recognition and Machine Learning. Springer”, Christopher M. Bishop, page 183, (First Edition)

3.1. Supervised learning 259

../auto_examples/plot_multilabel.html

scikit-learn user guide, Release 0.19.1

Error-Correcting Output-Codes

Output-code based strategies are fairly different from one-vs-the-rest and one-vs-one. With these strategies, each class
is represented in a Euclidean space, where each dimension can only be 0 or 1. Another way to put it is that each class
is represented by a binary code (an array of 0 and 1). The matrix which keeps track of the location/code of each class
is called the code book. The code size is the dimensionality of the aforementioned space. Intuitively, each class should
be represented by a code as unique as possible and a good code book should be designed to optimize classification
accuracy. In this implementation, we simply use a randomly-generated code book as advocated in® although more
elaborate methods may be added in the future.

At fitting time, one binary classifier per bit in the code book is fitted. At prediction time, the classifiers are used to
project new points in the class space and the class closest to the points is chosen.

In OutputCodeClassifier,the code_size attribute allows the user to control the number of classifiers which
will be used. It is a percentage of the total number of classes.

A number between 0 and 1 will require fewer classifiers than one-vs-the-rest. In theory, log2 (n_classes) /
n_classes is sufficient to represent each class unambiguously. However, in practice, it may not lead to good
accuracy since 1og2 (n_classes) is much smaller than n_classes.

A number greater than 1 will require more classifiers than one-vs-the-rest. In this case, some classifiers will in theory
correct for the mistakes made by other classifiers, hence the name “error-correcting”. In practice, however, this may
not happen as classifier mistakes will typically be correlated. The error-correcting output codes have a similar effect
to bagging.

Multiclass learning

Below is an example of multiclass learning using Output-Codes:

>>> from sklearn import datasets

>>> from sklearn.multiclass import OutputCodeClassifier
>>> from sklearn.svm import LinearSVC

>>> iris = datasets.load_iris()

>>> X, y = iris.data, iris.target

>>> clf = OutputCodeClassifier (LinearSVC (random_state=0),
C code_size=2, random_state=0)
>>> clf.fit (X, y

,) .predict (X)

array((o, o, o, o, o, o, o, o, o, o, o, o, o, 0o, 0, 0, 0o, 0, 0, 0, 0, 0, O,
o, o, o, o0, o, 0, 0, 0, 0, 0, 0, 0O, 0, 0, 0O, 0, O, 0, 0O, 0O, 0, 0O, O,
0, o, o, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
i, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1,
i, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2,1, 2,2,2,2,2,2,2,2,2,1,2,2,2,1,1, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

References:

* “Solving multiclass learning problems via error-correcting output codes”, Dietterich T., Bakiri G., Journal of
Artificial Intelligence Research 2, 1995.

* “The Elements of Statistical Learning”, Hastie T., Tibshirani R., Friedman J., page 606 (second-edition) 2008.

3 “The error coding method and PICTs”, James G., Hastie T., Journal of Computational and Graphical statistics 7, 1998.

260 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

Multioutput regression

Multioutput regression support can be added to any regressor with MultiOutputRegressor. This strategy con-
sists of fitting one regressor per target. Since each target is represented by exactly one regressor it is possible to
gain knowledge about the target by inspecting its corresponding regressor. As MultiOutputRegressor fits one
regressor per target it can not take advantage of correlations between targets.

Below is an example of multioutput regression:

>>> from sklearn.datasets import make_regression

>>> from sklearn.multioutput import MultiOutputRegressor

>>> from sklearn.ensemble import GradientBoostingRegressor

>>> X, y = make_regression(n_samples=10, n_targets=3, random_state=1)

>>> MultiOutputRegressor (GradientBoostingRegressor (random_state=0)) .fit (X, vy).
—predict (X)
array ([[-154.75474165, -147.03498585, -50.03812219],

7.12165031, 5.12914884, -81.46081961],

[

[-187.8948621 , -100.44373091, 13.88978285
[-141.62745778, 95.02891072, -191.48204257
[97.03260883, 165.34867495, 139.52003279
[123.92529176, 21.25719016, -7.84253
[_
[
[
[

14
’
’

’

122.25193977, -85.16443186, -107.12274212
-30.170388 , -94.80956739, 12.16979946
140.72667194, 176.50941682, -17.50447799
149.37967282, -81.15699552, -5.72850319

14

’

1)

Multioutput classification

Multioutput classification support can be added to any classifier with MultiOutputClassifier. This strategy
consists of fitting one classifier per target. This allows multiple target variable classifications. The purpose of this class
is to extend estimators to be able to estimate a series of target functions (f1,f2,f3...,fn) that are trained on a single X
predictor matrix to predict a series of responses (y1,y2,y3...,yn).

Below is an example of multioutput classification:

>>> from sklearn.datasets import make_classification

>>> from sklearn.multioutput import MultiOutputClassifier

>>> from sklearn.ensemble import RandomForestClassifier

>>> from sklearn.utils import shuffle

>>> import numpy as np

>>> X, yl = make_classification(n_samples=10, n_features=100, n_informative=30, n_
—classes=3, random_state=1)

>>> y2 = shuffle(yl, random_state=1)

>>> y3 = shuffle(yl, random_state=2)

>>> Y = np.vstack ((yl, v2, y3)).T

>>> n_samples, n_features = X.shape # 10,100

>>> n_outputs = Y.shape[l] # 3

>>> n_classes = 3

>>> forest = RandomForestClassifier(n_estimators=100, random_state=1)

>>> multi_target_forest = MultiOutputClassifier (forest, n_jobs=-1)

>>> multi_target_forest.fit (X, Y) .predict (X)

array ([[2, 2, 0],

, 1

’

4

O O O N
~
O N O N

0
, 2
1
2

’

3.1. Supervised learning 261

scikit-learn user guide, Release 0.19.1

~

~

N O -
~

O O~
~

o N = O

~

Classifier Chain

Classifier chains (see ClassifierChain) are a way of combining a number of binary classifiers into a single
multi-label model that is capable of exploiting correlations among targets.

For a multi-label classification problem with N classes, N binary classifiers are assigned an integer between 0 and N-1.
These integers define the order of models in the chain. Each classifier is then fit on the available training data plus the
true labels of the classes whose models were assigned a lower number.

When predicting, the true labels will not be available. Instead the predictions of each model are passed on to the
subsequent models in the chain to be used as features.

Clearly the order of the chain is important. The first model in the chain has no information about the other labels while
the last model in the chain has features indicating the presence of all of the other labels. In general one does not know
the optimal ordering of the models in the chain so typically many randomly ordered chains are fit and their predictions
are averaged together.

References:

Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank, “Classifier Chains for Multi-label Classifica-
tion”, 2009.

3.1.13 Feature selection

The classes in the sklearn. feature selection module can be used for feature selection/dimensionality re-
duction on sample sets, either to improve estimators’ accuracy scores or to boost their performance on very high-
dimensional datasets.

Removing features with low variance

VarianceThreshold is a simple baseline approach to feature selection. It removes all features whose variance
doesn’t meet some threshold. By default, it removes all zero-variance features, i.e. features that have the same value
in all samples.

As an example, suppose that we have a dataset with boolean features, and we want to remove all features that are
either one or zero (on or off) in more than 80% of the samples. Boolean features are Bernoulli random variables, and
the variance of such variables is given by

Var[X] = p(1 - p)

so we can select using the threshold .8 * (1 - .8):

>>> from sklearn.feature_selection import VarianceThreshold

>>> X = (o0, o0, 11, o, 1, oj, i, o, oJ, fto, 1, 11, o, 1, 01, [0, 1, 1]]
>>> sel = VarianceThreshold(threshold=(.8 = (1 — .8)))

>>> gel.fit_transform(X)

array ([[0, 1],

262 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

~

~

[N S R
~

= o O o
<

o~

As expected, VarianceThreshold has removed the first column, which has a probability p = 5/6 > .8 of
containing a zero.

Univariate feature selection

Univariate feature selection works by selecting the best features based on univariate statistical tests. It can be seen
as a preprocessing step to an estimator. Scikit-learn exposes feature selection routines as objects that implement the
transform method:

e SelectKBest removes all but the k highest scoring features
* SelectPercentile removes all but a user-specified highest scoring percentage of features

* using common univariate statistical tests for each feature: false positive rate SelectFpr, false discovery rate
SelectFdr, or family wise error SelectFwe.

* GenericUnivariateSelect allows to perform univariate feature selection with a configurable strategy.
This allows to select the best univariate selection strategy with hyper-parameter search estimator.

For instance, we can perform a x? test to the samples to retrieve only the two best features as follows:

>>> from sklearn.datasets import load_iris
>>> from sklearn.feature_selection import SelectKBest
>>> from sklearn.feature_selection import chi2

>>> iris = load_iris{()

>>> X, y = iris.data, iris.target
>>> X.shape

(150, 4)

>>> X_new = SelectKBest (chi2, k=2).fit_transform(X, vy)
>>> X_new.shape
(150, 2)

These objects take as input a scoring function that returns univariate scores and p-values (or only scores for
SelectKBest and SelectPercentile):

* For regression: f_regression, mutual_info_regression

e For classification: chi2, f classif,mutual_info classif

The methods based on F-test estimate the degree of linear dependency between two random variables. On the other
hand, mutual information methods can capture any kind of statistical dependency, but being nonparametric, they
require more samples for accurate estimation.

Feature selection with sparse data

If you use sparse data (i.e. data represented as sparse matrices), chi2, mutual_ info_regression,
mutual_info_classif will deal with the data without making it dense.

3.1. Supervised learning 263

scikit-learn user guide, Release 0.19.1

Warning: Beware not to use a regression scoring function with a classification problem, you will get useless
results.

Examples:

e Univariate Feature Selection

* Comparison of F-test and mutual information

Recursive feature elimination

Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model), recursive feature
elimination (RFE) is to select features by recursively considering smaller and smaller sets of features. First, the
estimator is trained on the initial set of features and the importance of each feature is obtained either through a coef_
attribute or through a feature_importances_ attribute. Then, the least important features are pruned from
current set of features.That procedure is recursively repeated on the pruned set until the desired number of features to
select is eventually reached.

REECV performs RFE in a cross-validation loop to find the optimal number of features.

Examples:

* Recursive feature elimination: A recursive feature elimination example showing the relevance of pixels in a
digit classification task.

* Recursive feature elimination with cross-validation: A recursive feature elimination example with automatic
tuning of the number of features selected with cross-validation.

Feature selection using SelectFromModel

SelectFromModel is a meta-transformer that can be used along with any estimator that has a coef_ or
feature_importances_ attribute after fitting. The features are considered unimportant and removed, if the
corresponding coef_ or feature_importances_ values are below the provided threshold parameter. Apart
from specifying the threshold numerically, there are built-in heuristics for finding a threshold using a string argument.

9%

Available heuristics are “mean”, “median” and float multiples of these like “0.1*mean”.

For examples on how it is to be used refer to the sections below.

Examples

» Feature selection using SelectFromModel and LassoCV: Selecting the two most important features from the
Boston dataset without knowing the threshold beforehand.

L1-based feature selection

Linear models penalized with the L1 norm have sparse solutions: many of their estimated coefficients are zero.
When the goal is to reduce the dimensionality of the data to use with another classifier, they can be used along
with feature selection.SelectFromModel to select the non-zero coefficients. In particular, sparse

264 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

estimators useful for this purpose are the Iinear model.Lasso for regression, and of Iinear model.
LogisticRegressionand svm.LinearSVC for classification:

>>> from sklearn.svm import LinearSVC
>>> from sklearn.datasets import load_iris
>>> from sklearn.feature_ selection import SelectFromModel

>>> iris = load_iris()

>>> X, y = iris.data, iris.target

>>> X.shape

(150, 4)

>>> 1lsvc = LinearSVC(C=0.01, penalty="11", dual=False) .fit (X, vy)
>>> model = SelectFromModel (1lsvc, prefit=True)

>>> X_new = model.transform (X)
>>> X_new.shape
(150, 3)

With SVMs and logistic-regression, the parameter C controls the sparsity: the smaller C the fewer features selected.
With Lasso, the higher the alpha parameter, the fewer features selected.

Examples:

* Classification of text documents using sparse features: Comparison of different algorithms for document
classification including L1-based feature selection.

L1-recovery and compressive sensing

For a good choice of alpha, the Lasso can fully recover the exact set of non-zero variables using only few obser-
vations, provided certain specific conditions are met. In particular, the number of samples should be “sufficiently
large”, or L1 models will perform at random, where “sufficiently large” depends on the number of non-zero co-
efficients, the logarithm of the number of features, the amount of noise, the smallest absolute value of non-zero
coefficients, and the structure of the design matrix X. In addition, the design matrix must display certain specific
properties, such as not being too correlated.

There is no general rule to select an alpha parameter for recovery of non-zero coefficients. It can by set by cross-
validation (LassoCV or LassoLarsCV), though this may lead to under-penalized models: including a small
number of non-relevant variables is not detrimental to prediction score. BIC (LassoLarsIC) tends, on the oppo-
site, to set high values of alpha.

Reference Richard G. Baraniuk “Compressive Sensing”, IEEE Signal Processing Magazine [120] July 2007 http:
//dsp.rice.edu/sites/dsp.rice.edu/files/cs/baraniuk CSlecture07.pdf

Tree-based feature selection

Tree-based estimators (see the sklearn. tree module and forest of trees in the sklearn.ensemble module)
can be used to compute feature importances, which in turn can be used to discard irrelevant features (when coupled
with the sklearn. feature_selection.SelectFromModel meta-transformer):

>>> from sklearn.ensemble import ExtraTreesClassifier

>>> from sklearn.datasets import load_iris

>>> from sklearn.feature_selection import SelectFromModel
>>> iris = load_iris{()

>>> X, y = iris.data, iris.target

>>> X.shape

3.1. Supervised learning 265

http://dsp.rice.edu/sites/dsp.rice.edu/files/cs/baraniukCSlecture07.pdf
http://dsp.rice.edu/sites/dsp.rice.edu/files/cs/baraniukCSlecture07.pdf

scikit-learn user guide, Release 0.19.1

(150, 4)

>>> clf = ExtraTreesClassifier ()

>>> clf = clf.fit (X, vy)

>>> clf.feature_importances_

array ([0.04..., 0.05..., 0.4..., 0.4...1])

>>> model = SelectFromModel (clf, prefit=True)
>>> X new = model.transform(X)

>>> X_new.shape

(150, 2)

Examples:

» Feature importances with forests of trees: example on synthetic data showing the recovery of the actually
meaningful features.

* Pixel importances with a parallel forest of trees: example on face recognition data.

Feature selection as part of a pipeline

Feature selection is usually used as a pre-processing step before doing the actual learning. The recommended way to
do this in scikit-learn is touse a sklearn.pipeline.Pipeline:

clf = Pipeline ([
("feature_selection', SelectFromModel (LinearSVC (penalty="11"))),
("classification', RandomForestClassifier())

1)

clf.fit (X, vy)

In this snippet we make use of a sklearn.svm.LinearSVC coupled with sklearn. feature _selection.
SelectFromModel to evaluate feature importances and select the most relevant features. Then, a skliearn.
ensemble.RandomForestClassifier is trained on the transformed output, i.e. using only relevant features.
You can perform similar operations with the other feature selection methods and also classifiers that provide a way to
evaluate feature importances of course. See the sklearn.pipeline.Pipeline examples for more details.

3.1.14 Semi-Supervised

Semi-supervised learning is a situation in which in your training data some of the samples are not labeled. The semi-
supervised estimators in sklearn.semi_supervised are able to make use of this additional unlabeled data to
better capture the shape of the underlying data distribution and generalize better to new samples. These algorithms
can perform well when we have a very small amount of labeled points and a large amount of unlabeled points.

Unlabeled entries in y

It is important to assign an identifier to unlabeled points along with the labeled data when training the model with
the £it method. The identifier that this implementation uses is the integer value —1.

Label Propagation

Label propagation denotes a few variations of semi-supervised graph inference algorithms.

266 Chapter 3. User Guide

https://en.wikipedia.org/wiki/Semi-supervised_learning

scikit-learn user guide, Release 0.19.1

A few features available in this model:

» Can be used for classification and regression tasks

» Kernel methods to project data into alternate dimensional spaces

scikit-learn provides two label propagation models: LabelPropagation and LabelSpreading. Both work by
constructing a similarity graph over all items in the input dataset.

Raw data (2 classes=outer and inner)

Labels learned with Label Spreading (KNN)

1.00 outer labeled 1.00 wet="= .. outer learned
= Inner labeled . o = Inner learned
0.75 1 unlabeled 0.75 1 . Llh .
0.50 - 0.50 - R
0.25 1 0254 5 f .
0.00 o00d: :
~0.25 | —0.251 * & S
—0.50 A —0.50 -
—0.75 - —0.75 ' e eaet” .
~1.00 —~1.00 1 BEE T TLh
: T T r T : T T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Fig. 3.1: An illustration of label-propagation: the structure of unlabeled observations is consistent with the class
structure, and thus the class label can be propagated to the unlabeled observations of the training set.

LabelPropagation and LabelSpreading differ in modifications to the similarity matrix that graph and the
clamping effect on the label distributions. Clamping allows the algorithm to change the weight of the true ground
labeled data to some degree. The LabelPropagation algorithm performs hard clamping of input labels, which
means a = 0. This clamping factor can be relaxed, to say o = 0.2, which means that we will always retain 80 percent
of our original label distribution, but the algorithm gets to change its confidence of the distribution within 20 percent.

LabelPropagation uses the raw similarity matrix constructed from the data with no modifications. In contrast,
LabelSpreading minimizes a loss function that has regularization properties, as such it is often more robust to
noise. The algorithm iterates on a modified version of the original graph and normalizes the edge weights by computing
the normalized graph Laplacian matrix. This procedure is also used in Spectral clustering.

Label propagation models have two built-in kernel methods. Choice of kernel effects both scalability and performance
of the algorithms. The following are available:

o 1bf (exp(—v|z — y|?),v > 0). 7 is specified by keyword gamma.
* knn (1[z' € kNN (z)]). k is specified by keyword n_neighbors.

The RBF kernel will produce a fully connected graph which is represented in memory by a dense matrix. This matrix
may be very large and combined with the cost of performing a full matrix multiplication calculation for each iteration
of the algorithm can lead to prohibitively long running times. On the other hand, the KNN kernel will produce a much
more memory-friendly sparse matrix which can drastically reduce running times.

Examples

* Decision boundary of label propagation versus SVM on the Iris dataset

* Label Propagation learning a complex structure

* Label Propagation digits active learning

3.1. Supervised learning 267

../auto_examples/semi_supervised/plot_label_propagation_structure.html

scikit-learn user guide, Release 0.19.1

References

[1] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised Learning (2006), pp. 193-216

[2] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient Non-Parametric Function Induction in Semi-
Supervised Learning. AISTAT 2005 http://research.microsoft.com/en-us/people/nicolasl/efficient_ssl.pdf

3.1.15 Isotonic regression

The class TsotonicRegression fits a non-decreasing function to data. It solves the following problem:
minimize Y, w;(y; — §;)*
SUbjeCt to ﬁmzn = gl < :192 < :gn = Z}maz

where each w; is strictly positive and each y; is an arbitrary real number. It yields the vector which is composed of
non-decreasing elements the closest in terms of mean squared error. In practice this list of elements forms a function
that is piecewise linear.

Isotonic regression

250 ~
' it

gl te 0 L™ |
ol ST
] I o
150 .-,..!'II

100 “
50 4
® Data
—&— Isotonic Fit
01 —— Linear Fit
T T T T T T
0 20 40 60 80 100

268 Chapter 3. User Guide

http://research.microsoft.com/en-us/people/nicolasl/efficient_ssl.pdf
../auto_examples/plot_isotonic_regression.html

scikit-learn user guide, Release 0.19.1

3.1.16 Probability calibration

When performing classification you often want not only to predict the class label, but also obtain a probability of the
respective label. This probability gives you some kind of confidence on the prediction. Some models can give you
poor estimates of the class probabilities and some even do not support probability prediction. The calibration module
allows you to better calibrate the probabilities of a given model, or to add support for probability prediction.

Well calibrated classifiers are probabilistic classifiers for which the output of the predict_proba method can be directly
interpreted as a confidence level. For instance, a well calibrated (binary) classifier should classify the samples such
that among the samples to which it gave a predict_proba value close to 0.8, approximately 80% actually belong to the
positive class. The following plot compares how well the probabilistic predictions of different classifiers are calibrated:

Calibration plots (reliability curve)

1.0 1
0.8
(%]
< 06
3
Q
(=9
e
o
c
h=]
=
(=l
T 0.4
(55
0.2 4
------ Perfectly calibrated
—— Logistic
—— Naive Bayes
—— Support Vector Classification
0.0 1 —8— Random Forest
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
40000 - [Logistic [Support Vector Classification
] Maive Bayes [Random Forest
35000 A
30000
+ 25000 +
(=
=1
§ 20000 A ﬁ_
15000 4 |
10000 A
5000 A —
0 L
T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Mean predicted value

LogisticRegression returns well calibrated predictions by default as it directly optimizes log-loss. In contrast,

3.1. Supervised learning

269

../auto_examples/calibration/plot_compare_calibration.html

scikit-learn user guide, Release 0.19.1

the other methods return biased probabilities; with different biases per method:

* GaussianNhB tends to push probabilties to 0 or 1 (note the counts in the histograms). This is mainly because
it makes the assumption that features are conditionally independent given the class, which is not the case in this
dataset which contains 2 redundant features.

* RandomForestClassifier shows the opposite behavior: the histograms show peaks at approximately
0.2 and 0.9 probability, while probabilities close to 0 or 1 are very rare. An explanation for this is given by
Niculescu-Mizil and Caruana*: “Methods such as bagging and random forests that average predictions from a
base set of models can have difficulty making predictions near 0 and 1 because variance in the underlying base
models will bias predictions that should be near zero or one away from these values. Because predictions are
restricted to the interval [0,1], errors caused by variance tend to be one-sided near zero and one. For example,
if a model should predict p = O for a case, the only way bagging can achieve this is if all bagged trees predict
zero. If we add noise to the trees that bagging is averaging over, this noise will cause some trees to predict
values larger than O for this case, thus moving the average prediction of the bagged ensemble away from 0. We
observe this effect most strongly with random forests because the base-level trees trained with random forests
have relatively high variance due to feature subsetting.” As a result, the calibration curve also referred to as the
reliability diagram (Wilks 1995°) shows a characteristic sigmoid shape, indicating that the classifier could trust
its “intuition” more and return probabilties closer to O or 1 typically.

* Linear Support Vector Classification (LinearSVC) shows an even more sigmoid curve as the RandomForest-
Classifier, which is typical for maximum-margin methods (compare Niculescu-Mizil and Caruana*), which
focus on hard samples that are close to the decision boundary (the support vectors).

Two approaches for performing calibration of probabilistic predictions are provided: a parametric approach based on
Platt’s sigmoid model and a non-parametric approach based on isotonic regression (sklearn. isotonic). Proba-
bility calibration should be done on new data not used for model fitting. The class CalibratedClassifierCV
uses a cross-validation generator and estimates for each split the model parameter on the train samples and the cali-
bration of the test samples. The probabilities predicted for the folds are then averaged. Already fitted classifiers can
be calibrated by CalibratedClassifierCV viathe parameter cv="prefit”. In this case, the user has to take care
manually that data for model fitting and calibration are disjoint.

The following images demonstrate the benefit of probability calibration. The first image present a dataset with 2
classes and 3 blobs of data. The blob in the middle contains random samples of each class. The probability for the
samples in this blob should be 0.5.

The following image shows on the data above the estimated probability using a Gaussian naive Bayes classifier without
calibration, with a sigmoid calibration and with a non-parametric isotonic calibration. One can observe that the non-
parametric model provides the most accurate probability estimates for samples in the middle, i.e., 0.5.

The following experiment is performed on an artificial dataset for binary classification with 100.000 samples (1.000
of them are used for model fitting) with 20 features. Of the 20 features, only 2 are informative and 10 are redundant.
The figure shows the estimated probabilities obtained with logistic regression, a linear support-vector classifier (SVC),
and linear SVC with both isotonic calibration and sigmoid calibration. The calibration performance is evaluated with
Brier score brier score_loss,reported in the legend (the smaller the better).

One can observe here that logistic regression is well calibrated as its curve is nearly diagonal. Linear SVC’s calibration
curve or reliability diagram has a sigmoid curve, which is typical for an under-confident classifier. In the case of
LinearSVC, this is caused by the margin property of the hinge loss, which lets the model focus on hard samples that
are close to the decision boundary (the support vectors). Both kinds of calibration can fix this issue and yield nearly
identical results. The next figure shows the calibration curve of Gaussian naive Bayes on the same data, with both
kinds of calibration and also without calibration.

One can see that Gaussian naive Bayes performs very badly but does so in an other way than linear SVC: While linear
SVC exhibited a sigmoid calibration curve, Gaussian naive Bayes’ calibration curve has a transposed-sigmoid shape.

4 Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005
5 On the combination of forecast probabilities for consecutive precipitation periods. Wea. Forecasting, 5, 640-650., Wilks, D. S., 1990a

270 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

Data

3.1.

Supervised learning

271

../auto_examples/calibration/plot_calibration.html

scikit-learn user guide, Release 0.19.1

Gaussian naive Bayes probabilities

1.0 1 —— Mo calibration (0.104)
= |sptonic calibration (0.084)
= Sigmoid calibration {0.109)
0.8 - = Empirical
0.6 1
-
Il
=
[y
0.4
0.2 -
0.0 -

T T T T
0 10000 20000 30000 40000
Instances sorted according to predicted probability (uncalibrated GNB)

272 Chapter 3. User Guide

../auto_examples/calibration/plot_calibration.html

scikit-learn user guide, Release 0.19.1

Calibration plots (reliability curve)

1.0
0.8 1
]
2 06
=
%]
=]
[=R
k]
c
il
o
T 0.4
[
0.2 1
------ Perfectly calibrated
—— Logistic (0.099)
—#— SVC (0.163)
—&— SVC + Isotonic (0.100)
0.0 1 —8— SVC + Sigmoid (0.099)
0.0 0.2 0.4 0.6 0.8 1.0
30000 [Logistic [SVC + Isotonic
[svC [sSVC + Sigmoid
25000 1
—_—
20000 +
I=
=1
S 15000 A
10000 -
—
0 = T T

T T
0.0 0.2 0.4 0.6 0.8 1.0
Mean predicted value

3.1. Supervised learning 273

../auto_examples/calibration/plot_calibration_curve.html

scikit-learn user guide, Release 0.19.1

Calibration plots (reliability curve)

1.0 1
0.8 1
]
2 06
=
1]
=]
[=R
k]
c
2
o
T 0.4
[T
0.2 1
------ Perfectly calibrated
—&— Logistic (0.099)
—#— Naive Bayes (0.118)
—#— Naive Bayes + Isotonic (0.098)
0.0 1 —— Naive Bayes + Sigmoid (0.109)
0.0 0.2 0.4 0.6 0.8 1.0
[Logistic [1 Naive Bayes + Isotonic
40000 4 [Naive Bayes [Naive Bayes + Sigmoid
30000
I=
3
et 20000
10000 A
1] —
0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Mean predicted value
274 Chapter 3. User Guide

../auto_examples/calibration/plot_calibration_curve.html

scikit-learn user guide, Release 0.19.1

This is typical for an over-confident classifier. In this case, the classifier’s overconfidence is caused by the redundant
features which violate the naive Bayes assumption of feature-independence.

Calibration of the probabilities of Gaussian naive Bayes with isotonic regression can fix this issue as can be seen from
the nearly diagonal calibration curve. Sigmoid calibration also improves the brier score slightly, albeit not as strongly
as the non-parametric isotonic calibration. This is an intrinsic limitation of sigmoid calibration, whose parametric form
assumes a sigmoid rather than a transposed-sigmoid curve. The non-parametric isotonic calibration model, however,
makes no such strong assumptions and can deal with either shape, provided that there is sufficient calibration data. In
general, sigmoid calibration is preferable in cases where the calibration curve is sigmoid and where there is limited
calibration data, while isotonic calibration is preferable for non-sigmoid calibration curves and in situations where
large amounts of data are available for calibration.

CalibratedClassifierCV can also deal with classification tasks that involve more than two classes if the base
estimator can do so. In this case, the classifier is calibrated first for each class separately in an one-vs-rest fashion.
When predicting probabilities for unseen data, the calibrated probabilities for each class are predicted separately. As
those probabilities do not necessarily sum to one, a postprocessing is performed to normalize them.

The next image illustrates how sigmoid calibration changes predicted probabilities for a 3-class classification problem.
Ilustrated is the standard 2-simplex, where the three corners correspond to the three classes. Arrows point from the
probability vectors predicted by an uncalibrated classifier to the probability vectors predicted by the same classifier
after sigmoid calibration on a hold-out validation set. Colors indicate the true class of an instance (red: class 1, green:
class 2, blue: class 3).

Change of predicted probabilities after sigmoid calibration

1.0 Class 1
Class 2
Class 3
0.8 - — Simplex
™
E 06 <1 N
| oz -\
=
%’ 0.4 - X
£ , x\
0.2 1 \ e 3
N :
0 1) {,0%-{ (1,0,0)
. i\ \\'\ R\

T T
0.4 0.6 0.8 1.0
Probability class 1

The base classifier is a random forest classifier with 25 base estimators (trees). If this classifier is trained on all 800
training datapoints, it is overly confident in its predictions and thus incurs a large log-loss. Calibrating an identical

3.1. Supervised learning 275

../auto_examples/calibration/plot_calibration_multiclass.html

scikit-learn user guide, Release 0.19.1

classifier, which was trained on 600 datapoints, with method="sigmoid’ on the remaining 200 datapoints reduces the
confidence of the predictions, i.e., moves the probability vectors from the edges of the simplex towards the center:

lllustration of sigmoid calibrator

1.0 -
0.8 -
™
E 0.6 -
>
=
L.é" 0.4 -
[«
0.2 / :
%’f“\ W r/f’f
0.0 0.2 0.4 0.6 0.8 1.0

Probability class 1

This calibration results in a lower log-loss. Note that an alternative would have been to increase the number of base
estimators which would have resulted in a similar decrease in log-loss.

References:

* Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, B. Zadrozny &
C. Elkan, ICML 2001

* Transforming Classifier Scores into Accurate Multiclass Probability Estimates, B. Zadrozny & C. Elkan,
(KDD 2002)

* Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, J.
Platt, (1999)

276 Chapter 3. User Guide

../auto_examples/calibration/plot_calibration_multiclass.html

scikit-learn user guide, Release 0.19.1

3.1.17 Neural network models (supervised)

Warning: This implementation is not intended for large-scale applications. In particular, scikit-learn offers no
GPU support. For much faster, GPU-based implementations, as well as frameworks offering much more flexibility
to build deep learning architectures, see Related Projects.

Multi-layer Perceptron

Multi-layer Perceptron (MLP) is a supervised learning algorithm that learns a function f(-) : R™ — R by training
on a dataset, where m is the number of dimensions for input and o is the number of dimensions for output. Given a set
of features X = z1, o, ..., 2y, and a target y, it can learn a non-linear function approximator for either classification
or regression. It is different from logistic regression, in that between the input and the output layer, there can be one
or more non-linear layers, called hidden layers. Figure 1 shows a one hidden layer MLP with scalar output.

Features

&)

Fig. 3.2: Figure 1 : One hidden layer MLP.

The leftmost layer, known as the input layer, consists of a set of neurons {x;|x1, %2, ..., ., } representing the input
features. Each neuron in the hidden layer transforms the values from the previous layer with a weighted linear sum-
mation wyx1 + waZs + ... + Wy, T, followed by a non-linear activation function g(-) : R — R - like the hyperbolic
tan function. The output layer receives the values from the last hidden layer and transforms them into output values.

The module contains the public attributes coefs_ and intercepts_. coefs_ is a list of weight matrices, where
weight matrix at index ¢ represents the weights between layer ¢ and layer ¢+ 1. intercepts_ is alist of bias vectors,
where the vector at index ¢ represents the bias values added to layer i + 1.

The advantages of Multi-layer Perceptron are:

 Capability to learn non-linear models.

 Capability to learn models in real-time (on-line learning) using partial_ fit.
The disadvantages of Multi-layer Perceptron (MLP) include:

e MLP with hidden layers have a non-convex loss function where there exists more than one local minimum.
Therefore different random weight initializations can lead to different validation accuracy.

* MLP requires tuning a number of hyperparameters such as the number of hidden neurons, layers, and iterations.

* MLP is sensitive to feature scaling.

3.1. Supervised learning 277

scikit-learn user guide, Release 0.19.1

Please see Tips on Practical Use section that addresses some of these disadvantages.

Classification

Class MLPClassifier implements a multi-layer perceptron (MLP) algorithm that trains using Backpropagation.

MLP trains on two arrays: array X of size (n_samples, n_features), which holds the training samples represented as
floating point feature vectors; and array y of size (n_samples,), which holds the target values (class labels) for the
training samples:

>>> from sklearn.neural_ network import MLPClassifier

>>> X = [[0., 0.1, [1., 1.]]
>>> vy = [0, 1]
>>> clf = MLPClassifier(solver='lbfgs', alpha=le-5,

hidden_layer_sizes=(5, 2), random_state=1)

>>> clf.fit (X, vy)

MLPClassifier (activation='relu', alpha=1le-05, batch_size='auto',
beta_1=0.9, beta_2=0.999, early_stopping=False,
epsilon=1e-08, hidden_layer_sizes=(5, 2), learning_rate='constant',
learning_rate_init=0.001, max_iter=200, momentum=0.9,
nesterovs_momentum=True, power_t=0.5, random_state=1, shuffle=True,
solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False,
warm_start=False)

After fitting (training), the model can predict labels for new samples:

>>> clf.predict([[2., 2.1, [-1., -2.11)
array ([1, 0])

MLP can fit a non-linear model to the training data. c1f.coefs_ contains the weight matrices that constitute the
model parameters:

>>> [coef.shape for coef in clf.coefs_]
[(2, 5), (5, 2), (2, 1)]

Currently, MLPClassifier supports only the Cross-Entropy loss function, which allows probability estimates by
running the predict_proba method.

MLP trains using Backpropagation. More precisely, it trains using some form of gradient descent and the gradients
are calculated using Backpropagation. For classification, it minimizes the Cross-Entropy loss function, giving a vector
of probability estimates P(y|z) per sample x:

>>> clf.predict_proba([[2., 2.1, [1., 2.11)
array ([[1.967...e-04, 9.998...-011,
[1.967...e-04, 9.998...-0111)

MLPClassifier supports multi-class classification by applying Softmax as the output function.

Further, the model supports multi-label classification in which a sample can belong to more than one class. For each
class, the raw output passes through the logistic function. Values larger or equal to 0.5 are rounded to /, otherwise to
0. For a predicted output of a sample, the indices where the value is / represents the assigned classes of that sample:

>>> X = [[0., 0.1, [1., 1.1]
>>>y = [[0, 1], [1, 1]]
>>> clf = MLPClassifier (solver='lbfgs', alpha=le-5,

hidden_layer_sizes=(15,), random_state=1)

278 Chapter 3. User Guide

http://ufldl.stanford.edu/wiki/index.php/Backpropagation_Algorithm
https://en.wikipedia.org/wiki/Softmax_activation_function

scikit-learn user guide, Release 0.19.1

>>> clf.fit (X, vy)

MLPClassifier (activation='relu', alpha=1le-05, batch_size='auto',
beta_1=0.9, beta_2=0.999, early_stopping=False,
epsilon=1e-08, hidden_layer_sizes=(15,), learning_rate='constant',
learning_rate_init=0.001, max_iter=200, momentum=0.9,
nesterovs_momentum=True, power_t=0.5, random_state=1, shuffle=True,
solver="'1lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False,
warm_start=False)

>>> clf.predict ([[1., 2.11)

array ([[1, 111)
>>> clf.predict ([[0., 0.11)
array ([[0, 111)

See the examples below and the doc string of MLPClassifier. fit for further information.

Examples:

* Compare Stochastic learning strategies for MLPClassifier

* Visualization of MLP weights on MNIST

Regression

Class MLPRegressor implements a multi-layer perceptron (MLP) that trains using backpropagation with no activa-
tion function in the output layer, which can also be seen as using the identity function as activation function. Therefore,
it uses the square error as the loss function, and the output is a set of continuous values.

MLPRegressor also supports multi-output regression, in which a sample can have more than one target.

Regularization

Both MLPRegressor and MLPClassifier use parameter alpha for regularization (L2 regularization) term
which helps in avoiding overfitting by penalizing weights with large magnitudes. Following plot displays varying
decision function with value of alpha.

See the examples below for further information.

Examples:

* Varying regularization in Multi-layer Perceptron

Algorithms

MLP trains using Stochastic Gradient Descent, Adam, or L-BFGS. Stochastic Gradient Descent (SGD) updates pa-
rameters using the gradient of the loss function with respect to a parameter that needs adaptation, i.e.

OR(w) n 8Loss)
ow ow

w < w—n(a

where 7 is the learning rate which controls the step-size in the parameter space search. Loss is the loss function used
for the network.

3.1. Supervised learning 279

https://en.wikipedia.org/wiki/Stochastic_gradient_descent
http://arxiv.org/abs/1412.6980
https://en.wikipedia.org/wiki/Limited-memory_BFGS

scikit-learn user guide, Release 0.19.1

alpha le-05 alpha 0.001 alpha 0.1

alpha 0.001 alpha 0.1

alpha 10.0 alpha 1000.0

alpha le-05

alpha le-05 alpha 0.001

Bl

alpha 0.1

BT e

alpha 10.0

More details can be found in the documentation of SGD

Adam is similar to SGD in a sense that it is a stochastic optimizer, but it can automatically adjust the amount to update
parameters based on adaptive estimates of lower-order moments.

With SGD or Adam, training supports online and mini-batch learning.

L-BFGS is a solver that approximates the Hessian matrix which represents the second-order partial derivative of a
function. Further it approximates the inverse of the Hessian matrix to perform parameter updates. The implementation
uses the Scipy version of L-BFGS.

If the selected solver is ‘L-BFGS’, training does not support online nor mini-batch learning.

Complexity

Suppose there are n training samples, m features, £ hidden layers, each containing h neurons - for simplicity, and o
output neurons. The time complexity of backpropagation is O(n - m - h* - 0 - i), where i is the number of iterations.
Since backpropagation has a high time complexity, it is advisable to start with smaller number of hidden neurons and
few hidden layers for training.

Mathematical formulation

Given a set of training examples (21, y1), (Z2,¥2), .- -, (Tn, Yn) Where z; € R™ and y; € {0, 1}, a one hidden layer
one hidden neuron MLP learns the function f(z) = ng(WlT x + by) + by where W, € R™ and Ws, by, bs € R are
model parameters. W7, W5 represent the weights of the input layer and hidden layer, resepctively; and by, by represent
the bias added to the hidden layer and the output layer, respectively. ¢g(-) : R — R is the activation function, set by
default as the hyperbolic tan. It is given as,

e —e ”

90 = Gre=

For binary classification, f(x) passes through the logistic function g(z) = 1/(1+e~*) to obtain output values between
zero and one. A threshold, set to 0.5, would assign samples of outputs larger or equal 0.5 to the positive class, and the
rest to the negative class.

280 Chapter 3. User Guide

../auto_examples/neural_networks/plot_mlp_alpha.html
http://scikit-learn.org/stable/modules/sgd.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html

scikit-learn user guide, Release 0.19.1

If there are more than two classes, f(z) itself would be a vector of size (n_classes,). Instead of passing through logistic
function, it passes through the softmax function, which is written as,

softmax(z); = exp(zi)

COYr exp(z)

where z; represents the ¢ th element of the input to softmax, which corresponds to class ¢, and K is the number of
classes. The result is a vector containing the probabilities that sample x belong to each class. The output is the class
with the highest probability.

In regression, the output remains as f(x); therefore, output activation function is just the identity function.
MLP uses different loss functions depending on the problem type. The loss function for classification is Cross-Entropy,
which in binary case is given as,

Loss(§,y, W) = —ylng — (1 —y) In (1 = §) + of[W[[3
where a||W||3 is an L2-regularization term (aka penalty) that penalizes complex models; and o > 0 is a non-negative
hyperparameter that controls the magnitude of the penalty.

For regression, MLP uses the Square Error loss function; written as,
N 1. 2, @ 2
Loss(g,y, W) = 5ll§ = yll2 + S IWI2

Starting from initial random weights, multi-layer perceptron (MLP) minimizes the loss function by repeatedly updating
these weights. After computing the loss, a backward pass propagates it from the output layer to the previous layers,
providing each weight parameter with an update value meant to decrease the loss.

In gradient descent, the gradient V Lossyy of the loss with respect to the weights is computed and deducted from W.
More formally, this is expressed as,

witl — Wi — EVLOSSQV

where i is the iteration step, and ¢ is the learning rate with a value larger than 0.

The algorithm stops when it reaches a preset maximum number of iterations; or when the improvement in loss is below
a certain, small number.

Tips on Practical Use

* Multi-layer Perceptron is sensitive to feature scaling, so it is highly recommended to scale your data. For
example, scale each attribute on the input vector X to [0, 1] or [-1, +1], or standardize it to have mean 0 and
variance 1. Note that you must apply the same scaling to the test set for meaningful results. You can use
StandardScaler for standardization.

>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler ()

>>> # Don't cheat - fit only on training data

>>> gcaler.fit (X_train)

>>> X_train = scaler.transform(X_train)

>>> # apply same transformation to test data

>>> X _test = scaler.transform(X_test)

An alternative and recommended approach is to use StandardScalerinaPipeline

* Finding a reasonable regularization parameter « is best done using GridSearchCvV, usually in the range 10. 0
*% —np.arange(l, 7).

3.1. Supervised learning 281

scikit-learn user guide, Release 0.19.1

* Empirically, we observed that L-BFGS converges faster and with better solutions on small datasets. For relatively
large datasets, however, Adam is very robust. It usually converges quickly and gives pretty good performance.
SGD with momentum or nesterov’s momentum, on the other hand, can perform better than those two algorithms
if learning rate is correctly tuned.

More control with warm_start

If you want more control over stopping criteria or learning rate in SGD, or want to do additional monitoring, using
warm_start=True and max_iter=1 and iterating yourself can be helpful:

>>> X = [[0., O0.], [1., 1.]]
>>> vy = [0, 1]
>>> clf = MLPClassifier (hidden_layer_sizes=(15,), random_state=1, max_iter=1, warm_

—start=True)
>>> for i1 in range (10):
clf.fit (X, vy)
c. # additional monitoring / inspection
MLPClassifier (...

References:
» “Learning representations by back-propagating errors.” Rumelhart, David E., Geoffrey E. Hinton, and Ronald
J. Williams.
e “Stochastic Gradient Descent” L. Bottou - Website, 2010.
» “Backpropagation” Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, Caroline Suen - Website, 2011.
» “Efficient BackProp” Y. LeCun, L. Bottou, G. Orr, K. Miiller - In Neural Networks: Tricks of the Trade 1998.

* “Adam: A method for stochastic optimization.” Kingma, Diederik, and Jimmy Ba. arXiv preprint
arXiv:1412.6980 (2014).

3.2 Unsupervised learning

3.2.1 Gaussian mixture models

sklearn.mixture is a package which enables one to learn Gaussian Mixture Models (diagonal, spherical, tied
and full covariance matrices supported), sample them, and estimate them from data. Facilities to help determine the
appropriate number of components are also provided.

A Gaussian mixture model is a probabilistic model that assumes all the data points are generated from a mixture of a
finite number of Gaussian distributions with unknown parameters. One can think of mixture models as generalizing
k-means clustering to incorporate information about the covariance structure of the data as well as the centers of the
latent Gaussians.

Scikit-learn implements different classes to estimate Gaussian mixture models, that correspond to different estimation
strategies, detailed below.

282 Chapter 3. User Guide

http://www.iro.umontreal.ca/~pift6266/A06/refs/backprop_old.pdf
http://leon.bottou.org/projects/sgd
http://ufldl.stanford.edu/wiki/index.php/Backpropagation_Algorithm
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://arxiv.org/pdf/1412.6980v8.pdf

scikit-learn user guide, Release 0.19.1

Negative log-likelihood predicted by a GMM

301

204

104

104

—20 T T T T
—20 -10 0 10 20 30

Fig. 3.3: Two-component Gaussian mixture model: data points, and equi-probability surfaces of the model.

Gaussian Mixture

The GaussianMixture object implements the expectation-maximization (EM) algorithm for fitting mixture-of-
Gaussian models. It can also draw confidence ellipsoids for multivariate models, and compute the Bayesian Infor-
mation Criterion to assess the number of clusters in the data. A GaussianMixture. fit method is provided that
learns a Gaussian Mixture Model from train data. Given test data, it can assign to each sample the Gaussian it mostly
probably belong to using the GaussianMixture.predict method.

The GaussianMixture comes with different options to constrain the covariance of the difference classes estimated:
spherical, diagonal, tied or full covariance.

Examples:

» See GMM covariances for an example of using the Gaussian mixture as clustering on the iris dataset.

* See Density Estimation for a Gaussian mixture for an example on plotting the density estimation.

Pros and cons of class GaussianMixture
Pros

Speed It is the fastest algorithm for learning mixture models

Agnostic As this algorithm maximizes only the likelihood, it will not bias the means towards zero, or
bias the cluster sizes to have specific structures that might or might not apply.

Cons

Singularities When one has insufficiently many points per mixture, estimating the covariance matrices
becomes difficult, and the algorithm is known to diverge and find solutions with infinite likelihood
unless one regularizes the covariances artificially.

3.2. Unsupervised learning 283

../auto_examples/mixture/plot_gmm_pdf.html

scikit-learn user guide, Release 0.19.1

spherical diag
Train accuracy:: 88.3 Train accuracy;: 93.7
Test accdracy: 92.3 Test racy: 89.7

x

tied full

Train accuraq}: 95.5 Train accuracﬁ: 94.6

Test accuracy: 100.0

setosa
versicolor
virginica

Number of components This algorithm will always use all the components it has access to, needing
held-out data or information theoretical criteria to decide how many components to use in the ab-
sence of external cues.

Selecting the number of components in a classical Gaussian Mixture Model

The BIC criterion can be used to select the number of components in a Gaussian Mixture in an efficient way. In theory,
it recovers the true number of components only in the asymptotic regime (i.e. if much data is available and assuming
that the data was actually generated i.i.d. from a mixture of Gaussian distribution). Note that using a Variational
Bayesian Gaussian mixture avoids the specification of the number of components for a Gaussian mixture model.

Examples:

e See Gaussian Mixture Model Selection for an example of model selection performed with classical Gaussian
mixture.

Estimation algorithm Expectation-maximization

The main difficulty in learning Gaussian mixture models from unlabeled data is that it is one usually doesn’t know
which points came from which latent component (if one has access to this information it gets very easy to fit a separate
Gaussian distribution to each set of points). Expectation-maximization is a well-founded statistical algorithm to get
around this problem by an iterative process. First one assumes random components (randomly centered on data points,

284 Chapter 3. User Guide

../auto_examples/mixture/plot_gmm_covariances.html
https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm

scikit-learn user guide, Release 0.19.1

BIC score per model

9000 I spherical
tied

diag
7000 - full

6000
5000 - * I I I
T T T T T T
3 5 6

1 2 4
Selected Gw:bﬁzl?fr%uorg%?ﬁngomponents

8000 -

L

. B

learned from k-means, or even just normally distributed around the origin) and computes for each point a probability
of being generated by each component of the model. Then, one tweaks the parameters to maximize the likelihood of
the data given those assignments. Repeating this process is guaranteed to always converge to a local optimum.

Variational Bayesian Gaussian Mixture

The BayesianGaussianMixture object implements a variant of the Gaussian mixture model with variational
inference algorithms. The API is similar as the one defined by GaussianMixture.

Estimation algorithm: variational inference

Variational inference is an extension of expectation-maximization that maximizes a lower bound on model evidence
(including priors) instead of data likelihood. The principle behind variational methods is the same as expectation-
maximization (that is both are iterative algorithms that alternate between finding the probabilities for each point to
be generated by each mixture and fitting the mixture to these assigned points), but variational methods add regular-
ization by integrating information from prior distributions. This avoids the singularities often found in expectation-
maximization solutions but introduces some subtle biases to the model. Inference is often notably slower, but not
usually as much so as to render usage unpractical.

Due to its Bayesian nature, the variational algorithm needs more hyper- parameters than expectation-maximization,
the most important of these being the concentration parameter weight_concentration_prior. Specifying a
low value for the concentration prior will make the model put most of the weight on few components set the remain-
ing components weights very close to zero. High values of the concentration prior will allow a larger number of
components to be active in the mixture.

The parameters implementation of the BayesianGaussianMixture class proposes two types of prior for the
weights distribution: a finite mixture model with Dirichlet distribution and an infinite mixture model with the Dirichlet
Process. In practice Dirichlet Process inference algorithm is approximated and uses a truncated distribution with a fixed
maximum number of components (called the Stick-breaking representation). The number of components actually used
almost always depends on the data.

The next figure compares the results obtained for the different type of the weight concentration prior (parameter
welght_concentration_prior_type) for different values of weight_concentration_prior. Here,
we can see the value of the weight_concentration_prior parameter has a strong impact on the effective
number of active components obtained. We can also notice that large values for the concentration weight prior lead
to more uniform weights when the type of prior is ‘dirichlet_distribution’ while this is not necessarily the case for the
‘dirichlet_process’ type (used by default).

3.2. Unsupervised learning 285

../auto_examples/mixture/plot_gmm_selection.html

scikit-learn user guide, Release 0.19.1

Estimated Mixtures

Weight of each component

Estimated Mixtures

Weight of each component

Finite mixture with a Dirichlet distribution
prior and yg = 1.0e — 03

Finite mixture with a Dirichlet distribution
prior and yp = 1.0e + 00

Finite mixture with a Dirichlet distribution
prior and yp = 1.0e + 03

Infinite mixture with a Dirichlet process
prior andyp = 1.0e + 00

34.9%
24.6%

0.1% 0.1% 0.1%

Infinite mixture with a Dirichlet process
prior andyp = 1.0e + 03

16.7% 16.7% 16.7% 16.7% 16.7% 16.7%

Infinite mixture with a Dirichlet process
prior andyp = 1.0e + 05

99.8%

84.4%
40.1% 24-9%
24.6%
15.1%
0.1% 0.1% 0.1% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%
0 1 2 3 4 5 1 2 3 4 5 0 1 2 3 4 5

The examples below compare Gaussian mixture models with a fixed number of components, to the variational Gaus-
sian mixture models with a Dirichlet process prior. Here, a classical Gaussian mixture is fitted with 5 components on
a dataset composed of 2 clusters. We can see that the variational Gaussian mixture with a Dirichlet process prior is
able to limit itself to only 2 components whereas the Gaussian mixture fits the data with a fixed number of components
that has to be set a priori by the user. In this case the user has selected n_component s=5 which does not match the
true generative distribution of this toy dataset. Note that with very little observations, the variational Gaussian mixture
models with a Dirichlet process prior can take a conservative stand, and fit only one component.

286

Chapter 3. User Guide

../auto_examples/mixture/plot_concentration_prior.html
../auto_examples/mixture/plot_concentration_prior.html

scikit-learn user guide, Release 0.19.1

Gaussian Mixture

e e

Bayesian Gaussian Mixture with a Dirichlet process prior

On the following figure we are fitting a dataset not well-depicted by a Gaussian mixture. Adjusting the
weight_concentration_prior, parameter of the class:BayesianGaussianMixture controls the number of com-
ponents used to fit this data. We also present on the last two plots a random sampling generated from the two resulting
mixtures.

Examples:
* See Gaussian Mixture Model Ellipsoids for an example on plotting the confidence ellipsoids for both
GaussianMixture and BayesianGaussianMixture.

* Gaussian Mixture Model Sine Curve shows using GaussianMixture and
BayesianGaussianMixture to fit a sine wave.

* See Concentration Prior Type Analysis of Variation Bayesian Gaussian Mixture for an ex-
ample plotting the confidence ellipsoids for the BayesianGaussianMixture with dif-
ferent weight_concentration_prior_type for different values of the parameter
weight_concentration_prior.

Pros and cons of variational inference with BayesianGaussianMixture
Pros

Automatic selection when weight_concentration_prior is small enough and
n_components is larger than what is found necessary by the model, the Variational Bayesian
mixture model has a natural tendency to set some mixture weights values close to zero. This makes
it possible to let the model choose a suitable number of effective components automatically. Only an
upper bound of this number needs to be provided. Note however that the “ideal” number of active
components is very application specific and is typically ill-defined in a data exploration setting.

Less sensitivity to the number of parameters unlike finite models, which will almost always use
all components as much as they can, and hence will produce wildly different solutions for

3.2. Unsupervised learning 287

../auto_examples/mixture/plot_gmm.html

scikit-learn user guide, Release 0.19.1

Expectation-maximization
Gaussian mixture with a Dirichlet process prior for yp=0.01 sampled with 2000 samples.
A ?‘
et iwd Lt . w»x‘I;i, ¥
ke gt ‘ﬁ' St e b T
Teenh ‘“"‘,a Sl ‘:3‘“ .o Lot “"“::\;\ o :),
. .t ‘,""'\‘:\“;& ey ’ﬁwg s . Ta Q?&"g"vz’::f
T WRIEANSRRS 0 L i e
EECR Y Pl i ‘o"\:&:."f el . s u‘:‘}“. 3, ‘.‘fx"“»' N
BT EILARY Sl i v il “w':m,&;{ S e .
. T TR T s T
R e L S S
., :“\;,"x"»‘ %t .
Gaussian mixture with a Dirichlet process prior for yp = 100 sampled with 2000 samples
. e . ““,»‘ TR
W «.. . AR LA T A
”.'4’9 - 35' L “\e‘“c‘-’(
n ""’n? a‘ :‘.“\ . RS .!::}'?
"‘ . .w":'é ’;:' 3 Lo X e
‘ e . fey SN
L ‘&U‘\:‘”) N
. muz. W“ .
TERE R

288

Chapter 3. User Guide

../auto_examples/mixture/plot_gmm_sin.html

scikit-learn user guide, Release 0.19.1

different numbers of components, the variantional inference with a Dirichlet process prior
(weight_concentration_prior_type='dirichlet_process') won’t change much
with changes to the parameters, leading to more stability and less tuning.

Regularization due to the incorporation of prior information, variational solutions have less pathological
special cases than expectation-maximization solutions.

Cons

Speed the extra parametrization necessary for variational inference make inference slower, although not
by much.

Hyperparameters this algorithm needs an extra hyperparameter that might need experimental tuning via
cross-validation.

Bias there are many implicit biases in the inference algorithms (and also in the Dirichlet process if used),
and whenever there is a mismatch between these biases and the data it might be possible to fit better
models using a finite mixture.

The Dirichlet Process

Here we describe variational inference algorithms on Dirichlet process mixture. The Dirichlet process is a prior
probability distribution on clusterings with an infinite, unbounded, number of partitions. Variational techniques let us
incorporate this prior structure on Gaussian mixture models at almost no penalty in inference time, comparing with a
finite Gaussian mixture model.

An important question is how can the Dirichlet process use an infinite, unbounded number of clusters and still be
consistent. While a full explanation doesn’t fit this manual, one can think of its stick breaking process analogy to help
understanding it. The stick breaking process is a generative story for the Dirichlet process. We start with a unit-length
stick and in each step we break off a portion of the remaining stick. Each time, we associate the length of the piece of
the stick to the proportion of points that falls into a group of the mixture. At the end, to represent the infinite mixture,
we associate the last remaining piece of the stick to the proportion of points that don’t fall into all the other groups. The
length of each piece is random variable with probability proportional to the concentration parameter. Smaller value of
the concentration will divide the unit-length into larger pieces of the stick (defining more concentrated distribution).
Larger concentration values will create smaller pieces of the stick (increasing the number of components with non
zero weights).

Variational inference techniques for the Dirichlet process still work with a finite approximation to this infinite mixture
model, but instead of having to specify a priori how many components one wants to use, one just specifies the concen-
tration parameter and an upper bound on the number of mixture components (this upper bound, assuming it is higher
than the “true” number of components, affects only algorithmic complexity, not the actual number of components
used).

3.2.2 Manifold learning

Look for the bare necessities

The simple bare necessities

Forget about your worries and your strife
I mean the bare necessities

Old Mother Nature’s recipes

That bring the bare necessities of life

— Baloo’s song [The Jungle Book]

3.2. Unsupervised learning 289

https://en.wikipedia.org/wiki/Dirichlet_process#The_stick-breaking_process

scikit-learn user guide, Release 0.19.1

Manifold Learning with 1000 points, 10 neighbors

LLE (0.23 sec) LTSA (0.37 sec) Hessian LLE (0.52 sec) Modified LLE (0.43 sec)

‘e | | |
'b.-; j i j

Isomap (0.46 sec) MDS (2.1 sec) SpectralEmbedding (0.22 sec) t-SNE (17 sec)

;3 Mgg

Manifold learning is an approach to non-linear dimensionality reduction. Algorithms for this task are based on the
idea that the dimensionality of many data sets is only artificially high.

P,
o SRS

[
%

Introduction

High-dimensional datasets can be very difficult to visualize. While data in two or three dimensions can be plotted to
show the inherent structure of the data, equivalent high-dimensional plots are much less intuitive. To aid visualization
of the structure of a dataset, the dimension must be reduced in some way.

The simplest way to accomplish this dimensionality reduction is by taking a random projection of the data. Though
this allows some degree of visualization of the data structure, the randomness of the choice leaves much to be desired.
In a random projection, it is likely that the more interesting structure within the data will be lost.

A selection from the 64-dimensional digits dataset Rajwdom Projection ofrthfa digits
EEEEEVENEEEEREER T

s e U e T e o P T I L P
B A e e L b b1
3 8 3 0 B L 5 5 o e P e 0 O O
e e L o L L)) o B 0) T ke
B 2 e) O o A T O el e o
A LT s Ll B 0 sl R o U T e ot N ol L
LN O e o e O e o Y e ol) O o e

2 o Pl B) O R Y L O e O P el o T
o D LD N P ke R O T) o) el e T
P2 P o O O P e e) P e O
B S S 71 B £ O O O Pl Y LS A O T
= 3 R ks g ol o OF A T e VT O e
ST G) P e S e e e P
LT e e O P L e e D P P i T
O O e e e o L S D P O e e P
i o) Y o e B o T e e
b o o T ey G I P T o Nl il P D S A
L) O 3 o L o e 3) I O L L
o o 3 T) e P R S S e) e et
e L o g o= Y L Y o ol e o Ly e el

To address this concern, a number of supervised and unsupervised linear dimensionality reduction frameworks have
been designed, such as Principal Component Analysis (PCA), Independent Component Analysis, Linear Discriminant
Analysis, and others. These algorithms define specific rubrics to choose an “interesting” linear projection of the data.
These methods can be powerful, but often miss important non-linear structure in the data.

290 Chapter 3. User Guide

../auto_examples/manifold/plot_compare_methods.html
../auto_examples/manifold/plot_lle_digits.html
../auto_examples/manifold/plot_lle_digits.html

scikit-learn user guide, Release 0.19.1

Principal Components prujﬁct\on of the digits (time 0.01s) Linear Discriminant projection of tpﬁdig\ts (time 0.01s)
LTS il

' .:’ 4 :.ﬂ a3
& 4 il

Manifold Learning can be thought of as an attempt to generalize linear frameworks like PCA to be sensitive to non-
linear structure in data. Though supervised variants exist, the typical manifold learning problem is unsupervised: it
learns the high-dimensional structure of the data from the data itself, without the use of predetermined classifications.

Examples:
» See Manifold learning on handwritten digits: Locally Linear Embedding, Isomap... for an example of
dimensionality reduction on handwritten digits.

» See Comparison of Manifold Learning methods for an example of dimensionality reduction on a toy “S-
curve” dataset.

The manifold learning implementations available in scikit-learn are summarized below

Isomap

One of the earliest approaches to manifold learning is the Isomap algorithm, short for Isometric Mapping. Isomap can
be viewed as an extension of Multi-dimensional Scaling (MDS) or Kernel PCA. Isomap seeks a lower-dimensional
embedding which maintains geodesic distances between all points. Isomap can be performed with the object Tsomap.

Isomap projection of thegiigits (time 1.08s)
- 3

B

3.2. Unsupervised learning 291

../auto_examples/manifold/plot_lle_digits.html
../auto_examples/manifold/plot_lle_digits.html
../auto_examples/manifold/plot_lle_digits.html

scikit-learn user guide, Release 0.19.1

Complexity

The Isomap algorithm comprises three stages:

1. Nearest neighbor search. Isomap uses sklearn.neighbors.BallTree for efficient neighbor search.
The cost is approximately O[D log(k)N log(V)], for k nearest neighbors of N points in D dimensions.

2. Shortest-path graph search. The most efficient known algorithms for this are Dijkstra’s Algorithm, which is
approximately O[N?2(k + log(N))], or the Floyd-Warshall algorithm, which is O[N3]. The algorithm can be
selected by the user with the path_method keyword of Isomap. If unspecified, the code attempts to choose
the best algorithm for the input data.

3. Partial eigenvalue decomposition. The embedding is encoded in the eigenvectors corresponding to the d
largest eigenvalues of the N x N isomap kernel. For a dense solver, the cost is approximately O[dN?2]. This
cost can often be improved using the ARPACK solver. The eigensolver can be specified by the user with the
path_method keyword of Isomap. If unspecified, the code attempts to choose the best algorithm for the
input data.

The overall complexity of Isomap is O[D log(k) N log(N)] + O[N?(k + log(N))] + O[dN?].
e N : number of training data points
e D : input dimension
* k : number of nearest neighbors

* d : output dimension

References:

e “A global geometric framework for nonlinear dimensionality reduction” Tenenbaum, J.B.; De Silva, V.; &
Langford, J.C. Science 290 (5500)

Locally Linear Embedding

Locally linear embedding (LLE) seeks a lower-dimensional projection of the data which preserves distances within
local neighborhoods. It can be thought of as a series of local Principal Component Analyses which are globally
compared to find the best non-linear embedding.

Locally linear embedding can be performed with function 1ocally Ilinear._embedding or its object-oriented
counterpart LocallyLinearEmbedding.

Complexity

The standard LLE algorithm comprises three stages:
1. Nearest Neighbors Search. See discussion under Isomap above.

2. Weight Matrix Construction. O[DNk?]. The construction of the LLE weight matrix involves the solution of
a k x k linear equation for each of the NV local neighborhoods

3. Partial Eigenvalue Decomposition. See discussion under Isomap above.
The overall complexity of standard LLE is O[D log(k)N log(N)] + O[DNk3] + O[dN?].
* N : number of training data points

e D : input dimension

292 Chapter 3. User Guide

http://science.sciencemag.org/content/290/5500/2319.full

scikit-learn user guide, Release 0.19.1

Locally Linear Embedding of the dli%i{S (time 0.71s)
L=

aly £l

* k : number of nearest neighbors

* d : output dimension

References:

e “Nonlinear dimensionality reduction by locally linear embedding” Roweis, S. & Saul, L. Science 290:2323
(2000)

Modified Locally Linear Embedding

One well-known issue with LLE is the regularization problem. When the number of neighbors is greater than the
number of input dimensions, the matrix defining each local neighborhood is rank-deficient. To address this, standard
LLE applies an arbitrary regularization parameter r, which is chosen relative to the trace of the local weight matrix.
Though it can be shown formally that as » — 0, the solution converges to the desired embedding, there is no guarantee
that the optimal solution will be found for » > 0. This problem manifests itself in embeddings which distort the
underlying geometry of the manifold.

One method to address the regularization problem is to use multiple weight vectors in each neighborhood.
This is the essence of modified locally linear embedding (MLLE). MLLE can be performed with function
locally linear._embedding or its object-oriented counterpart LocallyLinearEmbedding, with the key-
word method = 'modified'. Itrequires n_neighbors > n_components.

Complexity

The MLLE algorithm comprises three stages:
1. Nearest Neighbors Search. Same as standard LLE

2. Weight Matrix Construction. Approximately O[DNk3|+O[N (k— D)k?]. The first term is exactly equivalent
to that of standard LLE. The second term has to do with constructing the weight matrix from multiple weights.
In practice, the added cost of constructing the MLLE weight matrix is relatively small compared to the cost of
steps 1 and 3.

3. Partial Eigenvalue Decomposition. Same as standard LLE

The overall complexity of MLLE is O[D log(k)N log(N)] + O[DNEk?3] + O[N(k — D)k?] + O[dN?].

3.2. Unsupervised learning 293

../auto_examples/manifold/plot_lle_digits.html
http://www.sciencemag.org/content/290/5500/2323.full

scikit-learn user guide, Release 0.19.1

e N : number of training data points
e D : input dimension

* k : number of nearest neighbors

* d: output dimension

References:

* “MLLE: Modified Locally Linear Embedding Using Multiple Weights” Zhang, Z. & Wang, J.

Hessian Eigenmapping

Hessian Eigenmapping (also known as Hessian-based LLE: HLLE) is another method of solving the regularization
problem of LLE. It revolves around a hessian-based quadratic form at each neighborhood which is used to recover
the locally linear structure. Though other implementations note its poor scaling with data size, sklearn imple-
ments some algorithmic improvements which make its cost comparable to that of other LLE variants for small output
dimension. HLLE can be performed with function 1ocally linear embedding or its object-oriented counter-
part LocallyLinearEmbedding, with the keyword method = 'hessian'. It requires n_neighbors >
n_components * (n_components + 3) / 2.

Hessian Locally Linear Embedding of the digits (t\mg_l.ZBs)

294 Chapter 3. User Guide

../auto_examples/manifold/plot_lle_digits.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
../auto_examples/manifold/plot_lle_digits.html

scikit-learn user guide, Release 0.19.1

Complexity

The HLLE algorithm comprises three stages:
1. Nearest Neighbors Search. Same as standard LLE

2. Weight Matrix Construction. Approximately O[DNE?3] + O[Nd®]. The first term reflects a similar cost to
that of standard LLE. The second term comes from a QR decomposition of the local hessian estimator.

3. Partial Eigenvalue Decomposition. Same as standard LLE
The overall complexity of standard HLLE is O[D log(k)N log(N)] + O[DNk?] + O[Nd°] + O[dN?].
e N : number of training data points
e D : input dimension
* k : number of nearest neighbors

* d : output dimension

References:

» “Hessian Eigenmaps: Locally linear embedding techniques for high-dimensional data” Donoho, D. &
Grimes, C. Proc Natl Acad Sci USA. 100:5591 (2003)

Spectral Embedding

Spectral Embedding is an approach to calculating a non-linear embedding. Scikit-learn implements Laplacian Eigen-
maps, which finds a low dimensional representation of the data using a spectral decomposition of the graph Laplacian.
The graph generated can be considered as a discrete approximation of the low dimensional manifold in the high dimen-
sional space. Minimization of a cost function based on the graph ensures that points close to each other on the manifold
are mapped close to each other in the low dimensional space, preserving local distances. Spectral embedding can be
performed with the function spectral_embedding or its object-oriented counterpart Spect ralEmbedding.

Complexity

The Spectral Embedding (Laplacian Eigenmaps) algorithm comprises three stages:

1. Weighted Graph Construction. Transform the raw input data into graph representation using affinity (adja-
cency) matrix representation.

2. Graph Laplacian Construction. unnormalized Graph Laplacian is constructed as L = D — A for and normal-
izedoneas L = D~ 2(D — A)D "z,

3. Partial Eigenvalue Decomposition. Eigenvalue decomposition is done on graph Laplacian
The overall complexity of spectral embedding is O[D log(k)N log(N)] + O[DNE?] + O[dN?].
e N : number of training data points
* D : input dimension
¢ k : number of nearest neighbors

* d : output dimension

3.2. Unsupervised learning 295

http://www.pnas.org/content/100/10/5591

scikit-learn user guide, Release 0.19.1

References:

* “Laplacian Eigenmaps for Dimensionality Reduction and Data Representation” M. Belkin, P. Niyogi, Neural
Computation, June 2003; 15 (6):1373-1396

Local Tangent Space Alignment

Though not technically a variant of LLE, Local tangent space alignment (LTSA) is algorithmically similar enough
to LLE that it can be put in this category. Rather than focusing on preserving neighborhood distances as in LLE,
LTSA seeks to characterize the local geometry at each neighborhood via its tangent space, and performs a global
optimization to align these local tangent spaces to learn the embedding. LTSA can be performed with function
locally_ linear._embedding or its object-oriented counterpart LocallyLinearEmbedding, with the key-
word method = 'ltsa'.

Local Tangent Space Alignment of the digits (time 0.90s)

Complexity

The LTSA algorithm comprises three stages:
1. Nearest Neighbors Search. Same as standard LLE

2. Weight Matrix Construction. Approximately O[DNk?3] 4+ O[k?d]. The first term reflects a similar cost to that
of standard LLE.

3. Partial Eigenvalue Decomposition. Same as standard LLE
The overall complexity of standard LTSA is O[D log(k)N log(N)] + O[DNk3] + O[k*d] + O[dN?].
e N : number of training data points
* D : input dimension
* k : number of nearest neighbors

* d : output dimension

296 Chapter 3. User Guide

http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf
../auto_examples/manifold/plot_lle_digits.html

scikit-learn user guide, Release 0.19.1

References:

* “Principal manifolds and nonlinear dimensionality reduction via tangent space alignment” Zhang, Z. & Zha,
H. Journal of Shanghai Univ. 8:406 (2004)

Multi-dimensional Scaling (MDS)

Multidimensional scaling (MD.S) seeks a low-dimensional representation of the data in which the distances respect well
the distances in the original high-dimensional space.

In general, is a technique used for analyzing similarity or dissimilarity data. MDS attempts to model similarity or
dissimilarity data as distances in a geometric spaces. The data can be ratings of similarity between objects, interaction
frequencies of molecules, or trade indices between countries.

There exists two types of MDS algorithm: metric and non metric. In the scikit-learn, the class DS implements
both. In Metric MDS, the input similarity matrix arises from a metric (and thus respects the triangular inequality), the
distances between output two points are then set to be as close as possible to the similarity or dissimilarity data. In
the non-metric version, the algorithms will try to preserve the order of the distances, and hence seek for a monotonic
relationship between the distances in the embedded space and the similarities/dissimilarities.

MDS embeddinpﬁf the digits (time 2.58s)

Bl" Tl

Let .S be the similarity matrix, and X the coordinates of the n input points. Disparities d; 4 are transformation of the

similarities chosen in some optimal ways. The objective, called the stress, is then defined by sum;<;d;; (X) — d;; (X)
Metric MDS

The simplest metric MDS model, called absolute MDS, disparities are defined by di ; = Si;. With absolute MDS, the
value S;; should then correspond exactly to the distance between point 4 and j in the embedding point.

Most commonly, disparities are set to cfij = bSy;.

Nonmetric MDS

Non metric MDS focuses on the ordination of the data. If S;; < Sy, then the embedding should enforce d;; < dy.

A simple algorithm to enforce that is to use a monotonic regression of d;; on .5;;, yielding disparities d;; in the same
order as S;;.

3.2. Unsupervised learning 297

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.3693
https://en.wikipedia.org/wiki/Multidimensional_scaling
../auto_examples/manifold/plot_lle_digits.html

scikit-learn user guide, Release 0.19.1

A trivial solution to this problem is to set all the points on the origin. In order to avoid that, the disparities a?z-j are
normalized.

@® True Position
"\‘ MDS
» NMDS
]
[]
] P
- " af J
/ 1
)y e
«
~ | ¢
=
[¢
[
[§

References:

* “Modern Multidimensional Scaling - Theory and Applications” Borg, I.; Groenen P. Springer Series in Statis-
tics (1997)

» “Nonmetric multidimensional scaling: a numerical method” Kruskal, J. Psychometrika, 29 (1964)

* “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis” Kruskal, J. Psychome-
trika, 29, (1964)

t-distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE (TSNE) converts affinities of data points to probabilities. The affinities in the original space are represented by
Gaussian joint probabilities and the affinities in the embedded space are represented by Student’s t-distributions. This
allows t-SNE to be particularly sensitive to local structure and has a few other advantages over existing techniques:

* Revealing the structure at many scales on a single map
* Revealing data that lie in multiple, different, manifolds or clusters
* Reducing the tendency to crowd points together at the center

While Isomap, LLE and variants are best suited to unfold a single continuous low dimensional manifold, t-SNE will
focus on the local structure of the data and will tend to extract clustered local groups of samples as highlighted on the
S-curve example. This ability to group samples based on the local structure might be beneficial to visually disentangle
a dataset that comprises several manifolds at once as is the case in the digits dataset.

The Kullback-Leibler (KL) divergence of the joint probabilities in the original space and the embedded space will
be minimized by gradient descent. Note that the KL divergence is not convex, i.e. multiple restarts with different
initializations will end up in local minima of the KL divergence. Hence, it is sometimes useful to try different seeds
and select the embedding with the lowest KL divergence.

The disadvantages to using t-SNE are roughly:

298 Chapter 3. User Guide

../auto_examples/manifold/plot_mds.html
http://www.springer.com/fr/book/9780387251509
http://link.springer.com/article/10.1007%2FBF02289694
http://link.springer.com/article/10.1007%2FBF02289565

scikit-learn user guide, Release 0.19.1

* t-SNE is computationally expensive, and can take several hours on million-sample datasets where PCA will
finish in seconds or minutes

* The Barnes-Hut t-SNE method is limited to two or three dimensional embeddings.

* The algorithm is stochastic and multiple restarts with different seeds can yield different embeddings. However,
it is perfectly legitimate to pick the embedding with the least error.

* Global structure is not explicitly preserved. This is problem is mitigated by initializing points with PCA (using
init="pca’).

t-SNE embedding of the digits (time 16.68s)

]

Optimizing t-SNE

The main purpose of t-SNE is visualization of high-dimensional data. Hence, it works best when the data will be
embedded on two or three dimensions.

Optimizing the KL divergence can be a little bit tricky sometimes. There are five parameters that control the optimiza-
tion of t-SNE and therefore possibly the quality of the resulting embedding:

* perplexity

* early exaggeration factor

e learning rate

* maximum number of iterations

* angle (not used in the exact method)

The perplexity is defined as & = 2(5) where S is the Shannon entropy of the conditional probability distribution.
The perplexity of a k-sided die is k, so that k is effectively the number of nearest neighbors t-SNE considers when
generating the conditional probabilities. Larger perplexities lead to more nearest neighbors and less sensitive to small
structure. Conversely a lower perplexity considers a smaller number of neighbors, and thus ignores more global
information in favour of the local neighborhood. As dataset sizes get larger more points will be required to get a
reasonable sample of the local neighborhood, and hence larger perplexities may be required. Similarly noisier datasets
will require larger perplexity values to encompass enough local neighbors to see beyond the background noise.

The maximum number of iterations is usually high enough and does not need any tuning. The optimization consists of
two phases: the early exaggeration phase and the final optimization. During early exaggeration the joint probabilities
in the original space will be artificially increased by multiplication with a given factor. Larger factors result in larger
gaps between natural clusters in the data. If the factor is too high, the KL divergence could increase during this phase.
Usually it does not have to be tuned. A critical parameter is the learning rate. If it is too low gradient descent will get
stuck in a bad local minimum. If it is too high the KL divergence will increase during optimization. More tips can be

3.2. Unsupervised learning 299

../auto_examples/manifold/plot_lle_digits.html

scikit-learn user guide, Release 0.19.1

found in Laurens van der Maaten’s FAQ (see references). The last parameter, angle, is a tradeoff between performance
and accuracy. Larger angles imply that we can approximate larger regions by a single point, leading to better speed
but less accurate results.

“How to Use t-SNE Effectively” provides a good discussion of the effects of the various parameters, as well as
interactive plots to explore the effects of different parameters.

Barnes-Hut t-SNE

The Barnes-Hut t-SNE that has been implemented here is usually much slower than other manifold learning algo-
rithms. The optimization is quite difficult and the computation of the gradient is O[dNlog(N)], where d is the number
of output dimensions and N is the number of samples. The Barnes-Hut method improves on the exact method where
t-SNE complexity is O[dN?], but has several other notable differences:

¢ The Barnes-Hut implementation only works when the target dimensionality is 3 or less. The 2D case is typical
when building visualizations.

* Barnes-Hut only works with dense input data. Sparse data matrices can only be embedded with the exact method
or can be approximated by a dense low rank projection for instance using sklearn.decomposition.
TruncatedSVD

* Barnes-Hut is an approximation of the exact method. The approximation is parameterized with the angle pa-
rameter, therefore the angle parameter is unused when method="exact”

* Barnes-Hut is significantly more scalable. Barnes-Hut can be used to embed hundred of thousands of data points
while the exact method can handle thousands of samples before becoming computationally intractable

For visualization purpose (which is the main use case of t-SNE), using the Barnes-Hut method is strongly recom-
mended. The exact t-SNE method is useful for checking the theoretically properties of the embedding possibly in
higher dimensional space but limit to small datasets due to computational constraints.

Also note that the digits labels roughly match the natural grouping found by t-SNE while the linear 2D projection of
the PCA model yields a representation where label regions largely overlap. This is a strong clue that this data can be
well separated by non linear methods that focus on the local structure (e.g. an SVM with a Gaussian RBF kernel).
However, failing to visualize well separated homogeneously labeled groups with t-SNE in 2D does not necessarily
implie that the data cannot be correctly classified by a supervised model. It might be the case that 2 dimensions are
not enough low to accurately represents the internal structure of the data.

References:

e “Visualizing High-Dimensional Data Using t-SNE” van der Maaten, L.J.P.; Hinton, G. Journal of Machine
Learning Research (2008)

» “t-Distributed Stochastic Neighbor Embedding” van der Maaten, L.J.P.

* “Accelerating t-SNE using Tree-Based Algorithms.” L.J.P. van der Maaten. Journal of Machine Learning
Research 15(0ct):3221-3245, 2014.

Tips on practical use

* Make sure the same scale is used over all features. Because manifold learning methods are based on a nearest-
neighbor search, the algorithm may perform poorly otherwise. See StandardScaler for convenient ways of
scaling heterogeneous data.

300 Chapter 3. User Guide

http://distill.pub/2016/misread-tsne/
http://jmlr.org/papers/v9/vandermaaten08a.html
http://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf

scikit-learn user guide, Release 0.19.1

* The reconstruction error computed by each routine can be used to choose the optimal output dimension. For a
d-dimensional manifold embedded in a D-dimensional parameter space, the reconstruction error will decrease
as n_components is increased until n_components == d.

* Note that noisy data can “short-circuit” the manifold, in essence acting as a bridge between parts of the manifold
that would otherwise be well-separated. Manifold learning on noisy and/or incomplete data is an active area of
research.

* Certain input configurations can lead to singular weight matrices, for example when more than two points in the
dataset are identical, or when the data is split into disjointed groups. In this case, solver="arpack' will
fail to find the null space. The easiest way to address this is to use solver="dense"' which will work on a
singular matrix, though it may be very slow depending on the number of input points. Alternatively, one can
attempt to understand the source of the singularity: if it is due to disjoint sets, increasing n_neighbors may
help. If it is due to identical points in the dataset, removing these points may help.

See also:

Totally Random Trees Embedding can also be useful to derive non-linear representations of feature space, also it does
not perform dimensionality reduction.

3.2.3 Clustering

Clustering of unlabeled data can be performed with the module sklearn.cluster.

Each clustering algorithm comes in two variants: a class, that implements the £it method to learn the clusters on train
data, and a function, that, given train data, returns an array of integer labels corresponding to the different clusters. For
the class, the labels over the training data can be found in the 1abels__ attribute.

Input data

One important thing to note is that the algorithms implemented in this module can take different kinds of matrix as
input. All the methods accept standard data matrices of shape [n_samples, n_features]. These can be ob-
tained from the classes in the sklearn. feature_extraction module. For AffinityPropagation,
SpectralClustering and DBSCAN one can also input similarity matrices of shape [n_samples,
n_samples]. These can be obtained from the functions in the sklearn.metrics.pairwise module.

3.2. Unsupervised learning 301

https://en.wikipedia.org/wiki/Cluster_analysis

scikit-learn user guide, Release 0.19.1

MiniBatchKMeansAffinityPropagation =~ MeanShift SpectralClustering Ward AgglomerativeClustering DBSCAN Birch GaussianMixture

Fig. 3.4: A comparison of the clustering algorithms in scikit-learn

302 Chapter 3. User Guide

../auto_examples/cluster/plot_cluster_comparison.html

scikit-learn user guide, Release 0.19.1

Overview of clustering methods

n_clusters
with MiniBatch code

Method Parameters Scalability Usecase Geometry (metric
name used)
K-Means number of clus- | Very large | General-purpose, even clus- | Distances between
ters n_samples, ter size, flat geometry, not | points
medium too many clusters

Affinity propa-

damping, sam-

Not scalable with

Many clusters, uneven clus-

Graph distance (e.g.

gation ple preference n_samples ter size, non-flat geometry nearest-neighbor
graph)
Mean-shift bandwidth Not scalable with | Many clusters, uneven clus- | Distances between
n_samples ter size, non-flat geometry points

Spectral clus-
tering

number of clus-
ters

Medium
n_samples, small

Few clusters, even cluster
size, non-flat geometry

Graph distance (e.g.
nearest-neighbor

tor, threshold,
optional global
clusterer.

n_clusters
and n_samples

moval, data reduction.

n_clusters graph)
Ward hi- | number of clus- | Large n_samples | Many clusters, possibly con- | Distances between
erarchical ters and n_clusters nectivity constraints points
clustering
Agglomerative | number of clus- | Large n_samples | Many clusters, possibly con- | Any pairwise distance
clustering ters, linkage | and n_clusters nectivity constraints, non
type, distance Euclidean distances
DBSCAN neighborhood Very large | Non-flat geometry, uneven | Distances between
size n_samples, cluster sizes nearest points
medium
n_clusters
Gaussian mix- | many Not scalable Flat geometry, good for den- | Mahalanobis dis-
tures sity estimation tances to centers
Birch branching fac- | Large Large dataset, outlier re- | Euclidean distance

between points

Non-flat geometry clustering is useful when the clusters have a specific shape, i.e. a non-flat manifold, and the standard
euclidean distance is not the right metric. This case arises in the two top rows of the figure above.

Gaussian mixture models, useful for clustering, are described in another chapter of the documentation dedicated
to mixture models. KMeans can be seen as a special case of Gaussian mixture model with equal covariance per
component.

K-means

The KMeans algorithm clusters data by trying to separate samples in n groups of equal variance, minimizing a criterion
known as the inertia or within-cluster sum-of-squares. This algorithm requires the number of clusters to be specified.
It scales well to large number of samples and has been used across a large range of application areas in many different
fields.

The k-means algorithm divides a set of N samples X into K disjoint clusters C, each described by the mean y; of
the samples in the cluster. The means are commonly called the cluster “centroids”; note that they are not, in general,
points from X, although they live in the same space. The K-means algorithm aims to choose centroids that minimise

3.2. Unsupervised learning 303

inertia

scikit-learn user guide, Release 0.19.1

the inertia, or within-cluster sum of squared criterion:

n

E : i 112
min (||xr; — W

. ONjEC(H J 74||)

Inertia, or the within-cluster sum of squares criterion, can be recognized as a measure of how internally coherent
clusters are. It suffers from various drawbacks:

* Inertia makes the assumption that clusters are convex and isotropic, which is not always the case. It responds
poorly to elongated clusters, or manifolds with irregular shapes.

¢ Inertia is not a normalized metric: we just know that lower values are better and zero is optimal. But in very
high-dimensional spaces, Euclidean distances tend to become inflated (this is an instance of the so-called “curse
of dimensionality”). Running a dimensionality reduction algorithm such as PCA prior to k-means clustering
can alleviate this problem and speed up the computations.

Incorrect Number of Blobs

Anisotropicly Distributed Blobs

—4

$eo

T T T T T T T
-100 -7.5 =50 =25 0.0 2.5 5.0

Unequal Variance

T T T T
-4 -2 0 2

Unevenly Sized Blobs

—4

-~ ?'.'.

¥4

* @&
L]

T T T T T T T
-12.5 -1l0.0 -75 =50 =25 0.0 2.5

T T T T
-5.0 —2.5 0.0 2.5

T
5.0

K-

means is often referred to as Lloyd’s algorithm. In basic terms, the algorithm has three steps. The first step chooses
the initial centroids, with the most basic method being to choose k samples from the dataset X. After initialization,
K-means consists of looping between the two other steps. The first step assigns each sample to its nearest centroid.

304

Chapter 3. User Guide

PCA
../auto_examples/cluster/plot_kmeans_assumptions.html

scikit-learn user guide, Release 0.19.1

The second step creates new centroids by taking the mean value of all of the samples assigned to each previous
centroid. The difference between the old and the new centroids are computed and the algorithm repeats these last two
steps until this value is less than a threshold. In other words, it repeats until the centroids do not move significantly.

K-means clustering on the digits dataset (PCA-reduced data)
Centroids are marked with white cross

K-means is equivalent to the expectation-maximization algorithm with a
small, all-equal, diagonal covariance matrix.

The algorithm can also be understood through the concept of Voronoi diagrams. First the Voronoi diagram of the points
is calculated using the current centroids. Each segment in the Voronoi diagram becomes a separate cluster. Secondly,
the centroids are updated to the mean of each segment. The algorithm then repeats this until a stopping criterion is
fulfilled. Usually, the algorithm stops when the relative decrease in the objective function between iterations is less
than the given tolerance value. This is not the case in this implementation: iteration stops when centroids move less
than the tolerance.

Given enough time, K-means will always converge, however this may be to a local minimum. This is highly depen-
dent on the initialization of the centroids. As a result, the computation is often done several times, with different
initializations of the centroids. One method to help address this issue is the k-means++ initialization scheme, which
has been implemented in scikit-learn (use the init="'k-means++"' parameter). This initializes the centroids to
be (generally) distant from each other, leading to provably better results than random initialization, as shown in the
reference.

A parameter can be given to allow K-means to be run in parallel, called n_jobs. Giving this parameter a positive
value uses that many processors (default: 1). A value of -1 uses all available processors, with -2 using one less, and so
on. Parallelization generally speeds up computation at the cost of memory (in this case, multiple copies of centroids
need to be stored, one for each job).

Warning: The parallel version of K-Means is broken on OS X when numpy uses the Accelerate Framework. This
is expected behavior: Accelerate can be called after a fork but you need to execv the subprocess with the Python
binary (which multiprocessing does not do under posix).

K-means can be used for vector quantization. This is achieved using the transform method of a trained model of
KMeans.

Examples:

* Demonstration of k-means assumptions: Demonstrating when k-means performs intuitively and when it does
not

* A demo of K-Means clustering on the handwritten digits data: Clustering handwritten digits

References:

e “k-means++: The advantages of careful seeding” Arthur, David, and Sergei Vassilvitskii, Proceedings of

3.2. Unsupervised learning 305

../auto_examples/cluster/plot_kmeans_digits.html
https://en.wikipedia.org/wiki/Voronoi_diagram
http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf

scikit-learn user guide, Release 0.19.1

the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied

Mathematics (2007)

Mini Batch K-Means

The MiniBatchKMeans is a variant of the KMean s algorithm which uses mini-batches to reduce the computation
time, while still attempting to optimise the same objective function. Mini-batches are subsets of the input data, ran-
domly sampled in each training iteration. These mini-batches drastically reduce the amount of computation required
to converge to a local solution. In contrast to other algorithms that reduce the convergence time of k-means, mini-batch
k-means produces results that are generally only slightly worse than the standard algorithm.

The algorithm iterates between two major steps, similar to vanilla k-means. In the first step, b samples are drawn
randomly from the dataset, to form a mini-batch. These are then assigned to the nearest centroid. In the second step,
the centroids are updated. In contrast to k-means, this is done on a per-sample basis. For each sample in the mini-batch,
the assigned centroid is updated by taking the streaming average of the sample and all previous samples assigned to
that centroid. This has the effect of decreasing the rate of change for a centroid over time. These steps are performed
until convergence or a predetermined number of iterations is reached.

MiniBatchKMeans converges faster than KMeans, but the quality of the results is reduced. In practice this differ-
ence in quality can be quite small, as shown in the example and cited reference.

KMeans MiniBatchKMeans Difference

train time: 0-05,5:'.:" moen train time: 00;‘35' :
inertia: 2470:5788 " . inertia: 2476:6444

Examples:

» Comparison of the K-Means and MiniBatchKMeans clustering algorithms: Comparison of KMeans and
MiniBatchKMeans

* Clustering text documents using k-means: Document clustering using sparse MiniBatchKMeans

* Online learning of a dictionary of parts of faces

References:

* “Web Scale K-Means clustering” D. Sculley, Proceedings of the 19th international conference on World wide
web (2010)

306 Chapter 3. User Guide

../auto_examples/cluster/plot_mini_batch_kmeans.html
http://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf

scikit-learn user guide, Release 0.19.1

Affinity Propagation

AffinityPropagation creates clusters by sending messages between pairs of samples until convergence. A
dataset is then described using a small number of exemplars, which are identified as those most representative of other
samples. The messages sent between pairs represent the suitability for one sample to be the exemplar of the other,
which is updated in response to the values from other pairs. This updating happens iteratively until convergence, at
which point the final exemplars are chosen, and hence the final clustering is given.

Estimated number of clusters: 3

Affinity Propagation can be interesting as it chooses the number of clusters based on the data provided. For this pur-
pose, the two important parameters are the preference, which controls how many exemplars are used, and the damping
factor which damps the responsibility and availability messages to avoid numerical oscillations when updating these
messages.

The main drawback of Affinity Propagation is its complexity. The algorithm has a time complexity of the order
O(N?T), where N is the number of samples and 7 is the number of iterations until convergence. Further, the memory
complexity is of the order O(N?) if a dense similarity matrix is used, but reducible if a sparse similarity matrix is
used. This makes Affinity Propagation most appropriate for small to medium sized datasets.

Examples:

* Demo of affinity propagation clustering algorithm: Affinity Propagation on a synthetic 2D datasets with 3
classes.

 Visualizing the stock market structure Affinity Propagation on Financial time series to find groups of compa-
nies

Algorithm description: The messages sent between points belong to one of two categories. The first is the responsi-
bility (¢, k), which is the accumulated evidence that sample & should be the exemplar for sample i. The second is the
availability a(i, k) which is the accumulated evidence that sample ¢ should choose sample k to be its exemplar, and
considers the values for all other samples that & should be an exemplar. In this way, exemplars are chosen by samples
if they are (1) similar enough to many samples and (2) chosen by many samples to be representative of themselves.

More formally, the responsibility of a sample k to be the exemplar of sample ¢ is given by:
r(i, k) < s(i, k) — maz[a(i, k') + s(i, K")VE' # k]

Where s(i, k) is the similarity between samples ¢ and k. The availability of sample k to be the exemplar of sample i is

3.2. Unsupervised learning 307

../auto_examples/cluster/plot_affinity_propagation.html

scikit-learn user guide, Release 0.19.1

given by:

a(i, k) < min[0,r(k, k) + > (i k)]
i’ s.t. i'¢{ik}

To begin with, all values for r and a are set to zero, and the calculation of each iterates until convergence. As discussed
above, in order to avoid numerical oscillations when updating the messages, the damping factor A is introduced to
iteration process:

Tt+1(7:,]{3) =X Tt(i, k) + (1 - A) . Tt—‘,—l(ia]C)

ar+1(i, k) = A ai(i k) + (1 = A) - a1 (i, k)

where ¢ indicates the iteration times.

Mean Shift

MeanShift clustering aims to discover blobs in a smooth density of samples. It is a centroid based algorithm, which
works by updating candidates for centroids to be the mean of the points within a given region. These candidates are
then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids.

Given a candidate centroid x; for iteration ¢, the candidate is updated according to the following equation:

t+1

i =i+ m(a)

x i
Where N (z;) is the neighborhood of samples within a given distance around x; and m is the mean shift vector that
is computed for each centroid that points towards a region of the maximum increase in the density of points. This
is computed using the following equation, effectively updating a centroid to be the mean of the samples within its

neighborhood:

sz EN(z;) K(‘rj - xl)xj
Z’I‘JEN(’I‘7) K(xj - xl)
The algorithm automatically sets the number of clusters, instead of relying on a parameter bandwidth, which dictates

the size of the region to search through. This parameter can be set manually, but can be estimated using the provided
estimate_bandwidth function, which is called if the bandwidth is not set.

m(x;) =

The algorithm is not highly scalable, as it requires multiple nearest neighbor searches during the execution of the
algorithm. The algorithm is guaranteed to converge, however the algorithm will stop iterating when the change in
centroids is small.

Labelling a new sample is performed by finding the nearest centroid for a given sample.

Examples:

* A demo of the mean-shift clustering algorithm: Mean Shift clustering on a synthetic 2D datasets with 3
classes.

References:

* “Mean shift: A robust approach toward feature space analysis.” D. Comaniciu and P. Meer, IEEE Transactions
on Pattern Analysis and Machine Intelligence (2002)

308 Chapter 3. User Guide

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.8968&rep=rep1&type=pdf

scikit-learn user guide, Release 0.19.1

Estimated number of clusters: 3

Spectral clustering

SpectralClustering does a low-dimension embedding of the affinity matrix between samples, followed by a
KMeans in the low dimensional space. It is especially efficient if the affinity matrix is sparse and the pyamg module
is installed. SpectralClustering requires the number of clusters to be specified. It works well for a small number of
clusters but is not advised when using many clusters.

For two clusters, it solves a convex relaxation of the normalised cuts problem on the similarity graph: cutting the
graph in two so that the weight of the edges cut is small compared to the weights of the edges inside each cluster. This
criteria is especially interesting when working on images: graph vertices are pixels, and edges of the similarity graph
are a function of the gradient of the image.

20
40
60

80

Warning: Transforming distance to well-behaved similarities

Note that if the values of your similarity matrix are not well distributed, e.g. with negative values or with a distance
matrix rather than a similarity, the spectral problem will be singular and the problem not solvable. In which case
it is advised to apply a transformation to the entries of the matrix. For instance, in the case of a signed distance
matrix, is common to apply a heat kernel:

similarity = np.exp(-beta * distance / distance.std())

See the examples for such an application.

3.2. Unsupervised learning 309

../auto_examples/cluster/plot_mean_shift.html
https://github.com/pyamg/pyamg
http://people.eecs.berkeley.edu/~malik/papers/SM-ncut.pdf
../auto_examples/cluster/plot_segmentation_toy.html
../auto_examples/cluster/plot_segmentation_toy.html

scikit-learn user guide, Release 0.19.1

Examples:

e Spectral clustering for image segmentation: Segmenting objects from a noisy background using spectral
clustering.

» Segmenting the picture of a raccoon face in regions: Spectral clustering to split the image of the raccoon face
in regions.

Different label assignment strategies

Different label assignment strategies can be used, corresponding to the assign_labels parameter of
SpectralClustering. The "kmeans" strategy can match finer details of the data, but it can be more unsta-
ble. In particular, unless you control the random_state, it may not be reproducible from run-to-run, as it depends
on a random initialization. On the other hand, the "discretize™" strategy is 100% reproducible, but it tends to
create parcels of fairly even and geometrical shape.

assign_labels="kmeans" assign_labels="discretize"

Spectral clustering: kmeans, 6.27s Spectral clustering: discretize, 5.32s

References:

“A Tutorial on Spectral Clustering” Ulrike von Luxburg, 2007
* “Normalized cuts and image segmentation” Jianbo Shi, Jitendra Malik, 2000

e “A Random Walks View of Spectral Segmentation” Marina Meila, Jianbo Shi, 2001

* “On Spectral Clustering: Analysis and an algorithm™ Andrew Y. Ng, Michael I. Jordan, Yair Weiss, 2001

Hierarchical clustering

Hierarchical clustering is a general family of clustering algorithms that build nested clusters by merging or splitting
them successively. This hierarchy of clusters is represented as a tree (or dendrogram). The root of the tree is the unique

310 Chapter 3. User Guide

../auto_examples/cluster/plot_face_segmentation.html
../auto_examples/cluster/plot_face_segmentation.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.1501
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.8100

scikit-learn user guide, Release 0.19.1

cluster that gathers all the samples, the leaves being the clusters with only one sample. See the Wikipedia page for
more details.

The AgglomerativeClustering object performs a hierarchical clustering using a bottom up approach: each
observation starts in its own cluster, and clusters are successively merged together. The linkage criteria determines the
metric used for the merge strategy:

* Ward minimizes the sum of squared differences within all clusters. It is a variance-minimizing approach and in
this sense is similar to the k-means objective function but tackled with an agglomerative hierarchical approach.

e Maximum or complete linkage minimizes the maximum distance between observations of pairs of clusters.
» Average linkage minimizes the average of the distances between all observations of pairs of clusters.

AgglomerativeClustering can also scale to large number of samples when it is used jointly with a connectivity
matrix, but is computationally expensive when no connectivity constraints are added between samples: it considers at
each step all the possible merges.

FeatureAgglomeration

The FeatureAgglomeration uses agglomerative clustering to group together features that look very similar,
thus decreasing the number of features. It is a dimensionality reduction tool, see Unsupervised dimensionality
reduction.

Different linkage type: Ward, complete and average linkage

AgglomerativeClustering supports Ward, average, and complete linkage strategies.

averagg linkage

complete linkage

Agglomerative cluster has a “rich get richer” behavior that leads to uneven cluster sizes. In this regard, complete
linkage is the worst strategy, and Ward gives the most regular sizes. However, the affinity (or distance used in
clustering) cannot be varied with Ward, thus for non Euclidean metrics, average linkage is a good alternative.

Examples:

» Various Agglomerative Clustering on a 2D embedding of digits: exploration of the different linkage strategies
in a real dataset.

Adding connectivity constraints

An interesting aspect of AgglomerativeClustering is that connectivity constraints can be added to this al-
gorithm (only adjacent clusters can be merged together), through a connectivity matrix that defines for each sample
the neighboring samples following a given structure of the data. For instance, in the swiss-roll example below, the

3.2. Unsupervised learning 311

https://en.wikipedia.org/wiki/Hierarchical_clustering
../auto_examples/cluster/plot_digits_linkage.html
../auto_examples/cluster/plot_digits_linkage.html
../auto_examples/cluster/plot_digits_linkage.html

scikit-learn user guide, Release 0.19.1

connectivity constraints forbid the merging of points that are not adjacent on the swiss roll, and thus avoid forming
clusters that extend across overlapping folds of the roll.

Without connectivity constraints (time 0.04s) With connectivity constraints (time 0.12s)

’“15

[10

[—5

10

40

-10 -5 o 5 10 o

These constraint are useful to impose a certain local structure, but they also make the algorithm faster, especially when
the number of the samples is high.

The connectivity constraints are imposed via an connectivity matrix: a scipy sparse matrix that has elements only
at the intersection of a row and a column with indices of the dataset that should be connected. This matrix can
be constructed from a-priori information: for instance, you may wish to cluster web pages by only merging pages
with a link pointing from one to another. It can also be learned from the data, for instance using sklearn.
neighbors.kneighbors_graphtorestrict merging to nearest neighbors as in this example, or using sklearn.
feature_extraction.image.grid_to_graph to enable only merging of neighboring pixels on an image,
as in the raccoon face example.

Examples:
* A demo of structured Ward hierarchical clustering on a raccoon face image: Ward clustering to split the
image of a raccoon face in regions.

* Hierarchical clustering: structured vs unstructured ward: Example of Ward algorithm on a swiss-roll, com-
parison of structured approaches versus unstructured approaches.

» Feature agglomeration vs. univariate selection: Example of dimensionality reduction with feature agglomer-
ation based on Ward hierarchical clustering.

» Agglomerative clustering with and without structure

Warning: Connectivity constraints with average and complete linkage

Connectivity constraints and complete or average linkage can enhance the ‘rich getting richer’ aspect of agglom-
erative clustering, particularly so if they are built with sklearn.neighbors. kneighbors_graph. In the
limit of a small number of clusters, they tend to give a few macroscopically occupied clusters and almost empty
ones. (see the discussion in Agglomerative clustering with and without structure).

312 Chapter 3. User Guide

../auto_examples/cluster/plot_ward_structured_vs_unstructured.html
../auto_examples/cluster/plot_ward_structured_vs_unstructured.html

scikit-learn user guide, Release 0.19.1

n_cluster=3, connectivity=False
linkage=complete (time 0.04s)

n_cluster=30, connectivity=False
linkage=complete (time 0.04s)

linkage=average (time 0.05s) linkage=ward (time 0.04s) linkage=average (time 0.04s) linkage=ward (time 0.05s)

Varying the metric

Average and complete linkage can be used with a variety of distances (or affinities), in particular Euclidean distance
(12), Manhattan distance (or Cityblock, or /1), cosine distance, or any precomputed affinity matrix.

* [] distance is often good for sparse features, or sparse noise: ie many of the features are zero, as in text mining
using occurrences of rare words.

* cosine distance is interesting because it is invariant to global scalings of the signal.

The guidelines for choosing a metric is to use one that maximizes the dis-
tance between samples in different classes, and minimizes that within each class.
AgglomerativeClu Tri g(affinity=cosine) Agglo‘ erativeClust in(affinity‘zeu lidean) AgglomerativeClustering(affinity=cityplock)
UL L Tl |
AU 00T RS J (TR LI L T AT \ L LCAER, T T
MR i g 0 M T o LT L T L ‘ il i MOREY i O OO R o
(1] | (T 11— LT 0 00 i i | I
| ‘ | | ‘

Examples:

o Agglomerative clustering with different metrics

DBSCAN

The DBSCAN algorithm views clusters as areas of high density separated by areas of low density. Due to this rather
generic view, clusters found by DBSCAN can be any shape, as opposed to k-means which assumes that clusters are
convex shaped. The central component to the DBSCAN is the concept of core samples, which are samples that are in
areas of high density. A cluster is therefore a set of core samples, each close to each other (measured by some distance
measure) and a set of non-core samples that are close to a core sample (but are not themselves core samples). There
are two parameters to the algorithm, min_samples and eps, which define formally what we mean when we say
dense. Higher min_samples or lower eps indicate higher density necessary to form a cluster.

More formally, we define a core sample as being a sample in the dataset such that there exist min_samples other
samples within a distance of eps, which are defined as neighbors of the core sample. This tells us that the core sample
is in a dense area of the vector space. A cluster is a set of core samples that can be built by recursively taking a core
sample, finding all of its neighbors that are core samples, finding all of their neighbors that are core samples, and so
on. A cluster also has a set of non-core samples, which are samples that are neighbors of a core sample in the cluster
but are not themselves core samples. Intuitively, these samples are on the fringes of a cluster.

3.2. Unsupervised learning 313

../auto_examples/cluster/plot_agglomerative_clustering.html
../auto_examples/cluster/plot_agglomerative_clustering.html
../auto_examples/cluster/plot_agglomerative_clustering.html
../auto_examples/cluster/plot_agglomerative_clustering.html
../auto_examples/cluster/plot_agglomerative_clustering_metrics.html
../auto_examples/cluster/plot_agglomerative_clustering_metrics.html
../auto_examples/cluster/plot_agglomerative_clustering_metrics.html

scikit-learn user guide, Release 0.19.1

Any core sample is part of a cluster, by definition. Any sample that is not a core sample, and is at least eps in distance
from any core sample, is considered an outlier by the algorithm.

In the figure below, the color indicates cluster membership, with large circles indicating core samples found by the
algorithm. Smaller circles are non-core samples that are still part of a cluster. Moreover, the outliers are indicated by
black points below.

Estimated number of clusters: 3

2.0

1.5

1.0

0.5 4

0.0 4

—0.5 1

-1.01

~154

-2.0

Examples:

* Demo of DBSCAN clustering algorithm

Implementation

The DBSCAN algorithm is deterministic, always generating the same clusters when given the same data in the
same order. However, the results can differ when data is provided in a different order. First, even though the core
samples will always be assigned to the same clusters, the labels of those clusters will depend on the order in which
those samples are encountered in the data. Second and more importantly, the clusters to which non-core samples
are assigned can differ depending on the data order. This would happen when a non-core sample has a distance
lower than eps to two core samples in different clusters. By the triangular inequality, those two core samples must
be more distant than eps from each other, or they would be in the same cluster. The non-core sample is assigned
to whichever cluster is generated first in a pass through the data, and so the results will depend on the data ordering.

The current implementation uses ball trees and kd-trees to determine the neighborhood of points, which avoids
calculating the full distance matrix (as was done in scikit-learn versions before 0.14). The possibility to use custom
metrics is retained; for details, see NearestNeighbors.

Memory consumption for large sample sizes

This implementation is by default not memory efficient because it constructs a full pairwise similarity matrix in the
case where kd-trees or ball-trees cannot be used (e.g. with sparse matrices). This matrix will consume n”2 floats.
A couple of mechanisms for getting around this are:

* A sparse radius neighborhood graph (where missing entries are presumed to be out of eps) can be precom-
puted in a memory-efficient way and dbscan can be run over this with metric="precomputed".

* The dataset can be compressed, either by removing exact duplicates if these occur in your data, or by using
BIRCH. Then you only have a relatively small number of representatives for a large number of points. You

314 Chapter 3. User Guide

../auto_examples/cluster/plot_dbscan.html

scikit-learn user guide, Release 0.19.1

can then provide a sample_weight when fitting DBSCAN. I

References:

* “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise” Ester, M., H. P.
Kriegel, J. Sander, and X. Xu, In Proceedings of the 2nd International Conference on Knowledge Discovery
and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996

Birch

The Birch builds a tree called the Characteristic Feature Tree (CFT) for the given data. The data is essentially lossy
compressed to a set of Characteristic Feature nodes (CF Nodes). The CF Nodes have a number of subclusters called
Characteristic Feature subclusters (CF Subclusters) and these CF Subclusters located in the non-terminal CF Nodes
can have CF Nodes as children.

The CF Subclusters hold the necessary information for clustering which prevents the need to hold the entire input data
in memory. This information includes:

e Number of samples in a subcluster.

* Linear Sum - A n-dimensional vector holding the sum of all samples
* Squared Sum - Sum of the squared L2 norm of all samples.

¢ Centroids - To avoid recalculation linear sum / n_samples.

* Squared norm of the centroids.

The Birch algorithm has two parameters, the threshold and the branching factor. The branching factor limits the
number of subclusters in a node and the threshold limits the distance between the entering sample and the existing
subclusters.

This algorithm can be viewed as an instance or data reduction method, since it reduces the input data to a set of
subclusters which are obtained directly from the leaves of the CFT. This reduced data can be further processed by
feeding it into a global clusterer. This global clusterer can be set by n_clusters. If n_clusters is set to None,
the subclusters from the leaves are directly read off, otherwise a global clustering step labels these subclusters into
global clusters (labels) and the samples are mapped to the global label of the nearest subcluster.

Algorithm description:

* A new sample is inserted into the root of the CF Tree which is a CF Node. It is then merged with the subcluster of
the root, that has the smallest radius after merging, constrained by the threshold and branching factor conditions.
If the subcluster has any child node, then this is done repeatedly till it reaches a leaf. After finding the nearest
subcluster in the leaf, the properties of this subcluster and the parent subclusters are recursively updated.

* If the radius of the subcluster obtained by merging the new sample and the nearest subcluster is greater than
the square of the threshold and if the number of subclusters is greater than the branching factor, then a space is
temporarily allocated to this new sample. The two farthest subclusters are taken and the subclusters are divided
into two groups on the basis of the distance between these subclusters.

« If this split node has a parent subcluster and there is room for a new subcluster, then the parent is split into two.
If there is no room, then this node is again split into two and the process is continued recursively, till it reaches
the root.

Birch or MiniBatchKMeans?

* Birch does not scale very well to high dimensional data. As a rule of thumb if n_features is greater than
twenty, it is generally better to use MiniBatchKMeans.

3.2. Unsupervised learning 315

scikit-learn user guide, Release 0.19.1

« If the number of instances of data needs to be reduced, or if one wants a large number of subclusters either as a
preprocessing step or otherwise, Birch is more useful than MiniBatchKMeans.

How to use partial_fit?
To avoid the computation of global clustering, for every call of partial_fit the user is advised
1. Toset n_clusters=None initially
2. Train all data by multiple calls to partial_fit.
3. Setn_clusters to arequired value using brc.set_params (n_clusters=n_clusters).
4. Call partial_fit finally with no arguments, i.e brc.partial_fit () which performs the global clus-

tering.

Birch without global clustering Birch with global clustering MiniBatchKMeans

20

10

—-10 1

20

—20 -10 0 10 20

References:
e Tian Zhang, Raghu Ramakrishnan, Maron Livny BIRCH: An efficient data clustering method for large
databases. http://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf

* Roberto Perdisci JBirch - Java implementation of BIRCH clustering algorithm https://code.google.com/
archive/p/jbirch

Clustering performance evaluation

Evaluating the performance of a clustering algorithm is not as trivial as counting the number of errors or the precision
and recall of a supervised classification algorithm. In particular any evaluation metric should not take the absolute
values of the cluster labels into account but rather if this clustering define separations of the data similar to some
ground truth set of classes or satisfying some assumption such that members belong to the same class are more similar
that members of different classes according to some similarity metric.

Adjusted Rand index

Given the knowledge of the ground truth class assignments 1abels_true and our clustering algorithm assignments
of the same samples 1abels_pred, the adjusted Rand index is a function that measures the similarity of the two
assignments, ignoring permutations and with chance normalization:

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred [, o, 1, 1, 2, 2]

316 Chapter 3. User Guide

../auto_examples/cluster/plot_birch_vs_minibatchkmeans.html
http://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf
https://code.google.com/archive/p/jbirch
https://code.google.com/archive/p/jbirch

scikit-learn user guide, Release 0.19.1

>>> metrics.adjusted_rand_score (labels_true, labels_pred)
0.24...

One can permute 0 and 1 in the predicted labels, rename 2 to 3, and get the same score:

>>> labels_pred = [1, 1, 0, 0, 3, 3]
>>> metrics.adjusted_rand_score(labels_true, labels_pred)
0.24...

Furthermore, ad justed_rand_score is symmetric: swapping the argument does not change the score. It can
thus be used as a consensus measure:

>>> metrics.adjusted_rand_score (labels_pred, labels_true)
0.24...

Perfect labeling is scored 1.0:

>>> labels_pred = labels_true[:]
>>> metrics.adjusted_rand_score (labels_true, labels_pred)
1.0

Bad (e.g. independent labelings) have negative or close to 0.0 scores:

>>> labels_true = [0, 1, 2, 0, 3, 4, 5, 1]

>>> labels_pred = [1, 1, O, O, 2, 2, 2, 2]

>>> metrics.adjusted_rand_score (labels_true, labels_pred)
-0.12...

Advantages

¢ Random (uniform) label assignments have a ARI score close to 0.0 for any value of n_clusters and
n_samples (which is not the case for raw Rand index or the V-measure for instance).

* Bounded range [-1, 1]: negative values are bad (independent labelings), similar clusterings have a positive ARI,
1.0 is the perfect match score.

* No assumption is made on the cluster structure: can be used to compare clustering algorithms such as k-
means which assumes isotropic blob shapes with results of spectral clustering algorithms which can find cluster
with “folded” shapes.

Drawbacks

 Contrary to inertia, ARI requires knowledge of the ground truth classes while is almost never available in
practice or requires manual assignment by human annotators (as in the supervised learning setting).

However ARI can also be useful in a purely unsupervised setting as a building block for a Consensus Index that
can be used for clustering model selection (TODO).

Examples:

» Adjustment for chance in clustering performance evaluation: Analysis of the impact of the dataset size on the
value of clustering measures for random assignments.

3.2. Unsupervised learning 317

scikit-learn user guide, Release 0.19.1

Mathematical formulation

If C is a ground truth class assignment and K the clustering, let us define a and b as:
* a, the number of pairs of elements that are in the same set in C and in the same set in K
¢ b, the number of pairs of elements that are in different sets in C and in different sets in K

The raw (unadjusted) Rand index is then given by:

a+b

Onsa'lnple:;
2

RI =

Where C5**™*'** is the total number of possible pairs in the dataset (without ordering).

However the RI score does not guarantee that random label assignments will get a value close to zero (esp. if the
number of clusters is in the same order of magnitude as the number of samples).

To counter this effect we can discount the expected RI F[RI] of random labelings by defining the adjusted Rand index
as follows:

RI — E[R]]
ARI =

max(RI) — E[RI]

References

» Comparing Partitions L. Hubert and P. Arabie, Journal of Classification 1985

» Wikipedia entry for the adjusted Rand index

Mutual Information based scores

Given the knowledge of the ground truth class assignments 1abels_true and our clustering algorithm assignments
of the same samples 1abels_pred, the Mutual Information is a function that measures the agreement of the two
assignments, ignoring permutations. Two different normalized versions of this measure are available, Normalized
Mutual Information(NMI) and Adjusted Mutual Information(AMI). NMI is often used in the literature while
AMI was proposed more recently and is normalized against chance:

>>> from sklearn import metrics
>>> labels_true = [0, O, O, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]

>>> metrics.adjusted_mutual_info_score (labels_true, labels_pred)
0.22504...

One can permute 0 and 1 in the predicted labels, rename 2 to 3 and get the same score:

>>> labels_pred = [1, 1, 0, 0, 3, 3]
>>> metrics.adjusted_mutual_info_score (labels_true, labels_pred)
0.22504...

All, mutual_info score, adjusted mutual_info_score and normalized mutual_info_score
are symmetric: swapping the argument does not change the score. Thus they can be used as a consensus measure:

>>> metrics.adjusted_mutual_info_score(labels_pred, labels_true)
0.22504...

318 Chapter 3. User Guide

http://link.springer.com/article/10.1007%2FBF01908075
https://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index

scikit-learn user guide, Release 0.19.1

Perfect labeling is scored 1.0:

>>> labels_pred = labels_true[:]
>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)
1.0

>>> metrics.normalized_mutual_info_score (labels_true, labels_pred)
1.0

This is not true for mutual_info_score, which is therefore harder to judge:

>>> metrics.mutual_info_score (labels_true, labels_pred)
0.69...

Bad (e.g. independent labelings) have non-positive scores:

>>> labels_true = [0, 1, 2, 0, 3, 4, 5, 1]

>>> labels_pred = [1, 1, O, O, 2, 2, 2, 2]

>>> metrics.adjusted_mutual_info_score (labels_true, labels_pred)
-0.10526...

Advantages

* Random (uniform) label assignments have a AMI score close to 0.0 for any value of n_clusters and
n_samples (which is not the case for raw Mutual Information or the V-measure for instance).

* Bounded range [0, 1]: Values close to zero indicate two label assignments that are largely independent, while
values close to one indicate significant agreement. Further, values of exactly O indicate purely independent
label assignments and a AMI of exactly 1 indicates that the two label assignments are equal (with or without
permutation).

* No assumption is made on the cluster structure: can be used to compare clustering algorithms such as k-
means which assumes isotropic blob shapes with results of spectral clustering algorithms which can find cluster
with “folded” shapes.

Drawbacks

* Contrary to inertia, MI-based measures require the knowledge of the ground truth classes while almost
never available in practice or requires manual assignment by human annotators (as in the supervised learning
setting).

However MI-based measures can also be useful in purely unsupervised setting as a building block for a Consen-
sus Index that can be used for clustering model selection.

* NMI and MI are not adjusted against chance.

Examples:

» Adjustment for chance in clustering performance evaluation: Analysis of the impact of the dataset size on the
value of clustering measures for random assignments. This example also includes the Adjusted Rand Index.

3.2. Unsupervised learning 319

scikit-learn user guide, Release 0.19.1

Mathematical formulation
Assume two label assignments (of the same N objects), U and V. Their entropy is the amount of uncertainty for a
partition set, defined by:

U]

— 3 P(i) log(P(i)
i=1

where P(i) = |U;|/N is the probability that an object picked at random from U falls into class U;. Likewise for V:

V]

ZP')log(P'(5))

With P’(j) = |V;|/N. The mutual information (MI) between U and V is calculated by:

lul v

1)

i=1 j=1
where P(i,j) = |U; N V;|/N is the probability that an object picked at random falls into both classes U; and V.
It also can be expressed in set cardinality formulation:

Ul V]

ZZ |U; mV| <NUmVj|)
Uil Vj

=1 j=1

The normalized mutual information is defined as

MI(U, V)

This value of the mutual information and also the normalized variant is not adjusted for chance and will tend to increase
as the number of different labels (clusters) increases, regardless of the actual amount of “mutual information” between
the label assignments.

The expected value for the mutual information can be calculated using the following equation, from Vinh, Epps, and
Bailey, (2009). In this equation, a; = |U;| (the number of elements in U;) and b; = |V/;| (the number of elements in
V).

min(a;,bj)

% Nnij al'b'(—al) (— b)
EMIU, V)] ZU'ZV' Z N 10g< ibj) Nlnijl(a; —ni)l(b; — nig)N — a; — by + nij)!

7=l nij=(ai+b;—N)*

Using the expected value, the adjusted mutual information can then be calculated using a similar form to that of the
adjusted Rand index:

MI — E[MI]
max(H((U), H(V)) — E[MI]

AMI =

References

o Strehl, Alexander, and Joydeep Ghosh (2002). “Cluster ensembles — a knowledge reuse frame-

work for combining multiple partitions”. Journal of Machine Learning Research 3: 583-617.
doi:10.1162/153244303321897735.

320 Chapter 3. User Guide

http://strehl.com/download/strehl-jmlr02.pdf

scikit-learn user guide, Release 0.19.1

* Vinh, Epps, and Bailey, (2009). “Information theoretic measures for clusterings comparison”. Proceedings of
the 26th Annual International Conference on Machine Learning - ICML ‘09. doi:10.1145/1553374.1553511.
ISBN 9781605585161.

* Vinh, Epps, and Bailey, (2010). Information Theoretic Measures for Clusterings Comparison: Variants, Prop-
erties, Normalization and Correction for Chance, JMLR http://jmlr.csail.mit.edu/papers/volumel 1/vinh10a/
vinh10a.pdf

* Wikipedia entry for the (normalized) Mutual Information

» Wikipedia entry for the Adjusted Mutual Information

Homogeneity, completeness and V-measure

Given the knowledge of the ground truth class assignments of the samples, it is possible to define some intuitive metric
using conditional entropy analysis.

In particular Rosenberg and Hirschberg (2007) define the following two desirable objectives for any cluster assign-
ment:

* homogeneity: each cluster contains only members of a single class.
» completeness: all members of a given class are assigned to the same cluster.

We can turn those concept as scores homogeneity score and completeness_score. Both are bounded
below by 0.0 and above by 1.0 (higher is better):

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred [, o, 1, 1, 2, 2]

>>> metrics.homogeneity_score (labels_true, labels_pred)
0.66...

>>> metrics.completeness_score (labels_true, labels_pred)
0.42...

Their harmonic mean called V-measure is computed by v._measure_score:

>>> metrics.v_measure_score (labels_true, labels_pred)
0.51...

The V-measure is actually equivalent to the mutual information (NMI) discussed above normalized by the sum of the
label entropies [B2011].

Homogeneity, completeness and V-measure can be computed at once using
homogeneity completeness_v._measure as follows:

>>> metrics.homogeneity_completeness_v_measure (labels_true, labels_pred)

(0.66..., 0.42..., 0.51...)

The following clustering assignment is slightly better, since it is homogeneous but not complete:

>>> labels_pred = [0, 0, O, 1, 2, 2]
>>> metrics.homogeneity_completeness_v_measure (labels_true, labels_pred)

(1.0, 0.68..., 0.81...)

3.2. Unsupervised learning 321

https://dl.acm.org/citation.cfm?doid=1553374.1553511
http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf
http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf
https://en.wikipedia.org/wiki/Mutual_Information
https://en.wikipedia.org/wiki/Adjusted_Mutual_Information

scikit-learn user guide, Release 0.19.1

Note: v_measure_scoreissymmetric: it can be used to evaluate the agreement of two independent assignments
on the same dataset.

This is not the case for completeness_score and homogeneity_score: both are bound by the relationship:

homogeneity_score(a, b) == completeness_score (b, a)

Advantages

* Bounded scores: 0.0 is as bad as it can be, 1.0 is a perfect score.

¢ Intuitive interpretation: clustering with bad V-measure can be qualitatively analyzed in terms of homogeneity
and completeness to better feel what ‘kind’ of mistakes is done by the assignment.

* No assumption is made on the cluster structure: can be used to compare clustering algorithms such as k-
means which assumes isotropic blob shapes with results of spectral clustering algorithms which can find cluster
with “folded” shapes.

Drawbacks

* The previously introduced metrics are not normalized with regards to random labeling: this means that
depending on the number of samples, clusters and ground truth classes, a completely random labeling will
not always yield the same values for homogeneity, completeness and hence v-measure. In particular random
labeling won’t yield zero scores especially when the number of clusters is large.

This problem can safely be ignored when the number of samples is more than a thousand and the number of
clusters is less than 10. For smaller sample sizes or larger number of clusters it is safer to use an adjusted
index such as the Adjusted Rand Index (ARI).

* These metrics require the knowledge of the ground truth classes while almost never available in practice or
requires manual assignment by human annotators (as in the supervised learning setting).

Examples:

» Adjustment for chance in clustering performance evaluation: Analysis of the impact of the dataset size on the
value of clustering measures for random assignments.

Mathematical formulation

Homogeneity and completeness scores are formally given by:

ho1_ HCIK)
H(C)
H
c—1_ HEKC)
H(K)
where H(C|K) is the conditional entropy of the classes given the cluster assignments and is given by:
ICl K] - -
H(CIK) = 33 " 1og (nk>
c=1 k=1

322 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

Clustering measures for 2 random uniform labelings
with equal number of clusters

1.0 ~
0.8
L 0.6 —— adjusted rand score
© V_measure_score
g —— adjusted_mutual_info_score
2 0.4 - —— mutual _info_score
0.2
0.0 1] —— —
T T T T T T
0 20 40 60 80 100

Number of clusters (Number of samples is fixed to 100)

3.2. Unsupervised learning

323

../auto_examples/cluster/plot_adjusted_for_chance_measures.html

scikit-learn user guide, Release 0.19.1

and H(C') is the entropy of the classes and is given by:

with n the total number of samples, n. and nj the number of samples respectively belonging to class ¢ and cluster k,
and finally n. ;, the number of samples from class c assigned to cluster k.

The conditional entropy of clusters given class H (K |C') and the entropy of clusters H (K) are defined in a sym-
metric manner.

Rosenberg and Hirschberg further define V-measure as the harmonic mean of homogeneity and completeness:

h -
’U:Z. ¢

h+c

References

* V-Measure: A conditional entropy-based external cluster evaluation measure Andrew Rosenberg and Julia
Hirschberg, 2007

Fowlkes-Mallows scores

The Fowlkes-Mallows index (sklearn.metrics.fowlkes _mallows_score) can be used when the ground
truth class assignments of the samples is known. The Fowlkes-Mallows score FMI is defined as the geometric mean
of the pairwise precision and recall:

TP

FMI= /(TP + FP)(TP + FN)

Where TP is the number of True Positive (i.e. the number of pair of points that belong to the same clusters in both the
true labels and the predicted labels), F'P is the number of False Positive (i.e. the number of pair of points that belong
to the same clusters in the true labels and not in the predicted labels) and FN is the number of False Negative (i.e the
number of pair of points that belongs in the same clusters in the predicted labels and not in the true labels).

The score ranges from 0 to 1. A high value indicates a good similarity between two clusters.

>>> from sklearn import metrics
>>> labels_true = [0, O, O, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]

>>> metrics.fowlkes_mallows_score (labels_true, labels_pred)
0.47140...

One can permute 0 and 1 in the predicted labels, rename 2 to 3 and get the same score:

>>> labels_pred = [1, 1, 0, 0, 3, 3]

>>> metrics.fowlkes_mallows_score (labels_true, labels_pred)
0.47140...

Perfect labeling is scored 1.0:

324 Chapter 3. User Guide

http://aclweb.org/anthology/D/D07/D07-1043.pdf

scikit-learn user guide, Release 0.19.1

>>> labels_pred = labels_true[:]
>>> metrics.fowlkes_mallows_score (labels_true, labels_pred)
1.0

Bad (e.g. independent labelings) have zero scores:

>>> labels_true = [0, 1, 2, 0, 3, 4, 5, 1]

>>> labels_pred = [1, 1, O, O, 2, 2, 2, 2]

>>> metrics.fowlkes_mallows_score (labels_true, labels_pred)
0.0

Advantages

* Random (uniform) label assignments have a FMI score close to 0.0 for any value of n_clusters and
n_samples (which is not the case for raw Mutual Information or the V-measure for instance).

* Bounded range [0, 1]: Values close to zero indicate two label assignments that are largely independent, while
values close to one indicate significant agreement. Further, values of exactly O indicate purely independent
label assignments and a AMI of exactly 1 indicates that the two label assignments are equal (with or without
permutation).

* No assumption is made on the cluster structure: can be used to compare clustering algorithms such as k-
means which assumes isotropic blob shapes with results of spectral clustering algorithms which can find cluster
with “folded” shapes.

Drawbacks

¢ Contrary to inertia, FMI-based measures require the knowledge of the ground truth classes while almost
never available in practice or requires manual assignment by human annotators (as in the supervised learning
setting).

References

* E. B. Fowkles and C. L. Mallows, 1983. “A method for comparing two hierarchical clusterings”. Journal of
the American Statistical Association. http://wildfire.stat.ucla.edu/pdflibrary/fowlkes.pdf

* Wikipedia entry for the Fowlkes-Mallows Index

Silhouette Coefficient

If the ground truth labels are not known, evaluation must be performed using the model itself. The Silhouette Coeffi-
cient (sklearn.metrics.silhouette_score)isan example of such an evaluation, where a higher Silhouette
Coefficient score relates to a model with better defined clusters. The Silhouette Coefficient is defined for each sample
and is composed of two scores:

 a: The mean distance between a sample and all other points in the same class.
* b: The mean distance between a sample and all other points in the next nearest cluster.
The Silhouette Coefficient s for a single sample is then given as:

_ b-a
~ maz(a,b)

3.2. Unsupervised learning 325

http://wildfire.stat.ucla.edu/pdflibrary/fowlkes.pdf
https://en.wikipedia.org/wiki/Fowlkes-Mallows_index

scikit-learn user guide, Release 0.19.1

The Silhouette Coefficient for a set of samples is given as the mean of the Silhouette Coefficient for each sample.

>>> from sklearn import metrics

>>> from sklearn.metrics import pairwise_distances
>>> from sklearn import datasets

>>> dataset = datasets.load_iris()

>>> X = dataset.data

>>> y = dataset.target

In normal usage, the Silhouette Coefficient is applied to the results of a cluster analysis.

>>> import numpy as np

>>> from sklearn.cluster import KMeans

>>> kmeans_model = KMeans (n_clusters=3, random_state=1).fit (X)
>>> labels = kmeans_model.labels_

>>> metrics.silhouette_score (X, labels, metric='euclidean')

0.55...

References

* Peter J. Rousseeuw (1987). “Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster
Analysis”. Computational and Applied Mathematics 20: 53-65. doi:10.1016/0377-0427(87)90125-7.

Advantages

* The score is bounded between -1 for incorrect clustering and +1 for highly dense clustering. Scores around zero
indicate overlapping clusters.

* The score is higher when clusters are dense and well separated, which relates to a standard concept of a cluster.

Drawbacks

* The Silhouette Coefficient is generally higher for convex clusters than other concepts of clusters, such as density
based clusters like those obtained through DBSCAN.

Examples:

» Selecting the number of clusters with silhouette analysis on KMeans clustering : In this example the silhouette
analysis is used to choose an optimal value for n_clusters.

Calinski-Harabaz Index

If the ground truth labels are not known, the Calinski-Harabaz index (sklearn.metrics.
calinski_harabaz_score) can be used to evaluate the model, where a higher Calinski-Harabaz score
relates to a model with better defined clusters.

326 Chapter 3. User Guide

http://dx.doi.org/10.1016/0377-0427(87)90125-7

scikit-learn user guide, Release 0.19.1

For k clusters, the Calinski-Harabaz score s is given as the ratio of the between-clusters dispersion mean and the
within-cluster dispersion:

_ Te(By) N -k
k—1

S(k) N Tl"(Wk)

where B is the between group dispersion matrix and W is the within-cluster dispersion matrix defined by:

Wi = Z z (z —cq)(z — Cq)T

g=1lzeC,
By = an(cq —c)(cq — o)
q

with N be the number of points in our data, C, be the set of points in cluster g, c, be the center of cluster g, c be the
center of F, n, be the number of points in cluster g.

>>> from sklearn import metrics
>>> from sklearn.metrics import pairwise_distances
>>> from sklearn import datasets

>>> dataset = datasets.load_iris()
>>> X = dataset.data
>>> y = dataset.target

In normal usage, the Calinski-Harabaz index is applied to the results of a cluster analysis.

>>> import numpy as np
>>> from sklearn.cluster import KMeans

>>> kmeans_model = KMeans (n_clusters=3, random_state=1).fit (X)
>>> labels = kmeans_model.labels_

>>> metrics.calinski_harabaz_score (X, labels)

560.39...

Advantages

 The score is higher when clusters are dense and well separated, which relates to a standard concept of a cluster.

* The score is fast to compute

Drawbacks

* The Calinski-Harabaz index is generally higher for convex clusters than other concepts of clusters, such as
density based clusters like those obtained through DBSCAN.

References

* Calinski, T., & Harabasz, J. (1974). “A dendrite method for cluster analysis”. Communications in Statistics-
theory and Methods 3: 1-27. doi:10.1080/03610926.2011.560741.

3.2. Unsupervised learning 327

http://dx.doi.org/10.1080/03610926.2011.560741

scikit-learn user guide, Release 0.19.1

3.2.4 Biclustering

Biclustering can be performed with the module sklearn.cluster.bicluster. Biclustering algorithms simul-
taneously cluster rows and columns of a data matrix. These clusters of rows and columns are known as biclusters.
Each determines a submatrix of the original data matrix with some desired properties.

For instance, given a matrix of shape (10, 10), one possible bicluster with three rows and two columns induces a
submatrix of shape (3, 2):

>>> import numpy as np
>>> data = np.arange (100) .reshape (10, 10)

>>> rows = np.array ([0, 2, 3])I[:, np.newaxis]
>>> columns = np.array([1l, 2])
>>> data[rows, columns]
array ([[1, 21,
[21, 221,
[31, 3211)

For visualization purposes, given a bicluster, the rows and columns of the data matrix may be rearranged to make the
bicluster contiguous.

Algorithms differ in how they define biclusters. Some of the common types include:
* constant values, constant rows, or constant columns
¢ unusually high or low values
* submatrices with low variance
* correlated rows or columns

Algorithms also differ in how rows and columns may be assigned to biclusters, which leads to different bicluster
structures. Block diagonal or checkerboard structures occur when rows and columns are divided into partitions.

If each row and each column belongs to exactly one bicluster, then rearranging the rows and columns of the data matrix
reveals the biclusters on the diagonal. Here is an example of this structure where biclusters have higher average values
than the other rows and columns:

After biclustering; rearranged to show biclusters
0 50 100 150 200 250

Fig. 3.5: An example of biclusters formed by partitioning rows and columns.

In the checkerboard case, each row belongs to all column clusters, and each column belongs to all row clusters. Here
is an example of this structure where the variance of the values within each bicluster is small:

328 Chapter 3. User Guide

../auto_examples/bicluster/images/sphx_glr_plot_spectral_coclustering_003.png

scikit-learn user guide, Release 0.19.1

After biclustering; rearranged to show biclusters
0 50 100 150 200 250

Fig. 3.6: An example of checkerboard biclusters.

After fitting a model, row and column cluster membership can be found in the rows_ and columns_ attributes.
rows_[1] is a binary vector with nonzero entries corresponding to rows that belong to bicluster i. Similarly,
columns_ [1i] indicates which columns belong to bicluster 1.

Some models also have row_labels_ and column_labels_ attributes. These models partition the rows and
columns, such as in the block diagonal and checkerboard bicluster structures.

Note: Biclustering has many other names in different fields including co-clustering, two-mode clustering, two-way
clustering, block clustering, coupled two-way clustering, etc. The names of some algorithms, such as the Spectral
Co-Clustering algorithm, reflect these alternate names.

Spectral Co-Clustering

The SpectralCoclustering algorithm finds biclusters with values higher than those in the corresponding other
rows and columns. Each row and each column belongs to exactly one bicluster, so rearranging the rows and columns
to make partitions contiguous reveals these high values along the diagonal:

Note: The algorithm treats the input data matrix as a bipartite graph: the rows and columns of the matrix correspond
to the two sets of vertices, and each entry corresponds to an edge between a row and a column. The algorithm
approximates the normalized cut of this graph to find heavy subgraphs.

Mathematical formulation

An approximate solution to the optimal normalized cut may be found via the generalized eigenvalue decomposition of
the Laplacian of the graph. Usually this would mean working directly with the Laplacian matrix. If the original data
matrix A has shape m x n, the Laplacian matrix for the corresponding bipartite graph has shape (m +n) X (m + n).
However, in this case it is possible to work directly with A, which is smaller and more efficient.

The input matrix A is preprocessed as follows:

An — R—1/2AC—1/2

3.2. Unsupervised learning 329

../auto_examples/bicluster/images/sphx_glr_plot_spectral_biclustering_003.png

scikit-learn user guide, Release 0.19.1

Where R is the diagonal matrix with entry ¢ equal to) j A;; and C' is the diagonal matrix with entry j equal to
2 Aij-

The singular value decomposition, A, = UXV' T, provides the partitions of the rows and columns of A. A subset of
the left singular vectors gives the row partitions, and a subset of the right singular vectors gives the column partitions.

The ¢ = [log, k| singular vectors, starting from the second, provide the desired partitioning information. They are
used to form the matrix Z:

R™2U
Z =
c-12y
where the columns of U are us, . . ., ugy1, and similarly for V.

Then the rows of Z are clustered using k-means. The first n_rows labels provide the row partitioning, and the
remaining n_columns labels provide the column partitioning.

Examples:

» A demo of the Spectral Co-Clustering algorithm: A simple example showing how to generate a data matrix
with biclusters and apply this method to it.

* Biclustering documents with the Spectral Co-clustering algorithm: An example of finding biclusters in the
twenty newsgroup dataset.

References:

* Dhillon, Inderjit S, 2001. Co-clustering documents and words using bipartite spectral graph partitioning.

Spectral Biclustering

The SpectralBiclustering algorithm assumes that the input data matrix has a hidden checkerboard structure.
The rows and columns of a matrix with this structure may be partitioned so that the entries of any bicluster in the
Cartesian product of row clusters and column clusters are approximately constant. For instance, if there are two row
partitions and three column partitions, each row will belong to three biclusters, and each column will belong to two
biclusters.

The algorithm partitions the rows and columns of a matrix so that a corresponding blockwise-constant checkerboard
matrix provides a good approximation to the original matrix.

Mathematical formulation

The input matrix A is first normalized to make the checkerboard pattern more obvious. There are three possible
methods:

1. Independent row and column normalization, as in Spectral Co-Clustering. This method makes the rows sum to
a constant and the columns sum to a different constant.

2. Bistochastization: repeated row and column normalization until convergence. This method makes both rows
and columns sum to the same constant.

3. Log normalization: the log of the data matrix is computed: L = log A. Then the column mean L,., row mean
L.;, and overall mean L.. of L are computed. The final matrix is computed according to the formula

330 Chapter 3. User Guide

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.3011

scikit-learn user guide, Release 0.19.1

After normalizing, the first few singular vectors are computed, just as in the Spectral Co-Clustering algorithm.

If log normalization was used, all the singular vectors are meaningful. However, if independent normalization or
bistochastization were used, the first singular vectors, u; and v;. are discarded. From now on, the “first” singular
vectors refers to us . .. up41 and vy . .. vp41 except in the case of log normalization.

Given these singular vectors, they are ranked according to which can be best approximated by a piecewise-constant
vector. The approximations for each vector are found using one-dimensional k-means and scored using the Euclidean
distance. Some subset of the best left and right singular vector are selected. Next, the data is projected to this best
subset of singular vectors and clustered.

For instance, if p singular vectors were calculated, the g best are found as described, where ¢ < p. Let U be the matrix
with columns the g best left singular vectors, and similarly V' for the right. To partition the rows, the rows of A are
projected to a ¢ dimensional space: A x V. Treating the m rows of this m x ¢ matrix as samples and clustering using
k-means yields the row labels. Similarly, projecting the columns to AT % U and clustering this n x ¢ matrix yields the
column labels.

Examples:

* A demo of the Spectral Biclustering algorithm: a simple example showing how to generate a checkerboard
matrix and bicluster it.

References:

* Kluger, Yuval, et. al., 2003. Spectral biclustering of microarray data: coclustering genes and conditions.

Biclustering evaluation

There are two ways of evaluating a biclustering result: internal and external. Internal measures, such as cluster
stability, rely only on the data and the result themselves. Currently there are no internal bicluster measures in scikit-
learn. External measures refer to an external source of information, such as the true solution. When working with
real data the true solution is usually unknown, but biclustering artificial data may be useful for evaluating algorithms
precisely because the true solution is known.

To compare a set of found biclusters to the set of true biclusters, two similarity measures are needed: a similarity
measure for individual biclusters, and a way to combine these individual similarities into an overall score.

To compare individual biclusters, several measures have been used. For now, only the Jaccard index is implemented:

- |AN B|
Al +B| - AN B

J(A, B)

where A and B are biclusters, | A N B| is the number of elements in their intersection. The Jaccard index achieves its
minimum of 0 when the biclusters to not overlap at all and its maximum of 1 when they are identical.

Several methods have been developed to compare two sets of biclusters. For now, only consensus_score (Hochre-
iter et. al., 2010) is available:

1. Compute bicluster similarities for pairs of biclusters, one in each set, using the Jaccard index or a similar
measure.

2. Assign biclusters from one set to another in a one-to-one fashion to maximize the sum of their similarities. This
step is performed using the Hungarian algorithm.

3.2. Unsupervised learning 331

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.1608

scikit-learn user guide, Release 0.19.1

3. The final sum of similarities is divided by the size of the larger set.

The minimum consensus score, 0, occurs when all pairs of biclusters are totally dissimilar. The maximum score, 1,
occurs when both sets are identical.

References:

* Hochreiter, Bodenhofer, et. al., 2010. FABIA: factor analysis for bicluster acquisition.

3.2.5 Decomposing signals in components (matrix factorization problems)
Principal component analysis (PCA)

Exact PCA and probabilistic interpretation

PCA is used to decompose a multivariate dataset in a set of successive orthogonal components that explain a maximum
amount of the variance. In scikit-learn, PCA is implemented as a transformer object that learns n components in its
fit method, and can be used on new data to project it on these components.

The optional parameter whiten=True makes it possible to project the data onto the singular space while scaling
each component to unit variance. This is often useful if the models down-stream make strong assumptions on the
isotropy of the signal: this is for example the case for Support Vector Machines with the RBF kernel and the K-Means
clustering algorithm.

Below is an example of the iris dataset, which is comprised of 4 features, projected on the 2 dimensions that explain
most variance:

PCA of IRIS dataset

1.5 A
[
1.0 A
®
¢ ®
0.5
[]
0.0 ()
.I
—0.5 - ®
0.5 fe] °
104 o o seto;a
versicolor
virginica
T T T T T T T T
-3 -2 -1 0 1 2 3 4

The PCA object also provides a probabilistic interpretation of the PCA that can give a likelihood of data based on the
amount of variance it explains. As such it implements a score method that can be used in cross-validation:

332 Chapter 3. User Guide

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881408/
../auto_examples/decomposition/plot_pca_vs_lda.html

scikit-learn user guide, Release 0.19.1

Homoscedastic Noise

—75.0 A \
I
I
—-75.1 1
—75.2
0
S —75.3
&
> —— PCA scores
Y _75.4 —— FA scores
—— TRUTH: 10
—75.5 - === PCACV: 10
——- FactorAnalysis CV: 10
—75.6 4 === PCAMLE: 10
Shrunk Covariance MLE
LedoitWolf MLE
—75.7 4
T T T

T
0 10 20 30 40
nb of components

Examples:

* Comparison of LDA and PCA 2D projection of Iris dataset

* Model selection with Probabilistic PCA and Factor Analysis (FA)

Incremental PCA

The PCA object is very useful, but has certain limitations for large datasets. The biggest limitation is that PCA only sup-
ports batch processing, which means all of the data to be processed must fit in main memory. The TncrementalPCA
object uses a different form of processing and allows for partial computations which almost exactly match the results
of PCA while processing the data in a minibatch fashion. TncrementalPCA makes it possible to implement out-of-
core Principal Component Analysis either by:

e Usingits partial_fit method on chunks of data fetched sequentially from the local hard drive or a network
database.

* Calling its fit method on a memory mapped file using numpy . memmap.

IncrementalPCA only stores estimates of component and noise variances, in order update
explained_variance_ratio_ incrementally. This is why memory usage depends on the number of
samples per batch, rather than the number of samples to be processed in the dataset.

Examples:

e Incremental PCA

3.2. Unsupervised learning 333

../auto_examples/decomposition/plot_pca_vs_fa_model_selection.html

334

scikit-learn user guide, Release 0.19.1

Incremental PCA of iris dataset

Mean absolute unsigned error 0.002308
1.5
®
®
®
1.0
[
L]
[
@
.
0.5 A
@
on
L]
%
o ®
® .00
0.0 L
Se
L P]
<
o ®
—0.5 - °®
®
®
_1.0 4
® setosa
versicolor
virginica
_15 T T T T T T T
-4 -3 -2 -1 0

Chapter 3. User Guide

../auto_examples/decomposition/plot_incremental_pca.html

scikit-learn user guide, Release 0.19.1

1.5

PCA of iris dataset

1.0 A

0.5 1

0.0 A

—0.5 4

_1.0 -

-1.5

setosa
versicolor
virginica

3.2.

Unsupervised learning

335

../auto_examples/decomposition/plot_incremental_pca.html

scikit-learn user guide, Release 0.19.1

PCA using randomized SVD

It is often interesting to project data to a lower-dimensional space that preserves most of the variance, by dropping the
singular vector of components associated with lower singular values.

For instance, if we work with 64x64 pixel gray-level pictures for face recognition, the dimensionality of the data is
4096 and it is slow to train an RBF support vector machine on such wide data. Furthermore we know that the intrinsic
dimensionality of the data is much lower than 4096 since all pictures of human faces look somewhat alike. The
samples lie on a manifold of much lower dimension (say around 200 for instance). The PCA algorithm can be used to
linearly transform the data while both reducing the dimensionality and preserve most of the explained variance at the
same time.

The class PCA used with the optional parameter svd_solver="'randomized"' is very useful in that case: since
we are going to drop most of the singular vectors it is much more efficient to limit the computation to an approximated
estimate of the singular vectors we will keep to actually perform the transform.

For instance, the following shows 16 sample portraits (centered around 0.0) from the Olivetti dataset. On the right
hand side are the first 16 singular vectors reshaped as portraits. Since we only require the top 16 singular vectors of a
dataset with size ngampies = 400 and 1 feqiures = 64 X 64 = 4096, the computation time is less than 1s:

First centered Olivetti faces

!
|
J’

genfaces - PCA using randomized SVD - Train time 0.]

Note: with the optional parameter svd_solver='randomized"', we also need to give PCA the size of the lower-
dimensional space n_components as a mandatory input parameter.

336 Chapter 3. User Guide

../auto_examples/decomposition/plot_faces_decomposition.html
../auto_examples/decomposition/plot_faces_decomposition.html

scikit-learn user guide, Release 0.19.1

If we note Npax = max(Nsampless Neatures) a0d Nmin = MIN(Ngamples, Nfeatures)» the time complexity of the random-
ized PCA is O(n2 . - Neomponents) instead of O(n2 .. - numin) for the exact method implemented in PCA.

The memory footprint of randomized PCA is also proportional t0 2 - nmax * Neomponents iNste€ad of Nyax * Nmin for the
exact method.

Note: the implementation of inverse_transformin PCA with svd_solver='randomized' is not the exact
inverse transform of t ransform even when whiten=False (default).

Examples:

» Faces recognition example using eigenfaces and SVMs

* Faces dataset decompositions

References:

* “Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decomposi-
tions”” Halko, et al., 2009

Kernel PCA

KernelPCA is an extension of PCA which achieves non-linear dimensionality reduction through the use of
kernels (see Pairwise metrics, Affinities and Kernels). It has many applications including denoising, compres-
sion and structured prediction (kernel dependency estimation). KernelPCA supports both transform and
inverse_transform.

Original space Projection by PCA

1.0 A

Z‘.Z(P i
—1:0- | ﬁi#

o 1st princjpal comgonen%
Original spate atter inverse transform

2nd component

2.2 1 0.5 -

ofine
. % 8, ode) OIO":-EE'? \i‘iﬁ

L]
[]
2 3 ®
L) — -
2ER S Mog S 03 o
1.4 ™ ' 4 h -“ ‘
* o®
T T T T T T —1.0 - T T T
—0.75 -0.50 —-0.25 0.00 0.25 0.50 -0.5 00 05
1st principal component in space induced by ¢ X1

3.2. Unsupervised learning 337

http://arxiv.org/abs/0909.4061
http://arxiv.org/abs/0909.4061
../auto_examples/decomposition/plot_kernel_pca.html

scikit-learn user guide, Release 0.19.1

Examples:

e Kernel PCA

Sparse principal components analysis (SparsePCA and MiniBatchSparsePCA)

SparsePCA is a variant of PCA, with the goal of extracting the set of sparse components that best reconstruct the
data.

Mini-batch sparse PCA (MiniBatchSparsePCA) is a variant of SparsePCA that is faster but less accurate. The
increased speed is reached by iterating over small chunks of the set of features, for a given number of iterations.

Principal component analysis (PCA) has the disadvantage that the components extracted by this method have exclu-
sively dense expressions, i.e. they have non-zero coefficients when expressed as linear combinations of the original
variables. This can make interpretation difficult. In many cases, the real underlying components can be more naturally
imagined as sparse vectors; for example in face recognition, components might naturally map to parts of faces.

Sparse principal components yields a more parsimonious, interpretable representation, clearly emphasizing which of
the original features contribute to the differences between samples.

The following example illustrates 16 components extracted using sparse PCA from the Olivetti faces dataset. It can
be seen how the regularization term induces many zeros. Furthermore, the natural structure of the data causes the
non-zero coefficients to be vertically adjacent. The model does not enforce this mathematically: each component is
a vector h € R and there is no notion of vertical adjacency except during the human-friendly visualization as
64x64 pixel images. The fact that the components shown below appear local is the effect of the inherent structure of
the data, which makes such local patterns minimize reconstruction error. There exist sparsity-inducing norms that take
into account adjacency and different kinds of structure; see [Jen09] for a review of such methods. For more details on
how to use Sparse PCA, see the Examples section, below.

genfaces - PCA using randomized SVD - Train time 0.]

338 Chapter 3. User Guide

../auto_examples/decomposition/plot_faces_decomposition.html

scikit-learn user guide, Release 0.19.1

Sparse comp. - MiniBatchSparsePCA - Train time 1.2s

Note that there are many different formulations for the Sparse PCA problem. The one implemented here is based
on [Mrl09] . The optimization problem solved is a PCA problem (dictionary learning) with an ¢; penalty on the
components:

1
(U*,V*) = argmin = || X — UV|2 + ||V
vy 2
subject to ||Uk||2 = 1 for all 0 < k < Ncomponents

The sparsity-inducing ¢; norm also prevents learning components from noise when few training samples are available.
The degree of penalization (and thus sparsity) can be adjusted through the hyperparameter a lpha. Small values lead
to a gently regularized factorization, while larger values shrink many coefficients to zero.

Note: ~ While in the spirit of an online algorithm, the class MiniBatchSparsePCA does not implement
partial_fit because the algorithm is online along the features direction, not the samples direction.

Examples:

* Faces dataset decompositions

References: I

Truncated singular value decomposition and latent semantic analysis

TruncatedSVD implements a variant of singular value decomposition (SVD) that only computes the k largest
singular values, where k is a user-specified parameter.

When truncated SVD is applied to term-document matrices (as returned by CountVectorizer or
TfidfVectorizer), this transformation is known as latent semantic analysis (LSA), because it transforms such
matrices to a “semantic” space of low dimensionality. In particular, LSA is known to combat the effects of synonymy
and polysemy (both of which roughly mean there are multiple meanings per word), which cause term-document ma-
trices to be overly sparse and exhibit poor similarity under measures such as cosine similarity.

3.2. Unsupervised learning 339

../auto_examples/decomposition/plot_faces_decomposition.html
http://nlp.stanford.edu/IR-book/pdf/18lsi.pdf

scikit-learn user guide, Release 0.19.1

Note: LSA is also known as latent semantic indexing, LSI, though strictly that refers to its use in persistent indexes
for information retrieval purposes.

Mathematically, truncated SVD applied to training samples X produces a low-rank approximation X:
X~ Xp, = UpSi V'

After this operation, U;CX];r is the transformed training set with & features (called n_component s in the API).

To also transform a test set X, we multiply it with Vj:

X' =XV,

Note: Most treatments of LSA in the natural language processing (NLP) and information retrieval (IR) literature
swap the axes of the matrix X so that it has shape n_features X n_samples. We present LSA in a different way
that matches the scikit-learn API better, but the singular values found are the same.

TruncatedSVD is very similar to PCA, but differs in that it works on sample matrices X directly instead of their
covariance matrices. When the columnwise (per-feature) means of X are subtracted from the feature values, truncated
SVD on the resulting matrix is equivalent to PCA. In practical terms, this means that the TruncatedSVD transformer
accepts scipy.sparse matrices without the need to densify them, as densifying may fill up memory even for
medium-sized document collections.

While the TruncatedsSVD transformer works with any (sparse) feature matrix, using it on tf—idf matrices is recom-
mended over raw frequency counts in an LSA/document processing setting. In particular, sublinear scaling and inverse
document frequency should be turned on (sublinear_tf=True, use_idf=True) to bring the feature values
closer to a Gaussian distribution, compensating for LSA’s erroneous assumptions about textual data.

Examples:

* Clustering text documents using k-means

References:

* Christopher D. Manning, Prabhakar Raghavan and Hinrich Schiitze (2008), Introduction to Information Re-
trieval, Cambridge University Press, chapter 18: Matrix decompositions & latent semantic indexing

Dictionary Learning

Sparse coding with a precomputed dictionary

The SparseCoder object is an estimator that can be used to transform signals into sparse linear combination of
atoms from a fixed, precomputed dictionary such as a discrete wavelet basis. This object therefore does not implement
a £it method. The transformation amounts to a sparse coding problem: finding a representation of the data as a linear
combination of as few dictionary atoms as possible. All variations of dictionary learning implement the following
transform methods, controllable via the t ransform_method initialization parameter:

* Orthogonal matching pursuit (Orthogonal Matching Pursuit (OMP))

340 Chapter 3. User Guide

http://nlp.stanford.edu/IR-book/pdf/18lsi.pdf

scikit-learn user guide, Release 0.19.1

* Least-angle regression (Least Angle Regression)
» Lasso computed by least-angle regression
 Lasso using coordinate descent (Lasso)

* Thresholding

Thresholding is very fast but it does not yield accurate reconstructions. They have been shown useful in literature for
classification tasks. For image reconstruction tasks, orthogonal matching pursuit yields the most accurate, unbiased
reconstruction.

The dictionary learning objects offer, via the split_code parameter, the possibility to separate the positive and
negative values in the results of sparse coding. This is useful when dictionary learning is used for extracting features
that will be used for supervised learning, because it allows the learning algorithm to assign different weights to negative
loadings of a particular atom, from to the corresponding positive loading.

The split code for a single sample has length 2 * n_components and is constructed using the following rule:
First, the regular code of length n_components is computed. Then, the first n_components entries of the
split_code are filled with the positive part of the regular code vector. The second half of the split code is filled
with the negative part of the code vector, only with a positive sign. Therefore, the split_code is non-negative.

Examples:

* Sparse coding with a precomputed dictionary

Generic dictionary learning

Dictionary learning (DictionaryLearning) is a matrix factorization problem that amounts to finding a (usually
overcomplete) dictionary that will perform good at sparsely encoding the fitted data.

Representing data as sparse combinations of atoms from an overcomplete dictionary is suggested to be the way the
mammal primary visual cortex works. Consequently, dictionary learning applied on image patches has been shown
to give good results in image processing tasks such as image completion, inpainting and denoising, as well as for
supervised recognition tasks.

Dictionary learning is an optimization problem solved by alternatively updating the sparse code, as a solution to
multiple Lasso problems, considering the dictionary fixed, and then updating the dictionary to best fit the sparse code.

1
(U*,V*) =argmin —|| X — UVH% + «a||U]l1
uyv 2

subject to ||Vi||2 = 1 forall 0 < k < Natoms

3.2. Unsupervised learning 341

scikit-learn user guide, Release 0.19.1

genfaces - PCA using randomized SVD - Train time 0.]

After using such a procedure to fit the dictionary, the transform is simply a sparse coding step that shares the same
implementation with all dictionary learning objects (see Sparse coding with a precomputed dictionary).

The following image shows how a dictionary learned from 4x4 pixel image patches extracted from part of the image

of a raccoon face looks like.

Dictionary learned from face patches
Train time 8.8s on 94500 patches

FLUENERC WG
LS el (D
P T Y PN) P
ALENELEEEE
o 1 O ™ O S Y
M IS VP
«MLEE NSO
[P ol 2 O
FEOESFCO8N -
WG R

342

Chapter 3. User Guide

../auto_examples/decomposition/plot_faces_decomposition.html
../auto_examples/decomposition/plot_faces_decomposition.html
../auto_examples/decomposition/plot_image_denoising.html

scikit-learn user guide, Release 0.19.1

Examples:

* Image denoising using dictionary learning

References:

* “Online dictionary learning for sparse coding” J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009

Mini-batch dictionary learning

MiniBatchDictionaryLearning implements a faster, but less accurate version of the dictionary learning algo-
rithm that is better suited for large datasets.

By default, MiniBatchDictionaryLearning divides the data into mini-batches and optimizes in an online
manner by cycling over the mini-batches for the specified number of iterations. However, at the moment it does not
implement a stopping condition.

The estimator also implements partial_fit, which updates the dictionary by iterating only once over a mini-batch.
This can be used for online learning when the data is not readily available from the start, or for when the data does not

Patches of faces
s on 3200 patches

LN

_|
-

o
5

=
w
w

I 9 L e LN AT [=
MmN M-

(=]

LA 1/ N] X
AFARWANNE
o 1 % L T O o
(0] o (O Y
W ONEE
s [
L] Y]] N

[
]
M

fit into the memory.

Clustering for dictionary learning

Note that when using dictionary learning to extract a representation (e.g. for sparse coding) clustering can be a
good proxy to learn the dictionary. For instance the MiniBatchKMeans estimator is computationally efficient
and implements on-line learning with a partial_fit method.

Example: Online learning of a dictionary of parts of faces

Factor Analysis

In unsupervised learning we only have a dataset X = {x1, 3, ..., x,}. How can this dataset be described mathemat-
ically? A very simple continuous latent variable model for X is

zi=Wh;+pu+e

The vector h; is called “latent” because it is unobserved. ¢ is considered a noise term distributed according to a
Gaussian with mean 0 and covariance ¥ (i.e. € ~ N (0, ¥)), i is some arbitrary offset vector. Such a model is called

3.2. Unsupervised learning 343

http://www.di.ens.fr/sierra/pdfs/icml09.pdf
../auto_examples/cluster/plot_dict_face_patches.html

scikit-learn user guide, Release 0.19.1

“generative” as it describes how x; is generated from h;. If we use all the x; ‘s as columns to form a matrix X and all
the h; ‘s as columns of a matrix H then we can write (with suitably defined M and E):

X=WH+M+E

In other words, we decomposed matrix X.

If h; is given, the above equation automatically implies the following probabilistic interpretation:
p(zilhi) = N(Wh; + p, ¥)

For a complete probabilistic model we also need a prior distribution for the latent variable h. The most straightforward
assumption (based on the nice properties of the Gaussian distribution) is A ~ N(0,I). This yields a Gaussian as the
marginal distribution of z:

p(z) = N(u, WWT +)

Now, without any further assumptions the idea of having a latent variable ~ would be superfluous — = can be com-
pletely modelled with a mean and a covariance. We need to impose some more specific structure on one of these two
parameters. A simple additional assumption regards the structure of the error covariance ¥:

* ¥ = ¢2I: This assumption leads to the probabilistic model of PCA.

* U = diag(¢1, %2, ..., %¥,): This model is called FactorAnalysis, a classical statistical model. The matrix
W is sometimes called the “factor loading matrix”.

Both models essentially estimate a Gaussian with a low-rank covariance matrix. Because both models are probabilistic
they can be integrated in more complex models, e.g. Mixture of Factor Analysers. One gets very different models (e.g.
FastICA) if non-Gaussian priors on the latent variables are assumed.

Factor analysis can produce similar components (the columns of its loading matrix) to PCA. However, one can not
make any general statements about these components (e.g. whether they are orthogonal):

genfaces - PCA using randomized SVD - Train time 0.]

344 Chapter 3. User Guide

../auto_examples/decomposition/plot_faces_decomposition.html

scikit-learn user guide, Release 0.19.1

Factor Analysis components - FA - Train time 0.1s

The main advantage for Factor Analysis (over PCA is that it can model the variance in every direction of the input
space independently (heteroscedastic noise):

This allows better model selection than probabilistic PCA in the presence of heteroscedastic noise:

Examples:

* Model selection with Probabilistic PCA and Factor Analysis (FA)

Independent component analysis (ICA)

Independent component analysis separates a multivariate signal into additive subcomponents that are maximally in-
dependent. It is implemented in scikit-learn using the Fast ICA algorithm. Typically, ICA is not used for reducing
dimensionality but for separating superimposed signals. Since the ICA model does not include a noise term, for the
model to be correct, whitening must be applied. This can be done internally using the whiten argument or manually
using one of the PCA variants.

It is classically used to separate mixed signals (a problem known as blind source separation), as in the example below:

ICA can also be used as yet another non linear decomposition that finds components with some sparsity:

3.2. Unsupervised learning 345

../auto_examples/decomposition/plot_faces_decomposition.html
../auto_examples/decomposition/plot_faces_decomposition.html

scikit-learn user guide, Release 0.19.1

Heteroscedastic Noise

LIS

—78.0 4

PCA scores
—— FA scores
—— TRUTH: 10
-==- PCACV: 40

—=—=- FactorAnalysis CV: 10
——=- PCA MLE: 38

—79.0 4 Shrunk Covariance MLE
LedeoitWolf MLE

T
0 10 20 30 40
nb of components

CV scores

—78.5 4

Observations (mixed signal)

N)'.'“‘ .""f‘:‘." | -d-'u]
%1 .IV‘ Mﬂlﬂf‘””‘ﬁ L' «mﬁ-- vwzr- ’ W\

0 250 500 75q—rue]§89jrce%250 1500 1750 2000
2.5
oo | B et I T
—2.5 1

0 250 560 |CEP€CO\}8P\§{1 si&%s 1500 1750 2000
0.05 1 k i'h"
<] PSP
—0.05 1
250 500 Pd&%co&%?%d sEﬁQIs 1500 1750 2000

0_

"ﬁ l WW ‘ r" '
=10 - .

T
n 250 r\nn ','Rn mnn 17'5(1 Hnn '\'Iﬁﬂ ')nnn

346 Chapter 3. User Guide

../auto_examples/decomposition/plot_pca_vs_fa_model_selection.html
../auto_examples/decomposition/plot_ica_blind_source_separation.html

scikit-learn user guide, Release 0.19.1

genfaces - PCA using randomized SVD - Train time 0.]

Independent components - FastICA - Train time 0.3s

)

Examples:

* Blind source separation using FastICA
e FastICA on 2D point clouds

e Faces dataset decompositions

Non-negative matrix factorization (NMF or NNMF)

NMF with the Frobenius norm

NME! is an alternative approach to decomposition that assumes that the data and the components are non-negative.
NMF can be plugged in instead of PCA or its variants, in the cases where the data matrix does not contain negative
values. It finds a decomposition of samples X into two matrices W and H of non-negative elements, by optimizing the
distance d between X and the matrix product W H. The most widely used distance function is the squared Frobenius

! “Learning the parts of objects by non-negative matrix factorization” D. Lee, S. Seung, 1999

3.2. Unsupervised learning 347

../auto_examples/decomposition/plot_faces_decomposition.html
../auto_examples/decomposition/plot_faces_decomposition.html
http://www.columbia.edu/~jwp2128/Teaching/W4721/papers/nmf_nature.pdf

scikit-learn user guide, Release 0.19.1

norm, which is an obvious extension of the Euclidean norm to matrices:

1 1
dFro(Xa Y) = §||X - Y||%‘ro = 5 Z(Xl - Y;;j)2
2%
Unlike PCA, the representation of a vector is obtained in an additive fashion, by superimposing the components,
without subtracting. Such additive models are efficient for representing images and text.

It has been observed in [Hoyer, 2004]” that, when carefully constrained, NMF can produce a parts-based representation
of the dataset, resulting in interpretable models. The following example displays 16 sparse components found by NMVE
from the images in the Olivetti faces dataset, in comparison with the PCA eigenfaces.

genfaces - PCA using randomized SVD - Train time 0.]

Non-negative components - NMF - Train time 0.4s

The init attribute determines the initialization method applied, which has a great impact on the performance of the
method. NMF implements the method Nonnegative Double Singular Value Decomposition. NNDSVD* is based on
two SVD processes, one approximating the data matrix, the other approximating positive sections of the resulting
partial SVD factors utilizing an algebraic property of unit rank matrices. The basic NNDSVD algorithm is better fit
for sparse factorization. Its variants NNDSVDa (in which all zeros are set equal to the mean of all elements of the
data), and NNDSVDar (in which the zeros are set to random perturbations less than the mean of the data divided by
100) are recommended in the dense case.

2 “Non-negative Matrix Factorization with Sparseness Constraints” P. Hoyer, 2004
4 “SVD based initialization: A head start for nonnegative matrix factorization” C. Boutsidis, E. Gallopoulos, 2008

348 Chapter 3. User Guide

../auto_examples/decomposition/plot_faces_decomposition.html
../auto_examples/decomposition/plot_faces_decomposition.html
http://www.jmlr.org/papers/volume5/hoyer04a/hoyer04a.pdf
http://scgroup.hpclab.ceid.upatras.gr/faculty/stratis/Papers/HPCLAB020107.pdf

scikit-learn user guide, Release 0.19.1

Note that the Multiplicative Update (‘mu’) solver cannot update zeros present in the initialization, so it leads to poorer
results when used jointly with the basic NNDSVD algorithm which introduces a lot of zeros; in this case, NNDSVDa
or NNDSVDar should be preferred.

NMF can also be initialized with correctly scaled random non-negative matrices by setting init="random". An
integer seed or a RandomState can also be passed to random_state to control reproducibility.

In NMF, L1 and L2 priors can be added to the loss function in order to regularize the model. The L2 prior uses the
Frobenius norm, while the L1 prior uses an elementwise L1 norm. As in ElasticNet, we control the combination
of L1 and L2 with the 11_ ratio (p) parameter, and the intensity of the regularization with the alpha («) parameter.
Then the priors terms are:

a(l—p) a(l—p)
ap| Wik + apl[H|[+ == Wl[to + = Hl[fro
and the regularized objective function is:
o(l —p) o(l—p)
dFrO(X7 WH) + OZPHWul + apHHHl + THWH%‘N) + THHH%N)

NMF regularizes both W and H. The public function non_negative_factorization allows a finer control
through the regularization attribute, and may regularize only W, only H, or both.

NMF with a beta-divergence

As described previously, the most widely used distance function is the squared Frobenius norm, which is an obvious
extension of the Euclidean norm to matrices:
1 1
dFro(Xa Y) = §||X - YH%‘TU = 5 Z(le - }/ij)2
(2%
Other distance functions can be used in NMF as, for example, the (generalized) Kullback-Leibler (KL) divergence,
also referred as I-divergence:

Xi;
drp(X,Y) =Y (X log(37+) — Xij +Yiy)
- ij

]

Or, the Itakura-Saito (IS) divergence:

2 og(2id) — 1)

(2%

These three distances are special cases of the beta-divergence family, with 3 = 2,1,0 respectively®. The beta-
divergence are defined by :

1 —
d5(X,Y) = D gy (Xig + (B = DY = XY™
1,

Note that this definition is not valid if 8 € (0; 1), yet it can be continously extended to the definitions of dx, and d;g
respectively.

NMF implements two solvers, using Coordinate Descent (‘cd’)’, and Multiplicative Update (‘mu’)®. The ‘mu’ solver
can optimize every beta-divergence, including of course the Frobenius norm (5 = 2), the (generalized) Kullback-
Leibler divergence (S = 1) and the Itakura-Saito divergence (5 = 0). Note that for 8 € (1;2), the ‘mu’ solver is

6 “Algorithms for nonnegative matrix factorization with the beta-divergence” C. Fevotte, J. Idier, 2011
5 “Fast local algorithms for large scale nonnegative matrix and tensor factorizations.” A. Cichocki, P. Anh-Huy, 2009

3.2. Unsupervised learning 349

http://http://arxiv.org/pdf/1010.1763v3.pdf
http://www.bsp.brain.riken.jp/publications/2009/Cichocki-Phan-IEICE_col.pdf

scikit-learn user guide, Release 0.19.1

beta-divergence(1, x)

3.0
—— beta = 0.0
—— beta =0.5
2.5 —— beta = 1.0
beta=1.5
—— beta=2.0
2.0 A
1.5 4
1.0 1
0.5
0.0 T
0.0 0.5

significantly faster than for other values of 5. Note also that with a negative (or 0, i.e. ‘itakura-saito’) 3, the input
matrix cannot contain zero values.

The ‘cd’ solver can only optimize the Frobenius norm. Due to the underlying non-convexity of NMF, the different
solvers may converge to different minima, even when optimizing the same distance function.

NMF is best used with the £it_transform method, which returns the matrix W. The matrix H is stored into the
fitted model in the component s__ attribute; the method t ransform will decompose a new matrix X_new based on
these stored components:

>>> import numpy as np
>>> X = np.array([[1, 11, (2, 1], [3, 1.21, [4, 11, [5, 0.8], [6, 111)
>>> from sklearn.decomposition import NMF

>>> model = NMF (n_components=2, init='random', random_state=0)
>>> W = model.fit_transform(X)
>>> H = model.components_

>>> X _new = np.array([([l, O], [1, ¢.1], (1, O], [1, 41, [3.2, 11, [0, 4]])

>>> W_new = model.transform(X_new)

Examples:

* Faces dataset decompositions

* Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

* Beta-divergence loss functions

References: I

350 Chapter 3. User Guide

../auto_examples/decomposition/plot_beta_divergence.html

scikit-learn user guide, Release 0.19.1

Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation is a generative probabilistic model for collections of discrete dataset such as text corpora.
It is also a topic model that is used for discovering abstract topics from a collection of documents.

The graphical model of LDA is a three-level Bayesian model:

o 0 b4 woN

M

When modeling text corpora, the model assumes the following generative process for a corpus with D documents and
K topics:

1. For each topic k, draw) ~ Dirichlet(n), k =1...K

2. For each document d, draw 6, ~ Dirichlet(a), d = 1...D
3. For each word 7 in document d:

1. Draw a topic index z4; ~ Multinomial(f;)

2. Draw the observed word w;; ~ Multinomial(beta,,.)

For parameter estimation, the posterior distribution is:
p(2,0, Bla, m)
p(wla,n)

Since the posterior is intractable, variational Bayesian method uses a simpler distribution ¢(z, 8, 8|\, ¢,~) to approx-
imate it, and those variational parameters A, ¢, v are optimized to maximize the Evidence Lower Bound (ELBO):

(2,0, Blw, a,m) =

log P(wla,n) > L(w,¢,7, \) 2 E,[log p(w, 2,0, Bla,n)] — Eyllog q(z,0, B)]

Maximizing ELBO is equivalent to minimizing the Kullback-Leibler(KL) divergence between ¢(z, ¢, 3) and the true
posterior p(z, 8, f|w, a, n).

LatentDirichletAllocation implements online variational Bayes algorithm and supports both online and
batch update method. While batch method updates variational variables after each full pass through the data, online
method updates variational variables from mini-batch data points.

Note: Although online method is guaranteed to converge to a local optimum point, the quality of the optimum point
and the speed of convergence may depend on mini-batch size and attributes related to learning rate setting.

3.2. Unsupervised learning 351

scikit-learn user guide, Release 0.19.1

When LatentDirichletAllocation is applied on a “document-term” matrix, the matrix will be decomposed
into a “topic-term” matrix and a “document-topic”’ matrix. While “topic-term” matrix is stored as components__in
the model, “document-topic” matrix can be calculated from t ransform method.

LatentDirichletAllocation alsoimplements partial_fit method. This is used when data can be fetched
sequentially.

Examples:

* Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

References:

» “Latent Dirichlet Allocation” D. Blei, A. Ng, M. Jordan, 2003
* “Online Learning for Latent Dirichlet Allocation” M. Hoffman, D. Blei, F. Bach, 2010

* “Stochastic Variational Inference”” M. Hoffman, D. Blei, C. Wang, J. Paisley, 2013

3.2.6 Covariance estimation

Many statistical problems require at some point the estimation of a population’s covariance matrix, which can be seen
as an estimation of data set scatter plot shape. Most of the time, such an estimation has to be done on a sample whose
properties (size, structure, homogeneity) has a large influence on the estimation’s quality. The sklearn.covariance
package aims at providing tools affording an accurate estimation of a population’s covariance matrix under various
settings.

We assume that the observations are independent and identically distributed (i.i.d.).

Empirical covariance

The covariance matrix of a data set is known to be well approximated with the classical maximum likelihood estimator
(or “empirical covariance”), provided the number of observations is large enough compared to the number of features
(the variables describing the observations). More precisely, the Maximum Likelihood Estimator of a sample is an
unbiased estimator of the corresponding population covariance matrix.

The empirical covariance matrix of a sample can be computed using the empirical covariance function of the
package, or by fitting an EmpiricalCovariance object to the data sample with the EmpiricalCovariance.
fit method. Be careful that depending whether the data are centered or not, the result will be differ-
ent, so one may want to use the assume_centered parameter accurately. More precisely if one uses
assume_centered=False, then the test set is supposed to have the same mean vector as the training set. If
not so, both should be centered by the user, and assume_centered=True should be used.

Examples:

o See Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood for an example on how to fit an
EmpiricalCovariance object to data.

352 Chapter 3. User Guide

https://www.cs.princeton.edu/~blei/papers/BleiNgJordan2003.pdf
https://www.cs.princeton.edu/~blei/papers/HoffmanBleiBach2010b.pdf
http://www.columbia.edu/~jwp2128/Papers/HoffmanBleiWangPaisley2013.pdf

scikit-learn user guide, Release 0.19.1

Shrunk Covariance

Basic shrinkage

Despite being an unbiased estimator of the covariance matrix, the Maximum Likelihood Estimator is not a good esti-
mator of the eigenvalues of the covariance matrix, so the precision matrix obtained from its inversion is not accurate.
Sometimes, it even occurs that the empirical covariance matrix cannot be inverted for numerical reasons. To avoid
such an inversion problem, a transformation of the empirical covariance matrix has been introduced: the shrinkage.

In the scikit-learn, this transformation (with a user-defined shrinkage coefficient) can be directly applied to a pre-
computed covariance with the shrunk_covariance method. Also, a shrunk estimator of the covariance can be
fitted to data with a ShrunkCovariance object and its ShrunkCovariance. fit method. Again, depending
whether the data are centered or not, the result will be different, so one may want to use the assume_centered
parameter accurately.

Mathematically, this shrinkage consists in reducing the ratio between the smallest and the largest eigenvalue of the
empirical covariance matrix. It can be done by simply shifting every eigenvalue according to a given offset, which is

equivalent of finding the 12-penalized Maximum Likelihood Estimator of the covariance matrix. In practice, shrinkage

boils down to a simple a convex transformation : Ygpunk = (1 — a)i] + a%ld.

Choosing the amount of shrinkage, cv amounts to setting a bias/variance trade-off, and is discussed below.

Examples:

» See Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood for an example on how to fit a
ShrunkCovariance object to data.

Ledoit-Wolf shrinkage

In their 2004 paper!, O. Ledoit and M. Wolf propose a formula so as to compute the optimal shrinkage coefficient o
that minimizes the Mean Squared Error between the estimated and the real covariance matrix.

The Ledoit-Wolf estimator of the covariance matrix can be computed on a sample with the Iedoit_wol f function of
the sklearn.covariance package, or it can be otherwise obtained by fitting a LedoitWol £ object to the same sample.

Note: Case when population covariance matrix is isotropic

It is important to note that when the number of samples is much larger than the number of features, one would expect
that no shrinkage would be necessary. The intuition behind this is that if the population covariance is full rank, when
the number of sample grows, the sample covariance will also become positive definite. As a result, no shrinkage would
necessary and the method should automatically do this.

This, however, is not the case in the Ledoit-Wolf procedure when the population covariance happens to be a multiple of
the identity matrix. In this case, the Ledoit-Wolf shrinkage estimate approaches 1 as the number of samples increases.
This indicates that the optimal estimate of the covariance matrix in the Ledoit-Wolf sense is multiple of the identity.
Since the population covariance is already a multiple of the identity matrix, the Ledoit-Wolf solution is indeed a
reasonable estimate.

1 0. Ledoit and M. Wolf, “A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices”, Journal of Multivariate Analysis, Vol-
ume 88, Issue 2, February 2004, pages 365-411.

3.2. Unsupervised learning 353

scikit-learn user guide, Release 0.19.1

Examples:

» See Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood for an example on how to fit a
LedoitWolf object to data and for visualizing the performances of the Ledoit-Wolf estimator in terms of
likelihood.

References: I

Oracle Approximating Shrinkage

Under the assumption that the data are Gaussian distributed, Chen et al.” derived a formula aimed at choosing a
shrinkage coefficient that yields a smaller Mean Squared Error than the one given by Ledoit and Wolf’s formula. The
resulting estimator is known as the Oracle Shrinkage Approximating estimator of the covariance.

The OAS estimator of the covariance matrix can be computed on a sample with the oas function of the
sklearn.covariance package, or it can be otherwise obtained by fitting an OAS object to the same sample.

Regularized covariance: likelihood and shrinkage coefficient

6 x 102 —— Negative qu-l\kel.lhot.)d
© —-- Real covariance likelihood
E = | edoit-Wolf estimate
H = OAS estimate
u . . .
e 4% 102 Cross-validation best estimate
[=]
o
e 2
£ 3x10
o
=
o
2 2
2 2%10
=2
©
[=1]
u
c
o
o
b=
w
102 5 1
T
102 1071 100

Regularization parameter: shrinkage coefficient

Fig. 3.7: Bias-variance trade-off when setting the shrinkage: comparing the choices of Ledoit-Wolf and OAS estima-
tors

References: I

Examples:

» See Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood for an example on how to fit an
OAS object to data.

2 Chen et al., “Shrinkage Algorithms for MMSE Covariance Estimation”, IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.

354 Chapter 3. User Guide

../auto_examples/covariance/plot_covariance_estimation.html

scikit-learn user guide, Release 0.19.1

» See Ledoit-Wolf vs OAS estimation to visualize the Mean Squared Error difference between a LedoitWolf

and an OAS estimator of the covariance.

Comparison of covariance estimators

60 1 —— Ledoit-Wolf
- DAS
=
5 40
=
o
g
2 20
un
L) L :
0] T T T T T
5 10 15 20 25 30
1.00 -
© 0.95 -
[1+]
-
£ 0.90 -
@
0.85 == Ledoit-Wolf
OAS
T T T T T
5 10 15 20 25 30

n_samples

Sparse inverse covariance

The matrix inverse of the covariance matrix, often called the precision matrix, is proportional to the partial correlation
matrix. It gives the partial independence relationship. In other words, if two features are independent conditionally on
the others, the corresponding coefficient in the precision matrix will be zero. This is why it makes sense to estimate a
sparse precision matrix: by learning independence relations from the data, the estimation of the covariance matrix is
better conditioned. This is known as covariance selection.

In the small-samples situation, in which n_samples is on the order of n_features or smaller, sparse inverse
covariance estimators tend to work better than shrunk covariance estimators. However, in the opposite situation, or for
very correlated data, they can be numerically unstable. In addition, unlike shrinkage estimators, sparse estimators are
able to recover off-diagonal structure.

The GraphLasso estimator uses an 11 penalty to enforce sparsity on the precision matrix: the higher its alpha
parameter, the more sparse the precision matrix. The corresponding GraphLassoCV object uses cross-validation to
automatically set the alpha parameter.

Note: Structure recovery

Recovering a graphical structure from correlations in the data is a challenging thing. If you are interested in such
recovery keep in mind that:

* Recovery is easier from a correlation matrix than a covariance matrix: standardize your observations before
running GraphLasso

e If the underlying graph has nodes with much more connections than the average node, the algorithm will miss
some of these connections.

3.2. Unsupervised learning 355

../auto_examples/covariance/plot_lw_vs_oas.html

scikit-learn user guide, Release 0.19.1

Empirical covariance Ledoit-Wolf covariance GraphLasso covariance True covariance
| .l
n "u
Empirical precision Ledoit-Wolf precision Graphlasso precision True precision

"

Fig. 3.8: A comparison of maximum likelihood, shrinkage and sparse estimates of the covariance and precision matrix
in the very small samples settings.

* If your number of observations is not large compared to the number of edges in your underlying graph, you will
not recover it.

* Even if you are in favorable recovery conditions, the alpha parameter chosen by cross-validation (e.g. using the
GraphLassoCV object) will lead to selecting too many edges. However, the relevant edges will have heavier
weights than the irrelevant ones.

The mathematical formulation is the following:

K = argming (trSK — logdetK + o K||1)

Where K is the precision matrix to be estimated, and S is the sample covariance matrix. || K ||; is the sum of the abso-
lute values of off-diagonal coefficients of K. The algorithm employed to solve this problem is the GLasso algorithm,
from the Friedman 2008 Biostatistics paper. It is the same algorithm as in the R glasso package.

Examples:

* Sparse inverse covariance estimation: example on synthetic data showing some recovery of a structure, and
comparing to other covariance estimators.

» Visualizing the stock market structure: example on real stock market data, finding which symbols are most
linked.

References:

» Friedman et al, “Sparse inverse covariance estimation with the graphical lasso”, Biostatistics 9, pp 432, 2008

356 Chapter 3. User Guide

../auto_examples/covariance/plot_sparse_cov.html
http://biostatistics.oxfordjournals.org/content/9/3/432.short

scikit-learn user guide, Release 0.19.1

Robust Covariance Estimation

Real data set are often subjects to measurement or recording errors. Regular but uncommon observations may also
appear for a variety of reason. Every observation which is very uncommon is called an outlier. The empirical covari-
ance estimator and the shrunk covariance estimators presented above are very sensitive to the presence of outlying
observations in the data. Therefore, one should use robust covariance estimators to estimate the covariance of its real
data sets. Alternatively, robust covariance estimators can be used to perform outlier detection and discard/downweight
some observations according to further processing of the data.

The sklearn.covariance package implements a robust estimator of covariance, the Minimum Covariance De-
terminant”.

Minimum Covariance Determinant

The Minimum Covariance Determinant estimator is a robust estimator of a data set’s covariance introduced by P.J.
Rousseeuw in’. The idea is to find a given proportion (h) of “good” observations which are not outliers and compute
their empirical covariance matrix. This empirical covariance matrix is then rescaled to compensate the performed
selection of observations (“consistency step”). Having computed the Minimum Covariance Determinant estimator,
one can give weights to observations according to their Mahalanobis distance, leading to a reweighted estimate of the
covariance matrix of the data set (“reweighting step”).

Rousseeuw and Van Driessen? developed the FastMCD algorithm in order to compute the Minimum Covariance
Determinant. This algorithm is used in scikit-learn when fitting an MCD object to data. The FastMCD algorithm also
computes a robust estimate of the data set location at the same time.

Raw estimates can be accessed as raw_location_ and raw_covariance_ attributes of a MinCovDet robust
covariance estimator object.

References: I

Examples:

» See Robust vs Empirical covariance estimate for an example on how to fit a MinCovDet object to data and
see how the estimate remains accurate despite the presence of outliers.

e See Robust covariance estimation and Mahalanobis distances relevance to visualize the difference between
EmpiricalCovariance and MinCovDet covariance estimators in terms of Mahalanobis distance (so
we get a better estimate of the precision matrix too).

3 P.J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984.
4 A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for
Quality, TECHNOMETRICS.

3.2. Unsupervised learning 357

scikit-learn user guide, Release 0.19.1

Influence of outliers on location and covariance | Separating inliers from outliers using a Mahalanobis

estimates distance
Mahalanobis distances of a contaminated data set:
. —-—- MLE dist
Influence of outliers on the location estimation | | s m T TR T T T e e _robust dist
@ inliers
== Robust location e outliers
o 0.6 4 —— Full data set mean e
? == Pure data set mean
2 04
E 0.2 q 1. from non-robust estimates 2. from robust estimates
== —— = — (Maximum Likelihood) (Minimum Covariance Determinant)
0.0 1 — r T T r T T +
0 Influefce of odliers ofthe cov@tiance #5timatidh . + . f
T
4 ,—+— Robust covariance (mcd) 4‘;]' Ju_-; +
/ — Full data set empirical covariance 5 b % 5 kS
w 3 /' —— Pure data set empirical covariance _- + _- i
] ! © : ©
y +
g2 / = = $
© b © +
: s [R
= =
04 e $ e \Tl
T T T T T T T + +
0 5 10 15 20 25 30

Amount of contamination (%)

inliers outliers inliers autliers

3.2.7 Novelty and Outlier Detection

Many applications require being able to decide whether a new observation belongs to the same distribution as existing
observations (it is an inlier), or should be considered as different (it is an outlier). Often, this ability is used to clean
real data sets. Two important distinction must be made:

novelty detection The training data is not polluted by outliers, and we are interested in detecting anoma-
lies in new observations.

outlier detection The training data contains outliers, and we need to fit the central mode of the training
data, ignoring the deviant observations.

The scikit-learn project provides a set of machine learning tools that can be used both for novelty or outliers detection.
This strategy is implemented with objects learning in an unsupervised way from the data:

’estimator.fit(x_train)

new observations can then be sorted as inliers or outliers with a predict method:

’estimator.predict(X_test)

Inliers are labeled 1, while outliers are labeled -1.

Novelty Detection

Consider a data set of n observations from the same distribution described by p features. Consider now that we add one
more observation to that data set. Is the new observation so different from the others that we can doubt it is regular?
(i.e. does it come from the same distribution?) Or on the contrary, is it so similar to the other that we cannot distinguish
it from the original observations? This is the question addressed by the novelty detection tools and methods.

In general, it is about to learn a rough, close frontier delimiting the contour of the initial observations distribution,
plotted in embedding p-dimensional space. Then, if further observations lay within the frontier-delimited subspace,
they are considered as coming from the same population than the initial observations. Otherwise, if they lay outside
the frontier, we can say that they are abnormal with a given confidence in our assessment.

The One-Class SVM has been introduced by Scholkopf et al. for that purpose and implemented in the Support Vector
Machines module in the svm.OneClassSVM object. It requires the choice of a kernel and a scalar parameter to

358 Chapter 3. User Guide

../auto_examples/covariance/plot_robust_vs_empirical_covariance.html
../auto_examples/covariance/plot_mahalanobis_distances.html

scikit-learn user guide, Release 0.19.1

define a frontier. The RBF kernel is usually chosen although there exists no exact formula or algorithm to set its
bandwidth parameter. This is the default in the scikit-learn implementation. The v parameter, also known as the
margin of the One-Class SVM, corresponds to the probability of finding a new, but regular, observation outside the
frontier.

References:

» Estimating the support of a high-dimensional distribution Scholkopf, Bernhard, et al. Neural computation
13.7 (2001): 1443-1471.

Examples:

e See One-class SVM with non-linear kernel (RBF) for visualizing the frontier learned around some data by a
svm.OneClassSVM object.

Novelty Detection

— |earned frontier
4 © training observations
@ nhew regular observations
© new abnormal observations
5] 0
0 -
_2 -
_4 -

-4 -2 0 2 4
error train: 19/200 ; errors novel regular: 5/40 ; errors novel abnormal: 1/40

Outlier Detection

Outlier detection is similar to novelty detection in the sense that the goal is to separate a core of regular observations
from some polluting ones, called “outliers”. Yet, in the case of outlier detection, we don’t have a clean data set
representing the population of regular observations that can be used to train any tool.

Fitting an elliptic envelope

One common way of performing outlier detection is to assume that the regular data come from a known distribution
(e.g. data are Gaussian distributed). From this assumption, we generally try to define the “shape” of the data, and can
define outlying observations as observations which stand far enough from the fit shape.

3.2. Unsupervised learning 359

http://dl.acm.org/citation.cfm?id=1119749
../auto_examples/svm/plot_oneclass.html

scikit-learn user guide, Release 0.19.1

The scikit-learn provides an object covariance.EllipticEnvelope that fits a robust covariance estimate to
the data, and thus fits an ellipse to the central data points, ignoring points outside the central mode.

For instance, assuming that the inlier data are Gaussian distributed, it will estimate the inlier location and covariance
in a robust way (i.e. without being influenced by outliers). The Mahalanobis distances obtained from this estimate is
used to derive a measure of outlyingness. This strategy is illustrated below.

Mahalanobis distances of a contaminated data set:

L —=- MLE dist
----- robust dist
@ inliers
@ outliers
N PP L
1. from non-robust estimates 2. from robust estimates
(Maximum Likelihood) (Minimum Covariance Determinant)

+ b

—_ b —_ +
4 4

0 - 4 1 0 ¥

N + L M
= + =]
—_ + —_

© H © i
= =

© F—‘ be © +

=| L[] = L :

= $ o= \Tl
+ +
inliers otitliers inliers olitliers

Examples:

e See Robust covariance estimation and Mahalanobis distances relevance for an illustration of the dif-
ference between using a standard (covariance.EmpiricalCovariance) or a robust estimate
(covariance.MinCovDet) of location and covariance to assess the degree of outlyingness of an ob-
servation.

References:

* Rousseeuw, PJ., Van Driessen, K. “A fast algorithm for the minimum covariance determinant estimator”
Technometrics 41(3), 212 (1999)

Isolation Forest

One efficient way of performing outlier detection in high-dimensional datasets is to use random forests. The
ensemble.IsolationForest ‘isolates’ observations by randomly selecting a feature and then randomly se-
lecting a split value between the maximum and minimum values of the selected feature.

Since recursive partitioning can be represented by a tree structure, the number of splittings required to isolate a sample
is equivalent to the path length from the root node to the terminating node.

360 Chapter 3. User Guide

../auto_examples/covariance/plot_mahalanobis_distances.html

scikit-learn user guide, Release 0.19.1

This path length, averaged over a forest of such random trees, is a measure of normality and our decision function.

Random partitioning produces noticeably shorter paths for anomalies. Hence, when a forest of random trees collec-
tively produce shorter path lengths for particular samples, they are highly likely to be anomalies.

This strategy is illustrated below.

IsolationForest

o training observations
® new regular observations
e new abnormal observations

Examples:

e See IsolationForest example for an illustration of the use of IsolationForest.

» See Outlier detection with several methods. for a comparison of ensemble.IsolationForest with
neighbors.LocalOutlierFactor, svm.OneClassSVM (tuned to perform like an outlier detection
method) and a covariance-based outlier detection with covariance.EllipticEnvelope.

References:

e Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. “Isolation forest.” Data Mining, 2008. ICDM‘08. Eighth
IEEE International Conference on.

Local Outlier Factor

Another efficient way to perform outlier detection on moderately high dimensional datasets is to use the Local Outlier
Factor (LOF) algorithm.

The neighbors. LocalOutlierFactor (LOF) algorithm computes a score (called local outlier factor) reflect-
ing the degree of abnormality of the observations. It measures the local density deviation of a given data point with
respect to its neighbors. The idea is to detect the samples that have a substantially lower density than their neighbors.

3.2. Unsupervised learning 361

../auto_examples/ensemble/plot_isolation_forest.html

scikit-learn user guide, Release 0.19.1

In practice the local density is obtained from the k-nearest neighbors. The LOF score of an observation is equal to the
ratio of the average local density of his k-nearest neighbors, and its own local density: a normal instance is expected
to have a local density similar to that of its neighbors, while abnormal data are expected to have much smaller local
density.

The number k of neighbors considered, (alias parameter n_neighbors) is typically chosen 1) greater than the minimum
number of objects a cluster has to contain, so that other objects can be local outliers relative to this cluster, and 2)
smaller than the maximum number of close by objects that can potentially be local outliers. In practice, such informa-
tions are generally not available, and taking n_neighbors=20 appears to work well in general. When the proportion of
outliers is high (i.e. greater than 10 %, as in the example below), n_neighbors should be greater (n_neighbors=35 in
the example below).

The strength of the LOF algorithm is that it takes both local and global properties of datasets into consideration: it can
perform well even in datasets where abnormal samples have different underlying densities. The question is not, how
isolated the sample is, but how isolated it is with respect to the surrounding neighborhood.

This strategy is illustrated below.

Local Outlier Factor (LOF)

o normal observations
@ abnormal observations

Examples:

e See Anomaly detection with Local Outlier Factor (LOF) for an illustration of the use of neighbors.
LocalOutlierFactor.

e See Outlier detection with several methods. for a comparison with other anomaly detection methods.

References:

* Breunig, Kriegel, Ng, and Sander (2000) LOF: identifying density-based local outliers. Proc. ACM SIGMOD

362 Chapter 3. User Guide

../auto_examples/neighbors/plot_lof.html
http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf

scikit-learn user guide, Release 0.19.1

One-class SVM versus Elliptic Envelope versus Isolation Forest versus LOF

Strictly-speaking, the One-class SVM is not an outlier-detection method, but a novelty-detection method: its training
set should not be contaminated by outliers as it may fit them. That said, outlier detection in high-dimension, or without
any assumptions on the distribution of the inlying data is very challenging, and a One-class SVM gives useful results
in these situations.

The examples below illustrate how the performance of the covariance.EllipticEnvelope degrades as the
data is less and less unimodal. The svm. OneClassSVM works better on data with multiple modes and ensemble.
IsolationForest and neighbors.LocalOutlierFactor perform well in every cases.

3.2. Unsupervised learning 363

scikit-learn user guide, Release 0.19.1

Table 3.1: Comparing One-class SVM, Isolation Forest, LOF, and

Elliptic Envelope

For a inlier mode well-centered and ellip-
tic, the svm.OneClassSVM is not able to
benefit from the rotational symmetry of the
inlier population. In addition, it fits a bit the
outliers present in the training set. On the
opposite, the decision rule based on fitting
an covariance.EllipticEnvelope
learns an ellipse, which fits well the
inlier distribution. The ensemble.
IsolationForest and neighbors.
LocalOutlierFactor perform as well.

Outlier detection

== learned decision function
o trueinliers
e true outliers

—— learned decision function
o trueinliers
e true outliers

3. Isolation Forest (errors: 0)

—6

—— learned decision function
o trueinliers
e true outliers

-4 -2 0
2. Robust covariance (errors: 0)

== learned decision function
o trueinliers
e true outliers

-4 3 0 2
4. Local Outlier Factor (errors: 0)

As the inlier distribution becomes
bimodal, the covariance.
EllipticEnvelope does not fit

well the inliers. However, we can see
that ensemble.IsolationForest,
svm.OneClassSVM and neighbors.
LocalOutlierFactor have difficulties
to detect the two modes, and that the svm.

Outlier detection

== learned decision function
®, o trueinliers
e true outliers

. —— learned decision function
®s o trueinliers
4 o trueoutliers

7 f
—6 —4 -2 0 2 4 6
1. One-Class SVM (errors: 10)

—— learned decision function
o trueinliers
e true outliers

4
3. Isolation Forest (errors: 2)

T
—4 -2 0 2 4 6
2. Robust covariance (errors: 8)

-6

== learned decision function
o trueinliers
e true outliers

-4 0 2
4. Local Outlier Factor (errors: 2)

eClassSVM tends to overfit: because

clustered, as inliers.

it has no model of inliers, it interprets a
region where, by chance some outliers are

Chapter 3. User Guide

Onitlier detecrtion

../auto_examples/covariance/plot_outlier_detection.html
../auto_examples/covariance/plot_outlier_detection.html
../auto_examples/covariance/plot_outlier_detection.html

scikit-learn user guide, Release 0.19.1

Examples:

» See Outlier detection with several methods. for a comparison of the svm.OneClassSVM
(tuned to perform like an outlier detection method), the ensemble.IsolationForest, the
neighbors.LocalOutlierFactor and a covariance-based outlier detection covariance.
EllipticEnvelope.

3.2.8 Density Estimation

Density estimation walks the line between unsupervised learning, feature engineering, and data modeling. Some of
the most popular and useful density estimation techniques are mixture models such as Gaussian Mixtures (sklearn.
mixture.GaussianMixture), and neighbor-based approaches such as the kernel density estimate (sklearn.
neighbors.KernelDensity). Gaussian Mixtures are discussed more fully in the context of clustering, because
the technique is also useful as an unsupervised clustering scheme.

Density estimation is a very simple concept, and most people are already familiar with one common density estimation
technique: the histogram.

Density Estimation: Histograms

A histogram is a simple visualization of data where bins are defined, and the number of data points within each bin is
tallied. An example of a histogram can be seen in the upper-left panel of the following figure:

Histogram Histogram, bins shifted
.. 0.3 :
)
A
=
o
O 0.2+ i
=
Q
N
o i i
= 0.1
|-
[=]
=
001 '+ +4 ++ + Hmhr+n T4 bttt HeE
0.3 - Tophat Kernel Density | Gaussian Kernel Density
>0
‘G
=
[
O 0.2 4 b
=
Q
N
(18] - -
£ 0.1
|-
[=]
=
007 + +4 ++ + i+t T+ +# ++ + e
0 5 0 5
X x

A major problem with histograms, however, is that the choice of binning can have a disproportionate effect on the
resulting visualization. Consider the upper-right panel of the above figure. It shows a histogram over the same data,
with the bins shifted right. The results of the two visualizations look entirely different, and might lead to different
interpretations of the data.

3.2. Unsupervised learning 365

../auto_examples/neighbors/plot_kde_1d.html

scikit-learn user guide, Release 0.19.1

Intuitively, one can also think of a histogram as a stack of blocks, one block per point. By stacking the blocks in the
appropriate grid space, we recover the histogram. But what if, instead of stacking the blocks on a regular grid, we
center each block on the point it represents, and sum the total height at each location? This idea leads to the lower-left
visualization. It is perhaps not as clean as a histogram, but the fact that the data drive the block locations mean that it
is a much better representation of the underlying data.

This visualization is an example of a kernel density estimation, in this case with a top-hat kernel (i.e. a square block
at each point). We can recover a smoother distribution by using a smoother kernel. The bottom-right plot shows a
Gaussian kernel density estimate, in which each point contributes a Gaussian curve to the total. The result is a smooth
density estimate which is derived from the data, and functions as a powerful non-parametric model of the distribution
of points.

Kernel Density Estimation

Kernel density estimation in scikit-learn is implemented in the sklearn.neighbors.KernelDensity esti-
mator, which uses the Ball Tree or KD Tree for efficient queries (see Nearest Neighbors for a discussion of these).
Though the above example uses a 1D data set for simplicity, kernel density estimation can be performed in any number
of dimensions, though in practice the curse of dimensionality causes its performance to degrade in high dimensions.

In the following figure, 100 points are drawn from a bimodal distribution, and the kernel density estimates are shown
for three choices of kernels:

0.40 — i
—— kernel = 'gaussian’ N=100 points
0.35 - kernel = 'tophat’
—— kernel = ‘epanechnikov’
0.30 - input distribution
0.25
0.20 4
0.15 +
0.10 A
0.05 +
0.00 + +
T P pe
—4 -2 0 2 4 6 8

It’s clear how the kernel shape affects the smoothness of the resulting distribution. The scikit-learn kernel density
estimator can be used as follows:

>>> from sklearn.neighbors.kde import KernelDensity

>>> import numpy as np

>>> X = np.array([([-1, -11, [-2, -11, [-3, -21, [, 11, 12, 11, [3, 211)

>>> kde = KernelDensity(kernel='gaussian', bandwidth=0.2).fit (X)

>>> kde.score_samples (X)

array ([-0.41075698, -0.41075698, -0.41076071, -0.41075698, -0.41075698,
-0.410760717)

366 Chapter 3. User Guide

../auto_examples/neighbors/plot_kde_1d.html

scikit-learn user guide, Release 0.19.1

Here we have used kernel="gaussian', as seen above. Mathematically, a kernel is a positive function K (z;h)
which is controlled by the bandwidth parameter h. Given this kernel form, the density estimate at a point y within a
group of points x;;7 = 1--- N is given by:

N

pr(y) =D K((y —z:)/h)

=1

The bandwidth here acts as a smoothing parameter, controlling the tradeoff between bias and variance in the result. A
large bandwidth leads to a very smooth (i.e. high-bias) density distribution. A small bandwidth leads to an unsmooth
(i.e. high-variance) density distribution.

sklearn.neighbors.KernelDensity implements several common kernel forms, which are shown in the
following figure:

Available Kernels

gaussian tophat epanechnikov
exponential linear cosine
2h -h 0 h 2h 2h -h 0 h 2h 2h -h 0 h 2h

The form of these kernels is as follows:

¢ Gaussian kernel (kernel = 'gaussian')
K (w;h) o exp(—)

e Tophat kernel (kernel = 'tophat')
K(z;h) xlifx < h

¢ Epanechnikov kernel (kernel = 'epanechnikov')
K(x;h) 1 — i—z

* Exponential kernel (kernel = 'exponential')
K(z;h) < exp(—z/h)

¢ Linear kernel (kernel = 'linear')

K(z;h) x1—z/hifz < h

3.2. Unsupervised learning 367

../auto_examples/neighbors/plot_kde_1d.html

scikit-learn user guide, Release 0.19.1

¢ Cosine kernel (kernel = 'cosine')
K(x;h) o< cos(G) ifx < h

The kernel density estimator can be used with any of the valid distance metrics (see sklearn.neighbors.
DistanceMet ric for a list of available metrics), though the results are properly normalized only for the Euclidean
metric. One particularly useful metric is the Haversine distance which measures the angular distance between points
on a sphere. Here is an example of using a kernel density estimate for a visualization of geospatial data, in this case
the distribution of observations of two different species on the South American continent:

Bradypus Variegatus Microryzomys Minutus

One other useful application of kernel density estimation is to learn a non-parametric generative model of a dataset in
order to efficiently draw new samples from this generative model. Here is an example of using this process to create a
new set of hand-written digits, using a Gaussian kernel learned on a PCA projection of the data:

368 Chapter 3. User Guide

https://en.wikipedia.org/wiki/Haversine_formula
../auto_examples/neighbors/plot_species_kde.html

scikit-learn user guide, Release 0.19.1

Selection from the input data

o el
o e
o Y
s i o
o
&S Lo
W=

o
o

| den

1]

mo

o el 2
SR -

O A o] o

e =

e 5

| T e

oo
i
= LA
LA
SEr

I
%

The “new” data consists of linear combinations of the input data, with weights probabilistically drawn given the KDE
model.

Examples:

e Simple 1D Kernel Density Estimation: computation of simple kernel density estimates in one dimension.

* Kernel Density Estimation: an example of using Kernel Density estimation to learn a generative model of the
hand-written digits data, and drawing new samples from this model.

* Kernel Density Estimate of Species Distributions: an example of Kernel Density estimation using the Haver-
sine distance metric to visualize geospatial data

3.2.9 Neural network models (unsupervised)

Restricted Boltzmann machines

Restricted Boltzmann machines (RBM) are unsupervised nonlinear feature learners based on a probabilistic model.
The features extracted by an RBM or a hierarchy of RBMs often give good results when fed into a linear classifier
such as a linear SVM or a perceptron.

The model makes assumptions regarding the distribution of inputs. At the moment, scikit-learn only provides
BernoulliRBM, which assumes the inputs are either binary values or values between 0 and 1, each encoding the
probability that the specific feature would be turned on.

The RBM tries to maximize the likelihood of the data using a particular graphical model. The parameter learning
algorithm used (Stochastic Maximum Likelihood) prevents the representations from straying far from the input data,
which makes them capture interesting regularities, but makes the model less useful for small datasets, and usually not
useful for density estimation.

3.2. Unsupervised learning 369

../auto_examples/neighbors/plot_digits_kde_sampling.html

scikit-learn user guide, Release 0.19.1

The method gained popularity for initializing deep neural networks with the weights of independent RBMs. This
method is known as unsupervised pre-training.

100 components extracted by RBM

L P)

.

_d

- e ol

.r
il

at

EREEREEEE
FENEEERRE
el el O (I A 9 S S

P [l S i [

il
A
=l
'l
A
4
&
Ll
b

el wlee]

EEEFENRER
i a5 (8 Y P
ERFEEEEEE
FRESSEEEE

Examples:

* Restricted Boltzmann Machine features for digit classification

Graphical model and parametrization

The graphical model of an RBM is a fully-connected bipartite graph.

370 Chapter 3. User Guide

../auto_examples/neural_networks/plot_rbm_logistic_classification.html

scikit-learn user guide, Release 0.19.1

Q&

S

SioR0)

The nodes are random variables whose states depend on the state of the other nodes they are connected to. The model
is therefore parameterized by the weights of the connections, as well as one intercept (bias) term for each visible and
hidden unit, omitted from the image for simplicity.

11

The energy function measures the quality of a joint assignment:
E(V, h) = Z Z wijvihj + Z bi’l)i + Z thj
i i j

In the formula above, b and c are the intercept vectors for the visible and hidden layers, respectively. The joint

probability of the model is defined in terms of the energy:
6_E (v,h)
P(v,h)= ——
(V,) Z

The word restricted refers to the bipartite structure of the model, which prohibits direct interaction between hidden
units, or between visible units. This means that the following conditional independencies are assumed:

hith|V
’UiL’Uj|h

The bipartite structure allows for the use of efficient block Gibbs sampling for inference.

Bernoulli Restricted Boltzmann machines

In the BernoulliRBM, all units are binary stochastic units. This means that the input data should either be binary, or
real-valued between 0 and 1 signifying the probability that the visible unit would turn on or off. This is a good model
for character recognition, where the interest is on which pixels are active and which aren’t. For images of natural
scenes it no longer fits because of background, depth and the tendency of neighbouring pixels to take the same values.

The conditional probability distribution of each unit is given by the logistic sigmoid activation function of the input it

receives:

J

P(hl = 1|V) = O'(Z WiV + Cj)

3

3.2. Unsupervised learning 371

scikit-learn user guide, Release 0.19.1

where o is the logistic sigmoid function:

Stochastic Maximum Likelihood learning

The training algorithm implemented in BernoulliRBM is known as Stochastic Maximum Likelihood (SML) or
Persistent Contrastive Divergence (PCD). Optimizing maximum likelihood directly is infeasible because of the form
of the data likelihood:

logP(v) — logz e~ Ewh) _ log Z e~ Elzy)
h

For simplicity the equation above is written for a single training example. The gradient with respect to the weights is
formed of two terms corresponding to the ones above. They are usually known as the positive gradient and the negative
gradient, because of their respective signs. In this implementation, the gradients are estimated over mini-batches of
samples.

In maximizing the log-likelihood, the positive gradient makes the model prefer hidden states that are compatible with
the observed training data. Because of the bipartite structure of RBMs, it can be computed efficiently. The negative
gradient, however, is intractable. Its goal is to lower the energy of joint states that the model prefers, therefore making
it stay true to the data. It can be approximated by Markov chain Monte Carlo using block Gibbs sampling by iteratively
sampling each of v and h given the other, until the chain mixes. Samples generated in this way are sometimes referred
as fantasy particles. This is inefficient and it is difficult to determine whether the Markov chain mixes.

The Contrastive Divergence method suggests to stop the chain after a small number of iterations, k, usually even 1.
This method is fast and has low variance, but the samples are far from the model distribution.

Persistent Contrastive Divergence addresses this. Instead of starting a new chain each time the gradient is needed, and
performing only one Gibbs sampling step, in PCD we keep a number of chains (fantasy particles) that are updated %
Gibbs steps after each weight update. This allows the particles to explore the space more thoroughly.

References:

* “A fast learning algorithm for deep belief nets” G. Hinton, S. Osindero, Y.-W. Teh, 2006

* “Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient” T. Tieleman,
2008

3.3 Model selection and evaluation

3.3.1 Cross-validation: evaluating estimator performance

Learning the parameters of a prediction function and testing it on the same data is a methodological mistake: a model
that would just repeat the labels of the samples that it has just seen would have a perfect score but would fail to predict
anything useful on yet-unseen data. This situation is called overfitting. To avoid it, it is common practice when
performing a (supervised) machine learning experiment to hold out part of the available data as a test set X_test,
y_test. Note that the word “experiment” is not intended to denote academic use only, because even in commercial
settings machine learning usually starts out experimentally.

In scikit-learn a random split into training and test sets can be quickly computed with the train test_split
helper function. Let’s load the iris data set to fit a linear support vector machine on it:

372 Chapter 3. User Guide

http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf
http://www.cs.toronto.edu/~tijmen/pcd/pcd.pdf

scikit-learn user guide, Release 0.19.1

>>> import numpy as np

>>> from sklearn.model_selection import train_test_split
>>> from sklearn import datasets

>>> from sklearn import svm

>>> iris = datasets.load_iris()
>>> iris.data.shape, iris.target.shape
((150, 4), (150,))

We can now quickly sample a training set while holding out 40% of the data for testing (evaluating) our classifier:

>>> X_train, X_test, y_train, y_test = train_test_split(
iris.data, iris.target, test_size=0.4, random_state=0)

>>> X_train.shape, y_train.shape
((90, 4), (90,))

>>> X_test.shape, y_test.shape
((60, 4), (60,))

>>> clf = svm.SVC (kernel="linear', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.96...

When evaluating different settings (“hyperparameters”) for estimators, such as the C setting that must be manually set
for an SVM, there is still a risk of overfitting on the test set because the parameters can be tweaked until the estimator
performs optimally. This way, knowledge about the test set can “leak” into the model and evaluation metrics no longer
report on generalization performance. To solve this problem, yet another part of the dataset can be held out as a so-
called “validation set”: training proceeds on the training set, after which evaluation is done on the validation set, and
when the experiment seems to be successful, final evaluation can be done on the test set.

However, by partitioning the available data into three sets, we drastically reduce the number of samples which can be
used for learning the model, and the results can depend on a particular random choice for the pair of (train, validation)
sets.

A solution to this problem is a procedure called cross-validation (CV for short). A test set should still be held out for
final evaluation, but the validation set is no longer needed when doing CV. In the basic approach, called k-fold CV, the
training set is split into k smaller sets (other approaches are described below, but generally follow the same principles).
The following procedure is followed for each of the k “folds”:

e A model is trained using & — 1 of the folds as training data;

* the resulting model is validated on the remaining part of the data (i.e., it is used as a test set to compute a
performance measure such as accuracy).

The performance measure reported by k-fold cross-validation is then the average of the values computed in the loop.
This approach can be computationally expensive, but does not waste too much data (as it is the case when fixing an
arbitrary test set), which is a major advantage in problem such as inverse inference where the number of samples is
very small.

Computing cross-validated metrics

The simplest way to use cross-validation is to call the cross_val_score helper function on the estimator and the
dataset.

The following example demonstrates how to estimate the accuracy of a linear kernel support vector machine on the
iris dataset by splitting the data, fitting a model and computing the score 5 consecutive times (with different splits each
time):

3.3. Model selection and evaluation 373

https://en.wikipedia.org/wiki/Cross-validation_(statistics)

scikit-learn user guide, Release 0.19.1

>>> from sklearn.model_selection import cross_val_score

>>> clf = svm.SVC(kernel="linear', C=1)

>>> scores = cross_val_score(clf, iris.data, iris.target, cv=5)
>>> scores

array ([0.96..., 1. ..., 0.96..., 0.96..., 1. 1)

The mean score and the 95% confidence interval of the score estimate are hence given by:

>>> print ("Accuracy: (+/-)" % (scores.mean (), scores.std() = 2))
Accuracy: 0.98 (+/- 0.03)

By default, the score computed at each CV iteration is the score method of the estimator. It is possible to change
this by using the scoring parameter:

>>> from sklearn import metrics
>>> gcores = cross_val_score(
clf, iris.data, iris.target, cv=5, scoring='fl_macro')
>>> scores
array ([0.96..., 1. ..., 0.96..., 0.96..., 1. 1)

See The scoring parameter: defining model evaluation rules for details. In the case of the Iris dataset, the samples are
balanced across target classes hence the accuracy and the F1-score are almost equal.

When the cv argument is an integer, cross_val score uses the KFold or StratifiedKFold strategies by
default, the latter being used if the estimator derives from ClassifierMixin.

It is also possible to use other cross validation strategies by passing a cross validation iterator instead, for instance:

>>> from sklearn.model_selection import ShuffleSplit

>>> n_samples = iris.data.shape[0]

>>> cv = ShuffleSplit(n_splits=3, test_size=0.3, random_state=0)
>>> cross_val_score(clf, iris.data, iris.target, cv=cv)

array ([0.97..., 0.97..., 1. 1)

Data transformation with held out data

Just as it is important to test a predictor on data held-out from training, preprocessing (such as standardization,
feature selection, etc.) and similar data transformations similarly should be learnt from a training set and applied
to held-out data for prediction:

>>> from sklearn import preprocessing

>>> X _train, X_test, y_train, y_test = train_test_split(
iris.data, iris.target, test_size=0.4, random_state=0)

>>> scaler = preprocessing.StandardScaler () .fit (X_train)

>>> X train_transformed = scaler.transform(X_train)

>>> clf = svm.SVC(C=1) .fit(X_train_transformed, y_train)

>>> X test_transformed = scaler.transform(X_test)

>>> clf.score(X_test_transformed, y_test)

0.9333...

A Pipeline makes it easier to compose estimators, providing this behavior under cross-validation:

>>> from sklearn.pipeline import make_pipeline
>>> clf = make_pipeline (preprocessing.StandardScaler (), svm.SVC(C=1))
>>> cross_val_score(clf, iris.data, iris.target, cv=cv)

array ([0.97..., 0.93..., 0.95...1])

374 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

See Pipeline and FeatureUnion: combining estimators.

The cross_validate function and multiple metric evaluation

The cross_validate function differs from cross_val_score in two ways -
« It allows specifying multiple metrics for evaluation.
* It returns a dict containing training scores, fit-times and score-times in addition to the test score.

For single metric evaluation, where the scoring parameter is a string, callable or None, the keys will be -
["test_score', 'fit_time', 'score_time']

And for multiple metric evaluation, the return value is a dict with the following keys -
["test_<scorerl_name>', 'test_<scorer2_name>', 'test_<scorer...>', 'fit_time',
'score_time']

return_train_score is setto True by default. It adds train score keys for all the scorers. If train scores are not
needed, this should be set to False explicitly.

The multiple metrics can be specified either as a list, tuple or set of predefined scorer names:

>>> from sklearn.model_selection import cross_validate
>>> from sklearn.metrics import recall_score

>>> scoring = ['precision_macro', 'recall _macro']
>>> clf = svm.SVC (kernel='linear', C=1, random_state=0)
>>> scores = cross_validate(clf, iris.data, iris.target, scoring=scoring,

. cv=5, return_train_score=False)
>>> sorted(scores.keys())
["fit_time', 'score_time', 'test_precision_macro', 'test_recall_macro']
>>> gcores|['test_recall _macro']

array ([0.96..., 1. ..., 0.96..., 0.96..., 1. 1)

Or as a dict mapping scorer name to a predefined or custom scoring function:

>>> from sklearn.metrics.scorer import make_scorer

>>> scoring = {'prec_macro': 'precision_macro',
'rec_micro': make_scorer (recall_score, average='macro') }
>>> scores = cross_validate(clf, iris.data, iris.target, scoring=scoring,

e cv=5, return_train_score=True)

>>> sorted(scores.keys())
["fit_time', 'score_time', 'test_prec_macro', 'test_rec_micro',
'train_prec_macro', 'train_rec_micro']

>>> gcores['train_rec_micro']

array ([0.97..., 0.97..., 0.99..., 0.98..., 0.98...1)

Here is an example of cross_validate using a single metric:

>>> scores = cross_validate(clf, iris.data, iris.target,
Ce scoring='precision_macro')

>>> sorted(scores.keys())
['fit_time', 'score_time', 'test_score', 'train_score']

3.3. Model selection and evaluation 375

scikit-learn user guide, Release 0.19.1

Obtaining predictions by cross-validation

The function cross_val_ predict has a similar interface to cross_val_score, but returns, for each element
in the input, the prediction that was obtained for that element when it was in the test set. Only cross-validation
strategies that assign all elements to a test set exactly once can be used (otherwise, an exception is raised).

These prediction can then be used to evaluate the classifier:

>>> from sklearn.model_selection import cross_val_predict

>>> predicted = cross_val_predict(clf, iris.data, iris.target, cv=10)
>>> metrics.accuracy_score (iris.target, predicted)

0.973...

Note that the result of this computation may be slightly different from those obtained using cross_val_ score as
the elements are grouped in different ways.

The available cross validation iterators are introduced in the following section.

Examples

* Receiver Operating Characteristic (ROC) with cross validation,
* Recursive feature elimination with cross-validation,

* Parameter estimation using grid search with cross-validation,

» Sample pipeline for text feature extraction and evaluation,

* Plotting Cross-Validated Predictions,

e Nested versus non-nested cross-validation.

Cross validation iterators

The following sections list utilities to generate indices that can be used to generate dataset splits according to different
cross validation strategies.

Cross-validation iterators for i.i.d. data

Assuming that some data is Independent and Identically Distributed (i.i.d.) is making the assumption that all samples
stem from the same generative process and that the generative process is assumed to have no memory of past generated
samples.

The following cross-validators can be used in such cases.
NOTE

While i.i.d. data is a common assumption in machine learning theory, it rarely holds in practice. If one knows that
the samples have been generated using a time-dependent process, it’s safer to use a time-series aware cross-validation
scheme Similarly if we know that the generative process has a group structure (samples from collected from different
subjects, experiments, measurement devices) it safer to use group-wise cross-validation.

K-fold

KFold divides all the samples in k groups of samples, called folds (if & = n, this is equivalent to the Leave One Out

376 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

strategy), of equal sizes (if possible). The prediction function is learned using k — 1 folds, and the fold left out is used
for test.

Example of 2-fold cross-validation on a dataset with 4 samples:

>>> import numpy as np
>>> from sklearn.model_selection import KFold

>>> X e ["a", "b", "c", "dll}
>>> kf = KFold(n_splits=2)
>>> for train, test in kf.split(X):

. print (" " % (train, test))
[2 3] [0 1]
[0 1] [2 3]

Each fold is constituted by two arrays: the first one is related to the training set, and the second one to the test set.
Thus, one can create the training/test sets using numpy indexing:

>>> X = np.array([[0., O.], [1., 1.1, [-1., -1.1, [2., 2.11)
>>> y = np.array ([0, 1, 0, 1])
>>> X_train, X_test, y_train, y_test = X[train], X[test], yltrain], yltest]

Repeated K-Fold

RepeatedKFold repeats K-Fold n times. It can be used when one requires to run KFold n times, producing
different splits in each repetition.

Example of 2-fold K-Fold repeated 2 times:

>>> import numpy as np

>>> from sklearn.model_selection import RepeatedKFold

>>> X = np.array ([[1l, 21, [3, 41, [1, 21, [3, 411)

>>> random_state = 12883823

>>> rkf = RepeatedKFold(n_splits=2, n_repeats=2, random_state=random_state)
>>> for train, test in rkf.split(X):

print (" " % (train, test))
[2 3] [0 1]
[0 1] [2 3]
[0 2] [1 3]
[1 3] [0 2]

Similarly, RepeatedStratifiedKFold repeats Stratified K-Fold n times with different randomization in each
repetition.

Leave One Out (LOO)

LeaveOneOut (or LOO) is a simple cross-validation. Each learning set is created by taking all the samples except
one, the test set being the sample left out. Thus, for n samples, we have n different training sets and n different tests
set. This cross-validation procedure does not waste much data as only one sample is removed from the training set:

>>> from sklearn.model_selection import LeaveOneOut

>>> X = [1, 2, 3, 4]
>>> loo = LeaveOneOut ()

3.3. Model selection and evaluation 377

scikit-learn user guide, Release 0.19.1

>>> for train, test in loo.split (X):
.. print (" " % (train, test))
[1 2 3] [0]

[0 2 3] [1]

[0 1 3] [2]

[0 1 2] [3]

Potential users of LOO for model selection should weigh a few known caveats. When compared with k-fold cross
validation, one builds n models from n samples instead of k£ models, where n > k. Moreover, each is trained on n — 1
samples rather than (k — 1)n/k. In both ways, assuming k is not too large and k < n, LOO is more computationally
expensive than k-fold cross validation.

In terms of accuracy, LOO often results in high variance as an estimator for the test error. Intuitively, since n — 1 of
the n samples are used to build each model, models constructed from folds are virtually identical to each other and to
the model built from the entire training set.

However, if the learning curve is steep for the training size in question, then 5- or 10- fold cross validation can
overestimate the generalization error.

As a general rule, most authors, and empirical evidence, suggest that 5- or 10- fold cross validation should be preferred
to LOO.

References:

* http://www.fags.org/fags/ai-fag/neural-nets/part3/section- 12.html;
 T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer 2009

e L. Breiman, P. Spector Submodel selection and evaluation in regression: The X-random case, International
Statistical Review 1992;

R. Kohavi, A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, Intl.
Jnt. Conf. Al

* R. Bharat Rao, G. Fung, R. Rosales, On the Dangers of Cross-Validation. An Experimental Evaluation, SIAM
2008;

* G. James, D. Witten, T. Hastie, R Tibshirani, An Introduction to Statistical Learning, Springer 2013.

Leave P Out (LPO)

LeavePOut is very similar to LeaveOneOut as it creates all the possible training/test sets by removing p samples
from the complete set. For n samples, this produces (Z) train-test pairs. Unlike LeaveOneOut and KFold, the test
sets will overlap for p > 1.

Example of Leave-2-Out on a dataset with 4 samples:

>>> from sklearn.model_selection import LeavePOut

>>> X = np.ones (4)
>>> 1po = LeavePOut (p=2)
>>> for train, test in lpo.split (X):

C. print (" " % (train, test))
[2 3] [0 1]
[1 3] [0 2]
[1 2] [0 3]
[0 3] [1 2]

378 Chapter 3. User Guide

http://www.faqs.org/faqs/ai-faq/neural-nets/part3/section-12.html
http://statweb.stanford.edu/~tibs/ElemStatLearn
http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/197.pdf
http://web.cs.iastate.edu/~jtian/cs573/Papers/Kohavi-IJCAI-95.pdf
http://people.csail.mit.edu/romer/papers/CrossVal_SDM08.pdf
http://www-bcf.usc.edu/~gareth/ISL

scikit-learn user guide, Release 0.19.1

[0 21 [1 3]
[0 1] [2 3]

Random permutations cross-validation a.k.a. Shuffle & Split

ShuffleSplit

The ShuffleSplit iterator will generate a user defined number of independent train / test dataset splits. Samples
are first shuffled and then split into a pair of train and test sets.

It is possible to control the randomness for reproducibility of the results by explicitly seeding the random_state
pseudo random number generator.

Here is a usage example:

>>> from sklearn.model_selection import ShuffleSplit

>>> X = np.arange(5)

>>> ss = ShuffleSplit(n_splits=3, test_size=0.25,
random_state=0)

>>> for train_index, test_index in ss.split (X):
print (" " % (train_index, test_index))

[1 3 4] [2 0]
[1 4 3] [0 2]
[4 0 2] [1 3]

ShuffleSplit is thus a good alternative to KF'old cross validation that allows a finer control on the number of
iterations and the proportion of samples on each side of the train / test split.

Cross-validation iterators with stratification based on class labels.

Some classification problems can exhibit a large imbalance in the distribution of the target classes: for instance there
could be several times more negative samples than positive samples. In such cases it is recommended to use stratified
sampling as implemented in St ratifiedKFold and StratifiedShuffleSplit to ensure that relative class
frequencies is approximately preserved in each train and validation fold.

Stratified k-fold

StratifiedKFold is a variation of k-fold which returns stratified folds: each set contains approximately the same
percentage of samples of each target class as the complete set.

Example of stratified 3-fold cross-validation on a dataset with 10 samples from two slightly unbalanced classes:

>>> from sklearn.model_selection import StratifiedKFold

>>> X = np.ones (10)

>>>y =1[0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
>>> skf = StratifiedKFold(n_splits=3)
>>> for train, test in skf.split (X, vy):

. print (" " % (train, test))
[2 36 78 9] [0 1 4 5]
[001 345189] [26 7]
[01 2456 7] [38 9]

3.3. Model selection and evaluation 379

scikit-learn user guide, Release 0.19.1

RepeatedStratifiedKFold canbe used to repeat Stratified K-Fold n times with different randomization in each
repetition.

Stratified Shuffle Split

StratifiedShuffleSplit is a variation of ShuffleSplit, which returns stratified splits, i.e which creates splits
by preserving the same percentage for each target class as in the complete set.

Cross-validation iterators for grouped data.

The i.i.d. assumption is broken if the underlying generative process yield groups of dependent samples.

Such a grouping of data is domain specific. An example would be when there is medical data collected from multiple
patients, with multiple samples taken from each patient. And such data is likely to be dependent on the individual
group. In our example, the patient id for each sample will be its group identifier.

In this case we would like to know if a model trained on a particular set of groups generalizes well to the unseen
groups. To measure this, we need to ensure that all the samples in the validation fold come from groups that are not
represented at all in the paired training fold.

The following cross-validation splitters can be used to do that. The grouping identifier for the samples is specified via
the groups parameter.

Group k-fold

GroupKFold is a variation of k-fold which ensures that the same group is not represented in both testing and training
sets. For example if the data is obtained from different subjects with several samples per-subject and if the model is
flexible enough to learn from highly person specific features it could fail to generalize to new subjects. GroupKFold
makes it possible to detect this kind of overfitting situations.

Imagine you have three subjects, each with an associated number from 1 to 3:

>>> from sklearn.model_selection import GroupKFold

>>> X = [0.1, 0.2, 2.2, 2.4, 2.3, 4.55, 5.8, 8.8, 9, 10]
>>> y = ["a", "b", “b"’ "b", HC“’ "C", "C", "d", "d", "d"]
>>> groups = [1, 1, 1, 2, 2, 2, 3, 3, 3, 3]

>>> gkf = GroupKFold(n_splits=3)

>>> for train, test in gkf.split (X, y, groups=groups) :

. print (" " (train, test))

[001 23 45] [678

[01 26 78 9] [3 4
01

]
]
[3456 78 9] []

Each subject is in a different testing fold, and the same subject is never in both testing and training. Notice that the
folds do not have exactly the same size due to the imbalance in the data.

Leave One Group Out

LeaveOneGroupOut is a cross-validation scheme which holds out the samples according to a third-party provided
array of integer groups. This group information can be used to encode arbitrary domain specific pre-defined cross-
validation folds.

380 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

Each training set is thus constituted by all the samples except the ones related to a specific group.

For example, in the cases of multiple experiments, LeaveOneGroupOut can be used to create a cross-validation
based on the different experiments: we create a training set using the samples of all the experiments except one:

>>> from sklearn.model_selection import LeaveOneGroupOut

>>> X = [1, 5, 10, 50, 60, 70, 80]

>>> vy = [0, 1, 1, 2, 2, 2, 2]

>>> groups = [1, 1, 2, 2, 3, 3, 3]

>>> logo = LeaveOneGroupOut ()

>>> for train, test in logo.split (X, y, groups=groups) :
. print (" " % (train, test))

[2 345 6] [01]

[001 45 6] [2 3]

[001 2 3] [4 5 6]

Another common application is to use time information: for instance the groups could be the year of collection of the
samples and thus allow for cross-validation against time-based splits.

Leave P Groups Out

LeavePGroupsOut is similar as LeaveOneGroupOut, but removes samples related to P groups for each train-
ing/test set.

Example of Leave-2-Group Out:

>>> from sklearn.model_selection import LeavePGroupsOut

>>> X = np.arange (6)

>> vy = [1, 1, 1, 2, 2, 2]

>>> groups = [1, 1, 2, 2, 3, 3]

>>> 1lpgo = LeavePGroupsOut (n_groups=2)

>>> for train, test in lpgo.split (X, y, groups=groups) :
.. print (" " % (train, test))

[4 5] [0 1 2 3]

[2 3] [0 1 4 5]

[0 1] [2 3 4 5]

Group Shuffle Split

The GroupShuffleSplit iterator behaves as a combination of ShuffleSplit and LeavePGroupsOut, and
generates a sequence of randomized partitions in which a subset of groups are held out for each split.

Here is a usage example:

>>> from sklearn.model_selection import GroupShuffleSplit

>>> X = [0.1, 0.2, 2.2, 2.4, 2.3, 4.55, 5.8, 0.001]
>>> y P~ ["a", "b", Hb", Hb", HCH’ HCH’ Hcll, Ilall]
>>> groups = [1, 1, 2, 2, 3, 3, 4, 4]

>>> gss = GroupShuffleSplit (n_splits=4, test_size=0.5, random_state=0)
>>> for train, test in gss.split (X, y, groups=groups) :
print (" " % (train, test))

[01 23] [456 7]

3.3. Model selection and evaluation 381

scikit-learn user guide, Release 0.19.1

[2 36 7] [01 4 5]
[2345] [01 6 7]
[4 56 7] [01 2 3]

This class is useful when the behavior of LeavePGroupsOut is desired, but the number of groups is large enough
that generating all possible partitions with P groups withheld would be prohibitively expensive. In such a sce-
nario, GroupShuffleSplit provides a random sample (with replacement) of the train / test splits generated by
LeavePGroupsOut.

Predefined Fold-Splits / Validation-Sets

For some datasets, a pre-defined split of the data into training- and validation fold or into several cross-validation folds
already exists. Using PredefinedSplit itis possible to use these folds e.g. when searching for hyperparameters.

For example, when using a validation set, set the test_fold to O for all samples that are part of the validation set,
and to -1 for all other samples.

Cross validation of time series data

Time series data is characterised by the correlation between observations that are near in time (autocorrelation). How-
ever, classical cross-validation techniques such as KFold and ShuffleSplit assume the samples are independent
and identically distributed, and would result in unreasonable correlation between training and testing instances (yield-
ing poor estimates of generalisation error) on time series data. Therefore, it is very important to evaluate our model
for time series data on the “future” observations least like those that are used to train the model. To achieve this, one
solution is provided by TimeSeriesSplit.

Time Series Split

TimeSeriesSplit is a variation of k-fold which returns first k folds as train set and the (k + 1) th fold as test set.
Note that unlike standard cross-validation methods, successive training sets are supersets of those that come before
them. Also, it adds all surplus data to the first training partition, which is always used to train the model.

This class can be used to cross-validate time series data samples that are observed at fixed time intervals.

Example of 3-split time series cross-validation on a dataset with 6 samples:

>>> from sklearn.model_selection import TimeSeriesSplit

>>> X = np.array ([[1, 2], [3, 41, [1, 21, [3, 41, [1, 21, [3, 411)
>>> y = np.array([1l, 2, 3, 4, 5, 61)

>>> tscv = TimeSeriesSplit (n_splits=3)

>>> print (tscv)

TimeSeriesSplit (max_train_size=None, n_splits=3)

>>> for train, test in tscv.split (X):

C print (" " % (train, test))

[0 1 2] [3]

[001 2 3] [4]

[01 2 3 4] [5]

382 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

A note on shuffling

If the data ordering is not arbitrary (e.g. samples with the same class label are contiguous), shuffling it first may
be essential to get a meaningful cross- validation result. However, the opposite may be true if the samples are not
independently and identically distributed. For example, if samples correspond to news articles, and are ordered by
their time of publication, then shuffling the data will likely lead to a model that is overfit and an inflated validation
score: it will be tested on samples that are artificially similar (close in time) to training samples.

Some cross validation iterators, such as KF'o1d, have an inbuilt option to shuffle the data indices before splitting them.
Note that:

* This consumes less memory than shuffling the data directly.

* By default no shuffling occurs, including for the (stratified) K fold cross- validation performed by specifying
cv=some_integer to cross_val_score, grid search, etc. Keep in mind that train test_split
still returns a random split.

e The random_state parameter defaults to None, meaning that the shuffling will be different every time
KFold(..., shuffle=True) is iterated. However, GridSearchCV will use the same shuffling for
each set of parameters validated by a single call to its £ it method.

» To get identical results for each split, set random_state to an integer.

Cross validation and model selection

Cross validation iterators can also be used to directly perform model selection using Grid Search for the optimal
hyperparameters of the model. This is the topic of the next section: Tuning the hyper-parameters of an estimator.

3.3.2 Tuning the hyper-parameters of an estimator

Hyper-parameters are parameters that are not directly learnt within estimators. In scikit-learn they are passed as
arguments to the constructor of the estimator classes. Typical examples include C, kernel and gamma for Support
Vector Classifier, alpha for Lasso, etc.

It is possible and recommended to search the hyper-parameter space for the best cross validation score.

Any parameter provided when constructing an estimator may be optimized in this manner. Specifically, to find the
names and current values for all parameters for a given estimator, use:

estimator.get_params ()

A search consists of:
* an estimator (regressor or classifier such as sklearn.svm.SVC ());
* a parameter space;
* a method for searching or sampling candidates;
¢ a cross-validation scheme; and
* ascore function.

Some models allow for specialized, efficient parameter search strategies, outlined below. Two generic approaches to
sampling search candidates are provided in scikit-learn: for given values, GridSearchCV exhaustively considers all
parameter combinations, while Randomi zedSearchCV can sample a given number of candidates from a parameter
space with a specified distribution. After describing these tools we detail best practice applicable to both approaches.

Note that it is common that a small subset of those parameters can have a large impact on the predictive or computation
performance of the model while others can be left to their default values. It is recommended to read the docstring of

3.3. Model selection and evaluation 383

scikit-learn user guide, Release 0.19.1

the estimator class to get a finer understanding of their expected behavior, possibly by reading the enclosed reference
to the literature.

Exhaustive Grid Search

The grid search provided by GridSearchCV exhaustively generates candidates from a grid of parameter values
specified with the param_grid parameter. For instance, the following param_grid:

param_grid = [
{'¢': [1, 10, 100, 1000], 'kernel': ['linear']},
{'¢': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf'l},
1

specifies that two grids should be explored: one with a linear kernel and C values in [1, 10, 100, 1000], and the second
one with an RBF kernel, and the cross-product of C values ranging in [1, 10, 100, 1000] and gamma values in [0.001,
0.0001].

The GridSearchCV instance implements the usual estimator API: when “fitting” it on a dataset all the possible
combinations of parameter values are evaluated and the best combination is retained.

Examples:

» See Parameter estimation using grid search with cross-validation for an example of Grid Search computation
on the digits dataset.

» See Sample pipeline for text feature extraction and evaluation for an example of Grid Search coupling pa-
rameters from a text documents feature extractor (n-gram count vectorizer and TF-IDF transformer) with a
classifier (here a linear SVM trained with SGD with either elastic net or L2 penalty) using a pipeline.
Pipeline instance.

» See Nested versus non-nested cross-validation for an example of Grid Search within a cross validation loop
on the iris dataset. This is the best practice for evaluating the performance of a model with grid search.

» See Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV for an example of
GridSearchCV being used to evaluate multiple metrics simultaneously.

Randomized Parameter Optimization

While using a grid of parameter settings is currently the most widely used method for parameter optimization, other
search methods have more favourable properties. RandomizedSearchCV implements a randomized search over
parameters, where each setting is sampled from a distribution over possible parameter values. This has two main
benefits over an exhaustive search:

* A budget can be chosen independent of the number of parameters and possible values.
* Adding parameters that do not influence the performance does not decrease efficiency.

Specifying how parameters should be sampled is done using a dictionary, very similar to specifying parameters for
GridSearchCV. Additionally, a computation budget, being the number of sampled candidates or sampling itera-
tions, is specified using the n_iter parameter. For each parameter, either a distribution over possible values or a list
of discrete choices (which will be sampled uniformly) can be specified:

{'C'": scipy.stats.expon(scale=100), 'gamma': scipy.stats.expon(scale=.1),
'kernel': ['rbf'], 'class_weight':['balanced', None]}

384 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

This example uses the scipy.stats module, which contains many useful distributions for sampling parameters,
such as expon, gamma, uniform or randint. In principle, any function can be passed that provides a rvs
(random variate sample) method to sample a value. A call to the rvs function should provide independent random
samples from possible parameter values on consecutive calls.

Warning: The distributions in scipy.stats prior to version scipy 0.16 do not allow specifying a
random state. Instead, they use the global numpy random state, that can be seeded via np . random.
seedorsetusing np.random. set_state. However, beginning scikit-learn 0.18, the sk learn.
model_selection module sets the random state provided by the user if scipy >= 0.16 is also
available.

For continuous parameters, such as C above, it is important to specify a continuous distribution to take full advantage
of the randomization. This way, increasing n_ iter will always lead to a finer search.

Examples:

» Comparing randomized search and grid search for hyperparameter estimation compares the usage and effi-
ciency of randomized search and grid search.

References:

* Bergstra, J. and Bengio, Y., Random search for hyper-parameter optimization, The Journal of Machine Learn-
ing Research (2012)

Tips for parameter search

Specifying an objective metric

By default, parameter search uses the score function of the estimator to evaluate a parameter setting. These are
the sklearn.metrics.accuracy_score for classification and sklearn.metrics.r2_score for regres-
sion. For some applications, other scoring functions are better suited (for example in unbalanced classification, the
accuracy score is often uninformative). An alternative scoring function can be specified via the scoring parameter
to GridSearchCV, RandomizedSearchCV and many of the specialized cross-validation tools described below.
See The scoring parameter: defining model evaluation rules for more details.

Specifying multiple metrics for evaluation

GridSearchCV and RandomizedSearchCV allow specifying multiple metrics for the scoring parameter.

Multimetric scoring can either be specified as a list of strings of predefined scores names or a dict mapping the scorer
name to the scorer function and/or the predefined scorer name(s). See Using multiple metric evaluation for more
details.

When specifying multiple metrics, the refit parameter must be set to the metric (string) for which the
best_params_ will be found and used to build the best_estimator_ on the whole dataset. If the search
should not be refit, set refit=False. Leaving refit to the default value None will result in an error when using
multiple metrics.

See Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV for an example usage.

3.3. Model selection and evaluation 385

scikit-learn user guide, Release 0.19.1

Composite estimators and parameter spaces

Pipeline: chaining estimators describes building composite estimators whose parameter space can be searched with
these tools.

Model selection: development and evaluation

Model selection by evaluating various parameter settings can be seen as a way to use the labeled data to “train” the
parameters of the grid.

When evaluating the resulting model it is important to do it on held-out samples that were not seen during the grid
search process: it is recommended to split the data into a development set (to be fed to the GridSearchCV instance)
and an evaluation set to compute performance metrics.

This can be done by using the t rain test_split utility function.

Parallelism

GridSearchCV and RandomizedSearchCV evaluate each parameter setting independently. Computations can
be run in parallel if your OS supports it, by using the keyword n_ jobs=-1. See function signature for more details.

Robustness to failure

Some parameter settings may result in a failure to £it one or more folds of the data. By default, this will cause
the entire search to fail, even if some parameter settings could be fully evaluated. Setting error_score=0 (or
=np.NaN) will make the procedure robust to such failure, issuing a warning and setting the score for that fold to O (or
NaN), but completing the search.

Alternatives to brute force parameter search

Model specific cross-validation

Some models can fit data for a range of values of some parameter almost as efficiently as fitting the estimator for
a single value of the parameter. This feature can be leveraged to perform a more efficient cross-validation used for
model selection of this parameter.

The most common parameter amenable to this strategy is the parameter encoding the strength of the regularizer. In
this case we say that we compute the regularization path of the estimator.

Here is the list of such models:

linear_model.ElasticNetCV([ll_ratio, eps,...]) Elastic Net model with iterative fitting along a regulariza-

tion path
linear_model . LarsCV([fit_intercept, ...]) Cross-validated Least Angle Regression model
linear_model.LassoCV([eps, n_alphas,...]) Lasso linear model with iterative fitting along a regulariza-
tion path
linear_model . LassoLarsCV([fit_intercept, ...]) Cross-validated Lasso, using the LARS algorithm
linear_model.LogisticRegressionCV([Cs, Logistic Regression CV (aka logit, MaxEnt) classifier.

=D

linear _model.MultiTaskElasticNetCV([...]) Multi-task L1/L2 ElasticNet with built-in cross-validation.

Continued on next page

386 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

Table 3.2 — continued from previous page

linear_model.MultiTaskLassoCV([eps,...]) Multi-task L1/L2 Lasso with built-in cross-validation.

linear_model.OrthogonalMatchingPursuitCV([Crogs-validated Orthogonal Matching Pursuit model
(OMP)

linear_model.RidgeCV([alphas,...]) Ridge regression with built-in cross-validation.

linear_model.RidgeClassifierCV([alphas, Ridge classifier with built-in cross-validation.

),

sklearn.linear model.ElasticNetCV

class sklearn.linear_model.ElasticNetCV (/I_ratio=0.5, eps=0.001, n_alphas=100, al-
phas=None, fit_intercept=True, normalize=False,
precompute="auto’, max_iter=1000, tol=0.0001,
cv=None, copy_X=True, verbose=0, n_jobs=1, posi-
tive=False, random_state=None, selection="cyclic’)
Elastic Net model with iterative fitting along a regularization path

The best model is selected by cross-validation.
Read more in the User Guide.
Parameters 11_ratio : float or array of floats, optional

float between 0 and 1 passed to ElasticNet (scaling between 11 and 12 penalties). For
11_ratio = OthepenaltyisanL2penalty. For11_ratio = 1litisanLl penalty.
For 0 < 11_ratio < 1, the penalty is a combination of L1 and L2 This parameter
can be a list, in which case the different values are tested by cross-validation and the
one giving the best prediction score is used. Note that a good choice of list of values
for 11_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e.
Ridge),asin [.1, .5, .7, .9, .95, .99, 1]

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = le-3.
n_alphas : int, optional

Number of alphas along the regularization path, used for each 11_ratio.
alphas : numpy array, optional

List of alphas where to compute the models. If None alphas are set automatically
fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the 12-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling £it on an estimator with normalize=False.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto’
let us decide. The Gram matrix can also be passed as argument.

max_iter : int, optional

3.3. Model selection and evaluation 387

scikit-learn user guide, Release 0.19.1

The maximum number of iterations

tol : float, optional

The tolerance for the optimization: if the updates are smaller than t o1, the optimization
code checks the dual gap for optimality and continues until it is smaller than to1.

cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy. Possible inputs for cv are:
¢ None, to use the default 3-fold cross-validation,
* integer, to specify the number of folds.
* An object to be used as a cross-validation generator.
* An iterable yielding train/test splits.
For integer/None inputs, KFold is used.
Refer User Guide for the various cross-validation strategies that can be used here.
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
verbose : bool or integer
Amount of verbosity.
n_jobs : integer, optional
Number of CPUs to use during the cross validation. If -1, use all the CPUs.
positive : bool, optional
When set to True, forces the coefficients to be positive.
random_state : int, RandomState instance or None, optional, default None

The seed of the pseudo random number generator that selects a random feature to up-
date. If int, random_state is the seed used by the random number generator; If Ran-
domState instance, random_state is the random number generator; If None, the ran-
dom number generator is the RandomState instance used by np.random. Used when
selection == ‘random’.

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than le-4.

Attributes alpha_ : float
The amount of penalization chosen by cross validation
I11_ratio_ : float
The compromise between 11 and 12 penalization chosen by cross validation
coef_: array, shape (n_features,) | (n_targets, n_features)
Parameter vector (w in the cost function formula),
intercept_ : float | array, shape (n_targets, n_features)

Independent term in the decision function.

388

Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

mse_path_ : array, shape (n_l1_ratio, n_alpha, n_folds)

Mean square error for the test set on each fold, varying 11_ratio and alpha.
alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas)

The grid of alphas used for fitting, for each 11_ratio.
n_iter_: int

number of iterations run by the coordinate descent solver to reach the specified tolerance
for the optimal alpha.

See also:

enet_path, ElasticNet

Notes

For an example, see examples/linear_model/plot_lasso_model_selection.py.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

The parameter 11_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda
parameter in glmnet. More specifically, the optimization objective is:

1 / (2 = n_samples) * ||y — Xw||["2_2
+ alpha % 1l_ratio x |[|w]||[_1
+ 0.5 % alpha * (1 - 1ll_ratio) * ||w||"2_2

If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:

’a*Ll+b*L2

for:

’alpha = a + b and 11 _ratio = a / (a + b).

Examples

>>> from sklearn.linear_model import ElasticNetCV

>>> from sklearn.datasets import make_regression

>>>

>>> X, y = make_regression (n_features=2, random_state=0)

>>> regr = ElasticNetCV(cv=5, random_state=0)

>>> regr.fit (X, vy)

ElasticNetCV (alphas=None, copy_X=True, cv=5, eps=0.001, fit_intercept=True,
11_ratio=0.5, max_iter=1000, n_alphas=100, n_jobs=1,
normalize=False, positive=False, precompute='auto', random_state=0,
selection='cyclic', tol=0.0001, verbose=0)

>>> print (regr.alpha_)

0.19947279427

>>> print (regr.intercept_)

0.398882965428

>>> print (regr.predict ([[0, 011))

[0.39888297]

3.3. Model selection and evaluation 389

scikit-learn user guide, Release 0.19.1

Methods

fit(X,y)

Fit linear model with coordinate descent

get_params([deep])

Get parameters for this estimator.

path(X, y[, 11_ratio, eps, n_alphas, ...])

Compute elastic net path with coordinate descent

predict(X)

Predict using the linear model

score(X, y[, sample_weight])

Returns the coefficient of determination R”2 of the pre-
diction.

set_params(**params)

Set the parameters of this estimator.

__init__ (ll_ratio=0.5, eps=0.001l,

n_alphas=100, alphas=None, fit_intercept=True, normal-

ize=False, precompute="auto’, max_iter=1000, tol=0.0001, cv=None, copy_X=True, ver-
bose=0, n_jobs=1, positive=False, random_state=None, selection="cyclic’)

fit (X,y)
Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.
Parameters X : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output, X can be sparse.

y : array-like, shape (n_samples,) or (n_samples, n_targets)
Target values

get_params (deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any
Parameter names mapped to their values.

static path (X, y, [ll_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute="auto’,
Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, posi-
tive=False, check_input=True, **params)
Compute elastic net path with coordinate descent

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 » n_samples) * ||y — Xw||"2_2
+ alpha * ll_ratio x |[|w]||[_1
+ 0.5 % alpha * (1 - 11_ratio) * |[|w||"2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) = ||Y - XW||"Fro_2
+ alpha * 1ll_ratio = ||W||_21
+ 0.5 % alpha = (1 - 11_ratio) * ||W||_Fro”2

Where:

390 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

[W] |_21 = \sum_1i \sqgrt{\sum_7j w_{1ij}"2}

i.e. the sum of norm of each row.
Read more in the User Guide.
Parameters X : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,) or (n_samples, n_outputs)
Target values
11_ratio : float, optional

float between 0 and 1 passed to elastic net (scaling between 11 and 12 penalties).
11_ratio=1 corresponds to the Lasso

eps : float

Length of the path. eps=1e-3 means that alpha_min / alpha_max = le-3
n_alphas : int, optional

Number of alphas along the regularization path
alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically
precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If setto 'auto'
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy =np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.
coef_init : array, shape (n_features,) | None

The initial values of the coefficients.
verbose : bool or integer

Amount of verbosity.
return_n_iter : bool

whether to return the number of iterations or not.
positive : bool, default False

If set to True, forces coefficients to be positive. (Only allowed when y . ndim == 1).
check_input : bool, default True

Skip input validation checks, including the Gram matrix when provided assuming there
are handled by the caller when check_input=False.

**params : kwargs

3.3.

Model selection and evaluation

391

scikit-learn user guide, Release 0.19.1

keyword arguments passed to the coordinate descent solver.
Returns alphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)
Coefficients along the path.

dual_gaps : array, shape (n_alphas,)
The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha. (Is returned when return_n_iter is set to True).

See also:

MultiTaskElasticNet, MultiTaskElasticNetCV,ElasticNet, ElasticNetCV

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

predict (X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)
Samples.

Returns C : array, shape = (n_samples,)
Returns predicted values.

score (X, y, sample_weight=None)
Returns the coefficient of determination R”2 of the prediction.

The coefficient R"2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R*2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns score : float
R”2 of self.predict(X) wrt. y.

set_params (**params)
Set the parameters of this estimator.

392 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have

parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear model.LarsCV

class sklearn.linear_model .LarsCV (fit_intercept=True, verbose=False, max_iter=500, normal-
ize=True, precompute="auto’, cv=None, max_n_alphas=1000,
n_jobs=1, eps=2.2204460492503131e-16, copy_X=True, posi-
tive=Fualse)
Cross-validated Least Angle Regression model
Read more in the User Guide.
Parameters fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional
Sets the verbosity amount
max_iter : integer, optional
Maximum number of iterations to perform.

normalize : boolean, optional, default True

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the 12-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling £it on an estimator with normalize=False.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If setto 'auto'

let us decide. The Gram matrix cannot be passed as argument since we will use only
subsets of X.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

¢ None, to use the default 3-fold cross-validation,

* integer, to specify the number of folds.

* An object to be used as a cross-validation generator.

* An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.
max_n_alphas : integer, optional

The maximum number of points on the path used to compute the residuals in the cross-
validation

n_jobs : integer, optional

3.3. Model selection and evaluation 393

scikit-learn user guide, Release 0.19.1

Number of CPUs to use during the cross validation. If —1, use all the CPUs
eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems.

copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
positive : boolean (default=False)

Restrict coefficients to be >= (. Be aware that you might want to remove fit_intercept
which is set True by default.

Attributes coef_: array, shape (n_features,)

parameter vector (w in the formulation formula)
intercept_ : float

independent term in decision function
coef_path_ : array, shape (n_features, n_alphas)

the varying values of the coefficients along the path
alpha_ : float

the estimated regularization parameter alpha
alphas_ : array, shape (n_alphas,)

the different values of alpha along the path
cv_alphas_ : array, shape (n_cv_alphas,)

all the values of alpha along the path for the different folds
mse_path_ : array, shape (n_folds, n_cv_alphas)

the mean square error on left-out for each fold along the path (alpha values given by
cv_alphas)

n_iter_ : array-like or int
the number of iterations run by Lars with the optimal alpha.
See also:

lars_path, LassoLars, LassoLarsCV

Methods
fit(X,y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R”2 of the pre-
diction.
set_params(¥**params) Set the parameters of this estimator.

394 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

__init__ (fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute=auto’,
cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True,
positive=False)

alpha
DEPRECATED: Attribute alpha is deprecated in 0.19 and will be removed in 0.21. See alpha_ instead

cv_mse_path_
DEPRECATED: Attribute cv_mse_path_ is deprecated in 0.18 and will be removed in 0.20. Use
mse_path_ instead

fit (X, y)
Fit the model using X, y as training data.

Parameters X : array-like, shape (n_samples, n_features)
Training data.
y : array-like, shape (n_samples,)
Target values.
Returns self : object
returns an instance of self.

get_params (deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any
Parameter names mapped to their values.

predict (X)
Predict using the linear model

Parameters X : {array-like, sparse matrix }, shape = (n_samples, n_features)
Samples.

Returns C : array, shape = (n_samples,)
Returns predicted values.

score (X, y, sample_weight=None)
Returns the coefficient of determination R”2 of the prediction.

The coefficient R72 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R*2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
sample_weight : array-like, shape = [n_samples], optional

Sample weights.

3.3.

Model selection and evaluation 395

scikit-learn user guide, Release 0.19.1

Returns score : float
R”2 of self.predict(X) wrt. y.

set_params (**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear model.LassoCV

class sklearn.linear_model .LassoCV (eps=0.001, n_alphas=100, alphas=None, fit_intercept=True,
normalize=False, precompute=’auto’, max_iter=1000,
t0l=0.0001, copy_X=True, cv=None, verbose=False,
n_jobs=1, positive=False, random_state=None, selec-
tion="cyclic’)
Lasso linear model with iterative fitting along a regularization path
The best model is selected by cross-validation.

The optimization objective for Lasso is:

(1 / (2 » n_samples)) * ||y — Xw||"2_2 + alpha * ||w]||[_1

Read more in the User Guide.
Parameters eps : float, optional
Length of the path. eps=1e-3 means that alpha_min / alpha_max = le-3.
n_alphas : int, optional
Number of alphas along the regularization path
alphas : numpy array, optional
List of alphas where to compute the models. If None alphas are set automatically
fit_intercept : boolean, default True

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the 12-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling £it on an estimator with normalize=False.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If setto 'auto'
let us decide. The Gram matrix can also be passed as argument.

max_iter : int, optional
The maximum number of iterations

tol : float, optional

396 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

The tolerance for the optimization: if the updates are smaller than t o1, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy. Possible inputs for cv are:
¢ None, to use the default 3-fold cross-validation,
* integer, to specify the number of folds.
* An object to be used as a cross-validation generator.
* An iterable yielding train/test splits.
For integer/None inputs, KFold is used.
Refer User Guide for the various cross-validation strategies that can be used here.
verbose : bool or integer
Amount of verbosity.
n_jobs : integer, optional
Number of CPUs to use during the cross validation. If -1, use all the CPUs.
positive : bool, optional
If positive, restrict regression coefficients to be positive
random_state : int, RandomState instance or None, optional, default None

The seed of the pseudo random number generator that selects a random feature to up-
date. If int, random_state is the seed used by the random number generator; If Ran-
domState instance, random_state is the random number generator; If None, the ran-
dom number generator is the RandomState instance used by np.random. Used when
selection == ‘random’.

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than le-4.

Attributes alpha_ : float
The amount of penalization chosen by cross validation
coef_: array, shape (n_features,) | (n_targets, n_features)
parameter vector (w in the cost function formula)
intercept_ : float | array, shape (n_targets,)
independent term in decision function.
mse_path_ : array, shape (n_alphas, n_folds)
mean square error for the test set on each fold, varying alpha
alphas_ : numpy array, shape (n_alphas,)
The grid of alphas used for fitting

3.3.

Model selection and evaluation 397

scikit-learn user guide, Release 0.19.1

dual_gap_ : ndarray, shape ()
The dual gap at the end of the optimization for the optimal alpha (alpha_).
n_iter_: int

number of iterations run by the coordinate descent solver to reach the specified tolerance
for the optimal alpha.

See also:

lars_path, lasso_path, LassoLars, Lasso, LassoLarsCV

Notes

For an example, see examples/linear_model/plot_lasso_model_selection.py.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Methods
fit(X,y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, yl[, eps, n_alphas, alphas, ...]) Compute Lasso path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R”2 of the pre-

diction.

set_params(**params) Set the parameters of this estimator.

__init__ (eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, pre-
compute="auto’, max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False,
n_jobs=1, positive=False, random_state=None, selection="cyclic’)

fit (X, y)
Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.
Parameters X : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output, X can be sparse.

y : array-like, shape (n_samples,) or (n_samples, n_targets)
Target values

get_params (deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

398 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

static path (X, y, eps=0.001, n_alphas=100, alphas=None, precompute="auto’, Xy=None,
copy_X=True, coef_init=None, verbose=Fualse, return_n_iter=False, positive=False,

**params)
Compute Lasso path with coordinate descent

The Lasso optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

’(l / (2 » n_samples)) * ||y — Xw||["2_2 + alpha = ||w]||_1

For multi-output tasks it is:

’(l / (2 » n_samples)) = ||Y — XW||"2_Fro + alpha » ||W|]|_21

Where:

’\\W_21 = \sum_i \sqgrt{\sum_3j w_{ij}"2}

i.e. the sum of norm of each row.
Read more in the User Guide.
Parameters X : {array-like, sparse matrix }, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,), or (n_samples, n_outputs)

Target values
eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = le-3
n_alphas : int, optional

Number of alphas along the regularization path
alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically
precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If setto 'auto'
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy =np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.
coef_init : array, shape (n_features,) | None

The initial values of the coefficients.
verbose : bool or integer

Amount of verbosity.

return_n_iter : bool

3.3.

Model selection and evaluation

399

scikit-learn user guide, Release 0.19.1

whether to return the number of iterations or not.
positive : bool, default False
If set to True, forces coefficients to be positive. (Only allowed when y . ndim == 1).
**params : kwargs
keyword arguments passed to the coordinate descent solver.
Returns alphas : array, shape (n_alphas,)
The alphas along the path where models are computed.
coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)
Coefficients along the path.
dual_gaps : array, shape (n_alphas,)
The dual gaps at the end of the optimization for each alpha.
n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha.

See also:

lars_path, Lasso, LassoLars, LassoCV, LassoLarsCV, sklearn.decomposition.
sparse_encode

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In
particular, linear interpolation can be used to retrieve model coefficients between the values output by
lars_path

Examples

Comparing lasso_path and lars_path with interpolation:

>>> X = np.array([[1, 2, 3.11, [2.3, 5.4, 4.311).T
>>> y = np.array([1l, 2, 3.11])
>>> # Use lasso_path to compute a coefficient path

>>> _, coef_path, _ = lasso_path(X, vy, alphas=[5., 1., .5])
>>> print (coef_path)
[[O. 0. 0.46874778]

[0.2159048 0.4425765 0.23689075]1]

>>> # Now use lars_path and 1D linear interpolation to compute the
>>> # same path
>>> from sklearn.linear model import lars_path

>>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso')
>>> from scipy import interpolate
>>> coef_path_continuous = interpolate.interpld(alphas[::-1],

400 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

coef_path_lars[:, ::-1])
>>> print (coef_path_continuous([5., 1., .51))
[[O. 0. 0.46915237]
[0.2159048 0.4425765 0.236688761]1

predict (X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)
Samples.

Returns C : array, shape = (n_samples,)
Returns predicted values.

score (X, y, sample_weight=None)
Returns the coefficient of determination R”2 of the prediction.

The coefficient R*2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R*2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns score : float
R”2 of self.predict(X) wrt. y.

set_params (**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.linear model.LassoCV

* Cross-validation on diabetes Dataset Exercise
» Feature selection using SelectFromModel and LassoCV

e Lasso model selection: Cross-Validation /AIC / BIC

3.3. Model selection and evaluation 401

scikit-learn user guide, Release 0.19.1

sklearn.linear model.LassolLarsCV

class sklearn.linear_model .LassoLarsCV (fit_intercept=True, verbose=False, max_iter=500,
normalize=True, precompute="auto’,
cv=None, max_n_alphas=1000, n_jobs=1,
eps=2.2204460492503131e-16, copy_X=True, posi-
tive=Fualse)
Cross-validated Lasso, using the LARS algorithm

The optimization objective for Lasso is:

(1 / (2 » n_samples)) * ||y - Xw||"2_2 + alpha * ||w]||[_1

Read more in the User Guide.
Parameters fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional
Sets the verbosity amount
max_iter : integer, optional
Maximum number of iterations to perform.

normalize : boolean, optional, default True

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the 12-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling £it on an estimator with normalize=False.

precompute : True | False | ‘auto’

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto’

let us decide. The Gram matrix cannot be passed as argument since we will use only
subsets of X.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

¢ None, to use the default 3-fold cross-validation,

* integer, to specify the number of folds.

* An object to be used as a cross-validation generator.

* An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.
max_n_alphas : integer, optional

The maximum number of points on the path used to compute the residuals in the cross-
validation

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs

402 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems.

copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
positive : boolean (default=False)

Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept
which is set True by default. Under the positive restriction the model coefficients do
not converge to the ordinary-least-squares solution for small values of alpha. Only co-
efficients up to the smallest alpha value (alphas_[alphas_ > 0.].min () when
fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congru-
ence with the solution of the coordinate descent Lasso estimator. As a consequence
using LassoLarsCV only makes sense for problems where a sparse solution is expected
and/or reached.

Attributes coef_ : array, shape (n_features,)

parameter vector (w in the formulation formula)
intercept_ : float

independent term in decision function.
coef_path_ : array, shape (n_features, n_alphas)

the varying values of the coefficients along the path
alpha_ : float

the estimated regularization parameter alpha
alphas_ : array, shape (n_alphas,)

the different values of alpha along the path
cv_alphas_ : array, shape (n_cv_alphas,)

all the values of alpha along the path for the different folds
mse_path_ : array, shape (n_folds, n_cv_alphas)

the mean square error on left-out for each fold along the path (alpha values given by
cv_alphas)

n_iter_ : array-like or int
the number of iterations run by Lars with the optimal alpha.
See also:

lars_path, LassoLars, LarsCV, LassoCV

Notes

The object solves the same problem as the LassoCV object. However, unlike the LassoCYV, it find the relevant
alphas values by itself. In general, because of this property, it will be more stable. However, it is more fragile to
heavily multicollinear datasets.

It is more efficient than the LassoCV if only a small number of features are selected compared to the total
number, for instance if there are very few samples compared to the number of features.

3.3. Model selection and evaluation 403

scikit-learn user guide, Release 0.19.1

Methods
fit(X,y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R”2 of the pre-
diction.
set_params(¥**params) Set the parameters of this estimator.

__init__ (fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute=auto’,
cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True,
positive=False)

alpha
DEPRECATED: Attribute alpha is deprecated in 0.19 and will be removed in 0.21. See alpha__ instead

cv_mse_path_
DEPRECATED: Attribute cv_mse_path_ is deprecated in 0.18 and will be removed in 0.20. Use
mse_path_ instead

fit (X, y)
Fit the model using X, y as training data.

Parameters X : array-like, shape (n_samples, n_features)
Training data.
y : array-like, shape (n_samples,)
Target values.
Returns self : object
returns an instance of self.

get_params (deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any
Parameter names mapped to their values.

predict (X)
Predict using the linear model

Parameters X : {array-like, sparse matrix }, shape = (n_samples, n_features)
Samples.

Returns C : array, shape = (n_samples,)
Returns predicted values.

score (X, y, sample_weight=None)
Returns the coefficient of determination R”2 of the prediction.

The coefficient R”2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score

404 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R*2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns score : float
R”2 of self.predict(X) wrt. y.

set_params (**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.linear_model.LassoLarsCV

e Lasso model selection: Cross-Validation /AIC / BIC

sklearn.linear_model.LogisticRegressionCV

class sklearn.linear_model.LogisticRegressionCV (Cs=10, fit_intercept=True, cv=None,

dual=False, penalty="12", scor-
ing=None, solver="Ibfgs’, tol=0.0001,
max_iter=100, class_weight=None,

n_jobs=1, verbose=0, refit=True, in-
tercept_scaling=1.0, multi_class="ovr’,

random_state=None)
Logistic Regression CV (aka logit, MaxEnt) classifier.

This class implements logistic regression using liblinear, newton-cg, sag of 1bfgs optimizer. The newton-cg, sag
and Ibfgs solvers support only L2 regularization with primal formulation. The liblinear solver supports both L1
and L2 regularization, with a dual formulation only for the L2 penalty.

For the grid of Cs values (that are set by default to be ten values in a logarithmic scale between le-4 and
le4), the best hyperparameter is selected by the cross-validator StratifiedKFold, but it can be changed using
the cv parameter. In the case of newton-cg and Ibfgs solvers, we warm start along the path i.e guess the initial
coefficients of the present fit to be the coefficients got after convergence in the previous fit, so it is supposed to
be faster for high-dimensional dense data.

For a multiclass problem, the hyperparameters for each class are computed using the best scores got by doing a
one-vs-rest in parallel across all folds and classes. Hence this is not the true multinomial loss.

Read more in the User Guide.

Parameters Cs : list of floats | int

3.3. Model selection and evaluation 405

scikit-learn user guide, Release 0.19.1

Each of the values in Cs describes the inverse of regularization strength. If Cs is as an
int, then a grid of Cs values are chosen in a logarithmic scale between le-4 and le4.
Like in support vector machines, smaller values specify stronger regularization.

fit_intercept : bool, default: True
Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function.
cv : integer or cross-validation generator

The default cross-validation generator used is Stratified K-Folds. If an integer
is provided, then it is the number of folds used. See the module sklearn.
model_select ion module for the list of possible cross-validation objects.

dual : bool

Dual or primal formulation. Dual formulation is only implemented for 12 penalty with
liblinear solver. Prefer dual=False when n_samples > n_features.

penalty : str, ‘11° or ‘12’

Used to specify the norm used in the penalization. The ‘newton-cg’, ‘sag’ and ‘lbfgs’
solvers support only 12 penalties.

scoring : string, callable, or None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer (estimator, X, y). For alist of scoring functions that can be
used, look at sklearn.metrics. The default scoring option used is ‘accuracy’.

solver : {‘newton-cg’, ‘Ibfgs’, ‘liblinear’, ‘sag’, ‘saga’},
default: ‘Ibfgs’ Algorithm to use in the optimization problem.

* For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ and ‘saga’ are
faster for large ones.

* For multiclass problems, only ‘newton-cg’, ‘sag’, ‘saga’ and ‘lbfgs’ handle
multinomial loss; ‘liblinear’ is limited to one-versus-rest schemes.

* ‘newton-cg’, ‘lbfgs’ and ‘sag’ only handle L2 penalty, whereas ‘liblinear’ and
‘saga’ handle L1 penalty.

* ‘liblinear’ might be slower in LogisticRegressionCV because it does not handle
warm-starting.

Note that ‘sag’ and ‘saga’ fast convergence is only guaranteed on features with
approximately the same scale. You can preprocess the data with a scaler from
sklearn.preprocessing.

New in version 0.17: Stochastic Average Gradient descent solver.
New in version 0.19: SAGA solver.
tol : float, optional
Tolerance for stopping criteria.
max_iter : int, optional
Maximum number of iterations of the optimization algorithm.
class_weight : dict or ‘balanced’, optional

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one.

406 Chapter 3. User Guide

scikit-learn user guide, Release 0.19.1

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes
* np.bincount (y)).

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

New in version 0.17: class_weight == ‘balanced’
n_jobs : int, optional

Number of CPU cores used during the cross-validation loop. If given a value of -1, all
cores are used.

verbose : int

For the ‘liblinear’, ‘sag’ and ‘lbfgs’ solvers set verbose to any positive number for ver-
bosity.

refit : bool

If set to True, the scores are averaged across all folds, and the coefs and the C that
corresponds to the best score is taken, and a final refit is done using these parameters.
Otherwise the coefs, intercepts and C that correspond to the best scores across folds are
averaged.

intercept_scaling : float, default 1.

Useful only when the solver ‘liblinear’ is used and self.fit_intercept is set to True. In this
case, x becomes [x, self.intercept_scaling], i.e. a “synthetic” feature with constant value
equal to intercept_scaling is appended to the instance vector. The intercept becomes
intercept_scaling » synthetic_feature_weight.

Note! the synthetic feature weight is subject to 11/12 regularization as all other features.
To lessen the effect of regularization on synthetic feature weight (and therefore on the
intercept) intercept_scaling has to be increased.

multi_class : str, { ‘ovr’, ‘multinomial’ }

Multiclass option can be either ‘ovr’ or ‘multinomial’. If the option chosen is ‘ovr’,
then a binary problem is fit for each label. Else the loss minimised is the multinomial
loss fit across the entire probability distribution. Works only for the ‘newton-cg’, ‘sag’,
‘saga’ and ‘Ibfgs’ solver.

New in version 0.18: Stochastic Average Gradient descent solver for ‘multinomial’
case.

random_state : int, RandomState instance or None, optional, default None

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes coef_: array, shape (1, n_features) or (n_classes, n_features)
Coefficient of the features in the decision function.
coef_ is of shape (1, n_features) when the given pr