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CHAPTER

ONE

WELCOME TO SCIKIT-LEARN

1.1 Installing scikit-learn

Note: If you wish to contribute to the project, it’s recommended you install the latest development version.

1.1.1 Installing the latest release

Scikit-learn requires:

• Python (>= 2.7 or >= 3.3),

• NumPy (>= 1.8.2),

• SciPy (>= 0.13.3).

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip

pip install -U scikit-learn

or conda:

conda install scikit-learn

If you have not installed NumPy or SciPy yet, you can also install these using conda or pip. When using pip, please
ensure that binary wheels are used, and NumPy and SciPy are not recompiled from source, which can happen when
using particular configurations of operating system and hardware (such as Linux on a Raspberry Pi). Building numpy
and scipy from source can be complex (especially on Windows) and requires careful configuration to ensure that they
link against an optimized implementation of linear algebra routines. Instead, use a third-party distribution as described
below.

If you must install scikit-learn and its dependencies with pip, you can install it as scikit-learn[alldeps]. The
most common use case for this is in a requirements.txt file used as part of an automated build process for a
PaaS application or a Docker image. This option is not intended for manual installation from the command line.

1.1.2 Third-party Distributions

If you don’t already have a python installation with numpy and scipy, we recommend to install either via your package
manager or via a python bundle. These come with numpy, scipy, scikit-learn, matplotlib and many other helpful
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scientific and data processing libraries.

Available options are:

Canopy and Anaconda for all supported platforms

Canopy and Anaconda both ship a recent version of scikit-learn, in addition to a large set of scientific python library
for Windows, Mac OSX and Linux.

Anaconda offers scikit-learn as part of its free distribution.

Warning: To upgrade or uninstall scikit-learn installed with Anaconda or conda you should not use the pip
command. Instead:

To upgrade scikit-learn:

conda update scikit-learn

To uninstall scikit-learn:
conda remove scikit-learn

Upgrading with pip install -U scikit-learn or uninstalling pip uninstall scikit-learn is
likely fail to properly remove files installed by the conda command.

pip upgrade and uninstall operations only work on packages installed via pip install.

WinPython for Windows

The WinPython project distributes scikit-learn as an additional plugin.

For installation instructions for particular operating systems or for compiling the bleeding edge version, see the Ad-
vanced installation instructions.

1.2 Frequently Asked Questions

Here we try to give some answers to questions that regularly pop up on the mailing list.

1.2.1 What is the project name (a lot of people get it wrong)?

scikit-learn, but not scikit or SciKit nor sci-kit learn. Also not scikits.learn or scikits-learn, which were previously
used.

1.2.2 How do you pronounce the project name?

sy-kit learn. sci stands for science!

1.2.3 Why scikit?

There are multiple scikits, which are scientific toolboxes built around SciPy. You can find a list at https://scikits.
appspot.com/scikits. Apart from scikit-learn, another popular one is scikit-image.

2 Chapter 1. Welcome to scikit-learn
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1.2.4 How can I contribute to scikit-learn?

See Contributing. Before wanting to add a new algorithm, which is usually a major and lengthy undertaking, it is
recommended to start with known issues. Please do not contact the contributors of scikit-learn directly regarding
contributing to scikit-learn.

1.2.5 What’s the best way to get help on scikit-learn usage?

For general machine learning questions, please use Cross Validated with the [machine-learning] tag.

For scikit-learn usage questions, please use Stack Overflow with the [scikit-learn] and [python] tags. You
can alternatively use the mailing list.

Please make sure to include a minimal reproduction code snippet (ideally shorter than 10 lines) that highlights your
problem on a toy dataset (for instance from sklearn.datasets or randomly generated with functions of numpy.
random with a fixed random seed). Please remove any line of code that is not necessary to reproduce your problem.

The problem should be reproducible by simply copy-pasting your code snippet in a Python shell with scikit-learn
installed. Do not forget to include the import statements.

More guidance to write good reproduction code snippets can be found at:

http://stackoverflow.com/help/mcve

If your problem raises an exception that you do not understand (even after googling it), please make sure to include
the full traceback that you obtain when running the reproduction script.

For bug reports or feature requests, please make use of the issue tracker on GitHub.

There is also a scikit-learn Gitter channel where some users and developers might be found.

Please do not email any authors directly to ask for assistance, report bugs, or for any other issue related to
scikit-learn.

1.2.6 How can I create a bunch object?

Don’t make a bunch object! They are not part of the scikit-learn API. Bunch objects are just a way to package some
numpy arrays. As a scikit-learn user you only ever need numpy arrays to feed your model with data.

For instance to train a classifier, all you need is a 2D array X for the input variables and a 1D array y for the target
variables. The array X holds the features as columns and samples as rows . The array y contains integer values to
encode the class membership of each sample in X.

1.2.7 How can I load my own datasets into a format usable by scikit-learn?

Generally, scikit-learn works on any numeric data stored as numpy arrays or scipy sparse matrices. Other types that
are convertible to numeric arrays such as pandas DataFrame are also acceptable.

For more information on loading your data files into these usable data structures, please refer to loading external
datasets.

1.2.8 What are the inclusion criteria for new algorithms ?

We only consider well-established algorithms for inclusion. A rule of thumb is at least 3 years since publication, 200+
citations and wide use and usefulness. A technique that provides a clear-cut improvement (e.g. an enhanced data
structure or a more efficient approximation technique) on a widely-used method will also be considered for inclusion.
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From the algorithms or techniques that meet the above criteria, only those which fit well within the current API of
scikit-learn, that is a fit, predict/transform interface and ordinarily having input/output that is a numpy array
or sparse matrix, are accepted.

The contributor should support the importance of the proposed addition with research papers and/or implementations
in other similar packages, demonstrate its usefulness via common use-cases/applications and corroborate performance
improvements, if any, with benchmarks and/or plots. It is expected that the proposed algorithm should outperform the
methods that are already implemented in scikit-learn at least in some areas.

Also note that your implementation need not be in scikit-learn to be used together with scikit-learn tools. You can
implement your favorite algorithm in a scikit-learn compatible way, upload it to github and let us know. We will list it
under Related Projects.

1.2.9 Why are you so selective on what algorithms you include in scikit-learn?

Code is maintenance cost, and we need to balance the amount of code we have with the size of the team (and add to
this the fact that complexity scales non linearly with the number of features). The package relies on core developers
using their free time to fix bugs, maintain code and review contributions. Any algorithm that is added needs future
attention by the developers, at which point the original author might long have lost interest. Also see this thread on the
mailing list.

1.2.10 Why did you remove HMMs from scikit-learn?

See Will you add graphical models or sequence prediction to scikit-learn?.

1.2.11 Will you add graphical models or sequence prediction to scikit-learn?

Not in the foreseeable future. scikit-learn tries to provide a unified API for the basic tasks in machine learning, with
pipelines and meta-algorithms like grid search to tie everything together. The required concepts, APIs, algorithms
and expertise required for structured learning are different from what scikit-learn has to offer. If we started doing
arbitrary structured learning, we’d need to redesign the whole package and the project would likely collapse under its
own weight.

There are two project with API similar to scikit-learn that do structured prediction:

• pystruct handles general structured learning (focuses on SSVMs on arbitrary graph structures with approximate
inference; defines the notion of sample as an instance of the graph structure)

• seqlearn handles sequences only (focuses on exact inference; has HMMs, but mostly for the sake of complete-
ness; treats a feature vector as a sample and uses an offset encoding for the dependencies between feature
vectors)

1.2.12 Will you add GPU support?

No, or at least not in the near future. The main reason is that GPU support will introduce many software dependencies
and introduce platform specific issues. scikit-learn is designed to be easy to install on a wide variety of platforms.
Outside of neural networks, GPUs don’t play a large role in machine learning today, and much larger gains in speed
can often be achieved by a careful choice of algorithms.
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1.2.13 Do you support PyPy?

In case you didn’t know, PyPy is the new, fast, just-in-time compiling Python implementation. We don’t support it.
When the NumPy support in PyPy is complete or near-complete, and SciPy is ported over as well, we can start thinking
of a port. We use too much of NumPy to work with a partial implementation.

1.2.14 How do I deal with string data (or trees, graphs. . . )?

scikit-learn estimators assume you’ll feed them real-valued feature vectors. This assumption is hard-coded in pretty
much all of the library. However, you can feed non-numerical inputs to estimators in several ways.

If you have text documents, you can use a term frequency features; see Text feature extraction for the built-in text
vectorizers. For more general feature extraction from any kind of data, see Loading features from dicts and Feature
hashing.

Another common case is when you have non-numerical data and a custom distance (or similarity) metric on these data.
Examples include strings with edit distance (aka. Levenshtein distance; e.g., DNA or RNA sequences). These can be
encoded as numbers, but doing so is painful and error-prone. Working with distance metrics on arbitrary data can be
done in two ways.

Firstly, many estimators take precomputed distance/similarity matrices, so if the dataset is not too large, you can
compute distances for all pairs of inputs. If the dataset is large, you can use feature vectors with only one “feature”,
which is an index into a separate data structure, and supply a custom metric function that looks up the actual data in
this data structure. E.g., to use DBSCAN with Levenshtein distances:

>>> from leven import levenshtein
>>> import numpy as np
>>> from sklearn.cluster import dbscan
>>> data = ["ACCTCCTAGAAG", "ACCTACTAGAAGTT", "GAATATTAGGCCGA"]
>>> def lev_metric(x, y):
... i, j = int(x[0]), int(y[0]) # extract indices
... return levenshtein(data[i], data[j])
...
>>> X = np.arange(len(data)).reshape(-1, 1)
>>> X
array([[0],

[1],
[2]])

>>> dbscan(X, metric=lev_metric, eps=5, min_samples=2)
([0, 1], array([ 0, 0, -1]))

(This uses the third-party edit distance package leven.)

Similar tricks can be used, with some care, for tree kernels, graph kernels, etc.

1.2.15 Why do I sometime get a crash/freeze with n_jobs > 1 under OSX or Linux?

Several scikit-learn tools such as GridSearchCV and cross_val_score rely internally on Python’s multipro-
cessing module to parallelize execution onto several Python processes by passing n_jobs > 1 as argument.

The problem is that Python multiprocessing does a fork system call without following it with an exec system
call for performance reasons. Many libraries like (some versions of) Accelerate / vecLib under OSX, (some versions
of) MKL, the OpenMP runtime of GCC, nvidia’s Cuda (and probably many others), manage their own internal thread
pool. Upon a call to fork, the thread pool state in the child process is corrupted: the thread pool believes it has many
threads while only the main thread state has been forked. It is possible to change the libraries to make them detect
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when a fork happens and reinitialize the thread pool in that case: we did that for OpenBLAS (merged upstream in
master since 0.2.10) and we contributed a patch to GCC’s OpenMP runtime (not yet reviewed).

But in the end the real culprit is Python’s multiprocessing that does fork without exec to reduce the overhead
of starting and using new Python processes for parallel computing. Unfortunately this is a violation of the POSIX
standard and therefore some software editors like Apple refuse to consider the lack of fork-safety in Accelerate /
vecLib as a bug.

In Python 3.4+ it is now possible to configure multiprocessing to use the ‘forkserver’ or ‘spawn’ start methods
(instead of the default ‘fork’) to manage the process pools. To work around this issue when using scikit-learn, you
can set the JOBLIB_START_METHOD environment variable to ‘forkserver’. However the user should be aware that
using the ‘forkserver’ method prevents joblib.Parallel to call function interactively defined in a shell session.

If you have custom code that uses multiprocessing directly instead of using it via joblib you can enable the
‘forkserver’ mode globally for your program: Insert the following instructions in your main script:

import multiprocessing

# other imports, custom code, load data, define model...

if __name__ == '__main__':
multiprocessing.set_start_method('forkserver')

# call scikit-learn utils with n_jobs > 1 here

You can find more default on the new start methods in the multiprocessing documentation.

1.2.16 Why is there no support for deep or reinforcement learning / Will there be
support for deep or reinforcement learning in scikit-learn?

Deep learning and reinforcement learning both require a rich vocabulary to define an architecture, with deep learning
additionally requiring GPUs for efficient computing. However, neither of these fit within the design constraints of
scikit-learn; as a result, deep learning and reinforcement learning are currently out of scope for what scikit-learn seeks
to achieve.

You can find more information about addition of gpu support at Will you add GPU support?.

1.2.17 Why is my pull request not getting any attention?

The scikit-learn review process takes a significant amount of time, and contributors should not be discouraged by a
lack of activity or review on their pull request. We care a lot about getting things right the first time, as maintenance
and later change comes at a high cost. We rarely release any “experimental” code, so all of our contributions will be
subject to high use immediately and should be of the highest quality possible initially.

Beyond that, scikit-learn is limited in its reviewing bandwidth; many of the reviewers and core developers are working
on scikit-learn on their own time. If a review of your pull request comes slowly, it is likely because the reviewers are
busy. We ask for your understanding and request that you not close your pull request or discontinue your work solely
because of this reason.

1.2.18 How do I set a random_state for an entire execution?

For testing and replicability, it is often important to have the entire execution controlled by a single seed for the pseudo-
random number generator used in algorithms that have a randomized component. Scikit-learn does not use its own
global random state; whenever a RandomState instance or an integer random seed is not provided as an argument, it
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relies on the numpy global random state, which can be set using numpy.random.seed. For example, to set an
execution’s numpy global random state to 42, one could execute the following in his or her script:

import numpy as np
np.random.seed(42)

However, a global random state is prone to modification by other code during execution. Thus, the only way to ensure
replicability is to pass RandomState instances everywhere and ensure that both estimators and cross-validation
splitters have their random_state parameter set.

1.3 Support

There are several ways to get in touch with the developers.

1.3.1 Mailing List

• The main mailing list is scikit-learn.

• There is also a commit list scikit-learn-commits, where updates to the main repository and test failures get
notified.

1.3.2 User questions

• Some scikit-learn developers support users on StackOverflow using the [scikit-learn] tag.

• For general theoretical or methodological Machine Learning questions stack exchange is probably a more suit-
able venue.

In both cases please use a descriptive question in the title field (e.g. no “Please help with scikit-learn!” as this is not a
question) and put details on what you tried to achieve, what were the expected results and what you observed instead
in the details field.

Code and data snippets are welcome. Minimalistic (up to ~20 lines long) reproduction script very helpful.

Please describe the nature of your data and the how you preprocessed it: what is the number of samples, what is the
number and type of features (i.d. categorical or numerical) and for supervised learning tasks, what target are your
trying to predict: binary, multiclass (1 out of n_classes) or multilabel (k out of n_classes) classification or
continuous variable regression.

1.3.3 Bug tracker

If you think you’ve encountered a bug, please report it to the issue tracker:

https://github.com/scikit-learn/scikit-learn/issues

Don’t forget to include:

• steps (or better script) to reproduce,

• expected outcome,

• observed outcome or python (or gdb) tracebacks
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To help developers fix your bug faster, please link to a https://gist.github.com holding a standalone minimalistic python
script that reproduces your bug and optionally a minimalistic subsample of your dataset (for instance exported as CSV
files using numpy.savetxt).

Note: gists are git cloneable repositories and thus you can use git to push datafiles to them.

1.3.4 IRC

Some developers like to hang out on channel #scikit-learn on irc.freenode.net.

If you do not have an IRC client or are behind a firewall this web client works fine: http://webchat.freenode.net

1.3.5 Documentation resources

This documentation is relative to 0.19.1. Documentation for other versions can be found here.

Printable pdf documentation for old versions can be found here.

1.4 Related Projects

Projects implementing the scikit-learn estimator API are encouraged to use the scikit-learn-contrib template which
facilitates best practices for testing and documenting estimators. The scikit-learn-contrib GitHub organisation also
accepts high-quality contributions of repositories conforming to this template.

Below is a list of sister-projects, extensions and domain specific packages.

1.4.1 Interoperability and framework enhancements

These tools adapt scikit-learn for use with other technologies or otherwise enhance the functionality of scikit-learn’s
estimators.

Data formats

• sklearn_pandas bridge for scikit-learn pipelines and pandas data frame with dedicated transformers.

Auto-ML

• auto_ml Automated machine learning for production and analytics, built on scikit-learn and related projects.
Trains a pipeline wth all the standard machine learning steps. Tuned for prediction speed and ease of transfer to
production environments.

• auto-sklearn An automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator

• TPOT An automated machine learning toolkit that optimizes a series of scikit-learn operators to design a ma-
chine learning pipeline, including data and feature preprocessors as well as the estimators. Works as a drop-in
replacement for a scikit-learn estimator.

Experimentation frameworks

• REP Environment for conducting data-driven research in a consistent and reproducible way

• ML Frontend provides dataset management and SVM fitting/prediction through web-based and programmatic
interfaces.

• Scikit-Learn Laboratory A command-line wrapper around scikit-learn that makes it easy to run machine learning
experiments with multiple learners and large feature sets.

8 Chapter 1. Welcome to scikit-learn

https://gist.github.com
http://webchat.freenode.net
http://scikit-learn.org/dev/versions.html
https://sourceforge.net/projects/scikit-learn/files/documentation/
https://github.com/scikit-learn-contrib/project-template
https://github.com/scikit-learn-contrib/scikit-learn-contrib
https://github.com/paulgb/sklearn-pandas/
https://github.com/ClimbsRocks/auto_ml/
https://github.com/automl/auto-sklearn/
https://github.com/rhiever/tpot
https://github.com/yandex/REP
https://github.com/jeff1evesque/machine-learning
https://github.com/jeff1evesque/machine-learning#web-interface
https://github.com/jeff1evesque/machine-learning#programmatic-interface
https://skll.readthedocs.io/en/latest/index.html


scikit-learn user guide, Release 0.19.1

• Xcessiv is a notebook-like application for quick, scalable, and automated hyperparameter tuning and stacked
ensembling. Provides a framework for keeping track of model-hyperparameter combinations.

Model inspection and visualisation

• eli5 A library for debugging/inspecting machine learning models and explaining their predictions.

• mlxtend Includes model visualization utilities.

• scikit-plot A visualization library for quick and easy generation of common plots in data analysis and machine
learning.

• yellowbrick A suite of custom matplotlib visualizers for scikit-learn estimators to support visual feature analysis,
model selection, evaluation, and diagnostics.

Model export for production

• sklearn-pmml Serialization of (some) scikit-learn estimators into PMML.

• sklearn2pmml Serialization of a wide variety of scikit-learn estimators and transformers into PMML with the
help of JPMML-SkLearn library.

• sklearn-porter Transpile trained scikit-learn models to C, Java, Javascript and others.

• sklearn-compiledtrees Generate a C++ implementation of the predict function for decision trees (and ensembles)
trained by sklearn. Useful for latency-sensitive production environments.

1.4.2 Other estimators and tasks

Not everything belongs or is mature enough for the central scikit-learn project. The following are projects providing
interfaces similar to scikit-learn for additional learning algorithms, infrastructures and tasks.

Structured learning

• Seqlearn Sequence classification using HMMs or structured perceptron.

• HMMLearn Implementation of hidden markov models that was previously part of scikit-learn.

• PyStruct General conditional random fields and structured prediction.

• pomegranate Probabilistic modelling for Python, with an emphasis on hidden Markov models.

• sklearn-crfsuite Linear-chain conditional random fields (CRFsuite wrapper with sklearn-like API).

Deep neural networks etc.

• pylearn2 A deep learning and neural network library build on theano with scikit-learn like interface.

• sklearn_theano scikit-learn compatible estimators, transformers, and datasets which use Theano internally

• nolearn A number of wrappers and abstractions around existing neural network libraries

• keras Deep Learning library capable of running on top of either TensorFlow or Theano.

• lasagne A lightweight library to build and train neural networks in Theano.

Broad scope

• mlxtend Includes a number of additional estimators as well as model visualization utilities.

• sparkit-learn Scikit-learn API and functionality for PySpark’s distributed modelling.

Other regression and classification

• xgboost Optimised gradient boosted decision tree library.

• lightning Fast state-of-the-art linear model solvers (SDCA, AdaGrad, SVRG, SAG, etc. . . ).
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• py-earth Multivariate adaptive regression splines

• Kernel Regression Implementation of Nadaraya-Watson kernel regression with automatic bandwidth selection

• gplearn Genetic Programming for symbolic regression tasks.

• multiisotonic Isotonic regression on multidimensional features.

Decomposition and clustering

• lda: Fast implementation of latent Dirichlet allocation in Cython which uses Gibbs sampling
to sample from the true posterior distribution. (scikit-learn’s sklearn.decomposition.
LatentDirichletAllocation implementation uses variational inference to sample from a tractable
approximation of a topic model’s posterior distribution.)

• Sparse Filtering Unsupervised feature learning based on sparse-filtering

• kmodes k-modes clustering algorithm for categorical data, and several of its variations.

• hdbscan HDBSCAN and Robust Single Linkage clustering algorithms for robust variable density clustering.

• spherecluster Spherical K-means and mixture of von Mises Fisher clustering routines for data on the unit hyper-
sphere.

Pre-processing

• categorical-encoding A library of sklearn compatible categorical variable encoders.

• imbalanced-learn Various methods to under- and over-sample datasets.

1.4.3 Statistical learning with Python

Other packages useful for data analysis and machine learning.

• Pandas Tools for working with heterogeneous and columnar data, relational queries, time series and basic statis-
tics.

• theano A CPU/GPU array processing framework geared towards deep learning research.

• statsmodels Estimating and analysing statistical models. More focused on statistical tests and less on prediction
than scikit-learn.

• PyMC Bayesian statistical models and fitting algorithms.

• Sacred Tool to help you configure, organize, log and reproduce experiments

• Seaborn Visualization library based on matplotlib. It provides a high-level interface for drawing attractive
statistical graphics.

• Deep Learning A curated list of deep learning software libraries.

Domain specific packages

• scikit-image Image processing and computer vision in python.

• Natural language toolkit (nltk) Natural language processing and some machine learning.

• gensim A library for topic modelling, document indexing and similarity retrieval

• NiLearn Machine learning for neuro-imaging.

• AstroML Machine learning for astronomy.

• MSMBuilder Machine learning for protein conformational dynamics time series.
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1.4.4 Snippets and tidbits

The wiki has more!

1.5 About us

This is a community effort, and as such many people have contributed to it over the years.

1.5.1 History

This project was started in 2007 as a Google Summer of Code project by David Cournapeau. Later that year, Matthieu
Brucher started work on this project as part of his thesis.

In 2010 Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort and Vincent Michel of INRIA took leadership of the
project and made the first public release, February the 1st 2010. Since then, several releases have appeared following
a ~3 month cycle, and a thriving international community has been leading the development.

1.5.2 People

The following people have been core contributors to scikit-learn’s development and maintenance:

• Mathieu Blondel
• Matthieu Brucher
• Lars Buitinck
• David Cournapeau
• Noel Dawe
• Vincent Dubourg
• Edouard Duchesnay
• Tom Dupré la Tour
• Alexander Fabisch
• Virgile Fritsch
• Satra Ghosh
• Angel Soler Gollonet
• Chris Filo Gorgolewski
• Alexandre Gramfort
• Olivier Grisel
• Jaques Grobler
• Yaroslav Halchenko
• Brian Holt
• Arnaud Joly
• Thouis (Ray) Jones
• Kyle Kastner
• Manoj Kumar
• Robert Layton
• Wei Li
• Paolo Losi
• Gilles Louppe
• Jan Hendrik Metzen
• Vincent Michel
• Jarrod Millman
• Andreas Müller (release manager)
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• Vlad Niculae
• Joel Nothman
• Alexandre Passos
• Fabian Pedregosa
• Peter Prettenhofer
• Bertrand Thirion
• Jake VanderPlas
• Nelle Varoquaux
• Gael Varoquaux
• Ron Weiss

Please do not email the authors directly to ask for assistance or report issues. Instead, please see What’s the best way
to ask questions about scikit-learn in the FAQ.

See also:

How you can contribute to the project

1.5.3 Citing scikit-learn

If you use scikit-learn in a scientific publication, we would appreciate citations to the following paper:

Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

Bibtex entry:

@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.

and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},

journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}

If you want to cite scikit-learn for its API or design, you may also want to consider the following paper:

API design for machine learning software: experiences from the scikit-learn project, Buitinck et al., 2013.

Bibtex entry:

@inproceedings{sklearn_api,
author = {Lars Buitinck and Gilles Louppe and Mathieu Blondel and

Fabian Pedregosa and Andreas Mueller and Olivier Grisel and
Vlad Niculae and Peter Prettenhofer and Alexandre Gramfort
and Jaques Grobler and Robert Layton and Jake VanderPlas and
Arnaud Joly and Brian Holt and Ga{\"{e}}l Varoquaux},

title = {{API} design for machine learning software: experiences from
→˓the scikit-learn

project},
booktitle = {ECML PKDD Workshop: Languages for Data Mining and Machine

→˓Learning},
year = {2013},
pages = {108--122},

}
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1.5.4 Artwork

High quality PNG and SVG logos are available in the doc/logos/ source directory.

1.5.5 Funding

INRIA actively supports this project. It has provided funding for Fabian Pedregosa (2010-2012), Jaques Grobler
(2012-2013) and Olivier Grisel (2013-2017) to work on this project full-time. It also hosts coding sprints and other

events. Paris-Saclay Center for Data Science funded one year for a
developer to work on the project full-time (2014-2015) and 50% of the time of Guillaume Lemaitre (2016-2017).

NYU Moore-Sloan Data Science Environment funded Andreas
Mueller (2014-2016) to work on this project. The Moore-Sloan Data Science Environment also funds several stu-

dents to work on the project part-time. Télécom Paristech funded
Manoj Kumar (2014), Tom Dupré la Tour (2015), Raghav RV (2015-2017), Thierry Guillemot (2016-2017) and Albert

Thomas (2017) to work on scikit-learn. Columbia University funds Andreas Müller since
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2016. Andreas Müller also received a grant to improve scikit-learn from the Alfred P. Sloan

Foundation in 2017. The University of Sydney funds Joel Nothman

since July 2017. The following students were sponsored by Google
to work on scikit-learn through the Google Summer of Code program.

• 2007 - David Cournapeau

• 2011 - Vlad Niculae

• 2012 - Vlad Niculae, Immanuel Bayer.

• 2013 - Kemal Eren, Nicolas Trésegnie

• 2014 - Hamzeh Alsalhi, Issam Laradji, Maheshakya Wijewardena, Manoj Kumar.

• 2015 - Raghav RV, Wei Xue

• 2016 - Nelson Liu, YenChen Lin

It also provided funding for sprints and events around scikit-learn. If you would like to participate in the next Google
Summer of code program, please see this page.

The NeuroDebian project providing Debian packaging and contributions is supported by Dr. James V. Haxby (Dart-
mouth College).

The PSF helped find and manage funding for our 2011 Granada sprint. More information can be found here

tinyclues funded the 2011 international Granada sprint.

Donating to the project

If you are interested in donating to the project or to one of our code-sprints, you can use the Paypal button below or the
NumFOCUS Donations Page (if you use the latter, please indicate that you are donating for the scikit-learn project).

All donations will be handled by NumFOCUS, a non-profit-organization which is managed by a board of Scipy
community members. NumFOCUS’s mission is to foster scientific computing software, in particular in Python. As
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a fiscal home of scikit-learn, it ensures that money is available when needed to keep the project funded and available
while in compliance with tax regulations.

The received donations for the scikit-learn project mostly will go towards covering travel-expenses for code sprints, as
well as towards the organization budget of the project1.

Notes

The 2013 Paris international sprint

Fig. 1.1: IAP VII/19 - DYSCO

For more information on this sprint, see here

1.5.6 Infrastructure support

• We would like to thank Rackspace for providing us with a free Rackspace Cloud account to automatically build
the documentation and the example gallery from for the development version of scikit-learn using this tool.

• We would also like to thank Shining Panda for free CPU time on their Continuous Integration server.

1 Regarding the organization budget in particular, we might use some of the donated funds to pay for other project expenses such as DNS,
hosting or continuous integration services.

1.5. About us 15

http://www.telecom-paristech.fr/
https://www.tinyclues.com/
https://www.afpy.org
http://www.frs-fnrs.be/
http://sites.uclouvain.be/dysco/
https://github.com/scikit-learn/administrative/blob/master/sprint_paris_2013/proposal.rst
https://www.rackspace.com
https://www.rackspace.com/cloud/
https://github.com/scikit-learn/sklearn-docbuilder
http://shiningpanda.com/


scikit-learn user guide, Release 0.19.1

1.6 Who is using scikit-learn?

1.6.1 Spotify

Scikit-learn provides a toolbox with solid implementations of a bunch of state-of-the-art models and makes it easy to
plug them into existing applications. We’ve been using it quite a lot for music recommendations at Spotify and I think
it’s the most well-designed ML package I’ve seen so far.

Erik Bernhardsson, Engineering Manager Music Discovery & Machine Learning, Spotify

1.6.2 Inria

At INRIA, we use scikit-learn to support leading-edge basic research in many teams: Parietal for neuroimaging, Lear
for computer vision, Visages for medical image analysis, Privatics for security. The project is a fantastic tool to
address difficult applications of machine learning in an academic environment as it is performant and versatile, but all
easy-to-use and well documented, which makes it well suited to grad students.

Gaël Varoquaux, research at Parietal

1.6.3 betaworks

Betaworks is a NYC-based startup studio that builds new products, grows companies, and invests in others. Over
the past 8 years we’ve launched a handful of social data analytics-driven services, such as Bitly, Chartbeat, digg and
Scale Model. Consistently the betaworks data science team uses Scikit-learn for a variety of tasks. From exploratory
analysis, to product development, it is an essential part of our toolkit. Recent uses are included in digg’s new video
recommender system, and Poncho’s dynamic heuristic subspace clustering.

Gilad Lotan, Chief Data Scientist
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1.6.4 Evernote

Building a classifier is typically an iterative process of exploring the data, selecting the features (the attributes of the
data believed to be predictive in some way), training the models, and finally evaluating them. For many of these tasks,
we relied on the excellent scikit-learn package for Python.

Read more

Mark Ayzenshtat, VP, Augmented Intelligence

1.6.5 Télécom ParisTech

At Telecom ParisTech, scikit-learn is used for hands-on sessions and home assignments in introductory and advanced
machine learning courses. The classes are for undergrads and masters students. The great benefit of scikit-learn is its
fast learning curve that allows students to quickly start working on interesting and motivating problems.

Alexandre Gramfort, Assistant Professor

1.6.6 Booking.com

At Booking.com, we use machine learning algorithms for many different applications, such as recommending ho-
tels and destinations to our customers, detecting fraudulent reservations, or scheduling our customer service agents.
Scikit-learn is one of the tools we use when implementing standard algorithms for prediction tasks. Its API and doc-
umentations are excellent and make it easy to use. The scikit-learn developers do a great job of incorporating state of
the art implementations and new algorithms into the package. Thus, scikit-learn provides convenient access to a wide
spectrum of algorithms, and allows us to readily find the right tool for the right job.

Melanie Mueller, Data Scientist

1.6.7 AWeber
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The scikit-learn toolkit is indispensable for the Data Analysis and Management team at AWeber. It allows us to do
AWesome stuff we would not otherwise have the time or resources to accomplish. The documentation is excellent,
allowing new engineers to quickly evaluate and apply many different algorithms to our data. The text feature extraction
utilities are useful when working with the large volume of email content we have at AWeber. The RandomizedPCA
implementation, along with Pipelining and FeatureUnions, allows us to develop complex machine learning algorithms
efficiently and reliably.

Anyone interested in learning more about how AWeber deploys scikit-learn in a production environment should check
out talks from PyData Boston by AWeber’s Michael Becker available at https://github.com/mdbecker/pydata_2013

Michael Becker, Software Engineer, Data Analysis and Management Ninjas

1.6.8 Yhat

The combination of consistent APIs, thorough documentation, and top notch implementation make scikit-learn our
favorite machine learning package in Python. scikit-learn makes doing advanced analysis in Python accessible to
anyone. At Yhat, we make it easy to integrate these models into your production applications. Thus eliminating the
unnecessary dev time encountered productionizing analytical work.

Greg Lamp, Co-founder Yhat

1.6.9 Rangespan

The Python scikit-learn toolkit is a core tool in the data science group at Rangespan. Its large collection of well
documented models and algorithms allow our team of data scientists to prototype fast and quickly iterate to find the
right solution to our learning problems. We find that scikit-learn is not only the right tool for prototyping, but its
careful and well tested implementation give us the confidence to run scikit-learn models in production.

Jurgen Van Gael, Data Science Director at Rangespan Ltd
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1.6.10 Birchbox

At Birchbox, we face a range of machine learning problems typical to E-commerce: product recommendation, user
clustering, inventory prediction, trends detection, etc. Scikit-learn lets us experiment with many models, especially in
the exploration phase of a new project: the data can be passed around in a consistent way; models are easy to save and
reuse; updates keep us informed of new developments from the pattern discovery research community. Scikit-learn is
an important tool for our team, built the right way in the right language.

Thierry Bertin-Mahieux, Birchbox, Data Scientist

1.6.11 Bestofmedia Group

Scikit-learn is our #1 toolkit for all things machine learning at Bestofmedia. We use it for a variety of tasks (e.g. spam
fighting, ad click prediction, various ranking models) thanks to the varied, state-of-the-art algorithm implementations
packaged into it. In the lab it accelerates prototyping of complex pipelines. In production I can say it has proven to be
robust and efficient enough to be deployed for business critical components.

Eustache Diemert, Lead Scientist Bestofmedia Group

1.6.12 Change.org
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At change.org we automate the use of scikit-learn’s RandomForestClassifier in our production systems to drive email
targeting that reaches millions of users across the world each week. In the lab, scikit-learn’s ease-of-use, performance,
and overall variety of algorithms implemented has proved invaluable in giving us a single reliable source to turn to for
our machine-learning needs.

Vijay Ramesh, Software Engineer in Data/science at Change.org

1.6.13 PHIMECA Engineering

At PHIMECA Engineering, we use scikit-learn estimators as surrogates for expensive-to-evaluate numerical models
(mostly but not exclusively finite-element mechanical models) for speeding up the intensive post-processing operations
involved in our simulation-based decision making framework. Scikit-learn’s fit/predict API together with its efficient
cross-validation tools considerably eases the task of selecting the best-fit estimator. We are also using scikit-learn for
illustrating concepts in our training sessions. Trainees are always impressed by the ease-of-use of scikit-learn despite
the apparent theoretical complexity of machine learning.

Vincent Dubourg, PHIMECA Engineering, PhD Engineer

1.6.14 HowAboutWe

At HowAboutWe, scikit-learn lets us implement a wide array of machine learning techniques in analysis and in pro-
duction, despite having a small team. We use scikit-learn’s classification algorithms to predict user behavior, enabling
us to (for example) estimate the value of leads from a given traffic source early in the lead’s tenure on our site. Also, our
users’ profiles consist of primarily unstructured data (answers to open-ended questions), so we use scikit-learn’s fea-
ture extraction and dimensionality reduction tools to translate these unstructured data into inputs for our matchmaking
system.

Daniel Weitzenfeld, Senior Data Scientist at HowAboutWe

1.6.15 PeerIndex

At PeerIndex we use scientific methodology to build the Influence Graph - a unique dataset that allows us to identify
who’s really influential and in which context. To do this, we have to tackle a range of machine learning and predic-
tive modeling problems. Scikit-learn has emerged as our primary tool for developing prototypes and making quick
progress. From predicting missing data and classifying tweets to clustering communities of social media users, scikit-
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learn proved useful in a variety of applications. Its very intuitive interface and excellent compatibility with other
python tools makes it and indispensable tool in our daily research efforts.

Ferenc Huszar - Senior Data Scientist at Peerindex

1.6.16 DataRobot

DataRobot is building next generation predictive analytics software to make data scientists more productive, and
scikit-learn is an integral part of our system. The variety of machine learning techniques in combination with the
solid implementations that scikit-learn offers makes it a one-stop-shopping library for machine learning in Python.
Moreover, its consistent API, well-tested code and permissive licensing allow us to use it in a production environment.
Scikit-learn has literally saved us years of work we would have had to do ourselves to bring our product to market.

Jeremy Achin, CEO & Co-founder DataRobot Inc.

1.6.17 OkCupid

We’re using scikit-learn at OkCupid to evaluate and improve our matchmaking system. The range of features it has,
especially preprocessing utilities, means we can use it for a wide variety of projects, and it’s performant enough to
handle the volume of data that we need to sort through. The documentation is really thorough, as well, which makes
the library quite easy to use.

David Koh - Senior Data Scientist at OkCupid

1.6.18 Lovely

At Lovely, we strive to deliver the best apartment marketplace, with respect to our users and our listings. From
understanding user behavior, improving data quality, and detecting fraud, scikit-learn is a regular tool for gathering
insights, predictive modeling and improving our product. The easy-to-read documentation and intuitive architecture of
the API makes machine learning both explorable and accessible to a wide range of python developers. I’m constantly
recommending that more developers and scientists try scikit-learn.

Simon Frid - Data Scientist, Lead at Lovely
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1.6.19 Data Publica

Data Publica builds a new predictive sales tool for commercial and marketing teams called C-Radar. We extensively
use scikit-learn to build segmentations of customers through clustering, and to predict future customers based on past
partnerships success or failure. We also categorize companies using their website communication thanks to scikit-learn
and its machine learning algorithm implementations. Eventually, machine learning makes it possible to detect weak
signals that traditional tools cannot see. All these complex tasks are performed in an easy and straightforward way
thanks to the great quality of the scikit-learn framework.

Guillaume Lebourgeois & Samuel Charron - Data Scientists at Data Publica

1.6.20 Machinalis

Scikit-learn is the cornerstone of all the machine learning projects carried at Machinalis. It has a consistent API, a
wide selection of algorithms and lots of auxiliary tools to deal with the boilerplate. We have used it in production en-
vironments on a variety of projects including click-through rate prediction, information extraction, and even counting
sheep!

In fact, we use it so much that we’ve started to freeze our common use cases into Python packages, some of them
open-sourced, like FeatureForge . Scikit-learn in one word: Awesome.

Rafael Carrascosa, Lead developer

1.6.21 solido

Scikit-learn is helping to drive Moore’s Law, via Solido. Solido creates computer-aided design tools used by the
majority of top-20 semiconductor companies and fabs, to design the bleeding-edge chips inside smartphones, auto-
mobiles, and more. Scikit-learn helps to power Solido’s algorithms for rare-event estimation, worst-case verification,
optimization, and more. At Solido, we are particularly fond of scikit-learn’s libraries for Gaussian Process models,
large-scale regularized linear regression, and classification. Scikit-learn has increased our productivity, because for
many ML problems we no longer need to “roll our own” code. This PyData 2014 talk has details.

Trent McConaghy, founder, Solido Design Automation Inc.
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1.6.22 INFONEA

We employ scikit-learn for rapid prototyping and custom-made Data Science solutions within our in-memory based
Business Intelligence Software INFONEA®. As a well-documented and comprehensive collection of state-of-the-art
algorithms and pipelining methods, scikit-learn enables us to provide flexible and scalable scientific analysis solutions.
Thus, scikit-learn is immensely valuable in realizing a powerful integration of Data Science technology within self-
service business analytics.

Thorsten Kranz, Data Scientist, Coma Soft AG.

1.6.23 Dataiku

Our software, Data Science Studio (DSS), enables users to create data services that combine ETL with Machine
Learning. Our Machine Learning module integrates many scikit-learn algorithms. The scikit-learn library is a perfect
integration with DSS because it offers algorithms for virtually all business cases. Our goal is to offer a transparent and
flexible tool that makes it easier to optimize time consuming aspects of building a data service, preparing data, and
training machine learning algorithms on all types of data.

Florian Douetteau, CEO, Dataiku

1.6.24 Otto Group

Here at Otto Group, one of global Big Five B2C online retailers, we are using scikit-learn in all aspects of our daily
work from data exploration to development of machine learning application to the productive deployment of those
services. It helps us to tackle machine learning problems ranging from e-commerce to logistics. It consistent APIs
enabled us to build the Palladium REST-API framework around it and continuously deliver scikit-learn based services.

Christian Rammig, Head of Data Science, Otto Group

1.6.25 Zopa

At Zopa, the first ever Peer-to-Peer lending platform, we extensively use scikit-learn to run the business and optimize
our users’ experience. It powers our Machine Learning models involved in credit risk, fraud risk, marketing, and
pricing, and has been used for originating at least 1 billion GBP worth of Zopa loans. It is very well documented,
powerful, and simple to use. We are grateful for the capabilities it has provided, and for allowing us to deliver on our
mission of making money simple and fair.
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Vlasios Vasileiou, Head of Data Science, Zopa

1.7 Release history

1.7.1 Version 0.19.1

October, 2017

This is a bug-fix release with some minor documentation improvements and enhancements to features released in
0.19.0.

Note there may be minor differences in TSNE output in this release (due to #9623), in the case where multiple samples
have equal distance to some sample.

Changelog

API changes

• Reverted the addition of metrics.ndcg_score and metrics.dcg_score which had been merged into
version 0.19.0 by error. The implementations were broken and undocumented.

• return_train_score which was added to model_selection.GridSearchCV ,
model_selection.RandomizedSearchCV and model_selection.cross_validate in
version 0.19.0 will be changing its default value from True to False in version 0.21. We found that calculating
training score could have a great effect on cross validation runtime in some cases. Users should explicitly
set return_train_score to False if prediction or scoring functions are slow, resulting in a deleterious
effect on CV runtime, or to True if they wish to use the calculated scores. #9677 by Kumar Ashutosh and Joel
Nothman.

• correlation_models and regression_models from the legacy gaussian processes implementation
have been belatedly deprecated. #9717 by Kumar Ashutosh.

Bug fixes

• Avoid integer overflows in metrics.matthews_corrcoef. #9693 by Sam Steingold.

• Fix ValueError in preprocessing.LabelEncoder when using inverse_transform on unseen la-
bels. #9816 by Charlie Newey.

• Fixed a bug in the objective function for manifold.TSNE (both exact and with the Barnes-Hut approximation)
when n_components >= 3. #9711 by @goncalo-rodrigues.

• Fix regression in model_selection.cross_val_predict where it raised an error with
method='predict_proba' for some probabilistic classifiers. #9641 by James Bourbeau.

• Fixed a bug where datasets.make_classification modified its input weights. #9865 by Sachin
Kelkar.

• model_selection.StratifiedShuffleSplit now works with multioutput multiclass or multilabel
data with more than 1000 columns. #9922 by Charlie Brummitt.

• Fixed a bug with nested and conditional parameter setting, e.g. setting a pipeline step and its parameter at the
same time. #9945 by Andreas Müller and Joel Nothman.

Regressions in 0.19.0 fixed in 0.19.1:
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• Fixed a bug where parallelised prediction in random forests was not thread-safe and could (rarely) result in
arbitrary errors. #9830 by Joel Nothman.

• Fix regression in model_selection.cross_val_predict where it no longer accepted X as a list.
#9600 by Rasul Kerimov.

• Fixed handling of model_selection.cross_val_predict for binary classification with
method='decision_function'. #9593 by Reiichiro Nakano and core devs.

• Fix regression in pipeline.Pipeline where it no longer accepted steps as a tuple. #9604 by Joris Van
den Bossche.

• Fix bug where n_iter was not properly deprecated, leaving n_iter unavailable for interim use
in linear_model.SGDClassifier, linear_model.SGDRegressor, linear_model.
PassiveAggressiveClassifier, linear_model.PassiveAggressiveRegressor and
linear_model.Perceptron. #9558 by Andreas Müller.

• Dataset fetchers make sure temporary files are closed before removing them, which caused errors on Windows.
#9847 by Joan Massich.

• Fixed a regression in manifold.TSNE where it no longer supported metrics other than ‘euclidean’ and ‘pre-
computed’. #9623 by Oli Blum.

Enhancements

• Our test suite and utils.estimator_checks.check_estimators can now be run without Nose in-
stalled. #9697 by Joan Massich.

• To improve usability of version 0.19’s pipeline.Pipeline caching, memory now allows joblib.
Memory instances. This make use of the new utils.validation.check_memory helper. #9584 by
Kumar Ashutosh

• Some fixes to examples: #9750, #9788, #9815

• Made a FutureWarning in SGD-based estimators less verbose. #9802 by Vrishank Bhardwaj.

Code and Documentation Contributors

With thanks to:

Joel Nothman, Loic Esteve, Andreas Mueller, Kumar Ashutosh, Vrishank Bhardwaj, Hanmin Qin, Rasul Kerimov,
James Bourbeau, Nagarjuna Kumar, Nathaniel Saul, Olivier Grisel, Roman Yurchak, Reiichiro Nakano, Sachin Kelkar,
Sam Steingold, Yaroslav Halchenko, diegodlh, felix, goncalo-rodrigues, jkleint, oliblum90, pasbi, Anthony Gitter, Ben
Lawson, Charlie Brummitt, Didi Bar-Zev, Gael Varoquaux, Joan Massich, Joris Van den Bossche, nielsenmarkus11

1.7.2 Version 0.19

August 12, 2017

Highlights

We are excited to release a number of great new features including neighbors.LocalOutlierFactor
for anomaly detection, preprocessing.QuantileTransformer for robust feature transformation, and
the multioutput.ClassifierChain meta-estimator to simply account for dependencies between classes
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in multilabel problems. We have some new algorithms in existing estimators, such as multiplicative up-
date in decomposition.NMF and multinomial linear_model.LogisticRegression with L1 loss (use
solver='saga').

Cross validation is now able to return the results from multiple metric evaluations. The new model_selection.
cross_validate can return many scores on the test data as well as training set performance and timings, and we
have extended the scoring and refit parameters for grid/randomized search to handle multiple metrics.

You can also learn faster. For instance, the new option to cache transformations in pipeline.Pipeline makes
grid search over pipelines including slow transformations much more efficient. And you can predict faster: if you’re
sure you know what you’re doing, you can turn off validating that the input is finite using config_context.

We’ve made some important fixes too. We’ve fixed a longstanding implementation error in metrics.
average_precision_score, so please be cautious with prior results reported from that function. A number
of errors in the manifold.TSNE implementation have been fixed, particularly in the default Barnes-Hut approx-
imation. semi_supervised.LabelSpreading and semi_supervised.LabelPropagation have had
substantial fixes. LabelPropagation was previously broken. LabelSpreading should now correctly respect its alpha
parameter.

Changed models

The following estimators and functions, when fit with the same data and parameters, may produce different models
from the previous version. This often occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

• cluster.KMeans with sparse X and initial centroids given (bug fix)

• cross_decomposition.PLSRegression with scale=True (bug fix)

• ensemble.GradientBoostingClassifier and ensemble.GradientBoostingRegressor
where min_impurity_split is used (bug fix)

• gradient boosting loss='quantile' (bug fix)

• ensemble.IsolationForest (bug fix)

• feature_selection.SelectFdr (bug fix)

• linear_model.RANSACRegressor (bug fix)

• linear_model.LassoLars (bug fix)

• linear_model.LassoLarsIC (bug fix)

• manifold.TSNE (bug fix)

• neighbors.NearestCentroid (bug fix)

• semi_supervised.LabelSpreading (bug fix)

• semi_supervised.LabelPropagation (bug fix)

• tree based models where min_weight_fraction_leaf is used (enhancement)

Details are listed in the changelog below.

(While we are trying to better inform users by providing this information, we cannot assure that this list is complete.)

26 Chapter 1. Welcome to scikit-learn



scikit-learn user guide, Release 0.19.1

Changelog

New features

Classifiers and regressors

• Added multioutput.ClassifierChain for multi-label classification. By Adam Kleczewski.

• Added solver 'saga' that implements the improved version of Stochastic Average Gradient, in
linear_model.LogisticRegression and linear_model.Ridge. It allows the use of L1 penalty
with multinomial logistic loss, and behaves marginally better than ‘sag’ during the first epochs of ridge and
logistic regression. #8446 by Arthur Mensch.

Other estimators

• Added the neighbors.LocalOutlierFactor class for anomaly detection based on nearest neighbors.
#5279 by Nicolas Goix and Alexandre Gramfort.

• Added preprocessing.QuantileTransformer class and preprocessing.
quantile_transform function for features normalization based on quantiles. #8363 by Denis Engemann,
Guillaume Lemaitre, Olivier Grisel, Raghav RV, Thierry Guillemot, and Gael Varoquaux.

• The new solver 'mu' implements a Multiplicate Update in decomposition.NMF, allowing the optimization
of all beta-divergences, including the Frobenius norm, the generalized Kullback-Leibler divergence and the
Itakura-Saito divergence. #5295 by Tom Dupre la Tour.

Model selection and evaluation

• model_selection.GridSearchCV and model_selection.RandomizedSearchCV now support
simultaneous evaluation of multiple metrics. Refer to the Specifying multiple metrics for evaluation section of
the user guide for more information. #7388 by Raghav RV

• Added the model_selection.cross_validatewhich allows evaluation of multiple metrics. This func-
tion returns a dict with more useful information from cross-validation such as the train scores, fit times and score
times. Refer to The cross_validate function and multiple metric evaluation section of the userguide for more
information. #7388 by Raghav RV

• Added metrics.mean_squared_log_error, which computes the mean square error of the logarithmic
transformation of targets, particularly useful for targets with an exponential trend. #7655 by Karan Desai.

• Added metrics.dcg_score and metrics.ndcg_score, which compute Discounted cumulative gain
(DCG) and Normalized discounted cumulative gain (NDCG). #7739 by David Gasquez.

• Added the model_selection.RepeatedKFold and model_selection.
RepeatedStratifiedKFold. #8120 by Neeraj Gangwar.

• Added a scorer based on metrics.explained_variance_score. #9259 by Hanmin Qin.

Miscellaneous

• Validation that input data contains no NaN or inf can now be suppressed using config_context, at your
own risk. This will save on runtime, and may be particularly useful for prediction time. #7548 by Joel Nothman.

• Added a test to ensure parameter listing in docstrings match the function/class signature. #9206 by Alexandre
Gramfort and Raghav RV.

Enhancements

Trees and ensembles
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• The min_weight_fraction_leaf constraint in tree construction is now more efficient, taking a fast path
to declare a node a leaf if its weight is less than 2 * the minimum. Note that the constructed tree will be different
from previous versions where min_weight_fraction_leaf is used. #7441 by Nelson Liu.

• ensemble.GradientBoostingClassifier and ensemble.GradientBoostingRegressor
now support sparse input for prediction. #6101 by Ibraim Ganiev.

• ensemble.VotingClassifier now allows changing estimators by using ensemble.
VotingClassifier.set_params. An estimator can also be removed by setting it to None. #7674 by
Yichuan Liu.

• tree.export_graphviz now shows configurable number of decimal places. #8698 by Guillaume
Lemaitre.

• Added flatten_transform parameter to ensemble.VotingClassifier to change output shape of
transform method to 2 dimensional. #7794 by Ibraim Ganiev and Herilalaina Rakotoarison.

Linear, kernelized and related models

• linear_model.SGDClassifier, linear_model.SGDRegressor, linear_model.
PassiveAggressiveClassifier, linear_model.PassiveAggressiveRegressor and
linear_model.Perceptron now expose max_iter and tol parameters, to handle convergence more
precisely. n_iter parameter is deprecated, and the fitted estimator exposes a n_iter_ attribute, with actual
number of iterations before convergence. #5036 by Tom Dupre la Tour.

• Added average parameter to perform weight averaging in linear_model.
PassiveAggressiveClassifier. #4939 by Andrea Esuli.

• linear_model.RANSACRegressor no longer throws an error when calling fit if no inliers are found in
its first iteration. Furthermore, causes of skipped iterations are tracked in newly added attributes, n_skips_*.
#7914 by Michael Horrell.

• In gaussian_process.GaussianProcessRegressor, method predict is a lot faster with
return_std=True. #8591 by Hadrien Bertrand.

• Added return_std to predict method of linear_model.ARDRegression and linear_model.
BayesianRidge. #7838 by Sergey Feldman.

• Memory usage enhancements: Prevent cast from float32 to float64 in: linear_model.
MultiTaskElasticNet; linear_model.LogisticRegression when using newton-cg solver; and
linear_model.Ridge when using svd, sparse_cg, cholesky or lsqr solvers. #8835, #8061 by Joan Massich
and Nicolas Cordier and Thierry Guillemot.

Other predictors

• Custom metrics for the neighbors binary trees now have fewer constraints: they must take two 1d-arrays and
return a float. #6288 by Jake Vanderplas.

• algorithm='auto in neighbors estimators now chooses the most appropriate algorithm for all input
types and metrics. #9145 by Herilalaina Rakotoarison and Reddy Chinthala.

Decomposition, manifold learning and clustering

• cluster.MiniBatchKMeans and cluster.KMeans now use significantly less memory when assigning
data points to their nearest cluster center. #7721 by Jon Crall.

• decomposition.PCA, decomposition.IncrementalPCA and decomposition.
TruncatedSVD now expose the singular values from the underlying SVD. They are stored in the
attribute singular_values_, like in decomposition.IncrementalPCA. #7685 by Tommy Löfstedt

• Fixed the implementation of noise_variance_ in decomposition.PCA. #9108 by Hanmin Qin.

• decomposition.NMF now faster when beta_loss=0. #9277 by @hongkahjun.
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• Memory improvements for method barnes_hut in manifold.TSNE #7089 by Thomas Moreau and Olivier
Grisel.

• Optimization schedule improvements for Barnes-Hut manifold.TSNE so the results are closer to the one
from the reference implementation lvdmaaten/bhtsne by Thomas Moreau and Olivier Grisel.

• Memory usage enhancements: Prevent cast from float32 to float64 in decomposition.PCA and
decomposition.randomized_svd_low_rank. #9067 by Raghav RV.

Preprocessing and feature selection

• Added norm_order parameter to feature_selection.SelectFromModel to enable selection of the
norm order when coef_ is more than 1D. #6181 by Antoine Wendlinger.

• Added ability to use sparse matrices in feature_selection.f_regression with center=True.
#8065 by Daniel LeJeune.

• Small performance improvement to n-gram creation in feature_extraction.text by binding methods
for loops and special-casing unigrams. #7567 by Jaye Doepke

• Relax assumption on the data for the kernel_approximation.SkewedChi2Sampler. Since the
Skewed-Chi2 kernel is defined on the open interval (−𝑠𝑘𝑒𝑤𝑒𝑑𝑛𝑒𝑠𝑠; +∞)𝑑, the transform function should not
check whether X < 0 but whether X < -self.skewedness. #7573 by Romain Brault.

• Made default kernel parameters kernel-dependent in kernel_approximation.Nystroem. #5229 by
Saurabh Bansod and Andreas Müller.

Model evaluation and meta-estimators

• pipeline.Pipeline is now able to cache transformers within a pipeline by using the memory constructor
parameter. #7990 by Guillaume Lemaitre.

• pipeline.Pipeline steps can now be accessed as attributes of its named_steps attribute. #8586 by
Herilalaina Rakotoarison.

• Added sample_weight parameter to pipeline.Pipeline.score. #7723 by Mikhail Korobov.

• Added ability to set n_jobs parameter to pipeline.make_union. A TypeError will be raised for any
other kwargs. #8028 by Alexander Booth.

• model_selection.GridSearchCV , model_selection.RandomizedSearchCV and
model_selection.cross_val_score now allow estimators with callable kernels which were
previously prohibited. #8005 by Andreas Müller .

• model_selection.cross_val_predict now returns output of the correct shape for all values of the
argument method. #7863 by Aman Dalmia.

• Added shuffle and random_state parameters to shuffle training data before taking prefixes of it based on
training sizes in model_selection.learning_curve. #7506 by Narine Kokhlikyan.

• model_selection.StratifiedShuffleSplit now works with multioutput multiclass (or multilabel)
data. #9044 by Vlad Niculae.

• Speed improvements to model_selection.StratifiedShuffleSplit. #5991 by Arthur Mensch and
Joel Nothman.

• Add shuffle parameter to model_selection.train_test_split. #8845 by themrmax

• multioutput.MultiOutputRegressor and multioutput.MultiOutputClassifier now
support online learning using partial_fit. :issue: 8053 by Peng Yu.

• Add max_train_size parameter to model_selection.TimeSeriesSplit #8282 by Aman Dalmia.

• More clustering metrics are now available through metrics.get_scorer and scoring parameters. #8117
by Raghav RV.
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Metrics

• metrics.matthews_corrcoef now support multiclass classification. #8094 by Jon Crall.

• Add sample_weight parameter to metrics.cohen_kappa_score. #8335 by Victor Poughon.

Miscellaneous

• utils.check_estimator now attempts to ensure that methods transform, predict, etc. do not set attributes
on the estimator. #7533 by Ekaterina Krivich.

• Added type checking to the accept_sparse parameter in utils.validation methods. This parameter
now accepts only boolean, string, or list/tuple of strings. accept_sparse=None is deprecated and should
be replaced by accept_sparse=False. #7880 by Josh Karnofsky.

• Make it possible to load a chunk of an svmlight formatted file by passing a range of bytes to datasets.
load_svmlight_file. #935 by Olivier Grisel.

• dummy.DummyClassifier and dummy.DummyRegressor now accept non-finite features. #8931 by
@Attractadore.

Bug fixes

Trees and ensembles

• Fixed a memory leak in trees when using trees with criterion='mae'. #8002 by Raghav RV.

• Fixed a bug where ensemble.IsolationForest uses an an incorrect formula for the average path length
#8549 by Peter Wang.

• Fixed a bug where ensemble.AdaBoostClassifier throws ZeroDivisionError while fitting data
with single class labels. #7501 by Dominik Krzeminski.

• Fixed a bug in ensemble.GradientBoostingClassifier and ensemble.
GradientBoostingRegressor where a float being compared to 0.0 using == caused a divide by
zero error. #7970 by He Chen.

• Fix a bug where ensemble.GradientBoostingClassifier and ensemble.
GradientBoostingRegressor ignored the min_impurity_split parameter. #8006 by Sebastian
Pölsterl.

• Fixed oob_score in ensemble.BaggingClassifier. #8936 by Michael Lewis

• Fixed excessive memory usage in prediction for random forests estimators. #8672 by Mike Benfield.

• Fixed a bug where sample_weight as a list broke random forests in Python 2 #8068 by @xor.

• Fixed a bug where ensemble.IsolationForest fails when max_features is less than 1. #5732 by
Ishank Gulati.

• Fix a bug where gradient boosting with loss='quantile' computed negative errors for negative values of
ytrue - ypred leading to wrong values when calling __call__. #8087 by Alexis Mignon

• Fix a bug where ensemble.VotingClassifier raises an error when a numpy array is passed in for
weights. #7983 by Vincent Pham.

• Fixed a bug where tree.export_graphviz raised an error when the length of features_names does not
match n_features in the decision tree. #8512 by Li Li.

Linear, kernelized and related models

• Fixed a bug where linear_model.RANSACRegressor.fit may run until max_iter if it finds a large
inlier group early. #8251 by @aivision2020.
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• Fixed a bug where naive_bayes.MultinomialNB and naive_bayes.BernoulliNB failed when
alpha=0. #5814 by Yichuan Liu and Herilalaina Rakotoarison.

• Fixed a bug where linear_model.LassoLars does not give the same result as the LassoLars implemen-
tation available in R (lars library). #7849 by Jair Montoya Martinez.

• Fixed a bug in linear_model.RandomizedLasso, linear_model.Lars, linear_model.
LassoLars, linear_model.LarsCV and linear_model.LassoLarsCV , where the parameter
precompute was not used consistently across classes, and some values proposed in the docstring could raise
errors. #5359 by Tom Dupre la Tour.

• Fix inconsistent results between linear_model.RidgeCV and linear_model.Ridge when using
normalize=True. #9302 by Alexandre Gramfort.

• Fix a bug where linear_model.LassoLars.fit sometimes left coef_ as a list, rather than an ndarray.
#8160 by CJ Carey.

• Fix linear_model.BayesianRidge.fit to return ridge parameter alpha_ and lambda_ consistent
with calculated coefficients coef_ and intercept_. #8224 by Peter Gedeck.

• Fixed a bug in svm.OneClassSVM where it returned floats instead of integer classes. #8676 by Vathsala
Achar.

• Fix AIC/BIC criterion computation in linear_model.LassoLarsIC. #9022 by Alexandre Gramfort and
Mehmet Basbug.

• Fixed a memory leak in our LibLinear implementation. #9024 by Sergei Lebedev

• Fix bug where stratified CV splitters did not work with linear_model.LassoCV . #8973 by Paulo Haddad.

• Fixed a bug in gaussian_process.GaussianProcessRegressor when the standard deviation and
covariance predicted without fit would fail with a unmeaningful error by default. #6573 by Quazi Marufur
Rahman and Manoj Kumar.

Other predictors

• Fix semi_supervised.BaseLabelPropagation to correctly implement LabelPropagation and
LabelSpreading as done in the referenced papers. #9239 by Andre Ambrosio Boechat, Utkarsh Upadhyay,
and Joel Nothman.

Decomposition, manifold learning and clustering

• Fixed the implementation of manifold.TSNE:

• early_exageration parameter had no effect and is now used for the first 250 optimization iterations.

• Fixed the AssertionError: Tree consistency failed exception reported in #8992.

• Improve the learning schedule to match the one from the reference implementation lvdmaaten/bhtsne.

by Thomas Moreau and Olivier Grisel.

• Fix a bug in decomposition.LatentDirichletAllocation where the perplexity method was
returning incorrect results because the transform method returns normalized document topic distributions as
of version 0.18. #7954 by Gary Foreman.

• Fix output shape and bugs with n_jobs > 1 in decomposition.SparseCoder transform and
decomposition.sparse_encode for one-dimensional data and one component. This also impacts the
output shape of decomposition.DictionaryLearning. #8086 by Andreas Müller.

• Fixed the implementation of explained_variance_ in decomposition.PCA, decomposition.
RandomizedPCA and decomposition.IncrementalPCA. #9105 by Hanmin Qin.

• Fixed the implementation of noise_variance_ in decomposition.PCA. #9108 by Hanmin Qin.
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• Fixed a bug where cluster.DBSCAN gives incorrect result when input is a precomputed sparse matrix with
initial rows all zero. #8306 by Akshay Gupta

• Fix a bug regarding fitting cluster.KMeans with a sparse array X and initial centroids, where X’s means
were unnecessarily being subtracted from the centroids. #7872 by Josh Karnofsky.

• Fixes to the input validation in covariance.EllipticEnvelope. #8086 by Andreas Müller.

• Fixed a bug in covariance.MinCovDet where inputting data that produced a singular covariance matrix
would cause the helper method _c_step to throw an exception. #3367 by Jeremy Steward

• Fixed a bug in manifold.TSNE affecting convergence of the gradient descent. #8768 by David DeTomaso.

• Fixed a bug in manifold.TSNE where it stored the incorrect kl_divergence_. #6507 by Sebastian
Saeger.

• Fixed improper scaling in cross_decomposition.PLSRegression with scale=True. #7819 by
jayzed82.

• cluster.bicluster.SpectralCoclustering and cluster.bicluster.
SpectralBiclustering fit method conforms with API by accepting y and returning the object.
#6126, #7814 by Laurent Direr and Maniteja Nandana.

• Fix bug where mixture sample methods did not return as many samples as requested. #7702 by Levi John
Wolf.

• Fixed the shrinkage implementation in neighbors.NearestCentroid. #9219 by Hanmin Qin.

Preprocessing and feature selection

• For sparse matrices, preprocessing.normalize with return_norm=True will now raise a
NotImplementedError with ‘l1’ or ‘l2’ norm and with norm ‘max’ the norms returned will be the same as
for dense matrices. #7771 by Ang Lu.

• Fix a bug where feature_selection.SelectFdr did not exactly implement Benjamini-Hochberg pro-
cedure. It formerly may have selected fewer features than it should. #7490 by Peng Meng.

• Fixed a bug where linear_model.RandomizedLasso and linear_model.
RandomizedLogisticRegression breaks for sparse input. #8259 by Aman Dalmia.

• Fix a bug where feature_extraction.FeatureHasher mandatorily applied a sparse random projec-
tion to the hashed features, preventing the use of feature_extraction.text.HashingVectorizer
in a pipeline with feature_extraction.text.TfidfTransformer. #7565 by Roman Yurchak.

• Fix a bug where feature_selection.mutual_info_regression did not correctly use
n_neighbors. #8181 by Guillaume Lemaitre.

Model evaluation and meta-estimators

• Fixed a bug where model_selection.BaseSearchCV.inverse_transform re-
turns self.best_estimator_.transform() instead of self.best_estimator_.
inverse_transform(). #8344 by Akshay Gupta and Rasmus Eriksson.

• Added classes_ attribute to model_selection.GridSearchCV , model_selection.
RandomizedSearchCV , grid_search.GridSearchCV , and grid_search.
RandomizedSearchCV that matches the classes_ attribute of best_estimator_. #7661 and
#8295 by Alyssa Batula, Dylan Werner-Meier, and Stephen Hoover.

• Fixed a bug where model_selection.validation_curve reused the same estimator for each parame-
ter value. #7365 by Aleksandr Sandrovskii.

• model_selection.permutation_test_score now works with Pandas types. #5697 by Stijn Tonk.

• Several fixes to input validation in multiclass.OutputCodeClassifier #8086 by Andreas Müller.
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• multiclass.OneVsOneClassifier’s partial_fit now ensures all classes are provided up-front.
#6250 by Asish Panda.

• Fix multioutput.MultiOutputClassifier.predict_proba to return a list of 2d arrays, rather
than a 3d array. In the case where different target columns had different numbers of classes, a ValueError
would be raised on trying to stack matrices with different dimensions. #8093 by Peter Bull.

• Cross validation now works with Pandas datatypes that that have a read-only index. #9507 by Loic Esteve.

Metrics

• metrics.average_precision_score no longer linearly interpolates between operating points, and in-
stead weighs precisions by the change in recall since the last operating point, as per the Wikipedia entry. (#7356).
By Nick Dingwall and Gael Varoquaux.

• Fix a bug in metrics.classification._check_targetswhich would return 'binary' if y_true
and y_pred were both 'binary' but the union of y_true and y_pred was 'multiclass'. #8377 by
Loic Esteve.

• Fixed an integer overflow bug in metrics.confusion_matrix and hence metrics.
cohen_kappa_score. #8354, #7929 by Joel Nothman and Jon Crall.

• Fixed passing of gamma parameter to the chi2 kernel in metrics.pairwise.pairwise_kernels
#5211 by Nick Rhinehart, Saurabh Bansod and Andreas Müller.

Miscellaneous

• Fixed a bug when datasets.make_classification fails when generating more than 30 features. #8159
by Herilalaina Rakotoarison.

• Fixed a bug where datasets.make_moons gives an incorrect result when n_samples is odd. #8198 by
Josh Levy.

• Some fetch_ functions in datasets were ignoring the download_if_missing keyword. #7944 by
Ralf Gommers.

• Fix estimators to accept a sample_weight parameter of type pandas.Series in their fit function.
#7825 by Kathleen Chen.

• Fix a bug in cases where numpy.cumsum may be numerically unstable, raising an exception if instability is
identified. #7376 and #7331 by Joel Nothman and @yangarbiter.

• Fix a bug where base.BaseEstimator.__getstate__ obstructed pickling customizations of child-
classes, when used in a multiple inheritance context. #8316 by Holger Peters.

• Update Sphinx-Gallery from 0.1.4 to 0.1.7 for resolving links in documentation build with Sphinx>1.5 #8010,
#7986 by Oscar Najera

• Add data_home parameter to sklearn.datasets.fetch_kddcup99. #9289 by Loic Esteve.

• Fix dataset loaders using Python 3 version of makedirs to also work in Python 2. #9284 by Sebastin Santy.

• Several minor issues were fixed with thanks to the alerts of [lgtm.com](http://lgtm.com). #9278 by Jean Helie,
among others.

API changes summary

Trees and ensembles

• Gradient boosting base models are no longer estimators. By Andreas Müller.

• All tree based estimators now accept a min_impurity_decrease parameter in lieu of the
min_impurity_split, which is now deprecated. The min_impurity_decrease helps stop
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splitting the nodes in which the weighted impurity decrease from splitting is no longer alteast
min_impurity_decrease. #8449 by Raghav RV.

Linear, kernelized and related models

• n_iter parameter is deprecated in linear_model.SGDClassifier, linear_model.
SGDRegressor, linear_model.PassiveAggressiveClassifier, linear_model.
PassiveAggressiveRegressor and linear_model.Perceptron. By Tom Dupre la Tour.

Other predictors

• neighbors.LSHForest has been deprecated and will be removed in 0.21 due to poor performance. #9078
by Laurent Direr.

• neighbors.NearestCentroid no longer purports to support metric='precomputed' which now
raises an error. #8515 by Sergul Aydore.

• The alpha parameter of semi_supervised.LabelPropagation now has no effect and is deprecated
to be removed in 0.21. #9239 by Andre Ambrosio Boechat, Utkarsh Upadhyay, and Joel Nothman.

Decomposition, manifold learning and clustering

• Deprecate the doc_topic_distr argument of the perplexity method in decomposition.
LatentDirichletAllocation because the user no longer has access to the unnormalized document topic
distribution needed for the perplexity calculation. #7954 by Gary Foreman.

• The n_topics parameter of decomposition.LatentDirichletAllocation has been renamed to
n_components and will be removed in version 0.21. #8922 by @Attractadore.

• decomposition.SparsePCA.transform’s ridge_alpha parameter is deprecated in preference for
class parameter. #8137 by Naoya Kanai.

• cluster.DBSCAN now has a metric_params parameter. #8139 by Naoya Kanai.

Preprocessing and feature selection

• feature_selection.SelectFromModel now has a partial_fit method only if the underlying es-
timator does. By Andreas Müller.

• feature_selection.SelectFromModel now validates the threshold parameter and sets the
threshold_ attribute during the call to fit, and no longer during the call to transform`. By Andreas
Müller.

• The non_negative parameter in feature_extraction.FeatureHasher has been deprecated, and
replaced with a more principled alternative, alternate_sign. #7565 by Roman Yurchak.

• linear_model.RandomizedLogisticRegression, and linear_model.RandomizedLasso
have been deprecated and will be removed in version 0.21. #8995 by Ramana.S.

Model evaluation and meta-estimators

• Deprecate the fit_params constructor input to the model_selection.GridSearchCV and
model_selection.RandomizedSearchCV in favor of passing keyword parameters to the fit methods
of those classes. Data-dependent parameters needed for model training should be passed as keyword arguments
to fit, and conforming to this convention will allow the hyperparameter selection classes to be used with tools
such as model_selection.cross_val_predict. #2879 by Stephen Hoover.

• In version 0.21, the default behavior of splitters that use the test_size and train_size parameter will
change, such that specifying train_size alone will cause test_size to be the remainder. #7459 by Nelson
Liu.

• multiclass.OneVsRestClassifier now has partial_fit, decision_function and
predict_proba methods only when the underlying estimator does. #7812 by Andreas Müller and Mikhail
Korobov.
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• multiclass.OneVsRestClassifier now has a partial_fit method only if the underlying estima-
tor does. By Andreas Müller.

• The decision_function output shape for binary classification in multiclass.
OneVsRestClassifier and multiclass.OneVsOneClassifier is now (n_samples,) to
conform to scikit-learn conventions. #9100 by Andreas Müller.

• The multioutput.MultiOutputClassifier.predict_proba function used to return a 3d array
(n_samples, n_classes, n_outputs). In the case where different target columns had different numbers
of classes, a ValueError would be raised on trying to stack matrices with different dimensions. This func-
tion now returns a list of arrays where the length of the list is n_outputs, and each array is (n_samples,
n_classes) for that particular output. #8093 by Peter Bull.

• Replace attribute named_steps dict to utils.Bunch in pipeline.Pipeline to enable tab com-
pletion in interactive environment. In the case conflict value on named_steps and dict attribute, dict
behavior will be prioritized. #8481 by Herilalaina Rakotoarison.

Miscellaneous

• Deprecate the y parameter in transform and inverse_transform. The method should not accept y
parameter, as it’s used at the prediction time. #8174 by Tahar Zanouda, Alexandre Gramfort and Raghav RV.

• SciPy >= 0.13.3 and NumPy >= 1.8.2 are now the minimum supported versions for scikit-learn. The following
backported functions in utils have been removed or deprecated accordingly. #8854 and #8874 by Naoya
Kanai

• The store_covariances and covariances_ parameters of discriminant_analysis.
QuadraticDiscriminantAnalysis has been renamed to store_covariance and covariance_
to be consistent with the corresponding parameter names of the discriminant_analysis.
LinearDiscriminantAnalysis. They will be removed in version 0.21. #7998 by Jiacheng

Removed in 0.19:

– utils.fixes.argpartition

– utils.fixes.array_equal

– utils.fixes.astype

– utils.fixes.bincount

– utils.fixes.expit

– utils.fixes.frombuffer_empty

– utils.fixes.in1d

– utils.fixes.norm

– utils.fixes.rankdata

– utils.fixes.safe_copy

Deprecated in 0.19, to be removed in 0.21:

– utils.arpack.eigs

– utils.arpack.eigsh

– utils.arpack.svds

– utils.extmath.fast_dot

– utils.extmath.logsumexp

– utils.extmath.norm
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– utils.extmath.pinvh

– utils.graph.graph_laplacian

– utils.random.choice

– utils.sparsetools.connected_components

– utils.stats.rankdata

• Estimators with both methods decision_function and predict_proba are now required to have a
monotonic relation between them. The method check_decision_proba_consistency has been added
in utils.estimator_checks to check their consistency. #7578 by Shubham Bhardwaj

• All checks in utils.estimator_checks, in particular utils.estimator_checks.
check_estimator now accept estimator instances. Most other checks do not accept estimator classes any
more. #9019 by Andreas Müller.

• Ensure that estimators’ attributes ending with _ are not set in the constructor but only in the fit method.
Most notably, ensemble estimators (deriving from ensemble.BaseEnsemble) now only have self.
estimators_ available after fit. #7464 by Lars Buitinck and Loic Esteve.

Code and Documentation Contributors

Thanks to everyone who has contributed to the maintenance and improvement of the project since version 0.18, in-
cluding:

Joel Nothman, Loic Esteve, Andreas Mueller, Guillaume Lemaitre, Olivier Grisel, Hanmin Qin, Raghav RV, Alexandre
Gramfort, themrmax, Aman Dalmia, Gael Varoquaux, Naoya Kanai, Tom Dupré la Tour, Rishikesh, Nelson Liu, Tae-
hoon Lee, Nelle Varoquaux, Aashil, Mikhail Korobov, Sebastin Santy, Joan Massich, Roman Yurchak, RAKOTOARI-
SON Herilalaina, Thierry Guillemot, Alexandre Abadie, Carol Willing, Balakumaran Manoharan, Josh Karnofsky,
Vlad Niculae, Utkarsh Upadhyay, Dmitry Petrov, Minghui Liu, Srivatsan, Vincent Pham, Albert Thomas, Jake Van-
derPlas, Attractadore, JC Liu, alexandercbooth, chkoar, Óscar Nájera, Aarshay Jain, Kyle Gilliam, Ramana Subra-
manyam, CJ Carey, Clement Joudet, David Robles, He Chen, Joris Van den Bossche, Karan Desai, Katie Luangkote,
Leland McInnes, Maniteja Nandana, Michele Lacchia, Sergei Lebedev, Shubham Bhardwaj, akshay0724, omtcyfz,
rickiepark, waterponey, Vathsala Achar, jbDelafosse, Ralf Gommers, Ekaterina Krivich, Vivek Kumar, Ishank Gulati,
Dave Elliott, ldirer, Reiichiro Nakano, Levi John Wolf, Mathieu Blondel, Sid Kapur, Dougal J. Sutherland, midinas,
mikebenfield, Sourav Singh, Aseem Bansal, Ibraim Ganiev, Stephen Hoover, AishwaryaRK, Steven C. Howell, Gary
Foreman, Neeraj Gangwar, Tahar, Jon Crall, dokato, Kathy Chen, ferria, Thomas Moreau, Charlie Brummitt, Nicolas
Goix, Adam Kleczewski, Sam Shleifer, Nikita Singh, Basil Beirouti, Giorgio Patrini, Manoj Kumar, Rafael Possas,
James Bourbeau, James A. Bednar, Janine Harper, Jaye, Jean Helie, Jeremy Steward, Artsiom, John Wei, Jonathan
LIgo, Jonathan Rahn, seanpwilliams, Arthur Mensch, Josh Levy, Julian Kuhlmann, Julien Aubert, Jörn Hees, Kai,
shivamgargsya, Kat Hempstalk, Kaushik Lakshmikanth, Kennedy, Kenneth Lyons, Kenneth Myers, Kevin Yap, Kir-
ill Bobyrev, Konstantin Podshumok, Arthur Imbert, Lee Murray, toastedcornflakes, Lera, Li Li, Arthur Douillard,
Mainak Jas, tobycheese, Manraj Singh, Manvendra Singh, Marc Meketon, MarcoFalke, Matthew Brett, Matthias
Gilch, Mehul Ahuja, Melanie Goetz, Meng, Peng, Michael Dezube, Michal Baumgartner, vibrantabhi19, Artem Golu-
bin, Milen Paskov, Antonin Carette, Morikko, MrMjauh, NALEPA Emmanuel, Namiya, Antoine Wendlinger, Narine
Kokhlikyan, NarineK, Nate Guerin, Angus Williams, Ang Lu, Nicole Vavrova, Nitish Pandey, Okhlopkov Daniil
Olegovich, Andy Craze, Om Prakash, Parminder Singh, Patrick Carlson, Patrick Pei, Paul Ganssle, Paulo Haddad,
Paweł Lorek, Peng Yu, Pete Bachant, Peter Bull, Peter Csizsek, Peter Wang, Pieter Arthur de Jong, Ping-Yao, Chang,
Preston Parry, Puneet Mathur, Quentin Hibon, Andrew Smith, Andrew Jackson, 1kastner, Rameshwar Bhaskaran, Re-
becca Bilbro, Remi Rampin, Andrea Esuli, Rob Hall, Robert Bradshaw, Romain Brault, Aman Pratik, Ruifeng Zheng,
Russell Smith, Sachin Agarwal, Sailesh Choyal, Samson Tan, Samuël Weber, Sarah Brown, Sebastian Pölsterl, Se-
bastian Raschka, Sebastian Saeger, Alyssa Batula, Abhyuday Pratap Singh, Sergey Feldman, Sergul Aydore, Sharan
Yalburgi, willduan, Siddharth Gupta, Sri Krishna, Almer, Stijn Tonk, Allen Riddell, Theofilos Papapanagiotou, Alison,
Alexis Mignon, Tommy Boucher, Tommy Löfstedt, Toshihiro Kamishima, Tyler Folkman, Tyler Lanigan, Alexander
Junge, Varun Shenoy, Victor Poughon, Vilhelm von Ehrenheim, Aleksandr Sandrovskii, Alan Yee, Vlasios Vasileiou,
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Warut Vijitbenjaronk, Yang Zhang, Yaroslav Halchenko, Yichuan Liu, Yuichi Fujikawa, affanv14, aivision2020, xor,
andreh7, brady salz, campustrampus, Agamemnon Krasoulis, ditenberg, elena-sharova, filipj8, fukatani, gedeck, guin-
iol, guoci, hakaa1, hongkahjun, i-am-xhy, jakirkham, jaroslaw-weber, jayzed82, jeroko, jmontoyam, jonathan.striebel,
josephsalmon, jschendel, leereeves, martin-hahn, mathurinm, mehak-sachdeva, mlewis1729, mlliou112, mthorrell,
ndingwall, nuffe, yangarbiter, plagree, pldtc325, Breno Freitas, Brett Olsen, Brian A. Alfano, Brian Burns, polmauri,
Brandon Carter, Charlton Austin, Chayant T15h, Chinmaya Pancholi, Christian Danielsen, Chung Yen, Chyi-Kwei
Yau, pravarmahajan, DOHMATOB Elvis, Daniel LeJeune, Daniel Hnyk, Darius Morawiec, David DeTomaso, David
Gasquez, David Haberthür, David Heryanto, David Kirkby, David Nicholson, rashchedrin, Deborah Gertrude Digges,
Denis Engemann, Devansh D, Dickson, Bob Baxley, Don86, E. Lynch-Klarup, Ed Rogers, Elizabeth Ferriss, Ellen-
Co2, Fabian Egli, Fang-Chieh Chou, Bing Tian Dai, Greg Stupp, Grzegorz Szpak, Bertrand Thirion, Hadrien Bertrand,
Harizo Rajaona, zxcvbnius, Henry Lin, Holger Peters, Icyblade Dai, Igor Andriushchenko, Ilya, Isaac Laughlin, Iván
Vallés, Aurélien Bellet, JPFrancoia, Jacob Schreiber, Asish Mahapatra

1.7.3 Version 0.18.2

June 20, 2017

Last release with Python 2.6 support

Scikit-learn 0.18 is the last major release of scikit-learn to support Python 2.6. Later versions of scikit-learn will
require Python 2.7 or above.

Changelog

• Fixes for compatibility with NumPy 1.13.0: #7946 #8355 by Loic Esteve.

• Minor compatibility changes in the examples #9010 #8040 #9149.

Code Contributors

Aman Dalmia, Loic Esteve, Nate Guerin, Sergei Lebedev

1.7.4 Version 0.18.1

November 11, 2016

Changelog

Enhancements

• Improved sample_without_replacement speed by utilizing numpy.random.permutation for most cases.
As a result, samples may differ in this release for a fixed random state. Affected estimators:

– ensemble.BaggingClassifier

– ensemble.BaggingRegressor

– linear_model.RANSACRegressor

– model_selection.RandomizedSearchCV
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– random_projection.SparseRandomProjection

This also affects the datasets.make_classification method.

Bug fixes

• Fix issue where min_grad_norm and n_iter_without_progress parameters were not being utilised
by manifold.TSNE. #6497 by Sebastian Säger

• Fix bug for svm’s decision values when decision_function_shape is ovr in svm.SVC. svm.SVC’s
decision_function was incorrect from versions 0.17.0 through 0.18.0. #7724 by Bing Tian Dai

• Attribute explained_variance_ratio of discriminant_analysis.
LinearDiscriminantAnalysis calculated with SVD and Eigen solver are now of the same length.
#7632 by JPFrancoia

• Fixes issue in Univariate feature selection where score functions were not accepting multi-label targets. #7676
by Mohammed Affan

• Fixed setting parameters when calling fit multiple times on feature_selection.SelectFromModel.
#7756 by Andreas Müller

• Fixes issue in partial_fit method of multiclass.OneVsRestClassifier when number of classes
used in partial_fit was less than the total number of classes in the data. #7786 by Srivatsan Ramesh

• Fixes issue in calibration.CalibratedClassifierCV where the sum of probabilities of each class
for a data was not 1, and CalibratedClassifierCV now handles the case where the training set has less
number of classes than the total data. #7799 by Srivatsan Ramesh

• Fix a bug where sklearn.feature_selection.SelectFdr did not exactly implement Benjamini-
Hochberg procedure. It formerly may have selected fewer features than it should. #7490 by Peng Meng.

• sklearn.manifold.LocallyLinearEmbedding now correctly handles integer inputs. #6282 by Jake
Vanderplas.

• The min_weight_fraction_leaf parameter of tree-based classifiers and regressors now assumes uniform
sample weights by default if the sample_weight argument is not passed to the fit function. Previously, the
parameter was silently ignored. #7301 by Nelson Liu.

• Numerical issue with linear_model.RidgeCV on centered data when n_features > n_samples. #6178 by
Bertrand Thirion

• Tree splitting criterion classes’ cloning/pickling is now memory safe #7680 by Ibraim Ganiev.

• Fixed a bug where decomposition.NMF sets its n_iters_ attribute in transform(). #7553 by Ekaterina
Krivich.

• sklearn.linear_model.LogisticRegressionCV now correctly handles string labels. #5874 by
Raghav RV.

• Fixed a bug where sklearn.model_selection.train_test_split raised an error when
stratify is a list of string labels. #7593 by Raghav RV.

• Fixed a bug where sklearn.model_selection.GridSearchCV and sklearn.
model_selection.RandomizedSearchCV were not pickleable because of a pickling bug in np.
ma.MaskedArray. #7594 by Raghav RV.

• All cross-validation utilities in sklearn.model_selection now permit one time cross-validation splitters
for the cv parameter. Also non-deterministic cross-validation splitters (where multiple calls to split produce
dissimilar splits) can be used as cv parameter. The sklearn.model_selection.GridSearchCV will
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cross-validate each parameter setting on the split produced by the first split call to the cross-validation splitter.
#7660 by Raghav RV.

• Fix bug where preprocessing.MultiLabelBinarizer.fit_transform returned an invalid CSR
matrix. #7750 by CJ Carey.

• Fixed a bug where metrics.pairwise.cosine_distances could return a small negative distance.
#7732 by Artsion.

API changes summary

Trees and forests

• The min_weight_fraction_leaf parameter of tree-based classifiers and regressors now assumes uniform
sample weights by default if the sample_weight argument is not passed to the fit function. Previously, the
parameter was silently ignored. #7301 by Nelson Liu.

• Tree splitting criterion classes’ cloning/pickling is now memory safe. #7680 by Ibraim Ganiev.

Linear, kernelized and related models

• Length of explained_variance_ratio of discriminant_analysis.
LinearDiscriminantAnalysis changed for both Eigen and SVD solvers. The attribute has now
a length of min(n_components, n_classes - 1). #7632 by JPFrancoia

• Numerical issue with linear_model.RidgeCV on centered data when n_features > n_samples.
#6178 by Bertrand Thirion

1.7.5 Version 0.18

September 28, 2016

Last release with Python 2.6 support

Scikit-learn 0.18 will be the last version of scikit-learn to support Python 2.6. Later versions of scikit-learn will
require Python 2.7 or above.

Model Selection Enhancements and API Changes

• The model_selection module

The new module sklearn.model_selection, which groups together the functionalities of formerly
sklearn.cross_validation, sklearn.grid_search and sklearn.learning_curve, intro-
duces new possibilities such as nested cross-validation and better manipulation of parameter searches with Pan-
das.

Many things will stay the same but there are some key differences. Read below to know more about the changes.

• Data-independent CV splitters enabling nested cross-validation

The new cross-validation splitters, defined in the sklearn.model_selection, are no longer initialized
with any data-dependent parameters such as y. Instead they expose a split method that takes in the data and
yields a generator for the different splits.

This change makes it possible to use the cross-validation splitters to perform nested cross-validation, facilitated
by model_selection.GridSearchCV and model_selection.RandomizedSearchCV utilities.
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• The enhanced cv_results_ attribute

The new cv_results_ attribute (of model_selection.GridSearchCV and model_selection.
RandomizedSearchCV ) introduced in lieu of the grid_scores_ attribute is a dict of 1D arrays with
elements in each array corresponding to the parameter settings (i.e. search candidates).

The cv_results_ dict can be easily imported into pandas as a DataFrame for exploring the search results.

The cv_results_ arrays include scores for each cross-validation split (with keys such as
'split0_test_score'), as well as their mean ('mean_test_score') and standard deviation
('std_test_score').

The ranks for the search candidates (based on their mean cross-validation score) is available at
cv_results_['rank_test_score'].

The parameter values for each parameter is stored separately as numpy masked object arrays. The value, for
that search candidate, is masked if the corresponding parameter is not applicable. Additionally a list of all the
parameter dicts are stored at cv_results_['params'].

• Parameters n_folds and n_iter renamed to n_splits

Some parameter names have changed: The n_folds parameter in new model_selection.KFold,
model_selection.GroupKFold (see below for the name change), and model_selection.
StratifiedKFold is now renamed to n_splits. The n_iter parameter in model_selection.
ShuffleSplit, the new class model_selection.GroupShuffleSplit and model_selection.
StratifiedShuffleSplit is now renamed to n_splits.

• Rename of splitter classes which accepts group labels along with data

The cross-validation splitters LabelKFold, LabelShuffleSplit, LeaveOneLabelOut and
LeavePLabelOut have been renamed to model_selection.GroupKFold, model_selection.
GroupShuffleSplit, model_selection.LeaveOneGroupOut and model_selection.
LeavePGroupsOut respectively.

Note the change from singular to plural form in model_selection.LeavePGroupsOut.

• Fit parameter labels renamed to groups

The labels parameter in the split method of the newly renamed splitters model_selection.
GroupKFold, model_selection.LeaveOneGroupOut, model_selection.
LeavePGroupsOut, model_selection.GroupShuffleSplit is renamed to groups following the
new nomenclature of their class names.

• Parameter n_labels renamed to n_groups

The parameter n_labels in the newly renamed model_selection.LeavePGroupsOut is changed to
n_groups.

• Training scores and Timing information

cv_results_ also includes the training scores for each cross-validation split (with keys such
as 'split0_train_score'), as well as their mean ('mean_train_score') and stan-
dard deviation ('std_train_score'). To avoid the cost of evaluating training score, set
return_train_score=False.

Additionally the mean and standard deviation of the times taken to split, train and score the model across all the
cross-validation splits is available at the key 'mean_time' and 'std_time' respectively.
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Changelog

New features

Classifiers and Regressors

• The Gaussian Process module has been reimplemented and now offers classification and regression esti-
mators through gaussian_process.GaussianProcessClassifier and gaussian_process.
GaussianProcessRegressor. Among other things, the new implementation supports kernel engineering,
gradient-based hyperparameter optimization or sampling of functions from GP prior and GP posterior. Extensive
documentation and examples are provided. By Jan Hendrik Metzen.

• Added new supervised learning algorithm: Multi-layer Perceptron #3204 by Issam H. Laradji

• Added linear_model.HuberRegressor, a linear model robust to outliers. #5291 by Manoj Kumar.

• Added the multioutput.MultiOutputRegressor meta-estimator. It converts single output regressors
to multi-output regressors by fitting one regressor per output. By Tim Head.

Other estimators

• New mixture.GaussianMixture and mixture.BayesianGaussianMixture replace former mix-
ture models, employing faster inference for sounder results. #7295 by Wei Xue and Thierry Guillemot.

• Class decomposition.RandomizedPCA is now factored into decomposition.PCA and it is avail-
able calling with parameter svd_solver='randomized'. The default number of n_iter for
'randomized' has changed to 4. The old behavior of PCA is recovered by svd_solver='full'. An
additional solver calls arpack and performs truncated (non-randomized) SVD. By default, the best solver is
selected depending on the size of the input and the number of components requested. #5299 by Giorgio Patrini.

• Added two functions for mutual information estimation: feature_selection.
mutual_info_classif and feature_selection.mutual_info_regression. These
functions can be used in feature_selection.SelectKBest and feature_selection.
SelectPercentile as score functions. By Andrea Bravi and Nikolay Mayorov.

• Added the ensemble.IsolationForest class for anomaly detection based on random forests. By Nicolas
Goix.

• Added algorithm="elkan" to cluster.KMeans implementing Elkan’s fast K-Means algorithm. By
Andreas Müller.

Model selection and evaluation

• Added metrics.cluster.fowlkes_mallows_score, the Fowlkes Mallows Index which measures the
similarity of two clusterings of a set of points By Arnaud Fouchet and Thierry Guillemot.

• Added metrics.calinski_harabaz_score, which computes the Calinski and Harabaz score to evalu-
ate the resulting clustering of a set of points. By Arnaud Fouchet and Thierry Guillemot.

• Added new cross-validation splitter model_selection.TimeSeriesSplit to handle time series data.
#6586 by YenChen Lin

• The cross-validation iterators are replaced by cross-validation splitters available from sklearn.
model_selection, allowing for nested cross-validation. See Model Selection Enhancements and API
Changes for more information. #4294 by Raghav RV.

Enhancements

Trees and ensembles
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• Added a new splitting criterion for tree.DecisionTreeRegressor, the mean absolute er-
ror. This criterion can also be used in ensemble.ExtraTreesRegressor, ensemble.
RandomForestRegressor, and the gradient boosting estimators. #6667 by Nelson Liu.

• Added weighted impurity-based early stopping criterion for decision tree growth. #6954 by Nelson Liu

• The random forest, extra tree and decision tree estimators now has a method decision_path which returns
the decision path of samples in the tree. By Arnaud Joly.

• A new example has been added unveiling the decision tree structure. By Arnaud Joly.

• Random forest, extra trees, decision trees and gradient boosting estimator accept the parameter
min_samples_split and min_samples_leaf provided as a percentage of the training samples. By
yelite and Arnaud Joly.

• Gradient boosting estimators accept the parameter criterion to specify to splitting criterion used in built
decision trees. #6667 by Nelson Liu.

• The memory footprint is reduced (sometimes greatly) for ensemble.bagging.BaseBagging and classes
that inherit from it, i.e, ensemble.BaggingClassifier, ensemble.BaggingRegressor, and
ensemble.IsolationForest, by dynamically generating attribute estimators_samples_ only
when it is needed. By David Staub.

• Added n_jobs and sample_weight parameters for ensemble.VotingClassifier to fit underlying
estimators in parallel. #5805 by Ibraim Ganiev.

Linear, kernelized and related models

• In linear_model.LogisticRegression, the SAG solver is now available in the multinomial case.
#5251 by Tom Dupre la Tour.

• linear_model.RANSACRegressor, svm.LinearSVC and svm.LinearSVR now support
sample_weight. By Imaculate.

• Add parameter loss to linear_model.RANSACRegressor to measure the error on the samples for every
trial. By Manoj Kumar.

• Prediction of out-of-sample events with Isotonic Regression (isotonic.IsotonicRegression) is now
much faster (over 1000x in tests with synthetic data). By Jonathan Arfa.

• Isotonic regression (isotonic.IsotonicRegression) now uses a better algorithm to avoid O(n^2) be-
havior in pathological cases, and is also generally faster (##6691). By Antony Lee.

• naive_bayes.GaussianNB now accepts data-independent class-priors through the parameter priors.
By Guillaume Lemaitre.

• linear_model.ElasticNet and linear_model.Lasso now works with np.float32 input data
without converting it into np.float64. This allows to reduce the memory consumption. #6913 by YenChen
Lin.

• semi_supervised.LabelPropagation and semi_supervised.LabelSpreading now accept
arbitrary kernel functions in addition to strings knn and rbf. #5762 by Utkarsh Upadhyay.

Decomposition, manifold learning and clustering

• Added inverse_transform function to decomposition.NMF to compute data matrix of original shape.
By Anish Shah.

• cluster.KMeans and cluster.MiniBatchKMeans now works with np.float32 and np.
float64 input data without converting it. This allows to reduce the memory consumption by using np.
float32. #6846 by Sebastian Säger and YenChen Lin.

Preprocessing and feature selection
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• preprocessing.RobustScaler now accepts quantile_range parameter. #5929 by Konstantin Pod-
shumok.

• feature_extraction.FeatureHasher now accepts string values. #6173 by Ryad Zenine and
Devashish Deshpande.

• Keyword arguments can now be supplied to func in preprocessing.FunctionTransformer by
means of the kw_args parameter. By Brian McFee.

• feature_selection.SelectKBest and feature_selection.SelectPercentile now accept
score functions that take X, y as input and return only the scores. By Nikolay Mayorov.

Model evaluation and meta-estimators

• multiclass.OneVsOneClassifier and multiclass.OneVsRestClassifier now support
partial_fit. By Asish Panda and Philipp Dowling.

• Added support for substituting or disabling pipeline.Pipeline and pipeline.FeatureUnion com-
ponents using the set_params interface that powers sklearn.grid_search. See Selecting dimension-
ality reduction with Pipeline and GridSearchCV By Joel Nothman and Robert McGibbon.

• The new cv_results_ attribute of model_selection.GridSearchCV (and model_selection.
RandomizedSearchCV ) can be easily imported into pandas as a DataFrame. Ref Model Selection En-
hancements and API Changes for more information. #6697 by Raghav RV.

• Generalization of model_selection.cross_val_predict. One can pass method names such as pre-
dict_proba to be used in the cross validation framework instead of the default predict. By Ori Ziv and Sears
Merritt.

• The training scores and time taken for training followed by scoring for each search candidate are now available
at the cv_results_ dict. See Model Selection Enhancements and API Changes for more information. #7325
by Eugene Chen and Raghav RV.

Metrics

• Added labels flag to metrics.log_loss to explicitly provide the labels when the number of classes in
y_true and y_pred differ. #7239 by Hong Guangguo with help from Mads Jensen and Nelson Liu.

• Support sparse contingency matrices in cluster evaluation (metrics.cluster.supervised) to scale to a
large number of clusters. #7419 by Gregory Stupp and Joel Nothman.

• Add sample_weight parameter to metrics.matthews_corrcoef. By Jatin Shah and Raghav RV.

• Speed up metrics.silhouette_score by using vectorized operations. By Manoj Kumar.

• Add sample_weight parameter to metrics.confusion_matrix. By Bernardo Stein.

Miscellaneous

• Added n_jobs parameter to feature_selection.RFECV to compute the score on the test folds in par-
allel. By Manoj Kumar

• Codebase does not contain C/C++ cython generated files: they are generated during build. Distribution packages
will still contain generated C/C++ files. By Arthur Mensch.

• Reduce the memory usage for 32-bit float input arrays of utils.sparse_func.mean_variance_axis
and utils.sparse_func.incr_mean_variance_axis by supporting cython fused types. By
YenChen Lin.

• The ignore_warnings now accept a category argument to ignore only the warnings of a specified type. By
Thierry Guillemot.
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• Added parameter return_X_y and return type (data, target) : tuple option to load_iris
dataset #7049, load_breast_cancer dataset #7152, load_digits dataset, load_diabetes dataset,
load_linnerud dataset, load_boston dataset #7154 by Manvendra Singh.

• Simplification of the clone function, deprecate support for estimators that modify parameters in __init__.
#5540 by Andreas Müller.

• When unpickling a scikit-learn estimator in a different version than the one the estimator was trained with, a
UserWarning is raised, see the documentation on model persistence for more details. (#7248) By Andreas
Müller.

Bug fixes

Trees and ensembles

• Random forest, extra trees, decision trees and gradient boosting won’t accept anymore
min_samples_split=1 as at least 2 samples are required to split a decision tree node. By Arnaud
Joly

• ensemble.VotingClassifier now raises NotFittedError if predict, transform or
predict_proba are called on the non-fitted estimator. by Sebastian Raschka.

• Fix bug where ensemble.AdaBoostClassifier and ensemble.AdaBoostRegressor would per-
form poorly if the random_state was fixed (#7411). By Joel Nothman.

• Fix bug in ensembles with randomization where the ensemble would not set random_state
on base estimators in a pipeline or similar nesting. (#7411). Note, results for ensemble.
BaggingClassifier ensemble.BaggingRegressor, ensemble.AdaBoostClassifier and
ensemble.AdaBoostRegressor will now differ from previous versions. By Joel Nothman.

Linear, kernelized and related models

• Fixed incorrect gradient computation for loss='squared_epsilon_insensitive' in
linear_model.SGDClassifier and linear_model.SGDRegressor (#6764). By Wenhua
Yang.

• Fix bug in linear_model.LogisticRegressionCV where solver='liblinear' did not accept
class_weights='balanced. (#6817). By Tom Dupre la Tour.

• Fix bug in neighbors.RadiusNeighborsClassifier where an error occurred when there were out-
liers being labelled and a weight function specified (#6902). By LeonieBorne.

• Fix linear_model.ElasticNet sparse decision function to match output with dense in the multioutput
case.

Decomposition, manifold learning and clustering

• decomposition.RandomizedPCA default number of iterated_power is 4 instead of 3. #5141 by Giorgio
Patrini.

• utils.extmath.randomized_svd performs 4 power iterations by default, instead or 0. In practice this
is enough for obtaining a good approximation of the true eigenvalues/vectors in the presence of noise. When
n_components is small (< .1 * min(X.shape)) n_iter is set to 7, unless the user specifies a higher number.
This improves precision with few components. #5299 by Giorgio Patrini.

• Whiten/non-whiten inconsistency between components of decomposition.PCA and decomposition.
RandomizedPCA (now factored into PCA, see the New features) is fixed. components_ are stored with no
whitening. #5299 by Giorgio Patrini.

• Fixed bug in manifold.spectral_embedding where diagonal of unnormalized Laplacian matrix was
incorrectly set to 1. #4995 by Peter Fischer.
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• Fixed incorrect initialization of utils.arpack.eigsh on all occurrences. Affects cluster.
bicluster.SpectralBiclustering, decomposition.KernelPCA, manifold.
LocallyLinearEmbedding, and manifold.SpectralEmbedding (#5012). By Peter Fischer.

• Attribute explained_variance_ratio_ calculated with the SVD solver of
discriminant_analysis.LinearDiscriminantAnalysis now returns correct results. By
JPFrancoia

Preprocessing and feature selection

• preprocessing.data._transform_selected now always passes a copy of X to transform function
when copy=True (#7194). By Caio Oliveira.

Model evaluation and meta-estimators

• model_selection.StratifiedKFold now raises error if all n_labels for individual classes is less than
n_folds. #6182 by Devashish Deshpande.

• Fixed bug in model_selection.StratifiedShuffleSplitwhere train and test sample could overlap
in some edge cases, see #6121 for more details. By Loic Esteve.

• Fix in sklearn.model_selection.StratifiedShuffleSplit to return splits of size
train_size and test_size in all cases (#6472). By Andreas Müller.

• Cross-validation of OneVsOneClassifier and OneVsRestClassifier now works with precomputed
kernels. #7350 by Russell Smith.

• Fix incomplete predict_proba method delegation from model_selection.GridSearchCV to
linear_model.SGDClassifier (#7159) by Yichuan Liu.

Metrics

• Fix bug in metrics.silhouette_score in which clusters of size 1 were incorrectly scored. They should
get a score of 0. By Joel Nothman.

• Fix bug in metrics.silhouette_samples so that it now works with arbitrary labels, not just those
ranging from 0 to n_clusters - 1.

• Fix bug where expected and adjusted mutual information were incorrect if cluster contingency cells exceeded
2**16. By Joel Nothman.

• metrics.pairwise.pairwise_distances now converts arrays to boolean arrays when required in
scipy.spatial.distance. #5460 by Tom Dupre la Tour.

• Fix sparse input support in metrics.silhouette_score as well as example exam-
ples/text/document_clustering.py. By YenChen Lin.

• metrics.roc_curve and metrics.precision_recall_curve no longer round y_score values
when creating ROC curves; this was causing problems for users with very small differences in scores (#7353).

Miscellaneous

• model_selection.tests._search._check_param_grid now works correctly with all types that
extends/implements Sequence (except string), including range (Python 3.x) and xrange (Python 2.x). #7323 by
Viacheslav Kovalevskyi.

• utils.extmath.randomized_range_finder is more numerically stable when many power iterations
are requested, since it applies LU normalization by default. If n_iter<2 numerical issues are unlikely, thus
no normalization is applied. Other normalization options are available: 'none', 'LU' and 'QR'. #5141 by
Giorgio Patrini.

• Fix a bug where some formats of scipy.sparse matrix, and estimators with them as parameters, could not
be passed to base.clone. By Loic Esteve.
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• datasets.load_svmlight_file now is able to read long int QID values. #7101 by Ibraim Ganiev.

API changes summary

Linear, kernelized and related models

• residual_metric has been deprecated in linear_model.RANSACRegressor. Use loss instead.
By Manoj Kumar.

• Access to public attributes .X_ and .y_ has been deprecated in isotonic.IsotonicRegression. By
Jonathan Arfa.

Decomposition, manifold learning and clustering

• The old mixture.DPGMM is deprecated in favor of the new mixture.BayesianGaussianMixture
(with the parameter weight_concentration_prior_type='dirichlet_process'). The new
class solves the computational problems of the old class and computes the Gaussian mixture with a Dirich-
let process prior faster than before. #7295 by Wei Xue and Thierry Guillemot.

• The old mixture.VBGMM is deprecated in favor of the new mixture.BayesianGaussianMixture
(with the parameter weight_concentration_prior_type='dirichlet_distribution'). The
new class solves the computational problems of the old class and computes the Variational Bayesian Gaussian
mixture faster than before. #6651 by Wei Xue and Thierry Guillemot.

• The old mixture.GMM is deprecated in favor of the new mixture.GaussianMixture. The new class
computes the Gaussian mixture faster than before and some of computational problems have been solved. #6666
by Wei Xue and Thierry Guillemot.

Model evaluation and meta-estimators

• The sklearn.cross_validation, sklearn.grid_search and sklearn.learning_curve
have been deprecated and the classes and functions have been reorganized into the sklearn.
model_selection module. Ref Model Selection Enhancements and API Changes for more information.
#4294 by Raghav RV.

• The grid_scores_ attribute of model_selection.GridSearchCV and model_selection.
RandomizedSearchCV is deprecated in favor of the attribute cv_results_. Ref Model Selection En-
hancements and API Changes for more information. #6697 by Raghav RV.

• The parameters n_iter or n_folds in old CV splitters are replaced by the new parameter n_splits since
it can provide a consistent and unambiguous interface to represent the number of train-test splits. #7187 by
YenChen Lin.

• classes parameter was renamed to labels in metrics.hamming_loss. #7260 by Sebastián Vanrell.

• The splitter classes LabelKFold, LabelShuffleSplit, LeaveOneLabelOut and
LeavePLabelsOut are renamed to model_selection.GroupKFold, model_selection.
GroupShuffleSplit, model_selection.LeaveOneGroupOut and model_selection.
LeavePGroupsOut respectively. Also the parameter labels in the split method of the newly renamed
splitters model_selection.LeaveOneGroupOut and model_selection.LeavePGroupsOut
is renamed to groups. Additionally in model_selection.LeavePGroupsOut, the parameter
n_labels is renamed to n_groups. #6660 by Raghav RV.

• Error and loss names for scoring parameters are now prefixed by 'neg_', such as
neg_mean_squared_error. The unprefixed versions are deprecated and will be removed in version 0.20.
#7261 by Tim Head.
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Code Contributors

Aditya Joshi, Alejandro, Alexander Fabisch, Alexander Loginov, Alexander Minyushkin, Alexander Rudy, Alexan-
dre Abadie, Alexandre Abraham, Alexandre Gramfort, Alexandre Saint, alexfields, Alvaro Ulloa, alyssaq, Amlan
Kar, Andreas Mueller, andrew giessel, Andrew Jackson, Andrew McCulloh, Andrew Murray, Anish Shah, Arafat,
Archit Sharma, Ariel Rokem, Arnaud Joly, Arnaud Rachez, Arthur Mensch, Ash Hoover, asnt, b0noI, Behzad Tabib-
ian, Bernardo, Bernhard Kratzwald, Bhargav Mangipudi, blakeflei, Boyuan Deng, Brandon Carter, Brett Naul, Brian
McFee, Caio Oliveira, Camilo Lamus, Carol Willing, Cass, CeShine Lee, Charles Truong, Chyi-Kwei Yau, CJ Carey,
codevig, Colin Ni, Dan Shiebler, Daniel, Daniel Hnyk, David Ellis, David Nicholson, David Staub, David Thaler,
David Warshaw, Davide Lasagna, Deborah, definitelyuncertain, Didi Bar-Zev, djipey, dsquareindia, edwinENSAE,
Elias Kuthe, Elvis DOHMATOB, Ethan White, Fabian Pedregosa, Fabio Ticconi, fisache, Florian Wilhelm, Francis,
Francis O’Donovan, Gael Varoquaux, Ganiev Ibraim, ghg, Gilles Louppe, Giorgio Patrini, Giovanni Cherubin, Gio-
vanni Lanzani, Glenn Qian, Gordon Mohr, govin-vatsan, Graham Clenaghan, Greg Reda, Greg Stupp, Guillaume
Lemaitre, Gustav Mörtberg, halwai, Harizo Rajaona, Harry Mavroforakis, hashcode55, hdmetor, Henry Lin, Hob-
son Lane, Hugo Bowne-Anderson, Igor Andriushchenko, Imaculate, Inki Hwang, Isaac Sijaranamual, Ishank Gulati,
Issam Laradji, Iver Jordal, jackmartin, Jacob Schreiber, Jake Vanderplas, James Fiedler, James Routley, Jan Zikes,
Janna Brettingen, jarfa, Jason Laska, jblackburne, jeff levesque, Jeffrey Blackburne, Jeffrey04, Jeremy Hintz, jere-
mynixon, Jeroen, Jessica Yung, Jill-Jênn Vie, Jimmy Jia, Jiyuan Qian, Joel Nothman, johannah, John, John Boersma,
John Kirkham, John Moeller, jonathan.striebel, joncrall, Jordi, Joseph Munoz, Joshua Cook, JPFrancoia, jrfiedler,
JulianKahnert, juliathebrave, kaichogami, KamalakerDadi, Kenneth Lyons, Kevin Wang, kingjr, kjell, Konstantin
Podshumok, Kornel Kielczewski, Krishna Kalyan, krishnakalyan3, Kvle Putnam, Kyle Jackson, Lars Buitinck, ldavid,
LeiG, LeightonZhang, Leland McInnes, Liang-Chi Hsieh, Lilian Besson, lizsz, Loic Esteve, Louis Tiao, Léonie Borne,
Mads Jensen, Maniteja Nandana, Manoj Kumar, Manvendra Singh, Marco, Mario Krell, Mark Bao, Mark Szepieniec,
Martin Madsen, MartinBpr, MaryanMorel, Massil, Matheus, Mathieu Blondel, Mathieu Dubois, Matteo, Matthias Ek-
man, Max Moroz, Michael Scherer, michiaki ariga, Mikhail Korobov, Moussa Taifi, mrandrewandrade, Mridul Seth,
nadya-p, Naoya Kanai, Nate George, Nelle Varoquaux, Nelson Liu, Nick James, NickleDave, Nico, Nicolas Goix,
Nikolay Mayorov, ningchi, nlathia, okbalefthanded, Okhlopkov, Olivier Grisel, Panos Louridas, Paul Strickland, Per-
rine Letellier, pestrickland, Peter Fischer, Pieter, Ping-Yao, Chang, practicalswift, Preston Parry, Qimu Zheng, Rachit
Kansal, Raghav RV, Ralf Gommers, Ramana.S, Rammig, Randy Olson, Rob Alexander, Robert Lutz, Robin Schucker,
Rohan Jain, Ruifeng Zheng, Ryan Yu, Rémy Léone, saihttam, Saiwing Yeung, Sam Shleifer, Samuel St-Jean, Sar-
taj Singh, Sasank Chilamkurthy, saurabh.bansod, Scott Andrews, Scott Lowe, seales, Sebastian Raschka, Sebastian
Saeger, Sebastián Vanrell, Sergei Lebedev, shagun Sodhani, shanmuga cv, Shashank Shekhar, shawpan, shengxid-
uan, Shota, shuckle16, Skipper Seabold, sklearn-ci, SmedbergM, srvanrell, Sébastien Lerique, Taranjeet, themrmax,
Thierry, Thierry Guillemot, Thomas, Thomas Hallock, Thomas Moreau, Tim Head, tKammy, toastedcornflakes, Tom,
TomDLT, Toshihiro Kamishima, tracer0tong, Trent Hauck, trevorstephens, Tue Vo, Varun, Varun Jewalikar, Viach-
eslav, Vighnesh Birodkar, Vikram, Villu Ruusmann, Vinayak Mehta, walter, waterponey, Wenhua Yang, Wenjian
Huang, Will Welch, wyseguy7, xyguo, yanlend, Yaroslav Halchenko, yelite, Yen, YenChenLin, Yichuan Liu, Yoav
Ram, Yoshiki, Zheng RuiFeng, zivori, Óscar Nájera

1.7.6 Version 0.17.1

February 18, 2016

Changelog

Bug fixes

• Upgrade vendored joblib to version 0.9.4 that fixes an important bug in joblib.Parallel that can silently
yield to wrong results when working on datasets larger than 1MB: https://github.com/joblib/joblib/blob/0.9.4/
CHANGES.rst
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• Fixed reading of Bunch pickles generated with scikit-learn version <= 0.16. This can affect users who have
already downloaded a dataset with scikit-learn 0.16 and are loading it with scikit-learn 0.17. See #6196 for how
this affected datasets.fetch_20newsgroups. By Loic Esteve.

• Fixed a bug that prevented using ROC AUC score to perform grid search on several CPU / cores on large arrays.
See #6147 By Olivier Grisel.

• Fixed a bug that prevented to properly set the presort parameter in ensemble.
GradientBoostingRegressor. See #5857 By Andrew McCulloh.

• Fixed a joblib error when evaluating the perplexity of a decomposition.
LatentDirichletAllocation model. See #6258 By Chyi-Kwei Yau.

1.7.7 Version 0.17

November 5, 2015

Changelog

New features

• All the Scaler classes but preprocessing.RobustScaler can be fitted online by calling partial_fit. By
Giorgio Patrini.

• The new class ensemble.VotingClassifier implements a “majority rule” / “soft voting” ensemble
classifier to combine estimators for classification. By Sebastian Raschka.

• The new class preprocessing.RobustScaler provides an alternative to preprocessing.
StandardScaler for feature-wise centering and range normalization that is robust to outliers. By Thomas
Unterthiner.

• The new class preprocessing.MaxAbsScaler provides an alternative to preprocessing.
MinMaxScaler for feature-wise range normalization when the data is already centered or sparse. By Thomas
Unterthiner.

• The new class preprocessing.FunctionTransformer turns a Python function into a Pipeline-
compatible transformer object. By Joe Jevnik.

• The new classes cross_validation.LabelKFold and cross_validation.
LabelShuffleSplit generate train-test folds, respectively similar to cross_validation.KFold and
cross_validation.ShuffleSplit, except that the folds are conditioned on a label array. By Brian
McFee, Jean Kossaifi and Gilles Louppe.

• decomposition.LatentDirichletAllocation implements the Latent Dirichlet Allocation topic
model with online variational inference. By Chyi-Kwei Yau, with code based on an implementation by Matt
Hoffman. (#3659)

• The new solver sag implements a Stochastic Average Gradient descent and is available in both
linear_model.LogisticRegression and linear_model.Ridge. This solver is very efficient for
large datasets. By Danny Sullivan and Tom Dupre la Tour. (#4738)

• The new solver cd implements a Coordinate Descent in decomposition.NMF. Previous solver based on
Projected Gradient is still available setting new parameter solver to pg, but is deprecated and will be removed
in 0.19, along with decomposition.ProjectedGradientNMF and parameters sparseness, eta,
beta and nls_max_iter. New parameters alpha and l1_ratio control L1 and L2 regularization, and
shuffle adds a shuffling step in the cd solver. By Tom Dupre la Tour and Mathieu Blondel.

48 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/6196
https://github.com/lesteve
https://github.com/scikit-learn/scikit-learn/issues/6147
https://twitter.com/ogrisel
https://github.com/scikit-learn/scikit-learn/issues/5857
https://github.com/scikit-learn/scikit-learn/issues/6258
https://github.com/giorgiop
http://sebastianraschka.com
https://github.com/untom
https://github.com/untom
https://github.com/untom
https://github.com/untom
https://bmcfee.github.io
https://bmcfee.github.io
https://github.com/JeanKossaifi
http://www.montefiore.ulg.ac.be/~glouppe/
https://github.com/chyikwei
https://github.com/scikit-learn/scikit-learn/issues/3659
https://github.com/dsullivan7
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/4738
https://github.com/TomDLT
http://www.mblondel.org


scikit-learn user guide, Release 0.19.1

Enhancements

• manifold.TSNE now supports approximate optimization via the Barnes-Hut method, leading to much faster
fitting. By Christopher Erick Moody. (#4025)

• cluster.mean_shift_.MeanShift now supports parallel execution, as implemented in the
mean_shift function. By Martino Sorbaro.

• naive_bayes.GaussianNB now supports fitting with sample_weight. By Jan Hendrik Metzen.

• dummy.DummyClassifier now supports a prior fitting strategy. By Arnaud Joly.

• Added a fit_predict method for mixture.GMM and subclasses. By Cory Lorenz.

• Added the metrics.label_ranking_loss metric. By Arnaud Joly.

• Added the metrics.cohen_kappa_score metric.

• Added a warm_start constructor parameter to the bagging ensemble models to increase the size of the en-
semble. By Tim Head.

• Added option to use multi-output regression metrics without averaging. By Konstantin Shmelkov and Michael
Eickenberg.

• Added stratify option to cross_validation.train_test_split for stratified splitting. By
Miroslav Batchkarov.

• The tree.export_graphviz function now supports aesthetic improvements for tree.
DecisionTreeClassifier and tree.DecisionTreeRegressor, including options for coloring
nodes by their majority class or impurity, showing variable names, and using node proportions instead of raw
sample counts. By Trevor Stephens.

• Improved speed of newton-cg solver in linear_model.LogisticRegression, by avoiding loss com-
putation. By Mathieu Blondel and Tom Dupre la Tour.

• The class_weight="auto" heuristic in classifiers supporting class_weight was deprecated and re-
placed by the class_weight="balanced" option, which has a simpler formula and interpretation. By
Hanna Wallach and Andreas Müller.

• Add class_weight parameter to automatically weight samples by class frequency for linear_model.
PassiveAgressiveClassifier. By Trevor Stephens.

• Added backlinks from the API reference pages to the user guide. By Andreas Müller.

• The labels parameter to sklearn.metrics.f1_score, sklearn.metrics.fbeta_score,
sklearn.metrics.recall_score and sklearn.metrics.precision_score has been ex-
tended. It is now possible to ignore one or more labels, such as where a multiclass problem has a majority
class to ignore. By Joel Nothman.

• Add sample_weight support to linear_model.RidgeClassifier. By Trevor Stephens.

• Provide an option for sparse output from sklearn.metrics.pairwise.cosine_similarity . By
Jaidev Deshpande.

• Add minmax_scale to provide a function interface for MinMaxScaler. By Thomas Unterthiner.

• dump_svmlight_file now handles multi-label datasets. By Chih-Wei Chang.

• RCV1 dataset loader (sklearn.datasets.fetch_rcv1). By Tom Dupre la Tour.

• The “Wisconsin Breast Cancer” classical two-class classification dataset is now included in scikit-learn, avail-
able with sklearn.dataset.load_breast_cancer.
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• Upgraded to joblib 0.9.3 to benefit from the new automatic batching of short tasks. This makes it possible for
scikit-learn to benefit from parallelism when many very short tasks are executed in parallel, for instance by the
grid_search.GridSearchCV meta-estimator with n_jobs > 1 used with a large grid of parameters
on a small dataset. By Vlad Niculae, Olivier Grisel and Loic Esteve.

• For more details about changes in joblib 0.9.3 see the release notes: https://github.com/joblib/joblib/blob/master/
CHANGES.rst#release-093

• Improved speed (3 times per iteration) of decomposition.DictLearning with coordinate descent
method from linear_model.Lasso. By Arthur Mensch.

• Parallel processing (threaded) for queries of nearest neighbors (using the ball-tree) by Nikolay Mayorov.

• Allow datasets.make_multilabel_classification to output a sparse y. By Kashif Rasul.

• cluster.DBSCAN now accepts a sparse matrix of precomputed distances, allowing memory-efficient distance
precomputation. By Joel Nothman.

• tree.DecisionTreeClassifier now exposes an apply method for retrieving the leaf indices samples
are predicted as. By Daniel Galvez and Gilles Louppe.

• Speed up decision tree regressors, random forest regressors, extra trees regressors and gradient boosting estima-
tors by computing a proxy of the impurity improvement during the tree growth. The proxy quantity is such that
the split that maximizes this value also maximizes the impurity improvement. By Arnaud Joly, Jacob Schreiber
and Gilles Louppe.

• Speed up tree based methods by reducing the number of computations needed when computing the impurity
measure taking into account linear relationship of the computed statistics. The effect is particularly visible with
extra trees and on datasets with categorical or sparse features. By Arnaud Joly.

• ensemble.GradientBoostingRegressor and ensemble.GradientBoostingClassifier
now expose an apply method for retrieving the leaf indices each sample ends up in under each try. By Ja-
cob Schreiber.

• Add sample_weight support to linear_model.LinearRegression. By Sonny Hu. (##4881)

• Add n_iter_without_progress to manifold.TSNE to control the stopping criterion. By Santi Vil-
lalba. (#5186)

• Added optional parameter random_state in linear_model.Ridge , to set the seed of the pseudo random
generator used in sag solver. By Tom Dupre la Tour.

• Added optional parameter warm_start in linear_model.LogisticRegression. If set to True, the
solvers lbfgs, newton-cg and sag will be initialized with the coefficients computed in the previous fit. By
Tom Dupre la Tour.

• Added sample_weight support to linear_model.LogisticRegression for the lbfgs,
newton-cg, and sag solvers. By Valentin Stolbunov. Support added to the liblinear solver. By Manoj
Kumar.

• Added optional parameter presort to ensemble.GradientBoostingRegressor and ensemble.
GradientBoostingClassifier, keeping default behavior the same. This allows gradient boosters to
turn off presorting when building deep trees or using sparse data. By Jacob Schreiber.

• Altered metrics.roc_curve to drop unnecessary thresholds by default. By Graham Clenaghan.

• Added feature_selection.SelectFromModel meta-transformer which can be used along with es-
timators that have coef_ or feature_importances_ attribute to select important features of the input data. By
Maheshakya Wijewardena, Joel Nothman and Manoj Kumar.

• Added metrics.pairwise.laplacian_kernel. By Clyde Fare.
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• covariance.GraphLasso allows separate control of the convergence criterion for the Elastic-Net subprob-
lem via the enet_tol parameter.

• Improved verbosity in decomposition.DictionaryLearning.

• ensemble.RandomForestClassifier and ensemble.RandomForestRegressor no longer ex-
plicitly store the samples used in bagging, resulting in a much reduced memory footprint for storing random
forest models.

• Added positive option to linear_model.Lars and linear_model.lars_path to force coeffi-
cients to be positive. (#5131)

• Added the X_norm_squared parameter to metrics.pairwise.euclidean_distances to provide
precomputed squared norms for X.

• Added the fit_predict method to pipeline.Pipeline.

• Added the preprocessing.min_max_scale function.

Bug fixes

• Fixed non-determinism in dummy.DummyClassifier with sparse multi-label output. By Andreas Müller.

• Fixed the output shape of linear_model.RANSACRegressor to (n_samples, ). By Andreas Müller.

• Fixed bug in decomposition.DictLearning when n_jobs < 0. By Andreas Müller.

• Fixed bug where grid_search.RandomizedSearchCV could consume a lot of memory for large discrete
grids. By Joel Nothman.

• Fixed bug in linear_model.LogisticRegressionCV where penalty was ignored in the final fit. By
Manoj Kumar.

• Fixed bug in ensemble.forest.ForestClassifier while computing oob_score and X is a
sparse.csc_matrix. By Ankur Ankan.

• All regressors now consistently handle and warn when given y that is of shape (n_samples, 1). By Andreas
Müller and Henry Lin. (#5431)

• Fix in cluster.KMeans cluster reassignment for sparse input by Lars Buitinck.

• Fixed a bug in lda.LDA that could cause asymmetric covariance matrices when using shrinkage. By Martin
Billinger.

• Fixed cross_validation.cross_val_predict for estimators with sparse predictions. By Buddha
Prakash.

• Fixed the predict_proba method of linear_model.LogisticRegression to use soft-max instead
of one-vs-rest normalization. By Manoj Kumar. (#5182)

• Fixed the partial_fit method of linear_model.SGDClassifier when called with
average=True. By Andrew Lamb. (#5282)

• Dataset fetchers use different filenames under Python 2 and Python 3 to avoid pickling compatibility issues. By
Olivier Grisel. (#5355)

• Fixed a bug in naive_bayes.GaussianNB which caused classification results to depend on scale. By Jake
Vanderplas.

• Fixed temporarily linear_model.Ridge, which was incorrect when fitting the intercept in the case of
sparse data. The fix automatically changes the solver to ‘sag’ in this case. #5360 by Tom Dupre la Tour.
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• Fixed a performance bug in decomposition.RandomizedPCA on data with a large number of features
and fewer samples. (#4478) By Andreas Müller, Loic Esteve and Giorgio Patrini.

• Fixed bug in cross_decomposition.PLS that yielded unstable and platform dependent output, and failed
on fit_transform. By Arthur Mensch.

• Fixes to the Bunch class used to store datasets.

• Fixed ensemble.plot_partial_dependence ignoring the percentiles parameter.

• Providing a set as vocabulary in CountVectorizer no longer leads to inconsistent results when pickling.

• Fixed the conditions on when a precomputed Gram matrix needs to be recomputed in linear_model.
LinearRegression, linear_model.OrthogonalMatchingPursuit, linear_model.Lasso
and linear_model.ElasticNet.

• Fixed inconsistent memory layout in the coordinate descent solver that affected linear_model.
DictionaryLearning and covariance.GraphLasso. (#5337) By Olivier Grisel.

• manifold.LocallyLinearEmbedding no longer ignores the reg parameter.

• Nearest Neighbor estimators with custom distance metrics can now be pickled. (#4362)

• Fixed a bug in pipeline.FeatureUnion where transformer_weights were not properly handled
when performing grid-searches.

• Fixed a bug in linear_model.LogisticRegression and linear_model.
LogisticRegressionCV when using class_weight='balanced'```or
``class_weight='auto'. By Tom Dupre la Tour.

• Fixed bug #5495 when doing OVR(SVC(decision_function_shape=”ovr”)). Fixed by Elvis Dohmatob.

API changes summary

• Attribute data_min, data_max and data_range in preprocessing.MinMaxScaler are deprecated and
won’t be available from 0.19. Instead, the class now exposes data_min_, data_max_ and data_range_. By
Giorgio Patrini.

• All Scaler classes now have an scale_ attribute, the feature-wise rescaling applied by their transform methods.
The old attribute std_ in preprocessing.StandardScaler is deprecated and superseded by scale_; it
won’t be available in 0.19. By Giorgio Patrini.

• svm.SVC` and svm.NuSVC now have an decision_function_shape parameter to make their decision
function of shape (n_samples, n_classes) by setting decision_function_shape='ovr'. This
will be the default behavior starting in 0.19. By Andreas Müller.

• Passing 1D data arrays as input to estimators is now deprecated as it caused confusion in how the array ele-
ments should be interpreted as features or as samples. All data arrays are now expected to be explicitly shaped
(n_samples, n_features). By Vighnesh Birodkar.

• lda.LDA and qda.QDA have been moved to discriminant_analysis.
LinearDiscriminantAnalysis and discriminant_analysis.
QuadraticDiscriminantAnalysis.

• The store_covariance and tol parameters have been moved from the fit method to the constructor in
discriminant_analysis.LinearDiscriminantAnalysis and the store_covariances and
tol parameters have been moved from the fit method to the constructor in discriminant_analysis.
QuadraticDiscriminantAnalysis.

• Models inheriting from _LearntSelectorMixin will no longer support the transform methods. (i.e, Ran-
domForests, GradientBoosting, LogisticRegression, DecisionTrees, SVMs and SGD related models). Wrap
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these models around the metatransfomer feature_selection.SelectFromModel to remove features
(according to coefs_ or feature_importances_) which are below a certain threshold value instead.

• cluster.KMeans re-runs cluster-assignments in case of non-convergence, to ensure consistency of
predict(X) and labels_. By Vighnesh Birodkar.

• Classifier and Regressor models are now tagged as such using the _estimator_type attribute.

• Cross-validation iterators always provide indices into training and test set, not boolean masks.

• The decision_function on all regressors was deprecated and will be removed in 0.19. Use predict
instead.

• datasets.load_lfw_pairs is deprecated and will be removed in 0.19. Use datasets.
fetch_lfw_pairs instead.

• The deprecated hmm module was removed.

• The deprecated Bootstrap cross-validation iterator was removed.

• The deprecated Ward and WardAgglomerative classes have been removed. Use clustering.
AgglomerativeClustering instead.

• cross_validation.check_cv is now a public function.

• The property residues_ of linear_model.LinearRegression is deprecated and will be removed in
0.19.

• The deprecated n_jobs parameter of linear_model.LinearRegression has been moved to the con-
structor.

• Removed deprecated class_weight parameter from linear_model.SGDClassifier’s fit method.
Use the construction parameter instead.

• The deprecated support for the sequence of sequences (or list of lists) multilabel format was removed. To convert
to and from the supported binary indicator matrix format, use MultiLabelBinarizer.

• The behavior of calling the inverse_transform method of Pipeline.pipeline will change in 0.19.
It will no longer reshape one-dimensional input to two-dimensional input.

• The deprecated attributes indicator_matrix_, multilabel_ and classes_ of preprocessing.
LabelBinarizer were removed.

• Using gamma=0 in svm.SVC and svm.SVR to automatically set the gamma to 1. / n_features is dep-
recated and will be removed in 0.19. Use gamma="auto" instead.

Code Contributors

Aaron Schumacher, Adithya Ganesh, akitty, Alexandre Gramfort, Alexey Grigorev, Ali Baharev, Allen Riddell, Ando
Saabas, Andreas Mueller, Andrew Lamb, Anish Shah, Ankur Ankan, Anthony Erlinger, Ari Rouvinen, Arnaud Joly,
Arnaud Rachez, Arthur Mensch, banilo, Barmaley.exe, benjaminirving, Boyuan Deng, Brett Naul, Brian McFee,
Buddha Prakash, Chi Zhang, Chih-Wei Chang, Christof Angermueller, Christoph Gohlke, Christophe Bourguignat,
Christopher Erick Moody, Chyi-Kwei Yau, Cindy Sridharan, CJ Carey, Clyde-fare, Cory Lorenz, Dan Blanchard,
Daniel Galvez, Daniel Kronovet, Danny Sullivan, Data1010, David, David D Lowe, David Dotson, djipey, Dmitry
Spikhalskiy, Donne Martin, Dougal J. Sutherland, Dougal Sutherland, edson duarte, Eduardo Caro, Eric Larson, Eric
Martin, Erich Schubert, Fernando Carrillo, Frank C. Eckert, Frank Zalkow, Gael Varoquaux, Ganiev Ibraim, Gilles
Louppe, Giorgio Patrini, giorgiop, Graham Clenaghan, Gryllos Prokopis, gwulfs, Henry Lin, Hsuan-Tien Lin, Im-
manuel Bayer, Ishank Gulati, Jack Martin, Jacob Schreiber, Jaidev Deshpande, Jake Vanderplas, Jan Hendrik Metzen,
Jean Kossaifi, Jeffrey04, Jeremy, jfraj, Jiali Mei, Joe Jevnik, Joel Nothman, John Kirkham, John Wittenauer, Joseph,
Joshua Loyal, Jungkook Park, KamalakerDadi, Kashif Rasul, Keith Goodman, Kian Ho, Konstantin Shmelkov, Kyler
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Brown, Lars Buitinck, Lilian Besson, Loic Esteve, Louis Tiao, maheshakya, Maheshakya Wijewardena, Manoj Ku-
mar, MarkTab marktab.net, Martin Ku, Martin Spacek, MartinBpr, martinosorb, MaryanMorel, Masafumi Oyamada,
Mathieu Blondel, Matt Krump, Matti Lyra, Maxim Kolganov, mbillinger, mhg, Michael Heilman, Michael Patterson,
Miroslav Batchkarov, Nelle Varoquaux, Nicolas, Nikolay Mayorov, Olivier Grisel, Omer Katz, Óscar Nájera, Pauli
Virtanen, Peter Fischer, Peter Prettenhofer, Phil Roth, pianomania, Preston Parry, Raghav RV, Rob Zinkov, Robert
Layton, Rohan Ramanath, Saket Choudhary, Sam Zhang, santi, saurabh.bansod, scls19fr, Sebastian Raschka, Sebas-
tian Saeger, Shivan Sornarajah, SimonPL, sinhrks, Skipper Seabold, Sonny Hu, sseg, Stephen Hoover, Steven De
Gryze, Steven Seguin, Theodore Vasiloudis, Thomas Unterthiner, Tiago Freitas Pereira, Tian Wang, Tim Head, Timo-
thy Hopper, tokoroten, Tom Dupré la Tour, Trevor Stephens, Valentin Stolbunov, Vighnesh Birodkar, Vinayak Mehta,
Vincent, Vincent Michel, vstolbunov, wangz10, Wei Xue, Yucheng Low, Yury Zhauniarovich, Zac Stewart, zhai_pro,
Zichen Wang

1.7.8 Version 0.16.1

April 14, 2015

Changelog

Bug fixes

• Allow input data larger than block_size in covariance.LedoitWolf by Andreas Müller.

• Fix a bug in isotonic.IsotonicRegression deduplication that caused unstable result in
calibration.CalibratedClassifierCV by Jan Hendrik Metzen.

• Fix sorting of labels in func:preprocessing.label_binarize by Michael Heilman.

• Fix several stability and convergence issues in cross_decomposition.CCA and
cross_decomposition.PLSCanonical by Andreas Müller

• Fix a bug in cluster.KMeans when precompute_distances=False on fortran-ordered data.

• Fix a speed regression in ensemble.RandomForestClassifier’s predict and predict_proba
by Andreas Müller.

• Fix a regression where utils.shuffle converted lists and dataframes to arrays, by Olivier Grisel

1.7.9 Version 0.16

March 26, 2015

Highlights

• Speed improvements (notably in cluster.DBSCAN ), reduced memory requirements, bug-fixes and better
default settings.

• Multinomial Logistic regression and a path algorithm in linear_model.LogisticRegressionCV .

• Out-of core learning of PCA via decomposition.IncrementalPCA.

• Probability callibration of classifiers using calibration.CalibratedClassifierCV .

• cluster.Birch clustering method for large-scale datasets.

• Scalable approximate nearest neighbors search with Locality-sensitive hashing forests in neighbors.
LSHForest.
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• Improved error messages and better validation when using malformed input data.

• More robust integration with pandas dataframes.

Changelog

New features

• The new neighbors.LSHForest implements locality-sensitive hashing for approximate nearest neighbors
search. By Maheshakya Wijewardena.

• Added svm.LinearSVR. This class uses the liblinear implementation of Support Vector Regression which is
much faster for large sample sizes than svm.SVR with linear kernel. By Fabian Pedregosa and Qiang Luo.

• Incremental fit for GaussianNB.

• Added sample_weight support to dummy.DummyClassifier and dummy.DummyRegressor. By
Arnaud Joly.

• Added the metrics.label_ranking_average_precision_score metrics. By Arnaud Joly.

• Add the metrics.coverage_error metrics. By Arnaud Joly.

• Added linear_model.LogisticRegressionCV . By Manoj Kumar, Fabian Pedregosa, Gael Varoquaux
and Alexandre Gramfort.

• Added warm_start constructor parameter to make it possible for any trained forest model to grow additional
trees incrementally. By Laurent Direr.

• Added sample_weight support to ensemble.GradientBoostingClassifier and ensemble.
GradientBoostingRegressor. By Peter Prettenhofer.

• Added decomposition.IncrementalPCA, an implementation of the PCA algorithm that supports out-
of-core learning with a partial_fit method. By Kyle Kastner.

• Averaged SGD for SGDClassifier and SGDRegressor By Danny Sullivan.

• Added cross_val_predict function which computes cross-validated estimates. By Luis Pedro Coelho

• Added linear_model.TheilSenRegressor, a robust generalized-median-based estimator. By Florian
Wilhelm.

• Added metrics.median_absolute_error, a robust metric. By Gael Varoquaux and Florian Wilhelm.

• Add cluster.Birch, an online clustering algorithm. By Manoj Kumar, Alexandre Gramfort and Joel Noth-
man.

• Added shrinkage support to discriminant_analysis.LinearDiscriminantAnalysis using two
new solvers. By Clemens Brunner and Martin Billinger.

• Added kernel_ridge.KernelRidge, an implementation of kernelized ridge regression. By Mathieu
Blondel and Jan Hendrik Metzen.

• All solvers in linear_model.Ridge now support sample_weight. By Mathieu Blondel.

• Added cross_validation.PredefinedSplit cross-validation for fixed user-provided cross-validation
folds. By Thomas Unterthiner.

• Added calibration.CalibratedClassifierCV , an approach for calibrating the predicted probabili-
ties of a classifier. By Alexandre Gramfort, Jan Hendrik Metzen, Mathieu Blondel and Balazs Kegl.
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Enhancements

• Add option return_distance in hierarchical.ward_tree to return distances between nodes for
both structured and unstructured versions of the algorithm. By Matteo Visconti di Oleggio Castello. The same
option was added in hierarchical.linkage_tree. By Manoj Kumar

• Add support for sample weights in scorer objects. Metrics with sample weight support will automatically benefit
from it. By Noel Dawe and Vlad Niculae.

• Added newton-cg and lbfgs solver support in linear_model.LogisticRegression. By Manoj Ku-
mar.

• Add selection="random" parameter to implement stochastic coordinate descent for linear_model.
Lasso, linear_model.ElasticNet and related. By Manoj Kumar.

• Add sample_weight parameter to metrics.jaccard_similarity_score and metrics.
log_loss. By Jatin Shah.

• Support sparse multilabel indicator representation in preprocessing.LabelBinarizer and
multiclass.OneVsRestClassifier (by Hamzeh Alsalhi with thanks to Rohit Sivaprasad), as
well as evaluation metrics (by Joel Nothman).

• Add sample_weight parameter to metrics.jaccard_similarity_score. By Jatin Shah.

• Add support for multiclass in metrics.hinge_loss. Added labels=None as optional parameter. By Saurabh
Jha.

• Add sample_weight parameter to metrics.hinge_loss. By Saurabh Jha.

• Add multi_class="multinomial" option in linear_model.LogisticRegression to imple-
ment a Logistic Regression solver that minimizes the cross-entropy or multinomial loss instead of the default
One-vs-Rest setting. Supports lbfgs and newton-cg solvers. By Lars Buitinck and Manoj Kumar. Solver option
newton-cg by Simon Wu.

• DictVectorizer can now perform fit_transform on an iterable in a single pass, when giving the option
sort=False. By Dan Blanchard.

• GridSearchCV and RandomizedSearchCV can now be configured to work with estimators that may fail
and raise errors on individual folds. This option is controlled by the error_score parameter. This does not affect
errors raised on re-fit. By Michal Romaniuk.

• Add digits parameter to metrics.classification_report to allow report to show different precision of floating
point numbers. By Ian Gilmore.

• Add a quantile prediction strategy to the dummy.DummyRegressor. By Aaron Staple.

• Add handle_unknown option to preprocessing.OneHotEncoder to handle unknown categorical fea-
tures more gracefully during transform. By Manoj Kumar.

• Added support for sparse input data to decision trees and their ensembles. By Fares Hedyati and Arnaud Joly.

• Optimized cluster.AffinityPropagation by reducing the number of memory allocations of large
temporary data-structures. By Antony Lee.

• Parellization of the computation of feature importances in random forest. By Olivier Grisel and Arnaud Joly.

• Add n_iter_ attribute to estimators that accept a max_iter attribute in their constructor. By Manoj Kumar.

• Added decision function for multiclass.OneVsOneClassifier By Raghav RV and Kyle Beauchamp.

• neighbors.kneighbors_graph and radius_neighbors_graph support non-Euclidean metrics.
By Manoj Kumar
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• Parameter connectivity in cluster.AgglomerativeClustering and family now accept callables
that return a connectivity matrix. By Manoj Kumar.

• Sparse support for paired_distances. By Joel Nothman.

• cluster.DBSCAN now supports sparse input and sample weights and has been optimized: the inner loop has
been rewritten in Cython and radius neighbors queries are now computed in batch. By Joel Nothman and Lars
Buitinck.

• Add class_weight parameter to automatically weight samples by class frequency for
ensemble.RandomForestClassifier, tree.DecisionTreeClassifier, ensemble.
ExtraTreesClassifier and tree.ExtraTreeClassifier. By Trevor Stephens.

• grid_search.RandomizedSearchCV now does sampling without replacement if all parameters are
given as lists. By Andreas Müller.

• Parallelized calculation of pairwise_distances is now supported for scipy metrics and custom callables.
By Joel Nothman.

• Allow the fitting and scoring of all clustering algorithms in pipeline.Pipeline. By Andreas Müller.

• More robust seeding and improved error messages in cluster.MeanShift by Andreas Müller.

• Make the stopping criterion for mixture.GMM , mixture.DPGMM and mixture.VBGMM less dependent
on the number of samples by thresholding the average log-likelihood change instead of its sum over all samples.
By Hervé Bredin.

• The outcome of manifold.spectral_embedding was made deterministic by flipping the sign of eigen-
vectors. By Hasil Sharma.

• Significant performance and memory usage improvements in preprocessing.PolynomialFeatures.
By Eric Martin.

• Numerical stability improvements for preprocessing.StandardScaler and preprocessing.
scale. By Nicolas Goix

• svm.SVC fitted on sparse input now implements decision_function. By Rob Zinkov and Andreas
Müller.

• cross_validation.train_test_split now preserves the input type, instead of converting to numpy
arrays.

Documentation improvements

• Added example of using FeatureUnion for heterogeneous input. By Matt Terry

• Documentation on scorers was improved, to highlight the handling of loss functions. By Matt Pico.

• A discrepancy between liblinear output and scikit-learn’s wrappers is now noted. By Manoj Kumar.

• Improved documentation generation: examples referring to a class or function are now shown in a gallery on
the class/function’s API reference page. By Joel Nothman.

• More explicit documentation of sample generators and of data transformation. By Joel Nothman.

• sklearn.neighbors.BallTree and sklearn.neighbors.KDTree used to point to empty pages
stating that they are aliases of BinaryTree. This has been fixed to show the correct class docs. By Manoj Kumar.

• Added silhouette plots for analysis of KMeans clustering using metrics.silhouette_samples and
metrics.silhouette_score. See Selecting the number of clusters with silhouette analysis on KMeans
clustering
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Bug fixes

• Metaestimators now support ducktyping for the presence of decision_function,
predict_proba and other methods. This fixes behavior of grid_search.GridSearchCV ,
grid_search.RandomizedSearchCV , pipeline.Pipeline, feature_selection.RFE,
feature_selection.RFECV when nested. By Joel Nothman

• The scoring attribute of grid-search and cross-validation methods is no longer ignored when a
grid_search.GridSearchCV is given as a base estimator or the base estimator doesn’t have predict.

• The function hierarchical.ward_tree now returns the children in the same order for both the structured
and unstructured versions. By Matteo Visconti di Oleggio Castello.

• feature_selection.RFECV now correctly handles cases when step is not equal to 1. By Nikolay
Mayorov

• The decomposition.PCA now undoes whitening in its inverse_transform. Also, its components_
now always have unit length. By Michael Eickenberg.

• Fix incomplete download of the dataset when datasets.download_20newsgroups is called. By Manoj
Kumar.

• Various fixes to the Gaussian processes subpackage by Vincent Dubourg and Jan Hendrik Metzen.

• Calling partial_fit with class_weight=='auto' throws an appropriate error message and suggests
a work around. By Danny Sullivan.

• RBFSampler with gamma=g formerly approximated rbf_kernel with gamma=g/2.; the definition of
gamma is now consistent, which may substantially change your results if you use a fixed value. (If you cross-
validated over gamma, it probably doesn’t matter too much.) By Dougal Sutherland.

• Pipeline object delegate the classes_ attribute to the underlying estimator. It allows, for instance, to make
bagging of a pipeline object. By Arnaud Joly

• neighbors.NearestCentroid now uses the median as the centroid when metric is set to manhattan.
It was using the mean before. By Manoj Kumar

• Fix numerical stability issues in linear_model.SGDClassifier and linear_model.
SGDRegressor by clipping large gradients and ensuring that weight decay rescaling is always positive (for
large l2 regularization and large learning rate values). By Olivier Grisel

• When compute_full_tree is set to “auto”, the full tree is built when n_clusters is high and is early stopped when
n_clusters is low, while the behavior should be vice-versa in cluster.AgglomerativeClustering (and
friends). This has been fixed By Manoj Kumar

• Fix lazy centering of data in linear_model.enet_path and linear_model.lasso_path. It was
centered around one. It has been changed to be centered around the origin. By Manoj Kumar

• Fix handling of precomputed affinity matrices in cluster.AgglomerativeClustering when using
connectivity constraints. By Cathy Deng

• Correct partial_fit handling of class_prior for sklearn.naive_bayes.MultinomialNB and
sklearn.naive_bayes.BernoulliNB. By Trevor Stephens.

• Fixed a crash in metrics.precision_recall_fscore_supportwhen using unsorted labels in the
multi-label setting. By Andreas Müller.

• Avoid skipping the first nearest neighbor in the methods radius_neighbors, kneighbors,
kneighbors_graph and radius_neighbors_graph in sklearn.neighbors.
NearestNeighbors and family, when the query data is not the same as fit data. By Manoj Kumar.

• Fix log-density calculation in the mixture.GMM with tied covariance. By Will Dawson
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• Fixed a scaling error in feature_selection.SelectFdr where a factor n_features was missing. By
Andrew Tulloch

• Fix zero division in neighbors.KNeighborsRegressor and related classes when using distance weight-
ing and having identical data points. By Garret-R.

• Fixed round off errors with non positive-definite covariance matrices in GMM. By Alexis Mignon.

• Fixed a error in the computation of conditional probabilities in naive_bayes.BernoulliNB. By Hanna
Wallach.

• Make the method radius_neighbors of neighbors.NearestNeighbors return the samples lying
on the boundary for algorithm='brute'. By Yan Yi.

• Flip sign of dual_coef_ of svm.SVC to make it consistent with the documentation and
decision_function. By Artem Sobolev.

• Fixed handling of ties in isotonic.IsotonicRegression. We now use the weighted average of targets
(secondary method). By Andreas Müller and Michael Bommarito.

API changes summary

• GridSearchCV and cross_val_score and other meta-estimators don’t convert pandas DataFrames into
arrays any more, allowing DataFrame specific operations in custom estimators.

• multiclass.fit_ovr, multiclass.predict_ovr, predict_proba_ovr, multiclass.
fit_ovo, multiclass.predict_ovo, multiclass.fit_ecoc and multiclass.
predict_ecoc are deprecated. Use the underlying estimators instead.

• Nearest neighbors estimators used to take arbitrary keyword arguments and pass these to their distance metric.
This will no longer be supported in scikit-learn 0.18; use the metric_params argument instead.

• n_jobs parameter of the fit method shifted to the constructor of the LinearRegression class.

• The predict_proba method of multiclass.OneVsRestClassifier now returns two probabilities
per sample in the multiclass case; this is consistent with other estimators and with the method’s documenta-
tion, but previous versions accidentally returned only the positive probability. Fixed by Will Lamond and Lars
Buitinck.

• Change default value of precompute in ElasticNet and Lasso to False. Setting precompute to “auto” was
found to be slower when n_samples > n_features since the computation of the Gram matrix is computationally
expensive and outweighs the benefit of fitting the Gram for just one alpha. precompute="auto" is now
deprecated and will be removed in 0.18 By Manoj Kumar.

• Expose positive option in linear_model.enet_path and linear_model.enet_path which
constrains coefficients to be positive. By Manoj Kumar.

• Users should now supply an explicit average parameter to sklearn.metrics.f1_score, sklearn.
metrics.fbeta_score, sklearn.metrics.recall_score and sklearn.metrics.
precision_score when performing multiclass or multilabel (i.e. not binary) classification. By Joel
Nothman.

• scoring parameter for cross validation now accepts ‘f1_micro’, ‘f1_macro’ or ‘f1_weighted’. ‘f1’ is now for
binary classification only. Similar changes apply to ‘precision’ and ‘recall’. By Joel Nothman.

• The fit_intercept, normalize and return_models parameters in linear_model.enet_path
and linear_model.lasso_path have been removed. They were deprecated since 0.14

• From now onwards, all estimators will uniformly raise NotFittedError (utils.validation.
NotFittedError), when any of the predict like methods are called before the model is fit. By Raghav
RV.
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• Input data validation was refactored for more consistent input validation. The check_arrays function was
replaced by check_array and check_X_y. By Andreas Müller.

• Allow X=None in the methods radius_neighbors, kneighbors, kneighbors_graph and
radius_neighbors_graph in sklearn.neighbors.NearestNeighbors and family. If set to
None, then for every sample this avoids setting the sample itself as the first nearest neighbor. By Manoj Kumar.

• Add parameter include_self in neighbors.kneighbors_graph and neighbors.
radius_neighbors_graph which has to be explicitly set by the user. If set to True, then the
sample itself is considered as the first nearest neighbor.

• thresh parameter is deprecated in favor of new tol parameter in GMM, DPGMM and VBGMM. See Enhancements
section for details. By Hervé Bredin.

• Estimators will treat input with dtype object as numeric when possible. By Andreas Müller

• Estimators now raise ValueError consistently when fitted on empty data (less than 1 sample or less than 1 feature
for 2D input). By Olivier Grisel.

• The shuffle option of linear_model.SGDClassifier, linear_model.SGDRegressor,
linear_model.Perceptron, linear_model.PassiveAgressiveClassifier and
linear_model.PassiveAgressiveRegressor now defaults to True.

• cluster.DBSCAN now uses a deterministic initialization. The random_state parameter is deprecated. By
Erich Schubert.

Code Contributors

A. Flaxman, Aaron Schumacher, Aaron Staple, abhishek thakur, Akshay, akshayah3, Aldrian Obaja, Alexander
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drew Tulloch, Andrew Walker, Antony Lee, Arnaud Joly, banilo, Barmaley.exe, Ben Davies, Benedikt Koehler, bhsu,
Boris Feld, Borja Ayerdi, Boyuan Deng, Brent Pedersen, Brian Wignall, Brooke Osborn, Calvin Giles, Cathy Deng,
Celeo, cgohlke, chebee7i, Christian Stade-Schuldt, Christof Angermueller, Chyi-Kwei Yau, CJ Carey, Clemens Brun-
ner, Daiki Aminaka, Dan Blanchard, danfrankj, Danny Sullivan, David Fletcher, Dmitrijs Milajevs, Dougal J. Suther-
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Hammerbacher, Joel Nothman, Jonathan Helmus, Joseph, Kaicheng Zhang, Kevin Markham, Kyle Beauchamp, Kyle
Kastner, Lagacherie Matthieu, Lars Buitinck, Laurent Direr, leepei, Loic Esteve, Luis Pedro Coelho, Lukas Michel-
bacher, maheshakya, Manoj Kumar, Manuel, Mario Michael Krell, Martin, Martin Billinger, Martin Ku, Mateusz
Susik, Mathieu Blondel, Matt Pico, Matt Terry, Matteo Visconti dOC, Matti Lyra, Max Linke, Mehdi Cherti, Michael
Bommarito, Michael Eickenberg, Michal Romaniuk, MLG, mr.Shu, Nelle Varoquaux, Nicola Montecchio, Nicolas,
Nikolay Mayorov, Noel Dawe, Okal Billy, Olivier Grisel, Óscar Nájera, Paolo Puggioni, Peter Prettenhofer, Pratap
Vardhan, pvnguyen, queqichao, Rafael Carrascosa, Raghav R V, Rahiel Kasim, Randall Mason, Rob Zinkov, Robert
Bradshaw, Saket Choudhary, Sam Nicholls, Samuel Charron, Saurabh Jha, sethdandridge, sinhrks, snuderl, Stefan
Otte, Stefan van der Walt, Steve Tjoa, swu, Sylvain Zimmer, tejesh95, terrycojones, Thomas Delteil, Thomas Un-
terthiner, Tomas Kazmar, trevorstephens, tttthomasssss, Tzu-Ming Kuo, ugurcaliskan, ugurthemaster, Vinayak Mehta,
Vincent Dubourg, Vjacheslav Murashkin, Vlad Niculae, wadawson, Wei Xue, Will Lamond, Wu Jiang, x0l, Xinfan
Meng, Yan Yi, Yu-Chin
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September 4, 2014
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Bug fixes

• Fixed handling of the p parameter of the Minkowski distance that was previously ignored in nearest neighbors
models. By Nikolay Mayorov.

• Fixed duplicated alphas in linear_model.LassoLars with early stopping on 32 bit Python. By Olivier
Grisel and Fabian Pedregosa.

• Fixed the build under Windows when scikit-learn is built with MSVC while NumPy is built with MinGW. By
Olivier Grisel and Federico Vaggi.

• Fixed an array index overflow bug in the coordinate descent solver. By Gael Varoquaux.

• Better handling of numpy 1.9 deprecation warnings. By Gael Varoquaux.

• Removed unnecessary data copy in cluster.KMeans. By Gael Varoquaux.

• Explicitly close open files to avoid ResourceWarnings under Python 3. By Calvin Giles.

• The transform of discriminant_analysis.LinearDiscriminantAnalysis now projects the
input on the most discriminant directions. By Martin Billinger.

• Fixed potential overflow in _tree.safe_realloc by Lars Buitinck.

• Performance optimization in isotonic.IsotonicRegression. By Robert Bradshaw.

• nose is non-longer a runtime dependency to import sklearn, only for running the tests. By Joel Nothman.

• Many documentation and website fixes by Joel Nothman, Lars Buitinck Matt Pico, and others.

1.7.11 Version 0.15.1

August 1, 2014

Bug fixes

• Made cross_validation.cross_val_score use cross_validation.KFold instead of
cross_validation.StratifiedKFold on multi-output classification problems. By Nikolay Mayorov.

• Support unseen labels preprocessing.LabelBinarizer to restore the default behavior of 0.14.1 for
backward compatibility. By Hamzeh Alsalhi.

• Fixed the cluster.KMeans stopping criterion that prevented early convergence detection. By Edward Raff
and Gael Varoquaux.

• Fixed the behavior of multiclass.OneVsOneClassifier. in case of ties at the per-class vote level by
computing the correct per-class sum of prediction scores. By Andreas Müller.

• Made cross_validation.cross_val_score and grid_search.GridSearchCV accept Python
lists as input data. This is especially useful for cross-validation and model selection of text processing pipelines.
By Andreas Müller.

• Fixed data input checks of most estimators to accept input data that implements the NumPy __array__
protocol. This is the case for for pandas.Series and pandas.DataFrame in recent versions of pandas.
By Gael Varoquaux.

• Fixed a regression for linear_model.SGDClassifier with class_weight="auto" on data with
non-contiguous labels. By Olivier Grisel.
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1.7.12 Version 0.15

July 15, 2014

Highlights

• Many speed and memory improvements all across the code

• Huge speed and memory improvements to random forests (and extra trees) that also benefit better from parallel
computing.

• Incremental fit to BernoulliRBM

• Added cluster.AgglomerativeClustering for hierarchical agglomerative clustering with average
linkage, complete linkage and ward strategies.

• Added linear_model.RANSACRegressor for robust regression models.

• Added dimensionality reduction with manifold.TSNE which can be used to visualize high-dimensional data.

Changelog

New features

• Added ensemble.BaggingClassifier and ensemble.BaggingRegressor meta-estimators for
ensembling any kind of base estimator. See the Bagging section of the user guide for details and examples.
By Gilles Louppe.

• New unsupervised feature selection algorithm feature_selection.VarianceThreshold, by Lars
Buitinck.

• Added linear_model.RANSACRegressor meta-estimator for the robust fitting of regression models. By
Johannes Schönberger.

• Added cluster.AgglomerativeClustering for hierarchical agglomerative clustering with average
linkage, complete linkage and ward strategies, by Nelle Varoquaux and Gael Varoquaux.

• Shorthand constructors pipeline.make_pipeline and pipeline.make_union were added by Lars
Buitinck.

• Shuffle option for cross_validation.StratifiedKFold. By Jeffrey Blackburne.

• Incremental learning (partial_fit) for Gaussian Naive Bayes by Imran Haque.

• Added partial_fit to BernoulliRBM By Danny Sullivan.

• Added learning_curve utility to chart performance with respect to training size. See Plotting Learning
Curves. By Alexander Fabisch.

• Add positive option in LassoCV and ElasticNetCV . By Brian Wignall and Alexandre Gramfort.

• Added linear_model.MultiTaskElasticNetCV and linear_model.MultiTaskLassoCV . By
Manoj Kumar.

• Added manifold.TSNE. By Alexander Fabisch.
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Enhancements

• Add sparse input support to ensemble.AdaBoostClassifier and ensemble.
AdaBoostRegressor meta-estimators. By Hamzeh Alsalhi.

• Memory improvements of decision trees, by Arnaud Joly.

• Decision trees can now be built in best-first manner by using max_leaf_nodes as the stopping criteria.
Refactored the tree code to use either a stack or a priority queue for tree building. By Peter Prettenhofer and
Gilles Louppe.

• Decision trees can now be fitted on fortran- and c-style arrays, and non-continuous arrays without the need to
make a copy. If the input array has a different dtype than np.float32, a fortran- style copy will be made
since fortran-style memory layout has speed advantages. By Peter Prettenhofer and Gilles Louppe.

• Speed improvement of regression trees by optimizing the the computation of the mean square error criterion.
This lead to speed improvement of the tree, forest and gradient boosting tree modules. By Arnaud Joly

• The img_to_graph and grid_tograph functions in sklearn.feature_extraction.image now
return np.ndarray instead of np.matrix when return_as=np.ndarray. See the Notes section for
more information on compatibility.

• Changed the internal storage of decision trees to use a struct array. This fixed some small bugs, while improving
code and providing a small speed gain. By Joel Nothman.

• Reduce memory usage and overhead when fitting and predicting with forests of randomized trees in parallel
with n_jobs != 1 by leveraging new threading backend of joblib 0.8 and releasing the GIL in the tree fitting
Cython code. By Olivier Grisel and Gilles Louppe.

• Speed improvement of the sklearn.ensemble.gradient_boosting module. By Gilles Louppe and
Peter Prettenhofer.

• Various enhancements to the sklearn.ensemble.gradient_boosting module: a warm_start ar-
gument to fit additional trees, a max_leaf_nodes argument to fit GBM style trees, a monitor fit argument
to inspect the estimator during training, and refactoring of the verbose code. By Peter Prettenhofer.

• Faster sklearn.ensemble.ExtraTrees by caching feature values. By Arnaud Joly.

• Faster depth-based tree building algorithm such as decision tree, random forest, extra trees or gradient tree
boosting (with depth based growing strategy) by avoiding trying to split on found constant features in the sample
subset. By Arnaud Joly.

• Add min_weight_fraction_leaf pre-pruning parameter to tree-based methods: the minimum weighted
fraction of the input samples required to be at a leaf node. By Noel Dawe.

• Added metrics.pairwise_distances_argmin_min, by Philippe Gervais.

• Added predict method to cluster.AffinityPropagation and cluster.MeanShift, by Mathieu
Blondel.

• Vector and matrix multiplications have been optimised throughout the library by Denis Engemann, and Alexan-
dre Gramfort. In particular, they should take less memory with older NumPy versions (prior to 1.7.2).

• Precision-recall and ROC examples now use train_test_split, and have more explanation of why these metrics
are useful. By Kyle Kastner

• The training algorithm for decomposition.NMF is faster for sparse matrices and has much lower memory
complexity, meaning it will scale up gracefully to large datasets. By Lars Buitinck.

• Added svd_method option with default value to “randomized” to decomposition.FactorAnalysis to
save memory and significantly speedup computation by Denis Engemann, and Alexandre Gramfort.
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• Changed cross_validation.StratifiedKFold to try and preserve as much of the original ordering of
samples as possible so as not to hide overfitting on datasets with a non-negligible level of samples dependency.
By Daniel Nouri and Olivier Grisel.

• Add multi-output support to gaussian_process.GaussianProcess by John Novak.

• Support for precomputed distance matrices in nearest neighbor estimators by Robert Layton and Joel Nothman.

• Norm computations optimized for NumPy 1.6 and later versions by Lars Buitinck. In particular, the k-means
algorithm no longer needs a temporary data structure the size of its input.

• dummy.DummyClassifier can now be used to predict a constant output value. By Manoj Kumar.

• dummy.DummyRegressor has now a strategy parameter which allows to predict the mean, the median of the
training set or a constant output value. By Maheshakya Wijewardena.

• Multi-label classification output in multilabel indicator format is now supported by metrics.
roc_auc_score and metrics.average_precision_score by Arnaud Joly.

• Significant performance improvements (more than 100x speedup for large problems) in isotonic.
IsotonicRegression by Andrew Tulloch.

• Speed and memory usage improvements to the SGD algorithm for linear models: it now uses threads, not
separate processes, when n_jobs>1. By Lars Buitinck.

• Grid search and cross validation allow NaNs in the input arrays so that preprocessors such as
preprocessing.Imputer can be trained within the cross validation loop, avoiding potentially skewed
results.

• Ridge regression can now deal with sample weights in feature space (only sample space until then). By Michael
Eickenberg. Both solutions are provided by the Cholesky solver.

• Several classification and regression metrics now support weighted samples with the new
sample_weight argument: metrics.accuracy_score, metrics.zero_one_loss,
metrics.precision_score, metrics.average_precision_score, metrics.
f1_score, metrics.fbeta_score, metrics.recall_score, metrics.roc_auc_score,
metrics.explained_variance_score, metrics.mean_squared_error, metrics.
mean_absolute_error, metrics.r2_score. By Noel Dawe.

• Speed up of the sample generator datasets.make_multilabel_classification. By Joel Nothman.

Documentation improvements

• The Working With Text Data tutorial has now been worked in to the main documentation’s tutorial section.
Includes exercises and skeletons for tutorial presentation. Original tutorial created by several authors including
Olivier Grisel, Lars Buitinck and many others. Tutorial integration into the scikit-learn documentation by Jaques
Grobler

• Added Computational Performance documentation. Discussion and examples of prediction latency / throughput
and different factors that have influence over speed. Additional tips for building faster models and choosing a
relevant compromise between speed and predictive power. By Eustache Diemert.

Bug fixes

• Fixed bug in decomposition.MiniBatchDictionaryLearning : partial_fit was not working
properly.

• Fixed bug in linear_model.stochastic_gradient : l1_ratiowas used as (1.0 - l1_ratio)
.
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• Fixed bug in multiclass.OneVsOneClassifier with string labels

• Fixed a bug in LassoCV and ElasticNetCV : they would not pre-compute the Gram matrix with
precompute=True or precompute="auto" and n_samples > n_features. By Manoj Kumar.

• Fixed incorrect estimation of the degrees of freedom in feature_selection.f_regression when vari-
ates are not centered. By Virgile Fritsch.

• Fixed a race condition in parallel processing with pre_dispatch != "all" (for instance, in
cross_val_score). By Olivier Grisel.

• Raise error in cluster.FeatureAgglomeration and cluster.WardAgglomeration when no
samples are given, rather than returning meaningless clustering.

• Fixed bug in gradient_boosting.GradientBoostingRegressor with loss='huber': gamma
might have not been initialized.

• Fixed feature importances as computed with a forest of randomized trees when fit with sample_weight !=
None and/or with bootstrap=True. By Gilles Louppe.

API changes summary

• sklearn.hmm is deprecated. Its removal is planned for the 0.17 release.

• Use of covariance.EllipticEnvelop has now been removed after deprecation. Please use
covariance.EllipticEnvelope instead.

• cluster.Ward is deprecated. Use cluster.AgglomerativeClustering instead.

• cluster.WardClustering is deprecated. Use

• cluster.AgglomerativeClustering instead.

• cross_validation.Bootstrap is deprecated. cross_validation.KFold or
cross_validation.ShuffleSplit are recommended instead.

• Direct support for the sequence of sequences (or list of lists) multilabel format is deprecated. To convert to and
from the supported binary indicator matrix format, use MultiLabelBinarizer. By Joel Nothman.

• Add score method to PCA following the model of probabilistic PCA and deprecate ProbabilisticPCA
model whose score implementation is not correct. The computation now also exploits the matrix inversion
lemma for faster computation. By Alexandre Gramfort.

• The score method of FactorAnalysis now returns the average log-likelihood of the samples. Use
score_samples to get log-likelihood of each sample. By Alexandre Gramfort.

• Generating boolean masks (the setting indices=False) from cross-validation generators is deprecated. Sup-
port for masks will be removed in 0.17. The generators have produced arrays of indices by default since 0.10.
By Joel Nothman.

• 1-d arrays containing strings with dtype=object (as used in Pandas) are now considered valid classification
targets. This fixes a regression from version 0.13 in some classifiers. By Joel Nothman.

• Fix wrong explained_variance_ratio_ attribute in RandomizedPCA. By Alexandre Gramfort.

• Fit alphas for each l1_ratio instead of mean_l1_ratio in linear_model.ElasticNetCV and
linear_model.LassoCV . This changes the shape of alphas_ from (n_alphas,) to (n_l1_ratio,
n_alphas) if the l1_ratio provided is a 1-D array like object of length greater than one. By Manoj Kumar.

• Fix linear_model.ElasticNetCV and linear_model.LassoCV when fitting intercept and input
data is sparse. The automatic grid of alphas was not computed correctly and the scaling with normalize was
wrong. By Manoj Kumar.
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• Fix wrong maximal number of features drawn (max_features) at each split for decision trees, random forests
and gradient tree boosting. Previously, the count for the number of drawn features started only after one non
constant features in the split. This bug fix will affect computational and generalization performance of those
algorithms in the presence of constant features. To get back previous generalization performance, you should
modify the value of max_features. By Arnaud Joly.

• Fix wrong maximal number of features drawn (max_features) at each split for ensemble.
ExtraTreesClassifier and ensemble.ExtraTreesRegressor. Previously, only non constant
features in the split was counted as drawn. Now constant features are counted as drawn. Furthermore at least
one feature must be non constant in order to make a valid split. This bug fix will affect computational and gen-
eralization performance of extra trees in the presence of constant features. To get back previous generalization
performance, you should modify the value of max_features. By Arnaud Joly.

• Fix utils.compute_class_weight when class_weight=="auto". Previously it was broken for
input of non-integer dtype and the weighted array that was returned was wrong. By Manoj Kumar.

• Fix cross_validation.Bootstrap to return ValueError when n_train + n_test > n. By
Ronald Phlypo.

People

List of contributors for release 0.15 by number of commits.

• 312 Olivier Grisel

• 275 Lars Buitinck

• 221 Gael Varoquaux

• 148 Arnaud Joly

• 134 Johannes Schönberger

• 119 Gilles Louppe

• 113 Joel Nothman

• 111 Alexandre Gramfort

• 95 Jaques Grobler

• 89 Denis Engemann

• 83 Peter Prettenhofer

• 83 Alexander Fabisch

• 62 Mathieu Blondel

• 60 Eustache Diemert

• 60 Nelle Varoquaux

• 49 Michael Bommarito

• 45 Manoj-Kumar-S

• 28 Kyle Kastner

• 26 Andreas Mueller

• 22 Noel Dawe

• 21 Maheshakya Wijewardena

• 21 Brooke Osborn
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• 21 Hamzeh Alsalhi

• 21 Jake VanderPlas

• 21 Philippe Gervais

• 19 Bala Subrahmanyam Varanasi

• 12 Ronald Phlypo

• 10 Mikhail Korobov

• 8 Thomas Unterthiner

• 8 Jeffrey Blackburne

• 8 eltermann

• 8 bwignall

• 7 Ankit Agrawal

• 7 CJ Carey

• 6 Daniel Nouri

• 6 Chen Liu

• 6 Michael Eickenberg

• 6 ugurthemaster

• 5 Aaron Schumacher

• 5 Baptiste Lagarde

• 5 Rajat Khanduja

• 5 Robert McGibbon

• 5 Sergio Pascual

• 4 Alexis Metaireau

• 4 Ignacio Rossi

• 4 Virgile Fritsch

• 4 Sebastian Säger

• 4 Ilambharathi Kanniah

• 4 sdenton4

• 4 Robert Layton

• 4 Alyssa

• 4 Amos Waterland

• 3 Andrew Tulloch

• 3 murad

• 3 Steven Maude

• 3 Karol Pysniak

• 3 Jacques Kvam

• 3 cgohlke
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• 3 cjlin

• 3 Michael Becker

• 3 hamzeh

• 3 Eric Jacobsen

• 3 john collins

• 3 kaushik94

• 3 Erwin Marsi

• 2 csytracy

• 2 LK

• 2 Vlad Niculae

• 2 Laurent Direr

• 2 Erik Shilts

• 2 Raul Garreta

• 2 Yoshiki Vázquez Baeza

• 2 Yung Siang Liau

• 2 abhishek thakur

• 2 James Yu

• 2 Rohit Sivaprasad

• 2 Roland Szabo

• 2 amormachine

• 2 Alexis Mignon

• 2 Oscar Carlsson

• 2 Nantas Nardelli

• 2 jess010

• 2 kowalski87

• 2 Andrew Clegg

• 2 Federico Vaggi

• 2 Simon Frid

• 2 Félix-Antoine Fortin

• 1 Ralf Gommers

• 1 t-aft

• 1 Ronan Amicel

• 1 Rupesh Kumar Srivastava

• 1 Ryan Wang

• 1 Samuel Charron

• 1 Samuel St-Jean
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• 1 Fabian Pedregosa

• 1 Skipper Seabold

• 1 Stefan Walk

• 1 Stefan van der Walt

• 1 Stephan Hoyer

• 1 Allen Riddell

• 1 Valentin Haenel

• 1 Vijay Ramesh

• 1 Will Myers

• 1 Yaroslav Halchenko

• 1 Yoni Ben-Meshulam

• 1 Yury V. Zaytsev

• 1 adrinjalali

• 1 ai8rahim

• 1 alemagnani

• 1 alex

• 1 benjamin wilson

• 1 chalmerlowe

• 1 dzikie drożdże

• 1 jamestwebber

• 1 matrixorz

• 1 popo

• 1 samuela

• 1 François Boulogne

• 1 Alexander Measure

• 1 Ethan White

• 1 Guilherme Trein

• 1 Hendrik Heuer

• 1 IvicaJovic

• 1 Jan Hendrik Metzen

• 1 Jean Michel Rouly

• 1 Eduardo Ariño de la Rubia

• 1 Jelle Zijlstra

• 1 Eddy L O Jansson

• 1 Denis

• 1 John
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• 1 John Schmidt

• 1 Jorge Cañardo Alastuey

• 1 Joseph Perla

• 1 Joshua Vredevoogd

• 1 José Ricardo

• 1 Julien Miotte

• 1 Kemal Eren

• 1 Kenta Sato

• 1 David Cournapeau

• 1 Kyle Kelley

• 1 Daniele Medri

• 1 Laurent Luce

• 1 Laurent Pierron

• 1 Luis Pedro Coelho

• 1 DanielWeitzenfeld

• 1 Craig Thompson

• 1 Chyi-Kwei Yau

• 1 Matthew Brett

• 1 Matthias Feurer

• 1 Max Linke

• 1 Chris Filo Gorgolewski

• 1 Charles Earl

• 1 Michael Hanke

• 1 Michele Orrù

• 1 Bryan Lunt

• 1 Brian Kearns

• 1 Paul Butler

• 1 Paweł Mandera

• 1 Peter

• 1 Andrew Ash

• 1 Pietro Zambelli

• 1 staubda
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Changelog

• Missing values with sparse and dense matrices can be imputed with the transformer preprocessing.
Imputer by Nicolas Trésegnie.

• The core implementation of decisions trees has been rewritten from scratch, allowing for faster tree induction
and lower memory consumption in all tree-based estimators. By Gilles Louppe.

• Added ensemble.AdaBoostClassifier and ensemble.AdaBoostRegressor, by Noel Dawe and
Gilles Louppe. See the AdaBoost section of the user guide for details and examples.

• Added grid_search.RandomizedSearchCV and grid_search.ParameterSampler for ran-
domized hyperparameter optimization. By Andreas Müller.

• Added biclustering algorithms (sklearn.cluster.bicluster.SpectralCoclustering and
sklearn.cluster.bicluster.SpectralBiclustering), data generation methods (sklearn.
datasets.make_biclusters and sklearn.datasets.make_checkerboard), and scoring met-
rics (sklearn.metrics.consensus_score). By Kemal Eren.

• Added Restricted Boltzmann Machines (neural_network.BernoulliRBM ). By Yann Dauphin.

• Python 3 support by Justin Vincent, Lars Buitinck, Subhodeep Moitra and Olivier Grisel. All tests now pass
under Python 3.3.

• Ability to pass one penalty (alpha value) per target in linear_model.Ridge, by @eickenberg and Mathieu
Blondel.

• Fixed sklearn.linear_model.stochastic_gradient.py L2 regularization issue (minor practical
significance). By Norbert Crombach and Mathieu Blondel .

• Added an interactive version of Andreas Müller’s Machine Learning Cheat Sheet (for scikit-learn) to the docu-
mentation. See Choosing the right estimator. By Jaques Grobler.

• grid_search.GridSearchCV and cross_validation.cross_val_score now support the use
of advanced scoring function such as area under the ROC curve and f-beta scores. See The scoring parameter:
defining model evaluation rules for details. By Andreas Müller and Lars Buitinck. Passing a function from
sklearn.metrics as score_func is deprecated.

• Multi-label classification output is now supported by metrics.accuracy_score,
metrics.zero_one_loss, metrics.f1_score, metrics.fbeta_score, metrics.
classification_report, metrics.precision_score and metrics.recall_score by
Arnaud Joly.

• Two new metrics metrics.hamming_loss and metrics.jaccard_similarity_score are added
with multi-label support by Arnaud Joly.

• Speed and memory usage improvements in feature_extraction.text.CountVectorizer and
feature_extraction.text.TfidfVectorizer, by Jochen Wersdörfer and Roman Sinayev.

• The min_df parameter in feature_extraction.text.CountVectorizer and
feature_extraction.text.TfidfVectorizer, which used to be 2, has been reset to 1 to
avoid unpleasant surprises (empty vocabularies) for novice users who try it out on tiny document collections. A
value of at least 2 is still recommended for practical use.

• svm.LinearSVC, linear_model.SGDClassifier and linear_model.SGDRegressor now
have a sparsify method that converts their coef_ into a sparse matrix, meaning stored models trained
using these estimators can be made much more compact.

• linear_model.SGDClassifier now produces multiclass probability estimates when trained under log
loss or modified Huber loss.

• Hyperlinks to documentation in example code on the website by Martin Luessi.
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• Fixed bug in preprocessing.MinMaxScaler causing incorrect scaling of the features for non-default
feature_range settings. By Andreas Müller.

• max_features in tree.DecisionTreeClassifier, tree.DecisionTreeRegressor and all
derived ensemble estimators now supports percentage values. By Gilles Louppe.

• Performance improvements in isotonic.IsotonicRegression by Nelle Varoquaux.

• metrics.accuracy_score has an option normalize to return the fraction or the number of correctly clas-
sified sample by Arnaud Joly.

• Added metrics.log_loss that computes log loss, aka cross-entropy loss. By Jochen Wersdörfer and Lars
Buitinck.

• A bug that caused ensemble.AdaBoostClassifier’s to output incorrect probabilities has been fixed.

• Feature selectors now share a mixin providing consistent transform, inverse_transform and
get_support methods. By Joel Nothman.

• A fitted grid_search.GridSearchCV or grid_search.RandomizedSearchCV can now generally
be pickled. By Joel Nothman.

• Refactored and vectorized implementation of metrics.roc_curve and metrics.
precision_recall_curve. By Joel Nothman.

• The new estimator sklearn.decomposition.TruncatedSVD performs dimensionality reduction using
SVD on sparse matrices, and can be used for latent semantic analysis (LSA). By Lars Buitinck.

• Added self-contained example of out-of-core learning on text data Out-of-core classification of text documents.
By Eustache Diemert.

• The default number of components for sklearn.decomposition.RandomizedPCA is now correctly
documented to be n_features. This was the default behavior, so programs using it will continue to work as
they did.

• sklearn.cluster.KMeans now fits several orders of magnitude faster on sparse data (the speedup depends
on the sparsity). By Lars Buitinck.

• Reduce memory footprint of FastICA by Denis Engemann and Alexandre Gramfort.

• Verbose output in sklearn.ensemble.gradient_boosting now uses a column format and prints
progress in decreasing frequency. It also shows the remaining time. By Peter Prettenhofer.

• sklearn.ensemble.gradient_boosting provides out-of-bag improvement oob_improvement_
rather than the OOB score for model selection. An example that shows how to use OOB estimates to select the
number of trees was added. By Peter Prettenhofer.

• Most metrics now support string labels for multiclass classification by Arnaud Joly and Lars Buitinck.

• New OrthogonalMatchingPursuitCV class by Alexandre Gramfort and Vlad Niculae.

• Fixed a bug in sklearn.covariance.GraphLassoCV : the ‘alphas’ parameter now works as expected
when given a list of values. By Philippe Gervais.

• Fixed an important bug in sklearn.covariance.GraphLassoCV that prevented all folds provided by
a CV object to be used (only the first 3 were used). When providing a CV object, execution time may thus
increase significantly compared to the previous version (bug results are correct now). By Philippe Gervais.

• cross_validation.cross_val_score and the grid_search module is now tested with multi-
output data by Arnaud Joly.

• datasets.make_multilabel_classification can now return the output in label indicator multil-
abel format by Arnaud Joly.
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• K-nearest neighbors, neighbors.KNeighborsRegressor and neighbors.
RadiusNeighborsRegressor, and radius neighbors, neighbors.RadiusNeighborsRegressor
and neighbors.RadiusNeighborsClassifier support multioutput data by Arnaud Joly.

• Random state in LibSVM-based estimators (svm.SVC, NuSVC, OneClassSVM, svm.SVR, svm.NuSVR)
can now be controlled. This is useful to ensure consistency in the probability estimates for the classifiers trained
with probability=True. By Vlad Niculae.

• Out-of-core learning support for discrete naive Bayes classifiers sklearn.naive_bayes.
MultinomialNB and sklearn.naive_bayes.BernoulliNB by adding the partial_fit
method by Olivier Grisel.

• New website design and navigation by Gilles Louppe, Nelle Varoquaux, Vincent Michel and Andreas Müller.

• Improved documentation on multi-class, multi-label and multi-output classification by Yannick Schwartz and
Arnaud Joly.

• Better input and error handling in the metrics module by Arnaud Joly and Joel Nothman.

• Speed optimization of the hmm module by Mikhail Korobov

• Significant speed improvements for sklearn.cluster.DBSCAN by cleverless

API changes summary

• The auc_score was renamed roc_auc_score.

• Testing scikit-learn with sklearn.test() is deprecated. Use nosetests sklearn from the command
line.

• Feature importances in tree.DecisionTreeClassifier, tree.DecisionTreeRegressor and all
derived ensemble estimators are now computed on the fly when accessing the feature_importances_
attribute. Setting compute_importances=True is no longer required. By Gilles Louppe.

• linear_model.lasso_path and linear_model.enet_path can return its results in the same format
as that of linear_model.lars_path. This is done by setting the return_models parameter to False.
By Jaques Grobler and Alexandre Gramfort

• grid_search.IterGrid was renamed to grid_search.ParameterGrid.

• Fixed bug in KFold causing imperfect class balance in some cases. By Alexandre Gramfort and Tadej Janež.

• sklearn.neighbors.BallTree has been refactored, and a sklearn.neighbors.KDTree has been
added which shares the same interface. The Ball Tree now works with a wide variety of distance metrics.
Both classes have many new methods, including single-tree and dual-tree queries, breadth-first and depth-first
searching, and more advanced queries such as kernel density estimation and 2-point correlation functions. By
Jake Vanderplas

• Support for scipy.spatial.cKDTree within neighbors queries has been removed, and the functionality replaced
with the new KDTree class.

• sklearn.neighbors.KernelDensity has been added, which performs efficient kernel density estima-
tion with a variety of kernels.

• sklearn.decomposition.KernelPCA now always returns output with n_components components,
unless the new parameter remove_zero_eig is set to True. This new behavior is consistent with the way
kernel PCA was always documented; previously, the removal of components with zero eigenvalues was tacitly
performed on all data.

• gcv_mode="auto" no longer tries to perform SVD on a densified sparse matrix in sklearn.
linear_model.RidgeCV .
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• Sparse matrix support in sklearn.decomposition.RandomizedPCA is now deprecated in favor of the
new TruncatedSVD.

• cross_validation.KFold and cross_validation.StratifiedKFold now enforce n_folds >=
2 otherwise a ValueError is raised. By Olivier Grisel.

• datasets.load_files’s charset and charset_errors parameters were renamed encoding and
decode_errors.

• Attribute oob_score_ in sklearn.ensemble.GradientBoostingRegressor and
sklearn.ensemble.GradientBoostingClassifier is deprecated and has been replaced by
oob_improvement_ .

• Attributes in OrthogonalMatchingPursuit have been deprecated (copy_X, Gram, . . . ) and precompute_gram
renamed precompute for consistency. See #2224.

• sklearn.preprocessing.StandardScaler now converts integer input to float, and raises a warning.
Previously it rounded for dense integer input.

• sklearn.multiclass.OneVsRestClassifier now has a decision_function method. This
will return the distance of each sample from the decision boundary for each class, as long as the underlying
estimators implement the decision_function method. By Kyle Kastner.

• Better input validation, warning on unexpected shapes for y.

People

List of contributors for release 0.14 by number of commits.

• 277 Gilles Louppe

• 245 Lars Buitinck

• 187 Andreas Mueller

• 124 Arnaud Joly

• 112 Jaques Grobler

• 109 Gael Varoquaux

• 107 Olivier Grisel

• 102 Noel Dawe

• 99 Kemal Eren

• 79 Joel Nothman

• 75 Jake VanderPlas

• 73 Nelle Varoquaux

• 71 Vlad Niculae

• 65 Peter Prettenhofer

• 64 Alexandre Gramfort

• 54 Mathieu Blondel

• 38 Nicolas Trésegnie

• 35 eustache

• 27 Denis Engemann
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• 25 Yann N. Dauphin

• 19 Justin Vincent

• 17 Robert Layton

• 15 Doug Coleman

• 14 Michael Eickenberg

• 13 Robert Marchman

• 11 Fabian Pedregosa

• 11 Philippe Gervais

• 10 Jim Holmström

• 10 Tadej Janež

• 10 syhw

• 9 Mikhail Korobov

• 9 Steven De Gryze

• 8 sergeyf

• 7 Ben Root

• 7 Hrishikesh Huilgolkar

• 6 Kyle Kastner

• 6 Martin Luessi

• 6 Rob Speer

• 5 Federico Vaggi

• 5 Raul Garreta

• 5 Rob Zinkov

• 4 Ken Geis

• 3 A. Flaxman

• 3 Denton Cockburn

• 3 Dougal Sutherland

• 3 Ian Ozsvald

• 3 Johannes Schönberger

• 3 Robert McGibbon

• 3 Roman Sinayev

• 3 Szabo Roland

• 2 Diego Molla

• 2 Imran Haque

• 2 Jochen Wersdörfer

• 2 Sergey Karayev

• 2 Yannick Schwartz
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• 2 jamestwebber

• 1 Abhijeet Kolhe

• 1 Alexander Fabisch

• 1 Bastiaan van den Berg

• 1 Benjamin Peterson

• 1 Daniel Velkov

• 1 Fazlul Shahriar

• 1 Felix Brockherde

• 1 Félix-Antoine Fortin

• 1 Harikrishnan S

• 1 Jack Hale

• 1 JakeMick

• 1 James McDermott

• 1 John Benediktsson

• 1 John Zwinck

• 1 Joshua Vredevoogd

• 1 Justin Pati

• 1 Kevin Hughes

• 1 Kyle Kelley

• 1 Matthias Ekman

• 1 Miroslav Shubernetskiy

• 1 Naoki Orii

• 1 Norbert Crombach

• 1 Rafael Cunha de Almeida

• 1 Rolando Espinoza La fuente

• 1 Seamus Abshere

• 1 Sergey Feldman

• 1 Sergio Medina

• 1 Stefano Lattarini

• 1 Steve Koch

• 1 Sturla Molden

• 1 Thomas Jarosch

• 1 Yaroslav Halchenko
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1.7.14 Version 0.13.1

February 23, 2013

The 0.13.1 release only fixes some bugs and does not add any new functionality.

Changelog

• Fixed a testing error caused by the function cross_validation.train_test_split being interpreted
as a test by Yaroslav Halchenko.

• Fixed a bug in the reassignment of small clusters in the cluster.MiniBatchKMeans by Gael Varoquaux.

• Fixed default value of gamma in decomposition.KernelPCA by Lars Buitinck.

• Updated joblib to 0.7.0d by Gael Varoquaux.

• Fixed scaling of the deviance in ensemble.GradientBoostingClassifier by Peter Prettenhofer.

• Better tie-breaking in multiclass.OneVsOneClassifier by Andreas Müller.

• Other small improvements to tests and documentation.

People

List of contributors for release 0.13.1 by number of commits.

• 16 Lars Buitinck

• 12 Andreas Müller

• 8 Gael Varoquaux

• 5 Robert Marchman

• 3 Peter Prettenhofer

• 2 Hrishikesh Huilgolkar

• 1 Bastiaan van den Berg

• 1 Diego Molla

• 1 Gilles Louppe

• 1 Mathieu Blondel

• 1 Nelle Varoquaux

• 1 Rafael Cunha de Almeida

• 1 Rolando Espinoza La fuente

• 1 Vlad Niculae

• 1 Yaroslav Halchenko

1.7.15 Version 0.13

January 21, 2013
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New Estimator Classes

• dummy.DummyClassifier and dummy.DummyRegressor, two data-independent predictors by Mathieu
Blondel. Useful to sanity-check your estimators. See Dummy estimators in the user guide. Multioutput support
added by Arnaud Joly.

• decomposition.FactorAnalysis, a transformer implementing the classical factor analysis, by Chris-
tian Osendorfer and Alexandre Gramfort. See Factor Analysis in the user guide.

• feature_extraction.FeatureHasher, a transformer implementing the “hashing trick” for fast,
low-memory feature extraction from string fields by Lars Buitinck and feature_extraction.text.
HashingVectorizer for text documents by Olivier Grisel See Feature hashing and Vectorizing a large
text corpus with the hashing trick for the documentation and sample usage.

• pipeline.FeatureUnion, a transformer that concatenates results of several other transformers by Andreas
Müller. See FeatureUnion: composite feature spaces in the user guide.

• random_projection.GaussianRandomProjection, random_projection.
SparseRandomProjection and the function random_projection.
johnson_lindenstrauss_min_dim. The first two are transformers implementing Gaussian and
sparse random projection matrix by Olivier Grisel and Arnaud Joly. See Random Projection in the user guide.

• kernel_approximation.Nystroem, a transformer for approximating arbitrary kernels by Andreas
Müller. See Nystroem Method for Kernel Approximation in the user guide.

• preprocessing.OneHotEncoder, a transformer that computes binary encodings of categorical features
by Andreas Müller. See Encoding categorical features in the user guide.

• linear_model.PassiveAggressiveClassifier and linear_model.
PassiveAggressiveRegressor, predictors implementing an efficient stochastic optimization for
linear models by Rob Zinkov and Mathieu Blondel. See Passive Aggressive Algorithms in the user guide.

• ensemble.RandomTreesEmbedding, a transformer for creating high-dimensional sparse representations
using ensembles of totally random trees by Andreas Müller. See Totally Random Trees Embedding in the user
guide.

• manifold.SpectralEmbedding and function manifold.spectral_embedding, implementing
the “laplacian eigenmaps” transformation for non-linear dimensionality reduction by Wei Li. See Spectral
Embedding in the user guide.

• isotonic.IsotonicRegression by Fabian Pedregosa, Alexandre Gramfort and Nelle Varoquaux,

Changelog

• metrics.zero_one_loss (formerly metrics.zero_one) now has option for normalized output that
reports the fraction of misclassifications, rather than the raw number of misclassifications. By Kyle Beauchamp.

• tree.DecisionTreeClassifier and all derived ensemble models now support sample weighting, by
Noel Dawe and Gilles Louppe.

• Speedup improvement when using bootstrap samples in forests of randomized trees, by Peter Prettenhofer and
Gilles Louppe.

• Partial dependence plots for Gradient Tree Boosting in ensemble.partial_dependence.
partial_dependence by Peter Prettenhofer. See Partial Dependence Plots for an example.

• The table of contents on the website has now been made expandable by Jaques Grobler.

• feature_selection.SelectPercentile now breaks ties deterministically instead of returning all
equally ranked features.
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• feature_selection.SelectKBest and feature_selection.SelectPercentile are more
numerically stable since they use scores, rather than p-values, to rank results. This means that they might
sometimes select different features than they did previously.

• Ridge regression and ridge classification fitting with sparse_cg solver no longer has quadratic memory com-
plexity, by Lars Buitinck and Fabian Pedregosa.

• Ridge regression and ridge classification now support a new fast solver called lsqr, by Mathieu Blondel.

• Speed up of metrics.precision_recall_curve by Conrad Lee.

• Added support for reading/writing svmlight files with pairwise preference attribute (qid in svmlight file format)
in datasets.dump_svmlight_file and datasets.load_svmlight_file by Fabian Pedregosa.

• Faster and more robust metrics.confusion_matrix and Clustering performance evaluation by Wei Li.

• cross_validation.cross_val_score now works with precomputed kernels and affinity matrices, by
Andreas Müller.

• LARS algorithm made more numerically stable with heuristics to drop regressors too correlated as well as to
stop the path when numerical noise becomes predominant, by Gael Varoquaux.

• Faster implementation of metrics.precision_recall_curve by Conrad Lee.

• New kernel metrics.chi2_kernel by Andreas Müller, often used in computer vision applications.

• Fix of longstanding bug in naive_bayes.BernoulliNB fixed by Shaun Jackman.

• Implemented predict_proba in multiclass.OneVsRestClassifier, by Andrew Winterman.

• Improve consistency in gradient boosting: estimators ensemble.GradientBoostingRegressor and
ensemble.GradientBoostingClassifier use the estimator tree.DecisionTreeRegressor
instead of the tree._tree.Tree data structure by Arnaud Joly.

• Fixed a floating point exception in the decision trees module, by Seberg.

• Fix metrics.roc_curve fails when y_true has only one class by Wei Li.

• Add the metrics.mean_absolute_error function which computes the mean absolute error. The
metrics.mean_squared_error, metrics.mean_absolute_error and metrics.r2_score
metrics support multioutput by Arnaud Joly.

• Fixed class_weight support in svm.LinearSVC and linear_model.LogisticRegression by
Andreas Müller. The meaning of class_weight was reversed as erroneously higher weight meant less
positives of a given class in earlier releases.

• Improve narrative documentation and consistency in sklearn.metrics for regression and classification
metrics by Arnaud Joly.

• Fixed a bug in sklearn.svm.SVC when using csr-matrices with unsorted indices by Xinfan Meng and An-
dreas Müller.

• MiniBatchKMeans: Add random reassignment of cluster centers with little observations attached to them,
by Gael Varoquaux.

API changes summary

• Renamed all occurrences of n_atoms to n_components for consistency.
This applies to decomposition.DictionaryLearning, decomposition.
MiniBatchDictionaryLearning, decomposition.dict_learning, decomposition.
dict_learning_online.
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• Renamed all occurrences of max_iters to max_iter for consistency. This applies to
semi_supervised.LabelPropagation and semi_supervised.label_propagation.
LabelSpreading.

• Renamed all occurrences of learn_rate to learning_rate for consistency in ensemble.
BaseGradientBoosting and ensemble.GradientBoostingRegressor.

• The module sklearn.linear_model.sparse is gone. Sparse matrix support was already integrated into
the “regular” linear models.

• sklearn.metrics.mean_square_error, which incorrectly returned the accumulated error, was re-
moved. Use mean_squared_error instead.

• Passing class_weight parameters to fit methods is no longer supported. Pass them to estimator construc-
tors instead.

• GMMs no longer have decode and rvs methods. Use the score, predict or sample methods instead.

• The solver fit option in Ridge regression and classification is now deprecated and will be removed in v0.14.
Use the constructor option instead.

• feature_extraction.text.DictVectorizer now returns sparse matrices in the CSR format, in-
stead of COO.

• Renamed k in cross_validation.KFold and cross_validation.StratifiedKFold to
n_folds, renamed n_bootstraps to n_iter in cross_validation.Bootstrap.

• Renamed all occurrences of n_iterations to n_iter for consistency. This applies to
cross_validation.ShuffleSplit, cross_validation.StratifiedShuffleSplit,
utils.randomized_range_finder and utils.randomized_svd.

• Replaced rho in linear_model.ElasticNet and linear_model.SGDClassifier by
l1_ratio. The rho parameter had different meanings; l1_ratio was introduced to avoid confu-
sion. It has the same meaning as previously rho in linear_model.ElasticNet and (1-rho) in
linear_model.SGDClassifier.

• linear_model.LassoLars and linear_model.Lars now store a list of paths in the case of multiple
targets, rather than an array of paths.

• The attribute gmm of hmm.GMMHMM was renamed to gmm_ to adhere more strictly with the API.

• cluster.spectral_embedding was moved to manifold.spectral_embedding.

• Renamed eig_tol in manifold.spectral_embedding, cluster.SpectralClustering to
eigen_tol, renamed mode to eigen_solver.

• Renamed mode in manifold.spectral_embedding and cluster.SpectralClustering to
eigen_solver.

• classes_ and n_classes_ attributes of tree.DecisionTreeClassifier and all derived ensemble
models are now flat in case of single output problems and nested in case of multi-output problems.

• The estimators_ attribute of ensemble.gradient_boosting.GradientBoostingRegressor
and ensemble.gradient_boosting.GradientBoostingClassifier is now an array of
:class:’tree.DecisionTreeRegressor’.

• Renamed chunk_size to batch_size in decomposition.MiniBatchDictionaryLearning
and decomposition.MiniBatchSparsePCA for consistency.

• svm.SVC and svm.NuSVC now provide a classes_ attribute and support arbitrary dtypes for labels y.
Also, the dtype returned by predict now reflects the dtype of y during fit (used to be np.float).
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• Changed default test_size in cross_validation.train_test_split to None, added pos-
sibility to infer test_size from train_size in cross_validation.ShuffleSplit and
cross_validation.StratifiedShuffleSplit.

• Renamed function sklearn.metrics.zero_one to sklearn.metrics.zero_one_loss. Be
aware that the default behavior in sklearn.metrics.zero_one_loss is different from sklearn.
metrics.zero_one: normalize=False is changed to normalize=True.

• Renamed function metrics.zero_one_score to metrics.accuracy_score.

• datasets.make_circles now has the same number of inner and outer points.

• In the Naive Bayes classifiers, the class_prior parameter was moved from fit to __init__.

People

List of contributors for release 0.13 by number of commits.

• 364 Andreas Müller

• 143 Arnaud Joly

• 137 Peter Prettenhofer

• 131 Gael Varoquaux

• 117 Mathieu Blondel

• 108 Lars Buitinck

• 106 Wei Li

• 101 Olivier Grisel

• 65 Vlad Niculae

• 54 Gilles Louppe

• 40 Jaques Grobler

• 38 Alexandre Gramfort

• 30 Rob Zinkov

• 19 Aymeric Masurelle

• 18 Andrew Winterman

• 17 Fabian Pedregosa

• 17 Nelle Varoquaux

• 16 Christian Osendorfer

• 14 Daniel Nouri

• 13 Virgile Fritsch

• 13 syhw

• 12 Satrajit Ghosh

• 10 Corey Lynch

• 10 Kyle Beauchamp

• 9 Brian Cheung
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• 9 Immanuel Bayer

• 9 mr.Shu

• 8 Conrad Lee

• 8 James Bergstra

• 7 Tadej Janež

• 6 Brian Cajes

• 6 Jake Vanderplas

• 6 Michael

• 6 Noel Dawe

• 6 Tiago Nunes

• 6 cow

• 5 Anze

• 5 Shiqiao Du

• 4 Christian Jauvin

• 4 Jacques Kvam

• 4 Richard T. Guy

• 4 Robert Layton

• 3 Alexandre Abraham

• 3 Doug Coleman

• 3 Scott Dickerson

• 2 ApproximateIdentity

• 2 John Benediktsson

• 2 Mark Veronda

• 2 Matti Lyra

• 2 Mikhail Korobov

• 2 Xinfan Meng

• 1 Alejandro Weinstein

• 1 Alexandre Passos

• 1 Christoph Deil

• 1 Eugene Nizhibitsky

• 1 Kenneth C. Arnold

• 1 Luis Pedro Coelho

• 1 Miroslav Batchkarov

• 1 Pavel

• 1 Sebastian Berg

• 1 Shaun Jackman
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• 1 Subhodeep Moitra

• 1 bob

• 1 dengemann

• 1 emanuele

• 1 x006

1.7.16 Version 0.12.1

October 8, 2012

The 0.12.1 release is a bug-fix release with no additional features, but is instead a set of bug fixes

Changelog

• Improved numerical stability in spectral embedding by Gael Varoquaux

• Doctest under windows 64bit by Gael Varoquaux

• Documentation fixes for elastic net by Andreas Müller and Alexandre Gramfort

• Proper behavior with fortran-ordered NumPy arrays by Gael Varoquaux

• Make GridSearchCV work with non-CSR sparse matrix by Lars Buitinck

• Fix parallel computing in MDS by Gael Varoquaux

• Fix Unicode support in count vectorizer by Andreas Müller

• Fix MinCovDet breaking with X.shape = (3, 1) by Virgile Fritsch

• Fix clone of SGD objects by Peter Prettenhofer

• Stabilize GMM by Virgile Fritsch

People

• 14 Peter Prettenhofer

• 12 Gael Varoquaux

• 10 Andreas Müller

• 5 Lars Buitinck

• 3 Virgile Fritsch

• 1 Alexandre Gramfort

• 1 Gilles Louppe

• 1 Mathieu Blondel

1.7.17 Version 0.12

September 4, 2012
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Changelog

• Various speed improvements of the decision trees module, by Gilles Louppe.

• ensemble.GradientBoostingRegressor and ensemble.GradientBoostingClassifier
now support feature subsampling via the max_features argument, by Peter Prettenhofer.

• Added Huber and Quantile loss functions to ensemble.GradientBoostingRegressor, by Peter Pret-
tenhofer.

• Decision trees and forests of randomized trees now support multi-output classification and regression problems,
by Gilles Louppe.

• Added preprocessing.LabelEncoder, a simple utility class to normalize labels or transform non-
numerical labels, by Mathieu Blondel.

• Added the epsilon-insensitive loss and the ability to make probabilistic predictions with the modified huber loss
in Stochastic Gradient Descent, by Mathieu Blondel.

• Added Multi-dimensional Scaling (MDS), by Nelle Varoquaux.

• SVMlight file format loader now detects compressed (gzip/bzip2) files and decompresses them on the fly, by
Lars Buitinck.

• SVMlight file format serializer now preserves double precision floating point values, by Olivier Grisel.

• A common testing framework for all estimators was added, by Andreas Müller.

• Understandable error messages for estimators that do not accept sparse input by Gael Varoquaux

• Speedups in hierarchical clustering by Gael Varoquaux. In particular building the tree now supports early
stopping. This is useful when the number of clusters is not small compared to the number of samples.

• Add MultiTaskLasso and MultiTaskElasticNet for joint feature selection, by Alexandre Gramfort.

• Added metrics.auc_score and metrics.average_precision_score convenience functions by
Andreas Müller.

• Improved sparse matrix support in the Feature selection module by Andreas Müller.

• New word boundaries-aware character n-gram analyzer for the Text feature extraction module by @kernc.

• Fixed bug in spectral clustering that led to single point clusters by Andreas Müller.

• In feature_extraction.text.CountVectorizer, added an option to ignore infrequent words,
min_df by Andreas Müller.

• Add support for multiple targets in some linear models (ElasticNet, Lasso and OrthogonalMatchingPursuit) by
Vlad Niculae and Alexandre Gramfort.

• Fixes in decomposition.ProbabilisticPCA score function by Wei Li.

• Fixed feature importance computation in Gradient Tree Boosting.

API changes summary

• The old scikits.learn package has disappeared; all code should import from sklearn instead, which
was introduced in 0.9.

• In metrics.roc_curve, the thresholds array is now returned with it’s order reversed, in order to keep
it consistent with the order of the returned fpr and tpr.

• In hmm objects, like hmm.GaussianHMM, hmm.MultinomialHMM, etc., all parameters must be passed to
the object when initialising it and not through fit. Now fit will only accept the data as an input parameter.
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• For all SVM classes, a faulty behavior of gamma was fixed. Previously, the default gamma value was only
computed the first time fit was called and then stored. It is now recalculated on every call to fit.

• All Base classes are now abstract meta classes so that they can not be instantiated.

• cluster.ward_tree now also returns the parent array. This is necessary for early-stopping in which case
the tree is not completely built.

• In feature_extraction.text.CountVectorizer the parameters min_n and max_n were joined to
the parameter n_gram_range to enable grid-searching both at once.

• In feature_extraction.text.CountVectorizer, words that appear only in one document are now
ignored by default. To reproduce the previous behavior, set min_df=1.

• Fixed API inconsistency: linear_model.SGDClassifier.predict_proba now returns 2d array
when fit on two classes.

• Fixed API inconsistency: discriminant_analysis.QuadraticDiscriminantAnalysis.
decision_function and discriminant_analysis.LinearDiscriminantAnalysis.
decision_function now return 1d arrays when fit on two classes.

• Grid of alphas used for fitting linear_model.LassoCV and linear_model.ElasticNetCV is now
stored in the attribute alphas_ rather than overriding the init parameter alphas.

• Linear models when alpha is estimated by cross-validation store the estimated value in the alpha_ attribute
rather than just alpha or best_alpha.

• ensemble.GradientBoostingClassifier now supports ensemble.
GradientBoostingClassifier.staged_predict_proba, and ensemble.
GradientBoostingClassifier.staged_predict.

• svm.sparse.SVC and other sparse SVM classes are now deprecated. The all classes in the Support Vector
Machines module now automatically select the sparse or dense representation base on the input.

• All clustering algorithms now interpret the array X given to fit as input data, in particular cluster.
SpectralClustering and cluster.AffinityPropagationwhich previously expected affinity ma-
trices.

• For clustering algorithms that take the desired number of clusters as a parameter, this parameter is now called
n_clusters.

People

• 267 Andreas Müller

• 94 Gilles Louppe

• 89 Gael Varoquaux

• 79 Peter Prettenhofer

• 60 Mathieu Blondel

• 57 Alexandre Gramfort

• 52 Vlad Niculae

• 45 Lars Buitinck

• 44 Nelle Varoquaux

• 37 Jaques Grobler

• 30 Alexis Mignon
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• 30 Immanuel Bayer

• 27 Olivier Grisel

• 16 Subhodeep Moitra

• 13 Yannick Schwartz

• 12 @kernc

• 11 Virgile Fritsch

• 9 Daniel Duckworth

• 9 Fabian Pedregosa

• 9 Robert Layton

• 8 John Benediktsson

• 7 Marko Burjek

• 5 Nicolas Pinto

• 4 Alexandre Abraham

• 4 Jake Vanderplas

• 3 Brian Holt

• 3 Edouard Duchesnay

• 3 Florian Hoenig

• 3 flyingimmidev

• 2 Francois Savard

• 2 Hannes Schulz

• 2 Peter Welinder

• 2 Yaroslav Halchenko

• 2 Wei Li

• 1 Alex Companioni

• 1 Brandyn A. White

• 1 Bussonnier Matthias

• 1 Charles-Pierre Astolfi

• 1 Dan O’Huiginn

• 1 David Cournapeau

• 1 Keith Goodman

• 1 Ludwig Schwardt

• 1 Olivier Hervieu

• 1 Sergio Medina

• 1 Shiqiao Du

• 1 Tim Sheerman-Chase

• 1 buguen
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1.7.18 Version 0.11

May 7, 2012

Changelog

Highlights

• Gradient boosted regression trees (Gradient Tree Boosting) for classification and regression by Peter Pretten-
hofer and Scott White .

• Simple dict-based feature loader with support for categorical variables (feature_extraction.
DictVectorizer) by Lars Buitinck.

• Added Matthews correlation coefficient (metrics.matthews_corrcoef) and added macro and micro av-
erage options to metrics.precision_score, metrics.recall_score and metrics.f1_score
by Satrajit Ghosh.

• Out of Bag Estimates of generalization error for Ensemble methods by Andreas Müller.

• Randomized sparse linear models for feature selection, by Alexandre Gramfort and Gael Varoquaux

• Label Propagation for semi-supervised learning, by Clay Woolam. Note the semi-supervised API is still work
in progress, and may change.

• Added BIC/AIC model selection to classical Gaussian mixture models and unified the API with the remainder
of scikit-learn, by Bertrand Thirion

• Added sklearn.cross_validation.StratifiedShuffleSplit, which is a sklearn.
cross_validation.ShuffleSplit with balanced splits, by Yannick Schwartz.

• sklearn.neighbors.NearestCentroid classifier added, along with a shrink_threshold param-
eter, which implements shrunken centroid classification, by Robert Layton.

Other changes

• Merged dense and sparse implementations of Stochastic Gradient Descent module and exposed utility extension
types for sequential datasets seq_dataset and weight vectors weight_vector by Peter Prettenhofer.

• Added partial_fit (support for online/minibatch learning) and warm_start to the Stochastic Gradient De-
scent module by Mathieu Blondel.

• Dense and sparse implementations of Support Vector Machines classes and linear_model.
LogisticRegression merged by Lars Buitinck.

• Regressors can now be used as base estimator in the Multiclass and multilabel algorithms module by Mathieu
Blondel.

• Added n_jobs option to metrics.pairwise.pairwise_distances and metrics.pairwise.
pairwise_kernels for parallel computation, by Mathieu Blondel.

• K-means can now be run in parallel, using the n_jobs argument to either K-means or KMeans, by Robert
Layton.

• Improved Cross-validation: evaluating estimator performance and Tuning the hyper-parameters of an estima-
tor documentation and introduced the new cross_validation.train_test_split helper function by
Olivier Grisel
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• svm.SVC members coef_ and intercept_ changed sign for consistency with decision_function;
for kernel==linear, coef_ was fixed in the one-vs-one case, by Andreas Müller.

• Performance improvements to efficient leave-one-out cross-validated Ridge regression, esp. for the
n_samples > n_features case, in linear_model.RidgeCV , by Reuben Fletcher-Costin.

• Refactoring and simplification of the Text feature extraction API and fixed a bug that caused possible negative
IDF, by Olivier Grisel.

• Beam pruning option in _BaseHMM module has been removed since it is difficult to Cythonize. If you are
interested in contributing a Cython version, you can use the python version in the git history as a reference.

• Classes in Nearest Neighbors now support arbitrary Minkowski metric for nearest neighbors searches. The
metric can be specified by argument p.

API changes summary

• covariance.EllipticEnvelop is now deprecated - Please use covariance.EllipticEnvelope
instead.

• NeighborsClassifier and NeighborsRegressor are gone in the module Nearest Neighbors. Use
the classes KNeighborsClassifier, RadiusNeighborsClassifier, KNeighborsRegressor
and/or RadiusNeighborsRegressor instead.

• Sparse classes in the Stochastic Gradient Descent module are now deprecated.

• In mixture.GMM , mixture.DPGMM and mixture.VBGMM , parameters must be passed to an object when
initialising it and not through fit. Now fit will only accept the data as an input parameter.

• methods rvs and decode in GMM module are now deprecated. sample and score or predict should be
used instead.

• attribute _scores and _pvalues in univariate feature selection objects are now deprecated. scores_ or
pvalues_ should be used instead.

• In LogisticRegression, LinearSVC, SVC and NuSVC, the class_weight parameter is now an ini-
tialization parameter, not a parameter to fit. This makes grid searches over this parameter possible.

• LFW data is now always shape (n_samples, n_features) to be consistent with the Olivetti faces
dataset. Use images and pairs attribute to access the natural images shapes instead.

• In svm.LinearSVC, the meaning of the multi_class parameter changed. Options now are 'ovr' and
'crammer_singer', with 'ovr' being the default. This does not change the default behavior but hopefully
is less confusing.

• Class feature_selection.text.Vectorizer is deprecated and replaced by
feature_selection.text.TfidfVectorizer.

• The preprocessor / analyzer nested structure for text feature extraction has been removed. All those features are
now directly passed as flat constructor arguments to feature_selection.text.TfidfVectorizer
and feature_selection.text.CountVectorizer, in particular the following parameters are now
used:

• analyzer can be 'word' or 'char' to switch the default analysis scheme, or use a specific python callable
(as previously).

• tokenizer and preprocessor have been introduced to make it still possible to customize those steps with
the new API.

• input explicitly control how to interpret the sequence passed to fit and predict: filenames, file objects or
direct (byte or Unicode) strings.
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• charset decoding is explicit and strict by default.

• the vocabulary, fitted or not is now stored in the vocabulary_ attribute to be consistent with the project
conventions.

• Class feature_selection.text.TfidfVectorizer now derives directly from
feature_selection.text.CountVectorizer to make grid search trivial.

• methods rvs in _BaseHMM module are now deprecated. sample should be used instead.

• Beam pruning option in _BaseHMM module is removed since it is difficult to be Cythonized. If you are inter-
ested, you can look in the history codes by git.

• The SVMlight format loader now supports files with both zero-based and one-based column indices, since both
occur “in the wild”.

• Arguments in class ShuffleSplit are now consistent with StratifiedShuffleSplit. Arguments
test_fraction and train_fraction are deprecated and renamed to test_size and train_size
and can accept both float and int.

• Arguments in class Bootstrap are now consistent with StratifiedShuffleSplit. Arguments
n_test and n_train are deprecated and renamed to test_size and train_size and can accept both
float and int.

• Argument p added to classes in Nearest Neighbors to specify an arbitrary Minkowski metric for nearest neigh-
bors searches.

People

• 282 Andreas Müller

• 239 Peter Prettenhofer

• 198 Gael Varoquaux

• 129 Olivier Grisel

• 114 Mathieu Blondel

• 103 Clay Woolam

• 96 Lars Buitinck

• 88 Jaques Grobler

• 82 Alexandre Gramfort

• 50 Bertrand Thirion

• 42 Robert Layton

• 28 flyingimmidev

• 26 Jake Vanderplas

• 26 Shiqiao Du

• 21 Satrajit Ghosh

• 17 David Marek

• 17 Gilles Louppe

• 14 Vlad Niculae

• 11 Yannick Schwartz
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• 10 Fabian Pedregosa

• 9 fcostin

• 7 Nick Wilson

• 5 Adrien Gaidon

• 5 Nicolas Pinto

• 4 David Warde-Farley

• 5 Nelle Varoquaux

• 5 Emmanuelle Gouillart

• 3 Joonas Sillanpää

• 3 Paolo Losi

• 2 Charles McCarthy

• 2 Roy Hyunjin Han

• 2 Scott White

• 2 ibayer

• 1 Brandyn White

• 1 Carlos Scheidegger

• 1 Claire Revillet

• 1 Conrad Lee

• 1 Edouard Duchesnay

• 1 Jan Hendrik Metzen

• 1 Meng Xinfan

• 1 Rob Zinkov

• 1 Shiqiao

• 1 Udi Weinsberg

• 1 Virgile Fritsch

• 1 Xinfan Meng

• 1 Yaroslav Halchenko

• 1 jansoe

• 1 Leon Palafox

1.7.19 Version 0.10

January 11, 2012
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Changelog

• Python 2.5 compatibility was dropped; the minimum Python version needed to use scikit-learn is now 2.6.

• Sparse inverse covariance estimation using the graph Lasso, with associated cross-validated estimator, by Gael
Varoquaux

• New Tree module by Brian Holt, Peter Prettenhofer, Satrajit Ghosh and Gilles Louppe. The module comes with
complete documentation and examples.

• Fixed a bug in the RFE module by Gilles Louppe (issue #378).

• Fixed a memory leak in Support Vector Machines module by Brian Holt (issue #367).

• Faster tests by Fabian Pedregosa and others.

• Silhouette Coefficient cluster analysis evaluation metric added as sklearn.metrics.
silhouette_score by Robert Layton.

• Fixed a bug in K-means in the handling of the n_init parameter: the clustering algorithm used to be run
n_init times but the last solution was retained instead of the best solution by Olivier Grisel.

• Minor refactoring in Stochastic Gradient Descent module; consolidated dense and sparse predict methods; En-
hanced test time performance by converting model parameters to fortran-style arrays after fitting (only multi-
class).

• Adjusted Mutual Information metric added as sklearn.metrics.adjusted_mutual_info_score
by Robert Layton.

• Models like SVC/SVR/LinearSVC/LogisticRegression from libsvm/liblinear now support scaling of C regular-
ization parameter by the number of samples by Alexandre Gramfort.

• New Ensemble Methods module by Gilles Louppe and Brian Holt. The module comes with the random forest
algorithm and the extra-trees method, along with documentation and examples.

• Novelty and Outlier Detection: outlier and novelty detection, by Virgile Fritsch.

• Kernel Approximation: a transform implementing kernel approximation for fast SGD on non-linear kernels by
Andreas Müller.

• Fixed a bug due to atom swapping in Orthogonal Matching Pursuit (OMP) by Vlad Niculae.

• Sparse coding with a precomputed dictionary by Vlad Niculae.

• Mini Batch K-Means performance improvements by Olivier Grisel.

• K-means support for sparse matrices by Mathieu Blondel.

• Improved documentation for developers and for the sklearn.utils module, by Jake Vanderplas.

• Vectorized 20newsgroups dataset loader (sklearn.datasets.fetch_20newsgroups_vectorized)
by Mathieu Blondel.

• Multiclass and multilabel algorithms by Lars Buitinck.

• Utilities for fast computation of mean and variance for sparse matrices by Mathieu Blondel.

• Make sklearn.preprocessing.scale and sklearn.preprocessing.Scaler work on sparse
matrices by Olivier Grisel

• Feature importances using decision trees and/or forest of trees, by Gilles Louppe.

• Parallel implementation of forests of randomized trees by Gilles Louppe.

• sklearn.cross_validation.ShuffleSplit can subsample the train sets as well as the test sets by
Olivier Grisel.
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• Errors in the build of the documentation fixed by Andreas Müller.

API changes summary

Here are the code migration instructions when upgrading from scikit-learn version 0.9:

• Some estimators that may overwrite their inputs to save memory previously had overwrite_ parameters;
these have been replaced with copy_ parameters with exactly the opposite meaning.

This particularly affects some of the estimators in linear_model. The default behavior is still to copy
everything passed in.

• The SVMlight dataset loader sklearn.datasets.load_svmlight_file no longer supports loading
two files at once; use load_svmlight_files instead. Also, the (unused) buffer_mb parameter is gone.

• Sparse estimators in the Stochastic Gradient Descent module use dense parameter vector coef_ instead of
sparse_coef_. This significantly improves test time performance.

• The Covariance estimation module now has a robust estimator of covariance, the Minimum Covariance Deter-
minant estimator.

• Cluster evaluation metrics in metrics.cluster have been refactored but the changes are backwards compat-
ible. They have been moved to the metrics.cluster.supervised, along with metrics.cluster.
unsupervised which contains the Silhouette Coefficient.

• The permutation_test_score function now behaves the same way as cross_val_score (i.e. uses
the mean score across the folds.)

• Cross Validation generators now use integer indices (indices=True) by default instead of boolean masks.
This make it more intuitive to use with sparse matrix data.

• The functions used for sparse coding, sparse_encode and sparse_encode_parallel have been com-
bined into sklearn.decomposition.sparse_encode, and the shapes of the arrays have been trans-
posed for consistency with the matrix factorization setting, as opposed to the regression setting.

• Fixed an off-by-one error in the SVMlight/LibSVM file format handling; files generated using sklearn.
datasets.dump_svmlight_file should be re-generated. (They should continue to work, but acciden-
tally had one extra column of zeros prepended.)

• BaseDictionaryLearning class replaced by SparseCodingMixin.

• sklearn.utils.extmath.fast_svd has been renamed sklearn.utils.extmath.
randomized_svd and the default oversampling is now fixed to 10 additional random vectors instead
of doubling the number of components to extract. The new behavior follows the reference paper.

People

The following people contributed to scikit-learn since last release:

• 246 Andreas Müller

• 242 Olivier Grisel

• 220 Gilles Louppe

• 183 Brian Holt

• 166 Gael Varoquaux

• 144 Lars Buitinck

• 73 Vlad Niculae
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• 65 Peter Prettenhofer

• 64 Fabian Pedregosa

• 60 Robert Layton

• 55 Mathieu Blondel

• 52 Jake Vanderplas

• 44 Noel Dawe

• 38 Alexandre Gramfort

• 24 Virgile Fritsch

• 23 Satrajit Ghosh

• 3 Jan Hendrik Metzen

• 3 Kenneth C. Arnold

• 3 Shiqiao Du

• 3 Tim Sheerman-Chase

• 3 Yaroslav Halchenko

• 2 Bala Subrahmanyam Varanasi

• 2 DraXus

• 2 Michael Eickenberg

• 1 Bogdan Trach

• 1 Félix-Antoine Fortin

• 1 Juan Manuel Caicedo Carvajal

• 1 Nelle Varoquaux

• 1 Nicolas Pinto

• 1 Tiziano Zito

• 1 Xinfan Meng

1.7.20 Version 0.9

September 21, 2011

scikit-learn 0.9 was released on September 2011, three months after the 0.8 release and includes the new modules
Manifold learning, The Dirichlet Process as well as several new algorithms and documentation improvements.

This release also includes the dictionary-learning work developed by Vlad Niculae as part of the Google Summer of
Code program.
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Changelog

• New Manifold learning module by Jake Vanderplas and Fabian Pedregosa.

• New Dirichlet Process Gaussian Mixture Model by Alexandre Passos

• Nearest Neighbors module refactoring by Jake Vanderplas : general refactoring, support for sparse matrices in
input, speed and documentation improvements. See the next section for a full list of API changes.

• Improvements on the Feature selection module by Gilles Louppe : refactoring of the RFE classes, documenta-
tion rewrite, increased efficiency and minor API changes.

• Sparse principal components analysis (SparsePCA and MiniBatchSparsePCA) by Vlad Niculae, Gael Varo-
quaux and Alexandre Gramfort

• Printing an estimator now behaves independently of architectures and Python version thanks to Jean Kossaifi.

• Loader for libsvm/svmlight format by Mathieu Blondel and Lars Buitinck

• Documentation improvements: thumbnails in example gallery by Fabian Pedregosa.

• Important bugfixes in Support Vector Machines module (segfaults, bad performance) by Fabian Pedregosa.

• Added Multinomial Naive Bayes and Bernoulli Naive Bayes by Lars Buitinck

• Text feature extraction optimizations by Lars Buitinck

• Chi-Square feature selection (feature_selection.univariate_selection.chi2) by Lars Buit-
inck.

• Sample generators module refactoring by Gilles Louppe

• Multiclass and multilabel algorithms by Mathieu Blondel

• Ball tree rewrite by Jake Vanderplas
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• Implementation of DBSCAN algorithm by Robert Layton

• Kmeans predict and transform by Robert Layton

• Preprocessing module refactoring by Olivier Grisel

• Faster mean shift by Conrad Lee

• New Bootstrap, Random permutations cross-validation a.k.a. Shuffle & Split and various other improve-
ments in cross validation schemes by Olivier Grisel and Gael Varoquaux

• Adjusted Rand index and V-Measure clustering evaluation metrics by Olivier Grisel

• Added Orthogonal Matching Pursuit by Vlad Niculae

• Added 2D-patch extractor utilities in the Feature extraction module by Vlad Niculae

• Implementation of linear_model.LassoLarsCV (cross-validated Lasso solver using the Lars algorithm)
and linear_model.LassoLarsIC (BIC/AIC model selection in Lars) by Gael Varoquaux and Alexandre
Gramfort

• Scalability improvements to metrics.roc_curve by Olivier Hervieu

• Distance helper functions metrics.pairwise.pairwise_distances and metrics.pairwise.
pairwise_kernels by Robert Layton

• Mini-Batch K-Means by Nelle Varoquaux and Peter Prettenhofer.

• Downloading datasets from the mldata.org repository utilities by Pietro Berkes.

• The Olivetti faces dataset by David Warde-Farley.

API changes summary

Here are the code migration instructions when upgrading from scikit-learn version 0.8:

• The scikits.learn package was renamed sklearn. There is still a scikits.learn package alias for
backward compatibility.

Third-party projects with a dependency on scikit-learn 0.9+ should upgrade their codebase. For instance, under
Linux / MacOSX just run (make a backup first!):

find -name "*.py" | xargs sed -i 's/\bscikits.learn\b/sklearn/g'

• Estimators no longer accept model parameters as fit arguments: instead all parameters must be only
be passed as constructor arguments or using the now public set_params method inherited from base.
BaseEstimator.

Some estimators can still accept keyword arguments on the fit but this is restricted to data-dependent values
(e.g. a Gram matrix or an affinity matrix that are precomputed from the X data matrix.

• The cross_val package has been renamed to cross_validation although there is also a cross_val
package alias in place for backward compatibility.

Third-party projects with a dependency on scikit-learn 0.9+ should upgrade their codebase. For instance, under
Linux / MacOSX just run (make a backup first!):

find -name "*.py" | xargs sed -i 's/\bcross_val\b/cross_validation/g'

• The score_func argument of the sklearn.cross_validation.cross_val_score function is
now expected to accept y_test and y_predicted as only arguments for classification and regression tasks
or X_test for unsupervised estimators.
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• gamma parameter for support vector machine algorithms is set to 1 / n_features by default, instead of 1
/ n_samples.

• The sklearn.hmm has been marked as orphaned: it will be removed from scikit-learn in version 0.11 unless
someone steps up to contribute documentation, examples and fix lurking numerical stability issues.

• sklearn.neighbors has been made into a submodule. The two previously available estimators,
NeighborsClassifier and NeighborsRegressor have been marked as deprecated. Their function-
ality has been divided among five new classes: NearestNeighbors for unsupervised neighbors searches,
KNeighborsClassifier & RadiusNeighborsClassifier for supervised classification problems,
and KNeighborsRegressor & RadiusNeighborsRegressor for supervised regression problems.

• sklearn.ball_tree.BallTree has been moved to sklearn.neighbors.BallTree. Using the
former will generate a warning.

• sklearn.linear_model.LARS() and related classes (LassoLARS, LassoLARSCV, etc.) have been re-
named to sklearn.linear_model.Lars().

• All distance metrics and kernels in sklearn.metrics.pairwise now have a Y parameter, which by
default is None. If not given, the result is the distance (or kernel similarity) between each sample in Y. If given,
the result is the pairwise distance (or kernel similarity) between samples in X to Y.

• sklearn.metrics.pairwise.l1_distance is now called manhattan_distance, and by default
returns the pairwise distance. For the component wise distance, set the parameter sum_over_features to
False.

Backward compatibility package aliases and other deprecated classes and functions will be removed in version 0.11.

People

38 people contributed to this release.

• 387 Vlad Niculae

• 320 Olivier Grisel

• 192 Lars Buitinck

• 179 Gael Varoquaux

• 168 Fabian Pedregosa (INRIA, Parietal Team)

• 127 Jake Vanderplas

• 120 Mathieu Blondel

• 85 Alexandre Passos

• 67 Alexandre Gramfort

• 57 Peter Prettenhofer

• 56 Gilles Louppe

• 42 Robert Layton

• 38 Nelle Varoquaux

• 32 Jean Kossaifi

• 30 Conrad Lee

• 22 Pietro Berkes

• 18 andy
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• 17 David Warde-Farley

• 12 Brian Holt

• 11 Robert

• 8 Amit Aides

• 8 Virgile Fritsch

• 7 Yaroslav Halchenko

• 6 Salvatore Masecchia

• 5 Paolo Losi

• 4 Vincent Schut

• 3 Alexis Metaireau

• 3 Bryan Silverthorn

• 3 Andreas Müller

• 2 Minwoo Jake Lee

• 1 Emmanuelle Gouillart

• 1 Keith Goodman

• 1 Lucas Wiman

• 1 Nicolas Pinto

• 1 Thouis (Ray) Jones

• 1 Tim Sheerman-Chase

1.7.21 Version 0.8

May 11, 2011

scikit-learn 0.8 was released on May 2011, one month after the first “international” scikit-learn coding sprint and is
marked by the inclusion of important modules: Hierarchical clustering, Cross decomposition, Non-negative matrix
factorization (NMF or NNMF), initial support for Python 3 and by important enhancements and bug fixes.

Changelog

Several new modules where introduced during this release:

• New Hierarchical clustering module by Vincent Michel, Bertrand Thirion, Alexandre Gramfort and Gael Varo-
quaux.

• Kernel PCA implementation by Mathieu Blondel

• The Labeled Faces in the Wild face recognition dataset by Olivier Grisel.

• New Cross decomposition module by Edouard Duchesnay.

• Non-negative matrix factorization (NMF or NNMF) module Vlad Niculae

• Implementation of the Oracle Approximating Shrinkage algorithm by Virgile Fritsch in the Covariance estima-
tion module.

Some other modules benefited from significant improvements or cleanups.

98 Chapter 1. Welcome to scikit-learn

https://github.com/VirgileFritsch
http://www.onerussian.com/
http://peekaboo-vision.blogspot.com
https://twitter.com/npinto
https://github.com/scikit-learn/scikit-learn/wiki/Upcoming-events
https://team.inria.fr/parietal/bertrand-thirions-page
http://alexandre.gramfort.net
http://gael-varoquaux.info
http://gael-varoquaux.info
http://www.mblondel.org
https://twitter.com/ogrisel
https://sites.google.com/site/duchesnay/home
http://vene.ro
https://github.com/VirgileFritsch


scikit-learn user guide, Release 0.19.1

• Initial support for Python 3: builds and imports cleanly, some modules are usable while others have failing tests
by Fabian Pedregosa.

• decomposition.PCA is now usable from the Pipeline object by Olivier Grisel.

• Guide How to optimize for speed by Olivier Grisel.

• Fixes for memory leaks in libsvm bindings, 64-bit safer BallTree by Lars Buitinck.

• bug and style fixing in K-means algorithm by Jan Schlüter.

• Add attribute converged to Gaussian Mixture Models by Vincent Schut.

• Implemented transform, predict_log_proba in discriminant_analysis.
LinearDiscriminantAnalysis By Mathieu Blondel.

• Refactoring in the Support Vector Machines module and bug fixes by Fabian Pedregosa, Gael Varoquaux and
Amit Aides.

• Refactored SGD module (removed code duplication, better variable naming), added interface for sample weight
by Peter Prettenhofer.

• Wrapped BallTree with Cython by Thouis (Ray) Jones.

• Added function svm.l1_min_c by Paolo Losi.

• Typos, doc style, etc. by Yaroslav Halchenko, Gael Varoquaux, Olivier Grisel, Yann Malet, Nicolas Pinto, Lars
Buitinck and Fabian Pedregosa.

People

People that made this release possible preceded by number of commits:

• 159 Olivier Grisel

• 96 Gael Varoquaux

• 96 Vlad Niculae

• 94 Fabian Pedregosa

• 36 Alexandre Gramfort

• 32 Paolo Losi

• 31 Edouard Duchesnay

• 30 Mathieu Blondel

• 25 Peter Prettenhofer

• 22 Nicolas Pinto

• 11 Virgile Fritsch

– 7 Lars Buitinck

– 6 Vincent Michel

– 5 Bertrand Thirion

– 4 Thouis (Ray) Jones

– 4 Vincent Schut

– 3 Jan Schlüter

– 2 Julien Miotte
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– 2 Matthieu Perrot

– 2 Yann Malet

– 2 Yaroslav Halchenko

– 1 Amit Aides

– 1 Andreas Müller

– 1 Feth Arezki

– 1 Meng Xinfan

1.7.22 Version 0.7

March 2, 2011

scikit-learn 0.7 was released in March 2011, roughly three months after the 0.6 release. This release is marked by the
speed improvements in existing algorithms like k-Nearest Neighbors and K-Means algorithm and by the inclusion of
an efficient algorithm for computing the Ridge Generalized Cross Validation solution. Unlike the preceding release,
no new modules where added to this release.

Changelog

• Performance improvements for Gaussian Mixture Model sampling [Jan Schlüter].

• Implementation of efficient leave-one-out cross-validated Ridge in linear_model.RidgeCV [Mathieu
Blondel]

• Better handling of collinearity and early stopping in linear_model.lars_path [Alexandre Gramfort and
Fabian Pedregosa].

• Fixes for liblinear ordering of labels and sign of coefficients [Dan Yamins, Paolo Losi, Mathieu Blondel and
Fabian Pedregosa].

• Performance improvements for Nearest Neighbors algorithm in high-dimensional spaces [Fabian Pedregosa].

• Performance improvements for cluster.KMeans [Gael Varoquaux and James Bergstra].

• Sanity checks for SVM-based classes [Mathieu Blondel].

• Refactoring of neighbors.NeighborsClassifier and neighbors.kneighbors_graph: added
different algorithms for the k-Nearest Neighbor Search and implemented a more stable algorithm for finding
barycenter weights. Also added some developer documentation for this module, see notes_neighbors for more
information [Fabian Pedregosa].

• Documentation improvements: Added pca.RandomizedPCA and linear_model.
LogisticRegression to the class reference. Also added references of matrices used for clustering
and other fixes [Gael Varoquaux, Fabian Pedregosa, Mathieu Blondel, Olivier Grisel, Virgile Fritsch ,
Emmanuelle Gouillart]

• Binded decision_function in classes that make use of liblinear, dense and sparse variants, like svm.
LinearSVC or linear_model.LogisticRegression [Fabian Pedregosa].

• Performance and API improvements to metrics.euclidean_distances and to pca.
RandomizedPCA [James Bergstra].

• Fix compilation issues under NetBSD [Kamel Ibn Hassen Derouiche]

• Allow input sequences of different lengths in hmm.GaussianHMM [Ron Weiss].
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• Fix bug in affinity propagation caused by incorrect indexing [Xinfan Meng]

People

People that made this release possible preceded by number of commits:

• 85 Fabian Pedregosa

• 67 Mathieu Blondel

• 20 Alexandre Gramfort

• 19 James Bergstra

• 14 Dan Yamins

• 13 Olivier Grisel

• 12 Gael Varoquaux

• 4 Edouard Duchesnay

• 4 Ron Weiss

• 2 Satrajit Ghosh

• 2 Vincent Dubourg

• 1 Emmanuelle Gouillart

• 1 Kamel Ibn Hassen Derouiche

• 1 Paolo Losi

• 1 VirgileFritsch

• 1 Yaroslav Halchenko

• 1 Xinfan Meng

1.7.23 Version 0.6

December 21, 2010

scikit-learn 0.6 was released on December 2010. It is marked by the inclusion of several new modules and a general
renaming of old ones. It is also marked by the inclusion of new example, including applications to real-world datasets.

Changelog

• New stochastic gradient descent module by Peter Prettenhofer. The module comes with complete documentation
and examples.

• Improved svm module: memory consumption has been reduced by 50%, heuristic to automatically set class
weights, possibility to assign weights to samples (see SVM: Weighted samples for an example).

• New Gaussian Processes module by Vincent Dubourg. This module also has great documenta-
tion and some very neat examples. See example_gaussian_process_plot_gp_regression.py or exam-
ple_gaussian_process_plot_gp_probabilistic_classification_after_regression.py for a taste of what can be done.

• It is now possible to use liblinear’s Multi-class SVC (option multi_class in svm.LinearSVC)

• New features and performance improvements of text feature extraction.
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• Improved sparse matrix support, both in main classes (grid_search.GridSearchCV ) as in modules
sklearn.svm.sparse and sklearn.linear_model.sparse.

• Lots of cool new examples and a new section that uses real-world datasets was created. These include: Faces
recognition example using eigenfaces and SVMs, Species distribution modeling, Libsvm GUI, Wikipedia princi-
pal eigenvector and others.

• Faster Least Angle Regression algorithm. It is now 2x faster than the R version on worst case and up to 10x
times faster on some cases.

• Faster coordinate descent algorithm. In particular, the full path version of lasso (linear_model.
lasso_path) is more than 200x times faster than before.

• It is now possible to get probability estimates from a linear_model.LogisticRegression model.

• module renaming: the glm module has been renamed to linear_model, the gmm module has been included into
the more general mixture model and the sgd module has been included in linear_model.

• Lots of bug fixes and documentation improvements.

People

People that made this release possible preceded by number of commits:

• 207 Olivier Grisel

• 167 Fabian Pedregosa

• 97 Peter Prettenhofer

• 68 Alexandre Gramfort

• 59 Mathieu Blondel

• 55 Gael Varoquaux

• 33 Vincent Dubourg

• 21 Ron Weiss

• 9 Bertrand Thirion

• 3 Alexandre Passos

• 3 Anne-Laure Fouque

• 2 Ronan Amicel

• 1 Christian Osendorfer

1.7.24 Version 0.5

October 11, 2010

Changelog

New classes

• Support for sparse matrices in some classifiers of modules svm and linear_model (see svm.
sparse.SVC, svm.sparse.SVR, svm.sparse.LinearSVC, linear_model.sparse.Lasso,
linear_model.sparse.ElasticNet)
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• New pipeline.Pipeline object to compose different estimators.

• Recursive Feature Elimination routines in module Feature selection.

• Addition of various classes capable of cross validation in the linear_model module (linear_model.
LassoCV , linear_model.ElasticNetCV , etc.).

• New, more efficient LARS algorithm implementation. The Lasso variant of the algorithm is also implemented.
See linear_model.lars_path, linear_model.Lars and linear_model.LassoLars.

• New Hidden Markov Models module (see classes hmm.GaussianHMM, hmm.MultinomialHMM, hmm.
GMMHMM)

• New module feature_extraction (see class reference)

• New FastICA algorithm in module sklearn.fastica

Documentation

• Improved documentation for many modules, now separating narrative documentation from the class reference.
As an example, see documentation for the SVM module and the complete class reference.

Fixes

• API changes: adhere variable names to PEP-8, give more meaningful names.

• Fixes for svm module to run on a shared memory context (multiprocessing).

• It is again possible to generate latex (and thus PDF) from the sphinx docs.

Examples

• new examples using some of the mlcomp datasets: sphx_glr_auto_examples_mlcomp_sparse_document_classification.
py (since removed) and Classification of text documents using sparse features

• Many more examples. See here the full list of examples.

External dependencies

• Joblib is now a dependency of this package, although it is shipped with (sklearn.externals.joblib).

Removed modules

• Module ann (Artificial Neural Networks) has been removed from the distribution. Users wanting this sort of
algorithms should take a look into pybrain.

Misc

• New sphinx theme for the web page.
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Authors

The following is a list of authors for this release, preceded by number of commits:

• 262 Fabian Pedregosa

• 240 Gael Varoquaux

• 149 Alexandre Gramfort

• 116 Olivier Grisel

• 40 Vincent Michel

• 38 Ron Weiss

• 23 Matthieu Perrot

• 10 Bertrand Thirion

• 7 Yaroslav Halchenko

• 9 VirgileFritsch

• 6 Edouard Duchesnay

• 4 Mathieu Blondel

• 1 Ariel Rokem

• 1 Matthieu Brucher

1.7.25 Version 0.4

August 26, 2010

Changelog

Major changes in this release include:

• Coordinate Descent algorithm (Lasso, ElasticNet) refactoring & speed improvements (roughly 100x times
faster).

• Coordinate Descent Refactoring (and bug fixing) for consistency with R’s package GLMNET.

• New metrics module.

• New GMM module contributed by Ron Weiss.

• Implementation of the LARS algorithm (without Lasso variant for now).

• feature_selection module redesign.

• Migration to GIT as version control system.

• Removal of obsolete attrselect module.

• Rename of private compiled extensions (added underscore).

• Removal of legacy unmaintained code.

• Documentation improvements (both docstring and rst).

• Improvement of the build system to (optionally) link with MKL. Also, provide a lite BLAS implementation in
case no system-wide BLAS is found.
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• Lots of new examples.

• Many, many bug fixes . . .

Authors

The committer list for this release is the following (preceded by number of commits):

• 143 Fabian Pedregosa

• 35 Alexandre Gramfort

• 34 Olivier Grisel

• 11 Gael Varoquaux

• 5 Yaroslav Halchenko

• 2 Vincent Michel

• 1 Chris Filo Gorgolewski

1.7.26 Earlier versions

Earlier versions included contributions by Fred Mailhot, David Cooke, David Huard, Dave Morrill, Ed Schofield,
Travis Oliphant, Pearu Peterson.
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CHAPTER

TWO

SCIKIT-LEARN TUTORIALS

2.1 An introduction to machine learning with scikit-learn

Section contents

In this section, we introduce the machine learning vocabulary that we use throughout scikit-learn and give a simple
learning example.

2.1.1 Machine learning: the problem setting

In general, a learning problem considers a set of n samples of data and then tries to predict properties of unknown data.
If each sample is more than a single number and, for instance, a multi-dimensional entry (aka multivariate data), it is
said to have several attributes or features.

We can separate learning problems in a few large categories:

• supervised learning, in which the data comes with additional attributes that we want to predict (Click here to go
to the scikit-learn supervised learning page).This problem can be either:

– classification: samples belong to two or more classes and we want to learn from already labeled data how
to predict the class of unlabeled data. An example of classification problem would be the handwritten digit
recognition example, in which the aim is to assign each input vector to one of a finite number of discrete
categories. Another way to think of classification is as a discrete (as opposed to continuous) form of
supervised learning where one has a limited number of categories and for each of the n samples provided,
one is to try to label them with the correct category or class.

– regression: if the desired output consists of one or more continuous variables, then the task is called
regression. An example of a regression problem would be the prediction of the length of a salmon as a
function of its age and weight.

• unsupervised learning, in which the training data consists of a set of input vectors x without any corresponding
target values. The goal in such problems may be to discover groups of similar examples within the data, where
it is called clustering, or to determine the distribution of data within the input space, known as density estima-
tion, or to project the data from a high-dimensional space down to two or three dimensions for the purpose of
visualization (Click here to go to the Scikit-Learn unsupervised learning page).
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Training set and testing set

Machine learning is about learning some properties of a data set and applying them to new data. This is why a
common practice in machine learning to evaluate an algorithm is to split the data at hand into two sets, one that we
call the training set on which we learn data properties and one that we call the testing set on which we test these
properties.

2.1.2 Loading an example dataset

scikit-learn comes with a few standard datasets, for instance the iris and digits datasets for classification and the boston
house prices dataset for regression.

In the following, we start a Python interpreter from our shell and then load the iris and digits datasets. Our
notational convention is that $ denotes the shell prompt while >>> denotes the Python interpreter prompt:

$ python
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> digits = datasets.load_digits()

A dataset is a dictionary-like object that holds all the data and some metadata about the data. This data is stored in
the .data member, which is a n_samples, n_features array. In the case of supervised problem, one or more
response variables are stored in the .target member. More details on the different datasets can be found in the
dedicated section.

For instance, in the case of the digits dataset, digits.data gives access to the features that can be used to classify
the digits samples:

>>> print(digits.data)
[[ 0. 0. 5. ..., 0. 0. 0.]
[ 0. 0. 0. ..., 10. 0. 0.]
[ 0. 0. 0. ..., 16. 9. 0.]
...,
[ 0. 0. 1. ..., 6. 0. 0.]
[ 0. 0. 2. ..., 12. 0. 0.]
[ 0. 0. 10. ..., 12. 1. 0.]]

and digits.target gives the ground truth for the digit dataset, that is the number corresponding to each digit
image that we are trying to learn:

>>> digits.target
array([0, 1, 2, ..., 8, 9, 8])

Shape of the data arrays

The data is always a 2D array, shape (n_samples, n_features), although the original data may have had a
different shape. In the case of the digits, each original sample is an image of shape (8, 8) and can be accessed
using:

>>> digits.images[0]
array([[ 0., 0., 5., 13., 9., 1., 0., 0.],

[ 0., 0., 13., 15., 10., 15., 5., 0.],
[ 0., 3., 15., 2., 0., 11., 8., 0.],
[ 0., 4., 12., 0., 0., 8., 8., 0.],
[ 0., 5., 8., 0., 0., 9., 8., 0.],
[ 0., 4., 11., 0., 1., 12., 7., 0.],
[ 0., 2., 14., 5., 10., 12., 0., 0.],
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The simple example on this dataset illustrates how starting from the original problem one can shape the data for
consumption in scikit-learn.

Loading from external datasets

To load from an external dataset, please refer to loading external datasets.

2.1.3 Learning and predicting

In the case of the digits dataset, the task is to predict, given an image, which digit it represents. We are given samples
of each of the 10 possible classes (the digits zero through nine) on which we fit an estimator to be able to predict the
classes to which unseen samples belong.

In scikit-learn, an estimator for classification is a Python object that implements the methods fit(X, y) and
predict(T).

An example of an estimator is the class sklearn.svm.SVC that implements support vector classification. The
constructor of an estimator takes as arguments the parameters of the model, but for the time being, we will consider
the estimator as a black box:

>>> from sklearn import svm
>>> clf = svm.SVC(gamma=0.001, C=100.)

Choosing the parameters of the model

In this example we set the value of gamma manually. It is possible to automatically find good values for the
parameters by using tools such as grid search and cross validation.

We call our estimator instance clf, as it is a classifier. It now must be fitted to the model, that is, it must learn from
the model. This is done by passing our training set to the fit method. As a training set, let us use all the images of
our dataset apart from the last one. We select this training set with the [:-1] Python syntax, which produces a new
array that contains all but the last entry of digits.data:

>>> clf.fit(digits.data[:-1], digits.target[:-1])
SVC(C=100.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape='ovr', degree=3, gamma=0.001, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

Now you can predict new values, in particular, we can ask to the classifier what is the digit of our last image in the
digits dataset, which we have not used to train the classifier:

>>> clf.predict(digits.data[-1:])
array([8])
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The corresponding image is the following: As you can see, it is a challenging task: the
images are of poor resolution. Do you agree with the classifier?

A complete example of this classification problem is available as an example that you can run and study: Recognizing
hand-written digits.

2.1.4 Model persistence

It is possible to save a model in the scikit by using Python’s built-in persistence model, namely pickle:

>>> from sklearn import svm
>>> from sklearn import datasets
>>> clf = svm.SVC()
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> clf.fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> import pickle
>>> s = pickle.dumps(clf)
>>> clf2 = pickle.loads(s)
>>> clf2.predict(X[0:1])
array([0])
>>> y[0]
0

In the specific case of the scikit, it may be more interesting to use joblib’s replacement of pickle (joblib.dump &
joblib.load), which is more efficient on big data, but can only pickle to the disk and not to a string:

>>> from sklearn.externals import joblib
>>> joblib.dump(clf, 'filename.pkl')

Later you can load back the pickled model (possibly in another Python process) with:

>>> clf = joblib.load('filename.pkl')

Note: joblib.dump and joblib.load functions also accept file-like object instead of filenames. More infor-
mation on data persistence with Joblib is available here.

Note that pickle has some security and maintainability issues. Please refer to section Model persistence for more
detailed information about model persistence with scikit-learn.
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2.1.5 Conventions

scikit-learn estimators follow certain rules to make their behavior more predictive.

Type casting

Unless otherwise specified, input will be cast to float64:

>>> import numpy as np
>>> from sklearn import random_projection

>>> rng = np.random.RandomState(0)
>>> X = rng.rand(10, 2000)
>>> X = np.array(X, dtype='float32')
>>> X.dtype
dtype('float32')

>>> transformer = random_projection.GaussianRandomProjection()
>>> X_new = transformer.fit_transform(X)
>>> X_new.dtype
dtype('float64')

In this example, X is float32, which is cast to float64 by fit_transform(X).

Regression targets are cast to float64, classification targets are maintained:

>>> from sklearn import datasets
>>> from sklearn.svm import SVC
>>> iris = datasets.load_iris()
>>> clf = SVC()
>>> clf.fit(iris.data, iris.target)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> list(clf.predict(iris.data[:3]))
[0, 0, 0]

>>> clf.fit(iris.data, iris.target_names[iris.target])
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> list(clf.predict(iris.data[:3]))
['setosa', 'setosa', 'setosa']

Here, the first predict() returns an integer array, since iris.target (an integer array) was used in fit. The
second predict() returns a string array, since iris.target_names was for fitting.

Refitting and updating parameters

Hyper-parameters of an estimator can be updated after it has been constructed via the sklearn.pipeline.
Pipeline.set_params method. Calling fit() more than once will overwrite what was learned by any previous
fit():
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>>> import numpy as np
>>> from sklearn.svm import SVC

>>> rng = np.random.RandomState(0)
>>> X = rng.rand(100, 10)
>>> y = rng.binomial(1, 0.5, 100)
>>> X_test = rng.rand(5, 10)

>>> clf = SVC()
>>> clf.set_params(kernel='linear').fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> clf.predict(X_test)
array([1, 0, 1, 1, 0])

>>> clf.set_params(kernel='rbf').fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> clf.predict(X_test)
array([0, 0, 0, 1, 0])

Here, the default kernel rbf is first changed to linear after the estimator has been constructed via SVC(), and
changed back to rbf to refit the estimator and to make a second prediction.

Multiclass vs. multilabel fitting

When using multiclass classifiers, the learning and prediction task that is performed is dependent on the
format of the target data fit upon:

>>> from sklearn.svm import SVC
>>> from sklearn.multiclass import OneVsRestClassifier
>>> from sklearn.preprocessing import LabelBinarizer

>>> X = [[1, 2], [2, 4], [4, 5], [3, 2], [3, 1]]
>>> y = [0, 0, 1, 1, 2]

>>> classif = OneVsRestClassifier(estimator=SVC(random_state=0))
>>> classif.fit(X, y).predict(X)
array([0, 0, 1, 1, 2])

In the above case, the classifier is fit on a 1d array of multiclass labels and the predict() method therefore provides
corresponding multiclass predictions. It is also possible to fit upon a 2d array of binary label indicators:

>>> y = LabelBinarizer().fit_transform(y)
>>> classif.fit(X, y).predict(X)
array([[1, 0, 0],

[1, 0, 0],
[0, 1, 0],
[0, 0, 0],
[0, 0, 0]])

Here, the classifier is fit() on a 2d binary label representation of y, using the LabelBinarizer. In this case
predict() returns a 2d array representing the corresponding multilabel predictions.
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Note that the fourth and fifth instances returned all zeroes, indicating that they matched none of the three labels fit
upon. With multilabel outputs, it is similarly possible for an instance to be assigned multiple labels:

>> from sklearn.preprocessing import MultiLabelBinarizer
>> y = [[0, 1], [0, 2], [1, 3], [0, 2, 3], [2, 4]]
>> y = MultiLabelBinarizer().fit_transform(y)
>> classif.fit(X, y).predict(X)
array([[1, 1, 0, 0, 0],

[1, 0, 1, 0, 0],
[0, 1, 0, 1, 0],
[1, 0, 1, 1, 0],
[0, 0, 1, 0, 1]])

In this case, the classifier is fit upon instances each assigned multiple labels. The MultiLabelBinarizer is
used to binarize the 2d array of multilabels to fit upon. As a result, predict() returns a 2d array with multiple
predicted labels for each instance.

2.2 A tutorial on statistical-learning for scientific data processing

Statistical learning

Machine learning is a technique with a growing importance, as the size of the datasets experimental sciences are fac-
ing is rapidly growing. Problems it tackles range from building a prediction function linking different observations,
to classifying observations, or learning the structure in an unlabeled dataset.

This tutorial will explore statistical learning, the use of machine learning techniques with the goal of statistical
inference: drawing conclusions on the data at hand.

Scikit-learn is a Python module integrating classic machine learning algorithms in the tightly-knit world of scientific
Python packages (NumPy, SciPy, matplotlib).

2.2.1 Statistical learning: the setting and the estimator object in scikit-learn

Datasets

Scikit-learn deals with learning information from one or more datasets that are represented as 2D arrays. They can be
understood as a list of multi-dimensional observations. We say that the first axis of these arrays is the samples axis,
while the second is the features axis.

A simple example shipped with the scikit: iris dataset

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> data = iris.data
>>> data.shape
(150, 4)

It is made of 150 observations of irises, each described by 4 features: their sepal and petal length and width, as
detailed in iris.DESCR.
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When the data is not initially in the (n_samples, n_features) shape, it needs to be preprocessed in order to
be used by scikit-learn.

An example of reshaping data would be the digits dataset

The digits dataset is made of 1797 8x8 images of hand-written digits

>>> digits = datasets.load_digits()
>>> digits.images.shape
(1797, 8, 8)
>>> import matplotlib.pyplot as plt
>>> plt.imshow(digits.images[-1], cmap=plt.cm.gray_r)
<matplotlib.image.AxesImage object at ...>

To use this dataset with the scikit, we transform each 8x8 image into a feature vector of length 64

>>> data = digits.images.reshape((digits.images.shape[0], -1))

Estimators objects

Fitting data: the main API implemented by scikit-learn is that of the estimator. An estimator is any object that learns
from data; it may be a classification, regression or clustering algorithm or a transformer that extracts/filters useful
features from raw data.

All estimator objects expose a fit method that takes a dataset (usually a 2-d array):

>>> estimator.fit(data)

Estimator parameters: All the parameters of an estimator can be set when it is instantiated or by modifying the
corresponding attribute:

>>> estimator = Estimator(param1=1, param2=2)
>>> estimator.param1
1

Estimated parameters: When data is fitted with an estimator, parameters are estimated from the data at hand. All the
estimated parameters are attributes of the estimator object ending by an underscore:

>>> estimator.estimated_param_

114 Chapter 2. scikit-learn Tutorials

../../auto_examples/datasets/plot_digits_last_image.html


scikit-learn user guide, Release 0.19.1

2.2.2 Supervised learning: predicting an output variable from high-dimensional ob-
servations

The problem solved in supervised learning

Supervised learning consists in learning the link between two datasets: the observed data X and an external variable
y that we are trying to predict, usually called “target” or “labels”. Most often, y is a 1D array of length n_samples.

All supervised estimators in scikit-learn implement a fit(X, y) method to fit the model and a predict(X)
method that, given unlabeled observations X, returns the predicted labels y.

Vocabulary: classification and regression

If the prediction task is to classify the observations in a set of finite labels, in other words to “name” the objects
observed, the task is said to be a classification task. On the other hand, if the goal is to predict a continuous target
variable, it is said to be a regression task.

When doing classification in scikit-learn, y is a vector of integers or strings.

Note: See the Introduction to machine learning with scikit-learn Tutorial for a quick run-through on the basic
machine learning vocabulary used within scikit-learn.

Nearest neighbor and the curse of dimensionality

Classifying irises:
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The iris dataset is a
classification task consisting in identifying 3 different types of irises (Setosa, Versicolour, and Virginica) from their
petal and sepal length and width:

>>> import numpy as np
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> iris_X = iris.data
>>> iris_y = iris.target
>>> np.unique(iris_y)
array([0, 1, 2])

k-Nearest neighbors classifier

The simplest possible classifier is the nearest neighbor: given a new observation X_test, find in the training set (i.e.
the data used to train the estimator) the observation with the closest feature vector. (Please see the Nearest Neighbors
section of the online Scikit-learn documentation for more information about this type of classifier.)

Training set and testing set

While experimenting with any learning algorithm, it is important not to test the prediction of an estimator on the
data used to fit the estimator as this would not be evaluating the performance of the estimator on new data. This is
why datasets are often split into train and test data.
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KNN (k nearest neighbors) classification example:

>>> # Split iris data in train and test data
>>> # A random permutation, to split the data randomly
>>> np.random.seed(0)
>>> indices = np.random.permutation(len(iris_X))
>>> iris_X_train = iris_X[indices[:-10]]
>>> iris_y_train = iris_y[indices[:-10]]
>>> iris_X_test = iris_X[indices[-10:]]
>>> iris_y_test = iris_y[indices[-10:]]
>>> # Create and fit a nearest-neighbor classifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> knn = KNeighborsClassifier()
>>> knn.fit(iris_X_train, iris_y_train)
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',

metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='uniform')

>>> knn.predict(iris_X_test)
array([1, 2, 1, 0, 0, 0, 2, 1, 2, 0])
>>> iris_y_test
array([1, 1, 1, 0, 0, 0, 2, 1, 2, 0])

The curse of dimensionality

For an estimator to be effective, you need the distance between neighboring points to be less than some value 𝑑, which
depends on the problem. In one dimension, this requires on average 𝑛 ∼ 1/𝑑 points. In the context of the above 𝑘-NN
example, if the data is described by just one feature with values ranging from 0 to 1 and with 𝑛 training observations,
then new data will be no further away than 1/𝑛. Therefore, the nearest neighbor decision rule will be efficient as soon
as 1/𝑛 is small compared to the scale of between-class feature variations.

If the number of features is 𝑝, you now require 𝑛 ∼ 1/𝑑𝑝 points. Let’s say that we require 10 points in one dimension:
now 10𝑝 points are required in 𝑝 dimensions to pave the [0, 1] space. As 𝑝 becomes large, the number of training points
required for a good estimator grows exponentially.

For example, if each point is just a single number (8 bytes), then an effective 𝑘-NN estimator in a paltry 𝑝 ∼ 20
dimensions would require more training data than the current estimated size of the entire internet (±1000 Exabytes or
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so).

This is called the curse of dimensionality and is a core problem that machine learning addresses.

Linear model: from regression to sparsity

Diabetes dataset

The diabetes dataset consists of 10 physiological variables (age, sex, weight, blood pressure) measure on 442
patients, and an indication of disease progression after one year:

>>> diabetes = datasets.load_diabetes()
>>> diabetes_X_train = diabetes.data[:-20]
>>> diabetes_X_test = diabetes.data[-20:]
>>> diabetes_y_train = diabetes.target[:-20]
>>> diabetes_y_test = diabetes.target[-20:]

The task at hand is to predict disease progression from physiological variables.

Linear regression

LinearRegression, in its simplest form, fits a linear model to the data set by adjusting a set
of parameters in order to make the sum of the squared residuals of the model as small as possible.

Linear models: 𝑦 = 𝑋𝛽 + 𝜖

• 𝑋: data

• 𝑦: target variable

• 𝛽: Coefficients

• 𝜖: Observation noise

>>> from sklearn import linear_model
>>> regr = linear_model.LinearRegression()
>>> regr.fit(diabetes_X_train, diabetes_y_train)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
>>> print(regr.coef_)
[ 0.30349955 -237.63931533 510.53060544 327.73698041 -814.13170937

492.81458798 102.84845219 184.60648906 743.51961675 76.09517222]

>>> # The mean square error
>>> np.mean((regr.predict(diabetes_X_test)-diabetes_y_test)**2)
2004.56760268...
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>>> # Explained variance score: 1 is perfect prediction
>>> # and 0 means that there is no linear relationship
>>> # between X and y.
>>> regr.score(diabetes_X_test, diabetes_y_test)
0.5850753022690...

Shrinkage

If there are few data points per dimension, noise in the observations induces high variance:

>>> X = np.c_[ .5, 1].T
>>> y = [.5, 1]
>>> test = np.c_[ 0, 2].T
>>> regr = linear_model.LinearRegression()

>>> import matplotlib.pyplot as plt
>>> plt.figure()

>>> np.random.seed(0)
>>> for _ in range(6):
... this_X = .1*np.random.normal(size=(2, 1)) + X
... regr.fit(this_X, y)
... plt.plot(test, regr.predict(test))
... plt.scatter(this_X, y, s=3)

A solution in high-dimensional statistical learning is to shrink the regression coefficients to zero: any
two randomly chosen set of observations are likely to be uncorrelated. This is called Ridge regression:
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>>> regr = linear_model.Ridge(alpha=.1)

>>> plt.figure()

>>> np.random.seed(0)
>>> for _ in range(6):
... this_X = .1*np.random.normal(size=(2, 1)) + X
... regr.fit(this_X, y)
... plt.plot(test, regr.predict(test))
... plt.scatter(this_X, y, s=3)

This is an example of bias/variance tradeoff: the larger the ridge alpha parameter, the higher the bias and the lower
the variance.

We can choose alpha to minimize left out error, this time using the diabetes dataset rather than our synthetic data:

>>> alphas = np.logspace(-4, -1, 6)
>>> from __future__ import print_function
>>> print([regr.set_params(alpha=alpha
... ).fit(diabetes_X_train, diabetes_y_train,
... ).score(diabetes_X_test, diabetes_y_test) for alpha in alphas])
[0.5851110683883..., 0.5852073015444..., 0.5854677540698..., 0.5855512036503..., 0.
→˓5830717085554..., 0.57058999437...]

Note: Capturing in the fitted parameters noise that prevents the model to generalize to new data is called overfitting.
The bias introduced by the ridge regression is called a regularization.

Sparsity

Fitting only features 1 and 2
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Note: A representation of the full diabetes dataset would involve 11 dimensions (10 feature dimensions and one of
the target variable). It is hard to develop an intuition on such representation, but it may be useful to keep in mind that
it would be a fairly empty space.

We can see that, although feature 2 has a strong coefficient on the full model, it conveys little information on y when
considered with feature 1.

To improve the conditioning of the problem (i.e. mitigating the The curse of dimensionality), it would be interesting
to select only the informative features and set non-informative ones, like feature 2 to 0. Ridge regression will decrease
their contribution, but not set them to zero. Another penalization approach, called Lasso (least absolute shrinkage and
selection operator), can set some coefficients to zero. Such methods are called sparse method and sparsity can be
seen as an application of Occam’s razor: prefer simpler models.

>>> regr = linear_model.Lasso()
>>> scores = [regr.set_params(alpha=alpha
... ).fit(diabetes_X_train, diabetes_y_train
... ).score(diabetes_X_test, diabetes_y_test)
... for alpha in alphas]
>>> best_alpha = alphas[scores.index(max(scores))]
>>> regr.alpha = best_alpha
>>> regr.fit(diabetes_X_train, diabetes_y_train)
Lasso(alpha=0.025118864315095794, copy_X=True, fit_intercept=True,

max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

>>> print(regr.coef_)
[ 0. -212.43764548 517.19478111 313.77959962 -160.8303982 -0.
-187.19554705 69.38229038 508.66011217 71.84239008]
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Different algorithms for the same problem

Different algorithms can be used to solve the same mathematical problem. For instance the Lasso object in scikit-
learn solves the lasso regression problem using a coordinate descent method, that is efficient on large datasets.
However, scikit-learn also provides the LassoLars object using the LARS algorithm, which is very efficient for
problems in which the weight vector estimated is very sparse (i.e. problems with very few observations).

Classification

For classification, as in the labeling iris task, linear regression is not
the right approach as it will give too much weight to data far from the decision frontier. A linear approach is to fit a
sigmoid function or logistic function:

𝑦 = sigmoid(𝑋𝛽 − offset) + 𝜖 =
1

1 + exp(−𝑋𝛽 + offset)
+ 𝜖

>>> logistic = linear_model.LogisticRegression(C=1e5)
>>> logistic.fit(iris_X_train, iris_y_train)
LogisticRegression(C=100000.0, class_weight=None, dual=False,

fit_intercept=True, intercept_scaling=1, max_iter=100,
multi_class='ovr', n_jobs=1, penalty='l2', random_state=None,
solver='liblinear', tol=0.0001, verbose=0, warm_start=False)

This is known as LogisticRegression.
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Multiclass classification

If you have several classes to predict, an option often used is to fit one-versus-all classifiers and then use a voting
heuristic for the final decision.

Shrinkage and sparsity with logistic regression

The C parameter controls the amount of regularization in the LogisticRegression object: a large value
for C results in less regularization. penalty="l2" gives Shrinkage (i.e. non-sparse coefficients), while
penalty="l1" gives Sparsity.

Exercise

Try classifying the digits dataset with nearest neighbors and a linear model. Leave out the last 10% and test
prediction performance on these observations.

from sklearn import datasets, neighbors, linear_model

digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target

Solution: ../../auto_examples/exercises/plot_digits_classification_exercise.py

Support vector machines (SVMs)

Linear SVMs

Support Vector Machines belong to the discriminant model family: they try to find a combination of samples to build
a plane maximizing the margin between the two classes. Regularization is set by the C parameter: a small value for C
means the margin is calculated using many or all of the observations around the separating line (more regularization);
a large value for C means the margin is calculated on observations close to the separating line (less regularization).

Unregularized SVM Regularized SVM (default)
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Example:

• Plot different SVM classifiers in the iris dataset

SVMs can be used in regression –SVR (Support Vector Regression)–, or in classification –SVC (Support Vector Clas-
sification).

>>> from sklearn import svm
>>> svc = svm.SVC(kernel='linear')
>>> svc.fit(iris_X_train, iris_y_train)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

Warning: Normalizing data

For many estimators, including the SVMs, having datasets with unit standard deviation for each feature is important
to get good prediction.

Using kernels

Classes are not always linearly separable in feature space. The solution is to build a decision function that is not linear
but may be polynomial instead. This is done using the kernel trick that can be seen as creating a decision energy by
positioning kernels on observations:

Linear kernel Polynomial kernel

>>> svc = svm.SVC(kernel='linear') >>> svc = svm.SVC(kernel='poly',
... degree=3)
>>> # degree: polynomial degree
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RBF kernel (Radial Basis Function)

>>> svc = svm.SVC(kernel='rbf')
>>> # gamma: inverse of size of
>>> # radial kernel

Interactive example

See the SVM GUI to download svm_gui.py; add data points of both classes with right and left button, fit the
model and change parameters and data.
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Exercise

Try classifying classes 1 and 2 from the iris dataset with SVMs, with the 2 first features. Leave out 10% of each
class and test prediction performance on these observations.

Warning: the classes are ordered, do not leave out the last 10%, you would be testing on only one class.

Hint: You can use the decision_function method on a grid to get intuitions.

iris = datasets.load_iris()
X = iris.data
y = iris.target

X = X[y != 0, :2]
y = y[y != 0]

Solution: ../../auto_examples/exercises/plot_iris_exercise.py

2.2.3 Model selection: choosing estimators and their parameters

Score, and cross-validated scores

As we have seen, every estimator exposes a score method that can judge the quality of the fit (or the prediction) on
new data. Bigger is better.

>>> from sklearn import datasets, svm
>>> digits = datasets.load_digits()
>>> X_digits = digits.data
>>> y_digits = digits.target
>>> svc = svm.SVC(C=1, kernel='linear')
>>> svc.fit(X_digits[:-100], y_digits[:-100]).score(X_digits[-100:], y_digits[-100:])
0.97999999999999998

To get a better measure of prediction accuracy (which we can use as a proxy for goodness of fit of the model), we can
successively split the data in folds that we use for training and testing:

>>> import numpy as np
>>> X_folds = np.array_split(X_digits, 3)
>>> y_folds = np.array_split(y_digits, 3)
>>> scores = list()
>>> for k in range(3):
... # We use 'list' to copy, in order to 'pop' later on
... X_train = list(X_folds)
... X_test = X_train.pop(k)
... X_train = np.concatenate(X_train)
... y_train = list(y_folds)
... y_test = y_train.pop(k)
... y_train = np.concatenate(y_train)
... scores.append(svc.fit(X_train, y_train).score(X_test, y_test))
>>> print(scores)
[0.93489148580968284, 0.95659432387312182, 0.93989983305509184]

This is called a KFold cross-validation.
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Cross-validation generators

Scikit-learn has a collection of classes which can be used to generate lists of train/test indices for popular cross-
validation strategies.

They expose a split method which accepts the input dataset to be split and yields the train/test set indices for each
iteration of the chosen cross-validation strategy.

This example shows an example usage of the split method.

>>> from sklearn.model_selection import KFold, cross_val_score
>>> X = ["a", "a", "b", "c", "c", "c"]
>>> k_fold = KFold(n_splits=3)
>>> for train_indices, test_indices in k_fold.split(X):
... print('Train: %s | test: %s' % (train_indices, test_indices))
Train: [2 3 4 5] | test: [0 1]
Train: [0 1 4 5] | test: [2 3]
Train: [0 1 2 3] | test: [4 5]

The cross-validation can then be performed easily:

>>> [svc.fit(X_digits[train], y_digits[train]).score(X_digits[test], y_digits[test])
... for train, test in k_fold.split(X_digits)]
[0.93489148580968284, 0.95659432387312182, 0.93989983305509184]

The cross-validation score can be directly calculated using the cross_val_score helper. Given an estimator, the
cross-validation object and the input dataset, the cross_val_score splits the data repeatedly into a training and a
testing set, trains the estimator using the training set and computes the scores based on the testing set for each iteration
of cross-validation.

By default the estimator’s score method is used to compute the individual scores.

Refer the metrics module to learn more on the available scoring methods.

>>> cross_val_score(svc, X_digits, y_digits, cv=k_fold, n_jobs=-1)
array([ 0.93489149, 0.95659432, 0.93989983])

n_jobs=-1 means that the computation will be dispatched on all the CPUs of the computer.

Alternatively, the scoring argument can be provided to specify an alternative scoring method.

>>> cross_val_score(svc, X_digits, y_digits, cv=k_fold,
... scoring='precision_macro')
array([ 0.93969761, 0.95911415, 0.94041254])

Cross-validation generators

KFold (n_splits, shuffle, ran-
dom_state)

StratifiedKFold (n_splits,
shuffle, random_state)

GroupKFold (n_splits)

Splits it into K folds, trains on K-1
and then tests on the left-out.

Same as K-Fold but preserves the
class distribution within each fold.

Ensures that the same group is not in
both testing and training sets.

ShuffleSplit (n_splits,
test_size, train_size, ran-
dom_state)

StratifiedShuffleSplit GroupShuffleSplit

Generates train/test indices based
on random permutation.

Same as shuffle split but preserves the
class distribution within each iteration.

Ensures that the same group is not
in both testing and training sets.
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LeaveOneGroupOut () LeavePGroupsOut (n_groups) LeaveOneOut ()
Takes a group array to group observations. Leave P groups out. Leave one observation out.

LeavePOut (p) PredefinedSplit
Leave P observations out. Generates train/test indices based on predefined splits.

Exercise

On the digits dataset, plot the cross-validation
score of a SVC estimator with an linear kernel as a function of parameter C (use a logarithmic grid of points,
from 1 to 10).

import numpy as np
from sklearn.model_selection import cross_val_score
from sklearn import datasets, svm

digits = datasets.load_digits()
X = digits.data
y = digits.target

svc = svm.SVC(kernel='linear')
C_s = np.logspace(-10, 0, 10)

Solution: Cross-validation on Digits Dataset Exercise

Grid-search and cross-validated estimators

Grid-search

scikit-learn provides an object that, given data, computes the score during the fit of an estimator on a parameter grid and
chooses the parameters to maximize the cross-validation score. This object takes an estimator during the construction
and exposes an estimator API:

>>> from sklearn.model_selection import GridSearchCV, cross_val_score
>>> Cs = np.logspace(-6, -1, 10)
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>>> clf = GridSearchCV(estimator=svc, param_grid=dict(C=Cs),
... n_jobs=-1)
>>> clf.fit(X_digits[:1000], y_digits[:1000])
GridSearchCV(cv=None,...
>>> clf.best_score_
0.925...
>>> clf.best_estimator_.C
0.0077...

>>> # Prediction performance on test set is not as good as on train set
>>> clf.score(X_digits[1000:], y_digits[1000:])
0.943...

By default, the GridSearchCV uses a 3-fold cross-validation. However, if it detects that a classifier is passed, rather
than a regressor, it uses a stratified 3-fold.

Nested cross-validation

>>> cross_val_score(clf, X_digits, y_digits)
...
array([ 0.938..., 0.963..., 0.944...])

Two cross-validation loops are performed in parallel: one by the GridSearchCV estimator to set gamma and the
other one by cross_val_score to measure the prediction performance of the estimator. The resulting scores
are unbiased estimates of the prediction score on new data.

Warning: You cannot nest objects with parallel computing (n_jobs different than 1).

Cross-validated estimators

Cross-validation to set a parameter can be done more efficiently on an algorithm-by-algorithm basis. This is why, for
certain estimators, scikit-learn exposes Cross-validation: evaluating estimator performance estimators that set their
parameter automatically by cross-validation:

>>> from sklearn import linear_model, datasets
>>> lasso = linear_model.LassoCV()
>>> diabetes = datasets.load_diabetes()
>>> X_diabetes = diabetes.data
>>> y_diabetes = diabetes.target
>>> lasso.fit(X_diabetes, y_diabetes)
LassoCV(alphas=None, copy_X=True, cv=None, eps=0.001, fit_intercept=True,

max_iter=1000, n_alphas=100, n_jobs=1, normalize=False, positive=False,
precompute='auto', random_state=None, selection='cyclic', tol=0.0001,
verbose=False)

>>> # The estimator chose automatically its lambda:
>>> lasso.alpha_
0.01229...

These estimators are called similarly to their counterparts, with ‘CV’ appended to their name.
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Exercise

On the diabetes dataset, find the optimal regularization parameter alpha.

Bonus: How much can you trust the selection of alpha?

from sklearn import datasets
from sklearn.linear_model import LassoCV
from sklearn.linear_model import Lasso
from sklearn.model_selection import KFold
from sklearn.model_selection import GridSearchCV

diabetes = datasets.load_diabetes()

Solution: Cross-validation on diabetes Dataset Exercise

2.2.4 Unsupervised learning: seeking representations of the data

Clustering: grouping observations together

The problem solved in clustering

Given the iris dataset, if we knew that there were 3 types of iris, but did not have access to a taxonomist to label
them: we could try a clustering task: split the observations into well-separated group called clusters.

K-means clustering

Note that there exist a lot of different clustering criteria and associated algorithms. The simplest clustering algorithm

is K-means.

>>> from sklearn import cluster, datasets
>>> iris = datasets.load_iris()
>>> X_iris = iris.data
>>> y_iris = iris.target

>>> k_means = cluster.KMeans(n_clusters=3)
>>> k_means.fit(X_iris)
KMeans(algorithm='auto', copy_x=True, init='k-means++', ...
>>> print(k_means.labels_[::10])
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[1 1 1 1 1 0 0 0 0 0 2 2 2 2 2]
>>> print(y_iris[::10])
[0 0 0 0 0 1 1 1 1 1 2 2 2 2 2]

Warning: There is absolutely no guarantee of recovering a ground truth. First, choosing the right number of
clusters is hard. Second, the algorithm is sensitive to initialization, and can fall into local minima, although scikit-
learn employs several tricks to mitigate this issue.

Bad initialization 8 clusters Ground truth

Don’t over-interpret clustering results

Application example: vector quantization

Clustering in general and KMeans, in particular, can be seen as a way of choosing a small number of exemplars to
compress the information. The problem is sometimes known as vector quantization. For instance, this can be used
to posterize an image:

>>> import scipy as sp
>>> try:
... face = sp.face(gray=True)
... except AttributeError:
... from scipy import misc
... face = misc.face(gray=True)
>>> X = face.reshape((-1, 1)) # We need an (n_sample, n_feature) array
>>> k_means = cluster.KMeans(n_clusters=5, n_init=1)
>>> k_means.fit(X)
KMeans(algorithm='auto', copy_x=True, init='k-means++', ...
>>> values = k_means.cluster_centers_.squeeze()
>>> labels = k_means.labels_
>>> face_compressed = np.choose(labels, values)
>>> face_compressed.shape = face.shape

Raw image K-means quantization Equal bins Image histogram
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Hierarchical agglomerative clustering: Ward

A Hierarchical clustering method is a type of cluster analysis that aims to build a hierarchy of clusters. In general, the
various approaches of this technique are either:

• Agglomerative - bottom-up approaches: each observation starts in its own cluster, and clusters are iteratively
merged in such a way to minimize a linkage criterion. This approach is particularly interesting when the clus-
ters of interest are made of only a few observations. When the number of clusters is large, it is much more
computationally efficient than k-means.

• Divisive - top-down approaches: all observations start in one cluster, which is iteratively split as one moves
down the hierarchy. For estimating large numbers of clusters, this approach is both slow (due to all observations
starting as one cluster, which it splits recursively) and statistically ill-posed.

Connectivity-constrained clustering

With agglomerative clustering, it is possible to specify which samples can be clustered together by giving a connec-
tivity graph. Graphs in the scikit are represented by their adjacency matrix. Often, a sparse matrix is used. This
can be useful, for instance, to retrieve connected regions (sometimes also referred to as connected components) when

clustering an image:

import matplotlib.pyplot as plt

from sklearn.feature_extraction.image import grid_to_graph
from sklearn.cluster import AgglomerativeClustering

# #############################################################################
# Generate data
try: # SciPy >= 0.16 have face in misc

from scipy.misc import face
face = face(gray=True)

except ImportError:
face = sp.face(gray=True)

# Resize it to 10% of the original size to speed up the processing
face = sp.misc.imresize(face, 0.10) / 255.

X = np.reshape(face, (-1, 1))

# #############################################################################
# Define the structure A of the data. Pixels connected to their neighbors.
connectivity = grid_to_graph(*face.shape)
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# #############################################################################

Feature agglomeration

We have seen that sparsity could be used to mitigate the curse of dimensionality, i.e an insufficient amount of ob-
servations compared to the number of features. Another approach is to merge together similar features: feature
agglomeration. This approach can be implemented by clustering in the feature direction, in other words clustering

the transposed data.

>>> digits = datasets.load_digits()
>>> images = digits.images
>>> X = np.reshape(images, (len(images), -1))
>>> connectivity = grid_to_graph(*images[0].shape)

>>> agglo = cluster.FeatureAgglomeration(connectivity=connectivity,
... n_clusters=32)
>>> agglo.fit(X)
FeatureAgglomeration(affinity='euclidean', compute_full_tree='auto',...
>>> X_reduced = agglo.transform(X)

>>> X_approx = agglo.inverse_transform(X_reduced)
>>> images_approx = np.reshape(X_approx, images.shape)

transform and inverse_transform methods

Some estimators expose a transform method, for instance to reduce the dimensionality of the dataset.

Decompositions: from a signal to components and loadings

Components and loadings

If X is our multivariate data, then the problem that we are trying to solve is to rewrite it on a different observational
basis: we want to learn loadings L and a set of components C such that X = L C. Different criteria exist to choose
the components
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Principal component analysis: PCA

Principal component analysis (PCA) selects the successive components that explain the maximum variance in the
signal.

The point cloud spanned by the observations above is very flat in one direction: one of the three univariate features
can almost be exactly computed using the other two. PCA finds the directions in which the data is not flat

When used to transform data, PCA can reduce the dimensionality of the data by projecting on a principal subspace.

>>> # Create a signal with only 2 useful dimensions
>>> x1 = np.random.normal(size=100)
>>> x2 = np.random.normal(size=100)
>>> x3 = x1 + x2
>>> X = np.c_[x1, x2, x3]

>>> from sklearn import decomposition
>>> pca = decomposition.PCA()
>>> pca.fit(X)
PCA(copy=True, iterated_power='auto', n_components=None, random_state=None,

svd_solver='auto', tol=0.0, whiten=False)
>>> print(pca.explained_variance_)
[ 2.18565811e+00 1.19346747e+00 8.43026679e-32]

>>> # As we can see, only the 2 first components are useful
>>> pca.n_components = 2
>>> X_reduced = pca.fit_transform(X)
>>> X_reduced.shape
(100, 2)

Independent Component Analysis: ICA

Independent component analysis (ICA) selects components so that the distribution of their loadings carries
a maximum amount of independent information. It is able to recover non-Gaussian independent signals:
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>>> # Generate sample data
>>> import numpy as np
>>> from scipy import signal
>>> time = np.linspace(0, 10, 2000)
>>> s1 = np.sin(2 * time) # Signal 1 : sinusoidal signal
>>> s2 = np.sign(np.sin(3 * time)) # Signal 2 : square signal
>>> s3 = signal.sawtooth(2 * np.pi * time) # Signal 3: saw tooth signal
>>> S = np.c_[s1, s2, s3]
>>> S += 0.2 * np.random.normal(size=S.shape) # Add noise
>>> S /= S.std(axis=0) # Standardize data
>>> # Mix data
>>> A = np.array([[1, 1, 1], [0.5, 2, 1], [1.5, 1, 2]]) # Mixing matrix
>>> X = np.dot(S, A.T) # Generate observations

>>> # Compute ICA
>>> ica = decomposition.FastICA()
>>> S_ = ica.fit_transform(X) # Get the estimated sources
>>> A_ = ica.mixing_.T
>>> np.allclose(X, np.dot(S_, A_) + ica.mean_)
True
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2.2.5 Putting it all together

Pipelining

We have seen that some estimators can transform data and that some estimators can predict variables. We can also

create combined estimators:

import numpy as np
import matplotlib.pyplot as plt

from sklearn import linear_model, decomposition, datasets
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV

logistic = linear_model.LogisticRegression()

pca = decomposition.PCA()
pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)])

digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target

# Plot the PCA spectrum
pca.fit(X_digits)

plt.figure(1, figsize=(4, 3))
plt.clf()
plt.axes([.2, .2, .7, .7])
plt.plot(pca.explained_variance_, linewidth=2)
plt.axis('tight')
plt.xlabel('n_components')
plt.ylabel('explained_variance_')

# Prediction
n_components = [20, 40, 64]
Cs = np.logspace(-4, 4, 3)

# Parameters of pipelines can be set using ‘__’ separated parameter names:
estimator = GridSearchCV(pipe,

dict(pca__n_components=n_components,
logistic__C=Cs))

estimator.fit(X_digits, y_digits)

plt.axvline(estimator.best_estimator_.named_steps['pca'].n_components,
linestyle=':', label='n_components chosen')
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plt.legend(prop=dict(size=12))
plt.show()

Face recognition with eigenfaces

The dataset used in this example is a preprocessed excerpt of the “Labeled Faces in the Wild”, also known as LFW:

http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)

"""
===================================================
Faces recognition example using eigenfaces and SVMs
===================================================

The dataset used in this example is a preprocessed excerpt of the
"Labeled Faces in the Wild", aka LFW_:

http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)

.. _LFW: http://vis-www.cs.umass.edu/lfw/

Expected results for the top 5 most represented people in the dataset:

================== ============ ======= ========== =======
precision recall f1-score support

================== ============ ======= ========== =======
Ariel Sharon 0.67 0.92 0.77 13
Colin Powell 0.75 0.78 0.76 60

Donald Rumsfeld 0.78 0.67 0.72 27
George W Bush 0.86 0.86 0.86 146

Gerhard Schroeder 0.76 0.76 0.76 25
Hugo Chavez 0.67 0.67 0.67 15
Tony Blair 0.81 0.69 0.75 36

avg / total 0.80 0.80 0.80 322
================== ============ ======= ========== =======

"""
from __future__ import print_function

from time import time
import logging
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_lfw_people
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.decomposition import PCA
from sklearn.svm import SVC

print(__doc__)

# Display progress logs on stdout
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
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# #############################################################################
# Download the data, if not already on disk and load it as numpy arrays

lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

# introspect the images arrays to find the shapes (for plotting)
n_samples, h, w = lfw_people.images.shape

# for machine learning we use the 2 data directly (as relative pixel
# positions info is ignored by this model)
X = lfw_people.data
n_features = X.shape[1]

# the label to predict is the id of the person
y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0]

print("Total dataset size:")
print("n_samples: %d" % n_samples)
print("n_features: %d" % n_features)
print("n_classes: %d" % n_classes)

# #############################################################################
# Split into a training set and a test set using a stratified k fold

# split into a training and testing set
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.25, random_state=42)

# #############################################################################
# Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
# dataset): unsupervised feature extraction / dimensionality reduction
n_components = 150

print("Extracting the top %d eigenfaces from %d faces"
% (n_components, X_train.shape[0]))

t0 = time()
pca = PCA(n_components=n_components, svd_solver='randomized',

whiten=True).fit(X_train)
print("done in %0.3fs" % (time() - t0))

eigenfaces = pca.components_.reshape((n_components, h, w))

print("Projecting the input data on the eigenfaces orthonormal basis")
t0 = time()
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
print("done in %0.3fs" % (time() - t0))

# #############################################################################
# Train a SVM classification model
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print("Fitting the classifier to the training set")
t0 = time()
param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],

'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)
clf = clf.fit(X_train_pca, y_train)
print("done in %0.3fs" % (time() - t0))
print("Best estimator found by grid search:")
print(clf.best_estimator_)

# #############################################################################
# Quantitative evaluation of the model quality on the test set

print("Predicting people's names on the test set")
t0 = time()
y_pred = clf.predict(X_test_pca)
print("done in %0.3fs" % (time() - t0))

print(classification_report(y_test, y_pred, target_names=target_names))
print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))

# #############################################################################
# Qualitative evaluation of the predictions using matplotlib

def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
"""Helper function to plot a gallery of portraits"""
plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
for i in range(n_row * n_col):

plt.subplot(n_row, n_col, i + 1)
plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
plt.title(titles[i], size=12)
plt.xticks(())
plt.yticks(())

# plot the result of the prediction on a portion of the test set

def title(y_pred, y_test, target_names, i):
pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
return 'predicted: %s\ntrue: %s' % (pred_name, true_name)

prediction_titles = [title(y_pred, y_test, target_names, i)
for i in range(y_pred.shape[0])]

plot_gallery(X_test, prediction_titles, h, w)

# plot the gallery of the most significative eigenfaces

eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
plot_gallery(eigenfaces, eigenface_titles, h, w)

plt.show()
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Prediction Eigenfaces

Expected results for the top 5 most represented people in the dataset:

precision recall f1-score support

Gerhard_Schroeder 0.91 0.75 0.82 28
Donald_Rumsfeld 0.84 0.82 0.83 33

Tony_Blair 0.65 0.82 0.73 34
Colin_Powell 0.78 0.88 0.83 58

George_W_Bush 0.93 0.86 0.90 129

avg / total 0.86 0.84 0.85 282

Open problem: Stock Market Structure

Can we predict the variation in stock prices for Google over a given time frame?

Learning a graph structure

2.2.6 Finding help

The project mailing list

If you encounter a bug with scikit-learn or something that needs clarification in the docstring or the online
documentation, please feel free to ask on the Mailing List

Q&A communities with Machine Learning practitioners

Quora.com Quora has a topic for Machine Learning related questions that also features some
interesting discussions: https://www.quora.com/topic/Machine-Learning
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Stack Exchange The Stack Exchange family of sites hosts multiple subdomains for Machine
Learning questions.

– _’An excellent free online course for Machine Learning taught by Professor Andrew Ng of Stanford’: https://www.
coursera.org/learn/machine-learning

– _’Another excellent free online course that takes a more general approach to Artificial Intelligence’:
https://www.udacity.com/course/intro-to-artificial-intelligence–cs271

2.3 Working With Text Data

The goal of this guide is to explore some of the main scikit-learn tools on a single practical task: analysing a
collection of text documents (newsgroups posts) on twenty different topics.

In this section we will see how to:

• load the file contents and the categories

• extract feature vectors suitable for machine learning

• train a linear model to perform categorization

• use a grid search strategy to find a good configuration of both the feature extraction components and the classifier

2.3.1 Tutorial setup

To get started with this tutorial, you firstly must have the scikit-learn and all of its required dependencies installed.

Please refer to the installation instructions page for more information and for per-system instructions.

The source of this tutorial can be found within your scikit-learn folder:

scikit-learn/doc/tutorial/text_analytics/

The tutorial folder, should contain the following folders:

• *.rst files - the source of the tutorial document written with sphinx

• data - folder to put the datasets used during the tutorial

• skeletons - sample incomplete scripts for the exercises

• solutions - solutions of the exercises

You can already copy the skeletons into a new folder somewhere on your hard-drive named
sklearn_tut_workspace where you will edit your own files for the exercises while keeping the original
skeletons intact:

% cp -r skeletons work_directory/sklearn_tut_workspace

Machine Learning algorithms need data. Go to each $TUTORIAL_HOME/data sub-folder and run the
fetch_data.py script from there (after having read them first).

For instance:

% cd $TUTORIAL_HOME/data/languages
% less fetch_data.py
% python fetch_data.py
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2.3.2 Loading the 20 newsgroups dataset

The dataset is called “Twenty Newsgroups”. Here is the official description, quoted from the website:

The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup documents, partitioned
(nearly) evenly across 20 different newsgroups. To the best of our knowledge, it was originally collected
by Ken Lang, probably for his paper “Newsweeder: Learning to filter netnews,” though he does not explic-
itly mention this collection. The 20 newsgroups collection has become a popular data set for experiments
in text applications of machine learning techniques, such as text classification and text clustering.

In the following we will use the built-in dataset loader for 20 newsgroups from scikit-learn. Alternatively, it is possible
to download the dataset manually from the web-site and use the sklearn.datasets.load_files function by
pointing it to the 20news-bydate-train subfolder of the uncompressed archive folder.

In order to get faster execution times for this first example we will work on a partial dataset with only 4 categories out
of the 20 available in the dataset:

>>> categories = ['alt.atheism', 'soc.religion.christian',
... 'comp.graphics', 'sci.med']

We can now load the list of files matching those categories as follows:

>>> from sklearn.datasets import fetch_20newsgroups
>>> twenty_train = fetch_20newsgroups(subset='train',
... categories=categories, shuffle=True, random_state=42)

The returned dataset is a scikit-learn “bunch”: a simple holder object with fields that can be both accessed
as python dict keys or object attributes for convenience, for instance the target_names holds the list of the
requested category names:

>>> twenty_train.target_names
['alt.atheism', 'comp.graphics', 'sci.med', 'soc.religion.christian']

The files themselves are loaded in memory in the data attribute. For reference the filenames are also available:

>>> len(twenty_train.data)
2257
>>> len(twenty_train.filenames)
2257

Let’s print the first lines of the first loaded file:

>>> print("\n".join(twenty_train.data[0].split("\n")[:3]))
From: sd345@city.ac.uk (Michael Collier)
Subject: Converting images to HP LaserJet III?
Nntp-Posting-Host: hampton

>>> print(twenty_train.target_names[twenty_train.target[0]])
comp.graphics

Supervised learning algorithms will require a category label for each document in the training set. In this case the cat-
egory is the name of the newsgroup which also happens to be the name of the folder holding the individual documents.

For speed and space efficiency reasons scikit-learn loads the target attribute as an array of integers that corre-
sponds to the index of the category name in the target_names list. The category integer id of each sample is stored
in the target attribute:
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>>> twenty_train.target[:10]
array([1, 1, 3, 3, 3, 3, 3, 2, 2, 2])

It is possible to get back the category names as follows:

>>> for t in twenty_train.target[:10]:
... print(twenty_train.target_names[t])
...
comp.graphics
comp.graphics
soc.religion.christian
soc.religion.christian
soc.religion.christian
soc.religion.christian
soc.religion.christian
sci.med
sci.med
sci.med

You can notice that the samples have been shuffled randomly (with a fixed RNG seed): this is useful if you select only
the first samples to quickly train a model and get a first idea of the results before re-training on the complete dataset
later.

2.3.3 Extracting features from text files

In order to perform machine learning on text documents, we first need to turn the text content into numerical feature
vectors.

Bags of words

The most intuitive way to do so is the bags of words representation:

1. assign a fixed integer id to each word occurring in any document of the training set (for instance by building a
dictionary from words to integer indices).

2. for each document #i, count the number of occurrences of each word w and store it in X[i, j] as the value
of feature #j where j is the index of word w in the dictionary

The bags of words representation implies that n_features is the number of distinct words in the corpus: this
number is typically larger than 100,000.

If n_samples == 10000, storing X as a numpy array of type float32 would require 10000 x 100000 x 4 bytes =
4GB in RAM which is barely manageable on today’s computers.

Fortunately, most values in X will be zeros since for a given document less than a couple thousands of distinct words
will be used. For this reason we say that bags of words are typically high-dimensional sparse datasets. We can save
a lot of memory by only storing the non-zero parts of the feature vectors in memory.

scipy.sparse matrices are data structures that do exactly this, and scikit-learn has built-in support for these
structures.

Tokenizing text with scikit-learn

Text preprocessing, tokenizing and filtering of stopwords are included in a high level component that is able to build a
dictionary of features and transform documents to feature vectors:
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>>> from sklearn.feature_extraction.text import CountVectorizer
>>> count_vect = CountVectorizer()
>>> X_train_counts = count_vect.fit_transform(twenty_train.data)
>>> X_train_counts.shape
(2257, 35788)

CountVectorizer supports counts of N-grams of words or consecutive characters. Once fitted, the vectorizer has
built a dictionary of feature indices:

>>> count_vect.vocabulary_.get(u'algorithm')
4690

The index value of a word in the vocabulary is linked to its frequency in the whole training corpus.

From occurrences to frequencies

Occurrence count is a good start but there is an issue: longer documents will have higher average count values than
shorter documents, even though they might talk about the same topics.

To avoid these potential discrepancies it suffices to divide the number of occurrences of each word in a document by
the total number of words in the document: these new features are called tf for Term Frequencies.

Another refinement on top of tf is to downscale weights for words that occur in many documents in the corpus and are
therefore less informative than those that occur only in a smaller portion of the corpus.

This downscaling is called tf–idf for “Term Frequency times Inverse Document Frequency”.

Both tf and tf–idf can be computed as follows:

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> tf_transformer = TfidfTransformer(use_idf=False).fit(X_train_counts)
>>> X_train_tf = tf_transformer.transform(X_train_counts)
>>> X_train_tf.shape
(2257, 35788)

In the above example-code, we firstly use the fit(..) method to fit our estimator to the data and secondly the
transform(..) method to transform our count-matrix to a tf-idf representation. These two steps can be com-
bined to achieve the same end result faster by skipping redundant processing. This is done through using the
fit_transform(..) method as shown below, and as mentioned in the note in the previous section:

>>> tfidf_transformer = TfidfTransformer()
>>> X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)
>>> X_train_tfidf.shape
(2257, 35788)

2.3.4 Training a classifier

Now that we have our features, we can train a classifier to try to predict the category of a post. Let’s start with a
naïve Bayes classifier, which provides a nice baseline for this task. scikit-learn includes several variants of this
classifier; the one most suitable for word counts is the multinomial variant:

>>> from sklearn.naive_bayes import MultinomialNB
>>> clf = MultinomialNB().fit(X_train_tfidf, twenty_train.target)
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To try to predict the outcome on a new document we need to extract the features using almost the same feature extract-
ing chain as before. The difference is that we call transform instead of fit_transform on the transformers,
since they have already been fit to the training set:

>>> docs_new = ['God is love', 'OpenGL on the GPU is fast']
>>> X_new_counts = count_vect.transform(docs_new)
>>> X_new_tfidf = tfidf_transformer.transform(X_new_counts)

>>> predicted = clf.predict(X_new_tfidf)

>>> for doc, category in zip(docs_new, predicted):
... print('%r => %s' % (doc, twenty_train.target_names[category]))
...
'God is love' => soc.religion.christian
'OpenGL on the GPU is fast' => comp.graphics

2.3.5 Building a pipeline

In order to make the vectorizer => transformer => classifier easier to work with, scikit-learn provides a
Pipeline class that behaves like a compound classifier:

>>> from sklearn.pipeline import Pipeline
>>> text_clf = Pipeline([('vect', CountVectorizer()),
... ('tfidf', TfidfTransformer()),
... ('clf', MultinomialNB()),
... ])

The names vect, tfidf and clf (classifier) are arbitrary. We shall see their use in the section on grid search, below.
We can now train the model with a single command:

>>> text_clf.fit(twenty_train.data, twenty_train.target)
Pipeline(...)

2.3.6 Evaluation of the performance on the test set

Evaluating the predictive accuracy of the model is equally easy:

>>> import numpy as np
>>> twenty_test = fetch_20newsgroups(subset='test',
... categories=categories, shuffle=True, random_state=42)
>>> docs_test = twenty_test.data
>>> predicted = text_clf.predict(docs_test)
>>> np.mean(predicted == twenty_test.target)
0.834...

I.e., we achieved 83.4% accuracy. Let’s see if we can do better with a linear support vector machine (SVM), which is
widely regarded as one of the best text classification algorithms (although it’s also a bit slower than naïve Bayes). We
can change the learner by just plugging a different classifier object into our pipeline:

>>> from sklearn.linear_model import SGDClassifier
>>> text_clf = Pipeline([('vect', CountVectorizer()),
... ('tfidf', TfidfTransformer()),
... ('clf', SGDClassifier(loss='hinge', penalty='l2',
... alpha=1e-3, random_state=42,
... max_iter=5, tol=None)),
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... ])
>>> text_clf.fit(twenty_train.data, twenty_train.target)
Pipeline(...)
>>> predicted = text_clf.predict(docs_test)
>>> np.mean(predicted == twenty_test.target)
0.912...

scikit-learn further provides utilities for more detailed performance analysis of the results:

>>> from sklearn import metrics
>>> print(metrics.classification_report(twenty_test.target, predicted,
... target_names=twenty_test.target_names))
...

precision recall f1-score support

alt.atheism 0.95 0.81 0.87 319
comp.graphics 0.88 0.97 0.92 389

sci.med 0.94 0.90 0.92 396
soc.religion.christian 0.90 0.95 0.93 398

avg / total 0.92 0.91 0.91 1502

>>> metrics.confusion_matrix(twenty_test.target, predicted)
array([[258, 11, 15, 35],

[ 4, 379, 3, 3],
[ 5, 33, 355, 3],
[ 5, 10, 4, 379]])

As expected the confusion matrix shows that posts from the newsgroups on atheism and christian are more often
confused for one another than with computer graphics.

2.3.7 Parameter tuning using grid search

We’ve already encountered some parameters such as use_idf in the TfidfTransformer. Classifiers tend to have
many parameters as well; e.g., MultinomialNB includes a smoothing parameter alpha and SGDClassifier
has a penalty parameter alpha and configurable loss and penalty terms in the objective function (see the module
documentation, or use the Python help function, to get a description of these).

Instead of tweaking the parameters of the various components of the chain, it is possible to run an exhaustive search of
the best parameters on a grid of possible values. We try out all classifiers on either words or bigrams, with or without
idf, and with a penalty parameter of either 0.01 or 0.001 for the linear SVM:

>>> from sklearn.model_selection import GridSearchCV
>>> parameters = {'vect__ngram_range': [(1, 1), (1, 2)],
... 'tfidf__use_idf': (True, False),
... 'clf__alpha': (1e-2, 1e-3),
... }

Obviously, such an exhaustive search can be expensive. If we have multiple CPU cores at our disposal, we can tell
the grid searcher to try these eight parameter combinations in parallel with the n_jobs parameter. If we give this
parameter a value of -1, grid search will detect how many cores are installed and uses them all:

>>> gs_clf = GridSearchCV(text_clf, parameters, n_jobs=-1)
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The grid search instance behaves like a normal scikit-learn model. Let’s perform the search on a smaller subset
of the training data to speed up the computation:

>>> gs_clf = gs_clf.fit(twenty_train.data[:400], twenty_train.target[:400])

The result of calling fit on a GridSearchCV object is a classifier that we can use to predict:

>>> twenty_train.target_names[gs_clf.predict(['God is love'])[0]]
'soc.religion.christian'

The object’s best_score_ and best_params_ attributes store the best mean score and the parameters setting
corresponding to that score:

>>> gs_clf.best_score_
0.900...
>>> for param_name in sorted(parameters.keys()):
... print("%s: %r" % (param_name, gs_clf.best_params_[param_name]))
...
clf__alpha: 0.001
tfidf__use_idf: True
vect__ngram_range: (1, 1)

A more detailed summary of the search is available at gs_clf.cv_results_.

The cv_results_ parameter can be easily imported into pandas as a DataFrame for further inspection.

Exercises

To do the exercises, copy the content of the ‘skeletons’ folder as a new folder named ‘workspace’:

% cp -r skeletons workspace

You can then edit the content of the workspace without fear of loosing the original exercise instructions.

Then fire an ipython shell and run the work-in-progress script with:

[1] %run workspace/exercise_XX_script.py arg1 arg2 arg3

If an exception is triggered, use %debug to fire-up a post mortem ipdb session.

Refine the implementation and iterate until the exercise is solved.

For each exercise, the skeleton file provides all the necessary import statements, boilerplate code to load the
data and sample code to evaluate the predictive accuracy of the model.

2.3.8 Exercise 1: Language identification

• Write a text classification pipeline using a custom preprocessor and CharNGramAnalyzer using data from
Wikipedia articles as training set.

• Evaluate the performance on some held out test set.

ipython command line:

%run workspace/exercise_01_language_train_model.py data/languages/paragraphs/
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2.3.9 Exercise 2: Sentiment Analysis on movie reviews

• Write a text classification pipeline to classify movie reviews as either positive or negative.

• Find a good set of parameters using grid search.

• Evaluate the performance on a held out test set.

ipython command line:

%run workspace/exercise_02_sentiment.py data/movie_reviews/txt_sentoken/

2.3.10 Exercise 3: CLI text classification utility

Using the results of the previous exercises and the cPickle module of the standard library, write a command line
utility that detects the language of some text provided on stdin and estimate the polarity (positive or negative) if the
text is written in English.

Bonus point if the utility is able to give a confidence level for its predictions.

2.3.11 Where to from here

Here are a few suggestions to help further your scikit-learn intuition upon the completion of this tutorial:

• Try playing around with the analyzer and token normalisation under CountVectorizer

• If you don’t have labels, try using Clustering on your problem.

• If you have multiple labels per document, e.g categories, have a look at the Multiclass and multilabel section

• Try using Truncated SVD for latent semantic analysis.

• Have a look at using Out-of-core Classification to learn from data that would not fit into the computer main
memory.

• Have a look at the Hashing Vectorizer as a memory efficient alternative to CountVectorizer.

2.4 Choosing the right estimator

Often the hardest part of solving a machine learning problem can be finding the right estimator for the job.

Different estimators are better suited for different types of data and different problems.

The flowchart below is designed to give users a bit of a rough guide on how to approach problems with regard to which
estimators to try on your data.

Click on any estimator in the chart below to see its documentation.

2.5 External Resources, Videos and Talks

For written tutorials, see the Tutorial section of the documentation.
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2.5.1 New to Scientific Python?

For those that are still new to the scientific Python ecosystem, we highly recommend the Python Scientific Lecture
Notes. This will help you find your footing a bit and will definitely improve your scikit-learn experience. A basic
understanding of NumPy arrays is recommended to make the most of scikit-learn.

2.5.2 External Tutorials

There are several online tutorials available which are geared toward specific subject areas:

• Machine Learning for NeuroImaging in Python

• Machine Learning for Astronomical Data Analysis

2.5.3 Videos

• An introduction to scikit-learn Part I and Part II at Scipy 2013 by Gael Varoquaux, Jake Vanderplas and Olivier
Grisel. Notebooks on github.

• Introduction to scikit-learn by Gael Varoquaux at ICML 2010

A three minute video from a very early stage of the scikit, explaining the basic idea and approach we
are following.

• Introduction to statistical learning with scikit-learn by Gael Varoquaux at SciPy 2011

An extensive tutorial, consisting of four sessions of one hour. The tutorial covers the basics of ma-
chine learning, many algorithms and how to apply them using scikit-learn. The material correspond-
ing is now in the scikit-learn documentation section A tutorial on statistical-learning for scientific
data processing.

• Statistical Learning for Text Classification with scikit-learn and NLTK (and slides) by Olivier Grisel at PyCon
2011

Thirty minute introduction to text classification. Explains how to use NLTK and scikit-learn to solve
real-world text classification tasks and compares against cloud-based solutions.

• Introduction to Interactive Predictive Analytics in Python with scikit-learn by Olivier Grisel at PyCon 2012

3-hours long introduction to prediction tasks using scikit-learn.

• scikit-learn - Machine Learning in Python by Jake Vanderplas at the 2012 PyData workshop at Google

Interactive demonstration of some scikit-learn features. 75 minutes.

• scikit-learn tutorial by Jake Vanderplas at PyData NYC 2012

Presentation using the online tutorial, 45 minutes.

Note: Doctest Mode

The code-examples in the above tutorials are written in a python-console format. If you wish to easily execute these
examples in IPython, use:
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%doctest_mode

in the IPython-console. You can then simply copy and paste the examples directly into IPython without having to
worry about removing the >>> manually.
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3.1 Supervised learning

3.1.1 Generalized Linear Models

The following are a set of methods intended for regression in which the target value is expected to be a linear combi-
nation of the input variables. In mathematical notion, if 𝑦 is the predicted value.

𝑦(𝑤, 𝑥) = 𝑤0 + 𝑤1𝑥1 + ...+ 𝑤𝑝𝑥𝑝

Across the module, we designate the vector 𝑤 = (𝑤1, ..., 𝑤𝑝) as coef_ and 𝑤0 as intercept_.

To perform classification with generalized linear models, see Logistic regression.

Ordinary Least Squares

LinearRegression fits a linear model with coefficients 𝑤 = (𝑤1, ..., 𝑤𝑝) to minimize the residual sum of squares
between the observed responses in the dataset, and the responses predicted by the linear approximation. Mathemati-
cally it solves a problem of the form:

𝑚𝑖𝑛
𝑤
||𝑋𝑤 − 𝑦||22

LinearRegression will take in its fit method arrays X, y and will store the coefficients 𝑤 of the linear model
in its coef_ member:
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>>> from sklearn import linear_model
>>> reg = linear_model.LinearRegression()
>>> reg.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
>>> reg.coef_
array([ 0.5, 0.5])

However, coefficient estimates for Ordinary Least Squares rely on the independence of the model terms. When terms
are correlated and the columns of the design matrix 𝑋 have an approximate linear dependence, the design matrix
becomes close to singular and as a result, the least-squares estimate becomes highly sensitive to random errors in the
observed response, producing a large variance. This situation of multicollinearity can arise, for example, when data
are collected without an experimental design.

Examples:

• Linear Regression Example

Ordinary Least Squares Complexity

This method computes the least squares solution using a singular value decomposition of X. If X is a matrix of size (n,
p) this method has a cost of 𝑂(𝑛𝑝2), assuming that 𝑛 ≥ 𝑝.

Ridge Regression

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of
coefficients. The ridge coefficients minimize a penalized residual sum of squares,

𝑚𝑖𝑛
𝑤
||𝑋𝑤 − 𝑦||22 + 𝛼||𝑤||22

Here, 𝛼 ≥ 0 is a complexity parameter that controls the amount of shrinkage: the larger the value of 𝛼, the greater the
amount of shrinkage and thus the coefficients become more robust to collinearity.

As with other linear models, Ridge will take in its fit method arrays X, y and will store the coefficients 𝑤 of the
linear model in its coef_ member:
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>>> from sklearn import linear_model
>>> reg = linear_model.Ridge (alpha = .5)
>>> reg.fit ([[0, 0], [0, 0], [1, 1]], [0, .1, 1])
Ridge(alpha=0.5, copy_X=True, fit_intercept=True, max_iter=None,

normalize=False, random_state=None, solver='auto', tol=0.001)
>>> reg.coef_
array([ 0.34545455, 0.34545455])
>>> reg.intercept_
0.13636...

Examples:

• Plot Ridge coefficients as a function of the regularization

• Classification of text documents using sparse features

Ridge Complexity

This method has the same order of complexity than an Ordinary Least Squares.

Setting the regularization parameter: generalized Cross-Validation

RidgeCV implements ridge regression with built-in cross-validation of the alpha parameter. The object works in
the same way as GridSearchCV except that it defaults to Generalized Cross-Validation (GCV), an efficient form of
leave-one-out cross-validation:

>>> from sklearn import linear_model
>>> reg = linear_model.RidgeCV(alphas=[0.1, 1.0, 10.0])
>>> reg.fit([[0, 0], [0, 0], [1, 1]], [0, .1, 1])
RidgeCV(alphas=[0.1, 1.0, 10.0], cv=None, fit_intercept=True, scoring=None,

normalize=False)
>>> reg.alpha_
0.1

References

• “Notes on Regularized Least Squares”, Rifkin & Lippert (technical report, course slides).

Lasso

The Lasso is a linear model that estimates sparse coefficients. It is useful in some contexts due to its tendency
to prefer solutions with fewer parameter values, effectively reducing the number of variables upon which the given
solution is dependent. For this reason, the Lasso and its variants are fundamental to the field of compressed sensing.
Under certain conditions, it can recover the exact set of non-zero weights (see Compressive sensing: tomography
reconstruction with L1 prior (Lasso)).

Mathematically, it consists of a linear model trained with ℓ1 prior as regularizer. The objective function to minimize
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is:

𝑚𝑖𝑛
𝑤

1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
||𝑋𝑤 − 𝑦||22 + 𝛼||𝑤||1

The lasso estimate thus solves the minimization of the least-squares penalty with 𝛼||𝑤||1 added, where 𝛼 is a constant
and ||𝑤||1 is the ℓ1-norm of the parameter vector.

The implementation in the class Lasso uses coordinate descent as the algorithm to fit the coefficients. See Least
Angle Regression for another implementation:

>>> from sklearn import linear_model
>>> reg = linear_model.Lasso(alpha = 0.1)
>>> reg.fit([[0, 0], [1, 1]], [0, 1])
Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,

normalize=False, positive=False, precompute=False, random_state=None,
selection='cyclic', tol=0.0001, warm_start=False)

>>> reg.predict([[1, 1]])
array([ 0.8])

Also useful for lower-level tasks is the function lasso_path that computes the coefficients along the full path of
possible values.

Examples:

• Lasso and Elastic Net for Sparse Signals

• Compressive sensing: tomography reconstruction with L1 prior (Lasso)

Note: Feature selection with Lasso

As the Lasso regression yields sparse models, it can thus be used to perform feature selection, as detailed in L1-based
feature selection.

Setting regularization parameter

The alpha parameter controls the degree of sparsity of the coefficients estimated.

Using cross-validation

scikit-learn exposes objects that set the Lasso alpha parameter by cross-validation: LassoCV and LassoLarsCV .
LassoLarsCV is based on the Least Angle Regression algorithm explained below.

For high-dimensional datasets with many collinear regressors, LassoCV is most often preferable. However,
LassoLarsCV has the advantage of exploring more relevant values of alpha parameter, and if the number of samples
is very small compared to the number of features, it is often faster than LassoCV .
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Information-criteria based model selection

Alternatively, the estimator LassoLarsIC proposes to use the Akaike information criterion (AIC) and the Bayes
Information criterion (BIC). It is a computationally cheaper alternative to find the optimal value of alpha as the regu-
larization path is computed only once instead of k+1 times when using k-fold cross-validation. However, such criteria
needs a proper estimation of the degrees of freedom of the solution, are derived for large samples (asymptotic results)
and assume the model is correct, i.e. that the data are actually generated by this model. They also tend to break when
the problem is badly conditioned (more features than samples).

Examples:

• Lasso model selection: Cross-Validation / AIC / BIC

Comparison with the regularization parameter of SVM

The equivalence between alpha and the regularization parameter of SVM, C is given by alpha = 1 / C or
alpha = 1 / (n_samples * C), depending on the estimator and the exact objective function optimized by
the model.
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Multi-task Lasso

The MultiTaskLasso is a linear model that estimates sparse coefficients for multiple regression problems jointly:
y is a 2D array, of shape (n_samples, n_tasks). The constraint is that the selected features are the same for all
the regression problems, also called tasks.

The following figure compares the location of the non-zeros in W obtained with a simple Lasso or a MultiTaskLasso.
The Lasso estimates yields scattered non-zeros while the non-zeros of the MultiTaskLasso are full columns.

Fitting a time-series model, imposing that any active feature be active at all times.

Examples:

• Joint feature selection with multi-task Lasso

Mathematically, it consists of a linear model trained with a mixed ℓ1 ℓ2 prior as regularizer. The objective function to
minimize is:

𝑚𝑖𝑛
𝑤

1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
||𝑋𝑊 − 𝑌 ||2𝐹𝑟𝑜 + 𝛼||𝑊 ||21

where 𝐹𝑟𝑜 indicates the Frobenius norm:

||𝐴||𝐹𝑟𝑜 =

√︃∑︁
𝑖𝑗

𝑎2𝑖𝑗
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and ℓ1 ℓ2 reads:

||𝐴||21 =
∑︁
𝑖

√︃∑︁
𝑗

𝑎2𝑖𝑗

The implementation in the class MultiTaskLasso uses coordinate descent as the algorithm to fit the coefficients.

Elastic Net

ElasticNet is a linear regression model trained with L1 and L2 prior as regularizer. This combination allows for
learning a sparse model where few of the weights are non-zero like Lasso, while still maintaining the regularization
properties of Ridge. We control the convex combination of L1 and L2 using the l1_ratio parameter.

Elastic-net is useful when there are multiple features which are correlated with one another. Lasso is likely to pick one
of these at random, while elastic-net is likely to pick both.

A practical advantage of trading-off between Lasso and Ridge is it allows Elastic-Net to inherit some of Ridge’s
stability under rotation.

The objective function to minimize is in this case

𝑚𝑖𝑛
𝑤

1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
||𝑋𝑤 − 𝑦||22 + 𝛼𝜌||𝑤||1 +

𝛼(1− 𝜌)

2
||𝑤||22

The class ElasticNetCV can be used to set the parameters alpha (𝛼) and l1_ratio (𝜌) by cross-validation.

Examples:

• Lasso and Elastic Net for Sparse Signals

• Lasso and Elastic Net

Multi-task Elastic Net

The MultiTaskElasticNet is an elastic-net model that estimates sparse coefficients for multiple regression prob-
lems jointly: Y is a 2D array, of shape (n_samples, n_tasks). The constraint is that the selected features are
the same for all the regression problems, also called tasks.
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Mathematically, it consists of a linear model trained with a mixed ℓ1 ℓ2 prior and ℓ2 prior as regularizer. The objective
function to minimize is:

𝑚𝑖𝑛
𝑊

1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
||𝑋𝑊 − 𝑌 ||2𝐹𝑟𝑜 + 𝛼𝜌||𝑊 ||21 +

𝛼(1− 𝜌)

2
||𝑊 ||2𝐹𝑟𝑜

The implementation in the class MultiTaskElasticNet uses coordinate descent as the algorithm to fit the coef-
ficients.

The class MultiTaskElasticNetCV can be used to set the parameters alpha (𝛼) and l1_ratio (𝜌) by cross-
validation.

Least Angle Regression

Least-angle regression (LARS) is a regression algorithm for high-dimensional data, developed by Bradley Efron,
Trevor Hastie, Iain Johnstone and Robert Tibshirani. LARS is similar to forward stepwise regression. At each step,
it finds the predictor most correlated with the response. When there are multiple predictors having equal correlation,
instead of continuing along the same predictor, it proceeds in a direction equiangular between the predictors.

The advantages of LARS are:

• It is numerically efficient in contexts where p >> n (i.e., when the number of dimensions is significantly greater
than the number of points)

• It is computationally just as fast as forward selection and has the same order of complexity as an ordinary least
squares.

• It produces a full piecewise linear solution path, which is useful in cross-validation or similar attempts to tune
the model.

• If two variables are almost equally correlated with the response, then their coefficients should increase at ap-
proximately the same rate. The algorithm thus behaves as intuition would expect, and also is more stable.

• It is easily modified to produce solutions for other estimators, like the Lasso.

The disadvantages of the LARS method include:

• Because LARS is based upon an iterative refitting of the residuals, it would appear to be especially sensitive to
the effects of noise. This problem is discussed in detail by Weisberg in the discussion section of the Efron et al.
(2004) Annals of Statistics article.

The LARS model can be used using estimator Lars, or its low-level implementation lars_path.

LARS Lasso

LassoLars is a lasso model implemented using the LARS algorithm, and unlike the implementation based on
coordinate_descent, this yields the exact solution, which is piecewise linear as a function of the norm of its coefficients.

>>> from sklearn import linear_model
>>> reg = linear_model.LassoLars(alpha=.1)
>>> reg.fit([[0, 0], [1, 1]], [0, 1])
LassoLars(alpha=0.1, copy_X=True, eps=..., fit_intercept=True,

fit_path=True, max_iter=500, normalize=True, positive=False,
precompute='auto', verbose=False)

>>> reg.coef_
array([ 0.717157..., 0. ])
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Examples:

• Lasso path using LARS

The Lars algorithm provides the full path of the coefficients along the regularization parameter almost for free, thus a
common operation consist of retrieving the path with function lars_path

Mathematical formulation

The algorithm is similar to forward stepwise regression, but instead of including variables at each step, the estimated
parameters are increased in a direction equiangular to each one’s correlations with the residual.

Instead of giving a vector result, the LARS solution consists of a curve denoting the solution for each value of the
L1 norm of the parameter vector. The full coefficients path is stored in the array coef_path_, which has size
(n_features, max_features+1). The first column is always zero.

References:

• Original Algorithm is detailed in the paper Least Angle Regression by Hastie et al.

Orthogonal Matching Pursuit (OMP)

OrthogonalMatchingPursuit and orthogonal_mp implements the OMP algorithm for approximating the
fit of a linear model with constraints imposed on the number of non-zero coefficients (ie. the L 0 pseudo-norm).

Being a forward feature selection method like Least Angle Regression, orthogonal matching pursuit can approximate
the optimum solution vector with a fixed number of non-zero elements:

arg min ||𝑦 −𝑋𝛾||22 subject to ||𝛾||0 ≤ 𝑛𝑛𝑜𝑛𝑧𝑒𝑟𝑜_𝑐𝑜𝑒𝑓𝑠

Alternatively, orthogonal matching pursuit can target a specific error instead of a specific number of non-zero coeffi-
cients. This can be expressed as:

arg min ||𝛾||0 subject to ||𝑦 −𝑋𝛾||22 ≤ tol
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OMP is based on a greedy algorithm that includes at each step the atom most highly correlated with the current
residual. It is similar to the simpler matching pursuit (MP) method, but better in that at each iteration, the residual is
recomputed using an orthogonal projection on the space of the previously chosen dictionary elements.

Examples:

• Orthogonal Matching Pursuit

References:

• http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

• Matching pursuits with time-frequency dictionaries, S. G. Mallat, Z. Zhang,

Bayesian Regression

Bayesian regression techniques can be used to include regularization parameters in the estimation procedure: the
regularization parameter is not set in a hard sense but tuned to the data at hand.

This can be done by introducing uninformative priors over the hyper parameters of the model. The ℓ2 regularization
used in Ridge Regression is equivalent to finding a maximum a posteriori estimation under a Gaussian prior over the
parameters 𝑤 with precision 𝜆−1. Instead of setting lambda manually, it is possible to treat it as a random variable to
be estimated from the data.

To obtain a fully probabilistic model, the output 𝑦 is assumed to be Gaussian distributed around 𝑋𝑤:

𝑝(𝑦|𝑋,𝑤, 𝛼) = 𝒩 (𝑦|𝑋𝑤,𝛼)

Alpha is again treated as a random variable that is to be estimated from the data.

The advantages of Bayesian Regression are:

• It adapts to the data at hand.

• It can be used to include regularization parameters in the estimation procedure.

The disadvantages of Bayesian regression include:

• Inference of the model can be time consuming.

References

• A good introduction to Bayesian methods is given in C. Bishop: Pattern Recognition and Machine learning

• Original Algorithm is detailed in the book Bayesian learning for neural networks by Radford M. Neal

Bayesian Ridge Regression

BayesianRidge estimates a probabilistic model of the regression problem as described above. The prior for the
parameter 𝑤 is given by a spherical Gaussian:

𝑝(𝑤|𝜆) = 𝒩 (𝑤|0, 𝜆−1Ip)
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The priors over 𝛼 and 𝜆 are chosen to be gamma distributions, the conjugate prior for the precision of the Gaussian.

The resulting model is called Bayesian Ridge Regression, and is similar to the classical Ridge. The parameters
𝑤, 𝛼 and 𝜆 are estimated jointly during the fit of the model. The remaining hyperparameters are the parameters of
the gamma priors over 𝛼 and 𝜆. These are usually chosen to be non-informative. The parameters are estimated by
maximizing the marginal log likelihood.

By default 𝛼1 = 𝛼2 = 𝜆1 = 𝜆2 = 10−6.

Bayesian Ridge Regression is used for regression:

>>> from sklearn import linear_model
>>> X = [[0., 0.], [1., 1.], [2., 2.], [3., 3.]]
>>> Y = [0., 1., 2., 3.]
>>> reg = linear_model.BayesianRidge()
>>> reg.fit(X, Y)
BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True,

fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300,
normalize=False, tol=0.001, verbose=False)

After being fitted, the model can then be used to predict new values:

>>> reg.predict ([[1, 0.]])
array([ 0.50000013])

The weights 𝑤 of the model can be access:

>>> reg.coef_
array([ 0.49999993, 0.49999993])

Due to the Bayesian framework, the weights found are slightly different to the ones found by Ordinary Least Squares.
However, Bayesian Ridge Regression is more robust to ill-posed problem.

Examples:

• Bayesian Ridge Regression
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References

• More details can be found in the article Bayesian Interpolation by MacKay, David J. C.

Automatic Relevance Determination - ARD

ARDRegression is very similar to Bayesian Ridge Regression, but can lead to sparser weights 𝑤12.
ARDRegression poses a different prior over 𝑤, by dropping the assumption of the Gaussian being spherical.

Instead, the distribution over 𝑤 is assumed to be an axis-parallel, elliptical Gaussian distribution.

This means each weight 𝑤𝑖 is drawn from a Gaussian distribution, centered on zero and with a precision 𝜆𝑖:

𝑝(𝑤|𝜆) = 𝒩 (𝑤|0, 𝐴−1)

with 𝑑𝑖𝑎𝑔 (𝐴) = 𝜆 = {𝜆1, ..., 𝜆𝑝}.

In contrast to Bayesian Ridge Regression, each coordinate of 𝑤𝑖 has its own standard deviation 𝜆𝑖. The prior over all
𝜆𝑖 is chosen to be the same gamma distribution given by hyperparameters 𝜆1 and 𝜆2.

ARD is also known in the literature as Sparse Bayesian Learning and Relevance Vector Machine34.

Examples:

• Automatic Relevance Determination Regression (ARD)

References:

1 Christopher M. Bishop: Pattern Recognition and Machine Learning, Chapter 7.2.1
2 David Wipf and Srikantan Nagarajan: A new view of automatic relevance determination
3 Michael E. Tipping: Sparse Bayesian Learning and the Relevance Vector Machine
4 Tristan Fletcher: Relevance Vector Machines explained
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Logistic regression

Logistic regression, despite its name, is a linear model for classification rather than regression. Logistic regression is
also known in the literature as logit regression, maximum-entropy classification (MaxEnt) or the log-linear classifier.
In this model, the probabilities describing the possible outcomes of a single trial are modeled using a logistic function.

The implementation of logistic regression in scikit-learn can be accessed from class LogisticRegression. This
implementation can fit binary, One-vs- Rest, or multinomial logistic regression with optional L2 or L1 regularization.

As an optimization problem, binary class L2 penalized logistic regression minimizes the following cost function:

𝑚𝑖𝑛
𝑤,𝑐

1

2
𝑤𝑇𝑤 + 𝐶

𝑛∑︁
𝑖=1

log(exp(−𝑦𝑖(𝑋𝑇
𝑖 𝑤 + 𝑐)) + 1).

Similarly, L1 regularized logistic regression solves the following optimization problem

𝑚𝑖𝑛
𝑤,𝑐
‖𝑤‖1 + 𝐶

𝑛∑︁
𝑖=1

log(exp(−𝑦𝑖(𝑋𝑇
𝑖 𝑤 + 𝑐)) + 1).

The solvers implemented in the class LogisticRegression are “liblinear”, “newton-cg”, “lbfgs”, “sag” and
“saga”:

The solver “liblinear” uses a coordinate descent (CD) algorithm, and relies on the excellent C++ LIBLINEAR library,
which is shipped with scikit-learn. However, the CD algorithm implemented in liblinear cannot learn a true multino-
mial (multiclass) model; instead, the optimization problem is decomposed in a “one-vs-rest” fashion so separate binary
classifiers are trained for all classes. This happens under the hood, so LogisticRegression instances using this
solver behave as multiclass classifiers. For L1 penalization sklearn.svm.l1_min_c allows to calculate the lower
bound for C in order to get a non “null” (all feature weights to zero) model.

The “lbfgs”, “sag” and “newton-cg” solvers only support L2 penalization and are found to converge faster for some
high dimensional data. Setting multi_class to “multinomial” with these solvers learns a true multinomial logistic
regression model5, which means that its probability estimates should be better calibrated than the default “one-vs-
rest” setting.

The “sag” solver uses a Stochastic Average Gradient descent6. It is faster than other solvers for large datasets, when
both the number of samples and the number of features are large.

The “saga” solver7 is a variant of “sag” that also supports the non-smooth penalty=”l1” option. This is therefore the
solver of choice for sparse multinomial logistic regression.

In a nutshell, one may choose the solver with the following rules:

Case Solver
L1 penalty “liblinear” or “saga”
Multinomial loss “lbfgs”, “sag”, “saga” or “newton-cg”
Very Large dataset (n_samples) “sag” or “saga”

The “saga” solver is often the best choice. The “liblinear” solver is used by default for historical reasons.

For large dataset, you may also consider using SGDClassifier with ‘log’ loss.

Examples:

5 Christopher M. Bishop: Pattern Recognition and Machine Learning, Chapter 4.3.4
6 Mark Schmidt, Nicolas Le Roux, and Francis Bach: Minimizing Finite Sums with the Stochastic Average Gradient.
7 Aaron Defazio, Francis Bach, Simon Lacoste-Julien: SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex

Composite Objectives.
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• L1 Penalty and Sparsity in Logistic Regression

• Path with L1- Logistic Regression

• Plot multinomial and One-vs-Rest Logistic Regression

• Multiclass sparse logisitic regression on newgroups20

• MNIST classfification using multinomial logistic + L1

Differences from liblinear:

There might be a difference in the scores obtained between LogisticRegressionwith solver=liblinear
or LinearSVC and the external liblinear library directly, when fit_intercept=False and the fit coef_
(or) the data to be predicted are zeroes. This is because for the sample(s) with decision_function zero,
LogisticRegression and LinearSVC predict the negative class, while liblinear predicts the positive class.
Note that a model with fit_intercept=False and having many samples with decision_function zero,
is likely to be a underfit, bad model and you are advised to set fit_intercept=True and increase the inter-
cept_scaling.

Note: Feature selection with sparse logistic regression

A logistic regression with L1 penalty yields sparse models, and can thus be used to perform feature selection, as
detailed in L1-based feature selection.

LogisticRegressionCV implements Logistic Regression with builtin cross-validation to find out the optimal C
parameter. “newton-cg”, “sag”, “saga” and “lbfgs” solvers are found to be faster for high-dimensional dense data, due
to warm-starting. For the multiclass case, if multi_class option is set to “ovr”, an optimal C is obtained for each class
and if the multi_class option is set to “multinomial”, an optimal C is obtained by minimizing the cross-entropy loss.

References:

Stochastic Gradient Descent - SGD

Stochastic gradient descent is a simple yet very efficient approach to fit linear models. It is particularly useful when the
number of samples (and the number of features) is very large. The partial_fit method allows only/out-of-core
learning.

The classes SGDClassifier and SGDRegressor provide functionality to fit linear models for classifica-
tion and regression using different (convex) loss functions and different penalties. E.g., with loss="log",
SGDClassifier fits a logistic regression model, while with loss="hinge" it fits a linear support vector ma-
chine (SVM).

References

• Stochastic Gradient Descent
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Perceptron

The Perceptron is another simple algorithm suitable for large scale learning. By default:

• It does not require a learning rate.

• It is not regularized (penalized).

• It updates its model only on mistakes.

The last characteristic implies that the Perceptron is slightly faster to train than SGD with the hinge loss and that the
resulting models are sparser.

Passive Aggressive Algorithms

The passive-aggressive algorithms are a family of algorithms for large-scale learning. They are similar to the Per-
ceptron in that they do not require a learning rate. However, contrary to the Perceptron, they include a regularization
parameter C.

For classification, PassiveAggressiveClassifier can be used with loss='hinge' (PA-I) or
loss='squared_hinge' (PA-II). For regression, PassiveAggressiveRegressor can be used with
loss='epsilon_insensitive' (PA-I) or loss='squared_epsilon_insensitive' (PA-II).

References:

• “Online Passive-Aggressive Algorithms” K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer -
JMLR 7 (2006)

Robustness regression: outliers and modeling errors

Robust regression is interested in fitting a regression model in the presence of corrupt data: either outliers, or error in
the model.

Different scenario and useful concepts

There are different things to keep in mind when dealing with data corrupted by outliers:

3.1. Supervised learning 165

http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf
../auto_examples/linear_model/plot_theilsen.html


scikit-learn user guide, Release 0.19.1

• Outliers in X or in y?

Outliers in the y direction Outliers in the X direction

• Fraction of outliers versus amplitude of error

The number of outlying points matters, but also how much they are outliers.

Small outliers Large outliers

An important notion of robust fitting is that of breakdown point: the fraction of data that can be outlying for the fit to
start missing the inlying data.

Note that in general, robust fitting in high-dimensional setting (large n_features) is very hard. The robust models here
will probably not work in these settings.

Trade-offs: which estimator?

Scikit-learn provides 3 robust regression estimators: RANSAC, Theil Sen and HuberRegressor

• HuberRegressor should be faster than RANSAC and Theil Sen unless the number of samples are
very large, i.e n_samples >> n_features. This is because RANSAC and Theil Sen fit on
smaller subsets of the data. However, both Theil Sen and RANSAC are unlikely to be as robust as
HuberRegressor for the default parameters.
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• RANSAC is faster than Theil Sen and scales much better with the number of samples

• RANSAC will deal better with large outliers in the y direction (most common situation)

• Theil Sen will cope better with medium-size outliers in the X direction, but this property will
disappear in large dimensional settings.

When in doubt, use RANSAC

RANSAC: RANdom SAmple Consensus

RANSAC (RANdom SAmple Consensus) fits a model from random subsets of inliers from the complete data set.

RANSAC is a non-deterministic algorithm producing only a reasonable result with a certain probability, which is de-
pendent on the number of iterations (see max_trials parameter). It is typically used for linear and non-linear regression
problems and is especially popular in the fields of photogrammetric computer vision.

The algorithm splits the complete input sample data into a set of inliers, which may be subject to noise, and outliers,
which are e.g. caused by erroneous measurements or invalid hypotheses about the data. The resulting model is then
estimated only from the determined inliers.

Details of the algorithm

Each iteration performs the following steps:

1. Select min_samples random samples from the original data and check whether the set of data is valid (see
is_data_valid).

2. Fit a model to the random subset (base_estimator.fit) and check whether the estimated model is valid
(see is_model_valid).

3. Classify all data as inliers or outliers by calculating the residuals to the estimated model (base_estimator.
predict(X) - y) - all data samples with absolute residuals smaller than the residual_threshold are
considered as inliers.

4. Save fitted model as best model if number of inlier samples is maximal. In case the current estimated model has
the same number of inliers, it is only considered as the best model if it has better score.
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These steps are performed either a maximum number of times (max_trials) or until one of the special stop criteria
are met (see stop_n_inliers and stop_score). The final model is estimated using all inlier samples (consensus
set) of the previously determined best model.

The is_data_valid and is_model_valid functions allow to identify and reject degenerate combinations of
random sub-samples. If the estimated model is not needed for identifying degenerate cases, is_data_valid should
be used as it is called prior to fitting the model and thus leading to better computational performance.

Examples:

• Robust linear model estimation using RANSAC

• Robust linear estimator fitting

References:

• https://en.wikipedia.org/wiki/RANSAC

• “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Auto-
mated Cartography” Martin A. Fischler and Robert C. Bolles - SRI International (1981)

• “Performance Evaluation of RANSAC Family” Sunglok Choi, Taemin Kim and Wonpil Yu - BMVC (2009)

Theil-Sen estimator: generalized-median-based estimator

The TheilSenRegressor estimator uses a generalization of the median in multiple dimensions. It is thus robust
to multivariate outliers. Note however that the robustness of the estimator decreases quickly with the dimensionality of
the problem. It looses its robustness properties and becomes no better than an ordinary least squares in high dimension.

Examples:

• Theil-Sen Regression

• Robust linear estimator fitting

References:

• https://en.wikipedia.org/wiki/Theil%E2%80%93Sen_estimator

Theoretical considerations

TheilSenRegressor is comparable to the Ordinary Least Squares (OLS) in terms of asymptotic efficiency and as
an unbiased estimator. In contrast to OLS, Theil-Sen is a non-parametric method which means it makes no assumption
about the underlying distribution of the data. Since Theil-Sen is a median-based estimator, it is more robust against
corrupted data aka outliers. In univariate setting, Theil-Sen has a breakdown point of about 29.3% in case of a simple
linear regression which means that it can tolerate arbitrary corrupted data of up to 29.3%.
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The implementation of TheilSenRegressor in scikit-learn follows a generalization to a multivariate linear re-
gression model8 using the spatial median which is a generalization of the median to multiple dimensions9.

In terms of time and space complexity, Theil-Sen scales according to(︂
𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑛𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒𝑠

)︂
which makes it infeasible to be applied exhaustively to problems with a large number of samples and features. There-
fore, the magnitude of a subpopulation can be chosen to limit the time and space complexity by considering only a
random subset of all possible combinations.

Examples:

• Theil-Sen Regression

References:

Huber Regression

The HuberRegressor is different to Ridge because it applies a linear loss to samples that are classified as outliers.
A sample is classified as an inlier if the absolute error of that sample is lesser than a certain threshold. It differs from
TheilSenRegressor and RANSACRegressor because it does not ignore the effect of the outliers but gives a
lesser weight to them.

The loss function that HuberRegressor minimizes is given by

𝑚𝑖𝑛
𝑤,𝜎

𝑛∑︁
𝑖=1

(︂
𝜎 +𝐻𝑚

(︂
𝑋𝑖𝑤 − 𝑦𝑖

𝜎

)︂
𝜎

)︂
+ 𝛼||𝑤||22

8 Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang: Theil-Sen Estimators in a Multiple Linear Regression Model.
9

20. Kärkkäinen and S. Äyrämö: On Computation of Spatial Median for Robust Data Mining.
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where

𝐻𝑚(𝑧) =

{︃
𝑧2, if |𝑧| < 𝜖,

2𝜖|𝑧| − 𝜖2, otherwise

It is advised to set the parameter epsilon to 1.35 to achieve 95% statistical efficiency.

Notes

The HuberRegressor differs from using SGDRegressor with loss set to huber in the following ways.

• HuberRegressor is scaling invariant. Once epsilon is set, scaling X and y down or up by different values
would produce the same robustness to outliers as before. as compared to SGDRegressor where epsilon
has to be set again when X and y are scaled.

• HuberRegressor should be more efficient to use on data with small number of samples while
SGDRegressor needs a number of passes on the training data to produce the same robustness.

Examples:

• HuberRegressor vs Ridge on dataset with strong outliers

References:

• Peter J. Huber, Elvezio M. Ronchetti: Robust Statistics, Concomitant scale estimates, pg 172

Also, this estimator is different from the R implementation of Robust Regression (http://www.ats.ucla.edu/stat/r/dae/
rreg.htm) because the R implementation does a weighted least squares implementation with weights given to each
sample on the basis of how much the residual is greater than a certain threshold.

Polynomial regression: extending linear models with basis functions

One common pattern within machine learning is to use linear models trained on nonlinear functions of the data. This
approach maintains the generally fast performance of linear methods, while allowing them to fit a much wider range
of data.
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For example, a simple linear regression can be extended by constructing polynomial features from the coefficients.
In the standard linear regression case, you might have a model that looks like this for two-dimensional data:

𝑦(𝑤, 𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2

If we want to fit a paraboloid to the data instead of a plane, we can combine the features in second-order polynomials,
so that the model looks like this:

𝑦(𝑤, 𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥1𝑥2 + 𝑤4𝑥
2
1 + 𝑤5𝑥

2
2

The (sometimes surprising) observation is that this is still a linear model: to see this, imagine creating a new variable

𝑧 = [𝑥1, 𝑥2, 𝑥1𝑥2, 𝑥
2
1, 𝑥

2
2]

With this re-labeling of the data, our problem can be written

𝑦(𝑤, 𝑥) = 𝑤0 + 𝑤1𝑧1 + 𝑤2𝑧2 + 𝑤3𝑧3 + 𝑤4𝑧4 + 𝑤5𝑧5

We see that the resulting polynomial regression is in the same class of linear models we’d considered above (i.e. the
model is linear in 𝑤) and can be solved by the same techniques. By considering linear fits within a higher-dimensional
space built with these basis functions, the model has the flexibility to fit a much broader range of data.

Here is an example of applying this idea to one-dimensional data, using polynomial features of varying degrees:

This figure is created using the PolynomialFeatures preprocessor. This preprocessor transforms an input data
matrix into a new data matrix of a given degree. It can be used as follows:

>>> from sklearn.preprocessing import PolynomialFeatures
>>> import numpy as np
>>> X = np.arange(6).reshape(3, 2)
>>> X
array([[0, 1],

[2, 3],
[4, 5]])

>>> poly = PolynomialFeatures(degree=2)
>>> poly.fit_transform(X)
array([[ 1., 0., 1., 0., 0., 1.],

[ 1., 2., 3., 4., 6., 9.],
[ 1., 4., 5., 16., 20., 25.]])
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The features of X have been transformed from [𝑥1, 𝑥2] to [1, 𝑥1, 𝑥2, 𝑥
2
1, 𝑥1𝑥2, 𝑥

2
2], and can now be used within any

linear model.

This sort of preprocessing can be streamlined with the Pipeline tools. A single object representing a simple polynomial
regression can be created and used as follows:

>>> from sklearn.preprocessing import PolynomialFeatures
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.pipeline import Pipeline
>>> import numpy as np
>>> model = Pipeline([('poly', PolynomialFeatures(degree=3)),
... ('linear', LinearRegression(fit_intercept=False))])
>>> # fit to an order-3 polynomial data
>>> x = np.arange(5)
>>> y = 3 - 2 * x + x ** 2 - x ** 3
>>> model = model.fit(x[:, np.newaxis], y)
>>> model.named_steps['linear'].coef_
array([ 3., -2., 1., -1.])

The linear model trained on polynomial features is able to exactly recover the input polynomial coefficients.

In some cases it’s not necessary to include higher powers of any single feature, but only the so-called interaction
features that multiply together at most 𝑑 distinct features. These can be gotten from PolynomialFeatures with
the setting interaction_only=True.

For example, when dealing with boolean features, 𝑥𝑛𝑖 = 𝑥𝑖 for all 𝑛 and is therefore useless; but 𝑥𝑖𝑥𝑗 represents the
conjunction of two booleans. This way, we can solve the XOR problem with a linear classifier:

>>> from sklearn.linear_model import Perceptron
>>> from sklearn.preprocessing import PolynomialFeatures
>>> import numpy as np
>>> X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
>>> y = X[:, 0] ^ X[:, 1]
>>> y
array([0, 1, 1, 0])
>>> X = PolynomialFeatures(interaction_only=True).fit_transform(X).astype(int)
>>> X
array([[1, 0, 0, 0],

[1, 0, 1, 0],
[1, 1, 0, 0],
[1, 1, 1, 1]])

>>> clf = Perceptron(fit_intercept=False, max_iter=10, tol=None,
... shuffle=False).fit(X, y)

And the classifier “predictions” are perfect:

>>> clf.predict(X)
array([0, 1, 1, 0])
>>> clf.score(X, y)
1.0

3.1.2 Linear and Quadratic Discriminant Analysis

Linear Discriminant Analysis (discriminant_analysis.LinearDiscriminantAnalysis) and
Quadratic Discriminant Analysis (discriminant_analysis.QuadraticDiscriminantAnalysis)
are two classic classifiers, with, as their names suggest, a linear and a quadratic decision surface, respectively.
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These classifiers are attractive because they have closed-form solutions that can be easily computed, are inherently
multiclass, have proven to work well in practice and have no hyperparameters to tune.

The plot shows decision boundaries for Linear Discriminant Analysis and Quadratic Discriminant Analysis. The
bottom row demonstrates that Linear Discriminant Analysis can only learn linear boundaries, while Quadratic Dis-
criminant Analysis can learn quadratic boundaries and is therefore more flexible.

Examples:

Linear and Quadratic Discriminant Analysis with covariance ellipsoid: Comparison of LDA and QDA on synthetic
data.

Dimensionality reduction using Linear Discriminant Analysis

discriminant_analysis.LinearDiscriminantAnalysis can be used to perform supervised dimen-
sionality reduction, by projecting the input data to a linear subspace consisting of the directions which maximize
the separation between classes (in a precise sense discussed in the mathematics section below). The dimension of the
output is necessarily less than the number of classes, so this is a in general a rather strong dimensionality reduction,
and only makes senses in a multiclass setting.

This is implemented in discriminant_analysis.LinearDiscriminantAnalysis.transform. The
desired dimensionality can be set using the n_components constructor parameter. This parameter has no influence
on discriminant_analysis.LinearDiscriminantAnalysis.fit or discriminant_analysis.
LinearDiscriminantAnalysis.predict.

Examples:
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Comparison of LDA and PCA 2D projection of Iris dataset: Comparison of LDA and PCA for dimensionality
reduction of the Iris dataset

Mathematical formulation of the LDA and QDA classifiers

Both LDA and QDA can be derived from simple probabilistic models which model the class conditional distribution
of the data 𝑃 (𝑋|𝑦 = 𝑘) for each class 𝑘. Predictions can then be obtained by using Bayes’ rule:

𝑃 (𝑦 = 𝑘|𝑋) =
𝑃 (𝑋|𝑦 = 𝑘)𝑃 (𝑦 = 𝑘)

𝑃 (𝑋)
=

𝑃 (𝑋|𝑦 = 𝑘)𝑃 (𝑦 = 𝑘)∑︀
𝑙 𝑃 (𝑋|𝑦 = 𝑙) · 𝑃 (𝑦 = 𝑙)

and we select the class 𝑘 which maximizes this conditional probability.

More specifically, for linear and quadratic discriminant analysis, 𝑃 (𝑋|𝑦) is modelled as a multivariate Gaussian
distribution with density:

𝑝(𝑋|𝑦 = 𝑘) =
1

(2𝜋)𝑛|Σ𝑘|1/2
exp

(︂
−1

2
(𝑋 − 𝜇𝑘)𝑡Σ−1

𝑘 (𝑋 − 𝜇𝑘)

)︂
To use this model as a classifier, we just need to estimate from the training data the class priors 𝑃 (𝑦 = 𝑘) (by the
proportion of instances of class 𝑘), the class means 𝜇𝑘 (by the empirical sample class means) and the covariance
matrices (either by the empirical sample class covariance matrices, or by a regularized estimator: see the section on
shrinkage below).

In the case of LDA, the Gaussians for each class are assumed to share the same covariance matrix: Σ𝑘 = Σ for all
𝑘. This leads to linear decision surfaces between, as can be seen by comparing the log-probability ratios log[𝑃 (𝑦 =
𝑘|𝑋)/𝑃 (𝑦 = 𝑙|𝑋)]:

log

(︂
𝑃 (𝑦 = 𝑘|𝑋)

𝑃 (𝑦 = 𝑙|𝑋)

)︂
= 0⇔ (𝜇𝑘 − 𝜇𝑙)Σ

−1𝑋 =
1

2
(𝜇𝑡

𝑘Σ−1𝜇𝑘 − 𝜇𝑡
𝑙Σ

−1𝜇𝑙)

In the case of QDA, there are no assumptions on the covariance matrices Σ𝑘 of the Gaussians, leading to quadratic
decision surfaces. See3 for more details.

Note: Relation with Gaussian Naive Bayes

If in the QDA model one assumes that the covariance matrices are diagonal, then the inputs are assumed to be con-
ditionally independent in each class, and the resulting classifier is equivalent to the Gaussian Naive Bayes classifier
naive_bayes.GaussianNB.

Mathematical formulation of LDA dimensionality reduction

To understand the use of LDA in dimensionality reduction, it is useful to start with a geometric reformulation of the
LDA classification rule explained above. We write 𝐾 for the total number of target classes. Since in LDA we assume
that all classes have the same estimated covariance Σ, we can rescale the data so that this covariance is the identity:

𝑋* = 𝐷−1/2𝑈 𝑡𝑋 with Σ = 𝑈𝐷𝑈 𝑡

Then one can show that to classify a data point after scaling is equivalent to finding the estimated class mean 𝜇*
𝑘 which

is closest to the data point in the Euclidean distance. But this can be done just as well after projecting on the 𝐾 − 1
affine subspace 𝐻𝐾 generated by all the 𝜇*

𝑘 for all classes. This shows that, implicit in the LDA classifier, there is a
dimensionality reduction by linear projection onto a 𝐾 − 1 dimensional space.

3 “The Elements of Statistical Learning”, Hastie T., Tibshirani R., Friedman J., Section 4.3, p.106-119, 2008.
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We can reduce the dimension even more, to a chosen 𝐿, by projecting onto the linear subspace 𝐻𝐿 which max-
imize the variance of the 𝜇*

𝑘 after projection (in effect, we are doing a form of PCA for the transformed class
means 𝜇*

𝑘). This 𝐿 corresponds to the n_components parameter used in the discriminant_analysis.
LinearDiscriminantAnalysis.transform method. See3 for more details.

Shrinkage

Shrinkage is a tool to improve estimation of covariance matrices in situations where the number of training sam-
ples is small compared to the number of features. In this scenario, the empirical sample covariance is a poor es-
timator. Shrinkage LDA can be used by setting the shrinkage parameter of the discriminant_analysis.
LinearDiscriminantAnalysis class to ‘auto’. This automatically determines the optimal shrinkage parameter
in an analytic way following the lemma introduced by Ledoit and Wolf4. Note that currently shrinkage only works
when setting the solver parameter to ‘lsqr’ or ‘eigen’.

The shrinkage parameter can also be manually set between 0 and 1. In particular, a value of 0 corresponds to
no shrinkage (which means the empirical covariance matrix will be used) and a value of 1 corresponds to complete
shrinkage (which means that the diagonal matrix of variances will be used as an estimate for the covariance matrix).
Setting this parameter to a value between these two extrema will estimate a shrunk version of the covariance matrix.

Estimation algorithms

The default solver is ‘svd’. It can perform both classification and transform, and it does not rely on the calculation
of the covariance matrix. This can be an advantage in situations where the number of features is large. However, the
‘svd’ solver cannot be used with shrinkage.

The ‘lsqr’ solver is an efficient algorithm that only works for classification. It supports shrinkage.

The ‘eigen’ solver is based on the optimization of the between class scatter to within class scatter ratio. It can be used
for both classification and transform, and it supports shrinkage. However, the ‘eigen’ solver needs to compute the
covariance matrix, so it might not be suitable for situations with a high number of features.

4 Ledoit O, Wolf M. Honey, I Shrunk the Sample Covariance Matrix. The Journal of Portfolio Management 30(4), 110-119, 2004.
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Examples:

Normal and Shrinkage Linear Discriminant Analysis for classification: Comparison of LDA classifiers with and
without shrinkage.

References:

3.1.3 Kernel ridge regression

Kernel ridge regression (KRR) [M2012] combines Ridge Regression (linear least squares with l2-norm regularization)
with the kernel trick. It thus learns a linear function in the space induced by the respective kernel and the data. For
non-linear kernels, this corresponds to a non-linear function in the original space.

The form of the model learned by KernelRidge is identical to support vector regression (SVR). However, different
loss functions are used: KRR uses squared error loss while support vector regression uses 𝜖-insensitive loss, both
combined with l2 regularization. In contrast to SVR, fitting KernelRidge can be done in closed-form and is typically
faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR, which
learns a sparse model for 𝜖 > 0, at prediction-time.

The following figure compares KernelRidge and SVR on an artificial dataset, which consists of a sinusoidal target
function and strong noise added to every fifth datapoint. The learned model of KernelRidge and SVR is plotted,
where both complexity/regularization and bandwidth of the RBF kernel have been optimized using grid-search. The
learned functions are very similar; however, fitting KernelRidge is approx. seven times faster than fitting SVR
(both with grid-search). However, prediction of 100000 target values is more than three times faster with SVR since it
has learned a sparse model using only approx. 1/3 of the 100 training datapoints as support vectors.

The next figure compares the time for fitting and prediction of KernelRidge and SVR for different sizes of the
training set. Fitting KernelRidge is faster than SVR for medium-sized training sets (less than 1000 samples);
however, for larger training sets SVR scales better. With regard to prediction time, SVR is faster than KernelRidge
for all sizes of the training set because of the learned sparse solution. Note that the degree of sparsity and thus the
prediction time depends on the parameters 𝜖 and 𝐶 of the SVR; 𝜖 = 0 would correspond to a dense model.

References:

3.1.4 Support Vector Machines

Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and
outliers detection.

The advantages of support vector machines are:

• Effective in high dimensional spaces.

• Still effective in cases where number of dimensions is greater than the number of samples.

• Uses a subset of training points in the decision function (called support vectors), so it is also memory efficient.

• Versatile: different Kernel functions can be specified for the decision function. Common kernels are provided,
but it is also possible to specify custom kernels.

The disadvantages of support vector machines include:
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• If the number of features is much greater than the number of samples, avoid over-fitting in choosing Kernel
functions and regularization term is crucial.

• SVMs do not directly provide probability estimates, these are calculated using an expensive five-fold cross-
validation (see Scores and probabilities, below).

The support vector machines in scikit-learn support both dense (numpy.ndarray and convertible to that by numpy.
asarray) and sparse (any scipy.sparse) sample vectors as input. However, to use an SVM to make predictions
for sparse data, it must have been fit on such data. For optimal performance, use C-ordered numpy.ndarray (dense)
or scipy.sparse.csr_matrix (sparse) with dtype=float64.

Classification

SVC, NuSVC and LinearSVC are classes capable of performing multi-class classification on a dataset.

SVC and NuSVC are similar methods, but accept slightly different sets of parameters and have different mathematical
formulations (see section Mathematical formulation). On the other hand, LinearSVC is another implementation
of Support Vector Classification for the case of a linear kernel. Note that LinearSVC does not accept keyword
kernel, as this is assumed to be linear. It also lacks some of the members of SVC and NuSVC, like support_.

As other classifiers, SVC, NuSVC and LinearSVC take as input two arrays: an array X of size [n_samples,
n_features] holding the training samples, and an array y of class labels (strings or integers), size [n_samples]:

>>> from sklearn import svm
>>> X = [[0, 0], [1, 1]]
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>>> y = [0, 1]
>>> clf = svm.SVC()
>>> clf.fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

After being fitted, the model can then be used to predict new values:

>>> clf.predict([[2., 2.]])
array([1])

SVMs decision function depends on some subset of the training data, called the support vectors. Some properties of
these support vectors can be found in members support_vectors_, support_ and n_support:

>>> # get support vectors
>>> clf.support_vectors_
array([[ 0., 0.],

[ 1., 1.]])
>>> # get indices of support vectors
>>> clf.support_
array([0, 1]...)
>>> # get number of support vectors for each class
>>> clf.n_support_
array([1, 1]...)

Multi-class classification

SVC and NuSVC implement the “one-against-one” approach (Knerr et al., 1990) for multi- class classifica-
tion. If n_class is the number of classes, then n_class * (n_class - 1) / 2 classifiers are con-
structed and each one trains data from two classes. To provide a consistent interface with other classifiers, the
decision_function_shape option allows to aggregate the results of the “one-against-one” classifiers to a deci-
sion function of shape (n_samples, n_classes):

>>> X = [[0], [1], [2], [3]]
>>> Y = [0, 1, 2, 3]
>>> clf = svm.SVC(decision_function_shape='ovo')
>>> clf.fit(X, Y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape='ovo', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> dec = clf.decision_function([[1]])
>>> dec.shape[1] # 4 classes: 4*3/2 = 6
6
>>> clf.decision_function_shape = "ovr"
>>> dec = clf.decision_function([[1]])
>>> dec.shape[1] # 4 classes
4

On the other hand, LinearSVC implements “one-vs-the-rest” multi-class strategy, thus training n_class models. If
there are only two classes, only one model is trained:
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>>> lin_clf = svm.LinearSVC()
>>> lin_clf.fit(X, Y)
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,

intercept_scaling=1, loss='squared_hinge', max_iter=1000,
multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
verbose=0)

>>> dec = lin_clf.decision_function([[1]])
>>> dec.shape[1]
4

See Mathematical formulation for a complete description of the decision function.

Note that the LinearSVC also implements an alternative multi-class strategy, the so-called multi-class SVM formu-
lated by Crammer and Singer, by using the option multi_class='crammer_singer'. This method is consis-
tent, which is not true for one-vs-rest classification. In practice, one-vs-rest classification is usually preferred, since
the results are mostly similar, but the runtime is significantly less.

For “one-vs-rest” LinearSVC the attributes coef_ and intercept_ have the shape [n_class,
n_features] and [n_class] respectively. Each row of the coefficients corresponds to one of the n_class
many “one-vs-rest” classifiers and similar for the intercepts, in the order of the “one” class.

In the case of “one-vs-one” SVC, the layout of the attributes is a little more involved. In the case of having a linear
kernel, The layout of coef_ and intercept_ is similar to the one described for LinearSVC described above,
except that the shape of coef_ is [n_class * (n_class - 1) / 2, n_features], corresponding to as
many binary classifiers. The order for classes 0 to n is “0 vs 1”, “0 vs 2” , . . . “0 vs n”, “1 vs 2”, “1 vs 3”, “1 vs n”, . .
. “n-1 vs n”.

The shape of dual_coef_ is [n_class-1, n_SV] with a somewhat hard to grasp layout. The columns corre-
spond to the support vectors involved in any of the n_class * (n_class - 1) / 2 “one-vs-one” classifiers.
Each of the support vectors is used in n_class - 1 classifiers. The n_class - 1 entries in each row correspond
to the dual coefficients for these classifiers.

This might be made more clear by an example:

Consider a three class problem with class 0 having three support vectors 𝑣00 , 𝑣
1
0 , 𝑣

2
0 and class 1 and 2 having two

support vectors 𝑣01 , 𝑣
1
1 and 𝑣02 , 𝑣

1
2 respectively. For each support vector 𝑣𝑗𝑖 , there are two dual coefficients. Let’s call

the coefficient of support vector 𝑣𝑗𝑖 in the classifier between classes 𝑖 and 𝑘 𝛼𝑗
𝑖,𝑘. Then dual_coef_ looks like this:

𝛼0
0,1 𝛼0

0,2 Coefficients for SVs of class 0
𝛼1
0,1 𝛼1

0,2

𝛼2
0,1 𝛼2

0,2

𝛼0
1,0 𝛼0

1,2 Coefficients for SVs of class 1
𝛼1
1,0 𝛼1

1,2

𝛼0
2,0 𝛼0

2,1 Coefficients for SVs of class 2
𝛼1
2,0 𝛼1

2,1

Scores and probabilities

The SVC method decision_function gives per-class scores for each sample (or a single score per sample in the
binary case). When the constructor option probability is set to True, class membership probability estimates
(from the methods predict_proba and predict_log_proba) are enabled. In the binary case, the probabilities
are calibrated using Platt scaling: logistic regression on the SVM’s scores, fit by an additional cross-validation on the
training data. In the multiclass case, this is extended as per Wu et al. (2004).

Needless to say, the cross-validation involved in Platt scaling is an expensive operation for large datasets. In addition,
the probability estimates may be inconsistent with the scores, in the sense that the “argmax” of the scores may not be
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the argmax of the probabilities. (E.g., in binary classification, a sample may be labeled by predict as belonging
to a class that has probability <½ according to predict_proba.) Platt’s method is also known to have theoret-
ical issues. If confidence scores are required, but these do not have to be probabilities, then it is advisable to set
probability=False and use decision_function instead of predict_proba.

References:

• Wu, Lin and Weng, “Probability estimates for multi-class classification by pairwise coupling”, JMLR 5:975-
1005, 2004.

• Platt “Probabilistic outputs for SVMs and comparisons to regularized likelihood methods”
<http://www.cs.colorado.edu/~mozer/Teaching/syllabi/6622/papers/Platt1999.pdf>.

Unbalanced problems

In problems where it is desired to give more importance to certain classes or certain individual samples keywords
class_weight and sample_weight can be used.

SVC (but not NuSVC) implement a keyword class_weight in the fit method. It’s a dictionary of the form
{class_label : value}, where value is a floating point number > 0 that sets the parameter C of class
class_label to C * value.

SVC, NuSVC, SVR, NuSVR and OneClassSVM implement also weights for individual samples in method fit
through keyword sample_weight. Similar to class_weight, these set the parameter C for the i-th example to
C * sample_weight[i].

Examples:
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• Plot different SVM classifiers in the iris dataset,

• SVM: Maximum margin separating hyperplane,

• SVM: Separating hyperplane for unbalanced classes

• SVM-Anova: SVM with univariate feature selection,

• Non-linear SVM

• SVM: Weighted samples,

Regression

The method of Support Vector Classification can be extended to solve regression problems. This method is called
Support Vector Regression.

The model produced by support vector classification (as described above) depends only on a subset of the training
data, because the cost function for building the model does not care about training points that lie beyond the margin.
Analogously, the model produced by Support Vector Regression depends only on a subset of the training data, because
the cost function for building the model ignores any training data close to the model prediction.

There are three different implementations of Support Vector Regression: SVR, NuSVR and LinearSVR.
LinearSVR provides a faster implementation than SVR but only considers linear kernels, while NuSVR implements
a slightly different formulation than SVR and LinearSVR. See Implementation details for further details.

As with classification classes, the fit method will take as argument vectors X, y, only that in this case y is expected to
have floating point values instead of integer values:

>>> from sklearn import svm
>>> X = [[0, 0], [2, 2]]
>>> y = [0.5, 2.5]
>>> clf = svm.SVR()
>>> clf.fit(X, y)
SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='auto',

kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)
>>> clf.predict([[1, 1]])
array([ 1.5])
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Examples:

• Support Vector Regression (SVR) using linear and non-linear kernels

Density estimation, novelty detection

One-class SVM is used for novelty detection, that is, given a set of samples, it will detect the soft boundary of that set
so as to classify new points as belonging to that set or not. The class that implements this is called OneClassSVM .

In this case, as it is a type of unsupervised learning, the fit method will only take as input an array X, as there are no
class labels.

See, section Novelty and Outlier Detection for more details on this usage.

Examples:

• One-class SVM with non-linear kernel (RBF)

• Species distribution modeling

Complexity

Support Vector Machines are powerful tools, but their compute and storage requirements increase rapidly with the
number of training vectors. The core of an SVM is a quadratic programming problem (QP), separating support
vectors from the rest of the training data. The QP solver used by this libsvm-based implementation scales between
𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑛2𝑠𝑎𝑚𝑝𝑙𝑒𝑠) and 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑛3𝑠𝑎𝑚𝑝𝑙𝑒𝑠) depending on how efficiently the libsvm cache is used in
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practice (dataset dependent). If the data is very sparse 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 should be replaced by the average number of non-
zero features in a sample vector.

Also note that for the linear case, the algorithm used in LinearSVC by the liblinear implementation is much more
efficient than its libsvm-based SVC counterpart and can scale almost linearly to millions of samples and/or features.

Tips on Practical Use

• Avoiding data copy: For SVC, SVR, NuSVC and NuSVR, if the data passed to certain methods is not C-ordered
contiguous, and double precision, it will be copied before calling the underlying C implementation. You can
check whether a given numpy array is C-contiguous by inspecting its flags attribute.

For LinearSVC (and LogisticRegression) any input passed as a numpy array will be copied and con-
verted to the liblinear internal sparse data representation (double precision floats and int32 indices of non-zero
components). If you want to fit a large-scale linear classifier without copying a dense numpy C-contiguous
double precision array as input we suggest to use the SGDClassifier class instead. The objective function
can be configured to be almost the same as the LinearSVC model.

• Kernel cache size: For SVC, SVR, nuSVC and NuSVR, the size of the kernel cache has a strong impact on run
times for larger problems. If you have enough RAM available, it is recommended to set cache_size to a
higher value than the default of 200(MB), such as 500(MB) or 1000(MB).

• Setting C: C is 1 by default and it’s a reasonable default choice. If you have a lot of noisy observations you
should decrease it. It corresponds to regularize more the estimation.

• Support Vector Machine algorithms are not scale invariant, so it is highly recommended to scale your data.
For example, scale each attribute on the input vector X to [0,1] or [-1,+1], or standardize it to have mean 0
and variance 1. Note that the same scaling must be applied to the test vector to obtain meaningful results. See
section Preprocessing data for more details on scaling and normalization.

• Parameter nu in NuSVC/OneClassSVM /NuSVR approximates the fraction of training errors and support vec-
tors.

• In SVC, if data for classification are unbalanced (e.g. many positive and few negative), set
class_weight='balanced' and/or try different penalty parameters C.

• The underlying LinearSVC implementation uses a random number generator to select features when fitting
the model. It is thus not uncommon, to have slightly different results for the same input data. If that happens,
try with a smaller tol parameter.

• Using L1 penalization as provided by LinearSVC(loss='l2', penalty='l1', dual=False)
yields a sparse solution, i.e. only a subset of feature weights is different from zero and contribute to the de-
cision function. Increasing C yields a more complex model (more feature are selected). The C value that yields
a “null” model (all weights equal to zero) can be calculated using l1_min_c.

Kernel functions

The kernel function can be any of the following:

• linear: ⟨𝑥, 𝑥′⟩.

• polynomial: (𝛾⟨𝑥, 𝑥′⟩+ 𝑟)𝑑. 𝑑 is specified by keyword degree, 𝑟 by coef0.

• rbf: exp(−𝛾‖𝑥− 𝑥′‖2). 𝛾 is specified by keyword gamma, must be greater than 0.

• sigmoid (tanh(𝛾⟨𝑥, 𝑥′⟩+ 𝑟)), where 𝑟 is specified by coef0.

Different kernels are specified by keyword kernel at initialization:
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>>> linear_svc = svm.SVC(kernel='linear')
>>> linear_svc.kernel
'linear'
>>> rbf_svc = svm.SVC(kernel='rbf')
>>> rbf_svc.kernel
'rbf'

Custom Kernels

You can define your own kernels by either giving the kernel as a python function or by precomputing the Gram matrix.

Classifiers with custom kernels behave the same way as any other classifiers, except that:

• Field support_vectors_ is now empty, only indices of support vectors are stored in support_

• A reference (and not a copy) of the first argument in the fit() method is stored for future reference. If that
array changes between the use of fit() and predict() you will have unexpected results.

Using Python functions as kernels

You can also use your own defined kernels by passing a function to the keyword kernel in the constructor.

Your kernel must take as arguments two matrices of shape (n_samples_1, n_features), (n_samples_2,
n_features) and return a kernel matrix of shape (n_samples_1, n_samples_2).

The following code defines a linear kernel and creates a classifier instance that will use that kernel:

>>> import numpy as np
>>> from sklearn import svm
>>> def my_kernel(X, Y):
... return np.dot(X, Y.T)
...
>>> clf = svm.SVC(kernel=my_kernel)

Examples:

• SVM with custom kernel.

Using the Gram matrix

Set kernel='precomputed' and pass the Gram matrix instead of X in the fit method. At the moment, the kernel
values between all training vectors and the test vectors must be provided.

>>> import numpy as np
>>> from sklearn import svm
>>> X = np.array([[0, 0], [1, 1]])
>>> y = [0, 1]
>>> clf = svm.SVC(kernel='precomputed')
>>> # linear kernel computation
>>> gram = np.dot(X, X.T)
>>> clf.fit(gram, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape='ovr', degree=3, gamma='auto',
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kernel='precomputed', max_iter=-1, probability=False,
random_state=None, shrinking=True, tol=0.001, verbose=False)

>>> # predict on training examples
>>> clf.predict(gram)
array([0, 1])

Parameters of the RBF Kernel

When training an SVM with the Radial Basis Function (RBF) kernel, two parameters must be considered: C and
gamma. The parameter C, common to all SVM kernels, trades off misclassification of training examples against
simplicity of the decision surface. A low C makes the decision surface smooth, while a high C aims at classifying all
training examples correctly. gamma defines how much influence a single training example has. The larger gamma is,
the closer other examples must be to be affected.

Proper choice of C and gamma is critical to the SVM’s performance. One is advised to use sklearn.
model_selection.GridSearchCV with C and gamma spaced exponentially far apart to choose good values.

Examples:

• RBF SVM parameters

Mathematical formulation

A support vector machine constructs a hyper-plane or set of hyper-planes in a high or infinite dimensional space, which
can be used for classification, regression or other tasks. Intuitively, a good separation is achieved by the hyper-plane
that has the largest distance to the nearest training data points of any class (so-called functional margin), since in
general the larger the margin the lower the generalization error of the classifier.
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SVC

Given training vectors 𝑥𝑖 ∈ R𝑝, i=1,. . . , n, in two classes, and a vector 𝑦 ∈ {1,−1}𝑛, SVC solves the following primal
problem:

min
𝑤,𝑏,𝜁

1

2
𝑤𝑇𝑤 + 𝐶

𝑛∑︁
𝑖=1

𝜁𝑖

subject to 𝑦𝑖(𝑤𝑇𝜑(𝑥𝑖) + 𝑏) ≥ 1− 𝜁𝑖,
𝜁𝑖 ≥ 0, 𝑖 = 1, ..., 𝑛

Its dual is

min
𝛼

1

2
𝛼𝑇𝑄𝛼− 𝑒𝑇𝛼

subject to 𝑦𝑇𝛼 = 0

0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, ..., 𝑛

where 𝑒 is the vector of all ones, 𝐶 > 0 is the upper bound, 𝑄 is an 𝑛 by 𝑛 positive semidefinite matrix, 𝑄𝑖𝑗 ≡
𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗), where 𝐾(𝑥𝑖, 𝑥𝑗) = 𝜑(𝑥𝑖)

𝑇𝜑(𝑥𝑗) is the kernel. Here training vectors are implicitly mapped into a
higher (maybe infinite) dimensional space by the function 𝜑.

The decision function is:

sgn(

𝑛∑︁
𝑖=1

𝑦𝑖𝛼𝑖𝐾(𝑥𝑖, 𝑥) + 𝜌)

Note: While SVM models derived from libsvm and liblinear use C as regularization parameter, most other estimators
use alpha. The exact equivalence between the amount of regularization of two models depends on the exact objective
function optimized by the model. For example, when the estimator used is sklearn.linear_model.Ridge
regression, the relation between them is given as 𝐶 = 1

𝑎𝑙𝑝ℎ𝑎 .

This parameters can be accessed through the members dual_coef_ which holds the product 𝑦𝑖𝛼𝑖,
support_vectors_ which holds the support vectors, and intercept_ which holds the independent term 𝜌
:

References:

• “Automatic Capacity Tuning of Very Large VC-dimension Classifiers”, I. Guyon, B. Boser, V. Vapnik -
Advances in neural information processing 1993.

• “Support-vector networks”, C. Cortes, V. Vapnik - Machine Learning, 20, 273-297 (1995).

NuSVC

We introduce a new parameter 𝜈 which controls the number of support vectors and training errors. The parameter
𝜈 ∈ (0, 1] is an upper bound on the fraction of training errors and a lower bound of the fraction of support vectors.

It can be shown that the 𝜈-SVC formulation is a reparameterization of the 𝐶-SVC and therefore mathematically
equivalent.
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SVR

Given training vectors 𝑥𝑖 ∈ R𝑝, i=1,. . . , n, and a vector 𝑦 ∈ R𝑛 𝜀-SVR solves the following primal problem:

min
𝑤,𝑏,𝜁,𝜁*

1

2
𝑤𝑇𝑤 + 𝐶

𝑛∑︁
𝑖=1

(𝜁𝑖 + 𝜁*𝑖 )

subject to 𝑦𝑖 − 𝑤𝑇𝜑(𝑥𝑖)− 𝑏 ≤ 𝜀+ 𝜁𝑖,

𝑤𝑇𝜑(𝑥𝑖) + 𝑏− 𝑦𝑖 ≤ 𝜀+ 𝜁*𝑖 ,

𝜁𝑖, 𝜁
*
𝑖 ≥ 0, 𝑖 = 1, ..., 𝑛

Its dual is

min
𝛼,𝛼*

1

2
(𝛼− 𝛼*)𝑇𝑄(𝛼− 𝛼*) + 𝜀𝑒𝑇 (𝛼+ 𝛼*)− 𝑦𝑇 (𝛼− 𝛼*)

subject to 𝑒𝑇 (𝛼− 𝛼*) = 0

0 ≤ 𝛼𝑖, 𝛼
*
𝑖 ≤ 𝐶, 𝑖 = 1, ..., 𝑛

where 𝑒 is the vector of all ones, 𝐶 > 0 is the upper bound, 𝑄 is an 𝑛 by 𝑛 positive semidefinite matrix, 𝑄𝑖𝑗 ≡
𝐾(𝑥𝑖, 𝑥𝑗) = 𝜑(𝑥𝑖)

𝑇𝜑(𝑥𝑗) is the kernel. Here training vectors are implicitly mapped into a higher (maybe infinite)
dimensional space by the function 𝜑.

The decision function is:

𝑛∑︁
𝑖=1

(𝛼𝑖 − 𝛼*
𝑖 )𝐾(𝑥𝑖, 𝑥) + 𝜌

These parameters can be accessed through the members dual_coef_ which holds the difference 𝛼𝑖 − 𝛼*
𝑖 ,

support_vectors_ which holds the support vectors, and intercept_ which holds the independent term 𝜌

References:

• “A Tutorial on Support Vector Regression”, Alex J. Smola, Bernhard Schölkopf - Statistics and Computing
archive Volume 14 Issue 3, August 2004, p. 199-222.

Implementation details

Internally, we use libsvm and liblinear to handle all computations. These libraries are wrapped using C and Cython.

References:

For a description of the implementation and details of the algorithms used, please refer to

• LIBSVM: A Library for Support Vector Machines.

• LIBLINEAR – A Library for Large Linear Classification.

3.1.5 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a simple yet very efficient approach to discriminative learning of linear clas-
sifiers under convex loss functions such as (linear) Support Vector Machines and Logistic Regression. Even though
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SGD has been around in the machine learning community for a long time, it has received a considerable amount of
attention just recently in the context of large-scale learning.

SGD has been successfully applied to large-scale and sparse machine learning problems often encountered in text
classification and natural language processing. Given that the data is sparse, the classifiers in this module easily scale
to problems with more than 10^5 training examples and more than 10^5 features.

The advantages of Stochastic Gradient Descent are:

• Efficiency.

• Ease of implementation (lots of opportunities for code tuning).

The disadvantages of Stochastic Gradient Descent include:

• SGD requires a number of hyperparameters such as the regularization parameter and the number of iterations.

• SGD is sensitive to feature scaling.

Classification

Warning: Make sure you permute (shuffle) your training data before fitting the model or use shuffle=True
to shuffle after each iteration.

The class SGDClassifier implements a plain stochastic gradient descent learning routine which supports different
loss functions and penalties for classification.

As other classifiers, SGD has to be fitted with two arrays: an array X of size [n_samples, n_features] holding the
training samples, and an array Y of size [n_samples] holding the target values (class labels) for the training samples:

>>> from sklearn.linear_model import SGDClassifier
>>> X = [[0., 0.], [1., 1.]]
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>>> y = [0, 1]
>>> clf = SGDClassifier(loss="hinge", penalty="l2")
>>> clf.fit(X, y)
SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1,

eta0=0.0, fit_intercept=True, l1_ratio=0.15,
learning_rate='optimal', loss='hinge', max_iter=None, n_iter=None,
n_jobs=1, penalty='l2', power_t=0.5, random_state=None,
shuffle=True, tol=None, verbose=0, warm_start=False)

After being fitted, the model can then be used to predict new values:

>>> clf.predict([[2., 2.]])
array([1])

SGD fits a linear model to the training data. The member coef_ holds the model parameters:

>>> clf.coef_
array([[ 9.9..., 9.9...]])

Member intercept_ holds the intercept (aka offset or bias):

>>> clf.intercept_
array([-9.9...])

Whether or not the model should use an intercept, i.e. a biased hyperplane, is controlled by the parameter
fit_intercept.

To get the signed distance to the hyperplane use SGDClassifier.decision_function:

>>> clf.decision_function([[2., 2.]])
array([ 29.6...])

The concrete loss function can be set via the loss parameter. SGDClassifier supports the following loss func-
tions:

• loss="hinge": (soft-margin) linear Support Vector Machine,

• loss="modified_huber": smoothed hinge loss,

• loss="log": logistic regression,

• and all regression losses below.

The first two loss functions are lazy, they only update the model parameters if an example violates the margin con-
straint, which makes training very efficient and may result in sparser models, even when L2 penalty is used.

Using loss="log" or loss="modified_huber" enables the predict_proba method, which gives a vector
of probability estimates 𝑃 (𝑦|𝑥) per sample 𝑥:

>>> clf = SGDClassifier(loss="log").fit(X, y)
>>> clf.predict_proba([[1., 1.]])
array([[ 0.00..., 0.99...]])

The concrete penalty can be set via the penalty parameter. SGD supports the following penalties:

• penalty="l2": L2 norm penalty on coef_.

• penalty="l1": L1 norm penalty on coef_.

• penalty="elasticnet": Convex combination of L2 and L1; (1 - l1_ratio) * L2 +
l1_ratio * L1.
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The default setting is penalty="l2". The L1 penalty leads to sparse solutions, driving most coefficients to zero.
The Elastic Net solves some deficiencies of the L1 penalty in the presence of highly correlated attributes. The param-
eter l1_ratio controls the convex combination of L1 and L2 penalty.

SGDClassifier supports multi-class classification by combining multiple binary classifiers in a “one versus all”
(OVA) scheme. For each of the 𝐾 classes, a binary classifier is learned that discriminates between that and all other
𝐾 − 1 classes. At testing time, we compute the confidence score (i.e. the signed distances to the hyperplane) for each
classifier and choose the class with the highest confidence. The Figure below illustrates the OVA approach on the iris
dataset. The dashed lines represent the three OVA classifiers; the background colors show the decision surface induced
by the three classifiers.

In the case of multi-class classification coef_ is a two-dimensionally array of shape=[n_classes,
n_features] and intercept_ is a one dimensional array of shape=[n_classes]. The i-th row of coef_
holds the weight vector of the OVA classifier for the i-th class; classes are indexed in ascending order (see at-
tribute classes_). Note that, in principle, since they allow to create a probability model, loss="log" and
loss="modified_huber" are more suitable for one-vs-all classification.

SGDClassifier supports both weighted classes and weighted instances via the fit parameters class_weight
and sample_weight. See the examples below and the doc string of SGDClassifier.fit for further informa-
tion.

Examples:

• SGD: Maximum margin separating hyperplane,

• Plot multi-class SGD on the iris dataset

• SGD: Weighted samples

• Comparing various online solvers

• SVM: Separating hyperplane for unbalanced classes (See the Note)
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SGDClassifier supports averaged SGD (ASGD). Averaging can be enabled by setting `average=True`.
ASGD works by averaging the coefficients of the plain SGD over each iteration over a sample. When using ASGD
the learning rate can be larger and even constant leading on some datasets to a speed up in training time.

For classification with a logistic loss, another variant of SGD with an averaging strategy is available with Stochastic
Average Gradient (SAG) algorithm, available as a solver in LogisticRegression.

Regression

The class SGDRegressor implements a plain stochastic gradient descent learning routine which supports different
loss functions and penalties to fit linear regression models. SGDRegressor is well suited for regression prob-
lems with a large number of training samples (> 10.000), for other problems we recommend Ridge, Lasso, or
ElasticNet.

The concrete loss function can be set via the loss parameter. SGDRegressor supports the following loss functions:

• loss="squared_loss": Ordinary least squares,

• loss="huber": Huber loss for robust regression,

• loss="epsilon_insensitive": linear Support Vector Regression.

The Huber and epsilon-insensitive loss functions can be used for robust regression. The width of the insensitive region
has to be specified via the parameter epsilon. This parameter depends on the scale of the target variables.

SGDRegressor supports averaged SGD as SGDClassifier. Averaging can be enabled by setting
`average=True`.

For regression with a squared loss and a l2 penalty, another variant of SGD with an averaging strategy is available with
Stochastic Average Gradient (SAG) algorithm, available as a solver in Ridge.

Stochastic Gradient Descent for sparse data

Note: The sparse implementation produces slightly different results than the dense implementation due to a shrunk
learning rate for the intercept.

There is built-in support for sparse data given in any matrix in a format supported by scipy.sparse. For maximum
efficiency, however, use the CSR matrix format as defined in scipy.sparse.csr_matrix.

Examples:

• Classification of text documents using sparse features

Complexity

The major advantage of SGD is its efficiency, which is basically linear in the number of training examples. If X is a
matrix of size (n, p) training has a cost of 𝑂(𝑘𝑛𝑝), where k is the number of iterations (epochs) and 𝑝 is the average
number of non-zero attributes per sample.

Recent theoretical results, however, show that the runtime to get some desired optimization accuracy does not increase
as the training set size increases.
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Tips on Practical Use

• Stochastic Gradient Descent is sensitive to feature scaling, so it is highly recommended to scale your data. For
example, scale each attribute on the input vector X to [0,1] or [-1,+1], or standardize it to have mean 0 and
variance 1. Note that the same scaling must be applied to the test vector to obtain meaningful results. This can
be easily done using StandardScaler:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train) # Don't cheat - fit only on training data
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test) # apply same transformation to test data

If your attributes have an intrinsic scale (e.g. word frequencies or indicator features) scaling is not needed.

• Finding a reasonable regularization term 𝛼 is best done using GridSearchCV, usually in the range 10.
0**-np.arange(1,7).

• Empirically, we found that SGD converges after observing approx. 10^6 training samples. Thus, a reasonable
first guess for the number of iterations is n_iter = np.ceil(10**6 / n), where n is the size of the
training set.

• If you apply SGD to features extracted using PCA we found that it is often wise to scale the feature values by
some constant c such that the average L2 norm of the training data equals one.

• We found that Averaged SGD works best with a larger number of features and a higher eta0

References:

• “Efficient BackProp” Y. LeCun, L. Bottou, G. Orr, K. Müller - In Neural Networks: Tricks of the Trade 1998.

Mathematical formulation

Given a set of training examples (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) where 𝑥𝑖 ∈ R𝑚 and 𝑦𝑖 ∈ {−1, 1}, our goal is to learn a linear
scoring function 𝑓(𝑥) = 𝑤𝑇𝑥+ 𝑏 with model parameters 𝑤 ∈ R𝑚 and intercept 𝑏 ∈ R. In order to make predictions,
we simply look at the sign of 𝑓(𝑥). A common choice to find the model parameters is by minimizing the regularized
training error given by

𝐸(𝑤, 𝑏) =
1

𝑛

𝑛∑︁
𝑖=1

𝐿(𝑦𝑖, 𝑓(𝑥𝑖)) + 𝛼𝑅(𝑤)

where 𝐿 is a loss function that measures model (mis)fit and 𝑅 is a regularization term (aka penalty) that penalizes
model complexity; 𝛼 > 0 is a non-negative hyperparameter.

Different choices for 𝐿 entail different classifiers such as

• Hinge: (soft-margin) Support Vector Machines.

• Log: Logistic Regression.

• Least-Squares: Ridge Regression.

• Epsilon-Insensitive: (soft-margin) Support Vector Regression.

All of the above loss functions can be regarded as an upper bound on the misclassification error (Zero-one loss) as
shown in the Figure below.

Popular choices for the regularization term 𝑅 include:
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• L2 norm: 𝑅(𝑤) := 1
2

∑︀𝑛
𝑖=1 𝑤

2
𝑖 ,

• L1 norm: 𝑅(𝑤) :=
∑︀𝑛

𝑖=1 |𝑤𝑖|, which leads to sparse solutions.

• Elastic Net: 𝑅(𝑤) := 𝜌
2

∑︀𝑛
𝑖=1 𝑤

2
𝑖 + (1 − 𝜌)

∑︀𝑛
𝑖=1 |𝑤𝑖|, a convex combination of L2 and L1, where 𝜌 is given

by 1 - l1_ratio.

The Figure below shows the contours of the different regularization terms in the parameter space when 𝑅(𝑤) = 1.

SGD

Stochastic gradient descent is an optimization method for unconstrained optimization problems. In contrast to (batch)
gradient descent, SGD approximates the true gradient of 𝐸(𝑤, 𝑏) by considering a single training example at a time.

The class SGDClassifier implements a first-order SGD learning routine. The algorithm iterates over the training
examples and for each example updates the model parameters according to the update rule given by

𝑤 ← 𝑤 − 𝜂(𝛼
𝜕𝑅(𝑤)

𝜕𝑤
+
𝜕𝐿(𝑤𝑇𝑥𝑖 + 𝑏, 𝑦𝑖)

𝜕𝑤
)

where 𝜂 is the learning rate which controls the step-size in the parameter space. The intercept 𝑏 is updated similarly
but without regularization.

The learning rate 𝜂 can be either constant or gradually decaying. For classification, the default learning rate schedule
(learning_rate='optimal') is given by

𝜂(𝑡) =
1

𝛼(𝑡0 + 𝑡)

where 𝑡 is the time step (there are a total of n_samples * n_iter time steps), 𝑡0 is determined based on a heuristic
proposed by Léon Bottou such that the expected initial updates are comparable with the expected size of the weights
(this assuming that the norm of the training samples is approx. 1). The exact definition can be found in _init_t in
BaseSGD.
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For regression the default learning rate schedule is inverse scaling (learning_rate='invscaling'), given by

𝜂(𝑡) =
𝑒𝑡𝑎0

𝑡𝑝𝑜𝑤𝑒𝑟_𝑡

where 𝑒𝑡𝑎0 and 𝑝𝑜𝑤𝑒𝑟_𝑡 are hyperparameters chosen by the user via eta0 and power_t, resp.

For a constant learning rate use learning_rate='constant' and use eta0 to specify the learning rate.

The model parameters can be accessed through the members coef_ and intercept_:

• Member coef_ holds the weights 𝑤

• Member intercept_ holds 𝑏

References:

• “Solving large scale linear prediction problems using stochastic gradient descent algorithms” T. Zhang - In
Proceedings of ICML ‘04.

• “Regularization and variable selection via the elastic net” H. Zou, T. Hastie - Journal of the Royal Statistical
Society Series B, 67 (2), 301-320.

• “Towards Optimal One Pass Large Scale Learning with Averaged Stochastic Gradient Descent” Xu, Wei

Implementation details

The implementation of SGD is influenced by the Stochastic Gradient SVM of Léon Bottou. Similar to SvmSGD,
the weight vector is represented as the product of a scalar and a vector which allows an efficient weight update in
the case of L2 regularization. In the case of sparse feature vectors, the intercept is updated with a smaller learning
rate (multiplied by 0.01) to account for the fact that it is updated more frequently. Training examples are picked up
sequentially and the learning rate is lowered after each observed example. We adopted the learning rate schedule from
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Shalev-Shwartz et al. 2007. For multi-class classification, a “one versus all” approach is used. We use the truncated
gradient algorithm proposed by Tsuruoka et al. 2009 for L1 regularization (and the Elastic Net). The code is written
in Cython.

References:

• “Stochastic Gradient Descent” L. Bottou - Website, 2010.

• “The Tradeoffs of Large Scale Machine Learning” L. Bottou - Website, 2011.

• “Pegasos: Primal estimated sub-gradient solver for svm” S. Shalev-Shwartz, Y. Singer, N. Srebro - In Pro-
ceedings of ICML ‘07.

• “Stochastic gradient descent training for l1-regularized log-linear models with cumulative penalty” Y. Tsu-
ruoka, J. Tsujii, S. Ananiadou - In Proceedings of the AFNLP/ACL ‘09.

3.1.6 Nearest Neighbors

sklearn.neighbors provides functionality for unsupervised and supervised neighbors-based learning methods.
Unsupervised nearest neighbors is the foundation of many other learning methods, notably manifold learning and
spectral clustering. Supervised neighbors-based learning comes in two flavors: classification for data with discrete
labels, and regression for data with continuous labels.

The principle behind nearest neighbor methods is to find a predefined number of training samples closest in distance
to the new point, and predict the label from these. The number of samples can be a user-defined constant (k-nearest
neighbor learning), or vary based on the local density of points (radius-based neighbor learning). The distance can,
in general, be any metric measure: standard Euclidean distance is the most common choice. Neighbors-based meth-
ods are known as non-generalizing machine learning methods, since they simply “remember” all of its training data
(possibly transformed into a fast indexing structure such as a Ball Tree or KD Tree.).

Despite its simplicity, nearest neighbors has been successful in a large number of classification and regression prob-
lems, including handwritten digits or satellite image scenes. Being a non-parametric method, it is often successful in
classification situations where the decision boundary is very irregular.

The classes in sklearn.neighbors can handle either Numpy arrays or scipy.sparse matrices as input. For dense
matrices, a large number of possible distance metrics are supported. For sparse matrices, arbitrary Minkowski metrics
are supported for searches.

There are many learning routines which rely on nearest neighbors at their core. One example is kernel density estima-
tion, discussed in the density estimation section.

Unsupervised Nearest Neighbors

NearestNeighbors implements unsupervised nearest neighbors learning. It acts as a uniform interface to three
different nearest neighbors algorithms: BallTree, KDTree, and a brute-force algorithm based on routines in
sklearn.metrics.pairwise. The choice of neighbors search algorithm is controlled through the keyword
'algorithm', which must be one of ['auto', 'ball_tree', 'kd_tree', 'brute']. When the de-
fault value 'auto' is passed, the algorithm attempts to determine the best approach from the training data. For a
discussion of the strengths and weaknesses of each option, see Nearest Neighbor Algorithms.

Warning: Regarding the Nearest Neighbors algorithms, if two neighbors, neighbor 𝑘+1 and 𝑘, have
identical distances but different labels, the results will depend on the ordering of the training data.

3.1. Supervised learning 197

http://leon.bottou.org/projects/sgd
http://leon.bottou.org/slides/largescale/lstut.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.8513
http://www.aclweb.org/anthology/P/P09/P09-1054.pdf


scikit-learn user guide, Release 0.19.1

Finding the Nearest Neighbors

For the simple task of finding the nearest neighbors between two sets of data, the unsupervised algorithms within
sklearn.neighbors can be used:

>>> from sklearn.neighbors import NearestNeighbors
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> nbrs = NearestNeighbors(n_neighbors=2, algorithm='ball_tree').fit(X)
>>> distances, indices = nbrs.kneighbors(X)
>>> indices
array([[0, 1],

[1, 0],
[2, 1],
[3, 4],
[4, 3],
[5, 4]]...)

>>> distances
array([[ 0. , 1. ],

[ 0. , 1. ],
[ 0. , 1.41421356],
[ 0. , 1. ],
[ 0. , 1. ],
[ 0. , 1.41421356]])

Because the query set matches the training set, the nearest neighbor of each point is the point itself, at a distance of
zero.

It is also possible to efficiently produce a sparse graph showing the connections between neighboring points:

>>> nbrs.kneighbors_graph(X).toarray()
array([[ 1., 1., 0., 0., 0., 0.],

[ 1., 1., 0., 0., 0., 0.],
[ 0., 1., 1., 0., 0., 0.],
[ 0., 0., 0., 1., 1., 0.],
[ 0., 0., 0., 1., 1., 0.],
[ 0., 0., 0., 0., 1., 1.]])

Our dataset is structured such that points nearby in index order are nearby in parameter space, leading to an ap-
proximately block-diagonal matrix of K-nearest neighbors. Such a sparse graph is useful in a variety of cir-
cumstances which make use of spatial relationships between points for unsupervised learning: in particular,
see sklearn.manifold.Isomap, sklearn.manifold.LocallyLinearEmbedding, and sklearn.
cluster.SpectralClustering.

KDTree and BallTree Classes

Alternatively, one can use the KDTree or BallTree classes directly to find nearest neighbors. This is the function-
ality wrapped by the NearestNeighbors class used above. The Ball Tree and KD Tree have the same interface;
we’ll show an example of using the KD Tree here:

>>> from sklearn.neighbors import KDTree
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> kdt = KDTree(X, leaf_size=30, metric='euclidean')
>>> kdt.query(X, k=2, return_distance=False)
array([[0, 1],
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[1, 0],
[2, 1],
[3, 4],
[4, 3],
[5, 4]]...)

Refer to the KDTree and BallTree class documentation for more information on the options available for neighbors
searches, including specification of query strategies, of various distance metrics, etc. For a list of available metrics,
see the documentation of the DistanceMetric class.

Nearest Neighbors Classification

Neighbors-based classification is a type of instance-based learning or non-generalizing learning: it does not attempt
to construct a general internal model, but simply stores instances of the training data. Classification is computed from
a simple majority vote of the nearest neighbors of each point: a query point is assigned the data class which has the
most representatives within the nearest neighbors of the point.

scikit-learn implements two different nearest neighbors classifiers: KNeighborsClassifier implements learn-
ing based on the 𝑘 nearest neighbors of each query point, where 𝑘 is an integer value specified by the user.
RadiusNeighborsClassifier implements learning based on the number of neighbors within a fixed radius
𝑟 of each training point, where 𝑟 is a floating-point value specified by the user.

The 𝑘-neighbors classification in KNeighborsClassifier is the more commonly used of the two techniques.
The optimal choice of the value 𝑘 is highly data-dependent: in general a larger 𝑘 suppresses the effects of noise, but
makes the classification boundaries less distinct.

In cases where the data is not uniformly sampled, radius-based neighbors classification in
RadiusNeighborsClassifier can be a better choice. The user specifies a fixed radius 𝑟, such that
points in sparser neighborhoods use fewer nearest neighbors for the classification. For high-dimensional parameter
spaces, this method becomes less effective due to the so-called “curse of dimensionality”.

The basic nearest neighbors classification uses uniform weights: that is, the value assigned to a query point is computed
from a simple majority vote of the nearest neighbors. Under some circumstances, it is better to weight the neighbors
such that nearer neighbors contribute more to the fit. This can be accomplished through the weights keyword. The
default value, weights = 'uniform', assigns uniform weights to each neighbor. weights = 'distance'
assigns weights proportional to the inverse of the distance from the query point. Alternatively, a user-defined function
of the distance can be supplied which is used to compute the weights.
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Examples:

• Nearest Neighbors Classification: an example of classification using nearest neighbors.

Nearest Neighbors Regression

Neighbors-based regression can be used in cases where the data labels are continuous rather than discrete variables.
The label assigned to a query point is computed based the mean of the labels of its nearest neighbors.

scikit-learn implements two different neighbors regressors: KNeighborsRegressor implements learning
based on the 𝑘 nearest neighbors of each query point, where 𝑘 is an integer value specified by the user.
RadiusNeighborsRegressor implements learning based on the neighbors within a fixed radius 𝑟 of the query
point, where 𝑟 is a floating-point value specified by the user.

The basic nearest neighbors regression uses uniform weights: that is, each point in the local neighborhood contributes
uniformly to the classification of a query point. Under some circumstances, it can be advantageous to weight points
such that nearby points contribute more to the regression than faraway points. This can be accomplished through the
weights keyword. The default value, weights = 'uniform', assigns equal weights to all points. weights
= 'distance' assigns weights proportional to the inverse of the distance from the query point. Alternatively, a
user-defined function of the distance can be supplied, which will be used to compute the weights.

The use of multi-output nearest neighbors for regression is demonstrated in Face completion with a multi-output
estimators. In this example, the inputs X are the pixels of the upper half of faces and the outputs Y are the pixels of
the lower half of those faces.

Examples:

• Nearest Neighbors regression: an example of regression using nearest neighbors.
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• Face completion with a multi-output estimators: an example of multi-output regression using nearest neigh-
bors.

Nearest Neighbor Algorithms

Brute Force

Fast computation of nearest neighbors is an active area of research in machine learning. The most naive neighbor
search implementation involves the brute-force computation of distances between all pairs of points in the dataset: for
𝑁 samples in 𝐷 dimensions, this approach scales as 𝑂[𝐷𝑁2]. Efficient brute-force neighbors searches can be very
competitive for small data samples. However, as the number of samples 𝑁 grows, the brute-force approach quickly
becomes infeasible. In the classes within sklearn.neighbors, brute-force neighbors searches are specified using
the keyword algorithm = 'brute', and are computed using the routines available in sklearn.metrics.
pairwise.

K-D Tree

To address the computational inefficiencies of the brute-force approach, a variety of tree-based data structures have
been invented. In general, these structures attempt to reduce the required number of distance calculations by efficiently
encoding aggregate distance information for the sample. The basic idea is that if point 𝐴 is very distant from point
𝐵, and point 𝐵 is very close to point 𝐶, then we know that points 𝐴 and 𝐶 are very distant, without having to
explicitly calculate their distance. In this way, the computational cost of a nearest neighbors search can be reduced to
𝑂[𝐷𝑁 log(𝑁)] or better. This is a significant improvement over brute-force for large 𝑁 .

An early approach to taking advantage of this aggregate information was the KD tree data structure (short for K-
dimensional tree), which generalizes two-dimensional Quad-trees and 3-dimensional Oct-trees to an arbitrary number
of dimensions. The KD tree is a binary tree structure which recursively partitions the parameter space along the data
axes, dividing it into nested orthotropic regions into which data points are filed. The construction of a KD tree is very
fast: because partitioning is performed only along the data axes, no 𝐷-dimensional distances need to be computed.
Once constructed, the nearest neighbor of a query point can be determined with only𝑂[log(𝑁)] distance computations.
Though the KD tree approach is very fast for low-dimensional (𝐷 < 20) neighbors searches, it becomes inefficient
as 𝐷 grows very large: this is one manifestation of the so-called “curse of dimensionality”. In scikit-learn, KD tree
neighbors searches are specified using the keyword algorithm = 'kd_tree', and are computed using the class
KDTree.

References:

• “Multidimensional binary search trees used for associative searching”, Bentley, J.L., Communications of the
ACM (1975)

Ball Tree

To address the inefficiencies of KD Trees in higher dimensions, the ball tree data structure was developed. Where
KD trees partition data along Cartesian axes, ball trees partition data in a series of nesting hyper-spheres. This makes
tree construction more costly than that of the KD tree, but results in a data structure which can be very efficient on
highly-structured data, even in very high dimensions.

A ball tree recursively divides the data into nodes defined by a centroid 𝐶 and radius 𝑟, such that each point in the
node lies within the hyper-sphere defined by 𝑟 and 𝐶. The number of candidate points for a neighbor search is reduced
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through use of the triangle inequality:

|𝑥+ 𝑦| ≤ |𝑥|+ |𝑦|

With this setup, a single distance calculation between a test point and the centroid is sufficient to determine a lower
and upper bound on the distance to all points within the node. Because of the spherical geometry of the ball tree nodes,
it can out-perform a KD-tree in high dimensions, though the actual performance is highly dependent on the structure
of the training data. In scikit-learn, ball-tree-based neighbors searches are specified using the keyword algorithm
= 'ball_tree', and are computed using the class sklearn.neighbors.BallTree. Alternatively, the user
can work with the BallTree class directly.

References:

• “Five balltree construction algorithms”, Omohundro, S.M., International Computer Science Institute Techni-
cal Report (1989)

Choice of Nearest Neighbors Algorithm

The optimal algorithm for a given dataset is a complicated choice, and depends on a number of factors:

• number of samples 𝑁 (i.e. n_samples) and dimensionality 𝐷 (i.e. n_features).

– Brute force query time grows as 𝑂[𝐷𝑁 ]

– Ball tree query time grows as approximately 𝑂[𝐷 log(𝑁)]

– KD tree query time changes with 𝐷 in a way that is difficult to precisely characterise. For small 𝐷 (less
than 20 or so) the cost is approximately 𝑂[𝐷 log(𝑁)], and the KD tree query can be very efficient. For
larger𝐷, the cost increases to nearly𝑂[𝐷𝑁 ], and the overhead due to the tree structure can lead to queries
which are slower than brute force.

For small data sets (𝑁 less than 30 or so), log(𝑁) is comparable to 𝑁 , and brute force algorithms can be more
efficient than a tree-based approach. Both KDTree and BallTree address this through providing a leaf size
parameter: this controls the number of samples at which a query switches to brute-force. This allows both
algorithms to approach the efficiency of a brute-force computation for small 𝑁 .

• data structure: intrinsic dimensionality of the data and/or sparsity of the data. Intrinsic dimensionality refers
to the dimension 𝑑 ≤ 𝐷 of a manifold on which the data lies, which can be linearly or non-linearly embedded
in the parameter space. Sparsity refers to the degree to which the data fills the parameter space (this is to be
distinguished from the concept as used in “sparse” matrices. The data matrix may have no zero entries, but the
structure can still be “sparse” in this sense).

– Brute force query time is unchanged by data structure.

– Ball tree and KD tree query times can be greatly influenced by data structure. In general, sparser data with a
smaller intrinsic dimensionality leads to faster query times. Because the KD tree internal representation is
aligned with the parameter axes, it will not generally show as much improvement as ball tree for arbitrarily
structured data.

Datasets used in machine learning tend to be very structured, and are very well-suited for tree-based queries.

• number of neighbors 𝑘 requested for a query point.

– Brute force query time is largely unaffected by the value of 𝑘

– Ball tree and KD tree query time will become slower as 𝑘 increases. This is due to two effects: first, a
larger 𝑘 leads to the necessity to search a larger portion of the parameter space. Second, using 𝑘 > 1
requires internal queueing of results as the tree is traversed.
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As 𝑘 becomes large compared to 𝑁 , the ability to prune branches in a tree-based query is reduced. In this
situation, Brute force queries can be more efficient.

• number of query points. Both the ball tree and the KD Tree require a construction phase. The cost of this
construction becomes negligible when amortized over many queries. If only a small number of queries will
be performed, however, the construction can make up a significant fraction of the total cost. If very few query
points will be required, brute force is better than a tree-based method.

Currently, algorithm = 'auto' selects 'kd_tree' if 𝑘 < 𝑁/2 and the 'effective_metric_'
is in the 'VALID_METRICS' list of 'kd_tree'. It selects 'ball_tree' if 𝑘 < 𝑁/2 and the
'effective_metric_' is in the 'VALID_METRICS' list of 'ball_tree'. It selects 'brute' if 𝑘 < 𝑁/2
and the 'effective_metric_' is not in the 'VALID_METRICS' list of 'kd_tree' or 'ball_tree'. It
selects 'brute' if 𝑘 >= 𝑁/2. This choice is based on the assumption that the number of query points is at least the
same order as the number of training points, and that leaf_size is close to its default value of 30.

Effect of leaf_size

As noted above, for small sample sizes a brute force search can be more efficient than a tree-based query. This fact is
accounted for in the ball tree and KD tree by internally switching to brute force searches within leaf nodes. The level
of this switch can be specified with the parameter leaf_size. This parameter choice has many effects:

construction time A larger leaf_size leads to a faster tree construction time, because fewer nodes need to be
created

query time Both a large or small leaf_size can lead to suboptimal query cost. For leaf_size approaching
1, the overhead involved in traversing nodes can significantly slow query times. For leaf_size approach-
ing the size of the training set, queries become essentially brute force. A good compromise between these is
leaf_size = 30, the default value of the parameter.

memory As leaf_size increases, the memory required to store a tree structure decreases. This is especially
important in the case of ball tree, which stores a 𝐷-dimensional centroid for each node. The required storage
space for BallTree is approximately 1 / leaf_size times the size of the training set.

leaf_size is not referenced for brute force queries.

Nearest Centroid Classifier

The NearestCentroid classifier is a simple algorithm that represents each class by the centroid of its members.
In effect, this makes it similar to the label updating phase of the sklearn.KMeans algorithm. It also has no param-
eters to choose, making it a good baseline classifier. It does, however, suffer on non-convex classes, as well as when
classes have drastically different variances, as equal variance in all dimensions is assumed. See Linear Discrim-
inant Analysis (sklearn.discriminant_analysis.LinearDiscriminantAnalysis) and Quadratic
Discriminant Analysis (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis) for
more complex methods that do not make this assumption. Usage of the default NearestCentroid is simple:

>>> from sklearn.neighbors.nearest_centroid import NearestCentroid
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = NearestCentroid()
>>> clf.fit(X, y)
NearestCentroid(metric='euclidean', shrink_threshold=None)
>>> print(clf.predict([[-0.8, -1]]))
[1]
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Nearest Shrunken Centroid

The NearestCentroid classifier has a shrink_threshold parameter, which implements the nearest shrunken
centroid classifier. In effect, the value of each feature for each centroid is divided by the within-class variance of that
feature. The feature values are then reduced by shrink_threshold. Most notably, if a particular feature value
crosses zero, it is set to zero. In effect, this removes the feature from affecting the classification. This is useful, for
example, for removing noisy features.

In the example below, using a small shrink threshold increases the accuracy of the model from 0.81 to 0.82.

Examples:

• Nearest Centroid Classification: an example of classification using nearest centroid with different shrink
thresholds.

3.1.7 Gaussian Processes

Gaussian Processes (GP) are a generic supervised learning method designed to solve regression and probabilistic
classification problems.

The advantages of Gaussian processes are:

• The prediction interpolates the observations (at least for regular kernels).

• The prediction is probabilistic (Gaussian) so that one can compute empirical confidence intervals and decide
based on those if one should refit (online fitting, adaptive fitting) the prediction in some region of interest.

• Versatile: different kernels can be specified. Common kernels are provided, but it is also possible to specify
custom kernels.

The disadvantages of Gaussian processes include:

• They are not sparse, i.e., they use the whole samples/features information to perform the prediction.

• They lose efficiency in high dimensional spaces – namely when the number of features exceeds a few dozens.

Gaussian Process Regression (GPR)

The GaussianProcessRegressor implements Gaussian processes (GP) for regression purposes. For this, the
prior of the GP needs to be specified. The prior mean is assumed to be constant and zero (for normalize_y=False)
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or the training data’s mean (for normalize_y=True). The prior’s covariance is specified by a passing a kernel
object. The hyperparameters of the kernel are optimized during fitting of GaussianProcessRegressor by maximizing
the log-marginal-likelihood (LML) based on the passed optimizer. As the LML may have multiple local optima,
the optimizer can be started repeatedly by specifying n_restarts_optimizer. The first run is always conducted
starting from the initial hyperparameter values of the kernel; subsequent runs are conducted from hyperparameter
values that have been chosen randomly from the range of allowed values. If the initial hyperparameters should be kept
fixed, None can be passed as optimizer.

The noise level in the targets can be specified by passing it via the parameter alpha, either globally as a scalar or
per datapoint. Note that a moderate noise level can also be helpful for dealing with numeric issues during fitting as
it is effectively implemented as Tikhonov regularization, i.e., by adding it to the diagonal of the kernel matrix. An
alternative to specifying the noise level explicitly is to include a WhiteKernel component into the kernel, which can
estimate the global noise level from the data (see example below).

The implementation is based on Algorithm 2.1 of [RW2006]. In addition to the API of standard scikit-learn estimators,
GaussianProcessRegressor:

• allows prediction without prior fitting (based on the GP prior)

• provides an additional method sample_y(X), which evaluates samples drawn from the GPR (prior or poste-
rior) at given inputs

• exposes a method log_marginal_likelihood(theta), which can be used externally for other ways of
selecting hyperparameters, e.g., via Markov chain Monte Carlo.

GPR examples

GPR with noise-level estimation

This example illustrates that GPR with a sum-kernel including a WhiteKernel can estimate the noise level of data. An
illustration of the log-marginal-likelihood (LML) landscape shows that there exist two local maxima of LML.

The first corresponds to a model with a high noise level and a large length scale, which explains all variations in the
data by noise.

The second one has a smaller noise level and shorter length scale, which explains most of the variation by the noise-
free functional relationship. The second model has a higher likelihood; however, depending on the initial value for the
hyperparameters, the gradient-based optimization might also converge to the high-noise solution. It is thus important
to repeat the optimization several times for different initializations.

Comparison of GPR and Kernel Ridge Regression

Both kernel ridge regression (KRR) and GPR learn a target function by employing internally the “kernel trick”. KRR
learns a linear function in the space induced by the respective kernel which corresponds to a non-linear function in
the original space. The linear function in the kernel space is chosen based on the mean-squared error loss with ridge
regularization. GPR uses the kernel to define the covariance of a prior distribution over the target functions and uses
the observed training data to define a likelihood function. Based on Bayes theorem, a (Gaussian) posterior distribution
over target functions is defined, whose mean is used for prediction.

A major difference is that GPR can choose the kernel’s hyperparameters based on gradient-ascent on the marginal
likelihood function while KRR needs to perform a grid search on a cross-validated loss function (mean-squared error
loss). A further difference is that GPR learns a generative, probabilistic model of the target function and can thus
provide meaningful confidence intervals and posterior samples along with the predictions while KRR only provides
predictions.
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The following figure illustrates both methods on an artificial dataset, which consists of a sinusoidal target function
and strong noise. The figure compares the learned model of KRR and GPR based on a ExpSineSquared kernel,
which is suited for learning periodic functions. The kernel’s hyperparameters control the smoothness (length_scale)
and periodicity of the kernel (periodicity). Moreover, the noise level of the data is learned explicitly by GPR by an
additional WhiteKernel component in the kernel and by the regularization parameter alpha of KRR.

The figure shows that both methods learn reasonable models of the target function. GPR correctly identifies the peri-
odicity of the function to be roughly 2*𝜋 (6.28), while KRR chooses the doubled periodicity 4*𝜋 . Besides that, GPR
provides reasonable confidence bounds on the prediction which are not available for KRR. A major difference between
the two methods is the time required for fitting and predicting: while fitting KRR is fast in principle, the grid-search
for hyperparameter optimization scales exponentially with the number of hyperparameters (“curse of dimensional-
ity”). The gradient-based optimization of the parameters in GPR does not suffer from this exponential scaling and is
thus considerable faster on this example with 3-dimensional hyperparameter space. The time for predicting is similar;
however, generating the variance of the predictive distribution of GPR takes considerable longer than just predicting
the mean.

GPR on Mauna Loa CO2 data

This example is based on Section 5.4.3 of [RW2006]. It illustrates an example of complex kernel engineering and
hyperparameter optimization using gradient ascent on the log-marginal-likelihood. The data consists of the monthly
average atmospheric CO2 concentrations (in parts per million by volume (ppmv)) collected at the Mauna Loa Obser-
vatory in Hawaii, between 1958 and 1997. The objective is to model the CO2 concentration as a function of the time
t.

The kernel is composed of several terms that are responsible for explaining different properties of the signal:

• a long term, smooth rising trend is to be explained by an RBF kernel. The RBF kernel with a large length-scale
enforces this component to be smooth; it is not enforced that the trend is rising which leaves this choice to the
GP. The specific length-scale and the amplitude are free hyperparameters.

• a seasonal component, which is to be explained by the periodic ExpSineSquared kernel with a fixed periodicity
of 1 year. The length-scale of this periodic component, controlling its smoothness, is a free parameter. In order
to allow decaying away from exact periodicity, the product with an RBF kernel is taken. The length-scale of this
RBF component controls the decay time and is a further free parameter.
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• smaller, medium term irregularities are to be explained by a RationalQuadratic kernel component, whose length-
scale and alpha parameter, which determines the diffuseness of the length-scales, are to be determined. Ac-
cording to [RW2006], these irregularities can better be explained by a RationalQuadratic than an RBF kernel
component, probably because it can accommodate several length-scales.

• a “noise” term, consisting of an RBF kernel contribution, which shall explain the correlated noise components
such as local weather phenomena, and a WhiteKernel contribution for the white noise. The relative amplitudes
and the RBF’s length scale are further free parameters.

Maximizing the log-marginal-likelihood after subtracting the target’s mean yields the following kernel with an LML
of -83.214:

34.4**2 * RBF(length_scale=41.8)
+ 3.27**2 * RBF(length_scale=180) * ExpSineSquared(length_scale=1.44,

periodicity=1)
+ 0.446**2 * RationalQuadratic(alpha=17.7, length_scale=0.957)
+ 0.197**2 * RBF(length_scale=0.138) + WhiteKernel(noise_level=0.0336)

Thus, most of the target signal (34.4ppm) is explained by a long-term rising trend (length-scale 41.8 years). The
periodic component has an amplitude of 3.27ppm, a decay time of 180 years and a length-scale of 1.44. The long
decay time indicates that we have a locally very close to periodic seasonal component. The correlated noise has an
amplitude of 0.197ppm with a length scale of 0.138 years and a white-noise contribution of 0.197ppm. Thus, the
overall noise level is very small, indicating that the data can be very well explained by the model. The figure shows
also that the model makes very confident predictions until around 2015
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Gaussian Process Classification (GPC)

The GaussianProcessClassifier implements Gaussian processes (GP) for classification purposes, more
specifically for probabilistic classification, where test predictions take the form of class probabilities. GaussianPro-
cessClassifier places a GP prior on a latent function 𝑓 , which is then squashed through a link function to obtain the
probabilistic classification. The latent function 𝑓 is a so-called nuisance function, whose values are not observed and
are not relevant by themselves. Its purpose is to allow a convenient formulation of the model, and 𝑓 is removed (inte-
grated out) during prediction. GaussianProcessClassifier implements the logistic link function, for which the integral
cannot be computed analytically but is easily approximated in the binary case.

In contrast to the regression setting, the posterior of the latent function 𝑓 is not Gaussian even for a GP prior since
a Gaussian likelihood is inappropriate for discrete class labels. Rather, a non-Gaussian likelihood corresponding to
the logistic link function (logit) is used. GaussianProcessClassifier approximates the non-Gaussian posterior with a
Gaussian based on the Laplace approximation. More details can be found in Chapter 3 of [RW2006].

The GP prior mean is assumed to be zero. The prior’s covariance is specified by a passing a kernel object. The hyper-
parameters of the kernel are optimized during fitting of GaussianProcessRegressor by maximizing the log-marginal-
likelihood (LML) based on the passed optimizer. As the LML may have multiple local optima, the optimizer can
be started repeatedly by specifying n_restarts_optimizer. The first run is always conducted starting from the
initial hyperparameter values of the kernel; subsequent runs are conducted from hyperparameter values that have been
chosen randomly from the range of allowed values. If the initial hyperparameters should be kept fixed, None can be
passed as optimizer.

GaussianProcessClassifier supports multi-class classification by performing either one-versus-rest or one-
versus-one based training and prediction. In one-versus-rest, one binary Gaussian process classifier is fitted for each
class, which is trained to separate this class from the rest. In “one_vs_one”, one binary Gaussian process classifier is
fitted for each pair of classes, which is trained to separate these two classes. The predictions of these binary predictors
are combined into multi-class predictions. See the section on multi-class classification for more details.

In the case of Gaussian process classification, “one_vs_one” might be computationally cheaper since it has to solve
many problems involving only a subset of the whole training set rather than fewer problems on the whole dataset. Since
Gaussian process classification scales cubically with the size of the dataset, this might be considerably faster. How-
ever, note that “one_vs_one” does not support predicting probability estimates but only plain predictions. Moreover,
note that GaussianProcessClassifier does not (yet) implement a true multi-class Laplace approximation in-
ternally, but as discussed above is based on solving several binary classification tasks internally, which are combined
using one-versus-rest or one-versus-one.

GPC examples

Probabilistic predictions with GPC

This example illustrates the predicted probability of GPC for an RBF kernel with different choices of the hyperparam-
eters. The first figure shows the predicted probability of GPC with arbitrarily chosen hyperparameters and with the
hyperparameters corresponding to the maximum log-marginal-likelihood (LML).

While the hyperparameters chosen by optimizing LML have a considerable larger LML, they perform slightly worse
according to the log-loss on test data. The figure shows that this is because they exhibit a steep change of the class
probabilities at the class boundaries (which is good) but have predicted probabilities close to 0.5 far away from the
class boundaries (which is bad) This undesirable effect is caused by the Laplace approximation used internally by
GPC.

The second figure shows the log-marginal-likelihood for different choices of the kernel’s hyperparameters, highlighting
the two choices of the hyperparameters used in the first figure by black dots.

212 Chapter 3. User Guide



scikit-learn user guide, Release 0.19.1

3.1. Supervised learning 213

../auto_examples/gaussian_process/plot_gpc.html


scikit-learn user guide, Release 0.19.1

214 Chapter 3. User Guide

../auto_examples/gaussian_process/plot_gpc.html


scikit-learn user guide, Release 0.19.1

Illustration of GPC on the XOR dataset

This example illustrates GPC on XOR data. Compared are a stationary, isotropic kernel (RBF) and a non-stationary
kernel (DotProduct). On this particular dataset, the DotProduct kernel obtains considerably better results because
the class-boundaries are linear and coincide with the coordinate axes. In practice, however, stationary kernels such as
RBF often obtain better results.

Gaussian process classification (GPC) on iris dataset

This example illustrates the predicted probability of GPC for an isotropic and anisotropic RBF kernel on a two-
dimensional version for the iris-dataset. This illustrates the applicability of GPC to non-binary classification. The
anisotropic RBF kernel obtains slightly higher log-marginal-likelihood by assigning different length-scales to the two
feature dimensions.

Kernels for Gaussian Processes

Kernels (also called “covariance functions” in the context of GPs) are a crucial ingredient of GPs which determine
the shape of prior and posterior of the GP. They encode the assumptions on the function being learned by defining the
“similarity” of two datapoints combined with the assumption that similar datapoints should have similar target values.
Two categories of kernels can be distinguished: stationary kernels depend only on the distance of two datapoints
and not on their absolute values 𝑘(𝑥𝑖, 𝑥𝑗) = 𝑘(𝑑(𝑥𝑖, 𝑥𝑗)) and are thus invariant to translations in the input space,
while non-stationary kernels depend also on the specific values of the datapoints. Stationary kernels can further be
subdivided into isotropic and anisotropic kernels, where isotropic kernels are also invariant to rotations in the input
space. For more details, we refer to Chapter 4 of [RW2006].

Gaussian Process Kernel API

The main usage of a Kernel is to compute the GP’s covariance between datapoints. For this, the method __call__
of the kernel can be called. This method can either be used to compute the “auto-covariance” of all pairs of datapoints
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in a 2d array X, or the “cross-covariance” of all combinations of datapoints of a 2d array X with datapoints in a 2d
array Y. The following identity holds true for all kernels k (except for the WhiteKernel): k(X) == K(X, Y=X)

If only the diagonal of the auto-covariance is being used, the method diag() of a kernel can be called, which is more
computationally efficient than the equivalent call to __call__: np.diag(k(X, X)) == k.diag(X)

Kernels are parameterized by a vector 𝜃 of hyperparameters. These hyperparameters can for instance control length-
scales or periodicity of a kernel (see below). All kernels support computing analytic gradients of of the kernel’s
auto-covariance with respect to 𝜃 via setting eval_gradient=True in the __call__ method. This gradient is
used by the Gaussian process (both regressor and classifier) in computing the gradient of the log-marginal-likelihood,
which in turn is used to determine the value of 𝜃, which maximizes the log-marginal-likelihood, via gradient ascent.
For each hyperparameter, the initial value and the bounds need to be specified when creating an instance of the kernel.
The current value of 𝜃 can be get and set via the property theta of the kernel object. Moreover, the bounds of the
hyperparameters can be accessed by the property bounds of the kernel. Note that both properties (theta and bounds)
return log-transformed values of the internally used values since those are typically more amenable to gradient-based
optimization. The specification of each hyperparameter is stored in the form of an instance of Hyperparameter
in the respective kernel. Note that a kernel using a hyperparameter with name “x” must have the attributes self.x and
self.x_bounds.

The abstract base class for all kernels is Kernel. Kernel implements a similar interface as Estimator, providing
the methods get_params(), set_params(), and clone(). This allows setting kernel values also via meta-
estimators such as Pipeline or GridSearch. Note that due to the nested structure of kernels (by applying kernel
operators, see below), the names of kernel parameters might become relatively complicated. In general, for a binary
kernel operator, parameters of the left operand are prefixed with k1__ and parameters of the right operand with k2__.
An additional convenience method is clone_with_theta(theta), which returns a cloned version of the kernel
but with the hyperparameters set to theta. An illustrative example:

>>> from sklearn.gaussian_process.kernels import ConstantKernel, RBF
>>> kernel = ConstantKernel(constant_value=1.0, constant_value_bounds=(0.0, 10.0)) *
→˓RBF(length_scale=0.5, length_scale_bounds=(0.0, 10.0)) + RBF(length_scale=2.0,
→˓length_scale_bounds=(0.0, 10.0))
>>> for hyperparameter in kernel.hyperparameters: print(hyperparameter)
Hyperparameter(name='k1__k1__constant_value', value_type='numeric', bounds=array([[
→˓0., 10.]]), n_elements=1, fixed=False)
Hyperparameter(name='k1__k2__length_scale', value_type='numeric', bounds=array([[ 0.,
→˓ 10.]]), n_elements=1, fixed=False)
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Hyperparameter(name='k2__length_scale', value_type='numeric', bounds=array([[ 0.,
→˓10.]]), n_elements=1, fixed=False)
>>> params = kernel.get_params()
>>> for key in sorted(params): print("%s : %s" % (key, params[key]))
k1 : 1**2 * RBF(length_scale=0.5)
k1__k1 : 1**2
k1__k1__constant_value : 1.0
k1__k1__constant_value_bounds : (0.0, 10.0)
k1__k2 : RBF(length_scale=0.5)
k1__k2__length_scale : 0.5
k1__k2__length_scale_bounds : (0.0, 10.0)
k2 : RBF(length_scale=2)
k2__length_scale : 2.0
k2__length_scale_bounds : (0.0, 10.0)
>>> print(kernel.theta) # Note: log-transformed
[ 0. -0.69314718 0.69314718]
>>> print(kernel.bounds) # Note: log-transformed
[[ -inf 2.30258509]
[ -inf 2.30258509]
[ -inf 2.30258509]]

All Gaussian process kernels are interoperable with sklearn.metrics.pairwise and vice versa: instances
of subclasses of Kernel can be passed as metric to pairwise_kernels‘‘ from sklearn.metrics.pairwise.
Moreover, kernel functions from pairwise can be used as GP kernels by using the wrapper class PairwiseKernel.
The only caveat is that the gradient of the hyperparameters is not analytic but numeric and all those kernels support
only isotropic distances. The parameter gamma is considered to be a hyperparameter and may be optimized. The other
kernel parameters are set directly at initialization and are kept fixed.

Basic kernels

The ConstantKernel kernel can be used as part of a Product kernel where it scales the magnitude of the other
factor (kernel) or as part of a Sum kernel, where it modifies the mean of the Gaussian process. It depends on a
parameter 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡_𝑣𝑎𝑙𝑢𝑒. It is defined as:

𝑘(𝑥𝑖, 𝑥𝑗) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡_𝑣𝑎𝑙𝑢𝑒 ∀ 𝑥1, 𝑥2

The main use-case of the WhiteKernel kernel is as part of a sum-kernel where it explains the noise-component of
the signal. Tuning its parameter 𝑛𝑜𝑖𝑠𝑒_𝑙𝑒𝑣𝑒𝑙 corresponds to estimating the noise-level. It is defined as:e

𝑘(𝑥𝑖, 𝑥𝑗) = 𝑛𝑜𝑖𝑠𝑒_𝑙𝑒𝑣𝑒𝑙 if 𝑥𝑖 == 𝑥𝑗 else 0

Kernel operators

Kernel operators take one or two base kernels and combine them into a new kernel. The Sum kernel takes two kernels
𝑘1 and 𝑘2 and combines them via 𝑘𝑠𝑢𝑚(𝑋,𝑌 ) = 𝑘1(𝑋,𝑌 ) + 𝑘2(𝑋,𝑌 ). The Product kernel takes two kernels 𝑘1
and 𝑘2 and combines them via 𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑋,𝑌 ) = 𝑘1(𝑋,𝑌 ) * 𝑘2(𝑋,𝑌 ). The Exponentiation kernel takes one
base kernel and a scalar parameter 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 and combines them via 𝑘𝑒𝑥𝑝(𝑋,𝑌 ) = 𝑘(𝑋,𝑌 )exponent.

Radial-basis function (RBF) kernel

The RBF kernel is a stationary kernel. It is also known as the “squared exponential” kernel. It is parameterized by a
length-scale parameter 𝑙 > 0, which can either be a scalar (isotropic variant of the kernel) or a vector with the same
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number of dimensions as the inputs 𝑥 (anisotropic variant of the kernel). The kernel is given by:

𝑘(𝑥𝑖, 𝑥𝑗) = exp
(︂
−1

2
𝑑(𝑥𝑖/𝑙, 𝑥𝑗/𝑙)

2

)︂
This kernel is infinitely differentiable, which implies that GPs with this kernel as covariance function have mean square
derivatives of all orders, and are thus very smooth. The prior and posterior of a GP resulting from an RBF kernel are
shown in the following figure:

Matérn kernel

The Matern kernel is a stationary kernel and a generalization of the RBF kernel. It has an additional parameter 𝜈
which controls the smoothness of the resulting function. It is parameterized by a length-scale parameter 𝑙 > 0, which
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can either be a scalar (isotropic variant of the kernel) or a vector with the same number of dimensions as the inputs 𝑥
(anisotropic variant of the kernel). The kernel is given by:

𝑘(𝑥𝑖, 𝑥𝑗) = 𝜎2 1

Γ(𝜈)2𝜈−1

(︃
𝛾
√

2𝜈𝑑(𝑥𝑖/𝑙, 𝑥𝑗/𝑙)

)︃𝜈

𝐾𝜈

(︃
𝛾
√

2𝜈𝑑(𝑥𝑖/𝑙, 𝑥𝑗/𝑙)

)︃
,

As 𝜈 → ∞, the Matérn kernel converges to the RBF kernel. When 𝜈 = 1/2, the Matérn kernel becomes identical to
the absolute exponential kernel, i.e.,

𝑘(𝑥𝑖, 𝑥𝑗) = 𝜎2 exp

(︃
− 𝛾𝑑(𝑥𝑖/𝑙, 𝑥𝑗/𝑙)

)︃
𝜈 = 1

2

In particular, 𝜈 = 3/2:

𝑘(𝑥𝑖, 𝑥𝑗) = 𝜎2

(︃
1 + 𝛾

√
3𝑑(𝑥𝑖/𝑙, 𝑥𝑗/𝑙)

)︃
exp

(︃
− 𝛾
√

3𝑑(𝑥𝑖/𝑙, 𝑥𝑗/𝑙)

)︃
𝜈 = 3

2

and 𝜈 = 5/2:

𝑘(𝑥𝑖, 𝑥𝑗) = 𝜎2

(︃
1 + 𝛾

√
5𝑑(𝑥𝑖/𝑙, 𝑥𝑗/𝑙) +

5

3
𝛾2𝑑(𝑥𝑖/𝑙, 𝑥𝑗/𝑙)

2

)︃
exp

(︃
− 𝛾
√

5𝑑(𝑥𝑖/𝑙, 𝑥𝑗/𝑙)

)︃
𝜈 = 5

2

are popular choices for learning functions that are not infinitely differentiable (as assumed by the RBF kernel) but at
least once (𝜈 = 3/2) or twice differentiable (𝜈 = 5/2).

The flexibility of controlling the smoothness of the learned function via 𝜈 allows adapting to the properties of the
true underlying functional relation. The prior and posterior of a GP resulting from a Matérn kernel are shown in the
following figure:

See [RW2006], pp84 for further details regarding the different variants of the Matérn kernel.

Rational quadratic kernel

The RationalQuadratic kernel can be seen as a scale mixture (an infinite sum) of RBF kernels with different
characteristic length-scales. It is parameterized by a length-scale parameter 𝑙 > 0 and a scale mixture parameter 𝛼 > 0
Only the isotropic variant where 𝑙 is a scalar is supported at the moment. The kernel is given by:

𝑘(𝑥𝑖, 𝑥𝑗) =

(︂
1 +

𝑑(𝑥𝑖, 𝑥𝑗)
2

2𝛼𝑙2

)︂−𝛼

The prior and posterior of a GP resulting from an RBF kernel are shown in the following figure:

Exp-Sine-Squared kernel

The ExpSineSquared kernel allows modeling periodic functions. It is parameterized by a length-scale parameter
𝑙 > 0 and a periodicity parameter 𝑝 > 0. Only the isotropic variant where 𝑙 is a scalar is supported at the moment.
The kernel is given by:

𝑘(𝑥𝑖, 𝑥𝑗) = exp
(︁
−2 (sin(𝜋/𝑝 * 𝑑(𝑥𝑖, 𝑥𝑗))/𝑙)

2
)︁

The prior and posterior of a GP resulting from an ExpSineSquared kernel are shown in the following figure:
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Dot-Product kernel

The DotProduct kernel is non-stationary and can be obtained from linear regression by putting 𝑁(0, 1) priors on
the coefficients of 𝑥𝑑(𝑑 = 1, ..., 𝐷) and a prior of 𝑁(0, 𝜎2

0) on the bias. The DotProduct kernel is invariant to a
rotation of the coordinates about the origin, but not translations. It is parameterized by a parameter 𝜎2

0 . For 𝜎2
0 = 0,

the kernel is called the homogeneous linear kernel, otherwise it is inhomogeneous. The kernel is given by

𝑘(𝑥𝑖, 𝑥𝑗) = 𝜎2
0 + 𝑥𝑖 · 𝑥𝑗

The DotProduct kernel is commonly combined with exponentiation. An example with exponent 2 is shown in the
following figure:
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References

3.1.8 Cross decomposition

The cross decomposition module contains two main families of algorithms: the partial least squares (PLS) and the
canonical correlation analysis (CCA).

These families of algorithms are useful to find linear relations between two multivariate datasets: the X and Y argu-
ments of the fit method are 2D arrays.

Cross decomposition algorithms find the fundamental relations between two matrices (X and Y). They are latent
variable approaches to modeling the covariance structures in these two spaces. They will try to find the multidi-
mensional direction in the X space that explains the maximum multidimensional variance direction in the Y space.
PLS-regression is particularly suited when the matrix of predictors has more variables than observations, and when
there is multicollinearity among X values. By contrast, standard regression will fail in these cases.

Classes included in this module are PLSRegression PLSCanonical, CCA and PLSSVD

Reference:

• JA Wegelin A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case

Examples:
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• Compare cross decomposition methods

3.1.9 Naive Bayes

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ theorem with the “naive”
assumption of independence between every pair of features. Given a class variable 𝑦 and a dependent feature vector
𝑥1 through 𝑥𝑛, Bayes’ theorem states the following relationship:

𝑃 (𝑦 | 𝑥1, . . . , 𝑥𝑛) =
𝑃 (𝑦)𝑃 (𝑥1, . . . 𝑥𝑛 | 𝑦)

𝑃 (𝑥1, . . . , 𝑥𝑛)

Using the naive independence assumption that

𝑃 (𝑥𝑖|𝑦, 𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛) = 𝑃 (𝑥𝑖|𝑦),

for all 𝑖, this relationship is simplified to

𝑃 (𝑦 | 𝑥1, . . . , 𝑥𝑛) =
𝑃 (𝑦)

∏︀𝑛
𝑖=1 𝑃 (𝑥𝑖 | 𝑦)

𝑃 (𝑥1, . . . , 𝑥𝑛)

Since 𝑃 (𝑥1, . . . , 𝑥𝑛) is constant given the input, we can use the following classification rule:

𝑃 (𝑦 | 𝑥1, . . . , 𝑥𝑛) ∝ 𝑃 (𝑦)

𝑛∏︁
𝑖=1

𝑃 (𝑥𝑖 | 𝑦)

⇓

𝑦 = arg max
𝑦

𝑃 (𝑦)

𝑛∏︁
𝑖=1

𝑃 (𝑥𝑖 | 𝑦),

and we can use Maximum A Posteriori (MAP) estimation to estimate 𝑃 (𝑦) and 𝑃 (𝑥𝑖 | 𝑦); the former is then the
relative frequency of class 𝑦 in the training set.

The different naive Bayes classifiers differ mainly by the assumptions they make regarding the distribution of 𝑃 (𝑥𝑖 |
𝑦).

In spite of their apparently over-simplified assumptions, naive Bayes classifiers have worked quite well in many real-
world situations, famously document classification and spam filtering. They require a small amount of training data to
estimate the necessary parameters. (For theoretical reasons why naive Bayes works well, and on which types of data
it does, see the references below.)

Naive Bayes learners and classifiers can be extremely fast compared to more sophisticated methods. The decoupling
of the class conditional feature distributions means that each distribution can be independently estimated as a one
dimensional distribution. This in turn helps to alleviate problems stemming from the curse of dimensionality.

On the flip side, although naive Bayes is known as a decent classifier, it is known to be a bad estimator, so the
probability outputs from predict_proba are not to be taken too seriously.

References:

• H. Zhang (2004). The optimality of Naive Bayes. Proc. FLAIRS.
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Gaussian Naive Bayes

GaussianNB implements the Gaussian Naive Bayes algorithm for classification. The likelihood of the features is
assumed to be Gaussian:

𝑃 (𝑥𝑖 | 𝑦) =
1√︁

2𝜋𝜎2
𝑦

exp

(︂
− (𝑥𝑖 − 𝜇𝑦)2

2𝜎2
𝑦

)︂

The parameters 𝜎𝑦 and 𝜇𝑦 are estimated using maximum likelihood.

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> from sklearn.naive_bayes import GaussianNB
>>> gnb = GaussianNB()
>>> y_pred = gnb.fit(iris.data, iris.target).predict(iris.data)
>>> print("Number of mislabeled points out of a total %d points : %d"
... % (iris.data.shape[0],(iris.target != y_pred).sum()))
Number of mislabeled points out of a total 150 points : 6

Multinomial Naive Bayes

MultinomialNB implements the naive Bayes algorithm for multinomially distributed data, and is one of the two
classic naive Bayes variants used in text classification (where the data are typically represented as word vector counts,
although tf-idf vectors are also known to work well in practice). The distribution is parametrized by vectors 𝜃𝑦 =
(𝜃𝑦1, . . . , 𝜃𝑦𝑛) for each class 𝑦, where 𝑛 is the number of features (in text classification, the size of the vocabulary)
and 𝜃𝑦𝑖 is the probability 𝑃 (𝑥𝑖 | 𝑦) of feature 𝑖 appearing in a sample belonging to class 𝑦.

The parameters 𝜃𝑦 is estimated by a smoothed version of maximum likelihood, i.e. relative frequency counting:

𝜃𝑦𝑖 =
𝑁𝑦𝑖 + 𝛼

𝑁𝑦 + 𝛼𝑛

where 𝑁𝑦𝑖 =
∑︀

𝑥∈𝑇 𝑥𝑖 is the number of times feature 𝑖 appears in a sample of class 𝑦 in the training set 𝑇 , and
𝑁𝑦 =

∑︀|𝑇 |
𝑖=1𝑁𝑦𝑖 is the total count of all features for class 𝑦.

The smoothing priors 𝛼 ≥ 0 accounts for features not present in the learning samples and prevents zero probabilities
in further computations. Setting 𝛼 = 1 is called Laplace smoothing, while 𝛼 < 1 is called Lidstone smoothing.

Bernoulli Naive Bayes

BernoulliNB implements the naive Bayes training and classification algorithms for data that is distributed ac-
cording to multivariate Bernoulli distributions; i.e., there may be multiple features but each one is assumed to be a
binary-valued (Bernoulli, boolean) variable. Therefore, this class requires samples to be represented as binary-valued
feature vectors; if handed any other kind of data, a BernoulliNB instance may binarize its input (depending on the
binarize parameter).

The decision rule for Bernoulli naive Bayes is based on

𝑃 (𝑥𝑖 | 𝑦) = 𝑃 (𝑖 | 𝑦)𝑥𝑖 + (1− 𝑃 (𝑖 | 𝑦))(1− 𝑥𝑖)

which differs from multinomial NB’s rule in that it explicitly penalizes the non-occurrence of a feature 𝑖 that is an
indicator for class 𝑦, where the multinomial variant would simply ignore a non-occurring feature.

In the case of text classification, word occurrence vectors (rather than word count vectors) may be used to train and
use this classifier. BernoulliNB might perform better on some datasets, especially those with shorter documents.
It is advisable to evaluate both models, if time permits.
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References:

• C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to Information Retrieval. Cambridge Uni-
versity Press, pp. 234-265.

• A. McCallum and K. Nigam (1998). A comparison of event models for Naive Bayes text classification. Proc.
AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48.

• V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with Naive Bayes – Which Naive
Bayes? 3rd Conf. on Email and Anti-Spam (CEAS).

Out-of-core naive Bayes model fitting

Naive Bayes models can be used to tackle large scale classification problems for which the full training set might not fit
in memory. To handle this case, MultinomialNB, BernoulliNB, and GaussianNB expose a partial_fit
method that can be used incrementally as done with other classifiers as demonstrated in Out-of-core classification of
text documents. All naive Bayes classifiers support sample weighting.

Contrary to the fit method, the first call to partial_fit needs to be passed the list of all the expected class labels.

For an overview of available strategies in scikit-learn, see also the out-of-core learning documentation.

Note: The partial_fit method call of naive Bayes models introduces some computational overhead. It is
recommended to use data chunk sizes that are as large as possible, that is as the available RAM allows.

3.1.10 Decision Trees

Decision Trees (DTs) are a non-parametric supervised learning method used for classification and regression. The
goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the
data features.

For instance, in the example below, decision trees learn from data to approximate a sine curve with a set of if-then-else
decision rules. The deeper the tree, the more complex the decision rules and the fitter the model.

Some advantages of decision trees are:

• Simple to understand and to interpret. Trees can be visualised.

• Requires little data preparation. Other techniques often require data normalisation, dummy variables need to be
created and blank values to be removed. Note however that this module does not support missing values.

• The cost of using the tree (i.e., predicting data) is logarithmic in the number of data points used to train the tree.

• Able to handle both numerical and categorical data. Other techniques are usually specialised in analysing
datasets that have only one type of variable. See algorithms for more information.

• Able to handle multi-output problems.

• Uses a white box model. If a given situation is observable in a model, the explanation for the condition is easily
explained by boolean logic. By contrast, in a black box model (e.g., in an artificial neural network), results may
be more difficult to interpret.

• Possible to validate a model using statistical tests. That makes it possible to account for the reliability of the
model.
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• Performs well even if its assumptions are somewhat violated by the true model from which the data were
generated.

The disadvantages of decision trees include:

• Decision-tree learners can create over-complex trees that do not generalise the data well. This is called overfit-
ting. Mechanisms such as pruning (not currently supported), setting the minimum number of samples required
at a leaf node or setting the maximum depth of the tree are necessary to avoid this problem.

• Decision trees can be unstable because small variations in the data might result in a completely different tree
being generated. This problem is mitigated by using decision trees within an ensemble.

• The problem of learning an optimal decision tree is known to be NP-complete under several aspects of optimality
and even for simple concepts. Consequently, practical decision-tree learning algorithms are based on heuristic
algorithms such as the greedy algorithm where locally optimal decisions are made at each node. Such algorithms
cannot guarantee to return the globally optimal decision tree. This can be mitigated by training multiple trees in
an ensemble learner, where the features and samples are randomly sampled with replacement.

• There are concepts that are hard to learn because decision trees do not express them easily, such as XOR, parity
or multiplexer problems.

• Decision tree learners create biased trees if some classes dominate. It is therefore recommended to balance the
dataset prior to fitting with the decision tree.

Classification

DecisionTreeClassifier is a class capable of performing multi-class classification on a dataset.

As with other classifiers, DecisionTreeClassifier takes as input two arrays: an array X, sparse or dense,
of size [n_samples, n_features] holding the training samples, and an array Y of integer values, size
[n_samples], holding the class labels for the training samples:
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>>> from sklearn import tree
>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(X, Y)

After being fitted, the model can then be used to predict the class of samples:

>>> clf.predict([[2., 2.]])
array([1])

Alternatively, the probability of each class can be predicted, which is the fraction of training samples of the same class
in a leaf:

>>> clf.predict_proba([[2., 2.]])
array([[ 0., 1.]])

DecisionTreeClassifier is capable of both binary (where the labels are [-1, 1]) classification and multiclass
(where the labels are [0, . . . , K-1]) classification.

Using the Iris dataset, we can construct a tree as follows:

>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
>>> iris = load_iris()
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(iris.data, iris.target)

Once trained, we can export the tree in Graphviz format using the export_graphviz exporter. If you use the
conda package manager, the graphviz binaries and the python package can be installed with

conda install python-graphviz

Alternatively binaries for graphviz can be downloaded from the graphviz project homepage, and the Python wrapper
installed from pypi with pip install graphviz.

Below is an example graphviz export of the above tree trained on the entire iris dataset; the results are saved in an
output file iris.pdf :

>>> import graphviz
>>> dot_data = tree.export_graphviz(clf, out_file=None)
>>> graph = graphviz.Source(dot_data)
>>> graph.render("iris")

The export_graphviz exporter also supports a variety of aesthetic options, including coloring nodes by their class
(or value for regression) and using explicit variable and class names if desired. Jupyter notebooks also render these
plots inline automatically:

>>> dot_data = tree.export_graphviz(clf, out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True, rounded=True,
special_characters=True)

>>> graph = graphviz.Source(dot_data)
>>> graph

After being fitted, the model can then be used to predict the class of samples:
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petal length (cm) ≤ 2.45
gini = 0.6667

samples = 150
value = [50, 50, 50]

class = setosa

gini = 0.0
samples = 50

value = [50, 0, 0]
class = setosa

True

petal width (cm) ≤ 1.75
gini = 0.5

samples = 100
value = [0, 50, 50]
class = versicolor

False

petal length (cm) ≤ 4.95
gini = 0.168

samples = 54
value = [0, 49, 5]
class = versicolor

petal length (cm) ≤ 4.85
gini = 0.0425
samples = 46

value = [0, 1, 45]
class = virginica

petal width (cm) ≤ 1.65
gini = 0.0408
samples = 48

value = [0, 47, 1]
class = versicolor

petal width (cm) ≤ 1.55
gini = 0.4444
samples = 6

value = [0, 2, 4]
class = virginica

gini = 0.0
samples = 47

value = [0, 47, 0]
class = versicolor

gini = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

gini = 0.0
samples = 3

value = [0, 0, 3]
class = virginica

sepal length (cm) ≤ 6.95
gini = 0.4444
samples = 3

value = [0, 2, 1]
class = versicolor

gini = 0.0
samples = 2

value = [0, 2, 0]
class = versicolor

gini = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

sepal length (cm) ≤ 5.95
gini = 0.4444
samples = 3

value = [0, 1, 2]
class = virginica

gini = 0.0
samples = 43

value = [0, 0, 43]
class = virginica

gini = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

gini = 0.0
samples = 2

value = [0, 0, 2]
class = virginica
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>>> clf.predict(iris.data[:1, :])
array([0])

Alternatively, the probability of each class can be predicted, which is the fraction of training samples of the same class
in a leaf:

>>> clf.predict_proba(iris.data[:1, :])
array([[ 1., 0., 0.]])

Examples:

• Plot the decision surface of a decision tree on the iris dataset

Regression

Decision trees can also be applied to regression problems, using the DecisionTreeRegressor class.

As in the classification setting, the fit method will take as argument arrays X and y, only that in this case y is expected
to have floating point values instead of integer values:

>>> from sklearn import tree
>>> X = [[0, 0], [2, 2]]
>>> y = [0.5, 2.5]
>>> clf = tree.DecisionTreeRegressor()
>>> clf = clf.fit(X, y)
>>> clf.predict([[1, 1]])
array([ 0.5])
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Examples:

• Decision Tree Regression

Multi-output problems

A multi-output problem is a supervised learning problem with several outputs to predict, that is when Y is a 2d array
of size [n_samples, n_outputs].

When there is no correlation between the outputs, a very simple way to solve this kind of problem is to build n
independent models, i.e. one for each output, and then to use those models to independently predict each one of the
n outputs. However, because it is likely that the output values related to the same input are themselves correlated, an
often better way is to build a single model capable of predicting simultaneously all n outputs. First, it requires lower
training time since only a single estimator is built. Second, the generalization accuracy of the resulting estimator may
often be increased.

With regard to decision trees, this strategy can readily be used to support multi-output problems. This requires the
following changes:

• Store n output values in leaves, instead of 1;

• Use splitting criteria that compute the average reduction across all n outputs.

This module offers support for multi-output problems by implementing this strategy in both
DecisionTreeClassifier and DecisionTreeRegressor. If a decision tree is fit on an output
array Y of size [n_samples, n_outputs] then the resulting estimator will:

• Output n_output values upon predict;

• Output a list of n_output arrays of class probabilities upon predict_proba.

The use of multi-output trees for regression is demonstrated in Multi-output Decision Tree Regression. In this example,
the input X is a single real value and the outputs Y are the sine and cosine of X.
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The use of multi-output trees for classification is demonstrated in Face completion with a multi-output estimators. In
this example, the inputs X are the pixels of the upper half of faces and the outputs Y are the pixels of the lower half of
those faces.

Examples:

• Multi-output Decision Tree Regression

• Face completion with a multi-output estimators

References:

• M. Dumont et al, Fast multi-class image annotation with random subwindows and multiple output randomized
trees, International Conference on Computer Vision Theory and Applications 2009

Complexity

In general, the run time cost to construct a balanced binary tree is 𝑂(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 log(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)) and query
time 𝑂(log(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)). Although the tree construction algorithm attempts to generate balanced trees, they will not
always be balanced. Assuming that the subtrees remain approximately balanced, the cost at each node consists of
searching through 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) to find the feature that offers the largest reduction in entropy. This has a cost of
𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 log(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)) at each node, leading to a total cost over the entire trees (by summing the cost at
each node) of 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑛

2
𝑠𝑎𝑚𝑝𝑙𝑒𝑠 log(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)).

Scikit-learn offers a more efficient implementation for the construction of decision trees. A naive implementation
(as above) would recompute the class label histograms (for classification) or the means (for regression) at for each
new split point along a given feature. Presorting the feature over all relevant samples, and retaining a running la-
bel count, will reduce the complexity at each node to 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 log(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)), which results in a total cost of
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𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 log(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)). This is an option for all tree based algorithms. By default it is turned on for
gradient boosting, where in general it makes training faster, but turned off for all other algorithms as it tends to slow
down training when training deep trees.

Tips on practical use

• Decision trees tend to overfit on data with a large number of features. Getting the right ratio of samples to
number of features is important, since a tree with few samples in high dimensional space is very likely to
overfit.

• Consider performing dimensionality reduction (PCA, ICA, or Feature selection) beforehand to give your tree a
better chance of finding features that are discriminative.

• Visualise your tree as you are training by using the export function. Use max_depth=3 as an initial tree
depth to get a feel for how the tree is fitting to your data, and then increase the depth.

• Remember that the number of samples required to populate the tree doubles for each additional level the tree
grows to. Use max_depth to control the size of the tree to prevent overfitting.

• Use min_samples_split or min_samples_leaf to control the number of samples at a leaf node. A
very small number will usually mean the tree will overfit, whereas a large number will prevent the tree from
learning the data. Try min_samples_leaf=5 as an initial value. If the sample size varies greatly, a float
number can be used as percentage in these two parameters. The main difference between the two is that
min_samples_leaf guarantees a minimum number of samples in a leaf, while min_samples_split
can create arbitrary small leaves, though min_samples_split is more common in the literature.

• Balance your dataset before training to prevent the tree from being biased toward the classes that are dominant.
Class balancing can be done by sampling an equal number of samples from each class, or preferably by nor-
malizing the sum of the sample weights (sample_weight) for each class to the same value. Also note that
weight-based pre-pruning criteria, such as min_weight_fraction_leaf, will then be less biased toward
dominant classes than criteria that are not aware of the sample weights, like min_samples_leaf.

• If the samples are weighted, it will be easier to optimize the tree structure using weight-based pre-pruning
criterion such as min_weight_fraction_leaf, which ensure that leaf nodes contain at least a fraction of
the overall sum of the sample weights.

• All decision trees use np.float32 arrays internally. If training data is not in this format, a copy of the dataset
will be made.

• If the input matrix X is very sparse, it is recommended to convert to sparse csc_matrix before calling fit and
sparse csr_matrix before calling predict. Training time can be orders of magnitude faster for a sparse matrix
input compared to a dense matrix when features have zero values in most of the samples.

Tree algorithms: ID3, C4.5, C5.0 and CART

What are all the various decision tree algorithms and how do they differ from each other? Which one is implemented
in scikit-learn?

ID3 (Iterative Dichotomiser 3) was developed in 1986 by Ross Quinlan. The algorithm creates a multiway tree, finding
for each node (i.e. in a greedy manner) the categorical feature that will yield the largest information gain for categorical
targets. Trees are grown to their maximum size and then a pruning step is usually applied to improve the ability of the
tree to generalise to unseen data.

C4.5 is the successor to ID3 and removed the restriction that features must be categorical by dynamically defining
a discrete attribute (based on numerical variables) that partitions the continuous attribute value into a discrete set of
intervals. C4.5 converts the trained trees (i.e. the output of the ID3 algorithm) into sets of if-then rules. These accuracy
of each rule is then evaluated to determine the order in which they should be applied. Pruning is done by removing a
rule’s precondition if the accuracy of the rule improves without it.
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C5.0 is Quinlan’s latest version release under a proprietary license. It uses less memory and builds smaller rulesets
than C4.5 while being more accurate.

CART (Classification and Regression Trees) is very similar to C4.5, but it differs in that it supports numerical target
variables (regression) and does not compute rule sets. CART constructs binary trees using the feature and threshold
that yield the largest information gain at each node.

scikit-learn uses an optimised version of the CART algorithm.

Mathematical formulation

Given training vectors 𝑥𝑖 ∈ 𝑅𝑛, i=1,. . . , l and a label vector 𝑦 ∈ 𝑅𝑙, a decision tree recursively partitions the space
such that the samples with the same labels are grouped together.

Let the data at node𝑚 be represented by𝑄. For each candidate split 𝜃 = (𝑗, 𝑡𝑚) consisting of a feature 𝑗 and threshold
𝑡𝑚, partition the data into 𝑄𝑙𝑒𝑓𝑡(𝜃) and 𝑄𝑟𝑖𝑔ℎ𝑡(𝜃) subsets

𝑄𝑙𝑒𝑓𝑡(𝜃) = (𝑥, 𝑦)|𝑥𝑗 <= 𝑡𝑚

𝑄𝑟𝑖𝑔ℎ𝑡(𝜃) = 𝑄 ∖𝑄𝑙𝑒𝑓𝑡(𝜃)

The impurity at 𝑚 is computed using an impurity function 𝐻(), the choice of which depends on the task being solved
(classification or regression)

𝐺(𝑄, 𝜃) =
𝑛𝑙𝑒𝑓𝑡
𝑁𝑚

𝐻(𝑄𝑙𝑒𝑓𝑡(𝜃)) +
𝑛𝑟𝑖𝑔ℎ𝑡
𝑁𝑚

𝐻(𝑄𝑟𝑖𝑔ℎ𝑡(𝜃))

Select the parameters that minimises the impurity

𝜃* = argmin𝜃 𝐺(𝑄, 𝜃)

Recurse for subsets 𝑄𝑙𝑒𝑓𝑡(𝜃
*) and 𝑄𝑟𝑖𝑔ℎ𝑡(𝜃

*) until the maximum allowable depth is reached, 𝑁𝑚 < min𝑠𝑎𝑚𝑝𝑙𝑒𝑠 or
𝑁𝑚 = 1.

Classification criteria

If a target is a classification outcome taking on values 0,1,. . . ,K-1, for node 𝑚, representing a region 𝑅𝑚 with 𝑁𝑚

observations, let

𝑝𝑚𝑘 = 1/𝑁𝑚

∑︁
𝑥𝑖∈𝑅𝑚

𝐼(𝑦𝑖 = 𝑘)

be the proportion of class k observations in node 𝑚

Common measures of impurity are Gini

𝐻(𝑋𝑚) =
∑︁
𝑘

𝑝𝑚𝑘(1− 𝑝𝑚𝑘)

Cross-Entropy

𝐻(𝑋𝑚) = −
∑︁
𝑘

𝑝𝑚𝑘 log(𝑝𝑚𝑘)

and Misclassification

𝐻(𝑋𝑚) = 1−max(𝑝𝑚𝑘)

where 𝑋𝑚 is the training data in node 𝑚
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Regression criteria

If the target is a continuous value, then for node 𝑚, representing a region 𝑅𝑚 with 𝑁𝑚 observations, common criteria
to minimise as for determining locations for future splits are Mean Squared Error, which minimizes the L2 error
using mean values at terminal nodes, and Mean Absolute Error, which minimizes the L1 error using median values at
terminal nodes.

Mean Squared Error:

𝑐𝑚 =
1

𝑁𝑚

∑︁
𝑖∈𝑁𝑚

𝑦𝑖

𝐻(𝑋𝑚) =
1

𝑁𝑚

∑︁
𝑖∈𝑁𝑚

(𝑦𝑖 − 𝑐𝑚)2

Mean Absolute Error:

𝑦𝑚 =
1

𝑁𝑚

∑︁
𝑖∈𝑁𝑚

𝑦𝑖

𝐻(𝑋𝑚) =
1

𝑁𝑚

∑︁
𝑖∈𝑁𝑚

|𝑦𝑖 − 𝑦𝑚|

where 𝑋𝑚 is the training data in node 𝑚

References:

• https://en.wikipedia.org/wiki/Decision_tree_learning

• https://en.wikipedia.org/wiki/Predictive_analytics

• L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth, Belmont,
CA, 1984.

• J.R. Quinlan. C4. 5: programs for machine learning. Morgan Kaufmann, 1993.

• T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning, Springer, 2009.

3.1.11 Ensemble methods

The goal of ensemble methods is to combine the predictions of several base estimators built with a given learning
algorithm in order to improve generalizability / robustness over a single estimator.

Two families of ensemble methods are usually distinguished:

• In averaging methods, the driving principle is to build several estimators independently and then to average
their predictions. On average, the combined estimator is usually better than any of the single base estimator
because its variance is reduced.

Examples: Bagging methods, Forests of randomized trees, . . .

• By contrast, in boosting methods, base estimators are built sequentially and one tries to reduce the bias of the
combined estimator. The motivation is to combine several weak models to produce a powerful ensemble.

Examples: AdaBoost, Gradient Tree Boosting, . . .
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Bagging meta-estimator

In ensemble algorithms, bagging methods form a class of algorithms which build several instances of a black-box
estimator on random subsets of the original training set and then aggregate their individual predictions to form a final
prediction. These methods are used as a way to reduce the variance of a base estimator (e.g., a decision tree), by
introducing randomization into its construction procedure and then making an ensemble out of it. In many cases,
bagging methods constitute a very simple way to improve with respect to a single model, without making it necessary
to adapt the underlying base algorithm. As they provide a way to reduce overfitting, bagging methods work best with
strong and complex models (e.g., fully developed decision trees), in contrast with boosting methods which usually
work best with weak models (e.g., shallow decision trees).

Bagging methods come in many flavours but mostly differ from each other by the way they draw random subsets of
the training set:

• When random subsets of the dataset are drawn as random subsets of the samples, then this algorithm is known
as Pasting [B1999].

• When samples are drawn with replacement, then the method is known as Bagging [B1996].

• When random subsets of the dataset are drawn as random subsets of the features, then the method is known as
Random Subspaces [H1998].

• Finally, when base estimators are built on subsets of both samples and features, then the method is known as
Random Patches [LG2012].

In scikit-learn, bagging methods are offered as a unified BaggingClassifier meta-estimator (resp.
BaggingRegressor), taking as input a user-specified base estimator along with parameters specifying the strategy
to draw random subsets. In particular, max_samples and max_features control the size of the subsets (in terms
of samples and features), while bootstrap and bootstrap_features control whether samples and features
are drawn with or without replacement. When using a subset of the available samples the generalization accuracy can
be estimated with the out-of-bag samples by setting oob_score=True. As an example, the snippet below illustrates
how to instantiate a bagging ensemble of KNeighborsClassifier base estimators, each built on random subsets
of 50% of the samples and 50% of the features.

>>> from sklearn.ensemble import BaggingClassifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> bagging = BaggingClassifier(KNeighborsClassifier(),
... max_samples=0.5, max_features=0.5)

Examples:

• Single estimator versus bagging: bias-variance decomposition

References

Forests of randomized trees

The sklearn.ensemble module includes two averaging algorithms based on randomized decision trees: the Ran-
domForest algorithm and the Extra-Trees method. Both algorithms are perturb-and-combine techniques [B1998]
specifically designed for trees. This means a diverse set of classifiers is created by introducing randomness in the
classifier construction. The prediction of the ensemble is given as the averaged prediction of the individual classifiers.
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As other classifiers, forest classifiers have to be fitted with two arrays: a sparse or dense array X of size [n_samples,
n_features] holding the training samples, and an array Y of size [n_samples] holding the target values (class
labels) for the training samples:

>>> from sklearn.ensemble import RandomForestClassifier
>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = RandomForestClassifier(n_estimators=10)
>>> clf = clf.fit(X, Y)

Like decision trees, forests of trees also extend to multi-output problems (if Y is an array of size [n_samples,
n_outputs]).

Random Forests

In random forests (see RandomForestClassifier and RandomForestRegressor classes), each tree in the
ensemble is built from a sample drawn with replacement (i.e., a bootstrap sample) from the training set. In addition,
when splitting a node during the construction of the tree, the split that is chosen is no longer the best split among all
features. Instead, the split that is picked is the best split among a random subset of the features. As a result of this
randomness, the bias of the forest usually slightly increases (with respect to the bias of a single non-random tree) but,
due to averaging, its variance also decreases, usually more than compensating for the increase in bias, hence yielding
an overall better model.

In contrast to the original publication [B2001], the scikit-learn implementation combines classifiers by averaging their
probabilistic prediction, instead of letting each classifier vote for a single class.

Extremely Randomized Trees

In extremely randomized trees (see ExtraTreesClassifier and ExtraTreesRegressor classes), random-
ness goes one step further in the way splits are computed. As in random forests, a random subset of candidate features
is used, but instead of looking for the most discriminative thresholds, thresholds are drawn at random for each candi-
date feature and the best of these randomly-generated thresholds is picked as the splitting rule. This usually allows to
reduce the variance of the model a bit more, at the expense of a slightly greater increase in bias:

>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.datasets import make_blobs
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.ensemble import ExtraTreesClassifier
>>> from sklearn.tree import DecisionTreeClassifier

>>> X, y = make_blobs(n_samples=10000, n_features=10, centers=100,
... random_state=0)

>>> clf = DecisionTreeClassifier(max_depth=None, min_samples_split=2,
... random_state=0)
>>> scores = cross_val_score(clf, X, y)
>>> scores.mean()
0.97...

>>> clf = RandomForestClassifier(n_estimators=10, max_depth=None,
... min_samples_split=2, random_state=0)
>>> scores = cross_val_score(clf, X, y)
>>> scores.mean()
0.999...

3.1. Supervised learning 239



scikit-learn user guide, Release 0.19.1

>>> clf = ExtraTreesClassifier(n_estimators=10, max_depth=None,
... min_samples_split=2, random_state=0)
>>> scores = cross_val_score(clf, X, y)
>>> scores.mean() > 0.999
True

Parameters

The main parameters to adjust when using these methods is n_estimators and max_features. The former
is the number of trees in the forest. The larger the better, but also the longer it will take to compute. In addition,
note that results will stop getting significantly better beyond a critical number of trees. The latter is the size of
the random subsets of features to consider when splitting a node. The lower the greater the reduction of variance,
but also the greater the increase in bias. Empirical good default values are max_features=n_features for
regression problems, and max_features=sqrt(n_features) for classification tasks (where n_features is
the number of features in the data). Good results are often achieved when setting max_depth=None in combination
with min_samples_split=2 (i.e., when fully developing the trees). Bear in mind though that these values are
usually not optimal, and might result in models that consume a lot of RAM. The best parameter values should always be
cross-validated. In addition, note that in random forests, bootstrap samples are used by default (bootstrap=True)
while the default strategy for extra-trees is to use the whole dataset (bootstrap=False). When using bootstrap
sampling the generalization accuracy can be estimated on the left out or out-of-bag samples. This can be enabled by
setting oob_score=True.

Note: The size of the model with the default parameters is 𝑂(𝑀 * 𝑁 * 𝑙𝑜𝑔(𝑁)), where 𝑀 is the number of
trees and 𝑁 is the number of samples. In order to reduce the size of the model, you can change these parameters:
min_samples_split, min_samples_leaf, max_leaf_nodes and max_depth.
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Parallelization

Finally, this module also features the parallel construction of the trees and the parallel computation of the predictions
through the n_jobs parameter. If n_jobs=k then computations are partitioned into k jobs, and run on k cores of
the machine. If n_jobs=-1 then all cores available on the machine are used. Note that because of inter-process
communication overhead, the speedup might not be linear (i.e., using k jobs will unfortunately not be k times as fast).
Significant speedup can still be achieved though when building a large number of trees, or when building a single tree
requires a fair amount of time (e.g., on large datasets).

Examples:

• Plot the decision surfaces of ensembles of trees on the iris dataset

• Pixel importances with a parallel forest of trees

• Face completion with a multi-output estimators

References

• P. Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42, 2006.

Feature importance evaluation

The relative rank (i.e. depth) of a feature used as a decision node in a tree can be used to assess the relative importance
of that feature with respect to the predictability of the target variable. Features used at the top of the tree contribute
to the final prediction decision of a larger fraction of the input samples. The expected fraction of the samples they
contribute to can thus be used as an estimate of the relative importance of the features.

By averaging those expected activity rates over several randomized trees one can reduce the variance of such an
estimate and use it for feature selection.

The following example shows a color-coded representation of the relative importances of each individual pixel for a
face recognition task using a ExtraTreesClassifier model.

In practice those estimates are stored as an attribute named feature_importances_ on the fitted model. This
is an array with shape (n_features,) whose values are positive and sum to 1.0. The higher the value, the more
important is the contribution of the matching feature to the prediction function.

Examples:

• Pixel importances with a parallel forest of trees

• Feature importances with forests of trees

Totally Random Trees Embedding

RandomTreesEmbedding implements an unsupervised transformation of the data. Using a forest of completely
random trees, RandomTreesEmbedding encodes the data by the indices of the leaves a data point ends up in. This
index is then encoded in a one-of-K manner, leading to a high dimensional, sparse binary coding. This coding can be
computed very efficiently and can then be used as a basis for other learning tasks. The size and sparsity of the code
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can be influenced by choosing the number of trees and the maximum depth per tree. For each tree in the ensemble, the
coding contains one entry of one. The size of the coding is at most n_estimators * 2 ** max_depth, the
maximum number of leaves in the forest.

As neighboring data points are more likely to lie within the same leaf of a tree, the transformation performs an implicit,
non-parametric density estimation.

Examples:

• Hashing feature transformation using Totally Random Trees

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . . compares non-linear dimen-
sionality reduction techniques on handwritten digits.

• Feature transformations with ensembles of trees compares supervised and unsupervised tree based feature
transformations.

See also:

Manifold learning techniques can also be useful to derive non-linear representations of feature space, also these ap-
proaches focus also on dimensionality reduction.

AdaBoost

The module sklearn.ensemble includes the popular boosting algorithm AdaBoost, introduced in 1995 by Freund
and Schapire [FS1995].

The core principle of AdaBoost is to fit a sequence of weak learners (i.e., models that are only slightly better than
random guessing, such as small decision trees) on repeatedly modified versions of the data. The predictions from
all of them are then combined through a weighted majority vote (or sum) to produce the final prediction. The data
modifications at each so-called boosting iteration consist of applying weights 𝑤1, 𝑤2, . . . , 𝑤𝑁 to each of the training
samples. Initially, those weights are all set to 𝑤𝑖 = 1/𝑁 , so that the first step simply trains a weak learner on the
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original data. For each successive iteration, the sample weights are individually modified and the learning algorithm is
reapplied to the reweighted data. At a given step, those training examples that were incorrectly predicted by the boosted
model induced at the previous step have their weights increased, whereas the weights are decreased for those that were
predicted correctly. As iterations proceed, examples that are difficult to predict receive ever-increasing influence. Each
subsequent weak learner is thereby forced to concentrate on the examples that are missed by the previous ones in the
sequence [HTF].

AdaBoost can be used both for classification and regression problems:

• For multi-class classification, AdaBoostClassifier implements AdaBoost-SAMME and AdaBoost-
SAMME.R [ZZRH2009].

• For regression, AdaBoostRegressor implements AdaBoost.R2 [D1997].

Usage

The following example shows how to fit an AdaBoost classifier with 100 weak learners:

>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.datasets import load_iris
>>> from sklearn.ensemble import AdaBoostClassifier

>>> iris = load_iris()
>>> clf = AdaBoostClassifier(n_estimators=100)
>>> scores = cross_val_score(clf, iris.data, iris.target)
>>> scores.mean()
0.9...

The number of weak learners is controlled by the parameter n_estimators. The learning_rate parameter
controls the contribution of the weak learners in the final combination. By default, weak learners are decision stumps.
Different weak learners can be specified through the base_estimator parameter. The main parameters to tune to
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obtain good results are n_estimators and the complexity of the base estimators (e.g., its depth max_depth or
minimum required number of samples at a leaf min_samples_leaf in case of decision trees).

Examples:

• Discrete versus Real AdaBoost compares the classification error of a decision stump, decision tree, and a
boosted decision stump using AdaBoost-SAMME and AdaBoost-SAMME.R.

• Multi-class AdaBoosted Decision Trees shows the performance of AdaBoost-SAMME and AdaBoost-
SAMME.R on a multi-class problem.

• Two-class AdaBoost shows the decision boundary and decision function values for a non-linearly separable
two-class problem using AdaBoost-SAMME.

• Decision Tree Regression with AdaBoost demonstrates regression with the AdaBoost.R2 algorithm.

References

Gradient Tree Boosting

Gradient Tree Boosting or Gradient Boosted Regression Trees (GBRT) is a generalization of boosting to arbitrary
differentiable loss functions. GBRT is an accurate and effective off-the-shelf procedure that can be used for both
regression and classification problems. Gradient Tree Boosting models are used in a variety of areas including Web
search ranking and ecology.

The advantages of GBRT are:

• Natural handling of data of mixed type (= heterogeneous features)

• Predictive power

• Robustness to outliers in output space (via robust loss functions)

The disadvantages of GBRT are:

• Scalability, due to the sequential nature of boosting it can hardly be parallelized.

The module sklearn.ensemble provides methods for both classification and regression via gradient boosted
regression trees.

Classification

GradientBoostingClassifier supports both binary and multi-class classification. The following example
shows how to fit a gradient boosting classifier with 100 decision stumps as weak learners:

>>> from sklearn.datasets import make_hastie_10_2
>>> from sklearn.ensemble import GradientBoostingClassifier

>>> X, y = make_hastie_10_2(random_state=0)
>>> X_train, X_test = X[:2000], X[2000:]
>>> y_train, y_test = y[:2000], y[2000:]

>>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
... max_depth=1, random_state=0).fit(X_train, y_train)
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>>> clf.score(X_test, y_test)
0.913...

The number of weak learners (i.e. regression trees) is controlled by the parameter n_estimators; The size of each
tree can be controlled either by setting the tree depth via max_depth or by setting the number of leaf nodes via
max_leaf_nodes. The learning_rate is a hyper-parameter in the range (0.0, 1.0] that controls overfitting via
shrinkage .

Note: Classification with more than 2 classes requires the induction of n_classes regression trees at each
iteration, thus, the total number of induced trees equals n_classes * n_estimators. For datasets with
a large number of classes we strongly recommend to use RandomForestClassifier as an alternative to
GradientBoostingClassifier .

Regression

GradientBoostingRegressor supports a number of different loss functions for regression which can be speci-
fied via the argument loss; the default loss function for regression is least squares ('ls').

>>> import numpy as np
>>> from sklearn.metrics import mean_squared_error
>>> from sklearn.datasets import make_friedman1
>>> from sklearn.ensemble import GradientBoostingRegressor

>>> X, y = make_friedman1(n_samples=1200, random_state=0, noise=1.0)
>>> X_train, X_test = X[:200], X[200:]
>>> y_train, y_test = y[:200], y[200:]
>>> est = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1,
... max_depth=1, random_state=0, loss='ls').fit(X_train, y_train)
>>> mean_squared_error(y_test, est.predict(X_test))
5.00...

The figure below shows the results of applying GradientBoostingRegressor with least squares loss and 500
base learners to the Boston house price dataset (sklearn.datasets.load_boston). The plot on the left shows
the train and test error at each iteration. The train error at each iteration is stored in the train_score_ attribute
of the gradient boosting model. The test error at each iterations can be obtained via the staged_predict method
which returns a generator that yields the predictions at each stage. Plots like these can be used to determine the optimal
number of trees (i.e. n_estimators) by early stopping. The plot on the right shows the feature importances which
can be obtained via the feature_importances_ property.

Examples:

• Gradient Boosting regression

• Gradient Boosting Out-of-Bag estimates

Fitting additional weak-learners

Both GradientBoostingRegressor and GradientBoostingClassifier support
warm_start=True which allows you to add more estimators to an already fitted model.
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>>> _ = est.set_params(n_estimators=200, warm_start=True) # set warm_start and new
→˓nr of trees
>>> _ = est.fit(X_train, y_train) # fit additional 100 trees to est
>>> mean_squared_error(y_test, est.predict(X_test))
3.84...

Controlling the tree size

The size of the regression tree base learners defines the level of variable interactions that can be captured by the
gradient boosting model. In general, a tree of depth h can capture interactions of order h . There are two ways in
which the size of the individual regression trees can be controlled.

If you specify max_depth=h then complete binary trees of depth h will be grown. Such trees will have (at most)
2**h leaf nodes and 2**h - 1 split nodes.

Alternatively, you can control the tree size by specifying the number of leaf nodes via the parameter
max_leaf_nodes. In this case, trees will be grown using best-first search where nodes with the highest improve-
ment in impurity will be expanded first. A tree with max_leaf_nodes=k has k - 1 split nodes and thus can
model interactions of up to order max_leaf_nodes - 1 .

We found that max_leaf_nodes=k gives comparable results to max_depth=k-1 but is significantly faster to
train at the expense of a slightly higher training error. The parameter max_leaf_nodes corresponds to the variable
J in the chapter on gradient boosting in [F2001] and is related to the parameter interaction.depth in R’s gbm
package where max_leaf_nodes == interaction.depth + 1 .

Mathematical formulation

GBRT considers additive models of the following form:

246 Chapter 3. User Guide

../auto_examples/ensemble/plot_gradient_boosting_regression.html


scikit-learn user guide, Release 0.19.1

𝐹 (𝑥) =

𝑀∑︁
𝑚=1

𝛾𝑚ℎ𝑚(𝑥)

where ℎ𝑚(𝑥) are the basis functions which are usually called weak learners in the context of boosting. Gradient Tree
Boosting uses decision trees of fixed size as weak learners. Decision trees have a number of abilities that make them
valuable for boosting, namely the ability to handle data of mixed type and the ability to model complex functions.

Similar to other boosting algorithms GBRT builds the additive model in a forward stagewise fashion:

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥)

At each stage the decision tree ℎ𝑚(𝑥) is chosen to minimize the loss function 𝐿 given the current model 𝐹𝑚−1 and its
fit 𝐹𝑚−1(𝑥𝑖)

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + arg min
ℎ

𝑛∑︁
𝑖=1

𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + ℎ(𝑥))

The initial model 𝐹0 is problem specific, for least-squares regression one usually chooses the mean of the target values.

Note: The initial model can also be specified via the init argument. The passed object has to implement fit and
predict.

Gradient Boosting attempts to solve this minimization problem numerically via steepest descent: The steepest descent
direction is the negative gradient of the loss function evaluated at the current model 𝐹𝑚−1 which can be calculated for
any differentiable loss function:

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥)− 𝛾𝑚
𝑛∑︁

𝑖=1

∇𝐹𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖))

Where the step length 𝛾𝑚 is chosen using line search:

𝛾𝑚 = arg min
𝛾

𝑛∑︁
𝑖=1

𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖)− 𝛾
𝜕𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖))

𝜕𝐹𝑚−1(𝑥𝑖)
)

The algorithms for regression and classification only differ in the concrete loss function used.

Loss Functions

The following loss functions are supported and can be specified using the parameter loss:

• Regression

– Least squares ('ls'): The natural choice for regression due to its superior computational properties. The
initial model is given by the mean of the target values.
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– Least absolute deviation ('lad'): A robust loss function for regression. The initial model is given by the
median of the target values.

– Huber ('huber'): Another robust loss function that combines least squares and least absolute deviation;
use alpha to control the sensitivity with regards to outliers (see [F2001] for more details).

– Quantile ('quantile'): A loss function for quantile regression. Use 0 < alpha < 1 to specify the
quantile. This loss function can be used to create prediction intervals (see Prediction Intervals for Gradient
Boosting Regression).

• Classification

– Binomial deviance ('deviance'): The negative binomial log-likelihood loss function for binary classi-
fication (provides probability estimates). The initial model is given by the log odds-ratio.

– Multinomial deviance ('deviance'): The negative multinomial log-likelihood loss function for multi-
class classification with n_classes mutually exclusive classes. It provides probability estimates. The
initial model is given by the prior probability of each class. At each iteration n_classes regression trees
have to be constructed which makes GBRT rather inefficient for data sets with a large number of classes.

– Exponential loss ('exponential'): The same loss function as AdaBoostClassifier. Less robust
to mislabeled examples than 'deviance'; can only be used for binary classification.

Regularization

Shrinkage

[F2001] proposed a simple regularization strategy that scales the contribution of each weak learner by a factor 𝜈:

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜈𝛾𝑚ℎ𝑚(𝑥)

The parameter 𝜈 is also called the learning rate because it scales the step length the gradient descent procedure; it can
be set via the learning_rate parameter.

The parameter learning_rate strongly interacts with the parameter n_estimators, the number of weak learn-
ers to fit. Smaller values of learning_rate require larger numbers of weak learners to maintain a constant training
error. Empirical evidence suggests that small values of learning_rate favor better test error. [HTF2009] recom-
mend to set the learning rate to a small constant (e.g. learning_rate <= 0.1) and choose n_estimators by
early stopping. For a more detailed discussion of the interaction between learning_rate and n_estimators
see [R2007].

Subsampling

[F1999] proposed stochastic gradient boosting, which combines gradient boosting with bootstrap averaging (bagging).
At each iteration the base classifier is trained on a fraction subsample of the available training data. The subsample
is drawn without replacement. A typical value of subsample is 0.5.

The figure below illustrates the effect of shrinkage and subsampling on the goodness-of-fit of the model. We can
clearly see that shrinkage outperforms no-shrinkage. Subsampling with shrinkage can further increase the accuracy of
the model. Subsampling without shrinkage, on the other hand, does poorly.

Another strategy to reduce the variance is by subsampling the features analogous to the random splits in
RandomForestClassifier . The number of subsampled features can be controlled via the max_features
parameter.
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Note: Using a small max_features value can significantly decrease the runtime.

Stochastic gradient boosting allows to compute out-of-bag estimates of the test deviance by computing the improve-
ment in deviance on the examples that are not included in the bootstrap sample (i.e. the out-of-bag examples). The
improvements are stored in the attribute oob_improvement_. oob_improvement_[i] holds the improvement
in terms of the loss on the OOB samples if you add the i-th stage to the current predictions. Out-of-bag estimates can
be used for model selection, for example to determine the optimal number of iterations. OOB estimates are usually
very pessimistic thus we recommend to use cross-validation instead and only use OOB if cross-validation is too time
consuming.

Examples:

• Gradient Boosting regularization

• Gradient Boosting Out-of-Bag estimates

• OOB Errors for Random Forests

Interpretation

Individual decision trees can be interpreted easily by simply visualizing the tree structure. Gradient boosting models,
however, comprise hundreds of regression trees thus they cannot be easily interpreted by visual inspection of the
individual trees. Fortunately, a number of techniques have been proposed to summarize and interpret gradient boosting
models.

3.1. Supervised learning 249

../auto_examples/ensemble/plot_gradient_boosting_regularization.html


scikit-learn user guide, Release 0.19.1

Feature importance

Often features do not contribute equally to predict the target response; in many situations the majority of the features
are in fact irrelevant. When interpreting a model, the first question usually is: what are those important features and
how do they contributing in predicting the target response?

Individual decision trees intrinsically perform feature selection by selecting appropriate split points. This information
can be used to measure the importance of each feature; the basic idea is: the more often a feature is used in the split
points of a tree the more important that feature is. This notion of importance can be extended to decision tree ensembles
by simply averaging the feature importance of each tree (see Feature importance evaluation for more details).

The feature importance scores of a fit gradient boosting model can be accessed via the feature_importances_
property:

>>> from sklearn.datasets import make_hastie_10_2
>>> from sklearn.ensemble import GradientBoostingClassifier

>>> X, y = make_hastie_10_2(random_state=0)
>>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
... max_depth=1, random_state=0).fit(X, y)
>>> clf.feature_importances_
array([ 0.11, 0.1 , 0.11, ...

Examples:

• Gradient Boosting regression

Partial dependence

Partial dependence plots (PDP) show the dependence between the target response and a set of ‘target’ features,
marginalizing over the values of all other features (the ‘complement’ features). Intuitively, we can interpret the partial
dependence as the expected target response1 as a function of the ‘target’ features2.

Due to the limits of human perception the size of the target feature set must be small (usually, one or two) thus the
target features are usually chosen among the most important features.

The Figure below shows four one-way and one two-way partial dependence plots for the California housing dataset:

One-way PDPs tell us about the interaction between the target response and the target feature (e.g. linear, non-linear).
The upper left plot in the above Figure shows the effect of the median income in a district on the median house price;
we can clearly see a linear relationship among them.

PDPs with two target features show the interactions among the two features. For example, the two-variable PDP in
the above Figure shows the dependence of median house price on joint values of house age and avg. occupants per
household. We can clearly see an interaction between the two features: For an avg. occupancy greater than two, the
house price is nearly independent of the house age, whereas for values less than two there is a strong dependence on
age.

The module partial_dependence provides a convenience function plot_partial_dependence to cre-
ate one-way and two-way partial dependence plots. In the below example we show how to create a grid of partial
dependence plots: two one-way PDPs for the features 0 and 1 and a two-way PDP between the two features:

1 For classification with loss='deviance' the target response is logit(p).
2 More precisely its the expectation of the target response after accounting for the initial model; partial dependence plots do not include the

init model.
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>>> from sklearn.datasets import make_hastie_10_2
>>> from sklearn.ensemble import GradientBoostingClassifier
>>> from sklearn.ensemble.partial_dependence import plot_partial_dependence

>>> X, y = make_hastie_10_2(random_state=0)
>>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
... max_depth=1, random_state=0).fit(X, y)
>>> features = [0, 1, (0, 1)]
>>> fig, axs = plot_partial_dependence(clf, X, features)

For multi-class models, you need to set the class label for which the PDPs should be created via the label argument:

>>> from sklearn.datasets import load_iris
>>> iris = load_iris()
>>> mc_clf = GradientBoostingClassifier(n_estimators=10,
... max_depth=1).fit(iris.data, iris.target)
>>> features = [3, 2, (3, 2)]
>>> fig, axs = plot_partial_dependence(mc_clf, X, features, label=0)

If you need the raw values of the partial dependence function rather than the plots you can use the
partial_dependence function:

>>> from sklearn.ensemble.partial_dependence import partial_dependence

>>> pdp, axes = partial_dependence(clf, [0], X=X)
>>> pdp
array([[ 2.46643157, 2.46643157, ...
>>> axes
[array([-1.62497054, -1.59201391, ...

The function requires either the argument grid which specifies the values of the target features on which the partial
dependence function should be evaluated or the argument X which is a convenience mode for automatically creating
grid from the training data. If X is given, the axes value returned by the function gives the axis for each target
feature.
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For each value of the ‘target’ features in the grid the partial dependence function need to marginalize the predictions
of a tree over all possible values of the ‘complement’ features. In decision trees this function can be evaluated effi-
ciently without reference to the training data. For each grid point a weighted tree traversal is performed: if a split node
involves a ‘target’ feature, the corresponding left or right branch is followed, otherwise both branches are followed,
each branch is weighted by the fraction of training samples that entered that branch. Finally, the partial dependence
is given by a weighted average of all visited leaves. For tree ensembles the results of each individual tree are again
averaged.

Examples:

• Partial Dependence Plots

References

Voting Classifier

The idea behind the VotingClassifier is to combine conceptually different machine learning classifiers and use
a majority vote or the average predicted probabilities (soft vote) to predict the class labels. Such a classifier can be
useful for a set of equally well performing model in order to balance out their individual weaknesses.

Majority Class Labels (Majority/Hard Voting)

In majority voting, the predicted class label for a particular sample is the class label that represents the majority (mode)
of the class labels predicted by each individual classifier.

E.g., if the prediction for a given sample is

• classifier 1 -> class 1

• classifier 2 -> class 1

• classifier 3 -> class 2

the VotingClassifier (with voting='hard') would classify the sample as “class 1” based on the majority class label.

In the cases of a tie, the VotingClassifier will select the class based on the ascending sort order. E.g., in the following
scenario

• classifier 1 -> class 2

• classifier 2 -> class 1

the class label 1 will be assigned to the sample.

Usage

The following example shows how to fit the majority rule classifier:

>>> from sklearn import datasets
>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.ensemble import RandomForestClassifier
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>>> from sklearn.ensemble import VotingClassifier

>>> iris = datasets.load_iris()
>>> X, y = iris.data[:, 1:3], iris.target

>>> clf1 = LogisticRegression(random_state=1)
>>> clf2 = RandomForestClassifier(random_state=1)
>>> clf3 = GaussianNB()

>>> eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],
→˓voting='hard')

>>> for clf, label in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random
→˓Forest', 'naive Bayes', 'Ensemble']):
... scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy')
... print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(),
→˓label))
Accuracy: 0.90 (+/- 0.05) [Logistic Regression]
Accuracy: 0.93 (+/- 0.05) [Random Forest]
Accuracy: 0.91 (+/- 0.04) [naive Bayes]
Accuracy: 0.95 (+/- 0.05) [Ensemble]

Weighted Average Probabilities (Soft Voting)

In contrast to majority voting (hard voting), soft voting returns the class label as argmax of the sum of predicted
probabilities.

Specific weights can be assigned to each classifier via the weights parameter. When weights are provided, the
predicted class probabilities for each classifier are collected, multiplied by the classifier weight, and averaged. The
final class label is then derived from the class label with the highest average probability.

To illustrate this with a simple example, let’s assume we have 3 classifiers and a 3-class classification problems where
we assign equal weights to all classifiers: w1=1, w2=1, w3=1.

The weighted average probabilities for a sample would then be calculated as follows:

classifier class 1 class 2 class 3
classifier 1 w1 * 0.2 w1 * 0.5 w1 * 0.3
classifier 2 w2 * 0.6 w2 * 0.3 w2 * 0.1
classifier 3 w3 * 0.3 w3 * 0.4 w3 * 0.3
weighted average 0.37 0.4 0.23

Here, the predicted class label is 2, since it has the highest average probability.

The following example illustrates how the decision regions may change when a soft VotingClassifier is used based on
an linear Support Vector Machine, a Decision Tree, and a K-nearest neighbor classifier:

>>> from sklearn import datasets
>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> from sklearn.svm import SVC
>>> from itertools import product
>>> from sklearn.ensemble import VotingClassifier

>>> # Loading some example data
>>> iris = datasets.load_iris()
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>>> X = iris.data[:, [0,2]]
>>> y = iris.target

>>> # Training classifiers
>>> clf1 = DecisionTreeClassifier(max_depth=4)
>>> clf2 = KNeighborsClassifier(n_neighbors=7)
>>> clf3 = SVC(kernel='rbf', probability=True)
>>> eclf = VotingClassifier(estimators=[('dt', clf1), ('knn', clf2), ('svc', clf3)],
→˓voting='soft', weights=[2,1,2])

>>> clf1 = clf1.fit(X,y)
>>> clf2 = clf2.fit(X,y)
>>> clf3 = clf3.fit(X,y)
>>> eclf = eclf.fit(X,y)

Using the VotingClassifier with GridSearch

The VotingClassifier can also be used together with GridSearch in order to tune the hyperparameters of the individual
estimators:
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>>> from sklearn.model_selection import GridSearchCV
>>> clf1 = LogisticRegression(random_state=1)
>>> clf2 = RandomForestClassifier(random_state=1)
>>> clf3 = GaussianNB()
>>> eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],
→˓voting='soft')

>>> params = {'lr__C': [1.0, 100.0], 'rf__n_estimators': [20, 200],}

>>> grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5)
>>> grid = grid.fit(iris.data, iris.target)

Usage

In order to predict the class labels based on the predicted class-probabilities (scikit-learn estimators in the VotingClas-
sifier must support predict_proba method):

>>> eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],
→˓voting='soft')

Optionally, weights can be provided for the individual classifiers:

>>> eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],
→˓voting='soft', weights=[2,5,1])

3.1.12 Multiclass and multilabel algorithms

Warning: All classifiers in scikit-learn do multiclass classification out-of-the-box. You don’t need to use the
sklearn.multiclass module unless you want to experiment with different multiclass strategies.

The sklearn.multiclass module implements meta-estimators to solve multiclass and multilabel clas-
sification problems by decomposing such problems into binary classification problems. Multitarget regression is also
supported.

• Multiclass classification means a classification task with more than two classes; e.g., classify a set of images of
fruits which may be oranges, apples, or pears. Multiclass classification makes the assumption that each sample
is assigned to one and only one label: a fruit can be either an apple or a pear but not both at the same time.

• Multilabel classification assigns to each sample a set of target labels. This can be thought as predicting proper-
ties of a data-point that are not mutually exclusive, such as topics that are relevant for a document. A text might
be about any of religion, politics, finance or education at the same time or none of these.

• Multioutput regression assigns each sample a set of target values. This can be thought of as predicting several
properties for each data-point, such as wind direction and magnitude at a certain location.

• Multioutput-multiclass classification and multi-task classification means that a single estimator has to handle
several joint classification tasks. This is both a generalization of the multi-label classification task, which only
considers binary classification, as well as a generalization of the multi-class classification task. The output
format is a 2d numpy array or sparse matrix.

The set of labels can be different for each output variable. For instance, a sample could be assigned “pear” for
an output variable that takes possible values in a finite set of species such as “pear”, “apple”; and “blue” or
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“green” for a second output variable that takes possible values in a finite set of colors such as “green”, “red”,
“blue”, “yellow”. . .

This means that any classifiers handling multi-output multiclass or multi-task classification tasks, support the
multi-label classification task as a special case. Multi-task classification is similar to the multi-output classifica-
tion task with different model formulations. For more information, see the relevant estimator documentation.

All scikit-learn classifiers are capable of multiclass classification, but the meta-estimators offered by sklearn.
multiclass permit changing the way they handle more than two classes because this may have an effect on classifier
performance (either in terms of generalization error or required computational resources).

Below is a summary of the classifiers supported by scikit-learn grouped by strategy; you don’t need the meta-estimators
in this class if you’re using one of these, unless you want custom multiclass behavior:

• Inherently multiclass:

– sklearn.naive_bayes.BernoulliNB

– sklearn.tree.DecisionTreeClassifier

– sklearn.tree.ExtraTreeClassifier

– sklearn.ensemble.ExtraTreesClassifier

– sklearn.naive_bayes.GaussianNB

– sklearn.neighbors.KNeighborsClassifier

– sklearn.semi_supervised.LabelPropagation

– sklearn.semi_supervised.LabelSpreading

– sklearn.discriminant_analysis.LinearDiscriminantAnalysis

– sklearn.svm.LinearSVC (setting multi_class=”crammer_singer”)

– sklearn.linear_model.LogisticRegression (setting multi_class=”multinomial”)

– sklearn.linear_model.LogisticRegressionCV (setting multi_class=”multinomial”)

– sklearn.neural_network.MLPClassifier

– sklearn.neighbors.NearestCentroid

– sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis

– sklearn.neighbors.RadiusNeighborsClassifier

– sklearn.ensemble.RandomForestClassifier

– sklearn.linear_model.RidgeClassifier

– sklearn.linear_model.RidgeClassifierCV

• Multiclass as One-Vs-One:

– sklearn.svm.NuSVC

– sklearn.svm.SVC.

– sklearn.gaussian_process.GaussianProcessClassifier (setting multi_class =
“one_vs_one”)

• Multiclass as One-Vs-All:

– sklearn.ensemble.GradientBoostingClassifier

– sklearn.gaussian_process.GaussianProcessClassifier (setting multi_class =
“one_vs_rest”)
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– sklearn.svm.LinearSVC (setting multi_class=”ovr”)

– sklearn.linear_model.LogisticRegression (setting multi_class=”ovr”)

– sklearn.linear_model.LogisticRegressionCV (setting multi_class=”ovr”)

– sklearn.linear_model.SGDClassifier

– sklearn.linear_model.Perceptron

– sklearn.linear_model.PassiveAggressiveClassifier

• Support multilabel:

– sklearn.tree.DecisionTreeClassifier

– sklearn.tree.ExtraTreeClassifier

– sklearn.ensemble.ExtraTreesClassifier

– sklearn.neighbors.KNeighborsClassifier

– sklearn.neural_network.MLPClassifier

– sklearn.neighbors.RadiusNeighborsClassifier

– sklearn.ensemble.RandomForestClassifier

– sklearn.linear_model.RidgeClassifierCV

• Support multiclass-multioutput:

– sklearn.tree.DecisionTreeClassifier

– sklearn.tree.ExtraTreeClassifier

– sklearn.ensemble.ExtraTreesClassifier

– sklearn.neighbors.KNeighborsClassifier

– sklearn.neighbors.RadiusNeighborsClassifier

– sklearn.ensemble.RandomForestClassifier

Warning: At present, no metric in sklearn.metrics supports the multioutput-multiclass classification task.

Multilabel classification format

In multilabel learning, the joint set of binary classification tasks is expressed with label binary indicator array: each
sample is one row of a 2d array of shape (n_samples, n_classes) with binary values: the one, i.e. the non zero elements,
corresponds to the subset of labels. An array such as np.array([[1, 0, 0], [0, 1, 1], [0, 0, 0]])
represents label 0 in the first sample, labels 1 and 2 in the second sample, and no labels in the third sample.

Producing multilabel data as a list of sets of labels may be more intuitive. The MultiLabelBinarizer transformer
can be used to convert between a collection of collections of labels and the indicator format.

>>> from sklearn.preprocessing import MultiLabelBinarizer
>>> y = [[2, 3, 4], [2], [0, 1, 3], [0, 1, 2, 3, 4], [0, 1, 2]]
>>> MultiLabelBinarizer().fit_transform(y)
array([[0, 0, 1, 1, 1],

[0, 0, 1, 0, 0],
[1, 1, 0, 1, 0],
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[1, 1, 1, 1, 1],
[1, 1, 1, 0, 0]])

One-Vs-The-Rest

This strategy, also known as one-vs-all, is implemented in OneVsRestClassifier. The strategy consists in
fitting one classifier per class. For each classifier, the class is fitted against all the other classes. In addition to its
computational efficiency (only n_classes classifiers are needed), one advantage of this approach is its interpretability.
Since each class is represented by one and only one classifier, it is possible to gain knowledge about the class by
inspecting its corresponding classifier. This is the most commonly used strategy and is a fair default choice.

Multiclass learning

Below is an example of multiclass learning using OvR:

>>> from sklearn import datasets
>>> from sklearn.multiclass import OneVsRestClassifier
>>> from sklearn.svm import LinearSVC
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> OneVsRestClassifier(LinearSVC(random_state=0)).fit(X, y).predict(X)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

Multilabel learning

OneVsRestClassifier also supports multilabel classification. To use this feature, feed the classifier an indicator
matrix, in which cell [i, j] indicates the presence of label j in sample i.

Examples:

• Multilabel classification

One-Vs-One

OneVsOneClassifier constructs one classifier per pair of classes. At prediction time, the class which received
the most votes is selected. In the event of a tie (among two classes with an equal number of votes), it selects the class
with the highest aggregate classification confidence by summing over the pair-wise classification confidence levels
computed by the underlying binary classifiers.

Since it requires to fit n_classes * (n_classes - 1) / 2 classifiers, this method is usually slower than
one-vs-the-rest, due to its O(n_classes^2) complexity. However, this method may be advantageous for algorithms
such as kernel algorithms which don’t scale well with n_samples. This is because each individual learning problem
only involves a small subset of the data whereas, with one-vs-the-rest, the complete dataset is used n_classes times.
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Multiclass learning

Below is an example of multiclass learning using OvO:

>>> from sklearn import datasets
>>> from sklearn.multiclass import OneVsOneClassifier
>>> from sklearn.svm import LinearSVC
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> OneVsOneClassifier(LinearSVC(random_state=0)).fit(X, y).predict(X)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

References:

• “Pattern Recognition and Machine Learning. Springer”, Christopher M. Bishop, page 183, (First Edition)
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Error-Correcting Output-Codes

Output-code based strategies are fairly different from one-vs-the-rest and one-vs-one. With these strategies, each class
is represented in a Euclidean space, where each dimension can only be 0 or 1. Another way to put it is that each class
is represented by a binary code (an array of 0 and 1). The matrix which keeps track of the location/code of each class
is called the code book. The code size is the dimensionality of the aforementioned space. Intuitively, each class should
be represented by a code as unique as possible and a good code book should be designed to optimize classification
accuracy. In this implementation, we simply use a randomly-generated code book as advocated in3 although more
elaborate methods may be added in the future.

At fitting time, one binary classifier per bit in the code book is fitted. At prediction time, the classifiers are used to
project new points in the class space and the class closest to the points is chosen.

In OutputCodeClassifier, the code_size attribute allows the user to control the number of classifiers which
will be used. It is a percentage of the total number of classes.

A number between 0 and 1 will require fewer classifiers than one-vs-the-rest. In theory, log2(n_classes) /
n_classes is sufficient to represent each class unambiguously. However, in practice, it may not lead to good
accuracy since log2(n_classes) is much smaller than n_classes.

A number greater than 1 will require more classifiers than one-vs-the-rest. In this case, some classifiers will in theory
correct for the mistakes made by other classifiers, hence the name “error-correcting”. In practice, however, this may
not happen as classifier mistakes will typically be correlated. The error-correcting output codes have a similar effect
to bagging.

Multiclass learning

Below is an example of multiclass learning using Output-Codes:

>>> from sklearn import datasets
>>> from sklearn.multiclass import OutputCodeClassifier
>>> from sklearn.svm import LinearSVC
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> clf = OutputCodeClassifier(LinearSVC(random_state=0),
... code_size=2, random_state=0)
>>> clf.fit(X, y).predict(X)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

References:

• “Solving multiclass learning problems via error-correcting output codes”, Dietterich T., Bakiri G., Journal of
Artificial Intelligence Research 2, 1995.

• “The Elements of Statistical Learning”, Hastie T., Tibshirani R., Friedman J., page 606 (second-edition) 2008.

3 “The error coding method and PICTs”, James G., Hastie T., Journal of Computational and Graphical statistics 7, 1998.
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Multioutput regression

Multioutput regression support can be added to any regressor with MultiOutputRegressor. This strategy con-
sists of fitting one regressor per target. Since each target is represented by exactly one regressor it is possible to
gain knowledge about the target by inspecting its corresponding regressor. As MultiOutputRegressor fits one
regressor per target it can not take advantage of correlations between targets.

Below is an example of multioutput regression:

>>> from sklearn.datasets import make_regression
>>> from sklearn.multioutput import MultiOutputRegressor
>>> from sklearn.ensemble import GradientBoostingRegressor
>>> X, y = make_regression(n_samples=10, n_targets=3, random_state=1)
>>> MultiOutputRegressor(GradientBoostingRegressor(random_state=0)).fit(X, y).
→˓predict(X)
array([[-154.75474165, -147.03498585, -50.03812219],

[ 7.12165031, 5.12914884, -81.46081961],
[-187.8948621 , -100.44373091, 13.88978285],
[-141.62745778, 95.02891072, -191.48204257],
[ 97.03260883, 165.34867495, 139.52003279],
[ 123.92529176, 21.25719016, -7.84253 ],
[-122.25193977, -85.16443186, -107.12274212],
[ -30.170388 , -94.80956739, 12.16979946],
[ 140.72667194, 176.50941682, -17.50447799],
[ 149.37967282, -81.15699552, -5.72850319]])

Multioutput classification

Multioutput classification support can be added to any classifier with MultiOutputClassifier. This strategy
consists of fitting one classifier per target. This allows multiple target variable classifications. The purpose of this class
is to extend estimators to be able to estimate a series of target functions (f1,f2,f3. . . ,fn) that are trained on a single X
predictor matrix to predict a series of responses (y1,y2,y3. . . ,yn).

Below is an example of multioutput classification:

>>> from sklearn.datasets import make_classification
>>> from sklearn.multioutput import MultiOutputClassifier
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.utils import shuffle
>>> import numpy as np
>>> X, y1 = make_classification(n_samples=10, n_features=100, n_informative=30, n_
→˓classes=3, random_state=1)
>>> y2 = shuffle(y1, random_state=1)
>>> y3 = shuffle(y1, random_state=2)
>>> Y = np.vstack((y1, y2, y3)).T
>>> n_samples, n_features = X.shape # 10,100
>>> n_outputs = Y.shape[1] # 3
>>> n_classes = 3
>>> forest = RandomForestClassifier(n_estimators=100, random_state=1)
>>> multi_target_forest = MultiOutputClassifier(forest, n_jobs=-1)
>>> multi_target_forest.fit(X, Y).predict(X)
array([[2, 2, 0],

[1, 2, 1],
[2, 1, 0],
[0, 0, 2],
[0, 2, 1],
[0, 0, 2],
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[1, 1, 0],
[1, 1, 1],
[0, 0, 2],
[2, 0, 0]])

Classifier Chain

Classifier chains (see ClassifierChain) are a way of combining a number of binary classifiers into a single
multi-label model that is capable of exploiting correlations among targets.

For a multi-label classification problem with N classes, N binary classifiers are assigned an integer between 0 and N-1.
These integers define the order of models in the chain. Each classifier is then fit on the available training data plus the
true labels of the classes whose models were assigned a lower number.

When predicting, the true labels will not be available. Instead the predictions of each model are passed on to the
subsequent models in the chain to be used as features.

Clearly the order of the chain is important. The first model in the chain has no information about the other labels while
the last model in the chain has features indicating the presence of all of the other labels. In general one does not know
the optimal ordering of the models in the chain so typically many randomly ordered chains are fit and their predictions
are averaged together.

References:

Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank, “Classifier Chains for Multi-label Classifica-
tion”, 2009.

3.1.13 Feature selection

The classes in the sklearn.feature_selection module can be used for feature selection/dimensionality re-
duction on sample sets, either to improve estimators’ accuracy scores or to boost their performance on very high-
dimensional datasets.

Removing features with low variance

VarianceThreshold is a simple baseline approach to feature selection. It removes all features whose variance
doesn’t meet some threshold. By default, it removes all zero-variance features, i.e. features that have the same value
in all samples.

As an example, suppose that we have a dataset with boolean features, and we want to remove all features that are
either one or zero (on or off) in more than 80% of the samples. Boolean features are Bernoulli random variables, and
the variance of such variables is given by

Var[𝑋] = 𝑝(1− 𝑝)

so we can select using the threshold .8 * (1 - .8):

>>> from sklearn.feature_selection import VarianceThreshold
>>> X = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [0, 1, 0], [0, 1, 1]]
>>> sel = VarianceThreshold(threshold=(.8 * (1 - .8)))
>>> sel.fit_transform(X)
array([[0, 1],
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[1, 0],
[0, 0],
[1, 1],
[1, 0],
[1, 1]])

As expected, VarianceThreshold has removed the first column, which has a probability 𝑝 = 5/6 > .8 of
containing a zero.

Univariate feature selection

Univariate feature selection works by selecting the best features based on univariate statistical tests. It can be seen
as a preprocessing step to an estimator. Scikit-learn exposes feature selection routines as objects that implement the
transform method:

• SelectKBest removes all but the 𝑘 highest scoring features

• SelectPercentile removes all but a user-specified highest scoring percentage of features

• using common univariate statistical tests for each feature: false positive rate SelectFpr, false discovery rate
SelectFdr, or family wise error SelectFwe.

• GenericUnivariateSelect allows to perform univariate feature selection with a configurable strategy.
This allows to select the best univariate selection strategy with hyper-parameter search estimator.

For instance, we can perform a 𝜒2 test to the samples to retrieve only the two best features as follows:

>>> from sklearn.datasets import load_iris
>>> from sklearn.feature_selection import SelectKBest
>>> from sklearn.feature_selection import chi2
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X.shape
(150, 4)
>>> X_new = SelectKBest(chi2, k=2).fit_transform(X, y)
>>> X_new.shape
(150, 2)

These objects take as input a scoring function that returns univariate scores and p-values (or only scores for
SelectKBest and SelectPercentile):

• For regression: f_regression, mutual_info_regression

• For classification: chi2, f_classif, mutual_info_classif

The methods based on F-test estimate the degree of linear dependency between two random variables. On the other
hand, mutual information methods can capture any kind of statistical dependency, but being nonparametric, they
require more samples for accurate estimation.

Feature selection with sparse data

If you use sparse data (i.e. data represented as sparse matrices), chi2, mutual_info_regression,
mutual_info_classif will deal with the data without making it dense.

3.1. Supervised learning 263



scikit-learn user guide, Release 0.19.1

Warning: Beware not to use a regression scoring function with a classification problem, you will get useless
results.

Examples:

• Univariate Feature Selection

• Comparison of F-test and mutual information

Recursive feature elimination

Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model), recursive feature
elimination (RFE) is to select features by recursively considering smaller and smaller sets of features. First, the
estimator is trained on the initial set of features and the importance of each feature is obtained either through a coef_
attribute or through a feature_importances_ attribute. Then, the least important features are pruned from
current set of features.That procedure is recursively repeated on the pruned set until the desired number of features to
select is eventually reached.

RFECV performs RFE in a cross-validation loop to find the optimal number of features.

Examples:

• Recursive feature elimination: A recursive feature elimination example showing the relevance of pixels in a
digit classification task.

• Recursive feature elimination with cross-validation: A recursive feature elimination example with automatic
tuning of the number of features selected with cross-validation.

Feature selection using SelectFromModel

SelectFromModel is a meta-transformer that can be used along with any estimator that has a coef_ or
feature_importances_ attribute after fitting. The features are considered unimportant and removed, if the
corresponding coef_ or feature_importances_ values are below the provided threshold parameter. Apart
from specifying the threshold numerically, there are built-in heuristics for finding a threshold using a string argument.
Available heuristics are “mean”, “median” and float multiples of these like “0.1*mean”.

For examples on how it is to be used refer to the sections below.

Examples

• Feature selection using SelectFromModel and LassoCV: Selecting the two most important features from the
Boston dataset without knowing the threshold beforehand.

L1-based feature selection

Linear models penalized with the L1 norm have sparse solutions: many of their estimated coefficients are zero.
When the goal is to reduce the dimensionality of the data to use with another classifier, they can be used along
with feature_selection.SelectFromModel to select the non-zero coefficients. In particular, sparse
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estimators useful for this purpose are the linear_model.Lasso for regression, and of linear_model.
LogisticRegression and svm.LinearSVC for classification:

>>> from sklearn.svm import LinearSVC
>>> from sklearn.datasets import load_iris
>>> from sklearn.feature_selection import SelectFromModel
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X.shape
(150, 4)
>>> lsvc = LinearSVC(C=0.01, penalty="l1", dual=False).fit(X, y)
>>> model = SelectFromModel(lsvc, prefit=True)
>>> X_new = model.transform(X)
>>> X_new.shape
(150, 3)

With SVMs and logistic-regression, the parameter C controls the sparsity: the smaller C the fewer features selected.
With Lasso, the higher the alpha parameter, the fewer features selected.

Examples:

• Classification of text documents using sparse features: Comparison of different algorithms for document
classification including L1-based feature selection.

L1-recovery and compressive sensing

For a good choice of alpha, the Lasso can fully recover the exact set of non-zero variables using only few obser-
vations, provided certain specific conditions are met. In particular, the number of samples should be “sufficiently
large”, or L1 models will perform at random, where “sufficiently large” depends on the number of non-zero co-
efficients, the logarithm of the number of features, the amount of noise, the smallest absolute value of non-zero
coefficients, and the structure of the design matrix X. In addition, the design matrix must display certain specific
properties, such as not being too correlated.

There is no general rule to select an alpha parameter for recovery of non-zero coefficients. It can by set by cross-
validation (LassoCV or LassoLarsCV), though this may lead to under-penalized models: including a small
number of non-relevant variables is not detrimental to prediction score. BIC (LassoLarsIC) tends, on the oppo-
site, to set high values of alpha.

Reference Richard G. Baraniuk “Compressive Sensing”, IEEE Signal Processing Magazine [120] July 2007 http:
//dsp.rice.edu/sites/dsp.rice.edu/files/cs/baraniukCSlecture07.pdf

Tree-based feature selection

Tree-based estimators (see the sklearn.tree module and forest of trees in the sklearn.ensemble module)
can be used to compute feature importances, which in turn can be used to discard irrelevant features (when coupled
with the sklearn.feature_selection.SelectFromModel meta-transformer):

>>> from sklearn.ensemble import ExtraTreesClassifier
>>> from sklearn.datasets import load_iris
>>> from sklearn.feature_selection import SelectFromModel
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X.shape
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(150, 4)
>>> clf = ExtraTreesClassifier()
>>> clf = clf.fit(X, y)
>>> clf.feature_importances_
array([ 0.04..., 0.05..., 0.4..., 0.4...])
>>> model = SelectFromModel(clf, prefit=True)
>>> X_new = model.transform(X)
>>> X_new.shape
(150, 2)

Examples:

• Feature importances with forests of trees: example on synthetic data showing the recovery of the actually
meaningful features.

• Pixel importances with a parallel forest of trees: example on face recognition data.

Feature selection as part of a pipeline

Feature selection is usually used as a pre-processing step before doing the actual learning. The recommended way to
do this in scikit-learn is to use a sklearn.pipeline.Pipeline:

clf = Pipeline([
('feature_selection', SelectFromModel(LinearSVC(penalty="l1"))),
('classification', RandomForestClassifier())

])
clf.fit(X, y)

In this snippet we make use of a sklearn.svm.LinearSVC coupled with sklearn.feature_selection.
SelectFromModel to evaluate feature importances and select the most relevant features. Then, a sklearn.
ensemble.RandomForestClassifier is trained on the transformed output, i.e. using only relevant features.
You can perform similar operations with the other feature selection methods and also classifiers that provide a way to
evaluate feature importances of course. See the sklearn.pipeline.Pipeline examples for more details.

3.1.14 Semi-Supervised

Semi-supervised learning is a situation in which in your training data some of the samples are not labeled. The semi-
supervised estimators in sklearn.semi_supervised are able to make use of this additional unlabeled data to
better capture the shape of the underlying data distribution and generalize better to new samples. These algorithms
can perform well when we have a very small amount of labeled points and a large amount of unlabeled points.

Unlabeled entries in y

It is important to assign an identifier to unlabeled points along with the labeled data when training the model with
the fit method. The identifier that this implementation uses is the integer value −1.

Label Propagation

Label propagation denotes a few variations of semi-supervised graph inference algorithms.

266 Chapter 3. User Guide

https://en.wikipedia.org/wiki/Semi-supervised_learning


scikit-learn user guide, Release 0.19.1

A few features available in this model:

• Can be used for classification and regression tasks

• Kernel methods to project data into alternate dimensional spaces

scikit-learn provides two label propagation models: LabelPropagation and LabelSpreading. Both work by
constructing a similarity graph over all items in the input dataset.

Fig. 3.1: An illustration of label-propagation: the structure of unlabeled observations is consistent with the class
structure, and thus the class label can be propagated to the unlabeled observations of the training set.

LabelPropagation and LabelSpreading differ in modifications to the similarity matrix that graph and the
clamping effect on the label distributions. Clamping allows the algorithm to change the weight of the true ground
labeled data to some degree. The LabelPropagation algorithm performs hard clamping of input labels, which
means 𝛼 = 0. This clamping factor can be relaxed, to say 𝛼 = 0.2, which means that we will always retain 80 percent
of our original label distribution, but the algorithm gets to change its confidence of the distribution within 20 percent.

LabelPropagation uses the raw similarity matrix constructed from the data with no modifications. In contrast,
LabelSpreading minimizes a loss function that has regularization properties, as such it is often more robust to
noise. The algorithm iterates on a modified version of the original graph and normalizes the edge weights by computing
the normalized graph Laplacian matrix. This procedure is also used in Spectral clustering.

Label propagation models have two built-in kernel methods. Choice of kernel effects both scalability and performance
of the algorithms. The following are available:

• rbf (exp(−𝛾|𝑥− 𝑦|2), 𝛾 > 0). 𝛾 is specified by keyword gamma.

• knn (1[𝑥′ ∈ 𝑘𝑁𝑁(𝑥)]). 𝑘 is specified by keyword n_neighbors.

The RBF kernel will produce a fully connected graph which is represented in memory by a dense matrix. This matrix
may be very large and combined with the cost of performing a full matrix multiplication calculation for each iteration
of the algorithm can lead to prohibitively long running times. On the other hand, the KNN kernel will produce a much
more memory-friendly sparse matrix which can drastically reduce running times.

Examples

• Decision boundary of label propagation versus SVM on the Iris dataset

• Label Propagation learning a complex structure

• Label Propagation digits active learning
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References

[1] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised Learning (2006), pp. 193-216

[2] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient Non-Parametric Function Induction in Semi-
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3.1.15 Isotonic regression

The class IsotonicRegression fits a non-decreasing function to data. It solves the following problem:

minimize
∑︀

𝑖 𝑤𝑖(𝑦𝑖 − 𝑦𝑖)2

subject to 𝑦𝑚𝑖𝑛 = 𝑦1 ≤ 𝑦2... ≤ 𝑦𝑛 = 𝑦𝑚𝑎𝑥

where each 𝑤𝑖 is strictly positive and each 𝑦𝑖 is an arbitrary real number. It yields the vector which is composed of
non-decreasing elements the closest in terms of mean squared error. In practice this list of elements forms a function
that is piecewise linear.
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3.1.16 Probability calibration

When performing classification you often want not only to predict the class label, but also obtain a probability of the
respective label. This probability gives you some kind of confidence on the prediction. Some models can give you
poor estimates of the class probabilities and some even do not support probability prediction. The calibration module
allows you to better calibrate the probabilities of a given model, or to add support for probability prediction.

Well calibrated classifiers are probabilistic classifiers for which the output of the predict_proba method can be directly
interpreted as a confidence level. For instance, a well calibrated (binary) classifier should classify the samples such
that among the samples to which it gave a predict_proba value close to 0.8, approximately 80% actually belong to the
positive class. The following plot compares how well the probabilistic predictions of different classifiers are calibrated:

LogisticRegression returns well calibrated predictions by default as it directly optimizes log-loss. In contrast,
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the other methods return biased probabilities; with different biases per method:

• GaussianNB tends to push probabilties to 0 or 1 (note the counts in the histograms). This is mainly because
it makes the assumption that features are conditionally independent given the class, which is not the case in this
dataset which contains 2 redundant features.

• RandomForestClassifier shows the opposite behavior: the histograms show peaks at approximately
0.2 and 0.9 probability, while probabilities close to 0 or 1 are very rare. An explanation for this is given by
Niculescu-Mizil and Caruana4: “Methods such as bagging and random forests that average predictions from a
base set of models can have difficulty making predictions near 0 and 1 because variance in the underlying base
models will bias predictions that should be near zero or one away from these values. Because predictions are
restricted to the interval [0,1], errors caused by variance tend to be one-sided near zero and one. For example,
if a model should predict p = 0 for a case, the only way bagging can achieve this is if all bagged trees predict
zero. If we add noise to the trees that bagging is averaging over, this noise will cause some trees to predict
values larger than 0 for this case, thus moving the average prediction of the bagged ensemble away from 0. We
observe this effect most strongly with random forests because the base-level trees trained with random forests
have relatively high variance due to feature subsetting.” As a result, the calibration curve also referred to as the
reliability diagram (Wilks 19955) shows a characteristic sigmoid shape, indicating that the classifier could trust
its “intuition” more and return probabilties closer to 0 or 1 typically.

• Linear Support Vector Classification (LinearSVC) shows an even more sigmoid curve as the RandomForest-
Classifier, which is typical for maximum-margin methods (compare Niculescu-Mizil and Caruana4), which
focus on hard samples that are close to the decision boundary (the support vectors).

Two approaches for performing calibration of probabilistic predictions are provided: a parametric approach based on
Platt’s sigmoid model and a non-parametric approach based on isotonic regression (sklearn.isotonic). Proba-
bility calibration should be done on new data not used for model fitting. The class CalibratedClassifierCV
uses a cross-validation generator and estimates for each split the model parameter on the train samples and the cali-
bration of the test samples. The probabilities predicted for the folds are then averaged. Already fitted classifiers can
be calibrated by CalibratedClassifierCV via the parameter cv=”prefit”. In this case, the user has to take care
manually that data for model fitting and calibration are disjoint.

The following images demonstrate the benefit of probability calibration. The first image present a dataset with 2
classes and 3 blobs of data. The blob in the middle contains random samples of each class. The probability for the
samples in this blob should be 0.5.

The following image shows on the data above the estimated probability using a Gaussian naive Bayes classifier without
calibration, with a sigmoid calibration and with a non-parametric isotonic calibration. One can observe that the non-
parametric model provides the most accurate probability estimates for samples in the middle, i.e., 0.5.

The following experiment is performed on an artificial dataset for binary classification with 100.000 samples (1.000
of them are used for model fitting) with 20 features. Of the 20 features, only 2 are informative and 10 are redundant.
The figure shows the estimated probabilities obtained with logistic regression, a linear support-vector classifier (SVC),
and linear SVC with both isotonic calibration and sigmoid calibration. The calibration performance is evaluated with
Brier score brier_score_loss, reported in the legend (the smaller the better).

One can observe here that logistic regression is well calibrated as its curve is nearly diagonal. Linear SVC’s calibration
curve or reliability diagram has a sigmoid curve, which is typical for an under-confident classifier. In the case of
LinearSVC, this is caused by the margin property of the hinge loss, which lets the model focus on hard samples that
are close to the decision boundary (the support vectors). Both kinds of calibration can fix this issue and yield nearly
identical results. The next figure shows the calibration curve of Gaussian naive Bayes on the same data, with both
kinds of calibration and also without calibration.

One can see that Gaussian naive Bayes performs very badly but does so in an other way than linear SVC: While linear
SVC exhibited a sigmoid calibration curve, Gaussian naive Bayes’ calibration curve has a transposed-sigmoid shape.

4 Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005
5 On the combination of forecast probabilities for consecutive precipitation periods. Wea. Forecasting, 5, 640–650., Wilks, D. S., 1990a
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This is typical for an over-confident classifier. In this case, the classifier’s overconfidence is caused by the redundant
features which violate the naive Bayes assumption of feature-independence.

Calibration of the probabilities of Gaussian naive Bayes with isotonic regression can fix this issue as can be seen from
the nearly diagonal calibration curve. Sigmoid calibration also improves the brier score slightly, albeit not as strongly
as the non-parametric isotonic calibration. This is an intrinsic limitation of sigmoid calibration, whose parametric form
assumes a sigmoid rather than a transposed-sigmoid curve. The non-parametric isotonic calibration model, however,
makes no such strong assumptions and can deal with either shape, provided that there is sufficient calibration data. In
general, sigmoid calibration is preferable in cases where the calibration curve is sigmoid and where there is limited
calibration data, while isotonic calibration is preferable for non-sigmoid calibration curves and in situations where
large amounts of data are available for calibration.

CalibratedClassifierCV can also deal with classification tasks that involve more than two classes if the base
estimator can do so. In this case, the classifier is calibrated first for each class separately in an one-vs-rest fashion.
When predicting probabilities for unseen data, the calibrated probabilities for each class are predicted separately. As
those probabilities do not necessarily sum to one, a postprocessing is performed to normalize them.

The next image illustrates how sigmoid calibration changes predicted probabilities for a 3-class classification problem.
Illustrated is the standard 2-simplex, where the three corners correspond to the three classes. Arrows point from the
probability vectors predicted by an uncalibrated classifier to the probability vectors predicted by the same classifier
after sigmoid calibration on a hold-out validation set. Colors indicate the true class of an instance (red: class 1, green:
class 2, blue: class 3).

The base classifier is a random forest classifier with 25 base estimators (trees). If this classifier is trained on all 800
training datapoints, it is overly confident in its predictions and thus incurs a large log-loss. Calibrating an identical
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classifier, which was trained on 600 datapoints, with method=’sigmoid’ on the remaining 200 datapoints reduces the
confidence of the predictions, i.e., moves the probability vectors from the edges of the simplex towards the center:

This calibration results in a lower log-loss. Note that an alternative would have been to increase the number of base
estimators which would have resulted in a similar decrease in log-loss.

References:

• Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, B. Zadrozny &
C. Elkan, ICML 2001

• Transforming Classifier Scores into Accurate Multiclass Probability Estimates, B. Zadrozny & C. Elkan,
(KDD 2002)

• Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, J.
Platt, (1999)
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3.1.17 Neural network models (supervised)

Warning: This implementation is not intended for large-scale applications. In particular, scikit-learn offers no
GPU support. For much faster, GPU-based implementations, as well as frameworks offering much more flexibility
to build deep learning architectures, see Related Projects.

Multi-layer Perceptron

Multi-layer Perceptron (MLP) is a supervised learning algorithm that learns a function 𝑓(·) : 𝑅𝑚 → 𝑅𝑜 by training
on a dataset, where 𝑚 is the number of dimensions for input and 𝑜 is the number of dimensions for output. Given a set
of features 𝑋 = 𝑥1, 𝑥2, ..., 𝑥𝑚 and a target 𝑦, it can learn a non-linear function approximator for either classification
or regression. It is different from logistic regression, in that between the input and the output layer, there can be one
or more non-linear layers, called hidden layers. Figure 1 shows a one hidden layer MLP with scalar output.

Fig. 3.2: Figure 1 : One hidden layer MLP.

The leftmost layer, known as the input layer, consists of a set of neurons {𝑥𝑖|𝑥1, 𝑥2, ..., 𝑥𝑚} representing the input
features. Each neuron in the hidden layer transforms the values from the previous layer with a weighted linear sum-
mation 𝑤1𝑥1 + 𝑤2𝑥2 + ...+ 𝑤𝑚𝑥𝑚, followed by a non-linear activation function 𝑔(·) : 𝑅→ 𝑅 - like the hyperbolic
tan function. The output layer receives the values from the last hidden layer and transforms them into output values.

The module contains the public attributes coefs_ and intercepts_. coefs_ is a list of weight matrices, where
weight matrix at index 𝑖 represents the weights between layer 𝑖 and layer 𝑖+1. intercepts_ is a list of bias vectors,
where the vector at index 𝑖 represents the bias values added to layer 𝑖+ 1.

The advantages of Multi-layer Perceptron are:

• Capability to learn non-linear models.

• Capability to learn models in real-time (on-line learning) using partial_fit.

The disadvantages of Multi-layer Perceptron (MLP) include:

• MLP with hidden layers have a non-convex loss function where there exists more than one local minimum.
Therefore different random weight initializations can lead to different validation accuracy.

• MLP requires tuning a number of hyperparameters such as the number of hidden neurons, layers, and iterations.

• MLP is sensitive to feature scaling.
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Please see Tips on Practical Use section that addresses some of these disadvantages.

Classification

Class MLPClassifier implements a multi-layer perceptron (MLP) algorithm that trains using Backpropagation.

MLP trains on two arrays: array X of size (n_samples, n_features), which holds the training samples represented as
floating point feature vectors; and array y of size (n_samples,), which holds the target values (class labels) for the
training samples:

>>> from sklearn.neural_network import MLPClassifier
>>> X = [[0., 0.], [1., 1.]]
>>> y = [0, 1]
>>> clf = MLPClassifier(solver='lbfgs', alpha=1e-5,
... hidden_layer_sizes=(5, 2), random_state=1)
...
>>> clf.fit(X, y)
MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto',

beta_1=0.9, beta_2=0.999, early_stopping=False,
epsilon=1e-08, hidden_layer_sizes=(5, 2), learning_rate='constant',
learning_rate_init=0.001, max_iter=200, momentum=0.9,
nesterovs_momentum=True, power_t=0.5, random_state=1, shuffle=True,
solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False,
warm_start=False)

After fitting (training), the model can predict labels for new samples:

>>> clf.predict([[2., 2.], [-1., -2.]])
array([1, 0])

MLP can fit a non-linear model to the training data. clf.coefs_ contains the weight matrices that constitute the
model parameters:

>>> [coef.shape for coef in clf.coefs_]
[(2, 5), (5, 2), (2, 1)]

Currently, MLPClassifier supports only the Cross-Entropy loss function, which allows probability estimates by
running the predict_proba method.

MLP trains using Backpropagation. More precisely, it trains using some form of gradient descent and the gradients
are calculated using Backpropagation. For classification, it minimizes the Cross-Entropy loss function, giving a vector
of probability estimates 𝑃 (𝑦|𝑥) per sample 𝑥:

>>> clf.predict_proba([[2., 2.], [1., 2.]])
array([[ 1.967...e-04, 9.998...-01],

[ 1.967...e-04, 9.998...-01]])

MLPClassifier supports multi-class classification by applying Softmax as the output function.

Further, the model supports multi-label classification in which a sample can belong to more than one class. For each
class, the raw output passes through the logistic function. Values larger or equal to 0.5 are rounded to 1, otherwise to
0. For a predicted output of a sample, the indices where the value is 1 represents the assigned classes of that sample:

>>> X = [[0., 0.], [1., 1.]]
>>> y = [[0, 1], [1, 1]]
>>> clf = MLPClassifier(solver='lbfgs', alpha=1e-5,
... hidden_layer_sizes=(15,), random_state=1)
...
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>>> clf.fit(X, y)
MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto',

beta_1=0.9, beta_2=0.999, early_stopping=False,
epsilon=1e-08, hidden_layer_sizes=(15,), learning_rate='constant',
learning_rate_init=0.001, max_iter=200, momentum=0.9,
nesterovs_momentum=True, power_t=0.5, random_state=1, shuffle=True,
solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False,
warm_start=False)

>>> clf.predict([[1., 2.]])
array([[1, 1]])
>>> clf.predict([[0., 0.]])
array([[0, 1]])

See the examples below and the doc string of MLPClassifier.fit for further information.

Examples:

• Compare Stochastic learning strategies for MLPClassifier

• Visualization of MLP weights on MNIST

Regression

Class MLPRegressor implements a multi-layer perceptron (MLP) that trains using backpropagation with no activa-
tion function in the output layer, which can also be seen as using the identity function as activation function. Therefore,
it uses the square error as the loss function, and the output is a set of continuous values.

MLPRegressor also supports multi-output regression, in which a sample can have more than one target.

Regularization

Both MLPRegressor and MLPClassifier use parameter alpha for regularization (L2 regularization) term
which helps in avoiding overfitting by penalizing weights with large magnitudes. Following plot displays varying
decision function with value of alpha.

See the examples below for further information.

Examples:

• Varying regularization in Multi-layer Perceptron

Algorithms

MLP trains using Stochastic Gradient Descent, Adam, or L-BFGS. Stochastic Gradient Descent (SGD) updates pa-
rameters using the gradient of the loss function with respect to a parameter that needs adaptation, i.e.

𝑤 ← 𝑤 − 𝜂(𝛼
𝜕𝑅(𝑤)

𝜕𝑤
+
𝜕𝐿𝑜𝑠𝑠

𝜕𝑤
)

where 𝜂 is the learning rate which controls the step-size in the parameter space search. 𝐿𝑜𝑠𝑠 is the loss function used
for the network.
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More details can be found in the documentation of SGD

Adam is similar to SGD in a sense that it is a stochastic optimizer, but it can automatically adjust the amount to update
parameters based on adaptive estimates of lower-order moments.

With SGD or Adam, training supports online and mini-batch learning.

L-BFGS is a solver that approximates the Hessian matrix which represents the second-order partial derivative of a
function. Further it approximates the inverse of the Hessian matrix to perform parameter updates. The implementation
uses the Scipy version of L-BFGS.

If the selected solver is ‘L-BFGS’, training does not support online nor mini-batch learning.

Complexity

Suppose there are 𝑛 training samples, 𝑚 features, 𝑘 hidden layers, each containing ℎ neurons - for simplicity, and 𝑜
output neurons. The time complexity of backpropagation is 𝑂(𝑛 ·𝑚 · ℎ𝑘 · 𝑜 · 𝑖), where 𝑖 is the number of iterations.
Since backpropagation has a high time complexity, it is advisable to start with smaller number of hidden neurons and
few hidden layers for training.

Mathematical formulation

Given a set of training examples (𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛) where 𝑥𝑖 ∈ R𝑛 and 𝑦𝑖 ∈ {0, 1}, a one hidden layer
one hidden neuron MLP learns the function 𝑓(𝑥) = 𝑊2𝑔(𝑊𝑇

1 𝑥+ 𝑏1) + 𝑏2 where 𝑊1 ∈ R𝑚 and 𝑊2, 𝑏1, 𝑏2 ∈ R are
model parameters. 𝑊1,𝑊2 represent the weights of the input layer and hidden layer, resepctively; and 𝑏1, 𝑏2 represent
the bias added to the hidden layer and the output layer, respectively. 𝑔(·) : 𝑅 → 𝑅 is the activation function, set by
default as the hyperbolic tan. It is given as,

𝑔(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧

For binary classification, 𝑓(𝑥) passes through the logistic function 𝑔(𝑧) = 1/(1+𝑒−𝑧) to obtain output values between
zero and one. A threshold, set to 0.5, would assign samples of outputs larger or equal 0.5 to the positive class, and the
rest to the negative class.
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If there are more than two classes, 𝑓(𝑥) itself would be a vector of size (n_classes,). Instead of passing through logistic
function, it passes through the softmax function, which is written as,

softmax(𝑧)𝑖 =
exp(𝑧𝑖)∑︀𝑘
𝑙=1 exp(𝑧𝑙)

where 𝑧𝑖 represents the 𝑖 th element of the input to softmax, which corresponds to class 𝑖, and 𝐾 is the number of
classes. The result is a vector containing the probabilities that sample 𝑥 belong to each class. The output is the class
with the highest probability.

In regression, the output remains as 𝑓(𝑥); therefore, output activation function is just the identity function.

MLP uses different loss functions depending on the problem type. The loss function for classification is Cross-Entropy,
which in binary case is given as,

𝐿𝑜𝑠𝑠(𝑦, 𝑦,𝑊 ) = −𝑦 ln 𝑦 − (1− 𝑦) ln (1− 𝑦) + 𝛼||𝑊 ||22

where 𝛼||𝑊 ||22 is an L2-regularization term (aka penalty) that penalizes complex models; and 𝛼 > 0 is a non-negative
hyperparameter that controls the magnitude of the penalty.

For regression, MLP uses the Square Error loss function; written as,

𝐿𝑜𝑠𝑠(𝑦, 𝑦,𝑊 ) =
1

2
||𝑦 − 𝑦||22 +

𝛼

2
||𝑊 ||22

Starting from initial random weights, multi-layer perceptron (MLP) minimizes the loss function by repeatedly updating
these weights. After computing the loss, a backward pass propagates it from the output layer to the previous layers,
providing each weight parameter with an update value meant to decrease the loss.

In gradient descent, the gradient ∇𝐿𝑜𝑠𝑠𝑊 of the loss with respect to the weights is computed and deducted from 𝑊 .
More formally, this is expressed as,

𝑊 𝑖+1 = 𝑊 𝑖 − 𝜖∇𝐿𝑜𝑠𝑠𝑖𝑊

where 𝑖 is the iteration step, and 𝜖 is the learning rate with a value larger than 0.

The algorithm stops when it reaches a preset maximum number of iterations; or when the improvement in loss is below
a certain, small number.

Tips on Practical Use

• Multi-layer Perceptron is sensitive to feature scaling, so it is highly recommended to scale your data. For
example, scale each attribute on the input vector X to [0, 1] or [-1, +1], or standardize it to have mean 0 and
variance 1. Note that you must apply the same scaling to the test set for meaningful results. You can use
StandardScaler for standardization.

>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler()
>>> # Don't cheat - fit only on training data
>>> scaler.fit(X_train)
>>> X_train = scaler.transform(X_train)
>>> # apply same transformation to test data
>>> X_test = scaler.transform(X_test)

An alternative and recommended approach is to use StandardScaler in a Pipeline

• Finding a reasonable regularization parameter 𝛼 is best done using GridSearchCV, usually in the range 10.0
** -np.arange(1, 7).
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• Empirically, we observed that L-BFGS converges faster and with better solutions on small datasets. For relatively
large datasets, however, Adam is very robust. It usually converges quickly and gives pretty good performance.
SGD with momentum or nesterov’s momentum, on the other hand, can perform better than those two algorithms
if learning rate is correctly tuned.

More control with warm_start

If you want more control over stopping criteria or learning rate in SGD, or want to do additional monitoring, using
warm_start=True and max_iter=1 and iterating yourself can be helpful:

>>> X = [[0., 0.], [1., 1.]]
>>> y = [0, 1]
>>> clf = MLPClassifier(hidden_layer_sizes=(15,), random_state=1, max_iter=1, warm_
→˓start=True)
>>> for i in range(10):
... clf.fit(X, y)
... # additional monitoring / inspection
MLPClassifier(...

References:

• “Learning representations by back-propagating errors.” Rumelhart, David E., Geoffrey E. Hinton, and Ronald
J. Williams.

• “Stochastic Gradient Descent” L. Bottou - Website, 2010.

• “Backpropagation” Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, Caroline Suen - Website, 2011.

• “Efficient BackProp” Y. LeCun, L. Bottou, G. Orr, K. Müller - In Neural Networks: Tricks of the Trade 1998.

• “Adam: A method for stochastic optimization.” Kingma, Diederik, and Jimmy Ba. arXiv preprint
arXiv:1412.6980 (2014).

3.2 Unsupervised learning

3.2.1 Gaussian mixture models

sklearn.mixture is a package which enables one to learn Gaussian Mixture Models (diagonal, spherical, tied
and full covariance matrices supported), sample them, and estimate them from data. Facilities to help determine the
appropriate number of components are also provided.

A Gaussian mixture model is a probabilistic model that assumes all the data points are generated from a mixture of a
finite number of Gaussian distributions with unknown parameters. One can think of mixture models as generalizing
k-means clustering to incorporate information about the covariance structure of the data as well as the centers of the
latent Gaussians.

Scikit-learn implements different classes to estimate Gaussian mixture models, that correspond to different estimation
strategies, detailed below.
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Fig. 3.3: Two-component Gaussian mixture model: data points, and equi-probability surfaces of the model.

Gaussian Mixture

The GaussianMixture object implements the expectation-maximization (EM) algorithm for fitting mixture-of-
Gaussian models. It can also draw confidence ellipsoids for multivariate models, and compute the Bayesian Infor-
mation Criterion to assess the number of clusters in the data. A GaussianMixture.fit method is provided that
learns a Gaussian Mixture Model from train data. Given test data, it can assign to each sample the Gaussian it mostly
probably belong to using the GaussianMixture.predict method.

The GaussianMixture comes with different options to constrain the covariance of the difference classes estimated:
spherical, diagonal, tied or full covariance.

Examples:

• See GMM covariances for an example of using the Gaussian mixture as clustering on the iris dataset.

• See Density Estimation for a Gaussian mixture for an example on plotting the density estimation.

Pros and cons of class GaussianMixture

Pros

Speed It is the fastest algorithm for learning mixture models

Agnostic As this algorithm maximizes only the likelihood, it will not bias the means towards zero, or
bias the cluster sizes to have specific structures that might or might not apply.

Cons

Singularities When one has insufficiently many points per mixture, estimating the covariance matrices
becomes difficult, and the algorithm is known to diverge and find solutions with infinite likelihood
unless one regularizes the covariances artificially.
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Number of components This algorithm will always use all the components it has access to, needing
held-out data or information theoretical criteria to decide how many components to use in the ab-
sence of external cues.

Selecting the number of components in a classical Gaussian Mixture Model

The BIC criterion can be used to select the number of components in a Gaussian Mixture in an efficient way. In theory,
it recovers the true number of components only in the asymptotic regime (i.e. if much data is available and assuming
that the data was actually generated i.i.d. from a mixture of Gaussian distribution). Note that using a Variational
Bayesian Gaussian mixture avoids the specification of the number of components for a Gaussian mixture model.

Examples:

• See Gaussian Mixture Model Selection for an example of model selection performed with classical Gaussian
mixture.

Estimation algorithm Expectation-maximization

The main difficulty in learning Gaussian mixture models from unlabeled data is that it is one usually doesn’t know
which points came from which latent component (if one has access to this information it gets very easy to fit a separate
Gaussian distribution to each set of points). Expectation-maximization is a well-founded statistical algorithm to get
around this problem by an iterative process. First one assumes random components (randomly centered on data points,
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learned from k-means, or even just normally distributed around the origin) and computes for each point a probability
of being generated by each component of the model. Then, one tweaks the parameters to maximize the likelihood of
the data given those assignments. Repeating this process is guaranteed to always converge to a local optimum.

Variational Bayesian Gaussian Mixture

The BayesianGaussianMixture object implements a variant of the Gaussian mixture model with variational
inference algorithms. The API is similar as the one defined by GaussianMixture.

Estimation algorithm: variational inference

Variational inference is an extension of expectation-maximization that maximizes a lower bound on model evidence
(including priors) instead of data likelihood. The principle behind variational methods is the same as expectation-
maximization (that is both are iterative algorithms that alternate between finding the probabilities for each point to
be generated by each mixture and fitting the mixture to these assigned points), but variational methods add regular-
ization by integrating information from prior distributions. This avoids the singularities often found in expectation-
maximization solutions but introduces some subtle biases to the model. Inference is often notably slower, but not
usually as much so as to render usage unpractical.

Due to its Bayesian nature, the variational algorithm needs more hyper- parameters than expectation-maximization,
the most important of these being the concentration parameter weight_concentration_prior. Specifying a
low value for the concentration prior will make the model put most of the weight on few components set the remain-
ing components weights very close to zero. High values of the concentration prior will allow a larger number of
components to be active in the mixture.

The parameters implementation of the BayesianGaussianMixture class proposes two types of prior for the
weights distribution: a finite mixture model with Dirichlet distribution and an infinite mixture model with the Dirichlet
Process. In practice Dirichlet Process inference algorithm is approximated and uses a truncated distribution with a fixed
maximum number of components (called the Stick-breaking representation). The number of components actually used
almost always depends on the data.

The next figure compares the results obtained for the different type of the weight concentration prior (parameter
weight_concentration_prior_type) for different values of weight_concentration_prior. Here,
we can see the value of the weight_concentration_prior parameter has a strong impact on the effective
number of active components obtained. We can also notice that large values for the concentration weight prior lead
to more uniform weights when the type of prior is ‘dirichlet_distribution’ while this is not necessarily the case for the
‘dirichlet_process’ type (used by default).
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The examples below compare Gaussian mixture models with a fixed number of components, to the variational Gaus-
sian mixture models with a Dirichlet process prior. Here, a classical Gaussian mixture is fitted with 5 components on
a dataset composed of 2 clusters. We can see that the variational Gaussian mixture with a Dirichlet process prior is
able to limit itself to only 2 components whereas the Gaussian mixture fits the data with a fixed number of components
that has to be set a priori by the user. In this case the user has selected n_components=5 which does not match the
true generative distribution of this toy dataset. Note that with very little observations, the variational Gaussian mixture
models with a Dirichlet process prior can take a conservative stand, and fit only one component.
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On the following figure we are fitting a dataset not well-depicted by a Gaussian mixture. Adjusting the
weight_concentration_prior, parameter of the class:BayesianGaussianMixture controls the number of com-
ponents used to fit this data. We also present on the last two plots a random sampling generated from the two resulting
mixtures.

Examples:

• See Gaussian Mixture Model Ellipsoids for an example on plotting the confidence ellipsoids for both
GaussianMixture and BayesianGaussianMixture.

• Gaussian Mixture Model Sine Curve shows using GaussianMixture and
BayesianGaussianMixture to fit a sine wave.

• See Concentration Prior Type Analysis of Variation Bayesian Gaussian Mixture for an ex-
ample plotting the confidence ellipsoids for the BayesianGaussianMixture with dif-
ferent weight_concentration_prior_type for different values of the parameter
weight_concentration_prior.

Pros and cons of variational inference with BayesianGaussianMixture

Pros

Automatic selection when weight_concentration_prior is small enough and
n_components is larger than what is found necessary by the model, the Variational Bayesian
mixture model has a natural tendency to set some mixture weights values close to zero. This makes
it possible to let the model choose a suitable number of effective components automatically. Only an
upper bound of this number needs to be provided. Note however that the “ideal” number of active
components is very application specific and is typically ill-defined in a data exploration setting.

Less sensitivity to the number of parameters unlike finite models, which will almost always use
all components as much as they can, and hence will produce wildly different solutions for
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different numbers of components, the variantional inference with a Dirichlet process prior
(weight_concentration_prior_type='dirichlet_process') won’t change much
with changes to the parameters, leading to more stability and less tuning.

Regularization due to the incorporation of prior information, variational solutions have less pathological
special cases than expectation-maximization solutions.

Cons

Speed the extra parametrization necessary for variational inference make inference slower, although not
by much.

Hyperparameters this algorithm needs an extra hyperparameter that might need experimental tuning via
cross-validation.

Bias there are many implicit biases in the inference algorithms (and also in the Dirichlet process if used),
and whenever there is a mismatch between these biases and the data it might be possible to fit better
models using a finite mixture.

The Dirichlet Process

Here we describe variational inference algorithms on Dirichlet process mixture. The Dirichlet process is a prior
probability distribution on clusterings with an infinite, unbounded, number of partitions. Variational techniques let us
incorporate this prior structure on Gaussian mixture models at almost no penalty in inference time, comparing with a
finite Gaussian mixture model.

An important question is how can the Dirichlet process use an infinite, unbounded number of clusters and still be
consistent. While a full explanation doesn’t fit this manual, one can think of its stick breaking process analogy to help
understanding it. The stick breaking process is a generative story for the Dirichlet process. We start with a unit-length
stick and in each step we break off a portion of the remaining stick. Each time, we associate the length of the piece of
the stick to the proportion of points that falls into a group of the mixture. At the end, to represent the infinite mixture,
we associate the last remaining piece of the stick to the proportion of points that don’t fall into all the other groups. The
length of each piece is random variable with probability proportional to the concentration parameter. Smaller value of
the concentration will divide the unit-length into larger pieces of the stick (defining more concentrated distribution).
Larger concentration values will create smaller pieces of the stick (increasing the number of components with non
zero weights).

Variational inference techniques for the Dirichlet process still work with a finite approximation to this infinite mixture
model, but instead of having to specify a priori how many components one wants to use, one just specifies the concen-
tration parameter and an upper bound on the number of mixture components (this upper bound, assuming it is higher
than the “true” number of components, affects only algorithmic complexity, not the actual number of components
used).

3.2.2 Manifold learning

Look for the bare necessities
The simple bare necessities
Forget about your worries and your strife
I mean the bare necessities
Old Mother Nature’s recipes
That bring the bare necessities of life

– Baloo’s song [The Jungle Book]
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Manifold learning is an approach to non-linear dimensionality reduction. Algorithms for this task are based on the
idea that the dimensionality of many data sets is only artificially high.

Introduction

High-dimensional datasets can be very difficult to visualize. While data in two or three dimensions can be plotted to
show the inherent structure of the data, equivalent high-dimensional plots are much less intuitive. To aid visualization
of the structure of a dataset, the dimension must be reduced in some way.

The simplest way to accomplish this dimensionality reduction is by taking a random projection of the data. Though
this allows some degree of visualization of the data structure, the randomness of the choice leaves much to be desired.
In a random projection, it is likely that the more interesting structure within the data will be lost.

To address this concern, a number of supervised and unsupervised linear dimensionality reduction frameworks have
been designed, such as Principal Component Analysis (PCA), Independent Component Analysis, Linear Discriminant
Analysis, and others. These algorithms define specific rubrics to choose an “interesting” linear projection of the data.
These methods can be powerful, but often miss important non-linear structure in the data.
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Manifold Learning can be thought of as an attempt to generalize linear frameworks like PCA to be sensitive to non-
linear structure in data. Though supervised variants exist, the typical manifold learning problem is unsupervised: it
learns the high-dimensional structure of the data from the data itself, without the use of predetermined classifications.

Examples:

• See Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . . for an example of
dimensionality reduction on handwritten digits.

• See Comparison of Manifold Learning methods for an example of dimensionality reduction on a toy “S-
curve” dataset.

The manifold learning implementations available in scikit-learn are summarized below

Isomap

One of the earliest approaches to manifold learning is the Isomap algorithm, short for Isometric Mapping. Isomap can
be viewed as an extension of Multi-dimensional Scaling (MDS) or Kernel PCA. Isomap seeks a lower-dimensional
embedding which maintains geodesic distances between all points. Isomap can be performed with the object Isomap.
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Complexity

The Isomap algorithm comprises three stages:

1. Nearest neighbor search. Isomap uses sklearn.neighbors.BallTree for efficient neighbor search.
The cost is approximately 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)], for 𝑘 nearest neighbors of 𝑁 points in 𝐷 dimensions.

2. Shortest-path graph search. The most efficient known algorithms for this are Dijkstra’s Algorithm, which is
approximately 𝑂[𝑁2(𝑘 + log(𝑁))], or the Floyd-Warshall algorithm, which is 𝑂[𝑁3]. The algorithm can be
selected by the user with the path_method keyword of Isomap. If unspecified, the code attempts to choose
the best algorithm for the input data.

3. Partial eigenvalue decomposition. The embedding is encoded in the eigenvectors corresponding to the 𝑑
largest eigenvalues of the 𝑁 × 𝑁 isomap kernel. For a dense solver, the cost is approximately 𝑂[𝑑𝑁2]. This
cost can often be improved using the ARPACK solver. The eigensolver can be specified by the user with the
path_method keyword of Isomap. If unspecified, the code attempts to choose the best algorithm for the
input data.

The overall complexity of Isomap is 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)] +𝑂[𝑁2(𝑘 + log(𝑁))] +𝑂[𝑑𝑁2].

• 𝑁 : number of training data points

• 𝐷 : input dimension

• 𝑘 : number of nearest neighbors

• 𝑑 : output dimension

References:

• “A global geometric framework for nonlinear dimensionality reduction” Tenenbaum, J.B.; De Silva, V.; &
Langford, J.C. Science 290 (5500)

Locally Linear Embedding

Locally linear embedding (LLE) seeks a lower-dimensional projection of the data which preserves distances within
local neighborhoods. It can be thought of as a series of local Principal Component Analyses which are globally
compared to find the best non-linear embedding.

Locally linear embedding can be performed with function locally_linear_embedding or its object-oriented
counterpart LocallyLinearEmbedding.

Complexity

The standard LLE algorithm comprises three stages:

1. Nearest Neighbors Search. See discussion under Isomap above.

2. Weight Matrix Construction. 𝑂[𝐷𝑁𝑘3]. The construction of the LLE weight matrix involves the solution of
a 𝑘 × 𝑘 linear equation for each of the 𝑁 local neighborhoods

3. Partial Eigenvalue Decomposition. See discussion under Isomap above.

The overall complexity of standard LLE is 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)] +𝑂[𝐷𝑁𝑘3] +𝑂[𝑑𝑁2].

• 𝑁 : number of training data points

• 𝐷 : input dimension
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• 𝑘 : number of nearest neighbors

• 𝑑 : output dimension

References:

• “Nonlinear dimensionality reduction by locally linear embedding” Roweis, S. & Saul, L. Science 290:2323
(2000)

Modified Locally Linear Embedding

One well-known issue with LLE is the regularization problem. When the number of neighbors is greater than the
number of input dimensions, the matrix defining each local neighborhood is rank-deficient. To address this, standard
LLE applies an arbitrary regularization parameter 𝑟, which is chosen relative to the trace of the local weight matrix.
Though it can be shown formally that as 𝑟 → 0, the solution converges to the desired embedding, there is no guarantee
that the optimal solution will be found for 𝑟 > 0. This problem manifests itself in embeddings which distort the
underlying geometry of the manifold.

One method to address the regularization problem is to use multiple weight vectors in each neighborhood.
This is the essence of modified locally linear embedding (MLLE). MLLE can be performed with function
locally_linear_embedding or its object-oriented counterpart LocallyLinearEmbedding, with the key-
word method = 'modified'. It requires n_neighbors > n_components.

Complexity

The MLLE algorithm comprises three stages:

1. Nearest Neighbors Search. Same as standard LLE

2. Weight Matrix Construction. Approximately𝑂[𝐷𝑁𝑘3]+𝑂[𝑁(𝑘−𝐷)𝑘2]. The first term is exactly equivalent
to that of standard LLE. The second term has to do with constructing the weight matrix from multiple weights.
In practice, the added cost of constructing the MLLE weight matrix is relatively small compared to the cost of
steps 1 and 3.

3. Partial Eigenvalue Decomposition. Same as standard LLE

The overall complexity of MLLE is 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)] +𝑂[𝐷𝑁𝑘3] +𝑂[𝑁(𝑘 −𝐷)𝑘2] +𝑂[𝑑𝑁2].
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• 𝑁 : number of training data points

• 𝐷 : input dimension

• 𝑘 : number of nearest neighbors

• 𝑑 : output dimension

References:

• “MLLE: Modified Locally Linear Embedding Using Multiple Weights” Zhang, Z. & Wang, J.

Hessian Eigenmapping

Hessian Eigenmapping (also known as Hessian-based LLE: HLLE) is another method of solving the regularization
problem of LLE. It revolves around a hessian-based quadratic form at each neighborhood which is used to recover
the locally linear structure. Though other implementations note its poor scaling with data size, sklearn imple-
ments some algorithmic improvements which make its cost comparable to that of other LLE variants for small output
dimension. HLLE can be performed with function locally_linear_embedding or its object-oriented counter-
part LocallyLinearEmbedding, with the keyword method = 'hessian'. It requires n_neighbors >
n_components * (n_components + 3) / 2.
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Complexity

The HLLE algorithm comprises three stages:

1. Nearest Neighbors Search. Same as standard LLE

2. Weight Matrix Construction. Approximately 𝑂[𝐷𝑁𝑘3] + 𝑂[𝑁𝑑6]. The first term reflects a similar cost to
that of standard LLE. The second term comes from a QR decomposition of the local hessian estimator.

3. Partial Eigenvalue Decomposition. Same as standard LLE

The overall complexity of standard HLLE is 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)] +𝑂[𝐷𝑁𝑘3] +𝑂[𝑁𝑑6] +𝑂[𝑑𝑁2].

• 𝑁 : number of training data points

• 𝐷 : input dimension

• 𝑘 : number of nearest neighbors

• 𝑑 : output dimension

References:

• “Hessian Eigenmaps: Locally linear embedding techniques for high-dimensional data” Donoho, D. &
Grimes, C. Proc Natl Acad Sci USA. 100:5591 (2003)

Spectral Embedding

Spectral Embedding is an approach to calculating a non-linear embedding. Scikit-learn implements Laplacian Eigen-
maps, which finds a low dimensional representation of the data using a spectral decomposition of the graph Laplacian.
The graph generated can be considered as a discrete approximation of the low dimensional manifold in the high dimen-
sional space. Minimization of a cost function based on the graph ensures that points close to each other on the manifold
are mapped close to each other in the low dimensional space, preserving local distances. Spectral embedding can be
performed with the function spectral_embedding or its object-oriented counterpart SpectralEmbedding.

Complexity

The Spectral Embedding (Laplacian Eigenmaps) algorithm comprises three stages:

1. Weighted Graph Construction. Transform the raw input data into graph representation using affinity (adja-
cency) matrix representation.

2. Graph Laplacian Construction. unnormalized Graph Laplacian is constructed as 𝐿 = 𝐷−𝐴 for and normal-
ized one as 𝐿 = 𝐷− 1

2 (𝐷 −𝐴)𝐷− 1
2 .

3. Partial Eigenvalue Decomposition. Eigenvalue decomposition is done on graph Laplacian

The overall complexity of spectral embedding is 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)] +𝑂[𝐷𝑁𝑘3] +𝑂[𝑑𝑁2].

• 𝑁 : number of training data points

• 𝐷 : input dimension

• 𝑘 : number of nearest neighbors

• 𝑑 : output dimension
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References:

• “Laplacian Eigenmaps for Dimensionality Reduction and Data Representation” M. Belkin, P. Niyogi, Neural
Computation, June 2003; 15 (6):1373-1396

Local Tangent Space Alignment

Though not technically a variant of LLE, Local tangent space alignment (LTSA) is algorithmically similar enough
to LLE that it can be put in this category. Rather than focusing on preserving neighborhood distances as in LLE,
LTSA seeks to characterize the local geometry at each neighborhood via its tangent space, and performs a global
optimization to align these local tangent spaces to learn the embedding. LTSA can be performed with function
locally_linear_embedding or its object-oriented counterpart LocallyLinearEmbedding, with the key-
word method = 'ltsa'.

Complexity

The LTSA algorithm comprises three stages:

1. Nearest Neighbors Search. Same as standard LLE

2. Weight Matrix Construction. Approximately 𝑂[𝐷𝑁𝑘3] +𝑂[𝑘2𝑑]. The first term reflects a similar cost to that
of standard LLE.

3. Partial Eigenvalue Decomposition. Same as standard LLE

The overall complexity of standard LTSA is 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)] +𝑂[𝐷𝑁𝑘3] +𝑂[𝑘2𝑑] +𝑂[𝑑𝑁2].

• 𝑁 : number of training data points

• 𝐷 : input dimension

• 𝑘 : number of nearest neighbors

• 𝑑 : output dimension
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References:

• “Principal manifolds and nonlinear dimensionality reduction via tangent space alignment” Zhang, Z. & Zha,
H. Journal of Shanghai Univ. 8:406 (2004)

Multi-dimensional Scaling (MDS)

Multidimensional scaling (MDS) seeks a low-dimensional representation of the data in which the distances respect well
the distances in the original high-dimensional space.

In general, is a technique used for analyzing similarity or dissimilarity data. MDS attempts to model similarity or
dissimilarity data as distances in a geometric spaces. The data can be ratings of similarity between objects, interaction
frequencies of molecules, or trade indices between countries.

There exists two types of MDS algorithm: metric and non metric. In the scikit-learn, the class MDS implements
both. In Metric MDS, the input similarity matrix arises from a metric (and thus respects the triangular inequality), the
distances between output two points are then set to be as close as possible to the similarity or dissimilarity data. In
the non-metric version, the algorithms will try to preserve the order of the distances, and hence seek for a monotonic
relationship between the distances in the embedded space and the similarities/dissimilarities.

Let 𝑆 be the similarity matrix, and 𝑋 the coordinates of the 𝑛 input points. Disparities 𝑑𝑖𝑗 are transformation of the
similarities chosen in some optimal ways. The objective, called the stress, is then defined by 𝑠𝑢𝑚𝑖<𝑗𝑑𝑖𝑗(𝑋)−𝑑𝑖𝑗(𝑋)

Metric MDS

The simplest metric MDS model, called absolute MDS, disparities are defined by 𝑑𝑖𝑗 = 𝑆𝑖𝑗 . With absolute MDS, the
value 𝑆𝑖𝑗 should then correspond exactly to the distance between point 𝑖 and 𝑗 in the embedding point.

Most commonly, disparities are set to 𝑑𝑖𝑗 = 𝑏𝑆𝑖𝑗 .

Nonmetric MDS

Non metric MDS focuses on the ordination of the data. If 𝑆𝑖𝑗 < 𝑆𝑘𝑙, then the embedding should enforce 𝑑𝑖𝑗 < 𝑑𝑗𝑘.
A simple algorithm to enforce that is to use a monotonic regression of 𝑑𝑖𝑗 on 𝑆𝑖𝑗 , yielding disparities 𝑑𝑖𝑗 in the same
order as 𝑆𝑖𝑗 .
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A trivial solution to this problem is to set all the points on the origin. In order to avoid that, the disparities 𝑑𝑖𝑗 are
normalized.

References:

• “Modern Multidimensional Scaling - Theory and Applications” Borg, I.; Groenen P. Springer Series in Statis-
tics (1997)

• “Nonmetric multidimensional scaling: a numerical method” Kruskal, J. Psychometrika, 29 (1964)

• “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis” Kruskal, J. Psychome-
trika, 29, (1964)

t-distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE (TSNE) converts affinities of data points to probabilities. The affinities in the original space are represented by
Gaussian joint probabilities and the affinities in the embedded space are represented by Student’s t-distributions. This
allows t-SNE to be particularly sensitive to local structure and has a few other advantages over existing techniques:

• Revealing the structure at many scales on a single map

• Revealing data that lie in multiple, different, manifolds or clusters

• Reducing the tendency to crowd points together at the center

While Isomap, LLE and variants are best suited to unfold a single continuous low dimensional manifold, t-SNE will
focus on the local structure of the data and will tend to extract clustered local groups of samples as highlighted on the
S-curve example. This ability to group samples based on the local structure might be beneficial to visually disentangle
a dataset that comprises several manifolds at once as is the case in the digits dataset.

The Kullback-Leibler (KL) divergence of the joint probabilities in the original space and the embedded space will
be minimized by gradient descent. Note that the KL divergence is not convex, i.e. multiple restarts with different
initializations will end up in local minima of the KL divergence. Hence, it is sometimes useful to try different seeds
and select the embedding with the lowest KL divergence.

The disadvantages to using t-SNE are roughly:
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• t-SNE is computationally expensive, and can take several hours on million-sample datasets where PCA will
finish in seconds or minutes

• The Barnes-Hut t-SNE method is limited to two or three dimensional embeddings.

• The algorithm is stochastic and multiple restarts with different seeds can yield different embeddings. However,
it is perfectly legitimate to pick the embedding with the least error.

• Global structure is not explicitly preserved. This is problem is mitigated by initializing points with PCA (using
init=’pca’).

Optimizing t-SNE

The main purpose of t-SNE is visualization of high-dimensional data. Hence, it works best when the data will be
embedded on two or three dimensions.

Optimizing the KL divergence can be a little bit tricky sometimes. There are five parameters that control the optimiza-
tion of t-SNE and therefore possibly the quality of the resulting embedding:

• perplexity

• early exaggeration factor

• learning rate

• maximum number of iterations

• angle (not used in the exact method)

The perplexity is defined as 𝑘 = 2(𝑆) where 𝑆 is the Shannon entropy of the conditional probability distribution.
The perplexity of a 𝑘-sided die is 𝑘, so that 𝑘 is effectively the number of nearest neighbors t-SNE considers when
generating the conditional probabilities. Larger perplexities lead to more nearest neighbors and less sensitive to small
structure. Conversely a lower perplexity considers a smaller number of neighbors, and thus ignores more global
information in favour of the local neighborhood. As dataset sizes get larger more points will be required to get a
reasonable sample of the local neighborhood, and hence larger perplexities may be required. Similarly noisier datasets
will require larger perplexity values to encompass enough local neighbors to see beyond the background noise.

The maximum number of iterations is usually high enough and does not need any tuning. The optimization consists of
two phases: the early exaggeration phase and the final optimization. During early exaggeration the joint probabilities
in the original space will be artificially increased by multiplication with a given factor. Larger factors result in larger
gaps between natural clusters in the data. If the factor is too high, the KL divergence could increase during this phase.
Usually it does not have to be tuned. A critical parameter is the learning rate. If it is too low gradient descent will get
stuck in a bad local minimum. If it is too high the KL divergence will increase during optimization. More tips can be
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found in Laurens van der Maaten’s FAQ (see references). The last parameter, angle, is a tradeoff between performance
and accuracy. Larger angles imply that we can approximate larger regions by a single point, leading to better speed
but less accurate results.

“How to Use t-SNE Effectively” provides a good discussion of the effects of the various parameters, as well as
interactive plots to explore the effects of different parameters.

Barnes-Hut t-SNE

The Barnes-Hut t-SNE that has been implemented here is usually much slower than other manifold learning algo-
rithms. The optimization is quite difficult and the computation of the gradient is𝑂[𝑑𝑁𝑙𝑜𝑔(𝑁)], where 𝑑 is the number
of output dimensions and 𝑁 is the number of samples. The Barnes-Hut method improves on the exact method where
t-SNE complexity is 𝑂[𝑑𝑁2], but has several other notable differences:

• The Barnes-Hut implementation only works when the target dimensionality is 3 or less. The 2D case is typical
when building visualizations.

• Barnes-Hut only works with dense input data. Sparse data matrices can only be embedded with the exact method
or can be approximated by a dense low rank projection for instance using sklearn.decomposition.
TruncatedSVD

• Barnes-Hut is an approximation of the exact method. The approximation is parameterized with the angle pa-
rameter, therefore the angle parameter is unused when method=”exact”

• Barnes-Hut is significantly more scalable. Barnes-Hut can be used to embed hundred of thousands of data points
while the exact method can handle thousands of samples before becoming computationally intractable

For visualization purpose (which is the main use case of t-SNE), using the Barnes-Hut method is strongly recom-
mended. The exact t-SNE method is useful for checking the theoretically properties of the embedding possibly in
higher dimensional space but limit to small datasets due to computational constraints.

Also note that the digits labels roughly match the natural grouping found by t-SNE while the linear 2D projection of
the PCA model yields a representation where label regions largely overlap. This is a strong clue that this data can be
well separated by non linear methods that focus on the local structure (e.g. an SVM with a Gaussian RBF kernel).
However, failing to visualize well separated homogeneously labeled groups with t-SNE in 2D does not necessarily
implie that the data cannot be correctly classified by a supervised model. It might be the case that 2 dimensions are
not enough low to accurately represents the internal structure of the data.

References:

• “Visualizing High-Dimensional Data Using t-SNE” van der Maaten, L.J.P.; Hinton, G. Journal of Machine
Learning Research (2008)

• “t-Distributed Stochastic Neighbor Embedding” van der Maaten, L.J.P.

• “Accelerating t-SNE using Tree-Based Algorithms.” L.J.P. van der Maaten. Journal of Machine Learning
Research 15(Oct):3221-3245, 2014.

Tips on practical use

• Make sure the same scale is used over all features. Because manifold learning methods are based on a nearest-
neighbor search, the algorithm may perform poorly otherwise. See StandardScaler for convenient ways of
scaling heterogeneous data.
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• The reconstruction error computed by each routine can be used to choose the optimal output dimension. For a
𝑑-dimensional manifold embedded in a 𝐷-dimensional parameter space, the reconstruction error will decrease
as n_components is increased until n_components == d.

• Note that noisy data can “short-circuit” the manifold, in essence acting as a bridge between parts of the manifold
that would otherwise be well-separated. Manifold learning on noisy and/or incomplete data is an active area of
research.

• Certain input configurations can lead to singular weight matrices, for example when more than two points in the
dataset are identical, or when the data is split into disjointed groups. In this case, solver='arpack' will
fail to find the null space. The easiest way to address this is to use solver='dense' which will work on a
singular matrix, though it may be very slow depending on the number of input points. Alternatively, one can
attempt to understand the source of the singularity: if it is due to disjoint sets, increasing n_neighbors may
help. If it is due to identical points in the dataset, removing these points may help.

See also:

Totally Random Trees Embedding can also be useful to derive non-linear representations of feature space, also it does
not perform dimensionality reduction.

3.2.3 Clustering

Clustering of unlabeled data can be performed with the module sklearn.cluster.

Each clustering algorithm comes in two variants: a class, that implements the fit method to learn the clusters on train
data, and a function, that, given train data, returns an array of integer labels corresponding to the different clusters. For
the class, the labels over the training data can be found in the labels_ attribute.

Input data

One important thing to note is that the algorithms implemented in this module can take different kinds of matrix as
input. All the methods accept standard data matrices of shape [n_samples, n_features]. These can be ob-
tained from the classes in the sklearn.feature_extraction module. For AffinityPropagation,
SpectralClustering and DBSCAN one can also input similarity matrices of shape [n_samples,
n_samples]. These can be obtained from the functions in the sklearn.metrics.pairwise module.
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Fig. 3.4: A comparison of the clustering algorithms in scikit-learn
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Overview of clustering methods

Method
name

Parameters Scalability Usecase Geometry (metric
used)

K-Means number of clus-
ters

Very large
n_samples,
medium
n_clusters
with MiniBatch code

General-purpose, even clus-
ter size, flat geometry, not
too many clusters

Distances between
points

Affinity propa-
gation

damping, sam-
ple preference

Not scalable with
n_samples

Many clusters, uneven clus-
ter size, non-flat geometry

Graph distance (e.g.
nearest-neighbor
graph)

Mean-shift bandwidth Not scalable with
n_samples

Many clusters, uneven clus-
ter size, non-flat geometry

Distances between
points

Spectral clus-
tering

number of clus-
ters

Medium
n_samples, small
n_clusters

Few clusters, even cluster
size, non-flat geometry

Graph distance (e.g.
nearest-neighbor
graph)

Ward hi-
erarchical
clustering

number of clus-
ters

Large n_samples
and n_clusters

Many clusters, possibly con-
nectivity constraints

Distances between
points

Agglomerative
clustering

number of clus-
ters, linkage
type, distance

Large n_samples
and n_clusters

Many clusters, possibly con-
nectivity constraints, non
Euclidean distances

Any pairwise distance

DBSCAN neighborhood
size

Very large
n_samples,
medium
n_clusters

Non-flat geometry, uneven
cluster sizes

Distances between
nearest points

Gaussian mix-
tures

many Not scalable Flat geometry, good for den-
sity estimation

Mahalanobis dis-
tances to centers

Birch branching fac-
tor, threshold,
optional global
clusterer.

Large
n_clusters
and n_samples

Large dataset, outlier re-
moval, data reduction.

Euclidean distance
between points

Non-flat geometry clustering is useful when the clusters have a specific shape, i.e. a non-flat manifold, and the standard
euclidean distance is not the right metric. This case arises in the two top rows of the figure above.

Gaussian mixture models, useful for clustering, are described in another chapter of the documentation dedicated
to mixture models. KMeans can be seen as a special case of Gaussian mixture model with equal covariance per
component.

K-means

The KMeans algorithm clusters data by trying to separate samples in n groups of equal variance, minimizing a criterion
known as the inertia or within-cluster sum-of-squares. This algorithm requires the number of clusters to be specified.
It scales well to large number of samples and has been used across a large range of application areas in many different
fields.

The k-means algorithm divides a set of 𝑁 samples 𝑋 into 𝐾 disjoint clusters 𝐶, each described by the mean 𝜇𝑗 of
the samples in the cluster. The means are commonly called the cluster “centroids”; note that they are not, in general,
points from 𝑋 , although they live in the same space. The K-means algorithm aims to choose centroids that minimise
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the inertia, or within-cluster sum of squared criterion:

𝑛∑︁
𝑖=0

min
𝜇𝑗∈𝐶

(||𝑥𝑗 − 𝜇𝑖||2)

Inertia, or the within-cluster sum of squares criterion, can be recognized as a measure of how internally coherent
clusters are. It suffers from various drawbacks:

• Inertia makes the assumption that clusters are convex and isotropic, which is not always the case. It responds
poorly to elongated clusters, or manifolds with irregular shapes.

• Inertia is not a normalized metric: we just know that lower values are better and zero is optimal. But in very
high-dimensional spaces, Euclidean distances tend to become inflated (this is an instance of the so-called “curse
of dimensionality”). Running a dimensionality reduction algorithm such as PCA prior to k-means clustering
can alleviate this problem and speed up the computations.

K-
means is often referred to as Lloyd’s algorithm. In basic terms, the algorithm has three steps. The first step chooses
the initial centroids, with the most basic method being to choose 𝑘 samples from the dataset 𝑋 . After initialization,
K-means consists of looping between the two other steps. The first step assigns each sample to its nearest centroid.
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The second step creates new centroids by taking the mean value of all of the samples assigned to each previous
centroid. The difference between the old and the new centroids are computed and the algorithm repeats these last two
steps until this value is less than a threshold. In other words, it repeats until the centroids do not move significantly.

K-means is equivalent to the expectation-maximization algorithm with a
small, all-equal, diagonal covariance matrix.

The algorithm can also be understood through the concept of Voronoi diagrams. First the Voronoi diagram of the points
is calculated using the current centroids. Each segment in the Voronoi diagram becomes a separate cluster. Secondly,
the centroids are updated to the mean of each segment. The algorithm then repeats this until a stopping criterion is
fulfilled. Usually, the algorithm stops when the relative decrease in the objective function between iterations is less
than the given tolerance value. This is not the case in this implementation: iteration stops when centroids move less
than the tolerance.

Given enough time, K-means will always converge, however this may be to a local minimum. This is highly depen-
dent on the initialization of the centroids. As a result, the computation is often done several times, with different
initializations of the centroids. One method to help address this issue is the k-means++ initialization scheme, which
has been implemented in scikit-learn (use the init='k-means++' parameter). This initializes the centroids to
be (generally) distant from each other, leading to provably better results than random initialization, as shown in the
reference.

A parameter can be given to allow K-means to be run in parallel, called n_jobs. Giving this parameter a positive
value uses that many processors (default: 1). A value of -1 uses all available processors, with -2 using one less, and so
on. Parallelization generally speeds up computation at the cost of memory (in this case, multiple copies of centroids
need to be stored, one for each job).

Warning: The parallel version of K-Means is broken on OS X when numpy uses the Accelerate Framework. This
is expected behavior: Accelerate can be called after a fork but you need to execv the subprocess with the Python
binary (which multiprocessing does not do under posix).

K-means can be used for vector quantization. This is achieved using the transform method of a trained model of
KMeans.

Examples:

• Demonstration of k-means assumptions: Demonstrating when k-means performs intuitively and when it does
not

• A demo of K-Means clustering on the handwritten digits data: Clustering handwritten digits

References:

• “k-means++: The advantages of careful seeding” Arthur, David, and Sergei Vassilvitskii, Proceedings of
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the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied
Mathematics (2007)

Mini Batch K-Means

The MiniBatchKMeans is a variant of the KMeans algorithm which uses mini-batches to reduce the computation
time, while still attempting to optimise the same objective function. Mini-batches are subsets of the input data, ran-
domly sampled in each training iteration. These mini-batches drastically reduce the amount of computation required
to converge to a local solution. In contrast to other algorithms that reduce the convergence time of k-means, mini-batch
k-means produces results that are generally only slightly worse than the standard algorithm.

The algorithm iterates between two major steps, similar to vanilla k-means. In the first step, 𝑏 samples are drawn
randomly from the dataset, to form a mini-batch. These are then assigned to the nearest centroid. In the second step,
the centroids are updated. In contrast to k-means, this is done on a per-sample basis. For each sample in the mini-batch,
the assigned centroid is updated by taking the streaming average of the sample and all previous samples assigned to
that centroid. This has the effect of decreasing the rate of change for a centroid over time. These steps are performed
until convergence or a predetermined number of iterations is reached.

MiniBatchKMeans converges faster than KMeans, but the quality of the results is reduced. In practice this differ-
ence in quality can be quite small, as shown in the example and cited reference.

Examples:

• Comparison of the K-Means and MiniBatchKMeans clustering algorithms: Comparison of KMeans and
MiniBatchKMeans

• Clustering text documents using k-means: Document clustering using sparse MiniBatchKMeans

• Online learning of a dictionary of parts of faces

References:

• “Web Scale K-Means clustering” D. Sculley, Proceedings of the 19th international conference on World wide
web (2010)
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Affinity Propagation

AffinityPropagation creates clusters by sending messages between pairs of samples until convergence. A
dataset is then described using a small number of exemplars, which are identified as those most representative of other
samples. The messages sent between pairs represent the suitability for one sample to be the exemplar of the other,
which is updated in response to the values from other pairs. This updating happens iteratively until convergence, at
which point the final exemplars are chosen, and hence the final clustering is given.

Affinity Propagation can be interesting as it chooses the number of clusters based on the data provided. For this pur-
pose, the two important parameters are the preference, which controls how many exemplars are used, and the damping
factor which damps the responsibility and availability messages to avoid numerical oscillations when updating these
messages.

The main drawback of Affinity Propagation is its complexity. The algorithm has a time complexity of the order
𝑂(𝑁2𝑇 ), where𝑁 is the number of samples and 𝑇 is the number of iterations until convergence. Further, the memory
complexity is of the order 𝑂(𝑁2) if a dense similarity matrix is used, but reducible if a sparse similarity matrix is
used. This makes Affinity Propagation most appropriate for small to medium sized datasets.

Examples:

• Demo of affinity propagation clustering algorithm: Affinity Propagation on a synthetic 2D datasets with 3
classes.

• Visualizing the stock market structure Affinity Propagation on Financial time series to find groups of compa-
nies

Algorithm description: The messages sent between points belong to one of two categories. The first is the responsi-
bility 𝑟(𝑖, 𝑘), which is the accumulated evidence that sample 𝑘 should be the exemplar for sample 𝑖. The second is the
availability 𝑎(𝑖, 𝑘) which is the accumulated evidence that sample 𝑖 should choose sample 𝑘 to be its exemplar, and
considers the values for all other samples that 𝑘 should be an exemplar. In this way, exemplars are chosen by samples
if they are (1) similar enough to many samples and (2) chosen by many samples to be representative of themselves.

More formally, the responsibility of a sample 𝑘 to be the exemplar of sample 𝑖 is given by:

𝑟(𝑖, 𝑘)← 𝑠(𝑖, 𝑘)−𝑚𝑎𝑥[𝑎(𝑖, 𝑘′) + 𝑠(𝑖, 𝑘′)∀𝑘′ ̸= 𝑘]

Where 𝑠(𝑖, 𝑘) is the similarity between samples 𝑖 and 𝑘. The availability of sample 𝑘 to be the exemplar of sample 𝑖 is
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given by:

𝑎(𝑖, 𝑘)← 𝑚𝑖𝑛[0, 𝑟(𝑘, 𝑘) +
∑︁

𝑖′ 𝑠.𝑡. 𝑖′ /∈{𝑖,𝑘}

𝑟(𝑖′, 𝑘)]

To begin with, all values for 𝑟 and 𝑎 are set to zero, and the calculation of each iterates until convergence. As discussed
above, in order to avoid numerical oscillations when updating the messages, the damping factor 𝜆 is introduced to
iteration process:

𝑟𝑡+1(𝑖, 𝑘) = 𝜆 · 𝑟𝑡(𝑖, 𝑘) + (1− 𝜆) · 𝑟𝑡+1(𝑖, 𝑘)

𝑎𝑡+1(𝑖, 𝑘) = 𝜆 · 𝑎𝑡(𝑖, 𝑘) + (1− 𝜆) · 𝑎𝑡+1(𝑖, 𝑘)

where 𝑡 indicates the iteration times.

Mean Shift

MeanShift clustering aims to discover blobs in a smooth density of samples. It is a centroid based algorithm, which
works by updating candidates for centroids to be the mean of the points within a given region. These candidates are
then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids.

Given a candidate centroid 𝑥𝑖 for iteration 𝑡, the candidate is updated according to the following equation:

𝑥𝑡+1
𝑖 = 𝑥𝑡𝑖 +𝑚(𝑥𝑡𝑖)

Where 𝑁(𝑥𝑖) is the neighborhood of samples within a given distance around 𝑥𝑖 and 𝑚 is the mean shift vector that
is computed for each centroid that points towards a region of the maximum increase in the density of points. This
is computed using the following equation, effectively updating a centroid to be the mean of the samples within its
neighborhood:

𝑚(𝑥𝑖) =

∑︀
𝑥𝑗∈𝑁(𝑥𝑖)

𝐾(𝑥𝑗 − 𝑥𝑖)𝑥𝑗∑︀
𝑥𝑗∈𝑁(𝑥𝑖)

𝐾(𝑥𝑗 − 𝑥𝑖)

The algorithm automatically sets the number of clusters, instead of relying on a parameter bandwidth, which dictates
the size of the region to search through. This parameter can be set manually, but can be estimated using the provided
estimate_bandwidth function, which is called if the bandwidth is not set.

The algorithm is not highly scalable, as it requires multiple nearest neighbor searches during the execution of the
algorithm. The algorithm is guaranteed to converge, however the algorithm will stop iterating when the change in
centroids is small.

Labelling a new sample is performed by finding the nearest centroid for a given sample.

Examples:

• A demo of the mean-shift clustering algorithm: Mean Shift clustering on a synthetic 2D datasets with 3
classes.

References:

• “Mean shift: A robust approach toward feature space analysis.” D. Comaniciu and P. Meer, IEEE Transactions
on Pattern Analysis and Machine Intelligence (2002)
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Spectral clustering

SpectralClustering does a low-dimension embedding of the affinity matrix between samples, followed by a
KMeans in the low dimensional space. It is especially efficient if the affinity matrix is sparse and the pyamg module
is installed. SpectralClustering requires the number of clusters to be specified. It works well for a small number of
clusters but is not advised when using many clusters.

For two clusters, it solves a convex relaxation of the normalised cuts problem on the similarity graph: cutting the
graph in two so that the weight of the edges cut is small compared to the weights of the edges inside each cluster. This
criteria is especially interesting when working on images: graph vertices are pixels, and edges of the similarity graph
are a function of the gradient of the image.

Warning: Transforming distance to well-behaved similarities

Note that if the values of your similarity matrix are not well distributed, e.g. with negative values or with a distance
matrix rather than a similarity, the spectral problem will be singular and the problem not solvable. In which case
it is advised to apply a transformation to the entries of the matrix. For instance, in the case of a signed distance
matrix, is common to apply a heat kernel:

similarity = np.exp(-beta * distance / distance.std())

See the examples for such an application.
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Examples:

• Spectral clustering for image segmentation: Segmenting objects from a noisy background using spectral
clustering.

• Segmenting the picture of a raccoon face in regions: Spectral clustering to split the image of the raccoon face
in regions.

Different label assignment strategies

Different label assignment strategies can be used, corresponding to the assign_labels parameter of
SpectralClustering. The "kmeans" strategy can match finer details of the data, but it can be more unsta-
ble. In particular, unless you control the random_state, it may not be reproducible from run-to-run, as it depends
on a random initialization. On the other hand, the "discretize" strategy is 100% reproducible, but it tends to
create parcels of fairly even and geometrical shape.

assign_labels="kmeans" assign_labels="discretize"

References:

• “A Tutorial on Spectral Clustering” Ulrike von Luxburg, 2007

• “Normalized cuts and image segmentation” Jianbo Shi, Jitendra Malik, 2000

• “A Random Walks View of Spectral Segmentation” Marina Meila, Jianbo Shi, 2001

• “On Spectral Clustering: Analysis and an algorithm” Andrew Y. Ng, Michael I. Jordan, Yair Weiss, 2001

Hierarchical clustering

Hierarchical clustering is a general family of clustering algorithms that build nested clusters by merging or splitting
them successively. This hierarchy of clusters is represented as a tree (or dendrogram). The root of the tree is the unique
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cluster that gathers all the samples, the leaves being the clusters with only one sample. See the Wikipedia page for
more details.

The AgglomerativeClustering object performs a hierarchical clustering using a bottom up approach: each
observation starts in its own cluster, and clusters are successively merged together. The linkage criteria determines the
metric used for the merge strategy:

• Ward minimizes the sum of squared differences within all clusters. It is a variance-minimizing approach and in
this sense is similar to the k-means objective function but tackled with an agglomerative hierarchical approach.

• Maximum or complete linkage minimizes the maximum distance between observations of pairs of clusters.

• Average linkage minimizes the average of the distances between all observations of pairs of clusters.

AgglomerativeClustering can also scale to large number of samples when it is used jointly with a connectivity
matrix, but is computationally expensive when no connectivity constraints are added between samples: it considers at
each step all the possible merges.

FeatureAgglomeration

The FeatureAgglomeration uses agglomerative clustering to group together features that look very similar,
thus decreasing the number of features. It is a dimensionality reduction tool, see Unsupervised dimensionality
reduction.

Different linkage type: Ward, complete and average linkage

AgglomerativeClustering supports Ward, average, and complete linkage strategies.

Agglomerative cluster has a “rich get richer” behavior that leads to uneven cluster sizes. In this regard, complete
linkage is the worst strategy, and Ward gives the most regular sizes. However, the affinity (or distance used in
clustering) cannot be varied with Ward, thus for non Euclidean metrics, average linkage is a good alternative.

Examples:

• Various Agglomerative Clustering on a 2D embedding of digits: exploration of the different linkage strategies
in a real dataset.

Adding connectivity constraints

An interesting aspect of AgglomerativeClustering is that connectivity constraints can be added to this al-
gorithm (only adjacent clusters can be merged together), through a connectivity matrix that defines for each sample
the neighboring samples following a given structure of the data. For instance, in the swiss-roll example below, the
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connectivity constraints forbid the merging of points that are not adjacent on the swiss roll, and thus avoid forming
clusters that extend across overlapping folds of the roll.

These constraint are useful to impose a certain local structure, but they also make the algorithm faster, especially when
the number of the samples is high.

The connectivity constraints are imposed via an connectivity matrix: a scipy sparse matrix that has elements only
at the intersection of a row and a column with indices of the dataset that should be connected. This matrix can
be constructed from a-priori information: for instance, you may wish to cluster web pages by only merging pages
with a link pointing from one to another. It can also be learned from the data, for instance using sklearn.
neighbors.kneighbors_graph to restrict merging to nearest neighbors as in this example, or using sklearn.
feature_extraction.image.grid_to_graph to enable only merging of neighboring pixels on an image,
as in the raccoon face example.

Examples:

• A demo of structured Ward hierarchical clustering on a raccoon face image: Ward clustering to split the
image of a raccoon face in regions.

• Hierarchical clustering: structured vs unstructured ward: Example of Ward algorithm on a swiss-roll, com-
parison of structured approaches versus unstructured approaches.

• Feature agglomeration vs. univariate selection: Example of dimensionality reduction with feature agglomer-
ation based on Ward hierarchical clustering.

• Agglomerative clustering with and without structure

Warning: Connectivity constraints with average and complete linkage

Connectivity constraints and complete or average linkage can enhance the ‘rich getting richer’ aspect of agglom-
erative clustering, particularly so if they are built with sklearn.neighbors.kneighbors_graph. In the
limit of a small number of clusters, they tend to give a few macroscopically occupied clusters and almost empty
ones. (see the discussion in Agglomerative clustering with and without structure).
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Varying the metric

Average and complete linkage can be used with a variety of distances (or affinities), in particular Euclidean distance
(l2), Manhattan distance (or Cityblock, or l1), cosine distance, or any precomputed affinity matrix.

• l1 distance is often good for sparse features, or sparse noise: ie many of the features are zero, as in text mining
using occurrences of rare words.

• cosine distance is interesting because it is invariant to global scalings of the signal.

The guidelines for choosing a metric is to use one that maximizes the dis-
tance between samples in different classes, and minimizes that within each class.

Examples:

• Agglomerative clustering with different metrics

DBSCAN

The DBSCAN algorithm views clusters as areas of high density separated by areas of low density. Due to this rather
generic view, clusters found by DBSCAN can be any shape, as opposed to k-means which assumes that clusters are
convex shaped. The central component to the DBSCAN is the concept of core samples, which are samples that are in
areas of high density. A cluster is therefore a set of core samples, each close to each other (measured by some distance
measure) and a set of non-core samples that are close to a core sample (but are not themselves core samples). There
are two parameters to the algorithm, min_samples and eps, which define formally what we mean when we say
dense. Higher min_samples or lower eps indicate higher density necessary to form a cluster.

More formally, we define a core sample as being a sample in the dataset such that there exist min_samples other
samples within a distance of eps, which are defined as neighbors of the core sample. This tells us that the core sample
is in a dense area of the vector space. A cluster is a set of core samples that can be built by recursively taking a core
sample, finding all of its neighbors that are core samples, finding all of their neighbors that are core samples, and so
on. A cluster also has a set of non-core samples, which are samples that are neighbors of a core sample in the cluster
but are not themselves core samples. Intuitively, these samples are on the fringes of a cluster.
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Any core sample is part of a cluster, by definition. Any sample that is not a core sample, and is at least eps in distance
from any core sample, is considered an outlier by the algorithm.

In the figure below, the color indicates cluster membership, with large circles indicating core samples found by the
algorithm. Smaller circles are non-core samples that are still part of a cluster. Moreover, the outliers are indicated by
black points below.

Examples:

• Demo of DBSCAN clustering algorithm

Implementation

The DBSCAN algorithm is deterministic, always generating the same clusters when given the same data in the
same order. However, the results can differ when data is provided in a different order. First, even though the core
samples will always be assigned to the same clusters, the labels of those clusters will depend on the order in which
those samples are encountered in the data. Second and more importantly, the clusters to which non-core samples
are assigned can differ depending on the data order. This would happen when a non-core sample has a distance
lower than eps to two core samples in different clusters. By the triangular inequality, those two core samples must
be more distant than eps from each other, or they would be in the same cluster. The non-core sample is assigned
to whichever cluster is generated first in a pass through the data, and so the results will depend on the data ordering.

The current implementation uses ball trees and kd-trees to determine the neighborhood of points, which avoids
calculating the full distance matrix (as was done in scikit-learn versions before 0.14). The possibility to use custom
metrics is retained; for details, see NearestNeighbors.

Memory consumption for large sample sizes

This implementation is by default not memory efficient because it constructs a full pairwise similarity matrix in the
case where kd-trees or ball-trees cannot be used (e.g. with sparse matrices). This matrix will consume n^2 floats.
A couple of mechanisms for getting around this are:

• A sparse radius neighborhood graph (where missing entries are presumed to be out of eps) can be precom-
puted in a memory-efficient way and dbscan can be run over this with metric='precomputed'.

• The dataset can be compressed, either by removing exact duplicates if these occur in your data, or by using
BIRCH. Then you only have a relatively small number of representatives for a large number of points. You
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can then provide a sample_weight when fitting DBSCAN.

References:

• “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise” Ester, M., H. P.
Kriegel, J. Sander, and X. Xu, In Proceedings of the 2nd International Conference on Knowledge Discovery
and Data Mining, Portland, OR, AAAI Press, pp. 226–231. 1996

Birch

The Birch builds a tree called the Characteristic Feature Tree (CFT) for the given data. The data is essentially lossy
compressed to a set of Characteristic Feature nodes (CF Nodes). The CF Nodes have a number of subclusters called
Characteristic Feature subclusters (CF Subclusters) and these CF Subclusters located in the non-terminal CF Nodes
can have CF Nodes as children.

The CF Subclusters hold the necessary information for clustering which prevents the need to hold the entire input data
in memory. This information includes:

• Number of samples in a subcluster.

• Linear Sum - A n-dimensional vector holding the sum of all samples

• Squared Sum - Sum of the squared L2 norm of all samples.

• Centroids - To avoid recalculation linear sum / n_samples.

• Squared norm of the centroids.

The Birch algorithm has two parameters, the threshold and the branching factor. The branching factor limits the
number of subclusters in a node and the threshold limits the distance between the entering sample and the existing
subclusters.

This algorithm can be viewed as an instance or data reduction method, since it reduces the input data to a set of
subclusters which are obtained directly from the leaves of the CFT. This reduced data can be further processed by
feeding it into a global clusterer. This global clusterer can be set by n_clusters. If n_clusters is set to None,
the subclusters from the leaves are directly read off, otherwise a global clustering step labels these subclusters into
global clusters (labels) and the samples are mapped to the global label of the nearest subcluster.

Algorithm description:

• A new sample is inserted into the root of the CF Tree which is a CF Node. It is then merged with the subcluster of
the root, that has the smallest radius after merging, constrained by the threshold and branching factor conditions.
If the subcluster has any child node, then this is done repeatedly till it reaches a leaf. After finding the nearest
subcluster in the leaf, the properties of this subcluster and the parent subclusters are recursively updated.

• If the radius of the subcluster obtained by merging the new sample and the nearest subcluster is greater than
the square of the threshold and if the number of subclusters is greater than the branching factor, then a space is
temporarily allocated to this new sample. The two farthest subclusters are taken and the subclusters are divided
into two groups on the basis of the distance between these subclusters.

• If this split node has a parent subcluster and there is room for a new subcluster, then the parent is split into two.
If there is no room, then this node is again split into two and the process is continued recursively, till it reaches
the root.

Birch or MiniBatchKMeans?

• Birch does not scale very well to high dimensional data. As a rule of thumb if n_features is greater than
twenty, it is generally better to use MiniBatchKMeans.
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• If the number of instances of data needs to be reduced, or if one wants a large number of subclusters either as a
preprocessing step or otherwise, Birch is more useful than MiniBatchKMeans.

How to use partial_fit?

To avoid the computation of global clustering, for every call of partial_fit the user is advised

1. To set n_clusters=None initially

2. Train all data by multiple calls to partial_fit.

3. Set n_clusters to a required value using brc.set_params(n_clusters=n_clusters).

4. Call partial_fit finally with no arguments, i.e brc.partial_fit() which performs the global clus-
tering.

References:

• Tian Zhang, Raghu Ramakrishnan, Maron Livny BIRCH: An efficient data clustering method for large
databases. http://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf

• Roberto Perdisci JBirch - Java implementation of BIRCH clustering algorithm https://code.google.com/
archive/p/jbirch

Clustering performance evaluation

Evaluating the performance of a clustering algorithm is not as trivial as counting the number of errors or the precision
and recall of a supervised classification algorithm. In particular any evaluation metric should not take the absolute
values of the cluster labels into account but rather if this clustering define separations of the data similar to some
ground truth set of classes or satisfying some assumption such that members belong to the same class are more similar
that members of different classes according to some similarity metric.

Adjusted Rand index

Given the knowledge of the ground truth class assignments labels_true and our clustering algorithm assignments
of the same samples labels_pred, the adjusted Rand index is a function that measures the similarity of the two
assignments, ignoring permutations and with chance normalization:

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]
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>>> metrics.adjusted_rand_score(labels_true, labels_pred)
0.24...

One can permute 0 and 1 in the predicted labels, rename 2 to 3, and get the same score:

>>> labels_pred = [1, 1, 0, 0, 3, 3]
>>> metrics.adjusted_rand_score(labels_true, labels_pred)
0.24...

Furthermore, adjusted_rand_score is symmetric: swapping the argument does not change the score. It can
thus be used as a consensus measure:

>>> metrics.adjusted_rand_score(labels_pred, labels_true)
0.24...

Perfect labeling is scored 1.0:

>>> labels_pred = labels_true[:]
>>> metrics.adjusted_rand_score(labels_true, labels_pred)
1.0

Bad (e.g. independent labelings) have negative or close to 0.0 scores:

>>> labels_true = [0, 1, 2, 0, 3, 4, 5, 1]
>>> labels_pred = [1, 1, 0, 0, 2, 2, 2, 2]
>>> metrics.adjusted_rand_score(labels_true, labels_pred)
-0.12...

Advantages

• Random (uniform) label assignments have a ARI score close to 0.0 for any value of n_clusters and
n_samples (which is not the case for raw Rand index or the V-measure for instance).

• Bounded range [-1, 1]: negative values are bad (independent labelings), similar clusterings have a positive ARI,
1.0 is the perfect match score.

• No assumption is made on the cluster structure: can be used to compare clustering algorithms such as k-
means which assumes isotropic blob shapes with results of spectral clustering algorithms which can find cluster
with “folded” shapes.

Drawbacks

• Contrary to inertia, ARI requires knowledge of the ground truth classes while is almost never available in
practice or requires manual assignment by human annotators (as in the supervised learning setting).

However ARI can also be useful in a purely unsupervised setting as a building block for a Consensus Index that
can be used for clustering model selection (TODO).

Examples:

• Adjustment for chance in clustering performance evaluation: Analysis of the impact of the dataset size on the
value of clustering measures for random assignments.

3.2. Unsupervised learning 317



scikit-learn user guide, Release 0.19.1

Mathematical formulation

If C is a ground truth class assignment and K the clustering, let us define 𝑎 and 𝑏 as:

• 𝑎, the number of pairs of elements that are in the same set in C and in the same set in K

• 𝑏, the number of pairs of elements that are in different sets in C and in different sets in K

The raw (unadjusted) Rand index is then given by:

RI =
𝑎+ 𝑏

𝐶
𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

2

Where 𝐶𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

2 is the total number of possible pairs in the dataset (without ordering).

However the RI score does not guarantee that random label assignments will get a value close to zero (esp. if the
number of clusters is in the same order of magnitude as the number of samples).

To counter this effect we can discount the expected RI 𝐸[RI] of random labelings by defining the adjusted Rand index
as follows:

ARI =
RI− 𝐸[RI]

max(RI)− 𝐸[RI]

References

• Comparing Partitions L. Hubert and P. Arabie, Journal of Classification 1985

• Wikipedia entry for the adjusted Rand index

Mutual Information based scores

Given the knowledge of the ground truth class assignments labels_true and our clustering algorithm assignments
of the same samples labels_pred, the Mutual Information is a function that measures the agreement of the two
assignments, ignoring permutations. Two different normalized versions of this measure are available, Normalized
Mutual Information(NMI) and Adjusted Mutual Information(AMI). NMI is often used in the literature while
AMI was proposed more recently and is normalized against chance:

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]

>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)
0.22504...

One can permute 0 and 1 in the predicted labels, rename 2 to 3 and get the same score:

>>> labels_pred = [1, 1, 0, 0, 3, 3]
>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)
0.22504...

All, mutual_info_score, adjusted_mutual_info_score and normalized_mutual_info_score
are symmetric: swapping the argument does not change the score. Thus they can be used as a consensus measure:

>>> metrics.adjusted_mutual_info_score(labels_pred, labels_true)
0.22504...
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Perfect labeling is scored 1.0:

>>> labels_pred = labels_true[:]
>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)
1.0

>>> metrics.normalized_mutual_info_score(labels_true, labels_pred)
1.0

This is not true for mutual_info_score, which is therefore harder to judge:

>>> metrics.mutual_info_score(labels_true, labels_pred)
0.69...

Bad (e.g. independent labelings) have non-positive scores:

>>> labels_true = [0, 1, 2, 0, 3, 4, 5, 1]
>>> labels_pred = [1, 1, 0, 0, 2, 2, 2, 2]
>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)
-0.10526...

Advantages

• Random (uniform) label assignments have a AMI score close to 0.0 for any value of n_clusters and
n_samples (which is not the case for raw Mutual Information or the V-measure for instance).

• Bounded range [0, 1]: Values close to zero indicate two label assignments that are largely independent, while
values close to one indicate significant agreement. Further, values of exactly 0 indicate purely independent
label assignments and a AMI of exactly 1 indicates that the two label assignments are equal (with or without
permutation).

• No assumption is made on the cluster structure: can be used to compare clustering algorithms such as k-
means which assumes isotropic blob shapes with results of spectral clustering algorithms which can find cluster
with “folded” shapes.

Drawbacks

• Contrary to inertia, MI-based measures require the knowledge of the ground truth classes while almost
never available in practice or requires manual assignment by human annotators (as in the supervised learning
setting).

However MI-based measures can also be useful in purely unsupervised setting as a building block for a Consen-
sus Index that can be used for clustering model selection.

• NMI and MI are not adjusted against chance.

Examples:

• Adjustment for chance in clustering performance evaluation: Analysis of the impact of the dataset size on the
value of clustering measures for random assignments. This example also includes the Adjusted Rand Index.
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Mathematical formulation

Assume two label assignments (of the same N objects), 𝑈 and 𝑉 . Their entropy is the amount of uncertainty for a
partition set, defined by:

𝐻(𝑈) = −
|𝑈 |∑︁
𝑖=1

𝑃 (𝑖) log(𝑃 (𝑖))

where 𝑃 (𝑖) = |𝑈𝑖|/𝑁 is the probability that an object picked at random from 𝑈 falls into class 𝑈𝑖. Likewise for 𝑉 :

𝐻(𝑉 ) = −
|𝑉 |∑︁
𝑗=1

𝑃 ′(𝑗) log(𝑃 ′(𝑗))

With 𝑃 ′(𝑗) = |𝑉𝑗 |/𝑁 . The mutual information (MI) between 𝑈 and 𝑉 is calculated by:

MI(𝑈, 𝑉 ) =

|𝑈 |∑︁
𝑖=1

|𝑉 |∑︁
𝑗=1

𝑃 (𝑖, 𝑗) log

(︂
𝑃 (𝑖, 𝑗)

𝑃 (𝑖)𝑃 ′(𝑗)

)︂

where 𝑃 (𝑖, 𝑗) = |𝑈𝑖 ∩ 𝑉𝑗 |/𝑁 is the probability that an object picked at random falls into both classes 𝑈𝑖 and 𝑉𝑗 .

It also can be expressed in set cardinality formulation:

MI(𝑈, 𝑉 ) =

|𝑈 |∑︁
𝑖=1

|𝑉 |∑︁
𝑗=1

|𝑈𝑖 ∩ 𝑉𝑗 |
𝑁

log

(︂
𝑁 |𝑈𝑖 ∩ 𝑉𝑗 |
|𝑈𝑖||𝑉𝑗 |

)︂
The normalized mutual information is defined as

NMI(𝑈, 𝑉 ) =
MI(𝑈, 𝑉 )√︀
𝐻(𝑈)𝐻(𝑉 )

This value of the mutual information and also the normalized variant is not adjusted for chance and will tend to increase
as the number of different labels (clusters) increases, regardless of the actual amount of “mutual information” between
the label assignments.

The expected value for the mutual information can be calculated using the following equation, from Vinh, Epps, and
Bailey, (2009). In this equation, 𝑎𝑖 = |𝑈𝑖| (the number of elements in 𝑈𝑖) and 𝑏𝑗 = |𝑉𝑗 | (the number of elements in
𝑉𝑗).

𝐸[MI(𝑈, 𝑉 )] =

|∑︁
𝑖=1

𝑈 |
|∑︁

𝑗=1

𝑉 |
min(𝑎𝑖,𝑏𝑗)∑︁

𝑛𝑖𝑗=(𝑎𝑖+𝑏𝑗−𝑁)+

𝑛𝑖𝑗
𝑁

log

(︂
𝑁.𝑛𝑖𝑗

𝑎𝑖𝑏𝑗

)︂
𝑎𝑖!𝑏𝑗 !(𝑁 − 𝑎𝑖)!(𝑁 − 𝑏𝑗)!

𝑁 !𝑛𝑖𝑗 !(𝑎𝑖 − 𝑛𝑖𝑗)!(𝑏𝑗 − 𝑛𝑖𝑗)!(𝑁 − 𝑎𝑖 − 𝑏𝑗 + 𝑛𝑖𝑗)!

Using the expected value, the adjusted mutual information can then be calculated using a similar form to that of the
adjusted Rand index:

AMI =
MI− 𝐸[MI]

max(𝐻(𝑈), 𝐻(𝑉 ))− 𝐸[MI]

References

• Strehl, Alexander, and Joydeep Ghosh (2002). “Cluster ensembles – a knowledge reuse frame-
work for combining multiple partitions”. Journal of Machine Learning Research 3: 583–617.
doi:10.1162/153244303321897735.
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• Vinh, Epps, and Bailey, (2009). “Information theoretic measures for clusterings comparison”. Proceedings of
the 26th Annual International Conference on Machine Learning - ICML ‘09. doi:10.1145/1553374.1553511.
ISBN 9781605585161.

• Vinh, Epps, and Bailey, (2010). Information Theoretic Measures for Clusterings Comparison: Variants, Prop-
erties, Normalization and Correction for Chance, JMLR http://jmlr.csail.mit.edu/papers/volume11/vinh10a/
vinh10a.pdf

• Wikipedia entry for the (normalized) Mutual Information

• Wikipedia entry for the Adjusted Mutual Information

Homogeneity, completeness and V-measure

Given the knowledge of the ground truth class assignments of the samples, it is possible to define some intuitive metric
using conditional entropy analysis.

In particular Rosenberg and Hirschberg (2007) define the following two desirable objectives for any cluster assign-
ment:

• homogeneity: each cluster contains only members of a single class.

• completeness: all members of a given class are assigned to the same cluster.

We can turn those concept as scores homogeneity_score and completeness_score. Both are bounded
below by 0.0 and above by 1.0 (higher is better):

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]

>>> metrics.homogeneity_score(labels_true, labels_pred)
0.66...

>>> metrics.completeness_score(labels_true, labels_pred)
0.42...

Their harmonic mean called V-measure is computed by v_measure_score:

>>> metrics.v_measure_score(labels_true, labels_pred)
0.51...

The V-measure is actually equivalent to the mutual information (NMI) discussed above normalized by the sum of the
label entropies [B2011].

Homogeneity, completeness and V-measure can be computed at once using
homogeneity_completeness_v_measure as follows:

>>> metrics.homogeneity_completeness_v_measure(labels_true, labels_pred)
...
(0.66..., 0.42..., 0.51...)

The following clustering assignment is slightly better, since it is homogeneous but not complete:

>>> labels_pred = [0, 0, 0, 1, 2, 2]
>>> metrics.homogeneity_completeness_v_measure(labels_true, labels_pred)
...
(1.0, 0.68..., 0.81...)
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Note: v_measure_score is symmetric: it can be used to evaluate the agreement of two independent assignments
on the same dataset.

This is not the case for completeness_score and homogeneity_score: both are bound by the relationship:

homogeneity_score(a, b) == completeness_score(b, a)

Advantages

• Bounded scores: 0.0 is as bad as it can be, 1.0 is a perfect score.

• Intuitive interpretation: clustering with bad V-measure can be qualitatively analyzed in terms of homogeneity
and completeness to better feel what ‘kind’ of mistakes is done by the assignment.

• No assumption is made on the cluster structure: can be used to compare clustering algorithms such as k-
means which assumes isotropic blob shapes with results of spectral clustering algorithms which can find cluster
with “folded” shapes.

Drawbacks

• The previously introduced metrics are not normalized with regards to random labeling: this means that
depending on the number of samples, clusters and ground truth classes, a completely random labeling will
not always yield the same values for homogeneity, completeness and hence v-measure. In particular random
labeling won’t yield zero scores especially when the number of clusters is large.

This problem can safely be ignored when the number of samples is more than a thousand and the number of
clusters is less than 10. For smaller sample sizes or larger number of clusters it is safer to use an adjusted
index such as the Adjusted Rand Index (ARI).

• These metrics require the knowledge of the ground truth classes while almost never available in practice or
requires manual assignment by human annotators (as in the supervised learning setting).

Examples:

• Adjustment for chance in clustering performance evaluation: Analysis of the impact of the dataset size on the
value of clustering measures for random assignments.

Mathematical formulation

Homogeneity and completeness scores are formally given by:

ℎ = 1− 𝐻(𝐶|𝐾)

𝐻(𝐶)

𝑐 = 1− 𝐻(𝐾|𝐶)

𝐻(𝐾)

where 𝐻(𝐶|𝐾) is the conditional entropy of the classes given the cluster assignments and is given by:

𝐻(𝐶|𝐾) = −
|𝐶|∑︁
𝑐=1

|𝐾|∑︁
𝑘=1

𝑛𝑐,𝑘
𝑛
· log

(︂
𝑛𝑐,𝑘
𝑛𝑘

)︂
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and 𝐻(𝐶) is the entropy of the classes and is given by:

𝐻(𝐶) = −
|𝐶|∑︁
𝑐=1

𝑛𝑐
𝑛
· log

(︁𝑛𝑐
𝑛

)︁
with 𝑛 the total number of samples, 𝑛𝑐 and 𝑛𝑘 the number of samples respectively belonging to class 𝑐 and cluster 𝑘,
and finally 𝑛𝑐,𝑘 the number of samples from class 𝑐 assigned to cluster 𝑘.

The conditional entropy of clusters given class 𝐻(𝐾|𝐶) and the entropy of clusters 𝐻(𝐾) are defined in a sym-
metric manner.

Rosenberg and Hirschberg further define V-measure as the harmonic mean of homogeneity and completeness:

𝑣 = 2 · ℎ · 𝑐
ℎ+ 𝑐

References

• V-Measure: A conditional entropy-based external cluster evaluation measure Andrew Rosenberg and Julia
Hirschberg, 2007

Fowlkes-Mallows scores

The Fowlkes-Mallows index (sklearn.metrics.fowlkes_mallows_score) can be used when the ground
truth class assignments of the samples is known. The Fowlkes-Mallows score FMI is defined as the geometric mean
of the pairwise precision and recall:

FMI =
TP√︀

(TP + FP)(TP + FN)

Where TP is the number of True Positive (i.e. the number of pair of points that belong to the same clusters in both the
true labels and the predicted labels), FP is the number of False Positive (i.e. the number of pair of points that belong
to the same clusters in the true labels and not in the predicted labels) and FN is the number of False Negative (i.e the
number of pair of points that belongs in the same clusters in the predicted labels and not in the true labels).

The score ranges from 0 to 1. A high value indicates a good similarity between two clusters.

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]

>>> metrics.fowlkes_mallows_score(labels_true, labels_pred)
0.47140...

One can permute 0 and 1 in the predicted labels, rename 2 to 3 and get the same score:

>>> labels_pred = [1, 1, 0, 0, 3, 3]

>>> metrics.fowlkes_mallows_score(labels_true, labels_pred)
0.47140...

Perfect labeling is scored 1.0:
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>>> labels_pred = labels_true[:]
>>> metrics.fowlkes_mallows_score(labels_true, labels_pred)
1.0

Bad (e.g. independent labelings) have zero scores:

>>> labels_true = [0, 1, 2, 0, 3, 4, 5, 1]
>>> labels_pred = [1, 1, 0, 0, 2, 2, 2, 2]
>>> metrics.fowlkes_mallows_score(labels_true, labels_pred)
0.0

Advantages

• Random (uniform) label assignments have a FMI score close to 0.0 for any value of n_clusters and
n_samples (which is not the case for raw Mutual Information or the V-measure for instance).

• Bounded range [0, 1]: Values close to zero indicate two label assignments that are largely independent, while
values close to one indicate significant agreement. Further, values of exactly 0 indicate purely independent
label assignments and a AMI of exactly 1 indicates that the two label assignments are equal (with or without
permutation).

• No assumption is made on the cluster structure: can be used to compare clustering algorithms such as k-
means which assumes isotropic blob shapes with results of spectral clustering algorithms which can find cluster
with “folded” shapes.

Drawbacks

• Contrary to inertia, FMI-based measures require the knowledge of the ground truth classes while almost
never available in practice or requires manual assignment by human annotators (as in the supervised learning
setting).

References

• E. B. Fowkles and C. L. Mallows, 1983. “A method for comparing two hierarchical clusterings”. Journal of
the American Statistical Association. http://wildfire.stat.ucla.edu/pdflibrary/fowlkes.pdf

• Wikipedia entry for the Fowlkes-Mallows Index

Silhouette Coefficient

If the ground truth labels are not known, evaluation must be performed using the model itself. The Silhouette Coeffi-
cient (sklearn.metrics.silhouette_score) is an example of such an evaluation, where a higher Silhouette
Coefficient score relates to a model with better defined clusters. The Silhouette Coefficient is defined for each sample
and is composed of two scores:

• a: The mean distance between a sample and all other points in the same class.

• b: The mean distance between a sample and all other points in the next nearest cluster.

The Silhouette Coefficient s for a single sample is then given as:

𝑠 =
𝑏− 𝑎

𝑚𝑎𝑥(𝑎, 𝑏)
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The Silhouette Coefficient for a set of samples is given as the mean of the Silhouette Coefficient for each sample.

>>> from sklearn import metrics
>>> from sklearn.metrics import pairwise_distances
>>> from sklearn import datasets
>>> dataset = datasets.load_iris()
>>> X = dataset.data
>>> y = dataset.target

In normal usage, the Silhouette Coefficient is applied to the results of a cluster analysis.

>>> import numpy as np
>>> from sklearn.cluster import KMeans
>>> kmeans_model = KMeans(n_clusters=3, random_state=1).fit(X)
>>> labels = kmeans_model.labels_
>>> metrics.silhouette_score(X, labels, metric='euclidean')
...
0.55...

References

• Peter J. Rousseeuw (1987). “Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster
Analysis”. Computational and Applied Mathematics 20: 53–65. doi:10.1016/0377-0427(87)90125-7.

Advantages

• The score is bounded between -1 for incorrect clustering and +1 for highly dense clustering. Scores around zero
indicate overlapping clusters.

• The score is higher when clusters are dense and well separated, which relates to a standard concept of a cluster.

Drawbacks

• The Silhouette Coefficient is generally higher for convex clusters than other concepts of clusters, such as density
based clusters like those obtained through DBSCAN.

Examples:

• Selecting the number of clusters with silhouette analysis on KMeans clustering : In this example the silhouette
analysis is used to choose an optimal value for n_clusters.

Calinski-Harabaz Index

If the ground truth labels are not known, the Calinski-Harabaz index (sklearn.metrics.
calinski_harabaz_score) can be used to evaluate the model, where a higher Calinski-Harabaz score
relates to a model with better defined clusters.
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For 𝑘 clusters, the Calinski-Harabaz score 𝑠 is given as the ratio of the between-clusters dispersion mean and the
within-cluster dispersion:

𝑠(𝑘) =
Tr(𝐵𝑘)

Tr(𝑊𝑘)
× 𝑁 − 𝑘

𝑘 − 1

where 𝐵𝐾 is the between group dispersion matrix and 𝑊𝐾 is the within-cluster dispersion matrix defined by:

𝑊𝑘 =

𝑘∑︁
𝑞=1

∑︁
𝑥∈𝐶𝑞

(𝑥− 𝑐𝑞)(𝑥− 𝑐𝑞)𝑇

𝐵𝑘 =
∑︁
𝑞

𝑛𝑞(𝑐𝑞 − 𝑐)(𝑐𝑞 − 𝑐)𝑇

with 𝑁 be the number of points in our data, 𝐶𝑞 be the set of points in cluster 𝑞, 𝑐𝑞 be the center of cluster 𝑞, 𝑐 be the
center of 𝐸, 𝑛𝑞 be the number of points in cluster 𝑞.

>>> from sklearn import metrics
>>> from sklearn.metrics import pairwise_distances
>>> from sklearn import datasets
>>> dataset = datasets.load_iris()
>>> X = dataset.data
>>> y = dataset.target

In normal usage, the Calinski-Harabaz index is applied to the results of a cluster analysis.

>>> import numpy as np
>>> from sklearn.cluster import KMeans
>>> kmeans_model = KMeans(n_clusters=3, random_state=1).fit(X)
>>> labels = kmeans_model.labels_
>>> metrics.calinski_harabaz_score(X, labels)
560.39...

Advantages

• The score is higher when clusters are dense and well separated, which relates to a standard concept of a cluster.

• The score is fast to compute

Drawbacks

• The Calinski-Harabaz index is generally higher for convex clusters than other concepts of clusters, such as
density based clusters like those obtained through DBSCAN.

References

• Caliński, T., & Harabasz, J. (1974). “A dendrite method for cluster analysis”. Communications in Statistics-
theory and Methods 3: 1-27. doi:10.1080/03610926.2011.560741.
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3.2.4 Biclustering

Biclustering can be performed with the module sklearn.cluster.bicluster. Biclustering algorithms simul-
taneously cluster rows and columns of a data matrix. These clusters of rows and columns are known as biclusters.
Each determines a submatrix of the original data matrix with some desired properties.

For instance, given a matrix of shape (10, 10), one possible bicluster with three rows and two columns induces a
submatrix of shape (3, 2):

>>> import numpy as np
>>> data = np.arange(100).reshape(10, 10)
>>> rows = np.array([0, 2, 3])[:, np.newaxis]
>>> columns = np.array([1, 2])
>>> data[rows, columns]
array([[ 1, 2],

[21, 22],
[31, 32]])

For visualization purposes, given a bicluster, the rows and columns of the data matrix may be rearranged to make the
bicluster contiguous.

Algorithms differ in how they define biclusters. Some of the common types include:

• constant values, constant rows, or constant columns

• unusually high or low values

• submatrices with low variance

• correlated rows or columns

Algorithms also differ in how rows and columns may be assigned to biclusters, which leads to different bicluster
structures. Block diagonal or checkerboard structures occur when rows and columns are divided into partitions.

If each row and each column belongs to exactly one bicluster, then rearranging the rows and columns of the data matrix
reveals the biclusters on the diagonal. Here is an example of this structure where biclusters have higher average values
than the other rows and columns:

Fig. 3.5: An example of biclusters formed by partitioning rows and columns.

In the checkerboard case, each row belongs to all column clusters, and each column belongs to all row clusters. Here
is an example of this structure where the variance of the values within each bicluster is small:
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Fig. 3.6: An example of checkerboard biclusters.

After fitting a model, row and column cluster membership can be found in the rows_ and columns_ attributes.
rows_[i] is a binary vector with nonzero entries corresponding to rows that belong to bicluster i. Similarly,
columns_[i] indicates which columns belong to bicluster i.

Some models also have row_labels_ and column_labels_ attributes. These models partition the rows and
columns, such as in the block diagonal and checkerboard bicluster structures.

Note: Biclustering has many other names in different fields including co-clustering, two-mode clustering, two-way
clustering, block clustering, coupled two-way clustering, etc. The names of some algorithms, such as the Spectral
Co-Clustering algorithm, reflect these alternate names.

Spectral Co-Clustering

The SpectralCoclustering algorithm finds biclusters with values higher than those in the corresponding other
rows and columns. Each row and each column belongs to exactly one bicluster, so rearranging the rows and columns
to make partitions contiguous reveals these high values along the diagonal:

Note: The algorithm treats the input data matrix as a bipartite graph: the rows and columns of the matrix correspond
to the two sets of vertices, and each entry corresponds to an edge between a row and a column. The algorithm
approximates the normalized cut of this graph to find heavy subgraphs.

Mathematical formulation

An approximate solution to the optimal normalized cut may be found via the generalized eigenvalue decomposition of
the Laplacian of the graph. Usually this would mean working directly with the Laplacian matrix. If the original data
matrix 𝐴 has shape 𝑚× 𝑛, the Laplacian matrix for the corresponding bipartite graph has shape (𝑚+ 𝑛)× (𝑚+ 𝑛).
However, in this case it is possible to work directly with 𝐴, which is smaller and more efficient.

The input matrix 𝐴 is preprocessed as follows:

𝐴𝑛 = 𝑅−1/2𝐴𝐶−1/2
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Where 𝑅 is the diagonal matrix with entry 𝑖 equal to
∑︀

𝑗 𝐴𝑖𝑗 and 𝐶 is the diagonal matrix with entry 𝑗 equal to∑︀
𝑖𝐴𝑖𝑗 .

The singular value decomposition, 𝐴𝑛 = 𝑈Σ𝑉 ⊤, provides the partitions of the rows and columns of 𝐴. A subset of
the left singular vectors gives the row partitions, and a subset of the right singular vectors gives the column partitions.

The ℓ = ⌈log2 𝑘⌉ singular vectors, starting from the second, provide the desired partitioning information. They are
used to form the matrix 𝑍:

𝑍 =

⎡⎣𝑅−1/2𝑈

𝐶−1/2𝑉

⎤⎦
where the columns of 𝑈 are 𝑢2, . . . , 𝑢ℓ+1, and similarly for 𝑉 .

Then the rows of 𝑍 are clustered using k-means. The first n_rows labels provide the row partitioning, and the
remaining n_columns labels provide the column partitioning.

Examples:

• A demo of the Spectral Co-Clustering algorithm: A simple example showing how to generate a data matrix
with biclusters and apply this method to it.

• Biclustering documents with the Spectral Co-clustering algorithm: An example of finding biclusters in the
twenty newsgroup dataset.

References:

• Dhillon, Inderjit S, 2001. Co-clustering documents and words using bipartite spectral graph partitioning.

Spectral Biclustering

The SpectralBiclustering algorithm assumes that the input data matrix has a hidden checkerboard structure.
The rows and columns of a matrix with this structure may be partitioned so that the entries of any bicluster in the
Cartesian product of row clusters and column clusters are approximately constant. For instance, if there are two row
partitions and three column partitions, each row will belong to three biclusters, and each column will belong to two
biclusters.

The algorithm partitions the rows and columns of a matrix so that a corresponding blockwise-constant checkerboard
matrix provides a good approximation to the original matrix.

Mathematical formulation

The input matrix 𝐴 is first normalized to make the checkerboard pattern more obvious. There are three possible
methods:

1. Independent row and column normalization, as in Spectral Co-Clustering. This method makes the rows sum to
a constant and the columns sum to a different constant.

2. Bistochastization: repeated row and column normalization until convergence. This method makes both rows
and columns sum to the same constant.

3. Log normalization: the log of the data matrix is computed: 𝐿 = log𝐴. Then the column mean 𝐿𝑖·, row mean
𝐿·𝑗 , and overall mean 𝐿·· of 𝐿 are computed. The final matrix is computed according to the formula
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𝐾𝑖𝑗 = 𝐿𝑖𝑗 − 𝐿𝑖· − 𝐿·𝑗 + 𝐿··

After normalizing, the first few singular vectors are computed, just as in the Spectral Co-Clustering algorithm.

If log normalization was used, all the singular vectors are meaningful. However, if independent normalization or
bistochastization were used, the first singular vectors, 𝑢1 and 𝑣1. are discarded. From now on, the “first” singular
vectors refers to 𝑢2 . . . 𝑢𝑝+1 and 𝑣2 . . . 𝑣𝑝+1 except in the case of log normalization.

Given these singular vectors, they are ranked according to which can be best approximated by a piecewise-constant
vector. The approximations for each vector are found using one-dimensional k-means and scored using the Euclidean
distance. Some subset of the best left and right singular vector are selected. Next, the data is projected to this best
subset of singular vectors and clustered.

For instance, if 𝑝 singular vectors were calculated, the 𝑞 best are found as described, where 𝑞 < 𝑝. Let 𝑈 be the matrix
with columns the 𝑞 best left singular vectors, and similarly 𝑉 for the right. To partition the rows, the rows of 𝐴 are
projected to a 𝑞 dimensional space: 𝐴 * 𝑉 . Treating the 𝑚 rows of this 𝑚× 𝑞 matrix as samples and clustering using
k-means yields the row labels. Similarly, projecting the columns to 𝐴⊤ *𝑈 and clustering this 𝑛× 𝑞 matrix yields the
column labels.

Examples:

• A demo of the Spectral Biclustering algorithm: a simple example showing how to generate a checkerboard
matrix and bicluster it.

References:

• Kluger, Yuval, et. al., 2003. Spectral biclustering of microarray data: coclustering genes and conditions.

Biclustering evaluation

There are two ways of evaluating a biclustering result: internal and external. Internal measures, such as cluster
stability, rely only on the data and the result themselves. Currently there are no internal bicluster measures in scikit-
learn. External measures refer to an external source of information, such as the true solution. When working with
real data the true solution is usually unknown, but biclustering artificial data may be useful for evaluating algorithms
precisely because the true solution is known.

To compare a set of found biclusters to the set of true biclusters, two similarity measures are needed: a similarity
measure for individual biclusters, and a way to combine these individual similarities into an overall score.

To compare individual biclusters, several measures have been used. For now, only the Jaccard index is implemented:

𝐽(𝐴,𝐵) =
|𝐴 ∩𝐵|

|𝐴|+ |𝐵| − |𝐴 ∩𝐵|

where 𝐴 and 𝐵 are biclusters, |𝐴 ∩ 𝐵| is the number of elements in their intersection. The Jaccard index achieves its
minimum of 0 when the biclusters to not overlap at all and its maximum of 1 when they are identical.

Several methods have been developed to compare two sets of biclusters. For now, only consensus_score (Hochre-
iter et. al., 2010) is available:

1. Compute bicluster similarities for pairs of biclusters, one in each set, using the Jaccard index or a similar
measure.

2. Assign biclusters from one set to another in a one-to-one fashion to maximize the sum of their similarities. This
step is performed using the Hungarian algorithm.
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3. The final sum of similarities is divided by the size of the larger set.

The minimum consensus score, 0, occurs when all pairs of biclusters are totally dissimilar. The maximum score, 1,
occurs when both sets are identical.

References:

• Hochreiter, Bodenhofer, et. al., 2010. FABIA: factor analysis for bicluster acquisition.

3.2.5 Decomposing signals in components (matrix factorization problems)

Principal component analysis (PCA)

Exact PCA and probabilistic interpretation

PCA is used to decompose a multivariate dataset in a set of successive orthogonal components that explain a maximum
amount of the variance. In scikit-learn, PCA is implemented as a transformer object that learns 𝑛 components in its
fit method, and can be used on new data to project it on these components.

The optional parameter whiten=True makes it possible to project the data onto the singular space while scaling
each component to unit variance. This is often useful if the models down-stream make strong assumptions on the
isotropy of the signal: this is for example the case for Support Vector Machines with the RBF kernel and the K-Means
clustering algorithm.

Below is an example of the iris dataset, which is comprised of 4 features, projected on the 2 dimensions that explain
most variance:

The PCA object also provides a probabilistic interpretation of the PCA that can give a likelihood of data based on the
amount of variance it explains. As such it implements a score method that can be used in cross-validation:
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Examples:

• Comparison of LDA and PCA 2D projection of Iris dataset

• Model selection with Probabilistic PCA and Factor Analysis (FA)

Incremental PCA

The PCA object is very useful, but has certain limitations for large datasets. The biggest limitation is that PCA only sup-
ports batch processing, which means all of the data to be processed must fit in main memory. The IncrementalPCA
object uses a different form of processing and allows for partial computations which almost exactly match the results
of PCA while processing the data in a minibatch fashion. IncrementalPCA makes it possible to implement out-of-
core Principal Component Analysis either by:

• Using its partial_fit method on chunks of data fetched sequentially from the local hard drive or a network
database.

• Calling its fit method on a memory mapped file using numpy.memmap.

IncrementalPCA only stores estimates of component and noise variances, in order update
explained_variance_ratio_ incrementally. This is why memory usage depends on the number of
samples per batch, rather than the number of samples to be processed in the dataset.

Examples:

• Incremental PCA
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PCA using randomized SVD

It is often interesting to project data to a lower-dimensional space that preserves most of the variance, by dropping the
singular vector of components associated with lower singular values.

For instance, if we work with 64x64 pixel gray-level pictures for face recognition, the dimensionality of the data is
4096 and it is slow to train an RBF support vector machine on such wide data. Furthermore we know that the intrinsic
dimensionality of the data is much lower than 4096 since all pictures of human faces look somewhat alike. The
samples lie on a manifold of much lower dimension (say around 200 for instance). The PCA algorithm can be used to
linearly transform the data while both reducing the dimensionality and preserve most of the explained variance at the
same time.

The class PCA used with the optional parameter svd_solver='randomized' is very useful in that case: since
we are going to drop most of the singular vectors it is much more efficient to limit the computation to an approximated
estimate of the singular vectors we will keep to actually perform the transform.

For instance, the following shows 16 sample portraits (centered around 0.0) from the Olivetti dataset. On the right
hand side are the first 16 singular vectors reshaped as portraits. Since we only require the top 16 singular vectors of a
dataset with size 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 400 and 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64× 64 = 4096, the computation time is less than 1s:

Note: with the optional parameter svd_solver='randomized', we also need to give PCA the size of the lower-
dimensional space n_components as a mandatory input parameter.

336 Chapter 3. User Guide

../auto_examples/decomposition/plot_faces_decomposition.html
../auto_examples/decomposition/plot_faces_decomposition.html


scikit-learn user guide, Release 0.19.1

If we note 𝑛max = max(𝑛samples, 𝑛features) and 𝑛min = min(𝑛samples, 𝑛features), the time complexity of the random-
ized PCA is 𝑂(𝑛2max · 𝑛components) instead of 𝑂(𝑛2max · 𝑛min) for the exact method implemented in PCA.

The memory footprint of randomized PCA is also proportional to 2 · 𝑛max · 𝑛components instead of 𝑛max · 𝑛min for the
exact method.

Note: the implementation of inverse_transform in PCA with svd_solver='randomized' is not the exact
inverse transform of transform even when whiten=False (default).

Examples:

• Faces recognition example using eigenfaces and SVMs

• Faces dataset decompositions

References:

• “Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decomposi-
tions” Halko, et al., 2009

Kernel PCA

KernelPCA is an extension of PCA which achieves non-linear dimensionality reduction through the use of
kernels (see Pairwise metrics, Affinities and Kernels). It has many applications including denoising, compres-
sion and structured prediction (kernel dependency estimation). KernelPCA supports both transform and
inverse_transform.
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Examples:

• Kernel PCA

Sparse principal components analysis (SparsePCA and MiniBatchSparsePCA)

SparsePCA is a variant of PCA, with the goal of extracting the set of sparse components that best reconstruct the
data.

Mini-batch sparse PCA (MiniBatchSparsePCA) is a variant of SparsePCA that is faster but less accurate. The
increased speed is reached by iterating over small chunks of the set of features, for a given number of iterations.

Principal component analysis (PCA) has the disadvantage that the components extracted by this method have exclu-
sively dense expressions, i.e. they have non-zero coefficients when expressed as linear combinations of the original
variables. This can make interpretation difficult. In many cases, the real underlying components can be more naturally
imagined as sparse vectors; for example in face recognition, components might naturally map to parts of faces.

Sparse principal components yields a more parsimonious, interpretable representation, clearly emphasizing which of
the original features contribute to the differences between samples.

The following example illustrates 16 components extracted using sparse PCA from the Olivetti faces dataset. It can
be seen how the regularization term induces many zeros. Furthermore, the natural structure of the data causes the
non-zero coefficients to be vertically adjacent. The model does not enforce this mathematically: each component is
a vector ℎ ∈ R4096, and there is no notion of vertical adjacency except during the human-friendly visualization as
64x64 pixel images. The fact that the components shown below appear local is the effect of the inherent structure of
the data, which makes such local patterns minimize reconstruction error. There exist sparsity-inducing norms that take
into account adjacency and different kinds of structure; see [Jen09] for a review of such methods. For more details on
how to use Sparse PCA, see the Examples section, below.
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Note that there are many different formulations for the Sparse PCA problem. The one implemented here is based
on [Mrl09] . The optimization problem solved is a PCA problem (dictionary learning) with an ℓ1 penalty on the
components:

(𝑈*, 𝑉 *) = arg min
𝑈,𝑉

1

2
||𝑋 − 𝑈𝑉 ||22 + 𝛼||𝑉 ||1

subject to ||𝑈𝑘||2 = 1 for all 0 ≤ 𝑘 < 𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

The sparsity-inducing ℓ1 norm also prevents learning components from noise when few training samples are available.
The degree of penalization (and thus sparsity) can be adjusted through the hyperparameter alpha. Small values lead
to a gently regularized factorization, while larger values shrink many coefficients to zero.

Note: While in the spirit of an online algorithm, the class MiniBatchSparsePCA does not implement
partial_fit because the algorithm is online along the features direction, not the samples direction.

Examples:

• Faces dataset decompositions

References:

Truncated singular value decomposition and latent semantic analysis

TruncatedSVD implements a variant of singular value decomposition (SVD) that only computes the 𝑘 largest
singular values, where 𝑘 is a user-specified parameter.

When truncated SVD is applied to term-document matrices (as returned by CountVectorizer or
TfidfVectorizer), this transformation is known as latent semantic analysis (LSA), because it transforms such
matrices to a “semantic” space of low dimensionality. In particular, LSA is known to combat the effects of synonymy
and polysemy (both of which roughly mean there are multiple meanings per word), which cause term-document ma-
trices to be overly sparse and exhibit poor similarity under measures such as cosine similarity.
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Note: LSA is also known as latent semantic indexing, LSI, though strictly that refers to its use in persistent indexes
for information retrieval purposes.

Mathematically, truncated SVD applied to training samples 𝑋 produces a low-rank approximation 𝑋:

𝑋 ≈ 𝑋𝑘 = 𝑈𝑘Σ𝑘𝑉
⊤
𝑘

After this operation, 𝑈𝑘Σ⊤
𝑘 is the transformed training set with 𝑘 features (called n_components in the API).

To also transform a test set 𝑋 , we multiply it with 𝑉𝑘:

𝑋 ′ = 𝑋𝑉𝑘

Note: Most treatments of LSA in the natural language processing (NLP) and information retrieval (IR) literature
swap the axes of the matrix 𝑋 so that it has shape n_features × n_samples. We present LSA in a different way
that matches the scikit-learn API better, but the singular values found are the same.

TruncatedSVD is very similar to PCA, but differs in that it works on sample matrices 𝑋 directly instead of their
covariance matrices. When the columnwise (per-feature) means of 𝑋 are subtracted from the feature values, truncated
SVD on the resulting matrix is equivalent to PCA. In practical terms, this means that the TruncatedSVD transformer
accepts scipy.sparse matrices without the need to densify them, as densifying may fill up memory even for
medium-sized document collections.

While the TruncatedSVD transformer works with any (sparse) feature matrix, using it on tf–idf matrices is recom-
mended over raw frequency counts in an LSA/document processing setting. In particular, sublinear scaling and inverse
document frequency should be turned on (sublinear_tf=True, use_idf=True) to bring the feature values
closer to a Gaussian distribution, compensating for LSA’s erroneous assumptions about textual data.

Examples:

• Clustering text documents using k-means

References:

• Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze (2008), Introduction to Information Re-
trieval, Cambridge University Press, chapter 18: Matrix decompositions & latent semantic indexing

Dictionary Learning

Sparse coding with a precomputed dictionary

The SparseCoder object is an estimator that can be used to transform signals into sparse linear combination of
atoms from a fixed, precomputed dictionary such as a discrete wavelet basis. This object therefore does not implement
a fit method. The transformation amounts to a sparse coding problem: finding a representation of the data as a linear
combination of as few dictionary atoms as possible. All variations of dictionary learning implement the following
transform methods, controllable via the transform_method initialization parameter:

• Orthogonal matching pursuit (Orthogonal Matching Pursuit (OMP))
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• Least-angle regression (Least Angle Regression)

• Lasso computed by least-angle regression

• Lasso using coordinate descent (Lasso)

• Thresholding

Thresholding is very fast but it does not yield accurate reconstructions. They have been shown useful in literature for
classification tasks. For image reconstruction tasks, orthogonal matching pursuit yields the most accurate, unbiased
reconstruction.

The dictionary learning objects offer, via the split_code parameter, the possibility to separate the positive and
negative values in the results of sparse coding. This is useful when dictionary learning is used for extracting features
that will be used for supervised learning, because it allows the learning algorithm to assign different weights to negative
loadings of a particular atom, from to the corresponding positive loading.

The split code for a single sample has length 2 * n_components and is constructed using the following rule:
First, the regular code of length n_components is computed. Then, the first n_components entries of the
split_code are filled with the positive part of the regular code vector. The second half of the split code is filled
with the negative part of the code vector, only with a positive sign. Therefore, the split_code is non-negative.

Examples:

• Sparse coding with a precomputed dictionary

Generic dictionary learning

Dictionary learning (DictionaryLearning) is a matrix factorization problem that amounts to finding a (usually
overcomplete) dictionary that will perform good at sparsely encoding the fitted data.

Representing data as sparse combinations of atoms from an overcomplete dictionary is suggested to be the way the
mammal primary visual cortex works. Consequently, dictionary learning applied on image patches has been shown
to give good results in image processing tasks such as image completion, inpainting and denoising, as well as for
supervised recognition tasks.

Dictionary learning is an optimization problem solved by alternatively updating the sparse code, as a solution to
multiple Lasso problems, considering the dictionary fixed, and then updating the dictionary to best fit the sparse code.

(𝑈*, 𝑉 *) = arg min
𝑈,𝑉

1

2
||𝑋 − 𝑈𝑉 ||22 + 𝛼||𝑈 ||1

subject to ||𝑉𝑘||2 = 1 for all 0 ≤ 𝑘 < 𝑛atoms
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After using such a procedure to fit the dictionary, the transform is simply a sparse coding step that shares the same
implementation with all dictionary learning objects (see Sparse coding with a precomputed dictionary).

The following image shows how a dictionary learned from 4x4 pixel image patches extracted from part of the image
of a raccoon face looks like.
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Examples:

• Image denoising using dictionary learning

References:

• “Online dictionary learning for sparse coding” J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009

Mini-batch dictionary learning

MiniBatchDictionaryLearning implements a faster, but less accurate version of the dictionary learning algo-
rithm that is better suited for large datasets.

By default, MiniBatchDictionaryLearning divides the data into mini-batches and optimizes in an online
manner by cycling over the mini-batches for the specified number of iterations. However, at the moment it does not
implement a stopping condition.

The estimator also implements partial_fit, which updates the dictionary by iterating only once over a mini-batch.
This can be used for online learning when the data is not readily available from the start, or for when the data does not

fit into the memory.

Clustering for dictionary learning

Note that when using dictionary learning to extract a representation (e.g. for sparse coding) clustering can be a
good proxy to learn the dictionary. For instance the MiniBatchKMeans estimator is computationally efficient
and implements on-line learning with a partial_fit method.

Example: Online learning of a dictionary of parts of faces

Factor Analysis

In unsupervised learning we only have a dataset 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}. How can this dataset be described mathemat-
ically? A very simple continuous latent variable model for 𝑋 is

𝑥𝑖 = 𝑊ℎ𝑖 + 𝜇+ 𝜖

The vector ℎ𝑖 is called “latent” because it is unobserved. 𝜖 is considered a noise term distributed according to a
Gaussian with mean 0 and covariance Ψ (i.e. 𝜖 ∼ 𝒩 (0,Ψ)), 𝜇 is some arbitrary offset vector. Such a model is called
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“generative” as it describes how 𝑥𝑖 is generated from ℎ𝑖. If we use all the 𝑥𝑖‘s as columns to form a matrix X and all
the ℎ𝑖‘s as columns of a matrix H then we can write (with suitably defined M and E):

X = 𝑊H + M + E

In other words, we decomposed matrix X.

If ℎ𝑖 is given, the above equation automatically implies the following probabilistic interpretation:

𝑝(𝑥𝑖|ℎ𝑖) = 𝒩 (𝑊ℎ𝑖 + 𝜇,Ψ)

For a complete probabilistic model we also need a prior distribution for the latent variable ℎ. The most straightforward
assumption (based on the nice properties of the Gaussian distribution) is ℎ ∼ 𝒩 (0, I). This yields a Gaussian as the
marginal distribution of 𝑥:

𝑝(𝑥) = 𝒩 (𝜇,𝑊𝑊𝑇 + Ψ)

Now, without any further assumptions the idea of having a latent variable ℎ would be superfluous – 𝑥 can be com-
pletely modelled with a mean and a covariance. We need to impose some more specific structure on one of these two
parameters. A simple additional assumption regards the structure of the error covariance Ψ:

• Ψ = 𝜎2I: This assumption leads to the probabilistic model of PCA.

• Ψ = diag(𝜓1, 𝜓2, . . . , 𝜓𝑛): This model is called FactorAnalysis, a classical statistical model. The matrix
W is sometimes called the “factor loading matrix”.

Both models essentially estimate a Gaussian with a low-rank covariance matrix. Because both models are probabilistic
they can be integrated in more complex models, e.g. Mixture of Factor Analysers. One gets very different models (e.g.
FastICA) if non-Gaussian priors on the latent variables are assumed.

Factor analysis can produce similar components (the columns of its loading matrix) to PCA. However, one can not
make any general statements about these components (e.g. whether they are orthogonal):
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The main advantage for Factor Analysis (over PCA is that it can model the variance in every direction of the input
space independently (heteroscedastic noise):

This allows better model selection than probabilistic PCA in the presence of heteroscedastic noise:

Examples:

• Model selection with Probabilistic PCA and Factor Analysis (FA)

Independent component analysis (ICA)

Independent component analysis separates a multivariate signal into additive subcomponents that are maximally in-
dependent. It is implemented in scikit-learn using the Fast ICA algorithm. Typically, ICA is not used for reducing
dimensionality but for separating superimposed signals. Since the ICA model does not include a noise term, for the
model to be correct, whitening must be applied. This can be done internally using the whiten argument or manually
using one of the PCA variants.

It is classically used to separate mixed signals (a problem known as blind source separation), as in the example below:

ICA can also be used as yet another non linear decomposition that finds components with some sparsity:
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Examples:

• Blind source separation using FastICA

• FastICA on 2D point clouds

• Faces dataset decompositions

Non-negative matrix factorization (NMF or NNMF)

NMF with the Frobenius norm

NMF1 is an alternative approach to decomposition that assumes that the data and the components are non-negative.
NMF can be plugged in instead of PCA or its variants, in the cases where the data matrix does not contain negative
values. It finds a decomposition of samples𝑋 into two matrices𝑊 and𝐻 of non-negative elements, by optimizing the
distance 𝑑 between 𝑋 and the matrix product 𝑊𝐻 . The most widely used distance function is the squared Frobenius

1 “Learning the parts of objects by non-negative matrix factorization” D. Lee, S. Seung, 1999
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norm, which is an obvious extension of the Euclidean norm to matrices:

𝑑Fro(𝑋,𝑌 ) =
1

2
||𝑋 − 𝑌 ||2Fro =

1

2

∑︁
𝑖,𝑗

(𝑋𝑖𝑗 − 𝑌𝑖𝑗)2

Unlike PCA, the representation of a vector is obtained in an additive fashion, by superimposing the components,
without subtracting. Such additive models are efficient for representing images and text.

It has been observed in [Hoyer, 2004]2 that, when carefully constrained, NMF can produce a parts-based representation
of the dataset, resulting in interpretable models. The following example displays 16 sparse components found by NMF
from the images in the Olivetti faces dataset, in comparison with the PCA eigenfaces.

The init attribute determines the initialization method applied, which has a great impact on the performance of the
method. NMF implements the method Nonnegative Double Singular Value Decomposition. NNDSVD4 is based on
two SVD processes, one approximating the data matrix, the other approximating positive sections of the resulting
partial SVD factors utilizing an algebraic property of unit rank matrices. The basic NNDSVD algorithm is better fit
for sparse factorization. Its variants NNDSVDa (in which all zeros are set equal to the mean of all elements of the
data), and NNDSVDar (in which the zeros are set to random perturbations less than the mean of the data divided by
100) are recommended in the dense case.

2 “Non-negative Matrix Factorization with Sparseness Constraints” P. Hoyer, 2004
4 “SVD based initialization: A head start for nonnegative matrix factorization” C. Boutsidis, E. Gallopoulos, 2008
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Note that the Multiplicative Update (‘mu’) solver cannot update zeros present in the initialization, so it leads to poorer
results when used jointly with the basic NNDSVD algorithm which introduces a lot of zeros; in this case, NNDSVDa
or NNDSVDar should be preferred.

NMF can also be initialized with correctly scaled random non-negative matrices by setting init="random". An
integer seed or a RandomState can also be passed to random_state to control reproducibility.

In NMF, L1 and L2 priors can be added to the loss function in order to regularize the model. The L2 prior uses the
Frobenius norm, while the L1 prior uses an elementwise L1 norm. As in ElasticNet, we control the combination
of L1 and L2 with the l1_ratio (𝜌) parameter, and the intensity of the regularization with the alpha (𝛼) parameter.
Then the priors terms are:

𝛼𝜌||𝑊 ||1 + 𝛼𝜌||𝐻||1 +
𝛼(1− 𝜌)

2
||𝑊 ||2Fro +

𝛼(1− 𝜌)

2
||𝐻||2Fro

and the regularized objective function is:

𝑑Fro(𝑋,𝑊𝐻) + 𝛼𝜌||𝑊 ||1 + 𝛼𝜌||𝐻||1 +
𝛼(1− 𝜌)

2
||𝑊 ||2Fro +

𝛼(1− 𝜌)

2
||𝐻||2Fro

NMF regularizes both W and H. The public function non_negative_factorization allows a finer control
through the regularization attribute, and may regularize only W, only H, or both.

NMF with a beta-divergence

As described previously, the most widely used distance function is the squared Frobenius norm, which is an obvious
extension of the Euclidean norm to matrices:

𝑑Fro(𝑋,𝑌 ) =
1

2
||𝑋 − 𝑌 ||2𝐹𝑟𝑜 =

1

2

∑︁
𝑖,𝑗

(𝑋𝑖𝑗 − 𝑌𝑖𝑗)2

Other distance functions can be used in NMF as, for example, the (generalized) Kullback-Leibler (KL) divergence,
also referred as I-divergence:

𝑑𝐾𝐿(𝑋,𝑌 ) =
∑︁
𝑖,𝑗

(𝑋𝑖𝑗 log(
𝑋𝑖𝑗

𝑌𝑖𝑗
)−𝑋𝑖𝑗 + 𝑌𝑖𝑗)

Or, the Itakura-Saito (IS) divergence:

𝑑𝐼𝑆(𝑋,𝑌 ) =
∑︁
𝑖,𝑗

(
𝑋𝑖𝑗

𝑌𝑖𝑗
− log(

𝑋𝑖𝑗

𝑌𝑖𝑗
)− 1)

These three distances are special cases of the beta-divergence family, with 𝛽 = 2, 1, 0 respectively6. The beta-
divergence are defined by :

𝑑𝛽(𝑋,𝑌 ) =
∑︁
𝑖,𝑗

1

𝛽(𝛽 − 1)
(𝑋𝛽

𝑖𝑗 + (𝛽 − 1)𝑌 𝛽
𝑖𝑗 − 𝛽𝑋𝑖𝑗𝑌

𝛽−1
𝑖𝑗 )

Note that this definition is not valid if 𝛽 ∈ (0; 1), yet it can be continously extended to the definitions of 𝑑𝐾𝐿 and 𝑑𝐼𝑆
respectively.

NMF implements two solvers, using Coordinate Descent (‘cd’)5, and Multiplicative Update (‘mu’)6. The ‘mu’ solver
can optimize every beta-divergence, including of course the Frobenius norm (𝛽 = 2), the (generalized) Kullback-
Leibler divergence (𝛽 = 1) and the Itakura-Saito divergence (𝛽 = 0). Note that for 𝛽 ∈ (1; 2), the ‘mu’ solver is

6 “Algorithms for nonnegative matrix factorization with the beta-divergence” C. Fevotte, J. Idier, 2011
5 “Fast local algorithms for large scale nonnegative matrix and tensor factorizations.” A. Cichocki, P. Anh-Huy, 2009
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significantly faster than for other values of 𝛽. Note also that with a negative (or 0, i.e. ‘itakura-saito’) 𝛽, the input
matrix cannot contain zero values.

The ‘cd’ solver can only optimize the Frobenius norm. Due to the underlying non-convexity of NMF, the different
solvers may converge to different minima, even when optimizing the same distance function.

NMF is best used with the fit_transform method, which returns the matrix W. The matrix H is stored into the
fitted model in the components_ attribute; the method transform will decompose a new matrix X_new based on
these stored components:

>>> import numpy as np
>>> X = np.array([[1, 1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
>>> from sklearn.decomposition import NMF
>>> model = NMF(n_components=2, init='random', random_state=0)
>>> W = model.fit_transform(X)
>>> H = model.components_
>>> X_new = np.array([[1, 0], [1, 6.1], [1, 0], [1, 4], [3.2, 1], [0, 4]])
>>> W_new = model.transform(X_new)

Examples:

• Faces dataset decompositions

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

• Beta-divergence loss functions

References:
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Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation is a generative probabilistic model for collections of discrete dataset such as text corpora.
It is also a topic model that is used for discovering abstract topics from a collection of documents.

The graphical model of LDA is a three-level Bayesian model:

When modeling text corpora, the model assumes the following generative process for a corpus with 𝐷 documents and
𝐾 topics:

1. For each topic 𝑘, draw 𝛽𝑘 ∼ Dirichlet(𝜂), 𝑘 = 1...𝐾

2. For each document 𝑑, draw 𝜃𝑑 ∼ Dirichlet(𝛼), 𝑑 = 1...𝐷

3. For each word 𝑖 in document 𝑑:

1. Draw a topic index 𝑧𝑑𝑖 ∼ Multinomial(𝜃𝑑)

2. Draw the observed word 𝑤𝑖𝑗 ∼ Multinomial(𝑏𝑒𝑡𝑎𝑧𝑑𝑖 .)

For parameter estimation, the posterior distribution is:

𝑝(𝑧, 𝜃, 𝛽|𝑤,𝛼, 𝜂) =
𝑝(𝑧, 𝜃, 𝛽|𝛼, 𝜂)

𝑝(𝑤|𝛼, 𝜂)

Since the posterior is intractable, variational Bayesian method uses a simpler distribution 𝑞(𝑧, 𝜃, 𝛽|𝜆, 𝜑, 𝛾) to approx-
imate it, and those variational parameters 𝜆, 𝜑, 𝛾 are optimized to maximize the Evidence Lower Bound (ELBO):

log 𝑃 (𝑤|𝛼, 𝜂) ≥ 𝐿(𝑤, 𝜑, 𝛾, 𝜆)
△
= 𝐸𝑞[log 𝑝(𝑤, 𝑧, 𝜃, 𝛽|𝛼, 𝜂)]− 𝐸𝑞[log 𝑞(𝑧, 𝜃, 𝛽)]

Maximizing ELBO is equivalent to minimizing the Kullback-Leibler(KL) divergence between 𝑞(𝑧, 𝜃, 𝛽) and the true
posterior 𝑝(𝑧, 𝜃, 𝛽|𝑤,𝛼, 𝜂).

LatentDirichletAllocation implements online variational Bayes algorithm and supports both online and
batch update method. While batch method updates variational variables after each full pass through the data, online
method updates variational variables from mini-batch data points.

Note: Although online method is guaranteed to converge to a local optimum point, the quality of the optimum point
and the speed of convergence may depend on mini-batch size and attributes related to learning rate setting.
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When LatentDirichletAllocation is applied on a “document-term” matrix, the matrix will be decomposed
into a “topic-term” matrix and a “document-topic” matrix. While “topic-term” matrix is stored as components_ in
the model, “document-topic” matrix can be calculated from transform method.

LatentDirichletAllocation also implements partial_fitmethod. This is used when data can be fetched
sequentially.

Examples:

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

References:

• “Latent Dirichlet Allocation” D. Blei, A. Ng, M. Jordan, 2003

• “Online Learning for Latent Dirichlet Allocation” M. Hoffman, D. Blei, F. Bach, 2010

• “Stochastic Variational Inference” M. Hoffman, D. Blei, C. Wang, J. Paisley, 2013

3.2.6 Covariance estimation

Many statistical problems require at some point the estimation of a population’s covariance matrix, which can be seen
as an estimation of data set scatter plot shape. Most of the time, such an estimation has to be done on a sample whose
properties (size, structure, homogeneity) has a large influence on the estimation’s quality. The sklearn.covariance
package aims at providing tools affording an accurate estimation of a population’s covariance matrix under various
settings.

We assume that the observations are independent and identically distributed (i.i.d.).

Empirical covariance

The covariance matrix of a data set is known to be well approximated with the classical maximum likelihood estimator
(or “empirical covariance”), provided the number of observations is large enough compared to the number of features
(the variables describing the observations). More precisely, the Maximum Likelihood Estimator of a sample is an
unbiased estimator of the corresponding population covariance matrix.

The empirical covariance matrix of a sample can be computed using the empirical_covariance function of the
package, or by fitting an EmpiricalCovariance object to the data sample with the EmpiricalCovariance.
fit method. Be careful that depending whether the data are centered or not, the result will be differ-
ent, so one may want to use the assume_centered parameter accurately. More precisely if one uses
assume_centered=False, then the test set is supposed to have the same mean vector as the training set. If
not so, both should be centered by the user, and assume_centered=True should be used.

Examples:

• See Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood for an example on how to fit an
EmpiricalCovariance object to data.
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Shrunk Covariance

Basic shrinkage

Despite being an unbiased estimator of the covariance matrix, the Maximum Likelihood Estimator is not a good esti-
mator of the eigenvalues of the covariance matrix, so the precision matrix obtained from its inversion is not accurate.
Sometimes, it even occurs that the empirical covariance matrix cannot be inverted for numerical reasons. To avoid
such an inversion problem, a transformation of the empirical covariance matrix has been introduced: the shrinkage.

In the scikit-learn, this transformation (with a user-defined shrinkage coefficient) can be directly applied to a pre-
computed covariance with the shrunk_covariance method. Also, a shrunk estimator of the covariance can be
fitted to data with a ShrunkCovariance object and its ShrunkCovariance.fit method. Again, depending
whether the data are centered or not, the result will be different, so one may want to use the assume_centered
parameter accurately.

Mathematically, this shrinkage consists in reducing the ratio between the smallest and the largest eigenvalue of the
empirical covariance matrix. It can be done by simply shifting every eigenvalue according to a given offset, which is
equivalent of finding the l2-penalized Maximum Likelihood Estimator of the covariance matrix. In practice, shrinkage
boils down to a simple a convex transformation : Σshrunk = (1− 𝛼)Σ̂ + 𝛼TrΣ̂

𝑝 Id.

Choosing the amount of shrinkage, 𝛼 amounts to setting a bias/variance trade-off, and is discussed below.

Examples:

• See Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood for an example on how to fit a
ShrunkCovariance object to data.

Ledoit-Wolf shrinkage

In their 2004 paper1, O. Ledoit and M. Wolf propose a formula so as to compute the optimal shrinkage coefficient 𝛼
that minimizes the Mean Squared Error between the estimated and the real covariance matrix.

The Ledoit-Wolf estimator of the covariance matrix can be computed on a sample with the ledoit_wolf function of
the sklearn.covariance package, or it can be otherwise obtained by fitting a LedoitWolf object to the same sample.

Note: Case when population covariance matrix is isotropic

It is important to note that when the number of samples is much larger than the number of features, one would expect
that no shrinkage would be necessary. The intuition behind this is that if the population covariance is full rank, when
the number of sample grows, the sample covariance will also become positive definite. As a result, no shrinkage would
necessary and the method should automatically do this.

This, however, is not the case in the Ledoit-Wolf procedure when the population covariance happens to be a multiple of
the identity matrix. In this case, the Ledoit-Wolf shrinkage estimate approaches 1 as the number of samples increases.
This indicates that the optimal estimate of the covariance matrix in the Ledoit-Wolf sense is multiple of the identity.
Since the population covariance is already a multiple of the identity matrix, the Ledoit-Wolf solution is indeed a
reasonable estimate.

1 O. Ledoit and M. Wolf, “A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices”, Journal of Multivariate Analysis, Vol-
ume 88, Issue 2, February 2004, pages 365-411.
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Examples:

• See Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood for an example on how to fit a
LedoitWolf object to data and for visualizing the performances of the Ledoit-Wolf estimator in terms of
likelihood.

References:

Oracle Approximating Shrinkage

Under the assumption that the data are Gaussian distributed, Chen et al.2 derived a formula aimed at choosing a
shrinkage coefficient that yields a smaller Mean Squared Error than the one given by Ledoit and Wolf’s formula. The
resulting estimator is known as the Oracle Shrinkage Approximating estimator of the covariance.

The OAS estimator of the covariance matrix can be computed on a sample with the oas function of the
sklearn.covariance package, or it can be otherwise obtained by fitting an OAS object to the same sample.

Fig. 3.7: Bias-variance trade-off when setting the shrinkage: comparing the choices of Ledoit-Wolf and OAS estima-
tors

References:

Examples:

• See Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood for an example on how to fit an
OAS object to data.

2 Chen et al., “Shrinkage Algorithms for MMSE Covariance Estimation”, IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.
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• See Ledoit-Wolf vs OAS estimation to visualize the Mean Squared Error difference between a LedoitWolf
and an OAS estimator of the covariance.

Sparse inverse covariance

The matrix inverse of the covariance matrix, often called the precision matrix, is proportional to the partial correlation
matrix. It gives the partial independence relationship. In other words, if two features are independent conditionally on
the others, the corresponding coefficient in the precision matrix will be zero. This is why it makes sense to estimate a
sparse precision matrix: by learning independence relations from the data, the estimation of the covariance matrix is
better conditioned. This is known as covariance selection.

In the small-samples situation, in which n_samples is on the order of n_features or smaller, sparse inverse
covariance estimators tend to work better than shrunk covariance estimators. However, in the opposite situation, or for
very correlated data, they can be numerically unstable. In addition, unlike shrinkage estimators, sparse estimators are
able to recover off-diagonal structure.

The GraphLasso estimator uses an l1 penalty to enforce sparsity on the precision matrix: the higher its alpha
parameter, the more sparse the precision matrix. The corresponding GraphLassoCV object uses cross-validation to
automatically set the alpha parameter.

Note: Structure recovery

Recovering a graphical structure from correlations in the data is a challenging thing. If you are interested in such
recovery keep in mind that:

• Recovery is easier from a correlation matrix than a covariance matrix: standardize your observations before
running GraphLasso

• If the underlying graph has nodes with much more connections than the average node, the algorithm will miss
some of these connections.
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Fig. 3.8: A comparison of maximum likelihood, shrinkage and sparse estimates of the covariance and precision matrix
in the very small samples settings.

• If your number of observations is not large compared to the number of edges in your underlying graph, you will
not recover it.

• Even if you are in favorable recovery conditions, the alpha parameter chosen by cross-validation (e.g. using the
GraphLassoCV object) will lead to selecting too many edges. However, the relevant edges will have heavier
weights than the irrelevant ones.

The mathematical formulation is the following:

𝐾̂ = argmin𝐾

(︀
tr𝑆𝐾 − logdet𝐾 + 𝛼‖𝐾‖1

)︀
Where 𝐾 is the precision matrix to be estimated, and 𝑆 is the sample covariance matrix. ‖𝐾‖1 is the sum of the abso-
lute values of off-diagonal coefficients of 𝐾. The algorithm employed to solve this problem is the GLasso algorithm,
from the Friedman 2008 Biostatistics paper. It is the same algorithm as in the R glasso package.

Examples:

• Sparse inverse covariance estimation: example on synthetic data showing some recovery of a structure, and
comparing to other covariance estimators.

• Visualizing the stock market structure: example on real stock market data, finding which symbols are most
linked.

References:

• Friedman et al, “Sparse inverse covariance estimation with the graphical lasso”, Biostatistics 9, pp 432, 2008
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Robust Covariance Estimation

Real data set are often subjects to measurement or recording errors. Regular but uncommon observations may also
appear for a variety of reason. Every observation which is very uncommon is called an outlier. The empirical covari-
ance estimator and the shrunk covariance estimators presented above are very sensitive to the presence of outlying
observations in the data. Therefore, one should use robust covariance estimators to estimate the covariance of its real
data sets. Alternatively, robust covariance estimators can be used to perform outlier detection and discard/downweight
some observations according to further processing of the data.

The sklearn.covariance package implements a robust estimator of covariance, the Minimum Covariance De-
terminant3.

Minimum Covariance Determinant

The Minimum Covariance Determinant estimator is a robust estimator of a data set’s covariance introduced by P.J.
Rousseeuw in3. The idea is to find a given proportion (h) of “good” observations which are not outliers and compute
their empirical covariance matrix. This empirical covariance matrix is then rescaled to compensate the performed
selection of observations (“consistency step”). Having computed the Minimum Covariance Determinant estimator,
one can give weights to observations according to their Mahalanobis distance, leading to a reweighted estimate of the
covariance matrix of the data set (“reweighting step”).

Rousseeuw and Van Driessen4 developed the FastMCD algorithm in order to compute the Minimum Covariance
Determinant. This algorithm is used in scikit-learn when fitting an MCD object to data. The FastMCD algorithm also
computes a robust estimate of the data set location at the same time.

Raw estimates can be accessed as raw_location_ and raw_covariance_ attributes of a MinCovDet robust
covariance estimator object.

References:

Examples:

• See Robust vs Empirical covariance estimate for an example on how to fit a MinCovDet object to data and
see how the estimate remains accurate despite the presence of outliers.

• See Robust covariance estimation and Mahalanobis distances relevance to visualize the difference between
EmpiricalCovariance and MinCovDet covariance estimators in terms of Mahalanobis distance (so
we get a better estimate of the precision matrix too).

3 P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984.
4 A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for

Quality, TECHNOMETRICS.
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Influence of outliers on location and covariance
estimates

Separating inliers from outliers using a Mahalanobis
distance

3.2.7 Novelty and Outlier Detection

Many applications require being able to decide whether a new observation belongs to the same distribution as existing
observations (it is an inlier), or should be considered as different (it is an outlier). Often, this ability is used to clean
real data sets. Two important distinction must be made:

novelty detection The training data is not polluted by outliers, and we are interested in detecting anoma-
lies in new observations.

outlier detection The training data contains outliers, and we need to fit the central mode of the training
data, ignoring the deviant observations.

The scikit-learn project provides a set of machine learning tools that can be used both for novelty or outliers detection.
This strategy is implemented with objects learning in an unsupervised way from the data:

estimator.fit(X_train)

new observations can then be sorted as inliers or outliers with a predict method:

estimator.predict(X_test)

Inliers are labeled 1, while outliers are labeled -1.

Novelty Detection

Consider a data set of 𝑛 observations from the same distribution described by 𝑝 features. Consider now that we add one
more observation to that data set. Is the new observation so different from the others that we can doubt it is regular?
(i.e. does it come from the same distribution?) Or on the contrary, is it so similar to the other that we cannot distinguish
it from the original observations? This is the question addressed by the novelty detection tools and methods.

In general, it is about to learn a rough, close frontier delimiting the contour of the initial observations distribution,
plotted in embedding 𝑝-dimensional space. Then, if further observations lay within the frontier-delimited subspace,
they are considered as coming from the same population than the initial observations. Otherwise, if they lay outside
the frontier, we can say that they are abnormal with a given confidence in our assessment.

The One-Class SVM has been introduced by Schölkopf et al. for that purpose and implemented in the Support Vector
Machines module in the svm.OneClassSVM object. It requires the choice of a kernel and a scalar parameter to
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define a frontier. The RBF kernel is usually chosen although there exists no exact formula or algorithm to set its
bandwidth parameter. This is the default in the scikit-learn implementation. The 𝜈 parameter, also known as the
margin of the One-Class SVM, corresponds to the probability of finding a new, but regular, observation outside the
frontier.

References:

• Estimating the support of a high-dimensional distribution Schölkopf, Bernhard, et al. Neural computation
13.7 (2001): 1443-1471.

Examples:

• See One-class SVM with non-linear kernel (RBF) for visualizing the frontier learned around some data by a
svm.OneClassSVM object.

Outlier Detection

Outlier detection is similar to novelty detection in the sense that the goal is to separate a core of regular observations
from some polluting ones, called “outliers”. Yet, in the case of outlier detection, we don’t have a clean data set
representing the population of regular observations that can be used to train any tool.

Fitting an elliptic envelope

One common way of performing outlier detection is to assume that the regular data come from a known distribution
(e.g. data are Gaussian distributed). From this assumption, we generally try to define the “shape” of the data, and can
define outlying observations as observations which stand far enough from the fit shape.
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The scikit-learn provides an object covariance.EllipticEnvelope that fits a robust covariance estimate to
the data, and thus fits an ellipse to the central data points, ignoring points outside the central mode.

For instance, assuming that the inlier data are Gaussian distributed, it will estimate the inlier location and covariance
in a robust way (i.e. without being influenced by outliers). The Mahalanobis distances obtained from this estimate is
used to derive a measure of outlyingness. This strategy is illustrated below.

Examples:

• See Robust covariance estimation and Mahalanobis distances relevance for an illustration of the dif-
ference between using a standard (covariance.EmpiricalCovariance) or a robust estimate
(covariance.MinCovDet) of location and covariance to assess the degree of outlyingness of an ob-
servation.

References:

• Rousseeuw, P.J., Van Driessen, K. “A fast algorithm for the minimum covariance determinant estimator”
Technometrics 41(3), 212 (1999)

Isolation Forest

One efficient way of performing outlier detection in high-dimensional datasets is to use random forests. The
ensemble.IsolationForest ‘isolates’ observations by randomly selecting a feature and then randomly se-
lecting a split value between the maximum and minimum values of the selected feature.

Since recursive partitioning can be represented by a tree structure, the number of splittings required to isolate a sample
is equivalent to the path length from the root node to the terminating node.
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This path length, averaged over a forest of such random trees, is a measure of normality and our decision function.

Random partitioning produces noticeably shorter paths for anomalies. Hence, when a forest of random trees collec-
tively produce shorter path lengths for particular samples, they are highly likely to be anomalies.

This strategy is illustrated below.

Examples:

• See IsolationForest example for an illustration of the use of IsolationForest.

• See Outlier detection with several methods. for a comparison of ensemble.IsolationForest with
neighbors.LocalOutlierFactor, svm.OneClassSVM (tuned to perform like an outlier detection
method) and a covariance-based outlier detection with covariance.EllipticEnvelope.

References:

• Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. “Isolation forest.” Data Mining, 2008. ICDM‘08. Eighth
IEEE International Conference on.

Local Outlier Factor

Another efficient way to perform outlier detection on moderately high dimensional datasets is to use the Local Outlier
Factor (LOF) algorithm.

The neighbors.LocalOutlierFactor (LOF) algorithm computes a score (called local outlier factor) reflect-
ing the degree of abnormality of the observations. It measures the local density deviation of a given data point with
respect to its neighbors. The idea is to detect the samples that have a substantially lower density than their neighbors.
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In practice the local density is obtained from the k-nearest neighbors. The LOF score of an observation is equal to the
ratio of the average local density of his k-nearest neighbors, and its own local density: a normal instance is expected
to have a local density similar to that of its neighbors, while abnormal data are expected to have much smaller local
density.

The number k of neighbors considered, (alias parameter n_neighbors) is typically chosen 1) greater than the minimum
number of objects a cluster has to contain, so that other objects can be local outliers relative to this cluster, and 2)
smaller than the maximum number of close by objects that can potentially be local outliers. In practice, such informa-
tions are generally not available, and taking n_neighbors=20 appears to work well in general. When the proportion of
outliers is high (i.e. greater than 10 %, as in the example below), n_neighbors should be greater (n_neighbors=35 in
the example below).

The strength of the LOF algorithm is that it takes both local and global properties of datasets into consideration: it can
perform well even in datasets where abnormal samples have different underlying densities. The question is not, how
isolated the sample is, but how isolated it is with respect to the surrounding neighborhood.

This strategy is illustrated below.

Examples:

• See Anomaly detection with Local Outlier Factor (LOF) for an illustration of the use of neighbors.
LocalOutlierFactor.

• See Outlier detection with several methods. for a comparison with other anomaly detection methods.

References:

• Breunig, Kriegel, Ng, and Sander (2000) LOF: identifying density-based local outliers. Proc. ACM SIGMOD
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One-class SVM versus Elliptic Envelope versus Isolation Forest versus LOF

Strictly-speaking, the One-class SVM is not an outlier-detection method, but a novelty-detection method: its training
set should not be contaminated by outliers as it may fit them. That said, outlier detection in high-dimension, or without
any assumptions on the distribution of the inlying data is very challenging, and a One-class SVM gives useful results
in these situations.

The examples below illustrate how the performance of the covariance.EllipticEnvelope degrades as the
data is less and less unimodal. The svm.OneClassSVM works better on data with multiple modes and ensemble.
IsolationForest and neighbors.LocalOutlierFactor perform well in every cases.
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Table 3.1: Comparing One-class SVM, Isolation Forest, LOF, and
Elliptic Envelope

For a inlier mode well-centered and ellip-
tic, the svm.OneClassSVM is not able to
benefit from the rotational symmetry of the
inlier population. In addition, it fits a bit the
outliers present in the training set. On the
opposite, the decision rule based on fitting
an covariance.EllipticEnvelope
learns an ellipse, which fits well the
inlier distribution. The ensemble.
IsolationForest and neighbors.
LocalOutlierFactor perform as well.

As the inlier distribution becomes
bimodal, the covariance.
EllipticEnvelope does not fit
well the inliers. However, we can see
that ensemble.IsolationForest,
svm.OneClassSVM and neighbors.
LocalOutlierFactor have difficulties
to detect the two modes, and that the svm.
OneClassSVM tends to overfit: because
it has no model of inliers, it interprets a
region where, by chance some outliers are
clustered, as inliers.

If the inlier distribution is strongly non
Gaussian, the svm.OneClassSVM
is able to recover a reasonable ap-
proximation as well as ensemble.
IsolationForest and neighbors.
LocalOutlierFactor, whereas the
covariance.EllipticEnvelope
completely fails.
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Examples:

• See Outlier detection with several methods. for a comparison of the svm.OneClassSVM
(tuned to perform like an outlier detection method), the ensemble.IsolationForest, the
neighbors.LocalOutlierFactor and a covariance-based outlier detection covariance.
EllipticEnvelope.

3.2.8 Density Estimation

Density estimation walks the line between unsupervised learning, feature engineering, and data modeling. Some of
the most popular and useful density estimation techniques are mixture models such as Gaussian Mixtures (sklearn.
mixture.GaussianMixture), and neighbor-based approaches such as the kernel density estimate (sklearn.
neighbors.KernelDensity). Gaussian Mixtures are discussed more fully in the context of clustering, because
the technique is also useful as an unsupervised clustering scheme.

Density estimation is a very simple concept, and most people are already familiar with one common density estimation
technique: the histogram.

Density Estimation: Histograms

A histogram is a simple visualization of data where bins are defined, and the number of data points within each bin is
tallied. An example of a histogram can be seen in the upper-left panel of the following figure:

A major problem with histograms, however, is that the choice of binning can have a disproportionate effect on the
resulting visualization. Consider the upper-right panel of the above figure. It shows a histogram over the same data,
with the bins shifted right. The results of the two visualizations look entirely different, and might lead to different
interpretations of the data.
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Intuitively, one can also think of a histogram as a stack of blocks, one block per point. By stacking the blocks in the
appropriate grid space, we recover the histogram. But what if, instead of stacking the blocks on a regular grid, we
center each block on the point it represents, and sum the total height at each location? This idea leads to the lower-left
visualization. It is perhaps not as clean as a histogram, but the fact that the data drive the block locations mean that it
is a much better representation of the underlying data.

This visualization is an example of a kernel density estimation, in this case with a top-hat kernel (i.e. a square block
at each point). We can recover a smoother distribution by using a smoother kernel. The bottom-right plot shows a
Gaussian kernel density estimate, in which each point contributes a Gaussian curve to the total. The result is a smooth
density estimate which is derived from the data, and functions as a powerful non-parametric model of the distribution
of points.

Kernel Density Estimation

Kernel density estimation in scikit-learn is implemented in the sklearn.neighbors.KernelDensity esti-
mator, which uses the Ball Tree or KD Tree for efficient queries (see Nearest Neighbors for a discussion of these).
Though the above example uses a 1D data set for simplicity, kernel density estimation can be performed in any number
of dimensions, though in practice the curse of dimensionality causes its performance to degrade in high dimensions.

In the following figure, 100 points are drawn from a bimodal distribution, and the kernel density estimates are shown
for three choices of kernels:

It’s clear how the kernel shape affects the smoothness of the resulting distribution. The scikit-learn kernel density
estimator can be used as follows:

>>> from sklearn.neighbors.kde import KernelDensity
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> kde = KernelDensity(kernel='gaussian', bandwidth=0.2).fit(X)
>>> kde.score_samples(X)
array([-0.41075698, -0.41075698, -0.41076071, -0.41075698, -0.41075698,

-0.41076071])
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Here we have used kernel='gaussian', as seen above. Mathematically, a kernel is a positive function 𝐾(𝑥;ℎ)
which is controlled by the bandwidth parameter ℎ. Given this kernel form, the density estimate at a point 𝑦 within a
group of points 𝑥𝑖; 𝑖 = 1 · · ·𝑁 is given by:

𝜌𝐾(𝑦) =

𝑁∑︁
𝑖=1

𝐾((𝑦 − 𝑥𝑖)/ℎ)

The bandwidth here acts as a smoothing parameter, controlling the tradeoff between bias and variance in the result. A
large bandwidth leads to a very smooth (i.e. high-bias) density distribution. A small bandwidth leads to an unsmooth
(i.e. high-variance) density distribution.

sklearn.neighbors.KernelDensity implements several common kernel forms, which are shown in the
following figure:

The form of these kernels is as follows:

• Gaussian kernel (kernel = 'gaussian')

𝐾(𝑥;ℎ) ∝ exp(− 𝑥2

2ℎ2 )

• Tophat kernel (kernel = 'tophat')

𝐾(𝑥;ℎ) ∝ 1 if 𝑥 < ℎ

• Epanechnikov kernel (kernel = 'epanechnikov')

𝐾(𝑥;ℎ) ∝ 1− 𝑥2

ℎ2

• Exponential kernel (kernel = 'exponential')

𝐾(𝑥;ℎ) ∝ exp(−𝑥/ℎ)

• Linear kernel (kernel = 'linear')

𝐾(𝑥;ℎ) ∝ 1− 𝑥/ℎ if 𝑥 < ℎ
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• Cosine kernel (kernel = 'cosine')

𝐾(𝑥;ℎ) ∝ cos(𝜋𝑥
2ℎ ) if 𝑥 < ℎ

The kernel density estimator can be used with any of the valid distance metrics (see sklearn.neighbors.
DistanceMetric for a list of available metrics), though the results are properly normalized only for the Euclidean
metric. One particularly useful metric is the Haversine distance which measures the angular distance between points
on a sphere. Here is an example of using a kernel density estimate for a visualization of geospatial data, in this case
the distribution of observations of two different species on the South American continent:

One other useful application of kernel density estimation is to learn a non-parametric generative model of a dataset in
order to efficiently draw new samples from this generative model. Here is an example of using this process to create a
new set of hand-written digits, using a Gaussian kernel learned on a PCA projection of the data:
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The “new” data consists of linear combinations of the input data, with weights probabilistically drawn given the KDE
model.

Examples:

• Simple 1D Kernel Density Estimation: computation of simple kernel density estimates in one dimension.

• Kernel Density Estimation: an example of using Kernel Density estimation to learn a generative model of the
hand-written digits data, and drawing new samples from this model.

• Kernel Density Estimate of Species Distributions: an example of Kernel Density estimation using the Haver-
sine distance metric to visualize geospatial data

3.2.9 Neural network models (unsupervised)

Restricted Boltzmann machines

Restricted Boltzmann machines (RBM) are unsupervised nonlinear feature learners based on a probabilistic model.
The features extracted by an RBM or a hierarchy of RBMs often give good results when fed into a linear classifier
such as a linear SVM or a perceptron.

The model makes assumptions regarding the distribution of inputs. At the moment, scikit-learn only provides
BernoulliRBM , which assumes the inputs are either binary values or values between 0 and 1, each encoding the
probability that the specific feature would be turned on.

The RBM tries to maximize the likelihood of the data using a particular graphical model. The parameter learning
algorithm used (Stochastic Maximum Likelihood) prevents the representations from straying far from the input data,
which makes them capture interesting regularities, but makes the model less useful for small datasets, and usually not
useful for density estimation.
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The method gained popularity for initializing deep neural networks with the weights of independent RBMs. This
method is known as unsupervised pre-training.

Examples:

• Restricted Boltzmann Machine features for digit classification

Graphical model and parametrization

The graphical model of an RBM is a fully-connected bipartite graph.

370 Chapter 3. User Guide

../auto_examples/neural_networks/plot_rbm_logistic_classification.html


scikit-learn user guide, Release 0.19.1

The nodes are random variables whose states depend on the state of the other nodes they are connected to. The model
is therefore parameterized by the weights of the connections, as well as one intercept (bias) term for each visible and
hidden unit, omitted from the image for simplicity.

The energy function measures the quality of a joint assignment:

𝐸(v,h) =
∑︁
𝑖

∑︁
𝑗

𝑤𝑖𝑗𝑣𝑖ℎ𝑗 +
∑︁
𝑖

𝑏𝑖𝑣𝑖 +
∑︁
𝑗

𝑐𝑗ℎ𝑗

In the formula above, b and c are the intercept vectors for the visible and hidden layers, respectively. The joint
probability of the model is defined in terms of the energy:

𝑃 (v,h) =
𝑒−𝐸(v,h)

𝑍

The word restricted refers to the bipartite structure of the model, which prohibits direct interaction between hidden
units, or between visible units. This means that the following conditional independencies are assumed:

ℎ𝑖⊥ℎ𝑗 |v
𝑣𝑖⊥𝑣𝑗 |h

The bipartite structure allows for the use of efficient block Gibbs sampling for inference.

Bernoulli Restricted Boltzmann machines

In the BernoulliRBM , all units are binary stochastic units. This means that the input data should either be binary, or
real-valued between 0 and 1 signifying the probability that the visible unit would turn on or off. This is a good model
for character recognition, where the interest is on which pixels are active and which aren’t. For images of natural
scenes it no longer fits because of background, depth and the tendency of neighbouring pixels to take the same values.

The conditional probability distribution of each unit is given by the logistic sigmoid activation function of the input it
receives:

𝑃 (𝑣𝑖 = 1|h) = 𝜎(
∑︁
𝑗

𝑤𝑖𝑗ℎ𝑗 + 𝑏𝑖)

𝑃 (ℎ𝑖 = 1|v) = 𝜎(
∑︁
𝑖

𝑤𝑖𝑗𝑣𝑖 + 𝑐𝑗)
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where 𝜎 is the logistic sigmoid function:

𝜎(𝑥) =
1

1 + 𝑒−𝑥

Stochastic Maximum Likelihood learning

The training algorithm implemented in BernoulliRBM is known as Stochastic Maximum Likelihood (SML) or
Persistent Contrastive Divergence (PCD). Optimizing maximum likelihood directly is infeasible because of the form
of the data likelihood:

log𝑃 (𝑣) = log
∑︁
ℎ

𝑒−𝐸(𝑣,ℎ) − log
∑︁
𝑥,𝑦

𝑒−𝐸(𝑥,𝑦)

For simplicity the equation above is written for a single training example. The gradient with respect to the weights is
formed of two terms corresponding to the ones above. They are usually known as the positive gradient and the negative
gradient, because of their respective signs. In this implementation, the gradients are estimated over mini-batches of
samples.

In maximizing the log-likelihood, the positive gradient makes the model prefer hidden states that are compatible with
the observed training data. Because of the bipartite structure of RBMs, it can be computed efficiently. The negative
gradient, however, is intractable. Its goal is to lower the energy of joint states that the model prefers, therefore making
it stay true to the data. It can be approximated by Markov chain Monte Carlo using block Gibbs sampling by iteratively
sampling each of 𝑣 and ℎ given the other, until the chain mixes. Samples generated in this way are sometimes referred
as fantasy particles. This is inefficient and it is difficult to determine whether the Markov chain mixes.

The Contrastive Divergence method suggests to stop the chain after a small number of iterations, 𝑘, usually even 1.
This method is fast and has low variance, but the samples are far from the model distribution.

Persistent Contrastive Divergence addresses this. Instead of starting a new chain each time the gradient is needed, and
performing only one Gibbs sampling step, in PCD we keep a number of chains (fantasy particles) that are updated 𝑘
Gibbs steps after each weight update. This allows the particles to explore the space more thoroughly.

References:

• “A fast learning algorithm for deep belief nets” G. Hinton, S. Osindero, Y.-W. Teh, 2006

• “Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient” T. Tieleman,
2008

3.3 Model selection and evaluation

3.3.1 Cross-validation: evaluating estimator performance

Learning the parameters of a prediction function and testing it on the same data is a methodological mistake: a model
that would just repeat the labels of the samples that it has just seen would have a perfect score but would fail to predict
anything useful on yet-unseen data. This situation is called overfitting. To avoid it, it is common practice when
performing a (supervised) machine learning experiment to hold out part of the available data as a test set X_test,
y_test. Note that the word “experiment” is not intended to denote academic use only, because even in commercial
settings machine learning usually starts out experimentally.

In scikit-learn a random split into training and test sets can be quickly computed with the train_test_split
helper function. Let’s load the iris data set to fit a linear support vector machine on it:
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>>> import numpy as np
>>> from sklearn.model_selection import train_test_split
>>> from sklearn import datasets
>>> from sklearn import svm

>>> iris = datasets.load_iris()
>>> iris.data.shape, iris.target.shape
((150, 4), (150,))

We can now quickly sample a training set while holding out 40% of the data for testing (evaluating) our classifier:

>>> X_train, X_test, y_train, y_test = train_test_split(
... iris.data, iris.target, test_size=0.4, random_state=0)

>>> X_train.shape, y_train.shape
((90, 4), (90,))
>>> X_test.shape, y_test.shape
((60, 4), (60,))

>>> clf = svm.SVC(kernel='linear', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.96...

When evaluating different settings (“hyperparameters”) for estimators, such as the C setting that must be manually set
for an SVM, there is still a risk of overfitting on the test set because the parameters can be tweaked until the estimator
performs optimally. This way, knowledge about the test set can “leak” into the model and evaluation metrics no longer
report on generalization performance. To solve this problem, yet another part of the dataset can be held out as a so-
called “validation set”: training proceeds on the training set, after which evaluation is done on the validation set, and
when the experiment seems to be successful, final evaluation can be done on the test set.

However, by partitioning the available data into three sets, we drastically reduce the number of samples which can be
used for learning the model, and the results can depend on a particular random choice for the pair of (train, validation)
sets.

A solution to this problem is a procedure called cross-validation (CV for short). A test set should still be held out for
final evaluation, but the validation set is no longer needed when doing CV. In the basic approach, called k-fold CV, the
training set is split into k smaller sets (other approaches are described below, but generally follow the same principles).
The following procedure is followed for each of the k “folds”:

• A model is trained using 𝑘 − 1 of the folds as training data;

• the resulting model is validated on the remaining part of the data (i.e., it is used as a test set to compute a
performance measure such as accuracy).

The performance measure reported by k-fold cross-validation is then the average of the values computed in the loop.
This approach can be computationally expensive, but does not waste too much data (as it is the case when fixing an
arbitrary test set), which is a major advantage in problem such as inverse inference where the number of samples is
very small.

Computing cross-validated metrics

The simplest way to use cross-validation is to call the cross_val_score helper function on the estimator and the
dataset.

The following example demonstrates how to estimate the accuracy of a linear kernel support vector machine on the
iris dataset by splitting the data, fitting a model and computing the score 5 consecutive times (with different splits each
time):
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>>> from sklearn.model_selection import cross_val_score
>>> clf = svm.SVC(kernel='linear', C=1)
>>> scores = cross_val_score(clf, iris.data, iris.target, cv=5)
>>> scores
array([ 0.96..., 1. ..., 0.96..., 0.96..., 1. ])

The mean score and the 95% confidence interval of the score estimate are hence given by:

>>> print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
Accuracy: 0.98 (+/- 0.03)

By default, the score computed at each CV iteration is the score method of the estimator. It is possible to change
this by using the scoring parameter:

>>> from sklearn import metrics
>>> scores = cross_val_score(
... clf, iris.data, iris.target, cv=5, scoring='f1_macro')
>>> scores
array([ 0.96..., 1. ..., 0.96..., 0.96..., 1. ])

See The scoring parameter: defining model evaluation rules for details. In the case of the Iris dataset, the samples are
balanced across target classes hence the accuracy and the F1-score are almost equal.

When the cv argument is an integer, cross_val_score uses the KFold or StratifiedKFold strategies by
default, the latter being used if the estimator derives from ClassifierMixin.

It is also possible to use other cross validation strategies by passing a cross validation iterator instead, for instance:

>>> from sklearn.model_selection import ShuffleSplit
>>> n_samples = iris.data.shape[0]
>>> cv = ShuffleSplit(n_splits=3, test_size=0.3, random_state=0)
>>> cross_val_score(clf, iris.data, iris.target, cv=cv)
...
array([ 0.97..., 0.97..., 1. ])

Data transformation with held out data

Just as it is important to test a predictor on data held-out from training, preprocessing (such as standardization,
feature selection, etc.) and similar data transformations similarly should be learnt from a training set and applied
to held-out data for prediction:

>>> from sklearn import preprocessing
>>> X_train, X_test, y_train, y_test = train_test_split(
... iris.data, iris.target, test_size=0.4, random_state=0)
>>> scaler = preprocessing.StandardScaler().fit(X_train)
>>> X_train_transformed = scaler.transform(X_train)
>>> clf = svm.SVC(C=1).fit(X_train_transformed, y_train)
>>> X_test_transformed = scaler.transform(X_test)
>>> clf.score(X_test_transformed, y_test)
0.9333...

A Pipeline makes it easier to compose estimators, providing this behavior under cross-validation:

>>> from sklearn.pipeline import make_pipeline
>>> clf = make_pipeline(preprocessing.StandardScaler(), svm.SVC(C=1))
>>> cross_val_score(clf, iris.data, iris.target, cv=cv)
...
array([ 0.97..., 0.93..., 0.95...])
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See Pipeline and FeatureUnion: combining estimators.

The cross_validate function and multiple metric evaluation

The cross_validate function differs from cross_val_score in two ways -

• It allows specifying multiple metrics for evaluation.

• It returns a dict containing training scores, fit-times and score-times in addition to the test score.

For single metric evaluation, where the scoring parameter is a string, callable or None, the keys will be -
['test_score', 'fit_time', 'score_time']

And for multiple metric evaluation, the return value is a dict with the following keys -
['test_<scorer1_name>', 'test_<scorer2_name>', 'test_<scorer...>', 'fit_time',
'score_time']

return_train_score is set to True by default. It adds train score keys for all the scorers. If train scores are not
needed, this should be set to False explicitly.

The multiple metrics can be specified either as a list, tuple or set of predefined scorer names:

>>> from sklearn.model_selection import cross_validate
>>> from sklearn.metrics import recall_score
>>> scoring = ['precision_macro', 'recall_macro']
>>> clf = svm.SVC(kernel='linear', C=1, random_state=0)
>>> scores = cross_validate(clf, iris.data, iris.target, scoring=scoring,
... cv=5, return_train_score=False)
>>> sorted(scores.keys())
['fit_time', 'score_time', 'test_precision_macro', 'test_recall_macro']
>>> scores['test_recall_macro']
array([ 0.96..., 1. ..., 0.96..., 0.96..., 1. ])

Or as a dict mapping scorer name to a predefined or custom scoring function:

>>> from sklearn.metrics.scorer import make_scorer
>>> scoring = {'prec_macro': 'precision_macro',
... 'rec_micro': make_scorer(recall_score, average='macro')}
>>> scores = cross_validate(clf, iris.data, iris.target, scoring=scoring,
... cv=5, return_train_score=True)
>>> sorted(scores.keys())
['fit_time', 'score_time', 'test_prec_macro', 'test_rec_micro',
'train_prec_macro', 'train_rec_micro']

>>> scores['train_rec_micro']
array([ 0.97..., 0.97..., 0.99..., 0.98..., 0.98...])

Here is an example of cross_validate using a single metric:

>>> scores = cross_validate(clf, iris.data, iris.target,
... scoring='precision_macro')
>>> sorted(scores.keys())
['fit_time', 'score_time', 'test_score', 'train_score']
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Obtaining predictions by cross-validation

The function cross_val_predict has a similar interface to cross_val_score, but returns, for each element
in the input, the prediction that was obtained for that element when it was in the test set. Only cross-validation
strategies that assign all elements to a test set exactly once can be used (otherwise, an exception is raised).

These prediction can then be used to evaluate the classifier:

>>> from sklearn.model_selection import cross_val_predict
>>> predicted = cross_val_predict(clf, iris.data, iris.target, cv=10)
>>> metrics.accuracy_score(iris.target, predicted)
0.973...

Note that the result of this computation may be slightly different from those obtained using cross_val_score as
the elements are grouped in different ways.

The available cross validation iterators are introduced in the following section.

Examples

• Receiver Operating Characteristic (ROC) with cross validation,

• Recursive feature elimination with cross-validation,

• Parameter estimation using grid search with cross-validation,

• Sample pipeline for text feature extraction and evaluation,

• Plotting Cross-Validated Predictions,

• Nested versus non-nested cross-validation.

Cross validation iterators

The following sections list utilities to generate indices that can be used to generate dataset splits according to different
cross validation strategies.

Cross-validation iterators for i.i.d. data

Assuming that some data is Independent and Identically Distributed (i.i.d.) is making the assumption that all samples
stem from the same generative process and that the generative process is assumed to have no memory of past generated
samples.

The following cross-validators can be used in such cases.

NOTE

While i.i.d. data is a common assumption in machine learning theory, it rarely holds in practice. If one knows that
the samples have been generated using a time-dependent process, it’s safer to use a time-series aware cross-validation
scheme Similarly if we know that the generative process has a group structure (samples from collected from different
subjects, experiments, measurement devices) it safer to use group-wise cross-validation.

K-fold

KFold divides all the samples in 𝑘 groups of samples, called folds (if 𝑘 = 𝑛, this is equivalent to the Leave One Out
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strategy), of equal sizes (if possible). The prediction function is learned using 𝑘− 1 folds, and the fold left out is used
for test.

Example of 2-fold cross-validation on a dataset with 4 samples:

>>> import numpy as np
>>> from sklearn.model_selection import KFold

>>> X = ["a", "b", "c", "d"]
>>> kf = KFold(n_splits=2)
>>> for train, test in kf.split(X):
... print("%s %s" % (train, test))
[2 3] [0 1]
[0 1] [2 3]

Each fold is constituted by two arrays: the first one is related to the training set, and the second one to the test set.
Thus, one can create the training/test sets using numpy indexing:

>>> X = np.array([[0., 0.], [1., 1.], [-1., -1.], [2., 2.]])
>>> y = np.array([0, 1, 0, 1])
>>> X_train, X_test, y_train, y_test = X[train], X[test], y[train], y[test]

Repeated K-Fold

RepeatedKFold repeats K-Fold n times. It can be used when one requires to run KFold n times, producing
different splits in each repetition.

Example of 2-fold K-Fold repeated 2 times:

>>> import numpy as np
>>> from sklearn.model_selection import RepeatedKFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> random_state = 12883823
>>> rkf = RepeatedKFold(n_splits=2, n_repeats=2, random_state=random_state)
>>> for train, test in rkf.split(X):
... print("%s %s" % (train, test))
...
[2 3] [0 1]
[0 1] [2 3]
[0 2] [1 3]
[1 3] [0 2]

Similarly, RepeatedStratifiedKFold repeats Stratified K-Fold n times with different randomization in each
repetition.

Leave One Out (LOO)

LeaveOneOut (or LOO) is a simple cross-validation. Each learning set is created by taking all the samples except
one, the test set being the sample left out. Thus, for 𝑛 samples, we have 𝑛 different training sets and 𝑛 different tests
set. This cross-validation procedure does not waste much data as only one sample is removed from the training set:

>>> from sklearn.model_selection import LeaveOneOut

>>> X = [1, 2, 3, 4]
>>> loo = LeaveOneOut()
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>>> for train, test in loo.split(X):
... print("%s %s" % (train, test))
[1 2 3] [0]
[0 2 3] [1]
[0 1 3] [2]
[0 1 2] [3]

Potential users of LOO for model selection should weigh a few known caveats. When compared with 𝑘-fold cross
validation, one builds 𝑛 models from 𝑛 samples instead of 𝑘 models, where 𝑛 > 𝑘. Moreover, each is trained on 𝑛− 1
samples rather than (𝑘 − 1)𝑛/𝑘. In both ways, assuming 𝑘 is not too large and 𝑘 < 𝑛, LOO is more computationally
expensive than 𝑘-fold cross validation.

In terms of accuracy, LOO often results in high variance as an estimator for the test error. Intuitively, since 𝑛 − 1 of
the 𝑛 samples are used to build each model, models constructed from folds are virtually identical to each other and to
the model built from the entire training set.

However, if the learning curve is steep for the training size in question, then 5- or 10- fold cross validation can
overestimate the generalization error.

As a general rule, most authors, and empirical evidence, suggest that 5- or 10- fold cross validation should be preferred
to LOO.

References:

• http://www.faqs.org/faqs/ai-faq/neural-nets/part3/section-12.html;

• T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer 2009

• L. Breiman, P. Spector Submodel selection and evaluation in regression: The X-random case, International
Statistical Review 1992;

• R. Kohavi, A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, Intl.
Jnt. Conf. AI

• R. Bharat Rao, G. Fung, R. Rosales, On the Dangers of Cross-Validation. An Experimental Evaluation, SIAM
2008;

• G. James, D. Witten, T. Hastie, R Tibshirani, An Introduction to Statistical Learning, Springer 2013.

Leave P Out (LPO)

LeavePOut is very similar to LeaveOneOut as it creates all the possible training/test sets by removing 𝑝 samples
from the complete set. For 𝑛 samples, this produces

(︀
𝑛
𝑝

)︀
train-test pairs. Unlike LeaveOneOut and KFold, the test

sets will overlap for 𝑝 > 1.

Example of Leave-2-Out on a dataset with 4 samples:

>>> from sklearn.model_selection import LeavePOut

>>> X = np.ones(4)
>>> lpo = LeavePOut(p=2)
>>> for train, test in lpo.split(X):
... print("%s %s" % (train, test))
[2 3] [0 1]
[1 3] [0 2]
[1 2] [0 3]
[0 3] [1 2]
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[0 2] [1 3]
[0 1] [2 3]

Random permutations cross-validation a.k.a. Shuffle & Split

ShuffleSplit

The ShuffleSplit iterator will generate a user defined number of independent train / test dataset splits. Samples
are first shuffled and then split into a pair of train and test sets.

It is possible to control the randomness for reproducibility of the results by explicitly seeding the random_state
pseudo random number generator.

Here is a usage example:

>>> from sklearn.model_selection import ShuffleSplit
>>> X = np.arange(5)
>>> ss = ShuffleSplit(n_splits=3, test_size=0.25,
... random_state=0)
>>> for train_index, test_index in ss.split(X):
... print("%s %s" % (train_index, test_index))
...
[1 3 4] [2 0]
[1 4 3] [0 2]
[4 0 2] [1 3]

ShuffleSplit is thus a good alternative to KFold cross validation that allows a finer control on the number of
iterations and the proportion of samples on each side of the train / test split.

Cross-validation iterators with stratification based on class labels.

Some classification problems can exhibit a large imbalance in the distribution of the target classes: for instance there
could be several times more negative samples than positive samples. In such cases it is recommended to use stratified
sampling as implemented in StratifiedKFold and StratifiedShuffleSplit to ensure that relative class
frequencies is approximately preserved in each train and validation fold.

Stratified k-fold

StratifiedKFold is a variation of k-fold which returns stratified folds: each set contains approximately the same
percentage of samples of each target class as the complete set.

Example of stratified 3-fold cross-validation on a dataset with 10 samples from two slightly unbalanced classes:

>>> from sklearn.model_selection import StratifiedKFold

>>> X = np.ones(10)
>>> y = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
>>> skf = StratifiedKFold(n_splits=3)
>>> for train, test in skf.split(X, y):
... print("%s %s" % (train, test))
[2 3 6 7 8 9] [0 1 4 5]
[0 1 3 4 5 8 9] [2 6 7]
[0 1 2 4 5 6 7] [3 8 9]
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RepeatedStratifiedKFold can be used to repeat Stratified K-Fold n times with different randomization in each
repetition.

Stratified Shuffle Split

StratifiedShuffleSplit is a variation of ShuffleSplit, which returns stratified splits, i.e which creates splits
by preserving the same percentage for each target class as in the complete set.

Cross-validation iterators for grouped data.

The i.i.d. assumption is broken if the underlying generative process yield groups of dependent samples.

Such a grouping of data is domain specific. An example would be when there is medical data collected from multiple
patients, with multiple samples taken from each patient. And such data is likely to be dependent on the individual
group. In our example, the patient id for each sample will be its group identifier.

In this case we would like to know if a model trained on a particular set of groups generalizes well to the unseen
groups. To measure this, we need to ensure that all the samples in the validation fold come from groups that are not
represented at all in the paired training fold.

The following cross-validation splitters can be used to do that. The grouping identifier for the samples is specified via
the groups parameter.

Group k-fold

GroupKFold is a variation of k-fold which ensures that the same group is not represented in both testing and training
sets. For example if the data is obtained from different subjects with several samples per-subject and if the model is
flexible enough to learn from highly person specific features it could fail to generalize to new subjects. GroupKFold
makes it possible to detect this kind of overfitting situations.

Imagine you have three subjects, each with an associated number from 1 to 3:

>>> from sklearn.model_selection import GroupKFold

>>> X = [0.1, 0.2, 2.2, 2.4, 2.3, 4.55, 5.8, 8.8, 9, 10]
>>> y = ["a", "b", "b", "b", "c", "c", "c", "d", "d", "d"]
>>> groups = [1, 1, 1, 2, 2, 2, 3, 3, 3, 3]

>>> gkf = GroupKFold(n_splits=3)
>>> for train, test in gkf.split(X, y, groups=groups):
... print("%s %s" % (train, test))
[0 1 2 3 4 5] [6 7 8 9]
[0 1 2 6 7 8 9] [3 4 5]
[3 4 5 6 7 8 9] [0 1 2]

Each subject is in a different testing fold, and the same subject is never in both testing and training. Notice that the
folds do not have exactly the same size due to the imbalance in the data.

Leave One Group Out

LeaveOneGroupOut is a cross-validation scheme which holds out the samples according to a third-party provided
array of integer groups. This group information can be used to encode arbitrary domain specific pre-defined cross-
validation folds.
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Each training set is thus constituted by all the samples except the ones related to a specific group.

For example, in the cases of multiple experiments, LeaveOneGroupOut can be used to create a cross-validation
based on the different experiments: we create a training set using the samples of all the experiments except one:

>>> from sklearn.model_selection import LeaveOneGroupOut

>>> X = [1, 5, 10, 50, 60, 70, 80]
>>> y = [0, 1, 1, 2, 2, 2, 2]
>>> groups = [1, 1, 2, 2, 3, 3, 3]
>>> logo = LeaveOneGroupOut()
>>> for train, test in logo.split(X, y, groups=groups):
... print("%s %s" % (train, test))
[2 3 4 5 6] [0 1]
[0 1 4 5 6] [2 3]
[0 1 2 3] [4 5 6]

Another common application is to use time information: for instance the groups could be the year of collection of the
samples and thus allow for cross-validation against time-based splits.

Leave P Groups Out

LeavePGroupsOut is similar as LeaveOneGroupOut, but removes samples related to 𝑃 groups for each train-
ing/test set.

Example of Leave-2-Group Out:

>>> from sklearn.model_selection import LeavePGroupsOut

>>> X = np.arange(6)
>>> y = [1, 1, 1, 2, 2, 2]
>>> groups = [1, 1, 2, 2, 3, 3]
>>> lpgo = LeavePGroupsOut(n_groups=2)
>>> for train, test in lpgo.split(X, y, groups=groups):
... print("%s %s" % (train, test))
[4 5] [0 1 2 3]
[2 3] [0 1 4 5]
[0 1] [2 3 4 5]

Group Shuffle Split

The GroupShuffleSplit iterator behaves as a combination of ShuffleSplit and LeavePGroupsOut, and
generates a sequence of randomized partitions in which a subset of groups are held out for each split.

Here is a usage example:

>>> from sklearn.model_selection import GroupShuffleSplit

>>> X = [0.1, 0.2, 2.2, 2.4, 2.3, 4.55, 5.8, 0.001]
>>> y = ["a", "b", "b", "b", "c", "c", "c", "a"]
>>> groups = [1, 1, 2, 2, 3, 3, 4, 4]
>>> gss = GroupShuffleSplit(n_splits=4, test_size=0.5, random_state=0)
>>> for train, test in gss.split(X, y, groups=groups):
... print("%s %s" % (train, test))
...
[0 1 2 3] [4 5 6 7]
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[2 3 6 7] [0 1 4 5]
[2 3 4 5] [0 1 6 7]
[4 5 6 7] [0 1 2 3]

This class is useful when the behavior of LeavePGroupsOut is desired, but the number of groups is large enough
that generating all possible partitions with 𝑃 groups withheld would be prohibitively expensive. In such a sce-
nario, GroupShuffleSplit provides a random sample (with replacement) of the train / test splits generated by
LeavePGroupsOut.

Predefined Fold-Splits / Validation-Sets

For some datasets, a pre-defined split of the data into training- and validation fold or into several cross-validation folds
already exists. Using PredefinedSplit it is possible to use these folds e.g. when searching for hyperparameters.

For example, when using a validation set, set the test_fold to 0 for all samples that are part of the validation set,
and to -1 for all other samples.

Cross validation of time series data

Time series data is characterised by the correlation between observations that are near in time (autocorrelation). How-
ever, classical cross-validation techniques such as KFold and ShuffleSplit assume the samples are independent
and identically distributed, and would result in unreasonable correlation between training and testing instances (yield-
ing poor estimates of generalisation error) on time series data. Therefore, it is very important to evaluate our model
for time series data on the “future” observations least like those that are used to train the model. To achieve this, one
solution is provided by TimeSeriesSplit.

Time Series Split

TimeSeriesSplit is a variation of k-fold which returns first 𝑘 folds as train set and the (𝑘 + 1) th fold as test set.
Note that unlike standard cross-validation methods, successive training sets are supersets of those that come before
them. Also, it adds all surplus data to the first training partition, which is always used to train the model.

This class can be used to cross-validate time series data samples that are observed at fixed time intervals.

Example of 3-split time series cross-validation on a dataset with 6 samples:

>>> from sklearn.model_selection import TimeSeriesSplit

>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> tscv = TimeSeriesSplit(n_splits=3)
>>> print(tscv)
TimeSeriesSplit(max_train_size=None, n_splits=3)
>>> for train, test in tscv.split(X):
... print("%s %s" % (train, test))
[0 1 2] [3]
[0 1 2 3] [4]
[0 1 2 3 4] [5]
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A note on shuffling

If the data ordering is not arbitrary (e.g. samples with the same class label are contiguous), shuffling it first may
be essential to get a meaningful cross- validation result. However, the opposite may be true if the samples are not
independently and identically distributed. For example, if samples correspond to news articles, and are ordered by
their time of publication, then shuffling the data will likely lead to a model that is overfit and an inflated validation
score: it will be tested on samples that are artificially similar (close in time) to training samples.

Some cross validation iterators, such as KFold, have an inbuilt option to shuffle the data indices before splitting them.
Note that:

• This consumes less memory than shuffling the data directly.

• By default no shuffling occurs, including for the (stratified) K fold cross- validation performed by specifying
cv=some_integer to cross_val_score, grid search, etc. Keep in mind that train_test_split
still returns a random split.

• The random_state parameter defaults to None, meaning that the shuffling will be different every time
KFold(..., shuffle=True) is iterated. However, GridSearchCV will use the same shuffling for
each set of parameters validated by a single call to its fit method.

• To get identical results for each split, set random_state to an integer.

Cross validation and model selection

Cross validation iterators can also be used to directly perform model selection using Grid Search for the optimal
hyperparameters of the model. This is the topic of the next section: Tuning the hyper-parameters of an estimator.

3.3.2 Tuning the hyper-parameters of an estimator

Hyper-parameters are parameters that are not directly learnt within estimators. In scikit-learn they are passed as
arguments to the constructor of the estimator classes. Typical examples include C, kernel and gamma for Support
Vector Classifier, alpha for Lasso, etc.

It is possible and recommended to search the hyper-parameter space for the best cross validation score.

Any parameter provided when constructing an estimator may be optimized in this manner. Specifically, to find the
names and current values for all parameters for a given estimator, use:

estimator.get_params()

A search consists of:

• an estimator (regressor or classifier such as sklearn.svm.SVC());

• a parameter space;

• a method for searching or sampling candidates;

• a cross-validation scheme; and

• a score function.

Some models allow for specialized, efficient parameter search strategies, outlined below. Two generic approaches to
sampling search candidates are provided in scikit-learn: for given values, GridSearchCV exhaustively considers all
parameter combinations, while RandomizedSearchCV can sample a given number of candidates from a parameter
space with a specified distribution. After describing these tools we detail best practice applicable to both approaches.

Note that it is common that a small subset of those parameters can have a large impact on the predictive or computation
performance of the model while others can be left to their default values. It is recommended to read the docstring of
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the estimator class to get a finer understanding of their expected behavior, possibly by reading the enclosed reference
to the literature.

Exhaustive Grid Search

The grid search provided by GridSearchCV exhaustively generates candidates from a grid of parameter values
specified with the param_grid parameter. For instance, the following param_grid:

param_grid = [
{'C': [1, 10, 100, 1000], 'kernel': ['linear']},
{'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']},

]

specifies that two grids should be explored: one with a linear kernel and C values in [1, 10, 100, 1000], and the second
one with an RBF kernel, and the cross-product of C values ranging in [1, 10, 100, 1000] and gamma values in [0.001,
0.0001].

The GridSearchCV instance implements the usual estimator API: when “fitting” it on a dataset all the possible
combinations of parameter values are evaluated and the best combination is retained.

Examples:

• See Parameter estimation using grid search with cross-validation for an example of Grid Search computation
on the digits dataset.

• See Sample pipeline for text feature extraction and evaluation for an example of Grid Search coupling pa-
rameters from a text documents feature extractor (n-gram count vectorizer and TF-IDF transformer) with a
classifier (here a linear SVM trained with SGD with either elastic net or L2 penalty) using a pipeline.
Pipeline instance.

• See Nested versus non-nested cross-validation for an example of Grid Search within a cross validation loop
on the iris dataset. This is the best practice for evaluating the performance of a model with grid search.

• See Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV for an example of
GridSearchCV being used to evaluate multiple metrics simultaneously.

Randomized Parameter Optimization

While using a grid of parameter settings is currently the most widely used method for parameter optimization, other
search methods have more favourable properties. RandomizedSearchCV implements a randomized search over
parameters, where each setting is sampled from a distribution over possible parameter values. This has two main
benefits over an exhaustive search:

• A budget can be chosen independent of the number of parameters and possible values.

• Adding parameters that do not influence the performance does not decrease efficiency.

Specifying how parameters should be sampled is done using a dictionary, very similar to specifying parameters for
GridSearchCV . Additionally, a computation budget, being the number of sampled candidates or sampling itera-
tions, is specified using the n_iter parameter. For each parameter, either a distribution over possible values or a list
of discrete choices (which will be sampled uniformly) can be specified:

{'C': scipy.stats.expon(scale=100), 'gamma': scipy.stats.expon(scale=.1),
'kernel': ['rbf'], 'class_weight':['balanced', None]}
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This example uses the scipy.stats module, which contains many useful distributions for sampling parameters,
such as expon, gamma, uniform or randint. In principle, any function can be passed that provides a rvs
(random variate sample) method to sample a value. A call to the rvs function should provide independent random
samples from possible parameter values on consecutive calls.

Warning: The distributions in scipy.stats prior to version scipy 0.16 do not allow specifying a
random state. Instead, they use the global numpy random state, that can be seeded via np.random.
seed or set using np.random.set_state. However, beginning scikit-learn 0.18, the sklearn.
model_selection module sets the random state provided by the user if scipy >= 0.16 is also
available.

For continuous parameters, such as C above, it is important to specify a continuous distribution to take full advantage
of the randomization. This way, increasing n_iter will always lead to a finer search.

Examples:

• Comparing randomized search and grid search for hyperparameter estimation compares the usage and effi-
ciency of randomized search and grid search.

References:

• Bergstra, J. and Bengio, Y., Random search for hyper-parameter optimization, The Journal of Machine Learn-
ing Research (2012)

Tips for parameter search

Specifying an objective metric

By default, parameter search uses the score function of the estimator to evaluate a parameter setting. These are
the sklearn.metrics.accuracy_score for classification and sklearn.metrics.r2_score for regres-
sion. For some applications, other scoring functions are better suited (for example in unbalanced classification, the
accuracy score is often uninformative). An alternative scoring function can be specified via the scoring parameter
to GridSearchCV , RandomizedSearchCV and many of the specialized cross-validation tools described below.
See The scoring parameter: defining model evaluation rules for more details.

Specifying multiple metrics for evaluation

GridSearchCV and RandomizedSearchCV allow specifying multiple metrics for the scoring parameter.

Multimetric scoring can either be specified as a list of strings of predefined scores names or a dict mapping the scorer
name to the scorer function and/or the predefined scorer name(s). See Using multiple metric evaluation for more
details.

When specifying multiple metrics, the refit parameter must be set to the metric (string) for which the
best_params_ will be found and used to build the best_estimator_ on the whole dataset. If the search
should not be refit, set refit=False. Leaving refit to the default value None will result in an error when using
multiple metrics.

See Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV for an example usage.
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Composite estimators and parameter spaces

Pipeline: chaining estimators describes building composite estimators whose parameter space can be searched with
these tools.

Model selection: development and evaluation

Model selection by evaluating various parameter settings can be seen as a way to use the labeled data to “train” the
parameters of the grid.

When evaluating the resulting model it is important to do it on held-out samples that were not seen during the grid
search process: it is recommended to split the data into a development set (to be fed to the GridSearchCV instance)
and an evaluation set to compute performance metrics.

This can be done by using the train_test_split utility function.

Parallelism

GridSearchCV and RandomizedSearchCV evaluate each parameter setting independently. Computations can
be run in parallel if your OS supports it, by using the keyword n_jobs=-1. See function signature for more details.

Robustness to failure

Some parameter settings may result in a failure to fit one or more folds of the data. By default, this will cause
the entire search to fail, even if some parameter settings could be fully evaluated. Setting error_score=0 (or
=np.NaN) will make the procedure robust to such failure, issuing a warning and setting the score for that fold to 0 (or
NaN), but completing the search.

Alternatives to brute force parameter search

Model specific cross-validation

Some models can fit data for a range of values of some parameter almost as efficiently as fitting the estimator for
a single value of the parameter. This feature can be leveraged to perform a more efficient cross-validation used for
model selection of this parameter.

The most common parameter amenable to this strategy is the parameter encoding the strength of the regularizer. In
this case we say that we compute the regularization path of the estimator.

Here is the list of such models:

linear_model.ElasticNetCV ([l1_ratio, eps, . . . ]) Elastic Net model with iterative fitting along a regulariza-
tion path

linear_model.LarsCV ([fit_intercept, . . . ]) Cross-validated Least Angle Regression model
linear_model.LassoCV ([eps, n_alphas, . . . ]) Lasso linear model with iterative fitting along a regulariza-

tion path
linear_model.LassoLarsCV ([fit_intercept, . . . ]) Cross-validated Lasso, using the LARS algorithm
linear_model.LogisticRegressionCV ([Cs,
. . . ])

Logistic Regression CV (aka logit, MaxEnt) classifier.

linear_model.MultiTaskElasticNetCV ([. . . ]) Multi-task L1/L2 ElasticNet with built-in cross-validation.
Continued on next page
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Table 3.2 – continued from previous page
linear_model.MultiTaskLassoCV ([eps, . . . ]) Multi-task L1/L2 Lasso with built-in cross-validation.
linear_model.OrthogonalMatchingPursuitCV ([. . . ])Cross-validated Orthogonal Matching Pursuit model

(OMP)
linear_model.RidgeCV ([alphas, . . . ]) Ridge regression with built-in cross-validation.
linear_model.RidgeClassifierCV ([alphas,
. . . ])

Ridge classifier with built-in cross-validation.

sklearn.linear_model.ElasticNetCV

class sklearn.linear_model.ElasticNetCV(l1_ratio=0.5, eps=0.001, n_alphas=100, al-
phas=None, fit_intercept=True, normalize=False,
precompute=’auto’, max_iter=1000, tol=0.0001,
cv=None, copy_X=True, verbose=0, n_jobs=1, posi-
tive=False, random_state=None, selection=’cyclic’)

Elastic Net model with iterative fitting along a regularization path

The best model is selected by cross-validation.

Read more in the User Guide.

Parameters l1_ratio : float or array of floats, optional

float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For
l1_ratio = 0 the penalty is an L2 penalty. For l1_ratio = 1 it is an L1 penalty.
For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2 This parameter
can be a list, in which case the different values are tested by cross-validation and the
one giving the best prediction score is used. Note that a good choice of list of values
for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e.
Ridge), as in [.1, .5, .7, .9, .95, .99, 1]

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

n_alphas : int, optional

Number of alphas along the regularization path, used for each l1_ratio.

alphas : numpy array, optional

List of alphas where to compute the models. If None alphas are set automatically

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

max_iter : int, optional
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The maximum number of iterations

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

verbose : bool or integer

Amount of verbosity.

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs.

positive : bool, optional

When set to True, forces the coefficients to be positive.

random_state : int, RandomState instance or None, optional, default None

The seed of the pseudo random number generator that selects a random feature to up-
date. If int, random_state is the seed used by the random number generator; If Ran-
domState instance, random_state is the random number generator; If None, the ran-
dom number generator is the RandomState instance used by np.random. Used when
selection == ‘random’.

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4.

Attributes alpha_ : float

The amount of penalization chosen by cross validation

l1_ratio_ : float

The compromise between l1 and l2 penalization chosen by cross validation

coef_ : array, shape (n_features,) | (n_targets, n_features)

Parameter vector (w in the cost function formula),

intercept_ : float | array, shape (n_targets, n_features)

Independent term in the decision function.
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mse_path_ : array, shape (n_l1_ratio, n_alpha, n_folds)

Mean square error for the test set on each fold, varying l1_ratio and alpha.

alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas)

The grid of alphas used for fitting, for each l1_ratio.

n_iter_ : int

number of iterations run by the coordinate descent solver to reach the specified tolerance
for the optimal alpha.

See also:

enet_path, ElasticNet

Notes

For an example, see examples/linear_model/plot_lasso_model_selection.py.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda
parameter in glmnet. More specifically, the optimization objective is:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:

a * L1 + b * L2

for:

alpha = a + b and l1_ratio = a / (a + b).

Examples

>>> from sklearn.linear_model import ElasticNetCV
>>> from sklearn.datasets import make_regression
>>>
>>> X, y = make_regression(n_features=2, random_state=0)
>>> regr = ElasticNetCV(cv=5, random_state=0)
>>> regr.fit(X, y)
ElasticNetCV(alphas=None, copy_X=True, cv=5, eps=0.001, fit_intercept=True,

l1_ratio=0.5, max_iter=1000, n_alphas=100, n_jobs=1,
normalize=False, positive=False, precompute='auto', random_state=0,
selection='cyclic', tol=0.0001, verbose=0)

>>> print(regr.alpha_)
0.19947279427
>>> print(regr.intercept_)
0.398882965428
>>> print(regr.predict([[0, 0]]))
[ 0.39888297]
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Methods

fit(X, y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y[, l1_ratio, eps, n_alphas, . . . ]) Compute elastic net path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normal-
ize=False, precompute=’auto’, max_iter=1000, tol=0.0001, cv=None, copy_X=True, ver-
bose=0, n_jobs=1, positive=False, random_state=None, selection=’cyclic’)

fit(X, y)
Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

Parameters X : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output, X can be sparse.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

static path(X, y, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’,
Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, posi-
tive=False, check_input=True, **params)

Compute elastic net path with coordinate descent

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:
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||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters X : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,) or (n_samples, n_outputs)

Target values

l1_ratio : float, optional

float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties).
l1_ratio=1 corresponds to the Lasso

eps : float

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

return_n_iter : bool

whether to return the number of iterations or not.

positive : bool, default False

If set to True, forces coefficients to be positive. (Only allowed when y.ndim == 1).

check_input : bool, default True

Skip input validation checks, including the Gram matrix when provided assuming there
are handled by the caller when check_input=False.

**params : kwargs

3.3. Model selection and evaluation 391



scikit-learn user guide, Release 0.19.1

keyword arguments passed to the coordinate descent solver.

Returns alphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha. (Is returned when return_n_iter is set to True).

See also:

MultiTaskElasticNet, MultiTaskElasticNetCV , ElasticNet, ElasticNetCV

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.
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The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.LarsCV

class sklearn.linear_model.LarsCV(fit_intercept=True, verbose=False, max_iter=500, normal-
ize=True, precompute=’auto’, cv=None, max_n_alphas=1000,
n_jobs=1, eps=2.2204460492503131e-16, copy_X=True, posi-
tive=False)

Cross-validated Least Angle Regression model

Read more in the User Guide.

Parameters fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

max_iter : integer, optional

Maximum number of iterations to perform.

normalize : boolean, optional, default True

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix cannot be passed as argument since we will use only
subsets of X.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

max_n_alphas : integer, optional

The maximum number of points on the path used to compute the residuals in the cross-
validation

n_jobs : integer, optional
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Number of CPUs to use during the cross validation. If -1, use all the CPUs

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

positive : boolean (default=False)

Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept
which is set True by default.

Attributes coef_ : array, shape (n_features,)

parameter vector (w in the formulation formula)

intercept_ : float

independent term in decision function

coef_path_ : array, shape (n_features, n_alphas)

the varying values of the coefficients along the path

alpha_ : float

the estimated regularization parameter alpha

alphas_ : array, shape (n_alphas,)

the different values of alpha along the path

cv_alphas_ : array, shape (n_cv_alphas,)

all the values of alpha along the path for the different folds

mse_path_ : array, shape (n_folds, n_cv_alphas)

the mean square error on left-out for each fold along the path (alpha values given by
cv_alphas)

n_iter_ : array-like or int

the number of iterations run by Lars with the optimal alpha.

See also:

lars_path, LassoLars, LassoLarsCV

Methods

fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.
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__init__(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute=’auto’,
cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True,
positive=False)

alpha
DEPRECATED: Attribute alpha is deprecated in 0.19 and will be removed in 0.21. See alpha_ instead

cv_mse_path_
DEPRECATED: Attribute cv_mse_path_ is deprecated in 0.18 and will be removed in 0.20. Use
mse_path_ instead

fit(X, y)
Fit the model using X, y as training data.

Parameters X : array-like, shape (n_samples, n_features)

Training data.

y : array-like, shape (n_samples,)

Target values.

Returns self : object

returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.
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Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.LassoCV

class sklearn.linear_model.LassoCV(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True,
normalize=False, precompute=’auto’, max_iter=1000,
tol=0.0001, copy_X=True, cv=None, verbose=False,
n_jobs=1, positive=False, random_state=None, selec-
tion=’cyclic’)

Lasso linear model with iterative fitting along a regularization path

The best model is selected by cross-validation.

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Read more in the User Guide.

Parameters eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

n_alphas : int, optional

Number of alphas along the regularization path

alphas : numpy array, optional

List of alphas where to compute the models. If None alphas are set automatically

fit_intercept : boolean, default True

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

max_iter : int, optional

The maximum number of iterations

tol : float, optional
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The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

verbose : bool or integer

Amount of verbosity.

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs.

positive : bool, optional

If positive, restrict regression coefficients to be positive

random_state : int, RandomState instance or None, optional, default None

The seed of the pseudo random number generator that selects a random feature to up-
date. If int, random_state is the seed used by the random number generator; If Ran-
domState instance, random_state is the random number generator; If None, the ran-
dom number generator is the RandomState instance used by np.random. Used when
selection == ‘random’.

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4.

Attributes alpha_ : float

The amount of penalization chosen by cross validation

coef_ : array, shape (n_features,) | (n_targets, n_features)

parameter vector (w in the cost function formula)

intercept_ : float | array, shape (n_targets,)

independent term in decision function.

mse_path_ : array, shape (n_alphas, n_folds)

mean square error for the test set on each fold, varying alpha

alphas_ : numpy array, shape (n_alphas,)

The grid of alphas used for fitting
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dual_gap_ : ndarray, shape ()

The dual gap at the end of the optimization for the optimal alpha (alpha_).

n_iter_ : int

number of iterations run by the coordinate descent solver to reach the specified tolerance
for the optimal alpha.

See also:

lars_path, lasso_path, LassoLars, Lasso, LassoLarsCV

Notes

For an example, see examples/linear_model/plot_lasso_model_selection.py.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Methods

fit(X, y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y[, eps, n_alphas, alphas, . . . ]) Compute Lasso path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, pre-
compute=’auto’, max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False,
n_jobs=1, positive=False, random_state=None, selection=’cyclic’)

fit(X, y)
Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

Parameters X : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output, X can be sparse.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.
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static path(X, y, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’, Xy=None,
copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False,
**params)

Compute Lasso path with coordinate descent

The Lasso optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,), or (n_samples, n_outputs)

Target values

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

return_n_iter : bool
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whether to return the number of iterations or not.

positive : bool, default False

If set to True, forces coefficients to be positive. (Only allowed when y.ndim == 1).

**params : kwargs

keyword arguments passed to the coordinate descent solver.

Returns alphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha.

See also:

lars_path, Lasso, LassoLars, LassoCV , LassoLarsCV , sklearn.decomposition.
sparse_encode

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In
particular, linear interpolation can be used to retrieve model coefficients between the values output by
lars_path

Examples

Comparing lasso_path and lars_path with interpolation:

>>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T
>>> y = np.array([1, 2, 3.1])
>>> # Use lasso_path to compute a coefficient path
>>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5])
>>> print(coef_path)
[[ 0. 0. 0.46874778]
[ 0.2159048 0.4425765 0.23689075]]

>>> # Now use lars_path and 1D linear interpolation to compute the
>>> # same path
>>> from sklearn.linear_model import lars_path
>>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso')
>>> from scipy import interpolate
>>> coef_path_continuous = interpolate.interp1d(alphas[::-1],
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... coef_path_lars[:, ::-1])
>>> print(coef_path_continuous([5., 1., .5]))
[[ 0. 0. 0.46915237]
[ 0.2159048 0.4425765 0.23668876]]

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.linear_model.LassoCV

• Cross-validation on diabetes Dataset Exercise

• Feature selection using SelectFromModel and LassoCV

• Lasso model selection: Cross-Validation / AIC / BIC
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sklearn.linear_model.LassoLarsCV

class sklearn.linear_model.LassoLarsCV(fit_intercept=True, verbose=False, max_iter=500,
normalize=True, precompute=’auto’,
cv=None, max_n_alphas=1000, n_jobs=1,
eps=2.2204460492503131e-16, copy_X=True, posi-
tive=False)

Cross-validated Lasso, using the LARS algorithm

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Read more in the User Guide.

Parameters fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

max_iter : integer, optional

Maximum number of iterations to perform.

normalize : boolean, optional, default True

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

precompute : True | False | ‘auto’

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix cannot be passed as argument since we will use only
subsets of X.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

max_n_alphas : integer, optional

The maximum number of points on the path used to compute the residuals in the cross-
validation

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs
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eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

positive : boolean (default=False)

Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept
which is set True by default. Under the positive restriction the model coefficients do
not converge to the ordinary-least-squares solution for small values of alpha. Only co-
efficients up to the smallest alpha value (alphas_[alphas_ > 0.].min() when
fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congru-
ence with the solution of the coordinate descent Lasso estimator. As a consequence
using LassoLarsCV only makes sense for problems where a sparse solution is expected
and/or reached.

Attributes coef_ : array, shape (n_features,)

parameter vector (w in the formulation formula)

intercept_ : float

independent term in decision function.

coef_path_ : array, shape (n_features, n_alphas)

the varying values of the coefficients along the path

alpha_ : float

the estimated regularization parameter alpha

alphas_ : array, shape (n_alphas,)

the different values of alpha along the path

cv_alphas_ : array, shape (n_cv_alphas,)

all the values of alpha along the path for the different folds

mse_path_ : array, shape (n_folds, n_cv_alphas)

the mean square error on left-out for each fold along the path (alpha values given by
cv_alphas)

n_iter_ : array-like or int

the number of iterations run by Lars with the optimal alpha.

See also:

lars_path, LassoLars, LarsCV , LassoCV

Notes

The object solves the same problem as the LassoCV object. However, unlike the LassoCV, it find the relevant
alphas values by itself. In general, because of this property, it will be more stable. However, it is more fragile to
heavily multicollinear datasets.

It is more efficient than the LassoCV if only a small number of features are selected compared to the total
number, for instance if there are very few samples compared to the number of features.
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Methods

fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute=’auto’,
cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True,
positive=False)

alpha
DEPRECATED: Attribute alpha is deprecated in 0.19 and will be removed in 0.21. See alpha_ instead

cv_mse_path_
DEPRECATED: Attribute cv_mse_path_ is deprecated in 0.18 and will be removed in 0.20. Use
mse_path_ instead

fit(X, y)
Fit the model using X, y as training data.

Parameters X : array-like, shape (n_samples, n_features)

Training data.

y : array-like, shape (n_samples,)

Target values.

Returns self : object

returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
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is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.linear_model.LassoLarsCV

• Lasso model selection: Cross-Validation / AIC / BIC

sklearn.linear_model.LogisticRegressionCV

class sklearn.linear_model.LogisticRegressionCV(Cs=10, fit_intercept=True, cv=None,
dual=False, penalty=’l2’, scor-
ing=None, solver=’lbfgs’, tol=0.0001,
max_iter=100, class_weight=None,
n_jobs=1, verbose=0, refit=True, in-
tercept_scaling=1.0, multi_class=’ovr’,
random_state=None)

Logistic Regression CV (aka logit, MaxEnt) classifier.

This class implements logistic regression using liblinear, newton-cg, sag of lbfgs optimizer. The newton-cg, sag
and lbfgs solvers support only L2 regularization with primal formulation. The liblinear solver supports both L1
and L2 regularization, with a dual formulation only for the L2 penalty.

For the grid of Cs values (that are set by default to be ten values in a logarithmic scale between 1e-4 and
1e4), the best hyperparameter is selected by the cross-validator StratifiedKFold, but it can be changed using
the cv parameter. In the case of newton-cg and lbfgs solvers, we warm start along the path i.e guess the initial
coefficients of the present fit to be the coefficients got after convergence in the previous fit, so it is supposed to
be faster for high-dimensional dense data.

For a multiclass problem, the hyperparameters for each class are computed using the best scores got by doing a
one-vs-rest in parallel across all folds and classes. Hence this is not the true multinomial loss.

Read more in the User Guide.

Parameters Cs : list of floats | int
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Each of the values in Cs describes the inverse of regularization strength. If Cs is as an
int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4.
Like in support vector machines, smaller values specify stronger regularization.

fit_intercept : bool, default: True

Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function.

cv : integer or cross-validation generator

The default cross-validation generator used is Stratified K-Folds. If an integer
is provided, then it is the number of folds used. See the module sklearn.
model_selection module for the list of possible cross-validation objects.

dual : bool

Dual or primal formulation. Dual formulation is only implemented for l2 penalty with
liblinear solver. Prefer dual=False when n_samples > n_features.

penalty : str, ‘l1’ or ‘l2’

Used to specify the norm used in the penalization. The ‘newton-cg’, ‘sag’ and ‘lbfgs’
solvers support only l2 penalties.

scoring : string, callable, or None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y). For a list of scoring functions that can be
used, look at sklearn.metrics. The default scoring option used is ‘accuracy’.

solver : {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’},

default: ‘lbfgs’ Algorithm to use in the optimization problem.

• For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ and ‘saga’ are
faster for large ones.

• For multiclass problems, only ‘newton-cg’, ‘sag’, ‘saga’ and ‘lbfgs’ handle
multinomial loss; ‘liblinear’ is limited to one-versus-rest schemes.

• ‘newton-cg’, ‘lbfgs’ and ‘sag’ only handle L2 penalty, whereas ‘liblinear’ and
‘saga’ handle L1 penalty.

• ‘liblinear’ might be slower in LogisticRegressionCV because it does not handle
warm-starting.

Note that ‘sag’ and ‘saga’ fast convergence is only guaranteed on features with
approximately the same scale. You can preprocess the data with a scaler from
sklearn.preprocessing.

New in version 0.17: Stochastic Average Gradient descent solver.

New in version 0.19: SAGA solver.

tol : float, optional

Tolerance for stopping criteria.

max_iter : int, optional

Maximum number of iterations of the optimization algorithm.

class_weight : dict or ‘balanced’, optional

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one.

406 Chapter 3. User Guide



scikit-learn user guide, Release 0.19.1

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y)).

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

New in version 0.17: class_weight == ‘balanced’

n_jobs : int, optional

Number of CPU cores used during the cross-validation loop. If given a value of -1, all
cores are used.

verbose : int

For the ‘liblinear’, ‘sag’ and ‘lbfgs’ solvers set verbose to any positive number for ver-
bosity.

refit : bool

If set to True, the scores are averaged across all folds, and the coefs and the C that
corresponds to the best score is taken, and a final refit is done using these parameters.
Otherwise the coefs, intercepts and C that correspond to the best scores across folds are
averaged.

intercept_scaling : float, default 1.

Useful only when the solver ‘liblinear’ is used and self.fit_intercept is set to True. In this
case, x becomes [x, self.intercept_scaling], i.e. a “synthetic” feature with constant value
equal to intercept_scaling is appended to the instance vector. The intercept becomes
intercept_scaling * synthetic_feature_weight.

Note! the synthetic feature weight is subject to l1/l2 regularization as all other features.
To lessen the effect of regularization on synthetic feature weight (and therefore on the
intercept) intercept_scaling has to be increased.

multi_class : str, {‘ovr’, ‘multinomial’}

Multiclass option can be either ‘ovr’ or ‘multinomial’. If the option chosen is ‘ovr’,
then a binary problem is fit for each label. Else the loss minimised is the multinomial
loss fit across the entire probability distribution. Works only for the ‘newton-cg’, ‘sag’,
‘saga’ and ‘lbfgs’ solver.

New in version 0.18: Stochastic Average Gradient descent solver for ‘multinomial’
case.

random_state : int, RandomState instance or None, optional, default None

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes coef_ : array, shape (1, n_features) or (n_classes, n_features)

Coefficient of the features in the decision function.

coef_ is of shape (1, n_features) when the given problem is binary.

intercept_ : array, shape (1,) or (n_classes,)

Intercept (a.k.a. bias) added to the decision function.

If fit_intercept is set to False, the intercept is set to zero. intercept_ is of shape(1,) when
the problem is binary.
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Cs_ : array

Array of C i.e. inverse of regularization parameter values used for cross-validation.

coefs_paths_ : array, shape (n_folds, len(Cs_), n_features) or (n_folds,
len(Cs_), n_features + 1)

dict with classes as the keys, and the path of coefficients obtained during cross-
validating across each fold and then across each Cs after doing an OvR for the cor-
responding class as values. If the ‘multi_class’ option is set to ‘multinomial’, then
the coefs_paths are the coefficients corresponding to each class. Each dict value has
shape (n_folds, len(Cs_), n_features) or (n_folds, len(Cs_),
n_features + 1) depending on whether the intercept is fit or not.

scores_ : dict

dict with classes as the keys, and the values as the grid of scores obtained during cross-
validating each fold, after doing an OvR for the corresponding class. If the ‘multi_class’
option given is ‘multinomial’ then the same scores are repeated across all classes, since
this is the multinomial class. Each dict value has shape (n_folds, len(Cs))

C_ : array, shape (n_classes,) or (n_classes - 1,)

Array of C that maps to the best scores across every class. If refit is set to False, then
for each class, the best C is the average of the C’s that correspond to the best scores for
each fold. C_ is of shape(n_classes,) when the problem is binary.

n_iter_ : array, shape (n_classes, n_folds, n_cs) or (1, n_folds, n_cs)

Actual number of iterations for all classes, folds and Cs. In the binary or multinomial
cases, the first dimension is equal to 1.

See also:

LogisticRegression

Methods

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, sample_weight]) Fit the model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
predict_log_proba(X) Log of probability estimates.
predict_proba(X) Probability estimates.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
sparsify() Convert coefficient matrix to sparse format.

__init__(Cs=10, fit_intercept=True, cv=None, dual=False, penalty=’l2’, scoring=None,
solver=’lbfgs’, tol=0.0001, max_iter=100, class_weight=None, n_jobs=1, verbose=0,
refit=True, intercept_scaling=1.0, multi_class=’ovr’, random_state=None)

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.
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Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :

Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returns self : estimator

fit(X, y, sample_weight=None)
Fit the model according to the given training data.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Training vector, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, shape (n_samples,)

Target vector relative to X.

sample_weight : array-like, shape (n_samples,) optional

Array of weights that are assigned to individual samples. If not provided, then each
sample is given unit weight.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

Returns C : array, shape = [n_samples]

Predicted class label per sample.

predict_log_proba(X)
Log of probability estimates.

The returned estimates for all classes are ordered by the label of classes.

Parameters X : array-like, shape = [n_samples, n_features]
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Returns T : array-like, shape = [n_samples, n_classes]

Returns the log-probability of the sample for each class in the model, where classes are
ordered as they are in self.classes_.

predict_proba(X)
Probability estimates.

The returned estimates for all classes are ordered by the label of classes.

For a multi_class problem, if multi_class is set to be “multinomial” the softmax function is used to find
the predicted probability of each class. Else use a one-vs-rest approach, i.e calculate the probability of
each class assuming it to be positive using the logistic function. and normalize these values across all the
classes.

Parameters X : array-like, shape = [n_samples, n_features]

Returns T : array-like, shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are
ordered as they are in self.classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returns self : estimator
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Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

sklearn.linear_model.MultiTaskElasticNetCV

class sklearn.linear_model.MultiTaskElasticNetCV(l1_ratio=0.5, eps=0.001, n_alphas=100,
alphas=None, fit_intercept=True,
normalize=False, max_iter=1000,
tol=0.0001, cv=None, copy_X=True,
verbose=0, n_jobs=1, ran-
dom_state=None, selection=’cyclic’)

Multi-task L1/L2 ElasticNet with built-in cross-validation.

The optimization objective for MultiTaskElasticNet is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters l1_ratio : float or array of floats

The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 1 the penalty is
an L1/L2 penalty. For l1_ratio = 0 it is an L2 penalty. For 0 < l1_ratio < 1, the
penalty is a combination of L1/L2 and L2. This parameter can be a list, in which case
the different values are tested by cross-validation and the one giving the best prediction
score is used. Note that a good choice of list of values for l1_ratio is often to put more
values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in [.1, .5, .7,
.9, .95, .99, 1]

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

n_alphas : int, optional

Number of alphas along the regularization path

alphas : array-like, optional

List of alphas where to compute the models. If not provided, set automatically.

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False
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This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

max_iter : int, optional

The maximum number of iterations

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

verbose : bool or integer

Amount of verbosity.

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs. Note that
this is used only if multiple values for l1_ratio are given.

random_state : int, RandomState instance or None, optional, default None

The seed of the pseudo random number generator that selects a random feature to up-
date. If int, random_state is the seed used by the random number generator; If Ran-
domState instance, random_state is the random number generator; If None, the ran-
dom number generator is the RandomState instance used by np.random. Used when
selection == ‘random’.

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4.

Attributes intercept_ : array, shape (n_tasks,)

Independent term in decision function.

coef_ : array, shape (n_tasks, n_features)

Parameter vector (W in the cost function formula). Note that coef_ stores the trans-
pose of W, W.T.

alpha_ : float
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The amount of penalization chosen by cross validation

mse_path_ : array, shape (n_alphas, n_folds) or (n_l1_ratio, n_alphas, n_folds)

mean square error for the test set on each fold, varying alpha

alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas)

The grid of alphas used for fitting, for each l1_ratio

l1_ratio_ : float

best l1_ratio obtained by cross-validation.

n_iter_ : int

number of iterations run by the coordinate descent solver to reach the specified tolerance
for the optimal alpha.

See also:

MultiTaskElasticNet, ElasticNetCV , MultiTaskLassoCV

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.MultiTaskElasticNetCV()
>>> clf.fit([[0,0], [1, 1], [2, 2]],
... [[0, 0], [1, 1], [2, 2]])
...
MultiTaskElasticNetCV(alphas=None, copy_X=True, cv=None, eps=0.001,

fit_intercept=True, l1_ratio=0.5, max_iter=1000, n_alphas=100,
n_jobs=1, normalize=False, random_state=None, selection='cyclic',
tol=0.0001, verbose=0)

>>> print(clf.coef_)
[[ 0.52875032 0.46958558]
[ 0.52875032 0.46958558]]
>>> print(clf.intercept_)
[ 0.00166409 0.00166409]

Methods

fit(X, y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y[, l1_ratio, eps, n_alphas, . . . ]) Compute elastic net path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
Continued on next page
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Table 3.8 – continued from previous page
set_params(**params) Set the parameters of this estimator.

__init__(l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normal-
ize=False, max_iter=1000, tol=0.0001, cv=None, copy_X=True, verbose=0, n_jobs=1, ran-
dom_state=None, selection=’cyclic’)

fit(X, y)
Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

Parameters X : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output, X can be sparse.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

static path(X, y, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’,
Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, posi-
tive=False, check_input=True, **params)

Compute elastic net path with coordinate descent

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters X : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.
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y : ndarray, shape (n_samples,) or (n_samples, n_outputs)

Target values

l1_ratio : float, optional

float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties).
l1_ratio=1 corresponds to the Lasso

eps : float

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

return_n_iter : bool

whether to return the number of iterations or not.

positive : bool, default False

If set to True, forces coefficients to be positive. (Only allowed when y.ndim == 1).

check_input : bool, default True

Skip input validation checks, including the Gram matrix when provided assuming there
are handled by the caller when check_input=False.

**params : kwargs

keyword arguments passed to the coordinate descent solver.

Returns alphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)
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The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha. (Is returned when return_n_iter is set to True).

See also:

MultiTaskElasticNet, MultiTaskElasticNetCV , ElasticNet, ElasticNetCV

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :
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sklearn.linear_model.MultiTaskLassoCV

class sklearn.linear_model.MultiTaskLassoCV(eps=0.001, n_alphas=100, alphas=None,
fit_intercept=True, normalize=False,
max_iter=1000, tol=0.0001, copy_X=True,
cv=None, verbose=False, n_jobs=1, ran-
dom_state=None, selection=’cyclic’)

Multi-task L1/L2 Lasso with built-in cross-validation.

The optimization objective for MultiTaskLasso is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

n_alphas : int, optional

Number of alphas along the regularization path

alphas : array-like, optional

List of alphas where to compute the models. If not provided, set automatically.

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

max_iter : int, optional

The maximum number of iterations.

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.
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• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

verbose : bool or integer

Amount of verbosity.

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs. Note that
this is used only if multiple values for l1_ratio are given.

random_state : int, RandomState instance or None, optional, default None

The seed of the pseudo random number generator that selects a random feature to up-
date. If int, random_state is the seed used by the random number generator; If Ran-
domState instance, random_state is the random number generator; If None, the ran-
dom number generator is the RandomState instance used by np.random. Used when
selection == ‘random’

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4.

Attributes intercept_ : array, shape (n_tasks,)

Independent term in decision function.

coef_ : array, shape (n_tasks, n_features)

Parameter vector (W in the cost function formula). Note that coef_ stores the trans-
pose of W, W.T.

alpha_ : float

The amount of penalization chosen by cross validation

mse_path_ : array, shape (n_alphas, n_folds)

mean square error for the test set on each fold, varying alpha

alphas_ : numpy array, shape (n_alphas,)

The grid of alphas used for fitting.

n_iter_ : int

number of iterations run by the coordinate descent solver to reach the specified tolerance
for the optimal alpha.

See also:

MultiTaskElasticNet, ElasticNetCV , MultiTaskElasticNetCV

Notes

The algorithm used to fit the model is coordinate descent.
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To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Methods

fit(X, y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y[, eps, n_alphas, alphas, . . . ]) Compute Lasso path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False,
max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False, n_jobs=1, ran-
dom_state=None, selection=’cyclic’)

fit(X, y)
Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

Parameters X : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output, X can be sparse.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

static path(X, y, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’, Xy=None,
copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False,
**params)

Compute Lasso path with coordinate descent

The Lasso optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21

Where:
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||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,), or (n_samples, n_outputs)

Target values

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

return_n_iter : bool

whether to return the number of iterations or not.

positive : bool, default False

If set to True, forces coefficients to be positive. (Only allowed when y.ndim == 1).

**params : kwargs

keyword arguments passed to the coordinate descent solver.

Returns alphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.
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dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha.

See also:

lars_path, Lasso, LassoLars, LassoCV , LassoLarsCV , sklearn.decomposition.
sparse_encode

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In
particular, linear interpolation can be used to retrieve model coefficients between the values output by
lars_path

Examples

Comparing lasso_path and lars_path with interpolation:

>>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T
>>> y = np.array([1, 2, 3.1])
>>> # Use lasso_path to compute a coefficient path
>>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5])
>>> print(coef_path)
[[ 0. 0. 0.46874778]
[ 0.2159048 0.4425765 0.23689075]]

>>> # Now use lars_path and 1D linear interpolation to compute the
>>> # same path
>>> from sklearn.linear_model import lars_path
>>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso')
>>> from scipy import interpolate
>>> coef_path_continuous = interpolate.interp1d(alphas[::-1],
... coef_path_lars[:, ::-1])
>>> print(coef_path_continuous([5., 1., .5]))
[[ 0. 0. 0.46915237]
[ 0.2159048 0.4425765 0.23668876]]

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.
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score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.linear_model.OrthogonalMatchingPursuitCV

class sklearn.linear_model.OrthogonalMatchingPursuitCV(copy=True, fit_intercept=True,
normalize=True,
max_iter=None, cv=None,
n_jobs=1, verbose=False)

Cross-validated Orthogonal Matching Pursuit model (OMP)

Read more in the User Guide.

Parameters copy : bool, optional

Whether the design matrix X must be copied by the algorithm. A false value is only
helpful if X is already Fortran-ordered, otherwise a copy is made anyway.

fit_intercept : boolean, optional

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default True

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

max_iter : integer, optional

Maximum numbers of iterations to perform, therefore maximum features to include.
10% of n_features but at least 5 if available.
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cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs

verbose : boolean or integer, optional

Sets the verbosity amount

Attributes intercept_ : float or array, shape (n_targets,)

Independent term in decision function.

coef_ : array, shape (n_features,) or (n_targets, n_features)

Parameter vector (w in the problem formulation).

n_nonzero_coefs_ : int

Estimated number of non-zero coefficients giving the best mean squared error over the
cross-validation folds.

n_iter_ : int or array-like

Number of active features across every target for the model refit with the best hyperpa-
rameters got by cross-validating across all folds.

See also:

orthogonal_mp, orthogonal_mp_gram, lars_path, Lars, LassoLars,
OrthogonalMatchingPursuit, LarsCV , LassoLarsCV , decomposition.sparse_encode

Methods

fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(copy=True, fit_intercept=True, normalize=True, max_iter=None, cv=None, n_jobs=1, ver-
bose=False)

fit(X, y)
Fit the model using X, y as training data.

Parameters X : array-like, shape [n_samples, n_features]
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Training data.

y : array-like, shape [n_samples]

Target values. Will be cast to X’s dtype if necessary

Returns self : object

returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :
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Examples using sklearn.linear_model.OrthogonalMatchingPursuitCV

• Orthogonal Matching Pursuit

sklearn.linear_model.RidgeCV

class sklearn.linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normal-
ize=False, scoring=None, cv=None, gcv_mode=None,
store_cv_values=False)

Ridge regression with built-in cross-validation.

By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-
validation.

Read more in the User Guide.

Parameters alphas : numpy array of shape [n_alphas]

Array of alpha values to try. Regularization strength; must be a positive float. Reg-
ularization improves the conditioning of the problem and reduces the variance of the
estimates. Larger values specify stronger regularization. Alpha corresponds to C^-1 in
other linear models such as LogisticRegression or LinearSVC.

fit_intercept : boolean

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the efficient Leave-One-Out cross-validation

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, if y is binary or multiclass, sklearn.
model_selection.StratifiedKFold is used, else, sklearn.
model_selection.KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

gcv_mode : {None, ‘auto’, ‘svd’, eigen’}, optional

Flag indicating which strategy to use when performing Generalized Cross-Validation.
Options are:
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'auto' : use svd if n_samples > n_features or when X is a sparse
matrix, otherwise use eigen

'svd' : force computation via singular value decomposition of X
(does not work for sparse matrices)

'eigen' : force computation via eigendecomposition of X^T X

The ‘auto’ mode is the default and is intended to pick the cheaper option of the two
depending upon the shape and format of the training data.

store_cv_values : boolean, default=False

Flag indicating if the cross-validation values corresponding to each alpha should be
stored in the cv_values_ attribute (see below). This flag is only compatible with
cv=None (i.e. using Generalized Cross-Validation).

Attributes cv_values_ : array, shape = [n_samples, n_alphas] or shape = [n_samples, n_targets,
n_alphas], optional

Cross-validation values for each alpha (if store_cv_values=True and cv=None). After
fit() has been called, this attribute will contain the mean squared errors (by default) or
the values of the {loss,score}_func function (if provided in the constructor).

coef_ : array, shape = [n_features] or [n_targets, n_features]

Weight vector(s).

intercept_ : float | array, shape = (n_targets,)

Independent term in decision function. Set to 0.0 if fit_intercept = False.

alpha_ : float

Estimated regularization parameter.

See also:

Ridge Ridge regression

RidgeClassifier Ridge classifier

RidgeClassifierCV Ridge classifier with built-in cross validation

Methods

fit(X, y[, sample_weight]) Fit Ridge regression model
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None,
gcv_mode=None, store_cv_values=False)

fit(X, y, sample_weight=None)
Fit Ridge regression model

Parameters X : array-like, shape = [n_samples, n_features]

Training data
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y : array-like, shape = [n_samples] or [n_samples, n_targets]

Target values. Will be cast to X’s dtype if necessary

sample_weight : float or array-like of shape [n_samples]

Sample weight

Returns self : Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :
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Examples using sklearn.linear_model.RidgeCV

• Face completion with a multi-output estimators

sklearn.linear_model.RidgeClassifierCV

class sklearn.linear_model.RidgeClassifierCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True,
normalize=False, scoring=None, cv=None,
class_weight=None)

Ridge classifier with built-in cross-validation.

By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-
validation. Currently, only the n_features > n_samples case is handled efficiently.

Read more in the User Guide.

Parameters alphas : numpy array of shape [n_alphas]

Array of alpha values to try. Regularization strength; must be a positive float. Reg-
ularization improves the conditioning of the problem and reduces the variance of the
estimates. Larger values specify stronger regularization. Alpha corresponds to C^-1 in
other linear models such as LogisticRegression or LinearSVC.

fit_intercept : boolean

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the efficient Leave-One-Out cross-validation

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

Refer User Guide for the various cross-validation strategies that can be used here.

class_weight : dict or ‘balanced’, optional

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))
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Attributes cv_values_ : array, shape = [n_samples, n_alphas] or shape = [n_samples, n_responses,
n_alphas], optional

Cross-validation values for each alpha (if store_cv_values=True and

‘cv=None‘). After ‘fit()‘ has been called, this attribute will contain the mean squared errors
(by default) or the values of the ‘{loss,score}_func‘ function (if provided in the constructor).
:

coef_ : array, shape = [n_features] or [n_targets, n_features]

Weight vector(s).

intercept_ : float | array, shape = (n_targets,)

Independent term in decision function. Set to 0.0 if fit_intercept = False.

alpha_ : float

Estimated regularization parameter

See also:

Ridge Ridge regression

RidgeClassifier Ridge classifier

RidgeCV Ridge regression with built-in cross validation

Notes

For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is
implemented by taking advantage of the multi-variate response support in Ridge.

Methods

decision_function(X) Predict confidence scores for samples.
fit(X, y[, sample_weight]) Fit the ridge classifier.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None,
class_weight=None)

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :

Confidence scores per (sample, class) combination. In the binary case, confidence score
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for self.classes_[1] where >0 means this class would be predicted.

fit(X, y, sample_weight=None)
Fit the ridge classifier.

Parameters X : array-like, shape (n_samples, n_features)

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape (n_samples,)

Target values. Will be cast to X’s dtype if necessary

sample_weight : float or numpy array of shape (n_samples,)

Sample weight.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

Returns C : array, shape = [n_samples]

Predicted class label per sample.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Information Criterion

Some models can offer an information-theoretic closed-form formula of the optimal estimate of the regularization
parameter by computing a single regularization path (instead of several when using cross-validation).

Here is the list of models benefitting from the Akaike Information Criterion (AIC) or the Bayesian Information Crite-
rion (BIC) for automated model selection:

linear_model.LassoLarsIC([criterion, . . . ]) Lasso model fit with Lars using BIC or AIC for model se-
lection

sklearn.linear_model.LassoLarsIC

class sklearn.linear_model.LassoLarsIC(criterion=’aic’, fit_intercept=True, verbose=False,
normalize=True, precompute=’auto’, max_iter=500,
eps=2.2204460492503131e-16, copy_X=True, posi-
tive=False)

Lasso model fit with Lars using BIC or AIC for model selection

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful
to select the value of the regularization parameter by making a trade-off between the goodness of fit and the
complexity of the model. A good model should explain well the data while being simple.

Read more in the User Guide.

Parameters criterion : ‘bic’ | ‘aic’

The type of criterion to use.

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional, default True

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

precompute : True | False | ‘auto’ | array-like
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Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

max_iter : integer, optional

Maximum number of iterations to perform. Can be used for early stopping.

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems. Unlike the tol parameter in some
iterative optimization-based algorithms, this parameter does not control the tolerance of
the optimization.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

positive : boolean (default=False)

Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept
which is set True by default. Under the positive restriction the model coefficients do
not converge to the ordinary-least-squares solution for small values of alpha. Only co-
efficients up to the smallest alpha value (alphas_[alphas_ > 0.].min() when
fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congru-
ence with the solution of the coordinate descent Lasso estimator. As a consequence
using LassoLarsIC only makes sense for problems where a sparse solution is expected
and/or reached.

Attributes coef_ : array, shape (n_features,)

parameter vector (w in the formulation formula)

intercept_ : float

independent term in decision function.

alpha_ : float

the alpha parameter chosen by the information criterion

n_iter_ : int

number of iterations run by lars_path to find the grid of alphas.

criterion_ : array, shape (n_alphas,)

The value of the information criteria (‘aic’, ‘bic’) across all alphas. The alpha which
has the smallest information criterion is chosen. This value is larger by a factor of
n_samples compared to Eqns. 2.15 and 2.16 in (Zou et al, 2007).

See also:

lars_path, LassoLars, LassoLarsCV

Notes

The estimation of the number of degrees of freedom is given by:

“On the degrees of freedom of the lasso” Hui Zou, Trevor Hastie, and Robert Tibshirani Ann. Statist. Volume
35, Number 5 (2007), 2173-2192.

https://en.wikipedia.org/wiki/Akaike_information_criterion https://en.wikipedia.org/wiki/Bayesian_
information_criterion
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Examples

>>> from sklearn import linear_model
>>> reg = linear_model.LassoLarsIC(criterion='bic')
>>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
...
LassoLarsIC(copy_X=True, criterion='bic', eps=..., fit_intercept=True,

max_iter=500, normalize=True, positive=False, precompute='auto',
verbose=False)

>>> print(reg.coef_)
[ 0. -1.11...]

Methods

fit(X, y[, copy_X]) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(criterion=’aic’, fit_intercept=True, verbose=False, normalize=True, precompute=’auto’,
max_iter=500, eps=2.2204460492503131e-16, copy_X=True, positive=False)

fit(X, y, copy_X=True)
Fit the model using X, y as training data.

Parameters X : array-like, shape (n_samples, n_features)

training data.

y : array-like, shape (n_samples,)

target values. Will be cast to X’s dtype if necessary

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

Returns self : object

returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)
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Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.linear_model.LassoLarsIC

• Lasso model selection: Cross-Validation / AIC / BIC

Out of Bag Estimates

When using ensemble methods base upon bagging, i.e. generating new training sets using sampling with replacement,
part of the training set remains unused. For each classifier in the ensemble, a different part of the training set is left
out.

This left out portion can be used to estimate the generalization error without having to rely on a separate validation
set. This estimate comes “for free” as no additional data is needed and can be used for model selection.

This is currently implemented in the following classes:

ensemble.RandomForestClassifier([. . . ]) A random forest classifier.
ensemble.RandomForestRegressor([. . . ]) A random forest regressor.
ensemble.ExtraTreesClassifier([. . . ]) An extra-trees classifier.
ensemble.ExtraTreesRegressor([n_estimators,
. . . ])

An extra-trees regressor.

Continued on next page
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Table 3.15 – continued from previous page
ensemble.GradientBoostingClassifier([loss,
. . . ])

Gradient Boosting for classification.

ensemble.GradientBoostingRegressor([loss,
. . . ])

Gradient Boosting for regression.

sklearn.ensemble.RandomForestClassifier

class sklearn.ensemble.RandomForestClassifier(n_estimators=10, crite-
rion=’gini’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None, boot-
strap=True, oob_score=False, n_jobs=1,
random_state=None, verbose=0,
warm_start=False, class_weight=None)

A random forest classifier.

A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the
dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is
always the same as the original input sample size but the samples are drawn with replacement if bootstrap=True
(default).

Read more in the User Guide.

Parameters n_estimators : integer, optional (default=10)

The number of trees in the forest.

criterion : string, optional (default=”gini”)

The function to measure the quality of a split. Supported criteria are “gini” for the Gini
impurity and “entropy” for the information gain. Note: this parameter is tree-specific.

max_features : int, float, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a percentage and int(max_features * n_features) features
are considered at each split.

• If “auto”, then max_features=sqrt(n_features).

• If “sqrt”, then max_features=sqrt(n_features) (same as “auto”).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features.

max_depth : integer or None, optional (default=None)
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The maximum depth of the tree. If None, then nodes are expanded until all leaves are
pure or until all leaves contain less than min_samples_split samples.

min_samples_split : int, float, optional (default=2)

The minimum number of samples required to split an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a percentage and ceil(min_samples_split *
n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for percentages.

min_samples_leaf : int, float, optional (default=1)

The minimum number of samples required to be at a leaf node:

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a percentage and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for percentages.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the sum total of weights (of all the input samples)
required to be at a leaf node. Samples have equal weight when sample_weight is not
provided.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes.

min_impurity_split : float,

Threshold for early stopping in tree growth. A node will split if its impurity is above
the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in fa-
vor of min_impurity_decrease in 0.19 and will be removed in 0.21. Use
min_impurity_decrease instead.

min_impurity_decrease : float, optional (default=0.)

A node will be split if this split induces a decrease of the impurity greater than or equal
to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current
node, N_t_L is the number of samples in the left child, and N_t_R is the number of
samples in the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is
passed.

New in version 0.19.

bootstrap : boolean, optional (default=True)
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Whether bootstrap samples are used when building trees.

oob_score : bool (default=False)

Whether to use out-of-bag samples to estimate the generalization accuracy.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controls the verbosity of the tree building process.

warm_start : bool, optional (default=False)

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just fit a whole new forest.

class_weight : dict, list of dicts, “balanced”,

“balanced_subsample” or None, optional (default=None) Weights associated with
classes in the form {class_label: weight}. If not given, all classes are sup-
posed to have weight one. For multi-output problems, a list of dicts can be provided in
the same order as the columns of y.

Note that for multioutput (including multilabel) weights should be defined for each class
of every column in its own dict. For example, for four-class multilabel classification
weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of
[{1:1}, {2:5}, {3:1}, {4:1}].

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

The “balanced_subsample” mode is the same as “balanced” except that weights are
computed based on the bootstrap sample for every tree grown.

For multi-output, the weights of each column of y will be multiplied.

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

Attributes estimators_ : list of DecisionTreeClassifier

The collection of fitted sub-estimators.

classes_ : array of shape = [n_classes] or a list of such arrays

The classes labels (single output problem), or a list of arrays of class labels (multi-output
problem).

n_classes_ : int or list

The number of classes (single output problem), or a list containing the number of classes
for each output (multi-output problem).

n_features_ : int
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The number of features when fit is performed.

n_outputs_ : int

The number of outputs when fit is performed.

feature_importances_ : array of shape = [n_features]

The feature importances (the higher, the more important the feature).

oob_score_ : float

Score of the training dataset obtained using an out-of-bag estimate.

oob_decision_function_ : array of shape = [n_samples, n_classes]

Decision function computed with out-of-bag estimate on the training set. If
n_estimators is small it might be possible that a data point was never left out during
the bootstrap. In this case, oob_decision_function_ might contain NaN.

See also:

DecisionTreeClassifier, ExtraTreesClassifier

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth,
min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on
some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by
setting those parameter values.

The features are always randomly permuted at each split. Therefore, the best found split may vary, even with
the same training data, max_features=n_features and bootstrap=False, if the improvement of the
criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic
behaviour during fitting, random_state has to be fixed.

References

[R23]

Examples

>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.datasets import make_classification
>>>
>>> X, y = make_classification(n_samples=1000, n_features=4,
... n_informative=2, n_redundant=0,
... random_state=0, shuffle=False)
>>> clf = RandomForestClassifier(max_depth=2, random_state=0)
>>> clf.fit(X, y)
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',

max_depth=2, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=0, verbose=0, warm_start=False)

>>> print(clf.feature_importances_)
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[ 0.17287856 0.80608704 0.01884792 0.00218648]
>>> print(clf.predict([[0, 0, 0, 0]]))
[1]

Methods

apply(X) Apply trees in the forest to X, return leaf indices.
decision_path(X) Return the decision path in the forest
fit(X, y[, sample_weight]) Build a forest of trees from the training set (X, y).
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(n_estimators=10, criterion=’gini’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,
bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0,
warm_start=False, class_weight=None)

apply(X)
Apply trees in the forest to X, return leaf indices.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns X_leaves : array_like, shape = [n_samples, n_estimators]

For each datapoint x in X and for each tree in the forest, return the index of the leaf x
ends up in.

decision_path(X)
Return the decision path in the forest

New in version 0.18.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns indicator : sparse csr array, shape = [n_samples, n_nodes]

Return a node indicator matrix where non zero elements indicates that the samples goes
through the nodes.

n_nodes_ptr : array of size (n_estimators + 1, )

The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value
for the i-th estimator.

feature_importances_
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Return the feature importances (the higher, the more important the feature).

Returns feature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None)
Build a forest of trees from the training set (X, y).

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The training input samples. Internally, its dtype will be converted to dtype=np.
float32. If a sparse matrix is provided, it will be converted into a sparse
csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (class labels in classification, real numbers in regression).

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class for X.

The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability
estimates. That is, the predicted class is the one with highest mean probability estimate across the trees.

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns y : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted classes.

predict_log_proba(X)
Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class
probabilities of the trees in the forest.

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted into a sparse csr_matrix.
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Returns p : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class probabilities of the input samples. The order of
the classes corresponds to that in the attribute classes_.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample are computed as the mean predicted class probabilities
of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class
in a leaf.

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns p : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class probabilities of the input samples. The order of
the classes corresponds to that in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.ensemble.RandomForestClassifier

• Probability Calibration for 3-class classification

• Comparison of Calibration of Classifiers

• Classifier comparison

• OOB Errors for Random Forests

• Feature transformations with ensembles of trees
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• Plot the decision surfaces of ensembles of trees on the iris dataset

• Plot class probabilities calculated by the VotingClassifier

• Comparing randomized search and grid search for hyperparameter estimation

• Classification of text documents using sparse features

sklearn.ensemble.RandomForestRegressor

class sklearn.ensemble.RandomForestRegressor(n_estimators=10, crite-
rion=’mse’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None, boot-
strap=True, oob_score=False, n_jobs=1,
random_state=None, verbose=0,
warm_start=False)

A random forest regressor.

A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of
the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is
always the same as the original input sample size but the samples are drawn with replacement if bootstrap=True
(default).

Read more in the User Guide.

Parameters n_estimators : integer, optional (default=10)

The number of trees in the forest.

criterion : string, optional (default=”mse”)

The function to measure the quality of a split. Supported criteria are “mse” for the
mean squared error, which is equal to variance reduction as feature selection criterion,
and “mae” for the mean absolute error.

New in version 0.18: Mean Absolute Error (MAE) criterion.

max_features : int, float, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a percentage and int(max_features * n_features) features
are considered at each split.

• If “auto”, then max_features=n_features.

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features.

max_depth : integer or None, optional (default=None)
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The maximum depth of the tree. If None, then nodes are expanded until all leaves are
pure or until all leaves contain less than min_samples_split samples.

min_samples_split : int, float, optional (default=2)

The minimum number of samples required to split an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a percentage and ceil(min_samples_split *
n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for percentages.

min_samples_leaf : int, float, optional (default=1)

The minimum number of samples required to be at a leaf node:

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a percentage and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for percentages.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the sum total of weights (of all the input samples)
required to be at a leaf node. Samples have equal weight when sample_weight is not
provided.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes.

min_impurity_split : float,

Threshold for early stopping in tree growth. A node will split if its impurity is above
the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in fa-
vor of min_impurity_decrease in 0.19 and will be removed in 0.21. Use
min_impurity_decrease instead.

min_impurity_decrease : float, optional (default=0.)

A node will be split if this split induces a decrease of the impurity greater than or equal
to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current
node, N_t_L is the number of samples in the left child, and N_t_R is the number of
samples in the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is
passed.

New in version 0.19.

bootstrap : boolean, optional (default=True)
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Whether bootstrap samples are used when building trees.

oob_score : bool, optional (default=False)

whether to use out-of-bag samples to estimate the R^2 on unseen data.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controls the verbosity of the tree building process.

warm_start : bool, optional (default=False)

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just fit a whole new forest.

Attributes estimators_ : list of DecisionTreeRegressor

The collection of fitted sub-estimators.

feature_importances_ : array of shape = [n_features]

The feature importances (the higher, the more important the feature).

n_features_ : int

The number of features when fit is performed.

n_outputs_ : int

The number of outputs when fit is performed.

oob_score_ : float

Score of the training dataset obtained using an out-of-bag estimate.

oob_prediction_ : array of shape = [n_samples]

Prediction computed with out-of-bag estimate on the training set.

See also:

DecisionTreeRegressor, ExtraTreesRegressor

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth,
min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on
some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by
setting those parameter values.

The features are always randomly permuted at each split. Therefore, the best found split may vary, even with
the same training data, max_features=n_features and bootstrap=False, if the improvement of the
criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic
behaviour during fitting, random_state has to be fixed.
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References

[R24]

Examples

>>> from sklearn.ensemble import RandomForestRegressor
>>> from sklearn.datasets import make_regression
>>>
>>> X, y = make_regression(n_features=4, n_informative=2,
... random_state=0, shuffle=False)
>>> regr = RandomForestRegressor(max_depth=2, random_state=0)
>>> regr.fit(X, y)
RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=2,

max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=0, verbose=0, warm_start=False)

>>> print(regr.feature_importances_)
[ 0.17339552 0.81594114 0. 0.01066333]
>>> print(regr.predict([[0, 0, 0, 0]]))
[-2.50699856]

Methods

apply(X) Apply trees in the forest to X, return leaf indices.
decision_path(X) Return the decision path in the forest
fit(X, y[, sample_weight]) Build a forest of trees from the training set (X, y).
get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression target for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(n_estimators=10, criterion=’mse’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,
bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0,
warm_start=False)

apply(X)
Apply trees in the forest to X, return leaf indices.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns X_leaves : array_like, shape = [n_samples, n_estimators]

For each datapoint x in X and for each tree in the forest, return the index of the leaf x
ends up in.
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decision_path(X)
Return the decision path in the forest

New in version 0.18.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns indicator : sparse csr array, shape = [n_samples, n_nodes]

Return a node indicator matrix where non zero elements indicates that the samples goes
through the nodes.

n_nodes_ptr : array of size (n_estimators + 1, )

The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value
for the i-th estimator.

feature_importances_

Return the feature importances (the higher, the more important the feature).

Returns feature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None)
Build a forest of trees from the training set (X, y).

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The training input samples. Internally, its dtype will be converted to dtype=np.
float32. If a sparse matrix is provided, it will be converted into a sparse
csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (class labels in classification, real numbers in regression).

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict regression target for X.
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The predicted regression target of an input sample is computed as the mean predicted regression targets of
the trees in the forest.

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns y : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.ensemble.RandomForestRegressor

• Imputing missing values before building an estimator

• Prediction Latency

• Comparing random forests and the multi-output meta estimator
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sklearn.ensemble.ExtraTreesClassifier

class sklearn.ensemble.ExtraTreesClassifier(n_estimators=10, crite-
rion=’gini’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None, boot-
strap=False, oob_score=False, n_jobs=1,
random_state=None, verbose=0,
warm_start=False, class_weight=None)

An extra-trees classifier.

This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on
various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

Read more in the User Guide.

Parameters n_estimators : integer, optional (default=10)

The number of trees in the forest.

criterion : string, optional (default=”gini”)

The function to measure the quality of a split. Supported criteria are “gini” for the Gini
impurity and “entropy” for the information gain.

max_features : int, float, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a percentage and int(max_features * n_features) features
are considered at each split.

• If “auto”, then max_features=sqrt(n_features).

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves are
pure or until all leaves contain less than min_samples_split samples.

min_samples_split : int, float, optional (default=2)

The minimum number of samples required to split an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a percentage and ceil(min_samples_split *
n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for percentages.
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min_samples_leaf : int, float, optional (default=1)

The minimum number of samples required to be at a leaf node:

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a percentage and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for percentages.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the sum total of weights (of all the input samples)
required to be at a leaf node. Samples have equal weight when sample_weight is not
provided.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes.

min_impurity_split : float,

Threshold for early stopping in tree growth. A node will split if its impurity is above
the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in fa-
vor of min_impurity_decrease in 0.19 and will be removed in 0.21. Use
min_impurity_decrease instead.

min_impurity_decrease : float, optional (default=0.)

A node will be split if this split induces a decrease of the impurity greater than or equal
to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current
node, N_t_L is the number of samples in the left child, and N_t_R is the number of
samples in the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is
passed.

New in version 0.19.

bootstrap : boolean, optional (default=False)

Whether bootstrap samples are used when building trees.

oob_score : bool, optional (default=False)

Whether to use out-of-bag samples to estimate the generalization accuracy.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)
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If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controls the verbosity of the tree building process.

warm_start : bool, optional (default=False)

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just fit a whole new forest.

class_weight : dict, list of dicts, “balanced”, “balanced_subsample” or None, optional (de-
fault=None)

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one. For multi-output problems, a list of
dicts can be provided in the same order as the columns of y.

Note that for multioutput (including multilabel) weights should be defined for each class
of every column in its own dict. For example, for four-class multilabel classification
weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of
[{1:1}, {2:5}, {3:1}, {4:1}].

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

The “balanced_subsample” mode is the same as “balanced” except that weights are
computed based on the bootstrap sample for every tree grown.

For multi-output, the weights of each column of y will be multiplied.

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

Attributes estimators_ : list of DecisionTreeClassifier

The collection of fitted sub-estimators.

classes_ : array of shape = [n_classes] or a list of such arrays

The classes labels (single output problem), or a list of arrays of class labels (multi-output
problem).

n_classes_ : int or list

The number of classes (single output problem), or a list containing the number of classes
for each output (multi-output problem).

feature_importances_ : array of shape = [n_features]

The feature importances (the higher, the more important the feature).

n_features_ : int

The number of features when fit is performed.

n_outputs_ : int

The number of outputs when fit is performed.

oob_score_ : float

Score of the training dataset obtained using an out-of-bag estimate.
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oob_decision_function_ : array of shape = [n_samples, n_classes]

Decision function computed with out-of-bag estimate on the training set. If
n_estimators is small it might be possible that a data point was never left out during
the bootstrap. In this case, oob_decision_function_ might contain NaN.

See also:

sklearn.tree.ExtraTreeClassifier Base classifier for this ensemble.

RandomForestClassifier Ensemble Classifier based on trees with optimal splits.

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth,
min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on
some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by
setting those parameter values.

References

[R19]

Methods

apply(X) Apply trees in the forest to X, return leaf indices.
decision_path(X) Return the decision path in the forest
fit(X, y[, sample_weight]) Build a forest of trees from the training set (X, y).
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(n_estimators=10, criterion=’gini’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,
bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0,
warm_start=False, class_weight=None)

apply(X)
Apply trees in the forest to X, return leaf indices.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns X_leaves : array_like, shape = [n_samples, n_estimators]

For each datapoint x in X and for each tree in the forest, return the index of the leaf x
ends up in.
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decision_path(X)
Return the decision path in the forest

New in version 0.18.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns indicator : sparse csr array, shape = [n_samples, n_nodes]

Return a node indicator matrix where non zero elements indicates that the samples goes
through the nodes.

n_nodes_ptr : array of size (n_estimators + 1, )

The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value
for the i-th estimator.

feature_importances_

Return the feature importances (the higher, the more important the feature).

Returns feature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None)
Build a forest of trees from the training set (X, y).

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The training input samples. Internally, its dtype will be converted to dtype=np.
float32. If a sparse matrix is provided, it will be converted into a sparse
csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (class labels in classification, real numbers in regression).

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class for X.
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The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability
estimates. That is, the predicted class is the one with highest mean probability estimate across the trees.

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns y : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted classes.

predict_log_proba(X)
Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class
probabilities of the trees in the forest.

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns p : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class probabilities of the input samples. The order of
the classes corresponds to that in the attribute classes_.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample are computed as the mean predicted class probabilities
of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class
in a leaf.

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns p : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class probabilities of the input samples. The order of
the classes corresponds to that in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.ensemble.ExtraTreesClassifier

• Feature importances with forests of trees

• Pixel importances with a parallel forest of trees

• Plot the decision surfaces of ensembles of trees on the iris dataset

• Hashing feature transformation using Totally Random Trees

sklearn.ensemble.ExtraTreesRegressor

class sklearn.ensemble.ExtraTreesRegressor(n_estimators=10, crite-
rion=’mse’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None, boot-
strap=False, oob_score=False, n_jobs=1,
random_state=None, verbose=0,
warm_start=False)

An extra-trees regressor.

This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on
various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

Read more in the User Guide.

Parameters n_estimators : integer, optional (default=10)

The number of trees in the forest.

criterion : string, optional (default=”mse”)

The function to measure the quality of a split. Supported criteria are “mse” for the
mean squared error, which is equal to variance reduction as feature selection criterion,
and “mae” for the mean absolute error.

New in version 0.18: Mean Absolute Error (MAE) criterion.

max_features : int, float, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a percentage and int(max_features * n_features) features
are considered at each split.

• If “auto”, then max_features=n_features.
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• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features.

max_depth : integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves are
pure or until all leaves contain less than min_samples_split samples.

min_samples_split : int, float, optional (default=2)

The minimum number of samples required to split an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a percentage and ceil(min_samples_split *
n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for percentages.

min_samples_leaf : int, float, optional (default=1)

The minimum number of samples required to be at a leaf node:

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a percentage and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for percentages.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the sum total of weights (of all the input samples)
required to be at a leaf node. Samples have equal weight when sample_weight is not
provided.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes.

min_impurity_split : float,

Threshold for early stopping in tree growth. A node will split if its impurity is above
the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in fa-
vor of min_impurity_decrease in 0.19 and will be removed in 0.21. Use
min_impurity_decrease instead.

min_impurity_decrease : float, optional (default=0.)

A node will be split if this split induces a decrease of the impurity greater than or equal
to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)
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where N is the total number of samples, N_t is the number of samples at the current
node, N_t_L is the number of samples in the left child, and N_t_R is the number of
samples in the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is
passed.

New in version 0.19.

bootstrap : boolean, optional (default=False)

Whether bootstrap samples are used when building trees.

oob_score : bool, optional (default=False)

Whether to use out-of-bag samples to estimate the R^2 on unseen data.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controls the verbosity of the tree building process.

warm_start : bool, optional (default=False)

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just fit a whole new forest.

Attributes estimators_ : list of DecisionTreeRegressor

The collection of fitted sub-estimators.

feature_importances_ : array of shape = [n_features]

The feature importances (the higher, the more important the feature).

n_features_ : int

The number of features.

n_outputs_ : int

The number of outputs.

oob_score_ : float

Score of the training dataset obtained using an out-of-bag estimate.

oob_prediction_ : array of shape = [n_samples]

Prediction computed with out-of-bag estimate on the training set.

See also:

sklearn.tree.ExtraTreeRegressor Base estimator for this ensemble.

RandomForestRegressor Ensemble regressor using trees with optimal splits.
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Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth,
min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on
some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by
setting those parameter values.

References

[R20]

Methods

apply(X) Apply trees in the forest to X, return leaf indices.
decision_path(X) Return the decision path in the forest
fit(X, y[, sample_weight]) Build a forest of trees from the training set (X, y).
get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression target for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(n_estimators=10, criterion=’mse’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,
bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0,
warm_start=False)

apply(X)
Apply trees in the forest to X, return leaf indices.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns X_leaves : array_like, shape = [n_samples, n_estimators]

For each datapoint x in X and for each tree in the forest, return the index of the leaf x
ends up in.

decision_path(X)
Return the decision path in the forest

New in version 0.18.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns indicator : sparse csr array, shape = [n_samples, n_nodes]

Return a node indicator matrix where non zero elements indicates that the samples goes
through the nodes.
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n_nodes_ptr : array of size (n_estimators + 1, )

The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value
for the i-th estimator.

feature_importances_

Return the feature importances (the higher, the more important the feature).

Returns feature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None)
Build a forest of trees from the training set (X, y).

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The training input samples. Internally, its dtype will be converted to dtype=np.
float32. If a sparse matrix is provided, it will be converted into a sparse
csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (class labels in classification, real numbers in regression).

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict regression target for X.

The predicted regression target of an input sample is computed as the mean predicted regression targets of
the trees in the forest.

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns y : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.
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The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.ensemble.ExtraTreesRegressor

• Face completion with a multi-output estimators

sklearn.ensemble.GradientBoostingClassifier

class sklearn.ensemble.GradientBoostingClassifier(loss=’deviance’, learning_rate=0.1,
n_estimators=100, subsam-
ple=1.0, criterion=’friedman_mse’,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_depth=3,
min_impurity_decrease=0.0,
min_impurity_split=None,
init=None, random_state=None,
max_features=None, ver-
bose=0, max_leaf_nodes=None,
warm_start=False, presort=’auto’)

Gradient Boosting for classification.

GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differen-
tiable loss functions. In each stage n_classes_ regression trees are fit on the negative gradient of the binomial
or multinomial deviance loss function. Binary classification is a special case where only a single regression tree
is induced.

Read more in the User Guide.

Parameters loss : {‘deviance’, ‘exponential’}, optional (default=’deviance’)
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loss function to be optimized. ‘deviance’ refers to deviance (= logistic regression) for
classification with probabilistic outputs. For loss ‘exponential’ gradient boosting recov-
ers the AdaBoost algorithm.

learning_rate : float, optional (default=0.1)

learning rate shrinks the contribution of each tree by learning_rate. There is a trade-off
between learning_rate and n_estimators.

n_estimators : int (default=100)

The number of boosting stages to perform. Gradient boosting is fairly robust to over-
fitting so a large number usually results in better performance.

max_depth : integer, optional (default=3)

maximum depth of the individual regression estimators. The maximum depth limits the
number of nodes in the tree. Tune this parameter for best performance; the best value
depends on the interaction of the input variables.

criterion : string, optional (default=”friedman_mse”)

The function to measure the quality of a split. Supported criteria are “friedman_mse” for
the mean squared error with improvement score by Friedman, “mse” for mean squared
error, and “mae” for the mean absolute error. The default value of “friedman_mse” is
generally the best as it can provide a better approximation in some cases.

New in version 0.18.

min_samples_split : int, float, optional (default=2)

The minimum number of samples required to split an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a percentage and ceil(min_samples_split *
n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for percentages.

min_samples_leaf : int, float, optional (default=1)

The minimum number of samples required to be at a leaf node:

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a percentage and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for percentages.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the sum total of weights (of all the input samples)
required to be at a leaf node. Samples have equal weight when sample_weight is not
provided.

subsample : float, optional (default=1.0)

The fraction of samples to be used for fitting the individual base learners. If smaller
than 1.0 this results in Stochastic Gradient Boosting. subsample interacts with the pa-
rameter n_estimators. Choosing subsample < 1.0 leads to a reduction of variance and
an increase in bias.

max_features : int, float, string or None, optional (default=None)
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The number of features to consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a percentage and int(max_features * n_features) features
are considered at each split.

• If “auto”, then max_features=sqrt(n_features).

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Choosing max_features < n_features leads to a reduction of variance and an increase in
bias.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes.

min_impurity_split : float,

Threshold for early stopping in tree growth. A node will split if its impurity is above
the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in fa-
vor of min_impurity_decrease in 0.19 and will be removed in 0.21. Use
min_impurity_decrease instead.

min_impurity_decrease : float, optional (default=0.)

A node will be split if this split induces a decrease of the impurity greater than or equal
to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current
node, N_t_L is the number of samples in the left child, and N_t_R is the number of
samples in the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is
passed.

New in version 0.19.

init : BaseEstimator, None, optional (default=None)

An estimator object that is used to compute the initial predictions. init has to provide
fit and predict. If None it uses loss.init_estimator.

verbose : int, default: 0

Enable verbose output. If 1 then it prints progress and performance once in a while
(the more trees the lower the frequency). If greater than 1 then it prints progress and
performance for every tree.
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warm_start : bool, default: False

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just erase the previous solution.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

presort : bool or ‘auto’, optional (default=’auto’)

Whether to presort the data to speed up the finding of best splits in fitting. Auto mode
by default will use presorting on dense data and default to normal sorting on sparse data.
Setting presort to true on sparse data will raise an error.

New in version 0.17: presort parameter.

Attributes feature_importances_ : array, shape = [n_features]

The feature importances (the higher, the more important the feature).

oob_improvement_ : array, shape = [n_estimators]

The improvement in loss (= deviance) on the out-of-bag samples relative to the previous
iteration. oob_improvement_[0] is the improvement in loss of the first stage over
the init estimator.

train_score_ : array, shape = [n_estimators]

The i-th score train_score_[i] is the deviance (= loss) of the model at iteration i
on the in-bag sample. If subsample == 1 this is the deviance on the training data.

loss_ : LossFunction

The concrete LossFunction object.

init : BaseEstimator

The estimator that provides the initial predictions. Set via the init argument or loss.
init_estimator.

estimators_ : ndarray of DecisionTreeRegressor, shape = [n_estimators, loss_.K]

The collection of fitted sub-estimators. loss_.K is 1 for binary classification, other-
wise n_classes.

See also:

sklearn.tree.DecisionTreeClassifier, RandomForestClassifier,
AdaBoostClassifier

Notes

The features are always randomly permuted at each split. Therefore, the best found split may vary, even with
the same training data and max_features=n_features, if the improvement of the criterion is identical for
several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting,
random_state has to be fixed.
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Methods

apply(X) Apply trees in the ensemble to X, return leaf indices.
decision_function(X) Compute the decision function of X.
fit(X, y[, sample_weight, monitor]) Fit the gradient boosting model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
staged_decision_function(X) Compute decision function of X for each iteration.
staged_predict(X) Predict class at each stage for X.
staged_predict_proba(X) Predict class probabilities at each stage for X.

__init__(loss=’deviance’, learning_rate=0.1, n_estimators=100, subsample=1.0,
criterion=’friedman_mse’, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0,
min_impurity_split=None, init=None, random_state=None, max_features=None, ver-
bose=0, max_leaf_nodes=None, warm_start=False, presort=’auto’)

apply(X)
Apply trees in the ensemble to X, return leaf indices.

New in version 0.17.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted to a sparse csr_matrix.

Returns X_leaves : array_like, shape = [n_samples, n_estimators, n_classes]

For each datapoint x in X and for each tree in the ensemble, return the index of the leaf
x ends up in each estimator. In the case of binary classification n_classes is 1.

decision_function(X)
Compute the decision function of X.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returns score : array, shape = [n_samples, n_classes] or [n_samples]

The decision function of the input samples. The order of the classes corresponds to that
in the attribute classes_. Regression and binary classification produce an array of shape
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[n_samples].

feature_importances_

Return the feature importances (the higher, the more important the feature).

Returns feature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None, monitor=None)
Fit the gradient boosting model.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values (integers in classification, real numbers in regression) For classification,
labels must correspond to classes.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

monitor : callable, optional

The monitor is called after each iteration with the current iteration, a reference
to the estimator and the local variables of _fit_stages as keyword arguments
callable(i, self, locals()). If the callable returns True the fitting proce-
dure is stopped. The monitor can be used for various things such as computing held-out
estimates, early stopping, model introspect, and snapshoting.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

n_features
DEPRECATED: Attribute n_features was deprecated in version 0.19 and will be removed in 0.21.

predict(X)
Predict class for X.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returns y : array of shape = [n_samples]
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The predicted values.

predict_log_proba(X)
Predict class log-probabilities for X.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returns p : array of shape = [n_samples]

The class log-probabilities of the input samples. The order of the classes corresponds to
that in the attribute classes_.

Raises AttributeError :

If the loss does not support probabilities.

predict_proba(X)
Predict class probabilities for X.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returns p : array of shape = [n_samples]

The class probabilities of the input samples. The order of the classes corresponds to that
in the attribute classes_.

Raises AttributeError :

If the loss does not support probabilities.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :
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staged_decision_function(X)
Compute decision function of X for each iteration.

This method allows monitoring (i.e. determine error on testing set) after each stage.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returns score : generator of array, shape = [n_samples, k]

The decision function of the input samples. The order of the classes corresponds to that
in the attribute classes_. Regression and binary classification are special cases with k
== 1, otherwise k==n_classes.

staged_predict(X)
Predict class at each stage for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returns y : generator of array of shape = [n_samples]

The predicted value of the input samples.

staged_predict_proba(X)
Predict class probabilities at each stage for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returns y : generator of array of shape = [n_samples]

The predicted value of the input samples.

Examples using sklearn.ensemble.GradientBoostingClassifier

• Feature transformations with ensembles of trees

• Gradient Boosting Out-of-Bag estimates

• Gradient Boosting regularization
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sklearn.ensemble.GradientBoostingRegressor

class sklearn.ensemble.GradientBoostingRegressor(loss=’ls’, learning_rate=0.1,
n_estimators=100, subsam-
ple=1.0, criterion=’friedman_mse’,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_depth=3,
min_impurity_decrease=0.0,
min_impurity_split=None,
init=None, random_state=None,
max_features=None, alpha=0.9,
verbose=0, max_leaf_nodes=None,
warm_start=False, presort=’auto’)

Gradient Boosting for regression.

GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differ-
entiable loss functions. In each stage a regression tree is fit on the negative gradient of the given loss function.

Read more in the User Guide.

Parameters loss : {‘ls’, ‘lad’, ‘huber’, ‘quantile’}, optional (default=’ls’)

loss function to be optimized. ‘ls’ refers to least squares regression. ‘lad’ (least absolute
deviation) is a highly robust loss function solely based on order information of the input
variables. ‘huber’ is a combination of the two. ‘quantile’ allows quantile regression
(use alpha to specify the quantile).

learning_rate : float, optional (default=0.1)

learning rate shrinks the contribution of each tree by learning_rate. There is a trade-off
between learning_rate and n_estimators.

n_estimators : int (default=100)

The number of boosting stages to perform. Gradient boosting is fairly robust to over-
fitting so a large number usually results in better performance.

max_depth : integer, optional (default=3)

maximum depth of the individual regression estimators. The maximum depth limits the
number of nodes in the tree. Tune this parameter for best performance; the best value
depends on the interaction of the input variables.

criterion : string, optional (default=”friedman_mse”)

The function to measure the quality of a split. Supported criteria are “friedman_mse” for
the mean squared error with improvement score by Friedman, “mse” for mean squared
error, and “mae” for the mean absolute error. The default value of “friedman_mse” is
generally the best as it can provide a better approximation in some cases.

New in version 0.18.

min_samples_split : int, float, optional (default=2)

The minimum number of samples required to split an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a percentage and ceil(min_samples_split *
n_samples) are the minimum number of samples for each split.
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Changed in version 0.18: Added float values for percentages.

min_samples_leaf : int, float, optional (default=1)

The minimum number of samples required to be at a leaf node:

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a percentage and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for percentages.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the sum total of weights (of all the input samples)
required to be at a leaf node. Samples have equal weight when sample_weight is not
provided.

subsample : float, optional (default=1.0)

The fraction of samples to be used for fitting the individual base learners. If smaller
than 1.0 this results in Stochastic Gradient Boosting. subsample interacts with the pa-
rameter n_estimators. Choosing subsample < 1.0 leads to a reduction of variance and
an increase in bias.

max_features : int, float, string or None, optional (default=None)

The number of features to consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a percentage and int(max_features * n_features) features
are considered at each split.

• If “auto”, then max_features=n_features.

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Choosing max_features < n_features leads to a reduction of variance and an increase in
bias.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes.

min_impurity_split : float,

Threshold for early stopping in tree growth. A node will split if its impurity is above
the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in fa-
vor of min_impurity_decrease in 0.19 and will be removed in 0.21. Use
min_impurity_decrease instead.

min_impurity_decrease : float, optional (default=0.)
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A node will be split if this split induces a decrease of the impurity greater than or equal
to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current
node, N_t_L is the number of samples in the left child, and N_t_R is the number of
samples in the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is
passed.

New in version 0.19.

alpha : float (default=0.9)

The alpha-quantile of the huber loss function and the quantile loss function. Only if
loss='huber' or loss='quantile'.

init : BaseEstimator, None, optional (default=None)

An estimator object that is used to compute the initial predictions. init has to provide
fit and predict. If None it uses loss.init_estimator.

verbose : int, default: 0

Enable verbose output. If 1 then it prints progress and performance once in a while
(the more trees the lower the frequency). If greater than 1 then it prints progress and
performance for every tree.

warm_start : bool, default: False

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just erase the previous solution.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

presort : bool or ‘auto’, optional (default=’auto’)

Whether to presort the data to speed up the finding of best splits in fitting. Auto mode
by default will use presorting on dense data and default to normal sorting on sparse data.
Setting presort to true on sparse data will raise an error.

New in version 0.17: optional parameter presort.

Attributes feature_importances_ : array, shape = [n_features]

The feature importances (the higher, the more important the feature).

oob_improvement_ : array, shape = [n_estimators]

The improvement in loss (= deviance) on the out-of-bag samples relative to the previous
iteration. oob_improvement_[0] is the improvement in loss of the first stage over
the init estimator.

train_score_ : array, shape = [n_estimators]
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The i-th score train_score_[i] is the deviance (= loss) of the model at iteration i
on the in-bag sample. If subsample == 1 this is the deviance on the training data.

loss_ : LossFunction

The concrete LossFunction object.

init : BaseEstimator

The estimator that provides the initial predictions. Set via the init argument or loss.
init_estimator.

estimators_ : ndarray of DecisionTreeRegressor, shape = [n_estimators, 1]

The collection of fitted sub-estimators.

See also:

DecisionTreeRegressor, RandomForestRegressor

Notes

The features are always randomly permuted at each split. Therefore, the best found split may vary, even with
the same training data and max_features=n_features, if the improvement of the criterion is identical for
several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting,
random_state has to be fixed.

References

J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29,
No. 5, 2001.

10. Friedman, Stochastic Gradient Boosting, 1999
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Methods

apply(X) Apply trees in the ensemble to X, return leaf indices.
fit(X, y[, sample_weight, monitor]) Fit the gradient boosting model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression target for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.
staged_predict(X) Predict regression target at each stage for X.

__init__(loss=’ls’, learning_rate=0.1, n_estimators=100, subsample=1.0, cri-
terion=’friedman_mse’, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0,
min_impurity_split=None, init=None, random_state=None, max_features=None, al-
pha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False, presort=’auto’)

apply(X)
Apply trees in the ensemble to X, return leaf indices.
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New in version 0.17.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted to a sparse csr_matrix.

Returns X_leaves : array_like, shape = [n_samples, n_estimators]

For each datapoint x in X and for each tree in the ensemble, return the index of the leaf
x ends up in each estimator.

feature_importances_

Return the feature importances (the higher, the more important the feature).

Returns feature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None, monitor=None)
Fit the gradient boosting model.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values (integers in classification, real numbers in regression) For classification,
labels must correspond to classes.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

monitor : callable, optional

The monitor is called after each iteration with the current iteration, a reference
to the estimator and the local variables of _fit_stages as keyword arguments
callable(i, self, locals()). If the callable returns True the fitting proce-
dure is stopped. The monitor can be used for various things such as computing held-out
estimates, early stopping, model introspect, and snapshoting.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

n_features
DEPRECATED: Attribute n_features was deprecated in version 0.19 and will be removed in 0.21.
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predict(X)
Predict regression target for X.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returns y : array of shape = [n_samples]

The predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

staged_predict(X)
Predict regression target at each stage for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returns y : generator of array of shape = [n_samples]

The predicted value of the input samples.

Examples using sklearn.ensemble.GradientBoostingRegressor

• Model Complexity Influence

• Prediction Intervals for Gradient Boosting Regression
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• Gradient Boosting regression

• Partial Dependence Plots

3.3.3 Model evaluation: quantifying the quality of predictions

There are 3 different APIs for evaluating the quality of a model’s predictions:

• Estimator score method: Estimators have a score method providing a default evaluation criterion for the
problem they are designed to solve. This is not discussed on this page, but in each estimator’s documentation.

• Scoring parameter: Model-evaluation tools using cross-validation (such as model_selection.
cross_val_score and model_selection.GridSearchCV ) rely on an internal scoring strategy. This
is discussed in the section The scoring parameter: defining model evaluation rules.

• Metric functions: The metricsmodule implements functions assessing prediction error for specific purposes.
These metrics are detailed in sections on Classification metrics, Multilabel ranking metrics, Regression metrics
and Clustering metrics.

Finally, Dummy estimators are useful to get a baseline value of those metrics for random predictions.

See also:

For “pairwise” metrics, between samples and not estimators or predictions, see the Pairwise metrics, Affinities and
Kernels section.

The scoring parameter: defining model evaluation rules

Model selection and evaluation using tools, such as model_selection.GridSearchCV and
model_selection.cross_val_score, take a scoring parameter that controls what metric they ap-
ply to the estimators evaluated.

Common cases: predefined values

For the most common use cases, you can designate a scorer object with the scoring parameter; the table below
shows all possible values. All scorer objects follow the convention that higher return values are better than
lower return values. Thus metrics which measure the distance between the model and the data, like metrics.
mean_squared_error, are available as neg_mean_squared_error which return the negated value of the metric.
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Scoring Function Comment
Classification
‘accuracy’ metrics.accuracy_score
‘average_precision’ metrics.average_precision_score
‘f1’ metrics.f1_score for binary targets
‘f1_micro’ metrics.f1_score micro-averaged
‘f1_macro’ metrics.f1_score macro-averaged
‘f1_weighted’ metrics.f1_score weighted average
‘f1_samples’ metrics.f1_score by multilabel sample
‘neg_log_loss’ metrics.log_loss requires predict_proba

support
‘precision’ etc. metrics.precision_score suffixes apply as with ‘f1’
‘recall’ etc. metrics.recall_score suffixes apply as with ‘f1’
‘roc_auc’ metrics.roc_auc_score
Clustering
‘ad-
justed_mutual_info_score’

metrics.adjusted_mutual_info_score

‘adjusted_rand_score’ metrics.adjusted_rand_score
‘completeness_score’ metrics.completeness_score
‘fowlkes_mallows_score’ metrics.fowlkes_mallows_score
‘homogeneity_score’ metrics.homogeneity_score
‘mutual_info_score’ metrics.mutual_info_score
‘normal-
ized_mutual_info_score’

metrics.normalized_mutual_info_score

‘v_measure_score’ metrics.v_measure_score
Regression
‘explained_variance’ metrics.explained_variance_score
‘neg_mean_absolute_error’ metrics.mean_absolute_error
‘neg_mean_squared_error’ metrics.mean_squared_error
‘neg_mean_squared_log_error’ metrics.mean_squared_log_error
‘neg_median_absolute_error’ metrics.median_absolute_error
‘r2’ metrics.r2_score

Usage examples:

>>> from sklearn import svm, datasets
>>> from sklearn.model_selection import cross_val_score
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> clf = svm.SVC(probability=True, random_state=0)
>>> cross_val_score(clf, X, y, scoring='neg_log_loss')
array([-0.07..., -0.16..., -0.06...])
>>> model = svm.SVC()
>>> cross_val_score(model, X, y, scoring='wrong_choice')
Traceback (most recent call last):
ValueError: 'wrong_choice' is not a valid scoring value. Valid options are ['accuracy
→˓', 'adjusted_mutual_info_score', 'adjusted_rand_score', 'average_precision',
→˓'completeness_score', 'explained_variance', 'f1', 'f1_macro', 'f1_micro', 'f1_
→˓samples', 'f1_weighted', 'fowlkes_mallows_score', 'homogeneity_score', 'mutual_info_
→˓score', 'neg_log_loss', 'neg_mean_absolute_error', 'neg_mean_squared_error', 'neg_
→˓mean_squared_log_error', 'neg_median_absolute_error', 'normalized_mutual_info_score
→˓', 'precision', 'precision_macro', 'precision_micro', 'precision_samples',
→˓'precision_weighted', 'r2', 'recall', 'recall_macro', 'recall_micro', 'recall_
→˓samples', 'recall_weighted', 'roc_auc', 'v_measure_score']
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Note: The values listed by the ValueError exception correspond to the functions measuring prediction accuracy
described in the following sections. The scorer objects for those functions are stored in the dictionary sklearn.
metrics.SCORERS.

Defining your scoring strategy from metric functions

The module sklearn.metrics also exposes a set of simple functions measuring a prediction error given ground
truth and prediction:

• functions ending with _score return a value to maximize, the higher the better.

• functions ending with _error or _loss return a value to minimize, the lower the better. When converting into
a scorer object using make_scorer, set the greater_is_better parameter to False (True by default; see
the parameter description below).

Metrics available for various machine learning tasks are detailed in sections below.

Many metrics are not given names to be used as scoring values, sometimes because they require additional param-
eters, such as fbeta_score. In such cases, you need to generate an appropriate scoring object. The simplest way
to generate a callable object for scoring is by using make_scorer. That function converts metrics into callables that
can be used for model evaluation.

One typical use case is to wrap an existing metric function from the library with non-default values for its parameters,
such as the beta parameter for the fbeta_score function:

>>> from sklearn.metrics import fbeta_score, make_scorer
>>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.svm import LinearSVC
>>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, scoring=ftwo_scorer)

The second use case is to build a completely custom scorer object from a simple python function using
make_scorer, which can take several parameters:

• the python function you want to use (my_custom_loss_func in the example below)

• whether the python function returns a score (greater_is_better=True, the default) or a loss
(greater_is_better=False). If a loss, the output of the python function is negated by the scorer ob-
ject, conforming to the cross validation convention that scorers return higher values for better models.

• for classification metrics only: whether the python function you provided requires continuous decision certain-
ties (needs_threshold=True). The default value is False.

• any additional parameters, such as beta or labels in f1_score.

Here is an example of building custom scorers, and of using the greater_is_better parameter:

>>> import numpy as np
>>> def my_custom_loss_func(ground_truth, predictions):
... diff = np.abs(ground_truth - predictions).max()
... return np.log(1 + diff)
...
>>> # loss_func will negate the return value of my_custom_loss_func,
>>> # which will be np.log(2), 0.693, given the values for ground_truth
>>> # and predictions defined below.
>>> loss = make_scorer(my_custom_loss_func, greater_is_better=False)
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>>> score = make_scorer(my_custom_loss_func, greater_is_better=True)
>>> ground_truth = [[1], [1]]
>>> predictions = [0, 1]
>>> from sklearn.dummy import DummyClassifier
>>> clf = DummyClassifier(strategy='most_frequent', random_state=0)
>>> clf = clf.fit(ground_truth, predictions)
>>> loss(clf,ground_truth, predictions)
-0.69...
>>> score(clf,ground_truth, predictions)
0.69...

Implementing your own scoring object

You can generate even more flexible model scorers by constructing your own scoring object from scratch, without using
the make_scorer factory. For a callable to be a scorer, it needs to meet the protocol specified by the following two
rules:

• It can be called with parameters (estimator, X, y), where estimator is the model that should be
evaluated, X is validation data, and y is the ground truth target for X (in the supervised case) or None (in the
unsupervised case).

• It returns a floating point number that quantifies the estimator prediction quality on X, with reference to y.
Again, by convention higher numbers are better, so if your scorer returns loss, that value should be negated.

Using multiple metric evaluation

Scikit-learn also permits evaluation of multiple metrics in GridSearchCV, RandomizedSearchCV and
cross_validate.

There are two ways to specify multiple scoring metrics for the scoring parameter:

• As an iterable of string metrics::

>>> scoring = ['accuracy', 'precision']

• As a dict mapping the scorer name to the scoring function::

>>> from sklearn.metrics import accuracy_score
>>> from sklearn.metrics import make_scorer
>>> scoring = {'accuracy': make_scorer(accuracy_score),
... 'prec': 'precision'}

Note that the dict values can either be scorer functions or one of the predefined metric strings.

Currently only those scorer functions that return a single score can be passed inside the dict. Scorer functions that
return multiple values are not permitted and will require a wrapper to return a single metric:

>>> from sklearn.model_selection import cross_validate
>>> from sklearn.metrics import confusion_matrix
>>> # A sample toy binary classification dataset
>>> X, y = datasets.make_classification(n_classes=2, random_state=0)
>>> svm = LinearSVC(random_state=0)
>>> def tp(y_true, y_pred): return confusion_matrix(y_true, y_pred)[0, 0]
>>> def tn(y_true, y_pred): return confusion_matrix(y_true, y_pred)[0, 0]
>>> def fp(y_true, y_pred): return confusion_matrix(y_true, y_pred)[1, 0]
>>> def fn(y_true, y_pred): return confusion_matrix(y_true, y_pred)[0, 1]
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>>> scoring = {'tp' : make_scorer(tp), 'tn' : make_scorer(tn),
... 'fp' : make_scorer(fp), 'fn' : make_scorer(fn)}
>>> cv_results = cross_validate(svm.fit(X, y), X, y, scoring=scoring)
>>> # Getting the test set true positive scores
>>> print(cv_results['test_tp'])
[12 13 15]
>>> # Getting the test set false negative scores
>>> print(cv_results['test_fn'])
[5 4 1]

Classification metrics

The sklearn.metrics module implements several loss, score, and utility functions to measure classification per-
formance. Some metrics might require probability estimates of the positive class, confidence values, or binary deci-
sions values. Most implementations allow each sample to provide a weighted contribution to the overall score, through
the sample_weight parameter.

Some of these are restricted to the binary classification case:

precision_recall_curve(y_true, probas_pred) Compute precision-recall pairs for different probability
thresholds

roc_curve(y_true, y_score[, pos_label, . . . ]) Compute Receiver operating characteristic (ROC)

Others also work in the multiclass case:

cohen_kappa_score(y1, y2[, labels, weights, . . . ]) Cohen’s kappa: a statistic that measures inter-annotator
agreement.

confusion_matrix(y_true, y_pred[, labels, . . . ]) Compute confusion matrix to evaluate the accuracy of a
classification

hinge_loss(y_true, pred_decision[, labels, . . . ]) Average hinge loss (non-regularized)
matthews_corrcoef(y_true, y_pred[, . . . ]) Compute the Matthews correlation coefficient (MCC)

Some also work in the multilabel case:

accuracy_score(y_true, y_pred[, normalize, . . . ]) Accuracy classification score.
classification_report(y_true, y_pred[, . . . ]) Build a text report showing the main classification metrics
f1_score(y_true, y_pred[, labels, . . . ]) Compute the F1 score, also known as balanced F-score or

F-measure
fbeta_score(y_true, y_pred, beta[, labels, . . . ]) Compute the F-beta score
hamming_loss(y_true, y_pred[, labels, . . . ]) Compute the average Hamming loss.
jaccard_similarity_score(y_true, y_pred[, . . . ]) Jaccard similarity coefficient score
log_loss(y_true, y_pred[, eps, normalize, . . . ]) Log loss, aka logistic loss or cross-entropy loss.
precision_recall_fscore_support(y_true,
y_pred)

Compute precision, recall, F-measure and support for each
class

precision_score(y_true, y_pred[, labels, . . . ]) Compute the precision
recall_score(y_true, y_pred[, labels, . . . ]) Compute the recall
zero_one_loss(y_true, y_pred[, normalize, . . . ]) Zero-one classification loss.

And some work with binary and multilabel (but not multiclass) problems:
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average_precision_score(y_true, y_score[, . . . ]) Compute average precision (AP) from prediction scores
roc_auc_score(y_true, y_score[, average, . . . ]) Compute Area Under the Receiver Operating Characteris-

tic Curve (ROC AUC) from prediction scores.

In the following sub-sections, we will describe each of those functions, preceded by some notes on common API and
metric definition.

From binary to multiclass and multilabel

Some metrics are essentially defined for binary classification tasks (e.g. f1_score, roc_auc_score). In these
cases, by default only the positive label is evaluated, assuming by default that the positive class is labelled 1 (though
this may be configurable through the pos_label parameter). In extending a binary metric to multiclass or multilabel
problems, the data is treated as a collection of binary problems, one for each class. There are then a number of ways
to average binary metric calculations across the set of classes, each of which may be useful in some scenario. Where
available, you should select among these using the average parameter.

• "macro" simply calculates the mean of the binary metrics, giving equal weight to each class. In problems
where infrequent classes are nonetheless important, macro-averaging may be a means of highlighting their
performance. On the other hand, the assumption that all classes are equally important is often untrue, such that
macro-averaging will over-emphasize the typically low performance on an infrequent class.

• "weighted" accounts for class imbalance by computing the average of binary metrics in which each class’s
score is weighted by its presence in the true data sample.

• "micro" gives each sample-class pair an equal contribution to the overall metric (except as a result of sample-
weight). Rather than summing the metric per class, this sums the dividends and divisors that make up the
per-class metrics to calculate an overall quotient. Micro-averaging may be preferred in multilabel settings,
including multiclass classification where a majority class is to be ignored.

• "samples" applies only to multilabel problems. It does not calculate a per-class measure, instead calculat-
ing the metric over the true and predicted classes for each sample in the evaluation data, and returning their
(sample_weight-weighted) average.

• Selecting average=None will return an array with the score for each class.

While multiclass data is provided to the metric, like binary targets, as an array of class labels, multilabel data is
specified as an indicator matrix, in which cell [i, j] has value 1 if sample i has label j and value 0 otherwise.

Accuracy score

The accuracy_score function computes the accuracy, either the fraction (default) or the count (normalize=False)
of correct predictions.

In multilabel classification, the function returns the subset accuracy. If the entire set of predicted labels for a sample
strictly match with the true set of labels, then the subset accuracy is 1.0; otherwise it is 0.0.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample and 𝑦𝑖 is the corresponding true value, then the fraction of correct
predictions over 𝑛samples is defined as

accuracy(𝑦, 𝑦) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

1(𝑦𝑖 = 𝑦𝑖)

where 1(𝑥) is the indicator function.
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>>> import numpy as np
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2

In the multilabel case with binary label indicators:

>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

Example:

• See Test with permutations the significance of a classification score for an example of accuracy score usage
using permutations of the dataset.

Cohen’s kappa

The function cohen_kappa_score computes Cohen’s kappa statistic. This measure is intended to compare label-
ings by different human annotators, not a classifier versus a ground truth.

The kappa score (see docstring) is a number between -1 and 1. Scores above .8 are generally considered good agree-
ment; zero or lower means no agreement (practically random labels).

Kappa scores can be computed for binary or multiclass problems, but not for multilabel problems (except by manually
computing a per-label score) and not for more than two annotators.

>>> from sklearn.metrics import cohen_kappa_score
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> cohen_kappa_score(y_true, y_pred)
0.4285714285714286

Confusion matrix

The confusion_matrix function evaluates classification accuracy by computing the confusion matrix.

By definition, entry 𝑖, 𝑗 in a confusion matrix is the number of observations actually in group 𝑖, but predicted to be in
group 𝑗. Here is an example:

>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],

[0, 0, 1],
[1, 0, 2]])
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Here is a visual representation of such a confusion matrix (this figure comes from the Confusion matrix example):

For binary problems, we can
get counts of true negatives, false positives, false negatives and true positives as follows:

>>> y_true = [0, 0, 0, 1, 1, 1, 1, 1]
>>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1]
>>> tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
>>> tn, fp, fn, tp
(2, 1, 2, 3)

Example:

• See Confusion matrix for an example of using a confusion matrix to evaluate classifier output quality.

• See Recognizing hand-written digits for an example of using a confusion matrix to classify hand-written
digits.

• See Classification of text documents using sparse features for an example of using a confusion matrix to
classify text documents.

Classification report

The classification_report function builds a text report showing the main classification metrics. Here is a
small example with custom target_names and inferred labels:

>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 0]
>>> y_pred = [0, 0, 2, 1, 0]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))

precision recall f1-score support
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class 0 0.67 1.00 0.80 2
class 1 0.00 0.00 0.00 1
class 2 1.00 0.50 0.67 2

avg / total 0.67 0.60 0.59 5

Example:

• See Recognizing hand-written digits for an example of classification report usage for hand-written digits.

• See Classification of text documents using sparse features for an example of classification report usage for
text documents.

• See Parameter estimation using grid search with cross-validation for an example of classification report usage
for grid search with nested cross-validation.

Hamming loss

The hamming_loss computes the average Hamming loss or Hamming distance between two sets of samples.

If 𝑦𝑗 is the predicted value for the 𝑗-th label of a given sample, 𝑦𝑗 is the corresponding true value, and 𝑛labels is the
number of classes or labels, then the Hamming loss 𝐿𝐻𝑎𝑚𝑚𝑖𝑛𝑔 between two samples is defined as:

𝐿𝐻𝑎𝑚𝑚𝑖𝑛𝑔(𝑦, 𝑦) =
1

𝑛labels

𝑛labels−1∑︁
𝑗=0

1(𝑦𝑗 ̸= 𝑦𝑗)

where 1(𝑥) is the indicator function.

>>> from sklearn.metrics import hamming_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> hamming_loss(y_true, y_pred)
0.25

In the multilabel case with binary label indicators:

>>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2)))
0.75

Note: In multiclass classification, the Hamming loss corresponds to the Hamming distance between y_true and
y_pred which is similar to the Zero one loss function. However, while zero-one loss penalizes prediction sets that
do not strictly match true sets, the Hamming loss penalizes individual labels. Thus the Hamming loss, upper bounded
by the zero-one loss, is always between zero and one, inclusive; and predicting a proper subset or superset of the true
labels will give a Hamming loss between zero and one, exclusive.

Jaccard similarity coefficient score

The jaccard_similarity_score function computes the average (default) or sum of Jaccard similarity coeffi-
cients, also called the Jaccard index, between pairs of label sets.
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The Jaccard similarity coefficient of the 𝑖-th samples, with a ground truth label set 𝑦𝑖 and predicted label set 𝑦𝑖, is
defined as

𝐽(𝑦𝑖, 𝑦𝑖) =
|𝑦𝑖 ∩ 𝑦𝑖|
|𝑦𝑖 ∪ 𝑦𝑖|

.

In binary and multiclass classification, the Jaccard similarity coefficient score is equal to the classification accuracy.

>>> import numpy as np
>>> from sklearn.metrics import jaccard_similarity_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> jaccard_similarity_score(y_true, y_pred)
0.5
>>> jaccard_similarity_score(y_true, y_pred, normalize=False)
2

In the multilabel case with binary label indicators:

>>> jaccard_similarity_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.75

Precision, recall and F-measures

Intuitively, precision is the ability of the classifier not to label as positive a sample that is negative, and recall is the
ability of the classifier to find all the positive samples.

The F-measure (𝐹𝛽 and 𝐹1 measures) can be interpreted as a weighted harmonic mean of the precision and recall. A
𝐹𝛽 measure reaches its best value at 1 and its worst score at 0. With 𝛽 = 1, 𝐹𝛽 and 𝐹1 are equivalent, and the recall
and the precision are equally important.

The precision_recall_curve computes a precision-recall curve from the ground truth label and a score given
by the classifier by varying a decision threshold.

The average_precision_score function computes the average precision (AP) from prediction scores. The
value is between 0 and 1 and higher is better. AP is defined as

AP =
∑︁
𝑛

(𝑅𝑛 −𝑅𝑛−1)𝑃𝑛

where 𝑃𝑛 and 𝑅𝑛 are the precision and recall at the nth threshold. With random predictions, the AP is the fraction of
positive samples.

References [Manning2008] and [Everingham2010] present alternative variants of AP that interpolate the precision-
recall curve. Currently, average_precision_score does not implement any interpolated variant. References
[Davis2006] and [Flach2015] describe why a linear interpolation of points on the precision-recall curve provides an
overly-optimistic measure of classifier performance. This linear interpolation is used when computing area under the
curve with the trapezoidal rule in auc.

Several functions allow you to analyze the precision, recall and F-measures score:

average_precision_score(y_true, y_score[, . . . ]) Compute average precision (AP) from prediction scores
f1_score(y_true, y_pred[, labels, . . . ]) Compute the F1 score, also known as balanced F-score or

F-measure
fbeta_score(y_true, y_pred, beta[, labels, . . . ]) Compute the F-beta score
precision_recall_curve(y_true, probas_pred) Compute precision-recall pairs for different probability

thresholds
Continued on next page
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Table 3.26 – continued from previous page
precision_recall_fscore_support(y_true,
y_pred)

Compute precision, recall, F-measure and support for each
class

precision_score(y_true, y_pred[, labels, . . . ]) Compute the precision
recall_score(y_true, y_pred[, labels, . . . ]) Compute the recall

Note that the precision_recall_curve function is restricted to the binary case. The
average_precision_score function works only in binary classification and multilabel indicator format.

Examples:

• See Classification of text documents using sparse features for an example of f1_score usage to classify
text documents.

• See Parameter estimation using grid search with cross-validation for an example of precision_score
and recall_score usage to estimate parameters using grid search with nested cross-validation.

• See Precision-Recall for an example of precision_recall_curve usage to evaluate classifier output
quality.

References:

Binary classification

In a binary classification task, the terms ‘’positive” and ‘’negative” refer to the classifier’s prediction, and the terms
‘’true” and ‘’false” refer to whether that prediction corresponds to the external judgment (sometimes known as the
‘’observation’‘). Given these definitions, we can formulate the following table:

Actual class (observation)
Predicted class (expectation) tp (true positive) Correct result fp (false positive) Unexpected result

fn (false negative) Missing result tn (true negative) Correct absence of result

In this context, we can define the notions of precision, recall and F-measure:

precision =
𝑡𝑝

𝑡𝑝+ 𝑓𝑝
,

recall =
𝑡𝑝

𝑡𝑝+ 𝑓𝑛
,

𝐹𝛽 = (1 + 𝛽2)
precision× recall
𝛽2precision + recall

.

Here are some small examples in binary classification:

>>> from sklearn import metrics
>>> y_pred = [0, 1, 0, 0]
>>> y_true = [0, 1, 0, 1]
>>> metrics.precision_score(y_true, y_pred)
1.0
>>> metrics.recall_score(y_true, y_pred)
0.5
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>>> metrics.f1_score(y_true, y_pred)
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=0.5)
0.83...
>>> metrics.fbeta_score(y_true, y_pred, beta=1)
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=2)
0.55...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5)
(array([ 0.66..., 1. ]), array([ 1. , 0.5]), array([ 0.71..., 0.83...]),
→˓array([2, 2]...))

>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> from sklearn.metrics import average_precision_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, threshold = precision_recall_curve(y_true, y_scores)
>>> precision
array([ 0.66..., 0.5 , 1. , 1. ])
>>> recall
array([ 1. , 0.5, 0.5, 0. ])
>>> threshold
array([ 0.35, 0.4 , 0.8 ])
>>> average_precision_score(y_true, y_scores)
0.83...

Multiclass and multilabel classification

In multiclass and multilabel classification task, the notions of precision, recall, and F-measures can be ap-
plied to each label independently. There are a few ways to combine results across labels, specified by the
average argument to the average_precision_score (multilabel only), f1_score, fbeta_score,
precision_recall_fscore_support, precision_score and recall_score functions, as described
above. Note that for “micro”-averaging in a multiclass setting with all labels included will produce equal precision,
recall and 𝐹 , while “weighted” averaging may produce an F-score that is not between precision and recall.

To make this more explicit, consider the following notation:

• 𝑦 the set of predicted (𝑠𝑎𝑚𝑝𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙) pairs

• 𝑦 the set of true (𝑠𝑎𝑚𝑝𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙) pairs

• 𝐿 the set of labels

• 𝑆 the set of samples

• 𝑦𝑠 the subset of 𝑦 with sample 𝑠, i.e. 𝑦𝑠 := {(𝑠′, 𝑙) ∈ 𝑦|𝑠′ = 𝑠}

• 𝑦𝑙 the subset of 𝑦 with label 𝑙

• similarly, 𝑦𝑠 and 𝑦𝑙 are subsets of 𝑦

• 𝑃 (𝐴,𝐵) := |𝐴∩𝐵|
|𝐴|

• 𝑅(𝐴,𝐵) := |𝐴∩𝐵|
|𝐵| (Conventions vary on handling 𝐵 = ∅; this implementation uses 𝑅(𝐴,𝐵) := 0, and similar

for 𝑃 .)

• 𝐹𝛽(𝐴,𝐵) :=
(︀
1 + 𝛽2

)︀ 𝑃 (𝐴,𝐵)×𝑅(𝐴,𝐵)
𝛽2𝑃 (𝐴,𝐵)+𝑅(𝐴,𝐵)
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Then the metrics are defined as:

average Precision Recall F_beta
"micro" 𝑃 (𝑦, 𝑦) 𝑅(𝑦, 𝑦) 𝐹𝛽(𝑦, 𝑦)
"samples" 1

|𝑆|
∑︀

𝑠∈𝑆 𝑃 (𝑦𝑠, 𝑦𝑠)
1
|𝑆|
∑︀

𝑠∈𝑆 𝑅(𝑦𝑠, 𝑦𝑠)
1
|𝑆|
∑︀

𝑠∈𝑆 𝐹𝛽(𝑦𝑠, 𝑦𝑠)

"macro" 1
|𝐿|
∑︀

𝑙∈𝐿 𝑃 (𝑦𝑙, 𝑦𝑙)
1
|𝐿|
∑︀

𝑙∈𝐿𝑅(𝑦𝑙, 𝑦𝑙)
1
|𝐿|
∑︀

𝑙∈𝐿 𝐹𝛽(𝑦𝑙, 𝑦𝑙)

"weighted" 1∑︀
𝑙∈𝐿|𝑦𝑙|

∑︀
𝑙∈𝐿 |𝑦𝑙|𝑃 (𝑦𝑙, 𝑦𝑙)

1∑︀
𝑙∈𝐿|𝑦𝑙|

∑︀
𝑙∈𝐿 |𝑦𝑙|𝑅(𝑦𝑙, 𝑦𝑙)

1∑︀
𝑙∈𝐿|𝑦𝑙|

∑︀
𝑙∈𝐿 |𝑦𝑙|𝐹𝛽(𝑦𝑙, 𝑦𝑙)

None ⟨𝑃 (𝑦𝑙, 𝑦𝑙)|𝑙 ∈ 𝐿⟩ ⟨𝑅(𝑦𝑙, 𝑦𝑙)|𝑙 ∈ 𝐿⟩ ⟨𝐹𝛽(𝑦𝑙, 𝑦𝑙)|𝑙 ∈ 𝐿⟩

>>> from sklearn import metrics
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> metrics.precision_score(y_true, y_pred, average='macro')
0.22...
>>> metrics.recall_score(y_true, y_pred, average='micro')
...
0.33...
>>> metrics.f1_score(y_true, y_pred, average='weighted')
0.26...
>>> metrics.fbeta_score(y_true, y_pred, average='macro', beta=0.5)
0.23...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5, average=None)
...
(array([ 0.66..., 0. , 0. ]), array([ 1., 0., 0.]), array([ 0.71...,
→˓ 0. , 0. ]), array([2, 2, 2]...))

For multiclass classification with a “negative class”, it is possible to exclude some labels:

>>> metrics.recall_score(y_true, y_pred, labels=[1, 2], average='micro')
... # excluding 0, no labels were correctly recalled
0.0

Similarly, labels not present in the data sample may be accounted for in macro-averaging.

>>> metrics.precision_score(y_true, y_pred, labels=[0, 1, 2, 3], average='macro')
...
0.166...

Hinge loss

The hinge_loss function computes the average distance between the model and the data using hinge loss, a one-
sided metric that considers only prediction errors. (Hinge loss is used in maximal margin classifiers such as support
vector machines.)

If the labels are encoded with +1 and -1, 𝑦: is the true value, and 𝑤 is the predicted decisions as output by
decision_function, then the hinge loss is defined as:

𝐿Hinge(𝑦, 𝑤) = max {1− 𝑤𝑦, 0} = |1− 𝑤𝑦|+
If there are more than two labels, hinge_loss uses a multiclass variant due to Crammer & Singer. Here is the paper
describing it.

If 𝑦𝑤 is the predicted decision for true label and 𝑦𝑡 is the maximum of the predicted decisions for all other labels,
where predicted decisions are output by decision function, then multiclass hinge loss is defined by:

𝐿Hinge(𝑦𝑤, 𝑦𝑡) = max {1 + 𝑦𝑡 − 𝑦𝑤, 0}
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Here a small example demonstrating the use of the hinge_loss function with a svm classifier in a binary class
problem:

>>> from sklearn import svm
>>> from sklearn.metrics import hinge_loss
>>> X = [[0], [1]]
>>> y = [-1, 1]
>>> est = svm.LinearSVC(random_state=0)
>>> est.fit(X, y)
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,

intercept_scaling=1, loss='squared_hinge', max_iter=1000,
multi_class='ovr', penalty='l2', random_state=0, tol=0.0001,
verbose=0)

>>> pred_decision = est.decision_function([[-2], [3], [0.5]])
>>> pred_decision
array([-2.18..., 2.36..., 0.09...])
>>> hinge_loss([-1, 1, 1], pred_decision)
0.3...

Here is an example demonstrating the use of the hinge_loss function with a svm classifier in a multiclass problem:

>>> X = np.array([[0], [1], [2], [3]])
>>> Y = np.array([0, 1, 2, 3])
>>> labels = np.array([0, 1, 2, 3])
>>> est = svm.LinearSVC()
>>> est.fit(X, Y)
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,

intercept_scaling=1, loss='squared_hinge', max_iter=1000,
multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
verbose=0)

>>> pred_decision = est.decision_function([[-1], [2], [3]])
>>> y_true = [0, 2, 3]
>>> hinge_loss(y_true, pred_decision, labels)
0.56...

Log loss

Log loss, also called logistic regression loss or cross-entropy loss, is defined on probability estimates. It is commonly
used in (multinomial) logistic regression and neural networks, as well as in some variants of expectation-maximization,
and can be used to evaluate the probability outputs (predict_proba) of a classifier instead of its discrete predic-
tions.

For binary classification with a true label 𝑦 ∈ {0, 1} and a probability estimate 𝑝 = Pr(𝑦 = 1), the log loss per sample
is the negative log-likelihood of the classifier given the true label:

𝐿log(𝑦, 𝑝) = − log Pr(𝑦|𝑝) = −(𝑦 log(𝑝) + (1− 𝑦) log(1− 𝑝))

This extends to the multiclass case as follows. Let the true labels for a set of samples be encoded as a 1-of-K binary
indicator matrix 𝑌 , i.e., 𝑦𝑖,𝑘 = 1 if sample 𝑖 has label 𝑘 taken from a set of 𝐾 labels. Let 𝑃 be a matrix of probability
estimates, with 𝑝𝑖,𝑘 = Pr(𝑡𝑖,𝑘 = 1). Then the log loss of the whole set is

𝐿log(𝑌, 𝑃 ) = − log Pr(𝑌 |𝑃 ) = − 1

𝑁

𝑁−1∑︁
𝑖=0

𝐾−1∑︁
𝑘=0

𝑦𝑖,𝑘 log 𝑝𝑖,𝑘

To see how this generalizes the binary log loss given above, note that in the binary case, 𝑝𝑖,0 = 1 − 𝑝𝑖,1 and 𝑦𝑖,0 =
1− 𝑦𝑖,1, so expanding the inner sum over 𝑦𝑖,𝑘 ∈ {0, 1} gives the binary log loss.
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The log_loss function computes log loss given a list of ground-truth labels and a probability matrix, as returned by
an estimator’s predict_proba method.

>>> from sklearn.metrics import log_loss
>>> y_true = [0, 0, 1, 1]
>>> y_pred = [[.9, .1], [.8, .2], [.3, .7], [.01, .99]]
>>> log_loss(y_true, y_pred)
0.1738...

The first [.9, .1] in y_pred denotes 90% probability that the first sample has label 0. The log loss is non-negative.

Matthews correlation coefficient

The matthews_corrcoef function computes the Matthew’s correlation coefficient (MCC) for binary classes.
Quoting Wikipedia:

“The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary
(two-class) classifications. It takes into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are of very different sizes. The
MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents
a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also
known as the phi coefficient.”

In the binary (two-class) case, 𝑡𝑝, 𝑡𝑛, 𝑓𝑝 and 𝑓𝑛 are respectively the number of true positives, true negatives, false
positives and false negatives, the MCC is defined as

𝑀𝐶𝐶 =
𝑡𝑝× 𝑡𝑛− 𝑓𝑝× 𝑓𝑛√︀

(𝑡𝑝+ 𝑓𝑝)(𝑡𝑝+ 𝑓𝑛)(𝑡𝑛+ 𝑓𝑝)(𝑡𝑛+ 𝑓𝑛)
.

In the multiclass case, the Matthews correlation coefficient can be defined in terms of a confusion_matrix 𝐶 for
𝐾 classes. To simplify the definition consider the following intermediate variables:

• 𝑡𝑘 =
∑︀𝐾

𝑖 𝐶𝑖𝑘 the number of times class 𝑘 truly occurred,

• 𝑝𝑘 =
∑︀𝐾

𝑖 𝐶𝑘𝑖 the number of times class 𝑘 was predicted,

• 𝑐 =
∑︀𝐾

𝑘 𝐶𝑘𝑘 the total number of samples correctly predicted,

• 𝑠 =
∑︀𝐾

𝑖

∑︀𝐾
𝑗 𝐶𝑖𝑗 the total number of samples.

Then the multiclass MCC is defined as:

𝑀𝐶𝐶 =
𝑐× 𝑠−

∑︀𝐾
𝑘 𝑝𝑘 × 𝑡𝑘√︁

(𝑠2 −
∑︀𝐾

𝑘 𝑝2𝑘)× (𝑠2 −
∑︀𝐾

𝑘 𝑡2𝑘)

When there are more than two labels, the value of the MCC will no longer range between -1 and +1. Instead the
minimum value will be somewhere between -1 and 0 depending on the number and distribution of ground true labels.
The maximum value is always +1.

Here is a small example illustrating the usage of the matthews_corrcoef function:

>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred)
-0.33...
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Receiver operating characteristic (ROC)

The function roc_curve computes the receiver operating characteristic curve, or ROC curve. Quoting Wikipedia :

“A receiver operating characteristic (ROC), or simply ROC curve, is a graphical plot which illustrates
the performance of a binary classifier system as its discrimination threshold is varied. It is created by
plotting the fraction of true positives out of the positives (TPR = true positive rate) vs. the fraction of false
positives out of the negatives (FPR = false positive rate), at various threshold settings. TPR is also known
as sensitivity, and FPR is one minus the specificity or true negative rate.”

This function requires the true binary value and the target scores, which can either be probability estimates of the
positive class, confidence values, or binary decisions. Here is a small example of how to use the roc_curve function:

>>> import numpy as np
>>> from sklearn.metrics import roc_curve
>>> y = np.array([1, 1, 2, 2])
>>> scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = roc_curve(y, scores, pos_label=2)
>>> fpr
array([ 0. , 0.5, 0.5, 1. ])
>>> tpr
array([ 0.5, 0.5, 1. , 1. ])
>>> thresholds
array([ 0.8 , 0.4 , 0.35, 0.1 ])

This figure shows an example of such an ROC curve:
The roc_auc_score function computes the area under the receiver operating characteristic (ROC) curve, which is
also denoted by AUC or AUROC. By computing the area under the roc curve, the curve information is summarized in
one number. For more information see the Wikipedia article on AUC.

>>> import numpy as np
>>> from sklearn.metrics import roc_auc_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> roc_auc_score(y_true, y_scores)
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0.75

In multi-label classification, the roc_auc_score function is extended by averaging over the labels as above.

Compared to metrics such as the subset accuracy, the Hamming loss, or the F1 score, ROC doesn’t require optimizing a
threshold for each label. The roc_auc_score function can also be used in multi-class classification, if the predicted

outputs have been binarized.

Examples:

• See Receiver Operating Characteristic (ROC) for an example of using ROC to evaluate the quality of the
output of a classifier.

• See Receiver Operating Characteristic (ROC) with cross validation for an example of using ROC to evaluate
classifier output quality, using cross-validation.

• See Species distribution modeling for an example of using ROC to model species distribution.

Zero one loss

The zero_one_loss function computes the sum or the average of the 0-1 classification loss (𝐿0−1) over 𝑛samples.
By default, the function normalizes over the sample. To get the sum of the 𝐿0−1, set normalize to False.

In multilabel classification, the zero_one_loss scores a subset as one if its labels strictly match the predictions,
and as a zero if there are any errors. By default, the function returns the percentage of imperfectly predicted subsets.
To get the count of such subsets instead, set normalize to False

If 𝑦𝑖 is the predicted value of the 𝑖-th sample and 𝑦𝑖 is the corresponding true value, then the 0-1 loss 𝐿0−1 is defined
as:

𝐿0−1(𝑦𝑖, 𝑦𝑖) = 1(𝑦𝑖 ̸= 𝑦𝑖)

where 1(𝑥) is the indicator function.
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>>> from sklearn.metrics import zero_one_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> zero_one_loss(y_true, y_pred)
0.25
>>> zero_one_loss(y_true, y_pred, normalize=False)
1

In the multilabel case with binary label indicators, where the first label set [0,1] has an error:

>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)), normalize=False)
1

Example:

• See Recursive feature elimination with cross-validation for an example of zero one loss usage to perform
recursive feature elimination with cross-validation.

Brier score loss

The brier_score_loss function computes the Brier score for binary classes. Quoting Wikipedia:

“The Brier score is a proper score function that measures the accuracy of probabilistic predictions. It is
applicable to tasks in which predictions must assign probabilities to a set of mutually exclusive discrete
outcomes.”

This function returns a score of the mean square difference between the actual outcome and the predicted probability
of the possible outcome. The actual outcome has to be 1 or 0 (true or false), while the predicted probability of the
actual outcome can be a value between 0 and 1.

The brier score loss is also between 0 to 1 and the lower the score (the mean square difference is smaller), the more
accurate the prediction is. It can be thought of as a measure of the “calibration” of a set of probabilistic predictions.

𝐵𝑆 =
1

𝑁

𝑁∑︁
𝑡=1

(𝑓𝑡 − 𝑜𝑡)2

where : 𝑁 is the total number of predictions, 𝑓𝑡 is the predicted probability of the actual outcome 𝑜𝑡.

Here is a small example of usage of this function::

>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss
>>> y_true = np.array([0, 1, 1, 0])
>>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"])
>>> y_prob = np.array([0.1, 0.9, 0.8, 0.4])
>>> y_pred = np.array([0, 1, 1, 0])
>>> brier_score_loss(y_true, y_prob)
0.055
>>> brier_score_loss(y_true, 1-y_prob, pos_label=0)
0.055
>>> brier_score_loss(y_true_categorical, y_prob, pos_label="ham")
0.055
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>>> brier_score_loss(y_true, y_prob > 0.5)
0.0

Example:

• See Probability calibration of classifiers for an example of Brier score loss usage to perform probability
calibration of classifiers.

References:

• G. Brier, Verification of forecasts expressed in terms of probability, Monthly weather review 78.1 (1950)

Multilabel ranking metrics

In multilabel learning, each sample can have any number of ground truth labels associated with it. The goal is to give
high scores and better rank to the ground truth labels.

Coverage error

The coverage_error function computes the average number of labels that have to be included in the final predic-
tion such that all true labels are predicted. This is useful if you want to know how many top-scored-labels you have
to predict in average without missing any true one. The best value of this metrics is thus the average number of true
labels.

Note: Our implementation’s score is 1 greater than the one given in Tsoumakas et al., 2010. This extends it to handle
the degenerate case in which an instance has 0 true labels.

Formally, given a binary indicator matrix of the ground truth labels 𝑦 ∈ {0, 1}𝑛samples×𝑛labels and the score associated
with each label 𝑓 ∈ R𝑛samples×𝑛labels , the coverage is defined as

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑦, 𝑓) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

max
𝑗:𝑦𝑖𝑗=1

rank𝑖𝑗

with rank𝑖𝑗 =
⃒⃒⃒{︁
𝑘 : 𝑓𝑖𝑘 ≥ 𝑓𝑖𝑗

}︁⃒⃒⃒
. Given the rank definition, ties in y_scores are broken by giving the maximal rank

that would have been assigned to all tied values.

Here is a small example of usage of this function:

>>> import numpy as np
>>> from sklearn.metrics import coverage_error
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> coverage_error(y_true, y_score)
2.5
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Label ranking average precision

The label_ranking_average_precision_score function implements label ranking average precision
(LRAP). This metric is linked to the average_precision_score function, but is based on the notion of la-
bel ranking instead of precision and recall.

Label ranking average precision (LRAP) is the average over each ground truth label assigned to each sample, of the
ratio of true vs. total labels with lower score. This metric will yield better scores if you are able to give better rank to
the labels associated with each sample. The obtained score is always strictly greater than 0, and the best value is 1.
If there is exactly one relevant label per sample, label ranking average precision is equivalent to the mean reciprocal
rank.

Formally, given a binary indicator matrix of the ground truth labels 𝑦 ∈ ℛ𝑛samples×𝑛labels and the score associated with
each label 𝑓 ∈ ℛ𝑛samples×𝑛labels , the average precision is defined as

𝐿𝑅𝐴𝑃 (𝑦, 𝑓) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

1

|𝑦𝑖|
∑︁

𝑗:𝑦𝑖𝑗=1

|ℒ𝑖𝑗 |
rank𝑖𝑗

with ℒ𝑖𝑗 =
{︁
𝑘 : 𝑦𝑖𝑘 = 1, 𝑓𝑖𝑘 ≥ 𝑓𝑖𝑗

}︁
, rank𝑖𝑗 =

⃒⃒⃒{︁
𝑘 : 𝑓𝑖𝑘 ≥ 𝑓𝑖𝑗

}︁⃒⃒⃒
and | · | is the l0 norm or the cardinality of the set.

Here is a small example of usage of this function:

>>> import numpy as np
>>> from sklearn.metrics import label_ranking_average_precision_score
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_average_precision_score(y_true, y_score)
0.416...

Ranking loss

The label_ranking_loss function computes the ranking loss which averages over the samples the number of
label pairs that are incorrectly ordered, i.e. true labels have a lower score than false labels, weighted by the inverse
number of false and true labels. The lowest achievable ranking loss is zero.

Formally, given a binary indicator matrix of the ground truth labels 𝑦 ∈ {0, 1}𝑛samples×𝑛labels and the score associated
with each label 𝑓 ∈ R𝑛samples×𝑛labels , the ranking loss is defined as

ranking_loss(𝑦, 𝑓) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

1

|𝑦𝑖|(𝑛labels − |𝑦𝑖|)

⃒⃒⃒{︁
(𝑘, 𝑙) : 𝑓𝑖𝑘 < 𝑓𝑖𝑙, 𝑦𝑖𝑘 = 1, 𝑦𝑖𝑙 = 0

}︁⃒⃒⃒
where | · | is the ℓ0 norm or the cardinality of the set.

Here is a small example of usage of this function:

>>> import numpy as np
>>> from sklearn.metrics import label_ranking_loss
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_loss(y_true, y_score)
0.75...
>>> # With the following prediction, we have perfect and minimal loss
>>> y_score = np.array([[1.0, 0.1, 0.2], [0.1, 0.2, 0.9]])
>>> label_ranking_loss(y_true, y_score)
0.0
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References:

• Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge
discovery handbook (pp. 667-685). Springer US.

Regression metrics

The sklearn.metrics module implements several loss, score, and utility functions to measure regression
performance. Some of those have been enhanced to handle the multioutput case: mean_squared_error,
mean_absolute_error, explained_variance_score and r2_score.

These functions have an multioutput keyword argument which specifies the way the scores or losses for each
individual target should be averaged. The default is 'uniform_average', which specifies a uniformly weighted
mean over outputs. If an ndarray of shape (n_outputs,) is passed, then its entries are interpreted as weights
and an according weighted average is returned. If multioutput is 'raw_values' is specified, then all unaltered
individual scores or losses will be returned in an array of shape (n_outputs,).

The r2_score and explained_variance_score accept an additional value 'variance_weighted' for
the multioutput parameter. This option leads to a weighting of each individual score by the variance of the
corresponding target variable. This setting quantifies the globally captured unscaled variance. If the target vari-
ables are of different scale, then this score puts more importance on well explaining the higher variance variables.
multioutput='variance_weighted' is the default value for r2_score for backward compatibility. This
will be changed to uniform_average in the future.

Explained variance score

The explained_variance_score computes the explained variance regression score.

If 𝑦 is the estimated target output, 𝑦 the corresponding (correct) target output, and 𝑉 𝑎𝑟 is Variance, the square of the
standard deviation, then the explained variance is estimated as follow:

explained_variance(𝑦, 𝑦) = 1− 𝑉 𝑎𝑟{𝑦 − 𝑦}
𝑉 𝑎𝑟{𝑦}

The best possible score is 1.0, lower values are worse.

Here is a small example of usage of the explained_variance_score function:

>>> from sklearn.metrics import explained_variance_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> explained_variance_score(y_true, y_pred)
0.957...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> explained_variance_score(y_true, y_pred, multioutput='raw_values')
...
array([ 0.967..., 1. ])
>>> explained_variance_score(y_true, y_pred, multioutput=[0.3, 0.7])
...
0.990...
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Mean absolute error

The mean_absolute_error function computes mean absolute error, a risk metric corresponding to the expected
value of the absolute error loss or 𝑙1-norm loss.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample, and 𝑦𝑖 is the corresponding true value, then the mean absolute error
(MAE) estimated over 𝑛samples is defined as

MAE(𝑦, 𝑦) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

|𝑦𝑖 − 𝑦𝑖| .

Here is a small example of usage of the mean_absolute_error function:

>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([ 0.5, 1. ])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
...
0.849...

Mean squared error

The mean_squared_error function computes mean square error, a risk metric corresponding to the expected
value of the squared (quadratic) error or loss.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample, and 𝑦𝑖 is the corresponding true value, then the mean squared error
(MSE) estimated over 𝑛samples is defined as

MSE(𝑦, 𝑦) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

(𝑦𝑖 − 𝑦𝑖)2.

Here is a small example of usage of the mean_squared_error function:

>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.7083...

Examples:

494 Chapter 3. User Guide

https://en.wikipedia.org/wiki/Mean_absolute_error
https://en.wikipedia.org/wiki/Mean_squared_error


scikit-learn user guide, Release 0.19.1

• See Gradient Boosting regression for an example of mean squared error usage to evaluate gradient boosting
regression.

Mean squared logarithmic error

The mean_squared_log_error function computes a risk metric corresponding to the expected value of the
squared logarithmic (quadratic) error or loss.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample, and 𝑦𝑖 is the corresponding true value, then the mean squared logarithmic
error (MSLE) estimated over 𝑛samples is defined as

MSLE(𝑦, 𝑦) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

(log𝑒(1 + 𝑦𝑖)− log𝑒(1 + 𝑦𝑖))
2.

Where log𝑒(𝑥) means the natural logarithm of 𝑥. This metric is best to use when targets having exponential growth,
such as population counts, average sales of a commodity over a span of years etc. Note that this metric penalizes an
under-predicted estimate greater than an over-predicted estimate.

Here is a small example of usage of the mean_squared_log_error function:

>>> from sklearn.metrics import mean_squared_log_error
>>> y_true = [3, 5, 2.5, 7]
>>> y_pred = [2.5, 5, 4, 8]
>>> mean_squared_log_error(y_true, y_pred)
0.039...
>>> y_true = [[0.5, 1], [1, 2], [7, 6]]
>>> y_pred = [[0.5, 2], [1, 2.5], [8, 8]]
>>> mean_squared_log_error(y_true, y_pred)
0.044...

Median absolute error

The median_absolute_error is particularly interesting because it is robust to outliers. The loss is calculated by
taking the median of all absolute differences between the target and the prediction.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample and 𝑦𝑖 is the corresponding true value, then the median absolute error
(MedAE) estimated over 𝑛samples is defined as

MedAE(𝑦, 𝑦) = median(| 𝑦1 − 𝑦1 |, . . . , | 𝑦𝑛 − 𝑦𝑛 |).

The median_absolute_error does not support multioutput.

Here is a small example of usage of the median_absolute_error function:

>>> from sklearn.metrics import median_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> median_absolute_error(y_true, y_pred)
0.5

R2 score, the coefficient of determination

The r2_score function computes R2, the coefficient of determination. It provides a measure of how well future
samples are likely to be predicted by the model. Best possible score is 1.0 and it can be negative (because the model
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can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features,
would get a R^2 score of 0.0.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample and 𝑦𝑖 is the corresponding true value, then the score R2 estimated over
𝑛samples is defined as

𝑅2(𝑦, 𝑦) = 1−
∑︀𝑛samples−1

𝑖=0 (𝑦𝑖 − 𝑦𝑖)2∑︀𝑛samples−1
𝑖=0 (𝑦𝑖 − 𝑦)2

where 𝑦 = 1
𝑛samples

∑︀𝑛samples−1
𝑖=0 𝑦𝑖.

Here is a small example of usage of the r2_score function:

>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='variance_weighted')
...
0.938...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='uniform_average')
...
0.936...
>>> r2_score(y_true, y_pred, multioutput='raw_values')
...
array([ 0.965..., 0.908...])
>>> r2_score(y_true, y_pred, multioutput=[0.3, 0.7])
...
0.925...

Example:

• See Lasso and Elastic Net for Sparse Signals for an example of R2 score usage to evaluate Lasso and Elastic
Net on sparse signals.

Clustering metrics

The sklearn.metrics module implements several loss, score, and utility functions. For more information see the
Clustering performance evaluation section for instance clustering, and Biclustering evaluation for biclustering.

Dummy estimators

When doing supervised learning, a simple sanity check consists of comparing one’s estimator against simple rules of
thumb. DummyClassifier implements several such simple strategies for classification:

• stratified generates random predictions by respecting the training set class distribution.

• most_frequent always predicts the most frequent label in the training set.
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• prior always predicts the class that maximizes the class prior (like most_frequent`) and
``predict_proba returns the class prior.

• uniform generates predictions uniformly at random.

• constant always predicts a constant label that is provided by the user. A major motivation of this
method is F1-scoring, when the positive class is in the minority.

Note that with all these strategies, the predict method completely ignores the input data!

To illustrate DummyClassifier, first let’s create an imbalanced dataset:

>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> y[y != 1] = -1
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

Next, let’s compare the accuracy of SVC and most_frequent:

>>> from sklearn.dummy import DummyClassifier
>>> from sklearn.svm import SVC
>>> clf = SVC(kernel='linear', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.63...
>>> clf = DummyClassifier(strategy='most_frequent',random_state=0)
>>> clf.fit(X_train, y_train)
DummyClassifier(constant=None, random_state=0, strategy='most_frequent')
>>> clf.score(X_test, y_test)
0.57...

We see that SVC doesn’t do much better than a dummy classifier. Now, let’s change the kernel:

>>> clf = SVC(kernel='rbf', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.97...

We see that the accuracy was boosted to almost 100%. A cross validation strategy is recommended for a better
estimate of the accuracy, if it is not too CPU costly. For more information see the Cross-validation: evaluating
estimator performance section. Moreover if you want to optimize over the parameter space, it is highly recommended
to use an appropriate methodology; see the Tuning the hyper-parameters of an estimator section for details.

More generally, when the accuracy of a classifier is too close to random, it probably means that something went wrong:
features are not helpful, a hyperparameter is not correctly tuned, the classifier is suffering from class imbalance, etc. . .

DummyRegressor also implements four simple rules of thumb for regression:

• mean always predicts the mean of the training targets.

• median always predicts the median of the training targets.

• quantile always predicts a user provided quantile of the training targets.

• constant always predicts a constant value that is provided by the user.

In all these strategies, the predict method completely ignores the input data.
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3.3.4 Model persistence

After training a scikit-learn model, it is desirable to have a way to persist the model for future use without having to
retrain. The following section gives you an example of how to persist a model with pickle. We’ll also review a few
security and maintainability issues when working with pickle serialization.

Persistence example

It is possible to save a model in the scikit by using Python’s built-in persistence model, namely pickle:

>>> from sklearn import svm
>>> from sklearn import datasets
>>> clf = svm.SVC()
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> clf.fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> import pickle
>>> s = pickle.dumps(clf)
>>> clf2 = pickle.loads(s)
>>> clf2.predict(X[0:1])
array([0])
>>> y[0]
0

In the specific case of the scikit, it may be more interesting to use joblib’s replacement of pickle (joblib.dump &
joblib.load), which is more efficient on objects that carry large numpy arrays internally as is often the case for
fitted scikit-learn estimators, but can only pickle to the disk and not to a string:

>>> from sklearn.externals import joblib
>>> joblib.dump(clf, 'filename.pkl')

Later you can load back the pickled model (possibly in another Python process) with:

>>> clf = joblib.load('filename.pkl')

Note: joblib.dump and joblib.load functions also accept file-like object instead of filenames. More infor-
mation on data persistence with Joblib is available here.

Security & maintainability limitations

pickle (and joblib by extension), has some issues regarding maintainability and security. Because of this,

• Never unpickle untrusted data as it could lead to malicious code being executed upon loading.

• While models saved using one version of scikit-learn might load in other versions, this is entirely unsupported
and inadvisable. It should also be kept in mind that operations performed on such data could give different and
unexpected results.

In order to rebuild a similar model with future versions of scikit-learn, additional metadata should be saved along the
pickled model:
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• The training data, e.g. a reference to a immutable snapshot

• The python source code used to generate the model

• The versions of scikit-learn and its dependencies

• The cross validation score obtained on the training data

This should make it possible to check that the cross-validation score is in the same range as before.

Since a model internal representation may be different on two different architectures, dumping a model on one archi-
tecture and loading it on another architecture is not supported.

If you want to know more about these issues and explore other possible serialization methods, please refer to this talk
by Alex Gaynor.

3.3.5 Validation curves: plotting scores to evaluate models

Every estimator has its advantages and drawbacks. Its generalization error can be decomposed in terms of bias,
variance and noise. The bias of an estimator is its average error for different training sets. The variance of an
estimator indicates how sensitive it is to varying training sets. Noise is a property of the data.

In the following plot, we see a function 𝑓(𝑥) = cos( 3
2𝜋𝑥) and some noisy samples from that function. We use three

different estimators to fit the function: linear regression with polynomial features of degree 1, 4 and 15. We see that
the first estimator can at best provide only a poor fit to the samples and the true function because it is too simple
(high bias), the second estimator approximates it almost perfectly and the last estimator approximates the training data
perfectly but does not fit the true function very well, i.e. it is very sensitive to varying training data (high variance).

Bias and variance are inherent properties of estimators and we usually have to select learning algorithms and hyper-
parameters so that both bias and variance are as low as possible (see Bias-variance dilemma). Another way to reduce
the variance of a model is to use more training data. However, you should only collect more training data if the true
function is too complex to be approximated by an estimator with a lower variance.

In the simple one-dimensional problem that we have seen in the example it is easy to see whether the estimator suffers
from bias or variance. However, in high-dimensional spaces, models can become very difficult to visualize. For this
reason, it is often helpful to use the tools described below.

Examples:

• Underfitting vs. Overfitting
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• Plotting Validation Curves

• Plotting Learning Curves

Validation curve

To validate a model we need a scoring function (see Model evaluation: quantifying the quality of predictions), for
example accuracy for classifiers. The proper way of choosing multiple hyperparameters of an estimator are of course
grid search or similar methods (see Tuning the hyper-parameters of an estimator) that select the hyperparameter with
the maximum score on a validation set or multiple validation sets. Note that if we optimized the hyperparameters
based on a validation score the validation score is biased and not a good estimate of the generalization any longer. To
get a proper estimate of the generalization we have to compute the score on another test set.

However, it is sometimes helpful to plot the influence of a single hyperparameter on the training score and the valida-
tion score to find out whether the estimator is overfitting or underfitting for some hyperparameter values.

The function validation_curve can help in this case:

>>> import numpy as np
>>> from sklearn.model_selection import validation_curve
>>> from sklearn.datasets import load_iris
>>> from sklearn.linear_model import Ridge

>>> np.random.seed(0)
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> indices = np.arange(y.shape[0])
>>> np.random.shuffle(indices)
>>> X, y = X[indices], y[indices]

>>> train_scores, valid_scores = validation_curve(Ridge(), X, y, "alpha",
... np.logspace(-7, 3, 3))
>>> train_scores
array([[ 0.94..., 0.92..., 0.92...],

[ 0.94..., 0.92..., 0.92...],
[ 0.47..., 0.45..., 0.42...]])

>>> valid_scores
array([[ 0.90..., 0.92..., 0.94...],

[ 0.90..., 0.92..., 0.94...],
[ 0.44..., 0.39..., 0.45...]])

If the training score and the validation score are both low, the estimator will be underfitting. If the training score is
high and the validation score is low, the estimator is overfitting and otherwise it is working very well. A low training
score and a high validation score is usually not possible. All three cases can be found in the plot below where we vary
the parameter 𝛾 of an SVM on the digits dataset.

Learning curve

A learning curve shows the validation and training score of an estimator for varying numbers of training samples. It
is a tool to find out how much we benefit from adding more training data and whether the estimator suffers more from
a variance error or a bias error. If both the validation score and the training score converge to a value that is too low
with increasing size of the training set, we will not benefit much from more training data. In the following plot you
can see an example: naive Bayes roughly converges to a low score.

We will probably have to use an estimator or a parametrization of the current estimator that can learn more complex
concepts (i.e. has a lower bias). If the training score is much greater than the validation score for the maximum number

500 Chapter 3. User Guide



scikit-learn user guide, Release 0.19.1

3.3. Model selection and evaluation 501

../auto_examples/model_selection/plot_validation_curve.html
../auto_examples/model_selection/plot_learning_curve.html


scikit-learn user guide, Release 0.19.1

of training samples, adding more training samples will most likely increase generalization. In the following plot you
can see that the SVM could benefit from more training examples.

We can use the function learning_curve to generate the values that are required to plot such a learning curve
(number of samples that have been used, the average scores on the training sets and the average scores on the validation
sets):

>>> from sklearn.model_selection import learning_curve
>>> from sklearn.svm import SVC

>>> train_sizes, train_scores, valid_scores = learning_curve(
... SVC(kernel='linear'), X, y, train_sizes=[50, 80, 110], cv=5)
>>> train_sizes
array([ 50, 80, 110])
>>> train_scores
array([[ 0.98..., 0.98 , 0.98..., 0.98..., 0.98...],

[ 0.98..., 1. , 0.98..., 0.98..., 0.98...],
[ 0.98..., 1. , 0.98..., 0.98..., 0.99...]])

>>> valid_scores
array([[ 1. , 0.93..., 1. , 1. , 0.96...],

[ 1. , 0.96..., 1. , 1. , 0.96...],
[ 1. , 0.96..., 1. , 1. , 0.96...]])

3.4 Dataset transformations

scikit-learn provides a library of transformers, which may clean (see Preprocessing data), reduce (see Unsupervised
dimensionality reduction), expand (see Kernel Approximation) or generate (see Feature extraction) feature representa-
tions.

Like other estimators, these are represented by classes with a fit method, which learns model parameters (e.g.
mean and standard deviation for normalization) from a training set, and a transform method which applies this
transformation model to unseen data. fit_transform may be more convenient and efficient for modelling and
transforming the training data simultaneously.

Combining such transformers, either in parallel or series is covered in Pipeline and FeatureUnion: combining es-
timators. Pairwise metrics, Affinities and Kernels covers transforming feature spaces into affinity matrices, while
Transforming the prediction target (y) considers transformations of the target space (e.g. categorical labels) for use in
scikit-learn.
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3.4.1 Pipeline and FeatureUnion: combining estimators

Pipeline: chaining estimators

Pipeline can be used to chain multiple estimators into one. This is useful as there is often a fixed sequence of
steps in processing the data, for example feature selection, normalization and classification. Pipeline serves two
purposes here:

Convenience and encapsulation You only have to call fit and predict once on your data to fit a whole sequence
of estimators.

Joint parameter selection You can grid search over parameters of all estimators in the pipeline at once.

Safety Pipelines help avoid leaking statistics from your test data into the trained model in cross-validation, by ensuring
that the same samples are used to train the transformers and predictors.

All estimators in a pipeline, except the last one, must be transformers (i.e. must have a transform method). The
last estimator may be any type (transformer, classifier, etc.).

Usage

The Pipeline is built using a list of (key, value) pairs, where the key is a string containing the name you
want to give this step and value is an estimator object:

>>> from sklearn.pipeline import Pipeline
>>> from sklearn.svm import SVC
>>> from sklearn.decomposition import PCA
>>> estimators = [('reduce_dim', PCA()), ('clf', SVC())]
>>> pipe = Pipeline(estimators)
>>> pipe
Pipeline(memory=None,

steps=[('reduce_dim', PCA(copy=True,...)),
('clf', SVC(C=1.0,...))])

The utility function make_pipeline is a shorthand for constructing pipelines; it takes a variable number of estima-
tors and returns a pipeline, filling in the names automatically:

>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn.preprocessing import Binarizer
>>> make_pipeline(Binarizer(), MultinomialNB())
Pipeline(memory=None,

steps=[('binarizer', Binarizer(copy=True, threshold=0.0)),
('multinomialnb', MultinomialNB(alpha=1.0,

class_prior=None,
fit_prior=True))])

The estimators of a pipeline are stored as a list in the steps attribute:

>>> pipe.steps[0]
('reduce_dim', PCA(copy=True, iterated_power='auto', n_components=None, random_
→˓state=None,
svd_solver='auto', tol=0.0, whiten=False))

and as a dict in named_steps:
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>>> pipe.named_steps['reduce_dim']
PCA(copy=True, iterated_power='auto', n_components=None, random_state=None,

svd_solver='auto', tol=0.0, whiten=False)

Parameters of the estimators in the pipeline can be accessed using the <estimator>__<parameter> syntax:

>>> pipe.set_params(clf__C=10)
Pipeline(memory=None,

steps=[('reduce_dim', PCA(copy=True, iterated_power='auto',...)),
('clf', SVC(C=10, cache_size=200, class_weight=None,...))])

Attributes of named_steps map to keys, enabling tab completion in interactive environments:

>>> pipe.named_steps.reduce_dim is pipe.named_steps['reduce_dim']
True

This is particularly important for doing grid searches:

>>> from sklearn.model_selection import GridSearchCV
>>> param_grid = dict(reduce_dim__n_components=[2, 5, 10],
... clf__C=[0.1, 10, 100])
>>> grid_search = GridSearchCV(pipe, param_grid=param_grid)

Individual steps may also be replaced as parameters, and non-final steps may be ignored by setting them to None:

>>> from sklearn.linear_model import LogisticRegression
>>> param_grid = dict(reduce_dim=[None, PCA(5), PCA(10)],
... clf=[SVC(), LogisticRegression()],
... clf__C=[0.1, 10, 100])
>>> grid_search = GridSearchCV(pipe, param_grid=param_grid)

Examples:

• Pipeline Anova SVM

• Sample pipeline for text feature extraction and evaluation

• Pipelining: chaining a PCA and a logistic regression

• Explicit feature map approximation for RBF kernels

• SVM-Anova: SVM with univariate feature selection

• Selecting dimensionality reduction with Pipeline and GridSearchCV

See also:

• Tuning the hyper-parameters of an estimator

Notes

Calling fit on the pipeline is the same as calling fit on each estimator in turn, transform the input and pass it
on to the next step. The pipeline has all the methods that the last estimator in the pipeline has, i.e. if the last estimator
is a classifier, the Pipeline can be used as a classifier. If the last estimator is a transformer, again, so is the pipeline.
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Caching transformers: avoid repeated computation

Fitting transformers may be computationally expensive. With its memory parameter set, Pipeline will cache each
transformer after calling fit. This feature is used to avoid computing the fit transformers within a pipeline if the
parameters and input data are identical. A typical example is the case of a grid search in which the transformers can
be fitted only once and reused for each configuration.

The parameter memory is needed in order to cache the transformers. memory can be either a string containing the
directory where to cache the transformers or a joblib.Memory object:

>>> from tempfile import mkdtemp
>>> from shutil import rmtree
>>> from sklearn.decomposition import PCA
>>> from sklearn.svm import SVC
>>> from sklearn.pipeline import Pipeline
>>> estimators = [('reduce_dim', PCA()), ('clf', SVC())]
>>> cachedir = mkdtemp()
>>> pipe = Pipeline(estimators, memory=cachedir)
>>> pipe
Pipeline(...,

steps=[('reduce_dim', PCA(copy=True,...)),
('clf', SVC(C=1.0,...))])

>>> # Clear the cache directory when you don't need it anymore
>>> rmtree(cachedir)

Warning: Side effect of caching transformers

Using a Pipeline without cache enabled, it is possible to inspect the original instance such as:

>>> from sklearn.datasets import load_digits
>>> digits = load_digits()
>>> pca1 = PCA()
>>> svm1 = SVC()
>>> pipe = Pipeline([('reduce_dim', pca1), ('clf', svm1)])
>>> pipe.fit(digits.data, digits.target)
...
Pipeline(memory=None,

steps=[('reduce_dim', PCA(...)), ('clf', SVC(...))])
>>> # The pca instance can be inspected directly
>>> print(pca1.components_)

[[ -1.77484909e-19 ... 4.07058917e-18]]

Enabling caching triggers a clone of the transformers before fitting. Therefore, the transformer instance given to
the pipeline cannot be inspected directly. In following example, accessing the PCA instance pca2 will raise an
AttributeError since pca2 will be an unfitted transformer. Instead, use the attribute named_steps to
inspect estimators within the pipeline:

>>> cachedir = mkdtemp()
>>> pca2 = PCA()
>>> svm2 = SVC()
>>> cached_pipe = Pipeline([('reduce_dim', pca2), ('clf', svm2)],
... memory=cachedir)
>>> cached_pipe.fit(digits.data, digits.target)
...
Pipeline(memory=...,

steps=[('reduce_dim', PCA(...)), ('clf', SVC(...))])
>>> print(cached_pipe.named_steps['reduce_dim'].components_)
...

[[ -1.77484909e-19 ... 4.07058917e-18]]
>>> # Remove the cache directory
>>> rmtree(cachedir)3.4. Dataset transformations 505
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Examples:

• Selecting dimensionality reduction with Pipeline and GridSearchCV

FeatureUnion: composite feature spaces

FeatureUnion combines several transformer objects into a new transformer that combines their output. A
FeatureUnion takes a list of transformer objects. During fitting, each of these is fit to the data independently.
For transforming data, the transformers are applied in parallel, and the sample vectors they output are concatenated
end-to-end into larger vectors.

FeatureUnion serves the same purposes as Pipeline - convenience and joint parameter estimation and valida-
tion.

FeatureUnion and Pipeline can be combined to create complex models.

(A FeatureUnion has no way of checking whether two transformers might produce identical features. It only
produces a union when the feature sets are disjoint, and making sure they are the caller’s responsibility.)

Usage

A FeatureUnion is built using a list of (key, value) pairs, where the key is the name you want to give to a
given transformation (an arbitrary string; it only serves as an identifier) and value is an estimator object:

>>> from sklearn.pipeline import FeatureUnion
>>> from sklearn.decomposition import PCA
>>> from sklearn.decomposition import KernelPCA
>>> estimators = [('linear_pca', PCA()), ('kernel_pca', KernelPCA())]
>>> combined = FeatureUnion(estimators)
>>> combined
FeatureUnion(n_jobs=1,

transformer_list=[('linear_pca', PCA(copy=True,...)),
('kernel_pca', KernelPCA(alpha=1.0,...))],

transformer_weights=None)

Like pipelines, feature unions have a shorthand constructor called make_union that does not require explicit naming
of the components.

Like Pipeline, individual steps may be replaced using set_params, and ignored by setting to None:

>>> combined.set_params(kernel_pca=None)
...
FeatureUnion(n_jobs=1,

transformer_list=[('linear_pca', PCA(copy=True,...)),
('kernel_pca', None)],

transformer_weights=None)

Examples:

• Concatenating multiple feature extraction methods
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• Feature Union with Heterogeneous Data Sources

3.4.2 Feature extraction

The sklearn.feature_extraction module can be used to extract features in a format supported by machine
learning algorithms from datasets consisting of formats such as text and image.

Note: Feature extraction is very different from Feature selection: the former consists in transforming arbitrary data,
such as text or images, into numerical features usable for machine learning. The latter is a machine learning technique
applied on these features.

Loading features from dicts

The class DictVectorizer can be used to convert feature arrays represented as lists of standard Python dict
objects to the NumPy/SciPy representation used by scikit-learn estimators.

While not particularly fast to process, Python’s dict has the advantages of being convenient to use, being sparse
(absent features need not be stored) and storing feature names in addition to values.

DictVectorizer implements what is called one-of-K or “one-hot” coding for categorical (aka nominal, discrete)
features. Categorical features are “attribute-value” pairs where the value is restricted to a list of discrete of possibilities
without ordering (e.g. topic identifiers, types of objects, tags, names. . . ).

In the following, “city” is a categorical attribute while “temperature” is a traditional numerical feature:

>>> measurements = [
... {'city': 'Dubai', 'temperature': 33.},
... {'city': 'London', 'temperature': 12.},
... {'city': 'San Francisco', 'temperature': 18.},
... ]

>>> from sklearn.feature_extraction import DictVectorizer
>>> vec = DictVectorizer()

>>> vec.fit_transform(measurements).toarray()
array([[ 1., 0., 0., 33.],

[ 0., 1., 0., 12.],
[ 0., 0., 1., 18.]])

>>> vec.get_feature_names()
['city=Dubai', 'city=London', 'city=San Francisco', 'temperature']

DictVectorizer is also a useful representation transformation for training sequence classifiers in Natural Lan-
guage Processing models that typically work by extracting feature windows around a particular word of interest.

For example, suppose that we have a first algorithm that extracts Part of Speech (PoS) tags that we want to use as
complementary tags for training a sequence classifier (e.g. a chunker). The following dict could be such a window of
features extracted around the word ‘sat’ in the sentence ‘The cat sat on the mat.’:

>>> pos_window = [
... {
... 'word-2': 'the',
... 'pos-2': 'DT',
... 'word-1': 'cat',

3.4. Dataset transformations 507



scikit-learn user guide, Release 0.19.1

... 'pos-1': 'NN',

... 'word+1': 'on',

... 'pos+1': 'PP',

... },

... # in a real application one would extract many such dictionaries

... ]

This description can be vectorized into a sparse two-dimensional matrix suitable for feeding into a classifier (maybe
after being piped into a text.TfidfTransformer for normalization):

>>> vec = DictVectorizer()
>>> pos_vectorized = vec.fit_transform(pos_window)
>>> pos_vectorized
<1x6 sparse matrix of type '<... 'numpy.float64'>'

with 6 stored elements in Compressed Sparse ... format>
>>> pos_vectorized.toarray()
array([[ 1., 1., 1., 1., 1., 1.]])
>>> vec.get_feature_names()
['pos+1=PP', 'pos-1=NN', 'pos-2=DT', 'word+1=on', 'word-1=cat', 'word-2=the']

As you can imagine, if one extracts such a context around each individual word of a corpus of documents the resulting
matrix will be very wide (many one-hot-features) with most of them being valued to zero most of the time. So as to
make the resulting data structure able to fit in memory the DictVectorizer class uses a scipy.sparse matrix
by default instead of a numpy.ndarray.

Feature hashing

The class FeatureHasher is a high-speed, low-memory vectorizer that uses a technique known as feature hashing,
or the “hashing trick”. Instead of building a hash table of the features encountered in training, as the vectorizers
do, instances of FeatureHasher apply a hash function to the features to determine their column index in sample
matrices directly. The result is increased speed and reduced memory usage, at the expense of inspectability; the hasher
does not remember what the input features looked like and has no inverse_transform method.

Since the hash function might cause collisions between (unrelated) features, a signed hash function is used and the
sign of the hash value determines the sign of the value stored in the output matrix for a feature. This way, collisions
are likely to cancel out rather than accumulate error, and the expected mean of any output feature’s value is zero.
This mechanism is enabled by default with alternate_sign=True and is particularly useful for small hash table
sizes (n_features < 10000). For large hash table sizes, it can be disabled, to allow the output to be passed
to estimators like sklearn.naive_bayes.MultinomialNB or sklearn.feature_selection.chi2
feature selectors that expect non-negative inputs.

FeatureHasher accepts either mappings (like Python’s dict and its variants in the collections module),
(feature, value) pairs, or strings, depending on the constructor parameter input_type. Mapping are treated
as lists of (feature, value) pairs, while single strings have an implicit value of 1, so ['feat1', 'feat2',
'feat3'] is interpreted as [('feat1', 1), ('feat2', 1), ('feat3', 1)]. If a single feature occurs
multiple times in a sample, the associated values will be summed (so ('feat', 2) and ('feat', 3.5) become
('feat', 5.5)). The output from FeatureHasher is always a scipy.sparse matrix in the CSR format.

Feature hashing can be employed in document classification, but unlike text.CountVectorizer,
FeatureHasher does not do word splitting or any other preprocessing except Unicode-to-UTF-8 encoding; see
Vectorizing a large text corpus with the hashing trick, below, for a combined tokenizer/hasher.

As an example, consider a word-level natural language processing task that needs features extracted from (token,
part_of_speech) pairs. One could use a Python generator function to extract features:
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def token_features(token, part_of_speech):
if token.isdigit():

yield "numeric"
else:

yield "token={}".format(token.lower())
yield "token,pos={},{}".format(token, part_of_speech)

if token[0].isupper():
yield "uppercase_initial"

if token.isupper():
yield "all_uppercase"

yield "pos={}".format(part_of_speech)

Then, the raw_X to be fed to FeatureHasher.transform can be constructed using:

raw_X = (token_features(tok, pos_tagger(tok)) for tok in corpus)

and fed to a hasher with:

hasher = FeatureHasher(input_type='string')
X = hasher.transform(raw_X)

to get a scipy.sparse matrix X.

Note the use of a generator comprehension, which introduces laziness into the feature extraction: tokens are only
processed on demand from the hasher.

Implementation details

FeatureHasher uses the signed 32-bit variant of MurmurHash3. As a result (and because of limitations in scipy.
sparse), the maximum number of features supported is currently 231 − 1.

The original formulation of the hashing trick by Weinberger et al. used two separate hash functions ℎ and 𝜉 to deter-
mine the column index and sign of a feature, respectively. The present implementation works under the assumption
that the sign bit of MurmurHash3 is independent of its other bits.

Since a simple modulo is used to transform the hash function to a column index, it is advisable to use a power of two
as the n_features parameter; otherwise the features will not be mapped evenly to the columns.

References:

• Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola and Josh Attenberg (2009). Feature hash-
ing for large scale multitask learning. Proc. ICML.

• MurmurHash3.

Text feature extraction

The Bag of Words representation

Text Analysis is a major application field for machine learning algorithms. However the raw data, a sequence of
symbols cannot be fed directly to the algorithms themselves as most of them expect numerical feature vectors with a
fixed size rather than the raw text documents with variable length.
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In order to address this, scikit-learn provides utilities for the most common ways to extract numerical features from
text content, namely:

• tokenizing strings and giving an integer id for each possible token, for instance by using white-spaces and
punctuation as token separators.

• counting the occurrences of tokens in each document.

• normalizing and weighting with diminishing importance tokens that occur in the majority of samples / docu-
ments.

In this scheme, features and samples are defined as follows:

• each individual token occurrence frequency (normalized or not) is treated as a feature.

• the vector of all the token frequencies for a given document is considered a multivariate sample.

A corpus of documents can thus be represented by a matrix with one row per document and one column per token
(e.g. word) occurring in the corpus.

We call vectorization the general process of turning a collection of text documents into numerical feature vectors. This
specific strategy (tokenization, counting and normalization) is called the Bag of Words or “Bag of n-grams” represen-
tation. Documents are described by word occurrences while completely ignoring the relative position information of
the words in the document.

Sparsity

As most documents will typically use a very small subset of the words used in the corpus, the resulting matrix will
have many feature values that are zeros (typically more than 99% of them).

For instance a collection of 10,000 short text documents (such as emails) will use a vocabulary with a size in the order
of 100,000 unique words in total while each document will use 100 to 1000 unique words individually.

In order to be able to store such a matrix in memory but also to speed up algebraic operations matrix / vector, imple-
mentations will typically use a sparse representation such as the implementations available in the scipy.sparse
package.

Common Vectorizer usage

CountVectorizer implements both tokenization and occurrence counting in a single class:

>>> from sklearn.feature_extraction.text import CountVectorizer

This model has many parameters, however the default values are quite reasonable (please see the reference documen-
tation for the details):

>>> vectorizer = CountVectorizer()
>>> vectorizer
CountVectorizer(analyzer=...'word', binary=False, decode_error=...'strict',

dtype=<... 'numpy.int64'>, encoding=...'utf-8', input=...'content',
lowercase=True, max_df=1.0, max_features=None, min_df=1,
ngram_range=(1, 1), preprocessor=None, stop_words=None,
strip_accents=None, token_pattern=...'(?u)\\b\\w\\w+\\b',
tokenizer=None, vocabulary=None)

Let’s use it to tokenize and count the word occurrences of a minimalistic corpus of text documents:
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>>> corpus = [
... 'This is the first document.',
... 'This is the second second document.',
... 'And the third one.',
... 'Is this the first document?',
... ]
>>> X = vectorizer.fit_transform(corpus)
>>> X
<4x9 sparse matrix of type '<... 'numpy.int64'>'

with 19 stored elements in Compressed Sparse ... format>

The default configuration tokenizes the string by extracting words of at least 2 letters. The specific function that does
this step can be requested explicitly:

>>> analyze = vectorizer.build_analyzer()
>>> analyze("This is a text document to analyze.") == (
... ['this', 'is', 'text', 'document', 'to', 'analyze'])
True

Each term found by the analyzer during the fit is assigned a unique integer index corresponding to a column in the
resulting matrix. This interpretation of the columns can be retrieved as follows:

>>> vectorizer.get_feature_names() == (
... ['and', 'document', 'first', 'is', 'one',
... 'second', 'the', 'third', 'this'])
True

>>> X.toarray()
array([[0, 1, 1, 1, 0, 0, 1, 0, 1],

[0, 1, 0, 1, 0, 2, 1, 0, 1],
[1, 0, 0, 0, 1, 0, 1, 1, 0],
[0, 1, 1, 1, 0, 0, 1, 0, 1]]...)

The converse mapping from feature name to column index is stored in the vocabulary_ attribute of the vectorizer:

>>> vectorizer.vocabulary_.get('document')
1

Hence words that were not seen in the training corpus will be completely ignored in future calls to the transform
method:

>>> vectorizer.transform(['Something completely new.']).toarray()
...
array([[0, 0, 0, 0, 0, 0, 0, 0, 0]]...)

Note that in the previous corpus, the first and the last documents have exactly the same words hence are encoded in
equal vectors. In particular we lose the information that the last document is an interrogative form. To preserve some
of the local ordering information we can extract 2-grams of words in addition to the 1-grams (individual words):

>>> bigram_vectorizer = CountVectorizer(ngram_range=(1, 2),
... token_pattern=r'\b\w+\b', min_df=1)
>>> analyze = bigram_vectorizer.build_analyzer()
>>> analyze('Bi-grams are cool!') == (
... ['bi', 'grams', 'are', 'cool', 'bi grams', 'grams are', 'are cool'])
True

The vocabulary extracted by this vectorizer is hence much bigger and can now resolve ambiguities encoded in local
positioning patterns:
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>>> X_2 = bigram_vectorizer.fit_transform(corpus).toarray()
>>> X_2
...
array([[0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0],

[0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0],
[1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1]]...)

In particular the interrogative form “Is this” is only present in the last document:

>>> feature_index = bigram_vectorizer.vocabulary_.get('is this')
>>> X_2[:, feature_index]
array([0, 0, 0, 1]...)

Tf–idf term weighting

In a large text corpus, some words will be very present (e.g. “the”, “a”, “is” in English) hence carrying very little
meaningful information about the actual contents of the document. If we were to feed the direct count data directly to
a classifier those very frequent terms would shadow the frequencies of rarer yet more interesting terms.

In order to re-weight the count features into floating point values suitable for usage by a classifier it is very common
to use the tf–idf transform.

Tf means term-frequency while tf–idf means term-frequency times inverse document-frequency: tf-idf(t,d) =
tf(t,d)× idf(t).

Using the TfidfTransformer’s default settings, TfidfTransformer(norm='l2', use_idf=True,
smooth_idf=True, sublinear_tf=False) the term frequency, the number of times a term occurs in a
given document, is multiplied with idf component, which is computed as

idf(𝑡) = 𝑙𝑜𝑔 1+𝑛𝑑

1+df(𝑑,𝑡) + 1,

where 𝑛𝑑 is the total number of documents, and df(𝑑, 𝑡) is the number of documents that contain term 𝑡. The resulting
tf-idf vectors are then normalized by the Euclidean norm:

𝑣𝑛𝑜𝑟𝑚 = 𝑣
||𝑣||2 = 𝑣√

𝑣1
2+𝑣2

2+···+𝑣𝑛
2 .

This was originally a term weighting scheme developed for information retrieval (as a ranking function for search
engines results) that has also found good use in document classification and clustering.

The following sections contain further explanations and examples that illustrate how the tf-idfs are computed exactly
and how the tf-idfs computed in scikit-learn’s TfidfTransformer and TfidfVectorizer differ slightly from
the standard textbook notation that defines the idf as

idf(𝑡) = 𝑙𝑜𝑔 𝑛𝑑

1+df(𝑑,𝑡) .

In the TfidfTransformer and TfidfVectorizer with smooth_idf=False, the “1” count is added to the
idf instead of the idf’s denominator:

idf(𝑡) = 𝑙𝑜𝑔 𝑛𝑑

df(𝑑,𝑡) + 1

This normalization is implemented by the TfidfTransformer class:

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> transformer = TfidfTransformer(smooth_idf=False)
>>> transformer
TfidfTransformer(norm=...'l2', smooth_idf=False, sublinear_tf=False,

use_idf=True)
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Again please see the reference documentation for the details on all the parameters.

Let’s take an example with the following counts. The first term is present 100% of the time hence not very interesting.
The two other features only in less than 50% of the time hence probably more representative of the content of the
documents:

>>> counts = [[3, 0, 1],
... [2, 0, 0],
... [3, 0, 0],
... [4, 0, 0],
... [3, 2, 0],
... [3, 0, 2]]
...
>>> tfidf = transformer.fit_transform(counts)
>>> tfidf
<6x3 sparse matrix of type '<... 'numpy.float64'>'

with 9 stored elements in Compressed Sparse ... format>

>>> tfidf.toarray()
array([[ 0.81940995, 0. , 0.57320793],

[ 1. , 0. , 0. ],
[ 1. , 0. , 0. ],
[ 1. , 0. , 0. ],
[ 0.47330339, 0.88089948, 0. ],
[ 0.58149261, 0. , 0.81355169]])

Each row is normalized to have unit Euclidean norm:

𝑣𝑛𝑜𝑟𝑚 = 𝑣
||𝑣||2 = 𝑣√

𝑣1
2+𝑣2

2+···+𝑣𝑛
2

For example, we can compute the tf-idf of the first term in the first document in the counts array as follows:

𝑛𝑑,term1 = 6

df(𝑑, 𝑡)term1 = 6

idf(𝑑, 𝑡)term1 = 𝑙𝑜𝑔 𝑛𝑑

df(𝑑,𝑡) + 1 = 𝑙𝑜𝑔(1) + 1 = 1

tf-idfterm1 = tf× idf = 3× 1 = 3

Now, if we repeat this computation for the remaining 2 terms in the document, we get

tf-idfterm2 = 0× (𝑙𝑜𝑔(6/1) + 1) = 0

tf-idfterm3 = 1× (𝑙𝑜𝑔(6/2) + 1) ≈ 2.0986

and the vector of raw tf-idfs:

tf-idfraw = [3, 0, 2.0986].

Then, applying the Euclidean (L2) norm, we obtain the following tf-idfs for document 1:
[3,0,2.0986]√︂(︀
32+02+2.09862

)︀ = [0.819, 0, 0.573].

Furthermore, the default parameter smooth_idf=True adds “1” to the numerator and denominator as if an extra
document was seen containing every term in the collection exactly once, which prevents zero divisions:

idf(𝑡) = 𝑙𝑜𝑔 1+𝑛𝑑

1+df(𝑑,𝑡) + 1

Using this modification, the tf-idf of the third term in document 1 changes to 1.8473:

tf-idfterm3 = 1× 𝑙𝑜𝑔(7/3) + 1 ≈ 1.8473

And the L2-normalized tf-idf changes to
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[3,0,1.8473]√︂(︀
32+02+1.84732

)︀ = [0.8515, 0, 0.5243]:

>>> transformer = TfidfTransformer()
>>> transformer.fit_transform(counts).toarray()
array([[ 0.85151335, 0. , 0.52433293],

[ 1. , 0. , 0. ],
[ 1. , 0. , 0. ],
[ 1. , 0. , 0. ],
[ 0.55422893, 0.83236428, 0. ],
[ 0.63035731, 0. , 0.77630514]])

The weights of each feature computed by the fit method call are stored in a model attribute:

>>> transformer.idf_
array([ 1. ..., 2.25..., 1.84...])

As tf–idf is very often used for text features, there is also another class called TfidfVectorizer that combines all
the options of CountVectorizer and TfidfTransformer in a single model:

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> vectorizer = TfidfVectorizer()
>>> vectorizer.fit_transform(corpus)
...
<4x9 sparse matrix of type '<... 'numpy.float64'>'

with 19 stored elements in Compressed Sparse ... format>

While the tf–idf normalization is often very useful, there might be cases where the binary occurrence markers might
offer better features. This can be achieved by using the binary parameter of CountVectorizer. In particular,
some estimators such as Bernoulli Naive Bayes explicitly model discrete boolean random variables. Also, very short
texts are likely to have noisy tf–idf values while the binary occurrence info is more stable.

As usual the best way to adjust the feature extraction parameters is to use a cross-validated grid search, for instance by
pipelining the feature extractor with a classifier:

• Sample pipeline for text feature extraction and evaluation

Decoding text files

Text is made of characters, but files are made of bytes. These bytes represent characters according to some encoding.
To work with text files in Python, their bytes must be decoded to a character set called Unicode. Common encodings
are ASCII, Latin-1 (Western Europe), KOI8-R (Russian) and the universal encodings UTF-8 and UTF-16. Many
others exist.

Note: An encoding can also be called a ‘character set’, but this term is less accurate: several encodings can exist for
a single character set.

The text feature extractors in scikit-learn know how to decode text files, but only if you tell them what encoding the
files are in. The CountVectorizer takes an encoding parameter for this purpose. For modern text files, the
correct encoding is probably UTF-8, which is therefore the default (encoding="utf-8").

If the text you are loading is not actually encoded with UTF-8, however, you will get a UnicodeDecodeError.
The vectorizers can be told to be silent about decoding errors by setting the decode_error parameter to either
"ignore" or "replace". See the documentation for the Python function bytes.decode for more details (type
help(bytes.decode) at the Python prompt).
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If you are having trouble decoding text, here are some things to try:

• Find out what the actual encoding of the text is. The file might come with a header or README that tells you
the encoding, or there might be some standard encoding you can assume based on where the text comes from.

• You may be able to find out what kind of encoding it is in general using the UNIX command file. The Python
chardet module comes with a script called chardetect.py that will guess the specific encoding, though
you cannot rely on its guess being correct.

• You could try UTF-8 and disregard the errors. You can decode byte strings with bytes.
decode(errors='replace') to replace all decoding errors with a meaningless character, or set
decode_error='replace' in the vectorizer. This may damage the usefulness of your features.

• Real text may come from a variety of sources that may have used different encodings, or even be sloppily
decoded in a different encoding than the one it was encoded with. This is common in text retrieved from the
Web. The Python package ftfy can automatically sort out some classes of decoding errors, so you could try
decoding the unknown text as latin-1 and then using ftfy to fix errors.

• If the text is in a mish-mash of encodings that is simply too hard to sort out (which is the case for the 20
Newsgroups dataset), you can fall back on a simple single-byte encoding such as latin-1. Some text may
display incorrectly, but at least the same sequence of bytes will always represent the same feature.

For example, the following snippet uses chardet (not shipped with scikit-learn, must be installed separately) to
figure out the encoding of three texts. It then vectorizes the texts and prints the learned vocabulary. The output is not
shown here.

>>> import chardet
>>> text1 = b"Sei mir gegr\xc3\xbc\xc3\x9ft mein Sauerkraut"
>>> text2 = b"holdselig sind deine Ger\xfcche"
>>> text3 = b"\xff\xfeA\x00u\x00f\x00 \x00F\x00l\x00\xfc\x00g\x00e\x00l\x00n\x00
→˓\x00d\x00e\x00s\x00 \x00G\x00e\x00s\x00a\x00n\x00g\x00e\x00s\x00,\x00
→˓\x00H\x00e\x00r\x00z\x00l\x00i\x00e\x00b\x00c\x00h\x00e\x00n\x00,\x00
→˓\x00t\x00r\x00a\x00g\x00 \x00i\x00c\x00h\x00 \x00d\x00i\x00c\x00h\x00
→˓\x00f\x00o\x00r\x00t\x00"
>>> decoded = [x.decode(chardet.detect(x)['encoding'])
... for x in (text1, text2, text3)]
>>> v = CountVectorizer().fit(decoded).vocabulary_
>>> for term in v: print(v)

(Depending on the version of chardet, it might get the first one wrong.)

For an introduction to Unicode and character encodings in general, see Joel Spolsky’s Absolute Minimum Every
Software Developer Must Know About Unicode.

Applications and examples

The bag of words representation is quite simplistic but surprisingly useful in practice.

In particular in a supervised setting it can be successfully combined with fast and scalable linear models to train
document classifiers, for instance:

• Classification of text documents using sparse features

In an unsupervised setting it can be used to group similar documents together by applying clustering algorithms such
as K-means:

• Clustering text documents using k-means

Finally it is possible to discover the main topics of a corpus by relaxing the hard assignment constraint of clustering,
for instance by using Non-negative matrix factorization (NMF or NNMF):
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• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

Limitations of the Bag of Words representation

A collection of unigrams (what bag of words is) cannot capture phrases and multi-word expressions, effectively disre-
garding any word order dependence. Additionally, the bag of words model doesn’t account for potential misspellings
or word derivations.

N-grams to the rescue! Instead of building a simple collection of unigrams (n=1), one might prefer a collection of
bigrams (n=2), where occurrences of pairs of consecutive words are counted.

One might alternatively consider a collection of character n-grams, a representation resilient against misspellings and
derivations.

For example, let’s say we’re dealing with a corpus of two documents: ['words', 'wprds']. The second docu-
ment contains a misspelling of the word ‘words’. A simple bag of words representation would consider these two as
very distinct documents, differing in both of the two possible features. A character 2-gram representation, however,
would find the documents matching in 4 out of 8 features, which may help the preferred classifier decide better:

>>> ngram_vectorizer = CountVectorizer(analyzer='char_wb', ngram_range=(2, 2))
>>> counts = ngram_vectorizer.fit_transform(['words', 'wprds'])
>>> ngram_vectorizer.get_feature_names() == (
... [' w', 'ds', 'or', 'pr', 'rd', 's ', 'wo', 'wp'])
True
>>> counts.toarray().astype(int)
array([[1, 1, 1, 0, 1, 1, 1, 0],

[1, 1, 0, 1, 1, 1, 0, 1]])

In the above example, 'char_wb analyzer is used, which creates n-grams only from characters inside word bound-
aries (padded with space on each side). The 'char' analyzer, alternatively, creates n-grams that span across words:

>>> ngram_vectorizer = CountVectorizer(analyzer='char_wb', ngram_range=(5, 5))
>>> ngram_vectorizer.fit_transform(['jumpy fox'])
...
<1x4 sparse matrix of type '<... 'numpy.int64'>'

with 4 stored elements in Compressed Sparse ... format>
>>> ngram_vectorizer.get_feature_names() == (
... [' fox ', ' jump', 'jumpy', 'umpy '])
True

>>> ngram_vectorizer = CountVectorizer(analyzer='char', ngram_range=(5, 5))
>>> ngram_vectorizer.fit_transform(['jumpy fox'])
...
<1x5 sparse matrix of type '<... 'numpy.int64'>'

with 5 stored elements in Compressed Sparse ... format>
>>> ngram_vectorizer.get_feature_names() == (
... ['jumpy', 'mpy f', 'py fo', 'umpy ', 'y fox'])
True

The word boundaries-aware variant char_wb is especially interesting for languages that use white-spaces for word
separation as it generates significantly less noisy features than the raw char variant in that case. For such languages
it can increase both the predictive accuracy and convergence speed of classifiers trained using such features while
retaining the robustness with regards to misspellings and word derivations.

While some local positioning information can be preserved by extracting n-grams instead of individual words, bag of
words and bag of n-grams destroy most of the inner structure of the document and hence most of the meaning carried
by that internal structure.
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In order to address the wider task of Natural Language Understanding, the local structure of sentences and paragraphs
should thus be taken into account. Many such models will thus be casted as “Structured output” problems which are
currently outside of the scope of scikit-learn.

Vectorizing a large text corpus with the hashing trick

The above vectorization scheme is simple but the fact that it holds an in- memory mapping from the string tokens
to the integer feature indices (the vocabulary_ attribute) causes several problems when dealing with large
datasets:

• the larger the corpus, the larger the vocabulary will grow and hence the memory use too,

• fitting requires the allocation of intermediate data structures of size proportional to that of the original dataset.

• building the word-mapping requires a full pass over the dataset hence it is not possible to fit text classifiers in a
strictly online manner.

• pickling and un-pickling vectorizers with a large vocabulary_ can be very slow (typically much slower than
pickling / un-pickling flat data structures such as a NumPy array of the same size),

• it is not easily possible to split the vectorization work into concurrent sub tasks as the vocabulary_ attribute
would have to be a shared state with a fine grained synchronization barrier: the mapping from token string
to feature index is dependent on ordering of the first occurrence of each token hence would have to be shared,
potentially harming the concurrent workers’ performance to the point of making them slower than the sequential
variant.

It is possible to overcome those limitations by combining the “hashing trick” (Feature hashing) implemented by the
sklearn.feature_extraction.FeatureHasher class and the text preprocessing and tokenization features
of the CountVectorizer.

This combination is implementing in HashingVectorizer, a transformer class that is mostly API compatible with
CountVectorizer. HashingVectorizer is stateless, meaning that you don’t have to call fit on it:

>>> from sklearn.feature_extraction.text import HashingVectorizer
>>> hv = HashingVectorizer(n_features=10)
>>> hv.transform(corpus)
...
<4x10 sparse matrix of type '<... 'numpy.float64'>'

with 16 stored elements in Compressed Sparse ... format>

You can see that 16 non-zero feature tokens were extracted in the vector output: this is less than the 19 non-zeros
extracted previously by the CountVectorizer on the same toy corpus. The discrepancy comes from hash function
collisions because of the low value of the n_features parameter.

In a real world setting, the n_features parameter can be left to its default value of 2 ** 20 (roughly one million
possible features). If memory or downstream models size is an issue selecting a lower value such as 2 ** 18 might
help without introducing too many additional collisions on typical text classification tasks.

Note that the dimensionality does not affect the CPU training time of algorithms which operate on CSR matrices
(LinearSVC(dual=True), Perceptron, SGDClassifier, PassiveAggressive) but it does for algo-
rithms that work with CSC matrices (LinearSVC(dual=False), Lasso(), etc).

Let’s try again with the default setting:

>>> hv = HashingVectorizer()
>>> hv.transform(corpus)
...
<4x1048576 sparse matrix of type '<... 'numpy.float64'>'

with 19 stored elements in Compressed Sparse ... format>

3.4. Dataset transformations 517



scikit-learn user guide, Release 0.19.1

We no longer get the collisions, but this comes at the expense of a much larger dimensionality of the output space. Of
course, other terms than the 19 used here might still collide with each other.

The HashingVectorizer also comes with the following limitations:

• it is not possible to invert the model (no inverse_transform method), nor to access the original string
representation of the features, because of the one-way nature of the hash function that performs the mapping.

• it does not provide IDF weighting as that would introduce statefulness in the model. A TfidfTransformer
can be appended to it in a pipeline if required.

Performing out-of-core scaling with HashingVectorizer

An interesting development of using a HashingVectorizer is the ability to perform out-of-core scaling. This
means that we can learn from data that does not fit into the computer’s main memory.

A strategy to implement out-of-core scaling is to stream data to the estimator in mini-batches. Each mini-batch is
vectorized using HashingVectorizer so as to guarantee that the input space of the estimator has always the same
dimensionality. The amount of memory used at any time is thus bounded by the size of a mini-batch. Although there is
no limit to the amount of data that can be ingested using such an approach, from a practical point of view the learning
time is often limited by the CPU time one wants to spend on the task.

For a full-fledged example of out-of-core scaling in a text classification task see Out-of-core classification of text
documents.

Customizing the vectorizer classes

It is possible to customize the behavior by passing a callable to the vectorizer constructor:

>>> def my_tokenizer(s):
... return s.split()
...
>>> vectorizer = CountVectorizer(tokenizer=my_tokenizer)
>>> vectorizer.build_analyzer()(u"Some... punctuation!") == (
... ['some...', 'punctuation!'])
True

In particular we name:

• preprocessor: a callable that takes an entire document as input (as a single string), and returns a possibly
transformed version of the document, still as an entire string. This can be used to remove HTML tags, lowercase
the entire document, etc.

• tokenizer: a callable that takes the output from the preprocessor and splits it into tokens, then returns a list
of these.

• analyzer: a callable that replaces the preprocessor and tokenizer. The default analyzers all call the prepro-
cessor and tokenizer, but custom analyzers will skip this. N-gram extraction and stop word filtering take place
at the analyzer level, so a custom analyzer may have to reproduce these steps.

(Lucene users might recognize these names, but be aware that scikit-learn concepts may not map one-to-one onto
Lucene concepts.)

To make the preprocessor, tokenizer and analyzers aware of the model parameters it is possible to derive from the
class and override the build_preprocessor, build_tokenizer` and build_analyzer factory methods
instead of passing custom functions.

Some tips and tricks:
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• If documents are pre-tokenized by an external package, then store them in files (or strings) with the tokens
separated by whitespace and pass analyzer=str.split

• Fancy token-level analysis such as stemming, lemmatizing, compound splitting, filtering based on part-of-
speech, etc. are not included in the scikit-learn codebase, but can be added by customizing either the tokenizer
or the analyzer. Here’s a CountVectorizer with a tokenizer and lemmatizer using NLTK:

>>> from nltk import word_tokenize
>>> from nltk.stem import WordNetLemmatizer
>>> class LemmaTokenizer(object):
... def __init__(self):
... self.wnl = WordNetLemmatizer()
... def __call__(self, doc):
... return [self.wnl.lemmatize(t) for t in word_tokenize(doc)]
...
>>> vect = CountVectorizer(tokenizer=LemmaTokenizer())

(Note that this will not filter out punctuation.)

The following example will, for instance, transform some British spelling to American spelling:

>>> import re
>>> def to_british(tokens):
... for t in tokens:
... t = re.sub(r"(...)our$", r"\1or", t)
... t = re.sub(r"([bt])re$", r"\1er", t)
... t = re.sub(r"([iy])s(e$|ing|ation)", r"\1z\2", t)
... t = re.sub(r"ogue$", "og", t)
... yield t
...
>>> class CustomVectorizer(CountVectorizer):
... def build_tokenizer(self):
... tokenize = super(CustomVectorizer, self).build_tokenizer()
... return lambda doc: list(to_british(tokenize(doc)))
...
>>> print(CustomVectorizer().build_analyzer()(u"color colour"))
[...'color', ...'color']

for other styles of preprocessing; examples include stemming, lemmatization, or normalizing numerical tokens,
with the latter illustrated in:

– Biclustering documents with the Spectral Co-clustering algorithm

Customizing the vectorizer can also be useful when handling Asian languages that do not use an explicit word separator
such as whitespace.

Image feature extraction

Patch extraction

The extract_patches_2d function extracts patches from an image stored as a two-dimensional array, or
three-dimensional with color information along the third axis. For rebuilding an image from all its patches, use
reconstruct_from_patches_2d. For example let use generate a 4x4 pixel picture with 3 color channels (e.g.
in RGB format):

>>> import numpy as np
>>> from sklearn.feature_extraction import image
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>>> one_image = np.arange(4 * 4 * 3).reshape((4, 4, 3))
>>> one_image[:, :, 0] # R channel of a fake RGB picture
array([[ 0, 3, 6, 9],

[12, 15, 18, 21],
[24, 27, 30, 33],
[36, 39, 42, 45]])

>>> patches = image.extract_patches_2d(one_image, (2, 2), max_patches=2,
... random_state=0)
>>> patches.shape
(2, 2, 2, 3)
>>> patches[:, :, :, 0]
array([[[ 0, 3],

[12, 15]],

[[15, 18],
[27, 30]]])

>>> patches = image.extract_patches_2d(one_image, (2, 2))
>>> patches.shape
(9, 2, 2, 3)
>>> patches[4, :, :, 0]
array([[15, 18],

[27, 30]])

Let us now try to reconstruct the original image from the patches by averaging on overlapping areas:

>>> reconstructed = image.reconstruct_from_patches_2d(patches, (4, 4, 3))
>>> np.testing.assert_array_equal(one_image, reconstructed)

The PatchExtractor class works in the same way as extract_patches_2d, only it supports multiple images
as input. It is implemented as an estimator, so it can be used in pipelines. See:

>>> five_images = np.arange(5 * 4 * 4 * 3).reshape(5, 4, 4, 3)
>>> patches = image.PatchExtractor((2, 2)).transform(five_images)
>>> patches.shape
(45, 2, 2, 3)

Connectivity graph of an image

Several estimators in the scikit-learn can use connectivity information between features or samples. For instance Ward
clustering (Hierarchical clustering) can cluster together only neighboring pixels of an image, thus forming contiguous
patches:

For this purpose, the estimators use a ‘connectivity’ matrix, giving which samples are connected.

The function img_to_graph returns such a matrix from a 2D or 3D image. Similarly, grid_to_graph build a
connectivity matrix for images given the shape of these image.

These matrices can be used to impose connectivity in estimators that use connectivity information, such as Ward
clustering (Hierarchical clustering), but also to build precomputed kernels, or similarity matrices.

Note: Examples

• A demo of structured Ward hierarchical clustering on a raccoon face image

• Spectral clustering for image segmentation
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• Feature agglomeration vs. univariate selection

3.4.3 Preprocessing data

The sklearn.preprocessing package provides several common utility functions and transformer classes to
change raw feature vectors into a representation that is more suitable for the downstream estimators.

In general, learning algorithms benefit from standardization of the data set. If some outliers are present in the set, robust
scalers or transformers are more appropriate. The behaviors of the different scalers, transformers, and normalizers on
a dataset containing marginal outliers is highlighted in Compare the effect of different scalers on data with outliers.

Standardization, or mean removal and variance scaling

Standardization of datasets is a common requirement for many machine learning estimators implemented in
scikit-learn; they might behave badly if the individual features do not more or less look like standard normally dis-
tributed data: Gaussian with zero mean and unit variance.

In practice we often ignore the shape of the distribution and just transform the data to center it by removing the mean
value of each feature, then scale it by dividing non-constant features by their standard deviation.

For instance, many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support
Vector Machines or the l1 and l2 regularizers of linear models) assume that all features are centered around zero and
have variance in the same order. If a feature has a variance that is orders of magnitude larger than others, it might
dominate the objective function and make the estimator unable to learn from other features correctly as expected.

The function scale provides a quick and easy way to perform this operation on a single array-like dataset:

>>> from sklearn import preprocessing
>>> import numpy as np
>>> X_train = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
>>> X_scaled = preprocessing.scale(X_train)

>>> X_scaled
array([[ 0. ..., -1.22..., 1.33...],

[ 1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]])

Scaled data has zero mean and unit variance:
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>>> X_scaled.mean(axis=0)
array([ 0., 0., 0.])

>>> X_scaled.std(axis=0)
array([ 1., 1., 1.])

The preprocessing module further provides a utility class StandardScaler that implements the
Transformer API to compute the mean and standard deviation on a training set so as to be able to later reapply
the same transformation on the testing set. This class is hence suitable for use in the early steps of a sklearn.
pipeline.Pipeline:

>>> scaler = preprocessing.StandardScaler().fit(X_train)
>>> scaler
StandardScaler(copy=True, with_mean=True, with_std=True)

>>> scaler.mean_
array([ 1. ..., 0. ..., 0.33...])

>>> scaler.scale_
array([ 0.81..., 0.81..., 1.24...])

>>> scaler.transform(X_train)
array([[ 0. ..., -1.22..., 1.33...],

[ 1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]])

The scaler instance can then be used on new data to transform it the same way it did on the training set:

>>> X_test = [[-1., 1., 0.]]
>>> scaler.transform(X_test)
array([[-2.44..., 1.22..., -0.26...]])

It is possible to disable either centering or scaling by either passing with_mean=False or with_std=False to
the constructor of StandardScaler.

Scaling features to a range

An alternative standardization is scaling features to lie between a given minimum and maximum value, often between
zero and one, or so that the maximum absolute value of each feature is scaled to unit size. This can be achieved using
MinMaxScaler or MaxAbsScaler, respectively.

The motivation to use this scaling include robustness to very small standard deviations of features and preserving zero
entries in sparse data.

Here is an example to scale a toy data matrix to the [0, 1] range:

>>> X_train = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
...
>>> min_max_scaler = preprocessing.MinMaxScaler()
>>> X_train_minmax = min_max_scaler.fit_transform(X_train)
>>> X_train_minmax
array([[ 0.5 , 0. , 1. ],

[ 1. , 0.5 , 0.33333333],
[ 0. , 1. , 0. ]])
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The same instance of the transformer can then be applied to some new test data unseen during the fit call: the same
scaling and shifting operations will be applied to be consistent with the transformation performed on the train data:

>>> X_test = np.array([[ -3., -1., 4.]])
>>> X_test_minmax = min_max_scaler.transform(X_test)
>>> X_test_minmax
array([[-1.5 , 0. , 1.66666667]])

It is possible to introspect the scaler attributes to find about the exact nature of the transformation learned on the
training data:

>>> min_max_scaler.scale_
array([ 0.5 , 0.5 , 0.33...])

>>> min_max_scaler.min_
array([ 0. , 0.5 , 0.33...])

If MinMaxScaler is given an explicit feature_range=(min, max) the full formula is:

X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))

X_scaled = X_std * (max - min) + min

MaxAbsScaler works in a very similar fashion, but scales in a way that the training data lies within the range [-1,
1] by dividing through the largest maximum value in each feature. It is meant for data that is already centered at zero
or sparse data.

Here is how to use the toy data from the previous example with this scaler:

>>> X_train = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
...
>>> max_abs_scaler = preprocessing.MaxAbsScaler()
>>> X_train_maxabs = max_abs_scaler.fit_transform(X_train)
>>> X_train_maxabs # doctest +NORMALIZE_WHITESPACE^
array([[ 0.5, -1. , 1. ],

[ 1. , 0. , 0. ],
[ 0. , 1. , -0.5]])

>>> X_test = np.array([[ -3., -1., 4.]])
>>> X_test_maxabs = max_abs_scaler.transform(X_test)
>>> X_test_maxabs
array([[-1.5, -1. , 2. ]])
>>> max_abs_scaler.scale_
array([ 2., 1., 2.])

As with scale, the module further provides convenience functions minmax_scale and maxabs_scale if you
don’t want to create an object.

Scaling sparse data

Centering sparse data would destroy the sparseness structure in the data, and thus rarely is a sensible thing to do.
However, it can make sense to scale sparse inputs, especially if features are on different scales.

MaxAbsScaler and maxabs_scale were specifically designed for scaling sparse data, and are the recommended
way to go about this. However, scale and StandardScaler can accept scipy.sparse matrices as input, as
long as with_mean=False is explicitly passed to the constructor. Otherwise a ValueError will be raised as
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silently centering would break the sparsity and would often crash the execution by allocating excessive amounts of
memory unintentionally. RobustScaler cannot be fitted to sparse inputs, but you can use the transform method
on sparse inputs.

Note that the scalers accept both Compressed Sparse Rows and Compressed Sparse Columns format (see scipy.
sparse.csr_matrix and scipy.sparse.csc_matrix). Any other sparse input will be converted to the
Compressed Sparse Rows representation. To avoid unnecessary memory copies, it is recommended to choose the
CSR or CSC representation upstream.

Finally, if the centered data is expected to be small enough, explicitly converting the input to an array using the
toarray method of sparse matrices is another option.

Scaling data with outliers

If your data contains many outliers, scaling using the mean and variance of the data is likely to not work very well.
In these cases, you can use robust_scale and RobustScaler as drop-in replacements instead. They use more
robust estimates for the center and range of your data.

References:

Further discussion on the importance of centering and scaling data is available on this FAQ: Should I normal-
ize/standardize/rescale the data?

Scaling vs Whitening

It is sometimes not enough to center and scale the features independently, since a downstream model can further
make some assumption on the linear independence of the features.

To address this issue you can use sklearn.decomposition.PCA or sklearn.decomposition.
RandomizedPCA with whiten=True to further remove the linear correlation across features.

Scaling target variables in regression

scale and StandardScaler work out-of-the-box with 1d arrays. This is very useful for scaling the target /
response variables used for regression.

Centering kernel matrices

If you have a kernel matrix of a kernel 𝐾 that computes a dot product in a feature space defined by function 𝑝ℎ𝑖, a
KernelCenterer can transform the kernel matrix so that it contains inner products in the feature space defined by
𝑝ℎ𝑖 followed by removal of the mean in that space.

Non-linear transformation

Like scalers, QuantileTransformer puts each feature into the same range or distribution. However, by perform-
ing a rank transformation, it smooths out unusual distributions and is less influenced by outliers than scaling methods.
It does, however, distort correlations and distances within and across features.
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QuantileTransformer and quantile_transform provide a non-parametric transformation based on the
quantile function to map the data to a uniform distribution with values between 0 and 1:

>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
>>> quantile_transformer = preprocessing.QuantileTransformer(random_state=0)
>>> X_train_trans = quantile_transformer.fit_transform(X_train)
>>> X_test_trans = quantile_transformer.transform(X_test)
>>> np.percentile(X_train[:, 0], [0, 25, 50, 75, 100])
array([ 4.3, 5.1, 5.8, 6.5, 7.9])

This feature corresponds to the sepal length in cm. Once the quantile transformation applied, those landmarks approach
closely the percentiles previously defined:

>>> np.percentile(X_train_trans[:, 0], [0, 25, 50, 75, 100])
...
array([ 0.00... , 0.24..., 0.49..., 0.73..., 0.99... ])

This can be confirmed on a independent testing set with similar remarks:

>>> np.percentile(X_test[:, 0], [0, 25, 50, 75, 100])
...
array([ 4.4 , 5.125, 5.75 , 6.175, 7.3 ])
>>> np.percentile(X_test_trans[:, 0], [0, 25, 50, 75, 100])
...
array([ 0.01..., 0.25..., 0.46..., 0.60... , 0.94...])

It is also possible to map the transformed data to a normal distribution by setting
output_distribution='normal':

>>> quantile_transformer = preprocessing.QuantileTransformer(
... output_distribution='normal', random_state=0)
>>> X_trans = quantile_transformer.fit_transform(X)
>>> quantile_transformer.quantiles_
array([[ 4.3..., 2..., 1..., 0.1...],

[ 4.31..., 2.02..., 1.01..., 0.1...],
[ 4.32..., 2.05..., 1.02..., 0.1...],
...,
[ 7.84..., 4.34..., 6.84..., 2.5...],
[ 7.87..., 4.37..., 6.87..., 2.5...],
[ 7.9..., 4.4..., 6.9..., 2.5...]])

Thus the median of the input becomes the mean of the output, centered at 0. The normal output is clipped so that the
input’s minimum and maximum — corresponding to the 1e-7 and 1 - 1e-7 quantiles respectively — do not become
infinite under the transformation.

Normalization

Normalization is the process of scaling individual samples to have unit norm. This process can be useful if you plan
to use a quadratic form such as the dot-product or any other kernel to quantify the similarity of any pair of samples.

This assumption is the base of the Vector Space Model often used in text classification and clustering contexts.

The function normalize provides a quick and easy way to perform this operation on a single array-like dataset,
either using the l1 or l2 norms:
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>>> X = [[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2')

>>> X_normalized
array([[ 0.40..., -0.40..., 0.81...],

[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])

The preprocessing module further provides a utility class Normalizer that implements the same operation
using the Transformer API (even though the fit method is useless in this case: the class is stateless as this
operation treats samples independently).

This class is hence suitable for use in the early steps of a sklearn.pipeline.Pipeline:

>>> normalizer = preprocessing.Normalizer().fit(X) # fit does nothing
>>> normalizer
Normalizer(copy=True, norm='l2')

The normalizer instance can then be used on sample vectors as any transformer:

>>> normalizer.transform(X)
array([[ 0.40..., -0.40..., 0.81...],

[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])

>>> normalizer.transform([[-1., 1., 0.]])
array([[-0.70..., 0.70..., 0. ...]])

Sparse input

normalize and Normalizer accept both dense array-like and sparse matrices from scipy.sparse as input.

For sparse input the data is converted to the Compressed Sparse Rows representation (see scipy.sparse.
csr_matrix) before being fed to efficient Cython routines. To avoid unnecessary memory copies, it is recom-
mended to choose the CSR representation upstream.

Binarization

Feature binarization

Feature binarization is the process of thresholding numerical features to get boolean values. This can be useful for
downstream probabilistic estimators that make assumption that the input data is distributed according to a multi-variate
Bernoulli distribution. For instance, this is the case for the sklearn.neural_network.BernoulliRBM .

It is also common among the text processing community to use binary feature values (probably to simplify the proba-
bilistic reasoning) even if normalized counts (a.k.a. term frequencies) or TF-IDF valued features often perform slightly
better in practice.

As for the Normalizer, the utility class Binarizer is meant to be used in the early stages of sklearn.
pipeline.Pipeline. The fit method does nothing as each sample is treated independently of others:
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>>> X = [[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]]

>>> binarizer = preprocessing.Binarizer().fit(X) # fit does nothing
>>> binarizer
Binarizer(copy=True, threshold=0.0)

>>> binarizer.transform(X)
array([[ 1., 0., 1.],

[ 1., 0., 0.],
[ 0., 1., 0.]])

It is possible to adjust the threshold of the binarizer:

>>> binarizer = preprocessing.Binarizer(threshold=1.1)
>>> binarizer.transform(X)
array([[ 0., 0., 1.],

[ 1., 0., 0.],
[ 0., 0., 0.]])

As for the StandardScaler and Normalizer classes, the preprocessing module provides a companion function
binarize to be used when the transformer API is not necessary.

Sparse input

binarize and Binarizer accept both dense array-like and sparse matrices from scipy.sparse as input.

For sparse input the data is converted to the Compressed Sparse Rows representation (see scipy.sparse.
csr_matrix). To avoid unnecessary memory copies, it is recommended to choose the CSR representation up-
stream.

Encoding categorical features

Often features are not given as continuous values but categorical. For example a person could have fea-
tures ["male", "female"], ["from Europe", "from US", "from Asia"], ["uses Firefox",
"uses Chrome", "uses Safari", "uses Internet Explorer"]. Such features can be efficiently
coded as integers, for instance ["male", "from US", "uses Internet Explorer"] could be expressed
as [0, 1, 3] while ["female", "from Asia", "uses Chrome"] would be [1, 2, 1].

Such integer representation can not be used directly with scikit-learn estimators, as these expect continuous input,
and would interpret the categories as being ordered, which is often not desired (i.e. the set of browsers was ordered
arbitrarily).

One possibility to convert categorical features to features that can be used with scikit-learn estimators is to use a one-
of-K or one-hot encoding, which is implemented in OneHotEncoder. This estimator transforms each categorical
feature with m possible values into m binary features, with only one active.

Continuing the example above:

>>> enc = preprocessing.OneHotEncoder()
>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])
OneHotEncoder(categorical_features='all', dtype=<... 'numpy.float64'>,

handle_unknown='error', n_values='auto', sparse=True)
>>> enc.transform([[0, 1, 3]]).toarray()
array([[ 1., 0., 0., 1., 0., 0., 0., 0., 1.]])
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By default, how many values each feature can take is inferred automatically from the dataset. It is possible to specify
this explicitly using the parameter n_values. There are two genders, three possible continents and four web browsers
in our dataset. Then we fit the estimator, and transform a data point. In the result, the first two numbers encode the
gender, the next set of three numbers the continent and the last four the web browser.

Note that, if there is a possibility that the training data might have missing categorical features, one has to explicitly
set n_values. For example,

>>> enc = preprocessing.OneHotEncoder(n_values=[2, 3, 4])
>>> # Note that there are missing categorical values for the 2nd and 3rd
>>> # features
>>> enc.fit([[1, 2, 3], [0, 2, 0]])
OneHotEncoder(categorical_features='all', dtype=<... 'numpy.float64'>,

handle_unknown='error', n_values=[2, 3, 4], sparse=True)
>>> enc.transform([[1, 0, 0]]).toarray()
array([[ 0., 1., 1., 0., 0., 1., 0., 0., 0.]])

See Loading features from dicts for categorical features that are represented as a dict, not as integers.

Imputation of missing values

For various reasons, many real world datasets contain missing values, often encoded as blanks, NaNs or other place-
holders. Such datasets however are incompatible with scikit-learn estimators which assume that all values in an array
are numerical, and that all have and hold meaning. A basic strategy to use incomplete datasets is to discard entire rows
and/or columns containing missing values. However, this comes at the price of losing data which may be valuable
(even though incomplete). A better strategy is to impute the missing values, i.e., to infer them from the known part of
the data.

The Imputer class provides basic strategies for imputing missing values, either using the mean, the median or the
most frequent value of the row or column in which the missing values are located. This class also allows for different
missing values encodings.

The following snippet demonstrates how to replace missing values, encoded as np.nan, using the mean value of the
columns (axis 0) that contain the missing values:

>>> import numpy as np
>>> from sklearn.preprocessing import Imputer
>>> imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
>>> imp.fit([[1, 2], [np.nan, 3], [7, 6]])
Imputer(axis=0, copy=True, missing_values='NaN', strategy='mean', verbose=0)
>>> X = [[np.nan, 2], [6, np.nan], [7, 6]]
>>> print(imp.transform(X))
[[ 4. 2. ]
[ 6. 3.666...]
[ 7. 6. ]]

The Imputer class also supports sparse matrices:

>>> import scipy.sparse as sp
>>> X = sp.csc_matrix([[1, 2], [0, 3], [7, 6]])
>>> imp = Imputer(missing_values=0, strategy='mean', axis=0)
>>> imp.fit(X)
Imputer(axis=0, copy=True, missing_values=0, strategy='mean', verbose=0)
>>> X_test = sp.csc_matrix([[0, 2], [6, 0], [7, 6]])
>>> print(imp.transform(X_test))
[[ 4. 2. ]
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[ 6. 3.666...]
[ 7. 6. ]]

Note that, here, missing values are encoded by 0 and are thus implicitly stored in the matrix. This format is thus
suitable when there are many more missing values than observed values.

Imputer can be used in a Pipeline as a way to build a composite estimator that supports imputation. See Imputing
missing values before building an estimator.

Generating polynomial features

Often it’s useful to add complexity to the model by considering nonlinear features of the input data. A simple and com-
mon method to use is polynomial features, which can get features’ high-order and interaction terms. It is implemented
in PolynomialFeatures:

>>> import numpy as np
>>> from sklearn.preprocessing import PolynomialFeatures
>>> X = np.arange(6).reshape(3, 2)
>>> X
array([[0, 1],

[2, 3],
[4, 5]])

>>> poly = PolynomialFeatures(2)
>>> poly.fit_transform(X)
array([[ 1., 0., 1., 0., 0., 1.],

[ 1., 2., 3., 4., 6., 9.],
[ 1., 4., 5., 16., 20., 25.]])

The features of X have been transformed from (𝑋1, 𝑋2) to (1, 𝑋1, 𝑋2, 𝑋
2
1 , 𝑋1𝑋2, 𝑋

2
2 ).

In some cases, only interaction terms among features are required, and it can be gotten with the setting
interaction_only=True:

>>> X = np.arange(9).reshape(3, 3)
>>> X
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> poly = PolynomialFeatures(degree=3, interaction_only=True)
>>> poly.fit_transform(X)
array([[ 1., 0., 1., 2., 0., 0., 2., 0.],

[ 1., 3., 4., 5., 12., 15., 20., 60.],
[ 1., 6., 7., 8., 42., 48., 56., 336.]])

The features of X have been transformed from (𝑋1, 𝑋2, 𝑋3) to (1, 𝑋1, 𝑋2, 𝑋3, 𝑋1𝑋2, 𝑋1𝑋3, 𝑋2𝑋3, 𝑋1𝑋2𝑋3).

Note that polynomial features are used implicitly in kernel methods (e.g., sklearn.svm.SVC, sklearn.
decomposition.KernelPCA) when using polynomial Kernel functions.

See Polynomial interpolation for Ridge regression using created polynomial features.

Custom transformers

Often, you will want to convert an existing Python function into a transformer to assist in data cleaning or processing.
You can implement a transformer from an arbitrary function with FunctionTransformer. For example, to build
a transformer that applies a log transformation in a pipeline, do:
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>>> import numpy as np
>>> from sklearn.preprocessing import FunctionTransformer
>>> transformer = FunctionTransformer(np.log1p)
>>> X = np.array([[0, 1], [2, 3]])
>>> transformer.transform(X)
array([[ 0. , 0.69314718],

[ 1.09861229, 1.38629436]])

For a full code example that demonstrates using a FunctionTransformer to do custom feature selection, see
Using FunctionTransformer to select columns

3.4.4 Unsupervised dimensionality reduction

If your number of features is high, it may be useful to reduce it with an unsupervised step prior to supervised steps.
Many of the Unsupervised learning methods implement a transform method that can be used to reduce the dimen-
sionality. Below we discuss two specific example of this pattern that are heavily used.

Pipelining

The unsupervised data reduction and the supervised estimator can be chained in one step. See Pipeline: chaining
estimators.

PCA: principal component analysis

decomposition.PCA looks for a combination of features that capture well the variance of the original features.
See Decomposing signals in components (matrix factorization problems).

Examples

• Faces recognition example using eigenfaces and SVMs

Random projections

The module: random_projection provides several tools for data reduction by random projections. See the
relevant section of the documentation: Random Projection.

Examples

• The Johnson-Lindenstrauss bound for embedding with random projections

Feature agglomeration

cluster.FeatureAgglomeration applies Hierarchical clustering to group together features that behave sim-
ilarly.
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Examples

• Feature agglomeration vs. univariate selection

• Feature agglomeration

Feature scaling

Note that if features have very different scaling or statistical properties, cluster.FeatureAgglomeration
may not be able to capture the links between related features. Using a preprocessing.StandardScaler
can be useful in these settings.

3.4.5 Random Projection

The sklearn.random_projection module implements a simple and computationally efficient way to reduce
the dimensionality of the data by trading a controlled amount of accuracy (as additional variance) for faster processing
times and smaller model sizes. This module implements two types of unstructured random matrix: Gaussian random
matrix and sparse random matrix.

The dimensions and distribution of random projections matrices are controlled so as to preserve the pairwise distances
between any two samples of the dataset. Thus random projection is a suitable approximation technique for distance
based method.

References:

• Sanjoy Dasgupta. 2000. Experiments with random projection. In Proceedings of the Sixteenth conference
on Uncertainty in artificial intelligence (UAI‘00), Craig Boutilier and Moisés Goldszmidt (Eds.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 143-151.

• Ella Bingham and Heikki Mannila. 2001. Random projection in dimensionality reduction: applications to
image and text data. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD ‘01). ACM, New York, NY, USA, 245-250.

The Johnson-Lindenstrauss lemma

The main theoretical result behind the efficiency of random projection is the Johnson-Lindenstrauss lemma (quoting
Wikipedia):

In mathematics, the Johnson-Lindenstrauss lemma is a result concerning low-distortion embeddings of
points from high-dimensional into low-dimensional Euclidean space. The lemma states that a small set
of points in a high-dimensional space can be embedded into a space of much lower dimension in such a
way that distances between the points are nearly preserved. The map used for the embedding is at least
Lipschitz, and can even be taken to be an orthogonal projection.

Knowing only the number of samples, the sklearn.random_projection.
johnson_lindenstrauss_min_dim estimates conservatively the minimal size of the random subspace
to guarantee a bounded distortion introduced by the random projection:

>>> from sklearn.random_projection import johnson_lindenstrauss_min_dim
>>> johnson_lindenstrauss_min_dim(n_samples=1e6, eps=0.5)
663
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>>> johnson_lindenstrauss_min_dim(n_samples=1e6, eps=[0.5, 0.1, 0.01])
array([ 663, 11841, 1112658])
>>> johnson_lindenstrauss_min_dim(n_samples=[1e4, 1e5, 1e6], eps=0.1)
array([ 7894, 9868, 11841])

Example:

• See The Johnson-Lindenstrauss bound for embedding with random projections for a theoretical explication
on the Johnson-Lindenstrauss lemma and an empirical validation using sparse random matrices.

References:

• Sanjoy Dasgupta and Anupam Gupta, 1999. An elementary proof of the Johnson-Lindenstrauss Lemma.

Gaussian random projection

The sklearn.random_projection.GaussianRandomProjection reduces the dimensionality by pro-
jecting the original input space on a randomly generated matrix where components are drawn from the following
distribution 𝑁(0, 1

𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
).

Here a small excerpt which illustrates how to use the Gaussian random projection transformer:

>>> import numpy as np
>>> from sklearn import random_projection
>>> X = np.random.rand(100, 10000)
>>> transformer = random_projection.GaussianRandomProjection()
>>> X_new = transformer.fit_transform(X)
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>>> X_new.shape
(100, 3947)

Sparse random projection

The sklearn.random_projection.SparseRandomProjection reduces the dimensionality by projecting
the original input space using a sparse random matrix.

Sparse random matrices are an alternative to dense Gaussian random projection matrix that guarantees similar embed-
ding quality while being much more memory efficient and allowing faster computation of the projected data.

If we define s = 1 / density, the elements of the random matrix are drawn from⎧⎪⎪⎨⎪⎪⎩
−
√︁

𝑠
𝑛components

1/2𝑠

0 with probability 1− 1/𝑠

+
√︁

𝑠
𝑛components

1/2𝑠

where 𝑛components is the size of the projected subspace. By default the density of non zero elements is set to the
minimum density as recommended by Ping Li et al.: 1/

√
𝑛features.

Here a small excerpt which illustrates how to use the sparse random projection transformer:

>>> import numpy as np
>>> from sklearn import random_projection
>>> X = np.random.rand(100,10000)
>>> transformer = random_projection.SparseRandomProjection()
>>> X_new = transformer.fit_transform(X)
>>> X_new.shape
(100, 3947)
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References:

• D. Achlioptas. 2003. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Jour-
nal of Computer and System Sciences 66 (2003) 671–687

• Ping Li, Trevor J. Hastie, and Kenneth W. Church. 2006. Very sparse random projections. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD ‘06).
ACM, New York, NY, USA, 287-296.

3.4.6 Kernel Approximation

This submodule contains functions that approximate the feature mappings that correspond to certain kernels, as they
are used for example in support vector machines (see Support Vector Machines). The following feature functions
perform non-linear transformations of the input, which can serve as a basis for linear classification or other algorithms.

The advantage of using approximate explicit feature maps compared to the kernel trick, which makes use of feature
maps implicitly, is that explicit mappings can be better suited for online learning and can significantly reduce the
cost of learning with very large datasets. Standard kernelized SVMs do not scale well to large datasets, but using an
approximate kernel map it is possible to use much more efficient linear SVMs. In particular, the combination of kernel
map approximations with SGDClassifier can make non-linear learning on large datasets possible.

Since there has not been much empirical work using approximate embeddings, it is advisable to compare results
against exact kernel methods when possible.

See also:

Polynomial regression: extending linear models with basis functions for an exact polynomial transformation.

Nystroem Method for Kernel Approximation

The Nystroem method, as implemented in Nystroem is a general method for low-rank approximations of kernels.
It achieves this by essentially subsampling the data on which the kernel is evaluated. By default Nystroem uses the
rbf kernel, but it can use any kernel function or a precomputed kernel matrix. The number of samples used - which
is also the dimensionality of the features computed - is given by the parameter n_components.

Radial Basis Function Kernel

The RBFSampler constructs an approximate mapping for the radial basis function kernel, also known as Random
Kitchen Sinks [RR2007]. This transformation can be used to explicitly model a kernel map, prior to applying a linear
algorithm, for example a linear SVM:

>>> from sklearn.kernel_approximation import RBFSampler
>>> from sklearn.linear_model import SGDClassifier
>>> X = [[0, 0], [1, 1], [1, 0], [0, 1]]
>>> y = [0, 0, 1, 1]
>>> rbf_feature = RBFSampler(gamma=1, random_state=1)
>>> X_features = rbf_feature.fit_transform(X)
>>> clf = SGDClassifier()
>>> clf.fit(X_features, y)
SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1,

eta0=0.0, fit_intercept=True, l1_ratio=0.15,
learning_rate='optimal', loss='hinge', max_iter=None, n_iter=None,
n_jobs=1, penalty='l2', power_t=0.5, random_state=None,
shuffle=True, tol=None, verbose=0, warm_start=False)
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>>> clf.score(X_features, y)
1.0

The mapping relies on a Monte Carlo approximation to the kernel values. The fit function performs the Monte Carlo
sampling, whereas the transform method performs the mapping of the data. Because of the inherent randomness
of the process, results may vary between different calls to the fit function.

The fit function takes two arguments: n_components, which is the target dimensionality of the feature transform,
and gamma, the parameter of the RBF-kernel. A higher n_components will result in a better approximation of the
kernel and will yield results more similar to those produced by a kernel SVM. Note that “fitting” the feature function
does not actually depend on the data given to the fit function. Only the dimensionality of the data is used. Details
on the method can be found in [RR2007].

For a given value of n_components RBFSampler is often less accurate as Nystroem. RBFSampler is cheaper
to compute, though, making use of larger feature spaces more efficient.

Fig. 3.9: Comparing an exact RBF kernel (left) with the approximation (right)

Examples:

• Explicit feature map approximation for RBF kernels

Additive Chi Squared Kernel

The additive chi squared kernel is a kernel on histograms, often used in computer vision.

The additive chi squared kernel as used here is given by

𝑘(𝑥, 𝑦) =
∑︁
𝑖

2𝑥𝑖𝑦𝑖
𝑥𝑖 + 𝑦𝑖

This is not exactly the same as sklearn.metrics.additive_chi2_kernel. The authors of [VZ2010] prefer
the version above as it is always positive definite. Since the kernel is additive, it is possible to treat all components
𝑥𝑖 separately for embedding. This makes it possible to sample the Fourier transform in regular intervals, instead of
approximating using Monte Carlo sampling.
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The class AdditiveChi2Sampler implements this component wise deterministic sampling. Each component
is sampled 𝑛 times, yielding 2𝑛 + 1 dimensions per input dimension (the multiple of two stems from the real and
complex part of the Fourier transform). In the literature, 𝑛 is usually chosen to be 1 or 2, transforming the dataset to
size n_samples * 5 * n_features (in the case of 𝑛 = 2).

The approximate feature map provided by AdditiveChi2Sampler can be combined with the approximate feature
map provided by RBFSampler to yield an approximate feature map for the exponentiated chi squared kernel. See
the [VZ2010] for details and [VVZ2010] for combination with the RBFSampler.

Skewed Chi Squared Kernel

The skewed chi squared kernel is given by:

𝑘(𝑥, 𝑦) =
∏︁
𝑖

2
√
𝑥𝑖 + 𝑐

√
𝑦𝑖 + 𝑐

𝑥𝑖 + 𝑦𝑖 + 2𝑐

It has properties that are similar to the exponentiated chi squared kernel often used in computer vision, but allows for
a simple Monte Carlo approximation of the feature map.

The usage of the SkewedChi2Sampler is the same as the usage described above for the RBFSampler. The only
difference is in the free parameter, that is called 𝑐. For a motivation for this mapping and the mathematical details see
[LS2010].

Mathematical Details

Kernel methods like support vector machines or kernelized PCA rely on a property of reproducing kernel Hilbert
spaces. For any positive definite kernel function 𝑘 (a so called Mercer kernel), it is guaranteed that there exists a
mapping 𝜑 into a Hilbert spaceℋ, such that

𝑘(𝑥, 𝑦) = ⟨𝜑(𝑥), 𝜑(𝑦)⟩

Where ⟨·, ·⟩ denotes the inner product in the Hilbert space.

If an algorithm, such as a linear support vector machine or PCA, relies only on the scalar product of data points 𝑥𝑖,
one may use the value of 𝑘(𝑥𝑖, 𝑥𝑗), which corresponds to applying the algorithm to the mapped data points 𝜑(𝑥𝑖). The
advantage of using 𝑘 is that the mapping 𝜑 never has to be calculated explicitly, allowing for arbitrary large features
(even infinite).

One drawback of kernel methods is, that it might be necessary to store many kernel values 𝑘(𝑥𝑖, 𝑥𝑗) during optimiza-
tion. If a kernelized classifier is applied to new data 𝑦𝑗 , 𝑘(𝑥𝑖, 𝑦𝑗) needs to be computed to make predictions, possibly
for many different 𝑥𝑖 in the training set.

The classes in this submodule allow to approximate the embedding 𝜑, thereby working explicitly with the representa-
tions 𝜑(𝑥𝑖), which obviates the need to apply the kernel or store training examples.

References:

3.4.7 Pairwise metrics, Affinities and Kernels

The sklearn.metrics.pairwise submodule implements utilities to evaluate pairwise distances or affinity of
sets of samples.

This module contains both distance metrics and kernels. A brief summary is given on the two here.
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Distance metrics are functions d(a, b) such that d(a, b) < d(a, c) if objects a and b are considered “more
similar” than objects a and c. Two objects exactly alike would have a distance of zero. One of the most popular
examples is Euclidean distance. To be a ‘true’ metric, it must obey the following four conditions:

1. d(a, b) >= 0, for all a and b
2. d(a, b) == 0, if and only if a = b, positive definiteness
3. d(a, b) == d(b, a), symmetry
4. d(a, c) <= d(a, b) + d(b, c), the triangle inequality

Kernels are measures of similarity, i.e. s(a, b) > s(a, c) if objects a and b are considered “more similar” than
objects a and c. A kernel must also be positive semi-definite.

There are a number of ways to convert between a distance metric and a similarity measure, such as a kernel. Let D be
the distance, and S be the kernel:

1. S = np.exp(-D * gamma), where one heuristic for choosing gamma is 1 / num_features

2. S = 1. / (D / np.max(D))

Cosine similarity

cosine_similarity computes the L2-normalized dot product of vectors. That is, if 𝑥 and 𝑦 are row vectors, their
cosine similarity 𝑘 is defined as:

𝑘(𝑥, 𝑦) =
𝑥𝑦⊤

‖𝑥‖‖𝑦‖

This is called cosine similarity, because Euclidean (L2) normalization projects the vectors onto the unit sphere, and
their dot product is then the cosine of the angle between the points denoted by the vectors.

This kernel is a popular choice for computing the similarity of documents represented as tf-idf vectors.
cosine_similarity accepts scipy.sparse matrices. (Note that the tf-idf functionality in sklearn.
feature_extraction.text can produce normalized vectors, in which case cosine_similarity is equiv-
alent to linear_kernel, only slower.)

References:

• C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to Information Retrieval. Cambridge Uni-
versity Press. http://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html

Linear kernel

The function linear_kernel computes the linear kernel, that is, a special case of polynomial_kernel with
degree=1 and coef0=0 (homogeneous). If x and y are column vectors, their linear kernel is:

𝑘(𝑥, 𝑦) = 𝑥⊤𝑦

Polynomial kernel

The function polynomial_kernel computes the degree-d polynomial kernel between two vectors. The polyno-
mial kernel represents the similarity between two vectors. Conceptually, the polynomial kernels considers not only
the similarity between vectors under the same dimension, but also across dimensions. When used in machine learning
algorithms, this allows to account for feature interaction.

3.4. Dataset transformations 537

http://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html


scikit-learn user guide, Release 0.19.1

The polynomial kernel is defined as:

𝑘(𝑥, 𝑦) = (𝛾𝑥⊤𝑦 + 𝑐0)𝑑

where:

• x, y are the input vectors

• d is the kernel degree

If 𝑐0 = 0 the kernel is said to be homogeneous.

Sigmoid kernel

The function sigmoid_kernel computes the sigmoid kernel between two vectors. The sigmoid kernel is also
known as hyperbolic tangent, or Multilayer Perceptron (because, in the neural network field, it is often used as neuron
activation function). It is defined as:

𝑘(𝑥, 𝑦) = tanh(𝛾𝑥⊤𝑦 + 𝑐0)

where:

• x, y are the input vectors

• 𝛾 is known as slope

• 𝑐0 is known as intercept

RBF kernel

The function rbf_kernel computes the radial basis function (RBF) kernel between two vectors. This kernel is
defined as:

𝑘(𝑥, 𝑦) = exp(−𝛾‖𝑥− 𝑦‖2)

where x and y are the input vectors. If 𝛾 = 𝜎−2 the kernel is known as the Gaussian kernel of variance 𝜎2.

Laplacian kernel

The function laplacian_kernel is a variant on the radial basis function kernel defined as:

𝑘(𝑥, 𝑦) = exp(−𝛾‖𝑥− 𝑦‖1)

where x and y are the input vectors and ‖𝑥− 𝑦‖1 is the Manhattan distance between the input vectors.

It has proven useful in ML applied to noiseless data. See e.g. Machine learning for quantum mechanics in a nutshell.

Chi-squared kernel

The chi-squared kernel is a very popular choice for training non-linear SVMs in computer vision applications. It can
be computed using chi2_kernel and then passed to an sklearn.svm.SVC with kernel="precomputed":

538 Chapter 3. User Guide

http://onlinelibrary.wiley.com/doi/10.1002/qua.24954/abstract/


scikit-learn user guide, Release 0.19.1

>>> from sklearn.svm import SVC
>>> from sklearn.metrics.pairwise import chi2_kernel
>>> X = [[0, 1], [1, 0], [.2, .8], [.7, .3]]
>>> y = [0, 1, 0, 1]
>>> K = chi2_kernel(X, gamma=.5)
>>> K
array([[ 1. , 0.36..., 0.89..., 0.58...],

[ 0.36..., 1. , 0.51..., 0.83...],
[ 0.89..., 0.51..., 1. , 0.77... ],
[ 0.58..., 0.83..., 0.77... , 1. ]])

>>> svm = SVC(kernel='precomputed').fit(K, y)
>>> svm.predict(K)
array([0, 1, 0, 1])

It can also be directly used as the kernel argument:

>>> svm = SVC(kernel=chi2_kernel).fit(X, y)
>>> svm.predict(X)
array([0, 1, 0, 1])

The chi squared kernel is given by

𝑘(𝑥, 𝑦) = exp

(︃
−𝛾
∑︁
𝑖

(𝑥[𝑖]− 𝑦[𝑖])2

𝑥[𝑖] + 𝑦[𝑖]

)︃

The data is assumed to be non-negative, and is often normalized to have an L1-norm of one. The normalization is
rationalized with the connection to the chi squared distance, which is a distance between discrete probability distribu-
tions.

The chi squared kernel is most commonly used on histograms (bags) of visual words.

References:

• Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification
of texture and object categories: A comprehensive study International Journal of Computer Vision 2007
http://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf

3.4.8 Transforming the prediction target (y)

Label binarization

LabelBinarizer is a utility class to help create a label indicator matrix from a list of multi-class labels:

>>> from sklearn import preprocessing
>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit([1, 2, 6, 4, 2])
LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False)
>>> lb.classes_
array([1, 2, 4, 6])
>>> lb.transform([1, 6])
array([[1, 0, 0, 0],

[0, 0, 0, 1]])
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For multiple labels per instance, use MultiLabelBinarizer:

>>> lb = preprocessing.MultiLabelBinarizer()
>>> lb.fit_transform([(1, 2), (3,)])
array([[1, 1, 0],

[0, 0, 1]])
>>> lb.classes_
array([1, 2, 3])

Label encoding

LabelEncoder is a utility class to help normalize labels such that they contain only values between 0 and n_classes-
1. This is sometimes useful for writing efficient Cython routines. LabelEncoder can be used as follows:

>>> from sklearn import preprocessing
>>> le = preprocessing.LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
>>> le.transform([1, 1, 2, 6])
array([0, 0, 1, 2])
>>> le.inverse_transform([0, 0, 1, 2])
array([1, 1, 2, 6])

It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical
labels:

>>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
['amsterdam', 'paris', 'tokyo']
>>> le.transform(["tokyo", "tokyo", "paris"])
array([2, 2, 1])
>>> list(le.inverse_transform([2, 2, 1]))
['tokyo', 'tokyo', 'paris']

3.5 Dataset loading utilities

The sklearn.datasets package embeds some small toy datasets as introduced in the Getting Started section.

To evaluate the impact of the scale of the dataset (n_samples and n_features) while controlling the statistical
properties of the data (typically the correlation and informativeness of the features), it is also possible to generate
synthetic data.

This package also features helpers to fetch larger datasets commonly used by the machine learning community to
benchmark algorithm on data that comes from the ‘real world’.

3.5.1 General dataset API

There are three distinct kinds of dataset interfaces for different types of datasets. The simplest one is the interface for
sample images, which is described below in the Sample images section.
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The dataset generation functions and the svmlight loader share a simplistic interface, returning a tuple (X, y) con-
sisting of a n_samples * n_features numpy array X and an array of length n_samples containing the targets
y.

The toy datasets as well as the ‘real world’ datasets and the datasets fetched from mldata.org have more sophisticated
structure. These functions return a dictionary-like object holding at least two items: an array of shape n_samples *
n_features with key data (except for 20newsgroups) and a numpy array of length n_samples, containing the
target values, with key target.

The datasets also contain a description in DESCR and some contain feature_names and target_names. See
the dataset descriptions below for details.

3.5.2 Toy datasets

scikit-learn comes with a few small standard datasets that do not require to download any file from some external
website.

load_boston([return_X_y]) Load and return the boston house-prices dataset (regres-
sion).

load_iris([return_X_y]) Load and return the iris dataset (classification).
load_diabetes([return_X_y]) Load and return the diabetes dataset (regression).
load_digits([n_class, return_X_y]) Load and return the digits dataset (classification).
load_linnerud([return_X_y]) Load and return the linnerud dataset (multivariate regres-

sion).
load_wine([return_X_y]) Load and return the wine dataset (classification).
load_breast_cancer([return_X_y]) Load and return the breast cancer wisconsin dataset (clas-

sification).

These datasets are useful to quickly illustrate the behavior of the various algorithms implemented in the scikit. They
are however often too small to be representative of real world machine learning tasks.

3.5.3 Sample images

The scikit also embed a couple of sample JPEG images published under Creative Commons license by their authors.
Those image can be useful to test algorithms and pipeline on 2D data.

load_sample_images() Load sample images for image manipulation.
load_sample_image(image_name) Load the numpy array of a single sample image

Warning: The default coding of images is based on the uint8 dtype to spare memory. Often machine learning
algorithms work best if the input is converted to a floating point representation first. Also, if you plan to use
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matplotlib.pyplpt.imshow don’t forget to scale to the range 0 - 1 as done in the following example.

Examples:

• Color Quantization using K-Means

3.5.4 Sample generators

In addition, scikit-learn includes various random sample generators that can be used to build artificial datasets of
controlled size and complexity.

Generators for classification and clustering

These generators produce a matrix of features and corresponding discrete targets.

Single label

Both make_blobs and make_classification create multiclass datasets by allocating each class one or more
normally-distributed clusters of points. make_blobs provides greater control regarding the centers and standard de-
viations of each cluster, and is used to demonstrate clustering. make_classification specialises in introducing
noise by way of: correlated, redundant and uninformative features; multiple Gaussian clusters per class; and linear
transformations of the feature space.

make_gaussian_quantiles divides a single Gaussian cluster into near-equal-size classes separated
by concentric hyperspheres. make_hastie_10_2 generates a similar binary, 10-dimensional problem.

make_circles and make_moons gener-
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ate 2d binary classification datasets that are challenging to certain algorithms (e.g. centroid-based clustering or linear
classification), including optional Gaussian noise. They are useful for visualisation. produces Gaussian data with a
spherical decision boundary for binary classification.

Multilabel

make_multilabel_classification generates random samples with multiple labels, reflecting a bag of words
drawn from a mixture of topics. The number of topics for each document is drawn from a Poisson distribution, and the
topics themselves are drawn from a fixed random distribution. Similarly, the number of words is drawn from Poisson,
with words drawn from a multinomial, where each topic defines a probability distribution over words. Simplifications
with respect to true bag-of-words mixtures include:

• Per-topic word distributions are independently drawn, where in reality all would be affected by a sparse base
distribution, and would be correlated.

• For a document generated from multiple topics, all topics are weighted equally in generating its bag of words.

• Documents without labels words at random, rather than from a base distribution.

Biclustering

make_biclusters(shape, n_clusters[, noise, . . . ]) Generate an array with constant block diagonal structure
for biclustering.

make_checkerboard(shape, n_clusters[, . . . ]) Generate an array with block checkerboard structure for bi-
clustering.

Generators for regression

make_regression produces regression targets as an optionally-sparse random linear combination of random fea-
tures, with noise. Its informative features may be uncorrelated, or low rank (few features account for most of the
variance).

Other regression generators generate functions deterministically from randomized features.
make_sparse_uncorrelated produces a target as a linear combination of four features with fixed coef-
ficients. Others encode explicitly non-linear relations: make_friedman1 is related by polynomial and sine
transforms; make_friedman2 includes feature multiplication and reciprocation; and make_friedman3 is
similar with an arctan transformation on the target.
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Generators for manifold learning

make_s_curve([n_samples, noise, random_state]) Generate an S curve dataset.
make_swiss_roll([n_samples, noise, random_state]) Generate a swiss roll dataset.

Generators for decomposition

make_low_rank_matrix([n_samples, . . . ]) Generate a mostly low rank matrix with bell-shaped singu-
lar values

make_sparse_coded_signal(n_samples, . . . [, . . . ]) Generate a signal as a sparse combination of dictionary el-
ements.

make_spd_matrix(n_dim[, random_state]) Generate a random symmetric, positive-definite matrix.
make_sparse_spd_matrix([dim, alpha, . . . ]) Generate a sparse symmetric definite positive matrix.

3.5.5 Datasets in svmlight / libsvm format

scikit-learn includes utility functions for loading datasets in the svmlight / libsvm format. In this format, each line
takes the form <label> <feature-id>:<feature-value> <feature-id>:<feature-value> ..
.. This format is especially suitable for sparse datasets. In this module, scipy sparse CSR matrices are used for X and
numpy arrays are used for y.

You may load a dataset like as follows:

>>> from sklearn.datasets import load_svmlight_file
>>> X_train, y_train = load_svmlight_file("/path/to/train_dataset.txt")
...

You may also load two (or more) datasets at once:

>>> X_train, y_train, X_test, y_test = load_svmlight_files(
... ("/path/to/train_dataset.txt", "/path/to/test_dataset.txt"))
...

In this case, X_train and X_test are guaranteed to have the same number of features. Another way to achieve the
same result is to fix the number of features:

>>> X_test, y_test = load_svmlight_file(
... "/path/to/test_dataset.txt", n_features=X_train.shape[1])
...

Related links:

Public datasets in svmlight / libsvm format: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

Faster API-compatible implementation: https://github.com/mblondel/svmlight-loader

3.5.6 Loading from external datasets

scikit-learn works on any numeric data stored as numpy arrays or scipy sparse matrices. Other types that are convertible
to numeric arrays such as pandas DataFrame are also acceptable.

Here are some recommended ways to load standard columnar data into a format usable by scikit-learn:
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• pandas.io provides tools to read data from common formats including CSV, Excel, JSON and SQL. DataFrames
may also be constructed from lists of tuples or dicts. Pandas handles heterogeneous data smoothly and provides
tools for manipulation and conversion into a numeric array suitable for scikit-learn.

• scipy.io specializes in binary formats often used in scientific computing context such as .mat and .arff

• numpy/routines.io for standard loading of columnar data into numpy arrays

• scikit-learn’s datasets.load_svmlight_file for the svmlight or libSVM sparse format

• scikit-learn’s datasets.load_files for directories of text files where the name of each directory is the
name of each category and each file inside of each directory corresponds to one sample from that category

For some miscellaneous data such as images, videos, and audio, you may wish to refer to:

• skimage.io or Imageio for loading images and videos to numpy arrays

• scipy.misc.imread (requires the Pillow package) to load pixel intensities data from various image file formats

• scipy.io.wavfile.read for reading WAV files into a numpy array

Categorical (or nominal) features stored as strings (common in pandas DataFrames) will need converting to in-
tegers, and integer categorical variables may be best exploited when encoded as one-hot variables (sklearn.
preprocessing.OneHotEncoder) or similar. See Preprocessing data.

Note: if you manage your own numerical data it is recommended to use an optimized file format such as HDF5 to
reduce data load times. Various libraries such as H5Py, PyTables and pandas provides a Python interface for reading
and writing data in that format.

The Olivetti faces dataset

This dataset contains a set of face images taken between April 1992 and April 1994 at AT&T Laboratories Cam-
bridge. The sklearn.datasets.fetch_olivetti_faces function is the data fetching / caching function
that downloads the data archive from AT&T.

As described on the original website:

There are ten different images of each of 40 distinct subjects. For some subjects, the images were taken
at different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and
facial details (glasses / no glasses). All the images were taken against a dark homogeneous background
with the subjects in an upright, frontal position (with tolerance for some side movement).

The image is quantized to 256 grey levels and stored as unsigned 8-bit integers; the loader will convert these to floating
point values on the interval [0, 1], which are easier to work with for many algorithms.

The “target” for this database is an integer from 0 to 39 indicating the identity of the person pictured; however, with
only 10 examples per class, this relatively small dataset is more interesting from an unsupervised or semi-supervised
perspective.

The original dataset consisted of 92 x 112, while the version available here consists of 64x64 images.

When using these images, please give credit to AT&T Laboratories Cambridge.

The 20 newsgroups text dataset

The 20 newsgroups dataset comprises around 18000 newsgroups posts on 20 topics split in two subsets: one for
training (or development) and the other one for testing (or for performance evaluation). The split between the train
and test set is based upon a messages posted before and after a specific date.
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This module contains two loaders. The first one, sklearn.datasets.fetch_20newsgroups, returns a list
of the raw texts that can be fed to text feature extractors such as sklearn.feature_extraction.text.
CountVectorizer with custom parameters so as to extract feature vectors. The second one, sklearn.
datasets.fetch_20newsgroups_vectorized, returns ready-to-use features, i.e., it is not necessary to use
a feature extractor.

Usage

The sklearn.datasets.fetch_20newsgroups function is a data fetching / caching functions that down-
loads the data archive from the original 20 newsgroups website, extracts the archive contents in the ~/
scikit_learn_data/20news_home folder and calls the sklearn.datasets.load_files on either the
training or testing set folder, or both of them:

>>> from sklearn.datasets import fetch_20newsgroups
>>> newsgroups_train = fetch_20newsgroups(subset='train')

>>> from pprint import pprint
>>> pprint(list(newsgroups_train.target_names))
['alt.atheism',
'comp.graphics',
'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware',
'comp.sys.mac.hardware',
'comp.windows.x',
'misc.forsale',
'rec.autos',
'rec.motorcycles',
'rec.sport.baseball',
'rec.sport.hockey',
'sci.crypt',
'sci.electronics',
'sci.med',
'sci.space',
'soc.religion.christian',
'talk.politics.guns',
'talk.politics.mideast',
'talk.politics.misc',
'talk.religion.misc']

The real data lies in the filenames and target attributes. The target attribute is the integer index of the category:

>>> newsgroups_train.filenames.shape
(11314,)
>>> newsgroups_train.target.shape
(11314,)
>>> newsgroups_train.target[:10]
array([12, 6, 9, 8, 6, 7, 9, 2, 13, 19])

It is possible to load only a sub-selection of the categories by passing the list of the categories to load to the sklearn.
datasets.fetch_20newsgroups function:

>>> cats = ['alt.atheism', 'sci.space']
>>> newsgroups_train = fetch_20newsgroups(subset='train', categories=cats)

>>> list(newsgroups_train.target_names)
['alt.atheism', 'sci.space']
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>>> newsgroups_train.filenames.shape
(1073,)
>>> newsgroups_train.target.shape
(1073,)
>>> newsgroups_train.target[:10]
array([1, 1, 1, 0, 1, 0, 0, 1, 1, 1])

Converting text to vectors

In order to feed predictive or clustering models with the text data, one first need to turn the text into vectors
of numerical values suitable for statistical analysis. This can be achieved with the utilities of the sklearn.
feature_extraction.text as demonstrated in the following example that extract TF-IDF vectors of unigram
tokens from a subset of 20news:

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> categories = ['alt.atheism', 'talk.religion.misc',
... 'comp.graphics', 'sci.space']
>>> newsgroups_train = fetch_20newsgroups(subset='train',
... categories=categories)
>>> vectorizer = TfidfVectorizer()
>>> vectors = vectorizer.fit_transform(newsgroups_train.data)
>>> vectors.shape
(2034, 34118)

The extracted TF-IDF vectors are very sparse, with an average of 159 non-zero components by sample in a more than
30000-dimensional space (less than .5% non-zero features):

>>> vectors.nnz / float(vectors.shape[0])
159.01327433628319

sklearn.datasets.fetch_20newsgroups_vectorized is a function which returns ready-to-use tfidf
features instead of file names.

Filtering text for more realistic training

It is easy for a classifier to overfit on particular things that appear in the 20 Newsgroups data, such as newsgroup
headers. Many classifiers achieve very high F-scores, but their results would not generalize to other documents that
aren’t from this window of time.

For example, let’s look at the results of a multinomial Naive Bayes classifier, which is fast to train and achieves a
decent F-score:

>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn import metrics
>>> newsgroups_test = fetch_20newsgroups(subset='test',
... categories=categories)
>>> vectors_test = vectorizer.transform(newsgroups_test.data)
>>> clf = MultinomialNB(alpha=.01)
>>> clf.fit(vectors, newsgroups_train.target)
>>> pred = clf.predict(vectors_test)
>>> metrics.f1_score(newsgroups_test.target, pred, average='macro')
0.88213592402729568
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(The example Classification of text documents using sparse features shuffles the training and test data, instead of
segmenting by time, and in that case multinomial Naive Bayes gets a much higher F-score of 0.88. Are you suspicious
yet of what’s going on inside this classifier?)

Let’s take a look at what the most informative features are:

>>> import numpy as np
>>> def show_top10(classifier, vectorizer, categories):
... feature_names = np.asarray(vectorizer.get_feature_names())
... for i, category in enumerate(categories):
... top10 = np.argsort(classifier.coef_[i])[-10:]
... print("%s: %s" % (category, " ".join(feature_names[top10])))
...
>>> show_top10(clf, vectorizer, newsgroups_train.target_names)
alt.atheism: sgi livesey atheists writes people caltech com god keith edu
comp.graphics: organization thanks files subject com image lines university edu
→˓graphics
sci.space: toronto moon gov com alaska access henry nasa edu space
talk.religion.misc: article writes kent people christian jesus sandvik edu com god

You can now see many things that these features have overfit to:

• Almost every group is distinguished by whether headers such as NNTP-Posting-Host: and
Distribution: appear more or less often.

• Another significant feature involves whether the sender is affiliated with a university, as indicated either by their
headers or their signature.

• The word “article” is a significant feature, based on how often people quote previous posts like this: “In article
[article ID], [name] <[e-mail address]> wrote:”

• Other features match the names and e-mail addresses of particular people who were posting at the time.

With such an abundance of clues that distinguish newsgroups, the classifiers barely have to identify topics from text at
all, and they all perform at the same high level.

For this reason, the functions that load 20 Newsgroups data provide a parameter called remove, telling it what
kinds of information to strip out of each file. remove should be a tuple containing any subset of ('headers',
'footers', 'quotes'), telling it to remove headers, signature blocks, and quotation blocks respectively.

>>> newsgroups_test = fetch_20newsgroups(subset='test',
... remove=('headers', 'footers', 'quotes'),
... categories=categories)
>>> vectors_test = vectorizer.transform(newsgroups_test.data)
>>> pred = clf.predict(vectors_test)
>>> metrics.f1_score(pred, newsgroups_test.target, average='macro')
0.77310350681274775

This classifier lost over a lot of its F-score, just because we removed metadata that has little to do with topic classifi-
cation. It loses even more if we also strip this metadata from the training data:

>>> newsgroups_train = fetch_20newsgroups(subset='train',
... remove=('headers', 'footers', 'quotes'),
... categories=categories)
>>> vectors = vectorizer.fit_transform(newsgroups_train.data)
>>> clf = MultinomialNB(alpha=.01)
>>> clf.fit(vectors, newsgroups_train.target)
>>> vectors_test = vectorizer.transform(newsgroups_test.data)
>>> pred = clf.predict(vectors_test)
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>>> metrics.f1_score(newsgroups_test.target, pred, average='macro')
0.76995175184521725

Some other classifiers cope better with this harder version of the task. Try running Sample pipeline for text feature
extraction and evaluation with and without the --filter option to compare the results.

Recommendation

When evaluating text classifiers on the 20 Newsgroups data, you should strip newsgroup-related metadata. In
scikit-learn, you can do this by setting remove=('headers', 'footers', 'quotes'). The F-score will
be lower because it is more realistic.

Examples

• Sample pipeline for text feature extraction and evaluation

• Classification of text documents using sparse features

Downloading datasets from the mldata.org repository

mldata.org is a public repository for machine learning data, supported by the PASCAL network .

The sklearn.datasets package is able to directly download data sets from the repository using the function
sklearn.datasets.fetch_mldata.

For example, to download the MNIST digit recognition database:

>>> from sklearn.datasets import fetch_mldata
>>> mnist = fetch_mldata('MNIST original', data_home=custom_data_home)

The MNIST database contains a total of 70000 examples of handwritten digits of size 28x28 pixels, labeled from 0 to
9:

>>> mnist.data.shape
(70000, 784)
>>> mnist.target.shape
(70000,)
>>> np.unique(mnist.target)
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

After the first download, the dataset is cached locally in the path specified by the data_home keyword argument,
which defaults to ~/scikit_learn_data/:

>>> os.listdir(os.path.join(custom_data_home, 'mldata'))
['mnist-original.mat']

Data sets in mldata.org do not adhere to a strict naming or formatting convention. sklearn.datasets.
fetch_mldata is able to make sense of the most common cases, but allows to tailor the defaults to individual
datasets:

• The data arrays in mldata.org are most often shaped as (n_features, n_samples). This is the opposite
of the scikit-learn convention, so sklearn.datasets.fetch_mldata transposes the matrix by
default. The transpose_data keyword controls this behavior:
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>>> iris = fetch_mldata('iris', data_home=custom_data_home)
>>> iris.data.shape
(150, 4)
>>> iris = fetch_mldata('iris', transpose_data=False,
... data_home=custom_data_home)
>>> iris.data.shape
(4, 150)

• For datasets with multiple columns, sklearn.datasets.fetch_mldata tries to identify the target and
data columns and rename them to target and data. This is done by looking for arrays named label and
data in the dataset, and failing that by choosing the first array to be target and the second to be data. This
behavior can be changed with the target_name and data_name keywords, setting them to a specific name
or index number (the name and order of the columns in the datasets can be found at its mldata.org under the tab
“Data”:

>>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1, data_name=0,
... data_home=custom_data_home)
>>> iris3 = fetch_mldata('datasets-UCI iris', target_name='class',
... data_name='double0', data_home=custom_data_home)

The Labeled Faces in the Wild face recognition dataset

This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on
the official website:

http://vis-www.cs.umass.edu/lfw/

Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a
binary classifier must predict whether the two images are from the same person.

An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person,
identify the name of the person by referring to a gallery of previously seen pictures of identified persons.

Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to
perform Face Detection. The most popular model for Face Detection is called Viola-Jones and is implemented in the
OpenCV library. The LFW faces were extracted by this face detector from various online websites.

Usage

scikit-learn provides two loaders that will automatically download, cache, parse the metadata files, decode the
jpeg and convert the interesting slices into memmapped numpy arrays. This dataset size is more than 200 MB. The first
load typically takes more than a couple of minutes to fully decode the relevant part of the JPEG files into numpy arrays.
If the dataset has been loaded once, the following times the loading times less than 200ms by using a memmapped
version memoized on the disk in the ~/scikit_learn_data/lfw_home/ folder using joblib.

The first loader is used for the Face Identification task: a multi-class classification task (hence supervised learning):

>>> from sklearn.datasets import fetch_lfw_people
>>> lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

>>> for name in lfw_people.target_names:
... print(name)
...
Ariel Sharon
Colin Powell
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Donald Rumsfeld
George W Bush
Gerhard Schroeder
Hugo Chavez
Tony Blair

The default slice is a rectangular shape around the face, removing most of the background:

>>> lfw_people.data.dtype
dtype('float32')

>>> lfw_people.data.shape
(1288, 1850)

>>> lfw_people.images.shape
(1288, 50, 37)

Each of the 1140 faces is assigned to a single person id in the target array:

>>> lfw_people.target.shape
(1288,)

>>> list(lfw_people.target[:10])
[5, 6, 3, 1, 0, 1, 3, 4, 3, 0]

The second loader is typically used for the face verification task: each sample is a pair of two picture belonging or not
to the same person:

>>> from sklearn.datasets import fetch_lfw_pairs
>>> lfw_pairs_train = fetch_lfw_pairs(subset='train')

>>> list(lfw_pairs_train.target_names)
['Different persons', 'Same person']

>>> lfw_pairs_train.pairs.shape
(2200, 2, 62, 47)

>>> lfw_pairs_train.data.shape
(2200, 5828)

>>> lfw_pairs_train.target.shape
(2200,)

Both for the sklearn.datasets.fetch_lfw_people and sklearn.datasets.fetch_lfw_pairs
function it is possible to get an additional dimension with the RGB color channels by passing color=True, in
that case the shape will be (2200, 2, 62, 47, 3).

The sklearn.datasets.fetch_lfw_pairs datasets is subdivided into 3 subsets: the development train
set, the development test set and an evaluation 10_folds set meant to compute performance metrics using a
10-folds cross validation scheme.

References:

• Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. Gary
B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. University of Massachusetts, Amherst,
Technical Report 07-49, October, 2007.
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Examples

Faces recognition example using eigenfaces and SVMs

Forest covertypes

The samples in this dataset correspond to 30×30m patches of forest in the US, collected for the task of predicting
each patch’s cover type, i.e. the dominant species of tree. There are seven covertypes, making this a multiclass
classification problem. Each sample has 54 features, described on the dataset’s homepage. Some of the features are
boolean indicators, while others are discrete or continuous measurements.

sklearn.datasets.fetch_covtype will load the covertype dataset; it returns a dictionary-like object with
the feature matrix in the data member and the target values in target. The dataset will be downloaded from the
web if necessary.

RCV1 dataset

Reuters Corpus Volume I (RCV1) is an archive of over 800,000 manually categorized newswire stories made available
by Reuters, Ltd. for research purposes. The dataset is extensively described in1.

sklearn.datasets.fetch_rcv1 will load the following version: RCV1-v2, vectors, full sets, topics multil-
abels:

>>> from sklearn.datasets import fetch_rcv1
>>> rcv1 = fetch_rcv1()

It returns a dictionary-like object, with the following attributes:

data: The feature matrix is a scipy CSR sparse matrix, with 804414 samples and 47236 features. Non-zero values
contains cosine-normalized, log TF-IDF vectors. A nearly chronological split is proposed in1: The first 23149 samples
are the training set. The last 781265 samples are the testing set. This follows the official LYRL2004 chronological
split. The array has 0.16% of non zero values:

>>> rcv1.data.shape
(804414, 47236)

target: The target values are stored in a scipy CSR sparse matrix, with 804414 samples and 103 categories. Each
sample has a value of 1 in its categories, and 0 in others. The array has 3.15% of non zero values:

>>> rcv1.target.shape
(804414, 103)

sample_id: Each sample can be identified by its ID, ranging (with gaps) from 2286 to 810596:

>>> rcv1.sample_id[:3]
array([2286, 2287, 2288], dtype=uint32)

target_names: The target values are the topics of each sample. Each sample belongs to at least one topic, and
to up to 17 topics. There are 103 topics, each represented by a string. Their corpus frequencies span five orders of
magnitude, from 5 occurrences for ‘GMIL’, to 381327 for ‘CCAT’:

>>> rcv1.target_names[:3].tolist()
['E11', 'ECAT', 'M11']

1 Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004). RCV1: A new benchmark collection for text categorization research. The Journal of
Machine Learning Research, 5, 361-397.

552 Chapter 3. User Guide

http://archive.ics.uci.edu/ml/datasets/Covertype


scikit-learn user guide, Release 0.19.1

The dataset will be downloaded from the rcv1 homepage if necessary. The compressed size is about 656 MB.

References

3.5.7 The Olivetti faces dataset

This dataset contains a set of face images taken between April 1992 and April 1994 at AT&T Laboratories Cam-
bridge. The sklearn.datasets.fetch_olivetti_faces function is the data fetching / caching function
that downloads the data archive from AT&T.

As described on the original website:

There are ten different images of each of 40 distinct subjects. For some subjects, the images were taken
at different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and
facial details (glasses / no glasses). All the images were taken against a dark homogeneous background
with the subjects in an upright, frontal position (with tolerance for some side movement).

The image is quantized to 256 grey levels and stored as unsigned 8-bit integers; the loader will convert these to floating
point values on the interval [0, 1], which are easier to work with for many algorithms.

The “target” for this database is an integer from 0 to 39 indicating the identity of the person pictured; however, with
only 10 examples per class, this relatively small dataset is more interesting from an unsupervised or semi-supervised
perspective.

The original dataset consisted of 92 x 112, while the version available here consists of 64x64 images.

When using these images, please give credit to AT&T Laboratories Cambridge.

3.5.8 The 20 newsgroups text dataset

The 20 newsgroups dataset comprises around 18000 newsgroups posts on 20 topics split in two subsets: one for
training (or development) and the other one for testing (or for performance evaluation). The split between the train
and test set is based upon a messages posted before and after a specific date.

This module contains two loaders. The first one, sklearn.datasets.fetch_20newsgroups, returns a list
of the raw texts that can be fed to text feature extractors such as sklearn.feature_extraction.text.
CountVectorizer with custom parameters so as to extract feature vectors. The second one, sklearn.
datasets.fetch_20newsgroups_vectorized, returns ready-to-use features, i.e., it is not necessary to use
a feature extractor.

Usage

The sklearn.datasets.fetch_20newsgroups function is a data fetching / caching functions that down-
loads the data archive from the original 20 newsgroups website, extracts the archive contents in the ~/
scikit_learn_data/20news_home folder and calls the sklearn.datasets.load_files on either the
training or testing set folder, or both of them:

>>> from sklearn.datasets import fetch_20newsgroups
>>> newsgroups_train = fetch_20newsgroups(subset='train')

>>> from pprint import pprint
>>> pprint(list(newsgroups_train.target_names))
['alt.atheism',
'comp.graphics',
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'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware',
'comp.sys.mac.hardware',
'comp.windows.x',
'misc.forsale',
'rec.autos',
'rec.motorcycles',
'rec.sport.baseball',
'rec.sport.hockey',
'sci.crypt',
'sci.electronics',
'sci.med',
'sci.space',
'soc.religion.christian',
'talk.politics.guns',
'talk.politics.mideast',
'talk.politics.misc',
'talk.religion.misc']

The real data lies in the filenames and target attributes. The target attribute is the integer index of the category:

>>> newsgroups_train.filenames.shape
(11314,)
>>> newsgroups_train.target.shape
(11314,)
>>> newsgroups_train.target[:10]
array([12, 6, 9, 8, 6, 7, 9, 2, 13, 19])

It is possible to load only a sub-selection of the categories by passing the list of the categories to load to the sklearn.
datasets.fetch_20newsgroups function:

>>> cats = ['alt.atheism', 'sci.space']
>>> newsgroups_train = fetch_20newsgroups(subset='train', categories=cats)

>>> list(newsgroups_train.target_names)
['alt.atheism', 'sci.space']
>>> newsgroups_train.filenames.shape
(1073,)
>>> newsgroups_train.target.shape
(1073,)
>>> newsgroups_train.target[:10]
array([1, 1, 1, 0, 1, 0, 0, 1, 1, 1])

Converting text to vectors

In order to feed predictive or clustering models with the text data, one first need to turn the text into vectors
of numerical values suitable for statistical analysis. This can be achieved with the utilities of the sklearn.
feature_extraction.text as demonstrated in the following example that extract TF-IDF vectors of unigram
tokens from a subset of 20news:

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> categories = ['alt.atheism', 'talk.religion.misc',
... 'comp.graphics', 'sci.space']
>>> newsgroups_train = fetch_20newsgroups(subset='train',
... categories=categories)
>>> vectorizer = TfidfVectorizer()
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>>> vectors = vectorizer.fit_transform(newsgroups_train.data)
>>> vectors.shape
(2034, 34118)

The extracted TF-IDF vectors are very sparse, with an average of 159 non-zero components by sample in a more than
30000-dimensional space (less than .5% non-zero features):

>>> vectors.nnz / float(vectors.shape[0])
159.01327433628319

sklearn.datasets.fetch_20newsgroups_vectorized is a function which returns ready-to-use tfidf
features instead of file names.

Filtering text for more realistic training

It is easy for a classifier to overfit on particular things that appear in the 20 Newsgroups data, such as newsgroup
headers. Many classifiers achieve very high F-scores, but their results would not generalize to other documents that
aren’t from this window of time.

For example, let’s look at the results of a multinomial Naive Bayes classifier, which is fast to train and achieves a
decent F-score:

>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn import metrics
>>> newsgroups_test = fetch_20newsgroups(subset='test',
... categories=categories)
>>> vectors_test = vectorizer.transform(newsgroups_test.data)
>>> clf = MultinomialNB(alpha=.01)
>>> clf.fit(vectors, newsgroups_train.target)
>>> pred = clf.predict(vectors_test)
>>> metrics.f1_score(newsgroups_test.target, pred, average='macro')
0.88213592402729568

(The example Classification of text documents using sparse features shuffles the training and test data, instead of
segmenting by time, and in that case multinomial Naive Bayes gets a much higher F-score of 0.88. Are you suspicious
yet of what’s going on inside this classifier?)

Let’s take a look at what the most informative features are:

>>> import numpy as np
>>> def show_top10(classifier, vectorizer, categories):
... feature_names = np.asarray(vectorizer.get_feature_names())
... for i, category in enumerate(categories):
... top10 = np.argsort(classifier.coef_[i])[-10:]
... print("%s: %s" % (category, " ".join(feature_names[top10])))
...
>>> show_top10(clf, vectorizer, newsgroups_train.target_names)
alt.atheism: sgi livesey atheists writes people caltech com god keith edu
comp.graphics: organization thanks files subject com image lines university edu
→˓graphics
sci.space: toronto moon gov com alaska access henry nasa edu space
talk.religion.misc: article writes kent people christian jesus sandvik edu com god

You can now see many things that these features have overfit to:

• Almost every group is distinguished by whether headers such as NNTP-Posting-Host: and
Distribution: appear more or less often.
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• Another significant feature involves whether the sender is affiliated with a university, as indicated either by their
headers or their signature.

• The word “article” is a significant feature, based on how often people quote previous posts like this: “In article
[article ID], [name] <[e-mail address]> wrote:”

• Other features match the names and e-mail addresses of particular people who were posting at the time.

With such an abundance of clues that distinguish newsgroups, the classifiers barely have to identify topics from text at
all, and they all perform at the same high level.

For this reason, the functions that load 20 Newsgroups data provide a parameter called remove, telling it what
kinds of information to strip out of each file. remove should be a tuple containing any subset of ('headers',
'footers', 'quotes'), telling it to remove headers, signature blocks, and quotation blocks respectively.

>>> newsgroups_test = fetch_20newsgroups(subset='test',
... remove=('headers', 'footers', 'quotes'),
... categories=categories)
>>> vectors_test = vectorizer.transform(newsgroups_test.data)
>>> pred = clf.predict(vectors_test)
>>> metrics.f1_score(pred, newsgroups_test.target, average='macro')
0.77310350681274775

This classifier lost over a lot of its F-score, just because we removed metadata that has little to do with topic classifi-
cation. It loses even more if we also strip this metadata from the training data:

>>> newsgroups_train = fetch_20newsgroups(subset='train',
... remove=('headers', 'footers', 'quotes'),
... categories=categories)
>>> vectors = vectorizer.fit_transform(newsgroups_train.data)
>>> clf = MultinomialNB(alpha=.01)
>>> clf.fit(vectors, newsgroups_train.target)
>>> vectors_test = vectorizer.transform(newsgroups_test.data)
>>> pred = clf.predict(vectors_test)
>>> metrics.f1_score(newsgroups_test.target, pred, average='macro')
0.76995175184521725

Some other classifiers cope better with this harder version of the task. Try running Sample pipeline for text feature
extraction and evaluation with and without the --filter option to compare the results.

Recommendation

When evaluating text classifiers on the 20 Newsgroups data, you should strip newsgroup-related metadata. In
scikit-learn, you can do this by setting remove=('headers', 'footers', 'quotes'). The F-score will
be lower because it is more realistic.

Examples

• Sample pipeline for text feature extraction and evaluation

• Classification of text documents using sparse features

3.5.9 Downloading datasets from the mldata.org repository

mldata.org is a public repository for machine learning data, supported by the PASCAL network .
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The sklearn.datasets package is able to directly download data sets from the repository using the function
sklearn.datasets.fetch_mldata.

For example, to download the MNIST digit recognition database:

>>> from sklearn.datasets import fetch_mldata
>>> mnist = fetch_mldata('MNIST original', data_home=custom_data_home)

The MNIST database contains a total of 70000 examples of handwritten digits of size 28x28 pixels, labeled from 0 to
9:

>>> mnist.data.shape
(70000, 784)
>>> mnist.target.shape
(70000,)
>>> np.unique(mnist.target)
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

After the first download, the dataset is cached locally in the path specified by the data_home keyword argument,
which defaults to ~/scikit_learn_data/:

>>> os.listdir(os.path.join(custom_data_home, 'mldata'))
['mnist-original.mat']

Data sets in mldata.org do not adhere to a strict naming or formatting convention. sklearn.datasets.
fetch_mldata is able to make sense of the most common cases, but allows to tailor the defaults to individual
datasets:

• The data arrays in mldata.org are most often shaped as (n_features, n_samples). This is the opposite
of the scikit-learn convention, so sklearn.datasets.fetch_mldata transposes the matrix by
default. The transpose_data keyword controls this behavior:

>>> iris = fetch_mldata('iris', data_home=custom_data_home)
>>> iris.data.shape
(150, 4)
>>> iris = fetch_mldata('iris', transpose_data=False,
... data_home=custom_data_home)
>>> iris.data.shape
(4, 150)

• For datasets with multiple columns, sklearn.datasets.fetch_mldata tries to identify the target and
data columns and rename them to target and data. This is done by looking for arrays named label and
data in the dataset, and failing that by choosing the first array to be target and the second to be data. This
behavior can be changed with the target_name and data_name keywords, setting them to a specific name
or index number (the name and order of the columns in the datasets can be found at its mldata.org under the tab
“Data”:

>>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1, data_name=0,
... data_home=custom_data_home)
>>> iris3 = fetch_mldata('datasets-UCI iris', target_name='class',
... data_name='double0', data_home=custom_data_home)

3.5.10 The Labeled Faces in the Wild face recognition dataset

This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on
the official website:
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http://vis-www.cs.umass.edu/lfw/

Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a
binary classifier must predict whether the two images are from the same person.

An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person,
identify the name of the person by referring to a gallery of previously seen pictures of identified persons.

Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to
perform Face Detection. The most popular model for Face Detection is called Viola-Jones and is implemented in the
OpenCV library. The LFW faces were extracted by this face detector from various online websites.

Usage

scikit-learn provides two loaders that will automatically download, cache, parse the metadata files, decode the
jpeg and convert the interesting slices into memmapped numpy arrays. This dataset size is more than 200 MB. The first
load typically takes more than a couple of minutes to fully decode the relevant part of the JPEG files into numpy arrays.
If the dataset has been loaded once, the following times the loading times less than 200ms by using a memmapped
version memoized on the disk in the ~/scikit_learn_data/lfw_home/ folder using joblib.

The first loader is used for the Face Identification task: a multi-class classification task (hence supervised learning):

>>> from sklearn.datasets import fetch_lfw_people
>>> lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

>>> for name in lfw_people.target_names:
... print(name)
...
Ariel Sharon
Colin Powell
Donald Rumsfeld
George W Bush
Gerhard Schroeder
Hugo Chavez
Tony Blair

The default slice is a rectangular shape around the face, removing most of the background:

>>> lfw_people.data.dtype
dtype('float32')

>>> lfw_people.data.shape
(1288, 1850)

>>> lfw_people.images.shape
(1288, 50, 37)

Each of the 1140 faces is assigned to a single person id in the target array:

>>> lfw_people.target.shape
(1288,)

>>> list(lfw_people.target[:10])
[5, 6, 3, 1, 0, 1, 3, 4, 3, 0]

The second loader is typically used for the face verification task: each sample is a pair of two picture belonging or not
to the same person:

558 Chapter 3. User Guide

http://vis-www.cs.umass.edu/lfw/


scikit-learn user guide, Release 0.19.1

>>> from sklearn.datasets import fetch_lfw_pairs
>>> lfw_pairs_train = fetch_lfw_pairs(subset='train')

>>> list(lfw_pairs_train.target_names)
['Different persons', 'Same person']

>>> lfw_pairs_train.pairs.shape
(2200, 2, 62, 47)

>>> lfw_pairs_train.data.shape
(2200, 5828)

>>> lfw_pairs_train.target.shape
(2200,)

Both for the sklearn.datasets.fetch_lfw_people and sklearn.datasets.fetch_lfw_pairs
function it is possible to get an additional dimension with the RGB color channels by passing color=True, in
that case the shape will be (2200, 2, 62, 47, 3).

The sklearn.datasets.fetch_lfw_pairs datasets is subdivided into 3 subsets: the development train
set, the development test set and an evaluation 10_folds set meant to compute performance metrics using a
10-folds cross validation scheme.

References:

• Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. Gary
B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. University of Massachusetts, Amherst,
Technical Report 07-49, October, 2007.

Examples

Faces recognition example using eigenfaces and SVMs

3.5.11 Forest covertypes

The samples in this dataset correspond to 30×30m patches of forest in the US, collected for the task of predicting
each patch’s cover type, i.e. the dominant species of tree. There are seven covertypes, making this a multiclass
classification problem. Each sample has 54 features, described on the dataset’s homepage. Some of the features are
boolean indicators, while others are discrete or continuous measurements.

sklearn.datasets.fetch_covtype will load the covertype dataset; it returns a dictionary-like object with
the feature matrix in the data member and the target values in target. The dataset will be downloaded from the
web if necessary.

3.5.12 RCV1 dataset

Reuters Corpus Volume I (RCV1) is an archive of over 800,000 manually categorized newswire stories made available
by Reuters, Ltd. for research purposes. The dataset is extensively described in1.

1 Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004). RCV1: A new benchmark collection for text categorization research. The Journal of
Machine Learning Research, 5, 361-397.
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sklearn.datasets.fetch_rcv1 will load the following version: RCV1-v2, vectors, full sets, topics multil-
abels:

>>> from sklearn.datasets import fetch_rcv1
>>> rcv1 = fetch_rcv1()

It returns a dictionary-like object, with the following attributes:

data: The feature matrix is a scipy CSR sparse matrix, with 804414 samples and 47236 features. Non-zero values
contains cosine-normalized, log TF-IDF vectors. A nearly chronological split is proposed in1: The first 23149 samples
are the training set. The last 781265 samples are the testing set. This follows the official LYRL2004 chronological
split. The array has 0.16% of non zero values:

>>> rcv1.data.shape
(804414, 47236)

target: The target values are stored in a scipy CSR sparse matrix, with 804414 samples and 103 categories. Each
sample has a value of 1 in its categories, and 0 in others. The array has 3.15% of non zero values:

>>> rcv1.target.shape
(804414, 103)

sample_id: Each sample can be identified by its ID, ranging (with gaps) from 2286 to 810596:

>>> rcv1.sample_id[:3]
array([2286, 2287, 2288], dtype=uint32)

target_names: The target values are the topics of each sample. Each sample belongs to at least one topic, and
to up to 17 topics. There are 103 topics, each represented by a string. Their corpus frequencies span five orders of
magnitude, from 5 occurrences for ‘GMIL’, to 381327 for ‘CCAT’:

>>> rcv1.target_names[:3].tolist()
['E11', 'ECAT', 'M11']

The dataset will be downloaded from the rcv1 homepage if necessary. The compressed size is about 656 MB.

References

3.5.13 Boston House Prices dataset

Notes

Data Set Characteristics:

Number of Instances 506

Number of Attributes 13 numeric/categorical predictive

:Median Value (attribute 14) is usually the target

Attribute Information (in order)

• CRIM per capita crime rate by town

• ZN proportion of residential land zoned for lots over 25,000 sq.ft.

• INDUS proportion of non-retail business acres per town
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• CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

• NOX nitric oxides concentration (parts per 10 million)

• RM average number of rooms per dwelling

• AGE proportion of owner-occupied units built prior to 1940

• DIS weighted distances to five Boston employment centres

• RAD index of accessibility to radial highways

• TAX full-value property-tax rate per $10,000

• PTRATIO pupil-teacher ratio by town

• B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town

• LSTAT % lower status of the population

• MEDV Median value of owner-occupied homes in $1000’s

Missing Attribute Values None

Creator Harrison, D. and Rubinfeld, D.L.

This is a copy of UCI ML housing dataset. http://archive.ics.uci.edu/ml/datasets/Housing

This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. ‘Hedonic prices and the demand for clean air’, J.
Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, ‘Regression diagnostics
. . . ’, Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that address regression problems.

References

• Belsley, Kuh & Welsch, ‘Regression diagnostics: Identifying Influential Data and Sources of Collinearity’,
Wiley, 1980. 244-261.

• Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth Inter-
national Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.

• many more! (see http://archive.ics.uci.edu/ml/datasets/Housing)

3.5.14 Breast Cancer Wisconsin (Diagnostic) Database

Notes

Data Set Characteristics:

Number of Instances 569

Number of Attributes 30 numeric, predictive attributes and the class

Attribute Information

• radius (mean of distances from center to points on the perimeter)

• texture (standard deviation of gray-scale values)

• perimeter

• area

• smoothness (local variation in radius lengths)
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• compactness (perimeter^2 / area - 1.0)

• concavity (severity of concave portions of the contour)

• concave points (number of concave portions of the contour)

• symmetry

• fractal dimension (“coastline approximation” - 1)

The mean, standard error, and “worst” or largest (mean of the three largest values) of these
features were computed for each image, resulting in 30 features. For instance, field 3 is Mean
Radius, field 13 is Radius SE, field 23 is Worst Radius.

• class:

– WDBC-Malignant

– WDBC-Benign

Summary Statistics

radius (mean): 6.981 28.11
texture (mean): 9.71 39.28
perimeter (mean): 43.79 188.5
area (mean): 143.5 2501.0
smoothness (mean): 0.053 0.163
compactness (mean): 0.019 0.345
concavity (mean): 0.0 0.427
concave points (mean): 0.0 0.201
symmetry (mean): 0.106 0.304
fractal dimension (mean): 0.05 0.097
radius (standard error): 0.112 2.873
texture (standard error): 0.36 4.885
perimeter (standard error): 0.757 21.98
area (standard error): 6.802 542.2
smoothness (standard error): 0.002 0.031
compactness (standard error): 0.002 0.135
concavity (standard error): 0.0 0.396
concave points (standard error): 0.0 0.053
symmetry (standard error): 0.008 0.079
fractal dimension (standard error): 0.001 0.03
radius (worst): 7.93 36.04
texture (worst): 12.02 49.54
perimeter (worst): 50.41 251.2
area (worst): 185.2 4254.0
smoothness (worst): 0.071 0.223
compactness (worst): 0.027 1.058
concavity (worst): 0.0 1.252
concave points (worst): 0.0 0.291
symmetry (worst): 0.156 0.664
fractal dimension (worst): 0.055 0.208

Missing Attribute Values None

Class Distribution 212 - Malignant, 357 - Benign
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Creator Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian

Donor Nick Street

Date November, 1995

This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets. https://goo.gl/U2Uwz2

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe charac-
teristics of the cell nuclei present in the image.

Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, “Decision
Tree Construction Via Linear Programming.” Proceedings of the 4th Midwest Artificial Intelligence and Cognitive
Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision
tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes.

The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in: [K.
P. Bennett and O. L. Mangasarian: “Robust Linear Programming Discrimination of Two Linearly Inseparable Sets”,
Optimization Methods and Software 1, 1992, 23-34].

This database is also available through the UW CS ftp server:

ftp ftp.cs.wisc.edu cd math-prog/cpo-dataset/machine-learn/WDBC/

References

• W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis.
IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905,
pages 861-870, San Jose, CA, 1993.

• O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear program-
ming. Operations Research, 43(4), pages 570-577, July-August 1995.

• W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques to diagnose breast cancer from
fine-needle aspirates. Cancer Letters 77 (1994) 163-171.

3.5.15 Diabetes dataset

Notes

Ten baseline variables, age, sex, body mass index, average blood pressure, and six blood serum measurements were
obtained for each of n = 442 diabetes patients, as well as the response of interest, a quantitative measure of disease
progression one year after baseline.

Data Set Characteristics:

Number of Instances 442

Number of Attributes First 10 columns are numeric predictive values

Target Column 11 is a quantitative measure of disease progression one year after baseline

Attributes

Age

Sex

Body mass index

Average blood pressure
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S1

S2

S3

S4

S5

S6

Note: Each of these 10 feature variables have been mean centered and scaled by the standard deviation times n_samples
(i.e. the sum of squares of each column totals 1).

Source URL: http://www4.stat.ncsu.edu/~boos/var.select/diabetes.html

For more information see: Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani (2004) “Least An-
gle Regression,” Annals of Statistics (with discussion), 407-499. (http://web.stanford.edu/~hastie/Papers/LARS/
LeastAngle_2002.pdf)

3.5.16 Optical Recognition of Handwritten Digits Data Set

Notes

Data Set Characteristics:

Number of Instances 5620

Number of Attributes 64

Attribute Information 8x8 image of integer pixels in the range 0..16.

Missing Attribute Values None

Creator

5. Alpaydin (alpaydin ‘@’ boun.edu.tr)

Date July; 1998

This is a copy of the test set of the UCI ML hand-written digits datasets http://archive.ics.uci.edu/ml/datasets/Optical+
Recognition+of+Handwritten+Digits

The data set contains images of hand-written digits: 10 classes where each class refers to a digit.

Preprocessing programs made available by NIST were used to extract normalized bitmaps of handwritten digits from
a preprinted form. From a total of 43 people, 30 contributed to the training set and different 13 to the test set. 32x32
bitmaps are divided into nonoverlapping blocks of 4x4 and the number of on pixels are counted in each block. This
generates an input matrix of 8x8 where each element is an integer in the range 0..16. This reduces dimensionality and
gives invariance to small distortions.

For info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G. T. Candela, D. L. Dimmick, J. Geist, P. J.
Grother, S. A. Janet, and C. L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469, 1994.

References

• C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their Applications to Handwritten Digit
Recognition, MSc Thesis, Institute of Graduate Studies in Science and Engineering, Bogazici University.

• 5. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.
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• Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin. Linear dimensionalityreduction using
relevance weighted LDA. School of Electrical and Electronic Engineering Nanyang Technological University.
2005.

• Claudio Gentile. A New Approximate Maximal Margin Classification Algorithm. NIPS. 2000.

3.5.17 Iris Plants Database

Notes

Data Set Characteristics:

Number of Instances 150 (50 in each of three classes)

Number of Attributes 4 numeric, predictive attributes and the class

Attribute Information

• sepal length in cm

• sepal width in cm

• petal length in cm

• petal width in cm

• class:

– Iris-Setosa

– Iris-Versicolour

– Iris-Virginica

Summary Statistics

sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)

Missing Attribute Values None

Class Distribution 33.3% for each of 3 classes.

Creator R.A. Fisher

Donor Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)

Date July, 1988

This is a copy of UCI ML iris datasets. http://archive.ics.uci.edu/ml/datasets/Iris

The famous Iris database, first used by Sir R.A Fisher

This is perhaps the best known database to be found in the pattern recognition literature. Fisher’s paper is a classic in
the field and is referenced frequently to this day. (See Duda & Hart, for example.) The data set contains 3 classes of
50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.
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References

• Fisher,R.A. “The use of multiple measurements in taxonomic problems” Annual Eugenics, 7, Part II, 179-188
(1936); also in “Contributions to Mathematical Statistics” (John Wiley, NY, 1950).

• Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis. (Q327.D83) John Wiley & Sons.
ISBN 0-471-22361-1. See page 218.

• Dasarathy, B.V. (1980) “Nosing Around the Neighborhood: A New System Structure and Classification Rule
for Recognition in Partially Exposed Environments”. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.

• Gates, G.W. (1972) “The Reduced Nearest Neighbor Rule”. IEEE Transactions on Information Theory, May
1972, 431-433.

• See also: 1988 MLC Proceedings, 54-64. Cheeseman et al”s AUTOCLASS II conceptual clustering system
finds 3 classes in the data.

• Many, many more . . .

3.5.18 Linnerrud dataset

Notes

Data Set Characteristics:

Number of Instances 20

Number of Attributes 3

Missing Attribute Values None

The Linnerud dataset constains two small dataset:

• exercise: A list containing the following components: exercise data with 20 observations on 3 exercise variables:
Weight, Waist and Pulse.

• physiological: Data frame with 20 observations on 3 physiological variables: Chins, Situps and Jumps.

References

• Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic.

3.6 Strategies to scale computationally: bigger data

For some applications the amount of examples, features (or both) and/or the speed at which they need to be processed
are challenging for traditional approaches. In these cases scikit-learn has a number of options you can consider to
make your system scale.

3.6.1 Scaling with instances using out-of-core learning

Out-of-core (or “external memory”) learning is a technique used to learn from data that cannot fit in a computer’s main
memory (RAM).

Here is sketch of a system designed to achieve this goal:
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1. a way to stream instances

2. a way to extract features from instances

3. an incremental algorithm

Streaming instances

Basically, 1. may be a reader that yields instances from files on a hard drive, a database, from a network stream etc.
However, details on how to achieve this are beyond the scope of this documentation.

Extracting features

2. could be any relevant way to extract features among the different feature extraction methods supported by scikit-
learn. However, when working with data that needs vectorization and where the set of features or values is not
known in advance one should take explicit care. A good example is text classification where unknown terms are
likely to be found during training. It is possible to use a stateful vectorizer if making multiple passes over the data
is reasonable from an application point of view. Otherwise, one can turn up the difficulty by using a stateless feature
extractor. Currently the preferred way to do this is to use the so-called hashing trick as implemented by sklearn.
feature_extraction.FeatureHasher for datasets with categorical variables represented as list of Python
dicts or sklearn.feature_extraction.text.HashingVectorizer for text documents.

Incremental learning

Finally, for 3. we have a number of options inside scikit-learn. Although all algorithms cannot learn incrementally
(i.e. without seeing all the instances at once), all estimators implementing the partial_fit API are candidates.
Actually, the ability to learn incrementally from a mini-batch of instances (sometimes called “online learning”) is key
to out-of-core learning as it guarantees that at any given time there will be only a small amount of instances in the
main memory. Choosing a good size for the mini-batch that balances relevancy and memory footprint could involve
some tuning1.

Here is a list of incremental estimators for different tasks:

• Classification

– sklearn.naive_bayes.MultinomialNB

– sklearn.naive_bayes.BernoulliNB

– sklearn.linear_model.Perceptron

– sklearn.linear_model.SGDClassifier

– sklearn.linear_model.PassiveAggressiveClassifier

– sklearn.neural_network.MLPClassifier

• Regression

– sklearn.linear_model.SGDRegressor

– sklearn.linear_model.PassiveAggressiveRegressor

– sklearn.neural_network.MLPRegressor

• Clustering
1 Depending on the algorithm the mini-batch size can influence results or not. SGD*, PassiveAggressive*, and discrete NaiveBayes are truly

online and are not affected by batch size. Conversely, MiniBatchKMeans convergence rate is affected by the batch size. Also, its memory footprint
can vary dramatically with batch size.
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– sklearn.cluster.MiniBatchKMeans

– sklearn.cluster.Birch

• Decomposition / feature Extraction

– sklearn.decomposition.MiniBatchDictionaryLearning

– sklearn.decomposition.IncrementalPCA

– sklearn.decomposition.LatentDirichletAllocation

• Preprocessing

– sklearn.preprocessing.StandardScaler

– sklearn.preprocessing.MinMaxScaler

– sklearn.preprocessing.MaxAbsScaler

For classification, a somewhat important thing to note is that although a stateless feature extraction routine may be
able to cope with new/unseen attributes, the incremental learner itself may be unable to cope with new/unseen targets
classes. In this case you have to pass all the possible classes to the first partial_fit call using the classes=
parameter.

Another aspect to consider when choosing a proper algorithm is that all of them don’t put the same importance on each
example over time. Namely, the Perceptron is still sensitive to badly labeled examples even after many examples
whereas the SGD* and PassiveAggressive* families are more robust to this kind of artifacts. Conversely, the
later also tend to give less importance to remarkably different, yet properly labeled examples when they come late in
the stream as their learning rate decreases over time.

Examples

Finally, we have a full-fledged example of Out-of-core classification of text documents. It is aimed at providing a
starting point for people wanting to build out-of-core learning systems and demonstrates most of the notions discussed
above.

Furthermore, it also shows the evolution of the performance of different algorithms with the number of processed
examples.
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Now looking at the computation time of the different parts, we see that the vectorization is much more expensive
than learning itself. From the different algorithms, MultinomialNB is the most expensive, but its overhead can be
mitigated by increasing the size of the mini-batches (exercise: change minibatch_size to 100 and 10000 in the
program and compare).
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Notes

3.7 Computational Performance

For some applications the performance (mainly latency and throughput at prediction time) of estimators is crucial. It
may also be of interest to consider the training throughput but this is often less important in a production setup (where
it often takes place offline).

We will review here the orders of magnitude you can expect from a number of scikit-learn estimators in different
contexts and provide some tips and tricks for overcoming performance bottlenecks.

Prediction latency is measured as the elapsed time necessary to make a prediction (e.g. in micro-seconds). Latency
is often viewed as a distribution and operations engineers often focus on the latency at a given percentile of this
distribution (e.g. the 90 percentile).

Prediction throughput is defined as the number of predictions the software can deliver in a given amount of time (e.g.
in predictions per second).

An important aspect of performance optimization is also that it can hurt prediction accuracy. Indeed, simpler models
(e.g. linear instead of non-linear, or with fewer parameters) often run faster but are not always able to take into account
the same exact properties of the data as more complex ones.

3.7.1 Prediction Latency

One of the most straight-forward concerns one may have when using/choosing a machine learning toolkit is the latency
at which predictions can be made in a production environment.

The main factors that influence the prediction latency are

1. Number of features

2. Input data representation and sparsity

3. Model complexity

4. Feature extraction

A last major parameter is also the possibility to do predictions in bulk or one-at-a-time mode.

Bulk versus Atomic mode

In general doing predictions in bulk (many instances at the same time) is more efficient for a number of reasons
(branching predictability, CPU cache, linear algebra libraries optimizations etc.). Here we see on a setting with few
features that independently of estimator choice the bulk mode is always faster, and for some of them by 1 to 2 orders
of magnitude:

570 Chapter 3. User Guide



scikit-learn user guide, Release 0.19.1

To benchmark different estimators for your case you can simply change the n_features parameter in this example:
Prediction Latency. This should give you an estimate of the order of magnitude of the prediction latency.
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Configuring Scikit-learn for reduced validation overhead

Scikit-learn does some validation on data that increases the overhead per call to predict and similar functions.
In particular, checking that features are finite (not NaN or infinite) involves a full pass over the data. If you en-
sure that your data is acceptable, you may suppress checking for finiteness by setting the environment variable
SKLEARN_ASSUME_FINITE to a non-empty string before importing scikit-learn, or configure it in Python with
sklearn.set_config. For more control than these global settings, a config_context allows you to set
this configuration within a specified context:

>>> import sklearn
>>> with sklearn.config_context(assume_finite=True):
... pass # do learning/prediction here with reduced validation

Note that this will affect all uses of sklearn.utils.assert_all_finite within the context.

Influence of the Number of Features

Obviously when the number of features increases so does the memory consumption of each example. Indeed, for a
matrix of 𝑀 instances with 𝑁 features, the space complexity is in 𝑂(𝑁𝑀). From a computing perspective it also
means that the number of basic operations (e.g., multiplications for vector-matrix products in linear models) increases
too. Here is a graph of the evolution of the prediction latency with the number of features:

Overall you can expect the prediction time to increase at least linearly with the number of features (non-linear cases
can happen depending on the global memory footprint and estimator).
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Influence of the Input Data Representation

Scipy provides sparse matrix datastructures which are optimized for storing sparse data. The main feature of sparse
formats is that you don’t store zeros so if your data is sparse then you use much less memory. A non-zero value in
a sparse (CSR or CSC) representation will only take on average one 32bit integer position + the 64 bit floating point
value + an additional 32bit per row or column in the matrix. Using sparse input on a dense (or sparse) linear model
can speedup prediction by quite a bit as only the non zero valued features impact the dot product and thus the model
predictions. Hence if you have 100 non zeros in 1e6 dimensional space, you only need 100 multiply and add operation
instead of 1e6.

Calculation over a dense representation, however, may leverage highly optimised vector operations and multithreading
in BLAS, and tends to result in fewer CPU cache misses. So the sparsity should typically be quite high (10% non-zeros
max, to be checked depending on the hardware) for the sparse input representation to be faster than the dense input
representation on a machine with many CPUs and an optimized BLAS implementation.

Here is sample code to test the sparsity of your input:

def sparsity_ratio(X):
return 1.0 - np.count_nonzero(X) / float(X.shape[0] * X.shape[1])

print("input sparsity ratio:", sparsity_ratio(X))

As a rule of thumb you can consider that if the sparsity ratio is greater than 90% you can probably benefit from sparse
formats. Check Scipy’s sparse matrix formats documentation for more information on how to build (or convert your
data to) sparse matrix formats. Most of the time the CSR and CSC formats work best.

Influence of the Model Complexity

Generally speaking, when model complexity increases, predictive power and latency are supposed to increase. In-
creasing predictive power is usually interesting, but for many applications we would better not increase prediction
latency too much. We will now review this idea for different families of supervised models.

For sklearn.linear_model (e.g. Lasso, ElasticNet, SGDClassifier/Regressor, Ridge & RidgeClassifier, Pas-
siveAgressiveClassifier/Regressor, LinearSVC, LogisticRegression. . . ) the decision function that is applied at predic-
tion time is the same (a dot product) , so latency should be equivalent.

Here is an example using sklearn.linear_model.stochastic_gradient.SGDClassifier with the
elasticnet penalty. The regularization strength is globally controlled by the alpha parameter. With a sufficiently
high alpha, one can then increase the l1_ratio parameter of elasticnet to enforce various levels of sparsity
in the model coefficients. Higher sparsity here is interpreted as less model complexity as we need fewer coefficients to
describe it fully. Of course sparsity influences in turn the prediction time as the sparse dot-product takes time roughly
proportional to the number of non-zero coefficients.
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For the sklearn.svm family of algorithms with a non-linear kernel, the latency is tied to the number of support
vectors (the fewer the faster). Latency and throughput should (asymptotically) grow linearly with the number of
support vectors in a SVC or SVR model. The kernel will also influence the latency as it is used to compute the
projection of the input vector once per support vector. In the following graph the nu parameter of sklearn.svm.
classes.NuSVR was used to influence the number of support vectors.

For sklearn.ensemble of trees (e.g. RandomForest, GBT, ExtraTrees etc) the number of trees and their
depth play the most important role. Latency and throughput should scale linearly with the number of trees. In
this case we used directly the n_estimators parameter of sklearn.ensemble.gradient_boosting.
GradientBoostingRegressor.
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In any case be warned that decreasing model complexity can hurt accuracy as mentioned above. For instance a non-
linearly separable problem can be handled with a speedy linear model but prediction power will very likely suffer in
the process.

Feature Extraction Latency

Most scikit-learn models are usually pretty fast as they are implemented either with compiled Cython extensions or
optimized computing libraries. On the other hand, in many real world applications the feature extraction process (i.e.
turning raw data like database rows or network packets into numpy arrays) governs the overall prediction time. For
example on the Reuters text classification task the whole preparation (reading and parsing SGML files, tokenizing the
text and hashing it into a common vector space) is taking 100 to 500 times more time than the actual prediction code,
depending on the chosen model.
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In many cases it is thus recommended to carefully time and profile your feature extraction code as it may be a good
place to start optimizing when your overall latency is too slow for your application.

3.7.2 Prediction Throughput

Another important metric to care about when sizing production systems is the throughput i.e. the number of predictions
you can make in a given amount of time. Here is a benchmark from the Prediction Latency example that measures this
quantity for a number of estimators on synthetic data:
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These throughputs are achieved on a single process. An obvious way to increase the throughput of your application
is to spawn additional instances (usually processes in Python because of the GIL) that share the same model. One
might also add machines to spread the load. A detailed explanation on how to achieve this is beyond the scope of this
documentation though.

3.7.3 Tips and Tricks

Linear algebra libraries

As scikit-learn relies heavily on Numpy/Scipy and linear algebra in general it makes sense to take explicit care of the
versions of these libraries. Basically, you ought to make sure that Numpy is built using an optimized BLAS / LAPACK
library.

Not all models benefit from optimized BLAS and Lapack implementations. For instance models based on (random-
ized) decision trees typically do not rely on BLAS calls in their inner loops, nor do kernel SVMs (SVC, SVR, NuSVC,
NuSVR). On the other hand a linear model implemented with a BLAS DGEMM call (via numpy.dot) will typically
benefit hugely from a tuned BLAS implementation and lead to orders of magnitude speedup over a non-optimized
BLAS.

You can display the BLAS / LAPACK implementation used by your NumPy / SciPy / scikit-learn install with the
following commands:

from numpy.distutils.system_info import get_info
print(get_info('blas_opt'))
print(get_info('lapack_opt'))

Optimized BLAS / LAPACK implementations include:

• Atlas (need hardware specific tuning by rebuilding on the target machine)
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• OpenBLAS

• MKL

• Apple Accelerate and vecLib frameworks (OSX only)

More information can be found on the Scipy install page and in this blog post from Daniel Nouri which has some nice
step by step install instructions for Debian / Ubuntu.

Warning: Multithreaded BLAS libraries sometimes conflict with Python’s multiprocessing module, which
is used by e.g. GridSearchCV and most other estimators that take an n_jobs argument (with the exception of
SGDClassifier, SGDRegressor, Perceptron, PassiveAggressiveClassifier and tree-based
methods such as random forests). This is true of Apple’s Accelerate and OpenBLAS when built with OpenMP
support.

Besides scikit-learn, NumPy and SciPy also use BLAS internally, as explained earlier.

If you experience hanging subprocesses with n_jobs>1 or n_jobs=-1, make sure you have a single-threaded
BLAS library, or set n_jobs=1, or upgrade to Python 3.4 which has a new version of multiprocessing that
should be immune to this problem.

Model Compression

Model compression in scikit-learn only concerns linear models for the moment. In this context it means that we want
to control the model sparsity (i.e. the number of non-zero coordinates in the model vectors). It is generally a good
idea to combine model sparsity with sparse input data representation.

Here is sample code that illustrates the use of the sparsify() method:

clf = SGDRegressor(penalty='elasticnet', l1_ratio=0.25)
clf.fit(X_train, y_train).sparsify()
clf.predict(X_test)

In this example we prefer the elasticnet penalty as it is often a good compromise between model compactness
and prediction power. One can also further tune the l1_ratio parameter (in combination with the regularization
strength alpha) to control this tradeoff.

A typical benchmark on synthetic data yields a >30% decrease in latency when both the model and input are sparse
(with 0.000024 and 0.027400 non-zero coefficients ratio respectively). Your mileage may vary depending on the
sparsity and size of your data and model. Furthermore, sparsifying can be very useful to reduce the memory usage of
predictive models deployed on production servers.

Model Reshaping

Model reshaping consists in selecting only a portion of the available features to fit a model. In other words, if a
model discards features during the learning phase we can then strip those from the input. This has several benefits.
Firstly it reduces memory (and therefore time) overhead of the model itself. It also allows to discard explicit feature
selection components in a pipeline once we know which features to keep from a previous run. Finally, it can help
reduce processing time and I/O usage upstream in the data access and feature extraction layers by not collecting and
building features that are discarded by the model. For instance if the raw data come from a database, it can make it
possible to write simpler and faster queries or reduce I/O usage by making the queries return lighter records. At the
moment, reshaping needs to be performed manually in scikit-learn. In the case of sparse input (particularly in CSR
format), it is generally sufficient to not generate the relevant features, leaving their columns empty.
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Links

• scikit-learn developer performance documentation

• Scipy sparse matrix formats documentation
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CHAPTER

FOUR

EXAMPLES

4.1 General examples

General-purpose and introductory examples for the scikit.

4.1.1 Plotting Cross-Validated Predictions

This example shows how to use cross_val_predict to visualize prediction errors.

from sklearn import datasets
from sklearn.model_selection import cross_val_predict
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from sklearn import linear_model
import matplotlib.pyplot as plt

lr = linear_model.LinearRegression()
boston = datasets.load_boston()
y = boston.target

# cross_val_predict returns an array of the same size as `y` where each entry
# is a prediction obtained by cross validation:
predicted = cross_val_predict(lr, boston.data, y, cv=10)

fig, ax = plt.subplots()
ax.scatter(y, predicted, edgecolors=(0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.show()

Total running time of the script: ( 0 minutes 0.079 seconds)

Download Python source code: plot_cv_predict.py

Download Jupyter notebook: plot_cv_predict.ipynb

Generated by Sphinx-Gallery

4.1.2 Concatenating multiple feature extraction methods

In many real-world examples, there are many ways to extract features from a dataset. Often it is beneficial to combine
several methods to obtain good performance. This example shows how to use FeatureUnion to combine features
obtained by PCA and univariate selection.

Combining features using this transformer has the benefit that it allows cross validation and grid searches over the
whole process.

The combination used in this example is not particularly helpful on this dataset and is only used to illustrate the usage
of FeatureUnion.

Out:

Fitting 3 folds for each of 18 candidates, totalling 54 fits
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1, score=0.
→˓9607843137254902, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1, score=0.
→˓9019607843137255, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1, score=0.
→˓9791666666666666, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1, score=0.
→˓9411764705882353, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1, score=0.
→˓9215686274509803, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1, score=0.
→˓9791666666666666, total= 0.0s
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[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10, score=0.
→˓9607843137254902, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10, score=0.
→˓9215686274509803, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10, score=0.
→˓9791666666666666, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1, score=0.
→˓9607843137254902, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1, score=0.
→˓9215686274509803, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1, score=0.
→˓9791666666666666, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1, score=0.
→˓9607843137254902, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1, score=0.
→˓9215686274509803, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1, score=1.0,
→˓total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10, score=0.
→˓9803921568627451, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10, score=0.
→˓9019607843137255, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10, score=1.0,
→˓ total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1, score=0.
→˓9607843137254902, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1, score=0.
→˓9019607843137255, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1, score=0.
→˓9791666666666666, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1, score=0.
→˓9803921568627451, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1, score=0.
→˓9411764705882353, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1, score=0.
→˓9791666666666666, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10, score=0.
→˓9803921568627451, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10
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[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10, score=0.
→˓9411764705882353, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10, score=0.
→˓9791666666666666, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1, score=0.
→˓9803921568627451, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1, score=0.
→˓9411764705882353, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1, score=0.
→˓9791666666666666, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1, score=1.0,
→˓total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1, score=0.
→˓9607843137254902, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1, score=0.
→˓9791666666666666, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10, score=0.
→˓9803921568627451, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10, score=0.
→˓9215686274509803, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10, score=1.0,
→˓ total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1, score=0.
→˓9803921568627451, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1, score=0.
→˓9411764705882353, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1, score=0.
→˓9791666666666666, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1, score=1.0,
→˓total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1, score=0.
→˓9411764705882353, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1, score=0.
→˓9791666666666666, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10, score=1.0,
→˓ total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10, score=0.
→˓9215686274509803, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10, score=1.0,
→˓ total= 0.0s
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[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1, score=0.
→˓9803921568627451, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1, score=0.
→˓9411764705882353, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1, score=0.
→˓9791666666666666, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1, score=1.0,
→˓total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1, score=0.
→˓9607843137254902, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1, score=0.
→˓9791666666666666, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10, score=1.0,
→˓ total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10, score=0.
→˓9215686274509803, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10, score=1.0,
→˓ total= 0.0s
Pipeline(memory=None,

steps=[('features', FeatureUnion(n_jobs=1,
transformer_list=[('pca', PCA(copy=True, iterated_power='auto', n_components=2,

→˓ random_state=None,
svd_solver='auto', tol=0.0, whiten=False)), ('univ_select', SelectKBest(k=2, score_

→˓func=<function f_classif at 0x2ad3b4bc5488>))],
transformer...,

max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False))])

# Author: Andreas Mueller <amueller@ais.uni-bonn.de>
#
# License: BSD 3 clause

from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
from sklearn.feature_selection import SelectKBest

iris = load_iris()

X, y = iris.data, iris.target

# This dataset is way too high-dimensional. Better do PCA:
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pca = PCA(n_components=2)

# Maybe some original features where good, too?
selection = SelectKBest(k=1)

# Build estimator from PCA and Univariate selection:

combined_features = FeatureUnion([("pca", pca), ("univ_select", selection)])

# Use combined features to transform dataset:
X_features = combined_features.fit(X, y).transform(X)

svm = SVC(kernel="linear")

# Do grid search over k, n_components and C:

pipeline = Pipeline([("features", combined_features), ("svm", svm)])

param_grid = dict(features__pca__n_components=[1, 2, 3],
features__univ_select__k=[1, 2],
svm__C=[0.1, 1, 10])

grid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=10)
grid_search.fit(X, y)
print(grid_search.best_estimator_)

Total running time of the script: ( 0 minutes 0.466 seconds)

Download Python source code: plot_feature_stacker.py

Download Jupyter notebook: plot_feature_stacker.ipynb

Generated by Sphinx-Gallery

4.1.3 Pipelining: chaining a PCA and a logistic regression

The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction.

We use a GridSearchCV to set the dimensionality of the PCA
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print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import linear_model, decomposition, datasets
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV

logistic = linear_model.LogisticRegression()

pca = decomposition.PCA()
pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)])

digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target

# Plot the PCA spectrum
pca.fit(X_digits)

plt.figure(1, figsize=(4, 3))
plt.clf()
plt.axes([.2, .2, .7, .7])
plt.plot(pca.explained_variance_, linewidth=2)
plt.axis('tight')
plt.xlabel('n_components')
plt.ylabel('explained_variance_')

# Prediction
n_components = [20, 40, 64]
Cs = np.logspace(-4, 4, 3)
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# Parameters of pipelines can be set using ‘__’ separated parameter names:
estimator = GridSearchCV(pipe,

dict(pca__n_components=n_components,
logistic__C=Cs))

estimator.fit(X_digits, y_digits)

plt.axvline(estimator.best_estimator_.named_steps['pca'].n_components,
linestyle=':', label='n_components chosen')

plt.legend(prop=dict(size=12))
plt.show()

Total running time of the script: ( 0 minutes 8.317 seconds)

Download Python source code: plot_digits_pipe.py

Download Jupyter notebook: plot_digits_pipe.ipynb

Generated by Sphinx-Gallery

4.1.4 Isotonic Regression

An illustration of the isotonic regression on generated data. The isotonic regression finds a non-decreasing approx-
imation of a function while minimizing the mean squared error on the training data. The benefit of such a model is
that it does not assume any form for the target function such as linearity. For comparison a linear regression is also
presented.
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print(__doc__)

# Author: Nelle Varoquaux <nelle.varoquaux@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection

from sklearn.linear_model import LinearRegression
from sklearn.isotonic import IsotonicRegression
from sklearn.utils import check_random_state

n = 100
x = np.arange(n)
rs = check_random_state(0)
y = rs.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n))

# #############################################################################
# Fit IsotonicRegression and LinearRegression models

ir = IsotonicRegression()

y_ = ir.fit_transform(x, y)
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lr = LinearRegression()
lr.fit(x[:, np.newaxis], y) # x needs to be 2d for LinearRegression

# #############################################################################
# Plot result

segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)]
lc = LineCollection(segments, zorder=0)
lc.set_array(np.ones(len(y)))
lc.set_linewidths(0.5 * np.ones(n))

fig = plt.figure()
plt.plot(x, y, 'r.', markersize=12)
plt.plot(x, y_, 'g.-', markersize=12)
plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-')
plt.gca().add_collection(lc)
plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right')
plt.title('Isotonic regression')
plt.show()

Total running time of the script: ( 0 minutes 0.066 seconds)

Download Python source code: plot_isotonic_regression.py

Download Jupyter notebook: plot_isotonic_regression.ipynb

Generated by Sphinx-Gallery

4.1.5 Imputing missing values before building an estimator

This example shows that imputing the missing values can give better results than discarding the samples containing
any missing value. Imputing does not always improve the predictions, so please check via cross-validation. Sometimes
dropping rows or using marker values is more effective.

Missing values can be replaced by the mean, the median or the most frequent value using the strategy hyper-
parameter. The median is a more robust estimator for data with high magnitude variables which could dominate
results (otherwise known as a ‘long tail’).

Script output:

Score with the entire dataset = 0.56
Score without the samples containing missing values = 0.48
Score after imputation of the missing values = 0.55

In this case, imputing helps the classifier get close to the original score.

Out:

Score with the entire dataset = 0.56
Score without the samples containing missing values = 0.48
Score after imputation of the missing values = 0.57
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import numpy as np

from sklearn.datasets import load_boston
from sklearn.ensemble import RandomForestRegressor
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import Imputer
from sklearn.model_selection import cross_val_score

rng = np.random.RandomState(0)

dataset = load_boston()
X_full, y_full = dataset.data, dataset.target
n_samples = X_full.shape[0]
n_features = X_full.shape[1]

# Estimate the score on the entire dataset, with no missing values
estimator = RandomForestRegressor(random_state=0, n_estimators=100)
score = cross_val_score(estimator, X_full, y_full).mean()
print("Score with the entire dataset = %.2f" % score)

# Add missing values in 75% of the lines
missing_rate = 0.75
n_missing_samples = int(np.floor(n_samples * missing_rate))
missing_samples = np.hstack((np.zeros(n_samples - n_missing_samples,

dtype=np.bool),
np.ones(n_missing_samples,

dtype=np.bool)))
rng.shuffle(missing_samples)
missing_features = rng.randint(0, n_features, n_missing_samples)

# Estimate the score without the lines containing missing values
X_filtered = X_full[~missing_samples, :]
y_filtered = y_full[~missing_samples]
estimator = RandomForestRegressor(random_state=0, n_estimators=100)
score = cross_val_score(estimator, X_filtered, y_filtered).mean()
print("Score without the samples containing missing values = %.2f" % score)

# Estimate the score after imputation of the missing values
X_missing = X_full.copy()
X_missing[np.where(missing_samples)[0], missing_features] = 0
y_missing = y_full.copy()
estimator = Pipeline([("imputer", Imputer(missing_values=0,

strategy="mean",
axis=0)),

("forest", RandomForestRegressor(random_state=0,
n_estimators=100))])

score = cross_val_score(estimator, X_missing, y_missing).mean()
print("Score after imputation of the missing values = %.2f" % score)

Total running time of the script: ( 0 minutes 1.939 seconds)

Download Python source code: plot_missing_values.py

Download Jupyter notebook: plot_missing_values.ipynb

Generated by Sphinx-Gallery
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4.1.6 Face completion with a multi-output estimators

This example shows the use of multi-output estimator to complete images. The goal is to predict the lower half of a
face given its upper half.

The first column of images shows true faces. The next columns illustrate how extremely randomized trees, k nearest
neighbors, linear regression and ridge regression complete the lower half of those faces.

print(__doc__)
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import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import fetch_olivetti_faces
from sklearn.utils.validation import check_random_state

from sklearn.ensemble import ExtraTreesRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import RidgeCV

# Load the faces datasets
data = fetch_olivetti_faces()
targets = data.target

data = data.images.reshape((len(data.images), -1))
train = data[targets < 30]
test = data[targets >= 30] # Test on independent people

# Test on a subset of people
n_faces = 5
rng = check_random_state(4)
face_ids = rng.randint(test.shape[0], size=(n_faces, ))
test = test[face_ids, :]

n_pixels = data.shape[1]
# Upper half of the faces
X_train = train[:, :(n_pixels + 1) // 2]
# Lower half of the faces
y_train = train[:, n_pixels // 2:]
X_test = test[:, :(n_pixels + 1) // 2]
y_test = test[:, n_pixels // 2:]

# Fit estimators
ESTIMATORS = {

"Extra trees": ExtraTreesRegressor(n_estimators=10, max_features=32,
random_state=0),

"K-nn": KNeighborsRegressor(),
"Linear regression": LinearRegression(),
"Ridge": RidgeCV(),

}

y_test_predict = dict()
for name, estimator in ESTIMATORS.items():

estimator.fit(X_train, y_train)
y_test_predict[name] = estimator.predict(X_test)

# Plot the completed faces
image_shape = (64, 64)

n_cols = 1 + len(ESTIMATORS)
plt.figure(figsize=(2. * n_cols, 2.26 * n_faces))
plt.suptitle("Face completion with multi-output estimators", size=16)

for i in range(n_faces):
true_face = np.hstack((X_test[i], y_test[i]))

if i:
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sub = plt.subplot(n_faces, n_cols, i * n_cols + 1)
else:

sub = plt.subplot(n_faces, n_cols, i * n_cols + 1,
title="true faces")

sub.axis("off")
sub.imshow(true_face.reshape(image_shape),

cmap=plt.cm.gray,
interpolation="nearest")

for j, est in enumerate(sorted(ESTIMATORS)):
completed_face = np.hstack((X_test[i], y_test_predict[est][i]))

if i:
sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j)

else:
sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j,

title=est)

sub.axis("off")
sub.imshow(completed_face.reshape(image_shape),

cmap=plt.cm.gray,
interpolation="nearest")

plt.show()

Total running time of the script: ( 0 minutes 2.919 seconds)

Download Python source code: plot_multioutput_face_completion.py

Download Jupyter notebook: plot_multioutput_face_completion.ipynb

Generated by Sphinx-Gallery

4.1.7 Selecting dimensionality reduction with Pipeline and GridSearchCV

This example constructs a pipeline that does dimensionality reduction followed by prediction with a support vector
classifier. It demonstrates the use of GridSearchCV and Pipeline to optimize over different classes of estimators
in a single CV run – unsupervised PCA and NMF dimensionality reductions are compared to univariate feature selection
during the grid search.

Additionally, Pipeline can be instantiated with the memory argument to memoize the transformers within the
pipeline, avoiding to fit again the same transformers over and over.

Note that the use of memory to enable caching becomes interesting when the fitting of a transformer is costly.

Illustration of Pipeline and GridSearchCV

This section illustrates the use of a Pipeline with GridSearchCV

# Authors: Robert McGibbon, Joel Nothman, Guillaume Lemaitre

from __future__ import print_function, division

import numpy as np
import matplotlib.pyplot as plt
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from sklearn.datasets import load_digits
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn.decomposition import PCA, NMF
from sklearn.feature_selection import SelectKBest, chi2

print(__doc__)

pipe = Pipeline([
('reduce_dim', PCA()),
('classify', LinearSVC())

])

N_FEATURES_OPTIONS = [2, 4, 8]
C_OPTIONS = [1, 10, 100, 1000]
param_grid = [

{
'reduce_dim': [PCA(iterated_power=7), NMF()],
'reduce_dim__n_components': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS

},
{

'reduce_dim': [SelectKBest(chi2)],
'reduce_dim__k': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS

},
]
reducer_labels = ['PCA', 'NMF', 'KBest(chi2)']

grid = GridSearchCV(pipe, cv=3, n_jobs=1, param_grid=param_grid)
digits = load_digits()
grid.fit(digits.data, digits.target)

mean_scores = np.array(grid.cv_results_['mean_test_score'])
# scores are in the order of param_grid iteration, which is alphabetical
mean_scores = mean_scores.reshape(len(C_OPTIONS), -1, len(N_FEATURES_OPTIONS))
# select score for best C
mean_scores = mean_scores.max(axis=0)
bar_offsets = (np.arange(len(N_FEATURES_OPTIONS)) *

(len(reducer_labels) + 1) + .5)

plt.figure()
COLORS = 'bgrcmyk'
for i, (label, reducer_scores) in enumerate(zip(reducer_labels, mean_scores)):

plt.bar(bar_offsets + i, reducer_scores, label=label, color=COLORS[i])

plt.title("Comparing feature reduction techniques")
plt.xlabel('Reduced number of features')
plt.xticks(bar_offsets + len(reducer_labels) / 2, N_FEATURES_OPTIONS)
plt.ylabel('Digit classification accuracy')
plt.ylim((0, 1))
plt.legend(loc='upper left')
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Caching transformers within a Pipeline

It is sometimes worthwhile storing the state of a specific transformer since it could be used again. Using a
pipeline in GridSearchCV triggers such situations. Therefore, we use the argument memory to enable
caching.

Warning: Note that this example is, however, only an illustration since for this specific case fitting
PCA is not necessarily slower than loading the cache. Hence, use the memory constructor parameter
when the fitting of a transformer is costly.

from tempfile import mkdtemp
from shutil import rmtree
from sklearn.externals.joblib import Memory

# Create a temporary folder to store the transformers of the pipeline
cachedir = mkdtemp()
memory = Memory(cachedir=cachedir, verbose=10)
cached_pipe = Pipeline([('reduce_dim', PCA()),

('classify', LinearSVC())],
memory=memory)

# This time, a cached pipeline will be used within the grid search
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grid = GridSearchCV(cached_pipe, cv=3, n_jobs=1, param_grid=param_grid)
digits = load_digits()
grid.fit(digits.data, digits.target)

# Delete the temporary cache before exiting
rmtree(cachedir)

Out:

________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(PCA(copy=True, iterated_power=7, n_components=2, random_state=None,
svd_solver='auto', tol=0.0, whiten=False),

None, array([[ 0., ..., 0.],
...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(PCA(copy=True, iterated_power=7, n_components=2, random_state=None,

svd_solver='auto', tol=0.0, whiten=False),
None, array([[ 0., ..., 0.],

...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(PCA(copy=True, iterated_power=7, n_components=2, random_state=None,

svd_solver='auto', tol=0.0, whiten=False),
None, array([[ 0., ..., 0.],

...,
[ 0., ..., 0.]]), array([0, ..., 4]))

________________________________________________fit_transform_one - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(PCA(copy=True, iterated_power=7, n_components=4, random_state=None,

svd_solver='auto', tol=0.0, whiten=False),
None, array([[ 0., ..., 0.],

...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(PCA(copy=True, iterated_power=7, n_components=4, random_state=None,

svd_solver='auto', tol=0.0, whiten=False),
None, array([[ 0., ..., 0.],

...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(PCA(copy=True, iterated_power=7, n_components=4, random_state=None,

svd_solver='auto', tol=0.0, whiten=False),
None, array([[ 0., ..., 0.],

...,
[ 0., ..., 0.]]), array([0, ..., 4]))

________________________________________________fit_transform_one - 0.0s, 0.0min
________________________________________________________________________________
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[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(PCA(copy=True, iterated_power=7, n_components=8, random_state=None,
svd_solver='auto', tol=0.0, whiten=False),

None, array([[ 0., ..., 0.],
...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(PCA(copy=True, iterated_power=7, n_components=8, random_state=None,

svd_solver='auto', tol=0.0, whiten=False),
None, array([[ 0., ..., 0.],

...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(PCA(copy=True, iterated_power=7, n_components=8, random_state=None,

svd_solver='auto', tol=0.0, whiten=False),
None, array([[ 0., ..., 0.],

...,
[ 0., ..., 0.]]), array([0, ..., 4]))

________________________________________________fit_transform_one - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(NMF(alpha=0.0, beta_loss='frobenius', init=None, l1_ratio=0.0, max_
→˓iter=200,
n_components=2, random_state=None, shuffle=False, solver='cd',
tol=0.0001, verbose=0),

None, array([[ 0., ..., 0.],
...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(NMF(alpha=0.0, beta_loss='frobenius', init=None, l1_ratio=0.0, max_
→˓iter=200,
n_components=2, random_state=None, shuffle=False, solver='cd',
tol=0.0001, verbose=0),

None, array([[ 0., ..., 0.],
...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(NMF(alpha=0.0, beta_loss='frobenius', init=None, l1_ratio=0.0, max_
→˓iter=200,
n_components=2, random_state=None, shuffle=False, solver='cd',
tol=0.0001, verbose=0),

None, array([[ 0., ..., 0.],
...,
[ 0., ..., 0.]]), array([0, ..., 4]))

________________________________________________fit_transform_one - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(NMF(alpha=0.0, beta_loss='frobenius', init=None, l1_ratio=0.0, max_
→˓iter=200,
n_components=4, random_state=None, shuffle=False, solver='cd',
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tol=0.0001, verbose=0),
None, array([[ 0., ..., 0.],

...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(NMF(alpha=0.0, beta_loss='frobenius', init=None, l1_ratio=0.0, max_
→˓iter=200,
n_components=4, random_state=None, shuffle=False, solver='cd',
tol=0.0001, verbose=0),

None, array([[ 0., ..., 0.],
...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(NMF(alpha=0.0, beta_loss='frobenius', init=None, l1_ratio=0.0, max_
→˓iter=200,
n_components=4, random_state=None, shuffle=False, solver='cd',
tol=0.0001, verbose=0),

None, array([[ 0., ..., 0.],
...,
[ 0., ..., 0.]]), array([0, ..., 4]))

________________________________________________fit_transform_one - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(NMF(alpha=0.0, beta_loss='frobenius', init=None, l1_ratio=0.0, max_
→˓iter=200,
n_components=8, random_state=None, shuffle=False, solver='cd',
tol=0.0001, verbose=0),

None, array([[ 0., ..., 0.],
...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(NMF(alpha=0.0, beta_loss='frobenius', init=None, l1_ratio=0.0, max_
→˓iter=200,
n_components=8, random_state=None, shuffle=False, solver='cd',
tol=0.0001, verbose=0),

None, array([[ 0., ..., 0.],
...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(NMF(alpha=0.0, beta_loss='frobenius', init=None, l1_ratio=0.0, max_
→˓iter=200,
n_components=8, random_state=None, shuffle=False, solver='cd',
tol=0.0001, verbose=0),

None, array([[ 0., ..., 0.],
...,
[ 0., ..., 0.]]), array([0, ..., 4]))

________________________________________________fit_transform_one - 0.1s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/418724be7e0f221c63842489d2d8dd8f
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
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[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/3e8d95d340d603afdf4d48f022bf17e5
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/883d0a1cdb71638bbb069032713ce9dc
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/958eff19e89776bd76df5aa2c245d3da
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/ba78eb5c2dcd4d6aa3f6153ebf783541
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/42022a50c9fdba89266fe57fa5f8b6cd
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/7920cd319ba93f250d5f3618e3d15da7
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/9e042898790629dd460a8b6f9fef2fd4
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/55ce05e1fc3d79d04d79b8e2aacec9cf
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/16c841ed85ffdb4fee198a8f99f5c1f4
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/35bff840b1d192804fd4ff24064e96f2
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/77797263aafc1cb48306ec67242c6ad5
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/f0515fdac3406fc25644d355469c0533
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/c5cbf3ce208ba301242b09931977b0ba
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/02ad81983f20f4c5cf0d47056cdacf9e
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/8ac7812389fd8128d90760e78d84e3af
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/c832e7ce545bf8ed19c9646b7df57b94
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/5a7c149c4c779fcfb3e3b5d4859f28e5
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/418724be7e0f221c63842489d2d8dd8f
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/3e8d95d340d603afdf4d48f022bf17e5
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/883d0a1cdb71638bbb069032713ce9dc
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___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/958eff19e89776bd76df5aa2c245d3da
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/ba78eb5c2dcd4d6aa3f6153ebf783541
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/42022a50c9fdba89266fe57fa5f8b6cd
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/7920cd319ba93f250d5f3618e3d15da7
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/9e042898790629dd460a8b6f9fef2fd4
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/55ce05e1fc3d79d04d79b8e2aacec9cf
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/16c841ed85ffdb4fee198a8f99f5c1f4
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/35bff840b1d192804fd4ff24064e96f2
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/77797263aafc1cb48306ec67242c6ad5
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/f0515fdac3406fc25644d355469c0533
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/c5cbf3ce208ba301242b09931977b0ba
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/02ad81983f20f4c5cf0d47056cdacf9e
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/8ac7812389fd8128d90760e78d84e3af
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/c832e7ce545bf8ed19c9646b7df57b94
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/5a7c149c4c779fcfb3e3b5d4859f28e5
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/418724be7e0f221c63842489d2d8dd8f
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/3e8d95d340d603afdf4d48f022bf17e5
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/883d0a1cdb71638bbb069032713ce9dc
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/958eff19e89776bd76df5aa2c245d3da
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
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[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/ba78eb5c2dcd4d6aa3f6153ebf783541
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/42022a50c9fdba89266fe57fa5f8b6cd
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/7920cd319ba93f250d5f3618e3d15da7
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/9e042898790629dd460a8b6f9fef2fd4
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/55ce05e1fc3d79d04d79b8e2aacec9cf
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/16c841ed85ffdb4fee198a8f99f5c1f4
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/35bff840b1d192804fd4ff24064e96f2
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/77797263aafc1cb48306ec67242c6ad5
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/f0515fdac3406fc25644d355469c0533
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/c5cbf3ce208ba301242b09931977b0ba
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/02ad81983f20f4c5cf0d47056cdacf9e
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/8ac7812389fd8128d90760e78d84e3af
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/c832e7ce545bf8ed19c9646b7df57b94
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/5a7c149c4c779fcfb3e3b5d4859f28e5
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(SelectKBest(k=2, score_func=<function chi2 at 0x2ad3b4bc5598>),
→˓None, array([[ 0., ..., 0.],

...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(SelectKBest(k=2, score_func=<function chi2 at 0x2ad3b4bc5598>),
→˓None, array([[ 0., ..., 0.],

...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
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_fit_transform_one(SelectKBest(k=2, score_func=<function chi2 at 0x2ad3b4bc5598>),
→˓None, array([[ 0., ..., 0.],

...,
[ 0., ..., 0.]]), array([0, ..., 4]))

________________________________________________fit_transform_one - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(SelectKBest(k=4, score_func=<function chi2 at 0x2ad3b4bc5598>),
→˓None, array([[ 0., ..., 0.],

...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(SelectKBest(k=4, score_func=<function chi2 at 0x2ad3b4bc5598>),
→˓None, array([[ 0., ..., 0.],

...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(SelectKBest(k=4, score_func=<function chi2 at 0x2ad3b4bc5598>),
→˓None, array([[ 0., ..., 0.],

...,
[ 0., ..., 0.]]), array([0, ..., 4]))

________________________________________________fit_transform_one - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(SelectKBest(k=8, score_func=<function chi2 at 0x2ad3b4bc5598>),
→˓None, array([[ 0., ..., 0.],

...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(SelectKBest(k=8, score_func=<function chi2 at 0x2ad3b4bc5598>),
→˓None, array([[ 0., ..., 0.],

...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(SelectKBest(k=8, score_func=<function chi2 at 0x2ad3b4bc5598>),
→˓None, array([[ 0., ..., 0.],

...,
[ 0., ..., 0.]]), array([0, ..., 4]))

________________________________________________fit_transform_one - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/5fe54eb7ee530b63acb3dfa6861e7e31
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/4a03a48a7aad7233e42fab570e812d55
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/ece18c14ce6fdfec2f6f7eac72d33d65
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/df50d8982a4424bfd6b6eb0cc9345085
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___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/4a3e478397b79f5dd3eac4d1ed5f18ff
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/86fd5ede2d28c646cee97060abe98fa2
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/e2dec44788d6d43bbacc041a12a5b694
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/598e66f4fb276b36069528d316e749ad
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/03b4bcf60a35f2c1b7169e05514a8b9f
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/5fe54eb7ee530b63acb3dfa6861e7e31
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/4a03a48a7aad7233e42fab570e812d55
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/ece18c14ce6fdfec2f6f7eac72d33d65
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/df50d8982a4424bfd6b6eb0cc9345085
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/4a3e478397b79f5dd3eac4d1ed5f18ff
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/86fd5ede2d28c646cee97060abe98fa2
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/e2dec44788d6d43bbacc041a12a5b694
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/598e66f4fb276b36069528d316e749ad
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/03b4bcf60a35f2c1b7169e05514a8b9f
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/5fe54eb7ee530b63acb3dfa6861e7e31
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/4a03a48a7aad7233e42fab570e812d55
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/ece18c14ce6fdfec2f6f7eac72d33d65
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/df50d8982a4424bfd6b6eb0cc9345085
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/4a3e478397b79f5dd3eac4d1ed5f18ff
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min

604 Chapter 4. Examples



scikit-learn user guide, Release 0.19.1

[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/86fd5ede2d28c646cee97060abe98fa2
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/e2dec44788d6d43bbacc041a12a5b694
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/598e66f4fb276b36069528d316e749ad
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
[Memory] 0.0s, 0.0min: Loading _fit_transform_one from /tmp/tmpj5b418aa/joblib/
→˓sklearn/pipeline/_fit_transform_one/03b4bcf60a35f2c1b7169e05514a8b9f
___________________________________fit_transform_one cache loaded - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.pipeline._fit_transform_one...
_fit_transform_one(PCA(copy=True, iterated_power=7, n_components=8, random_state=None,
svd_solver='auto', tol=0.0, whiten=False),

None, array([[ 0., ..., 0.],
...,
[ 0., ..., 0.]]), array([0, ..., 8]))

________________________________________________fit_transform_one - 0.0s, 0.0min

The PCA fitting is only computed at the evaluation of the first configuration of the C parameter of the LinearSVC
classifier. The other configurations of C will trigger the loading of the cached PCA estimator data, leading to save pro-
cessing time. Therefore, the use of caching the pipeline using memory is highly beneficial when fitting a transformer
is costly.

plt.show()

Total running time of the script: ( 1 minutes 22.148 seconds)

Download Python source code: plot_compare_reduction.py

Download Jupyter notebook: plot_compare_reduction.ipynb

Generated by Sphinx-Gallery

4.1.8 Multilabel classification

This example simulates a multi-label document classification problem. The dataset is generated randomly based on
the following process:

• pick the number of labels: n ~ Poisson(n_labels)

• n times, choose a class c: c ~ Multinomial(theta)

• pick the document length: k ~ Poisson(length)

• k times, choose a word: w ~ Multinomial(theta_c)

In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is
never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both
classes are plotted surrounded by two colored circles.

The classification is performed by projecting to the first two principal components found by PCA and CCA for visual-
isation purposes, followed by using the sklearn.multiclass.OneVsRestClassifier metaclassifier using
two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an
unsupervised dimensionality reduction, while CCA is used to perform a supervised one.

Note: in the plot, “unlabeled samples” does not mean that we don’t know the labels (as in semi-supervised learning)
but that the samples simply do not have a label.
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_multilabel_classification
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
from sklearn.preprocessing import LabelBinarizer
from sklearn.decomposition import PCA
from sklearn.cross_decomposition import CCA

def plot_hyperplane(clf, min_x, max_x, linestyle, label):
# get the separating hyperplane
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough
yy = a * xx - (clf.intercept_[0]) / w[1]
plt.plot(xx, yy, linestyle, label=label)

def plot_subfigure(X, Y, subplot, title, transform):
if transform == "pca":

X = PCA(n_components=2).fit_transform(X)
elif transform == "cca":
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X = CCA(n_components=2).fit(X, Y).transform(X)
else:

raise ValueError

min_x = np.min(X[:, 0])
max_x = np.max(X[:, 0])

min_y = np.min(X[:, 1])
max_y = np.max(X[:, 1])

classif = OneVsRestClassifier(SVC(kernel='linear'))
classif.fit(X, Y)

plt.subplot(2, 2, subplot)
plt.title(title)

zero_class = np.where(Y[:, 0])
one_class = np.where(Y[:, 1])
plt.scatter(X[:, 0], X[:, 1], s=40, c='gray', edgecolors=(0, 0, 0))
plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b',

facecolors='none', linewidths=2, label='Class 1')
plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange',

facecolors='none', linewidths=2, label='Class 2')

plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--',
'Boundary\nfor class 1')

plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.',
'Boundary\nfor class 2')

plt.xticks(())
plt.yticks(())

plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x)
plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y)
if subplot == 2:

plt.xlabel('First principal component')
plt.ylabel('Second principal component')
plt.legend(loc="upper left")

plt.figure(figsize=(8, 6))

X, Y = make_multilabel_classification(n_classes=2, n_labels=1,
allow_unlabeled=True,
random_state=1)

plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca")
plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca")

X, Y = make_multilabel_classification(n_classes=2, n_labels=1,
allow_unlabeled=False,
random_state=1)

plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca")
plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca")

plt.subplots_adjust(.04, .02, .97, .94, .09, .2)
plt.show()
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Total running time of the script: ( 0 minutes 0.392 seconds)

Download Python source code: plot_multilabel.py

Download Jupyter notebook: plot_multilabel.ipynb

Generated by Sphinx-Gallery

4.1.9 The Johnson-Lindenstrauss bound for embedding with random projections

The Johnson-Lindenstrauss lemma states that any high dimensional dataset can be randomly projected into a lower
dimensional Euclidean space while controlling the distortion in the pairwise distances.

Theoretical bounds

The distortion introduced by a random projection p is asserted by the fact that p is defining an eps-embedding with
good probability as defined by:

(1− 𝑒𝑝𝑠)‖𝑢− 𝑣‖2 < ‖𝑝(𝑢)− 𝑝(𝑣)‖2 < (1 + 𝑒𝑝𝑠)‖𝑢− 𝑣‖2

Where u and v are any rows taken from a dataset of shape [n_samples, n_features] and p is a projection by a random
Gaussian N(0, 1) matrix with shape [n_components, n_features] (or a sparse Achlioptas matrix).

The minimum number of components to guarantees the eps-embedding is given by:

𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 >= 4𝑙𝑜𝑔(𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠)/(𝑒𝑝𝑠2/2− 𝑒𝑝𝑠3/3)

The first plot shows that with an increasing number of samples n_samples, the minimal number of dimensions
n_components increased logarithmically in order to guarantee an eps-embedding.

The second plot shows that an increase of the admissible distortion eps allows to reduce drastically the minimal
number of dimensions n_components for a given number of samples n_samples

Empirical validation

We validate the above bounds on the digits dataset or on the 20 newsgroups text document (TF-IDF word frequencies)
dataset:

• for the digits dataset, some 8x8 gray level pixels data for 500 handwritten digits pictures are randomly projected
to spaces for various larger number of dimensions n_components.

• for the 20 newsgroups dataset some 500 documents with 100k features in total are projected using a
sparse random matrix to smaller euclidean spaces with various values for the target number of dimensions
n_components.

The default dataset is the digits dataset. To run the example on the twenty newsgroups dataset, pass the –twenty-
newsgroups command line argument to this script.

For each value of n_components, we plot:

• 2D distribution of sample pairs with pairwise distances in original and projected spaces as x and y axis respec-
tively.

• 1D histogram of the ratio of those distances (projected / original).

We can see that for low values of n_components the distribution is wide with many distorted pairs and a skewed
distribution (due to the hard limit of zero ratio on the left as distances are always positives) while for larger values of
n_components the distortion is controlled and the distances are well preserved by the random projection.
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Remarks

According to the JL lemma, projecting 500 samples without too much distortion will require at least several thousands
dimensions, irrespective of the number of features of the original dataset.

Hence using random projections on the digits dataset which only has 64 features in the input space does not make
sense: it does not allow for dimensionality reduction in this case.

On the twenty newsgroups on the other hand the dimensionality can be decreased from 56436 down to 10000 while
reasonably preserving pairwise distances.

•

•

•
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•

•

•

610 Chapter 4. Examples



scikit-learn user guide, Release 0.19.1

•

•

Out:

Embedding 500 samples with dim 64 using various random projections
Projected 500 samples from 64 to 300 in 0.016s
Random matrix with size: 0.029MB
Mean distances rate: 1.01 (0.09)
Projected 500 samples from 64 to 1000 in 0.034s
Random matrix with size: 0.097MB
Mean distances rate: 1.00 (0.05)
Projected 500 samples from 64 to 10000 in 0.327s
Random matrix with size: 0.957MB
Mean distances rate: 1.00 (0.02)

print(__doc__)

import sys
from time import time
import numpy as np
import matplotlib.pyplot as plt
from sklearn.random_projection import johnson_lindenstrauss_min_dim
from sklearn.random_projection import SparseRandomProjection
from sklearn.datasets import fetch_20newsgroups_vectorized
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from sklearn.datasets import load_digits
from sklearn.metrics.pairwise import euclidean_distances

# Part 1: plot the theoretical dependency between n_components_min and
# n_samples

# range of admissible distortions
eps_range = np.linspace(0.1, 0.99, 5)
colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(eps_range)))

# range of number of samples (observation) to embed
n_samples_range = np.logspace(1, 9, 9)

plt.figure()
for eps, color in zip(eps_range, colors):

min_n_components = johnson_lindenstrauss_min_dim(n_samples_range, eps=eps)
plt.loglog(n_samples_range, min_n_components, color=color)

plt.legend(["eps = %0.1f" % eps for eps in eps_range], loc="lower right")
plt.xlabel("Number of observations to eps-embed")
plt.ylabel("Minimum number of dimensions")
plt.title("Johnson-Lindenstrauss bounds:\nn_samples vs n_components")

# range of admissible distortions
eps_range = np.linspace(0.01, 0.99, 100)

# range of number of samples (observation) to embed
n_samples_range = np.logspace(2, 6, 5)
colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(n_samples_range)))

plt.figure()
for n_samples, color in zip(n_samples_range, colors):

min_n_components = johnson_lindenstrauss_min_dim(n_samples, eps=eps_range)
plt.semilogy(eps_range, min_n_components, color=color)

plt.legend(["n_samples = %d" % n for n in n_samples_range], loc="upper right")
plt.xlabel("Distortion eps")
plt.ylabel("Minimum number of dimensions")
plt.title("Johnson-Lindenstrauss bounds:\nn_components vs eps")

# Part 2: perform sparse random projection of some digits images which are
# quite low dimensional and dense or documents of the 20 newsgroups dataset
# which is both high dimensional and sparse

if '--twenty-newsgroups' in sys.argv:
# Need an internet connection hence not enabled by default
data = fetch_20newsgroups_vectorized().data[:500]

else:
data = load_digits().data[:500]

n_samples, n_features = data.shape
print("Embedding %d samples with dim %d using various random projections"

% (n_samples, n_features))

n_components_range = np.array([300, 1000, 10000])
dists = euclidean_distances(data, squared=True).ravel()

# select only non-identical samples pairs
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nonzero = dists != 0
dists = dists[nonzero]

for n_components in n_components_range:
t0 = time()
rp = SparseRandomProjection(n_components=n_components)
projected_data = rp.fit_transform(data)
print("Projected %d samples from %d to %d in %0.3fs"

% (n_samples, n_features, n_components, time() - t0))
if hasattr(rp, 'components_'):

n_bytes = rp.components_.data.nbytes
n_bytes += rp.components_.indices.nbytes
print("Random matrix with size: %0.3fMB" % (n_bytes / 1e6))

projected_dists = euclidean_distances(
projected_data, squared=True).ravel()[nonzero]

plt.figure()
plt.hexbin(dists, projected_dists, gridsize=100, cmap=plt.cm.PuBu)
plt.xlabel("Pairwise squared distances in original space")
plt.ylabel("Pairwise squared distances in projected space")
plt.title("Pairwise distances distribution for n_components=%d" %

n_components)
cb = plt.colorbar()
cb.set_label('Sample pairs counts')

rates = projected_dists / dists
print("Mean distances rate: %0.2f (%0.2f)"

% (np.mean(rates), np.std(rates)))

plt.figure()
plt.hist(rates, bins=50, normed=True, range=(0., 2.), edgecolor='k')
plt.xlabel("Squared distances rate: projected / original")
plt.ylabel("Distribution of samples pairs")
plt.title("Histogram of pairwise distance rates for n_components=%d" %

n_components)

# TODO: compute the expected value of eps and add them to the previous plot
# as vertical lines / region

plt.show()

Total running time of the script: ( 0 minutes 2.068 seconds)

Download Python source code: plot_johnson_lindenstrauss_bound.py

Download Jupyter notebook: plot_johnson_lindenstrauss_bound.ipynb

Generated by Sphinx-Gallery

4.1.10 Comparison of kernel ridge regression and SVR

Both kernel ridge regression (KRR) and SVR learn a non-linear function by employing the kernel trick, i.e., they
learn a linear function in the space induced by the respective kernel which corresponds to a non-linear function in the
original space. They differ in the loss functions (ridge versus epsilon-insensitive loss). In contrast to SVR, fitting a
KRR can be done in closed-form and is typically faster for medium-sized datasets. On the other hand, the learned
model is non-sparse and thus slower than SVR at prediction-time.
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This example illustrates both methods on an artificial dataset, which consists of a sinusoidal target function and strong
noise added to every fifth datapoint. The first figure compares the learned model of KRR and SVR when both com-
plexity/regularization and bandwidth of the RBF kernel are optimized using grid-search. The learned functions are
very similar; however, fitting KRR is approx. seven times faster than fitting SVR (both with grid-search). However,
prediction of 100000 target values is more than tree times faster with SVR since it has learned a sparse model using
only approx. 1/3 of the 100 training datapoints as support vectors.

The next figure compares the time for fitting and prediction of KRR and SVR for different sizes of the training set.
Fitting KRR is faster than SVR for medium- sized training sets (less than 1000 samples); however, for larger training
sets SVR scales better. With regard to prediction time, SVR is faster than KRR for all sizes of the training set because
of the learned sparse solution. Note that the degree of sparsity and thus the prediction time depends on the parameters
epsilon and C of the SVR.

•

•

•
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Out:

SVR complexity and bandwidth selected and model fitted in 0.807 s
KRR complexity and bandwidth selected and model fitted in 0.343 s
Support vector ratio: 0.320
SVR prediction for 100000 inputs in 0.148 s
KRR prediction for 100000 inputs in 0.374 s

# Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# License: BSD 3 clause

from __future__ import division
import time

import numpy as np

from sklearn.svm import SVR
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import learning_curve
from sklearn.kernel_ridge import KernelRidge
import matplotlib.pyplot as plt

rng = np.random.RandomState(0)

# #############################################################################
# Generate sample data
X = 5 * rng.rand(10000, 1)
y = np.sin(X).ravel()

# Add noise to targets
y[::5] += 3 * (0.5 - rng.rand(X.shape[0] // 5))

X_plot = np.linspace(0, 5, 100000)[:, None]

# #############################################################################
# Fit regression model
train_size = 100
svr = GridSearchCV(SVR(kernel='rbf', gamma=0.1), cv=5,

param_grid={"C": [1e0, 1e1, 1e2, 1e3],
"gamma": np.logspace(-2, 2, 5)})

kr = GridSearchCV(KernelRidge(kernel='rbf', gamma=0.1), cv=5,
param_grid={"alpha": [1e0, 0.1, 1e-2, 1e-3],

"gamma": np.logspace(-2, 2, 5)})

t0 = time.time()
svr.fit(X[:train_size], y[:train_size])
svr_fit = time.time() - t0
print("SVR complexity and bandwidth selected and model fitted in %.3f s"

% svr_fit)

t0 = time.time()
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kr.fit(X[:train_size], y[:train_size])
kr_fit = time.time() - t0
print("KRR complexity and bandwidth selected and model fitted in %.3f s"

% kr_fit)

sv_ratio = svr.best_estimator_.support_.shape[0] / train_size
print("Support vector ratio: %.3f" % sv_ratio)

t0 = time.time()
y_svr = svr.predict(X_plot)
svr_predict = time.time() - t0
print("SVR prediction for %d inputs in %.3f s"

% (X_plot.shape[0], svr_predict))

t0 = time.time()
y_kr = kr.predict(X_plot)
kr_predict = time.time() - t0
print("KRR prediction for %d inputs in %.3f s"

% (X_plot.shape[0], kr_predict))

# #############################################################################
# Look at the results
sv_ind = svr.best_estimator_.support_
plt.scatter(X[sv_ind], y[sv_ind], c='r', s=50, label='SVR support vectors',

zorder=2, edgecolors=(0, 0, 0))
plt.scatter(X[:100], y[:100], c='k', label='data', zorder=1,

edgecolors=(0, 0, 0))
plt.plot(X_plot, y_svr, c='r',

label='SVR (fit: %.3fs, predict: %.3fs)' % (svr_fit, svr_predict))
plt.plot(X_plot, y_kr, c='g',

label='KRR (fit: %.3fs, predict: %.3fs)' % (kr_fit, kr_predict))
plt.xlabel('data')
plt.ylabel('target')
plt.title('SVR versus Kernel Ridge')
plt.legend()

# Visualize training and prediction time
plt.figure()

# Generate sample data
X = 5 * rng.rand(10000, 1)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - rng.rand(X.shape[0] // 5))
sizes = np.logspace(1, 4, 7, dtype=np.int)
for name, estimator in {"KRR": KernelRidge(kernel='rbf', alpha=0.1,

gamma=10),
"SVR": SVR(kernel='rbf', C=1e1, gamma=10)}.items():

train_time = []
test_time = []
for train_test_size in sizes:

t0 = time.time()
estimator.fit(X[:train_test_size], y[:train_test_size])
train_time.append(time.time() - t0)

t0 = time.time()
estimator.predict(X_plot[:1000])
test_time.append(time.time() - t0)
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plt.plot(sizes, train_time, 'o-', color="r" if name == "SVR" else "g",
label="%s (train)" % name)

plt.plot(sizes, test_time, 'o--', color="r" if name == "SVR" else "g",
label="%s (test)" % name)

plt.xscale("log")
plt.yscale("log")
plt.xlabel("Train size")
plt.ylabel("Time (seconds)")
plt.title('Execution Time')
plt.legend(loc="best")

# Visualize learning curves
plt.figure()

svr = SVR(kernel='rbf', C=1e1, gamma=0.1)
kr = KernelRidge(kernel='rbf', alpha=0.1, gamma=0.1)
train_sizes, train_scores_svr, test_scores_svr = \

learning_curve(svr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10),
scoring="neg_mean_squared_error", cv=10)

train_sizes_abs, train_scores_kr, test_scores_kr = \
learning_curve(kr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10),

scoring="neg_mean_squared_error", cv=10)

plt.plot(train_sizes, -test_scores_svr.mean(1), 'o-', color="r",
label="SVR")

plt.plot(train_sizes, -test_scores_kr.mean(1), 'o-', color="g",
label="KRR")

plt.xlabel("Train size")
plt.ylabel("Mean Squared Error")
plt.title('Learning curves')
plt.legend(loc="best")

plt.show()

Total running time of the script: ( 0 minutes 34.062 seconds)

Download Python source code: plot_kernel_ridge_regression.py

Download Jupyter notebook: plot_kernel_ridge_regression.ipynb

Generated by Sphinx-Gallery

4.1.11 Feature Union with Heterogeneous Data Sources

Datasets can often contain components of that require different feature extraction and processing pipelines. This
scenario might occur when:

1. Your dataset consists of heterogeneous data types (e.g. raster images and text captions)

2. Your dataset is stored in a Pandas DataFrame and different columns require different processing pipelines.

This example demonstrates how to use sklearn.feature_extraction.FeatureUnion on a dataset con-
taining different types of features. We use the 20-newsgroups dataset and compute standard bag-of-words features for
the subject line and body in separate pipelines as well as ad hoc features on the body. We combine them (with weights)
using a FeatureUnion and finally train a classifier on the combined set of features.

The choice of features is not particularly helpful, but serves to illustrate the technique.
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# Author: Matt Terry <matt.terry@gmail.com>
#
# License: BSD 3 clause
from __future__ import print_function

import numpy as np

from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.datasets import fetch_20newsgroups
from sklearn.datasets.twenty_newsgroups import strip_newsgroup_footer
from sklearn.datasets.twenty_newsgroups import strip_newsgroup_quoting
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import classification_report
from sklearn.pipeline import FeatureUnion
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC

class ItemSelector(BaseEstimator, TransformerMixin):
"""For data grouped by feature, select subset of data at a provided key.

The data is expected to be stored in a 2D data structure, where the first
index is over features and the second is over samples. i.e.

>> len(data[key]) == n_samples

Please note that this is the opposite convention to scikit-learn feature
matrixes (where the first index corresponds to sample).

ItemSelector only requires that the collection implement getitem
(data[key]). Examples include: a dict of lists, 2D numpy array, Pandas
DataFrame, numpy record array, etc.

>> data = {'a': [1, 5, 2, 5, 2, 8],
'b': [9, 4, 1, 4, 1, 3]}

>> ds = ItemSelector(key='a')
>> data['a'] == ds.transform(data)

ItemSelector is not designed to handle data grouped by sample. (e.g. a
list of dicts). If your data is structured this way, consider a
transformer along the lines of `sklearn.feature_extraction.DictVectorizer`.

Parameters
----------
key : hashable, required

The key corresponding to the desired value in a mappable.
"""
def __init__(self, key):

self.key = key

def fit(self, x, y=None):
return self

def transform(self, data_dict):
return data_dict[self.key]
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class TextStats(BaseEstimator, TransformerMixin):
"""Extract features from each document for DictVectorizer"""

def fit(self, x, y=None):
return self

def transform(self, posts):
return [{'length': len(text),

'num_sentences': text.count('.')}
for text in posts]

class SubjectBodyExtractor(BaseEstimator, TransformerMixin):
"""Extract the subject & body from a usenet post in a single pass.

Takes a sequence of strings and produces a dict of sequences. Keys are
`subject` and `body`.
"""
def fit(self, x, y=None):

return self

def transform(self, posts):
features = np.recarray(shape=(len(posts),),

dtype=[('subject', object), ('body', object)])
for i, text in enumerate(posts):

headers, _, bod = text.partition('\n\n')
bod = strip_newsgroup_footer(bod)
bod = strip_newsgroup_quoting(bod)
features['body'][i] = bod

prefix = 'Subject:'
sub = ''
for line in headers.split('\n'):

if line.startswith(prefix):
sub = line[len(prefix):]
break

features['subject'][i] = sub

return features

pipeline = Pipeline([
# Extract the subject & body
('subjectbody', SubjectBodyExtractor()),

# Use FeatureUnion to combine the features from subject and body
('union', FeatureUnion(

transformer_list=[

# Pipeline for pulling features from the post's subject line
('subject', Pipeline([

('selector', ItemSelector(key='subject')),
('tfidf', TfidfVectorizer(min_df=50)),

])),

# Pipeline for standard bag-of-words model for body
('body_bow', Pipeline([

4.1. General examples 619



scikit-learn user guide, Release 0.19.1

('selector', ItemSelector(key='body')),
('tfidf', TfidfVectorizer()),
('best', TruncatedSVD(n_components=50)),

])),

# Pipeline for pulling ad hoc features from post's body
('body_stats', Pipeline([

('selector', ItemSelector(key='body')),
('stats', TextStats()), # returns a list of dicts
('vect', DictVectorizer()), # list of dicts -> feature matrix

])),

],

# weight components in FeatureUnion
transformer_weights={

'subject': 0.8,
'body_bow': 0.5,
'body_stats': 1.0,

},
)),

# Use a SVC classifier on the combined features
('svc', SVC(kernel='linear')),

])

# limit the list of categories to make running this example faster.
categories = ['alt.atheism', 'talk.religion.misc']
train = fetch_20newsgroups(random_state=1,

subset='train',
categories=categories,
)

test = fetch_20newsgroups(random_state=1,
subset='test',
categories=categories,
)

pipeline.fit(train.data, train.target)
y = pipeline.predict(test.data)
print(classification_report(y, test.target))

Total running time of the script: ( 0 minutes 0.000 seconds)

Download Python source code: hetero_feature_union.py

Download Jupyter notebook: hetero_feature_union.ipynb

Generated by Sphinx-Gallery

4.1.12 Explicit feature map approximation for RBF kernels

An example illustrating the approximation of the feature map of an RBF kernel.

It shows how to use RBFSampler and Nystroem to approximate the feature map of an RBF kernel for classification
with an SVM on the digits dataset. Results using a linear SVM in the original space, a linear SVM using the approx-
imate mappings and using a kernelized SVM are compared. Timings and accuracy for varying amounts of Monte
Carlo samplings (in the case of RBFSampler, which uses random Fourier features) and different sized subsets of the
training set (for Nystroem) for the approximate mapping are shown.
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Please note that the dataset here is not large enough to show the benefits of kernel approximation, as the exact SVM is
still reasonably fast.

Sampling more dimensions clearly leads to better classification results, but comes at a greater cost. This means there
is a tradeoff between runtime and accuracy, given by the parameter n_components. Note that solving the Linear
SVM and also the approximate kernel SVM could be greatly accelerated by using stochastic gradient descent via
sklearn.linear_model.SGDClassifier. This is not easily possible for the case of the kernelized SVM.

The second plot visualized the decision surfaces of the RBF kernel SVM and the linear SVM with approximate kernel
maps. The plot shows decision surfaces of the classifiers projected onto the first two principal components of the data.
This visualization should be taken with a grain of salt since it is just an interesting slice through the decision surface
in 64 dimensions. In particular note that a datapoint (represented as a dot) does not necessarily be classified into the
region it is lying in, since it will not lie on the plane that the first two principal components span.

The usage of RBFSampler and Nystroem is described in detail in Kernel Approximation.

•

•
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print(__doc__)

# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
# Andreas Mueller <amueller@ais.uni-bonn.de>
# License: BSD 3 clause

# Standard scientific Python imports
import matplotlib.pyplot as plt
import numpy as np
from time import time

# Import datasets, classifiers and performance metrics
from sklearn import datasets, svm, pipeline
from sklearn.kernel_approximation import (RBFSampler,

Nystroem)
from sklearn.decomposition import PCA

# The digits dataset
digits = datasets.load_digits(n_class=9)

# To apply an classifier on this data, we need to flatten the image, to
# turn the data in a (samples, feature) matrix:
n_samples = len(digits.data)
data = digits.data / 16.
data -= data.mean(axis=0)

# We learn the digits on the first half of the digits
data_train, targets_train = (data[:n_samples // 2],

digits.target[:n_samples // 2])

# Now predict the value of the digit on the second half:
data_test, targets_test = (data[n_samples // 2:],

digits.target[n_samples // 2:])
# data_test = scaler.transform(data_test)

# Create a classifier: a support vector classifier
kernel_svm = svm.SVC(gamma=.2)
linear_svm = svm.LinearSVC()

# create pipeline from kernel approximation
# and linear svm
feature_map_fourier = RBFSampler(gamma=.2, random_state=1)
feature_map_nystroem = Nystroem(gamma=.2, random_state=1)
fourier_approx_svm = pipeline.Pipeline([("feature_map", feature_map_fourier),

("svm", svm.LinearSVC())])

nystroem_approx_svm = pipeline.Pipeline([("feature_map", feature_map_nystroem),
("svm", svm.LinearSVC())])

# fit and predict using linear and kernel svm:

kernel_svm_time = time()
kernel_svm.fit(data_train, targets_train)
kernel_svm_score = kernel_svm.score(data_test, targets_test)
kernel_svm_time = time() - kernel_svm_time

linear_svm_time = time()
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linear_svm.fit(data_train, targets_train)
linear_svm_score = linear_svm.score(data_test, targets_test)
linear_svm_time = time() - linear_svm_time

sample_sizes = 30 * np.arange(1, 10)
fourier_scores = []
nystroem_scores = []
fourier_times = []
nystroem_times = []

for D in sample_sizes:
fourier_approx_svm.set_params(feature_map__n_components=D)
nystroem_approx_svm.set_params(feature_map__n_components=D)
start = time()
nystroem_approx_svm.fit(data_train, targets_train)
nystroem_times.append(time() - start)

start = time()
fourier_approx_svm.fit(data_train, targets_train)
fourier_times.append(time() - start)

fourier_score = fourier_approx_svm.score(data_test, targets_test)
nystroem_score = nystroem_approx_svm.score(data_test, targets_test)
nystroem_scores.append(nystroem_score)
fourier_scores.append(fourier_score)

# plot the results:
plt.figure(figsize=(8, 8))
accuracy = plt.subplot(211)
# second y axis for timeings
timescale = plt.subplot(212)

accuracy.plot(sample_sizes, nystroem_scores, label="Nystroem approx. kernel")
timescale.plot(sample_sizes, nystroem_times, '--',

label='Nystroem approx. kernel')

accuracy.plot(sample_sizes, fourier_scores, label="Fourier approx. kernel")
timescale.plot(sample_sizes, fourier_times, '--',

label='Fourier approx. kernel')

# horizontal lines for exact rbf and linear kernels:
accuracy.plot([sample_sizes[0], sample_sizes[-1]],

[linear_svm_score, linear_svm_score], label="linear svm")
timescale.plot([sample_sizes[0], sample_sizes[-1]],

[linear_svm_time, linear_svm_time], '--', label='linear svm')

accuracy.plot([sample_sizes[0], sample_sizes[-1]],
[kernel_svm_score, kernel_svm_score], label="rbf svm")

timescale.plot([sample_sizes[0], sample_sizes[-1]],
[kernel_svm_time, kernel_svm_time], '--', label='rbf svm')

# vertical line for dataset dimensionality = 64
accuracy.plot([64, 64], [0.7, 1], label="n_features")

# legends and labels
accuracy.set_title("Classification accuracy")
timescale.set_title("Training times")
accuracy.set_xlim(sample_sizes[0], sample_sizes[-1])
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accuracy.set_xticks(())
accuracy.set_ylim(np.min(fourier_scores), 1)
timescale.set_xlabel("Sampling steps = transformed feature dimension")
accuracy.set_ylabel("Classification accuracy")
timescale.set_ylabel("Training time in seconds")
accuracy.legend(loc='best')
timescale.legend(loc='best')

# visualize the decision surface, projected down to the first
# two principal components of the dataset
pca = PCA(n_components=8).fit(data_train)

X = pca.transform(data_train)

# Generate grid along first two principal components
multiples = np.arange(-2, 2, 0.1)
# steps along first component
first = multiples[:, np.newaxis] * pca.components_[0, :]
# steps along second component
second = multiples[:, np.newaxis] * pca.components_[1, :]
# combine
grid = first[np.newaxis, :, :] + second[:, np.newaxis, :]
flat_grid = grid.reshape(-1, data.shape[1])

# title for the plots
titles = ['SVC with rbf kernel',

'SVC (linear kernel)\n with Fourier rbf feature map\n'
'n_components=100',
'SVC (linear kernel)\n with Nystroem rbf feature map\n'
'n_components=100']

plt.tight_layout()
plt.figure(figsize=(12, 5))

# predict and plot
for i, clf in enumerate((kernel_svm, nystroem_approx_svm,

fourier_approx_svm)):
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
plt.subplot(1, 3, i + 1)
Z = clf.predict(flat_grid)

# Put the result into a color plot
Z = Z.reshape(grid.shape[:-1])
plt.contourf(multiples, multiples, Z, cmap=plt.cm.Paired)
plt.axis('off')

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=targets_train, cmap=plt.cm.Paired,

edgecolors=(0, 0, 0))

plt.title(titles[i])
plt.tight_layout()
plt.show()

Total running time of the script: ( 0 minutes 2.210 seconds)

Download Python source code: plot_kernel_approximation.py
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Download Jupyter notebook: plot_kernel_approximation.ipynb

Generated by Sphinx-Gallery

4.2 Examples based on real world datasets

Applications to real world problems with some medium sized datasets or interactive user interface.

4.2.1 Outlier detection on a real data set

This example illustrates the need for robust covariance estimation on a real data set. It is useful both for outlier
detection and for a better understanding of the data structure.

We selected two sets of two variables from the Boston housing data set as an illustration of what kind of analysis can
be done with several outlier detection tools. For the purpose of visualization, we are working with two-dimensional
examples, but one should be aware that things are not so trivial in high-dimension, as it will be pointed out.

In both examples below, the main result is that the empirical covariance estimate, as a non-robust one, is highly
influenced by the heterogeneous structure of the observations. Although the robust covariance estimate is able to
focus on the main mode of the data distribution, it sticks to the assumption that the data should be Gaussian distributed,
yielding some biased estimation of the data structure, but yet accurate to some extent. The One-Class SVM does not
assume any parametric form of the data distribution and can therefore model the complex shape of the data much
better.

First example

The first example illustrates how robust covariance estimation can help concentrating on a relevant cluster when an-
other one exists. Here, many observations are confounded into one and break down the empirical covariance estima-
tion. Of course, some screening tools would have pointed out the presence of two clusters (Support Vector Machines,
Gaussian Mixture Models, univariate outlier detection, . . . ). But had it been a high-dimensional example, none of
these could be applied that easily.

Second example

The second example shows the ability of the Minimum Covariance Determinant robust estimator of covariance to
concentrate on the main mode of the data distribution: the location seems to be well estimated, although the covariance
is hard to estimate due to the banana-shaped distribution. Anyway, we can get rid of some outlying observations. The
One-Class SVM is able to capture the real data structure, but the difficulty is to adjust its kernel bandwidth parameter
so as to obtain a good compromise between the shape of the data scatter matrix and the risk of over-fitting the data.
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•

•

print(__doc__)

# Author: Virgile Fritsch <virgile.fritsch@inria.fr>
# License: BSD 3 clause

import numpy as np
from sklearn.covariance import EllipticEnvelope
from sklearn.svm import OneClassSVM
import matplotlib.pyplot as plt
import matplotlib.font_manager
from sklearn.datasets import load_boston

# Get data
X1 = load_boston()['data'][:, [8, 10]] # two clusters
X2 = load_boston()['data'][:, [5, 12]] # "banana"-shaped

# Define "classifiers" to be used
classifiers = {

"Empirical Covariance": EllipticEnvelope(support_fraction=1.,
contamination=0.261),

"Robust Covariance (Minimum Covariance Determinant)":
EllipticEnvelope(contamination=0.261),
"OCSVM": OneClassSVM(nu=0.261, gamma=0.05)}

colors = ['m', 'g', 'b']
legend1 = {}
legend2 = {}
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# Learn a frontier for outlier detection with several classifiers
xx1, yy1 = np.meshgrid(np.linspace(-8, 28, 500), np.linspace(3, 40, 500))
xx2, yy2 = np.meshgrid(np.linspace(3, 10, 500), np.linspace(-5, 45, 500))
for i, (clf_name, clf) in enumerate(classifiers.items()):

plt.figure(1)
clf.fit(X1)
Z1 = clf.decision_function(np.c_[xx1.ravel(), yy1.ravel()])
Z1 = Z1.reshape(xx1.shape)
legend1[clf_name] = plt.contour(

xx1, yy1, Z1, levels=[0], linewidths=2, colors=colors[i])
plt.figure(2)
clf.fit(X2)
Z2 = clf.decision_function(np.c_[xx2.ravel(), yy2.ravel()])
Z2 = Z2.reshape(xx2.shape)
legend2[clf_name] = plt.contour(

xx2, yy2, Z2, levels=[0], linewidths=2, colors=colors[i])

legend1_values_list = list(legend1.values())
legend1_keys_list = list(legend1.keys())

# Plot the results (= shape of the data points cloud)
plt.figure(1) # two clusters
plt.title("Outlier detection on a real data set (boston housing)")
plt.scatter(X1[:, 0], X1[:, 1], color='black')
bbox_args = dict(boxstyle="round", fc="0.8")
arrow_args = dict(arrowstyle="->")
plt.annotate("several confounded points", xy=(24, 19),

xycoords="data", textcoords="data",
xytext=(13, 10), bbox=bbox_args, arrowprops=arrow_args)

plt.xlim((xx1.min(), xx1.max()))
plt.ylim((yy1.min(), yy1.max()))
plt.legend((legend1_values_list[0].collections[0],

legend1_values_list[1].collections[0],
legend1_values_list[2].collections[0]),

(legend1_keys_list[0], legend1_keys_list[1], legend1_keys_list[2]),
loc="upper center",
prop=matplotlib.font_manager.FontProperties(size=12))

plt.ylabel("accessibility to radial highways")
plt.xlabel("pupil-teacher ratio by town")

legend2_values_list = list(legend2.values())
legend2_keys_list = list(legend2.keys())

plt.figure(2) # "banana" shape
plt.title("Outlier detection on a real data set (boston housing)")
plt.scatter(X2[:, 0], X2[:, 1], color='black')
plt.xlim((xx2.min(), xx2.max()))
plt.ylim((yy2.min(), yy2.max()))
plt.legend((legend2_values_list[0].collections[0],

legend2_values_list[1].collections[0],
legend2_values_list[2].collections[0]),

(legend2_keys_list[0], legend2_keys_list[1], legend2_keys_list[2]),
loc="upper center",
prop=matplotlib.font_manager.FontProperties(size=12))

plt.ylabel("% lower status of the population")
plt.xlabel("average number of rooms per dwelling")

plt.show()
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Total running time of the script: ( 0 minutes 4.345 seconds)

Download Python source code: plot_outlier_detection_housing.py

Download Jupyter notebook: plot_outlier_detection_housing.ipynb

Generated by Sphinx-Gallery

4.2.2 Compressive sensing: tomography reconstruction with L1 prior (Lasso)

This example shows the reconstruction of an image from a set of parallel projections, acquired along different angles.
Such a dataset is acquired in computed tomography (CT).

Without any prior information on the sample, the number of projections required to reconstruct the image is of the
order of the linear size l of the image (in pixels). For simplicity we consider here a sparse image, where only pixels
on the boundary of objects have a non-zero value. Such data could correspond for example to a cellular material.
Note however that most images are sparse in a different basis, such as the Haar wavelets. Only l/7 projections are
acquired, therefore it is necessary to use prior information available on the sample (its sparsity): this is an example of
compressive sensing.

The tomography projection operation is a linear transformation. In addition to the data-fidelity term corresponding
to a linear regression, we penalize the L1 norm of the image to account for its sparsity. The resulting optimization
problem is called the Lasso. We use the class sklearn.linear_model.Lasso, that uses the coordinate descent
algorithm. Importantly, this implementation is more computationally efficient on a sparse matrix, than the projection
operator used here.

The reconstruction with L1 penalization gives a result with zero error (all pixels are successfully labeled with 0 or 1),
even if noise was added to the projections. In comparison, an L2 penalization (sklearn.linear_model.Ridge)
produces a large number of labeling errors for the pixels. Important artifacts are observed on the reconstructed image,
contrary to the L1 penalization. Note in particular the circular artifact separating the pixels in the corners, that have
contributed to fewer projections than the central disk.

print(__doc__)

# Author: Emmanuelle Gouillart <emmanuelle.gouillart@nsup.org>
# License: BSD 3 clause

import numpy as np
from scipy import sparse
from scipy import ndimage
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from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
import matplotlib.pyplot as plt

def _weights(x, dx=1, orig=0):
x = np.ravel(x)
floor_x = np.floor((x - orig) / dx)
alpha = (x - orig - floor_x * dx) / dx
return np.hstack((floor_x, floor_x + 1)), np.hstack((1 - alpha, alpha))

def _generate_center_coordinates(l_x):
X, Y = np.mgrid[:l_x, :l_x].astype(np.float64)
center = l_x / 2.
X += 0.5 - center
Y += 0.5 - center
return X, Y

def build_projection_operator(l_x, n_dir):
""" Compute the tomography design matrix.

Parameters
----------

l_x : int
linear size of image array

n_dir : int
number of angles at which projections are acquired.

Returns
-------
p : sparse matrix of shape (n_dir l_x, l_x**2)
"""
X, Y = _generate_center_coordinates(l_x)
angles = np.linspace(0, np.pi, n_dir, endpoint=False)
data_inds, weights, camera_inds = [], [], []
data_unravel_indices = np.arange(l_x ** 2)
data_unravel_indices = np.hstack((data_unravel_indices,

data_unravel_indices))
for i, angle in enumerate(angles):

Xrot = np.cos(angle) * X - np.sin(angle) * Y
inds, w = _weights(Xrot, dx=1, orig=X.min())
mask = np.logical_and(inds >= 0, inds < l_x)
weights += list(w[mask])
camera_inds += list(inds[mask] + i * l_x)
data_inds += list(data_unravel_indices[mask])

proj_operator = sparse.coo_matrix((weights, (camera_inds, data_inds)))
return proj_operator

def generate_synthetic_data():
""" Synthetic binary data """
rs = np.random.RandomState(0)
n_pts = 36
x, y = np.ogrid[0:l, 0:l]
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mask_outer = (x - l / 2.) ** 2 + (y - l / 2.) ** 2 < (l / 2.) ** 2
mask = np.zeros((l, l))
points = l * rs.rand(2, n_pts)
mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
mask = ndimage.gaussian_filter(mask, sigma=l / n_pts)
res = np.logical_and(mask > mask.mean(), mask_outer)
return np.logical_xor(res, ndimage.binary_erosion(res))

# Generate synthetic images, and projections
l = 128
proj_operator = build_projection_operator(l, l / 7.)
data = generate_synthetic_data()
proj = proj_operator * data.ravel()[:, np.newaxis]
proj += 0.15 * np.random.randn(*proj.shape)

# Reconstruction with L2 (Ridge) penalization
rgr_ridge = Ridge(alpha=0.2)
rgr_ridge.fit(proj_operator, proj.ravel())
rec_l2 = rgr_ridge.coef_.reshape(l, l)

# Reconstruction with L1 (Lasso) penalization
# the best value of alpha was determined using cross validation
# with LassoCV
rgr_lasso = Lasso(alpha=0.001)
rgr_lasso.fit(proj_operator, proj.ravel())
rec_l1 = rgr_lasso.coef_.reshape(l, l)

plt.figure(figsize=(8, 3.3))
plt.subplot(131)
plt.imshow(data, cmap=plt.cm.gray, interpolation='nearest')
plt.axis('off')
plt.title('original image')
plt.subplot(132)
plt.imshow(rec_l2, cmap=plt.cm.gray, interpolation='nearest')
plt.title('L2 penalization')
plt.axis('off')
plt.subplot(133)
plt.imshow(rec_l1, cmap=plt.cm.gray, interpolation='nearest')
plt.title('L1 penalization')
plt.axis('off')

plt.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0,
right=1)

plt.show()

Total running time of the script: ( 0 minutes 7.734 seconds)

Download Python source code: plot_tomography_l1_reconstruction.py

Download Jupyter notebook: plot_tomography_l1_reconstruction.ipynb

Generated by Sphinx-Gallery
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4.2.3 Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet
Allocation

This is an example of applying sklearn.decomposition.NMF and sklearn.decomposition.
LatentDirichletAllocation on a corpus of documents and extract additive models of the topic structure
of the corpus. The output is a list of topics, each represented as a list of terms (weights are not shown).

Non-negative Matrix Factorization is applied with two different objective functions: the Frobenius norm, and the
generalized Kullback-Leibler divergence. The latter is equivalent to Probabilistic Latent Semantic Indexing.

The default parameters (n_samples / n_features / n_components) should make the example runnable in a couple of
tens of seconds. You can try to increase the dimensions of the problem, but be aware that the time complexity is
polynomial in NMF. In LDA, the time complexity is proportional to (n_samples * iterations).

Out:

Loading dataset...
done in 1.405s.
Extracting tf-idf features for NMF...
done in 0.345s.
Extracting tf features for LDA...
done in 0.346s.

Fitting the NMF model (Frobenius norm) with tf-idf features, n_samples=2000 and n_
→˓features=1000...
done in 0.345s.

Topics in NMF model (Frobenius norm):
Topic #0: just people don think like know time good make way really say right ve want
→˓did ll new use years
Topic #1: windows use dos using window program os drivers application help software
→˓pc running ms screen files version card code work
Topic #2: god jesus bible faith christian christ christians does heaven sin believe
→˓lord life church mary atheism belief human love religion
Topic #3: thanks know does mail advance hi info interested email anybody looking card
→˓help like appreciated information send list video need
Topic #4: car cars tires miles 00 new engine insurance price condition oil power
→˓speed good 000 brake year models used bought
Topic #5: edu soon com send university internet mit ftp mail cc pub article
→˓information hope program mac email home contact blood
Topic #6: file problem files format win sound ftp pub read save site help image
→˓available create copy running memory self version
Topic #7: game team games year win play season players nhl runs goal hockey toronto
→˓division flyers player defense leafs bad teams
Topic #8: drive drives hard disk floppy software card mac computer power scsi
→˓controller apple mb 00 pc rom sale problem internal
Topic #9: key chip clipper keys encryption government public use secure enforcement
→˓phone nsa communications law encrypted security clinton used legal standard

Fitting the NMF model (generalized Kullback-Leibler divergence) with tf-idf features,
→˓n_samples=2000 and n_features=1000...
done in 1.383s.

Topics in NMF model (generalized Kullback-Leibler divergence):
Topic #0: people just like time don say really know way things make think right said
→˓did want ve probably work years
Topic #1: windows thanks using help need hi work know use looking mail software does
→˓used pc video available running info advance
Topic #2: god does true read know say believe subject says religion mean question
→˓point jesus people book christian mind understand matter
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Topic #3: thanks know like interested mail just want new send edu list does bike
→˓thing email reply post wondering hear heard
Topic #4: time new 10 year sale old offer 20 16 15 great 30 weeks good test model
→˓condition 11 14 power
Topic #5: use number com government new university data states information talk phone
→˓right including security provide control following long used research
Topic #6: edu try file soon remember problem com program hope mike space article
→˓wrong library short include win little couldn sun
Topic #7: year world team game play won win games season maybe case second does did
→˓series playing nhl fact said points
Topic #8: think don drive need hard make people mac read going pretty try sure order
→˓means trying apple case bit drives
Topic #9: just good use way got like ll doesn want sure don doing thought does wrong
→˓right better make stuff speed

Fitting LDA models with tf features, n_samples=2000 and n_features=1000...
done in 10.169s.

Topics in LDA model:
Topic #0: edu com mail send graphics ftp pub available contact university list faq ca
→˓information cs 1993 program sun uk mit
Topic #1: don like just know think ve way use right good going make sure ll point got
→˓need really time doesn
Topic #2: christian think atheism faith pittsburgh new bible radio games alt lot just
→˓religion like book read play time subject believe
Topic #3: drive disk windows thanks use card drives hard version pc software file
→˓using scsi help does new dos controller 16
Topic #4: hiv health aids disease april medical care research 1993 light information
→˓study national service test led 10 page new drug
Topic #5: god people does just good don jesus say israel way life know true fact time
→˓law want believe make think
Topic #6: 55 10 11 18 15 team game 19 period play 23 12 13 flyers 20 25 22 17 24 16
Topic #7: car year just cars new engine like bike good oil insurance better tires 000
→˓thing speed model brake driving performance
Topic #8: people said did just didn know time like went think children came come don
→˓took years say dead told started
Topic #9: key space law government public use encryption earth section security moon
→˓probe enforcement keys states lunar military crime surface technology

# Author: Olivier Grisel <olivier.grisel@ensta.org>
# Lars Buitinck
# Chyi-Kwei Yau <chyikwei.yau@gmail.com>
# License: BSD 3 clause

from __future__ import print_function
from time import time

from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.decomposition import NMF, LatentDirichletAllocation
from sklearn.datasets import fetch_20newsgroups

n_samples = 2000
n_features = 1000
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n_components = 10
n_top_words = 20

def print_top_words(model, feature_names, n_top_words):
for topic_idx, topic in enumerate(model.components_):

message = "Topic #%d: " % topic_idx
message += " ".join([feature_names[i]

for i in topic.argsort()[:-n_top_words - 1:-1]])
print(message)

print()

# Load the 20 newsgroups dataset and vectorize it. We use a few heuristics
# to filter out useless terms early on: the posts are stripped of headers,
# footers and quoted replies, and common English words, words occurring in
# only one document or in at least 95% of the documents are removed.

print("Loading dataset...")
t0 = time()
dataset = fetch_20newsgroups(shuffle=True, random_state=1,

remove=('headers', 'footers', 'quotes'))
data_samples = dataset.data[:n_samples]
print("done in %0.3fs." % (time() - t0))

# Use tf-idf features for NMF.
print("Extracting tf-idf features for NMF...")
tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2,

max_features=n_features,
stop_words='english')

t0 = time()
tfidf = tfidf_vectorizer.fit_transform(data_samples)
print("done in %0.3fs." % (time() - t0))

# Use tf (raw term count) features for LDA.
print("Extracting tf features for LDA...")
tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2,

max_features=n_features,
stop_words='english')

t0 = time()
tf = tf_vectorizer.fit_transform(data_samples)
print("done in %0.3fs." % (time() - t0))
print()

# Fit the NMF model
print("Fitting the NMF model (Frobenius norm) with tf-idf features, "

"n_samples=%d and n_features=%d..."
% (n_samples, n_features))

t0 = time()
nmf = NMF(n_components=n_components, random_state=1,

alpha=.1, l1_ratio=.5).fit(tfidf)
print("done in %0.3fs." % (time() - t0))

print("\nTopics in NMF model (Frobenius norm):")
tfidf_feature_names = tfidf_vectorizer.get_feature_names()
print_top_words(nmf, tfidf_feature_names, n_top_words)

# Fit the NMF model
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print("Fitting the NMF model (generalized Kullback-Leibler divergence) with "
"tf-idf features, n_samples=%d and n_features=%d..."
% (n_samples, n_features))

t0 = time()
nmf = NMF(n_components=n_components, random_state=1,

beta_loss='kullback-leibler', solver='mu', max_iter=1000, alpha=.1,
l1_ratio=.5).fit(tfidf)

print("done in %0.3fs." % (time() - t0))

print("\nTopics in NMF model (generalized Kullback-Leibler divergence):")
tfidf_feature_names = tfidf_vectorizer.get_feature_names()
print_top_words(nmf, tfidf_feature_names, n_top_words)

print("Fitting LDA models with tf features, "
"n_samples=%d and n_features=%d..."
% (n_samples, n_features))

lda = LatentDirichletAllocation(n_components=n_components, max_iter=5,
learning_method='online',
learning_offset=50.,
random_state=0)

t0 = time()
lda.fit(tf)
print("done in %0.3fs." % (time() - t0))

print("\nTopics in LDA model:")
tf_feature_names = tf_vectorizer.get_feature_names()
print_top_words(lda, tf_feature_names, n_top_words)

Total running time of the script: ( 0 minutes 13.999 seconds)

Download Python source code: plot_topics_extraction_with_nmf_lda.py

Download Jupyter notebook: plot_topics_extraction_with_nmf_lda.ipynb

Generated by Sphinx-Gallery

4.2.4 Faces recognition example using eigenfaces and SVMs

The dataset used in this example is a preprocessed excerpt of the “Labeled Faces in the Wild”, aka LFW:

http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)

Expected results for the top 5 most represented people in the dataset:

Ariel Sharon 0.67 0.92 0.77 13
Colin Powell 0.75 0.78 0.76 60
Donald Rumsfeld 0.78 0.67 0.72 27
George W Bush 0.86 0.86 0.86 146
Gerhard Schroeder 0.76 0.76 0.76 25
Hugo Chavez 0.67 0.67 0.67 15
Tony Blair 0.81 0.69 0.75 36
avg / total 0.80 0.80 0.80 322
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•

•

Out:

Total dataset size:
n_samples: 1288
n_features: 1850
n_classes: 7
Extracting the top 150 eigenfaces from 966 faces
done in 0.215s
Projecting the input data on the eigenfaces orthonormal basis
done in 0.023s
Fitting the classifier to the training set
done in 23.334s
Best estimator found by grid search:
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SVC(C=1000.0, cache_size=200, class_weight='balanced', coef0=0.0,
decision_function_shape='ovr', degree=3, gamma=0.001, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

Predicting people's names on the test set
done in 0.049s

precision recall f1-score support

Ariel Sharon 0.50 0.69 0.58 13
Colin Powell 0.80 0.85 0.82 60

Donald Rumsfeld 0.69 0.74 0.71 27
George W Bush 0.91 0.89 0.90 146

Gerhard Schroeder 0.82 0.72 0.77 25
Hugo Chavez 0.83 0.67 0.74 15
Tony Blair 0.88 0.83 0.86 36

avg / total 0.84 0.83 0.83 322

[[ 9 0 3 1 0 0 0]
[ 2 51 2 4 0 1 0]
[ 5 0 20 2 0 0 0]
[ 2 8 2 130 3 0 1]
[ 0 1 0 3 18 1 2]
[ 0 2 0 1 1 10 1]
[ 0 2 2 2 0 0 30]]

from __future__ import print_function

from time import time
import logging
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_lfw_people
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.decomposition import PCA
from sklearn.svm import SVC

print(__doc__)

# Display progress logs on stdout
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')

# #############################################################################
# Download the data, if not already on disk and load it as numpy arrays

lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

# introspect the images arrays to find the shapes (for plotting)
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n_samples, h, w = lfw_people.images.shape

# for machine learning we use the 2 data directly (as relative pixel
# positions info is ignored by this model)
X = lfw_people.data
n_features = X.shape[1]

# the label to predict is the id of the person
y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0]

print("Total dataset size:")
print("n_samples: %d" % n_samples)
print("n_features: %d" % n_features)
print("n_classes: %d" % n_classes)

# #############################################################################
# Split into a training set and a test set using a stratified k fold

# split into a training and testing set
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.25, random_state=42)

# #############################################################################
# Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
# dataset): unsupervised feature extraction / dimensionality reduction
n_components = 150

print("Extracting the top %d eigenfaces from %d faces"
% (n_components, X_train.shape[0]))

t0 = time()
pca = PCA(n_components=n_components, svd_solver='randomized',

whiten=True).fit(X_train)
print("done in %0.3fs" % (time() - t0))

eigenfaces = pca.components_.reshape((n_components, h, w))

print("Projecting the input data on the eigenfaces orthonormal basis")
t0 = time()
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
print("done in %0.3fs" % (time() - t0))

# #############################################################################
# Train a SVM classification model

print("Fitting the classifier to the training set")
t0 = time()
param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],

'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)
clf = clf.fit(X_train_pca, y_train)
print("done in %0.3fs" % (time() - t0))
print("Best estimator found by grid search:")
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print(clf.best_estimator_)

# #############################################################################
# Quantitative evaluation of the model quality on the test set

print("Predicting people's names on the test set")
t0 = time()
y_pred = clf.predict(X_test_pca)
print("done in %0.3fs" % (time() - t0))

print(classification_report(y_test, y_pred, target_names=target_names))
print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))

# #############################################################################
# Qualitative evaluation of the predictions using matplotlib

def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
"""Helper function to plot a gallery of portraits"""
plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
for i in range(n_row * n_col):

plt.subplot(n_row, n_col, i + 1)
plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
plt.title(titles[i], size=12)
plt.xticks(())
plt.yticks(())

# plot the result of the prediction on a portion of the test set

def title(y_pred, y_test, target_names, i):
pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
return 'predicted: %s\ntrue: %s' % (pred_name, true_name)

prediction_titles = [title(y_pred, y_test, target_names, i)
for i in range(y_pred.shape[0])]

plot_gallery(X_test, prediction_titles, h, w)

# plot the gallery of the most significative eigenfaces

eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
plot_gallery(eigenfaces, eigenface_titles, h, w)

plt.show()

Total running time of the script: ( 0 minutes 24.540 seconds)

Download Python source code: plot_face_recognition.py

Download Jupyter notebook: plot_face_recognition.ipynb

Generated by Sphinx-Gallery
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4.2.5 Model Complexity Influence

Demonstrate how model complexity influences both prediction accuracy and computational performance.

The dataset is the Boston Housing dataset (resp. 20 Newsgroups) for regression (resp. classification).

For each class of models we make the model complexity vary through the choice of relevant model parameters and
measure the influence on both computational performance (latency) and predictive power (MSE or Hamming Loss).

•

•

4.2. Examples based on real world datasets 639



scikit-learn user guide, Release 0.19.1

•

Out:

Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
eta0=0.0, fit_intercept=True, l1_ratio=0.25,
learning_rate='optimal', loss='modified_huber', max_iter=None,
n_iter=None, n_jobs=1, penalty='elasticnet', power_t=0.5,
random_state=None, shuffle=True, tol=None, verbose=0,
warm_start=False)

Complexity: 4454 | Hamming Loss (Misclassification Ratio): 0.2501 | Pred. Time: 0.
→˓023554s

Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
eta0=0.0, fit_intercept=True, l1_ratio=0.5, learning_rate='optimal',
loss='modified_huber', max_iter=None, n_iter=None, n_jobs=1,
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
tol=None, verbose=0, warm_start=False)

Complexity: 1624 | Hamming Loss (Misclassification Ratio): 0.2923 | Pred. Time: 0.
→˓017335s

Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
eta0=0.0, fit_intercept=True, l1_ratio=0.75,
learning_rate='optimal', loss='modified_huber', max_iter=None,
n_iter=None, n_jobs=1, penalty='elasticnet', power_t=0.5,
random_state=None, shuffle=True, tol=None, verbose=0,
warm_start=False)

Complexity: 873 | Hamming Loss (Misclassification Ratio): 0.3191 | Pred. Time: 0.
→˓013522s

Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
eta0=0.0, fit_intercept=True, l1_ratio=0.9, learning_rate='optimal',
loss='modified_huber', max_iter=None, n_iter=None, n_jobs=1,
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
tol=None, verbose=0, warm_start=False)

Complexity: 655 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.
→˓011728s

Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-
→˓05,

kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001,
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verbose=False)
Complexity: 69 | MSE: 31.8133 | Pred. Time: 0.000358s

Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-
→˓05,

kernel='rbf', max_iter=-1, nu=0.25, shrinking=True, tol=0.001,
verbose=False)

Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000642s

Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-
→˓05,

kernel='rbf', max_iter=-1, nu=0.5, shrinking=True, tol=0.001,
verbose=False)

Complexity: 243 | MSE: 22.3315 | Pred. Time: 0.001103s

Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-
→˓05,

kernel='rbf', max_iter=-1, nu=0.75, shrinking=True, tol=0.001,
verbose=False)

Complexity: 350 | MSE: 21.3679 | Pred. Time: 0.001605s

Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-
→˓05,

kernel='rbf', max_iter=-1, nu=0.9, shrinking=True, tol=0.001,
verbose=False)

Complexity: 404 | MSE: 21.0915 | Pred. Time: 0.001793s

Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, presort='auto', random_state=None,
subsample=1.0, verbose=0, warm_start=False)

Complexity: 10 | MSE: 28.9793 | Pred. Time: 0.000107s

Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=50, presort='auto', random_state=None,
subsample=1.0, verbose=0, warm_start=False)

Complexity: 50 | MSE: 8.3398 | Pred. Time: 0.000189s

Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=100, presort='auto', random_state=None,
subsample=1.0, verbose=0, warm_start=False)

Complexity: 100 | MSE: 7.0096 | Pred. Time: 0.000269s

Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1,
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min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=200, presort='auto', random_state=None,
subsample=1.0, verbose=0, warm_start=False)

Complexity: 200 | MSE: 6.1836 | Pred. Time: 0.000426s

Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=500, presort='auto', random_state=None,
subsample=1.0, verbose=0, warm_start=False)

Complexity: 500 | MSE: 6.3426 | Pred. Time: 0.000925s

print(__doc__)

# Author: Eustache Diemert <eustache@diemert.fr>
# License: BSD 3 clause

import time
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.parasite_axes import host_subplot
from mpl_toolkits.axisartist.axislines import Axes
from scipy.sparse.csr import csr_matrix

from sklearn import datasets
from sklearn.utils import shuffle
from sklearn.metrics import mean_squared_error
from sklearn.svm.classes import NuSVR
from sklearn.ensemble.gradient_boosting import GradientBoostingRegressor
from sklearn.linear_model.stochastic_gradient import SGDClassifier
from sklearn.metrics import hamming_loss

# #############################################################################
# Routines

# Initialize random generator
np.random.seed(0)

def generate_data(case, sparse=False):
"""Generate regression/classification data."""
bunch = None
if case == 'regression':

bunch = datasets.load_boston()
elif case == 'classification':

bunch = datasets.fetch_20newsgroups_vectorized(subset='all')
X, y = shuffle(bunch.data, bunch.target)
offset = int(X.shape[0] * 0.8)
X_train, y_train = X[:offset], y[:offset]
X_test, y_test = X[offset:], y[offset:]
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if sparse:
X_train = csr_matrix(X_train)
X_test = csr_matrix(X_test)

else:
X_train = np.array(X_train)
X_test = np.array(X_test)

y_test = np.array(y_test)
y_train = np.array(y_train)
data = {'X_train': X_train, 'X_test': X_test, 'y_train': y_train,

'y_test': y_test}
return data

def benchmark_influence(conf):
"""
Benchmark influence of :changing_param: on both MSE and latency.
"""
prediction_times = []
prediction_powers = []
complexities = []
for param_value in conf['changing_param_values']:

conf['tuned_params'][conf['changing_param']] = param_value
estimator = conf['estimator'](**conf['tuned_params'])
print("Benchmarking %s" % estimator)
estimator.fit(conf['data']['X_train'], conf['data']['y_train'])
conf['postfit_hook'](estimator)
complexity = conf['complexity_computer'](estimator)
complexities.append(complexity)
start_time = time.time()
for _ in range(conf['n_samples']):

y_pred = estimator.predict(conf['data']['X_test'])
elapsed_time = (time.time() - start_time) / float(conf['n_samples'])
prediction_times.append(elapsed_time)
pred_score = conf['prediction_performance_computer'](

conf['data']['y_test'], y_pred)
prediction_powers.append(pred_score)
print("Complexity: %d | %s: %.4f | Pred. Time: %fs\n" % (

complexity, conf['prediction_performance_label'], pred_score,
elapsed_time))

return prediction_powers, prediction_times, complexities

def plot_influence(conf, mse_values, prediction_times, complexities):
"""
Plot influence of model complexity on both accuracy and latency.
"""
plt.figure(figsize=(12, 6))
host = host_subplot(111, axes_class=Axes)
plt.subplots_adjust(right=0.75)
par1 = host.twinx()
host.set_xlabel('Model Complexity (%s)' % conf['complexity_label'])
y1_label = conf['prediction_performance_label']
y2_label = "Time (s)"
host.set_ylabel(y1_label)
par1.set_ylabel(y2_label)
p1, = host.plot(complexities, mse_values, 'b-', label="prediction error")
p2, = par1.plot(complexities, prediction_times, 'r-',

label="latency")
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host.legend(loc='upper right')
host.axis["left"].label.set_color(p1.get_color())
par1.axis["right"].label.set_color(p2.get_color())
plt.title('Influence of Model Complexity - %s' % conf['estimator'].__name__)
plt.show()

def _count_nonzero_coefficients(estimator):
a = estimator.coef_.toarray()
return np.count_nonzero(a)

# #############################################################################
# Main code
regression_data = generate_data('regression')
classification_data = generate_data('classification', sparse=True)
configurations = [

{'estimator': SGDClassifier,
'tuned_params': {'penalty': 'elasticnet', 'alpha': 0.001, 'loss':

'modified_huber', 'fit_intercept': True},
'changing_param': 'l1_ratio',
'changing_param_values': [0.25, 0.5, 0.75, 0.9],
'complexity_label': 'non_zero coefficients',
'complexity_computer': _count_nonzero_coefficients,
'prediction_performance_computer': hamming_loss,
'prediction_performance_label': 'Hamming Loss (Misclassification Ratio)',
'postfit_hook': lambda x: x.sparsify(),
'data': classification_data,
'n_samples': 30},

{'estimator': NuSVR,
'tuned_params': {'C': 1e3, 'gamma': 2 ** -15},
'changing_param': 'nu',
'changing_param_values': [0.1, 0.25, 0.5, 0.75, 0.9],
'complexity_label': 'n_support_vectors',
'complexity_computer': lambda x: len(x.support_vectors_),
'data': regression_data,
'postfit_hook': lambda x: x,
'prediction_performance_computer': mean_squared_error,
'prediction_performance_label': 'MSE',
'n_samples': 30},

{'estimator': GradientBoostingRegressor,
'tuned_params': {'loss': 'ls'},
'changing_param': 'n_estimators',
'changing_param_values': [10, 50, 100, 200, 500],
'complexity_label': 'n_trees',
'complexity_computer': lambda x: x.n_estimators,
'data': regression_data,
'postfit_hook': lambda x: x,
'prediction_performance_computer': mean_squared_error,
'prediction_performance_label': 'MSE',
'n_samples': 30},

]
for conf in configurations:

prediction_performances, prediction_times, complexities = \
benchmark_influence(conf)

plot_influence(conf, prediction_performances, prediction_times,
complexities)

Total running time of the script: ( 0 minutes 22.819 seconds)

644 Chapter 4. Examples



scikit-learn user guide, Release 0.19.1

Download Python source code: plot_model_complexity_influence.py

Download Jupyter notebook: plot_model_complexity_influence.ipynb

Generated by Sphinx-Gallery

4.2.6 Species distribution modeling

Modeling species’ geographic distributions is an important problem in conservation biology. In this example we model
the geographic distribution of two south american mammals given past observations and 14 environmental variables.
Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density
estimation problem and use the OneClassSVM provided by the package sklearn.svm as our modeling tool. The dataset
is provided by Phillips et. al. (2006). If available, the example uses basemap to plot the coast lines and national
boundaries of South America.

The two species are:

• “Bradypus variegatus” , the Brown-throated Sloth.

• “Microryzomys minutus” , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia,
Ecuador, Peru, and Venezuela.

References

• “Maximum entropy modeling of species geographic distributions” S. J. Phillips, R. P. Anderson, R. E. Schapire
- Ecological Modelling, 190:231-259, 2006.
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Out:

________________________________________________________________________________
Modeling distribution of species 'bradypus variegatus'
- fit OneClassSVM ... done.
- plot coastlines from coverage
- predict species distribution

Area under the ROC curve : 0.868443
________________________________________________________________________________
Modeling distribution of species 'microryzomys minutus'
- fit OneClassSVM ... done.
- plot coastlines from coverage
- predict species distribution

Area under the ROC curve : 0.993919

time elapsed: 6.07s

# Authors: Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Jake Vanderplas <vanderplas@astro.washington.edu>
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#
# License: BSD 3 clause

from __future__ import print_function

from time import time

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets.base import Bunch
from sklearn.datasets import fetch_species_distributions
from sklearn.datasets.species_distributions import construct_grids
from sklearn import svm, metrics

# if basemap is available, we'll use it.
# otherwise, we'll improvise later...
try:

from mpl_toolkits.basemap import Basemap
basemap = True

except ImportError:
basemap = False

print(__doc__)

def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid):
"""Create a bunch with information about a particular organism

This will use the test/train record arrays to extract the
data specific to the given species name.
"""
bunch = Bunch(name=' '.join(species_name.split("_")[:2]))
species_name = species_name.encode('ascii')
points = dict(test=test, train=train)

for label, pts in points.items():
# choose points associated with the desired species
pts = pts[pts['species'] == species_name]
bunch['pts_%s' % label] = pts

# determine coverage values for each of the training & testing points
ix = np.searchsorted(xgrid, pts['dd long'])
iy = np.searchsorted(ygrid, pts['dd lat'])
bunch['cov_%s' % label] = coverages[:, -iy, ix].T

return bunch

def plot_species_distribution(species=("bradypus_variegatus_0",
"microryzomys_minutus_0")):

"""
Plot the species distribution.
"""
if len(species) > 2:

print("Note: when more than two species are provided,"
" only the first two will be used")
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t0 = time()

# Load the compressed data
data = fetch_species_distributions()

# Set up the data grid
xgrid, ygrid = construct_grids(data)

# The grid in x,y coordinates
X, Y = np.meshgrid(xgrid, ygrid[::-1])

# create a bunch for each species
BV_bunch = create_species_bunch(species[0],

data.train, data.test,
data.coverages, xgrid, ygrid)

MM_bunch = create_species_bunch(species[1],
data.train, data.test,
data.coverages, xgrid, ygrid)

# background points (grid coordinates) for evaluation
np.random.seed(13)
background_points = np.c_[np.random.randint(low=0, high=data.Ny,

size=10000),
np.random.randint(low=0, high=data.Nx,

size=10000)].T

# We'll make use of the fact that coverages[6] has measurements at all
# land points. This will help us decide between land and water.
land_reference = data.coverages[6]

# Fit, predict, and plot for each species.
for i, species in enumerate([BV_bunch, MM_bunch]):

print("_" * 80)
print("Modeling distribution of species '%s'" % species.name)

# Standardize features
mean = species.cov_train.mean(axis=0)
std = species.cov_train.std(axis=0)
train_cover_std = (species.cov_train - mean) / std

# Fit OneClassSVM
print(" - fit OneClassSVM ... ", end='')
clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5)
clf.fit(train_cover_std)
print("done.")

# Plot map of South America
plt.subplot(1, 2, i + 1)
if basemap:

print(" - plot coastlines using basemap")
m = Basemap(projection='cyl', llcrnrlat=Y.min(),

urcrnrlat=Y.max(), llcrnrlon=X.min(),
urcrnrlon=X.max(), resolution='c')

m.drawcoastlines()
m.drawcountries()

else:
print(" - plot coastlines from coverage")
plt.contour(X, Y, land_reference,
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levels=[-9999], colors="k",
linestyles="solid")

plt.xticks([])
plt.yticks([])

print(" - predict species distribution")

# Predict species distribution using the training data
Z = np.ones((data.Ny, data.Nx), dtype=np.float64)

# We'll predict only for the land points.
idx = np.where(land_reference > -9999)
coverages_land = data.coverages[:, idx[0], idx[1]].T

pred = clf.decision_function((coverages_land - mean) / std)[:, 0]
Z *= pred.min()
Z[idx[0], idx[1]] = pred

levels = np.linspace(Z.min(), Z.max(), 25)
Z[land_reference == -9999] = -9999

# plot contours of the prediction
plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds)
plt.colorbar(format='%.2f')

# scatter training/testing points
plt.scatter(species.pts_train['dd long'], species.pts_train['dd lat'],

s=2 ** 2, c='black',
marker='^', label='train')

plt.scatter(species.pts_test['dd long'], species.pts_test['dd lat'],
s=2 ** 2, c='black',
marker='x', label='test')

plt.legend()
plt.title(species.name)
plt.axis('equal')

# Compute AUC with regards to background points
pred_background = Z[background_points[0], background_points[1]]
pred_test = clf.decision_function((species.cov_test - mean)

/ std)[:, 0]
scores = np.r_[pred_test, pred_background]
y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)]
fpr, tpr, thresholds = metrics.roc_curve(y, scores)
roc_auc = metrics.auc(fpr, tpr)
plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right")
print("\n Area under the ROC curve : %f" % roc_auc)

print("\ntime elapsed: %.2fs" % (time() - t0))

plot_species_distribution()
plt.show()

Total running time of the script: ( 0 minutes 6.068 seconds)

Download Python source code: plot_species_distribution_modeling.py

Download Jupyter notebook: plot_species_distribution_modeling.ipynb
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Generated by Sphinx-Gallery

4.2.7 Wikipedia principal eigenvector

A classical way to assert the relative importance of vertices in a graph is to compute the principal eigenvector of the
adjacency matrix so as to assign to each vertex the values of the components of the first eigenvector as a centrality
score:

https://en.wikipedia.org/wiki/Eigenvector_centrality

On the graph of webpages and links those values are called the PageRank scores by Google.

The goal of this example is to analyze the graph of links inside wikipedia articles to rank articles by relative importance
according to this eigenvector centrality.

The traditional way to compute the principal eigenvector is to use the power iteration method:

https://en.wikipedia.org/wiki/Power_iteration

Here the computation is achieved thanks to Martinsson’s Randomized SVD algorithm implemented in the scikit.

The graph data is fetched from the DBpedia dumps. DBpedia is an extraction of the latent structured data of the
Wikipedia content.

# Author: Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause

from __future__ import print_function

from bz2 import BZ2File
import os
from datetime import datetime
from pprint import pprint
from time import time

import numpy as np

from scipy import sparse

from sklearn.decomposition import randomized_svd
from sklearn.externals.joblib import Memory
from sklearn.externals.six.moves.urllib.request import urlopen
from sklearn.externals.six import iteritems

print(__doc__)

# #############################################################################
# Where to download the data, if not already on disk
redirects_url = "http://downloads.dbpedia.org/3.5.1/en/redirects_en.nt.bz2"
redirects_filename = redirects_url.rsplit("/", 1)[1]

page_links_url = "http://downloads.dbpedia.org/3.5.1/en/page_links_en.nt.bz2"
page_links_filename = page_links_url.rsplit("/", 1)[1]

resources = [
(redirects_url, redirects_filename),
(page_links_url, page_links_filename),

]
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for url, filename in resources:
if not os.path.exists(filename):

print("Downloading data from '%s', please wait..." % url)
opener = urlopen(url)
open(filename, 'wb').write(opener.read())
print()

# #############################################################################
# Loading the redirect files

memory = Memory(cachedir=".")

def index(redirects, index_map, k):
"""Find the index of an article name after redirect resolution"""
k = redirects.get(k, k)
return index_map.setdefault(k, len(index_map))

DBPEDIA_RESOURCE_PREFIX_LEN = len("http://dbpedia.org/resource/")
SHORTNAME_SLICE = slice(DBPEDIA_RESOURCE_PREFIX_LEN + 1, -1)

def short_name(nt_uri):
"""Remove the < and > URI markers and the common URI prefix"""
return nt_uri[SHORTNAME_SLICE]

def get_redirects(redirects_filename):
"""Parse the redirections and build a transitively closed map out of it"""
redirects = {}
print("Parsing the NT redirect file")
for l, line in enumerate(BZ2File(redirects_filename)):

split = line.split()
if len(split) != 4:

print("ignoring malformed line: " + line)
continue

redirects[short_name(split[0])] = short_name(split[2])
if l % 1000000 == 0:

print("[%s] line: %08d" % (datetime.now().isoformat(), l))

# compute the transitive closure
print("Computing the transitive closure of the redirect relation")
for l, source in enumerate(redirects.keys()):

transitive_target = None
target = redirects[source]
seen = set([source])
while True:

transitive_target = target
target = redirects.get(target)
if target is None or target in seen:

break
seen.add(target)

redirects[source] = transitive_target
if l % 1000000 == 0:

print("[%s] line: %08d" % (datetime.now().isoformat(), l))
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return redirects

# disabling joblib as the pickling of large dicts seems much too slow
#@memory.cache
def get_adjacency_matrix(redirects_filename, page_links_filename, limit=None):

"""Extract the adjacency graph as a scipy sparse matrix

Redirects are resolved first.

Returns X, the scipy sparse adjacency matrix, redirects as python
dict from article names to article names and index_map a python dict
from article names to python int (article indexes).
"""

print("Computing the redirect map")
redirects = get_redirects(redirects_filename)

print("Computing the integer index map")
index_map = dict()
links = list()
for l, line in enumerate(BZ2File(page_links_filename)):

split = line.split()
if len(split) != 4:

print("ignoring malformed line: " + line)
continue

i = index(redirects, index_map, short_name(split[0]))
j = index(redirects, index_map, short_name(split[2]))
links.append((i, j))
if l % 1000000 == 0:

print("[%s] line: %08d" % (datetime.now().isoformat(), l))

if limit is not None and l >= limit - 1:
break

print("Computing the adjacency matrix")
X = sparse.lil_matrix((len(index_map), len(index_map)), dtype=np.float32)
for i, j in links:

X[i, j] = 1.0
del links
print("Converting to CSR representation")
X = X.tocsr()
print("CSR conversion done")
return X, redirects, index_map

# stop after 5M links to make it possible to work in RAM
X, redirects, index_map = get_adjacency_matrix(

redirects_filename, page_links_filename, limit=5000000)
names = dict((i, name) for name, i in iteritems(index_map))

print("Computing the principal singular vectors using randomized_svd")
t0 = time()
U, s, V = randomized_svd(X, 5, n_iter=3)
print("done in %0.3fs" % (time() - t0))

# print the names of the wikipedia related strongest components of the
# principal singular vector which should be similar to the highest eigenvector
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print("Top wikipedia pages according to principal singular vectors")
pprint([names[i] for i in np.abs(U.T[0]).argsort()[-10:]])
pprint([names[i] for i in np.abs(V[0]).argsort()[-10:]])

def centrality_scores(X, alpha=0.85, max_iter=100, tol=1e-10):
"""Power iteration computation of the principal eigenvector

This method is also known as Google PageRank and the implementation
is based on the one from the NetworkX project (BSD licensed too)
with copyrights by:

Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>

"""
n = X.shape[0]
X = X.copy()
incoming_counts = np.asarray(X.sum(axis=1)).ravel()

print("Normalizing the graph")
for i in incoming_counts.nonzero()[0]:

X.data[X.indptr[i]:X.indptr[i + 1]] *= 1.0 / incoming_counts[i]
dangle = np.asarray(np.where(X.sum(axis=1) == 0, 1.0 / n, 0)).ravel()

scores = np.ones(n, dtype=np.float32) / n # initial guess
for i in range(max_iter):

print("power iteration #%d" % i)
prev_scores = scores
scores = (alpha * (scores * X + np.dot(dangle, prev_scores))

+ (1 - alpha) * prev_scores.sum() / n)
# check convergence: normalized l_inf norm
scores_max = np.abs(scores).max()
if scores_max == 0.0:

scores_max = 1.0
err = np.abs(scores - prev_scores).max() / scores_max
print("error: %0.6f" % err)
if err < n * tol:

return scores

return scores

print("Computing principal eigenvector score using a power iteration method")
t0 = time()
scores = centrality_scores(X, max_iter=100, tol=1e-10)
print("done in %0.3fs" % (time() - t0))
pprint([names[i] for i in np.abs(scores).argsort()[-10:]])

Total running time of the script: ( 0 minutes 0.000 seconds)

Download Python source code: wikipedia_principal_eigenvector.py

Download Jupyter notebook: wikipedia_principal_eigenvector.ipynb

Generated by Sphinx-Gallery
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4.2.8 Visualizing the stock market structure

This example employs several unsupervised learning techniques to extract the stock market structure from variations
in historical quotes.

The quantity that we use is the daily variation in quote price: quotes that are linked tend to cofluctuate during a day.

Learning a graph structure

We use sparse inverse covariance estimation to find which quotes are correlated conditionally on the others. Specifi-
cally, sparse inverse covariance gives us a graph, that is a list of connection. For each symbol, the symbols that it is
connected too are those useful to explain its fluctuations.

Clustering

We use clustering to group together quotes that behave similarly. Here, amongst the various clustering techniques
available in the scikit-learn, we use Affinity Propagation as it does not enforce equal-size clusters, and it can choose
automatically the number of clusters from the data.

Note that this gives us a different indication than the graph, as the graph reflects conditional relations between variables,
while the clustering reflects marginal properties: variables clustered together can be considered as having a similar
impact at the level of the full stock market.

Embedding in 2D space

For visualization purposes, we need to lay out the different symbols on a 2D canvas. For this we use Manifold learning
techniques to retrieve 2D embedding.

Visualization

The output of the 3 models are combined in a 2D graph where nodes represents the stocks and edges the:

• cluster labels are used to define the color of the nodes

• the sparse covariance model is used to display the strength of the edges

• the 2D embedding is used to position the nodes in the plan

This example has a fair amount of visualization-related code, as visualization is crucial here to display the graph. One
of the challenge is to position the labels minimizing overlap. For this we use an heuristic based on the direction of the
nearest neighbor along each axis.
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Out:

Cluster 1: Apple, Amazon, Yahoo
Cluster 2: Cisco, Dell, Microsoft, Texas Instruments, HP, IBM, SAP
Cluster 3: American express
Cluster 4: Boeing
Cluster 5: Cablevision
Cluster 6: ConocoPhillips, Chevron, Total, Valero Energy, Exxon
Cluster 7: Comcast, Marriott, AIG, Bank of America, CVS, DuPont de Nemours, Ford,
→˓General Electrics, Goldman Sachs, Home Depot, JPMorgan Chase, McDonald's, 3M,
→˓Pfizer, Ryder, Wells Fargo, Wal-Mart
Cluster 8: Navistar
Cluster 9: General Dynamics, Northrop Grumman, Raytheon
Cluster 10: GlaxoSmithKline, Novartis, Sanofi-Aventis
Cluster 11: Kellogg, Coca Cola, Pepsi
Cluster 12: Colgate-Palmolive, Kimberly-Clark, Procter Gamble
Cluster 13: Canon, Caterpillar, Honda, Sony, Toyota, Unilever, Xerox
Cluster 14: Time Warner
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from __future__ import print_function

# Author: Gael Varoquaux gael.varoquaux@normalesup.org
# License: BSD 3 clause

import sys
from datetime import datetime

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from six.moves.urllib.request import urlopen
from six.moves.urllib.parse import urlencode
from sklearn import cluster, covariance, manifold

print(__doc__)

def retry(f, n_attempts=3):
"Wrapper function to retry function calls in case of exceptions"
def wrapper(*args, **kwargs):

for i in range(n_attempts):
try:

return f(*args, **kwargs)
except Exception:

if i == n_attempts - 1:
raise

return wrapper

def quotes_historical_google(symbol, start_date, end_date):
"""Get the historical data from Google finance.

Parameters
----------
symbol : str

Ticker symbol to query for, for example ``"DELL"``.
start_date : datetime.datetime

Start date.
end_date : datetime.datetime

End date.

Returns
-------
X : array

The columns are ``date`` -- date, ``open``, ``high``,
``low``, ``close`` and ``volume`` of type float.

"""
params = {

'q': symbol,
'startdate': start_date.strftime('%Y-%m-%d'),
'enddate': end_date.strftime('%Y-%m-%d'),
'output': 'csv',

}
url = 'https://finance.google.com/finance/historical?' + urlencode(params)
response = urlopen(url)
dtype = {

'names': ['date', 'open', 'high', 'low', 'close', 'volume'],
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'formats': ['object', 'f4', 'f4', 'f4', 'f4', 'f4']
}
converters = {

0: lambda s: datetime.strptime(s.decode(), '%d-%b-%y').date()}
data = np.genfromtxt(response, delimiter=',', skip_header=1,

dtype=dtype, converters=converters,
missing_values='-', filling_values=-1)

min_date = min(data['date'], default=datetime.min.date())
max_date = max(data['date'], default=datetime.max.date())
start_end_diff = (end_date - start_date).days
min_max_diff = (max_date - min_date).days
data_is_fine = (

start_date <= min_date <= end_date and
start_date <= max_date <= end_date and
start_end_diff - 7 <= min_max_diff <= start_end_diff)

if not data_is_fine:
message = (

'Data looks wrong for symbol {}, url {}\n'
' - start_date: {}, end_date: {}\n'
' - min_date: {}, max_date: {}\n'
' - start_end_diff: {}, min_max_diff: {}'.format(

symbol, url,
start_date, end_date,
min_date, max_date,
start_end_diff, min_max_diff))

raise RuntimeError(message)
return data

# #############################################################################
# Retrieve the data from Internet

# Choose a time period reasonably calm (not too long ago so that we get
# high-tech firms, and before the 2008 crash)
start_date = datetime(2003, 1, 1).date()
end_date = datetime(2008, 1, 1).date()

symbol_dict = {
'NYSE:TOT': 'Total',
'NYSE:XOM': 'Exxon',
'NYSE:CVX': 'Chevron',
'NYSE:COP': 'ConocoPhillips',
'NYSE:VLO': 'Valero Energy',
'NASDAQ:MSFT': 'Microsoft',
'NYSE:IBM': 'IBM',
'NYSE:TWX': 'Time Warner',
'NASDAQ:CMCSA': 'Comcast',
'NYSE:CVC': 'Cablevision',
'NASDAQ:YHOO': 'Yahoo',
'NASDAQ:DELL': 'Dell',
'NYSE:HPQ': 'HP',
'NASDAQ:AMZN': 'Amazon',
'NYSE:TM': 'Toyota',
'NYSE:CAJ': 'Canon',
'NYSE:SNE': 'Sony',
'NYSE:F': 'Ford',
'NYSE:HMC': 'Honda',
'NYSE:NAV': 'Navistar',
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'NYSE:NOC': 'Northrop Grumman',
'NYSE:BA': 'Boeing',
'NYSE:KO': 'Coca Cola',
'NYSE:MMM': '3M',
'NYSE:MCD': 'McDonald\'s',
'NYSE:PEP': 'Pepsi',
'NYSE:K': 'Kellogg',
'NYSE:UN': 'Unilever',
'NASDAQ:MAR': 'Marriott',
'NYSE:PG': 'Procter Gamble',
'NYSE:CL': 'Colgate-Palmolive',
'NYSE:GE': 'General Electrics',
'NYSE:WFC': 'Wells Fargo',
'NYSE:JPM': 'JPMorgan Chase',
'NYSE:AIG': 'AIG',
'NYSE:AXP': 'American express',
'NYSE:BAC': 'Bank of America',
'NYSE:GS': 'Goldman Sachs',
'NASDAQ:AAPL': 'Apple',
'NYSE:SAP': 'SAP',
'NASDAQ:CSCO': 'Cisco',
'NASDAQ:TXN': 'Texas Instruments',
'NYSE:XRX': 'Xerox',
'NYSE:WMT': 'Wal-Mart',
'NYSE:HD': 'Home Depot',
'NYSE:GSK': 'GlaxoSmithKline',
'NYSE:PFE': 'Pfizer',
'NYSE:SNY': 'Sanofi-Aventis',
'NYSE:NVS': 'Novartis',
'NYSE:KMB': 'Kimberly-Clark',
'NYSE:R': 'Ryder',
'NYSE:GD': 'General Dynamics',
'NYSE:RTN': 'Raytheon',
'NYSE:CVS': 'CVS',
'NYSE:CAT': 'Caterpillar',
'NYSE:DD': 'DuPont de Nemours'}

symbols, names = np.array(sorted(symbol_dict.items())).T

# retry is used because quotes_historical_google can temporarily fail
# for various reasons (e.g. empty result from Google API).
quotes = []

for symbol in symbols:
print('Fetching quote history for %r' % symbol, file=sys.stderr)
quotes.append(retry(quotes_historical_google)(

symbol, start_date, end_date))

close_prices = np.vstack([q['close'] for q in quotes])
open_prices = np.vstack([q['open'] for q in quotes])

# The daily variations of the quotes are what carry most information
variation = close_prices - open_prices

# #############################################################################
# Learn a graphical structure from the correlations
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edge_model = covariance.GraphLassoCV()

# standardize the time series: using correlations rather than covariance
# is more efficient for structure recovery
X = variation.copy().T
X /= X.std(axis=0)
edge_model.fit(X)

# #############################################################################
# Cluster using affinity propagation

_, labels = cluster.affinity_propagation(edge_model.covariance_)
n_labels = labels.max()

for i in range(n_labels + 1):
print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i])))

# #############################################################################
# Find a low-dimension embedding for visualization: find the best position of
# the nodes (the stocks) on a 2D plane

# We use a dense eigen_solver to achieve reproducibility (arpack is
# initiated with random vectors that we don't control). In addition, we
# use a large number of neighbors to capture the large-scale structure.
node_position_model = manifold.LocallyLinearEmbedding(

n_components=2, eigen_solver='dense', n_neighbors=6)

embedding = node_position_model.fit_transform(X.T).T

# #############################################################################
# Visualization
plt.figure(1, facecolor='w', figsize=(10, 8))
plt.clf()
ax = plt.axes([0., 0., 1., 1.])
plt.axis('off')

# Display a graph of the partial correlations
partial_correlations = edge_model.precision_.copy()
d = 1 / np.sqrt(np.diag(partial_correlations))
partial_correlations *= d
partial_correlations *= d[:, np.newaxis]
non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02)

# Plot the nodes using the coordinates of our embedding
plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels,

cmap=plt.cm.spectral)

# Plot the edges
start_idx, end_idx = np.where(non_zero)
# a sequence of (*line0*, *line1*, *line2*), where::
# linen = (x0, y0), (x1, y1), ... (xm, ym)
segments = [[embedding[:, start], embedding[:, stop]]

for start, stop in zip(start_idx, end_idx)]
values = np.abs(partial_correlations[non_zero])
lc = LineCollection(segments,

zorder=0, cmap=plt.cm.hot_r,
norm=plt.Normalize(0, .7 * values.max()))

lc.set_array(values)
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lc.set_linewidths(15 * values)
ax.add_collection(lc)

# Add a label to each node. The challenge here is that we want to
# position the labels to avoid overlap with other labels
for index, (name, label, (x, y)) in enumerate(

zip(names, labels, embedding.T)):

dx = x - embedding[0]
dx[index] = 1
dy = y - embedding[1]
dy[index] = 1
this_dx = dx[np.argmin(np.abs(dy))]
this_dy = dy[np.argmin(np.abs(dx))]
if this_dx > 0:

horizontalalignment = 'left'
x = x + .002

else:
horizontalalignment = 'right'
x = x - .002

if this_dy > 0:
verticalalignment = 'bottom'
y = y + .002

else:
verticalalignment = 'top'
y = y - .002

plt.text(x, y, name, size=10,
horizontalalignment=horizontalalignment,
verticalalignment=verticalalignment,
bbox=dict(facecolor='w',

edgecolor=plt.cm.spectral(label / float(n_labels)),
alpha=.6))

plt.xlim(embedding[0].min() - .15 * embedding[0].ptp(),
embedding[0].max() + .10 * embedding[0].ptp(),)

plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(),
embedding[1].max() + .03 * embedding[1].ptp())

plt.show()

Total running time of the script: ( 0 minutes 20.960 seconds)

Download Python source code: plot_stock_market.py

Download Jupyter notebook: plot_stock_market.ipynb

Generated by Sphinx-Gallery

4.2.9 Libsvm GUI

A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point
and click and visualize the decision region induced by different kernels and parameter settings.

To create positive examples click the left mouse button; to create negative examples click the right button.

If all examples are from the same class, it uses a one-class SVM.
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from __future__ import division, print_function

print(__doc__)

# Author: Peter Prettenhoer <peter.prettenhofer@gmail.com>
#
# License: BSD 3 clause

import matplotlib
matplotlib.use('TkAgg')

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg
from matplotlib.figure import Figure
from matplotlib.contour import ContourSet

try:
import tkinter as Tk

except ImportError:
# Backward compat for Python 2
import Tkinter as Tk

import sys
import numpy as np

from sklearn import svm
from sklearn.datasets import dump_svmlight_file
from sklearn.externals.six.moves import xrange

y_min, y_max = -50, 50
x_min, x_max = -50, 50

class Model(object):
"""The Model which hold the data. It implements the
observable in the observer pattern and notifies the
registered observers on change event.
"""

def __init__(self):
self.observers = []
self.surface = None
self.data = []
self.cls = None
self.surface_type = 0

def changed(self, event):
"""Notify the observers. """
for observer in self.observers:

observer.update(event, self)

def add_observer(self, observer):
"""Register an observer. """
self.observers.append(observer)

def set_surface(self, surface):
self.surface = surface
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def dump_svmlight_file(self, file):
data = np.array(self.data)
X = data[:, 0:2]
y = data[:, 2]
dump_svmlight_file(X, y, file)

class Controller(object):
def __init__(self, model):

self.model = model
self.kernel = Tk.IntVar()
self.surface_type = Tk.IntVar()
# Whether or not a model has been fitted
self.fitted = False

def fit(self):
print("fit the model")
train = np.array(self.model.data)
X = train[:, 0:2]
y = train[:, 2]

C = float(self.complexity.get())
gamma = float(self.gamma.get())
coef0 = float(self.coef0.get())
degree = int(self.degree.get())
kernel_map = {0: "linear", 1: "rbf", 2: "poly"}
if len(np.unique(y)) == 1:

clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()],
gamma=gamma, coef0=coef0, degree=degree)

clf.fit(X)
else:

clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C,
gamma=gamma, coef0=coef0, degree=degree)

clf.fit(X, y)
if hasattr(clf, 'score'):

print("Accuracy:", clf.score(X, y) * 100)
X1, X2, Z = self.decision_surface(clf)
self.model.clf = clf
self.model.set_surface((X1, X2, Z))
self.model.surface_type = self.surface_type.get()
self.fitted = True
self.model.changed("surface")

def decision_surface(self, cls):
delta = 1
x = np.arange(x_min, x_max + delta, delta)
y = np.arange(y_min, y_max + delta, delta)
X1, X2 = np.meshgrid(x, y)
Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()])
Z = Z.reshape(X1.shape)
return X1, X2, Z

def clear_data(self):
self.model.data = []
self.fitted = False
self.model.changed("clear")

def add_example(self, x, y, label):
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self.model.data.append((x, y, label))
self.model.changed("example_added")

# update decision surface if already fitted.
self.refit()

def refit(self):
"""Refit the model if already fitted. """
if self.fitted:

self.fit()

class View(object):
"""Test docstring. """
def __init__(self, root, controller):

f = Figure()
ax = f.add_subplot(111)
ax.set_xticks([])
ax.set_yticks([])
ax.set_xlim((x_min, x_max))
ax.set_ylim((y_min, y_max))
canvas = FigureCanvasTkAgg(f, master=root)
canvas.show()
canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
canvas.mpl_connect('button_press_event', self.onclick)
toolbar = NavigationToolbar2TkAgg(canvas, root)
toolbar.update()
self.controllbar = ControllBar(root, controller)
self.f = f
self.ax = ax
self.canvas = canvas
self.controller = controller
self.contours = []
self.c_labels = None
self.plot_kernels()

def plot_kernels(self):
self.ax.text(-50, -60, "Linear: $u^T v$")
self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$")
self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$")

def onclick(self, event):
if event.xdata and event.ydata:

if event.button == 1:
self.controller.add_example(event.xdata, event.ydata, 1)

elif event.button == 3:
self.controller.add_example(event.xdata, event.ydata, -1)

def update_example(self, model, idx):
x, y, l = model.data[idx]
if l == 1:

color = 'w'
elif l == -1:

color = 'k'
self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0)

def update(self, event, model):
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if event == "examples_loaded":
for i in xrange(len(model.data)):

self.update_example(model, i)

if event == "example_added":
self.update_example(model, -1)

if event == "clear":
self.ax.clear()
self.ax.set_xticks([])
self.ax.set_yticks([])
self.contours = []
self.c_labels = None
self.plot_kernels()

if event == "surface":
self.remove_surface()
self.plot_support_vectors(model.clf.support_vectors_)
self.plot_decision_surface(model.surface, model.surface_type)

self.canvas.draw()

def remove_surface(self):
"""Remove old decision surface."""
if len(self.contours) > 0:

for contour in self.contours:
if isinstance(contour, ContourSet):

for lineset in contour.collections:
lineset.remove()

else:
contour.remove()

self.contours = []

def plot_support_vectors(self, support_vectors):
"""Plot the support vectors by placing circles over the
corresponding data points and adds the circle collection
to the contours list."""
cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1],

s=80, edgecolors="k", facecolors="none")
self.contours.append(cs)

def plot_decision_surface(self, surface, type):
X1, X2, Z = surface
if type == 0:

levels = [-1.0, 0.0, 1.0]
linestyles = ['dashed', 'solid', 'dashed']
colors = 'k'
self.contours.append(self.ax.contour(X1, X2, Z, levels,

colors=colors,
linestyles=linestyles))

elif type == 1:
self.contours.append(self.ax.contourf(X1, X2, Z, 10,

cmap=matplotlib.cm.bone,
origin='lower', alpha=0.85))

self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k',
linestyles=['solid']))

else:
raise ValueError("surface type unknown")
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class ControllBar(object):
def __init__(self, root, controller):

fm = Tk.Frame(root)
kernel_group = Tk.Frame(fm)
Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel,

value=0, command=controller.refit).pack(anchor=Tk.W)
Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel,

value=1, command=controller.refit).pack(anchor=Tk.W)
Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel,

value=2, command=controller.refit).pack(anchor=Tk.W)
kernel_group.pack(side=Tk.LEFT)

valbox = Tk.Frame(fm)
controller.complexity = Tk.StringVar()
controller.complexity.set("1.0")
c = Tk.Frame(valbox)
Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(c, width=6, textvariable=controller.complexity).pack(

side=Tk.LEFT)
c.pack()

controller.gamma = Tk.StringVar()
controller.gamma.set("0.01")
g = Tk.Frame(valbox)
Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT)
g.pack()

controller.degree = Tk.StringVar()
controller.degree.set("3")
d = Tk.Frame(valbox)
Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT)
d.pack()

controller.coef0 = Tk.StringVar()
controller.coef0.set("0")
r = Tk.Frame(valbox)
Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT)
r.pack()
valbox.pack(side=Tk.LEFT)

cmap_group = Tk.Frame(fm)
Tk.Radiobutton(cmap_group, text="Hyperplanes",

variable=controller.surface_type, value=0,
command=controller.refit).pack(anchor=Tk.W)

Tk.Radiobutton(cmap_group, text="Surface",
variable=controller.surface_type, value=1,
command=controller.refit).pack(anchor=Tk.W)

cmap_group.pack(side=Tk.LEFT)

train_button = Tk.Button(fm, text='Fit', width=5,
command=controller.fit)

train_button.pack()
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fm.pack(side=Tk.LEFT)
Tk.Button(fm, text='Clear', width=5,

command=controller.clear_data).pack(side=Tk.LEFT)

def get_parser():
from optparse import OptionParser
op = OptionParser()
op.add_option("--output",

action="store", type="str", dest="output",
help="Path where to dump data.")

return op

def main(argv):
op = get_parser()
opts, args = op.parse_args(argv[1:])
root = Tk.Tk()
model = Model()
controller = Controller(model)
root.wm_title("Scikit-learn Libsvm GUI")
view = View(root, controller)
model.add_observer(view)
Tk.mainloop()

if opts.output:
model.dump_svmlight_file(opts.output)

if __name__ == "__main__":
main(sys.argv)

Total running time of the script: ( 0 minutes 0.000 seconds)

Download Python source code: svm_gui.py

Download Jupyter notebook: svm_gui.ipynb

Generated by Sphinx-Gallery

4.2.10 Prediction Latency

This is an example showing the prediction latency of various scikit-learn estimators.

The goal is to measure the latency one can expect when doing predictions either in bulk or atomic (i.e. one by one)
mode.

The plots represent the distribution of the prediction latency as a boxplot.
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Out:

Benchmarking SGDRegressor(alpha=0.01, average=False, epsilon=0.1, eta0=0.01,
fit_intercept=True, l1_ratio=0.25, learning_rate='invscaling',
loss='squared_loss', max_iter=None, n_iter=None,
penalty='elasticnet', power_t=0.25, random_state=None, shuffle=True,
tol=None, verbose=0, warm_start=False)

Benchmarking RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=0, warm_start=False)

Benchmarking SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='auto
→˓',
kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)

benchmarking with 100 features
benchmarking with 250 features
benchmarking with 500 features
example run in 2.83s

# Authors: Eustache Diemert <eustache@diemert.fr>
# License: BSD 3 clause

from __future__ import print_function
from collections import defaultdict

import time
import gc
import numpy as np
import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
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from scipy.stats import scoreatpercentile
from sklearn.datasets.samples_generator import make_regression
from sklearn.ensemble.forest import RandomForestRegressor
from sklearn.linear_model.ridge import Ridge
from sklearn.linear_model.stochastic_gradient import SGDRegressor
from sklearn.svm.classes import SVR
from sklearn.utils import shuffle

def _not_in_sphinx():
# Hack to detect whether we are running by the sphinx builder
return '__file__' in globals()

def atomic_benchmark_estimator(estimator, X_test, verbose=False):
"""Measure runtime prediction of each instance."""
n_instances = X_test.shape[0]
runtimes = np.zeros(n_instances, dtype=np.float)
for i in range(n_instances):

instance = X_test[[i], :]
start = time.time()
estimator.predict(instance)
runtimes[i] = time.time() - start

if verbose:
print("atomic_benchmark runtimes:", min(runtimes), scoreatpercentile(

runtimes, 50), max(runtimes))
return runtimes

def bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose):
"""Measure runtime prediction of the whole input."""
n_instances = X_test.shape[0]
runtimes = np.zeros(n_bulk_repeats, dtype=np.float)
for i in range(n_bulk_repeats):

start = time.time()
estimator.predict(X_test)
runtimes[i] = time.time() - start

runtimes = np.array(list(map(lambda x: x / float(n_instances), runtimes)))
if verbose:

print("bulk_benchmark runtimes:", min(runtimes), scoreatpercentile(
runtimes, 50), max(runtimes))

return runtimes

def benchmark_estimator(estimator, X_test, n_bulk_repeats=30, verbose=False):
"""
Measure runtimes of prediction in both atomic and bulk mode.

Parameters
----------
estimator : already trained estimator supporting `predict()`
X_test : test input
n_bulk_repeats : how many times to repeat when evaluating bulk mode

Returns
-------
atomic_runtimes, bulk_runtimes : a pair of `np.array` which contain the
runtimes in seconds.
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"""
atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose)
bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats,

verbose)
return atomic_runtimes, bulk_runtimes

def generate_dataset(n_train, n_test, n_features, noise=0.1, verbose=False):
"""Generate a regression dataset with the given parameters."""
if verbose:

print("generating dataset...")

X, y, coef = make_regression(n_samples=n_train + n_test,
n_features=n_features, noise=noise, coef=True)

random_seed = 13
X_train, X_test, y_train, y_test = train_test_split(

X, y, train_size=n_train, random_state=random_seed)
X_train, y_train = shuffle(X_train, y_train, random_state=random_seed)

X_scaler = StandardScaler()
X_train = X_scaler.fit_transform(X_train)
X_test = X_scaler.transform(X_test)

y_scaler = StandardScaler()
y_train = y_scaler.fit_transform(y_train[:, None])[:, 0]
y_test = y_scaler.transform(y_test[:, None])[:, 0]

gc.collect()
if verbose:

print("ok")
return X_train, y_train, X_test, y_test

def boxplot_runtimes(runtimes, pred_type, configuration):
"""
Plot a new `Figure` with boxplots of prediction runtimes.

Parameters
----------
runtimes : list of `np.array` of latencies in micro-seconds
cls_names : list of estimator class names that generated the runtimes
pred_type : 'bulk' or 'atomic'

"""

fig, ax1 = plt.subplots(figsize=(10, 6))
bp = plt.boxplot(runtimes, )

cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'],
estimator_conf['complexity_computer'](

estimator_conf['instance']),
estimator_conf['complexity_label']) for

estimator_conf in configuration['estimators']]
plt.setp(ax1, xticklabels=cls_infos)
plt.setp(bp['boxes'], color='black')
plt.setp(bp['whiskers'], color='black')
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plt.setp(bp['fliers'], color='red', marker='+')

ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey',
alpha=0.5)

ax1.set_axisbelow(True)
ax1.set_title('Prediction Time per Instance - %s, %d feats.' % (

pred_type.capitalize(),
configuration['n_features']))

ax1.set_ylabel('Prediction Time (us)')

plt.show()

def benchmark(configuration):
"""Run the whole benchmark."""
X_train, y_train, X_test, y_test = generate_dataset(

configuration['n_train'], configuration['n_test'],
configuration['n_features'])

stats = {}
for estimator_conf in configuration['estimators']:

print("Benchmarking", estimator_conf['instance'])
estimator_conf['instance'].fit(X_train, y_train)
gc.collect()
a, b = benchmark_estimator(estimator_conf['instance'], X_test)
stats[estimator_conf['name']] = {'atomic': a, 'bulk': b}

cls_names = [estimator_conf['name'] for estimator_conf in configuration[
'estimators']]

runtimes = [1e6 * stats[clf_name]['atomic'] for clf_name in cls_names]
boxplot_runtimes(runtimes, 'atomic', configuration)
runtimes = [1e6 * stats[clf_name]['bulk'] for clf_name in cls_names]
boxplot_runtimes(runtimes, 'bulk (%d)' % configuration['n_test'],

configuration)

def n_feature_influence(estimators, n_train, n_test, n_features, percentile):
"""
Estimate influence of the number of features on prediction time.

Parameters
----------

estimators : dict of (name (str), estimator) to benchmark
n_train : nber of training instances (int)
n_test : nber of testing instances (int)
n_features : list of feature-space dimensionality to test (int)
percentile : percentile at which to measure the speed (int [0-100])

Returns:
--------

percentiles : dict(estimator_name,
dict(n_features, percentile_perf_in_us))

"""
percentiles = defaultdict(defaultdict)
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for n in n_features:
print("benchmarking with %d features" % n)
X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n)
for cls_name, estimator in estimators.items():

estimator.fit(X_train, y_train)
gc.collect()
runtimes = bulk_benchmark_estimator(estimator, X_test, 30, False)
percentiles[cls_name][n] = 1e6 * scoreatpercentile(runtimes,

percentile)
return percentiles

def plot_n_features_influence(percentiles, percentile):
fig, ax1 = plt.subplots(figsize=(10, 6))
colors = ['r', 'g', 'b']
for i, cls_name in enumerate(percentiles.keys()):

x = np.array(sorted([n for n in percentiles[cls_name].keys()]))
y = np.array([percentiles[cls_name][n] for n in x])
plt.plot(x, y, color=colors[i], )

ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey',
alpha=0.5)

ax1.set_axisbelow(True)
ax1.set_title('Evolution of Prediction Time with #Features')
ax1.set_xlabel('#Features')
ax1.set_ylabel('Prediction Time at %d%%-ile (us)' % percentile)
plt.show()

def benchmark_throughputs(configuration, duration_secs=0.1):
"""benchmark throughput for different estimators."""
X_train, y_train, X_test, y_test = generate_dataset(

configuration['n_train'], configuration['n_test'],
configuration['n_features'])

throughputs = dict()
for estimator_config in configuration['estimators']:

estimator_config['instance'].fit(X_train, y_train)
start_time = time.time()
n_predictions = 0
while (time.time() - start_time) < duration_secs:

estimator_config['instance'].predict(X_test[[0]])
n_predictions += 1

throughputs[estimator_config['name']] = n_predictions / duration_secs
return throughputs

def plot_benchmark_throughput(throughputs, configuration):
fig, ax = plt.subplots(figsize=(10, 6))
colors = ['r', 'g', 'b']
cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'],

estimator_conf['complexity_computer'](
estimator_conf['instance']),

estimator_conf['complexity_label']) for
estimator_conf in configuration['estimators']]

cls_values = [throughputs[estimator_conf['name']] for estimator_conf in
configuration['estimators']]

plt.bar(range(len(throughputs)), cls_values, width=0.5, color=colors)
ax.set_xticks(np.linspace(0.25, len(throughputs) - 0.75, len(throughputs)))
ax.set_xticklabels(cls_infos, fontsize=10)
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ymax = max(cls_values) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel('Throughput (predictions/sec)')
ax.set_title('Prediction Throughput for different estimators (%d '

'features)' % configuration['n_features'])
plt.show()

# #############################################################################
# Main code

start_time = time.time()

# #############################################################################
# Benchmark bulk/atomic prediction speed for various regressors
configuration = {

'n_train': int(1e3),
'n_test': int(1e2),
'n_features': int(1e2),
'estimators': [

{'name': 'Linear Model',
'instance': SGDRegressor(penalty='elasticnet', alpha=0.01,

l1_ratio=0.25, fit_intercept=True),
'complexity_label': 'non-zero coefficients',
'complexity_computer': lambda clf: np.count_nonzero(clf.coef_)},
{'name': 'RandomForest',
'instance': RandomForestRegressor(),
'complexity_label': 'estimators',
'complexity_computer': lambda clf: clf.n_estimators},
{'name': 'SVR',
'instance': SVR(kernel='rbf'),
'complexity_label': 'support vectors',
'complexity_computer': lambda clf: len(clf.support_vectors_)},

]
}
benchmark(configuration)

# benchmark n_features influence on prediction speed
percentile = 90
percentiles = n_feature_influence({'ridge': Ridge()},

configuration['n_train'],
configuration['n_test'],
[100, 250, 500], percentile)

plot_n_features_influence(percentiles, percentile)

# benchmark throughput
throughputs = benchmark_throughputs(configuration)
plot_benchmark_throughput(throughputs, configuration)

stop_time = time.time()
print("example run in %.2fs" % (stop_time - start_time))

Total running time of the script: ( 0 minutes 2.832 seconds)

Download Python source code: plot_prediction_latency.py

Download Jupyter notebook: plot_prediction_latency.ipynb

Generated by Sphinx-Gallery
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4.2.11 Out-of-core classification of text documents

This is an example showing how scikit-learn can be used for classification using an out-of-core approach: learning
from data that doesn’t fit into main memory. We make use of an online classifier, i.e., one that supports the partial_fit
method, that will be fed with batches of examples. To guarantee that the features space remains the same over time
we leverage a HashingVectorizer that will project each example into the same feature space. This is especially useful
in the case of text classification where new features (words) may appear in each batch.

The dataset used in this example is Reuters-21578 as provided by the UCI ML repository. It will be automatically
downloaded and uncompressed on first run.

The plot represents the learning curve of the classifier: the evolution of classification accuracy over the course of the
mini-batches. Accuracy is measured on the first 1000 samples, held out as a validation set.

To limit the memory consumption, we queue examples up to a fixed amount before feeding them to the learner.

# Authors: Eustache Diemert <eustache@diemert.fr>
# @FedericoV <https://github.com/FedericoV/>
# License: BSD 3 clause

from __future__ import print_function

from glob import glob
import itertools
import os.path
import re
import tarfile
import time

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rcParams

from sklearn.externals.six.moves import html_parser
from sklearn.externals.six.moves.urllib.request import urlretrieve
from sklearn.datasets import get_data_home
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.linear_model import Perceptron
from sklearn.naive_bayes import MultinomialNB

def _not_in_sphinx():
# Hack to detect whether we are running by the sphinx builder
return '__file__' in globals()

Reuters Dataset related routines

class ReutersParser(html_parser.HTMLParser):
"""Utility class to parse a SGML file and yield documents one at a time."""

def __init__(self, encoding='latin-1'):
html_parser.HTMLParser.__init__(self)
self._reset()
self.encoding = encoding
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def handle_starttag(self, tag, attrs):
method = 'start_' + tag
getattr(self, method, lambda x: None)(attrs)

def handle_endtag(self, tag):
method = 'end_' + tag
getattr(self, method, lambda: None)()

def _reset(self):
self.in_title = 0
self.in_body = 0
self.in_topics = 0
self.in_topic_d = 0
self.title = ""
self.body = ""
self.topics = []
self.topic_d = ""

def parse(self, fd):
self.docs = []
for chunk in fd:

self.feed(chunk.decode(self.encoding))
for doc in self.docs:

yield doc
self.docs = []

self.close()

def handle_data(self, data):
if self.in_body:

self.body += data
elif self.in_title:

self.title += data
elif self.in_topic_d:

self.topic_d += data

def start_reuters(self, attributes):
pass

def end_reuters(self):
self.body = re.sub(r'\s+', r' ', self.body)
self.docs.append({'title': self.title,

'body': self.body,
'topics': self.topics})

self._reset()

def start_title(self, attributes):
self.in_title = 1

def end_title(self):
self.in_title = 0

def start_body(self, attributes):
self.in_body = 1

def end_body(self):
self.in_body = 0

def start_topics(self, attributes):
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self.in_topics = 1

def end_topics(self):
self.in_topics = 0

def start_d(self, attributes):
self.in_topic_d = 1

def end_d(self):
self.in_topic_d = 0
self.topics.append(self.topic_d)
self.topic_d = ""

def stream_reuters_documents(data_path=None):
"""Iterate over documents of the Reuters dataset.

The Reuters archive will automatically be downloaded and uncompressed if
the `data_path` directory does not exist.

Documents are represented as dictionaries with 'body' (str),
'title' (str), 'topics' (list(str)) keys.

"""

DOWNLOAD_URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/'
'reuters21578-mld/reuters21578.tar.gz')

ARCHIVE_FILENAME = 'reuters21578.tar.gz'

if data_path is None:
data_path = os.path.join(get_data_home(), "reuters")

if not os.path.exists(data_path):
"""Download the dataset."""
print("downloading dataset (once and for all) into %s" %

data_path)
os.mkdir(data_path)

def progress(blocknum, bs, size):
total_sz_mb = '%.2f MB' % (size / 1e6)
current_sz_mb = '%.2f MB' % ((blocknum * bs) / 1e6)
if _not_in_sphinx():

print('\rdownloaded %s / %s' % (current_sz_mb, total_sz_mb),
end='')

archive_path = os.path.join(data_path, ARCHIVE_FILENAME)
urlretrieve(DOWNLOAD_URL, filename=archive_path,

reporthook=progress)
if _not_in_sphinx():

print('\r', end='')
print("untarring Reuters dataset...")
tarfile.open(archive_path, 'r:gz').extractall(data_path)
print("done.")

parser = ReutersParser()
for filename in glob(os.path.join(data_path, "*.sgm")):

for doc in parser.parse(open(filename, 'rb')):
yield doc
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Main

Create the vectorizer and limit the number of features to a reasonable maximum

vectorizer = HashingVectorizer(decode_error='ignore', n_features=2 ** 18,
alternate_sign=False)

# Iterator over parsed Reuters SGML files.
data_stream = stream_reuters_documents()

# We learn a binary classification between the "acq" class and all the others.
# "acq" was chosen as it is more or less evenly distributed in the Reuters
# files. For other datasets, one should take care of creating a test set with
# a realistic portion of positive instances.
all_classes = np.array([0, 1])
positive_class = 'acq'

# Here are some classifiers that support the `partial_fit` method
partial_fit_classifiers = {

'SGD': SGDClassifier(),
'Perceptron': Perceptron(),
'NB Multinomial': MultinomialNB(alpha=0.01),
'Passive-Aggressive': PassiveAggressiveClassifier(),

}

def get_minibatch(doc_iter, size, pos_class=positive_class):
"""Extract a minibatch of examples, return a tuple X_text, y.

Note: size is before excluding invalid docs with no topics assigned.

"""
data = [(u'{title}\n\n{body}'.format(**doc), pos_class in doc['topics'])

for doc in itertools.islice(doc_iter, size)
if doc['topics']]

if not len(data):
return np.asarray([], dtype=int), np.asarray([], dtype=int)

X_text, y = zip(*data)
return X_text, np.asarray(y, dtype=int)

def iter_minibatches(doc_iter, minibatch_size):
"""Generator of minibatches."""
X_text, y = get_minibatch(doc_iter, minibatch_size)
while len(X_text):

yield X_text, y
X_text, y = get_minibatch(doc_iter, minibatch_size)

# test data statistics
test_stats = {'n_test': 0, 'n_test_pos': 0}

# First we hold out a number of examples to estimate accuracy
n_test_documents = 1000
tick = time.time()
X_test_text, y_test = get_minibatch(data_stream, 1000)
parsing_time = time.time() - tick
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tick = time.time()
X_test = vectorizer.transform(X_test_text)
vectorizing_time = time.time() - tick
test_stats['n_test'] += len(y_test)
test_stats['n_test_pos'] += sum(y_test)
print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test)))

def progress(cls_name, stats):
"""Report progress information, return a string."""
duration = time.time() - stats['t0']
s = "%20s classifier : \t" % cls_name
s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats
s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats
s += "accuracy: %(accuracy).3f " % stats
s += "in %.2fs (%5d docs/s)" % (duration, stats['n_train'] / duration)
return s

cls_stats = {}

for cls_name in partial_fit_classifiers:
stats = {'n_train': 0, 'n_train_pos': 0,

'accuracy': 0.0, 'accuracy_history': [(0, 0)], 't0': time.time(),
'runtime_history': [(0, 0)], 'total_fit_time': 0.0}

cls_stats[cls_name] = stats

get_minibatch(data_stream, n_test_documents)
# Discard test set

# We will feed the classifier with mini-batches of 1000 documents; this means
# we have at most 1000 docs in memory at any time. The smaller the document
# batch, the bigger the relative overhead of the partial fit methods.
minibatch_size = 1000

# Create the data_stream that parses Reuters SGML files and iterates on
# documents as a stream.
minibatch_iterators = iter_minibatches(data_stream, minibatch_size)
total_vect_time = 0.0

# Main loop : iterate on mini-batches of examples
for i, (X_train_text, y_train) in enumerate(minibatch_iterators):

tick = time.time()
X_train = vectorizer.transform(X_train_text)
total_vect_time += time.time() - tick

for cls_name, cls in partial_fit_classifiers.items():
tick = time.time()
# update estimator with examples in the current mini-batch
cls.partial_fit(X_train, y_train, classes=all_classes)

# accumulate test accuracy stats
cls_stats[cls_name]['total_fit_time'] += time.time() - tick
cls_stats[cls_name]['n_train'] += X_train.shape[0]
cls_stats[cls_name]['n_train_pos'] += sum(y_train)
tick = time.time()
cls_stats[cls_name]['accuracy'] = cls.score(X_test, y_test)
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cls_stats[cls_name]['prediction_time'] = time.time() - tick
acc_history = (cls_stats[cls_name]['accuracy'],

cls_stats[cls_name]['n_train'])
cls_stats[cls_name]['accuracy_history'].append(acc_history)
run_history = (cls_stats[cls_name]['accuracy'],

total_vect_time + cls_stats[cls_name]['total_fit_time'])
cls_stats[cls_name]['runtime_history'].append(run_history)

if i % 3 == 0:
print(progress(cls_name, cls_stats[cls_name]))

if i % 3 == 0:
print('\n')

Out:

Test set is 878 documents (108 positive)
SGD classifier : 962 train docs ( 132 positive) 878

→˓test docs ( 108 positive) accuracy: 0.901 in 1.33s ( 724 docs/s)
Perceptron classifier : 962 train docs ( 132 positive) 878

→˓test docs ( 108 positive) accuracy: 0.912 in 1.33s ( 722 docs/s)
NB Multinomial classifier : 962 train docs ( 132 positive) 878

→˓test docs ( 108 positive) accuracy: 0.877 in 1.36s ( 704 docs/s)
Passive-Aggressive classifier : 962 train docs ( 132 positive) 878

→˓test docs ( 108 positive) accuracy: 0.929 in 1.37s ( 702 docs/s)

SGD classifier : 3911 train docs ( 517 positive) 878
→˓test docs ( 108 positive) accuracy: 0.935 in 3.88s ( 1008 docs/s)

Perceptron classifier : 3911 train docs ( 517 positive) 878
→˓test docs ( 108 positive) accuracy: 0.941 in 3.88s ( 1007 docs/s)

NB Multinomial classifier : 3911 train docs ( 517 positive) 878
→˓test docs ( 108 positive) accuracy: 0.885 in 3.91s ( 999 docs/s)
Passive-Aggressive classifier : 3911 train docs ( 517 positive) 878

→˓test docs ( 108 positive) accuracy: 0.949 in 3.92s ( 998 docs/s)

SGD classifier : 6821 train docs ( 891 positive) 878
→˓test docs ( 108 positive) accuracy: 0.950 in 6.41s ( 1064 docs/s)

Perceptron classifier : 6821 train docs ( 891 positive) 878
→˓test docs ( 108 positive) accuracy: 0.929 in 6.41s ( 1064 docs/s)

NB Multinomial classifier : 6821 train docs ( 891 positive) 878
→˓test docs ( 108 positive) accuracy: 0.900 in 6.44s ( 1058 docs/s)
Passive-Aggressive classifier : 6821 train docs ( 891 positive) 878

→˓test docs ( 108 positive) accuracy: 0.948 in 6.45s ( 1057 docs/s)

SGD classifier : 9759 train docs ( 1276 positive) 878
→˓test docs ( 108 positive) accuracy: 0.953 in 8.96s ( 1088 docs/s)

Perceptron classifier : 9759 train docs ( 1276 positive) 878
→˓test docs ( 108 positive) accuracy: 0.948 in 8.97s ( 1088 docs/s)

NB Multinomial classifier : 9759 train docs ( 1276 positive) 878
→˓test docs ( 108 positive) accuracy: 0.909 in 9.00s ( 1084 docs/s)
Passive-Aggressive classifier : 9759 train docs ( 1276 positive) 878

→˓test docs ( 108 positive) accuracy: 0.956 in 9.00s ( 1084 docs/s)

SGD classifier : 11680 train docs ( 1499 positive) 878
→˓test docs ( 108 positive) accuracy: 0.959 in 11.26s ( 1036 docs/s)
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Perceptron classifier : 11680 train docs ( 1499 positive) 878
→˓test docs ( 108 positive) accuracy: 0.923 in 11.27s ( 1036 docs/s)

NB Multinomial classifier : 11680 train docs ( 1499 positive) 878
→˓test docs ( 108 positive) accuracy: 0.915 in 11.30s ( 1033 docs/s)
Passive-Aggressive classifier : 11680 train docs ( 1499 positive) 878

→˓test docs ( 108 positive) accuracy: 0.962 in 11.30s ( 1033 docs/s)

SGD classifier : 14625 train docs ( 1865 positive) 878
→˓test docs ( 108 positive) accuracy: 0.965 in 13.85s ( 1055 docs/s)

Perceptron classifier : 14625 train docs ( 1865 positive) 878
→˓test docs ( 108 positive) accuracy: 0.956 in 13.86s ( 1055 docs/s)

NB Multinomial classifier : 14625 train docs ( 1865 positive) 878
→˓test docs ( 108 positive) accuracy: 0.924 in 13.89s ( 1052 docs/s)
Passive-Aggressive classifier : 14625 train docs ( 1865 positive) 878

→˓test docs ( 108 positive) accuracy: 0.964 in 13.89s ( 1052 docs/s)

SGD classifier : 17360 train docs ( 2179 positive) 878
→˓test docs ( 108 positive) accuracy: 0.938 in 16.27s ( 1067 docs/s)

Perceptron classifier : 17360 train docs ( 2179 positive) 878
→˓test docs ( 108 positive) accuracy: 0.948 in 16.27s ( 1067 docs/s)

NB Multinomial classifier : 17360 train docs ( 2179 positive) 878
→˓test docs ( 108 positive) accuracy: 0.932 in 16.30s ( 1064 docs/s)
Passive-Aggressive classifier : 17360 train docs ( 2179 positive) 878

→˓test docs ( 108 positive) accuracy: 0.957 in 16.31s ( 1064 docs/s)

Plot results

def plot_accuracy(x, y, x_legend):
"""Plot accuracy as a function of x."""
x = np.array(x)
y = np.array(y)
plt.title('Classification accuracy as a function of %s' % x_legend)
plt.xlabel('%s' % x_legend)
plt.ylabel('Accuracy')
plt.grid(True)
plt.plot(x, y)

rcParams['legend.fontsize'] = 10
cls_names = list(sorted(cls_stats.keys()))

# Plot accuracy evolution
plt.figure()
for _, stats in sorted(cls_stats.items()):

# Plot accuracy evolution with #examples
accuracy, n_examples = zip(*stats['accuracy_history'])
plot_accuracy(n_examples, accuracy, "training examples (#)")
ax = plt.gca()
ax.set_ylim((0.8, 1))

plt.legend(cls_names, loc='best')

plt.figure()
for _, stats in sorted(cls_stats.items()):

# Plot accuracy evolution with runtime
accuracy, runtime = zip(*stats['runtime_history'])
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plot_accuracy(runtime, accuracy, 'runtime (s)')
ax = plt.gca()
ax.set_ylim((0.8, 1))

plt.legend(cls_names, loc='best')

# Plot fitting times
plt.figure()
fig = plt.gcf()
cls_runtime = []
for cls_name, stats in sorted(cls_stats.items()):

cls_runtime.append(stats['total_fit_time'])

cls_runtime.append(total_vect_time)
cls_names.append('Vectorization')
bar_colors = ['b', 'g', 'r', 'c', 'm', 'y']

ax = plt.subplot(111)
rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5,

color=bar_colors)

ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names)))
ax.set_xticklabels(cls_names, fontsize=10)
ymax = max(cls_runtime) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel('runtime (s)')
ax.set_title('Training Times')

def autolabel(rectangles):
"""attach some text vi autolabel on rectangles."""
for rect in rectangles:

height = rect.get_height()
ax.text(rect.get_x() + rect.get_width() / 2.,

1.05 * height, '%.4f' % height,
ha='center', va='bottom')

autolabel(rectangles)
plt.show()

# Plot prediction times
plt.figure()
cls_runtime = []
cls_names = list(sorted(cls_stats.keys()))
for cls_name, stats in sorted(cls_stats.items()):

cls_runtime.append(stats['prediction_time'])
cls_runtime.append(parsing_time)
cls_names.append('Read/Parse\n+Feat.Extr.')
cls_runtime.append(vectorizing_time)
cls_names.append('Hashing\n+Vect.')

ax = plt.subplot(111)
rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5,

color=bar_colors)

ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names)))
ax.set_xticklabels(cls_names, fontsize=8)
plt.setp(plt.xticks()[1], rotation=30)
ymax = max(cls_runtime) * 1.2
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ax.set_ylim((0, ymax))
ax.set_ylabel('runtime (s)')
ax.set_title('Prediction Times (%d instances)' % n_test_documents)
autolabel(rectangles)
plt.show()

•

•

•

682 Chapter 4. Examples



scikit-learn user guide, Release 0.19.1

•

Total running time of the script: ( 0 minutes 17.808 seconds)

Download Python source code: plot_out_of_core_classification.py

Download Jupyter notebook: plot_out_of_core_classification.ipynb

Generated by Sphinx-Gallery

4.3 Biclustering

Examples concerning the sklearn.cluster.bicluster module.

4.3.1 A demo of the Spectral Co-Clustering algorithm

This example demonstrates how to generate a dataset and bicluster it using the Spectral Co-Clustering algorithm.

The dataset is generated using the make_biclusters function, which creates a matrix of small values and im-
plants bicluster with large values. The rows and columns are then shuffled and passed to the Spectral Co-Clustering
algorithm. Rearranging the shuffled matrix to make biclusters contiguous shows how accurately the algorithm found
the biclusters.

•
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•

•

Out:

consensus score: 1.000

print(__doc__)

# Author: Kemal Eren <kemal@kemaleren.com>
# License: BSD 3 clause

import numpy as np
from matplotlib import pyplot as plt

from sklearn.datasets import make_biclusters
from sklearn.datasets import samples_generator as sg
from sklearn.cluster.bicluster import SpectralCoclustering
from sklearn.metrics import consensus_score

data, rows, columns = make_biclusters(
shape=(300, 300), n_clusters=5, noise=5,
shuffle=False, random_state=0)

plt.matshow(data, cmap=plt.cm.Blues)
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plt.title("Original dataset")

data, row_idx, col_idx = sg._shuffle(data, random_state=0)
plt.matshow(data, cmap=plt.cm.Blues)
plt.title("Shuffled dataset")

model = SpectralCoclustering(n_clusters=5, random_state=0)
model.fit(data)
score = consensus_score(model.biclusters_,

(rows[:, row_idx], columns[:, col_idx]))

print("consensus score: {:.3f}".format(score))

fit_data = data[np.argsort(model.row_labels_)]
fit_data = fit_data[:, np.argsort(model.column_labels_)]

plt.matshow(fit_data, cmap=plt.cm.Blues)
plt.title("After biclustering; rearranged to show biclusters")

plt.show()

Total running time of the script: ( 0 minutes 0.162 seconds)

Download Python source code: plot_spectral_coclustering.py

Download Jupyter notebook: plot_spectral_coclustering.ipynb

Generated by Sphinx-Gallery

4.3.2 A demo of the Spectral Biclustering algorithm

This example demonstrates how to generate a checkerboard dataset and bicluster it using the Spectral Biclustering
algorithm.

The data is generated with the make_checkerboard function, then shuffled and passed to the Spectral Biclustering
algorithm. The rows and columns of the shuffled matrix are rearranged to show the biclusters found by the algorithm.

The outer product of the row and column label vectors shows a representation of the checkerboard structure.

•
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•

•

•

Out:

consensus score: 1.0

print(__doc__)

# Author: Kemal Eren <kemal@kemaleren.com>
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# License: BSD 3 clause

import numpy as np
from matplotlib import pyplot as plt

from sklearn.datasets import make_checkerboard
from sklearn.datasets import samples_generator as sg
from sklearn.cluster.bicluster import SpectralBiclustering
from sklearn.metrics import consensus_score

n_clusters = (4, 3)
data, rows, columns = make_checkerboard(

shape=(300, 300), n_clusters=n_clusters, noise=10,
shuffle=False, random_state=0)

plt.matshow(data, cmap=plt.cm.Blues)
plt.title("Original dataset")

data, row_idx, col_idx = sg._shuffle(data, random_state=0)
plt.matshow(data, cmap=plt.cm.Blues)
plt.title("Shuffled dataset")

model = SpectralBiclustering(n_clusters=n_clusters, method='log',
random_state=0)

model.fit(data)
score = consensus_score(model.biclusters_,

(rows[:, row_idx], columns[:, col_idx]))

print("consensus score: {:.1f}".format(score))

fit_data = data[np.argsort(model.row_labels_)]
fit_data = fit_data[:, np.argsort(model.column_labels_)]

plt.matshow(fit_data, cmap=plt.cm.Blues)
plt.title("After biclustering; rearranged to show biclusters")

plt.matshow(np.outer(np.sort(model.row_labels_) + 1,
np.sort(model.column_labels_) + 1),

cmap=plt.cm.Blues)
plt.title("Checkerboard structure of rearranged data")

plt.show()

Total running time of the script: ( 0 minutes 0.695 seconds)

Download Python source code: plot_spectral_biclustering.py

Download Jupyter notebook: plot_spectral_biclustering.ipynb

Generated by Sphinx-Gallery

4.3.3 Biclustering documents with the Spectral Co-clustering algorithm

This example demonstrates the Spectral Co-clustering algorithm on the twenty newsgroups dataset. The ‘comp.os.ms-
windows.misc’ category is excluded because it contains many posts containing nothing but data.

The TF-IDF vectorized posts form a word frequency matrix, which is then biclustered using Dhillon’s Spectral Co-
Clustering algorithm. The resulting document-word biclusters indicate subsets words used more often in those subsets
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documents.

For a few of the best biclusters, its most common document categories and its ten most important words get printed.
The best biclusters are determined by their normalized cut. The best words are determined by comparing their sums
inside and outside the bicluster.

For comparison, the documents are also clustered using MiniBatchKMeans. The document clusters derived from the
biclusters achieve a better V-measure than clusters found by MiniBatchKMeans.

Out:

Vectorizing...
Coclustering...
Done in 4.63s. V-measure: 0.4435
MiniBatchKMeans...
Done in 11.13s. V-measure: 0.3344

Best biclusters:
----------------
bicluster 0 : 1957 documents, 4363 words
categories : 23% talk.politics.guns, 18% talk.politics.misc, 17% sci.med
words : gun, guns, geb, banks, gordon, clinton, pitt, cdt, surrender, veal

bicluster 1 : 1263 documents, 3551 words
categories : 27% soc.religion.christian, 25% talk.politics.mideast, 24% alt.atheism
words : god, jesus, christians, sin, objective, kent, belief, christ, faith,
→˓moral

bicluster 2 : 2212 documents, 2774 words
categories : 18% comp.sys.mac.hardware, 17% comp.sys.ibm.pc.hardware, 15% comp.
→˓graphics
words : voltage, board, dsp, stereo, receiver, packages, shipping, circuit,
→˓package, compression

bicluster 3 : 1774 documents, 2629 words
categories : 27% rec.motorcycles, 23% rec.autos, 13% misc.forsale
words : bike, car, dod, engine, motorcycle, ride, honda, bikes, helmet, bmw

bicluster 4 : 200 documents, 1167 words
categories : 81% talk.politics.mideast, 10% alt.atheism, 8% soc.religion.christian
words : turkish, armenia, armenian, armenians, turks, petch, sera, zuma, argic,
→˓ gvg47

from __future__ import print_function

from collections import defaultdict
import operator
from time import time

import numpy as np

from sklearn.cluster.bicluster import SpectralCoclustering
from sklearn.cluster import MiniBatchKMeans
from sklearn.externals.six import iteritems
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from sklearn.datasets.twenty_newsgroups import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.cluster import v_measure_score

print(__doc__)

def number_normalizer(tokens):
""" Map all numeric tokens to a placeholder.

For many applications, tokens that begin with a number are not directly
useful, but the fact that such a token exists can be relevant. By applying
this form of dimensionality reduction, some methods may perform better.
"""
return ("#NUMBER" if token[0].isdigit() else token for token in tokens)

class NumberNormalizingVectorizer(TfidfVectorizer):
def build_tokenizer(self):

tokenize = super(NumberNormalizingVectorizer, self).build_tokenizer()
return lambda doc: list(number_normalizer(tokenize(doc)))

# exclude 'comp.os.ms-windows.misc'
categories = ['alt.atheism', 'comp.graphics',

'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware',
'comp.windows.x', 'misc.forsale', 'rec.autos',
'rec.motorcycles', 'rec.sport.baseball',
'rec.sport.hockey', 'sci.crypt', 'sci.electronics',
'sci.med', 'sci.space', 'soc.religion.christian',
'talk.politics.guns', 'talk.politics.mideast',
'talk.politics.misc', 'talk.religion.misc']

newsgroups = fetch_20newsgroups(categories=categories)
y_true = newsgroups.target

vectorizer = NumberNormalizingVectorizer(stop_words='english', min_df=5)
cocluster = SpectralCoclustering(n_clusters=len(categories),

svd_method='arpack', random_state=0)
kmeans = MiniBatchKMeans(n_clusters=len(categories), batch_size=20000,

random_state=0)

print("Vectorizing...")
X = vectorizer.fit_transform(newsgroups.data)

print("Coclustering...")
start_time = time()
cocluster.fit(X)
y_cocluster = cocluster.row_labels_
print("Done in {:.2f}s. V-measure: {:.4f}".format(

time() - start_time,
v_measure_score(y_cocluster, y_true)))

print("MiniBatchKMeans...")
start_time = time()
y_kmeans = kmeans.fit_predict(X)
print("Done in {:.2f}s. V-measure: {:.4f}".format(

time() - start_time,
v_measure_score(y_kmeans, y_true)))
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feature_names = vectorizer.get_feature_names()
document_names = list(newsgroups.target_names[i] for i in newsgroups.target)

def bicluster_ncut(i):
rows, cols = cocluster.get_indices(i)
if not (np.any(rows) and np.any(cols)):

import sys
return sys.float_info.max

row_complement = np.nonzero(np.logical_not(cocluster.rows_[i]))[0]
col_complement = np.nonzero(np.logical_not(cocluster.columns_[i]))[0]
# Note: the following is identical to X[rows[:, np.newaxis],
# cols].sum() but much faster in scipy <= 0.16
weight = X[rows][:, cols].sum()
cut = (X[row_complement][:, cols].sum() +

X[rows][:, col_complement].sum())
return cut / weight

def most_common(d):
"""Items of a defaultdict(int) with the highest values.

Like Counter.most_common in Python >=2.7.
"""
return sorted(iteritems(d), key=operator.itemgetter(1), reverse=True)

bicluster_ncuts = list(bicluster_ncut(i)
for i in range(len(newsgroups.target_names)))

best_idx = np.argsort(bicluster_ncuts)[:5]

print()
print("Best biclusters:")
print("----------------")
for idx, cluster in enumerate(best_idx):

n_rows, n_cols = cocluster.get_shape(cluster)
cluster_docs, cluster_words = cocluster.get_indices(cluster)
if not len(cluster_docs) or not len(cluster_words):

continue

# categories
counter = defaultdict(int)
for i in cluster_docs:

counter[document_names[i]] += 1
cat_string = ", ".join("{:.0f}% {}".format(float(c) / n_rows * 100, name)

for name, c in most_common(counter)[:3])

# words
out_of_cluster_docs = cocluster.row_labels_ != cluster
out_of_cluster_docs = np.where(out_of_cluster_docs)[0]
word_col = X[:, cluster_words]
word_scores = np.array(word_col[cluster_docs, :].sum(axis=0) -

word_col[out_of_cluster_docs, :].sum(axis=0))
word_scores = word_scores.ravel()
important_words = list(feature_names[cluster_words[i]]

for i in word_scores.argsort()[:-11:-1])
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print("bicluster {} : {} documents, {} words".format(
idx, n_rows, n_cols))

print("categories : {}".format(cat_string))
print("words : {}\n".format(', '.join(important_words)))

Total running time of the script: ( 0 minutes 19.785 seconds)

Download Python source code: plot_bicluster_newsgroups.py

Download Jupyter notebook: plot_bicluster_newsgroups.ipynb

Generated by Sphinx-Gallery

4.4 Calibration

Examples illustrating the calibration of predicted probabilities of classifiers.

4.4.1 Comparison of Calibration of Classifiers

Well calibrated classifiers are probabilistic classifiers for which the output of the predict_proba method can be directly
interpreted as a confidence level. For instance a well calibrated (binary) classifier should classify the samples such that
among the samples to which it gave a predict_proba value close to 0.8, approx. 80% actually belong to the positive
class.

LogisticRegression returns well calibrated predictions as it directly optimizes log-loss. In contrast, the other methods
return biased probabilities, with different biases per method:

• GaussianNaiveBayes tends to push probabilities to 0 or 1 (note the counts in the histograms). This is mainly
because it makes the assumption that features are conditionally independent given the class, which is not the
case in this dataset which contains 2 redundant features.

• RandomForestClassifier shows the opposite behavior: the histograms show peaks at approx. 0.2 and 0.9 prob-
ability, while probabilities close to 0 or 1 are very rare. An explanation for this is given by Niculescu-Mizil
and Caruana [1]: “Methods such as bagging and random forests that average predictions from a base set of
models can have difficulty making predictions near 0 and 1 because variance in the underlying base models will
bias predictions that should be near zero or one away from these values. Because predictions are restricted to
the interval [0,1], errors caused by variance tend to be one- sided near zero and one. For example, if a model
should predict p = 0 for a case, the only way bagging can achieve this is if all bagged trees predict zero. If we
add noise to the trees that bagging is averaging over, this noise will cause some trees to predict values larger
than 0 for this case, thus moving the average prediction of the bagged ensemble away from 0. We observe this
effect most strongly with random forests because the base-level trees trained with random forests have relatively
high variance due to feature subsetting.” As a result, the calibration curve shows a characteristic sigmoid shape,
indicating that the classifier could trust its “intuition” more and return probabilities closer to 0 or 1 typically.

• Support Vector Classification (SVC) shows an even more sigmoid curve as the RandomForestClassifier, which is
typical for maximum-margin methods (compare Niculescu-Mizil and Caruana [1]), which focus on hard samples
that are close to the decision boundary (the support vectors).

References:
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print(__doc__)

# Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# License: BSD Style.

import numpy as np
np.random.seed(0)

import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import LinearSVC
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from sklearn.calibration import calibration_curve

X, y = datasets.make_classification(n_samples=100000, n_features=20,
n_informative=2, n_redundant=2)

train_samples = 100 # Samples used for training the models

X_train = X[:train_samples]
X_test = X[train_samples:]
y_train = y[:train_samples]
y_test = y[train_samples:]

# Create classifiers
lr = LogisticRegression()
gnb = GaussianNB()
svc = LinearSVC(C=1.0)
rfc = RandomForestClassifier(n_estimators=100)

# #############################################################################
# Plot calibration plots

plt.figure(figsize=(10, 10))
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))

ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
for clf, name in [(lr, 'Logistic'),

(gnb, 'Naive Bayes'),
(svc, 'Support Vector Classification'),
(rfc, 'Random Forest')]:

clf.fit(X_train, y_train)
if hasattr(clf, "predict_proba"):

prob_pos = clf.predict_proba(X_test)[:, 1]
else: # use decision function

prob_pos = clf.decision_function(X_test)
prob_pos = \

(prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min())
fraction_of_positives, mean_predicted_value = \

calibration_curve(y_test, prob_pos, n_bins=10)

ax1.plot(mean_predicted_value, fraction_of_positives, "s-",
label="%s" % (name, ))

ax2.hist(prob_pos, range=(0, 1), bins=10, label=name,
histtype="step", lw=2)

ax1.set_ylabel("Fraction of positives")
ax1.set_ylim([-0.05, 1.05])
ax1.legend(loc="lower right")
ax1.set_title('Calibration plots (reliability curve)')

ax2.set_xlabel("Mean predicted value")
ax2.set_ylabel("Count")
ax2.legend(loc="upper center", ncol=2)

plt.tight_layout()
plt.show()
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Total running time of the script: ( 0 minutes 1.265 seconds)

Download Python source code: plot_compare_calibration.py

Download Jupyter notebook: plot_compare_calibration.ipynb

Generated by Sphinx-Gallery

4.4.2 Probability Calibration curves

When performing classification one often wants to predict not only the class label, but also the associated probability.
This probability gives some kind of confidence on the prediction. This example demonstrates how to display how well
calibrated the predicted probabilities are and how to calibrate an uncalibrated classifier.

The experiment is performed on an artificial dataset for binary classification with 100.000 samples (1.000 of them are
used for model fitting) with 20 features. Of the 20 features, only 2 are informative and 10 are redundant. The first
figure shows the estimated probabilities obtained with logistic regression, Gaussian naive Bayes, and Gaussian naive
Bayes with both isotonic calibration and sigmoid calibration. The calibration performance is evaluated with Brier
score, reported in the legend (the smaller the better). One can observe here that logistic regression is well calibrated
while raw Gaussian naive Bayes performs very badly. This is because of the redundant features which violate the
assumption of feature-independence and result in an overly confident classifier, which is indicated by the typical
transposed-sigmoid curve.

Calibration of the probabilities of Gaussian naive Bayes with isotonic regression can fix this issue as can be seen from
the nearly diagonal calibration curve. Sigmoid calibration also improves the brier score slightly, albeit not as strongly
as the non-parametric isotonic regression. This can be attributed to the fact that we have plenty of calibration data such
that the greater flexibility of the non-parametric model can be exploited.

The second figure shows the calibration curve of a linear support-vector classifier (LinearSVC). LinearSVC shows
the opposite behavior as Gaussian naive Bayes: the calibration curve has a sigmoid curve, which is typical for an
under-confident classifier. In the case of LinearSVC, this is caused by the margin property of the hinge loss, which
lets the model focus on hard samples that are close to the decision boundary (the support vectors).

Both kinds of calibration can fix this issue and yield nearly identical results. This shows that sigmoid calibration can
deal with situations where the calibration curve of the base classifier is sigmoid (e.g., for LinearSVC) but not where it
is transposed-sigmoid (e.g., Gaussian naive Bayes).
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•

Out:

Logistic:
Brier: 0.099
Precision: 0.872
Recall: 0.851
F1: 0.862

Naive Bayes:
Brier: 0.118
Precision: 0.857
Recall: 0.876
F1: 0.867

Naive Bayes + Isotonic:
Brier: 0.098
Precision: 0.883
Recall: 0.836
F1: 0.859

Naive Bayes + Sigmoid:
Brier: 0.109
Precision: 0.861
Recall: 0.871
F1: 0.866

Logistic:
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Brier: 0.099
Precision: 0.872
Recall: 0.851
F1: 0.862

SVC:
Brier: 0.163
Precision: 0.872
Recall: 0.852
F1: 0.862

SVC + Isotonic:
Brier: 0.100
Precision: 0.853
Recall: 0.878
F1: 0.865

SVC + Sigmoid:
Brier: 0.099
Precision: 0.874
Recall: 0.849
F1: 0.861

print(__doc__)

# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# License: BSD Style.

import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import LinearSVC
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import (brier_score_loss, precision_score, recall_score,

f1_score)
from sklearn.calibration import CalibratedClassifierCV, calibration_curve
from sklearn.model_selection import train_test_split

# Create dataset of classification task with many redundant and few
# informative features
X, y = datasets.make_classification(n_samples=100000, n_features=20,

n_informative=2, n_redundant=10,
random_state=42)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.99,
random_state=42)

def plot_calibration_curve(est, name, fig_index):
"""Plot calibration curve for est w/o and with calibration. """
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# Calibrated with isotonic calibration
isotonic = CalibratedClassifierCV(est, cv=2, method='isotonic')

# Calibrated with sigmoid calibration
sigmoid = CalibratedClassifierCV(est, cv=2, method='sigmoid')

# Logistic regression with no calibration as baseline
lr = LogisticRegression(C=1., solver='lbfgs')

fig = plt.figure(fig_index, figsize=(10, 10))
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))

ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
for clf, name in [(lr, 'Logistic'),

(est, name),
(isotonic, name + ' + Isotonic'),
(sigmoid, name + ' + Sigmoid')]:

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
if hasattr(clf, "predict_proba"):

prob_pos = clf.predict_proba(X_test)[:, 1]
else: # use decision function

prob_pos = clf.decision_function(X_test)
prob_pos = \

(prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min())

clf_score = brier_score_loss(y_test, prob_pos, pos_label=y.max())
print("%s:" % name)
print("\tBrier: %1.3f" % (clf_score))
print("\tPrecision: %1.3f" % precision_score(y_test, y_pred))
print("\tRecall: %1.3f" % recall_score(y_test, y_pred))
print("\tF1: %1.3f\n" % f1_score(y_test, y_pred))

fraction_of_positives, mean_predicted_value = \
calibration_curve(y_test, prob_pos, n_bins=10)

ax1.plot(mean_predicted_value, fraction_of_positives, "s-",
label="%s (%1.3f)" % (name, clf_score))

ax2.hist(prob_pos, range=(0, 1), bins=10, label=name,
histtype="step", lw=2)

ax1.set_ylabel("Fraction of positives")
ax1.set_ylim([-0.05, 1.05])
ax1.legend(loc="lower right")
ax1.set_title('Calibration plots (reliability curve)')

ax2.set_xlabel("Mean predicted value")
ax2.set_ylabel("Count")
ax2.legend(loc="upper center", ncol=2)

plt.tight_layout()

# Plot calibration curve for Gaussian Naive Bayes
plot_calibration_curve(GaussianNB(), "Naive Bayes", 1)

# Plot calibration curve for Linear SVC
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plot_calibration_curve(LinearSVC(), "SVC", 2)

plt.show()

Total running time of the script: ( 0 minutes 2.057 seconds)

Download Python source code: plot_calibration_curve.py

Download Jupyter notebook: plot_calibration_curve.ipynb

Generated by Sphinx-Gallery

4.4.3 Probability calibration of classifiers

When performing classification you often want to predict not only the class label, but also the associated probability.
This probability gives you some kind of confidence on the prediction. However, not all classifiers provide well-
calibrated probabilities, some being over-confident while others being under-confident. Thus, a separate calibration
of predicted probabilities is often desirable as a postprocessing. This example illustrates two different methods for
this calibration and evaluates the quality of the returned probabilities using Brier’s score (see https://en.wikipedia.org/
wiki/Brier_score).

Compared are the estimated probability using a Gaussian naive Bayes classifier without calibration, with a sigmoid
calibration, and with a non-parametric isotonic calibration. One can observe that only the non-parametric model is
able to provide a probability calibration that returns probabilities close to the expected 0.5 for most of the samples
belonging to the middle cluster with heterogeneous labels. This results in a significantly improved Brier score.

•

•

Out:
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Brier scores: (the smaller the better)
No calibration: 0.104
With isotonic calibration: 0.084
With sigmoid calibration: 0.109

print(__doc__)

# Author: Mathieu Blondel <mathieu@mblondel.org>
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Balazs Kegl <balazs.kegl@gmail.com>
# Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# License: BSD Style.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm

from sklearn.datasets import make_blobs
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import brier_score_loss
from sklearn.calibration import CalibratedClassifierCV
from sklearn.model_selection import train_test_split

n_samples = 50000
n_bins = 3 # use 3 bins for calibration_curve as we have 3 clusters here

# Generate 3 blobs with 2 classes where the second blob contains
# half positive samples and half negative samples. Probability in this
# blob is therefore 0.5.
centers = [(-5, -5), (0, 0), (5, 5)]
X, y = make_blobs(n_samples=n_samples, n_features=2, cluster_std=1.0,

centers=centers, shuffle=False, random_state=42)

y[:n_samples // 2] = 0
y[n_samples // 2:] = 1
sample_weight = np.random.RandomState(42).rand(y.shape[0])

# split train, test for calibration
X_train, X_test, y_train, y_test, sw_train, sw_test = \

train_test_split(X, y, sample_weight, test_size=0.9, random_state=42)

# Gaussian Naive-Bayes with no calibration
clf = GaussianNB()
clf.fit(X_train, y_train) # GaussianNB itself does not support sample-weights
prob_pos_clf = clf.predict_proba(X_test)[:, 1]

# Gaussian Naive-Bayes with isotonic calibration
clf_isotonic = CalibratedClassifierCV(clf, cv=2, method='isotonic')
clf_isotonic.fit(X_train, y_train, sw_train)
prob_pos_isotonic = clf_isotonic.predict_proba(X_test)[:, 1]

# Gaussian Naive-Bayes with sigmoid calibration
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clf_sigmoid = CalibratedClassifierCV(clf, cv=2, method='sigmoid')
clf_sigmoid.fit(X_train, y_train, sw_train)
prob_pos_sigmoid = clf_sigmoid.predict_proba(X_test)[:, 1]

print("Brier scores: (the smaller the better)")

clf_score = brier_score_loss(y_test, prob_pos_clf, sw_test)
print("No calibration: %1.3f" % clf_score)

clf_isotonic_score = brier_score_loss(y_test, prob_pos_isotonic, sw_test)
print("With isotonic calibration: %1.3f" % clf_isotonic_score)

clf_sigmoid_score = brier_score_loss(y_test, prob_pos_sigmoid, sw_test)
print("With sigmoid calibration: %1.3f" % clf_sigmoid_score)

# #############################################################################
# Plot the data and the predicted probabilities
plt.figure()
y_unique = np.unique(y)
colors = cm.rainbow(np.linspace(0.0, 1.0, y_unique.size))
for this_y, color in zip(y_unique, colors):

this_X = X_train[y_train == this_y]
this_sw = sw_train[y_train == this_y]
plt.scatter(this_X[:, 0], this_X[:, 1], s=this_sw * 50, c=color,

alpha=0.5, edgecolor='k',
label="Class %s" % this_y)

plt.legend(loc="best")
plt.title("Data")

plt.figure()
order = np.lexsort((prob_pos_clf, ))
plt.plot(prob_pos_clf[order], 'r', label='No calibration (%1.3f)' % clf_score)
plt.plot(prob_pos_isotonic[order], 'g', linewidth=3,

label='Isotonic calibration (%1.3f)' % clf_isotonic_score)
plt.plot(prob_pos_sigmoid[order], 'b', linewidth=3,

label='Sigmoid calibration (%1.3f)' % clf_sigmoid_score)
plt.plot(np.linspace(0, y_test.size, 51)[1::2],

y_test[order].reshape(25, -1).mean(1),
'k', linewidth=3, label=r'Empirical')

plt.ylim([-0.05, 1.05])
plt.xlabel("Instances sorted according to predicted probability "

"(uncalibrated GNB)")
plt.ylabel("P(y=1)")
plt.legend(loc="upper left")
plt.title("Gaussian naive Bayes probabilities")

plt.show()

Total running time of the script: ( 0 minutes 0.213 seconds)

Download Python source code: plot_calibration.py

Download Jupyter notebook: plot_calibration.ipynb

Generated by Sphinx-Gallery
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4.4.4 Probability Calibration for 3-class classification

This example illustrates how sigmoid calibration changes predicted probabilities for a 3-class classification problem.
Illustrated is the standard 2-simplex, where the three corners correspond to the three classes. Arrows point from the
probability vectors predicted by an uncalibrated classifier to the probability vectors predicted by the same classifier
after sigmoid calibration on a hold-out validation set. Colors indicate the true class of an instance (red: class 1, green:
class 2, blue: class 3).

The base classifier is a random forest classifier with 25 base estimators (trees). If this classifier is trained on all 800
training datapoints, it is overly confident in its predictions and thus incurs a large log-loss. Calibrating an identical
classifier, which was trained on 600 datapoints, with method=’sigmoid’ on the remaining 200 datapoints reduces the
confidence of the predictions, i.e., moves the probability vectors from the edges of the simplex towards the center.
This calibration results in a lower log-loss. Note that an alternative would have been to increase the number of base
estimators which would have resulted in a similar decrease in log-loss.

•

•

Out:

Log-loss of

* uncalibrated classifier trained on 800 datapoints: 1.280

* classifier trained on 600 datapoints and calibrated on 200 datapoint: 0.534

702 Chapter 4. Examples



scikit-learn user guide, Release 0.19.1

print(__doc__)

# Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# License: BSD Style.

import matplotlib.pyplot as plt

import numpy as np

from sklearn.datasets import make_blobs
from sklearn.ensemble import RandomForestClassifier
from sklearn.calibration import CalibratedClassifierCV
from sklearn.metrics import log_loss

np.random.seed(0)

# Generate data
X, y = make_blobs(n_samples=1000, n_features=2, random_state=42,

cluster_std=5.0)
X_train, y_train = X[:600], y[:600]
X_valid, y_valid = X[600:800], y[600:800]
X_train_valid, y_train_valid = X[:800], y[:800]
X_test, y_test = X[800:], y[800:]

# Train uncalibrated random forest classifier on whole train and validation
# data and evaluate on test data
clf = RandomForestClassifier(n_estimators=25)
clf.fit(X_train_valid, y_train_valid)
clf_probs = clf.predict_proba(X_test)
score = log_loss(y_test, clf_probs)

# Train random forest classifier, calibrate on validation data and evaluate
# on test data
clf = RandomForestClassifier(n_estimators=25)
clf.fit(X_train, y_train)
clf_probs = clf.predict_proba(X_test)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid", cv="prefit")
sig_clf.fit(X_valid, y_valid)
sig_clf_probs = sig_clf.predict_proba(X_test)
sig_score = log_loss(y_test, sig_clf_probs)

# Plot changes in predicted probabilities via arrows
plt.figure(0)
colors = ["r", "g", "b"]
for i in range(clf_probs.shape[0]):

plt.arrow(clf_probs[i, 0], clf_probs[i, 1],
sig_clf_probs[i, 0] - clf_probs[i, 0],
sig_clf_probs[i, 1] - clf_probs[i, 1],
color=colors[y_test[i]], head_width=1e-2)

# Plot perfect predictions
plt.plot([1.0], [0.0], 'ro', ms=20, label="Class 1")
plt.plot([0.0], [1.0], 'go', ms=20, label="Class 2")
plt.plot([0.0], [0.0], 'bo', ms=20, label="Class 3")

# Plot boundaries of unit simplex
plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex")
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# Annotate points on the simplex
plt.annotate(r'($\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$)',

xy=(1.0/3, 1.0/3), xytext=(1.0/3, .23), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

plt.plot([1.0/3], [1.0/3], 'ko', ms=5)
plt.annotate(r'($\frac{1}{2}$, $0$, $\frac{1}{2}$)',

xy=(.5, .0), xytext=(.5, .1), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

plt.annotate(r'($0$, $\frac{1}{2}$, $\frac{1}{2}$)',
xy=(.0, .5), xytext=(.1, .5), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

plt.annotate(r'($\frac{1}{2}$, $\frac{1}{2}$, $0$)',
xy=(.5, .5), xytext=(.6, .6), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

plt.annotate(r'($0$, $0$, $1$)',
xy=(0, 0), xytext=(.1, .1), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

plt.annotate(r'($1$, $0$, $0$)',
xy=(1, 0), xytext=(1, .1), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

plt.annotate(r'($0$, $1$, $0$)',
xy=(0, 1), xytext=(.1, 1), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

# Add grid
plt.grid("off")
for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:

plt.plot([0, x], [x, 0], 'k', alpha=0.2)
plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2)
plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2)

plt.title("Change of predicted probabilities after sigmoid calibration")
plt.xlabel("Probability class 1")
plt.ylabel("Probability class 2")
plt.xlim(-0.05, 1.05)
plt.ylim(-0.05, 1.05)
plt.legend(loc="best")

print("Log-loss of")
print(" * uncalibrated classifier trained on 800 datapoints: %.3f "

% score)
print(" * classifier trained on 600 datapoints and calibrated on "

"200 datapoint: %.3f" % sig_score)

# Illustrate calibrator
plt.figure(1)
# generate grid over 2-simplex
p1d = np.linspace(0, 1, 20)
p0, p1 = np.meshgrid(p1d, p1d)
p2 = 1 - p0 - p1
p = np.c_[p0.ravel(), p1.ravel(), p2.ravel()]
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p = p[p[:, 2] >= 0]

calibrated_classifier = sig_clf.calibrated_classifiers_[0]
prediction = np.vstack([calibrator.predict(this_p)

for calibrator, this_p in
zip(calibrated_classifier.calibrators_, p.T)]).T

prediction /= prediction.sum(axis=1)[:, None]

# Plot modifications of calibrator
for i in range(prediction.shape[0]):

plt.arrow(p[i, 0], p[i, 1],
prediction[i, 0] - p[i, 0], prediction[i, 1] - p[i, 1],
head_width=1e-2, color=colors[np.argmax(p[i])])

# Plot boundaries of unit simplex
plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex")

plt.grid("off")
for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:

plt.plot([0, x], [x, 0], 'k', alpha=0.2)
plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2)
plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2)

plt.title("Illustration of sigmoid calibrator")
plt.xlabel("Probability class 1")
plt.ylabel("Probability class 2")
plt.xlim(-0.05, 1.05)
plt.ylim(-0.05, 1.05)

plt.show()

Total running time of the script: ( 0 minutes 0.477 seconds)

Download Python source code: plot_calibration_multiclass.py

Download Jupyter notebook: plot_calibration_multiclass.ipynb

Generated by Sphinx-Gallery

4.5 Classification

General examples about classification algorithms.

4.5.1 Recognizing hand-written digits

An example showing how the scikit-learn can be used to recognize images of hand-written digits.

This example is commented in the tutorial section of the user manual.
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Out:

Classification report for classifier SVC(C=1.0, cache_size=200, class_weight=None,
→˓coef0=0.0,
decision_function_shape='ovr', degree=3, gamma=0.001, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False):

precision recall f1-score support

0 1.00 0.99 0.99 88
1 0.99 0.97 0.98 91
2 0.99 0.99 0.99 86
3 0.98 0.87 0.92 91
4 0.99 0.96 0.97 92
5 0.95 0.97 0.96 91
6 0.99 0.99 0.99 91
7 0.96 0.99 0.97 89
8 0.94 1.00 0.97 88
9 0.93 0.98 0.95 92

avg / total 0.97 0.97 0.97 899

Confusion matrix:
[[87 0 0 0 1 0 0 0 0 0]
[ 0 88 1 0 0 0 0 0 1 1]
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[ 0 0 85 1 0 0 0 0 0 0]
[ 0 0 0 79 0 3 0 4 5 0]
[ 0 0 0 0 88 0 0 0 0 4]
[ 0 0 0 0 0 88 1 0 0 2]
[ 0 1 0 0 0 0 90 0 0 0]
[ 0 0 0 0 0 1 0 88 0 0]
[ 0 0 0 0 0 0 0 0 88 0]
[ 0 0 0 1 0 1 0 0 0 90]]

print(__doc__)

# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
# License: BSD 3 clause

# Standard scientific Python imports
import matplotlib.pyplot as plt

# Import datasets, classifiers and performance metrics
from sklearn import datasets, svm, metrics

# The digits dataset
digits = datasets.load_digits()

# The data that we are interested in is made of 8x8 images of digits, let's
# have a look at the first 4 images, stored in the `images` attribute of the
# dataset. If we were working from image files, we could load them using
# matplotlib.pyplot.imread. Note that each image must have the same size. For these
# images, we know which digit they represent: it is given in the 'target' of
# the dataset.
images_and_labels = list(zip(digits.images, digits.target))
for index, (image, label) in enumerate(images_and_labels[:4]):

plt.subplot(2, 4, index + 1)
plt.axis('off')
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
plt.title('Training: %i' % label)

# To apply a classifier on this data, we need to flatten the image, to
# turn the data in a (samples, feature) matrix:
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))

# Create a classifier: a support vector classifier
classifier = svm.SVC(gamma=0.001)

# We learn the digits on the first half of the digits
classifier.fit(data[:n_samples // 2], digits.target[:n_samples // 2])

# Now predict the value of the digit on the second half:
expected = digits.target[n_samples // 2:]
predicted = classifier.predict(data[n_samples // 2:])

print("Classification report for classifier %s:\n%s\n"
% (classifier, metrics.classification_report(expected, predicted)))
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print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted))

images_and_predictions = list(zip(digits.images[n_samples // 2:], predicted))
for index, (image, prediction) in enumerate(images_and_predictions[:4]):

plt.subplot(2, 4, index + 5)
plt.axis('off')
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
plt.title('Prediction: %i' % prediction)

plt.show()

Total running time of the script: ( 0 minutes 0.486 seconds)

Download Python source code: plot_digits_classification.py

Download Jupyter notebook: plot_digits_classification.ipynb

Generated by Sphinx-Gallery

4.5.2 Normal and Shrinkage Linear Discriminant Analysis for classification

Shows how shrinkage improves classification.

from __future__ import division
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import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_blobs
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

n_train = 20 # samples for training
n_test = 200 # samples for testing
n_averages = 50 # how often to repeat classification
n_features_max = 75 # maximum number of features
step = 4 # step size for the calculation

def generate_data(n_samples, n_features):
"""Generate random blob-ish data with noisy features.

This returns an array of input data with shape `(n_samples, n_features)`
and an array of `n_samples` target labels.

Only one feature contains discriminative information, the other features
contain only noise.
"""
X, y = make_blobs(n_samples=n_samples, n_features=1, centers=[[-2], [2]])

# add non-discriminative features
if n_features > 1:

X = np.hstack([X, np.random.randn(n_samples, n_features - 1)])
return X, y

acc_clf1, acc_clf2 = [], []
n_features_range = range(1, n_features_max + 1, step)
for n_features in n_features_range:

score_clf1, score_clf2 = 0, 0
for _ in range(n_averages):

X, y = generate_data(n_train, n_features)

clf1 = LinearDiscriminantAnalysis(solver='lsqr', shrinkage='auto').fit(X, y)
clf2 = LinearDiscriminantAnalysis(solver='lsqr', shrinkage=None).fit(X, y)

X, y = generate_data(n_test, n_features)
score_clf1 += clf1.score(X, y)
score_clf2 += clf2.score(X, y)

acc_clf1.append(score_clf1 / n_averages)
acc_clf2.append(score_clf2 / n_averages)

features_samples_ratio = np.array(n_features_range) / n_train

plt.plot(features_samples_ratio, acc_clf1, linewidth=2,
label="Linear Discriminant Analysis with shrinkage", color='navy')

plt.plot(features_samples_ratio, acc_clf2, linewidth=2,
label="Linear Discriminant Analysis", color='gold')

plt.xlabel('n_features / n_samples')
plt.ylabel('Classification accuracy')

plt.legend(loc=1, prop={'size': 12})
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plt.suptitle('Linear Discriminant Analysis vs. \
shrinkage Linear Discriminant Analysis (1 discriminative feature)')
plt.show()

Total running time of the script: ( 0 minutes 6.109 seconds)

Download Python source code: plot_lda.py

Download Jupyter notebook: plot_lda.ipynb

Generated by Sphinx-Gallery

4.5.3 Plot classification probability

Plot the classification probability for different classifiers. We use a 3 class dataset, and we classify it with a Sup-
port Vector classifier, L1 and L2 penalized logistic regression with either a One-Vs-Rest or multinomial setting, and
Gaussian process classification.

The logistic regression is not a multiclass classifier out of the box. As a result it can identify only the first class.
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Out:

classif_rate for L1 logistic : 79.333333
classif_rate for L2 logistic (OvR) : 76.666667
classif_rate for Linear SVC : 82.000000
classif_rate for L2 logistic (Multinomial) : 82.000000
classif_rate for GPC : 82.666667

print(__doc__)

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np

from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn import datasets

iris = datasets.load_iris()
X = iris.data[:, 0:2] # we only take the first two features for visualization
y = iris.target

n_features = X.shape[1]

C = 1.0
kernel = 1.0 * RBF([1.0, 1.0]) # for GPC

# Create different classifiers. The logistic regression cannot do
# multiclass out of the box.
classifiers = {'L1 logistic': LogisticRegression(C=C, penalty='l1'),

'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2'),
'Linear SVC': SVC(kernel='linear', C=C, probability=True,

random_state=0),
'L2 logistic (Multinomial)': LogisticRegression(
C=C, solver='lbfgs', multi_class='multinomial'),

'GPC': GaussianProcessClassifier(kernel)
}

n_classifiers = len(classifiers)

plt.figure(figsize=(3 * 2, n_classifiers * 2))
plt.subplots_adjust(bottom=.2, top=.95)

xx = np.linspace(3, 9, 100)
yy = np.linspace(1, 5, 100).T
xx, yy = np.meshgrid(xx, yy)
Xfull = np.c_[xx.ravel(), yy.ravel()]

for index, (name, classifier) in enumerate(classifiers.items()):
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classifier.fit(X, y)

y_pred = classifier.predict(X)
classif_rate = np.mean(y_pred.ravel() == y.ravel()) * 100
print("classif_rate for %s : %f " % (name, classif_rate))

# View probabilities=
probas = classifier.predict_proba(Xfull)
n_classes = np.unique(y_pred).size
for k in range(n_classes):

plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1)
plt.title("Class %d" % k)
if k == 0:

plt.ylabel(name)
imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)),

extent=(3, 9, 1, 5), origin='lower')
plt.xticks(())
plt.yticks(())
idx = (y_pred == k)
if idx.any():

plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='k')

ax = plt.axes([0.15, 0.04, 0.7, 0.05])
plt.title("Probability")
plt.colorbar(imshow_handle, cax=ax, orientation='horizontal')

plt.show()

Total running time of the script: ( 0 minutes 1.817 seconds)

Download Python source code: plot_classification_probability.py

Download Jupyter notebook: plot_classification_probability.ipynb

Generated by Sphinx-Gallery

4.5.4 Classifier comparison

A comparison of a several classifiers in scikit-learn on synthetic datasets. The point of this example is to illustrate
the nature of decision boundaries of different classifiers. This should be taken with a grain of salt, as the intuition
conveyed by these examples does not necessarily carry over to real datasets.

Particularly in high-dimensional spaces, data can more easily be separated linearly and the simplicity of classifiers
such as naive Bayes and linear SVMs might lead to better generalization than is achieved by other classifiers.

The plots show training points in solid colors and testing points semi-transparent. The lower right shows the classifi-
cation accuracy on the test set.
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print(__doc__)

# Code source: Gaël Varoquaux
# Andreas Müller
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

h = .02 # step size in the mesh

names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process",
"Decision Tree", "Random Forest", "Neural Net", "AdaBoost",
"Naive Bayes", "QDA"]

classifiers = [
KNeighborsClassifier(3),
SVC(kernel="linear", C=0.025),
SVC(gamma=2, C=1),
GaussianProcessClassifier(1.0 * RBF(1.0)),
DecisionTreeClassifier(max_depth=5),
RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
MLPClassifier(alpha=1),
AdaBoostClassifier(),
GaussianNB(),
QuadraticDiscriminantAnalysis()]

X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
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random_state=1, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)

datasets = [make_moons(noise=0.3, random_state=0),
make_circles(noise=0.2, factor=0.5, random_state=1),
linearly_separable
]

figure = plt.figure(figsize=(27, 9))
i = 1
# iterate over datasets
for ds_cnt, ds in enumerate(datasets):

# preprocess dataset, split into training and test part
X, y = ds
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = \

train_test_split(X, y, test_size=.4, random_state=42)

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

# just plot the dataset first
cm = plt.cm.RdBu
cm_bright = ListedColormap(['#FF0000', '#0000FF'])
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
if ds_cnt == 0:

ax.set_title("Input data")
# Plot the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,

edgecolors='k')
# and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6,

edgecolors='k')
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
i += 1

# iterate over classifiers
for name, clf in zip(names, classifiers):

ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
if hasattr(clf, "decision_function"):

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
else:

Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

# Put the result into a color plot
Z = Z.reshape(xx.shape)
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ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)

# Plot also the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,

edgecolors='k')
# and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,

edgecolors='k', alpha=0.6)

ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
if ds_cnt == 0:

ax.set_title(name)
ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),

size=15, horizontalalignment='right')
i += 1

plt.tight_layout()
plt.show()

Total running time of the script: ( 0 minutes 6.109 seconds)

Download Python source code: plot_classifier_comparison.py

Download Jupyter notebook: plot_classifier_comparison.ipynb

Generated by Sphinx-Gallery

4.5.5 Linear and Quadratic Discriminant Analysis with covariance ellipsoid

This example plots the covariance ellipsoids of each class and decision boundary learned by LDA and QDA. The
ellipsoids display the double standard deviation for each class. With LDA, the standard deviation is the same for all
the classes, while each class has its own standard deviation with QDA.
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print(__doc__)

from scipy import linalg
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib import colors

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

# #############################################################################
# Colormap
cmap = colors.LinearSegmentedColormap(

'red_blue_classes',
{'red': [(0, 1, 1), (1, 0.7, 0.7)],
'green': [(0, 0.7, 0.7), (1, 0.7, 0.7)],
'blue': [(0, 0.7, 0.7), (1, 1, 1)]})

plt.cm.register_cmap(cmap=cmap)

# #############################################################################
# Generate datasets
def dataset_fixed_cov():

'''Generate 2 Gaussians samples with the same covariance matrix'''
n, dim = 300, 2
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np.random.seed(0)
C = np.array([[0., -0.23], [0.83, .23]])
X = np.r_[np.dot(np.random.randn(n, dim), C),

np.dot(np.random.randn(n, dim), C) + np.array([1, 1])]
y = np.hstack((np.zeros(n), np.ones(n)))
return X, y

def dataset_cov():
'''Generate 2 Gaussians samples with different covariance matrices'''
n, dim = 300, 2
np.random.seed(0)
C = np.array([[0., -1.], [2.5, .7]]) * 2.
X = np.r_[np.dot(np.random.randn(n, dim), C),

np.dot(np.random.randn(n, dim), C.T) + np.array([1, 4])]
y = np.hstack((np.zeros(n), np.ones(n)))
return X, y

# #############################################################################
# Plot functions
def plot_data(lda, X, y, y_pred, fig_index):

splot = plt.subplot(2, 2, fig_index)
if fig_index == 1:

plt.title('Linear Discriminant Analysis')
plt.ylabel('Data with\n fixed covariance')

elif fig_index == 2:
plt.title('Quadratic Discriminant Analysis')

elif fig_index == 3:
plt.ylabel('Data with\n varying covariances')

tp = (y == y_pred) # True Positive
tp0, tp1 = tp[y == 0], tp[y == 1]
X0, X1 = X[y == 0], X[y == 1]
X0_tp, X0_fp = X0[tp0], X0[~tp0]
X1_tp, X1_fp = X1[tp1], X1[~tp1]

alpha = 0.5

# class 0: dots
plt.plot(X0_tp[:, 0], X0_tp[:, 1], 'o', alpha=alpha,

color='red', markeredgecolor='k')
plt.plot(X0_fp[:, 0], X0_fp[:, 1], '*', alpha=alpha,

color='#990000', markeredgecolor='k') # dark red

# class 1: dots
plt.plot(X1_tp[:, 0], X1_tp[:, 1], 'o', alpha=alpha,

color='blue', markeredgecolor='k')
plt.plot(X1_fp[:, 0], X1_fp[:, 1], '*', alpha=alpha,

color='#000099', markeredgecolor='k') # dark blue

# class 0 and 1 : areas
nx, ny = 200, 100
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx),

np.linspace(y_min, y_max, ny))
Z = lda.predict_proba(np.c_[xx.ravel(), yy.ravel()])
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Z = Z[:, 1].reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap='red_blue_classes',

norm=colors.Normalize(0., 1.))
plt.contour(xx, yy, Z, [0.5], linewidths=2., colors='k')

# means
plt.plot(lda.means_[0][0], lda.means_[0][1],

'o', color='black', markersize=10, markeredgecolor='k')
plt.plot(lda.means_[1][0], lda.means_[1][1],

'o', color='black', markersize=10, markeredgecolor='k')

return splot

def plot_ellipse(splot, mean, cov, color):
v, w = linalg.eigh(cov)
u = w[0] / linalg.norm(w[0])
angle = np.arctan(u[1] / u[0])
angle = 180 * angle / np.pi # convert to degrees
# filled Gaussian at 2 standard deviation
ell = mpl.patches.Ellipse(mean, 2 * v[0] ** 0.5, 2 * v[1] ** 0.5,

180 + angle, facecolor=color,
edgecolor='yellow',
linewidth=2, zorder=2)

ell.set_clip_box(splot.bbox)
ell.set_alpha(0.5)
splot.add_artist(ell)
splot.set_xticks(())
splot.set_yticks(())

def plot_lda_cov(lda, splot):
plot_ellipse(splot, lda.means_[0], lda.covariance_, 'red')
plot_ellipse(splot, lda.means_[1], lda.covariance_, 'blue')

def plot_qda_cov(qda, splot):
plot_ellipse(splot, qda.means_[0], qda.covariances_[0], 'red')
plot_ellipse(splot, qda.means_[1], qda.covariances_[1], 'blue')

for i, (X, y) in enumerate([dataset_fixed_cov(), dataset_cov()]):
# Linear Discriminant Analysis
lda = LinearDiscriminantAnalysis(solver="svd", store_covariance=True)
y_pred = lda.fit(X, y).predict(X)
splot = plot_data(lda, X, y, y_pred, fig_index=2 * i + 1)
plot_lda_cov(lda, splot)
plt.axis('tight')

# Quadratic Discriminant Analysis
qda = QuadraticDiscriminantAnalysis(store_covariances=True)
y_pred = qda.fit(X, y).predict(X)
splot = plot_data(qda, X, y, y_pred, fig_index=2 * i + 2)
plot_qda_cov(qda, splot)
plt.axis('tight')

plt.suptitle('Linear Discriminant Analysis vs Quadratic Discriminant'
'Analysis')

plt.show()
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Total running time of the script: ( 0 minutes 0.443 seconds)

Download Python source code: plot_lda_qda.py

Download Jupyter notebook: plot_lda_qda.ipynb

Generated by Sphinx-Gallery

4.6 Clustering

Examples concerning the sklearn.cluster module.

4.6.1 Feature agglomeration

These images how similar features are merged together using feature agglomeration.

print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets, cluster
from sklearn.feature_extraction.image import grid_to_graph

digits = datasets.load_digits()
images = digits.images
X = np.reshape(images, (len(images), -1))
connectivity = grid_to_graph(*images[0].shape)
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agglo = cluster.FeatureAgglomeration(connectivity=connectivity,
n_clusters=32)

agglo.fit(X)
X_reduced = agglo.transform(X)

X_restored = agglo.inverse_transform(X_reduced)
images_restored = np.reshape(X_restored, images.shape)
plt.figure(1, figsize=(4, 3.5))
plt.clf()
plt.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91)
for i in range(4):

plt.subplot(3, 4, i + 1)
plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest')
plt.xticks(())
plt.yticks(())
if i == 1:

plt.title('Original data')
plt.subplot(3, 4, 4 + i + 1)
plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16,

interpolation='nearest')
if i == 1:

plt.title('Agglomerated data')
plt.xticks(())
plt.yticks(())

plt.subplot(3, 4, 10)
plt.imshow(np.reshape(agglo.labels_, images[0].shape),

interpolation='nearest', cmap=plt.cm.spectral)
plt.xticks(())
plt.yticks(())
plt.title('Labels')
plt.show()

Total running time of the script: ( 0 minutes 0.425 seconds)

Download Python source code: plot_digits_agglomeration.py

Download Jupyter notebook: plot_digits_agglomeration.ipynb

Generated by Sphinx-Gallery

4.6.2 A demo of the mean-shift clustering algorithm

Reference:

Dorin Comaniciu and Peter Meer, “Mean Shift: A robust approach toward feature space analysis”. IEEE Transactions
on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619.
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Out:

number of estimated clusters : 3

print(__doc__)

import numpy as np
from sklearn.cluster import MeanShift, estimate_bandwidth
from sklearn.datasets.samples_generator import make_blobs

# #############################################################################
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6)

# #############################################################################
# Compute clustering with MeanShift

# The following bandwidth can be automatically detected using
bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500)
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ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
ms.fit(X)
labels = ms.labels_
cluster_centers = ms.cluster_centers_

labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)

print("number of estimated clusters : %d" % n_clusters_)

# #############################################################################
# Plot result
import matplotlib.pyplot as plt
from itertools import cycle

plt.figure(1)
plt.clf()

colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(n_clusters_), colors):

my_members = labels == k
cluster_center = cluster_centers[k]
plt.plot(X[my_members, 0], X[my_members, 1], col + '.')
plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,

markeredgecolor='k', markersize=14)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()

Total running time of the script: ( 0 minutes 0.410 seconds)

Download Python source code: plot_mean_shift.py

Download Jupyter notebook: plot_mean_shift.ipynb

Generated by Sphinx-Gallery

4.6.3 Demonstration of k-means assumptions

This example is meant to illustrate situations where k-means will produce unintuitive and possibly unexpected clusters.
In the first three plots, the input data does not conform to some implicit assumption that k-means makes and undesirable
clusters are produced as a result. In the last plot, k-means returns intuitive clusters despite unevenly sized blobs.
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print(__doc__)

# Author: Phil Roth <mr.phil.roth@gmail.com>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs

plt.figure(figsize=(12, 12))

n_samples = 1500
random_state = 170
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X, y = make_blobs(n_samples=n_samples, random_state=random_state)

# Incorrect number of clusters
y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X)

plt.subplot(221)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.title("Incorrect Number of Blobs")

# Anisotropicly distributed data
transformation = [[0.60834549, -0.63667341], [-0.40887718, 0.85253229]]
X_aniso = np.dot(X, transformation)
y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso)

plt.subplot(222)
plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred)
plt.title("Anisotropicly Distributed Blobs")

# Different variance
X_varied, y_varied = make_blobs(n_samples=n_samples,

cluster_std=[1.0, 2.5, 0.5],
random_state=random_state)

y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied)

plt.subplot(223)
plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred)
plt.title("Unequal Variance")

# Unevenly sized blobs
X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10]))
y_pred = KMeans(n_clusters=3,

random_state=random_state).fit_predict(X_filtered)

plt.subplot(224)
plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred)
plt.title("Unevenly Sized Blobs")

plt.show()

Total running time of the script: ( 0 minutes 0.284 seconds)

Download Python source code: plot_kmeans_assumptions.py

Download Jupyter notebook: plot_kmeans_assumptions.ipynb

Generated by Sphinx-Gallery

4.6.4 Segmenting the picture of a raccoon face in regions

This example uses Spectral clustering on a graph created from voxel-to-voxel difference on an image to break this
image into multiple partly-homogeneous regions.

This procedure (spectral clustering on an image) is an efficient approximate solution for finding normalized graph cuts.

There are two options to assign labels:

• with ‘kmeans’ spectral clustering will cluster samples in the embedding space using a kmeans algorithm

• whereas ‘discrete’ will iteratively search for the closest partition space to the embedding space.
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print(__doc__)

# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>, Brian Cheung
# License: BSD 3 clause

import time

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt

from sklearn.feature_extraction import image
from sklearn.cluster import spectral_clustering

# load the raccoon face as a numpy array
try: # SciPy >= 0.16 have face in misc

from scipy.misc import face
face = face(gray=True)

except ImportError:
face = sp.face(gray=True)

# Resize it to 10% of the original size to speed up the processing
face = sp.misc.imresize(face, 0.10) / 255.

# Convert the image into a graph with the value of the gradient on the
# edges.
graph = image.img_to_graph(face)

# Take a decreasing function of the gradient: an exponential
# The smaller beta is, the more independent the segmentation is of the
# actual image. For beta=1, the segmentation is close to a voronoi
beta = 5
eps = 1e-6
graph.data = np.exp(-beta * graph.data / graph.data.std()) + eps

# Apply spectral clustering (this step goes much faster if you have pyamg
# installed)
N_REGIONS = 25

Visualize the resulting regions

for assign_labels in ('kmeans', 'discretize'):
t0 = time.time()
labels = spectral_clustering(graph, n_clusters=N_REGIONS,

assign_labels=assign_labels, random_state=1)
t1 = time.time()
labels = labels.reshape(face.shape)

plt.figure(figsize=(5, 5))
plt.imshow(face, cmap=plt.cm.gray)
for l in range(N_REGIONS):

plt.contour(labels == l, contours=1,
colors=[plt.cm.spectral(l / float(N_REGIONS))])

plt.xticks(())
plt.yticks(())
title = 'Spectral clustering: %s, %.2fs' % (assign_labels, (t1 - t0))
print(title)
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plt.title(title)
plt.show()

•

•

Out:

Spectral clustering: kmeans, 6.27s
Spectral clustering: discretize, 5.32s

Total running time of the script: ( 0 minutes 12.394 seconds)

Download Python source code: plot_face_segmentation.py

Download Jupyter notebook: plot_face_segmentation.ipynb

Generated by Sphinx-Gallery

4.6.5 A demo of structured Ward hierarchical clustering on a raccoon face image

Compute the segmentation of a 2D image with Ward hierarchical clustering. The clustering is spatially constrained in
order for each segmented region to be in one piece.
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Out:

Compute structured hierarchical clustering...
Elapsed time: 0.5542902946472168
Number of pixels: 7752
Number of clusters: 15

# Author : Vincent Michel, 2010
# Alexandre Gramfort, 2011
# License: BSD 3 clause

print(__doc__)

import time as time

import numpy as np
import scipy as sp

import matplotlib.pyplot as plt
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from sklearn.feature_extraction.image import grid_to_graph
from sklearn.cluster import AgglomerativeClustering

# #############################################################################
# Generate data
try: # SciPy >= 0.16 have face in misc

from scipy.misc import face
face = face(gray=True)

except ImportError:
face = sp.face(gray=True)

# Resize it to 10% of the original size to speed up the processing
face = sp.misc.imresize(face, 0.10) / 255.

X = np.reshape(face, (-1, 1))

# #############################################################################
# Define the structure A of the data. Pixels connected to their neighbors.
connectivity = grid_to_graph(*face.shape)

# #############################################################################
# Compute clustering
print("Compute structured hierarchical clustering...")
st = time.time()
n_clusters = 15 # number of regions
ward = AgglomerativeClustering(n_clusters=n_clusters, linkage='ward',

connectivity=connectivity)
ward.fit(X)
label = np.reshape(ward.labels_, face.shape)
print("Elapsed time: ", time.time() - st)
print("Number of pixels: ", label.size)
print("Number of clusters: ", np.unique(label).size)

# #############################################################################
# Plot the results on an image
plt.figure(figsize=(5, 5))
plt.imshow(face, cmap=plt.cm.gray)
for l in range(n_clusters):

plt.contour(label == l, contours=1,
colors=[plt.cm.spectral(l / float(n_clusters)), ])

plt.xticks(())
plt.yticks(())
plt.show()

Total running time of the script: ( 0 minutes 0.864 seconds)

Download Python source code: plot_face_ward_segmentation.py

Download Jupyter notebook: plot_face_ward_segmentation.ipynb

Generated by Sphinx-Gallery

4.6.6 Online learning of a dictionary of parts of faces

This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces.

From the programming standpoint, it is interesting because it shows how to use the online API of the scikit-learn to
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process a very large dataset by chunks. The way we proceed is that we load an image at a time and extract randomly
50 patches from this image. Once we have accumulated 500 of these patches (using 10 images), we run the partial_fit
method of the online KMeans object, MiniBatchKMeans.

The verbose setting on the MiniBatchKMeans enables us to see that some clusters are reassigned during the successive
calls to partial-fit. This is because the number of patches that they represent has become too low, and it is better to
choose a random new cluster.

Out:

Learning the dictionary...
Partial fit of 100 out of 2400
Partial fit of 200 out of 2400
[MiniBatchKMeans] Reassigning 16 cluster centers.
Partial fit of 300 out of 2400
Partial fit of 400 out of 2400
Partial fit of 500 out of 2400
Partial fit of 600 out of 2400
Partial fit of 700 out of 2400
Partial fit of 800 out of 2400
Partial fit of 900 out of 2400
Partial fit of 1000 out of 2400
Partial fit of 1100 out of 2400
Partial fit of 1200 out of 2400
Partial fit of 1300 out of 2400
Partial fit of 1400 out of 2400
Partial fit of 1500 out of 2400
Partial fit of 1600 out of 2400
Partial fit of 1700 out of 2400
Partial fit of 1800 out of 2400
Partial fit of 1900 out of 2400
Partial fit of 2000 out of 2400

730 Chapter 4. Examples



scikit-learn user guide, Release 0.19.1

Partial fit of 2100 out of 2400
Partial fit of 2200 out of 2400
Partial fit of 2300 out of 2400
Partial fit of 2400 out of 2400
done in 3.26s.

print(__doc__)

import time

import matplotlib.pyplot as plt
import numpy as np

from sklearn import datasets
from sklearn.cluster import MiniBatchKMeans
from sklearn.feature_extraction.image import extract_patches_2d

faces = datasets.fetch_olivetti_faces()

# #############################################################################
# Learn the dictionary of images

print('Learning the dictionary... ')
rng = np.random.RandomState(0)
kmeans = MiniBatchKMeans(n_clusters=81, random_state=rng, verbose=True)
patch_size = (20, 20)

buffer = []
index = 1
t0 = time.time()

# The online learning part: cycle over the whole dataset 6 times
index = 0
for _ in range(6):

for img in faces.images:
data = extract_patches_2d(img, patch_size, max_patches=50,

random_state=rng)
data = np.reshape(data, (len(data), -1))
buffer.append(data)
index += 1
if index % 10 == 0:

data = np.concatenate(buffer, axis=0)
data -= np.mean(data, axis=0)
data /= np.std(data, axis=0)
kmeans.partial_fit(data)
buffer = []

if index % 100 == 0:
print('Partial fit of %4i out of %i'

% (index, 6 * len(faces.images)))

dt = time.time() - t0
print('done in %.2fs.' % dt)
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# #############################################################################
# Plot the results
plt.figure(figsize=(4.2, 4))
for i, patch in enumerate(kmeans.cluster_centers_):

plt.subplot(9, 9, i + 1)
plt.imshow(patch.reshape(patch_size), cmap=plt.cm.gray,

interpolation='nearest')
plt.xticks(())
plt.yticks(())

plt.suptitle('Patches of faces\nTrain time %.1fs on %d patches' %
(dt, 8 * len(faces.images)), fontsize=16)

plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)

plt.show()

Total running time of the script: ( 0 minutes 6.201 seconds)

Download Python source code: plot_dict_face_patches.py

Download Jupyter notebook: plot_dict_face_patches.ipynb

Generated by Sphinx-Gallery

4.6.7 Vector Quantization Example

Face, a 1024 x 768 size image of a raccoon face, is used here to illustrate how k-means is used for vector quantization.

•

•

•
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•

print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt

from sklearn import cluster

try: # SciPy >= 0.16 have face in misc
from scipy.misc import face
face = face(gray=True)

except ImportError:
face = sp.face(gray=True)

n_clusters = 5
np.random.seed(0)

X = face.reshape((-1, 1)) # We need an (n_sample, n_feature) array
k_means = cluster.KMeans(n_clusters=n_clusters, n_init=4)
k_means.fit(X)
values = k_means.cluster_centers_.squeeze()
labels = k_means.labels_

# create an array from labels and values
face_compressed = np.choose(labels, values)
face_compressed.shape = face.shape

vmin = face.min()
vmax = face.max()

# original face
plt.figure(1, figsize=(3, 2.2))
plt.imshow(face, cmap=plt.cm.gray, vmin=vmin, vmax=256)

# compressed face
plt.figure(2, figsize=(3, 2.2))
plt.imshow(face_compressed, cmap=plt.cm.gray, vmin=vmin, vmax=vmax)

# equal bins face
regular_values = np.linspace(0, 256, n_clusters + 1)
regular_labels = np.searchsorted(regular_values, face) - 1
regular_values = .5 * (regular_values[1:] + regular_values[:-1]) # mean
regular_face = np.choose(regular_labels.ravel(), regular_values, mode="clip")
regular_face.shape = face.shape
plt.figure(3, figsize=(3, 2.2))
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plt.imshow(regular_face, cmap=plt.cm.gray, vmin=vmin, vmax=vmax)

# histogram
plt.figure(4, figsize=(3, 2.2))
plt.clf()
plt.axes([.01, .01, .98, .98])
plt.hist(X, bins=256, color='.5', edgecolor='.5')
plt.yticks(())
plt.xticks(regular_values)
values = np.sort(values)
for center_1, center_2 in zip(values[:-1], values[1:]):

plt.axvline(.5 * (center_1 + center_2), color='b')

for center_1, center_2 in zip(regular_values[:-1], regular_values[1:]):
plt.axvline(.5 * (center_1 + center_2), color='b', linestyle='--')

plt.show()

Total running time of the script: ( 0 minutes 3.238 seconds)

Download Python source code: plot_face_compress.py

Download Jupyter notebook: plot_face_compress.ipynb

Generated by Sphinx-Gallery

4.6.8 Agglomerative clustering with and without structure

This example shows the effect of imposing a connectivity graph to capture local structure in the data. The graph is
simply the graph of 20 nearest neighbors.

Two consequences of imposing a connectivity can be seen. First clustering with a connectivity matrix is much faster.

Second, when using a connectivity matrix, average and complete linkage are unstable and tend to create a few clusters
that grow very quickly. Indeed, average and complete linkage fight this percolation behavior by considering all the
distances between two clusters when merging them. The connectivity graph breaks this mechanism. This effect is more
pronounced for very sparse graphs (try decreasing the number of neighbors in kneighbors_graph) and with complete
linkage. In particular, having a very small number of neighbors in the graph, imposes a geometry that is close to that
of single linkage, which is well known to have this percolation instability.

•
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•

•

•

# Authors: Gael Varoquaux, Nelle Varoquaux
# License: BSD 3 clause

import time
import matplotlib.pyplot as plt
import numpy as np

from sklearn.cluster import AgglomerativeClustering
from sklearn.neighbors import kneighbors_graph

# Generate sample data
n_samples = 1500
np.random.seed(0)
t = 1.5 * np.pi * (1 + 3 * np.random.rand(1, n_samples))
x = t * np.cos(t)
y = t * np.sin(t)

X = np.concatenate((x, y))
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X += .7 * np.random.randn(2, n_samples)
X = X.T

# Create a graph capturing local connectivity. Larger number of neighbors
# will give more homogeneous clusters to the cost of computation
# time. A very large number of neighbors gives more evenly distributed
# cluster sizes, but may not impose the local manifold structure of
# the data
knn_graph = kneighbors_graph(X, 30, include_self=False)

for connectivity in (None, knn_graph):
for n_clusters in (30, 3):

plt.figure(figsize=(10, 4))
for index, linkage in enumerate(('average', 'complete', 'ward')):

plt.subplot(1, 3, index + 1)
model = AgglomerativeClustering(linkage=linkage,

connectivity=connectivity,
n_clusters=n_clusters)

t0 = time.time()
model.fit(X)
elapsed_time = time.time() - t0
plt.scatter(X[:, 0], X[:, 1], c=model.labels_,

cmap=plt.cm.spectral)
plt.title('linkage=%s (time %.2fs)' % (linkage, elapsed_time),

fontdict=dict(verticalalignment='top'))
plt.axis('equal')
plt.axis('off')

plt.subplots_adjust(bottom=0, top=.89, wspace=0,
left=0, right=1)

plt.suptitle('n_cluster=%i, connectivity=%r' %
(n_clusters, connectivity is not None), size=17)

plt.show()

Total running time of the script: ( 0 minutes 2.099 seconds)

Download Python source code: plot_agglomerative_clustering.py

Download Jupyter notebook: plot_agglomerative_clustering.ipynb

Generated by Sphinx-Gallery

4.6.9 Demo of affinity propagation clustering algorithm

Reference: Brendan J. Frey and Delbert Dueck, “Clustering by Passing Messages Between Data Points”, Science Feb.
2007
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Out:

Estimated number of clusters: 3
Homogeneity: 0.872
Completeness: 0.872
V-measure: 0.872
Adjusted Rand Index: 0.912
Adjusted Mutual Information: 0.871
Silhouette Coefficient: 0.753

print(__doc__)

from sklearn.cluster import AffinityPropagation
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs

# #############################################################################
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.5,

random_state=0)
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# #############################################################################
# Compute Affinity Propagation
af = AffinityPropagation(preference=-50).fit(X)
cluster_centers_indices = af.cluster_centers_indices_
labels = af.labels_

n_clusters_ = len(cluster_centers_indices)

print('Estimated number of clusters: %d' % n_clusters_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"

% metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"

% metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f"

% metrics.silhouette_score(X, labels, metric='sqeuclidean'))

# #############################################################################
# Plot result
import matplotlib.pyplot as plt
from itertools import cycle

plt.close('all')
plt.figure(1)
plt.clf()

colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(n_clusters_), colors):

class_members = labels == k
cluster_center = X[cluster_centers_indices[k]]
plt.plot(X[class_members, 0], X[class_members, 1], col + '.')
plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,

markeredgecolor='k', markersize=14)
for x in X[class_members]:

plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col)

plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()

Total running time of the script: ( 0 minutes 0.720 seconds)

Download Python source code: plot_affinity_propagation.py

Download Jupyter notebook: plot_affinity_propagation.ipynb

Generated by Sphinx-Gallery

4.6.10 Various Agglomerative Clustering on a 2D embedding of digits

An illustration of various linkage option for agglomerative clustering on a 2D embedding of the digits dataset.

The goal of this example is to show intuitively how the metrics behave, and not to find good clusters for the digits.
This is why the example works on a 2D embedding.

What this example shows us is the behavior “rich getting richer” of agglomerative clustering that tends to create uneven
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cluster sizes. This behavior is especially pronounced for the average linkage strategy, that ends up with a couple of
singleton clusters.

•

•

•

Out:

Computing embedding
Done.
ward : 0.37s
average : 0.37s
complete : 0.38s

# Authors: Gael Varoquaux
# License: BSD 3 clause (C) INRIA 2014
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print(__doc__)
from time import time

import numpy as np
from scipy import ndimage
from matplotlib import pyplot as plt

from sklearn import manifold, datasets

digits = datasets.load_digits(n_class=10)
X = digits.data
y = digits.target
n_samples, n_features = X.shape

np.random.seed(0)

def nudge_images(X, y):
# Having a larger dataset shows more clearly the behavior of the
# methods, but we multiply the size of the dataset only by 2, as the
# cost of the hierarchical clustering methods are strongly
# super-linear in n_samples
shift = lambda x: ndimage.shift(x.reshape((8, 8)),

.3 * np.random.normal(size=2),
mode='constant',
).ravel()

X = np.concatenate([X, np.apply_along_axis(shift, 1, X)])
Y = np.concatenate([y, y], axis=0)
return X, Y

X, y = nudge_images(X, y)

#----------------------------------------------------------------------
# Visualize the clustering
def plot_clustering(X_red, X, labels, title=None):

x_min, x_max = np.min(X_red, axis=0), np.max(X_red, axis=0)
X_red = (X_red - x_min) / (x_max - x_min)

plt.figure(figsize=(6, 4))
for i in range(X_red.shape[0]):

plt.text(X_red[i, 0], X_red[i, 1], str(y[i]),
color=plt.cm.spectral(labels[i] / 10.),
fontdict={'weight': 'bold', 'size': 9})

plt.xticks([])
plt.yticks([])
if title is not None:

plt.title(title, size=17)
plt.axis('off')
plt.tight_layout()

#----------------------------------------------------------------------
# 2D embedding of the digits dataset
print("Computing embedding")
X_red = manifold.SpectralEmbedding(n_components=2).fit_transform(X)
print("Done.")
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from sklearn.cluster import AgglomerativeClustering

for linkage in ('ward', 'average', 'complete'):
clustering = AgglomerativeClustering(linkage=linkage, n_clusters=10)
t0 = time()
clustering.fit(X_red)
print("%s : %.2fs" % (linkage, time() - t0))

plot_clustering(X_red, X, clustering.labels_, "%s linkage" % linkage)

plt.show()

Total running time of the script: ( 0 minutes 19.061 seconds)

Download Python source code: plot_digits_linkage.py

Download Jupyter notebook: plot_digits_linkage.ipynb

Generated by Sphinx-Gallery

4.6.11 K-means Clustering

The plots display firstly what a K-means algorithm would yield using three clusters. It is then shown what the effect
of a bad initialization is on the classification process: By setting n_init to only 1 (default is 10), the amount of times
that the algorithm will be run with different centroid seeds is reduced. The next plot displays what using eight clusters
would deliver and finally the ground truth.

•

•

•
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•

print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
# Though the following import is not directly being used, it is required
# for 3D projection to work
from mpl_toolkits.mplot3d import Axes3D

from sklearn.cluster import KMeans
from sklearn import datasets

np.random.seed(5)

iris = datasets.load_iris()
X = iris.data
y = iris.target

estimators = [('k_means_iris_8', KMeans(n_clusters=8)),
('k_means_iris_3', KMeans(n_clusters=3)),
('k_means_iris_bad_init', KMeans(n_clusters=3, n_init=1,

init='random'))]

fignum = 1
titles = ['8 clusters', '3 clusters', '3 clusters, bad initialization']
for name, est in estimators:

fig = plt.figure(fignum, figsize=(4, 3))
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)
est.fit(X)
labels = est.labels_

ax.scatter(X[:, 3], X[:, 0], X[:, 2],
c=labels.astype(np.float), edgecolor='k')

ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel('Petal width')
ax.set_ylabel('Sepal length')
ax.set_zlabel('Petal length')
ax.set_title(titles[fignum - 1])
ax.dist = 12
fignum = fignum + 1
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# Plot the ground truth
fig = plt.figure(fignum, figsize=(4, 3))
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

for name, label in [('Setosa', 0),
('Versicolour', 1),
('Virginica', 2)]:

ax.text3D(X[y == label, 3].mean(),
X[y == label, 0].mean(),
X[y == label, 2].mean() + 2, name,
horizontalalignment='center',
bbox=dict(alpha=.2, edgecolor='w', facecolor='w'))

# Reorder the labels to have colors matching the cluster results
y = np.choose(y, [1, 2, 0]).astype(np.float)
ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y, edgecolor='k')

ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel('Petal width')
ax.set_ylabel('Sepal length')
ax.set_zlabel('Petal length')
ax.set_title('Ground Truth')
ax.dist = 12

fig.show()

Total running time of the script: ( 0 minutes 0.265 seconds)

Download Python source code: plot_cluster_iris.py

Download Jupyter notebook: plot_cluster_iris.ipynb

Generated by Sphinx-Gallery

4.6.12 Spectral clustering for image segmentation

In this example, an image with connected circles is generated and spectral clustering is used to separate the circles.

In these settings, the Spectral clustering approach solves the problem know as ‘normalized graph cuts’: the image is
seen as a graph of connected voxels, and the spectral clustering algorithm amounts to choosing graph cuts defining
regions while minimizing the ratio of the gradient along the cut, and the volume of the region.

As the algorithm tries to balance the volume (ie balance the region sizes), if we take circles with different sizes, the
segmentation fails.

In addition, as there is no useful information in the intensity of the image, or its gradient, we choose to perform the
spectral clustering on a graph that is only weakly informed by the gradient. This is close to performing a Voronoi
partition of the graph.

In addition, we use the mask of the objects to restrict the graph to the outline of the objects. In this example, we are
interested in separating the objects one from the other, and not from the background.
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•

•
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print(__doc__)

# Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org>
# Gael Varoquaux <gael.varoquaux@normalesup.org>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.feature_extraction import image
from sklearn.cluster import spectral_clustering

l = 100
x, y = np.indices((l, l))

center1 = (28, 24)
center2 = (40, 50)
center3 = (67, 58)
center4 = (24, 70)

radius1, radius2, radius3, radius4 = 16, 14, 15, 14

circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2
circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2
circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2
circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2

# #############################################################################
# 4 circles
img = circle1 + circle2 + circle3 + circle4

# We use a mask that limits to the foreground: the problem that we are
# interested in here is not separating the objects from the background,
# but separating them one from the other.
mask = img.astype(bool)

img = img.astype(float)
img += 1 + 0.2 * np.random.randn(*img.shape)

# Convert the image into a graph with the value of the gradient on the
# edges.
graph = image.img_to_graph(img, mask=mask)
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# Take a decreasing function of the gradient: we take it weakly
# dependent from the gradient the segmentation is close to a voronoi
graph.data = np.exp(-graph.data / graph.data.std())

# Force the solver to be arpack, since amg is numerically
# unstable on this example
labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack')
label_im = -np.ones(mask.shape)
label_im[mask] = labels

plt.matshow(img)
plt.matshow(label_im)

# #############################################################################
# 2 circles
img = circle1 + circle2
mask = img.astype(bool)
img = img.astype(float)

img += 1 + 0.2 * np.random.randn(*img.shape)

graph = image.img_to_graph(img, mask=mask)
graph.data = np.exp(-graph.data / graph.data.std())

labels = spectral_clustering(graph, n_clusters=2, eigen_solver='arpack')
label_im = -np.ones(mask.shape)
label_im[mask] = labels

plt.matshow(img)
plt.matshow(label_im)

plt.show()

Total running time of the script: ( 0 minutes 1.084 seconds)

Download Python source code: plot_segmentation_toy.py

Download Jupyter notebook: plot_segmentation_toy.ipynb

Generated by Sphinx-Gallery

4.6.13 Demo of DBSCAN clustering algorithm

Finds core samples of high density and expands clusters from them.
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Out:

Estimated number of clusters: 3
Homogeneity: 0.953
Completeness: 0.883
V-measure: 0.917
Adjusted Rand Index: 0.952
Adjusted Mutual Information: 0.883
Silhouette Coefficient: 0.626

print(__doc__)

import numpy as np

from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler

# #############################################################################
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# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,

random_state=0)

X = StandardScaler().fit_transform(X)

# #############################################################################
# Compute DBSCAN
db = DBSCAN(eps=0.3, min_samples=10).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_

# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)

print('Estimated number of clusters: %d' % n_clusters_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"

% metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"

% metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f"

% metrics.silhouette_score(X, labels))

# #############################################################################
# Plot result
import matplotlib.pyplot as plt

# Black removed and is used for noise instead.
unique_labels = set(labels)
colors = [plt.cm.Spectral(each)

for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):

if k == -1:
# Black used for noise.
col = [0, 0, 0, 1]

class_member_mask = (labels == k)

xy = X[class_member_mask & core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),

markeredgecolor='k', markersize=14)

xy = X[class_member_mask & ~core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),

markeredgecolor='k', markersize=6)

plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()

Total running time of the script: ( 0 minutes 0.094 seconds)

Download Python source code: plot_dbscan.py

Download Jupyter notebook: plot_dbscan.ipynb
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Generated by Sphinx-Gallery

4.6.14 Hierarchical clustering: structured vs unstructured ward

Example builds a swiss roll dataset and runs hierarchical clustering on their position.

For more information, see Hierarchical clustering.

In a first step, the hierarchical clustering is performed without connectivity constraints on the structure and is solely
based on distance, whereas in a second step the clustering is restricted to the k-Nearest Neighbors graph: it’s a
hierarchical clustering with structure prior.

Some of the clusters learned without connectivity constraints do not respect the structure of the swiss roll and extend
across different folds of the manifolds. On the opposite, when opposing connectivity constraints, the clusters form a
nice parcellation of the swiss roll.

•

•

Out:

Compute unstructured hierarchical clustering...
Elapsed time: 0.04s
Number of points: 1500
Compute structured hierarchical clustering...
Elapsed time: 0.12s
Number of points: 1500
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# Authors : Vincent Michel, 2010
# Alexandre Gramfort, 2010
# Gael Varoquaux, 2010
# License: BSD 3 clause

print(__doc__)

import time as time
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as p3
from sklearn.cluster import AgglomerativeClustering
from sklearn.datasets.samples_generator import make_swiss_roll

# #############################################################################
# Generate data (swiss roll dataset)
n_samples = 1500
noise = 0.05
X, _ = make_swiss_roll(n_samples, noise)
# Make it thinner
X[:, 1] *= .5

# #############################################################################
# Compute clustering
print("Compute unstructured hierarchical clustering...")
st = time.time()
ward = AgglomerativeClustering(n_clusters=6, linkage='ward').fit(X)
elapsed_time = time.time() - st
label = ward.labels_
print("Elapsed time: %.2fs" % elapsed_time)
print("Number of points: %i" % label.size)

# #############################################################################
# Plot result
fig = plt.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
for l in np.unique(label):

ax.scatter(X[label == l, 0], X[label == l, 1], X[label == l, 2],
color=plt.cm.jet(np.float(l) / np.max(label + 1)),
s=20, edgecolor='k')

plt.title('Without connectivity constraints (time %.2fs)' % elapsed_time)

# #############################################################################
# Define the structure A of the data. Here a 10 nearest neighbors
from sklearn.neighbors import kneighbors_graph
connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False)

# #############################################################################
# Compute clustering
print("Compute structured hierarchical clustering...")
st = time.time()
ward = AgglomerativeClustering(n_clusters=6, connectivity=connectivity,

linkage='ward').fit(X)
elapsed_time = time.time() - st
label = ward.labels_
print("Elapsed time: %.2fs" % elapsed_time)
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print("Number of points: %i" % label.size)

# #############################################################################
# Plot result
fig = plt.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
for l in np.unique(label):

ax.scatter(X[label == l, 0], X[label == l, 1], X[label == l, 2],
color=plt.cm.jet(float(l) / np.max(label + 1)),
s=20, edgecolor='k')

plt.title('With connectivity constraints (time %.2fs)' % elapsed_time)

plt.show()

Total running time of the script: ( 0 minutes 0.249 seconds)

Download Python source code: plot_ward_structured_vs_unstructured.py

Download Jupyter notebook: plot_ward_structured_vs_unstructured.ipynb

Generated by Sphinx-Gallery

4.6.15 Color Quantization using K-Means

Performs a pixel-wise Vector Quantization (VQ) of an image of the summer palace (China), reducing the number of
colors required to show the image from 96,615 unique colors to 64, while preserving the overall appearance quality.

In this example, pixels are represented in a 3D-space and K-means is used to find 64 color clusters. In the image
processing literature, the codebook obtained from K-means (the cluster centers) is called the color palette. Using a
single byte, up to 256 colors can be addressed, whereas an RGB encoding requires 3 bytes per pixel. The GIF file
format, for example, uses such a palette.

For comparison, a quantized image using a random codebook (colors picked up randomly) is also shown.

•
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•

•

Out:

Fitting model on a small sub-sample of the data
done in 0.442s.
Predicting color indices on the full image (k-means)
done in 0.230s.
Predicting color indices on the full image (random)
done in 0.229s.

# Authors: Robert Layton <robertlayton@gmail.com>
# Olivier Grisel <olivier.grisel@ensta.org>
# Mathieu Blondel <mathieu@mblondel.org>
#
# License: BSD 3 clause

print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import pairwise_distances_argmin
from sklearn.datasets import load_sample_image
from sklearn.utils import shuffle
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from time import time

n_colors = 64

# Load the Summer Palace photo
china = load_sample_image("china.jpg")

# Convert to floats instead of the default 8 bits integer coding. Dividing by
# 255 is important so that plt.imshow behaves works well on float data (need to
# be in the range [0-1])
china = np.array(china, dtype=np.float64) / 255

# Load Image and transform to a 2D numpy array.
w, h, d = original_shape = tuple(china.shape)
assert d == 3
image_array = np.reshape(china, (w * h, d))

print("Fitting model on a small sub-sample of the data")
t0 = time()
image_array_sample = shuffle(image_array, random_state=0)[:1000]
kmeans = KMeans(n_clusters=n_colors, random_state=0).fit(image_array_sample)
print("done in %0.3fs." % (time() - t0))

# Get labels for all points
print("Predicting color indices on the full image (k-means)")
t0 = time()
labels = kmeans.predict(image_array)
print("done in %0.3fs." % (time() - t0))

codebook_random = shuffle(image_array, random_state=0)[:n_colors + 1]
print("Predicting color indices on the full image (random)")
t0 = time()
labels_random = pairwise_distances_argmin(codebook_random,

image_array,
axis=0)

print("done in %0.3fs." % (time() - t0))

def recreate_image(codebook, labels, w, h):
"""Recreate the (compressed) image from the code book & labels"""
d = codebook.shape[1]
image = np.zeros((w, h, d))
label_idx = 0
for i in range(w):

for j in range(h):
image[i][j] = codebook[labels[label_idx]]
label_idx += 1

return image

# Display all results, alongside original image
plt.figure(1)
plt.clf()
ax = plt.axes([0, 0, 1, 1])
plt.axis('off')
plt.title('Original image (96,615 colors)')
plt.imshow(china)
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plt.figure(2)
plt.clf()
ax = plt.axes([0, 0, 1, 1])
plt.axis('off')
plt.title('Quantized image (64 colors, K-Means)')
plt.imshow(recreate_image(kmeans.cluster_centers_, labels, w, h))

plt.figure(3)
plt.clf()
ax = plt.axes([0, 0, 1, 1])
plt.axis('off')
plt.title('Quantized image (64 colors, Random)')
plt.imshow(recreate_image(codebook_random, labels_random, w, h))
plt.show()

Total running time of the script: ( 0 minutes 1.724 seconds)

Download Python source code: plot_color_quantization.py

Download Jupyter notebook: plot_color_quantization.ipynb

Generated by Sphinx-Gallery

4.6.16 Agglomerative clustering with different metrics

Demonstrates the effect of different metrics on the hierarchical clustering.

The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which
can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high
dimension (in particular for euclidean and cityblock).

We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are propor-
tional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these
two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2.

We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain
noise. As a result, the l1 norm of this noise (ie “cityblock” distance) is much smaller than it’s l2 norm (“euclidean”
distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that characterize the spread
of the class, are much bigger for the Euclidean distance than for the cityblock distance.

When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed,
for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate
the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the
cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster.
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# Author: Gael Varoquaux
# License: BSD 3-Clause or CC-0

import matplotlib.pyplot as plt
import numpy as np

from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import pairwise_distances

np.random.seed(0)

# Generate waveform data
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n_features = 2000
t = np.pi * np.linspace(0, 1, n_features)

def sqr(x):
return np.sign(np.cos(x))

X = list()
y = list()
for i, (phi, a) in enumerate([(.5, .15), (.5, .6), (.3, .2)]):

for _ in range(30):
phase_noise = .01 * np.random.normal()
amplitude_noise = .04 * np.random.normal()
additional_noise = 1 - 2 * np.random.rand(n_features)
# Make the noise sparse
additional_noise[np.abs(additional_noise) < .997] = 0

X.append(12 * ((a + amplitude_noise)

* (sqr(6 * (t + phi + phase_noise)))
+ additional_noise))

y.append(i)

X = np.array(X)
y = np.array(y)

n_clusters = 3

labels = ('Waveform 1', 'Waveform 2', 'Waveform 3')

# Plot the ground-truth labelling
plt.figure()
plt.axes([0, 0, 1, 1])
for l, c, n in zip(range(n_clusters), 'rgb',

labels):
lines = plt.plot(X[y == l].T, c=c, alpha=.5)
lines[0].set_label(n)

plt.legend(loc='best')

plt.axis('tight')
plt.axis('off')
plt.suptitle("Ground truth", size=20)

# Plot the distances
for index, metric in enumerate(["cosine", "euclidean", "cityblock"]):

avg_dist = np.zeros((n_clusters, n_clusters))
plt.figure(figsize=(5, 4.5))
for i in range(n_clusters):

for j in range(n_clusters):
avg_dist[i, j] = pairwise_distances(X[y == i], X[y == j],

metric=metric).mean()
avg_dist /= avg_dist.max()
for i in range(n_clusters):

for j in range(n_clusters):
plt.text(i, j, '%5.3f' % avg_dist[i, j],

verticalalignment='center',
horizontalalignment='center')

4.6. Clustering 757



scikit-learn user guide, Release 0.19.1

plt.imshow(avg_dist, interpolation='nearest', cmap=plt.cm.gnuplot2,
vmin=0)

plt.xticks(range(n_clusters), labels, rotation=45)
plt.yticks(range(n_clusters), labels)
plt.colorbar()
plt.suptitle("Interclass %s distances" % metric, size=18)
plt.tight_layout()

# Plot clustering results
for index, metric in enumerate(["cosine", "euclidean", "cityblock"]):

model = AgglomerativeClustering(n_clusters=n_clusters,
linkage="average", affinity=metric)

model.fit(X)
plt.figure()
plt.axes([0, 0, 1, 1])
for l, c in zip(np.arange(model.n_clusters), 'rgbk'):

plt.plot(X[model.labels_ == l].T, c=c, alpha=.5)
plt.axis('tight')
plt.axis('off')
plt.suptitle("AgglomerativeClustering(affinity=%s)" % metric, size=20)

plt.show()

Total running time of the script: ( 0 minutes 0.857 seconds)

Download Python source code: plot_agglomerative_clustering_metrics.py

Download Jupyter notebook: plot_agglomerative_clustering_metrics.ipynb

Generated by Sphinx-Gallery

4.6.17 Compare BIRCH and MiniBatchKMeans

This example compares the timing of Birch (with and without the global clustering step) and MiniBatchKMeans on a
synthetic dataset having 100,000 samples and 2 features generated using make_blobs.

If n_clusters is set to None, the data is reduced from 100,000 samples to a set of 158 clusters. This can be viewed
as a preprocessing step before the final (global) clustering step that further reduces these 158 clusters to 100 clusters.

Out:
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Birch without global clustering as the final step took 5.78 seconds
n_clusters : 158
Birch with global clustering as the final step took 5.81 seconds
n_clusters : 100
Time taken to run MiniBatchKMeans 5.89 seconds

# Authors: Manoj Kumar <manojkumarsivaraj334@gmail.com
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# License: BSD 3 clause

print(__doc__)

from itertools import cycle
from time import time
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as colors

from sklearn.preprocessing import StandardScaler
from sklearn.cluster import Birch, MiniBatchKMeans
from sklearn.datasets.samples_generator import make_blobs

# Generate centers for the blobs so that it forms a 10 X 10 grid.
xx = np.linspace(-22, 22, 10)
yy = np.linspace(-22, 22, 10)
xx, yy = np.meshgrid(xx, yy)
n_centres = np.hstack((np.ravel(xx)[:, np.newaxis],

np.ravel(yy)[:, np.newaxis]))

# Generate blobs to do a comparison between MiniBatchKMeans and Birch.
X, y = make_blobs(n_samples=100000, centers=n_centres, random_state=0)

# Use all colors that matplotlib provides by default.
colors_ = cycle(colors.cnames.keys())

fig = plt.figure(figsize=(12, 4))
fig.subplots_adjust(left=0.04, right=0.98, bottom=0.1, top=0.9)

# Compute clustering with Birch with and without the final clustering step
# and plot.
birch_models = [Birch(threshold=1.7, n_clusters=None),

Birch(threshold=1.7, n_clusters=100)]
final_step = ['without global clustering', 'with global clustering']

for ind, (birch_model, info) in enumerate(zip(birch_models, final_step)):
t = time()
birch_model.fit(X)
time_ = time() - t
print("Birch %s as the final step took %0.2f seconds" % (

info, (time() - t)))

# Plot result
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labels = birch_model.labels_
centroids = birch_model.subcluster_centers_
n_clusters = np.unique(labels).size
print("n_clusters : %d" % n_clusters)

ax = fig.add_subplot(1, 3, ind + 1)
for this_centroid, k, col in zip(centroids, range(n_clusters), colors_):

mask = labels == k
ax.scatter(X[mask, 0], X[mask, 1],

c='w', edgecolor=col, marker='.', alpha=0.5)
if birch_model.n_clusters is None:

ax.scatter(this_centroid[0], this_centroid[1], marker='+',
c='k', s=25)

ax.set_ylim([-25, 25])
ax.set_xlim([-25, 25])
ax.set_autoscaley_on(False)
ax.set_title('Birch %s' % info)

# Compute clustering with MiniBatchKMeans.
mbk = MiniBatchKMeans(init='k-means++', n_clusters=100, batch_size=100,

n_init=10, max_no_improvement=10, verbose=0,
random_state=0)

t0 = time()
mbk.fit(X)
t_mini_batch = time() - t0
print("Time taken to run MiniBatchKMeans %0.2f seconds" % t_mini_batch)
mbk_means_labels_unique = np.unique(mbk.labels_)

ax = fig.add_subplot(1, 3, 3)
for this_centroid, k, col in zip(mbk.cluster_centers_,

range(n_clusters), colors_):
mask = mbk.labels_ == k
ax.scatter(X[mask, 0], X[mask, 1], marker='.',

c='w', edgecolor=col, alpha=0.5)
ax.scatter(this_centroid[0], this_centroid[1], marker='+',

c='k', s=25)
ax.set_xlim([-25, 25])
ax.set_ylim([-25, 25])
ax.set_title("MiniBatchKMeans")
ax.set_autoscaley_on(False)
plt.show()

Total running time of the script: ( 0 minutes 20.015 seconds)

Download Python source code: plot_birch_vs_minibatchkmeans.py

Download Jupyter notebook: plot_birch_vs_minibatchkmeans.ipynb

Generated by Sphinx-Gallery

4.6.18 Empirical evaluation of the impact of k-means initialization

Evaluate the ability of k-means initializations strategies to make the algorithm convergence robust as measured by
the relative standard deviation of the inertia of the clustering (i.e. the sum of squared distances to the nearest cluster
center).

The first plot shows the best inertia reached for each combination of the model (KMeans or MiniBatchKMeans)
and the init method (init="random" or init="kmeans++") for increasing values of the n_init parameter
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that controls the number of initializations.

The second plot demonstrate one single run of the MiniBatchKMeans estimator using a init="random" and
n_init=1. This run leads to a bad convergence (local optimum) with estimated centers stuck between ground truth
clusters.

The dataset used for evaluation is a 2D grid of isotropic Gaussian clusters widely spaced.

•

•

Out:

Evaluation of KMeans with k-means++ init
Evaluation of KMeans with random init
Evaluation of MiniBatchKMeans with k-means++ init
Evaluation of MiniBatchKMeans with random init

print(__doc__)

# Author: Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
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from sklearn.utils import shuffle
from sklearn.utils import check_random_state
from sklearn.cluster import MiniBatchKMeans
from sklearn.cluster import KMeans

random_state = np.random.RandomState(0)

# Number of run (with randomly generated dataset) for each strategy so as
# to be able to compute an estimate of the standard deviation
n_runs = 5

# k-means models can do several random inits so as to be able to trade
# CPU time for convergence robustness
n_init_range = np.array([1, 5, 10, 15, 20])

# Datasets generation parameters
n_samples_per_center = 100
grid_size = 3
scale = 0.1
n_clusters = grid_size ** 2

def make_data(random_state, n_samples_per_center, grid_size, scale):
random_state = check_random_state(random_state)
centers = np.array([[i, j]

for i in range(grid_size)
for j in range(grid_size)])

n_clusters_true, n_features = centers.shape

noise = random_state.normal(
scale=scale, size=(n_samples_per_center, centers.shape[1]))

X = np.concatenate([c + noise for c in centers])
y = np.concatenate([[i] * n_samples_per_center

for i in range(n_clusters_true)])
return shuffle(X, y, random_state=random_state)

# Part 1: Quantitative evaluation of various init methods

fig = plt.figure()
plots = []
legends = []

cases = [
(KMeans, 'k-means++', {}),
(KMeans, 'random', {}),
(MiniBatchKMeans, 'k-means++', {'max_no_improvement': 3}),
(MiniBatchKMeans, 'random', {'max_no_improvement': 3, 'init_size': 500}),

]

for factory, init, params in cases:
print("Evaluation of %s with %s init" % (factory.__name__, init))
inertia = np.empty((len(n_init_range), n_runs))

for run_id in range(n_runs):
X, y = make_data(run_id, n_samples_per_center, grid_size, scale)
for i, n_init in enumerate(n_init_range):
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km = factory(n_clusters=n_clusters, init=init, random_state=run_id,
n_init=n_init, **params).fit(X)

inertia[i, run_id] = km.inertia_
p = plt.errorbar(n_init_range, inertia.mean(axis=1), inertia.std(axis=1))
plots.append(p[0])
legends.append("%s with %s init" % (factory.__name__, init))

plt.xlabel('n_init')
plt.ylabel('inertia')
plt.legend(plots, legends)
plt.title("Mean inertia for various k-means init across %d runs" % n_runs)

# Part 2: Qualitative visual inspection of the convergence

X, y = make_data(random_state, n_samples_per_center, grid_size, scale)
km = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=1,

random_state=random_state).fit(X)

fig = plt.figure()
for k in range(n_clusters):

my_members = km.labels_ == k
color = cm.spectral(float(k) / n_clusters, 1)
plt.plot(X[my_members, 0], X[my_members, 1], 'o', marker='.', c=color)
cluster_center = km.cluster_centers_[k]
plt.plot(cluster_center[0], cluster_center[1], 'o',

markerfacecolor=color, markeredgecolor='k', markersize=6)
plt.title("Example cluster allocation with a single random init\n"

"with MiniBatchKMeans")

plt.show()

Total running time of the script: ( 0 minutes 3.718 seconds)

Download Python source code: plot_kmeans_stability_low_dim_dense.py

Download Jupyter notebook: plot_kmeans_stability_low_dim_dense.ipynb

Generated by Sphinx-Gallery

4.6.19 Adjustment for chance in clustering performance evaluation

The following plots demonstrate the impact of the number of clusters and number of samples on various clustering
performance evaluation metrics.

Non-adjusted measures such as the V-Measure show a dependency between the number of clusters and the number of
samples: the mean V-Measure of random labeling increases significantly as the number of clusters is closer to the total
number of samples used to compute the measure.

Adjusted for chance measure such as ARI display some random variations centered around a mean score of 0.0 for
any number of samples and clusters.

Only adjusted measures can hence safely be used as a consensus index to evaluate the average stability of clustering
algorithms for a given value of k on various overlapping sub-samples of the dataset.
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Out:

Computing adjusted_rand_score for 10 values of n_clusters and n_samples=100
done in 0.036s
Computing v_measure_score for 10 values of n_clusters and n_samples=100
done in 0.057s
Computing adjusted_mutual_info_score for 10 values of n_clusters and n_samples=100
done in 0.571s
Computing mutual_info_score for 10 values of n_clusters and n_samples=100
done in 0.046s
Computing adjusted_rand_score for 10 values of n_clusters and n_samples=1000
done in 0.055s
Computing v_measure_score for 10 values of n_clusters and n_samples=1000
done in 0.073s
Computing adjusted_mutual_info_score for 10 values of n_clusters and n_samples=1000
done in 0.312s
Computing mutual_info_score for 10 values of n_clusters and n_samples=1000
done in 0.058s

print(__doc__)

# Author: Olivier Grisel <olivier.grisel@ensta.org>
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# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from time import time
from sklearn import metrics

def uniform_labelings_scores(score_func, n_samples, n_clusters_range,
fixed_n_classes=None, n_runs=5, seed=42):

"""Compute score for 2 random uniform cluster labelings.

Both random labelings have the same number of clusters for each value
possible value in ``n_clusters_range``.

When fixed_n_classes is not None the first labeling is considered a ground
truth class assignment with fixed number of classes.
"""
random_labels = np.random.RandomState(seed).randint
scores = np.zeros((len(n_clusters_range), n_runs))

if fixed_n_classes is not None:
labels_a = random_labels(low=0, high=fixed_n_classes, size=n_samples)

for i, k in enumerate(n_clusters_range):
for j in range(n_runs):

if fixed_n_classes is None:
labels_a = random_labels(low=0, high=k, size=n_samples)

labels_b = random_labels(low=0, high=k, size=n_samples)
scores[i, j] = score_func(labels_a, labels_b)

return scores

score_funcs = [
metrics.adjusted_rand_score,
metrics.v_measure_score,
metrics.adjusted_mutual_info_score,
metrics.mutual_info_score,

]

# 2 independent random clusterings with equal cluster number

n_samples = 100
n_clusters_range = np.linspace(2, n_samples, 10).astype(np.int)

plt.figure(1)

plots = []
names = []
for score_func in score_funcs:

print("Computing %s for %d values of n_clusters and n_samples=%d"
% (score_func.__name__, len(n_clusters_range), n_samples))

t0 = time()
scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range)
print("done in %0.3fs" % (time() - t0))
plots.append(plt.errorbar(

n_clusters_range, np.median(scores, axis=1), scores.std(axis=1))[0])
names.append(score_func.__name__)
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plt.title("Clustering measures for 2 random uniform labelings\n"
"with equal number of clusters")

plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples)
plt.ylabel('Score value')
plt.legend(plots, names)
plt.ylim(ymin=-0.05, ymax=1.05)

# Random labeling with varying n_clusters against ground class labels
# with fixed number of clusters

n_samples = 1000
n_clusters_range = np.linspace(2, 100, 10).astype(np.int)
n_classes = 10

plt.figure(2)

plots = []
names = []
for score_func in score_funcs:

print("Computing %s for %d values of n_clusters and n_samples=%d"
% (score_func.__name__, len(n_clusters_range), n_samples))

t0 = time()
scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range,

fixed_n_classes=n_classes)
print("done in %0.3fs" % (time() - t0))
plots.append(plt.errorbar(

n_clusters_range, scores.mean(axis=1), scores.std(axis=1))[0])
names.append(score_func.__name__)

plt.title("Clustering measures for random uniform labeling\n"
"against reference assignment with %d classes" % n_classes)

plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples)
plt.ylabel('Score value')
plt.ylim(ymin=-0.05, ymax=1.05)
plt.legend(plots, names)
plt.show()

Total running time of the script: ( 0 minutes 1.314 seconds)

Download Python source code: plot_adjusted_for_chance_measures.py

Download Jupyter notebook: plot_adjusted_for_chance_measures.ipynb

Generated by Sphinx-Gallery

4.6.20 A demo of K-Means clustering on the handwritten digits data

In this example we compare the various initialization strategies for K-means in terms of runtime and quality of the
results.

As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the
cluster labels to the ground truth.

Cluster quality metrics evaluated (see Clustering performance evaluation for definitions and discussions of the met-
rics):
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Shorthand full name
homo homogeneity score
compl completeness score
v-meas V measure
ARI adjusted Rand index
AMI adjusted mutual information
silhouette silhouette coefficient

Out:

n_digits: 10, n_samples 1797, n_features 64
__________________________________________________________________________________
init time inertia homo compl v-meas ARI AMI silhouette
k-means++ 0.30s 69432 0.602 0.650 0.625 0.465 0.598 0.146
random 0.23s 69694 0.669 0.710 0.689 0.553 0.666 0.147
PCA-based 0.04s 70804 0.671 0.698 0.684 0.561 0.668 0.118
__________________________________________________________________________________
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print(__doc__)

from time import time
import numpy as np
import matplotlib.pyplot as plt

from sklearn import metrics
from sklearn.cluster import KMeans
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale

np.random.seed(42)

digits = load_digits()
data = scale(digits.data)

n_samples, n_features = data.shape
n_digits = len(np.unique(digits.target))
labels = digits.target

sample_size = 300

print("n_digits: %d, \t n_samples %d, \t n_features %d"
% (n_digits, n_samples, n_features))

print(82 * '_')
print('init\t\ttime\tinertia\thomo\tcompl\tv-meas\tARI\tAMI\tsilhouette')

def bench_k_means(estimator, name, data):
t0 = time()
estimator.fit(data)
print('%-9s\t%.2fs\t%i\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f'

% (name, (time() - t0), estimator.inertia_,
metrics.homogeneity_score(labels, estimator.labels_),
metrics.completeness_score(labels, estimator.labels_),
metrics.v_measure_score(labels, estimator.labels_),
metrics.adjusted_rand_score(labels, estimator.labels_),
metrics.adjusted_mutual_info_score(labels, estimator.labels_),
metrics.silhouette_score(data, estimator.labels_,

metric='euclidean',
sample_size=sample_size)))

bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10),
name="k-means++", data=data)

bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10),
name="random", data=data)

# in this case the seeding of the centers is deterministic, hence we run the
# kmeans algorithm only once with n_init=1
pca = PCA(n_components=n_digits).fit(data)
bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1),

name="PCA-based",
data=data)

print(82 * '_')
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# #############################################################################
# Visualize the results on PCA-reduced data

reduced_data = PCA(n_components=2).fit_transform(data)
kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10)
kmeans.fit(reduced_data)

# Step size of the mesh. Decrease to increase the quality of the VQ.
h = .02 # point in the mesh [x_min, x_max]x[y_min, y_max].

# Plot the decision boundary. For that, we will assign a color to each
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

# Obtain labels for each point in mesh. Use last trained model.
Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1)
plt.clf()
plt.imshow(Z, interpolation='nearest',

extent=(xx.min(), xx.max(), yy.min(), yy.max()),
cmap=plt.cm.Paired,
aspect='auto', origin='lower')

plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2)
# Plot the centroids as a white X
centroids = kmeans.cluster_centers_
plt.scatter(centroids[:, 0], centroids[:, 1],

marker='x', s=169, linewidths=3,
color='w', zorder=10)

plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n'
'Centroids are marked with white cross')

plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.show()

Total running time of the script: ( 0 minutes 1.304 seconds)

Download Python source code: plot_kmeans_digits.py

Download Jupyter notebook: plot_kmeans_digits.ipynb

Generated by Sphinx-Gallery

4.6.21 Feature agglomeration vs. univariate selection

This example compares 2 dimensionality reduction strategies:

• univariate feature selection with Anova

• feature agglomeration with Ward hierarchical clustering

Both methods are compared in a regression problem using a BayesianRidge as supervised estimator.
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Out:

________________________________________________________________________________
[Memory] Calling sklearn.cluster.hierarchical.ward_tree...
ward_tree(array([[-0.451933, ..., -0.675318],

...,
[ 0.275706, ..., -1.085711]]),

<1600x1600 sparse matrix of type '<class 'numpy.int64'>'
with 7840 stored elements in COOrdinate format>, n_clusters=None)

________________________________________________________ward_tree - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.cluster.hierarchical.ward_tree...
ward_tree(array([[ 0.905206, ..., 0.161245],

...,
[-0.849835, ..., -1.091621]]),

<1600x1600 sparse matrix of type '<class 'numpy.int64'>'
with 7840 stored elements in COOrdinate format>, n_clusters=None)

________________________________________________________ward_tree - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.cluster.hierarchical.ward_tree...
ward_tree(array([[ 0.905206, ..., -0.675318],

...,
[-0.849835, ..., -1.085711]]),

<1600x1600 sparse matrix of type '<class 'numpy.int64'>'
with 7840 stored elements in COOrdinate format>, n_clusters=None)

________________________________________________________ward_tree - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.feature_selection.univariate_selection.f_regression...
f_regression(array([[-0.451933, ..., 0.275706],

...,
[-0.675318, ..., -1.085711]]),

array([ 25.267703, ..., -25.026711]))
_____________________________________________________f_regression - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.feature_selection.univariate_selection.f_regression...
f_regression(array([[ 0.905206, ..., -0.849835],

...,
[ 0.161245, ..., -1.091621]]),

array([ -27.447268, ..., -112.638768]))
_____________________________________________________f_regression - 0.0s, 0.0min
________________________________________________________________________________
[Memory] Calling sklearn.feature_selection.univariate_selection.f_regression...
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f_regression(array([[ 0.905206, ..., -0.849835],
...,
[-0.675318, ..., -1.085711]]),

array([-27.447268, ..., -25.026711]))
_____________________________________________________f_regression - 0.0s, 0.0min

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

print(__doc__)

import shutil
import tempfile

import numpy as np
import matplotlib.pyplot as plt
from scipy import linalg, ndimage

from sklearn.feature_extraction.image import grid_to_graph
from sklearn import feature_selection
from sklearn.cluster import FeatureAgglomeration
from sklearn.linear_model import BayesianRidge
from sklearn.pipeline import Pipeline
from sklearn.externals.joblib import Memory
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import KFold

# #############################################################################
# Generate data
n_samples = 200
size = 40 # image size
roi_size = 15
snr = 5.
np.random.seed(0)
mask = np.ones([size, size], dtype=np.bool)

coef = np.zeros((size, size))
coef[0:roi_size, 0:roi_size] = -1.
coef[-roi_size:, -roi_size:] = 1.

X = np.random.randn(n_samples, size ** 2)
for x in X: # smooth data

x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel()
X -= X.mean(axis=0)
X /= X.std(axis=0)

y = np.dot(X, coef.ravel())
noise = np.random.randn(y.shape[0])
noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2)
y += noise_coef * noise # add noise

# #############################################################################
# Compute the coefs of a Bayesian Ridge with GridSearch
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cv = KFold(2) # cross-validation generator for model selection
ridge = BayesianRidge()
cachedir = tempfile.mkdtemp()
mem = Memory(cachedir=cachedir, verbose=1)

# Ward agglomeration followed by BayesianRidge
connectivity = grid_to_graph(n_x=size, n_y=size)
ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity,

memory=mem)
clf = Pipeline([('ward', ward), ('ridge', ridge)])
# Select the optimal number of parcels with grid search
clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv)
clf.fit(X, y) # set the best parameters
coef_ = clf.best_estimator_.steps[-1][1].coef_
coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_)
coef_agglomeration_ = coef_.reshape(size, size)

# Anova univariate feature selection followed by BayesianRidge
f_regression = mem.cache(feature_selection.f_regression) # caching function
anova = feature_selection.SelectPercentile(f_regression)
clf = Pipeline([('anova', anova), ('ridge', ridge)])
# Select the optimal percentage of features with grid search
clf = GridSearchCV(clf, {'anova__percentile': [5, 10, 20]}, cv=cv)
clf.fit(X, y) # set the best parameters
coef_ = clf.best_estimator_.steps[-1][1].coef_
coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_.reshape(1, -1))
coef_selection_ = coef_.reshape(size, size)

# #############################################################################
# Inverse the transformation to plot the results on an image
plt.close('all')
plt.figure(figsize=(7.3, 2.7))
plt.subplot(1, 3, 1)
plt.imshow(coef, interpolation="nearest", cmap=plt.cm.RdBu_r)
plt.title("True weights")
plt.subplot(1, 3, 2)
plt.imshow(coef_selection_, interpolation="nearest", cmap=plt.cm.RdBu_r)
plt.title("Feature Selection")
plt.subplot(1, 3, 3)
plt.imshow(coef_agglomeration_, interpolation="nearest", cmap=plt.cm.RdBu_r)
plt.title("Feature Agglomeration")
plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26)
plt.show()

# Attempt to remove the temporary cachedir, but don't worry if it fails
shutil.rmtree(cachedir, ignore_errors=True)

Total running time of the script: ( 0 minutes 1.214 seconds)

Download Python source code: plot_feature_agglomeration_vs_univariate_selection.
py

Download Jupyter notebook: plot_feature_agglomeration_vs_univariate_selection.
ipynb

Generated by Sphinx-Gallery
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4.6.22 Comparison of the K-Means and MiniBatchKMeans clustering algorithms

We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but
gives slightly different results (see Mini Batch K-Means).

We will cluster a set of data, first with KMeans and then with MiniBatchKMeans, and plot the results. We will also
plot the points that are labelled differently between the two algorithms.

print(__doc__)

import time

import numpy as np
import matplotlib.pyplot as plt

from sklearn.cluster import MiniBatchKMeans, KMeans
from sklearn.metrics.pairwise import pairwise_distances_argmin
from sklearn.datasets.samples_generator import make_blobs

# #############################################################################
# Generate sample data
np.random.seed(0)

batch_size = 45
centers = [[1, 1], [-1, -1], [1, -1]]
n_clusters = len(centers)
X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7)

# #############################################################################
# Compute clustering with Means

k_means = KMeans(init='k-means++', n_clusters=3, n_init=10)
t0 = time.time()
k_means.fit(X)
t_batch = time.time() - t0

# #############################################################################
# Compute clustering with MiniBatchKMeans

mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size,
n_init=10, max_no_improvement=10, verbose=0)

t0 = time.time()
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mbk.fit(X)
t_mini_batch = time.time() - t0

# #############################################################################
# Plot result

fig = plt.figure(figsize=(8, 3))
fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9)
colors = ['#4EACC5', '#FF9C34', '#4E9A06']

# We want to have the same colors for the same cluster from the
# MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per
# closest one.
k_means_cluster_centers = np.sort(k_means.cluster_centers_, axis=0)
mbk_means_cluster_centers = np.sort(mbk.cluster_centers_, axis=0)
k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers)
mbk_means_labels = pairwise_distances_argmin(X, mbk_means_cluster_centers)
order = pairwise_distances_argmin(k_means_cluster_centers,

mbk_means_cluster_centers)

# KMeans
ax = fig.add_subplot(1, 3, 1)
for k, col in zip(range(n_clusters), colors):

my_members = k_means_labels == k
cluster_center = k_means_cluster_centers[k]
ax.plot(X[my_members, 0], X[my_members, 1], 'w',

markerfacecolor=col, marker='.')
ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,

markeredgecolor='k', markersize=6)
ax.set_title('KMeans')
ax.set_xticks(())
ax.set_yticks(())
plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % (

t_batch, k_means.inertia_))

# MiniBatchKMeans
ax = fig.add_subplot(1, 3, 2)
for k, col in zip(range(n_clusters), colors):

my_members = mbk_means_labels == order[k]
cluster_center = mbk_means_cluster_centers[order[k]]
ax.plot(X[my_members, 0], X[my_members, 1], 'w',

markerfacecolor=col, marker='.')
ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,

markeredgecolor='k', markersize=6)
ax.set_title('MiniBatchKMeans')
ax.set_xticks(())
ax.set_yticks(())
plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' %

(t_mini_batch, mbk.inertia_))

# Initialise the different array to all False
different = (mbk_means_labels == 4)
ax = fig.add_subplot(1, 3, 3)

for k in range(n_clusters):
different += ((k_means_labels == k) != (mbk_means_labels == order[k]))

identic = np.logical_not(different)
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ax.plot(X[identic, 0], X[identic, 1], 'w',
markerfacecolor='#bbbbbb', marker='.')

ax.plot(X[different, 0], X[different, 1], 'w',
markerfacecolor='m', marker='.')

ax.set_title('Difference')
ax.set_xticks(())
ax.set_yticks(())

plt.show()

Total running time of the script: ( 0 minutes 0.355 seconds)

Download Python source code: plot_mini_batch_kmeans.py

Download Jupyter notebook: plot_mini_batch_kmeans.ipynb

Generated by Sphinx-Gallery

4.6.23 Selecting the number of clusters with silhouette analysis on KMeans clus-
tering

Silhouette analysis can be used to study the separation distance between the resulting clusters. The silhouette plot
displays a measure of how close each point in one cluster is to points in the neighboring clusters and thus provides a
way to assess parameters like number of clusters visually. This measure has a range of [-1, 1].

Silhouette coefficients (as these values are referred to as) near +1 indicate that the sample is far away from the neigh-
boring clusters. A value of 0 indicates that the sample is on or very close to the decision boundary between two
neighboring clusters and negative values indicate that those samples might have been assigned to the wrong cluster.

In this example the silhouette analysis is used to choose an optimal value for n_clusters. The silhouette plot shows
that the n_clusters value of 3, 5 and 6 are a bad pick for the given data due to the presence of clusters with below
average silhouette scores and also due to wide fluctuations in the size of the silhouette plots. Silhouette analysis is
more ambivalent in deciding between 2 and 4.

Also from the thickness of the silhouette plot the cluster size can be visualized. The silhouette plot for cluster 0 when
n_clusters is equal to 2, is bigger in size owing to the grouping of the 3 sub clusters into one big cluster. However
when the n_clusters is equal to 4, all the plots are more or less of similar thickness and hence are of similar sizes
as can be also verified from the labelled scatter plot on the right.

•
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•

•

•
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•

Out:

For n_clusters = 2 The average silhouette_score is : 0.704978749608
For n_clusters = 3 The average silhouette_score is : 0.588200401213
For n_clusters = 4 The average silhouette_score is : 0.650518663273
For n_clusters = 5 The average silhouette_score is : 0.563764690262
For n_clusters = 6 The average silhouette_score is : 0.450466629437

from __future__ import print_function

from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score

import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np

print(__doc__)

# Generating the sample data from make_blobs
# This particular setting has one distinct cluster and 3 clusters placed close
# together.
X, y = make_blobs(n_samples=500,

n_features=2,
centers=4,
cluster_std=1,
center_box=(-10.0, 10.0),
shuffle=True,
random_state=1) # For reproducibility

range_n_clusters = [2, 3, 4, 5, 6]

for n_clusters in range_n_clusters:
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
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# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])

# Initialize the clusterer with n_clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KMeans(n_clusters=n_clusters, random_state=10)
cluster_labels = clusterer.fit_predict(X)

# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,

"The average silhouette_score is :", silhouette_avg)

# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)

y_lower = 10
for i in range(n_clusters):

# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \

sample_silhouette_values[cluster_labels == i]

ith_cluster_silhouette_values.sort()

size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i

color = cm.spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),

0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)

# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))

# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples

ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")

# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")

ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])

# 2nd Plot showing the actual clusters formed
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colors = cm.spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,

c=colors, edgecolor='k')

# Labeling the clusters
centers = clusterer.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1], marker='o',

c="white", alpha=1, s=200, edgecolor='k')

for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,

s=50, edgecolor='k')

ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")

plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
"with n_clusters = %d" % n_clusters),

fontsize=14, fontweight='bold')

plt.show()

Total running time of the script: ( 0 minutes 0.929 seconds)

Download Python source code: plot_kmeans_silhouette_analysis.py

Download Jupyter notebook: plot_kmeans_silhouette_analysis.ipynb

Generated by Sphinx-Gallery

4.6.24 Comparing different clustering algorithms on toy datasets

This example shows characteristics of different clustering algorithms on datasets that are “interesting” but still in 2D.
With the exception of the last dataset, the parameters of each of these dataset-algorithm pairs has been tuned to produce
good clustering results. Some algorithms are more sensitive to parameter values than others.

The last dataset is an example of a ‘null’ situation for clustering: the data is homogeneous, and there is no good
clustering. For this example, the null dataset uses the same parameters as the dataset in the row above it, which
represents a mismatch in the parameter values and the data structure.

While these examples give some intuition about the algorithms, this intuition might not apply to very high dimensional
data.
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print(__doc__)

import time
import warnings

import numpy as np
import matplotlib.pyplot as plt

from sklearn import cluster, datasets, mixture
from sklearn.neighbors import kneighbors_graph
from sklearn.preprocessing import StandardScaler
from itertools import cycle, islice

np.random.seed(0)

# ============
# Generate datasets. We choose the size big enough to see the scalability
# of the algorithms, but not too big to avoid too long running times
# ============
n_samples = 1500
noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5,

noise=.05)
noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05)
blobs = datasets.make_blobs(n_samples=n_samples, random_state=8)
no_structure = np.random.rand(n_samples, 2), None

# Anisotropicly distributed data
random_state = 170
X, y = datasets.make_blobs(n_samples=n_samples, random_state=random_state)
transformation = [[0.6, -0.6], [-0.4, 0.8]]
X_aniso = np.dot(X, transformation)
aniso = (X_aniso, y)
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# blobs with varied variances
varied = datasets.make_blobs(n_samples=n_samples,

cluster_std=[1.0, 2.5, 0.5],
random_state=random_state)

# ============
# Set up cluster parameters
# ============
plt.figure(figsize=(9 * 2 + 3, 12.5))
plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05,

hspace=.01)

plot_num = 1

default_base = {'quantile': .3,
'eps': .3,
'damping': .9,
'preference': -200,
'n_neighbors': 10,
'n_clusters': 3}

datasets = [
(noisy_circles, {'damping': .77, 'preference': -240,

'quantile': .2, 'n_clusters': 2}),
(noisy_moons, {'damping': .75, 'preference': -220, 'n_clusters': 2}),
(varied, {'eps': .18, 'n_neighbors': 2}),
(aniso, {'eps': .15, 'n_neighbors': 2}),
(blobs, {}),
(no_structure, {})]

for i_dataset, (dataset, algo_params) in enumerate(datasets):
# update parameters with dataset-specific values
params = default_base.copy()
params.update(algo_params)

X, y = dataset

# normalize dataset for easier parameter selection
X = StandardScaler().fit_transform(X)

# estimate bandwidth for mean shift
bandwidth = cluster.estimate_bandwidth(X, quantile=params['quantile'])

# connectivity matrix for structured Ward
connectivity = kneighbors_graph(

X, n_neighbors=params['n_neighbors'], include_self=False)
# make connectivity symmetric
connectivity = 0.5 * (connectivity + connectivity.T)

# ============
# Create cluster objects
# ============
ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True)
two_means = cluster.MiniBatchKMeans(n_clusters=params['n_clusters'])
ward = cluster.AgglomerativeClustering(

n_clusters=params['n_clusters'], linkage='ward',
connectivity=connectivity)
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spectral = cluster.SpectralClustering(
n_clusters=params['n_clusters'], eigen_solver='arpack',
affinity="nearest_neighbors")

dbscan = cluster.DBSCAN(eps=params['eps'])
affinity_propagation = cluster.AffinityPropagation(

damping=params['damping'], preference=params['preference'])
average_linkage = cluster.AgglomerativeClustering(

linkage="average", affinity="cityblock",
n_clusters=params['n_clusters'], connectivity=connectivity)

birch = cluster.Birch(n_clusters=params['n_clusters'])
gmm = mixture.GaussianMixture(

n_components=params['n_clusters'], covariance_type='full')

clustering_algorithms = (
('MiniBatchKMeans', two_means),
('AffinityPropagation', affinity_propagation),
('MeanShift', ms),
('SpectralClustering', spectral),
('Ward', ward),
('AgglomerativeClustering', average_linkage),
('DBSCAN', dbscan),
('Birch', birch),
('GaussianMixture', gmm)

)

for name, algorithm in clustering_algorithms:
t0 = time.time()

# catch warnings related to kneighbors_graph
with warnings.catch_warnings():

warnings.filterwarnings(
"ignore",
message="the number of connected components of the " +
"connectivity matrix is [0-9]{1,2}" +
" > 1. Completing it to avoid stopping the tree early.",
category=UserWarning)

warnings.filterwarnings(
"ignore",
message="Graph is not fully connected, spectral embedding" +
" may not work as expected.",
category=UserWarning)

algorithm.fit(X)

t1 = time.time()
if hasattr(algorithm, 'labels_'):

y_pred = algorithm.labels_.astype(np.int)
else:

y_pred = algorithm.predict(X)

plt.subplot(len(datasets), len(clustering_algorithms), plot_num)
if i_dataset == 0:

plt.title(name, size=18)

colors = np.array(list(islice(cycle(['#377eb8', '#ff7f00', '#4daf4a',
'#f781bf', '#a65628', '#984ea3',
'#999999', '#e41a1c', '#dede00']),

int(max(y_pred) + 1))))
plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[y_pred])
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plt.xlim(-2.5, 2.5)
plt.ylim(-2.5, 2.5)
plt.xticks(())
plt.yticks(())
plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'),

transform=plt.gca().transAxes, size=15,
horizontalalignment='right')

plot_num += 1

plt.show()

Total running time of the script: ( 0 minutes 35.159 seconds)

Download Python source code: plot_cluster_comparison.py

Download Jupyter notebook: plot_cluster_comparison.ipynb

Generated by Sphinx-Gallery

4.7 Covariance estimation

Examples concerning the sklearn.covariance module.

4.7.1 Ledoit-Wolf vs OAS estimation

The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a
close formula to compute the asymptotically optimal shrinkage parameter (minimizing a MSE criterion), yielding the
Ledoit-Wolf covariance estimate.

Chen et al. proposed an improvement of the Ledoit-Wolf shrinkage parameter, the OAS coefficient, whose convergence
is significantly better under the assumption that the data are Gaussian.

This example, inspired from Chen’s publication [1], shows a comparison of the estimated MSE of the LW and OAS
methods, using Gaussian distributed data.

[1] “Shrinkage Algorithms for MMSE Covariance Estimation” Chen et al., IEEE Trans. on Sign. Proc., Volume 58,
Issue 10, October 2010.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from scipy.linalg import toeplitz, cholesky

from sklearn.covariance import LedoitWolf, OAS

np.random.seed(0)

n_features = 100
# simulation covariance matrix (AR(1) process)
r = 0.1
real_cov = toeplitz(r ** np.arange(n_features))
coloring_matrix = cholesky(real_cov)

n_samples_range = np.arange(6, 31, 1)
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repeat = 100
lw_mse = np.zeros((n_samples_range.size, repeat))
oa_mse = np.zeros((n_samples_range.size, repeat))
lw_shrinkage = np.zeros((n_samples_range.size, repeat))
oa_shrinkage = np.zeros((n_samples_range.size, repeat))
for i, n_samples in enumerate(n_samples_range):

for j in range(repeat):
X = np.dot(

np.random.normal(size=(n_samples, n_features)), coloring_matrix.T)

lw = LedoitWolf(store_precision=False, assume_centered=True)
lw.fit(X)
lw_mse[i, j] = lw.error_norm(real_cov, scaling=False)
lw_shrinkage[i, j] = lw.shrinkage_

oa = OAS(store_precision=False, assume_centered=True)
oa.fit(X)
oa_mse[i, j] = oa.error_norm(real_cov, scaling=False)
oa_shrinkage[i, j] = oa.shrinkage_

# plot MSE
plt.subplot(2, 1, 1)
plt.errorbar(n_samples_range, lw_mse.mean(1), yerr=lw_mse.std(1),

label='Ledoit-Wolf', color='navy', lw=2)
plt.errorbar(n_samples_range, oa_mse.mean(1), yerr=oa_mse.std(1),

label='OAS', color='darkorange', lw=2)
plt.ylabel("Squared error")
plt.legend(loc="upper right")
plt.title("Comparison of covariance estimators")
plt.xlim(5, 31)

# plot shrinkage coefficient
plt.subplot(2, 1, 2)
plt.errorbar(n_samples_range, lw_shrinkage.mean(1), yerr=lw_shrinkage.std(1),

label='Ledoit-Wolf', color='navy', lw=2)
plt.errorbar(n_samples_range, oa_shrinkage.mean(1), yerr=oa_shrinkage.std(1),

label='OAS', color='darkorange', lw=2)
plt.xlabel("n_samples")
plt.ylabel("Shrinkage")
plt.legend(loc="lower right")
plt.ylim(plt.ylim()[0], 1. + (plt.ylim()[1] - plt.ylim()[0]) / 10.)
plt.xlim(5, 31)

plt.show()
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Total running time of the script: ( 0 minutes 3.205 seconds)

Download Python source code: plot_lw_vs_oas.py

Download Jupyter notebook: plot_lw_vs_oas.ipynb

Generated by Sphinx-Gallery

4.7.2 Sparse inverse covariance estimation

Using the GraphLasso estimator to learn a covariance and sparse precision from a small number of samples.

To estimate a probabilistic model (e.g. a Gaussian model), estimating the precision matrix, that is the inverse covari-
ance matrix, is as important as estimating the covariance matrix. Indeed a Gaussian model is parametrized by the
precision matrix.

To be in favorable recovery conditions, we sample the data from a model with a sparse inverse covariance matrix. In
addition, we ensure that the data is not too much correlated (limiting the largest coefficient of the precision matrix) and
that there a no small coefficients in the precision matrix that cannot be recovered. In addition, with a small number of
observations, it is easier to recover a correlation matrix rather than a covariance, thus we scale the time series.

Here, the number of samples is slightly larger than the number of dimensions, thus the empirical covariance is still
invertible. However, as the observations are strongly correlated, the empirical covariance matrix is ill-conditioned and
as a result its inverse –the empirical precision matrix– is very far from the ground truth.

If we use l2 shrinkage, as with the Ledoit-Wolf estimator, as the number of samples is small, we need to shrink a lot.
As a result, the Ledoit-Wolf precision is fairly close to the ground truth precision, that is not far from being diagonal,
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but the off-diagonal structure is lost.

The l1-penalized estimator can recover part of this off-diagonal structure. It learns a sparse precision. It is not
able to recover the exact sparsity pattern: it detects too many non-zero coefficients. However, the highest non-zero
coefficients of the l1 estimated correspond to the non-zero coefficients in the ground truth. Finally, the coefficients of
the l1 precision estimate are biased toward zero: because of the penalty, they are all smaller than the corresponding
ground truth value, as can be seen on the figure.

Note that, the color range of the precision matrices is tweaked to improve readability of the figure. The full range of
values of the empirical precision is not displayed.

The alpha parameter of the GraphLasso setting the sparsity of the model is set by internal cross-validation in the
GraphLassoCV. As can be seen on figure 2, the grid to compute the cross-validation score is iteratively refined in the
neighborhood of the maximum.

•

•

print(__doc__)
# author: Gael Varoquaux <gael.varoquaux@inria.fr>
# License: BSD 3 clause
# Copyright: INRIA

import numpy as np
from scipy import linalg
from sklearn.datasets import make_sparse_spd_matrix
from sklearn.covariance import GraphLassoCV, ledoit_wolf
import matplotlib.pyplot as plt

# #############################################################################
# Generate the data
n_samples = 60
n_features = 20
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prng = np.random.RandomState(1)
prec = make_sparse_spd_matrix(n_features, alpha=.98,

smallest_coef=.4,
largest_coef=.7,
random_state=prng)

cov = linalg.inv(prec)
d = np.sqrt(np.diag(cov))
cov /= d
cov /= d[:, np.newaxis]
prec *= d
prec *= d[:, np.newaxis]
X = prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples)
X -= X.mean(axis=0)
X /= X.std(axis=0)

# #############################################################################
# Estimate the covariance
emp_cov = np.dot(X.T, X) / n_samples

model = GraphLassoCV()
model.fit(X)
cov_ = model.covariance_
prec_ = model.precision_

lw_cov_, _ = ledoit_wolf(X)
lw_prec_ = linalg.inv(lw_cov_)

# #############################################################################
# Plot the results
plt.figure(figsize=(10, 6))
plt.subplots_adjust(left=0.02, right=0.98)

# plot the covariances
covs = [('Empirical', emp_cov), ('Ledoit-Wolf', lw_cov_),

('GraphLasso', cov_), ('True', cov)]
vmax = cov_.max()
for i, (name, this_cov) in enumerate(covs):

plt.subplot(2, 4, i + 1)
plt.imshow(this_cov, interpolation='nearest', vmin=-vmax, vmax=vmax,

cmap=plt.cm.RdBu_r)
plt.xticks(())
plt.yticks(())
plt.title('%s covariance' % name)

# plot the precisions
precs = [('Empirical', linalg.inv(emp_cov)), ('Ledoit-Wolf', lw_prec_),

('GraphLasso', prec_), ('True', prec)]
vmax = .9 * prec_.max()
for i, (name, this_prec) in enumerate(precs):

ax = plt.subplot(2, 4, i + 5)
plt.imshow(np.ma.masked_equal(this_prec, 0),

interpolation='nearest', vmin=-vmax, vmax=vmax,
cmap=plt.cm.RdBu_r)

plt.xticks(())
plt.yticks(())
plt.title('%s precision' % name)
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ax.set_axis_bgcolor('.7')

# plot the model selection metric
plt.figure(figsize=(4, 3))
plt.axes([.2, .15, .75, .7])
plt.plot(model.cv_alphas_, np.mean(model.grid_scores_, axis=1), 'o-')
plt.axvline(model.alpha_, color='.5')
plt.title('Model selection')
plt.ylabel('Cross-validation score')
plt.xlabel('alpha')

plt.show()

Total running time of the script: ( 0 minutes 0.956 seconds)

Download Python source code: plot_sparse_cov.py

Download Jupyter notebook: plot_sparse_cov.ipynb

Generated by Sphinx-Gallery

4.7.3 Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

When working with covariance estimation, the usual approach is to use a maximum likelihood estimator, such as
the sklearn.covariance.EmpiricalCovariance. It is unbiased, i.e. it converges to the true (population)
covariance when given many observations. However, it can also be beneficial to regularize it, in order to reduce
its variance; this, in turn, introduces some bias. This example illustrates the simple regularization used in Shrunk
Covariance estimators. In particular, it focuses on how to set the amount of regularization, i.e. how to choose the
bias-variance trade-off.

Here we compare 3 approaches:

• Setting the parameter by cross-validating the likelihood on three folds according to a grid of potential shrinkage
parameters.

• A close formula proposed by Ledoit and Wolf to compute the asymptotically optimal regularization parameter
(minimizing a MSE criterion), yielding the sklearn.covariance.LedoitWolf covariance estimate.

• An improvement of the Ledoit-Wolf shrinkage, the sklearn.covariance.OAS, proposed by Chen et al.
Its convergence is significantly better under the assumption that the data are Gaussian, in particular for small
samples.

To quantify estimation error, we plot the likelihood of unseen data for different values of the shrinkage parameter. We
also show the choices by cross-validation, or with the LedoitWolf and OAS estimates.

Note that the maximum likelihood estimate corresponds to no shrinkage, and thus performs poorly. The Ledoit-Wolf
estimate performs really well, as it is close to the optimal and is computational not costly. In this example, the OAS
estimate is a bit further away. Interestingly, both approaches outperform cross-validation, which is significantly most
computationally costly.
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from scipy import linalg

from sklearn.covariance import LedoitWolf, OAS, ShrunkCovariance, \
log_likelihood, empirical_covariance

from sklearn.model_selection import GridSearchCV

# #############################################################################
# Generate sample data
n_features, n_samples = 40, 20
np.random.seed(42)
base_X_train = np.random.normal(size=(n_samples, n_features))
base_X_test = np.random.normal(size=(n_samples, n_features))

# Color samples
coloring_matrix = np.random.normal(size=(n_features, n_features))
X_train = np.dot(base_X_train, coloring_matrix)
X_test = np.dot(base_X_test, coloring_matrix)

# #############################################################################
# Compute the likelihood on test data
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# spanning a range of possible shrinkage coefficient values
shrinkages = np.logspace(-2, 0, 30)
negative_logliks = [-ShrunkCovariance(shrinkage=s).fit(X_train).score(X_test)

for s in shrinkages]

# under the ground-truth model, which we would not have access to in real
# settings
real_cov = np.dot(coloring_matrix.T, coloring_matrix)
emp_cov = empirical_covariance(X_train)
loglik_real = -log_likelihood(emp_cov, linalg.inv(real_cov))

# #############################################################################
# Compare different approaches to setting the parameter

# GridSearch for an optimal shrinkage coefficient
tuned_parameters = [{'shrinkage': shrinkages}]
cv = GridSearchCV(ShrunkCovariance(), tuned_parameters)
cv.fit(X_train)

# Ledoit-Wolf optimal shrinkage coefficient estimate
lw = LedoitWolf()
loglik_lw = lw.fit(X_train).score(X_test)

# OAS coefficient estimate
oa = OAS()
loglik_oa = oa.fit(X_train).score(X_test)

# #############################################################################
# Plot results
fig = plt.figure()
plt.title("Regularized covariance: likelihood and shrinkage coefficient")
plt.xlabel('Regularization parameter: shrinkage coefficient')
plt.ylabel('Error: negative log-likelihood on test data')
# range shrinkage curve
plt.loglog(shrinkages, negative_logliks, label="Negative log-likelihood")

plt.plot(plt.xlim(), 2 * [loglik_real], '--r',
label="Real covariance likelihood")

# adjust view
lik_max = np.amax(negative_logliks)
lik_min = np.amin(negative_logliks)
ymin = lik_min - 6. * np.log((plt.ylim()[1] - plt.ylim()[0]))
ymax = lik_max + 10. * np.log(lik_max - lik_min)
xmin = shrinkages[0]
xmax = shrinkages[-1]
# LW likelihood
plt.vlines(lw.shrinkage_, ymin, -loglik_lw, color='magenta',

linewidth=3, label='Ledoit-Wolf estimate')
# OAS likelihood
plt.vlines(oa.shrinkage_, ymin, -loglik_oa, color='purple',

linewidth=3, label='OAS estimate')
# best CV estimator likelihood
plt.vlines(cv.best_estimator_.shrinkage, ymin,

-cv.best_estimator_.score(X_test), color='cyan',
linewidth=3, label='Cross-validation best estimate')

plt.ylim(ymin, ymax)
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plt.xlim(xmin, xmax)
plt.legend()

plt.show()

Total running time of the script: ( 0 minutes 0.274 seconds)

Download Python source code: plot_covariance_estimation.py

Download Jupyter notebook: plot_covariance_estimation.ipynb

Generated by Sphinx-Gallery

4.7.4 Robust covariance estimation and Mahalanobis distances relevance

An example to show covariance estimation with the Mahalanobis distances on Gaussian distributed data.

For Gaussian distributed data, the distance of an observation 𝑥𝑖 to the mode of the distribution can be computed using
its Mahalanobis distance: 𝑑(𝜇,Σ)(𝑥𝑖)

2 = (𝑥𝑖 − 𝜇)′Σ−1(𝑥𝑖 − 𝜇) where 𝜇 and Σ are the location and the covariance of
the underlying Gaussian distribution.

In practice, 𝜇 and Σ are replaced by some estimates. The usual covariance maximum likelihood estimate is very
sensitive to the presence of outliers in the data set and therefor, the corresponding Mahalanobis distances are. One
would better have to use a robust estimator of covariance to guarantee that the estimation is resistant to “erroneous”
observations in the data set and that the associated Mahalanobis distances accurately reflect the true organisation of
the observations.

The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the
covariance matrix of highly contaminated datasets, up to 𝑛samples−𝑛features−1

2 outliers) estimator of covariance. The idea is
to find 𝑛samples+𝑛features+1

2 observations whose empirical covariance has the smallest determinant, yielding a “pure” subset
of observations from which to compute standards estimates of location and covariance.

The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [1].

This example illustrates how the Mahalanobis distances are affected by outlying data: observations drawn from a
contaminating distribution are not distinguishable from the observations coming from the real, Gaussian distribution
that one may want to work with. Using MCD-based Mahalanobis distances, the two populations become distinguish-
able. Associated applications are outliers detection, observations ranking, clustering, . . . For visualization purpose,
the cubic root of the Mahalanobis distances are represented in the boxplot, as Wilson and Hilferty suggest [2]

[1] P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984.

[2] Wilson, E. B., & Hilferty, M. M. (1931). The distribution of chi-square. Proceedings of the National
Academy of Sciences of the United States of America, 17, 684-688.
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.covariance import EmpiricalCovariance, MinCovDet

n_samples = 125
n_outliers = 25
n_features = 2

# generate data
gen_cov = np.eye(n_features)
gen_cov[0, 0] = 2.
X = np.dot(np.random.randn(n_samples, n_features), gen_cov)
# add some outliers
outliers_cov = np.eye(n_features)
outliers_cov[np.arange(1, n_features), np.arange(1, n_features)] = 7.
X[-n_outliers:] = np.dot(np.random.randn(n_outliers, n_features), outliers_cov)

# fit a Minimum Covariance Determinant (MCD) robust estimator to data
robust_cov = MinCovDet().fit(X)

# compare estimators learnt from the full data set with true parameters
emp_cov = EmpiricalCovariance().fit(X)
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# #############################################################################
# Display results
fig = plt.figure()
plt.subplots_adjust(hspace=-.1, wspace=.4, top=.95, bottom=.05)

# Show data set
subfig1 = plt.subplot(3, 1, 1)
inlier_plot = subfig1.scatter(X[:, 0], X[:, 1],

color='black', label='inliers')
outlier_plot = subfig1.scatter(X[:, 0][-n_outliers:], X[:, 1][-n_outliers:],

color='red', label='outliers')
subfig1.set_xlim(subfig1.get_xlim()[0], 11.)
subfig1.set_title("Mahalanobis distances of a contaminated data set:")

# Show contours of the distance functions
xx, yy = np.meshgrid(np.linspace(plt.xlim()[0], plt.xlim()[1], 100),

np.linspace(plt.ylim()[0], plt.ylim()[1], 100))
zz = np.c_[xx.ravel(), yy.ravel()]

mahal_emp_cov = emp_cov.mahalanobis(zz)
mahal_emp_cov = mahal_emp_cov.reshape(xx.shape)
emp_cov_contour = subfig1.contour(xx, yy, np.sqrt(mahal_emp_cov),

cmap=plt.cm.PuBu_r,
linestyles='dashed')

mahal_robust_cov = robust_cov.mahalanobis(zz)
mahal_robust_cov = mahal_robust_cov.reshape(xx.shape)
robust_contour = subfig1.contour(xx, yy, np.sqrt(mahal_robust_cov),

cmap=plt.cm.YlOrBr_r, linestyles='dotted')

subfig1.legend([emp_cov_contour.collections[1], robust_contour.collections[1],
inlier_plot, outlier_plot],

['MLE dist', 'robust dist', 'inliers', 'outliers'],
loc="upper right", borderaxespad=0)

plt.xticks(())
plt.yticks(())

# Plot the scores for each point
emp_mahal = emp_cov.mahalanobis(X - np.mean(X, 0)) ** (0.33)
subfig2 = plt.subplot(2, 2, 3)
subfig2.boxplot([emp_mahal[:-n_outliers], emp_mahal[-n_outliers:]], widths=.25)
subfig2.plot(1.26 * np.ones(n_samples - n_outliers),

emp_mahal[:-n_outliers], '+k', markeredgewidth=1)
subfig2.plot(2.26 * np.ones(n_outliers),

emp_mahal[-n_outliers:], '+k', markeredgewidth=1)
subfig2.axes.set_xticklabels(('inliers', 'outliers'), size=15)
subfig2.set_ylabel(r"$\sqrt[3]{\rm{(Mahal. dist.)}}$", size=16)
subfig2.set_title("1. from non-robust estimates\n(Maximum Likelihood)")
plt.yticks(())

robust_mahal = robust_cov.mahalanobis(X - robust_cov.location_) ** (0.33)
subfig3 = plt.subplot(2, 2, 4)
subfig3.boxplot([robust_mahal[:-n_outliers], robust_mahal[-n_outliers:]],

widths=.25)
subfig3.plot(1.26 * np.ones(n_samples - n_outliers),

robust_mahal[:-n_outliers], '+k', markeredgewidth=1)
subfig3.plot(2.26 * np.ones(n_outliers),

robust_mahal[-n_outliers:], '+k', markeredgewidth=1)
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subfig3.axes.set_xticklabels(('inliers', 'outliers'), size=15)
subfig3.set_ylabel(r"$\sqrt[3]{\rm{(Mahal. dist.)}}$", size=16)
subfig3.set_title("2. from robust estimates\n(Minimum Covariance Determinant)")
plt.yticks(())

plt.show()

Total running time of the script: ( 0 minutes 0.289 seconds)

Download Python source code: plot_mahalanobis_distances.py

Download Jupyter notebook: plot_mahalanobis_distances.ipynb

Generated by Sphinx-Gallery

4.7.5 Outlier detection with several methods.

When the amount of contamination is known, this example illustrates three different ways of performing Novelty and
Outlier Detection:

• based on a robust estimator of covariance, which is assuming that the data are Gaussian distributed and performs
better than the One-Class SVM in that case.

• using the One-Class SVM and its ability to capture the shape of the data set, hence performing better when the
data is strongly non-Gaussian, i.e. with two well-separated clusters;

• using the Isolation Forest algorithm, which is based on random forests and hence more adapted to large-
dimensional settings, even if it performs quite well in the examples below.

• using the Local Outlier Factor to measure the local deviation of a given data point with respect to its neighbors
by comparing their local density.

The ground truth about inliers and outliers is given by the points colors while the orange-filled area indicates which
points are reported as inliers by each method.

Here, we assume that we know the fraction of outliers in the datasets. Thus rather than using the ‘predict’ method of
the objects, we set the threshold on the decision_function to separate out the corresponding fraction.

•
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•

•

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
import matplotlib.font_manager

from sklearn import svm
from sklearn.covariance import EllipticEnvelope
from sklearn.ensemble import IsolationForest
from sklearn.neighbors import LocalOutlierFactor

print(__doc__)

rng = np.random.RandomState(42)
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# Example settings
n_samples = 200
outliers_fraction = 0.25
clusters_separation = [0, 1, 2]

# define two outlier detection tools to be compared
classifiers = {

"One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05,
kernel="rbf", gamma=0.1),

"Robust covariance": EllipticEnvelope(contamination=outliers_fraction),
"Isolation Forest": IsolationForest(max_samples=n_samples,

contamination=outliers_fraction,
random_state=rng),

"Local Outlier Factor": LocalOutlierFactor(
n_neighbors=35,
contamination=outliers_fraction)}

# Compare given classifiers under given settings
xx, yy = np.meshgrid(np.linspace(-7, 7, 100), np.linspace(-7, 7, 100))
n_inliers = int((1. - outliers_fraction) * n_samples)
n_outliers = int(outliers_fraction * n_samples)
ground_truth = np.ones(n_samples, dtype=int)
ground_truth[-n_outliers:] = -1

# Fit the problem with varying cluster separation
for i, offset in enumerate(clusters_separation):

np.random.seed(42)
# Data generation
X1 = 0.3 * np.random.randn(n_inliers // 2, 2) - offset
X2 = 0.3 * np.random.randn(n_inliers // 2, 2) + offset
X = np.r_[X1, X2]
# Add outliers
X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))]

# Fit the model
plt.figure(figsize=(9, 7))
for i, (clf_name, clf) in enumerate(classifiers.items()):

# fit the data and tag outliers
if clf_name == "Local Outlier Factor":

y_pred = clf.fit_predict(X)
scores_pred = clf.negative_outlier_factor_

else:
clf.fit(X)
scores_pred = clf.decision_function(X)
y_pred = clf.predict(X)

threshold = stats.scoreatpercentile(scores_pred,
100 * outliers_fraction)

n_errors = (y_pred != ground_truth).sum()
# plot the levels lines and the points
if clf_name == "Local Outlier Factor":

# decision_function is private for LOF
Z = clf._decision_function(np.c_[xx.ravel(), yy.ravel()])

else:
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)
subplot = plt.subplot(2, 2, i + 1)
subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7),

cmap=plt.cm.Blues_r)
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a = subplot.contour(xx, yy, Z, levels=[threshold],
linewidths=2, colors='red')

subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()],
colors='orange')

b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white',
s=20, edgecolor='k')

c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black',
s=20, edgecolor='k')

subplot.axis('tight')
subplot.legend(

[a.collections[0], b, c],
['learned decision function', 'true inliers', 'true outliers'],
prop=matplotlib.font_manager.FontProperties(size=10),
loc='lower right')

subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors))
subplot.set_xlim((-7, 7))
subplot.set_ylim((-7, 7))

plt.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26)
plt.suptitle("Outlier detection")

plt.show()

Total running time of the script: ( 0 minutes 2.847 seconds)

Download Python source code: plot_outlier_detection.py

Download Jupyter notebook: plot_outlier_detection.ipynb

Generated by Sphinx-Gallery

4.7.6 Robust vs Empirical covariance estimate

The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set. In
such a case, it would be better to use a robust estimator of covariance to guarantee that the estimation is resistant to
“erroneous” observations in the data set.

Minimum Covariance Determinant Estimator

The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the
covariance matrix of highly contaminated datasets, up to 𝑛samples−𝑛features−1

2 outliers) estimator of covariance. The idea is
to find 𝑛samples+𝑛features+1

2 observations whose empirical covariance has the smallest determinant, yielding a “pure” subset
of observations from which to compute standards estimates of location and covariance. After a correction step aiming
at compensating the fact that the estimates were learned from only a portion of the initial data, we end up with robust
estimates of the data set location and covariance.

The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in1.

Evaluation

In this example, we compare the estimation errors that are made when using various types of location and covariance
estimates on contaminated Gaussian distributed data sets:

• The mean and the empirical covariance of the full dataset, which break down as soon as there are outliers in the
data set

1 P. J. Rousseeuw. Least median of squares regression. Journal of American Statistical Ass., 79:871, 1984.
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• The robust MCD, that has a low error provided 𝑛samples > 5𝑛features

• The mean and the empirical covariance of the observations that are known to be good ones. This can be consid-
ered as a “perfect” MCD estimation, so one can trust our implementation by comparing to this case.

References

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.font_manager

from sklearn.covariance import EmpiricalCovariance, MinCovDet

# example settings
n_samples = 80
n_features = 5
repeat = 10

range_n_outliers = np.concatenate(
(np.linspace(0, n_samples / 8, 5),
np.linspace(n_samples / 8, n_samples / 2, 5)[1:-1])).astype(np.int)

# definition of arrays to store results
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err_loc_mcd = np.zeros((range_n_outliers.size, repeat))
err_cov_mcd = np.zeros((range_n_outliers.size, repeat))
err_loc_emp_full = np.zeros((range_n_outliers.size, repeat))
err_cov_emp_full = np.zeros((range_n_outliers.size, repeat))
err_loc_emp_pure = np.zeros((range_n_outliers.size, repeat))
err_cov_emp_pure = np.zeros((range_n_outliers.size, repeat))

# computation
for i, n_outliers in enumerate(range_n_outliers):

for j in range(repeat):

rng = np.random.RandomState(i * j)

# generate data
X = rng.randn(n_samples, n_features)
# add some outliers
outliers_index = rng.permutation(n_samples)[:n_outliers]
outliers_offset = 10. * \

(np.random.randint(2, size=(n_outliers, n_features)) - 0.5)
X[outliers_index] += outliers_offset
inliers_mask = np.ones(n_samples).astype(bool)
inliers_mask[outliers_index] = False

# fit a Minimum Covariance Determinant (MCD) robust estimator to data
mcd = MinCovDet().fit(X)
# compare raw robust estimates with the true location and covariance
err_loc_mcd[i, j] = np.sum(mcd.location_ ** 2)
err_cov_mcd[i, j] = mcd.error_norm(np.eye(n_features))

# compare estimators learned from the full data set with true
# parameters
err_loc_emp_full[i, j] = np.sum(X.mean(0) ** 2)
err_cov_emp_full[i, j] = EmpiricalCovariance().fit(X).error_norm(

np.eye(n_features))

# compare with an empirical covariance learned from a pure data set
# (i.e. "perfect" mcd)
pure_X = X[inliers_mask]
pure_location = pure_X.mean(0)
pure_emp_cov = EmpiricalCovariance().fit(pure_X)
err_loc_emp_pure[i, j] = np.sum(pure_location ** 2)
err_cov_emp_pure[i, j] = pure_emp_cov.error_norm(np.eye(n_features))

# Display results
font_prop = matplotlib.font_manager.FontProperties(size=11)
plt.subplot(2, 1, 1)
lw = 2
plt.errorbar(range_n_outliers, err_loc_mcd.mean(1),

yerr=err_loc_mcd.std(1) / np.sqrt(repeat),
label="Robust location", lw=lw, color='m')

plt.errorbar(range_n_outliers, err_loc_emp_full.mean(1),
yerr=err_loc_emp_full.std(1) / np.sqrt(repeat),
label="Full data set mean", lw=lw, color='green')

plt.errorbar(range_n_outliers, err_loc_emp_pure.mean(1),
yerr=err_loc_emp_pure.std(1) / np.sqrt(repeat),
label="Pure data set mean", lw=lw, color='black')

plt.title("Influence of outliers on the location estimation")
plt.ylabel(r"Error ($||\mu - \hat{\mu}||_2^2$)")
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plt.legend(loc="upper left", prop=font_prop)

plt.subplot(2, 1, 2)
x_size = range_n_outliers.size
plt.errorbar(range_n_outliers, err_cov_mcd.mean(1),

yerr=err_cov_mcd.std(1),
label="Robust covariance (mcd)", color='m')

plt.errorbar(range_n_outliers[:(x_size // 5 + 1)],
err_cov_emp_full.mean(1)[:(x_size // 5 + 1)],
yerr=err_cov_emp_full.std(1)[:(x_size // 5 + 1)],
label="Full data set empirical covariance", color='green')

plt.plot(range_n_outliers[(x_size // 5):(x_size // 2 - 1)],
err_cov_emp_full.mean(1)[(x_size // 5):(x_size // 2 - 1)],
color='green', ls='--')

plt.errorbar(range_n_outliers, err_cov_emp_pure.mean(1),
yerr=err_cov_emp_pure.std(1),
label="Pure data set empirical covariance", color='black')

plt.title("Influence of outliers on the covariance estimation")
plt.xlabel("Amount of contamination (%)")
plt.ylabel("RMSE")
plt.legend(loc="upper center", prop=font_prop)

plt.show()

Total running time of the script: ( 0 minutes 3.575 seconds)

Download Python source code: plot_robust_vs_empirical_covariance.py

Download Jupyter notebook: plot_robust_vs_empirical_covariance.ipynb

Generated by Sphinx-Gallery

4.8 Cross decomposition

Examples concerning the sklearn.cross_decomposition module.

4.8.1 Compare cross decomposition methods

Simple usage of various cross decomposition algorithms: - PLSCanonical - PLSRegression, with multivariate re-
sponse, a.k.a. PLS2 - PLSRegression, with univariate response, a.k.a. PLS1 - CCA

Given 2 multivariate covarying two-dimensional datasets, X, and Y, PLS extracts the ‘directions of covariance’, i.e.
the components of each datasets that explain the most shared variance between both datasets. This is apparent on the
scatterplot matrix display: components 1 in dataset X and dataset Y are maximally correlated (points lie around the
first diagonal). This is also true for components 2 in both dataset, however, the correlation across datasets for different
components is weak: the point cloud is very spherical.
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Out:

Corr(X)
[[ 1. 0.52 -0.03 0. ]
[ 0.52 1. 0.02 -0.01]
[-0.03 0.02 1. 0.45]
[ 0. -0.01 0.45 1. ]]

Corr(Y)
[[ 1. 0.52 0.01 -0.01]
[ 0.52 1. 0. 0.06]
[ 0.01 0. 1. 0.52]
[-0.01 0.06 0.52 1. ]]

True B (such that: Y = XB + Err)
[[1 1 1]
[2 2 2]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]]

Estimated B
[[ 1. 1. 1. ]
[ 2. 2. 2. ]
[-0. 0. -0. ]
[-0. -0. -0. ]
[-0. -0. -0. ]
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[ 0. -0.1 -0. ]
[-0. -0.1 0. ]
[-0. 0. -0. ]
[ 0. 0. 0. ]
[ 0. 0. 0. ]]

Estimated betas
[[ 1. ]
[ 2.1]
[-0. ]
[ 0. ]
[-0.1]
[ 0. ]
[ 0.1]
[-0.1]
[-0. ]
[ 0. ]]

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cross_decomposition import PLSCanonical, PLSRegression, CCA

# #############################################################################
# Dataset based latent variables model

n = 500
# 2 latents vars:
l1 = np.random.normal(size=n)
l2 = np.random.normal(size=n)

latents = np.array([l1, l1, l2, l2]).T
X = latents + np.random.normal(size=4 * n).reshape((n, 4))
Y = latents + np.random.normal(size=4 * n).reshape((n, 4))

X_train = X[:n // 2]
Y_train = Y[:n // 2]
X_test = X[n // 2:]
Y_test = Y[n // 2:]

print("Corr(X)")
print(np.round(np.corrcoef(X.T), 2))
print("Corr(Y)")
print(np.round(np.corrcoef(Y.T), 2))

# #############################################################################
# Canonical (symmetric) PLS

# Transform data
# ~~~~~~~~~~~~~~
plsca = PLSCanonical(n_components=2)
plsca.fit(X_train, Y_train)
X_train_r, Y_train_r = plsca.transform(X_train, Y_train)
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X_test_r, Y_test_r = plsca.transform(X_test, Y_test)

# Scatter plot of scores
# ~~~~~~~~~~~~~~~~~~~~~~
# 1) On diagonal plot X vs Y scores on each components
plt.figure(figsize=(12, 8))
plt.subplot(221)
plt.scatter(X_train_r[:, 0], Y_train_r[:, 0], label="train",

marker="o", c="b", s=25)
plt.scatter(X_test_r[:, 0], Y_test_r[:, 0], label="test",

marker="o", c="r", s=25)
plt.xlabel("x scores")
plt.ylabel("y scores")
plt.title('Comp. 1: X vs Y (test corr = %.2f)' %

np.corrcoef(X_test_r[:, 0], Y_test_r[:, 0])[0, 1])
plt.xticks(())
plt.yticks(())
plt.legend(loc="best")

plt.subplot(224)
plt.scatter(X_train_r[:, 1], Y_train_r[:, 1], label="train",

marker="o", c="b", s=25)
plt.scatter(X_test_r[:, 1], Y_test_r[:, 1], label="test",

marker="o", c="r", s=25)
plt.xlabel("x scores")
plt.ylabel("y scores")
plt.title('Comp. 2: X vs Y (test corr = %.2f)' %

np.corrcoef(X_test_r[:, 1], Y_test_r[:, 1])[0, 1])
plt.xticks(())
plt.yticks(())
plt.legend(loc="best")

# 2) Off diagonal plot components 1 vs 2 for X and Y
plt.subplot(222)
plt.scatter(X_train_r[:, 0], X_train_r[:, 1], label="train",

marker="*", c="b", s=50)
plt.scatter(X_test_r[:, 0], X_test_r[:, 1], label="test",

marker="*", c="r", s=50)
plt.xlabel("X comp. 1")
plt.ylabel("X comp. 2")
plt.title('X comp. 1 vs X comp. 2 (test corr = %.2f)'

% np.corrcoef(X_test_r[:, 0], X_test_r[:, 1])[0, 1])
plt.legend(loc="best")
plt.xticks(())
plt.yticks(())

plt.subplot(223)
plt.scatter(Y_train_r[:, 0], Y_train_r[:, 1], label="train",

marker="*", c="b", s=50)
plt.scatter(Y_test_r[:, 0], Y_test_r[:, 1], label="test",

marker="*", c="r", s=50)
plt.xlabel("Y comp. 1")
plt.ylabel("Y comp. 2")
plt.title('Y comp. 1 vs Y comp. 2 , (test corr = %.2f)'

% np.corrcoef(Y_test_r[:, 0], Y_test_r[:, 1])[0, 1])
plt.legend(loc="best")
plt.xticks(())
plt.yticks(())
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plt.show()

# #############################################################################
# PLS regression, with multivariate response, a.k.a. PLS2

n = 1000
q = 3
p = 10
X = np.random.normal(size=n * p).reshape((n, p))
B = np.array([[1, 2] + [0] * (p - 2)] * q).T
# each Yj = 1*X1 + 2*X2 + noize
Y = np.dot(X, B) + np.random.normal(size=n * q).reshape((n, q)) + 5

pls2 = PLSRegression(n_components=3)
pls2.fit(X, Y)
print("True B (such that: Y = XB + Err)")
print(B)
# compare pls2.coef_ with B
print("Estimated B")
print(np.round(pls2.coef_, 1))
pls2.predict(X)

# PLS regression, with univariate response, a.k.a. PLS1

n = 1000
p = 10
X = np.random.normal(size=n * p).reshape((n, p))
y = X[:, 0] + 2 * X[:, 1] + np.random.normal(size=n * 1) + 5
pls1 = PLSRegression(n_components=3)
pls1.fit(X, y)
# note that the number of components exceeds 1 (the dimension of y)
print("Estimated betas")
print(np.round(pls1.coef_, 1))

# #############################################################################
# CCA (PLS mode B with symmetric deflation)

cca = CCA(n_components=2)
cca.fit(X_train, Y_train)
X_train_r, Y_train_r = cca.transform(X_train, Y_train)
X_test_r, Y_test_r = cca.transform(X_test, Y_test)

Total running time of the script: ( 0 minutes 0.251 seconds)

Download Python source code: plot_compare_cross_decomposition.py

Download Jupyter notebook: plot_compare_cross_decomposition.ipynb

Generated by Sphinx-Gallery

4.9 Dataset examples

Examples concerning the sklearn.datasets module.
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4.9.1 The Digit Dataset

This dataset is made up of 1797 8x8 images. Each image, like the one shown below, is of a hand-written digit. In order
to utilize an 8x8 figure like this, we’d have to first transform it into a feature vector with length 64.

See here for more information about this dataset.

print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

from sklearn import datasets

import matplotlib.pyplot as plt

#Load the digits dataset
digits = datasets.load_digits()

#Display the first digit
plt.figure(1, figsize=(3, 3))
plt.imshow(digits.images[-1], cmap=plt.cm.gray_r, interpolation='nearest')
plt.show()

Total running time of the script: ( 0 minutes 0.241 seconds)

Download Python source code: plot_digits_last_image.py

Download Jupyter notebook: plot_digits_last_image.ipynb

Generated by Sphinx-Gallery

4.9.2 The Iris Dataset

This data sets consists of 3 different types of irises’ (Setosa, Versicolour, and Virginica) petal and sepal length, stored
in a 150x4 numpy.ndarray
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The rows being the samples and the columns being: Sepal Length, Sepal Width, Petal Length and Petal Width.

The below plot uses the first two features. See here for more information on this dataset.

•

•

print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn import datasets
from sklearn.decomposition import PCA

# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
y = iris.target

806 Chapter 4. Examples

https://en.wikipedia.org/wiki/Iris_flower_data_set


scikit-learn user guide, Release 0.19.1

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5

plt.figure(2, figsize=(8, 6))
plt.clf()

# Plot the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1,

edgecolor='k')
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())

# To getter a better understanding of interaction of the dimensions
# plot the first three PCA dimensions
fig = plt.figure(1, figsize=(8, 6))
ax = Axes3D(fig, elev=-150, azim=110)
X_reduced = PCA(n_components=3).fit_transform(iris.data)
ax.scatter(X_reduced[:, 0], X_reduced[:, 1], X_reduced[:, 2], c=y,

cmap=plt.cm.Set1, edgecolor='k', s=40)
ax.set_title("First three PCA directions")
ax.set_xlabel("1st eigenvector")
ax.w_xaxis.set_ticklabels([])
ax.set_ylabel("2nd eigenvector")
ax.w_yaxis.set_ticklabels([])
ax.set_zlabel("3rd eigenvector")
ax.w_zaxis.set_ticklabels([])

plt.show()

Total running time of the script: ( 0 minutes 0.102 seconds)

Download Python source code: plot_iris_dataset.py

Download Jupyter notebook: plot_iris_dataset.ipynb

Generated by Sphinx-Gallery

4.9.3 Plot randomly generated classification dataset

Plot several randomly generated 2D classification datasets. This example illustrates the datasets.
make_classification datasets.make_blobs and datasets.make_gaussian_quantiles func-
tions.

For make_classification, three binary and two multi-class classification datasets are generated, with different
numbers of informative features and clusters per class.
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print(__doc__)

import matplotlib.pyplot as plt

from sklearn.datasets import make_classification
from sklearn.datasets import make_blobs
from sklearn.datasets import make_gaussian_quantiles

plt.figure(figsize=(8, 8))
plt.subplots_adjust(bottom=.05, top=.9, left=.05, right=.95)

plt.subplot(321)
plt.title("One informative feature, one cluster per class", fontsize='small')
X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=1,

n_clusters_per_class=1)
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plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1,
s=25, edgecolor='k')

plt.subplot(322)
plt.title("Two informative features, one cluster per class", fontsize='small')
X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2,

n_clusters_per_class=1)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1,

s=25, edgecolor='k')

plt.subplot(323)
plt.title("Two informative features, two clusters per class",

fontsize='small')
X2, Y2 = make_classification(n_features=2, n_redundant=0, n_informative=2)
plt.scatter(X2[:, 0], X2[:, 1], marker='o', c=Y2,

s=25, edgecolor='k')

plt.subplot(324)
plt.title("Multi-class, two informative features, one cluster",

fontsize='small')
X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2,

n_clusters_per_class=1, n_classes=3)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1,

s=25, edgecolor='k')

plt.subplot(325)
plt.title("Three blobs", fontsize='small')
X1, Y1 = make_blobs(n_features=2, centers=3)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1,

s=25, edgecolor='k')

plt.subplot(326)
plt.title("Gaussian divided into three quantiles", fontsize='small')
X1, Y1 = make_gaussian_quantiles(n_features=2, n_classes=3)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1,

s=25, edgecolor='k')

plt.show()

Total running time of the script: ( 0 minutes 0.214 seconds)

Download Python source code: plot_random_dataset.py

Download Jupyter notebook: plot_random_dataset.ipynb

Generated by Sphinx-Gallery

4.9.4 Plot randomly generated multilabel dataset

This illustrates the datasets.make_multilabel_classification dataset generator. Each sample consists of counts of two
features (up to 50 in total), which are differently distributed in each of two classes.

Points are labeled as follows, where Y means the class is present:
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1 2 3 Color
Y N N Red
N Y N Blue
N N Y Yellow
Y Y N Purple
Y N Y Orange
Y Y N Green
Y Y Y Brown

A star marks the expected sample for each class; its size reflects the probability of selecting that class label.

The left and right examples highlight the n_labels parameter: more of the samples in the right plot have 2 or 3
labels.

Note that this two-dimensional example is very degenerate: generally the number of features would be much greater
than the “document length”, while here we have much larger documents than vocabulary. Similarly, with n_classes
> n_features, it is much less likely that a feature distinguishes a particular class.

Out:

The data was generated from (random_state=54):
Class P(C) P(w0|C) P(w1|C)
red 0.43 0.39 0.61
blue 0.38 0.01 0.99
yellow 0.19 0.59 0.41

from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
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from sklearn.datasets import make_multilabel_classification as make_ml_clf

print(__doc__)

COLORS = np.array(['!',
'#FF3333', # red
'#0198E1', # blue
'#BF5FFF', # purple
'#FCD116', # yellow
'#FF7216', # orange
'#4DBD33', # green
'#87421F' # brown
])

# Use same random seed for multiple calls to make_multilabel_classification to
# ensure same distributions
RANDOM_SEED = np.random.randint(2 ** 10)

def plot_2d(ax, n_labels=1, n_classes=3, length=50):
X, Y, p_c, p_w_c = make_ml_clf(n_samples=150, n_features=2,

n_classes=n_classes, n_labels=n_labels,
length=length, allow_unlabeled=False,
return_distributions=True,
random_state=RANDOM_SEED)

ax.scatter(X[:, 0], X[:, 1], color=COLORS.take((Y * [1, 2, 4]
).sum(axis=1)),

marker='.')
ax.scatter(p_w_c[0] * length, p_w_c[1] * length,

marker='*', linewidth=.5, edgecolor='black',
s=20 + 1500 * p_c ** 2,
color=COLORS.take([1, 2, 4]))

ax.set_xlabel('Feature 0 count')
return p_c, p_w_c

_, (ax1, ax2) = plt.subplots(1, 2, sharex='row', sharey='row', figsize=(8, 4))
plt.subplots_adjust(bottom=.15)

p_c, p_w_c = plot_2d(ax1, n_labels=1)
ax1.set_title('n_labels=1, length=50')
ax1.set_ylabel('Feature 1 count')

plot_2d(ax2, n_labels=3)
ax2.set_title('n_labels=3, length=50')
ax2.set_xlim(left=0, auto=True)
ax2.set_ylim(bottom=0, auto=True)

plt.show()

print('The data was generated from (random_state=%d):' % RANDOM_SEED)
print('Class', 'P(C)', 'P(w0|C)', 'P(w1|C)', sep='\t')
for k, p, p_w in zip(['red', 'blue', 'yellow'], p_c, p_w_c.T):

print('%s\t%0.2f\t%0.2f\t%0.2f' % (k, p, p_w[0], p_w[1]))

Total running time of the script: ( 0 minutes 0.111 seconds)
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Download Python source code: plot_random_multilabel_dataset.py

Download Jupyter notebook: plot_random_multilabel_dataset.ipynb

Generated by Sphinx-Gallery

4.10 Decomposition

Examples concerning the sklearn.decomposition module.

4.10.1 Beta-divergence loss functions

A plot that compares the various Beta-divergence loss functions supported by the Multiplicative-Update (‘mu’) solver
in sklearn.decomposition.NMF.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition.nmf import _beta_divergence

print(__doc__)

x = np.linspace(0.001, 4, 1000)
y = np.zeros(x.shape)
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colors = 'mbgyr'
for j, beta in enumerate((0., 0.5, 1., 1.5, 2.)):

for i, xi in enumerate(x):
y[i] = _beta_divergence(1, xi, 1, beta)

name = "beta = %1.1f" % beta
plt.plot(x, y, label=name, color=colors[j])

plt.xlabel("x")
plt.title("beta-divergence(1, x)")
plt.legend(loc=0)
plt.axis([0, 4, 0, 3])
plt.show()

Total running time of the script: ( 0 minutes 0.360 seconds)

Download Python source code: plot_beta_divergence.py

Download Jupyter notebook: plot_beta_divergence.ipynb

Generated by Sphinx-Gallery

4.10.2 PCA example with Iris Data-set

Principal Component Analysis applied to the Iris dataset.

See here for more information on this dataset.

print(__doc__)

# Code source: Gaël Varoquaux
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
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from sklearn import decomposition
from sklearn import datasets

np.random.seed(5)

centers = [[1, 1], [-1, -1], [1, -1]]
iris = datasets.load_iris()
X = iris.data
y = iris.target

fig = plt.figure(1, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

plt.cla()
pca = decomposition.PCA(n_components=3)
pca.fit(X)
X = pca.transform(X)

for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]:
ax.text3D(X[y == label, 0].mean(),

X[y == label, 1].mean() + 1.5,
X[y == label, 2].mean(), name,
horizontalalignment='center',
bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))

# Reorder the labels to have colors matching the cluster results
y = np.choose(y, [1, 2, 0]).astype(np.float)
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=plt.cm.spectral,

edgecolor='k')

ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])

plt.show()

Total running time of the script: ( 0 minutes 0.076 seconds)

Download Python source code: plot_pca_iris.py

Download Jupyter notebook: plot_pca_iris.ipynb

Generated by Sphinx-Gallery

4.10.3 Incremental PCA

Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis
(PCA) when the dataset to be decomposed is too large to fit in memory. IPCA builds a low-rank approximation for the
input data using an amount of memory which is independent of the number of input data samples. It is still dependent
on the input data features, but changing the batch size allows for control of memory usage.

This example serves as a visual check that IPCA is able to find a similar projection of the data to PCA (to a sign flip),
while only processing a few samples at a time. This can be considered a “toy example”, as IPCA is intended for large
datasets which do not fit in main memory, requiring incremental approaches.
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•

•

print(__doc__)

# Authors: Kyle Kastner
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
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from sklearn.datasets import load_iris
from sklearn.decomposition import PCA, IncrementalPCA

iris = load_iris()
X = iris.data
y = iris.target

n_components = 2
ipca = IncrementalPCA(n_components=n_components, batch_size=10)
X_ipca = ipca.fit_transform(X)

pca = PCA(n_components=n_components)
X_pca = pca.fit_transform(X)

colors = ['navy', 'turquoise', 'darkorange']

for X_transformed, title in [(X_ipca, "Incremental PCA"), (X_pca, "PCA")]:
plt.figure(figsize=(8, 8))
for color, i, target_name in zip(colors, [0, 1, 2], iris.target_names):

plt.scatter(X_transformed[y == i, 0], X_transformed[y == i, 1],
color=color, lw=2, label=target_name)

if "Incremental" in title:
err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean()
plt.title(title + " of iris dataset\nMean absolute unsigned error "

"%.6f" % err)
else:

plt.title(title + " of iris dataset")
plt.legend(loc="best", shadow=False, scatterpoints=1)
plt.axis([-4, 4, -1.5, 1.5])

plt.show()

Total running time of the script: ( 0 minutes 0.133 seconds)

Download Python source code: plot_incremental_pca.py

Download Jupyter notebook: plot_incremental_pca.ipynb

Generated by Sphinx-Gallery

4.10.4 Comparison of LDA and PCA 2D projection of Iris dataset

The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length,
sepal width, petal length and petal width.

Principal Component Analysis (PCA) applied to this data identifies the combination of attributes (principal compo-
nents, or directions in the feature space) that account for the most variance in the data. Here we plot the different
samples on the 2 first principal components.

Linear Discriminant Analysis (LDA) tries to identify attributes that account for the most variance between classes. In
particular, LDA, in contrast to PCA, is a supervised method, using known class labels.
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•

•

Out:

explained variance ratio (first two components): [ 0.92461621 0.05301557]

print(__doc__)

import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

iris = datasets.load_iris()

X = iris.data
y = iris.target
target_names = iris.target_names

pca = PCA(n_components=2)
X_r = pca.fit(X).transform(X)

lda = LinearDiscriminantAnalysis(n_components=2)
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X_r2 = lda.fit(X, y).transform(X)

# Percentage of variance explained for each components
print('explained variance ratio (first two components): %s'

% str(pca.explained_variance_ratio_))

plt.figure()
colors = ['navy', 'turquoise', 'darkorange']
lw = 2

for color, i, target_name in zip(colors, [0, 1, 2], target_names):
plt.scatter(X_r[y == i, 0], X_r[y == i, 1], color=color, alpha=.8, lw=lw,

label=target_name)
plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title('PCA of IRIS dataset')

plt.figure()
for color, i, target_name in zip(colors, [0, 1, 2], target_names):

plt.scatter(X_r2[y == i, 0], X_r2[y == i, 1], alpha=.8, color=color,
label=target_name)

plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title('LDA of IRIS dataset')

plt.show()

Total running time of the script: ( 0 minutes 0.129 seconds)

Download Python source code: plot_pca_vs_lda.py

Download Jupyter notebook: plot_pca_vs_lda.ipynb

Generated by Sphinx-Gallery

4.10.5 Blind source separation using FastICA

An example of estimating sources from noisy data.

Independent component analysis (ICA) is used to estimate sources given noisy measurements. Imagine 3 instruments
playing simultaneously and 3 microphones recording the mixed signals. ICA is used to recover the sources ie. what
is played by each instrument. Importantly, PCA fails at recovering our instruments since the related signals reflect
non-Gaussian processes.
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from scipy import signal

from sklearn.decomposition import FastICA, PCA

# #############################################################################
# Generate sample data
np.random.seed(0)
n_samples = 2000
time = np.linspace(0, 8, n_samples)

s1 = np.sin(2 * time) # Signal 1 : sinusoidal signal
s2 = np.sign(np.sin(3 * time)) # Signal 2 : square signal
s3 = signal.sawtooth(2 * np.pi * time) # Signal 3: saw tooth signal

S = np.c_[s1, s2, s3]
S += 0.2 * np.random.normal(size=S.shape) # Add noise

S /= S.std(axis=0) # Standardize data
# Mix data
A = np.array([[1, 1, 1], [0.5, 2, 1.0], [1.5, 1.0, 2.0]]) # Mixing matrix
X = np.dot(S, A.T) # Generate observations
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# Compute ICA
ica = FastICA(n_components=3)
S_ = ica.fit_transform(X) # Reconstruct signals
A_ = ica.mixing_ # Get estimated mixing matrix

# We can `prove` that the ICA model applies by reverting the unmixing.
assert np.allclose(X, np.dot(S_, A_.T) + ica.mean_)

# For comparison, compute PCA
pca = PCA(n_components=3)
H = pca.fit_transform(X) # Reconstruct signals based on orthogonal components

# #############################################################################
# Plot results

plt.figure()

models = [X, S, S_, H]
names = ['Observations (mixed signal)',

'True Sources',
'ICA recovered signals',
'PCA recovered signals']

colors = ['red', 'steelblue', 'orange']

for ii, (model, name) in enumerate(zip(models, names), 1):
plt.subplot(4, 1, ii)
plt.title(name)
for sig, color in zip(model.T, colors):

plt.plot(sig, color=color)

plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.46)
plt.show()

Total running time of the script: ( 0 minutes 0.229 seconds)

Download Python source code: plot_ica_blind_source_separation.py

Download Jupyter notebook: plot_ica_blind_source_separation.ipynb

Generated by Sphinx-Gallery

4.10.6 FastICA on 2D point clouds

This example illustrates visually in the feature space a comparison by results using two different component analysis
techniques.

Independent component analysis (ICA) vs Principal component analysis (PCA).

Representing ICA in the feature space gives the view of ‘geometric ICA’: ICA is an algorithm that finds directions in
the feature space corresponding to projections with high non-Gaussianity. These directions need not be orthogonal in
the original feature space, but they are orthogonal in the whitened feature space, in which all directions correspond to
the same variance.

PCA, on the other hand, finds orthogonal directions in the raw feature space that correspond to directions accounting
for maximum variance.

Here we simulate independent sources using a highly non-Gaussian process, 2 student T with a low number of degrees
of freedom (top left figure). We mix them to create observations (top right figure). In this raw observation space,
directions identified by PCA are represented by orange vectors. We represent the signal in the PCA space, after
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whitening by the variance corresponding to the PCA vectors (lower left). Running ICA corresponds to finding a
rotation in this space to identify the directions of largest non-Gaussianity (lower right).

print(__doc__)

# Authors: Alexandre Gramfort, Gael Varoquaux
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.decomposition import PCA, FastICA

# #############################################################################
# Generate sample data
rng = np.random.RandomState(42)
S = rng.standard_t(1.5, size=(20000, 2))
S[:, 0] *= 2.

# Mix data
A = np.array([[1, 1], [0, 2]]) # Mixing matrix

X = np.dot(S, A.T) # Generate observations

pca = PCA()
S_pca_ = pca.fit(X).transform(X)
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ica = FastICA(random_state=rng)
S_ica_ = ica.fit(X).transform(X) # Estimate the sources

S_ica_ /= S_ica_.std(axis=0)

# #############################################################################
# Plot results

def plot_samples(S, axis_list=None):
plt.scatter(S[:, 0], S[:, 1], s=2, marker='o', zorder=10,

color='steelblue', alpha=0.5)
if axis_list is not None:

colors = ['orange', 'red']
for color, axis in zip(colors, axis_list):

axis /= axis.std()
x_axis, y_axis = axis
# Trick to get legend to work
plt.plot(0.1 * x_axis, 0.1 * y_axis, linewidth=2, color=color)
plt.quiver(0, 0, x_axis, y_axis, zorder=11, width=0.01, scale=6,

color=color)

plt.hlines(0, -3, 3)
plt.vlines(0, -3, 3)
plt.xlim(-3, 3)
plt.ylim(-3, 3)
plt.xlabel('x')
plt.ylabel('y')

plt.figure()
plt.subplot(2, 2, 1)
plot_samples(S / S.std())
plt.title('True Independent Sources')

axis_list = [pca.components_.T, ica.mixing_]
plt.subplot(2, 2, 2)
plot_samples(X / np.std(X), axis_list=axis_list)
legend = plt.legend(['PCA', 'ICA'], loc='upper right')
legend.set_zorder(100)

plt.title('Observations')

plt.subplot(2, 2, 3)
plot_samples(S_pca_ / np.std(S_pca_, axis=0))
plt.title('PCA recovered signals')

plt.subplot(2, 2, 4)
plot_samples(S_ica_ / np.std(S_ica_))
plt.title('ICA recovered signals')

plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.36)
plt.show()

Total running time of the script: ( 0 minutes 0.522 seconds)

Download Python source code: plot_ica_vs_pca.py

Download Jupyter notebook: plot_ica_vs_pca.ipynb
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Generated by Sphinx-Gallery

4.10.7 Principal components analysis (PCA)

These figures aid in illustrating how a point cloud can be very flat in one direction–which is where PCA comes in to
choose a direction that is not flat.

•

•

print(__doc__)

# Authors: Gael Varoquaux
# Jaques Grobler
# Kevin Hughes
# License: BSD 3 clause

from sklearn.decomposition import PCA

from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

# #############################################################################
# Create the data

e = np.exp(1)
np.random.seed(4)

def pdf(x):
return 0.5 * (stats.norm(scale=0.25 / e).pdf(x)

+ stats.norm(scale=4 / e).pdf(x))

y = np.random.normal(scale=0.5, size=(30000))
x = np.random.normal(scale=0.5, size=(30000))
z = np.random.normal(scale=0.1, size=len(x))
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density = pdf(x) * pdf(y)
pdf_z = pdf(5 * z)

density *= pdf_z

a = x + y
b = 2 * y
c = a - b + z

norm = np.sqrt(a.var() + b.var())
a /= norm
b /= norm

# #############################################################################
# Plot the figures
def plot_figs(fig_num, elev, azim):

fig = plt.figure(fig_num, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim)

ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker='+', alpha=.4)
Y = np.c_[a, b, c]

# Using SciPy's SVD, this would be:
# _, pca_score, V = scipy.linalg.svd(Y, full_matrices=False)

pca = PCA(n_components=3)
pca.fit(Y)
pca_score = pca.explained_variance_ratio_
V = pca.components_

x_pca_axis, y_pca_axis, z_pca_axis = V.T * pca_score / pca_score.min()

x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T
x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]]
y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]]
z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]]
x_pca_plane.shape = (2, 2)
y_pca_plane.shape = (2, 2)
z_pca_plane.shape = (2, 2)
ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane)
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])

elev = -40
azim = -80
plot_figs(1, elev, azim)

elev = 30
azim = 20
plot_figs(2, elev, azim)

plt.show()

Total running time of the script: ( 0 minutes 0.167 seconds)
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Download Python source code: plot_pca_3d.py

Download Jupyter notebook: plot_pca_3d.ipynb

Generated by Sphinx-Gallery

4.10.8 Kernel PCA

This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable.

print(__doc__)

# Authors: Mathieu Blondel
# Andreas Mueller
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.decomposition import PCA, KernelPCA
from sklearn.datasets import make_circles

np.random.seed(0)

X, y = make_circles(n_samples=400, factor=.3, noise=.05)
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kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10)
X_kpca = kpca.fit_transform(X)
X_back = kpca.inverse_transform(X_kpca)
pca = PCA()
X_pca = pca.fit_transform(X)

# Plot results

plt.figure()
plt.subplot(2, 2, 1, aspect='equal')
plt.title("Original space")
reds = y == 0
blues = y == 1

plt.scatter(X[reds, 0], X[reds, 1], c="red",
s=20, edgecolor='k')

plt.scatter(X[blues, 0], X[blues, 1], c="blue",
s=20, edgecolor='k')

plt.xlabel("$x_1$")
plt.ylabel("$x_2$")

X1, X2 = np.meshgrid(np.linspace(-1.5, 1.5, 50), np.linspace(-1.5, 1.5, 50))
X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T
# projection on the first principal component (in the phi space)
Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape)
plt.contour(X1, X2, Z_grid, colors='grey', linewidths=1, origin='lower')

plt.subplot(2, 2, 2, aspect='equal')
plt.scatter(X_pca[reds, 0], X_pca[reds, 1], c="red",

s=20, edgecolor='k')
plt.scatter(X_pca[blues, 0], X_pca[blues, 1], c="blue",

s=20, edgecolor='k')
plt.title("Projection by PCA")
plt.xlabel("1st principal component")
plt.ylabel("2nd component")

plt.subplot(2, 2, 3, aspect='equal')
plt.scatter(X_kpca[reds, 0], X_kpca[reds, 1], c="red",

s=20, edgecolor='k')
plt.scatter(X_kpca[blues, 0], X_kpca[blues, 1], c="blue",

s=20, edgecolor='k')
plt.title("Projection by KPCA")
plt.xlabel("1st principal component in space induced by $\phi$")
plt.ylabel("2nd component")

plt.subplot(2, 2, 4, aspect='equal')
plt.scatter(X_back[reds, 0], X_back[reds, 1], c="red",

s=20, edgecolor='k')
plt.scatter(X_back[blues, 0], X_back[blues, 1], c="blue",

s=20, edgecolor='k')
plt.title("Original space after inverse transform")
plt.xlabel("$x_1$")
plt.ylabel("$x_2$")

plt.subplots_adjust(0.02, 0.10, 0.98, 0.94, 0.04, 0.35)

plt.show()
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Total running time of the script: ( 0 minutes 0.410 seconds)

Download Python source code: plot_kernel_pca.py

Download Jupyter notebook: plot_kernel_pca.ipynb

Generated by Sphinx-Gallery

4.10.9 Sparse coding with a precomputed dictionary

Transform a signal as a sparse combination of Ricker wavelets. This example visually compares different sparse coding
methods using the sklearn.decomposition.SparseCoder estimator. The Ricker (also known as Mexican
hat or the second derivative of a Gaussian) is not a particularly good kernel to represent piecewise constant signals
like this one. It can therefore be seen how much adding different widths of atoms matters and it therefore motivates
learning the dictionary to best fit your type of signals.

The richer dictionary on the right is not larger in size, heavier subsampling is performed in order to stay on the same
order of magnitude.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.decomposition import SparseCoder

def ricker_function(resolution, center, width):
"""Discrete sub-sampled Ricker (Mexican hat) wavelet"""
x = np.linspace(0, resolution - 1, resolution)
x = ((2 / ((np.sqrt(3 * width) * np.pi ** 1 / 4)))

* (1 - ((x - center) ** 2 / width ** 2))

* np.exp((-(x - center) ** 2) / (2 * width ** 2)))
return x

def ricker_matrix(width, resolution, n_components):
"""Dictionary of Ricker (Mexican hat) wavelets"""
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centers = np.linspace(0, resolution - 1, n_components)
D = np.empty((n_components, resolution))
for i, center in enumerate(centers):

D[i] = ricker_function(resolution, center, width)
D /= np.sqrt(np.sum(D ** 2, axis=1))[:, np.newaxis]
return D

resolution = 1024
subsampling = 3 # subsampling factor
width = 100
n_components = resolution // subsampling

# Compute a wavelet dictionary
D_fixed = ricker_matrix(width=width, resolution=resolution,

n_components=n_components)
D_multi = np.r_[tuple(ricker_matrix(width=w, resolution=resolution,

n_components=n_components // 5)
for w in (10, 50, 100, 500, 1000))]

# Generate a signal
y = np.linspace(0, resolution - 1, resolution)
first_quarter = y < resolution / 4
y[first_quarter] = 3.
y[np.logical_not(first_quarter)] = -1.

# List the different sparse coding methods in the following format:
# (title, transform_algorithm, transform_alpha, transform_n_nozero_coefs)
estimators = [('OMP', 'omp', None, 15, 'navy'),

('Lasso', 'lasso_cd', 2, None, 'turquoise'), ]
lw = 2

plt.figure(figsize=(13, 6))
for subplot, (D, title) in enumerate(zip((D_fixed, D_multi),

('fixed width', 'multiple widths'))):
plt.subplot(1, 2, subplot + 1)
plt.title('Sparse coding against %s dictionary' % title)
plt.plot(y, lw=lw, linestyle='--', label='Original signal')
# Do a wavelet approximation
for title, algo, alpha, n_nonzero, color in estimators:

coder = SparseCoder(dictionary=D, transform_n_nonzero_coefs=n_nonzero,
transform_alpha=alpha, transform_algorithm=algo)

x = coder.transform(y.reshape(1, -1))
density = len(np.flatnonzero(x))
x = np.ravel(np.dot(x, D))
squared_error = np.sum((y - x) ** 2)
plt.plot(x, color=color, lw=lw,

label='%s: %s nonzero coefs,\n%.2f error'
% (title, density, squared_error))

# Soft thresholding debiasing
coder = SparseCoder(dictionary=D, transform_algorithm='threshold',

transform_alpha=20)
x = coder.transform(y.reshape(1, -1))
_, idx = np.where(x != 0)
x[0, idx], _, _, _ = np.linalg.lstsq(D[idx, :].T, y)
x = np.ravel(np.dot(x, D))
squared_error = np.sum((y - x) ** 2)
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plt.plot(x, color='darkorange', lw=lw,
label='Thresholding w/ debiasing:\n%d nonzero coefs, %.2f error'
% (len(idx), squared_error))

plt.axis('tight')
plt.legend(shadow=False, loc='best')

plt.subplots_adjust(.04, .07, .97, .90, .09, .2)
plt.show()

Total running time of the script: ( 0 minutes 0.338 seconds)

Download Python source code: plot_sparse_coding.py

Download Jupyter notebook: plot_sparse_coding.ipynb

Generated by Sphinx-Gallery

4.10.10 Model selection with Probabilistic PCA and Factor Analysis (FA)

Probabilistic PCA and Factor Analysis are probabilistic models. The consequence is that the likelihood of new data
can be used for model selection and covariance estimation. Here we compare PCA and FA with cross-validation on
low rank data corrupted with homoscedastic noise (noise variance is the same for each feature) or heteroscedastic noise
(noise variance is the different for each feature). In a second step we compare the model likelihood to the likelihoods
obtained from shrinkage covariance estimators.

One can observe that with homoscedastic noise both FA and PCA succeed in recovering the size of the low rank
subspace. The likelihood with PCA is higher than FA in this case. However PCA fails and overestimates the rank
when heteroscedastic noise is present. Under appropriate circumstances the low rank models are more likely than
shrinkage models.

The automatic estimation from Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604 by Thomas P.
Minka is also compared.

•
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•

Out:

best n_components by PCA CV = 10
best n_components by FactorAnalysis CV = 10
best n_components by PCA MLE = 10
best n_components by PCA CV = 40
best n_components by FactorAnalysis CV = 10
best n_components by PCA MLE = 38

# Authors: Alexandre Gramfort
# Denis A. Engemann
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from scipy import linalg

from sklearn.decomposition import PCA, FactorAnalysis
from sklearn.covariance import ShrunkCovariance, LedoitWolf
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV

print(__doc__)

# #############################################################################
# Create the data

n_samples, n_features, rank = 1000, 50, 10
sigma = 1.
rng = np.random.RandomState(42)
U, _, _ = linalg.svd(rng.randn(n_features, n_features))
X = np.dot(rng.randn(n_samples, rank), U[:, :rank].T)

# Adding homoscedastic noise
X_homo = X + sigma * rng.randn(n_samples, n_features)

# Adding heteroscedastic noise
sigmas = sigma * rng.rand(n_features) + sigma / 2.
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X_hetero = X + rng.randn(n_samples, n_features) * sigmas

# #############################################################################
# Fit the models

n_components = np.arange(0, n_features, 5) # options for n_components

def compute_scores(X):
pca = PCA(svd_solver='full')
fa = FactorAnalysis()

pca_scores, fa_scores = [], []
for n in n_components:

pca.n_components = n
fa.n_components = n
pca_scores.append(np.mean(cross_val_score(pca, X)))
fa_scores.append(np.mean(cross_val_score(fa, X)))

return pca_scores, fa_scores

def shrunk_cov_score(X):
shrinkages = np.logspace(-2, 0, 30)
cv = GridSearchCV(ShrunkCovariance(), {'shrinkage': shrinkages})
return np.mean(cross_val_score(cv.fit(X).best_estimator_, X))

def lw_score(X):
return np.mean(cross_val_score(LedoitWolf(), X))

for X, title in [(X_homo, 'Homoscedastic Noise'),
(X_hetero, 'Heteroscedastic Noise')]:

pca_scores, fa_scores = compute_scores(X)
n_components_pca = n_components[np.argmax(pca_scores)]
n_components_fa = n_components[np.argmax(fa_scores)]

pca = PCA(svd_solver='full', n_components='mle')
pca.fit(X)
n_components_pca_mle = pca.n_components_

print("best n_components by PCA CV = %d" % n_components_pca)
print("best n_components by FactorAnalysis CV = %d" % n_components_fa)
print("best n_components by PCA MLE = %d" % n_components_pca_mle)

plt.figure()
plt.plot(n_components, pca_scores, 'b', label='PCA scores')
plt.plot(n_components, fa_scores, 'r', label='FA scores')
plt.axvline(rank, color='g', label='TRUTH: %d' % rank, linestyle='-')
plt.axvline(n_components_pca, color='b',

label='PCA CV: %d' % n_components_pca, linestyle='--')
plt.axvline(n_components_fa, color='r',

label='FactorAnalysis CV: %d' % n_components_fa,
linestyle='--')

plt.axvline(n_components_pca_mle, color='k',
label='PCA MLE: %d' % n_components_pca_mle, linestyle='--')
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# compare with other covariance estimators
plt.axhline(shrunk_cov_score(X), color='violet',

label='Shrunk Covariance MLE', linestyle='-.')
plt.axhline(lw_score(X), color='orange',

label='LedoitWolf MLE' % n_components_pca_mle, linestyle='-.')

plt.xlabel('nb of components')
plt.ylabel('CV scores')
plt.legend(loc='lower right')
plt.title(title)

plt.show()

Total running time of the script: ( 0 minutes 11.511 seconds)

Download Python source code: plot_pca_vs_fa_model_selection.py

Download Jupyter notebook: plot_pca_vs_fa_model_selection.ipynb

Generated by Sphinx-Gallery

4.10.11 Image denoising using dictionary learning

An example comparing the effect of reconstructing noisy fragments of a raccoon face image using firstly online
Dictionary Learning and various transform methods.

The dictionary is fitted on the distorted left half of the image, and subsequently used to reconstruct the right half. Note
that even better performance could be achieved by fitting to an undistorted (i.e. noiseless) image, but here we start
from the assumption that it is not available.

A common practice for evaluating the results of image denoising is by looking at the difference between the recon-
struction and the original image. If the reconstruction is perfect this will look like Gaussian noise.

It can be seen from the plots that the results of Orthogonal Matching Pursuit (OMP) with two non-zero coefficients is
a bit less biased than when keeping only one (the edges look less prominent). It is in addition closer from the ground
truth in Frobenius norm.

The result of Least Angle Regression is much more strongly biased: the difference is reminiscent of the local intensity
value of the original image.

Thresholding is clearly not useful for denoising, but it is here to show that it can produce a suggestive output with
very high speed, and thus be useful for other tasks such as object classification, where performance is not necessarily
related to visualisation.

•
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Out:

Distorting image...
Extracting reference patches...
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done in 0.07s.
Learning the dictionary...
done in 8.79s.
Extracting noisy patches...
done in 0.02s.
Orthogonal Matching Pursuit
1 atom...
done in 11.32s.
Orthogonal Matching Pursuit
2 atoms...
done in 20.48s.
Least-angle regression
5 atoms...
done in 114.04s.
Thresholding
alpha=0.1...

done in 1.00s.

print(__doc__)

from time import time

import matplotlib.pyplot as plt
import numpy as np
import scipy as sp

from sklearn.decomposition import MiniBatchDictionaryLearning
from sklearn.feature_extraction.image import extract_patches_2d
from sklearn.feature_extraction.image import reconstruct_from_patches_2d

try: # SciPy >= 0.16 have face in misc
from scipy.misc import face
face = face(gray=True)

except ImportError:
face = sp.face(gray=True)

# Convert from uint8 representation with values between 0 and 255 to
# a floating point representation with values between 0 and 1.
face = face / 255.

# downsample for higher speed
face = face[::2, ::2] + face[1::2, ::2] + face[::2, 1::2] + face[1::2, 1::2]
face /= 4.0
height, width = face.shape

# Distort the right half of the image
print('Distorting image...')
distorted = face.copy()
distorted[:, width // 2:] += 0.075 * np.random.randn(height, width // 2)

# Extract all reference patches from the left half of the image
print('Extracting reference patches...')
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t0 = time()
patch_size = (7, 7)
data = extract_patches_2d(distorted[:, :width // 2], patch_size)
data = data.reshape(data.shape[0], -1)
data -= np.mean(data, axis=0)
data /= np.std(data, axis=0)
print('done in %.2fs.' % (time() - t0))

# #############################################################################
# Learn the dictionary from reference patches

print('Learning the dictionary...')
t0 = time()
dico = MiniBatchDictionaryLearning(n_components=100, alpha=1, n_iter=500)
V = dico.fit(data).components_
dt = time() - t0
print('done in %.2fs.' % dt)

plt.figure(figsize=(4.2, 4))
for i, comp in enumerate(V[:100]):

plt.subplot(10, 10, i + 1)
plt.imshow(comp.reshape(patch_size), cmap=plt.cm.gray_r,

interpolation='nearest')
plt.xticks(())
plt.yticks(())

plt.suptitle('Dictionary learned from face patches\n' +
'Train time %.1fs on %d patches' % (dt, len(data)),
fontsize=16)

plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)

# #############################################################################
# Display the distorted image

def show_with_diff(image, reference, title):
"""Helper function to display denoising"""
plt.figure(figsize=(5, 3.3))
plt.subplot(1, 2, 1)
plt.title('Image')
plt.imshow(image, vmin=0, vmax=1, cmap=plt.cm.gray,

interpolation='nearest')
plt.xticks(())
plt.yticks(())
plt.subplot(1, 2, 2)
difference = image - reference

plt.title('Difference (norm: %.2f)' % np.sqrt(np.sum(difference ** 2)))
plt.imshow(difference, vmin=-0.5, vmax=0.5, cmap=plt.cm.PuOr,

interpolation='nearest')
plt.xticks(())
plt.yticks(())
plt.suptitle(title, size=16)
plt.subplots_adjust(0.02, 0.02, 0.98, 0.79, 0.02, 0.2)

show_with_diff(distorted, face, 'Distorted image')

# #############################################################################
# Extract noisy patches and reconstruct them using the dictionary
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print('Extracting noisy patches... ')
t0 = time()
data = extract_patches_2d(distorted[:, width // 2:], patch_size)
data = data.reshape(data.shape[0], -1)
intercept = np.mean(data, axis=0)
data -= intercept
print('done in %.2fs.' % (time() - t0))

transform_algorithms = [
('Orthogonal Matching Pursuit\n1 atom', 'omp',
{'transform_n_nonzero_coefs': 1}),

('Orthogonal Matching Pursuit\n2 atoms', 'omp',
{'transform_n_nonzero_coefs': 2}),

('Least-angle regression\n5 atoms', 'lars',
{'transform_n_nonzero_coefs': 5}),

('Thresholding\n alpha=0.1', 'threshold', {'transform_alpha': .1})]

reconstructions = {}
for title, transform_algorithm, kwargs in transform_algorithms:

print(title + '...')
reconstructions[title] = face.copy()
t0 = time()
dico.set_params(transform_algorithm=transform_algorithm, **kwargs)
code = dico.transform(data)
patches = np.dot(code, V)

patches += intercept
patches = patches.reshape(len(data), *patch_size)
if transform_algorithm == 'threshold':

patches -= patches.min()
patches /= patches.max()

reconstructions[title][:, width // 2:] = reconstruct_from_patches_2d(
patches, (height, width // 2))

dt = time() - t0
print('done in %.2fs.' % dt)
show_with_diff(reconstructions[title], face,

title + ' (time: %.1fs)' % dt)

plt.show()

Total running time of the script: ( 2 minutes 39.855 seconds)

Download Python source code: plot_image_denoising.py

Download Jupyter notebook: plot_image_denoising.ipynb

Generated by Sphinx-Gallery

4.10.12 Faces dataset decompositions

This example applies to The Olivetti faces dataset different unsupervised matrix decomposition (dimension reduction)
methods from the module sklearn.decomposition (see the documentation chapter Decomposing signals in
components (matrix factorization problems)) .
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Out:

Dataset consists of 400 faces
Extracting the top 6 Eigenfaces - PCA using randomized SVD...
done in 0.054s
Extracting the top 6 Non-negative components - NMF...
done in 0.356s
Extracting the top 6 Independent components - FastICA...
done in 0.319s
Extracting the top 6 Sparse comp. - MiniBatchSparsePCA...
done in 1.232s
Extracting the top 6 MiniBatchDictionaryLearning...
done in 1.056s
Extracting the top 6 Cluster centers - MiniBatchKMeans...
done in 0.103s
Extracting the top 6 Factor Analysis components - FA...
done in 0.111s

print(__doc__)

# Authors: Vlad Niculae, Alexandre Gramfort
# License: BSD 3 clause

import logging
from time import time

from numpy.random import RandomState
import matplotlib.pyplot as plt

from sklearn.datasets import fetch_olivetti_faces
from sklearn.cluster import MiniBatchKMeans
from sklearn import decomposition

# Display progress logs on stdout
logging.basicConfig(level=logging.INFO,

format='%(asctime)s %(levelname)s %(message)s')
n_row, n_col = 2, 3
n_components = n_row * n_col
image_shape = (64, 64)
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rng = RandomState(0)

# #############################################################################
# Load faces data
dataset = fetch_olivetti_faces(shuffle=True, random_state=rng)
faces = dataset.data

n_samples, n_features = faces.shape

# global centering
faces_centered = faces - faces.mean(axis=0)

# local centering
faces_centered -= faces_centered.mean(axis=1).reshape(n_samples, -1)

print("Dataset consists of %d faces" % n_samples)

def plot_gallery(title, images, n_col=n_col, n_row=n_row):
plt.figure(figsize=(2. * n_col, 2.26 * n_row))
plt.suptitle(title, size=16)
for i, comp in enumerate(images):

plt.subplot(n_row, n_col, i + 1)
vmax = max(comp.max(), -comp.min())
plt.imshow(comp.reshape(image_shape), cmap=plt.cm.gray,

interpolation='nearest',
vmin=-vmax, vmax=vmax)

plt.xticks(())
plt.yticks(())

plt.subplots_adjust(0.01, 0.05, 0.99, 0.93, 0.04, 0.)

# #############################################################################
# List of the different estimators, whether to center and transpose the
# problem, and whether the transformer uses the clustering API.
estimators = [

('Eigenfaces - PCA using randomized SVD',
decomposition.PCA(n_components=n_components, svd_solver='randomized',

whiten=True),
True),

('Non-negative components - NMF',
decomposition.NMF(n_components=n_components, init='nndsvda', tol=5e-3),
False),

('Independent components - FastICA',
decomposition.FastICA(n_components=n_components, whiten=True),
True),

('Sparse comp. - MiniBatchSparsePCA',
decomposition.MiniBatchSparsePCA(n_components=n_components, alpha=0.8,

n_iter=100, batch_size=3,
random_state=rng),

True),

('MiniBatchDictionaryLearning',
decomposition.MiniBatchDictionaryLearning(n_components=15, alpha=0.1,

n_iter=50, batch_size=3,
random_state=rng),
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True),

('Cluster centers - MiniBatchKMeans',
MiniBatchKMeans(n_clusters=n_components, tol=1e-3, batch_size=20,

max_iter=50, random_state=rng),
True),

('Factor Analysis components - FA',
decomposition.FactorAnalysis(n_components=n_components, max_iter=2),
True),

]

# #############################################################################
# Plot a sample of the input data

plot_gallery("First centered Olivetti faces", faces_centered[:n_components])

# #############################################################################
# Do the estimation and plot it

for name, estimator, center in estimators:
print("Extracting the top %d %s..." % (n_components, name))
t0 = time()
data = faces
if center:

data = faces_centered
estimator.fit(data)
train_time = (time() - t0)
print("done in %0.3fs" % train_time)
if hasattr(estimator, 'cluster_centers_'):

components_ = estimator.cluster_centers_
else:

components_ = estimator.components_

# Plot an image representing the pixelwise variance provided by the
# estimator e.g its noise_variance_ attribute. The Eigenfaces estimator,
# via the PCA decomposition, also provides a scalar noise_variance_
# (the mean of pixelwise variance) that cannot be displayed as an image
# so we skip it.
if (hasattr(estimator, 'noise_variance_') and

estimator.noise_variance_.ndim > 0): # Skip the Eigenfaces case
plot_gallery("Pixelwise variance",

estimator.noise_variance_.reshape(1, -1), n_col=1,
n_row=1)

plot_gallery('%s - Train time %.1fs' % (name, train_time),
components_[:n_components])

plt.show()

Total running time of the script: ( 0 minutes 5.278 seconds)

Download Python source code: plot_faces_decomposition.py

Download Jupyter notebook: plot_faces_decomposition.ipynb

Generated by Sphinx-Gallery
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4.11 Ensemble methods

Examples concerning the sklearn.ensemble module.

4.11.1 Decision Tree Regression with AdaBoost

A decision tree is boosted using the AdaBoost.R21 algorithm on a 1D sinusoidal dataset with a small amount of
Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of
boosts is increased the regressor can fit more detail.

print(__doc__)

# Author: Noel Dawe <noel.dawe@gmail.com>
#
# License: BSD 3 clause

# importing necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor

1

8. Drucker, “Improving Regressors using Boosting Techniques”, 1997.
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from sklearn.ensemble import AdaBoostRegressor

# Create the dataset
rng = np.random.RandomState(1)
X = np.linspace(0, 6, 100)[:, np.newaxis]
y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0])

# Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=4)

regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4),
n_estimators=300, random_state=rng)

regr_1.fit(X, y)
regr_2.fit(X, y)

# Predict
y_1 = regr_1.predict(X)
y_2 = regr_2.predict(X)

# Plot the results
plt.figure()
plt.scatter(X, y, c="k", label="training samples")
plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2)
plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Boosted Decision Tree Regression")
plt.legend()
plt.show()

Total running time of the script: ( 0 minutes 0.436 seconds)

Download Python source code: plot_adaboost_regression.py

Download Jupyter notebook: plot_adaboost_regression.ipynb

Generated by Sphinx-Gallery

4.11.2 Pixel importances with a parallel forest of trees

This example shows the use of forests of trees to evaluate the importance of the pixels in an image classification task
(faces). The hotter the pixel, the more important.

The code below also illustrates how the construction and the computation of the predictions can be parallelized within
multiple jobs.
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Out:

Fitting ExtraTreesClassifier on faces data with 1 cores...
done in 1.533s

print(__doc__)

from time import time
import matplotlib.pyplot as plt

from sklearn.datasets import fetch_olivetti_faces
from sklearn.ensemble import ExtraTreesClassifier

# Number of cores to use to perform parallel fitting of the forest model
n_jobs = 1

# Load the faces dataset
data = fetch_olivetti_faces()
X = data.images.reshape((len(data.images), -1))
y = data.target
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mask = y < 5 # Limit to 5 classes
X = X[mask]
y = y[mask]

# Build a forest and compute the pixel importances
print("Fitting ExtraTreesClassifier on faces data with %d cores..." % n_jobs)
t0 = time()
forest = ExtraTreesClassifier(n_estimators=1000,

max_features=128,
n_jobs=n_jobs,
random_state=0)

forest.fit(X, y)
print("done in %0.3fs" % (time() - t0))
importances = forest.feature_importances_
importances = importances.reshape(data.images[0].shape)

# Plot pixel importances
plt.matshow(importances, cmap=plt.cm.hot)
plt.title("Pixel importances with forests of trees")
plt.show()

Total running time of the script: ( 0 minutes 1.688 seconds)

Download Python source code: plot_forest_importances_faces.py

Download Jupyter notebook: plot_forest_importances_faces.ipynb

Generated by Sphinx-Gallery

4.11.3 Feature importances with forests of trees

This examples shows the use of forests of trees to evaluate the importance of features on an artificial classification
task. The red bars are the feature importances of the forest, along with their inter-trees variability.

As expected, the plot suggests that 3 features are informative, while the remaining are not.
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Out:

Feature ranking:
1. feature 1 (0.295902)
2. feature 2 (0.208351)
3. feature 0 (0.177632)
4. feature 3 (0.047121)
5. feature 6 (0.046303)
6. feature 8 (0.046013)
7. feature 7 (0.045575)
8. feature 4 (0.044614)
9. feature 9 (0.044577)
10. feature 5 (0.043912)

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_classification
from sklearn.ensemble import ExtraTreesClassifier
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# Build a classification task using 3 informative features
X, y = make_classification(n_samples=1000,

n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
n_classes=2,
random_state=0,
shuffle=False)

# Build a forest and compute the feature importances
forest = ExtraTreesClassifier(n_estimators=250,

random_state=0)

forest.fit(X, y)
importances = forest.feature_importances_
std = np.std([tree.feature_importances_ for tree in forest.estimators_],

axis=0)
indices = np.argsort(importances)[::-1]

# Print the feature ranking
print("Feature ranking:")

for f in range(X.shape[1]):
print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]]))

# Plot the feature importances of the forest
plt.figure()
plt.title("Feature importances")
plt.bar(range(X.shape[1]), importances[indices],

color="r", yerr=std[indices], align="center")
plt.xticks(range(X.shape[1]), indices)
plt.xlim([-1, X.shape[1]])
plt.show()

Total running time of the script: ( 0 minutes 0.529 seconds)

Download Python source code: plot_forest_importances.py

Download Jupyter notebook: plot_forest_importances.ipynb

Generated by Sphinx-Gallery

4.11.4 IsolationForest example

An example using IsolationForest for anomaly detection.

The IsolationForest ‘isolates’ observations by randomly selecting a feature and then randomly selecting a split value
between the maximum and minimum values of the selected feature.

Since recursive partitioning can be represented by a tree structure, the number of splittings required to isolate a sample
is equivalent to the path length from the root node to the terminating node.

This path length, averaged over a forest of such random trees, is a measure of normality and our decision function.

Random partitioning produces noticeable shorter paths for anomalies. Hence, when a forest of random trees collec-
tively produce shorter path lengths for particular samples, they are highly likely to be anomalies.
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForest

rng = np.random.RandomState(42)

# Generate train data
X = 0.3 * rng.randn(100, 2)
X_train = np.r_[X + 2, X - 2]
# Generate some regular novel observations
X = 0.3 * rng.randn(20, 2)
X_test = np.r_[X + 2, X - 2]
# Generate some abnormal novel observations
X_outliers = rng.uniform(low=-4, high=4, size=(20, 2))

# fit the model
clf = IsolationForest(max_samples=100, random_state=rng)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)

# plot the line, the samples, and the nearest vectors to the plane
xx, yy = np.meshgrid(np.linspace(-5, 5, 50), np.linspace(-5, 5, 50))
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Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.title("IsolationForest")
plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r)

b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white',
s=20, edgecolor='k')

b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green',
s=20, edgecolor='k')

c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red',
s=20, edgecolor='k')

plt.axis('tight')
plt.xlim((-5, 5))
plt.ylim((-5, 5))
plt.legend([b1, b2, c],

["training observations",
"new regular observations", "new abnormal observations"],

loc="upper left")
plt.show()

Total running time of the script: ( 0 minutes 0.403 seconds)

Download Python source code: plot_isolation_forest.py

Download Jupyter notebook: plot_isolation_forest.ipynb

Generated by Sphinx-Gallery

4.11.5 Plot the decision boundaries of a VotingClassifier

Plot the decision boundaries of a VotingClassifier for two features of the Iris dataset.

Plot the class probabilities of the first sample in a toy dataset predicted by three different classifiers and averaged by
the VotingClassifier.

First, three exemplary classifiers are initialized (DecisionTreeClassifier, KNeighborsClassifier, and SVC) and used to
initialize a soft-voting VotingClassifier with weights [2, 1, 2], which means that the predicted probabilities of the
DecisionTreeClassifier and SVC count 5 times as much as the weights of the KNeighborsClassifier classifier when the
averaged probability is calculated.
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print(__doc__)

from itertools import product

import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.ensemble import VotingClassifier

# Loading some example data
iris = datasets.load_iris()
X = iris.data[:, [0, 2]]
y = iris.target

# Training classifiers
clf1 = DecisionTreeClassifier(max_depth=4)
clf2 = KNeighborsClassifier(n_neighbors=7)
clf3 = SVC(kernel='rbf', probability=True)
eclf = VotingClassifier(estimators=[('dt', clf1), ('knn', clf2),
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('svc', clf3)],
voting='soft', weights=[2, 1, 2])

clf1.fit(X, y)
clf2.fit(X, y)
clf3.fit(X, y)
eclf.fit(X, y)

# Plotting decision regions
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),

np.arange(y_min, y_max, 0.1))

f, axarr = plt.subplots(2, 2, sharex='col', sharey='row', figsize=(10, 8))

for idx, clf, tt in zip(product([0, 1], [0, 1]),
[clf1, clf2, clf3, eclf],
['Decision Tree (depth=4)', 'KNN (k=7)',
'Kernel SVM', 'Soft Voting']):

Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

axarr[idx[0], idx[1]].contourf(xx, yy, Z, alpha=0.4)
axarr[idx[0], idx[1]].scatter(X[:, 0], X[:, 1], c=y,

s=20, edgecolor='k')
axarr[idx[0], idx[1]].set_title(tt)

plt.show()

Total running time of the script: ( 0 minutes 0.218 seconds)

Download Python source code: plot_voting_decision_regions.py

Download Jupyter notebook: plot_voting_decision_regions.ipynb

Generated by Sphinx-Gallery

4.11.6 Comparing random forests and the multi-output meta estimator

An example to compare multi-output regression with random forest and the multioutput.MultiOutputRegressor meta-
estimator.

This example illustrates the use of the multioutput.MultiOutputRegressor meta-estimator to perform multi-output re-
gression. A random forest regressor is used, which supports multi-output regression natively, so the results can be
compared.

The random forest regressor will only ever predict values within the range of observations or closer to zero for each of
the targets. As a result the predictions are biased towards the centre of the circle.

Using a single underlying feature the model learns both the x and y coordinate as output.
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print(__doc__)

# Author: Tim Head <betatim@gmail.com>
#
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.multioutput import MultiOutputRegressor

# Create a random dataset
rng = np.random.RandomState(1)
X = np.sort(200 * rng.rand(600, 1) - 100, axis=0)
y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T
y += (0.5 - rng.rand(*y.shape))

X_train, X_test, y_train, y_test = train_test_split(X, y,
train_size=400,
random_state=4)

max_depth = 30
regr_multirf = MultiOutputRegressor(RandomForestRegressor(max_depth=max_depth,

random_state=0))

852 Chapter 4. Examples



scikit-learn user guide, Release 0.19.1

regr_multirf.fit(X_train, y_train)

regr_rf = RandomForestRegressor(max_depth=max_depth, random_state=2)
regr_rf.fit(X_train, y_train)

# Predict on new data
y_multirf = regr_multirf.predict(X_test)
y_rf = regr_rf.predict(X_test)

# Plot the results
plt.figure()
s = 50
a = 0.4
plt.scatter(y_test[:, 0], y_test[:, 1], edgecolor='k',

c="navy", s=s, marker="s", alpha=a, label="Data")
plt.scatter(y_multirf[:, 0], y_multirf[:, 1], edgecolor='k',

c="cornflowerblue", s=s, alpha=a,
label="Multi RF score=%.2f" % regr_multirf.score(X_test, y_test))

plt.scatter(y_rf[:, 0], y_rf[:, 1], edgecolor='k',
c="c", s=s, marker="^", alpha=a,
label="RF score=%.2f" % regr_rf.score(X_test, y_test))

plt.xlim([-6, 6])
plt.ylim([-6, 6])
plt.xlabel("target 1")
plt.ylabel("target 2")
plt.title("Comparing random forests and the multi-output meta estimator")
plt.legend()
plt.show()

Total running time of the script: ( 0 minutes 0.159 seconds)

Download Python source code: plot_random_forest_regression_multioutput.py

Download Jupyter notebook: plot_random_forest_regression_multioutput.ipynb

Generated by Sphinx-Gallery

4.11.7 Prediction Intervals for Gradient Boosting Regression

This example shows how quantile regression can be used to create prediction intervals.
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import numpy as np
import matplotlib.pyplot as plt

from sklearn.ensemble import GradientBoostingRegressor

np.random.seed(1)

def f(x):
"""The function to predict."""
return x * np.sin(x)

#----------------------------------------------------------------------
# First the noiseless case
X = np.atleast_2d(np.random.uniform(0, 10.0, size=100)).T
X = X.astype(np.float32)

# Observations
y = f(X).ravel()

dy = 1.5 + 1.0 * np.random.random(y.shape)
noise = np.random.normal(0, dy)
y += noise
y = y.astype(np.float32)

# Mesh the input space for evaluations of the real function, the prediction and
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# its MSE
xx = np.atleast_2d(np.linspace(0, 10, 1000)).T
xx = xx.astype(np.float32)

alpha = 0.95

clf = GradientBoostingRegressor(loss='quantile', alpha=alpha,
n_estimators=250, max_depth=3,
learning_rate=.1, min_samples_leaf=9,
min_samples_split=9)

clf.fit(X, y)

# Make the prediction on the meshed x-axis
y_upper = clf.predict(xx)

clf.set_params(alpha=1.0 - alpha)
clf.fit(X, y)

# Make the prediction on the meshed x-axis
y_lower = clf.predict(xx)

clf.set_params(loss='ls')
clf.fit(X, y)

# Make the prediction on the meshed x-axis
y_pred = clf.predict(xx)

# Plot the function, the prediction and the 90% confidence interval based on
# the MSE
fig = plt.figure()
plt.plot(xx, f(xx), 'g:', label=u'$f(x) = x\,\sin(x)$')
plt.plot(X, y, 'b.', markersize=10, label=u'Observations')
plt.plot(xx, y_pred, 'r-', label=u'Prediction')
plt.plot(xx, y_upper, 'k-')
plt.plot(xx, y_lower, 'k-')
plt.fill(np.concatenate([xx, xx[::-1]]),

np.concatenate([y_upper, y_lower[::-1]]),
alpha=.5, fc='b', ec='None', label='90% prediction interval')

plt.xlabel('$x$')
plt.ylabel('$f(x)$')
plt.ylim(-10, 20)
plt.legend(loc='upper left')
plt.show()

Total running time of the script: ( 0 minutes 0.543 seconds)

Download Python source code: plot_gradient_boosting_quantile.py

Download Jupyter notebook: plot_gradient_boosting_quantile.ipynb

Generated by Sphinx-Gallery
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4.11.8 Gradient Boosting regularization

Illustration of the effect of different regularization strategies for Gradient Boosting. The example is taken from Hastie
et al 20091.

The loss function used is binomial deviance. Regularization via shrinkage (learning_rate < 1.0) improves
performance considerably. In combination with shrinkage, stochastic gradient boosting (subsample < 1.0) can
produce more accurate models by reducing the variance via bagging. Subsampling without shrinkage usually does
poorly. Another strategy to reduce the variance is by subsampling the features analogous to the random splits in
Random Forests (via the max_features parameter).

print(__doc__)

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import ensemble
from sklearn import datasets

1 T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning Ed. 2”, Springer, 2009.
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X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1)
X = X.astype(np.float32)

# map labels from {-1, 1} to {0, 1}
labels, y = np.unique(y, return_inverse=True)

X_train, X_test = X[:2000], X[2000:]
y_train, y_test = y[:2000], y[2000:]

original_params = {'n_estimators': 1000, 'max_leaf_nodes': 4, 'max_depth': None,
→˓'random_state': 2,

'min_samples_split': 5}

plt.figure()

for label, color, setting in [('No shrinkage', 'orange',
{'learning_rate': 1.0, 'subsample': 1.0}),
('learning_rate=0.1', 'turquoise',
{'learning_rate': 0.1, 'subsample': 1.0}),
('subsample=0.5', 'blue',
{'learning_rate': 1.0, 'subsample': 0.5}),
('learning_rate=0.1, subsample=0.5', 'gray',
{'learning_rate': 0.1, 'subsample': 0.5}),
('learning_rate=0.1, max_features=2', 'magenta',
{'learning_rate': 0.1, 'max_features': 2})]:

params = dict(original_params)
params.update(setting)

clf = ensemble.GradientBoostingClassifier(**params)
clf.fit(X_train, y_train)

# compute test set deviance
test_deviance = np.zeros((params['n_estimators'],), dtype=np.float64)

for i, y_pred in enumerate(clf.staged_decision_function(X_test)):
# clf.loss_ assumes that y_test[i] in {0, 1}
test_deviance[i] = clf.loss_(y_test, y_pred)

plt.plot((np.arange(test_deviance.shape[0]) + 1)[::5], test_deviance[::5],
'-', color=color, label=label)

plt.legend(loc='upper left')
plt.xlabel('Boosting Iterations')
plt.ylabel('Test Set Deviance')

plt.show()

Total running time of the script: ( 0 minutes 12.253 seconds)

Download Python source code: plot_gradient_boosting_regularization.py

Download Jupyter notebook: plot_gradient_boosting_regularization.ipynb

Generated by Sphinx-Gallery
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4.11.9 Plot class probabilities calculated by the VotingClassifier

Plot the class probabilities of the first sample in a toy dataset predicted by three different classifiers and averaged by
the VotingClassifier.

First, three examplary classifiers are initialized (LogisticRegression, GaussianNB, and RandomForestClassifier) and
used to initialize a soft-voting VotingClassifier with weights [1, 1, 5], which means that the predicted probabilities of
the RandomForestClassifier count 5 times as much as the weights of the other classifiers when the averaged probability
is calculated.

To visualize the probability weighting, we fit each classifier on the training set and plot the predicted class probabilities
for the first sample in this example dataset.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier

clf1 = LogisticRegression(random_state=123)
clf2 = RandomForestClassifier(random_state=123)
clf3 = GaussianNB()
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X = np.array([[-1.0, -1.0], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]])
y = np.array([1, 1, 2, 2])

eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],
voting='soft',
weights=[1, 1, 5])

# predict class probabilities for all classifiers
probas = [c.fit(X, y).predict_proba(X) for c in (clf1, clf2, clf3, eclf)]

# get class probabilities for the first sample in the dataset
class1_1 = [pr[0, 0] for pr in probas]
class2_1 = [pr[0, 1] for pr in probas]

# plotting

N = 4 # number of groups
ind = np.arange(N) # group positions
width = 0.35 # bar width

fig, ax = plt.subplots()

# bars for classifier 1-3
p1 = ax.bar(ind, np.hstack(([class1_1[:-1], [0]])), width,

color='green', edgecolor='k')
p2 = ax.bar(ind + width, np.hstack(([class2_1[:-1], [0]])), width,

color='lightgreen', edgecolor='k')

# bars for VotingClassifier
p3 = ax.bar(ind, [0, 0, 0, class1_1[-1]], width,

color='blue', edgecolor='k')
p4 = ax.bar(ind + width, [0, 0, 0, class2_1[-1]], width,

color='steelblue', edgecolor='k')

# plot annotations
plt.axvline(2.8, color='k', linestyle='dashed')
ax.set_xticks(ind + width)
ax.set_xticklabels(['LogisticRegression\nweight 1',

'GaussianNB\nweight 1',
'RandomForestClassifier\nweight 5',
'VotingClassifier\n(average probabilities)'],
rotation=40,
ha='right')

plt.ylim([0, 1])
plt.title('Class probabilities for sample 1 by different classifiers')
plt.legend([p1[0], p2[0]], ['class 1', 'class 2'], loc='upper left')
plt.show()

Total running time of the script: ( 0 minutes 0.090 seconds)

Download Python source code: plot_voting_probas.py

Download Jupyter notebook: plot_voting_probas.ipynb

Generated by Sphinx-Gallery
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4.11.10 Gradient Boosting regression

Demonstrate Gradient Boosting on the Boston housing dataset.

This example fits a Gradient Boosting model with least squares loss and 500 regression trees of depth 4.

Out:

MSE: 6.6213

print(__doc__)

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import ensemble
from sklearn import datasets
from sklearn.utils import shuffle
from sklearn.metrics import mean_squared_error

# #############################################################################
# Load data
boston = datasets.load_boston()
X, y = shuffle(boston.data, boston.target, random_state=13)
X = X.astype(np.float32)
offset = int(X.shape[0] * 0.9)
X_train, y_train = X[:offset], y[:offset]
X_test, y_test = X[offset:], y[offset:]
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# #############################################################################
# Fit regression model
params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 2,

'learning_rate': 0.01, 'loss': 'ls'}
clf = ensemble.GradientBoostingRegressor(**params)

clf.fit(X_train, y_train)
mse = mean_squared_error(y_test, clf.predict(X_test))
print("MSE: %.4f" % mse)

# #############################################################################
# Plot training deviance

# compute test set deviance
test_score = np.zeros((params['n_estimators'],), dtype=np.float64)

for i, y_pred in enumerate(clf.staged_predict(X_test)):
test_score[i] = clf.loss_(y_test, y_pred)

plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.title('Deviance')
plt.plot(np.arange(params['n_estimators']) + 1, clf.train_score_, 'b-',

label='Training Set Deviance')
plt.plot(np.arange(params['n_estimators']) + 1, test_score, 'r-',

label='Test Set Deviance')
plt.legend(loc='upper right')
plt.xlabel('Boosting Iterations')
plt.ylabel('Deviance')

# #############################################################################
# Plot feature importance
feature_importance = clf.feature_importances_
# make importances relative to max importance
feature_importance = 100.0 * (feature_importance / feature_importance.max())
sorted_idx = np.argsort(feature_importance)
pos = np.arange(sorted_idx.shape[0]) + .5
plt.subplot(1, 2, 2)
plt.barh(pos, feature_importance[sorted_idx], align='center')
plt.yticks(pos, boston.feature_names[sorted_idx])
plt.xlabel('Relative Importance')
plt.title('Variable Importance')
plt.show()

Total running time of the script: ( 0 minutes 0.524 seconds)

Download Python source code: plot_gradient_boosting_regression.py

Download Jupyter notebook: plot_gradient_boosting_regression.ipynb

Generated by Sphinx-Gallery

4.11.11 OOB Errors for Random Forests

The RandomForestClassifier is trained using bootstrap aggregation, where each new tree is fit from a boot-
strap sample of the training observations 𝑧𝑖 = (𝑥𝑖, 𝑦𝑖). The out-of-bag (OOB) error is the average error for each 𝑧𝑖
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calculated using predictions from the trees that do not contain 𝑧𝑖 in their respective bootstrap sample. This allows the
RandomForestClassifier to be fit and validated whilst being trained1.

The example below demonstrates how the OOB error can be measured at the addition of each new tree during train-
ing. The resulting plot allows a practitioner to approximate a suitable value of n_estimators at which the error
stabilizes.

import matplotlib.pyplot as plt

from collections import OrderedDict
from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier

# Author: Kian Ho <hui.kian.ho@gmail.com>
# Gilles Louppe <g.louppe@gmail.com>
# Andreas Mueller <amueller@ais.uni-bonn.de>
#
# License: BSD 3 Clause

print(__doc__)

RANDOM_STATE = 123

# Generate a binary classification dataset.
X, y = make_classification(n_samples=500, n_features=25,

1 T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning Ed. 2”, p592-593, Springer, 2009.
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n_clusters_per_class=1, n_informative=15,
random_state=RANDOM_STATE)

# NOTE: Setting the `warm_start` construction parameter to `True` disables
# support for parallelized ensembles but is necessary for tracking the OOB
# error trajectory during training.
ensemble_clfs = [

("RandomForestClassifier, max_features='sqrt'",
RandomForestClassifier(warm_start=True, oob_score=True,

max_features="sqrt",
random_state=RANDOM_STATE)),

("RandomForestClassifier, max_features='log2'",
RandomForestClassifier(warm_start=True, max_features='log2',

oob_score=True,
random_state=RANDOM_STATE)),

("RandomForestClassifier, max_features=None",
RandomForestClassifier(warm_start=True, max_features=None,

oob_score=True,
random_state=RANDOM_STATE))

]

# Map a classifier name to a list of (<n_estimators>, <error rate>) pairs.
error_rate = OrderedDict((label, []) for label, _ in ensemble_clfs)

# Range of `n_estimators` values to explore.
min_estimators = 15
max_estimators = 175

for label, clf in ensemble_clfs:
for i in range(min_estimators, max_estimators + 1):

clf.set_params(n_estimators=i)
clf.fit(X, y)

# Record the OOB error for each `n_estimators=i` setting.
oob_error = 1 - clf.oob_score_
error_rate[label].append((i, oob_error))

# Generate the "OOB error rate" vs. "n_estimators" plot.
for label, clf_err in error_rate.items():

xs, ys = zip(*clf_err)
plt.plot(xs, ys, label=label)

plt.xlim(min_estimators, max_estimators)
plt.xlabel("n_estimators")
plt.ylabel("OOB error rate")
plt.legend(loc="upper right")
plt.show()

Total running time of the script: ( 0 minutes 8.183 seconds)

Download Python source code: plot_ensemble_oob.py

Download Jupyter notebook: plot_ensemble_oob.ipynb

Generated by Sphinx-Gallery
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4.11.12 Two-class AdaBoost

This example fits an AdaBoosted decision stump on a non-linearly separable classification dataset composed of two
“Gaussian quantiles” clusters (see sklearn.datasets.make_gaussian_quantiles) and plots the decision
boundary and decision scores. The distributions of decision scores are shown separately for samples of class A and B.
The predicted class label for each sample is determined by the sign of the decision score. Samples with decision scores
greater than zero are classified as B, and are otherwise classified as A. The magnitude of a decision score determines
the degree of likeness with the predicted class label. Additionally, a new dataset could be constructed containing a
desired purity of class B, for example, by only selecting samples with a decision score above some value.

print(__doc__)

# Author: Noel Dawe <noel.dawe@gmail.com>
#
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import make_gaussian_quantiles

# Construct dataset
X1, y1 = make_gaussian_quantiles(cov=2.,

n_samples=200, n_features=2,
n_classes=2, random_state=1)

X2, y2 = make_gaussian_quantiles(mean=(3, 3), cov=1.5,
n_samples=300, n_features=2,
n_classes=2, random_state=1)

X = np.concatenate((X1, X2))
y = np.concatenate((y1, - y2 + 1))

# Create and fit an AdaBoosted decision tree
bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),
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algorithm="SAMME",
n_estimators=200)

bdt.fit(X, y)

plot_colors = "br"
plot_step = 0.02
class_names = "AB"

plt.figure(figsize=(10, 5))

# Plot the decision boundaries
plt.subplot(121)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),

np.arange(y_min, y_max, plot_step))

Z = bdt.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
plt.axis("tight")

# Plot the training points
for i, n, c in zip(range(2), class_names, plot_colors):

idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1],

c=c, cmap=plt.cm.Paired,
s=20, edgecolor='k',
label="Class %s" % n)

plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.legend(loc='upper right')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Decision Boundary')

# Plot the two-class decision scores
twoclass_output = bdt.decision_function(X)
plot_range = (twoclass_output.min(), twoclass_output.max())
plt.subplot(122)
for i, n, c in zip(range(2), class_names, plot_colors):

plt.hist(twoclass_output[y == i],
bins=10,
range=plot_range,
facecolor=c,
label='Class %s' % n,
alpha=.5,
edgecolor='k')

x1, x2, y1, y2 = plt.axis()
plt.axis((x1, x2, y1, y2 * 1.2))
plt.legend(loc='upper right')
plt.ylabel('Samples')
plt.xlabel('Score')
plt.title('Decision Scores')

plt.tight_layout()
plt.subplots_adjust(wspace=0.35)
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plt.show()

Total running time of the script: ( 0 minutes 2.085 seconds)

Download Python source code: plot_adaboost_twoclass.py

Download Jupyter notebook: plot_adaboost_twoclass.ipynb

Generated by Sphinx-Gallery

4.11.13 Hashing feature transformation using Totally Random Trees

RandomTreesEmbedding provides a way to map data to a very high-dimensional, sparse representation, which might
be beneficial for classification. The mapping is completely unsupervised and very efficient.

This example visualizes the partitions given by several trees and shows how the transformation can also be used for
non-linear dimensionality reduction or non-linear classification.

Points that are neighboring often share the same leaf of a tree and therefore share large parts of their hashed repre-
sentation. This allows to separate two concentric circles simply based on the principal components of the transformed
data with truncated SVD.

In high-dimensional spaces, linear classifiers often achieve excellent accuracy. For sparse binary data, BernoulliNB is
particularly well-suited. The bottom row compares the decision boundary obtained by BernoulliNB in the transformed
space with an ExtraTreesClassifier forests learned on the original data.
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import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_circles
from sklearn.ensemble import RandomTreesEmbedding, ExtraTreesClassifier
from sklearn.decomposition import TruncatedSVD
from sklearn.naive_bayes import BernoulliNB

# make a synthetic dataset
X, y = make_circles(factor=0.5, random_state=0, noise=0.05)

# use RandomTreesEmbedding to transform data
hasher = RandomTreesEmbedding(n_estimators=10, random_state=0, max_depth=3)
X_transformed = hasher.fit_transform(X)

# Visualize result after dimensionality reduction using truncated SVD
svd = TruncatedSVD(n_components=2)
X_reduced = svd.fit_transform(X_transformed)

# Learn a Naive Bayes classifier on the transformed data
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nb = BernoulliNB()
nb.fit(X_transformed, y)

# Learn an ExtraTreesClassifier for comparison
trees = ExtraTreesClassifier(max_depth=3, n_estimators=10, random_state=0)
trees.fit(X, y)

# scatter plot of original and reduced data
fig = plt.figure(figsize=(9, 8))

ax = plt.subplot(221)
ax.scatter(X[:, 0], X[:, 1], c=y, s=50, edgecolor='k')
ax.set_title("Original Data (2d)")
ax.set_xticks(())
ax.set_yticks(())

ax = plt.subplot(222)
ax.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y, s=50, edgecolor='k')
ax.set_title("Truncated SVD reduction (2d) of transformed data (%dd)" %

X_transformed.shape[1])
ax.set_xticks(())
ax.set_yticks(())

# Plot the decision in original space. For that, we will assign a color
# to each point in the mesh [x_min, x_max]x[y_min, y_max].
h = .01
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

# transform grid using RandomTreesEmbedding
transformed_grid = hasher.transform(np.c_[xx.ravel(), yy.ravel()])
y_grid_pred = nb.predict_proba(transformed_grid)[:, 1]

ax = plt.subplot(223)
ax.set_title("Naive Bayes on Transformed data")
ax.pcolormesh(xx, yy, y_grid_pred.reshape(xx.shape))
ax.scatter(X[:, 0], X[:, 1], c=y, s=50, edgecolor='k')
ax.set_ylim(-1.4, 1.4)
ax.set_xlim(-1.4, 1.4)
ax.set_xticks(())
ax.set_yticks(())

# transform grid using ExtraTreesClassifier
y_grid_pred = trees.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

ax = plt.subplot(224)
ax.set_title("ExtraTrees predictions")
ax.pcolormesh(xx, yy, y_grid_pred.reshape(xx.shape))
ax.scatter(X[:, 0], X[:, 1], c=y, s=50, edgecolor='k')
ax.set_ylim(-1.4, 1.4)
ax.set_xlim(-1.4, 1.4)
ax.set_xticks(())
ax.set_yticks(())

plt.tight_layout()
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plt.show()

Total running time of the script: ( 0 minutes 0.384 seconds)

Download Python source code: plot_random_forest_embedding.py

Download Jupyter notebook: plot_random_forest_embedding.ipynb

Generated by Sphinx-Gallery

4.11.14 Partial Dependence Plots

Partial dependence plots show the dependence between the target function2 and a set of ‘target’ features, marginalizing
over the values of all other features (the complement features). Due to the limits of human perception the size of the
target feature set must be small (usually, one or two) thus the target features are usually chosen among the most
important features (see feature_importances_).

This example shows how to obtain partial dependence plots from a GradientBoostingRegressor trained on
the California housing dataset. The example is taken from1.

The plot shows four one-way and one two-way partial dependence plots. The target variables for the one-way PDP
are: median income (MedInc), avg. occupants per household (AvgOccup), median house age (HouseAge), and avg.
rooms per household (AveRooms).

We can clearly see that the median house price shows a linear relationship with the median income (top left) and that
the house price drops when the avg. occupants per household increases (top middle). The top right plot shows that the
house age in a district does not have a strong influence on the (median) house price; so does the average rooms per
household. The tick marks on the x-axis represent the deciles of the feature values in the training data.

Partial dependence plots with two target features enable us to visualize interactions among them. The two-way partial
dependence plot shows the dependence of median house price on joint values of house age and avg. occupants per
household. We can clearly see an interaction between the two features: For an avg. occupancy greater than two, the
house price is nearly independent of the house age, whereas for values less than two there is a strong dependence on
age.

•
2 For classification you can think of it as the regression score before the link function.
1 T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning Ed. 2”, Springer, 2009.
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•

Out:

Training GBRT...
done.

Convenience plot with ``partial_dependence_plots``
Custom 3d plot via ``partial_dependence``

from __future__ import print_function
print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble.partial_dependence import plot_partial_dependence
from sklearn.ensemble.partial_dependence import partial_dependence
from sklearn.datasets.california_housing import fetch_california_housing

def main():
cal_housing = fetch_california_housing()

# split 80/20 train-test
X_train, X_test, y_train, y_test = train_test_split(cal_housing.data,

cal_housing.target,
test_size=0.2,
random_state=1)

names = cal_housing.feature_names

print("Training GBRT...")
clf = GradientBoostingRegressor(n_estimators=100, max_depth=4,

learning_rate=0.1, loss='huber',
random_state=1)

clf.fit(X_train, y_train)
print(" done.")
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print('Convenience plot with ``partial_dependence_plots``')

features = [0, 5, 1, 2, (5, 1)]
fig, axs = plot_partial_dependence(clf, X_train, features,

feature_names=names,
n_jobs=3, grid_resolution=50)

fig.suptitle('Partial dependence of house value on nonlocation features\n'
'for the California housing dataset')

plt.subplots_adjust(top=0.9) # tight_layout causes overlap with suptitle

print('Custom 3d plot via ``partial_dependence``')
fig = plt.figure()

target_feature = (1, 5)
pdp, axes = partial_dependence(clf, target_feature,

X=X_train, grid_resolution=50)
XX, YY = np.meshgrid(axes[0], axes[1])
Z = pdp[0].reshape(list(map(np.size, axes))).T
ax = Axes3D(fig)
surf = ax.plot_surface(XX, YY, Z, rstride=1, cstride=1,

cmap=plt.cm.BuPu, edgecolor='k')
ax.set_xlabel(names[target_feature[0]])
ax.set_ylabel(names[target_feature[1]])
ax.set_zlabel('Partial dependence')
# pretty init view
ax.view_init(elev=22, azim=122)
plt.colorbar(surf)
plt.suptitle('Partial dependence of house value on median\n'

'age and average occupancy')
plt.subplots_adjust(top=0.9)

plt.show()

# Needed on Windows because plot_partial_dependence uses multiprocessing
if __name__ == '__main__':

main()

Total running time of the script: ( 0 minutes 3.132 seconds)

Download Python source code: plot_partial_dependence.py

Download Jupyter notebook: plot_partial_dependence.ipynb

Generated by Sphinx-Gallery

4.11.15 Discrete versus Real AdaBoost

This example is based on Figure 10.2 from Hastie et al 20091 and illustrates the difference in performance between
the discrete SAMME2 boosting algorithm and real SAMME.R boosting algorithm. Both algorithms are evaluated on
a binary classification task where the target Y is a non-linear function of 10 input features.

1 T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning Ed. 2”, Springer, 2009.
2

10. Zhu, H. Zou, S. Rosset, T. Hastie, “Multi-class AdaBoost”, 2009.
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Discrete SAMME AdaBoost adapts based on errors in predicted class labels whereas real SAMME.R uses the pre-
dicted class probabilities.

print(__doc__)

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>,
# Noel Dawe <noel.dawe@gmail.com>
#
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import zero_one_loss
from sklearn.ensemble import AdaBoostClassifier

n_estimators = 400
# A learning rate of 1. may not be optimal for both SAMME and SAMME.R
learning_rate = 1.

X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1)

X_test, y_test = X[2000:], y[2000:]

872 Chapter 4. Examples



scikit-learn user guide, Release 0.19.1

X_train, y_train = X[:2000], y[:2000]

dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)
dt_stump.fit(X_train, y_train)
dt_stump_err = 1.0 - dt_stump.score(X_test, y_test)

dt = DecisionTreeClassifier(max_depth=9, min_samples_leaf=1)
dt.fit(X_train, y_train)
dt_err = 1.0 - dt.score(X_test, y_test)

ada_discrete = AdaBoostClassifier(
base_estimator=dt_stump,
learning_rate=learning_rate,
n_estimators=n_estimators,
algorithm="SAMME")

ada_discrete.fit(X_train, y_train)

ada_real = AdaBoostClassifier(
base_estimator=dt_stump,
learning_rate=learning_rate,
n_estimators=n_estimators,
algorithm="SAMME.R")

ada_real.fit(X_train, y_train)

fig = plt.figure()
ax = fig.add_subplot(111)

ax.plot([1, n_estimators], [dt_stump_err] * 2, 'k-',
label='Decision Stump Error')

ax.plot([1, n_estimators], [dt_err] * 2, 'k--',
label='Decision Tree Error')

ada_discrete_err = np.zeros((n_estimators,))
for i, y_pred in enumerate(ada_discrete.staged_predict(X_test)):

ada_discrete_err[i] = zero_one_loss(y_pred, y_test)

ada_discrete_err_train = np.zeros((n_estimators,))
for i, y_pred in enumerate(ada_discrete.staged_predict(X_train)):

ada_discrete_err_train[i] = zero_one_loss(y_pred, y_train)

ada_real_err = np.zeros((n_estimators,))
for i, y_pred in enumerate(ada_real.staged_predict(X_test)):

ada_real_err[i] = zero_one_loss(y_pred, y_test)

ada_real_err_train = np.zeros((n_estimators,))
for i, y_pred in enumerate(ada_real.staged_predict(X_train)):

ada_real_err_train[i] = zero_one_loss(y_pred, y_train)

ax.plot(np.arange(n_estimators) + 1, ada_discrete_err,
label='Discrete AdaBoost Test Error',
color='red')

ax.plot(np.arange(n_estimators) + 1, ada_discrete_err_train,
label='Discrete AdaBoost Train Error',
color='blue')

ax.plot(np.arange(n_estimators) + 1, ada_real_err,
label='Real AdaBoost Test Error',
color='orange')

ax.plot(np.arange(n_estimators) + 1, ada_real_err_train,
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label='Real AdaBoost Train Error',
color='green')

ax.set_ylim((0.0, 0.5))
ax.set_xlabel('n_estimators')
ax.set_ylabel('error rate')

leg = ax.legend(loc='upper right', fancybox=True)
leg.get_frame().set_alpha(0.7)

plt.show()

Total running time of the script: ( 0 minutes 5.613 seconds)

Download Python source code: plot_adaboost_hastie_10_2.py

Download Jupyter notebook: plot_adaboost_hastie_10_2.ipynb

Generated by Sphinx-Gallery

4.11.16 Multi-class AdaBoosted Decision Trees

This example reproduces Figure 1 of Zhu et al1 and shows how boosting can improve prediction accuracy on a multi-
class problem. The classification dataset is constructed by taking a ten-dimensional standard normal distribution and
defining three classes separated by nested concentric ten-dimensional spheres such that roughly equal numbers of
samples are in each class (quantiles of the 𝜒2 distribution).

The performance of the SAMME and SAMME.R1 algorithms are compared. SAMME.R uses the probability estimates
to update the additive model, while SAMME uses the classifications only. As the example illustrates, the SAMME.R
algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. The
error of each algorithm on the test set after each boosting iteration is shown on the left, the classification error on the
test set of each tree is shown in the middle, and the boost weight of each tree is shown on the right. All trees have a
weight of one in the SAMME.R algorithm and therefore are not shown.

print(__doc__)

# Author: Noel Dawe <noel.dawe@gmail.com>
#

1

10. Zhu, H. Zou, S. Rosset, T. Hastie, “Multi-class AdaBoost”, 2009.
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# License: BSD 3 clause

from sklearn.externals.six.moves import zip

import matplotlib.pyplot as plt

from sklearn.datasets import make_gaussian_quantiles
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier

X, y = make_gaussian_quantiles(n_samples=13000, n_features=10,
n_classes=3, random_state=1)

n_split = 3000

X_train, X_test = X[:n_split], X[n_split:]
y_train, y_test = y[:n_split], y[n_split:]

bdt_real = AdaBoostClassifier(
DecisionTreeClassifier(max_depth=2),
n_estimators=600,
learning_rate=1)

bdt_discrete = AdaBoostClassifier(
DecisionTreeClassifier(max_depth=2),
n_estimators=600,
learning_rate=1.5,
algorithm="SAMME")

bdt_real.fit(X_train, y_train)
bdt_discrete.fit(X_train, y_train)

real_test_errors = []
discrete_test_errors = []

for real_test_predict, discrete_train_predict in zip(
bdt_real.staged_predict(X_test), bdt_discrete.staged_predict(X_test)):

real_test_errors.append(
1. - accuracy_score(real_test_predict, y_test))

discrete_test_errors.append(
1. - accuracy_score(discrete_train_predict, y_test))

n_trees_discrete = len(bdt_discrete)
n_trees_real = len(bdt_real)

# Boosting might terminate early, but the following arrays are always
# n_estimators long. We crop them to the actual number of trees here:
discrete_estimator_errors = bdt_discrete.estimator_errors_[:n_trees_discrete]
real_estimator_errors = bdt_real.estimator_errors_[:n_trees_real]
discrete_estimator_weights = bdt_discrete.estimator_weights_[:n_trees_discrete]

plt.figure(figsize=(15, 5))

plt.subplot(131)
plt.plot(range(1, n_trees_discrete + 1),

discrete_test_errors, c='black', label='SAMME')
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plt.plot(range(1, n_trees_real + 1),
real_test_errors, c='black',
linestyle='dashed', label='SAMME.R')

plt.legend()
plt.ylim(0.18, 0.62)
plt.ylabel('Test Error')
plt.xlabel('Number of Trees')

plt.subplot(132)
plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_errors,

"b", label='SAMME', alpha=.5)
plt.plot(range(1, n_trees_real + 1), real_estimator_errors,

"r", label='SAMME.R', alpha=.5)
plt.legend()
plt.ylabel('Error')
plt.xlabel('Number of Trees')
plt.ylim((.2,

max(real_estimator_errors.max(),
discrete_estimator_errors.max()) * 1.2))

plt.xlim((-20, len(bdt_discrete) + 20))

plt.subplot(133)
plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_weights,

"b", label='SAMME')
plt.legend()
plt.ylabel('Weight')
plt.xlabel('Number of Trees')
plt.ylim((0, discrete_estimator_weights.max() * 1.2))
plt.xlim((-20, n_trees_discrete + 20))

# prevent overlapping y-axis labels
plt.subplots_adjust(wspace=0.25)
plt.show()

Total running time of the script: ( 0 minutes 13.117 seconds)

Download Python source code: plot_adaboost_multiclass.py

Download Jupyter notebook: plot_adaboost_multiclass.ipynb

Generated by Sphinx-Gallery

4.11.17 Feature transformations with ensembles of trees

Transform your features into a higher dimensional, sparse space. Then train a linear model on these features.

First fit an ensemble of trees (totally random trees, a random forest, or gradient boosted trees) on the training set. Then
each leaf of each tree in the ensemble is assigned a fixed arbitrary feature index in a new feature space. These leaf
indices are then encoded in a one-hot fashion.

Each sample goes through the decisions of each tree of the ensemble and ends up in one leaf per tree. The sample is
encoded by setting feature values for these leaves to 1 and the other feature values to 0.

The resulting transformer has then learned a supervised, sparse, high-dimensional categorical embedding of the data.
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•

# Author: Tim Head <betatim@gmail.com>
#
# License: BSD 3 clause

import numpy as np
np.random.seed(10)

import matplotlib.pyplot as plt

from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import (RandomTreesEmbedding, RandomForestClassifier,

GradientBoostingClassifier)
from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_curve
from sklearn.pipeline import make_pipeline

n_estimator = 10
X, y = make_classification(n_samples=80000)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)
# It is important to train the ensemble of trees on a different subset
# of the training data than the linear regression model to avoid
# overfitting, in particular if the total number of leaves is
# similar to the number of training samples
X_train, X_train_lr, y_train, y_train_lr = train_test_split(X_train,

y_train,
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test_size=0.5)

# Unsupervised transformation based on totally random trees
rt = RandomTreesEmbedding(max_depth=3, n_estimators=n_estimator,

random_state=0)

rt_lm = LogisticRegression()
pipeline = make_pipeline(rt, rt_lm)
pipeline.fit(X_train, y_train)
y_pred_rt = pipeline.predict_proba(X_test)[:, 1]
fpr_rt_lm, tpr_rt_lm, _ = roc_curve(y_test, y_pred_rt)

# Supervised transformation based on random forests
rf = RandomForestClassifier(max_depth=3, n_estimators=n_estimator)
rf_enc = OneHotEncoder()
rf_lm = LogisticRegression()
rf.fit(X_train, y_train)
rf_enc.fit(rf.apply(X_train))
rf_lm.fit(rf_enc.transform(rf.apply(X_train_lr)), y_train_lr)

y_pred_rf_lm = rf_lm.predict_proba(rf_enc.transform(rf.apply(X_test)))[:, 1]
fpr_rf_lm, tpr_rf_lm, _ = roc_curve(y_test, y_pred_rf_lm)

grd = GradientBoostingClassifier(n_estimators=n_estimator)
grd_enc = OneHotEncoder()
grd_lm = LogisticRegression()
grd.fit(X_train, y_train)
grd_enc.fit(grd.apply(X_train)[:, :, 0])
grd_lm.fit(grd_enc.transform(grd.apply(X_train_lr)[:, :, 0]), y_train_lr)

y_pred_grd_lm = grd_lm.predict_proba(
grd_enc.transform(grd.apply(X_test)[:, :, 0]))[:, 1]

fpr_grd_lm, tpr_grd_lm, _ = roc_curve(y_test, y_pred_grd_lm)

# The gradient boosted model by itself
y_pred_grd = grd.predict_proba(X_test)[:, 1]
fpr_grd, tpr_grd, _ = roc_curve(y_test, y_pred_grd)

# The random forest model by itself
y_pred_rf = rf.predict_proba(X_test)[:, 1]
fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_rf)

plt.figure(1)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr_rt_lm, tpr_rt_lm, label='RT + LR')
plt.plot(fpr_rf, tpr_rf, label='RF')
plt.plot(fpr_rf_lm, tpr_rf_lm, label='RF + LR')
plt.plot(fpr_grd, tpr_grd, label='GBT')
plt.plot(fpr_grd_lm, tpr_grd_lm, label='GBT + LR')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.legend(loc='best')
plt.show()

plt.figure(2)
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plt.xlim(0, 0.2)
plt.ylim(0.8, 1)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr_rt_lm, tpr_rt_lm, label='RT + LR')
plt.plot(fpr_rf, tpr_rf, label='RF')
plt.plot(fpr_rf_lm, tpr_rf_lm, label='RF + LR')
plt.plot(fpr_grd, tpr_grd, label='GBT')
plt.plot(fpr_grd_lm, tpr_grd_lm, label='GBT + LR')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve (zoomed in at top left)')
plt.legend(loc='best')
plt.show()

Total running time of the script: ( 0 minutes 1.556 seconds)

Download Python source code: plot_feature_transformation.py

Download Jupyter notebook: plot_feature_transformation.ipynb

Generated by Sphinx-Gallery

4.11.18 Gradient Boosting Out-of-Bag estimates

Out-of-bag (OOB) estimates can be a useful heuristic to estimate the “optimal” number of boosting iterations. OOB
estimates are almost identical to cross-validation estimates but they can be computed on-the-fly without the need for
repeated model fitting. OOB estimates are only available for Stochastic Gradient Boosting (i.e. subsample < 1.
0), the estimates are derived from the improvement in loss based on the examples not included in the bootstrap sample
(the so-called out-of-bag examples). The OOB estimator is a pessimistic estimator of the true test loss, but remains a
fairly good approximation for a small number of trees.

The figure shows the cumulative sum of the negative OOB improvements as a function of the boosting iteration. As
you can see, it tracks the test loss for the first hundred iterations but then diverges in a pessimistic way. The figure
also shows the performance of 3-fold cross validation which usually gives a better estimate of the test loss but is
computationally more demanding.
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Out:

Accuracy: 0.6840

print(__doc__)

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import ensemble
from sklearn.model_selection import KFold
from sklearn.model_selection import train_test_split

# Generate data (adapted from G. Ridgeway's gbm example)
n_samples = 1000
random_state = np.random.RandomState(13)
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x1 = random_state.uniform(size=n_samples)
x2 = random_state.uniform(size=n_samples)
x3 = random_state.randint(0, 4, size=n_samples)

p = 1 / (1.0 + np.exp(-(np.sin(3 * x1) - 4 * x2 + x3)))
y = random_state.binomial(1, p, size=n_samples)

X = np.c_[x1, x2, x3]

X = X.astype(np.float32)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5,

random_state=9)

# Fit classifier with out-of-bag estimates
params = {'n_estimators': 1200, 'max_depth': 3, 'subsample': 0.5,

'learning_rate': 0.01, 'min_samples_leaf': 1, 'random_state': 3}
clf = ensemble.GradientBoostingClassifier(**params)

clf.fit(X_train, y_train)
acc = clf.score(X_test, y_test)
print("Accuracy: {:.4f}".format(acc))

n_estimators = params['n_estimators']
x = np.arange(n_estimators) + 1

def heldout_score(clf, X_test, y_test):
"""compute deviance scores on ``X_test`` and ``y_test``. """
score = np.zeros((n_estimators,), dtype=np.float64)
for i, y_pred in enumerate(clf.staged_decision_function(X_test)):

score[i] = clf.loss_(y_test, y_pred)
return score

def cv_estimate(n_splits=3):
cv = KFold(n_splits=n_splits)
cv_clf = ensemble.GradientBoostingClassifier(**params)
val_scores = np.zeros((n_estimators,), dtype=np.float64)
for train, test in cv.split(X_train, y_train):

cv_clf.fit(X_train[train], y_train[train])
val_scores += heldout_score(cv_clf, X_train[test], y_train[test])

val_scores /= n_splits
return val_scores

# Estimate best n_estimator using cross-validation
cv_score = cv_estimate(3)

# Compute best n_estimator for test data
test_score = heldout_score(clf, X_test, y_test)

# negative cumulative sum of oob improvements
cumsum = -np.cumsum(clf.oob_improvement_)

# min loss according to OOB
oob_best_iter = x[np.argmin(cumsum)]

# min loss according to test (normalize such that first loss is 0)
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test_score -= test_score[0]
test_best_iter = x[np.argmin(test_score)]

# min loss according to cv (normalize such that first loss is 0)
cv_score -= cv_score[0]
cv_best_iter = x[np.argmin(cv_score)]

# color brew for the three curves
oob_color = list(map(lambda x: x / 256.0, (190, 174, 212)))
test_color = list(map(lambda x: x / 256.0, (127, 201, 127)))
cv_color = list(map(lambda x: x / 256.0, (253, 192, 134)))

# plot curves and vertical lines for best iterations
plt.plot(x, cumsum, label='OOB loss', color=oob_color)
plt.plot(x, test_score, label='Test loss', color=test_color)
plt.plot(x, cv_score, label='CV loss', color=cv_color)
plt.axvline(x=oob_best_iter, color=oob_color)
plt.axvline(x=test_best_iter, color=test_color)
plt.axvline(x=cv_best_iter, color=cv_color)

# add three vertical lines to xticks
xticks = plt.xticks()
xticks_pos = np.array(xticks[0].tolist() +

[oob_best_iter, cv_best_iter, test_best_iter])
xticks_label = np.array(list(map(lambda t: int(t), xticks[0])) +

['OOB', 'CV', 'Test'])
ind = np.argsort(xticks_pos)
xticks_pos = xticks_pos[ind]
xticks_label = xticks_label[ind]
plt.xticks(xticks_pos, xticks_label)

plt.legend(loc='upper right')
plt.ylabel('normalized loss')
plt.xlabel('number of iterations')

plt.show()

Total running time of the script: ( 0 minutes 4.444 seconds)

Download Python source code: plot_gradient_boosting_oob.py

Download Jupyter notebook: plot_gradient_boosting_oob.ipynb

Generated by Sphinx-Gallery

4.11.19 Single estimator versus bagging: bias-variance decomposition

This example illustrates and compares the bias-variance decomposition of the expected mean squared error of a single
estimator against a bagging ensemble.

In regression, the expected mean squared error of an estimator can be decomposed in terms of bias, variance and
noise. On average over datasets of the regression problem, the bias term measures the average amount by which the
predictions of the estimator differ from the predictions of the best possible estimator for the problem (i.e., the Bayes
model). The variance term measures the variability of the predictions of the estimator when fit over different instances
LS of the problem. Finally, the noise measures the irreducible part of the error which is due the variability in the data.

The upper left figure illustrates the predictions (in dark red) of a single decision tree trained over a random dataset LS
(the blue dots) of a toy 1d regression problem. It also illustrates the predictions (in light red) of other single decision
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trees trained over other (and different) randomly drawn instances LS of the problem. Intuitively, the variance term
here corresponds to the width of the beam of predictions (in light red) of the individual estimators. The larger the
variance, the more sensitive are the predictions for x to small changes in the training set. The bias term corresponds to
the difference between the average prediction of the estimator (in cyan) and the best possible model (in dark blue). On
this problem, we can thus observe that the bias is quite low (both the cyan and the blue curves are close to each other)
while the variance is large (the red beam is rather wide).

The lower left figure plots the pointwise decomposition of the expected mean squared error of a single decision tree.
It confirms that the bias term (in blue) is low while the variance is large (in green). It also illustrates the noise part of
the error which, as expected, appears to be constant and around 0.01.

The right figures correspond to the same plots but using instead a bagging ensemble of decision trees. In both figures,
we can observe that the bias term is larger than in the previous case. In the upper right figure, the difference between
the average prediction (in cyan) and the best possible model is larger (e.g., notice the offset around x=2). In the lower
right figure, the bias curve is also slightly higher than in the lower left figure. In terms of variance however, the beam
of predictions is narrower, which suggests that the variance is lower. Indeed, as the lower right figure confirms, the
variance term (in green) is lower than for single decision trees. Overall, the bias- variance decomposition is therefore
no longer the same. The tradeoff is better for bagging: averaging several decision trees fit on bootstrap copies of the
dataset slightly increases the bias term but allows for a larger reduction of the variance, which results in a lower overall
mean squared error (compare the red curves int the lower figures). The script output also confirms this intuition. The
total error of the bagging ensemble is lower than the total error of a single decision tree, and this difference indeed
mainly stems from a reduced variance.

For further details on bias-variance decomposition, see section 7.3 of1.

1 T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning”, Springer, 2009.
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References

Out:

Tree: 0.0255 (error) = 0.0003 (bias^2) + 0.0152 (var) + 0.0098 (noise)
Bagging(Tree): 0.0196 (error) = 0.0004 (bias^2) + 0.0092 (var) + 0.0098 (noise)

print(__doc__)

# Author: Gilles Louppe <g.louppe@gmail.com>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.ensemble import BaggingRegressor
from sklearn.tree import DecisionTreeRegressor
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# Settings
n_repeat = 50 # Number of iterations for computing expectations
n_train = 50 # Size of the training set
n_test = 1000 # Size of the test set
noise = 0.1 # Standard deviation of the noise
np.random.seed(0)

# Change this for exploring the bias-variance decomposition of other
# estimators. This should work well for estimators with high variance (e.g.,
# decision trees or KNN), but poorly for estimators with low variance (e.g.,
# linear models).
estimators = [("Tree", DecisionTreeRegressor()),

("Bagging(Tree)", BaggingRegressor(DecisionTreeRegressor()))]

n_estimators = len(estimators)

# Generate data
def f(x):

x = x.ravel()

return np.exp(-x ** 2) + 1.5 * np.exp(-(x - 2) ** 2)

def generate(n_samples, noise, n_repeat=1):
X = np.random.rand(n_samples) * 10 - 5
X = np.sort(X)

if n_repeat == 1:
y = f(X) + np.random.normal(0.0, noise, n_samples)

else:
y = np.zeros((n_samples, n_repeat))

for i in range(n_repeat):
y[:, i] = f(X) + np.random.normal(0.0, noise, n_samples)

X = X.reshape((n_samples, 1))

return X, y

X_train = []
y_train = []

for i in range(n_repeat):
X, y = generate(n_samples=n_train, noise=noise)
X_train.append(X)
y_train.append(y)

X_test, y_test = generate(n_samples=n_test, noise=noise, n_repeat=n_repeat)

plt.figure(figsize=(10, 8))

# Loop over estimators to compare
for n, (name, estimator) in enumerate(estimators):

# Compute predictions
y_predict = np.zeros((n_test, n_repeat))
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for i in range(n_repeat):
estimator.fit(X_train[i], y_train[i])
y_predict[:, i] = estimator.predict(X_test)

# Bias^2 + Variance + Noise decomposition of the mean squared error
y_error = np.zeros(n_test)

for i in range(n_repeat):
for j in range(n_repeat):

y_error += (y_test[:, j] - y_predict[:, i]) ** 2

y_error /= (n_repeat * n_repeat)

y_noise = np.var(y_test, axis=1)
y_bias = (f(X_test) - np.mean(y_predict, axis=1)) ** 2
y_var = np.var(y_predict, axis=1)

print("{0}: {1:.4f} (error) = {2:.4f} (bias^2) "
" + {3:.4f} (var) + {4:.4f} (noise)".format(name,

np.mean(y_error),
np.mean(y_bias),
np.mean(y_var),
np.mean(y_noise)))

# Plot figures
plt.subplot(2, n_estimators, n + 1)
plt.plot(X_test, f(X_test), "b", label="$f(x)$")
plt.plot(X_train[0], y_train[0], ".b", label="LS ~ $y = f(x)+noise$")

for i in range(n_repeat):
if i == 0:

plt.plot(X_test, y_predict[:, i], "r", label="$\^y(x)$")
else:

plt.plot(X_test, y_predict[:, i], "r", alpha=0.05)

plt.plot(X_test, np.mean(y_predict, axis=1), "c",
label="$\mathbb{E}_{LS} \^y(x)$")

plt.xlim([-5, 5])
plt.title(name)

if n == n_estimators - 1:
plt.legend(loc=(1.1, .5))

plt.subplot(2, n_estimators, n_estimators + n + 1)
plt.plot(X_test, y_error, "r", label="$error(x)$")
plt.plot(X_test, y_bias, "b", label="$bias^2(x)$"),
plt.plot(X_test, y_var, "g", label="$variance(x)$"),
plt.plot(X_test, y_noise, "c", label="$noise(x)$")

plt.xlim([-5, 5])
plt.ylim([0, 0.1])

if n == n_estimators - 1:

plt.legend(loc=(1.1, .5))

plt.subplots_adjust(right=.75)
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plt.show()

Total running time of the script: ( 0 minutes 1.035 seconds)

Download Python source code: plot_bias_variance.py

Download Jupyter notebook: plot_bias_variance.ipynb

Generated by Sphinx-Gallery

4.11.20 Plot the decision surfaces of ensembles of trees on the iris dataset

Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset.

This plot compares the decision surfaces learned by a decision tree classifier (first column), by a random forest classi-
fier (second column), by an extra- trees classifier (third column) and by an AdaBoost classifier (fourth column).

In the first row, the classifiers are built using the sepal width and the sepal length features only, on the second row
using the petal length and sepal length only, and on the third row using the petal width and the petal length only.

In descending order of quality, when trained (outside of this example) on all 4 features using 30 estimators and scored
using 10 fold cross validation, we see:

ExtraTreesClassifier() # 0.95 score
RandomForestClassifier() # 0.94 score
AdaBoost(DecisionTree(max_depth=3)) # 0.94 score
DecisionTree(max_depth=None) # 0.94 score

Increasing max_depth for AdaBoost lowers the standard deviation of the scores (but the average score does not im-
prove).

See the console’s output for further details about each model.

In this example you might try to:

1. vary the max_depth for the DecisionTreeClassifier and AdaBoostClassifier,
perhaps try max_depth=3 for the DecisionTreeClassifier or max_depth=None for
AdaBoostClassifier

2. vary n_estimators

It is worth noting that RandomForests and ExtraTrees can be fitted in parallel on many cores as each tree is built
independently of the others. AdaBoost’s samples are built sequentially and so do not use multiple cores.
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Out:

DecisionTree with features [0, 1] has a score of 0.926666666667
RandomForest with 30 estimators with features [0, 1] has a score of 0.926666666667
ExtraTrees with 30 estimators with features [0, 1] has a score of 0.926666666667
AdaBoost with 30 estimators with features [0, 1] has a score of 0.84
DecisionTree with features [0, 2] has a score of 0.993333333333
RandomForest with 30 estimators with features [0, 2] has a score of 0.993333333333
ExtraTrees with 30 estimators with features [0, 2] has a score of 0.993333333333
AdaBoost with 30 estimators with features [0, 2] has a score of 0.993333333333
DecisionTree with features [2, 3] has a score of 0.993333333333
RandomForest with 30 estimators with features [2, 3] has a score of 0.993333333333
ExtraTrees with 30 estimators with features [2, 3] has a score of 0.993333333333
AdaBoost with 30 estimators with features [2, 3] has a score of 0.993333333333

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
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from sklearn import clone
from sklearn.datasets import load_iris
from sklearn.ensemble import (RandomForestClassifier, ExtraTreesClassifier,

AdaBoostClassifier)
from sklearn.tree import DecisionTreeClassifier

# Parameters
n_classes = 3
n_estimators = 30
cmap = plt.cm.RdYlBu
plot_step = 0.02 # fine step width for decision surface contours
plot_step_coarser = 0.5 # step widths for coarse classifier guesses
RANDOM_SEED = 13 # fix the seed on each iteration

# Load data
iris = load_iris()

plot_idx = 1

models = [DecisionTreeClassifier(max_depth=None),
RandomForestClassifier(n_estimators=n_estimators),
ExtraTreesClassifier(n_estimators=n_estimators),
AdaBoostClassifier(DecisionTreeClassifier(max_depth=3),

n_estimators=n_estimators)]

for pair in ([0, 1], [0, 2], [2, 3]):
for model in models:

# We only take the two corresponding features
X = iris.data[:, pair]
y = iris.target

# Shuffle
idx = np.arange(X.shape[0])
np.random.seed(RANDOM_SEED)
np.random.shuffle(idx)
X = X[idx]
y = y[idx]

# Standardize
mean = X.mean(axis=0)
std = X.std(axis=0)
X = (X - mean) / std

# Train
clf = clone(model)
clf = model.fit(X, y)

scores = clf.score(X, y)
# Create a title for each column and the console by using str() and
# slicing away useless parts of the string
model_title = str(type(model)).split(

".")[-1][:-2][:-len("Classifier")]

model_details = model_title
if hasattr(model, "estimators_"):

model_details += " with {} estimators".format(
len(model.estimators_))

print(model_details + " with features", pair,
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"has a score of", scores)

plt.subplot(3, 4, plot_idx)
if plot_idx <= len(models):

# Add a title at the top of each column
plt.title(model_title)

# Now plot the decision boundary using a fine mesh as input to a
# filled contour plot
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),

np.arange(y_min, y_max, plot_step))

# Plot either a single DecisionTreeClassifier or alpha blend the
# decision surfaces of the ensemble of classifiers
if isinstance(model, DecisionTreeClassifier):

Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=cmap)

else:
# Choose alpha blend level with respect to the number
# of estimators
# that are in use (noting that AdaBoost can use fewer estimators
# than its maximum if it achieves a good enough fit early on)
estimator_alpha = 1.0 / len(model.estimators_)
for tree in model.estimators_:

Z = tree.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, alpha=estimator_alpha, cmap=cmap)

# Build a coarser grid to plot a set of ensemble classifications
# to show how these are different to what we see in the decision
# surfaces. These points are regularly space and do not have a
# black outline
xx_coarser, yy_coarser = np.meshgrid(

np.arange(x_min, x_max, plot_step_coarser),
np.arange(y_min, y_max, plot_step_coarser))

Z_points_coarser = model.predict(np.c_[xx_coarser.ravel(),
yy_coarser.ravel()]
).reshape(xx_coarser.shape)

cs_points = plt.scatter(xx_coarser, yy_coarser, s=15,
c=Z_points_coarser, cmap=cmap,
edgecolors="none")

# Plot the training points, these are clustered together and have a
# black outline
plt.scatter(X[:, 0], X[:, 1], c=y,

cmap=ListedColormap(['r', 'y', 'b']),
edgecolor='k', s=20)

plot_idx += 1 # move on to the next plot in sequence

plt.suptitle("Classifiers on feature subsets of the Iris dataset")
plt.axis("tight")

plt.show()

Total running time of the script: ( 0 minutes 7.609 seconds)
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Download Python source code: plot_forest_iris.py

Download Jupyter notebook: plot_forest_iris.ipynb

Generated by Sphinx-Gallery

4.12 Tutorial exercises

Exercises for the tutorials

4.12.1 Digits Classification Exercise

A tutorial exercise regarding the use of classification techniques on the Digits dataset.

This exercise is used in the Classification part of the Supervised learning: predicting an output variable from high-
dimensional observations section of the A tutorial on statistical-learning for scientific data processing.

Out:

KNN score: 0.961111
LogisticRegression score: 0.938889

print(__doc__)

from sklearn import datasets, neighbors, linear_model

digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target

n_samples = len(X_digits)

X_train = X_digits[:int(.9 * n_samples)]
y_train = y_digits[:int(.9 * n_samples)]
X_test = X_digits[int(.9 * n_samples):]
y_test = y_digits[int(.9 * n_samples):]

knn = neighbors.KNeighborsClassifier()
logistic = linear_model.LogisticRegression()

print('KNN score: %f' % knn.fit(X_train, y_train).score(X_test, y_test))
print('LogisticRegression score: %f'

% logistic.fit(X_train, y_train).score(X_test, y_test))

Total running time of the script: ( 0 minutes 0.428 seconds)

Download Python source code: plot_digits_classification_exercise.py

Download Jupyter notebook: plot_digits_classification_exercise.ipynb

Generated by Sphinx-Gallery
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4.12.2 Cross-validation on Digits Dataset Exercise

A tutorial exercise using Cross-validation with an SVM on the Digits dataset.

This exercise is used in the Cross-validation generators part of the Model selection: choosing estimators and their
parameters section of the A tutorial on statistical-learning for scientific data processing.

print(__doc__)

import numpy as np
from sklearn.model_selection import cross_val_score
from sklearn import datasets, svm

digits = datasets.load_digits()
X = digits.data
y = digits.target

svc = svm.SVC(kernel='linear')
C_s = np.logspace(-10, 0, 10)

scores = list()
scores_std = list()
for C in C_s:

svc.C = C
this_scores = cross_val_score(svc, X, y, n_jobs=1)
scores.append(np.mean(this_scores))
scores_std.append(np.std(this_scores))

# Do the plotting
import matplotlib.pyplot as plt
plt.figure(1, figsize=(4, 3))
plt.clf()
plt.semilogx(C_s, scores)
plt.semilogx(C_s, np.array(scores) + np.array(scores_std), 'b--')
plt.semilogx(C_s, np.array(scores) - np.array(scores_std), 'b--')
locs, labels = plt.yticks()
plt.yticks(locs, list(map(lambda x: "%g" % x, locs)))
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plt.ylabel('CV score')
plt.xlabel('Parameter C')
plt.ylim(0, 1.1)
plt.show()

Total running time of the script: ( 0 minutes 5.436 seconds)

Download Python source code: plot_cv_digits.py

Download Jupyter notebook: plot_cv_digits.ipynb

Generated by Sphinx-Gallery

4.12.3 SVM Exercise

A tutorial exercise for using different SVM kernels.

This exercise is used in the Using kernels part of the Supervised learning: predicting an output variable from high-
dimensional observations section of the A tutorial on statistical-learning for scientific data processing.

•

•
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•

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets, svm

iris = datasets.load_iris()
X = iris.data
y = iris.target

X = X[y != 0, :2]
y = y[y != 0]

n_sample = len(X)

np.random.seed(0)
order = np.random.permutation(n_sample)
X = X[order]
y = y[order].astype(np.float)

X_train = X[:int(.9 * n_sample)]
y_train = y[:int(.9 * n_sample)]
X_test = X[int(.9 * n_sample):]
y_test = y[int(.9 * n_sample):]

# fit the model
for fig_num, kernel in enumerate(('linear', 'rbf', 'poly')):

clf = svm.SVC(kernel=kernel, gamma=10)
clf.fit(X_train, y_train)

plt.figure(fig_num)
plt.clf()
plt.scatter(X[:, 0], X[:, 1], c=y, zorder=10, cmap=plt.cm.Paired,

edgecolor='k', s=20)

# Circle out the test data
plt.scatter(X_test[:, 0], X_test[:, 1], s=80, facecolors='none',

zorder=10, edgecolor='k')

plt.axis('tight')
x_min = X[:, 0].min()
x_max = X[:, 0].max()
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y_min = X[:, 1].min()
y_max = X[:, 1].max()

XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])

# Put the result into a color plot
Z = Z.reshape(XX.shape)
plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
plt.contour(XX, YY, Z, colors=['k', 'k', 'k'],

linestyles=['--', '-', '--'], levels=[-.5, 0, .5])

plt.title(kernel)
plt.show()

Total running time of the script: ( 0 minutes 7.017 seconds)

Download Python source code: plot_iris_exercise.py

Download Jupyter notebook: plot_iris_exercise.ipynb

Generated by Sphinx-Gallery

4.12.4 Cross-validation on diabetes Dataset Exercise

A tutorial exercise which uses cross-validation with linear models.

This exercise is used in the Cross-validated estimators part of the Model selection: choosing estimators and their
parameters section of the A tutorial on statistical-learning for scientific data processing.
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Out:

Answer to the bonus question: how much can you trust the selection of alpha?

Alpha parameters maximising the generalization score on different
subsets of the data:
[fold 0] alpha: 0.10405, score: 0.53573
[fold 1] alpha: 0.05968, score: 0.16278
[fold 2] alpha: 0.10405, score: 0.44437

Answer: Not very much since we obtained different alphas for different
subsets of the data and moreover, the scores for these alphas differ
quite substantially.

from __future__ import print_function
print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets
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from sklearn.linear_model import LassoCV
from sklearn.linear_model import Lasso
from sklearn.model_selection import KFold
from sklearn.model_selection import GridSearchCV

diabetes = datasets.load_diabetes()
X = diabetes.data[:150]
y = diabetes.target[:150]

lasso = Lasso(random_state=0)
alphas = np.logspace(-4, -0.5, 30)

tuned_parameters = [{'alpha': alphas}]
n_folds = 3

clf = GridSearchCV(lasso, tuned_parameters, cv=n_folds, refit=False)
clf.fit(X, y)
scores = clf.cv_results_['mean_test_score']
scores_std = clf.cv_results_['std_test_score']
plt.figure().set_size_inches(8, 6)
plt.semilogx(alphas, scores)

# plot error lines showing +/- std. errors of the scores
std_error = scores_std / np.sqrt(n_folds)

plt.semilogx(alphas, scores + std_error, 'b--')
plt.semilogx(alphas, scores - std_error, 'b--')

# alpha=0.2 controls the translucency of the fill color
plt.fill_between(alphas, scores + std_error, scores - std_error, alpha=0.2)

plt.ylabel('CV score +/- std error')
plt.xlabel('alpha')
plt.axhline(np.max(scores), linestyle='--', color='.5')
plt.xlim([alphas[0], alphas[-1]])

# #############################################################################
# Bonus: how much can you trust the selection of alpha?

# To answer this question we use the LassoCV object that sets its alpha
# parameter automatically from the data by internal cross-validation (i.e. it
# performs cross-validation on the training data it receives).
# We use external cross-validation to see how much the automatically obtained
# alphas differ across different cross-validation folds.
lasso_cv = LassoCV(alphas=alphas, random_state=0)
k_fold = KFold(3)

print("Answer to the bonus question:",
"how much can you trust the selection of alpha?")

print()
print("Alpha parameters maximising the generalization score on different")
print("subsets of the data:")
for k, (train, test) in enumerate(k_fold.split(X, y)):

lasso_cv.fit(X[train], y[train])
print("[fold {0}] alpha: {1:.5f}, score: {2:.5f}".

format(k, lasso_cv.alpha_, lasso_cv.score(X[test], y[test])))
print()
print("Answer: Not very much since we obtained different alphas for different")
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print("subsets of the data and moreover, the scores for these alphas differ")
print("quite substantially.")

plt.show()

Total running time of the script: ( 0 minutes 0.353 seconds)

Download Python source code: plot_cv_diabetes.py

Download Jupyter notebook: plot_cv_diabetes.ipynb

Generated by Sphinx-Gallery

4.13 Feature Selection

Examples concerning the sklearn.feature_selection module.

4.13.1 Recursive feature elimination

A recursive feature elimination example showing the relevance of pixels in a digit classification task.

Note: See also Recursive feature elimination with cross-validation
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print(__doc__)

from sklearn.svm import SVC
from sklearn.datasets import load_digits
from sklearn.feature_selection import RFE
import matplotlib.pyplot as plt

# Load the digits dataset
digits = load_digits()
X = digits.images.reshape((len(digits.images), -1))
y = digits.target

# Create the RFE object and rank each pixel
svc = SVC(kernel="linear", C=1)
rfe = RFE(estimator=svc, n_features_to_select=1, step=1)
rfe.fit(X, y)
ranking = rfe.ranking_.reshape(digits.images[0].shape)

# Plot pixel ranking
plt.matshow(ranking, cmap=plt.cm.Blues)
plt.colorbar()
plt.title("Ranking of pixels with RFE")
plt.show()

Total running time of the script: ( 0 minutes 4.971 seconds)

Download Python source code: plot_rfe_digits.py

Download Jupyter notebook: plot_rfe_digits.ipynb

Generated by Sphinx-Gallery

4.13.2 Comparison of F-test and mutual information

This example illustrates the differences between univariate F-test statistics and mutual information.

We consider 3 features x_1, x_2, x_3 distributed uniformly over [0, 1], the target depends on them as follows:

y = x_1 + sin(6 * pi * x_2) + 0.1 * N(0, 1), that is the third features is completely irrelevant.

The code below plots the dependency of y against individual x_i and normalized values of univariate F-tests statistics
and mutual information.

As F-test captures only linear dependency, it rates x_1 as the most discriminative feature. On the other hand, mutual
information can capture any kind of dependency between variables and it rates x_2 as the most discriminative feature,
which probably agrees better with our intuitive perception for this example. Both methods correctly marks x_3 as
irrelevant.
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.feature_selection import f_regression, mutual_info_regression

np.random.seed(0)
X = np.random.rand(1000, 3)
y = X[:, 0] + np.sin(6 * np.pi * X[:, 1]) + 0.1 * np.random.randn(1000)

f_test, _ = f_regression(X, y)
f_test /= np.max(f_test)

mi = mutual_info_regression(X, y)
mi /= np.max(mi)

plt.figure(figsize=(15, 5))
for i in range(3):

plt.subplot(1, 3, i + 1)
plt.scatter(X[:, i], y, edgecolor='black', s=20)
plt.xlabel("$x_{}$".format(i + 1), fontsize=14)
if i == 0:

plt.ylabel("$y$", fontsize=14)
plt.title("F-test={:.2f}, MI={:.2f}".format(f_test[i], mi[i]),

fontsize=16)
plt.show()

Total running time of the script: ( 0 minutes 0.228 seconds)

Download Python source code: plot_f_test_vs_mi.py

Download Jupyter notebook: plot_f_test_vs_mi.ipynb

Generated by Sphinx-Gallery

4.13.3 Pipeline Anova SVM

Simple usage of Pipeline that runs successively a univariate feature selection with anova and then a C-SVM of the
selected features.

Out:
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precision recall f1-score support

0 1.00 0.88 0.93 8
1 1.00 0.83 0.91 6
2 0.57 0.67 0.62 6
3 0.67 0.80 0.73 5

avg / total 0.83 0.80 0.81 25

from sklearn import svm
from sklearn.datasets import samples_generator
from sklearn.feature_selection import SelectKBest, f_regression
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

print(__doc__)

# import some data to play with
X, y = samples_generator.make_classification(

n_features=20, n_informative=3, n_redundant=0, n_classes=4,
n_clusters_per_class=2)

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

# ANOVA SVM-C
# 1) anova filter, take 3 best ranked features
anova_filter = SelectKBest(f_regression, k=3)
# 2) svm
clf = svm.SVC(kernel='linear')

anova_svm = make_pipeline(anova_filter, clf)
anova_svm.fit(X_train, y_train)
y_pred = anova_svm.predict(X_test)
print(classification_report(y_test, y_pred))

Total running time of the script: ( 0 minutes 0.004 seconds)

Download Python source code: plot_feature_selection_pipeline.py

Download Jupyter notebook: plot_feature_selection_pipeline.ipynb

Generated by Sphinx-Gallery

4.13.4 Recursive feature elimination with cross-validation

A recursive feature elimination example with automatic tuning of the number of features selected with cross-validation.
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Out:

Optimal number of features : 3

print(__doc__)

import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.model_selection import StratifiedKFold
from sklearn.feature_selection import RFECV
from sklearn.datasets import make_classification

# Build a classification task using 3 informative features
X, y = make_classification(n_samples=1000, n_features=25, n_informative=3,

n_redundant=2, n_repeated=0, n_classes=8,
n_clusters_per_class=1, random_state=0)

# Create the RFE object and compute a cross-validated score.
svc = SVC(kernel="linear")
# The "accuracy" scoring is proportional to the number of correct
# classifications
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rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(2),
scoring='accuracy')

rfecv.fit(X, y)

print("Optimal number of features : %d" % rfecv.n_features_)

# Plot number of features VS. cross-validation scores
plt.figure()
plt.xlabel("Number of features selected")
plt.ylabel("Cross validation score (nb of correct classifications)")
plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_)
plt.show()

Total running time of the script: ( 0 minutes 2.148 seconds)

Download Python source code: plot_rfe_with_cross_validation.py

Download Jupyter notebook: plot_rfe_with_cross_validation.ipynb

Generated by Sphinx-Gallery

4.13.5 Feature selection using SelectFromModel and LassoCV

Use SelectFromModel meta-transformer along with Lasso to select the best couple of features from the Boston dataset.
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# Author: Manoj Kumar <mks542@nyu.edu>
# License: BSD 3 clause

print(__doc__)

import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import load_boston
from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import LassoCV

# Load the boston dataset.
boston = load_boston()
X, y = boston['data'], boston['target']

# We use the base estimator LassoCV since the L1 norm promotes sparsity of features.
clf = LassoCV()

# Set a minimum threshold of 0.25
sfm = SelectFromModel(clf, threshold=0.25)
sfm.fit(X, y)
n_features = sfm.transform(X).shape[1]

# Reset the threshold till the number of features equals two.
# Note that the attribute can be set directly instead of repeatedly
# fitting the metatransformer.
while n_features > 2:

sfm.threshold += 0.1
X_transform = sfm.transform(X)
n_features = X_transform.shape[1]

# Plot the selected two features from X.
plt.title(

"Features selected from Boston using SelectFromModel with "
"threshold %0.3f." % sfm.threshold)

feature1 = X_transform[:, 0]
feature2 = X_transform[:, 1]
plt.plot(feature1, feature2, 'r.')
plt.xlabel("Feature number 1")
plt.ylabel("Feature number 2")
plt.ylim([np.min(feature2), np.max(feature2)])
plt.show()

Total running time of the script: ( 0 minutes 0.112 seconds)

Download Python source code: plot_select_from_model_boston.py

Download Jupyter notebook: plot_select_from_model_boston.ipynb

Generated by Sphinx-Gallery

4.13.6 Test with permutations the significance of a classification score

In order to test if a classification score is significative a technique in repeating the classification procedure after ran-
domizing, permuting, the labels. The p-value is then given by the percentage of runs for which the score obtained is
greater than the classification score obtained in the first place.
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Out:

Classification score 0.513333333333 (pvalue : 0.00990099009901)

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.svm import SVC
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import permutation_test_score
from sklearn import datasets

# #############################################################################
# Loading a dataset
iris = datasets.load_iris()
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X = iris.data
y = iris.target
n_classes = np.unique(y).size

# Some noisy data not correlated
random = np.random.RandomState(seed=0)
E = random.normal(size=(len(X), 2200))

# Add noisy data to the informative features for make the task harder
X = np.c_[X, E]

svm = SVC(kernel='linear')
cv = StratifiedKFold(2)

score, permutation_scores, pvalue = permutation_test_score(
svm, X, y, scoring="accuracy", cv=cv, n_permutations=100, n_jobs=1)

print("Classification score %s (pvalue : %s)" % (score, pvalue))

# #############################################################################
# View histogram of permutation scores
plt.hist(permutation_scores, 20, label='Permutation scores',

edgecolor='black')
ylim = plt.ylim()
# BUG: vlines(..., linestyle='--') fails on older versions of matplotlib
# plt.vlines(score, ylim[0], ylim[1], linestyle='--',
# color='g', linewidth=3, label='Classification Score'
# ' (pvalue %s)' % pvalue)
# plt.vlines(1.0 / n_classes, ylim[0], ylim[1], linestyle='--',
# color='k', linewidth=3, label='Luck')
plt.plot(2 * [score], ylim, '--g', linewidth=3,

label='Classification Score'
' (pvalue %s)' % pvalue)

plt.plot(2 * [1. / n_classes], ylim, '--k', linewidth=3, label='Luck')

plt.ylim(ylim)
plt.legend()
plt.xlabel('Score')
plt.show()

Total running time of the script: ( 0 minutes 6.483 seconds)

Download Python source code: plot_permutation_test_for_classification.py

Download Jupyter notebook: plot_permutation_test_for_classification.ipynb

Generated by Sphinx-Gallery

4.13.7 Univariate Feature Selection

An example showing univariate feature selection.

Noisy (non informative) features are added to the iris data and univariate feature selection is applied. For each feature,
we plot the p-values for the univariate feature selection and the corresponding weights of an SVM. We can see that
univariate feature selection selects the informative features and that these have larger SVM weights.

In the total set of features, only the 4 first ones are significant. We can see that they have the highest score with
univariate feature selection. The SVM assigns a large weight to one of these features, but also Selects many of the
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non-informative features. Applying univariate feature selection before the SVM increases the SVM weight attributed
to the significant features, and will thus improve classification.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets, svm
from sklearn.feature_selection import SelectPercentile, f_classif

# #############################################################################
# Import some data to play with

# The iris dataset
iris = datasets.load_iris()

# Some noisy data not correlated
E = np.random.uniform(0, 0.1, size=(len(iris.data), 20))

# Add the noisy data to the informative features
X = np.hstack((iris.data, E))
y = iris.target

plt.figure(1)
plt.clf()
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X_indices = np.arange(X.shape[-1])

# #############################################################################
# Univariate feature selection with F-test for feature scoring
# We use the default selection function: the 10% most significant features
selector = SelectPercentile(f_classif, percentile=10)
selector.fit(X, y)
scores = -np.log10(selector.pvalues_)
scores /= scores.max()
plt.bar(X_indices - .45, scores, width=.2,

label=r'Univariate score ($-Log(p_{value})$)', color='darkorange',
edgecolor='black')

# #############################################################################
# Compare to the weights of an SVM
clf = svm.SVC(kernel='linear')
clf.fit(X, y)

svm_weights = (clf.coef_ ** 2).sum(axis=0)
svm_weights /= svm_weights.max()

plt.bar(X_indices - .25, svm_weights, width=.2, label='SVM weight',
color='navy', edgecolor='black')

clf_selected = svm.SVC(kernel='linear')
clf_selected.fit(selector.transform(X), y)

svm_weights_selected = (clf_selected.coef_ ** 2).sum(axis=0)
svm_weights_selected /= svm_weights_selected.max()

plt.bar(X_indices[selector.get_support()] - .05, svm_weights_selected,
width=.2, label='SVM weights after selection', color='c',
edgecolor='black')

plt.title("Comparing feature selection")
plt.xlabel('Feature number')
plt.yticks(())
plt.axis('tight')
plt.legend(loc='upper right')
plt.show()

Total running time of the script: ( 0 minutes 0.086 seconds)

Download Python source code: plot_feature_selection.py

Download Jupyter notebook: plot_feature_selection.ipynb

Generated by Sphinx-Gallery

4.14 Gaussian Process for Machine Learning

Examples concerning the sklearn.gaussian_process module.
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4.14.1 Illustration of Gaussian process classification (GPC) on the XOR dataset

This example illustrates GPC on XOR data. Compared are a stationary, isotropic kernel (RBF) and a non-stationary
kernel (DotProduct). On this particular dataset, the DotProduct kernel obtains considerably better results because the
class-boundaries are linear and coincide with the coordinate axes. In general, stationary kernels often obtain better
results.

print(__doc__)

# Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
#
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF, DotProduct

xx, yy = np.meshgrid(np.linspace(-3, 3, 50),
np.linspace(-3, 3, 50))

rng = np.random.RandomState(0)
X = rng.randn(200, 2)
Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)

# fit the model
plt.figure(figsize=(10, 5))
kernels = [1.0 * RBF(length_scale=1.0), 1.0 * DotProduct(sigma_0=1.0)**2]
for i, kernel in enumerate(kernels):

clf = GaussianProcessClassifier(kernel=kernel, warm_start=True).fit(X, Y)

# plot the decision function for each datapoint on the grid
Z = clf.predict_proba(np.vstack((xx.ravel(), yy.ravel())).T)[:, 1]
Z = Z.reshape(xx.shape)
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plt.subplot(1, 2, i + 1)
image = plt.imshow(Z, interpolation='nearest',

extent=(xx.min(), xx.max(), yy.min(), yy.max()),
aspect='auto', origin='lower', cmap=plt.cm.PuOr_r)

contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2,
linetypes='--')

plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired,
edgecolors=(0, 0, 0))

plt.xticks(())
plt.yticks(())
plt.axis([-3, 3, -3, 3])
plt.colorbar(image)
plt.title("%s\n Log-Marginal-Likelihood:%.3f"

% (clf.kernel_, clf.log_marginal_likelihood(clf.kernel_.theta)),
fontsize=12)

plt.tight_layout()
plt.show()

Total running time of the script: ( 0 minutes 0.775 seconds)

Download Python source code: plot_gpc_xor.py

Download Jupyter notebook: plot_gpc_xor.ipynb

Generated by Sphinx-Gallery

4.14.2 Gaussian process classification (GPC) on iris dataset

This example illustrates the predicted probability of GPC for an isotropic and anisotropic RBF kernel on a two-
dimensional version for the iris-dataset. The anisotropic RBF kernel obtains slightly higher log-marginal-likelihood
by assigning different length-scales to the two feature dimensions.

print(__doc__)
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import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF

# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
y = np.array(iris.target, dtype=int)

h = .02 # step size in the mesh

kernel = 1.0 * RBF([1.0])
gpc_rbf_isotropic = GaussianProcessClassifier(kernel=kernel).fit(X, y)
kernel = 1.0 * RBF([1.0, 1.0])
gpc_rbf_anisotropic = GaussianProcessClassifier(kernel=kernel).fit(X, y)

# create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

titles = ["Isotropic RBF", "Anisotropic RBF"]
plt.figure(figsize=(10, 5))
for i, clf in enumerate((gpc_rbf_isotropic, gpc_rbf_anisotropic)):

# Plot the predicted probabilities. For that, we will assign a color to
# each point in the mesh [x_min, m_max]x[y_min, y_max].
plt.subplot(1, 2, i + 1)

Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape((xx.shape[0], xx.shape[1], 3))
plt.imshow(Z, extent=(x_min, x_max, y_min, y_max), origin="lower")

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=np.array(["r", "g", "b"])[y],

edgecolors=(0, 0, 0))
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.title("%s, LML: %.3f" %

(titles[i], clf.log_marginal_likelihood(clf.kernel_.theta)))

plt.tight_layout()
plt.show()

Total running time of the script: ( 0 minutes 5.491 seconds)

Download Python source code: plot_gpc_iris.py

Download Jupyter notebook: plot_gpc_iris.ipynb

Generated by Sphinx-Gallery
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4.14.3 Comparison of kernel ridge and Gaussian process regression

Both kernel ridge regression (KRR) and Gaussian process regression (GPR) learn a target function by employing
internally the “kernel trick”. KRR learns a linear function in the space induced by the respective kernel which corre-
sponds to a non-linear function in the original space. The linear function in the kernel space is chosen based on the
mean-squared error loss with ridge regularization. GPR uses the kernel to define the covariance of a prior distribution
over the target functions and uses the observed training data to define a likelihood function. Based on Bayes theorem,
a (Gaussian) posterior distribution over target functions is defined, whose mean is used for prediction.

A major difference is that GPR can choose the kernel’s hyperparameters based on gradient-ascent on the marginal
likelihood function while KRR needs to perform a grid search on a cross-validated loss function (mean-squared error
loss). A further difference is that GPR learns a generative, probabilistic model of the target function and can thus
provide meaningful confidence intervals and posterior samples along with the predictions while KRR only provides
predictions.

This example illustrates both methods on an artificial dataset, which consists of a sinusoidal target function and strong
noise. The figure compares the learned model of KRR and GPR based on a ExpSineSquared kernel, which is suited
for learning periodic functions. The kernel’s hyperparameters control the smoothness (l) and periodicity of the kernel
(p). Moreover, the noise level of the data is learned explicitly by GPR by an additional WhiteKernel component in the
kernel and by the regularization parameter alpha of KRR.

The figure shows that both methods learn reasonable models of the target function. GPR correctly identifies the peri-
odicity of the function to be roughly 2*pi (6.28), while KRR chooses the doubled periodicity 4*pi. Besides that, GPR
provides reasonable confidence bounds on the prediction which are not available for KRR. A major difference between
the two methods is the time required for fitting and predicting: while fitting KRR is fast in principle, the grid-search
for hyperparameter optimization scales exponentially with the number of hyperparameters (“curse of dimensional-
ity”). The gradient-based optimization of the parameters in GPR does not suffer from this exponential scaling and is
thus considerable faster on this example with 3-dimensional hyperparameter space. The time for predicting is similar;
however, generating the variance of the predictive distribution of GPR takes considerable longer than just predicting
the mean.

Out:

Time for KRR fitting: 7.590
Time for GPR fitting: 0.154
Time for KRR prediction: 0.080
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Time for GPR prediction: 0.088
Time for GPR prediction with standard-deviation: 0.101

print(__doc__)

# Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# License: BSD 3 clause

import time

import numpy as np

import matplotlib.pyplot as plt

from sklearn.kernel_ridge import KernelRidge
from sklearn.model_selection import GridSearchCV
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import WhiteKernel, ExpSineSquared

rng = np.random.RandomState(0)

# Generate sample data
X = 15 * rng.rand(100, 1)
y = np.sin(X).ravel()
y += 3 * (0.5 - rng.rand(X.shape[0])) # add noise

# Fit KernelRidge with parameter selection based on 5-fold cross validation
param_grid = {"alpha": [1e0, 1e-1, 1e-2, 1e-3],

"kernel": [ExpSineSquared(l, p)
for l in np.logspace(-2, 2, 10)
for p in np.logspace(0, 2, 10)]}

kr = GridSearchCV(KernelRidge(), cv=5, param_grid=param_grid)
stime = time.time()
kr.fit(X, y)
print("Time for KRR fitting: %.3f" % (time.time() - stime))

gp_kernel = ExpSineSquared(1.0, 5.0, periodicity_bounds=(1e-2, 1e1)) \
+ WhiteKernel(1e-1)

gpr = GaussianProcessRegressor(kernel=gp_kernel)
stime = time.time()
gpr.fit(X, y)
print("Time for GPR fitting: %.3f" % (time.time() - stime))

# Predict using kernel ridge
X_plot = np.linspace(0, 20, 10000)[:, None]
stime = time.time()
y_kr = kr.predict(X_plot)
print("Time for KRR prediction: %.3f" % (time.time() - stime))

# Predict using gaussian process regressor
stime = time.time()
y_gpr = gpr.predict(X_plot, return_std=False)
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print("Time for GPR prediction: %.3f" % (time.time() - stime))

stime = time.time()
y_gpr, y_std = gpr.predict(X_plot, return_std=True)
print("Time for GPR prediction with standard-deviation: %.3f"

% (time.time() - stime))

# Plot results
plt.figure(figsize=(10, 5))
lw = 2
plt.scatter(X, y, c='k', label='data')
plt.plot(X_plot, np.sin(X_plot), color='navy', lw=lw, label='True')
plt.plot(X_plot, y_kr, color='turquoise', lw=lw,

label='KRR (%s)' % kr.best_params_)
plt.plot(X_plot, y_gpr, color='darkorange', lw=lw,

label='GPR (%s)' % gpr.kernel_)
plt.fill_between(X_plot[:, 0], y_gpr - y_std, y_gpr + y_std, color='darkorange',

alpha=0.2)
plt.xlabel('data')
plt.ylabel('target')
plt.xlim(0, 20)
plt.ylim(-4, 4)
plt.title('GPR versus Kernel Ridge')
plt.legend(loc="best", scatterpoints=1, prop={'size': 8})
plt.show()

Total running time of the script: ( 0 minutes 8.086 seconds)

Download Python source code: plot_compare_gpr_krr.py

Download Jupyter notebook: plot_compare_gpr_krr.ipynb

Generated by Sphinx-Gallery

4.14.4 Gaussian process regression (GPR) on Mauna Loa CO2 data.

This example is based on Section 5.4.3 of “Gaussian Processes for Machine Learning” [RW2006]. It illustrates an
example of complex kernel engineering and hyperparameter optimization using gradient ascent on the log-marginal-
likelihood. The data consists of the monthly average atmospheric CO2 concentrations (in parts per million by volume
(ppmv)) collected at the Mauna Loa Observatory in Hawaii, between 1958 and 1997. The objective is to model the
CO2 concentration as a function of the time t.

The kernel is composed of several terms that are responsible for explaining different properties of the signal:

• a long term, smooth rising trend is to be explained by an RBF kernel. The RBF kernel with a large length-scale
enforces this component to be smooth; it is not enforced that the trend is rising which leaves this choice to the
GP. The specific length-scale and the amplitude are free hyperparameters.

• a seasonal component, which is to be explained by the periodic ExpSineSquared kernel with a fixed periodicity
of 1 year. The length-scale of this periodic component, controlling its smoothness, is a free parameter. In order
to allow decaying away from exact periodicity, the product with an RBF kernel is taken. The length-scale of this
RBF component controls the decay time and is a further free parameter.

• smaller, medium term irregularities are to be explained by a RationalQuadratic kernel component, whose length-
scale and alpha parameter, which determines the diffuseness of the length-scales, are to be determined. Ac-
cording to [RW2006], these irregularities can better be explained by a RationalQuadratic than an RBF kernel
component, probably because it can accommodate several length-scales.
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• a “noise” term, consisting of an RBF kernel contribution, which shall explain the correlated noise components
such as local weather phenomena, and a WhiteKernel contribution for the white noise. The relative amplitudes
and the RBF’s length scale are further free parameters.

Maximizing the log-marginal-likelihood after subtracting the target’s mean yields the following kernel with an LML
of -83.214:

34.4**2 * RBF(length_scale=41.8)
+ 3.27**2 * RBF(length_scale=180) * ExpSineSquared(length_scale=1.44,

periodicity=1)
+ 0.446**2 * RationalQuadratic(alpha=17.7, length_scale=0.957)
+ 0.197**2 * RBF(length_scale=0.138) + WhiteKernel(noise_level=0.0336)

Thus, most of the target signal (34.4ppm) is explained by a long-term rising trend (length-scale 41.8 years). The
periodic component has an amplitude of 3.27ppm, a decay time of 180 years and a length-scale of 1.44. The long
decay time indicates that we have a locally very close to periodic seasonal component. The correlated noise has an
amplitude of 0.197ppm with a length scale of 0.138 years and a white-noise contribution of 0.197ppm. Thus, the
overall noise level is very small, indicating that the data can be very well explained by the model. The figure shows
also that the model makes very confident predictions until around 2015.

Out:

GPML kernel: 66**2 * RBF(length_scale=67) + 2.4**2 * RBF(length_scale=90) *
→˓ExpSineSquared(length_scale=1.3, periodicity=1) + 0.66**2 *
→˓RationalQuadratic(alpha=0.78, length_scale=1.2) + 0.18**2 * RBF(length_scale=0.134)
→˓+ WhiteKernel(noise_level=0.0361)
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Log-marginal-likelihood: -87.034

Learned kernel: 34.5**2 * RBF(length_scale=41.8) + 3.27**2 * RBF(length_scale=180) *
→˓ExpSineSquared(length_scale=1.44, periodicity=1) + 0.446**2 *
→˓RationalQuadratic(alpha=17.6, length_scale=0.957) + 0.197**2 * RBF(length_scale=0.
→˓138) + WhiteKernel(noise_level=0.0336)
Log-marginal-likelihood: -83.214

print(__doc__)

# Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
#
# License: BSD 3 clause

import numpy as np

from matplotlib import pyplot as plt

from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels \

import RBF, WhiteKernel, RationalQuadratic, ExpSineSquared
from sklearn.datasets import fetch_mldata

data = fetch_mldata('mauna-loa-atmospheric-co2').data
X = data[:, [1]]
y = data[:, 0]

# Kernel with parameters given in GPML book
k1 = 66.0**2 * RBF(length_scale=67.0) # long term smooth rising trend
k2 = 2.4**2 * RBF(length_scale=90.0) \

* ExpSineSquared(length_scale=1.3, periodicity=1.0) # seasonal component
# medium term irregularity
k3 = 0.66**2 \

* RationalQuadratic(length_scale=1.2, alpha=0.78)
k4 = 0.18**2 * RBF(length_scale=0.134) \

+ WhiteKernel(noise_level=0.19**2) # noise terms
kernel_gpml = k1 + k2 + k3 + k4

gp = GaussianProcessRegressor(kernel=kernel_gpml, alpha=0,
optimizer=None, normalize_y=True)

gp.fit(X, y)

print("GPML kernel: %s" % gp.kernel_)
print("Log-marginal-likelihood: %.3f"

% gp.log_marginal_likelihood(gp.kernel_.theta))

# Kernel with optimized parameters
k1 = 50.0**2 * RBF(length_scale=50.0) # long term smooth rising trend
k2 = 2.0**2 * RBF(length_scale=100.0) \

* ExpSineSquared(length_scale=1.0, periodicity=1.0,
periodicity_bounds="fixed") # seasonal component

# medium term irregularities
k3 = 0.5**2 * RationalQuadratic(length_scale=1.0, alpha=1.0)
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k4 = 0.1**2 * RBF(length_scale=0.1) \
+ WhiteKernel(noise_level=0.1**2,

noise_level_bounds=(1e-3, np.inf)) # noise terms
kernel = k1 + k2 + k3 + k4

gp = GaussianProcessRegressor(kernel=kernel, alpha=0,
normalize_y=True)

gp.fit(X, y)

print("\nLearned kernel: %s" % gp.kernel_)
print("Log-marginal-likelihood: %.3f"

% gp.log_marginal_likelihood(gp.kernel_.theta))

X_ = np.linspace(X.min(), X.max() + 30, 1000)[:, np.newaxis]
y_pred, y_std = gp.predict(X_, return_std=True)

# Illustration
plt.scatter(X, y, c='k')
plt.plot(X_, y_pred)
plt.fill_between(X_[:, 0], y_pred - y_std, y_pred + y_std,

alpha=0.5, color='k')
plt.xlim(X_.min(), X_.max())
plt.xlabel("Year")
plt.ylabel(r"CO$_2$ in ppm")
plt.title(r"Atmospheric CO$_2$ concentration at Mauna Loa")
plt.tight_layout()
plt.show()

Total running time of the script: ( 0 minutes 9.431 seconds)

Download Python source code: plot_gpr_co2.py

Download Jupyter notebook: plot_gpr_co2.ipynb

Generated by Sphinx-Gallery

4.14.5 Illustration of prior and posterior Gaussian process for different kernels

This example illustrates the prior and posterior of a GPR with different kernels. Mean, standard deviation, and 10
samples are shown for both prior and posterior.
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print(__doc__)

# Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
#
# License: BSD 3 clause

import numpy as np

from matplotlib import pyplot as plt

from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import (RBF, Matern, RationalQuadratic,

ExpSineSquared, DotProduct,
ConstantKernel)

kernels = [1.0 * RBF(length_scale=1.0, length_scale_bounds=(1e-1, 10.0)),
1.0 * RationalQuadratic(length_scale=1.0, alpha=0.1),
1.0 * ExpSineSquared(length_scale=1.0, periodicity=3.0,

length_scale_bounds=(0.1, 10.0),
periodicity_bounds=(1.0, 10.0)),

ConstantKernel(0.1, (0.01, 10.0))

* (DotProduct(sigma_0=1.0, sigma_0_bounds=(0.0, 10.0)) ** 2),
1.0 * Matern(length_scale=1.0, length_scale_bounds=(1e-1, 10.0),

nu=1.5)]

for fig_index, kernel in enumerate(kernels):
# Specify Gaussian Process
gp = GaussianProcessRegressor(kernel=kernel)

# Plot prior
plt.figure(fig_index, figsize=(8, 8))
plt.subplot(2, 1, 1)
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X_ = np.linspace(0, 5, 100)
y_mean, y_std = gp.predict(X_[:, np.newaxis], return_std=True)
plt.plot(X_, y_mean, 'k', lw=3, zorder=9)
plt.fill_between(X_, y_mean - y_std, y_mean + y_std,

alpha=0.2, color='k')
y_samples = gp.sample_y(X_[:, np.newaxis], 10)
plt.plot(X_, y_samples, lw=1)
plt.xlim(0, 5)
plt.ylim(-3, 3)
plt.title("Prior (kernel: %s)" % kernel, fontsize=12)

# Generate data and fit GP
rng = np.random.RandomState(4)
X = rng.uniform(0, 5, 10)[:, np.newaxis]
y = np.sin((X[:, 0] - 2.5) ** 2)
gp.fit(X, y)

# Plot posterior
plt.subplot(2, 1, 2)
X_ = np.linspace(0, 5, 100)
y_mean, y_std = gp.predict(X_[:, np.newaxis], return_std=True)
plt.plot(X_, y_mean, 'k', lw=3, zorder=9)
plt.fill_between(X_, y_mean - y_std, y_mean + y_std,

alpha=0.2, color='k')

y_samples = gp.sample_y(X_[:, np.newaxis], 10)
plt.plot(X_, y_samples, lw=1)
plt.scatter(X[:, 0], y, c='r', s=50, zorder=10, edgecolors=(0, 0, 0))
plt.xlim(0, 5)
plt.ylim(-3, 3)
plt.title("Posterior (kernel: %s)\n Log-Likelihood: %.3f"

% (gp.kernel_, gp.log_marginal_likelihood(gp.kernel_.theta)),
fontsize=12)

plt.tight_layout()

plt.show()

Total running time of the script: ( 0 minutes 1.434 seconds)

Download Python source code: plot_gpr_prior_posterior.py

Download Jupyter notebook: plot_gpr_prior_posterior.ipynb

Generated by Sphinx-Gallery

4.14.6 Iso-probability lines for Gaussian Processes classification (GPC)

A two-dimensional classification example showing iso-probability lines for the predicted probabilities.
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Out:

Learned kernel: 0.0256**2 * DotProduct(sigma_0=5.72) ** 2

print(__doc__)

# Author: Vincent Dubourg <vincent.dubourg@gmail.com>
# Adapted to GaussianProcessClassifier:
# Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# License: BSD 3 clause

import numpy as np

from matplotlib import pyplot as plt
from matplotlib import cm

from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import DotProduct, ConstantKernel as C

# A few constants
lim = 8
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def g(x):
"""The function to predict (classification will then consist in predicting
whether g(x) <= 0 or not)"""
return 5. - x[:, 1] - .5 * x[:, 0] ** 2.

# Design of experiments
X = np.array([[-4.61611719, -6.00099547],

[4.10469096, 5.32782448],
[0.00000000, -0.50000000],
[-6.17289014, -4.6984743],
[1.3109306, -6.93271427],
[-5.03823144, 3.10584743],
[-2.87600388, 6.74310541],
[5.21301203, 4.26386883]])

# Observations
y = np.array(g(X) > 0, dtype=int)

# Instanciate and fit Gaussian Process Model
kernel = C(0.1, (1e-5, np.inf)) * DotProduct(sigma_0=0.1) ** 2
gp = GaussianProcessClassifier(kernel=kernel)
gp.fit(X, y)
print("Learned kernel: %s " % gp.kernel_)

# Evaluate real function and the predicted probability
res = 50
x1, x2 = np.meshgrid(np.linspace(- lim, lim, res),

np.linspace(- lim, lim, res))
xx = np.vstack([x1.reshape(x1.size), x2.reshape(x2.size)]).T

y_true = g(xx)
y_prob = gp.predict_proba(xx)[:, 1]
y_true = y_true.reshape((res, res))
y_prob = y_prob.reshape((res, res))

# Plot the probabilistic classification iso-values
fig = plt.figure(1)
ax = fig.gca()
ax.axes.set_aspect('equal')
plt.xticks([])
plt.yticks([])
ax.set_xticklabels([])
ax.set_yticklabels([])
plt.xlabel('$x_1$')
plt.ylabel('$x_2$')

cax = plt.imshow(y_prob, cmap=cm.gray_r, alpha=0.8,
extent=(-lim, lim, -lim, lim))

norm = plt.matplotlib.colors.Normalize(vmin=0., vmax=0.9)
cb = plt.colorbar(cax, ticks=[0., 0.2, 0.4, 0.6, 0.8, 1.], norm=norm)
cb.set_label('${\\rm \mathbb{P}}\left[\widehat{G}(\mathbf{x}) \leq 0\\right]$')
plt.clim(0, 1)

plt.plot(X[y <= 0, 0], X[y <= 0, 1], 'r.', markersize=12)

plt.plot(X[y > 0, 0], X[y > 0, 1], 'b.', markersize=12)
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cs = plt.contour(x1, x2, y_true, [0.], colors='k', linestyles='dashdot')

cs = plt.contour(x1, x2, y_prob, [0.666], colors='b',
linestyles='solid')

plt.clabel(cs, fontsize=11)

cs = plt.contour(x1, x2, y_prob, [0.5], colors='k',
linestyles='dashed')

plt.clabel(cs, fontsize=11)

cs = plt.contour(x1, x2, y_prob, [0.334], colors='r',
linestyles='solid')

plt.clabel(cs, fontsize=11)

plt.show()

Total running time of the script: ( 0 minutes 0.223 seconds)

Download Python source code: plot_gpc_isoprobability.py

Download Jupyter notebook: plot_gpc_isoprobability.ipynb

Generated by Sphinx-Gallery

4.14.7 Probabilistic predictions with Gaussian process classification (GPC)

This example illustrates the predicted probability of GPC for an RBF kernel with different choices of the hyperparam-
eters. The first figure shows the predicted probability of GPC with arbitrarily chosen hyperparameters and with the
hyperparameters corresponding to the maximum log-marginal-likelihood (LML).

While the hyperparameters chosen by optimizing LML have a considerable larger LML, they perform slightly worse
according to the log-loss on test data. The figure shows that this is because they exhibit a steep change of the class
probabilities at the class boundaries (which is good) but have predicted probabilities close to 0.5 far away from the
class boundaries (which is bad) This undesirable effect is caused by the Laplace approximation used internally by
GPC.

The second figure shows the log-marginal-likelihood for different choices of the kernel’s hyperparameters, highlighting
the two choices of the hyperparameters used in the first figure by black dots.

•

924 Chapter 4. Examples

https://sphinx-gallery.readthedocs.io


scikit-learn user guide, Release 0.19.1

•

Out:

Log Marginal Likelihood (initial): -17.598
Log Marginal Likelihood (optimized): -3.875
Accuracy: 1.000 (initial) 1.000 (optimized)
Log-loss: 0.214 (initial) 0.319 (optimized)

print(__doc__)

# Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
#
# License: BSD 3 clause

import numpy as np

from matplotlib import pyplot as plt

from sklearn.metrics.classification import accuracy_score, log_loss
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF

# Generate data
train_size = 50
rng = np.random.RandomState(0)
X = rng.uniform(0, 5, 100)[:, np.newaxis]
y = np.array(X[:, 0] > 2.5, dtype=int)

# Specify Gaussian Processes with fixed and optimized hyperparameters
gp_fix = GaussianProcessClassifier(kernel=1.0 * RBF(length_scale=1.0),

optimizer=None)
gp_fix.fit(X[:train_size], y[:train_size])

gp_opt = GaussianProcessClassifier(kernel=1.0 * RBF(length_scale=1.0))
gp_opt.fit(X[:train_size], y[:train_size])

print("Log Marginal Likelihood (initial): %.3f"
% gp_fix.log_marginal_likelihood(gp_fix.kernel_.theta))
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print("Log Marginal Likelihood (optimized): %.3f"
% gp_opt.log_marginal_likelihood(gp_opt.kernel_.theta))

print("Accuracy: %.3f (initial) %.3f (optimized)"
% (accuracy_score(y[:train_size], gp_fix.predict(X[:train_size])),

accuracy_score(y[:train_size], gp_opt.predict(X[:train_size]))))
print("Log-loss: %.3f (initial) %.3f (optimized)"

% (log_loss(y[:train_size], gp_fix.predict_proba(X[:train_size])[:, 1]),
log_loss(y[:train_size], gp_opt.predict_proba(X[:train_size])[:, 1])))

# Plot posteriors
plt.figure(0)
plt.scatter(X[:train_size, 0], y[:train_size], c='k', label="Train data",

edgecolors=(0, 0, 0))
plt.scatter(X[train_size:, 0], y[train_size:], c='g', label="Test data",

edgecolors=(0, 0, 0))
X_ = np.linspace(0, 5, 100)
plt.plot(X_, gp_fix.predict_proba(X_[:, np.newaxis])[:, 1], 'r',

label="Initial kernel: %s" % gp_fix.kernel_)
plt.plot(X_, gp_opt.predict_proba(X_[:, np.newaxis])[:, 1], 'b',

label="Optimized kernel: %s" % gp_opt.kernel_)
plt.xlabel("Feature")
plt.ylabel("Class 1 probability")
plt.xlim(0, 5)
plt.ylim(-0.25, 1.5)
plt.legend(loc="best")

# Plot LML landscape
plt.figure(1)
theta0 = np.logspace(0, 8, 30)
theta1 = np.logspace(-1, 1, 29)
Theta0, Theta1 = np.meshgrid(theta0, theta1)
LML = [[gp_opt.log_marginal_likelihood(np.log([Theta0[i, j], Theta1[i, j]]))

for i in range(Theta0.shape[0])] for j in range(Theta0.shape[1])]
LML = np.array(LML).T
plt.plot(np.exp(gp_fix.kernel_.theta)[0], np.exp(gp_fix.kernel_.theta)[1],

'ko', zorder=10)
plt.plot(np.exp(gp_opt.kernel_.theta)[0], np.exp(gp_opt.kernel_.theta)[1],

'ko', zorder=10)
plt.pcolor(Theta0, Theta1, LML)
plt.xscale("log")
plt.yscale("log")
plt.colorbar()
plt.xlabel("Magnitude")
plt.ylabel("Length-scale")
plt.title("Log-marginal-likelihood")

plt.show()

Total running time of the script: ( 0 minutes 4.478 seconds)

Download Python source code: plot_gpc.py

Download Jupyter notebook: plot_gpc.ipynb

Generated by Sphinx-Gallery
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4.14.8 Gaussian process regression (GPR) with noise-level estimation

This example illustrates that GPR with a sum-kernel including a WhiteKernel can estimate the noise level of data.
An illustration of the log-marginal-likelihood (LML) landscape shows that there exist two local maxima of LML. The
first corresponds to a model with a high noise level and a large length scale, which explains all variations in the data
by noise. The second one has a smaller noise level and shorter length scale, which explains most of the variation by
the noise-free functional relationship. The second model has a higher likelihood; however, depending on the initial
value for the hyperparameters, the gradient-based optimization might also converge to the high-noise solution. It is
thus important to repeat the optimization several times for different initializations.

•

•

•
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print(__doc__)

# Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
#
# License: BSD 3 clause

import numpy as np

from matplotlib import pyplot as plt
from matplotlib.colors import LogNorm

from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, WhiteKernel

rng = np.random.RandomState(0)
X = rng.uniform(0, 5, 20)[:, np.newaxis]
y = 0.5 * np.sin(3 * X[:, 0]) + rng.normal(0, 0.5, X.shape[0])

# First run
plt.figure(0)
kernel = 1.0 * RBF(length_scale=100.0, length_scale_bounds=(1e-2, 1e3)) \

+ WhiteKernel(noise_level=1, noise_level_bounds=(1e-10, 1e+1))
gp = GaussianProcessRegressor(kernel=kernel,

alpha=0.0).fit(X, y)
X_ = np.linspace(0, 5, 100)
y_mean, y_cov = gp.predict(X_[:, np.newaxis], return_cov=True)
plt.plot(X_, y_mean, 'k', lw=3, zorder=9)
plt.fill_between(X_, y_mean - np.sqrt(np.diag(y_cov)),

y_mean + np.sqrt(np.diag(y_cov)),
alpha=0.5, color='k')

plt.plot(X_, 0.5*np.sin(3*X_), 'r', lw=3, zorder=9)
plt.scatter(X[:, 0], y, c='r', s=50, zorder=10, edgecolors=(0, 0, 0))
plt.title("Initial: %s\nOptimum: %s\nLog-Marginal-Likelihood: %s"

% (kernel, gp.kernel_,
gp.log_marginal_likelihood(gp.kernel_.theta)))

plt.tight_layout()

# Second run
plt.figure(1)
kernel = 1.0 * RBF(length_scale=1.0, length_scale_bounds=(1e-2, 1e3)) \

+ WhiteKernel(noise_level=1e-5, noise_level_bounds=(1e-10, 1e+1))
gp = GaussianProcessRegressor(kernel=kernel,

alpha=0.0).fit(X, y)
X_ = np.linspace(0, 5, 100)
y_mean, y_cov = gp.predict(X_[:, np.newaxis], return_cov=True)
plt.plot(X_, y_mean, 'k', lw=3, zorder=9)
plt.fill_between(X_, y_mean - np.sqrt(np.diag(y_cov)),

y_mean + np.sqrt(np.diag(y_cov)),
alpha=0.5, color='k')

plt.plot(X_, 0.5*np.sin(3*X_), 'r', lw=3, zorder=9)
plt.scatter(X[:, 0], y, c='r', s=50, zorder=10, edgecolors=(0, 0, 0))
plt.title("Initial: %s\nOptimum: %s\nLog-Marginal-Likelihood: %s"

% (kernel, gp.kernel_,
gp.log_marginal_likelihood(gp.kernel_.theta)))

plt.tight_layout()

# Plot LML landscape
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plt.figure(2)
theta0 = np.logspace(-2, 3, 49)
theta1 = np.logspace(-2, 0, 50)
Theta0, Theta1 = np.meshgrid(theta0, theta1)
LML = [[gp.log_marginal_likelihood(np.log([0.36, Theta0[i, j], Theta1[i, j]]))

for i in range(Theta0.shape[0])] for j in range(Theta0.shape[1])]
LML = np.array(LML).T

vmin, vmax = (-LML).min(), (-LML).max()
vmax = 50
level = np.around(np.logspace(np.log10(vmin), np.log10(vmax), 50), decimals=1)
plt.contour(Theta0, Theta1, -LML,

levels=level, norm=LogNorm(vmin=vmin, vmax=vmax))
plt.colorbar()
plt.xscale("log")
plt.yscale("log")
plt.xlabel("Length-scale")
plt.ylabel("Noise-level")
plt.title("Log-marginal-likelihood")
plt.tight_layout()

plt.show()

Total running time of the script: ( 0 minutes 4.357 seconds)

Download Python source code: plot_gpr_noisy.py

Download Jupyter notebook: plot_gpr_noisy.ipynb

Generated by Sphinx-Gallery

4.14.9 Gaussian Processes regression: basic introductory example

A simple one-dimensional regression example computed in two different ways:

1. A noise-free case

2. A noisy case with known noise-level per datapoint

In both cases, the kernel’s parameters are estimated using the maximum likelihood principle.

The figures illustrate the interpolating property of the Gaussian Process model as well as its probabilistic nature in the
form of a pointwise 95% confidence interval.

Note that the parameter alpha is applied as a Tikhonov regularization of the assumed covariance between the training
points.
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•

•

print(__doc__)

# Author: Vincent Dubourg <vincent.dubourg@gmail.com>
# Jake Vanderplas <vanderplas@astro.washington.edu>
# Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>s
# License: BSD 3 clause

import numpy as np
from matplotlib import pyplot as plt

from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C

np.random.seed(1)

def f(x):
"""The function to predict."""
return x * np.sin(x)

# ----------------------------------------------------------------------
# First the noiseless case
X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T

# Observations
y = f(X).ravel()
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# Mesh the input space for evaluations of the real function, the prediction and
# its MSE
x = np.atleast_2d(np.linspace(0, 10, 1000)).T

# Instanciate a Gaussian Process model
kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2))
gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9)

# Fit to data using Maximum Likelihood Estimation of the parameters
gp.fit(X, y)

# Make the prediction on the meshed x-axis (ask for MSE as well)
y_pred, sigma = gp.predict(x, return_std=True)

# Plot the function, the prediction and the 95% confidence interval based on
# the MSE
fig = plt.figure()
plt.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$')
plt.plot(X, y, 'r.', markersize=10, label=u'Observations')
plt.plot(x, y_pred, 'b-', label=u'Prediction')
plt.fill(np.concatenate([x, x[::-1]]),

np.concatenate([y_pred - 1.9600 * sigma,
(y_pred + 1.9600 * sigma)[::-1]]),

alpha=.5, fc='b', ec='None', label='95% confidence interval')
plt.xlabel('$x$')
plt.ylabel('$f(x)$')
plt.ylim(-10, 20)
plt.legend(loc='upper left')

# ----------------------------------------------------------------------
# now the noisy case
X = np.linspace(0.1, 9.9, 20)
X = np.atleast_2d(X).T

# Observations and noise
y = f(X).ravel()
dy = 0.5 + 1.0 * np.random.random(y.shape)
noise = np.random.normal(0, dy)
y += noise

# Instanciate a Gaussian Process model
gp = GaussianProcessRegressor(kernel=kernel, alpha=(dy / y) ** 2,

n_restarts_optimizer=10)

# Fit to data using Maximum Likelihood Estimation of the parameters
gp.fit(X, y)

# Make the prediction on the meshed x-axis (ask for MSE as well)
y_pred, sigma = gp.predict(x, return_std=True)

# Plot the function, the prediction and the 95% confidence interval based on
# the MSE
fig = plt.figure()
plt.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$')
plt.errorbar(X.ravel(), y, dy, fmt='r.', markersize=10, label=u'Observations')
plt.plot(x, y_pred, 'b-', label=u'Prediction')
plt.fill(np.concatenate([x, x[::-1]]),

np.concatenate([y_pred - 1.9600 * sigma,
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(y_pred + 1.9600 * sigma)[::-1]]),
alpha=.5, fc='b', ec='None', label='95% confidence interval')

plt.xlabel('$x$')
plt.ylabel('$f(x)$')
plt.ylim(-10, 20)
plt.legend(loc='upper left')

plt.show()

Total running time of the script: ( 0 minutes 0.559 seconds)

Download Python source code: plot_gpr_noisy_targets.py

Download Jupyter notebook: plot_gpr_noisy_targets.ipynb

Generated by Sphinx-Gallery

4.15 Generalized Linear Models

Examples concerning the sklearn.linear_model module.

4.15.1 Lasso path using LARS

Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each
color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization
parameter.
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Out:

Computing regularization path using the LARS ...
.

print(__doc__)

# Author: Fabian Pedregosa <fabian.pedregosa@inria.fr>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import linear_model
from sklearn import datasets

diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target
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print("Computing regularization path using the LARS ...")
alphas, _, coefs = linear_model.lars_path(X, y, method='lasso', verbose=True)

xx = np.sum(np.abs(coefs.T), axis=1)
xx /= xx[-1]

plt.plot(xx, coefs.T)
ymin, ymax = plt.ylim()
plt.vlines(xx, ymin, ymax, linestyle='dashed')
plt.xlabel('|coef| / max|coef|')
plt.ylabel('Coefficients')
plt.title('LASSO Path')
plt.axis('tight')
plt.show()

Total running time of the script: ( 0 minutes 0.094 seconds)

Download Python source code: plot_lasso_lars.py

Download Jupyter notebook: plot_lasso_lars.ipynb

Generated by Sphinx-Gallery

4.15.2 Plot Ridge coefficients as a function of the regularization

Shows the effect of collinearity in the coefficients of an estimator.

Ridge Regression is the estimator used in this example. Each color represents a different feature of the coefficient
vector, and this is displayed as a function of the regularization parameter.

This example also shows the usefulness of applying Ridge regression to highly ill-conditioned matrices. For such
matrices, a slight change in the target variable can cause huge variances in the calculated weights. In such cases, it is
useful to set a certain regularization (alpha) to reduce this variation (noise).

When alpha is very large, the regularization effect dominates the squared loss function and the coefficients tend to
zero. At the end of the path, as alpha tends toward zero and the solution tends towards the ordinary least squares,
coefficients exhibit big oscillations. In practise it is necessary to tune alpha in such a way that a balance is maintained
between both.
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# Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr>
# License: BSD 3 clause

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model

# X is the 10x10 Hilbert matrix
X = 1. / (np.arange(1, 11) + np.arange(0, 10)[:, np.newaxis])
y = np.ones(10)

# #############################################################################
# Compute paths

n_alphas = 200
alphas = np.logspace(-10, -2, n_alphas)

coefs = []
for a in alphas:

ridge = linear_model.Ridge(alpha=a, fit_intercept=False)
ridge.fit(X, y)
coefs.append(ridge.coef_)

# #############################################################################
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# Display results

ax = plt.gca()

ax.plot(alphas, coefs)
ax.set_xscale('log')
ax.set_xlim(ax.get_xlim()[::-1]) # reverse axis
plt.xlabel('alpha')
plt.ylabel('weights')
plt.title('Ridge coefficients as a function of the regularization')
plt.axis('tight')
plt.show()

Total running time of the script: ( 0 minutes 0.129 seconds)

Download Python source code: plot_ridge_path.py

Download Jupyter notebook: plot_ridge_path.ipynb

Generated by Sphinx-Gallery

4.15.3 SGD: Maximum margin separating hyperplane

Plot the maximum margin separating hyperplane within a two-class separable dataset using a linear Support Vector
Machines classifier trained using SGD.

936 Chapter 4. Examples

https://sphinx-gallery.readthedocs.io


scikit-learn user guide, Release 0.19.1

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import SGDClassifier
from sklearn.datasets.samples_generator import make_blobs

# we create 50 separable points
X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60)

# fit the model
clf = SGDClassifier(loss="hinge", alpha=0.01, max_iter=200, fit_intercept=True)
clf.fit(X, Y)

# plot the line, the points, and the nearest vectors to the plane
xx = np.linspace(-1, 5, 10)
yy = np.linspace(-1, 5, 10)

X1, X2 = np.meshgrid(xx, yy)
Z = np.empty(X1.shape)
for (i, j), val in np.ndenumerate(X1):

x1 = val
x2 = X2[i, j]
p = clf.decision_function([[x1, x2]])
Z[i, j] = p[0]

levels = [-1.0, 0.0, 1.0]
linestyles = ['dashed', 'solid', 'dashed']
colors = 'k'
plt.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired,

edgecolor='black', s=20)

plt.axis('tight')
plt.show()

Total running time of the script: ( 0 minutes 0.049 seconds)

Download Python source code: plot_sgd_separating_hyperplane.py

Download Jupyter notebook: plot_sgd_separating_hyperplane.ipynb

Generated by Sphinx-Gallery

4.15.4 SGD: convex loss functions

A plot that compares the various convex loss functions supported by sklearn.linear_model.
SGDClassifier .
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

def modified_huber_loss(y_true, y_pred):
z = y_pred * y_true
loss = -4 * z
loss[z >= -1] = (1 - z[z >= -1]) ** 2
loss[z >= 1.] = 0
return loss

xmin, xmax = -4, 4
xx = np.linspace(xmin, xmax, 100)
lw = 2
plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], color='gold', lw=lw,

label="Zero-one loss")
plt.plot(xx, np.where(xx < 1, 1 - xx, 0), color='teal', lw=lw,

label="Hinge loss")
plt.plot(xx, -np.minimum(xx, 0), color='yellowgreen', lw=lw,

label="Perceptron loss")
plt.plot(xx, np.log2(1 + np.exp(-xx)), color='cornflowerblue', lw=lw,

label="Log loss")
plt.plot(xx, np.where(xx < 1, 1 - xx, 0) ** 2, color='orange', lw=lw,

938 Chapter 4. Examples



scikit-learn user guide, Release 0.19.1

label="Squared hinge loss")
plt.plot(xx, modified_huber_loss(xx, 1), color='darkorchid', lw=lw,

linestyle='--', label="Modified Huber loss")
plt.ylim((0, 8))
plt.legend(loc="upper right")
plt.xlabel(r"Decision function $f(x)$")
plt.ylabel("$L(y=1, f(x))$")
plt.show()

Total running time of the script: ( 0 minutes 0.048 seconds)

Download Python source code: plot_sgd_loss_functions.py

Download Jupyter notebook: plot_sgd_loss_functions.ipynb

Generated by Sphinx-Gallery

4.15.5 Path with L1- Logistic Regression

Computes path on IRIS dataset.

Out:

Computing regularization path ...
This took 0:00:00.034542
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print(__doc__)

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

from datetime import datetime
import numpy as np
import matplotlib.pyplot as plt

from sklearn import linear_model
from sklearn import datasets
from sklearn.svm import l1_min_c

iris = datasets.load_iris()
X = iris.data
y = iris.target

X = X[y != 2]
y = y[y != 2]

X -= np.mean(X, 0)

# #############################################################################
# Demo path functions

cs = l1_min_c(X, y, loss='log') * np.logspace(0, 3)

print("Computing regularization path ...")
start = datetime.now()
clf = linear_model.LogisticRegression(C=1.0, penalty='l1', tol=1e-6)
coefs_ = []
for c in cs:

clf.set_params(C=c)
clf.fit(X, y)
coefs_.append(clf.coef_.ravel().copy())

print("This took ", datetime.now() - start)

coefs_ = np.array(coefs_)
plt.plot(np.log10(cs), coefs_)
ymin, ymax = plt.ylim()
plt.xlabel('log(C)')
plt.ylabel('Coefficients')
plt.title('Logistic Regression Path')
plt.axis('tight')
plt.show()

Total running time of the script: ( 0 minutes 0.075 seconds)

Download Python source code: plot_logistic_path.py

Download Jupyter notebook: plot_logistic_path.ipynb

Generated by Sphinx-Gallery
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4.15.6 Plot Ridge coefficients as a function of the L2 regularization

Ridge Regression is the estimator used in this example. Each color in the left plot represents one different dimension
of the coefficient vector, and this is displayed as a function of the regularization parameter. The right plot shows
how exact the solution is. This example illustrates how a well defined solution is found by Ridge regression and
how regularization affects the coefficients and their values. The plot on the right shows how the difference of the
coefficients from the estimator changes as a function of regularization.

In this example the dependent variable Y is set as a function of the input features: y = X*w + c. The coefficient vector
w is randomly sampled from a normal distribution, whereas the bias term c is set to a constant.

As alpha tends toward zero the coefficients found by Ridge regression stabilize towards the randomly sampled vector
w. For big alpha (strong regularisation) the coefficients are smaller (eventually converging at 0) leading to a simpler
and biased solution. These dependencies can be observed on the left plot.

The right plot shows the mean squared error between the coefficients found by the model and the chosen vector w.
Less regularised models retrieve the exact coefficients (error is equal to 0), stronger regularised models increase the
error.

Please note that in this example the data is non-noisy, hence it is possible to extract the exact coefficients.

# Author: Kornel Kielczewski -- <kornel.k@plusnet.pl>

print(__doc__)

import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import make_regression
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error

clf = Ridge()

X, y, w = make_regression(n_samples=10, n_features=10, coef=True,
random_state=1, bias=3.5)

coefs = []
errors = []

alphas = np.logspace(-6, 6, 200)

# Train the model with different regularisation strengths
for a in alphas:

clf.set_params(alpha=a)
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clf.fit(X, y)
coefs.append(clf.coef_)
errors.append(mean_squared_error(clf.coef_, w))

# Display results
plt.figure(figsize=(20, 6))

plt.subplot(121)
ax = plt.gca()
ax.plot(alphas, coefs)
ax.set_xscale('log')
plt.xlabel('alpha')
plt.ylabel('weights')
plt.title('Ridge coefficients as a function of the regularization')
plt.axis('tight')

plt.subplot(122)
ax = plt.gca()
ax.plot(alphas, errors)
ax.set_xscale('log')
plt.xlabel('alpha')
plt.ylabel('error')
plt.title('Coefficient error as a function of the regularization')
plt.axis('tight')

plt.show()

Total running time of the script: ( 0 minutes 0.240 seconds)

Download Python source code: plot_ridge_coeffs.py

Download Jupyter notebook: plot_ridge_coeffs.ipynb

Generated by Sphinx-Gallery

4.15.7 Ordinary Least Squares and Ridge Regression Variance

Due to the few points in each dimension and the straight line that linear regression uses to follow these points as well
as it can, noise on the observations will cause great variance as shown in the first plot. Every line’s slope can vary
quite a bit for each prediction due to the noise induced in the observations.

Ridge regression is basically minimizing a penalised version of the least-squared function. The penalising shrinks the
value of the regression coefficients. Despite the few data points in each dimension, the slope of the prediction is much
more stable and the variance in the line itself is greatly reduced, in comparison to that of the standard linear regression

•
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print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import linear_model

X_train = np.c_[.5, 1].T
y_train = [.5, 1]
X_test = np.c_[0, 2].T

np.random.seed(0)

classifiers = dict(ols=linear_model.LinearRegression(),
ridge=linear_model.Ridge(alpha=.1))

fignum = 1
for name, clf in classifiers.items():

fig = plt.figure(fignum, figsize=(4, 3))
plt.clf()
plt.title(name)
ax = plt.axes([.12, .12, .8, .8])

for _ in range(6):
this_X = .1 * np.random.normal(size=(2, 1)) + X_train
clf.fit(this_X, y_train)

ax.plot(X_test, clf.predict(X_test), color='.5')
ax.scatter(this_X, y_train, s=3, c='.5', marker='o', zorder=10)

clf.fit(X_train, y_train)
ax.plot(X_test, clf.predict(X_test), linewidth=2, color='blue')
ax.scatter(X_train, y_train, s=30, c='r', marker='+', zorder=10)

ax.set_xticks(())
ax.set_yticks(())
ax.set_ylim((0, 1.6))
ax.set_xlabel('X')
ax.set_ylabel('y')
ax.set_xlim(0, 2)
fignum += 1
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plt.show()

Total running time of the script: ( 0 minutes 0.192 seconds)

Download Python source code: plot_ols_ridge_variance.py

Download Jupyter notebook: plot_ols_ridge_variance.ipynb

Generated by Sphinx-Gallery

4.15.8 Logistic function

Shown in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e.
class one or two, using the logistic curve.

print(__doc__)

# Code source: Gael Varoquaux
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import linear_model

# this is our test set, it's just a straight line with some
# Gaussian noise
xmin, xmax = -5, 5
n_samples = 100
np.random.seed(0)
X = np.random.normal(size=n_samples)
y = (X > 0).astype(np.float)
X[X > 0] *= 4
X += .3 * np.random.normal(size=n_samples)

X = X[:, np.newaxis]
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# run the classifier
clf = linear_model.LogisticRegression(C=1e5)
clf.fit(X, y)

# and plot the result
plt.figure(1, figsize=(4, 3))
plt.clf()
plt.scatter(X.ravel(), y, color='black', zorder=20)
X_test = np.linspace(-5, 10, 300)

def model(x):
return 1 / (1 + np.exp(-x))

loss = model(X_test * clf.coef_ + clf.intercept_).ravel()
plt.plot(X_test, loss, color='red', linewidth=3)

ols = linear_model.LinearRegression()
ols.fit(X, y)
plt.plot(X_test, ols.coef_ * X_test + ols.intercept_, linewidth=1)
plt.axhline(.5, color='.5')

plt.ylabel('y')
plt.xlabel('X')
plt.xticks(range(-5, 10))
plt.yticks([0, 0.5, 1])
plt.ylim(-.25, 1.25)
plt.xlim(-4, 10)
plt.legend(('Logistic Regression Model', 'Linear Regression Model'),

loc="lower right", fontsize='small')
plt.show()

Total running time of the script: ( 0 minutes 0.066 seconds)

Download Python source code: plot_logistic.py

Download Jupyter notebook: plot_logistic.ipynb

Generated by Sphinx-Gallery

4.15.9 Polynomial interpolation

This example demonstrates how to approximate a function with a polynomial of degree n_degree by using ridge
regression. Concretely, from n_samples 1d points, it suffices to build the Vandermonde matrix, which is n_samples x
n_degree+1 and has the following form:

[[1, x_1, x_1 ** 2, x_1 ** 3, . . . ], [1, x_2, x_2 ** 2, x_2 ** 3, . . . ], . . . ]

Intuitively, this matrix can be interpreted as a matrix of pseudo features (the points raised to some power). The matrix
is akin to (but different from) the matrix induced by a polynomial kernel.

This example shows that you can do non-linear regression with a linear model, using a pipeline to add non-linear
features. Kernel methods extend this idea and can induce very high (even infinite) dimensional feature spaces.

4.15. Generalized Linear Models 945

https://sphinx-gallery.readthedocs.io


scikit-learn user guide, Release 0.19.1

print(__doc__)

# Author: Mathieu Blondel
# Jake Vanderplas
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline

def f(x):
""" function to approximate by polynomial interpolation"""
return x * np.sin(x)

# generate points used to plot
x_plot = np.linspace(0, 10, 100)

# generate points and keep a subset of them
x = np.linspace(0, 10, 100)
rng = np.random.RandomState(0)
rng.shuffle(x)
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x = np.sort(x[:20])
y = f(x)

# create matrix versions of these arrays
X = x[:, np.newaxis]
X_plot = x_plot[:, np.newaxis]

colors = ['teal', 'yellowgreen', 'gold']
lw = 2
plt.plot(x_plot, f(x_plot), color='cornflowerblue', linewidth=lw,

label="ground truth")
plt.scatter(x, y, color='navy', s=30, marker='o', label="training points")

for count, degree in enumerate([3, 4, 5]):
model = make_pipeline(PolynomialFeatures(degree), Ridge())
model.fit(X, y)
y_plot = model.predict(X_plot)
plt.plot(x_plot, y_plot, color=colors[count], linewidth=lw,

label="degree %d" % degree)

plt.legend(loc='lower left')

plt.show()

Total running time of the script: ( 0 minutes 0.054 seconds)

Download Python source code: plot_polynomial_interpolation.py

Download Jupyter notebook: plot_polynomial_interpolation.ipynb

Generated by Sphinx-Gallery

4.15.10 Logistic Regression 3-class Classifier

Show below is a logistic-regression classifiers decision boundaries on the iris dataset. The datapoints are colored
according to their labels.
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print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model, datasets

# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
Y = iris.target

h = .02 # step size in the mesh

logreg = linear_model.LogisticRegression(C=1e5)

# we create an instance of Neighbours Classifier and fit the data.
logreg.fit(X, Y)

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(4, 3))
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())

plt.show()

Total running time of the script: ( 0 minutes 0.063 seconds)

Download Python source code: plot_iris_logistic.py

Download Jupyter notebook: plot_iris_logistic.ipynb

Generated by Sphinx-Gallery

4.15.11 SGD: Weighted samples

Plot decision function of a weighted dataset, where the size of points is proportional to its weight.
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model

# we create 20 points
np.random.seed(0)
X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)]
y = [1] * 10 + [-1] * 10
sample_weight = 100 * np.abs(np.random.randn(20))
# and assign a bigger weight to the last 10 samples
sample_weight[:10] *= 10

# plot the weighted data points
xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500))
plt.figure()
plt.scatter(X[:, 0], X[:, 1], c=y, s=sample_weight, alpha=0.9,

cmap=plt.cm.bone, edgecolor='black')

# fit the unweighted model
clf = linear_model.SGDClassifier(alpha=0.01, max_iter=100)
clf.fit(X, y)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
no_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['solid'])
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# fit the weighted model
clf = linear_model.SGDClassifier(alpha=0.01, max_iter=100)
clf.fit(X, y, sample_weight=sample_weight)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
samples_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['dashed'])

plt.legend([no_weights.collections[0], samples_weights.collections[0]],
["no weights", "with weights"], loc="lower left")

plt.xticks(())
plt.yticks(())
plt.show()

Total running time of the script: ( 0 minutes 0.082 seconds)

Download Python source code: plot_sgd_weighted_samples.py

Download Jupyter notebook: plot_sgd_weighted_samples.ipynb

Generated by Sphinx-Gallery

4.15.12 Linear Regression Example

This example uses the only the first feature of the diabetes dataset, in order to illustrate a two-dimensional plot of
this regression technique. The straight line can be seen in the plot, showing how linear regression attempts to draw a
straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the
responses predicted by the linear approximation.

The coefficients, the residual sum of squares and the variance score are also calculated.
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Out:

Coefficients:
[ 938.23786125]

Mean squared error: 2548.07
Variance score: 0.47

print(__doc__)

# Code source: Jaques Grobler
# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score

# Load the diabetes dataset
diabetes = datasets.load_diabetes()
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# Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 2]

# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]

# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]

# Create linear regression object
regr = linear_model.LinearRegression()

# Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)

# Make predictions using the testing set
diabetes_y_pred = regr.predict(diabetes_X_test)

# The coefficients
print('Coefficients: \n', regr.coef_)
# The mean squared error
print("Mean squared error: %.2f"

% mean_squared_error(diabetes_y_test, diabetes_y_pred))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred))

# Plot outputs
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3)

plt.xticks(())
plt.yticks(())

plt.show()

Total running time of the script: ( 0 minutes 0.071 seconds)

Download Python source code: plot_ols.py

Download Jupyter notebook: plot_ols.ipynb

Generated by Sphinx-Gallery

4.15.13 Robust linear model estimation using RANSAC

In this example we see how to robustly fit a linear model to faulty data using the RANSAC algorithm.
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Out:

Estimated coefficients (true, linear regression, RANSAC):
82.1903908407869 [ 54.17236387] [ 82.08533159]

import numpy as np
from matplotlib import pyplot as plt

from sklearn import linear_model, datasets

n_samples = 1000
n_outliers = 50

X, y, coef = datasets.make_regression(n_samples=n_samples, n_features=1,
n_informative=1, noise=10,
coef=True, random_state=0)

# Add outlier data
np.random.seed(0)
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X[:n_outliers] = 3 + 0.5 * np.random.normal(size=(n_outliers, 1))
y[:n_outliers] = -3 + 10 * np.random.normal(size=n_outliers)

# Fit line using all data
lr = linear_model.LinearRegression()
lr.fit(X, y)

# Robustly fit linear model with RANSAC algorithm
ransac = linear_model.RANSACRegressor()
ransac.fit(X, y)
inlier_mask = ransac.inlier_mask_
outlier_mask = np.logical_not(inlier_mask)

# Predict data of estimated models
line_X = np.arange(X.min(), X.max())[:, np.newaxis]
line_y = lr.predict(line_X)
line_y_ransac = ransac.predict(line_X)

# Compare estimated coefficients
print("Estimated coefficients (true, linear regression, RANSAC):")
print(coef, lr.coef_, ransac.estimator_.coef_)

lw = 2
plt.scatter(X[inlier_mask], y[inlier_mask], color='yellowgreen', marker='.',

label='Inliers')
plt.scatter(X[outlier_mask], y[outlier_mask], color='gold', marker='.',

label='Outliers')
plt.plot(line_X, line_y, color='navy', linewidth=lw, label='Linear regressor')
plt.plot(line_X, line_y_ransac, color='cornflowerblue', linewidth=lw,

label='RANSAC regressor')
plt.legend(loc='lower right')
plt.xlabel("Input")
plt.ylabel("Response")
plt.show()

Total running time of the script: ( 0 minutes 0.075 seconds)

Download Python source code: plot_ransac.py

Download Jupyter notebook: plot_ransac.ipynb

Generated by Sphinx-Gallery

4.15.14 Sparsity Example: Fitting only features 1 and 2

Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong
coefficient on the full model, it does not give us much regarding y when compared to just feature 1

•
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print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

from sklearn import datasets, linear_model

diabetes = datasets.load_diabetes()
indices = (0, 1)

X_train = diabetes.data[:-20, indices]
X_test = diabetes.data[-20:, indices]
y_train = diabetes.target[:-20]
y_test = diabetes.target[-20:]

ols = linear_model.LinearRegression()
ols.fit(X_train, y_train)

# #############################################################################
# Plot the figure
def plot_figs(fig_num, elev, azim, X_train, clf):

fig = plt.figure(fig_num, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, elev=elev, azim=azim)

ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+')
ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]),

np.array([[-.1, .15], [-.1, .15]]),
clf.predict(np.array([[-.1, -.1, .15, .15],

[-.1, .15, -.1, .15]]).T
).reshape((2, 2)),
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alpha=.5)
ax.set_xlabel('X_1')
ax.set_ylabel('X_2')
ax.set_zlabel('Y')
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])

#Generate the three different figures from different views
elev = 43.5
azim = -110
plot_figs(1, elev, azim, X_train, ols)

elev = -.5
azim = 0
plot_figs(2, elev, azim, X_train, ols)

elev = -.5
azim = 90
plot_figs(3, elev, azim, X_train, ols)

plt.show()

Total running time of the script: ( 0 minutes 0.298 seconds)

Download Python source code: plot_ols_3d.py

Download Jupyter notebook: plot_ols_3d.ipynb

Generated by Sphinx-Gallery

4.15.15 Comparing various online solvers

An example showing how different online solvers perform on the hand-written digits dataset.
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Out:

training SGD
training ASGD
training Perceptron
training Passive-Aggressive I
training Passive-Aggressive II
training SAG

# Author: Rob Zinkov <rob at zinkov dot com>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

from sklearn.model_selection import train_test_split
from sklearn.linear_model import SGDClassifier, Perceptron
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.linear_model import LogisticRegression

4.15. Generalized Linear Models 957



scikit-learn user guide, Release 0.19.1

heldout = [0.95, 0.90, 0.75, 0.50, 0.01]
rounds = 20
digits = datasets.load_digits()
X, y = digits.data, digits.target

classifiers = [
("SGD", SGDClassifier()),
("ASGD", SGDClassifier(average=True)),
("Perceptron", Perceptron()),
("Passive-Aggressive I", PassiveAggressiveClassifier(loss='hinge',

C=1.0)),
("Passive-Aggressive II", PassiveAggressiveClassifier(loss='squared_hinge',

C=1.0)),
("SAG", LogisticRegression(solver='sag', tol=1e-1, C=1.e4 / X.shape[0]))

]

xx = 1. - np.array(heldout)

for name, clf in classifiers:
print("training %s" % name)
rng = np.random.RandomState(42)
yy = []
for i in heldout:

yy_ = []
for r in range(rounds):

X_train, X_test, y_train, y_test = \
train_test_split(X, y, test_size=i, random_state=rng)

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
yy_.append(1 - np.mean(y_pred == y_test))

yy.append(np.mean(yy_))
plt.plot(xx, yy, label=name)

plt.legend(loc="upper right")
plt.xlabel("Proportion train")
plt.ylabel("Test Error Rate")
plt.show()

Total running time of the script: ( 0 minutes 8.699 seconds)

Download Python source code: plot_sgd_comparison.py

Download Jupyter notebook: plot_sgd_comparison.ipynb

Generated by Sphinx-Gallery

4.15.16 Lasso on dense and sparse data

We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse
data the speed is improved.

Out:

--- Dense matrices
Sparse Lasso done in 0.160337s
Dense Lasso done in 0.057800s
Distance between coefficients : 1.0054870144020999e-13
--- Sparse matrices
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Matrix density : 0.6263000000000001 %
Sparse Lasso done in 0.217785s
Dense Lasso done in 0.991016s
Distance between coefficients : 1.0424172088134681e-11

print(__doc__)

from time import time
from scipy import sparse
from scipy import linalg

from sklearn.datasets.samples_generator import make_regression
from sklearn.linear_model import Lasso

# #############################################################################
# The two Lasso implementations on Dense data
print("--- Dense matrices")

X, y = make_regression(n_samples=200, n_features=5000, random_state=0)
X_sp = sparse.coo_matrix(X)

alpha = 1
sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000)
dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000)

t0 = time()
sparse_lasso.fit(X_sp, y)
print("Sparse Lasso done in %fs" % (time() - t0))

t0 = time()
dense_lasso.fit(X, y)
print("Dense Lasso done in %fs" % (time() - t0))

print("Distance between coefficients : %s"
% linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))

# #############################################################################
# The two Lasso implementations on Sparse data
print("--- Sparse matrices")

Xs = X.copy()
Xs[Xs < 2.5] = 0.0
Xs = sparse.coo_matrix(Xs)
Xs = Xs.tocsc()

print("Matrix density : %s %%" % (Xs.nnz / float(X.size) * 100))

alpha = 0.1
sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000)
dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000)

t0 = time()
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sparse_lasso.fit(Xs, y)
print("Sparse Lasso done in %fs" % (time() - t0))

t0 = time()
dense_lasso.fit(Xs.toarray(), y)
print("Dense Lasso done in %fs" % (time() - t0))

print("Distance between coefficients : %s"
% linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))

Total running time of the script: ( 0 minutes 1.543 seconds)

Download Python source code: plot_lasso_dense_vs_sparse_data.py

Download Jupyter notebook: plot_lasso_dense_vs_sparse_data.ipynb

Generated by Sphinx-Gallery

4.15.17 HuberRegressor vs Ridge on dataset with strong outliers

Fit Ridge and HuberRegressor on a dataset with outliers.

The example shows that the predictions in ridge are strongly influenced by the outliers present in the dataset. The
Huber regressor is less influenced by the outliers since the model uses the linear loss for these. As the parameter
epsilon is increased for the Huber regressor, the decision function approaches that of the ridge.
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# Authors: Manoj Kumar mks542@nyu.edu
# License: BSD 3 clause

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_regression
from sklearn.linear_model import HuberRegressor, Ridge

# Generate toy data.
rng = np.random.RandomState(0)
X, y = make_regression(n_samples=20, n_features=1, random_state=0, noise=4.0,

bias=100.0)

# Add four strong outliers to the dataset.
X_outliers = rng.normal(0, 0.5, size=(4, 1))
y_outliers = rng.normal(0, 2.0, size=4)
X_outliers[:2, :] += X.max() + X.mean() / 4.
X_outliers[2:, :] += X.min() - X.mean() / 4.
y_outliers[:2] += y.min() - y.mean() / 4.
y_outliers[2:] += y.max() + y.mean() / 4.
X = np.vstack((X, X_outliers))
y = np.concatenate((y, y_outliers))
plt.plot(X, y, 'b.')

# Fit the huber regressor over a series of epsilon values.
colors = ['r-', 'b-', 'y-', 'm-']

x = np.linspace(X.min(), X.max(), 7)
epsilon_values = [1.35, 1.5, 1.75, 1.9]
for k, epsilon in enumerate(epsilon_values):

huber = HuberRegressor(fit_intercept=True, alpha=0.0, max_iter=100,
epsilon=epsilon)

huber.fit(X, y)
coef_ = huber.coef_ * x + huber.intercept_
plt.plot(x, coef_, colors[k], label="huber loss, %s" % epsilon)

# Fit a ridge regressor to compare it to huber regressor.
ridge = Ridge(fit_intercept=True, alpha=0.0, random_state=0, normalize=True)
ridge.fit(X, y)
coef_ridge = ridge.coef_
coef_ = ridge.coef_ * x + ridge.intercept_
plt.plot(x, coef_, 'g-', label="ridge regression")

plt.title("Comparison of HuberRegressor vs Ridge")
plt.xlabel("X")
plt.ylabel("y")
plt.legend(loc=0)
plt.show()

Total running time of the script: ( 0 minutes 0.070 seconds)

Download Python source code: plot_huber_vs_ridge.py

Download Jupyter notebook: plot_huber_vs_ridge.ipynb

Generated by Sphinx-Gallery
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4.15.18 SGD: Penalties

Plot the contours of the three penalties.

All of the above are supported by sklearn.linear_model.stochastic_gradient.

from __future__ import division
print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

def l1(xs):
return np.array([np.sqrt((1 - np.sqrt(x ** 2.0)) ** 2.0) for x in xs])

def l2(xs):
return np.array([np.sqrt(1.0 - x ** 2.0) for x in xs])

def el(xs, z):
return np.array([(2 - 2 * x - 2 * z + 4 * x * z -

(4 * z ** 2
- 8 * x * z ** 2
+ 8 * x ** 2 * z ** 2
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- 16 * x ** 2 * z ** 3
+ 8 * x * z ** 3 + 4 * x ** 2 * z ** 4) ** (1. / 2)

- 2 * x * z ** 2) / (2 - 4 * z) for x in xs])

def cross(ext):
plt.plot([-ext, ext], [0, 0], "k-")
plt.plot([0, 0], [-ext, ext], "k-")

xs = np.linspace(0, 1, 100)

alpha = 0.501 # 0.5 division throuh zero

cross(1.2)

l1_color = "navy"
l2_color = "c"
elastic_net_color = "darkorange"
lw = 2

plt.plot(xs, l1(xs), color=l1_color, label="L1", lw=lw)
plt.plot(xs, -1.0 * l1(xs), color=l1_color, lw=lw)
plt.plot(-1 * xs, l1(xs), color=l1_color, lw=lw)
plt.plot(-1 * xs, -1.0 * l1(xs), color=l1_color, lw=lw)

plt.plot(xs, l2(xs), color=l2_color, label="L2", lw=lw)
plt.plot(xs, -1.0 * l2(xs), color=l2_color, lw=lw)
plt.plot(-1 * xs, l2(xs), color=l2_color, lw=lw)
plt.plot(-1 * xs, -1.0 * l2(xs), color=l2_color, lw=lw)

plt.plot(xs, el(xs, alpha), color=elastic_net_color, label="Elastic Net", lw=lw)
plt.plot(xs, -1.0 * el(xs, alpha), color=elastic_net_color, lw=lw)
plt.plot(-1 * xs, el(xs, alpha), color=elastic_net_color, lw=lw)
plt.plot(-1 * xs, -1.0 * el(xs, alpha), color=elastic_net_color, lw=lw)

plt.xlabel(r"$w_0$")
plt.ylabel(r"$w_1$")
plt.legend()

plt.axis("equal")
plt.show()

Total running time of the script: ( 0 minutes 0.066 seconds)

Download Python source code: plot_sgd_penalties.py

Download Jupyter notebook: plot_sgd_penalties.ipynb

Generated by Sphinx-Gallery

4.15.19 Joint feature selection with multi-task Lasso

The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected features to be the same
across tasks. This example simulates sequential measurements, each task is a time instant, and the relevant features
vary in amplitude over time while being the same. The multi-task lasso imposes that features that are selected at one
time point are select for all time point. This makes feature selection by the Lasso more stable.
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print(__doc__)

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np

from sklearn.linear_model import MultiTaskLasso, Lasso

rng = np.random.RandomState(42)

# Generate some 2D coefficients with sine waves with random frequency and phase
n_samples, n_features, n_tasks = 100, 30, 40
n_relevant_features = 5
coef = np.zeros((n_tasks, n_features))
times = np.linspace(0, 2 * np.pi, n_tasks)
for k in range(n_relevant_features):

coef[:, k] = np.sin((1. + rng.randn(1)) * times + 3 * rng.randn(1))

X = rng.randn(n_samples, n_features)
Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks)

coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T])
coef_multi_task_lasso_ = MultiTaskLasso(alpha=1.).fit(X, Y).coef_

# #############################################################################
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# Plot support and time series
fig = plt.figure(figsize=(8, 5))
plt.subplot(1, 2, 1)
plt.spy(coef_lasso_)
plt.xlabel('Feature')
plt.ylabel('Time (or Task)')
plt.text(10, 5, 'Lasso')
plt.subplot(1, 2, 2)
plt.spy(coef_multi_task_lasso_)
plt.xlabel('Feature')
plt.ylabel('Time (or Task)')
plt.text(10, 5, 'MultiTaskLasso')
fig.suptitle('Coefficient non-zero location')

feature_to_plot = 0
plt.figure()
lw = 2
plt.plot(coef[:, feature_to_plot], color='seagreen', linewidth=lw,

label='Ground truth')
plt.plot(coef_lasso_[:, feature_to_plot], color='cornflowerblue', linewidth=lw,

label='Lasso')
plt.plot(coef_multi_task_lasso_[:, feature_to_plot], color='gold', linewidth=lw,

label='MultiTaskLasso')
plt.legend(loc='upper center')
plt.axis('tight')
plt.ylim([-1.1, 1.1])
plt.show()

Total running time of the script: ( 0 minutes 0.188 seconds)

Download Python source code: plot_multi_task_lasso_support.py

Download Jupyter notebook: plot_multi_task_lasso_support.ipynb

Generated by Sphinx-Gallery

4.15.20 Lasso and Elastic Net for Sparse Signals

Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive
noise. Estimated coefficients are compared with the ground-truth.
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Out:

Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=None,
selection='cyclic', tol=0.0001, warm_start=False)

r^2 on test data : 0.385982
ElasticNet(alpha=0.1, copy_X=True, fit_intercept=True, l1_ratio=0.7,

max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

r^2 on test data : 0.240498

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.metrics import r2_score

# #############################################################################
# Generate some sparse data to play with
np.random.seed(42)
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n_samples, n_features = 50, 200
X = np.random.randn(n_samples, n_features)
coef = 3 * np.random.randn(n_features)
inds = np.arange(n_features)
np.random.shuffle(inds)
coef[inds[10:]] = 0 # sparsify coef
y = np.dot(X, coef)

# add noise
y += 0.01 * np.random.normal(size=n_samples)

# Split data in train set and test set
n_samples = X.shape[0]
X_train, y_train = X[:n_samples // 2], y[:n_samples // 2]
X_test, y_test = X[n_samples // 2:], y[n_samples // 2:]

# #############################################################################
# Lasso
from sklearn.linear_model import Lasso

alpha = 0.1
lasso = Lasso(alpha=alpha)

y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test)
r2_score_lasso = r2_score(y_test, y_pred_lasso)
print(lasso)
print("r^2 on test data : %f" % r2_score_lasso)

# #############################################################################
# ElasticNet
from sklearn.linear_model import ElasticNet

enet = ElasticNet(alpha=alpha, l1_ratio=0.7)

y_pred_enet = enet.fit(X_train, y_train).predict(X_test)
r2_score_enet = r2_score(y_test, y_pred_enet)
print(enet)
print("r^2 on test data : %f" % r2_score_enet)

plt.plot(enet.coef_, color='lightgreen', linewidth=2,
label='Elastic net coefficients')

plt.plot(lasso.coef_, color='gold', linewidth=2,
label='Lasso coefficients')

plt.plot(coef, '--', color='navy', label='original coefficients')
plt.legend(loc='best')
plt.title("Lasso R^2: %f, Elastic Net R^2: %f"

% (r2_score_lasso, r2_score_enet))
plt.show()

Total running time of the script: ( 0 minutes 0.075 seconds)

Download Python source code: plot_lasso_and_elasticnet.py

Download Jupyter notebook: plot_lasso_and_elasticnet.ipynb

Generated by Sphinx-Gallery
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4.15.21 MNIST classfification using multinomial logistic + L1

Here we fit a multinomial logistic regression with L1 penalty on a subset of the MNIST digits classification task. We
use the SAGA algorithm for this purpose: this a solver that is fast when the number of samples is significantly larger
than the number of features and is able to finely optimize non-smooth objective functions which is the case with the
l1-penalty. Test accuracy reaches > 0.8, while weight vectors remains sparse and therefore more easily interpretable.

Note that this accuracy of this l1-penalized linear model is significantly below what can be reached by an l2-penalized
linear model or a non-linear multi-layer perceptron model on this dataset.

Out:

Sparsity with L1 penalty: 82.72%
Test score with L1 penalty: 0.8320
Example run in 2.741 s

import time
import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import fetch_mldata
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils import check_random_state

print(__doc__)

# Author: Arthur Mensch <arthur.mensch@m4x.org>
# License: BSD 3 clause
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# Turn down for faster convergence
t0 = time.time()
train_samples = 5000

mnist = fetch_mldata('MNIST original')
X = mnist.data.astype('float64')
y = mnist.target
random_state = check_random_state(0)
permutation = random_state.permutation(X.shape[0])
X = X[permutation]
y = y[permutation]
X = X.reshape((X.shape[0], -1))

X_train, X_test, y_train, y_test = train_test_split(
X, y, train_size=train_samples, test_size=10000)

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# Turn up tolerance for faster convergence
clf = LogisticRegression(C=50. / train_samples,

multi_class='multinomial',
penalty='l1', solver='saga', tol=0.1)

clf.fit(X_train, y_train)
sparsity = np.mean(clf.coef_ == 0) * 100
score = clf.score(X_test, y_test)
# print('Best C % .4f' % clf.C_)
print("Sparsity with L1 penalty: %.2f%%" % sparsity)
print("Test score with L1 penalty: %.4f" % score)

coef = clf.coef_.copy()
plt.figure(figsize=(10, 5))
scale = np.abs(coef).max()
for i in range(10):

l1_plot = plt.subplot(2, 5, i + 1)
l1_plot.imshow(coef[i].reshape(28, 28), interpolation='nearest',

cmap=plt.cm.RdBu, vmin=-scale, vmax=scale)
l1_plot.set_xticks(())
l1_plot.set_yticks(())
l1_plot.set_xlabel('Class %i' % i)

plt.suptitle('Classification vector for...')

run_time = time.time() - t0
print('Example run in %.3f s' % run_time)
plt.show()

Total running time of the script: ( 0 minutes 2.741 seconds)

Download Python source code: plot_sparse_logistic_regression_mnist.py

Download Jupyter notebook: plot_sparse_logistic_regression_mnist.ipynb

Generated by Sphinx-Gallery

4.15.22 Orthogonal Matching Pursuit

Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary
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print(__doc__)

import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import OrthogonalMatchingPursuit
from sklearn.linear_model import OrthogonalMatchingPursuitCV
from sklearn.datasets import make_sparse_coded_signal

n_components, n_features = 512, 100
n_nonzero_coefs = 17

# generate the data
###################

# y = Xw
# |x|_0 = n_nonzero_coefs

y, X, w = make_sparse_coded_signal(n_samples=1,
n_components=n_components,
n_features=n_features,
n_nonzero_coefs=n_nonzero_coefs,
random_state=0)

idx, = w.nonzero()

# distort the clean signal

y_noisy = y + 0.05 * np.random.randn(len(y))

# plot the sparse signal

plt.figure(figsize=(7, 7))
plt.subplot(4, 1, 1)
plt.xlim(0, 512)
plt.title("Sparse signal")
plt.stem(idx, w[idx])

# plot the noise-free reconstruction
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omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
omp.fit(X, y)
coef = omp.coef_
idx_r, = coef.nonzero()
plt.subplot(4, 1, 2)
plt.xlim(0, 512)
plt.title("Recovered signal from noise-free measurements")
plt.stem(idx_r, coef[idx_r])

# plot the noisy reconstruction
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omp.fit(X, y_noisy)
coef = omp.coef_
idx_r, = coef.nonzero()
plt.subplot(4, 1, 3)
plt.xlim(0, 512)
plt.title("Recovered signal from noisy measurements")
plt.stem(idx_r, coef[idx_r])

# plot the noisy reconstruction with number of non-zeros set by CV
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omp_cv = OrthogonalMatchingPursuitCV()
omp_cv.fit(X, y_noisy)
coef = omp_cv.coef_
idx_r, = coef.nonzero()
plt.subplot(4, 1, 4)
plt.xlim(0, 512)
plt.title("Recovered signal from noisy measurements with CV")
plt.stem(idx_r, coef[idx_r])

plt.subplots_adjust(0.06, 0.04, 0.94, 0.90, 0.20, 0.38)
plt.suptitle('Sparse signal recovery with Orthogonal Matching Pursuit',

fontsize=16)
plt.show()
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Total running time of the script: ( 0 minutes 0.363 seconds)

Download Python source code: plot_omp.py

Download Jupyter notebook: plot_omp.ipynb

Generated by Sphinx-Gallery

4.15.23 Plot multi-class SGD on the iris dataset

Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all
(OVA) classifiers are represented by the dashed lines.
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.linear_model import SGDClassifier

# import some data to play with
iris = datasets.load_iris()

# we only take the first two features. We could
# avoid this ugly slicing by using a two-dim dataset
X = iris.data[:, :2]
y = iris.target
colors = "bry"

# shuffle
idx = np.arange(X.shape[0])
np.random.seed(13)
np.random.shuffle(idx)
X = X[idx]
y = y[idx]

# standardize
mean = X.mean(axis=0)
std = X.std(axis=0)
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X = (X - mean) / std

h = .02 # step size in the mesh

clf = SGDClassifier(alpha=0.001, max_iter=100).fit(X, y)

# create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
plt.axis('tight')

# Plot also the training points
for i, color in zip(clf.classes_, colors):

idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i],

cmap=plt.cm.Paired, edgecolor='black', s=20)
plt.title("Decision surface of multi-class SGD")
plt.axis('tight')

# Plot the three one-against-all classifiers
xmin, xmax = plt.xlim()
ymin, ymax = plt.ylim()
coef = clf.coef_
intercept = clf.intercept_

def plot_hyperplane(c, color):
def line(x0):

return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1]

plt.plot([xmin, xmax], [line(xmin), line(xmax)],
ls="--", color=color)

for i, color in zip(clf.classes_, colors):
plot_hyperplane(i, color)

plt.legend()
plt.show()

Total running time of the script: ( 0 minutes 0.198 seconds)

Download Python source code: plot_sgd_iris.py

Download Jupyter notebook: plot_sgd_iris.ipynb

Generated by Sphinx-Gallery
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4.15.24 L1 Penalty and Sparsity in Logistic Regression

Comparison of the sparsity (percentage of zero coefficients) of solutions when L1 and L2 penalty are used for different
values of C. We can see that large values of C give more freedom to the model. Conversely, smaller values of C
constrain the model more. In the L1 penalty case, this leads to sparser solutions.

We classify 8x8 images of digits into two classes: 0-4 against 5-9. The visualization shows coefficients of the models
for varying C.

Out:

C=100.00
Sparsity with L1 penalty: 6.25%
score with L1 penalty: 0.9104
Sparsity with L2 penalty: 4.69%
score with L2 penalty: 0.9098
C=1.00
Sparsity with L1 penalty: 10.94%
score with L1 penalty: 0.9104
Sparsity with L2 penalty: 4.69%
score with L2 penalty: 0.9093
C=0.01
Sparsity with L1 penalty: 85.94%
score with L1 penalty: 0.8614
Sparsity with L2 penalty: 4.69%
score with L2 penalty: 0.8915
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print(__doc__)

# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Mathieu Blondel <mathieu@mblondel.org>
# Andreas Mueller <amueller@ais.uni-bonn.de>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import LogisticRegression
from sklearn import datasets
from sklearn.preprocessing import StandardScaler

digits = datasets.load_digits()

X, y = digits.data, digits.target
X = StandardScaler().fit_transform(X)

# classify small against large digits
y = (y > 4).astype(np.int)

# Set regularization parameter
for i, C in enumerate((100, 1, 0.01)):

# turn down tolerance for short training time
clf_l1_LR = LogisticRegression(C=C, penalty='l1', tol=0.01)
clf_l2_LR = LogisticRegression(C=C, penalty='l2', tol=0.01)
clf_l1_LR.fit(X, y)
clf_l2_LR.fit(X, y)

coef_l1_LR = clf_l1_LR.coef_.ravel()
coef_l2_LR = clf_l2_LR.coef_.ravel()

# coef_l1_LR contains zeros due to the
# L1 sparsity inducing norm

sparsity_l1_LR = np.mean(coef_l1_LR == 0) * 100
sparsity_l2_LR = np.mean(coef_l2_LR == 0) * 100

print("C=%.2f" % C)
print("Sparsity with L1 penalty: %.2f%%" % sparsity_l1_LR)
print("score with L1 penalty: %.4f" % clf_l1_LR.score(X, y))
print("Sparsity with L2 penalty: %.2f%%" % sparsity_l2_LR)
print("score with L2 penalty: %.4f" % clf_l2_LR.score(X, y))

l1_plot = plt.subplot(3, 2, 2 * i + 1)
l2_plot = plt.subplot(3, 2, 2 * (i + 1))
if i == 0:

l1_plot.set_title("L1 penalty")
l2_plot.set_title("L2 penalty")

l1_plot.imshow(np.abs(coef_l1_LR.reshape(8, 8)), interpolation='nearest',
cmap='binary', vmax=1, vmin=0)

l2_plot.imshow(np.abs(coef_l2_LR.reshape(8, 8)), interpolation='nearest',
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cmap='binary', vmax=1, vmin=0)
plt.text(-8, 3, "C = %.2f" % C)

l1_plot.set_xticks(())
l1_plot.set_yticks(())
l2_plot.set_xticks(())
l2_plot.set_yticks(())

plt.show()

Total running time of the script: ( 0 minutes 0.556 seconds)

Download Python source code: plot_logistic_l1_l2_sparsity.py

Download Jupyter notebook: plot_logistic_l1_l2_sparsity.ipynb

Generated by Sphinx-Gallery

4.15.25 Theil-Sen Regression

Computes a Theil-Sen Regression on a synthetic dataset.

See Theil-Sen estimator: generalized-median-based estimator for more information on the regressor.

Compared to the OLS (ordinary least squares) estimator, the Theil-Sen estimator is robust against outliers. It has
a breakdown point of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary
corrupted data (outliers) of up to 29.3% in the two-dimensional case.

The estimation of the model is done by calculating the slopes and intercepts of a subpopulation of all possible com-
binations of p subsample points. If an intercept is fitted, p must be greater than or equal to n_features + 1. The final
slope and intercept is then defined as the spatial median of these slopes and intercepts.

In certain cases Theil-Sen performs better than RANSAC which is also a robust method. This is illustrated in the second
example below where outliers with respect to the x-axis perturb RANSAC. Tuning the residual_threshold
parameter of RANSAC remedies this but in general a priori knowledge about the data and the nature of the outliers
is needed. Due to the computational complexity of Theil-Sen it is recommended to use it only for small problems in
terms of number of samples and features. For larger problems the max_subpopulation parameter restricts the
magnitude of all possible combinations of p subsample points to a randomly chosen subset and therefore also limits the
runtime. Therefore, Theil-Sen is applicable to larger problems with the drawback of losing some of its mathematical
properties since it then works on a random subset.

•
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# Author: Florian Wilhelm -- <florian.wilhelm@gmail.com>
# License: BSD 3 clause

import time
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression, TheilSenRegressor
from sklearn.linear_model import RANSACRegressor

print(__doc__)

estimators = [('OLS', LinearRegression()),
('Theil-Sen', TheilSenRegressor(random_state=42)),
('RANSAC', RANSACRegressor(random_state=42)), ]

colors = {'OLS': 'turquoise', 'Theil-Sen': 'gold', 'RANSAC': 'lightgreen'}
lw = 2

# #############################################################################
# Outliers only in the y direction

np.random.seed(0)
n_samples = 200
# Linear model y = 3*x + N(2, 0.1**2)
x = np.random.randn(n_samples)
w = 3.
c = 2.
noise = 0.1 * np.random.randn(n_samples)
y = w * x + c + noise
# 10% outliers
y[-20:] += -20 * x[-20:]
X = x[:, np.newaxis]

plt.scatter(x, y, color='indigo', marker='x', s=40)
line_x = np.array([-3, 3])
for name, estimator in estimators:

t0 = time.time()
estimator.fit(X, y)
elapsed_time = time.time() - t0
y_pred = estimator.predict(line_x.reshape(2, 1))
plt.plot(line_x, y_pred, color=colors[name], linewidth=lw,

label='%s (fit time: %.2fs)' % (name, elapsed_time))

plt.axis('tight')

980 Chapter 4. Examples



scikit-learn user guide, Release 0.19.1

plt.legend(loc='upper left')
plt.title("Corrupt y")

# #############################################################################
# Outliers in the X direction

np.random.seed(0)
# Linear model y = 3*x + N(2, 0.1**2)
x = np.random.randn(n_samples)
noise = 0.1 * np.random.randn(n_samples)
y = 3 * x + 2 + noise
# 10% outliers
x[-20:] = 9.9
y[-20:] += 22
X = x[:, np.newaxis]

plt.figure()
plt.scatter(x, y, color='indigo', marker='x', s=40)

line_x = np.array([-3, 10])
for name, estimator in estimators:

t0 = time.time()
estimator.fit(X, y)
elapsed_time = time.time() - t0
y_pred = estimator.predict(line_x.reshape(2, 1))
plt.plot(line_x, y_pred, color=colors[name], linewidth=lw,

label='%s (fit time: %.2fs)' % (name, elapsed_time))

plt.axis('tight')
plt.legend(loc='upper left')
plt.title("Corrupt x")
plt.show()

Total running time of the script: ( 0 minutes 1.523 seconds)

Download Python source code: plot_theilsen.py

Download Jupyter notebook: plot_theilsen.ipynb

Generated by Sphinx-Gallery

4.15.26 Plot multinomial and One-vs-Rest Logistic Regression

Plot decision surface of multinomial and One-vs-Rest Logistic Regression. The hyperplanes corresponding to the
three One-vs-Rest (OVR) classifiers are represented by the dashed lines.
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Out:

training score : 0.995 (multinomial)
training score : 0.976 (ovr)

print(__doc__)
# Authors: Tom Dupre la Tour <tom.dupre-la-tour@m4x.org>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.linear_model import LogisticRegression

# make 3-class dataset for classification
centers = [[-5, 0], [0, 1.5], [5, -1]]
X, y = make_blobs(n_samples=1000, centers=centers, random_state=40)
transformation = [[0.4, 0.2], [-0.4, 1.2]]
X = np.dot(X, transformation)

for multi_class in ('multinomial', 'ovr'):
clf = LogisticRegression(solver='sag', max_iter=100, random_state=42,
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multi_class=multi_class).fit(X, y)

# print the training scores
print("training score : %.3f (%s)" % (clf.score(X, y), multi_class))

# create a mesh to plot in
h = .02 # step size in the mesh
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
plt.title("Decision surface of LogisticRegression (%s)" % multi_class)
plt.axis('tight')

# Plot also the training points
colors = "bry"
for i, color in zip(clf.classes_, colors):

idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1], c=color, cmap=plt.cm.Paired,

edgecolor='black', s=20)

# Plot the three one-against-all classifiers
xmin, xmax = plt.xlim()
ymin, ymax = plt.ylim()
coef = clf.coef_
intercept = clf.intercept_

def plot_hyperplane(c, color):
def line(x0):

return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1]
plt.plot([xmin, xmax], [line(xmin), line(xmax)],

ls="--", color=color)

for i, color in zip(clf.classes_, colors):
plot_hyperplane(i, color)

plt.show()

Total running time of the script: ( 0 minutes 0.338 seconds)

Download Python source code: plot_logistic_multinomial.py

Download Jupyter notebook: plot_logistic_multinomial.ipynb

Generated by Sphinx-Gallery

4.15.27 Robust linear estimator fitting

Here a sine function is fit with a polynomial of order 3, for values close to zero.
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Robust fitting is demoed in different situations:

• No measurement errors, only modelling errors (fitting a sine with a polynomial)

• Measurement errors in X

• Measurement errors in y

The median absolute deviation to non corrupt new data is used to judge the quality of the prediction.

What we can see that:

• RANSAC is good for strong outliers in the y direction

• TheilSen is good for small outliers, both in direction X and y, but has a break point above which it performs
worse than OLS.

• The scores of HuberRegressor may not be compared directly to both TheilSen and RANSAC because it does
not attempt to completely filter the outliers but lessen their effect.

•

•

•
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from matplotlib import pyplot as plt
import numpy as np

from sklearn.linear_model import (
LinearRegression, TheilSenRegressor, RANSACRegressor, HuberRegressor)

from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline

np.random.seed(42)

X = np.random.normal(size=400)
y = np.sin(X)
# Make sure that it X is 2D
X = X[:, np.newaxis]

X_test = np.random.normal(size=200)
y_test = np.sin(X_test)
X_test = X_test[:, np.newaxis]

y_errors = y.copy()
y_errors[::3] = 3

X_errors = X.copy()
X_errors[::3] = 3

y_errors_large = y.copy()
y_errors_large[::3] = 10

X_errors_large = X.copy()
X_errors_large[::3] = 10
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estimators = [('OLS', LinearRegression()),
('Theil-Sen', TheilSenRegressor(random_state=42)),
('RANSAC', RANSACRegressor(random_state=42)),
('HuberRegressor', HuberRegressor())]

colors = {'OLS': 'turquoise', 'Theil-Sen': 'gold', 'RANSAC': 'lightgreen',
→˓'HuberRegressor': 'black'}
linestyle = {'OLS': '-', 'Theil-Sen': '-.', 'RANSAC': '--', 'HuberRegressor': '--'}
lw = 3

x_plot = np.linspace(X.min(), X.max())
for title, this_X, this_y in [

('Modeling Errors Only', X, y),
('Corrupt X, Small Deviants', X_errors, y),
('Corrupt y, Small Deviants', X, y_errors),
('Corrupt X, Large Deviants', X_errors_large, y),
('Corrupt y, Large Deviants', X, y_errors_large)]:

plt.figure(figsize=(5, 4))
plt.plot(this_X[:, 0], this_y, 'b+')

for name, estimator in estimators:
model = make_pipeline(PolynomialFeatures(3), estimator)
model.fit(this_X, this_y)
mse = mean_squared_error(model.predict(X_test), y_test)
y_plot = model.predict(x_plot[:, np.newaxis])
plt.plot(x_plot, y_plot, color=colors[name], linestyle=linestyle[name],

linewidth=lw, label='%s: error = %.3f' % (name, mse))

legend_title = 'Error of Mean\nAbsolute Deviation\nto Non-corrupt Data'
legend = plt.legend(loc='upper right', frameon=False, title=legend_title,

prop=dict(size='x-small'))
plt.xlim(-4, 10.2)
plt.ylim(-2, 10.2)
plt.title(title)

plt.show()

Total running time of the script: ( 0 minutes 4.967 seconds)

Download Python source code: plot_robust_fit.py

Download Jupyter notebook: plot_robust_fit.ipynb

Generated by Sphinx-Gallery

4.15.28 Lasso and Elastic Net

Lasso and elastic net (L1 and L2 penalisation) implemented using a coordinate descent.

The coefficients can be forced to be positive.
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Out:

Computing regularization path using the lasso...
Computing regularization path using the positive lasso...
Computing regularization path using the elastic net...
Computing regularization path using the positive elastic net...
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print(__doc__)

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

from itertools import cycle
import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import lasso_path, enet_path
from sklearn import datasets

diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target

X /= X.std(axis=0) # Standardize data (easier to set the l1_ratio parameter)

# Compute paths

eps = 5e-3 # the smaller it is the longer is the path

print("Computing regularization path using the lasso...")
alphas_lasso, coefs_lasso, _ = lasso_path(X, y, eps, fit_intercept=False)

print("Computing regularization path using the positive lasso...")
alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path(

X, y, eps, positive=True, fit_intercept=False)
print("Computing regularization path using the elastic net...")
alphas_enet, coefs_enet, _ = enet_path(

X, y, eps=eps, l1_ratio=0.8, fit_intercept=False)

print("Computing regularization path using the positive elastic net...")
alphas_positive_enet, coefs_positive_enet, _ = enet_path(

X, y, eps=eps, l1_ratio=0.8, positive=True, fit_intercept=False)

# Display results

plt.figure(1)
ax = plt.gca()

colors = cycle(['b', 'r', 'g', 'c', 'k'])
neg_log_alphas_lasso = -np.log10(alphas_lasso)
neg_log_alphas_enet = -np.log10(alphas_enet)
for coef_l, coef_e, c in zip(coefs_lasso, coefs_enet, colors):

l1 = plt.plot(neg_log_alphas_lasso, coef_l, c=c)
l2 = plt.plot(neg_log_alphas_enet, coef_e, linestyle='--', c=c)

plt.xlabel('-Log(alpha)')
plt.ylabel('coefficients')
plt.title('Lasso and Elastic-Net Paths')
plt.legend((l1[-1], l2[-1]), ('Lasso', 'Elastic-Net'), loc='lower left')
plt.axis('tight')

plt.figure(2)
ax = plt.gca()
neg_log_alphas_positive_lasso = -np.log10(alphas_positive_lasso)
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for coef_l, coef_pl, c in zip(coefs_lasso, coefs_positive_lasso, colors):
l1 = plt.plot(neg_log_alphas_lasso, coef_l, c=c)
l2 = plt.plot(neg_log_alphas_positive_lasso, coef_pl, linestyle='--', c=c)

plt.xlabel('-Log(alpha)')
plt.ylabel('coefficients')
plt.title('Lasso and positive Lasso')
plt.legend((l1[-1], l2[-1]), ('Lasso', 'positive Lasso'), loc='lower left')
plt.axis('tight')

plt.figure(3)
ax = plt.gca()
neg_log_alphas_positive_enet = -np.log10(alphas_positive_enet)
for (coef_e, coef_pe, c) in zip(coefs_enet, coefs_positive_enet, colors):

l1 = plt.plot(neg_log_alphas_enet, coef_e, c=c)
l2 = plt.plot(neg_log_alphas_positive_enet, coef_pe, linestyle='--', c=c)

plt.xlabel('-Log(alpha)')
plt.ylabel('coefficients')
plt.title('Elastic-Net and positive Elastic-Net')
plt.legend((l1[-1], l2[-1]), ('Elastic-Net', 'positive Elastic-Net'),

loc='lower left')
plt.axis('tight')
plt.show()

Total running time of the script: ( 0 minutes 0.333 seconds)

Download Python source code: plot_lasso_coordinate_descent_path.py

Download Jupyter notebook: plot_lasso_coordinate_descent_path.ipynb

Generated by Sphinx-Gallery

4.15.29 Automatic Relevance Determination Regression (ARD)

Fit regression model with Bayesian Ridge Regression.

See Bayesian Ridge Regression for more information on the regressor.

Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros,
which stabilises them.

The histogram of the estimated weights is very peaked, as a sparsity-inducing prior is implied on the weights.

The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations.

We also plot predictions and uncertainties for ARD for one dimensional regression using polynomial feature expan-
sion. Note the uncertainty starts going up on the right side of the plot. This is because these test samples are outside
of the range of the training samples.
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

from sklearn.linear_model import ARDRegression, LinearRegression

# #############################################################################
# Generating simulated data with Gaussian weights

# Parameters of the example
np.random.seed(0)
n_samples, n_features = 100, 100
# Create Gaussian data
X = np.random.randn(n_samples, n_features)
# Create weights with a precision lambda_ of 4.
lambda_ = 4.
w = np.zeros(n_features)
# Only keep 10 weights of interest
relevant_features = np.random.randint(0, n_features, 10)
for i in relevant_features:

w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_))
# Create noise with a precision alpha of 50.
alpha_ = 50.
noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples)
# Create the target
y = np.dot(X, w) + noise

# #############################################################################
# Fit the ARD Regression
clf = ARDRegression(compute_score=True)
clf.fit(X, y)

ols = LinearRegression()
ols.fit(X, y)

# #############################################################################
# Plot the true weights, the estimated weights, the histogram of the
# weights, and predictions with standard deviations
plt.figure(figsize=(6, 5))
plt.title("Weights of the model")
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plt.plot(clf.coef_, color='darkblue', linestyle='-', linewidth=2,
label="ARD estimate")

plt.plot(ols.coef_, color='yellowgreen', linestyle=':', linewidth=2,
label="OLS estimate")

plt.plot(w, color='orange', linestyle='-', linewidth=2, label="Ground truth")
plt.xlabel("Features")
plt.ylabel("Values of the weights")
plt.legend(loc=1)

plt.figure(figsize=(6, 5))
plt.title("Histogram of the weights")
plt.hist(clf.coef_, bins=n_features, color='navy', log=True)
plt.scatter(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)),

color='gold', marker='o', label="Relevant features")
plt.ylabel("Features")
plt.xlabel("Values of the weights")
plt.legend(loc=1)

plt.figure(figsize=(6, 5))
plt.title("Marginal log-likelihood")
plt.plot(clf.scores_, color='navy', linewidth=2)
plt.ylabel("Score")
plt.xlabel("Iterations")

# Plotting some predictions for polynomial regression
def f(x, noise_amount):

y = np.sqrt(x) * np.sin(x)
noise = np.random.normal(0, 1, len(x))
return y + noise_amount * noise

degree = 10
X = np.linspace(0, 10, 100)
y = f(X, noise_amount=1)
clf_poly = ARDRegression(threshold_lambda=1e5)
clf_poly.fit(np.vander(X, degree), y)

X_plot = np.linspace(0, 11, 25)
y_plot = f(X_plot, noise_amount=0)
y_mean, y_std = clf_poly.predict(np.vander(X_plot, degree), return_std=True)
plt.figure(figsize=(6, 5))
plt.errorbar(X_plot, y_mean, y_std, color='navy',

label="Polynomial ARD", linewidth=2)
plt.plot(X_plot, y_plot, color='gold', linewidth=2,

label="Ground Truth")
plt.ylabel("Output y")
plt.xlabel("Feature X")
plt.legend(loc="lower left")
plt.show()

Total running time of the script: ( 0 minutes 0.392 seconds)

Download Python source code: plot_ard.py

Download Jupyter notebook: plot_ard.ipynb

Generated by Sphinx-Gallery
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4.15.30 Bayesian Ridge Regression

Computes a Bayesian Ridge Regression on a synthetic dataset.

See Bayesian Ridge Regression for more information on the regressor.

Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros,
which stabilises them.

As the prior on the weights is a Gaussian prior, the histogram of the estimated weights is Gaussian.

The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations.

We also plot predictions and uncertainties for Bayesian Ridge Regression for one dimensional regression using poly-
nomial feature expansion. Note the uncertainty starts going up on the right side of the plot. This is because these test
samples are outside of the range of the training samples.
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

from sklearn.linear_model import BayesianRidge, LinearRegression

# #############################################################################
# Generating simulated data with Gaussian weights
np.random.seed(0)
n_samples, n_features = 100, 100
X = np.random.randn(n_samples, n_features) # Create Gaussian data
# Create weights with a precision lambda_ of 4.
lambda_ = 4.
w = np.zeros(n_features)
# Only keep 10 weights of interest
relevant_features = np.random.randint(0, n_features, 10)
for i in relevant_features:

w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_))
# Create noise with a precision alpha of 50.
alpha_ = 50.
noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples)
# Create the target
y = np.dot(X, w) + noise
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# #############################################################################
# Fit the Bayesian Ridge Regression and an OLS for comparison
clf = BayesianRidge(compute_score=True)
clf.fit(X, y)

ols = LinearRegression()
ols.fit(X, y)

# #############################################################################
# Plot true weights, estimated weights, histogram of the weights, and
# predictions with standard deviations
lw = 2
plt.figure(figsize=(6, 5))
plt.title("Weights of the model")
plt.plot(clf.coef_, color='lightgreen', linewidth=lw,

label="Bayesian Ridge estimate")
plt.plot(w, color='gold', linewidth=lw, label="Ground truth")
plt.plot(ols.coef_, color='navy', linestyle='--', label="OLS estimate")
plt.xlabel("Features")
plt.ylabel("Values of the weights")
plt.legend(loc="best", prop=dict(size=12))

plt.figure(figsize=(6, 5))
plt.title("Histogram of the weights")
plt.hist(clf.coef_, bins=n_features, color='gold', log=True,

edgecolor='black')
plt.scatter(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)),

color='navy', label="Relevant features")
plt.ylabel("Features")
plt.xlabel("Values of the weights")
plt.legend(loc="upper left")

plt.figure(figsize=(6, 5))
plt.title("Marginal log-likelihood")
plt.plot(clf.scores_, color='navy', linewidth=lw)
plt.ylabel("Score")
plt.xlabel("Iterations")

# Plotting some predictions for polynomial regression
def f(x, noise_amount):

y = np.sqrt(x) * np.sin(x)
noise = np.random.normal(0, 1, len(x))
return y + noise_amount * noise

degree = 10
X = np.linspace(0, 10, 100)
y = f(X, noise_amount=0.1)
clf_poly = BayesianRidge()
clf_poly.fit(np.vander(X, degree), y)

X_plot = np.linspace(0, 11, 25)
y_plot = f(X_plot, noise_amount=0)
y_mean, y_std = clf_poly.predict(np.vander(X_plot, degree), return_std=True)
plt.figure(figsize=(6, 5))
plt.errorbar(X_plot, y_mean, y_std, color='navy',

label="Polynomial Bayesian Ridge Regression", linewidth=lw)
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plt.plot(X_plot, y_plot, color='gold', linewidth=lw,
label="Ground Truth")

plt.ylabel("Output y")
plt.xlabel("Feature X")
plt.legend(loc="lower left")
plt.show()

Total running time of the script: ( 0 minutes 0.320 seconds)

Download Python source code: plot_bayesian_ridge.py

Download Jupyter notebook: plot_bayesian_ridge.ipynb

Generated by Sphinx-Gallery

4.15.31 Lasso model selection: Cross-Validation / AIC / BIC

Use the Akaike information criterion (AIC), the Bayes Information criterion (BIC) and cross-validation to select an
optimal value of the regularization parameter alpha of the Lasso estimator.

Results obtained with LassoLarsIC are based on AIC/BIC criteria.

Information-criterion based model selection is very fast, but it relies on a proper estimation of degrees of freedom, are
derived for large samples (asymptotic results) and assume the model is correct, i.e. that the data are actually generated
by this model. They also tend to break when the problem is badly conditioned (more features than samples).

For cross-validation, we use 20-fold with 2 algorithms to compute the Lasso path: coordinate descent, as implemented
by the LassoCV class, and Lars (least angle regression) as implemented by the LassoLarsCV class. Both algorithms
give roughly the same results. They differ with regards to their execution speed and sources of numerical errors.

Lars computes a path solution only for each kink in the path. As a result, it is very efficient when there are only of few
kinks, which is the case if there are few features or samples. Also, it is able to compute the full path without setting
any meta parameter. On the opposite, coordinate descent compute the path points on a pre-specified grid (here we use
the default). Thus it is more efficient if the number of grid points is smaller than the number of kinks in the path. Such
a strategy can be interesting if the number of features is really large and there are enough samples to select a large
amount. In terms of numerical errors, for heavily correlated variables, Lars will accumulate more errors, while the
coordinate descent algorithm will only sample the path on a grid.

Note how the optimal value of alpha varies for each fold. This illustrates why nested-cross validation is necessary
when trying to evaluate the performance of a method for which a parameter is chosen by cross-validation: this choice
of parameter may not be optimal for unseen data.

•
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Out:

Computing regularization path using the coordinate descent lasso...
Computing regularization path using the Lars lasso...

print(__doc__)

# Author: Olivier Grisel, Gael Varoquaux, Alexandre Gramfort
# License: BSD 3 clause

import time

import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import LassoCV, LassoLarsCV, LassoLarsIC
from sklearn import datasets

diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target
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rng = np.random.RandomState(42)
X = np.c_[X, rng.randn(X.shape[0], 14)] # add some bad features

# normalize data as done by Lars to allow for comparison
X /= np.sqrt(np.sum(X ** 2, axis=0))

# #############################################################################
# LassoLarsIC: least angle regression with BIC/AIC criterion

model_bic = LassoLarsIC(criterion='bic')
t1 = time.time()
model_bic.fit(X, y)
t_bic = time.time() - t1
alpha_bic_ = model_bic.alpha_

model_aic = LassoLarsIC(criterion='aic')
model_aic.fit(X, y)
alpha_aic_ = model_aic.alpha_

def plot_ic_criterion(model, name, color):
alpha_ = model.alpha_
alphas_ = model.alphas_
criterion_ = model.criterion_
plt.plot(-np.log10(alphas_), criterion_, '--', color=color,

linewidth=3, label='%s criterion' % name)
plt.axvline(-np.log10(alpha_), color=color, linewidth=3,

label='alpha: %s estimate' % name)
plt.xlabel('-log(alpha)')
plt.ylabel('criterion')

plt.figure()
plot_ic_criterion(model_aic, 'AIC', 'b')
plot_ic_criterion(model_bic, 'BIC', 'r')
plt.legend()
plt.title('Information-criterion for model selection (training time %.3fs)'

% t_bic)

# #############################################################################
# LassoCV: coordinate descent

# Compute paths
print("Computing regularization path using the coordinate descent lasso...")
t1 = time.time()
model = LassoCV(cv=20).fit(X, y)
t_lasso_cv = time.time() - t1

# Display results
m_log_alphas = -np.log10(model.alphas_)

plt.figure()
ymin, ymax = 2300, 3800
plt.plot(m_log_alphas, model.mse_path_, ':')
plt.plot(m_log_alphas, model.mse_path_.mean(axis=-1), 'k',

label='Average across the folds', linewidth=2)
plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k',

label='alpha: CV estimate')
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plt.legend()

plt.xlabel('-log(alpha)')
plt.ylabel('Mean square error')
plt.title('Mean square error on each fold: coordinate descent '

'(train time: %.2fs)' % t_lasso_cv)
plt.axis('tight')
plt.ylim(ymin, ymax)

# #############################################################################
# LassoLarsCV: least angle regression

# Compute paths
print("Computing regularization path using the Lars lasso...")
t1 = time.time()
model = LassoLarsCV(cv=20).fit(X, y)
t_lasso_lars_cv = time.time() - t1

# Display results
m_log_alphas = -np.log10(model.cv_alphas_)

plt.figure()
plt.plot(m_log_alphas, model.mse_path_, ':')
plt.plot(m_log_alphas, model.mse_path_.mean(axis=-1), 'k',

label='Average across the folds', linewidth=2)
plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k',

label='alpha CV')
plt.legend()

plt.xlabel('-log(alpha)')
plt.ylabel('Mean square error')
plt.title('Mean square error on each fold: Lars (train time: %.2fs)'

% t_lasso_lars_cv)
plt.axis('tight')
plt.ylim(ymin, ymax)

plt.show()

Total running time of the script: ( 0 minutes 1.089 seconds)

Download Python source code: plot_lasso_model_selection.py

Download Jupyter notebook: plot_lasso_model_selection.ipynb

Generated by Sphinx-Gallery

4.15.32 Multiclass sparse logisitic regression on newgroups20

Comparison of multinomial logistic L1 vs one-versus-rest L1 logistic regression to classify documents from the new-
groups20 dataset. Multinomial logistic regression yields more accurate results and is faster to train on the larger scale
dataset.

Here we use the l1 sparsity that trims the weights of not informative features to zero. This is good if the goal is to
extract the strongly discriminative vocabulary of each class. If the goal is to get the best predictive accuracy, it is better
to use the non sparsity-inducing l2 penalty instead.

A more traditional (and possibly better) way to predict on a sparse subset of input features would be to use univariate
feature selection followed by a traditional (l2-penalised) logistic regression model.
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Out:

Dataset 20newsgroup, train_samples=9000, n_features=130107, n_classes=20
[model=One versus Rest, solver=saga] Number of epochs: 1
[model=One versus Rest, solver=saga] Number of epochs: 3
Test accuracy for model ovr: 0.7410
% non-zero coefficients for model ovr, per class:
[ 0.27054655 0.66330021 0.80395367 0.73247404 0.67713497 0.73477984
0.40889422 0.48959702 1.01301237 0.56261385 0.60104376 0.332803
0.7094161 0.85083816 0.56876263 0.65715142 0.64408525 0.81163965
0.44271254 0.41120001]

Run time (3 epochs) for model ovr:3.19
[model=Multinomial, solver=saga] Number of epochs: 1
[model=Multinomial, solver=saga] Number of epochs: 3
[model=Multinomial, solver=saga] Number of epochs: 7
Test accuracy for model multinomial: 0.7450
% non-zero coefficients for model multinomial, per class:
[ 0.13296748 0.11759552 0.13296748 0.13988486 0.1268187 0.16140561
0.15218243 0.09069458 0.07762841 0.12143851 0.14910804 0.10837234
0.18830655 0.1245129 0.168323 0.21828188 0.11605832 0.07839701
0.06917383 0.15602543]

Run time (7 epochs) for model multinomial:2.86
Example run in 10.407 s
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import time

import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import fetch_20newsgroups_vectorized
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

print(__doc__)
# Author: Arthur Mensch

t0 = time.clock()

# We use SAGA solver
solver = 'saga'

# Turn down for faster run time
n_samples = 10000

# Memorized fetch_rcv1 for faster access
dataset = fetch_20newsgroups_vectorized('all')
X = dataset.data
y = dataset.target
X = X[:n_samples]
y = y[:n_samples]

X_train, X_test, y_train, y_test = train_test_split(X, y,
random_state=42,
stratify=y,
test_size=0.1)

train_samples, n_features = X_train.shape
n_classes = np.unique(y).shape[0]

print('Dataset 20newsgroup, train_samples=%i, n_features=%i, n_classes=%i'
% (train_samples, n_features, n_classes))

models = {'ovr': {'name': 'One versus Rest', 'iters': [1, 3]},
'multinomial': {'name': 'Multinomial', 'iters': [1, 3, 7]}}

for model in models:
# Add initial chance-level values for plotting purpose
accuracies = [1 / n_classes]
times = [0]
densities = [1]

model_params = models[model]

# Small number of epochs for fast runtime
for this_max_iter in model_params['iters']:

print('[model=%s, solver=%s] Number of epochs: %s' %
(model_params['name'], solver, this_max_iter))

lr = LogisticRegression(solver=solver,
multi_class=model,
C=1,
penalty='l1',
fit_intercept=True,
max_iter=this_max_iter,
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random_state=42,
)

t1 = time.clock()
lr.fit(X_train, y_train)
train_time = time.clock() - t1

y_pred = lr.predict(X_test)
accuracy = np.sum(y_pred == y_test) / y_test.shape[0]
density = np.mean(lr.coef_ != 0, axis=1) * 100
accuracies.append(accuracy)
densities.append(density)
times.append(train_time)

models[model]['times'] = times
models[model]['densities'] = densities
models[model]['accuracies'] = accuracies
print('Test accuracy for model %s: %.4f' % (model, accuracies[-1]))
print('%% non-zero coefficients for model %s, '

'per class:\n %s' % (model, densities[-1]))
print('Run time (%i epochs) for model %s:'

'%.2f' % (model_params['iters'][-1], model, times[-1]))

fig = plt.figure()
ax = fig.add_subplot(111)

for model in models:
name = models[model]['name']
times = models[model]['times']
accuracies = models[model]['accuracies']
ax.plot(times, accuracies, marker='o',

label='Model: %s' % name)
ax.set_xlabel('Train time (s)')
ax.set_ylabel('Test accuracy')

ax.legend()
fig.suptitle('Multinomial vs One-vs-Rest Logistic L1\n'

'Dataset %s' % '20newsgroups')
fig.tight_layout()
fig.subplots_adjust(top=0.85)
run_time = time.clock() - t0
print('Example run in %.3f s' % run_time)
plt.show()

Total running time of the script: ( 0 minutes 10.358 seconds)

Download Python source code: plot_sparse_logistic_regression_20newsgroups.py

Download Jupyter notebook: plot_sparse_logistic_regression_20newsgroups.ipynb

Generated by Sphinx-Gallery

4.16 Manifold learning

Examples concerning the sklearn.manifold module.

4.16.1 Swiss Roll reduction with LLE

An illustration of Swiss Roll reduction with locally linear embedding
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Out:

Computing LLE embedding
Done. Reconstruction error: 9.45487e-08

# Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr>
# License: BSD 3 clause (C) INRIA 2011

print(__doc__)

import matplotlib.pyplot as plt

# This import is needed to modify the way figure behaves
from mpl_toolkits.mplot3d import Axes3D
Axes3D

#----------------------------------------------------------------------
# Locally linear embedding of the swiss roll

from sklearn import manifold, datasets
X, color = datasets.samples_generator.make_swiss_roll(n_samples=1500)
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print("Computing LLE embedding")
X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12,

n_components=2)
print("Done. Reconstruction error: %g" % err)

#----------------------------------------------------------------------
# Plot result

fig = plt.figure()

ax = fig.add_subplot(211, projection='3d')
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral)

ax.set_title("Original data")
ax = fig.add_subplot(212)
ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=plt.cm.Spectral)
plt.axis('tight')
plt.xticks([]), plt.yticks([])
plt.title('Projected data')
plt.show()

Total running time of the script: ( 0 minutes 0.459 seconds)

Download Python source code: plot_swissroll.py

Download Jupyter notebook: plot_swissroll.ipynb

Generated by Sphinx-Gallery

4.16.2 Multi-dimensional scaling

An illustration of the metric and non-metric MDS on generated noisy data.

The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping.
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# Author: Nelle Varoquaux <nelle.varoquaux@gmail.com>
# License: BSD

print(__doc__)
import numpy as np

from matplotlib import pyplot as plt
from matplotlib.collections import LineCollection

from sklearn import manifold
from sklearn.metrics import euclidean_distances
from sklearn.decomposition import PCA

n_samples = 20
seed = np.random.RandomState(seed=3)
X_true = seed.randint(0, 20, 2 * n_samples).astype(np.float)
X_true = X_true.reshape((n_samples, 2))
# Center the data
X_true -= X_true.mean()

similarities = euclidean_distances(X_true)

# Add noise to the similarities
noise = np.random.rand(n_samples, n_samples)
noise = noise + noise.T
noise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0
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similarities += noise

mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed,
dissimilarity="precomputed", n_jobs=1)

pos = mds.fit(similarities).embedding_

nmds = manifold.MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12,
dissimilarity="precomputed", random_state=seed, n_jobs=1,
n_init=1)

npos = nmds.fit_transform(similarities, init=pos)

# Rescale the data
pos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((pos ** 2).sum())
npos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((npos ** 2).sum())

# Rotate the data
clf = PCA(n_components=2)
X_true = clf.fit_transform(X_true)

pos = clf.fit_transform(pos)

npos = clf.fit_transform(npos)

fig = plt.figure(1)
ax = plt.axes([0., 0., 1., 1.])

s = 100
plt.scatter(X_true[:, 0], X_true[:, 1], color='navy', s=s, lw=0,

label='True Position')
plt.scatter(pos[:, 0], pos[:, 1], color='turquoise', s=s, lw=0, label='MDS')
plt.scatter(npos[:, 0], npos[:, 1], color='darkorange', s=s, lw=0, label='NMDS')
plt.legend(scatterpoints=1, loc='best', shadow=False)

similarities = similarities.max() / similarities * 100
similarities[np.isinf(similarities)] = 0

# Plot the edges
start_idx, end_idx = np.where(pos)
# a sequence of (*line0*, *line1*, *line2*), where::
# linen = (x0, y0), (x1, y1), ... (xm, ym)
segments = [[X_true[i, :], X_true[j, :]]

for i in range(len(pos)) for j in range(len(pos))]
values = np.abs(similarities)
lc = LineCollection(segments,

zorder=0, cmap=plt.cm.Blues,
norm=plt.Normalize(0, values.max()))

lc.set_array(similarities.flatten())
lc.set_linewidths(0.5 * np.ones(len(segments)))
ax.add_collection(lc)

plt.show()

Total running time of the script: ( 0 minutes 0.163 seconds)

Download Python source code: plot_mds.py

Download Jupyter notebook: plot_mds.ipynb

Generated by Sphinx-Gallery
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4.16.3 Comparison of Manifold Learning methods

An illustration of dimensionality reduction on the S-curve dataset with various manifold learning methods.

For a discussion and comparison of these algorithms, see the manifold module page

For a similar example, where the methods are applied to a sphere dataset, see Manifold Learning methods on a severed
sphere

Note that the purpose of the MDS is to find a low-dimensional representation of the data (here 2D) in which the
distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms,
it does not seeks an isotropic representation of the data in the low-dimensional space.

Out:

standard: 0.23 sec
ltsa: 0.37 sec
hessian: 0.52 sec
modified: 0.43 sec
Isomap: 0.46 sec
MDS: 2.1 sec
SpectralEmbedding: 0.22 sec
t-SNE: 17 sec

# Author: Jake Vanderplas -- <vanderplas@astro.washington.edu>

print(__doc__)

from time import time

import matplotlib.pyplot as plt
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from mpl_toolkits.mplot3d import Axes3D
from matplotlib.ticker import NullFormatter

from sklearn import manifold, datasets

# Next line to silence pyflakes. This import is needed.
Axes3D

n_points = 1000
X, color = datasets.samples_generator.make_s_curve(n_points, random_state=0)
n_neighbors = 10
n_components = 2

fig = plt.figure(figsize=(15, 8))
plt.suptitle("Manifold Learning with %i points, %i neighbors"

% (1000, n_neighbors), fontsize=14)

ax = fig.add_subplot(251, projection='3d')
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral)
ax.view_init(4, -72)

methods = ['standard', 'ltsa', 'hessian', 'modified']
labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE']

for i, method in enumerate(methods):
t0 = time()
Y = manifold.LocallyLinearEmbedding(n_neighbors, n_components,

eigen_solver='auto',
method=method).fit_transform(X)

t1 = time()
print("%s: %.2g sec" % (methods[i], t1 - t0))

ax = fig.add_subplot(252 + i)
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral)
plt.title("%s (%.2g sec)" % (labels[i], t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

t0 = time()
Y = manifold.Isomap(n_neighbors, n_components).fit_transform(X)
t1 = time()
print("Isomap: %.2g sec" % (t1 - t0))
ax = fig.add_subplot(257)
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral)
plt.title("Isomap (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

t0 = time()
mds = manifold.MDS(n_components, max_iter=100, n_init=1)
Y = mds.fit_transform(X)
t1 = time()
print("MDS: %.2g sec" % (t1 - t0))
ax = fig.add_subplot(258)
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plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral)
plt.title("MDS (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

t0 = time()
se = manifold.SpectralEmbedding(n_components=n_components,

n_neighbors=n_neighbors)
Y = se.fit_transform(X)
t1 = time()
print("SpectralEmbedding: %.2g sec" % (t1 - t0))
ax = fig.add_subplot(259)
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral)
plt.title("SpectralEmbedding (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

t0 = time()
tsne = manifold.TSNE(n_components=n_components, init='pca', random_state=0)
Y = tsne.fit_transform(X)
t1 = time()
print("t-SNE: %.2g sec" % (t1 - t0))
ax = fig.add_subplot(2, 5, 10)
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral)
plt.title("t-SNE (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

plt.show()

Total running time of the script: ( 0 minutes 21.999 seconds)

Download Python source code: plot_compare_methods.py

Download Jupyter notebook: plot_compare_methods.ipynb

Generated by Sphinx-Gallery

4.16.4 t-SNE: The effect of various perplexity values on the shape

An illustration of t-SNE on the two concentric circles and the S-curve datasets for different perplexity values.

We observe a tendency towards clearer shapes as the preplexity value increases.

The size, the distance and the shape of clusters may vary upon initialization, perplexity values and does not always
convey a meaning.

As shown below, t-SNE for higher perplexities finds meaningful topology of two concentric circles, however the size
and the distance of the circles varies slightly from the original. Contrary to the two circles dataset, the shapes visually
diverge from S-curve topology on the S-curve dataset even for larger perplexity values.

For further details, “How to Use t-SNE Effectively” http://distill.pub/2016/misread-tsne/ provides a good discussion
of the effects of various parameters, as well as interactive plots to explore those effects.
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Out:

circles, perplexity=5 in 1.8 sec
circles, perplexity=30 in 3 sec
circles, perplexity=50 in 4.4 sec
circles, perplexity=100 in 8.9 sec
S-curve, perplexity=5 in 1.9 sec
S-curve, perplexity=30 in 4 sec
S-curve, perplexity=50 in 4.9 sec
S-curve, perplexity=100 in 6.4 sec
uniform grid, perplexity=5 in 1.8 sec
uniform grid, perplexity=30 in 3.9 sec
uniform grid, perplexity=50 in 5.7 sec
uniform grid, perplexity=100 in 7.9 sec

# Author: Narine Kokhlikyan <narine@slice.com>
# License: BSD

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from matplotlib.ticker import NullFormatter
from sklearn import manifold, datasets
from time import time

n_samples = 300
n_components = 2
(fig, subplots) = plt.subplots(3, 5, figsize=(15, 8))
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perplexities = [5, 30, 50, 100]

X, y = datasets.make_circles(n_samples=n_samples, factor=.5, noise=.05)

red = y == 0
green = y == 1

ax = subplots[0][0]
ax.scatter(X[red, 0], X[red, 1], c="r")
ax.scatter(X[green, 0], X[green, 1], c="g")
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

for i, perplexity in enumerate(perplexities):
ax = subplots[0][i + 1]

t0 = time()
tsne = manifold.TSNE(n_components=n_components, init='random',

random_state=0, perplexity=perplexity)
Y = tsne.fit_transform(X)
t1 = time()
print("circles, perplexity=%d in %.2g sec" % (perplexity, t1 - t0))
ax.set_title("Perplexity=%d" % perplexity)
ax.scatter(Y[red, 0], Y[red, 1], c="r")
ax.scatter(Y[green, 0], Y[green, 1], c="g")
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
ax.axis('tight')

# Another example using s-curve
X, color = datasets.samples_generator.make_s_curve(n_samples, random_state=0)

ax = subplots[1][0]
ax.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.viridis)
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())

for i, perplexity in enumerate(perplexities):
ax = subplots[1][i + 1]

t0 = time()
tsne = manifold.TSNE(n_components=n_components, init='random',

random_state=0, perplexity=perplexity)
Y = tsne.fit_transform(X)
t1 = time()
print("S-curve, perplexity=%d in %.2g sec" % (perplexity, t1 - t0))

ax.set_title("Perplexity=%d" % perplexity)
ax.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.viridis)
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
ax.axis('tight')

# Another example using a 2D uniform grid
x = np.linspace(0, 1, int(np.sqrt(n_samples)))
xx, yy = np.meshgrid(x, x)
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X = np.hstack([
xx.ravel().reshape(-1, 1),
yy.ravel().reshape(-1, 1),

])
color = xx.ravel()
ax = subplots[2][0]
ax.scatter(X[:, 0], X[:, 1], c=color, cmap=plt.cm.viridis)
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())

for i, perplexity in enumerate(perplexities):
ax = subplots[2][i + 1]

t0 = time()
tsne = manifold.TSNE(n_components=n_components, init='random',

random_state=0, perplexity=perplexity)
Y = tsne.fit_transform(X)
t1 = time()
print("uniform grid, perplexity=%d in %.2g sec" % (perplexity, t1 - t0))

ax.set_title("Perplexity=%d" % perplexity)
ax.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.viridis)
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
ax.axis('tight')

plt.show()

Total running time of the script: ( 0 minutes 55.110 seconds)

Download Python source code: plot_t_sne_perplexity.py

Download Jupyter notebook: plot_t_sne_perplexity.ipynb

Generated by Sphinx-Gallery

4.16.5 Manifold Learning methods on a severed sphere

An application of the different Manifold learning techniques on a spherical data-set. Here one can see the use of
dimensionality reduction in order to gain some intuition regarding the manifold learning methods. Regarding the
dataset, the poles are cut from the sphere, as well as a thin slice down its side. This enables the manifold learning
techniques to ‘spread it open’ whilst projecting it onto two dimensions.

For a similar example, where the methods are applied to the S-curve dataset, see Comparison of Manifold Learning
methods

Note that the purpose of the MDS is to find a low-dimensional representation of the data (here 2D) in which the
distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms,
it does not seeks an isotropic representation of the data in the low-dimensional space. Here the manifold problem
matches fairly that of representing a flat map of the Earth, as with map projection
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Out:

standard: 0.17 sec
ltsa: 0.26 sec
hessian: 0.38 sec
modified: 0.32 sec
ISO: 0.26 sec
MDS: 1 sec
Spectral Embedding: 0.17 sec
t-SNE: 11 sec

# Author: Jaques Grobler <jaques.grobler@inria.fr>
# License: BSD 3 clause

print(__doc__)

from time import time

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.ticker import NullFormatter

from sklearn import manifold
from sklearn.utils import check_random_state

# Next line to silence pyflakes.
Axes3D

# Variables for manifold learning.
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n_neighbors = 10
n_samples = 1000

# Create our sphere.
random_state = check_random_state(0)
p = random_state.rand(n_samples) * (2 * np.pi - 0.55)
t = random_state.rand(n_samples) * np.pi

# Sever the poles from the sphere.
indices = ((t < (np.pi - (np.pi / 8))) & (t > ((np.pi / 8))))
colors = p[indices]
x, y, z = np.sin(t[indices]) * np.cos(p[indices]), \

np.sin(t[indices]) * np.sin(p[indices]), \
np.cos(t[indices])

# Plot our dataset.
fig = plt.figure(figsize=(15, 8))
plt.suptitle("Manifold Learning with %i points, %i neighbors"

% (1000, n_neighbors), fontsize=14)

ax = fig.add_subplot(251, projection='3d')
ax.scatter(x, y, z, c=p[indices], cmap=plt.cm.rainbow)
ax.view_init(40, -10)

sphere_data = np.array([x, y, z]).T

# Perform Locally Linear Embedding Manifold learning
methods = ['standard', 'ltsa', 'hessian', 'modified']
labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE']

for i, method in enumerate(methods):
t0 = time()
trans_data = manifold\

.LocallyLinearEmbedding(n_neighbors, 2,
method=method).fit_transform(sphere_data).T

t1 = time()
print("%s: %.2g sec" % (methods[i], t1 - t0))

ax = fig.add_subplot(252 + i)
plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow)
plt.title("%s (%.2g sec)" % (labels[i], t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

# Perform Isomap Manifold learning.
t0 = time()
trans_data = manifold.Isomap(n_neighbors, n_components=2)\

.fit_transform(sphere_data).T
t1 = time()
print("%s: %.2g sec" % ('ISO', t1 - t0))

ax = fig.add_subplot(257)
plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow)
plt.title("%s (%.2g sec)" % ('Isomap', t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')
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# Perform Multi-dimensional scaling.
t0 = time()
mds = manifold.MDS(2, max_iter=100, n_init=1)
trans_data = mds.fit_transform(sphere_data).T
t1 = time()
print("MDS: %.2g sec" % (t1 - t0))

ax = fig.add_subplot(258)
plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow)
plt.title("MDS (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

# Perform Spectral Embedding.
t0 = time()
se = manifold.SpectralEmbedding(n_components=2,

n_neighbors=n_neighbors)
trans_data = se.fit_transform(sphere_data).T
t1 = time()
print("Spectral Embedding: %.2g sec" % (t1 - t0))

ax = fig.add_subplot(259)
plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow)
plt.title("Spectral Embedding (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

# Perform t-distributed stochastic neighbor embedding.
t0 = time()
tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
trans_data = tsne.fit_transform(sphere_data).T
t1 = time()
print("t-SNE: %.2g sec" % (t1 - t0))

ax = fig.add_subplot(2, 5, 10)
plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow)
plt.title("t-SNE (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

plt.show()

Total running time of the script: ( 0 minutes 13.686 seconds)

Download Python source code: plot_manifold_sphere.py

Download Jupyter notebook: plot_manifold_sphere.ipynb

Generated by Sphinx-Gallery

4.16.6 Manifold learning on handwritten digits: Locally Linear Embedding,
Isomap. . .

An illustration of various embeddings on the digits dataset.
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The RandomTreesEmbedding, from the sklearn.ensemble module, is not technically a manifold embedding
method, as it learn a high-dimensional representation on which we apply a dimensionality reduction method. However,
it is often useful to cast a dataset into a representation in which the classes are linearly-separable.

t-SNE will be initialized with the embedding that is generated by PCA in this example, which is not the default setting.
It ensures global stability of the embedding, i.e., the embedding does not depend on random initialization.

•

•

•
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•

•

•
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•

•

•
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•

•

•
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•

Out:

Computing random projection
Computing PCA projection
Computing Linear Discriminant Analysis projection
Computing Isomap embedding
Done.
Computing LLE embedding
Done. Reconstruction error: 1.63544e-06
Computing modified LLE embedding
Done. Reconstruction error: 0.360319
Computing Hessian LLE embedding
Done. Reconstruction error: 0.212801
Computing LTSA embedding
Done. Reconstruction error: 0.212805
Computing MDS embedding
Done. Stress: 150446492.243191
Computing Totally Random Trees embedding
Computing Spectral embedding
Computing t-SNE embedding

# Authors: Fabian Pedregosa <fabian.pedregosa@inria.fr>
# Olivier Grisel <olivier.grisel@ensta.org>
# Mathieu Blondel <mathieu@mblondel.org>
# Gael Varoquaux
# License: BSD 3 clause (C) INRIA 2011

print(__doc__)
from time import time

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import offsetbox
from sklearn import (manifold, datasets, decomposition, ensemble,

discriminant_analysis, random_projection)

digits = datasets.load_digits(n_class=6)
X = digits.data
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y = digits.target
n_samples, n_features = X.shape
n_neighbors = 30

#----------------------------------------------------------------------
# Scale and visualize the embedding vectors
def plot_embedding(X, title=None):

x_min, x_max = np.min(X, 0), np.max(X, 0)
X = (X - x_min) / (x_max - x_min)

plt.figure()
ax = plt.subplot(111)
for i in range(X.shape[0]):

plt.text(X[i, 0], X[i, 1], str(digits.target[i]),
color=plt.cm.Set1(y[i] / 10.),
fontdict={'weight': 'bold', 'size': 9})

if hasattr(offsetbox, 'AnnotationBbox'):
# only print thumbnails with matplotlib > 1.0
shown_images = np.array([[1., 1.]]) # just something big
for i in range(digits.data.shape[0]):

dist = np.sum((X[i] - shown_images) ** 2, 1)
if np.min(dist) < 4e-3:

# don't show points that are too close
continue

shown_images = np.r_[shown_images, [X[i]]]
imagebox = offsetbox.AnnotationBbox(

offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r),
X[i])

ax.add_artist(imagebox)
plt.xticks([]), plt.yticks([])
if title is not None:

plt.title(title)

#----------------------------------------------------------------------
# Plot images of the digits
n_img_per_row = 20
img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row))
for i in range(n_img_per_row):

ix = 10 * i + 1
for j in range(n_img_per_row):

iy = 10 * j + 1
img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8))

plt.imshow(img, cmap=plt.cm.binary)
plt.xticks([])
plt.yticks([])
plt.title('A selection from the 64-dimensional digits dataset')

#----------------------------------------------------------------------
# Random 2D projection using a random unitary matrix
print("Computing random projection")
rp = random_projection.SparseRandomProjection(n_components=2, random_state=42)
X_projected = rp.fit_transform(X)
plot_embedding(X_projected, "Random Projection of the digits")
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#----------------------------------------------------------------------
# Projection on to the first 2 principal components

print("Computing PCA projection")
t0 = time()
X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X)
plot_embedding(X_pca,

"Principal Components projection of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# Projection on to the first 2 linear discriminant components

print("Computing Linear Discriminant Analysis projection")
X2 = X.copy()
X2.flat[::X.shape[1] + 1] += 0.01 # Make X invertible
t0 = time()
X_lda = discriminant_analysis.LinearDiscriminantAnalysis(n_components=2).fit_
→˓transform(X2, y)
plot_embedding(X_lda,

"Linear Discriminant projection of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# Isomap projection of the digits dataset
print("Computing Isomap embedding")
t0 = time()
X_iso = manifold.Isomap(n_neighbors, n_components=2).fit_transform(X)
print("Done.")
plot_embedding(X_iso,

"Isomap projection of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# Locally linear embedding of the digits dataset
print("Computing LLE embedding")
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,

method='standard')
t0 = time()
X_lle = clf.fit_transform(X)
print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
plot_embedding(X_lle,

"Locally Linear Embedding of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# Modified Locally linear embedding of the digits dataset
print("Computing modified LLE embedding")
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,

method='modified')
t0 = time()
X_mlle = clf.fit_transform(X)
print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
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plot_embedding(X_mlle,
"Modified Locally Linear Embedding of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# HLLE embedding of the digits dataset
print("Computing Hessian LLE embedding")
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,

method='hessian')
t0 = time()
X_hlle = clf.fit_transform(X)
print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
plot_embedding(X_hlle,

"Hessian Locally Linear Embedding of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# LTSA embedding of the digits dataset
print("Computing LTSA embedding")
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,

method='ltsa')
t0 = time()
X_ltsa = clf.fit_transform(X)
print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
plot_embedding(X_ltsa,

"Local Tangent Space Alignment of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# MDS embedding of the digits dataset
print("Computing MDS embedding")
clf = manifold.MDS(n_components=2, n_init=1, max_iter=100)
t0 = time()
X_mds = clf.fit_transform(X)
print("Done. Stress: %f" % clf.stress_)
plot_embedding(X_mds,

"MDS embedding of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# Random Trees embedding of the digits dataset
print("Computing Totally Random Trees embedding")
hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0,

max_depth=5)
t0 = time()
X_transformed = hasher.fit_transform(X)
pca = decomposition.TruncatedSVD(n_components=2)
X_reduced = pca.fit_transform(X_transformed)

plot_embedding(X_reduced,
"Random forest embedding of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# Spectral embedding of the digits dataset
print("Computing Spectral embedding")
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embedder = manifold.SpectralEmbedding(n_components=2, random_state=0,
eigen_solver="arpack")

t0 = time()
X_se = embedder.fit_transform(X)

plot_embedding(X_se,
"Spectral embedding of the digits (time %.2fs)" %
(time() - t0))

#----------------------------------------------------------------------
# t-SNE embedding of the digits dataset
print("Computing t-SNE embedding")
tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
t0 = time()
X_tsne = tsne.fit_transform(X)

plot_embedding(X_tsne,
"t-SNE embedding of the digits (time %.2fs)" %
(time() - t0))

plt.show()

Total running time of the script: ( 0 minutes 32.235 seconds)

Download Python source code: plot_lle_digits.py

Download Jupyter notebook: plot_lle_digits.ipynb

Generated by Sphinx-Gallery

4.17 Gaussian Mixture Models

Examples concerning the sklearn.mixture module.

4.17.1 Density Estimation for a Gaussian mixture

Plot the density estimation of a mixture of two Gaussians. Data is generated from two Gaussians with different centers
and covariance matrices.
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import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
from sklearn import mixture

n_samples = 300

# generate random sample, two components
np.random.seed(0)

# generate spherical data centered on (20, 20)
shifted_gaussian = np.random.randn(n_samples, 2) + np.array([20, 20])

# generate zero centered stretched Gaussian data
C = np.array([[0., -0.7], [3.5, .7]])
stretched_gaussian = np.dot(np.random.randn(n_samples, 2), C)

# concatenate the two datasets into the final training set
X_train = np.vstack([shifted_gaussian, stretched_gaussian])

# fit a Gaussian Mixture Model with two components
clf = mixture.GaussianMixture(n_components=2, covariance_type='full')
clf.fit(X_train)

# display predicted scores by the model as a contour plot
x = np.linspace(-20., 30.)
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y = np.linspace(-20., 40.)
X, Y = np.meshgrid(x, y)
XX = np.array([X.ravel(), Y.ravel()]).T
Z = -clf.score_samples(XX)
Z = Z.reshape(X.shape)

CS = plt.contour(X, Y, Z, norm=LogNorm(vmin=1.0, vmax=1000.0),
levels=np.logspace(0, 3, 10))

CB = plt.colorbar(CS, shrink=0.8, extend='both')
plt.scatter(X_train[:, 0], X_train[:, 1], .8)

plt.title('Negative log-likelihood predicted by a GMM')
plt.axis('tight')
plt.show()

Total running time of the script: ( 0 minutes 0.137 seconds)

Download Python source code: plot_gmm_pdf.py

Download Jupyter notebook: plot_gmm_pdf.ipynb

Generated by Sphinx-Gallery

4.17.2 Gaussian Mixture Model Ellipsoids

Plot the confidence ellipsoids of a mixture of two Gaussians obtained with Expectation Maximisation
(GaussianMixture class) and Variational Inference (BayesianGaussianMixture class models with a
Dirichlet process prior).

Both models have access to five components with which to fit the data. Note that the Expectation Maximisation
model will necessarily use all five components while the Variational Inference model will effectively only use as many
as are needed for a good fit. Here we can see that the Expectation Maximisation model splits some components
arbitrarily, because it is trying to fit too many components, while the Dirichlet Process model adapts it number of state
automatically.

This example doesn’t show it, as we’re in a low-dimensional space, but another advantage of the Dirichlet process
model is that it can fit full covariance matrices effectively even when there are less examples per cluster than there are
dimensions in the data, due to regularization properties of the inference algorithm.
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import itertools

import numpy as np
from scipy import linalg
import matplotlib.pyplot as plt
import matplotlib as mpl

from sklearn import mixture

color_iter = itertools.cycle(['navy', 'c', 'cornflowerblue', 'gold',
'darkorange'])

def plot_results(X, Y_, means, covariances, index, title):
splot = plt.subplot(2, 1, 1 + index)
for i, (mean, covar, color) in enumerate(zip(

means, covariances, color_iter)):
v, w = linalg.eigh(covar)
v = 2. * np.sqrt(2.) * np.sqrt(v)
u = w[0] / linalg.norm(w[0])
# as the DP will not use every component it has access to
# unless it needs it, we shouldn't plot the redundant
# components.
if not np.any(Y_ == i):

continue
plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color)
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# Plot an ellipse to show the Gaussian component
angle = np.arctan(u[1] / u[0])
angle = 180. * angle / np.pi # convert to degrees
ell = mpl.patches.Ellipse(mean, v[0], v[1], 180. + angle, color=color)
ell.set_clip_box(splot.bbox)
ell.set_alpha(0.5)
splot.add_artist(ell)

plt.xlim(-9., 5.)
plt.ylim(-3., 6.)
plt.xticks(())
plt.yticks(())
plt.title(title)

# Number of samples per component
n_samples = 500

# Generate random sample, two components
np.random.seed(0)
C = np.array([[0., -0.1], [1.7, .4]])
X = np.r_[np.dot(np.random.randn(n_samples, 2), C),

.7 * np.random.randn(n_samples, 2) + np.array([-6, 3])]

# Fit a Gaussian mixture with EM using five components
gmm = mixture.GaussianMixture(n_components=5, covariance_type='full').fit(X)
plot_results(X, gmm.predict(X), gmm.means_, gmm.covariances_, 0,

'Gaussian Mixture')

# Fit a Dirichlet process Gaussian mixture using five components
dpgmm = mixture.BayesianGaussianMixture(n_components=5,

covariance_type='full').fit(X)
plot_results(X, dpgmm.predict(X), dpgmm.means_, dpgmm.covariances_, 1,

'Bayesian Gaussian Mixture with a Dirichlet process prior')

plt.show()

Total running time of the script: ( 0 minutes 0.386 seconds)

Download Python source code: plot_gmm.py

Download Jupyter notebook: plot_gmm.ipynb

Generated by Sphinx-Gallery

4.17.3 Gaussian Mixture Model Selection

This example shows that model selection can be performed with Gaussian Mixture Models using information-theoretic
criteria (BIC). Model selection concerns both the covariance type and the number of components in the model. In that
case, AIC also provides the right result (not shown to save time), but BIC is better suited if the problem is to identify
the right model. Unlike Bayesian procedures, such inferences are prior-free.

In that case, the model with 2 components and full covariance (which corresponds to the true generative model) is
selected.
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import numpy as np
import itertools

from scipy import linalg
import matplotlib.pyplot as plt
import matplotlib as mpl

from sklearn import mixture

print(__doc__)

# Number of samples per component
n_samples = 500

# Generate random sample, two components
np.random.seed(0)
C = np.array([[0., -0.1], [1.7, .4]])
X = np.r_[np.dot(np.random.randn(n_samples, 2), C),

.7 * np.random.randn(n_samples, 2) + np.array([-6, 3])]

lowest_bic = np.infty
bic = []
n_components_range = range(1, 7)
cv_types = ['spherical', 'tied', 'diag', 'full']
for cv_type in cv_types:

for n_components in n_components_range:
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# Fit a Gaussian mixture with EM
gmm = mixture.GaussianMixture(n_components=n_components,

covariance_type=cv_type)
gmm.fit(X)
bic.append(gmm.bic(X))
if bic[-1] < lowest_bic:

lowest_bic = bic[-1]
best_gmm = gmm

bic = np.array(bic)
color_iter = itertools.cycle(['navy', 'turquoise', 'cornflowerblue',

'darkorange'])
clf = best_gmm
bars = []

# Plot the BIC scores
spl = plt.subplot(2, 1, 1)
for i, (cv_type, color) in enumerate(zip(cv_types, color_iter)):

xpos = np.array(n_components_range) + .2 * (i - 2)
bars.append(plt.bar(xpos, bic[i * len(n_components_range):

(i + 1) * len(n_components_range)],
width=.2, color=color))

plt.xticks(n_components_range)
plt.ylim([bic.min() * 1.01 - .01 * bic.max(), bic.max()])
plt.title('BIC score per model')
xpos = np.mod(bic.argmin(), len(n_components_range)) + .65 +\

.2 * np.floor(bic.argmin() / len(n_components_range))
plt.text(xpos, bic.min() * 0.97 + .03 * bic.max(), '*', fontsize=14)
spl.set_xlabel('Number of components')
spl.legend([b[0] for b in bars], cv_types)

# Plot the winner
splot = plt.subplot(2, 1, 2)
Y_ = clf.predict(X)
for i, (mean, cov, color) in enumerate(zip(clf.means_, clf.covariances_,

color_iter)):
v, w = linalg.eigh(cov)
if not np.any(Y_ == i):

continue
plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color)

# Plot an ellipse to show the Gaussian component
angle = np.arctan2(w[0][1], w[0][0])
angle = 180. * angle / np.pi # convert to degrees
v = 2. * np.sqrt(2.) * np.sqrt(v)
ell = mpl.patches.Ellipse(mean, v[0], v[1], 180. + angle, color=color)
ell.set_clip_box(splot.bbox)
ell.set_alpha(.5)
splot.add_artist(ell)

plt.xticks(())
plt.yticks(())
plt.title('Selected GMM: full model, 2 components')
plt.subplots_adjust(hspace=.35, bottom=.02)
plt.show()

Total running time of the script: ( 0 minutes 0.493 seconds)
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Download Python source code: plot_gmm_selection.py

Download Jupyter notebook: plot_gmm_selection.ipynb

Generated by Sphinx-Gallery

4.17.4 GMM covariances

Demonstration of several covariances types for Gaussian mixture models.

See Gaussian mixture models for more information on the estimator.

Although GMM are often used for clustering, we can compare the obtained clusters with the actual classes from the
dataset. We initialize the means of the Gaussians with the means of the classes from the training set to make this
comparison valid.

We plot predicted labels on both training and held out test data using a variety of GMM covariance types on the
iris dataset. We compare GMMs with spherical, diagonal, full, and tied covariance matrices in increasing order of
performance. Although one would expect full covariance to perform best in general, it is prone to overfitting on small
datasets and does not generalize well to held out test data.

On the plots, train data is shown as dots, while test data is shown as crosses. The iris dataset is four-dimensional. Only
the first two dimensions are shown here, and thus some points are separated in other dimensions.
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# Author: Ron Weiss <ronweiss@gmail.com>, Gael Varoquaux
# Modified by Thierry Guillemot <thierry.guillemot.work@gmail.com>
# License: BSD 3 clause

import matplotlib as mpl
import matplotlib.pyplot as plt

import numpy as np

from sklearn import datasets
from sklearn.mixture import GaussianMixture
from sklearn.model_selection import StratifiedKFold

print(__doc__)

colors = ['navy', 'turquoise', 'darkorange']

1032 Chapter 4. Examples



scikit-learn user guide, Release 0.19.1

def make_ellipses(gmm, ax):
for n, color in enumerate(colors):

if gmm.covariance_type == 'full':
covariances = gmm.covariances_[n][:2, :2]

elif gmm.covariance_type == 'tied':
covariances = gmm.covariances_[:2, :2]

elif gmm.covariance_type == 'diag':
covariances = np.diag(gmm.covariances_[n][:2])

elif gmm.covariance_type == 'spherical':
covariances = np.eye(gmm.means_.shape[1]) * gmm.covariances_[n]

v, w = np.linalg.eigh(covariances)
u = w[0] / np.linalg.norm(w[0])
angle = np.arctan2(u[1], u[0])
angle = 180 * angle / np.pi # convert to degrees
v = 2. * np.sqrt(2.) * np.sqrt(v)
ell = mpl.patches.Ellipse(gmm.means_[n, :2], v[0], v[1],

180 + angle, color=color)
ell.set_clip_box(ax.bbox)
ell.set_alpha(0.5)
ax.add_artist(ell)

iris = datasets.load_iris()

# Break up the dataset into non-overlapping training (75%) and testing
# (25%) sets.
skf = StratifiedKFold(n_splits=4)
# Only take the first fold.
train_index, test_index = next(iter(skf.split(iris.data, iris.target)))

X_train = iris.data[train_index]
y_train = iris.target[train_index]
X_test = iris.data[test_index]
y_test = iris.target[test_index]

n_classes = len(np.unique(y_train))

# Try GMMs using different types of covariances.
estimators = dict((cov_type, GaussianMixture(n_components=n_classes,

covariance_type=cov_type, max_iter=20, random_state=0))
for cov_type in ['spherical', 'diag', 'tied', 'full'])

n_estimators = len(estimators)

plt.figure(figsize=(3 * n_estimators // 2, 6))
plt.subplots_adjust(bottom=.01, top=0.95, hspace=.15, wspace=.05,

left=.01, right=.99)

for index, (name, estimator) in enumerate(estimators.items()):
# Since we have class labels for the training data, we can
# initialize the GMM parameters in a supervised manner.
estimator.means_init = np.array([X_train[y_train == i].mean(axis=0)

for i in range(n_classes)])

# Train the other parameters using the EM algorithm.
estimator.fit(X_train)
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h = plt.subplot(2, n_estimators // 2, index + 1)
make_ellipses(estimator, h)

for n, color in enumerate(colors):
data = iris.data[iris.target == n]
plt.scatter(data[:, 0], data[:, 1], s=0.8, color=color,

label=iris.target_names[n])
# Plot the test data with crosses
for n, color in enumerate(colors):

data = X_test[y_test == n]
plt.scatter(data[:, 0], data[:, 1], marker='x', color=color)

y_train_pred = estimator.predict(X_train)
train_accuracy = np.mean(y_train_pred.ravel() == y_train.ravel()) * 100
plt.text(0.05, 0.9, 'Train accuracy: %.1f' % train_accuracy,

transform=h.transAxes)

y_test_pred = estimator.predict(X_test)
test_accuracy = np.mean(y_test_pred.ravel() == y_test.ravel()) * 100
plt.text(0.05, 0.8, 'Test accuracy: %.1f' % test_accuracy,

transform=h.transAxes)

plt.xticks(())
plt.yticks(())
plt.title(name)

plt.legend(scatterpoints=1, loc='lower right', prop=dict(size=12))

plt.show()

Total running time of the script: ( 0 minutes 0.243 seconds)

Download Python source code: plot_gmm_covariances.py

Download Jupyter notebook: plot_gmm_covariances.ipynb

Generated by Sphinx-Gallery

4.17.5 Gaussian Mixture Model Sine Curve

This example demonstrates the behavior of Gaussian mixture models fit on data that was not sampled from a mixture
of Gaussian random variables. The dataset is formed by 100 points loosely spaced following a noisy sine curve. There
is therefore no ground truth value for the number of Gaussian components.

The first model is a classical Gaussian Mixture Model with 10 components fit with the Expectation-Maximization
algorithm.

The second model is a Bayesian Gaussian Mixture Model with a Dirichlet process prior fit with variational inference.
The low value of the concentration prior makes the model favor a lower number of active components. This models
“decides” to focus its modeling power on the big picture of the structure of the dataset: groups of points with alternating
directions modeled by non-diagonal covariance matrices. Those alternating directions roughly capture the alternating
nature of the original sine signal.

The third model is also a Bayesian Gaussian mixture model with a Dirichlet process prior but this time the value of the
concentration prior is higher giving the model more liberty to model the fine-grained structure of the data. The result
is a mixture with a larger number of active components that is similar to the first model where we arbitrarily decided
to fix the number of components to 10.
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Which model is the best is a matter of subjective judgement: do we want to favor models that only capture the big
picture to summarize and explain most of the structure of the data while ignoring the details or do we prefer models
that closely follow the high density regions of the signal?

The last two panels show how we can sample from the last two models. The resulting samples distributions do not
look exactly like the original data distribution. The difference primarily stems from the approximation error we made
by using a model that assumes that the data was generated by a finite number of Gaussian components instead of a
continuous noisy sine curve.

import itertools

import numpy as np
from scipy import linalg
import matplotlib.pyplot as plt
import matplotlib as mpl
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from sklearn import mixture

print(__doc__)

color_iter = itertools.cycle(['navy', 'c', 'cornflowerblue', 'gold',
'darkorange'])

def plot_results(X, Y, means, covariances, index, title):
splot = plt.subplot(5, 1, 1 + index)
for i, (mean, covar, color) in enumerate(zip(

means, covariances, color_iter)):
v, w = linalg.eigh(covar)
v = 2. * np.sqrt(2.) * np.sqrt(v)
u = w[0] / linalg.norm(w[0])
# as the DP will not use every component it has access to
# unless it needs it, we shouldn't plot the redundant
# components.
if not np.any(Y == i):

continue
plt.scatter(X[Y == i, 0], X[Y == i, 1], .8, color=color)

# Plot an ellipse to show the Gaussian component
angle = np.arctan(u[1] / u[0])
angle = 180. * angle / np.pi # convert to degrees
ell = mpl.patches.Ellipse(mean, v[0], v[1], 180. + angle, color=color)
ell.set_clip_box(splot.bbox)
ell.set_alpha(0.5)
splot.add_artist(ell)

plt.xlim(-6., 4. * np.pi - 6.)
plt.ylim(-5., 5.)
plt.title(title)
plt.xticks(())
plt.yticks(())

def plot_samples(X, Y, n_components, index, title):
plt.subplot(5, 1, 4 + index)
for i, color in zip(range(n_components), color_iter):

# as the DP will not use every component it has access to
# unless it needs it, we shouldn't plot the redundant
# components.
if not np.any(Y == i):

continue
plt.scatter(X[Y == i, 0], X[Y == i, 1], .8, color=color)

plt.xlim(-6., 4. * np.pi - 6.)
plt.ylim(-5., 5.)
plt.title(title)
plt.xticks(())
plt.yticks(())

# Parameters
n_samples = 100
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# Generate random sample following a sine curve
np.random.seed(0)
X = np.zeros((n_samples, 2))
step = 4. * np.pi / n_samples

for i in range(X.shape[0]):
x = i * step - 6.
X[i, 0] = x + np.random.normal(0, 0.1)
X[i, 1] = 3. * (np.sin(x) + np.random.normal(0, .2))

plt.figure(figsize=(10, 10))
plt.subplots_adjust(bottom=.04, top=0.95, hspace=.2, wspace=.05,

left=.03, right=.97)

# Fit a Gaussian mixture with EM using ten components
gmm = mixture.GaussianMixture(n_components=10, covariance_type='full',

max_iter=100).fit(X)
plot_results(X, gmm.predict(X), gmm.means_, gmm.covariances_, 0,

'Expectation-maximization')

dpgmm = mixture.BayesianGaussianMixture(
n_components=10, covariance_type='full', weight_concentration_prior=1e-2,
weight_concentration_prior_type='dirichlet_process',
mean_precision_prior=1e-2, covariance_prior=1e0 * np.eye(2),
init_params="random", max_iter=100, random_state=2).fit(X)

plot_results(X, dpgmm.predict(X), dpgmm.means_, dpgmm.covariances_, 1,
"Bayesian Gaussian mixture models with a Dirichlet process prior "
r"for $\gamma_0=0.01$.")

X_s, y_s = dpgmm.sample(n_samples=2000)
plot_samples(X_s, y_s, dpgmm.n_components, 0,

"Gaussian mixture with a Dirichlet process prior "
r"for $\gamma_0=0.01$ sampled with $2000$ samples.")

dpgmm = mixture.BayesianGaussianMixture(
n_components=10, covariance_type='full', weight_concentration_prior=1e+2,
weight_concentration_prior_type='dirichlet_process',
mean_precision_prior=1e-2, covariance_prior=1e0 * np.eye(2),
init_params="kmeans", max_iter=100, random_state=2).fit(X)

plot_results(X, dpgmm.predict(X), dpgmm.means_, dpgmm.covariances_, 2,
"Bayesian Gaussian mixture models with a Dirichlet process prior "
r"for $\gamma_0=100$")

X_s, y_s = dpgmm.sample(n_samples=2000)
plot_samples(X_s, y_s, dpgmm.n_components, 1,

"Gaussian mixture with a Dirichlet process prior "
r"for $\gamma_0=100$ sampled with $2000$ samples.")

plt.show()

Total running time of the script: ( 0 minutes 0.692 seconds)

Download Python source code: plot_gmm_sin.py

Download Jupyter notebook: plot_gmm_sin.ipynb

Generated by Sphinx-Gallery
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4.17.6 Concentration Prior Type Analysis of Variation Bayesian Gaussian Mixture

This example plots the ellipsoids obtained from a toy dataset (mixture of three Gaussians) fit-
ted by the BayesianGaussianMixture class models with a Dirichlet distribution prior
(weight_concentration_prior_type='dirichlet_distribution') and a Dirichlet process
prior (weight_concentration_prior_type='dirichlet_process'). On each figure, we plot the
results for three different values of the weight concentration prior.

The BayesianGaussianMixture class can adapt its number of mixture componentsautomatically. The param-
eter weight_concentration_prior has a direct link with the resulting number of components with non-zero
weights. Specifying a low value for the concentration prior will make the model put most of the weight on few com-
ponents set the remaining components weights very close to zero. High values of the concentration prior will allow a
larger number of components to be active in the mixture.

The Dirichlet process prior allows to define an infinite number of components and automatically selects the correct
number of components: it activates a component only if it is necessary.

On the contrary the classical finite mixture model with a Dirichlet distribution prior will favor more uniformly weighted
components and therefore tends to divide natural clusters into unnecessary sub-components.

•
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•

# Author: Thierry Guillemot <thierry.guillemot.work@gmail.com>
# License: BSD 3 clause

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

from sklearn.mixture import BayesianGaussianMixture

print(__doc__)

def plot_ellipses(ax, weights, means, covars):
for n in range(means.shape[0]):

eig_vals, eig_vecs = np.linalg.eigh(covars[n])
unit_eig_vec = eig_vecs[0] / np.linalg.norm(eig_vecs[0])
angle = np.arctan2(unit_eig_vec[1], unit_eig_vec[0])
# Ellipse needs degrees
angle = 180 * angle / np.pi
# eigenvector normalization
eig_vals = 2 * np.sqrt(2) * np.sqrt(eig_vals)
ell = mpl.patches.Ellipse(means[n], eig_vals[0], eig_vals[1],

180 + angle, edgecolor='black')
ell.set_clip_box(ax.bbox)
ell.set_alpha(weights[n])
ell.set_facecolor('#56B4E9')
ax.add_artist(ell)

def plot_results(ax1, ax2, estimator, X, y, title, plot_title=False):
ax1.set_title(title)
ax1.scatter(X[:, 0], X[:, 1], s=5, marker='o', color=colors[y], alpha=0.8)
ax1.set_xlim(-2., 2.)
ax1.set_ylim(-3., 3.)
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ax1.set_xticks(())
ax1.set_yticks(())
plot_ellipses(ax1, estimator.weights_, estimator.means_,

estimator.covariances_)

ax2.get_xaxis().set_tick_params(direction='out')
ax2.yaxis.grid(True, alpha=0.7)
for k, w in enumerate(estimator.weights_):

ax2.bar(k, w, width=0.9, color='#56B4E9', zorder=3,
align='center', edgecolor='black')

ax2.text(k, w + 0.007, "%.1f%%" % (w * 100.),
horizontalalignment='center')

ax2.set_xlim(-.6, 2 * n_components - .4)
ax2.set_ylim(0., 1.1)
ax2.tick_params(axis='y', which='both', left='off',

right='off', labelleft='off')
ax2.tick_params(axis='x', which='both', top='off')

if plot_title:
ax1.set_ylabel('Estimated Mixtures')
ax2.set_ylabel('Weight of each component')

# Parameters of the dataset
random_state, n_components, n_features = 2, 3, 2
colors = np.array(['#0072B2', '#F0E442', '#D55E00'])

covars = np.array([[[.7, .0], [.0, .1]],
[[.5, .0], [.0, .1]],
[[.5, .0], [.0, .1]]])

samples = np.array([200, 500, 200])
means = np.array([[.0, -.70],

[.0, .0],
[.0, .70]])

# mean_precision_prior= 0.8 to minimize the influence of the prior
estimators = [

("Finite mixture with a Dirichlet distribution\nprior and "
r"$\gamma_0=$", BayesianGaussianMixture(

weight_concentration_prior_type="dirichlet_distribution",
n_components=2 * n_components, reg_covar=0, init_params='random',
max_iter=1500, mean_precision_prior=.8,
random_state=random_state), [0.001, 1, 1000]),

("Infinite mixture with a Dirichlet process\n prior and" r"$\gamma_0=$",
BayesianGaussianMixture(

weight_concentration_prior_type="dirichlet_process",
n_components=2 * n_components, reg_covar=0, init_params='random',
max_iter=1500, mean_precision_prior=.8,
random_state=random_state), [1, 1000, 100000])]

# Generate data
rng = np.random.RandomState(random_state)
X = np.vstack([

rng.multivariate_normal(means[j], covars[j], samples[j])
for j in range(n_components)])

y = np.concatenate([j * np.ones(samples[j], dtype=int)
for j in range(n_components)])

# Plot results in two different figures
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for (title, estimator, concentrations_prior) in estimators:
plt.figure(figsize=(4.7 * 3, 8))
plt.subplots_adjust(bottom=.04, top=0.90, hspace=.05, wspace=.05,

left=.03, right=.99)

gs = gridspec.GridSpec(3, len(concentrations_prior))
for k, concentration in enumerate(concentrations_prior):

estimator.weight_concentration_prior = concentration
estimator.fit(X)
plot_results(plt.subplot(gs[0:2, k]), plt.subplot(gs[2, k]), estimator,

X, y, r"%s$%.1e$" % (title, concentration),
plot_title=k == 0)

plt.show()

Total running time of the script: ( 0 minutes 18.155 seconds)

Download Python source code: plot_concentration_prior.py

Download Jupyter notebook: plot_concentration_prior.ipynb

Generated by Sphinx-Gallery

4.18 Model Selection

Examples related to the sklearn.model_selection module.

4.18.1 Plotting Validation Curves

In this plot you can see the training scores and validation scores of an SVM for different values of the kernel parameter
gamma. For very low values of gamma, you can see that both the training score and the validation score are low.
This is called underfitting. Medium values of gamma will result in high values for both scores, i.e. the classifier is
performing fairly well. If gamma is too high, the classifier will overfit, which means that the training score is good but
the validation score is poor.
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print(__doc__)

import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import load_digits
from sklearn.svm import SVC
from sklearn.model_selection import validation_curve

digits = load_digits()
X, y = digits.data, digits.target

param_range = np.logspace(-6, -1, 5)
train_scores, test_scores = validation_curve(

SVC(), X, y, param_name="gamma", param_range=param_range,
cv=10, scoring="accuracy", n_jobs=1)

train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)

plt.title("Validation Curve with SVM")
plt.xlabel("$\gamma$")
plt.ylabel("Score")
plt.ylim(0.0, 1.1)
lw = 2
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plt.semilogx(param_range, train_scores_mean, label="Training score",
color="darkorange", lw=lw)

plt.fill_between(param_range, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.2,
color="darkorange", lw=lw)

plt.semilogx(param_range, test_scores_mean, label="Cross-validation score",
color="navy", lw=lw)

plt.fill_between(param_range, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.2,
color="navy", lw=lw)

plt.legend(loc="best")
plt.show()

Total running time of the script: ( 0 minutes 33.973 seconds)

Download Python source code: plot_validation_curve.py

Download Jupyter notebook: plot_validation_curve.ipynb

Generated by Sphinx-Gallery

4.18.2 Underfitting vs. Overfitting

This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with
polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate,
which is a part of the cosine function. In addition, the samples from the real function and the approximations of
different models are displayed. The models have polynomial features of different degrees. We can see that a linear
function (polynomial with degree 1) is not sufficient to fit the training samples. This is called underfitting. A
polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model
will overfit the training data, i.e. it learns the noise of the training data. We evaluate quantitatively overfitting /
underfitting by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher,
the less likely the model generalizes correctly from the training data.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
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def true_fun(X):
return np.cos(1.5 * np.pi * X)

np.random.seed(0)

n_samples = 30
degrees = [1, 4, 15]

X = np.sort(np.random.rand(n_samples))
y = true_fun(X) + np.random.randn(n_samples) * 0.1

plt.figure(figsize=(14, 5))
for i in range(len(degrees)):

ax = plt.subplot(1, len(degrees), i + 1)
plt.setp(ax, xticks=(), yticks=())

polynomial_features = PolynomialFeatures(degree=degrees[i],
include_bias=False)

linear_regression = LinearRegression()
pipeline = Pipeline([("polynomial_features", polynomial_features),

("linear_regression", linear_regression)])
pipeline.fit(X[:, np.newaxis], y)

# Evaluate the models using crossvalidation
scores = cross_val_score(pipeline, X[:, np.newaxis], y,

scoring="neg_mean_squared_error", cv=10)

X_test = np.linspace(0, 1, 100)
plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model")
plt.plot(X_test, true_fun(X_test), label="True function")
plt.scatter(X, y, edgecolor='b', s=20, label="Samples")
plt.xlabel("x")
plt.ylabel("y")
plt.xlim((0, 1))
plt.ylim((-2, 2))
plt.legend(loc="best")
plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format(

degrees[i], -scores.mean(), scores.std()))
plt.show()

Total running time of the script: ( 0 minutes 0.201 seconds)

Download Python source code: plot_underfitting_overfitting.py

Download Jupyter notebook: plot_underfitting_overfitting.ipynb

Generated by Sphinx-Gallery

4.18.3 Parameter estimation using grid search with cross-validation

This examples shows how a classifier is optimized by cross-validation, which is done using the sklearn.
model_selection.GridSearchCV object on a development set that comprises only half of the available labeled
data.

The performance of the selected hyper-parameters and trained model is then measured on a dedicated evaluation set
that was not used during the model selection step.
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More details on tools available for model selection can be found in the sections on Cross-validation: evaluating
estimator performance and Tuning the hyper-parameters of an estimator.

Out:

# Tuning hyper-parameters for precision

Best parameters set found on development set:

{'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}

Grid scores on development set:

0.986 (+/-0.016) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
0.959 (+/-0.029) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
0.988 (+/-0.017) for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
0.982 (+/-0.026) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
0.988 (+/-0.017) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
0.982 (+/-0.025) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
0.988 (+/-0.017) for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
0.982 (+/-0.025) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
0.975 (+/-0.014) for {'C': 1, 'kernel': 'linear'}
0.975 (+/-0.014) for {'C': 10, 'kernel': 'linear'}
0.975 (+/-0.014) for {'C': 100, 'kernel': 'linear'}
0.975 (+/-0.014) for {'C': 1000, 'kernel': 'linear'}

Detailed classification report:

The model is trained on the full development set.
The scores are computed on the full evaluation set.

precision recall f1-score support

0 1.00 1.00 1.00 89
1 0.97 1.00 0.98 90
2 0.99 0.98 0.98 92
3 1.00 0.99 0.99 93
4 1.00 1.00 1.00 76
5 0.99 0.98 0.99 108
6 0.99 1.00 0.99 89
7 0.99 1.00 0.99 78
8 1.00 0.98 0.99 92
9 0.99 0.99 0.99 92

avg / total 0.99 0.99 0.99 899

# Tuning hyper-parameters for recall

Best parameters set found on development set:

{'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}

Grid scores on development set:

0.986 (+/-0.019) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
0.957 (+/-0.029) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
0.987 (+/-0.019) for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
0.981 (+/-0.028) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
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0.987 (+/-0.019) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
0.981 (+/-0.026) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
0.987 (+/-0.019) for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
0.981 (+/-0.026) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
0.972 (+/-0.012) for {'C': 1, 'kernel': 'linear'}
0.972 (+/-0.012) for {'C': 10, 'kernel': 'linear'}
0.972 (+/-0.012) for {'C': 100, 'kernel': 'linear'}
0.972 (+/-0.012) for {'C': 1000, 'kernel': 'linear'}

Detailed classification report:

The model is trained on the full development set.
The scores are computed on the full evaluation set.

precision recall f1-score support

0 1.00 1.00 1.00 89
1 0.97 1.00 0.98 90
2 0.99 0.98 0.98 92
3 1.00 0.99 0.99 93
4 1.00 1.00 1.00 76
5 0.99 0.98 0.99 108
6 0.99 1.00 0.99 89
7 0.99 1.00 0.99 78
8 1.00 0.98 0.99 92
9 0.99 0.99 0.99 92

avg / total 0.99 0.99 0.99 899

from __future__ import print_function

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.svm import SVC

print(__doc__)

# Loading the Digits dataset
digits = datasets.load_digits()

# To apply an classifier on this data, we need to flatten the image, to
# turn the data in a (samples, feature) matrix:
n_samples = len(digits.images)
X = digits.images.reshape((n_samples, -1))
y = digits.target

# Split the dataset in two equal parts
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.5, random_state=0)

# Set the parameters by cross-validation
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tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],
'C': [1, 10, 100, 1000]},

{'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]

scores = ['precision', 'recall']

for score in scores:
print("# Tuning hyper-parameters for %s" % score)
print()

clf = GridSearchCV(SVC(), tuned_parameters, cv=5,
scoring='%s_macro' % score)

clf.fit(X_train, y_train)

print("Best parameters set found on development set:")
print()
print(clf.best_params_)
print()
print("Grid scores on development set:")
print()
means = clf.cv_results_['mean_test_score']
stds = clf.cv_results_['std_test_score']
for mean, std, params in zip(means, stds, clf.cv_results_['params']):

print("%0.3f (+/-%0.03f) for %r"
% (mean, std * 2, params))

print()

print("Detailed classification report:")
print()
print("The model is trained on the full development set.")
print("The scores are computed on the full evaluation set.")
print()
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))
print()

# Note the problem is too easy: the hyperparameter plateau is too flat and the
# output model is the same for precision and recall with ties in quality.

Total running time of the script: ( 0 minutes 7.898 seconds)

Download Python source code: plot_grid_search_digits.py

Download Jupyter notebook: plot_grid_search_digits.ipynb

Generated by Sphinx-Gallery

4.18.4 Train error vs Test error

Illustration of how the performance of an estimator on unseen data (test data) is not the same as the performance on
training data. As the regularization increases the performance on train decreases while the performance on test is
optimal within a range of values of the regularization parameter. The example with an Elastic-Net regression model
and the performance is measured using the explained variance a.k.a. R^2.

4.18. Model Selection 1047

https://sphinx-gallery.readthedocs.io


scikit-learn user guide, Release 0.19.1

Out:

Optimal regularization parameter : 0.000335292414925

print(__doc__)

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

import numpy as np
from sklearn import linear_model

# #############################################################################
# Generate sample data
n_samples_train, n_samples_test, n_features = 75, 150, 500
np.random.seed(0)
coef = np.random.randn(n_features)
coef[50:] = 0.0 # only the top 10 features are impacting the model
X = np.random.randn(n_samples_train + n_samples_test, n_features)
y = np.dot(X, coef)
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# Split train and test data
X_train, X_test = X[:n_samples_train], X[n_samples_train:]
y_train, y_test = y[:n_samples_train], y[n_samples_train:]

# #############################################################################
# Compute train and test errors
alphas = np.logspace(-5, 1, 60)
enet = linear_model.ElasticNet(l1_ratio=0.7)
train_errors = list()
test_errors = list()
for alpha in alphas:

enet.set_params(alpha=alpha)
enet.fit(X_train, y_train)
train_errors.append(enet.score(X_train, y_train))
test_errors.append(enet.score(X_test, y_test))

i_alpha_optim = np.argmax(test_errors)
alpha_optim = alphas[i_alpha_optim]
print("Optimal regularization parameter : %s" % alpha_optim)

# Estimate the coef_ on full data with optimal regularization parameter
enet.set_params(alpha=alpha_optim)
coef_ = enet.fit(X, y).coef_

# #############################################################################
# Plot results functions

import matplotlib.pyplot as plt
plt.subplot(2, 1, 1)
plt.semilogx(alphas, train_errors, label='Train')
plt.semilogx(alphas, test_errors, label='Test')
plt.vlines(alpha_optim, plt.ylim()[0], np.max(test_errors), color='k',

linewidth=3, label='Optimum on test')
plt.legend(loc='lower left')
plt.ylim([0, 1.2])
plt.xlabel('Regularization parameter')
plt.ylabel('Performance')

# Show estimated coef_ vs true coef
plt.subplot(2, 1, 2)
plt.plot(coef, label='True coef')
plt.plot(coef_, label='Estimated coef')
plt.legend()
plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.26)
plt.show()

Total running time of the script: ( 0 minutes 2.631 seconds)

Download Python source code: plot_train_error_vs_test_error.py

Download Jupyter notebook: plot_train_error_vs_test_error.ipynb

Generated by Sphinx-Gallery

4.18.5 Receiver Operating Characteristic (ROC) with cross validation

Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality using cross-validation.
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ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the
top left corner of the plot is the “ideal” point - a false positive rate of zero, and a true positive rate of one. This is not
very realistic, but it does mean that a larger area under the curve (AUC) is usually better.

The “steepness” of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing
the false positive rate.

This example shows the ROC response of different datasets, created from K-fold cross-validation. Taking all of these
curves, it is possible to calculate the mean area under curve, and see the variance of the curve when the training set
is split into different subsets. This roughly shows how the classifier output is affected by changes in the training data,
and how different the splits generated by K-fold cross-validation are from one another.

Note:

See also sklearn.metrics.auc_score, sklearn.model_selection.cross_val_score, Receiver
Operating Characteristic (ROC),

print(__doc__)

import numpy as np
from scipy import interp
import matplotlib.pyplot as plt
from itertools import cycle

from sklearn import svm, datasets
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from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import StratifiedKFold

# #############################################################################
# Data IO and generation

# Import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
X, y = X[y != 2], y[y != 2]
n_samples, n_features = X.shape

# Add noisy features
random_state = np.random.RandomState(0)
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

# #############################################################################
# Classification and ROC analysis

# Run classifier with cross-validation and plot ROC curves
cv = StratifiedKFold(n_splits=6)
classifier = svm.SVC(kernel='linear', probability=True,

random_state=random_state)

tprs = []
aucs = []
mean_fpr = np.linspace(0, 1, 100)

i = 0
for train, test in cv.split(X, y):

probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test])
# Compute ROC curve and area the curve
fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1])
tprs.append(interp(mean_fpr, fpr, tpr))
tprs[-1][0] = 0.0
roc_auc = auc(fpr, tpr)
aucs.append(roc_auc)
plt.plot(fpr, tpr, lw=1, alpha=0.3,

label='ROC fold %d (AUC = %0.2f)' % (i, roc_auc))

i += 1
plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r',

label='Luck', alpha=.8)

mean_tpr = np.mean(tprs, axis=0)
mean_tpr[-1] = 1.0
mean_auc = auc(mean_fpr, mean_tpr)
std_auc = np.std(aucs)
plt.plot(mean_fpr, mean_tpr, color='b',

label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (mean_auc, std_auc),
lw=2, alpha=.8)

std_tpr = np.std(tprs, axis=0)
tprs_upper = np.minimum(mean_tpr + std_tpr, 1)
tprs_lower = np.maximum(mean_tpr - std_tpr, 0)
plt.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2,

label=r'$\pm$ 1 std. dev.')
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plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()

Total running time of the script: ( 0 minutes 0.254 seconds)

Download Python source code: plot_roc_crossval.py

Download Jupyter notebook: plot_roc_crossval.ipynb

Generated by Sphinx-Gallery

4.18.6 Confusion matrix

Example of confusion matrix usage to evaluate the quality of the output of a classifier on the iris data set. The diagonal
elements represent the number of points for which the predicted label is equal to the true label, while off-diagonal
elements are those that are mislabeled by the classifier. The higher the diagonal values of the confusion matrix the
better, indicating many correct predictions.

The figures show the confusion matrix with and without normalization by class support size (number of elements in
each class). This kind of normalization can be interesting in case of class imbalance to have a more visual interpretation
of which class is being misclassified.

Here the results are not as good as they could be as our choice for the regularization parameter C was not the best. In
real life applications this parameter is usually chosen using Tuning the hyper-parameters of an estimator.

•
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•

Out:

Confusion matrix, without normalization
[[13 0 0]
[ 0 10 6]
[ 0 0 9]]

Normalized confusion matrix
[[ 1. 0. 0. ]
[ 0. 0.62 0.38]
[ 0. 0. 1. ]]

print(__doc__)

import itertools
import numpy as np
import matplotlib.pyplot as plt

from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix

# import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
class_names = iris.target_names

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

# Run classifier, using a model that is too regularized (C too low) to see
# the impact on the results
classifier = svm.SVC(kernel='linear', C=0.01)
y_pred = classifier.fit(X_train, y_train).predict(X_test)

def plot_confusion_matrix(cm, classes,
normalize=False,
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title='Confusion matrix',
cmap=plt.cm.Blues):

"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:

cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")

else:
print('Confusion matrix, without normalization')

print(cm)

plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)

fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')

# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test, y_pred)
np.set_printoptions(precision=2)

# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names,

title='Confusion matrix, without normalization')

# Plot normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,

title='Normalized confusion matrix')

plt.show()

Total running time of the script: ( 0 minutes 0.188 seconds)

Download Python source code: plot_confusion_matrix.py

Download Jupyter notebook: plot_confusion_matrix.ipynb

Generated by Sphinx-Gallery
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4.18.7 Comparing randomized search and grid search for hyperparameter estima-
tion

Compare randomized search and grid search for optimizing hyperparameters of a random forest. All parameters that
influence the learning are searched simultaneously (except for the number of estimators, which poses a time / quality
tradeoff).

The randomized search and the grid search explore exactly the same space of parameters. The result in parameter
settings is quite similar, while the run time for randomized search is drastically lower.

The performance is slightly worse for the randomized search, though this is most likely a noise effect and would not
carry over to a held-out test set.

Note that in practice, one would not search over this many different parameters simultaneously using grid search, but
pick only the ones deemed most important.

Out:

RandomizedSearchCV took 3.87 seconds for 20 candidates parameter settings.
Model with rank: 1
Mean validation score: 0.928 (std: 0.021)
Parameters: {'bootstrap': False, 'criterion': 'entropy', 'max_depth': None, 'max_
→˓features': 9, 'min_samples_leaf': 2, 'min_samples_split': 2}

Model with rank: 2
Mean validation score: 0.925 (std: 0.015)
Parameters: {'bootstrap': False, 'criterion': 'gini', 'max_depth': None, 'max_features
→˓': 10, 'min_samples_leaf': 1, 'min_samples_split': 6}

Model with rank: 3
Mean validation score: 0.912 (std: 0.004)
Parameters: {'bootstrap': False, 'criterion': 'entropy', 'max_depth': None, 'max_
→˓features': 3, 'min_samples_leaf': 7, 'min_samples_split': 5}

GridSearchCV took 37.99 seconds for 216 candidate parameter settings.
Model with rank: 1
Mean validation score: 0.935 (std: 0.008)
Parameters: {'bootstrap': False, 'criterion': 'gini', 'max_depth': None, 'max_features
→˓': 3, 'min_samples_leaf': 1, 'min_samples_split': 3}

Model with rank: 2
Mean validation score: 0.932 (std: 0.012)
Parameters: {'bootstrap': False, 'criterion': 'gini', 'max_depth': None, 'max_features
→˓': 10, 'min_samples_leaf': 1, 'min_samples_split': 3}

Model with rank: 3
Mean validation score: 0.931 (std: 0.018)
Parameters: {'bootstrap': False, 'criterion': 'entropy', 'max_depth': None, 'max_
→˓features': 10, 'min_samples_leaf': 1, 'min_samples_split': 10}

print(__doc__)

import numpy as np
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from time import time
from scipy.stats import randint as sp_randint

from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.datasets import load_digits
from sklearn.ensemble import RandomForestClassifier

# get some data
digits = load_digits()
X, y = digits.data, digits.target

# build a classifier
clf = RandomForestClassifier(n_estimators=20)

# Utility function to report best scores
def report(results, n_top=3):

for i in range(1, n_top + 1):
candidates = np.flatnonzero(results['rank_test_score'] == i)
for candidate in candidates:

print("Model with rank: {0}".format(i))
print("Mean validation score: {0:.3f} (std: {1:.3f})".format(

results['mean_test_score'][candidate],
results['std_test_score'][candidate]))

print("Parameters: {0}".format(results['params'][candidate]))
print("")

# specify parameters and distributions to sample from
param_dist = {"max_depth": [3, None],

"max_features": sp_randint(1, 11),
"min_samples_split": sp_randint(2, 11),
"min_samples_leaf": sp_randint(1, 11),
"bootstrap": [True, False],
"criterion": ["gini", "entropy"]}

# run randomized search
n_iter_search = 20
random_search = RandomizedSearchCV(clf, param_distributions=param_dist,

n_iter=n_iter_search)

start = time()
random_search.fit(X, y)
print("RandomizedSearchCV took %.2f seconds for %d candidates"

" parameter settings." % ((time() - start), n_iter_search))
report(random_search.cv_results_)

# use a full grid over all parameters
param_grid = {"max_depth": [3, None],

"max_features": [1, 3, 10],
"min_samples_split": [2, 3, 10],
"min_samples_leaf": [1, 3, 10],
"bootstrap": [True, False],
"criterion": ["gini", "entropy"]}

# run grid search
grid_search = GridSearchCV(clf, param_grid=param_grid)
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start = time()
grid_search.fit(X, y)

print("GridSearchCV took %.2f seconds for %d candidate parameter settings."
% (time() - start, len(grid_search.cv_results_['params'])))

report(grid_search.cv_results_)

Total running time of the script: ( 0 minutes 41.994 seconds)

Download Python source code: plot_randomized_search.py

Download Jupyter notebook: plot_randomized_search.ipynb

Generated by Sphinx-Gallery

4.18.8 Nested versus non-nested cross-validation

This example compares non-nested and nested cross-validation strategies on a classifier of the iris data set. Nested
cross-validation (CV) is often used to train a model in which hyperparameters also need to be optimized. Nested CV
estimates the generalization error of the underlying model and its (hyper)parameter search. Choosing the parameters
that maximize non-nested CV biases the model to the dataset, yielding an overly-optimistic score.

Model selection without nested CV uses the same data to tune model parameters and evaluate model performance.
Information may thus “leak” into the model and overfit the data. The magnitude of this effect is primarily dependent
on the size of the dataset and the stability of the model. See Cawley and Talbot1 for an analysis of these issues.

To avoid this problem, nested CV effectively uses a series of train/validation/test set splits. In the inner loop
(here executed by GridSearchCV ), the score is approximately maximized by fitting a model to each training
set, and then directly maximized in selecting (hyper)parameters over the validation set. In the outer loop (here in
cross_val_score), generalization error is estimated by averaging test set scores over several dataset splits.

The example below uses a support vector classifier with a non-linear kernel to build a model with optimized hyperpa-
rameters by grid search. We compare the performance of non-nested and nested CV strategies by taking the difference
between their scores.

See Also:

• Cross-validation: evaluating estimator performance

• Tuning the hyper-parameters of an estimator

References:

1 Cawley, G.C.; Talbot, N.L.C. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res
2010,11, 2079-2107.
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Out:

Average difference of 0.007742 with std. dev. of 0.007688.

from sklearn.datasets import load_iris
from matplotlib import pyplot as plt
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV, cross_val_score, KFold
import numpy as np

print(__doc__)

# Number of random trials
NUM_TRIALS = 30

# Load the dataset
iris = load_iris()
X_iris = iris.data
y_iris = iris.target

# Set up possible values of parameters to optimize over
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p_grid = {"C": [1, 10, 100],
"gamma": [.01, .1]}

# We will use a Support Vector Classifier with "rbf" kernel
svm = SVC(kernel="rbf")

# Arrays to store scores
non_nested_scores = np.zeros(NUM_TRIALS)
nested_scores = np.zeros(NUM_TRIALS)

# Loop for each trial
for i in range(NUM_TRIALS):

# Choose cross-validation techniques for the inner and outer loops,
# independently of the dataset.
# E.g "LabelKFold", "LeaveOneOut", "LeaveOneLabelOut", etc.
inner_cv = KFold(n_splits=4, shuffle=True, random_state=i)
outer_cv = KFold(n_splits=4, shuffle=True, random_state=i)

# Non_nested parameter search and scoring
clf = GridSearchCV(estimator=svm, param_grid=p_grid, cv=inner_cv)
clf.fit(X_iris, y_iris)
non_nested_scores[i] = clf.best_score_

# Nested CV with parameter optimization
nested_score = cross_val_score(clf, X=X_iris, y=y_iris, cv=outer_cv)
nested_scores[i] = nested_score.mean()

score_difference = non_nested_scores - nested_scores

print("Average difference of {0:6f} with std. dev. of {1:6f}."
.format(score_difference.mean(), score_difference.std()))

# Plot scores on each trial for nested and non-nested CV
plt.figure()
plt.subplot(211)
non_nested_scores_line, = plt.plot(non_nested_scores, color='r')
nested_line, = plt.plot(nested_scores, color='b')
plt.ylabel("score", fontsize="14")
plt.legend([non_nested_scores_line, nested_line],

["Non-Nested CV", "Nested CV"],
bbox_to_anchor=(0, .4, .5, 0))

plt.title("Non-Nested and Nested Cross Validation on Iris Dataset",
x=.5, y=1.1, fontsize="15")

# Plot bar chart of the difference.
plt.subplot(212)
difference_plot = plt.bar(range(NUM_TRIALS), score_difference)
plt.xlabel("Individual Trial #")
plt.legend([difference_plot],

["Non-Nested CV - Nested CV Score"],
bbox_to_anchor=(0, 1, .8, 0))

plt.ylabel("score difference", fontsize="14")

plt.show()

Total running time of the script: ( 0 minutes 7.517 seconds)
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Download Python source code: plot_nested_cross_validation_iris.py

Download Jupyter notebook: plot_nested_cross_validation_iris.ipynb

Generated by Sphinx-Gallery

4.18.9 Demonstration of multi-metric evaluation on cross_val_score and Grid-
SearchCV

Multiple metric parameter search can be done by setting the scoring parameter to a list of metric scorer names or a
dict mapping the scorer names to the scorer callables.

The scores of all the scorers are available in the cv_results_ dict at keys ending in '_<scorer_name>'
('mean_test_precision', 'rank_test_precision', etc. . . )

The best_estimator_, best_index_, best_score_ and best_params_ correspond to the scorer (key)
that is set to the refit attribute.

# Author: Raghav RV <rvraghav93@gmail.com>
# License: BSD

import numpy as np
from matplotlib import pyplot as plt

from sklearn.datasets import make_hastie_10_2
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier

print(__doc__)

Running GridSearchCV using multiple evaluation metrics

X, y = make_hastie_10_2(n_samples=8000, random_state=42)

# The scorers can be either be one of the predefined metric strings or a scorer
# callable, like the one returned by make_scorer
scoring = {'AUC': 'roc_auc', 'Accuracy': make_scorer(accuracy_score)}

# Setting refit='AUC', refits an estimator on the whole dataset with the
# parameter setting that has the best cross-validated AUC score.
# That estimator is made available at ``gs.best_estimator_`` along with
# parameters like ``gs.best_score_``, ``gs.best_parameters_`` and
# ``gs.best_index_``
gs = GridSearchCV(DecisionTreeClassifier(random_state=42),

param_grid={'min_samples_split': range(2, 403, 10)},
scoring=scoring, cv=5, refit='AUC')

gs.fit(X, y)
results = gs.cv_results_

Plotting the result
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plt.figure(figsize=(13, 13))
plt.title("GridSearchCV evaluating using multiple scorers simultaneously",

fontsize=16)

plt.xlabel("min_samples_split")
plt.ylabel("Score")
plt.grid()

ax = plt.axes()
ax.set_xlim(0, 402)
ax.set_ylim(0.73, 1)

# Get the regular numpy array from the MaskedArray
X_axis = np.array(results['param_min_samples_split'].data, dtype=float)

for scorer, color in zip(sorted(scoring), ['g', 'k']):
for sample, style in (('train', '--'), ('test', '-')):

sample_score_mean = results['mean_%s_%s' % (sample, scorer)]
sample_score_std = results['std_%s_%s' % (sample, scorer)]
ax.fill_between(X_axis, sample_score_mean - sample_score_std,

sample_score_mean + sample_score_std,
alpha=0.1 if sample == 'test' else 0, color=color)

ax.plot(X_axis, sample_score_mean, style, color=color,
alpha=1 if sample == 'test' else 0.7,
label="%s (%s)" % (scorer, sample))

best_index = np.nonzero(results['rank_test_%s' % scorer] == 1)[0][0]
best_score = results['mean_test_%s' % scorer][best_index]

# Plot a dotted vertical line at the best score for that scorer marked by x
ax.plot([X_axis[best_index], ] * 2, [0, best_score],

linestyle='-.', color=color, marker='x', markeredgewidth=3, ms=8)

# Annotate the best score for that scorer
ax.annotate("%0.2f" % best_score,

(X_axis[best_index], best_score + 0.005))

plt.legend(loc="best")
plt.grid('off')
plt.show()
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Total running time of the script: ( 0 minutes 24.988 seconds)

Download Python source code: plot_multi_metric_evaluation.py

Download Jupyter notebook: plot_multi_metric_evaluation.ipynb

Generated by Sphinx-Gallery

4.18.10 Sample pipeline for text feature extraction and evaluation

The dataset used in this example is the 20 newsgroups dataset which will be automatically downloaded and then cached
and reused for the document classification example.

You can adjust the number of categories by giving their names to the dataset loader or setting them to None to get the
20 of them.
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Here is a sample output of a run on a quad-core machine:

Loading 20 newsgroups dataset for categories:
['alt.atheism', 'talk.religion.misc']
1427 documents
2 categories

Performing grid search...
pipeline: ['vect', 'tfidf', 'clf']
parameters:
{'clf__alpha': (1.0000000000000001e-05, 9.9999999999999995e-07),
'clf__n_iter': (10, 50, 80),
'clf__penalty': ('l2', 'elasticnet'),
'tfidf__use_idf': (True, False),
'vect__max_n': (1, 2),
'vect__max_df': (0.5, 0.75, 1.0),
'vect__max_features': (None, 5000, 10000, 50000)}

done in 1737.030s

Best score: 0.940
Best parameters set:

clf__alpha: 9.9999999999999995e-07
clf__n_iter: 50
clf__penalty: 'elasticnet'
tfidf__use_idf: True
vect__max_n: 2
vect__max_df: 0.75
vect__max_features: 50000

# Author: Olivier Grisel <olivier.grisel@ensta.org>
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Mathieu Blondel <mathieu@mblondel.org>
# License: BSD 3 clause

from __future__ import print_function

from pprint import pprint
from time import time
import logging

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline

print(__doc__)

# Display progress logs on stdout
logging.basicConfig(level=logging.INFO,

format='%(asctime)s %(levelname)s %(message)s')

# #############################################################################
# Load some categories from the training set
categories = [

'alt.atheism',
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'talk.religion.misc',
]
# Uncomment the following to do the analysis on all the categories
#categories = None

print("Loading 20 newsgroups dataset for categories:")
print(categories)

data = fetch_20newsgroups(subset='train', categories=categories)
print("%d documents" % len(data.filenames))
print("%d categories" % len(data.target_names))
print()

# #############################################################################
# Define a pipeline combining a text feature extractor with a simple
# classifier
pipeline = Pipeline([

('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', SGDClassifier()),

])

# uncommenting more parameters will give better exploring power but will
# increase processing time in a combinatorial way
parameters = {

'vect__max_df': (0.5, 0.75, 1.0),
#'vect__max_features': (None, 5000, 10000, 50000),
'vect__ngram_range': ((1, 1), (1, 2)), # unigrams or bigrams
#'tfidf__use_idf': (True, False),
#'tfidf__norm': ('l1', 'l2'),
'clf__alpha': (0.00001, 0.000001),
'clf__penalty': ('l2', 'elasticnet'),
#'clf__n_iter': (10, 50, 80),

}

if __name__ == "__main__":
# multiprocessing requires the fork to happen in a __main__ protected
# block

# find the best parameters for both the feature extraction and the
# classifier
grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1)

print("Performing grid search...")
print("pipeline:", [name for name, _ in pipeline.steps])
print("parameters:")
pprint(parameters)
t0 = time()
grid_search.fit(data.data, data.target)
print("done in %0.3fs" % (time() - t0))
print()

print("Best score: %0.3f" % grid_search.best_score_)
print("Best parameters set:")
best_parameters = grid_search.best_estimator_.get_params()
for param_name in sorted(parameters.keys()):

print("\t%s: %r" % (param_name, best_parameters[param_name]))
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Total running time of the script: ( 0 minutes 0.000 seconds)

Download Python source code: grid_search_text_feature_extraction.py

Download Jupyter notebook: grid_search_text_feature_extraction.ipynb

Generated by Sphinx-Gallery

4.18.11 Receiver Operating Characteristic (ROC)

Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality.

ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the
top left corner of the plot is the “ideal” point - a false positive rate of zero, and a true positive rate of one. This is not
very realistic, but it does mean that a larger area under the curve (AUC) is usually better.

The “steepness” of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing
the false positive rate.

Multiclass settings

ROC curves are typically used in binary classification to study the output of a classifier. In order to extend ROC curve
and ROC area to multi-class or multi-label classification, it is necessary to binarize the output. One ROC curve can
be drawn per label, but one can also draw a ROC curve by considering each element of the label indicator matrix as a
binary prediction (micro-averaging).

Another evaluation measure for multi-class classification is macro-averaging, which gives equal weight to the classi-
fication of each label.

Note:

See also sklearn.metrics.roc_auc_score, Receiver Operating Characteristic (ROC) with cross valida-
tion.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from itertools import cycle

from sklearn import svm, datasets
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier
from scipy import interp

# Import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target

# Binarize the output
y = label_binarize(y, classes=[0, 1, 2])
n_classes = y.shape[1]
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# Add noisy features to make the problem harder
random_state = np.random.RandomState(0)
n_samples, n_features = X.shape
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

# shuffle and split training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5,

random_state=0)

# Learn to predict each class against the other
classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True,

random_state=random_state))
y_score = classifier.fit(X_train, y_train).decision_function(X_test)

# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):

fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])

# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

Plot of a ROC curve for a specific class

plt.figure()
lw = 2
plt.plot(fpr[2], tpr[2], color='darkorange',

lw=lw, label='ROC curve (area = %0.2f)' % roc_auc[2])
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()
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Plot ROC curves for the multiclass problem

# Compute macro-average ROC curve and ROC area

# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))

# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):

mean_tpr += interp(all_fpr, fpr[i], tpr[i])

# Finally average it and compute AUC
mean_tpr /= n_classes

fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])

# Plot all ROC curves
plt.figure()
plt.plot(fpr["micro"], tpr["micro"],

label='micro-average ROC curve (area = {0:0.2f})'
''.format(roc_auc["micro"]),

color='deeppink', linestyle=':', linewidth=4)
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plt.plot(fpr["macro"], tpr["macro"],
label='macro-average ROC curve (area = {0:0.2f})'

''.format(roc_auc["macro"]),
color='navy', linestyle=':', linewidth=4)

colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
for i, color in zip(range(n_classes), colors):

plt.plot(fpr[i], tpr[i], color=color, lw=lw,
label='ROC curve of class {0} (area = {1:0.2f})'
''.format(i, roc_auc[i]))

plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Some extension of Receiver operating characteristic to multi-class')
plt.legend(loc="lower right")
plt.show()

Total running time of the script: ( 0 minutes 0.187 seconds)

Download Python source code: plot_roc.py

Download Jupyter notebook: plot_roc.ipynb

Generated by Sphinx-Gallery
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4.18.12 Plotting Learning Curves

On the left side the learning curve of a naive Bayes classifier is shown for the digits dataset. Note that the training
score and the cross-validation score are both not very good at the end. However, the shape of the curve can be found
in more complex datasets very often: the training score is very high at the beginning and decreases and the cross-
validation score is very low at the beginning and increases. On the right side we see the learning curve of an SVM
with RBF kernel. We can see clearly that the training score is still around the maximum and the validation score could
be increased with more training samples.

•

•

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.datasets import load_digits
from sklearn.model_selection import learning_curve
from sklearn.model_selection import ShuffleSplit

def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):

"""
Generate a simple plot of the test and training learning curve.

Parameters
----------

4.18. Model Selection 1069



scikit-learn user guide, Release 0.19.1

estimator : object type that implements the "fit" and "predict" methods
An object of that type which is cloned for each validation.

title : string
Title for the chart.

X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.

y : array-like, shape (n_samples) or (n_samples, n_features), optional
Target relative to X for classification or regression;
None for unsupervised learning.

ylim : tuple, shape (ymin, ymax), optional
Defines minimum and maximum yvalues plotted.

cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- An object to be used as a cross-validation generator.
- An iterable yielding train/test splits.

For integer/None inputs, if ``y`` is binary or multiclass,
:class:`StratifiedKFold` used. If the estimator is not a classifier
or if ``y`` is neither binary nor multiclass, :class:`KFold` is used.

Refer :ref:`User Guide <cross_validation>` for the various
cross-validators that can be used here.

n_jobs : integer, optional
Number of jobs to run in parallel (default 1).

"""
plt.figure()
plt.title(title)
if ylim is not None:

plt.ylim(*ylim)
plt.xlabel("Training examples")
plt.ylabel("Score")
train_sizes, train_scores, test_scores = learning_curve(

estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
plt.grid()

plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color="r")

plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1, color="g")

plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
label="Training score")

plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
label="Cross-validation score")
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plt.legend(loc="best")
return plt

digits = load_digits()
X, y = digits.data, digits.target

title = "Learning Curves (Naive Bayes)"
# Cross validation with 100 iterations to get smoother mean test and train
# score curves, each time with 20% data randomly selected as a validation set.
cv = ShuffleSplit(n_splits=100, test_size=0.2, random_state=0)

estimator = GaussianNB()
plot_learning_curve(estimator, title, X, y, ylim=(0.7, 1.01), cv=cv, n_jobs=4)

title = "Learning Curves (SVM, RBF kernel, $\gamma=0.001$)"
# SVC is more expensive so we do a lower number of CV iterations:
cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
estimator = SVC(gamma=0.001)
plot_learning_curve(estimator, title, X, y, (0.7, 1.01), cv=cv, n_jobs=4)

plt.show()

Total running time of the script: ( 0 minutes 10.017 seconds)

Download Python source code: plot_learning_curve.py

Download Jupyter notebook: plot_learning_curve.ipynb

Generated by Sphinx-Gallery

4.18.13 Precision-Recall

Example of Precision-Recall metric to evaluate classifier output quality.

Precision-Recall is a useful measure of success of prediction when the classes are very imbalanced. In information
retrieval, precision is a measure of result relevancy, while recall is a measure of how many truly relevant results are
returned.

The precision-recall curve shows the tradeoff between precision and recall for different threshold. A high area under
the curve represents both high recall and high precision, where high precision relates to a low false positive rate, and
high recall relates to a low false negative rate. High scores for both show that the classifier is returning accurate results
(high precision), as well as returning a majority of all positive results (high recall).

A system with high recall but low precision returns many results, but most of its predicted labels are incorrect when
compared to the training labels. A system with high precision but low recall is just the opposite, returning very few
results, but most of its predicted labels are correct when compared to the training labels. An ideal system with high
precision and high recall will return many results, with all results labeled correctly.

Precision (𝑃 ) is defined as the number of true positives (𝑇𝑝) over the number of true positives plus the number of false
positives (𝐹𝑝).

𝑃 =
𝑇𝑝

𝑇𝑝+𝐹𝑝

Recall (𝑅) is defined as the number of true positives (𝑇𝑝) over the number of true positives plus the number of false
negatives (𝐹𝑛).
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𝑅 =
𝑇𝑝

𝑇𝑝+𝐹𝑛

These quantities are also related to the (𝐹1) score, which is defined as the harmonic mean of precision and recall.

𝐹1 = 2𝑃×𝑅
𝑃+𝑅

Note that the precision may not decrease with recall. The definition of precision ( 𝑇𝑝

𝑇𝑝+𝐹𝑝
) shows that lowering the

threshold of a classifier may increase the denominator, by increasing the number of results returned. If the threshold
was previously set too high, the new results may all be true positives, which will increase precision. If the previous
threshold was about right or too low, further lowering the threshold will introduce false positives, decreasing precision.

Recall is defined as 𝑇𝑝

𝑇𝑝+𝐹𝑛
, where 𝑇𝑝 + 𝐹𝑛 does not depend on the classifier threshold. This means that lowering

the classifier threshold may increase recall, by increasing the number of true positive results. It is also possible that
lowering the threshold may leave recall unchanged, while the precision fluctuates.

The relationship between recall and precision can be observed in the stairstep area of the plot - at the edges of these
steps a small change in the threshold considerably reduces precision, with only a minor gain in recall.

Average precision (AP) summarizes such a plot as the weighted mean of precisions achieved at each threshold, with
the increase in recall from the previous threshold used as the weight:

AP =
∑︀

𝑛(𝑅𝑛 −𝑅𝑛−1)𝑃𝑛

where 𝑃𝑛 and 𝑅𝑛 are the precision and recall at the nth threshold. A pair (𝑅𝑘, 𝑃𝑘) is referred to as an operating point.

AP and the trapezoidal area under the operating points (sklearn.metrics.auc) are common ways to summarize
a precision-recall curve that lead to different results. Read more in the User Guide.

Precision-recall curves are typically used in binary classification to study the output of a classifier. In order to extend
the precision-recall curve and average precision to multi-class or multi-label classification, it is necessary to binarize
the output. One curve can be drawn per label, but one can also draw a precision-recall curve by considering each
element of the label indicator matrix as a binary prediction (micro-averaging).

Note:

See also sklearn.metrics.average_precision_score, sklearn.metrics.recall_score,
sklearn.metrics.precision_score, sklearn.metrics.f1_score

from __future__ import print_function

In binary classification settings

Create simple data

Try to differentiate the two first classes of the iris data

from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
import numpy as np

iris = datasets.load_iris()
X = iris.data
y = iris.target

# Add noisy features
random_state = np.random.RandomState(0)
n_samples, n_features = X.shape
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X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

# Limit to the two first classes, and split into training and test
X_train, X_test, y_train, y_test = train_test_split(X[y < 2], y[y < 2],

test_size=.5,
random_state=random_state)

# Create a simple classifier
classifier = svm.LinearSVC(random_state=random_state)
classifier.fit(X_train, y_train)
y_score = classifier.decision_function(X_test)

Compute the average precision score

from sklearn.metrics import average_precision_score
average_precision = average_precision_score(y_test, y_score)

print('Average precision-recall score: {0:0.2f}'.format(
average_precision))

Out:

Average precision-recall score: 0.88

Plot the Precision-Recall curve

from sklearn.metrics import precision_recall_curve
import matplotlib.pyplot as plt

precision, recall, _ = precision_recall_curve(y_test, y_score)

plt.step(recall, precision, color='b', alpha=0.2,
where='post')

plt.fill_between(recall, precision, step='post', alpha=0.2,
color='b')

plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title('2-class Precision-Recall curve: AP={0:0.2f}'.format(

average_precision))
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In multi-label settings

Create multi-label data, fit, and predict

We create a multi-label dataset, to illustrate the precision-recall in multi-label settings

from sklearn.preprocessing import label_binarize

# Use label_binarize to be multi-label like settings
Y = label_binarize(y, classes=[0, 1, 2])
n_classes = Y.shape[1]

# Split into training and test
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5,

random_state=random_state)

# We use OneVsRestClassifier for multi-label prediction
from sklearn.multiclass import OneVsRestClassifier

# Run classifier
classifier = OneVsRestClassifier(svm.LinearSVC(random_state=random_state))
classifier.fit(X_train, Y_train)
y_score = classifier.decision_function(X_test)
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The average precision score in multi-label settings

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import average_precision_score

# For each class
precision = dict()
recall = dict()
average_precision = dict()
for i in range(n_classes):

precision[i], recall[i], _ = precision_recall_curve(Y_test[:, i],
y_score[:, i])

average_precision[i] = average_precision_score(Y_test[:, i], y_score[:, i])

# A "micro-average": quantifying score on all classes jointly
precision["micro"], recall["micro"], _ = precision_recall_curve(Y_test.ravel(),

y_score.ravel())
average_precision["micro"] = average_precision_score(Y_test, y_score,

average="micro")
print('Average precision score, micro-averaged over all classes: {0:0.2f}'

.format(average_precision["micro"]))

Out:

Average precision score, micro-averaged over all classes: 0.43

Plot the micro-averaged Precision-Recall curve

plt.figure()
plt.step(recall['micro'], precision['micro'], color='b', alpha=0.2,

where='post')
plt.fill_between(recall["micro"], precision["micro"], step='post', alpha=0.2,

color='b')

plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title(

'Average precision score, micro-averaged over all classes: AP={0:0.2f}'
.format(average_precision["micro"]))
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Plot Precision-Recall curve for each class and iso-f1 curves

from itertools import cycle
# setup plot details
colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal'])

plt.figure(figsize=(7, 8))
f_scores = np.linspace(0.2, 0.8, num=4)
lines = []
labels = []
for f_score in f_scores:

x = np.linspace(0.01, 1)
y = f_score * x / (2 * x - f_score)
l, = plt.plot(x[y >= 0], y[y >= 0], color='gray', alpha=0.2)
plt.annotate('f1={0:0.1f}'.format(f_score), xy=(0.9, y[45] + 0.02))

lines.append(l)
labels.append('iso-f1 curves')
l, = plt.plot(recall["micro"], precision["micro"], color='gold', lw=2)
lines.append(l)
labels.append('micro-average Precision-recall (area = {0:0.2f})'

''.format(average_precision["micro"]))

for i, color in zip(range(n_classes), colors):
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l, = plt.plot(recall[i], precision[i], color=color, lw=2)
lines.append(l)
labels.append('Precision-recall for class {0} (area = {1:0.2f})'

''.format(i, average_precision[i]))

fig = plt.gcf()
fig.subplots_adjust(bottom=0.25)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('Extension of Precision-Recall curve to multi-class')
plt.legend(lines, labels, loc=(0, -.38), prop=dict(size=14))

plt.show()
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Total running time of the script: ( 0 minutes 0.210 seconds)

Download Python source code: plot_precision_recall.py

Download Jupyter notebook: plot_precision_recall.ipynb

Generated by Sphinx-Gallery
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4.19 Multioutput methods

Examples concerning the sklearn.multioutput module.

4.19.1 Classifier Chain

Example of using classifier chain on a multilabel dataset.

For this example we will use the yeast dataset which contains 2417 datapoints each with 103 features and 14 possible
labels. Each data point has at least one label. As a baseline we first train a logistic regression classifier for each of the
14 labels. To evaluate the performance of these classifiers we predict on a held-out test set and calculate the jaccard
similarity score.

Next we create 10 classifier chains. Each classifier chain contains a logistic regression model for each of the 14 labels.
The models in each chain are ordered randomly. In addition to the 103 features in the dataset, each model gets the
predictions of the preceding models in the chain as features (note that by default at training time each model gets the
true labels as features). These additional features allow each chain to exploit correlations among the classes. The
Jaccard similarity score for each chain tends to be greater than that of the set independent logistic models.

Because the models in each chain are arranged randomly there is significant variation in performance among the
chains. Presumably there is an optimal ordering of the classes in a chain that will yield the best performance. However
we do not know that ordering a priori. Instead we can construct an voting ensemble of classifier chains by averaging
the binary predictions of the chains and apply a threshold of 0.5. The Jaccard similarity score of the ensemble is
greater than that of the independent models and tends to exceed the score of each chain in the ensemble (although this
is not guaranteed with randomly ordered chains).

print(__doc__)

# Author: Adam Kleczewski
# License: BSD 3 clause
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import numpy as np
import matplotlib.pyplot as plt
from sklearn.multioutput import ClassifierChain
from sklearn.model_selection import train_test_split
from sklearn.multiclass import OneVsRestClassifier
from sklearn.metrics import jaccard_similarity_score
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import fetch_mldata

# Load a multi-label dataset
yeast = fetch_mldata('yeast')
X = yeast['data']
Y = yeast['target'].transpose().toarray()
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.2,

random_state=0)

# Fit an independent logistic regression model for each class using the
# OneVsRestClassifier wrapper.
ovr = OneVsRestClassifier(LogisticRegression())
ovr.fit(X_train, Y_train)
Y_pred_ovr = ovr.predict(X_test)
ovr_jaccard_score = jaccard_similarity_score(Y_test, Y_pred_ovr)

# Fit an ensemble of logistic regression classifier chains and take the
# take the average prediction of all the chains.
chains = [ClassifierChain(LogisticRegression(), order='random', random_state=i)

for i in range(10)]
for chain in chains:

chain.fit(X_train, Y_train)

Y_pred_chains = np.array([chain.predict(X_test) for chain in
chains])

chain_jaccard_scores = [jaccard_similarity_score(Y_test, Y_pred_chain >= .5)
for Y_pred_chain in Y_pred_chains]

Y_pred_ensemble = Y_pred_chains.mean(axis=0)
ensemble_jaccard_score = jaccard_similarity_score(Y_test,

Y_pred_ensemble >= .5)

model_scores = [ovr_jaccard_score] + chain_jaccard_scores
model_scores.append(ensemble_jaccard_score)

model_names = ('Independent',
'Chain 1',
'Chain 2',
'Chain 3',
'Chain 4',
'Chain 5',
'Chain 6',
'Chain 7',
'Chain 8',
'Chain 9',
'Chain 10',
'Ensemble')

x_pos = np.arange(len(model_names))

# Plot the Jaccard similarity scores for the independent model, each of the
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# chains, and the ensemble (note that the vertical axis on this plot does
# not begin at 0).

fig, ax = plt.subplots(figsize=(7, 4))
ax.grid(True)
ax.set_title('Classifier Chain Ensemble Performance Comparison')
ax.set_xticks(x_pos)
ax.set_xticklabels(model_names, rotation='vertical')
ax.set_ylabel('Jaccard Similarity Score')
ax.set_ylim([min(model_scores) * .9, max(model_scores) * 1.1])
colors = ['r'] + ['b'] * len(chain_jaccard_scores) + ['g']
ax.bar(x_pos, model_scores, alpha=0.5, color=colors)
plt.tight_layout()
plt.show()

Total running time of the script: ( 0 minutes 4.519 seconds)

Download Python source code: plot_classifier_chain_yeast.py

Download Jupyter notebook: plot_classifier_chain_yeast.ipynb

Generated by Sphinx-Gallery

4.20 Nearest Neighbors

Examples concerning the sklearn.neighbors module.

4.20.1 Anomaly detection with Local Outlier Factor (LOF)

This example presents the Local Outlier Factor (LOF) estimator. The LOF algorithm is an unsupervised outlier detec-
tion method which computes the local density deviation of a given data point with respect to its neighbors. It considers
as outlier samples that have a substantially lower density than their neighbors.

The number of neighbors considered, (parameter n_neighbors) is typically chosen 1) greater than the minimum number
of objects a cluster has to contain, so that other objects can be local outliers relative to this cluster, and 2) smaller than
the maximum number of close by objects that can potentially be local outliers. In practice, such informations are
generally not available, and taking n_neighbors=20 appears to work well in general.
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.neighbors import LocalOutlierFactor

np.random.seed(42)

# Generate train data
X = 0.3 * np.random.randn(100, 2)
# Generate some abnormal novel observations
X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))
X = np.r_[X + 2, X - 2, X_outliers]

# fit the model
clf = LocalOutlierFactor(n_neighbors=20)
y_pred = clf.fit_predict(X)
y_pred_outliers = y_pred[200:]

# plot the level sets of the decision function
xx, yy = np.meshgrid(np.linspace(-5, 5, 50), np.linspace(-5, 5, 50))
Z = clf._decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.title("Local Outlier Factor (LOF)")
plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r)
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a = plt.scatter(X[:200, 0], X[:200, 1], c='white',
edgecolor='k', s=20)

b = plt.scatter(X[200:, 0], X[200:, 1], c='red',
edgecolor='k', s=20)

plt.axis('tight')
plt.xlim((-5, 5))
plt.ylim((-5, 5))
plt.legend([a, b],

["normal observations",
"abnormal observations"],

loc="upper left")
plt.show()

Total running time of the script: ( 0 minutes 0.061 seconds)

Download Python source code: plot_lof.py

Download Jupyter notebook: plot_lof.ipynb

Generated by Sphinx-Gallery

4.20.2 Nearest Neighbors regression

Demonstrate the resolution of a regression problem using a k-Nearest Neighbor and the interpolation of the target
using both barycenter and constant weights.
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print(__doc__)

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Fabian Pedregosa <fabian.pedregosa@inria.fr>
#
# License: BSD 3 clause (C) INRIA

# #############################################################################
# Generate sample data
import numpy as np
import matplotlib.pyplot as plt
from sklearn import neighbors

np.random.seed(0)
X = np.sort(5 * np.random.rand(40, 1), axis=0)
T = np.linspace(0, 5, 500)[:, np.newaxis]
y = np.sin(X).ravel()

# Add noise to targets
y[::5] += 1 * (0.5 - np.random.rand(8))

# #############################################################################
# Fit regression model
n_neighbors = 5
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for i, weights in enumerate(['uniform', 'distance']):
knn = neighbors.KNeighborsRegressor(n_neighbors, weights=weights)
y_ = knn.fit(X, y).predict(T)

plt.subplot(2, 1, i + 1)
plt.scatter(X, y, c='k', label='data')
plt.plot(T, y_, c='g', label='prediction')
plt.axis('tight')
plt.legend()
plt.title("KNeighborsRegressor (k = %i, weights = '%s')" % (n_neighbors,

weights))

plt.show()

Total running time of the script: ( 0 minutes 0.083 seconds)

Download Python source code: plot_regression.py

Download Jupyter notebook: plot_regression.ipynb

Generated by Sphinx-Gallery

4.20.3 Nearest Neighbors Classification

Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class.

•

•
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets

n_neighbors = 15

# import some data to play with
iris = datasets.load_iris()

# we only take the first two features. We could avoid this ugly
# slicing by using a two-dim dataset
X = iris.data[:, :2]
y = iris.target

h = .02 # step size in the mesh

# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])

for weights in ['uniform', 'distance']:
# we create an instance of Neighbours Classifier and fit the data.
clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X, y)

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold,

edgecolor='k', s=20)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title("3-Class classification (k = %i, weights = '%s')"

% (n_neighbors, weights))

plt.show()

Total running time of the script: ( 0 minutes 0.366 seconds)

Download Python source code: plot_classification.py

Download Jupyter notebook: plot_classification.ipynb

Generated by Sphinx-Gallery
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4.20.4 Nearest Centroid Classification

Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class.

•

•

Out:

None 0.813333333333
0.2 0.82

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import datasets
from sklearn.neighbors import NearestCentroid

n_neighbors = 15

# import some data to play with
iris = datasets.load_iris()
# we only take the first two features. We could avoid this ugly
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# slicing by using a two-dim dataset
X = iris.data[:, :2]
y = iris.target

h = .02 # step size in the mesh

# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])

for shrinkage in [None, .2]:
# we create an instance of Neighbours Classifier and fit the data.
clf = NearestCentroid(shrink_threshold=shrinkage)
clf.fit(X, y)
y_pred = clf.predict(X)
print(shrinkage, np.mean(y == y_pred))
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold,

edgecolor='b', s=20)
plt.title("3-Class classification (shrink_threshold=%r)"

% shrinkage)
plt.axis('tight')

plt.show()

Total running time of the script: ( 0 minutes 0.138 seconds)

Download Python source code: plot_nearest_centroid.py

Download Jupyter notebook: plot_nearest_centroid.ipynb

Generated by Sphinx-Gallery

4.20.5 Kernel Density Estimation

This example shows how kernel density estimation (KDE), a powerful non-parametric density estimation technique,
can be used to learn a generative model for a dataset. With this generative model in place, new samples can be drawn.
These new samples reflect the underlying model of the data.
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Out:

best bandwidth: 3.79269019073225

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import load_digits
from sklearn.neighbors import KernelDensity
from sklearn.decomposition import PCA
from sklearn.model_selection import GridSearchCV

# load the data
digits = load_digits()
data = digits.data

# project the 64-dimensional data to a lower dimension
pca = PCA(n_components=15, whiten=False)
data = pca.fit_transform(digits.data)

# use grid search cross-validation to optimize the bandwidth
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params = {'bandwidth': np.logspace(-1, 1, 20)}
grid = GridSearchCV(KernelDensity(), params)
grid.fit(data)

print("best bandwidth: {0}".format(grid.best_estimator_.bandwidth))

# use the best estimator to compute the kernel density estimate
kde = grid.best_estimator_

# sample 44 new points from the data
new_data = kde.sample(44, random_state=0)
new_data = pca.inverse_transform(new_data)

# turn data into a 4x11 grid
new_data = new_data.reshape((4, 11, -1))
real_data = digits.data[:44].reshape((4, 11, -1))

# plot real digits and resampled digits
fig, ax = plt.subplots(9, 11, subplot_kw=dict(xticks=[], yticks=[]))
for j in range(11):

ax[4, j].set_visible(False)
for i in range(4):

im = ax[i, j].imshow(real_data[i, j].reshape((8, 8)),
cmap=plt.cm.binary, interpolation='nearest')

im.set_clim(0, 16)
im = ax[i + 5, j].imshow(new_data[i, j].reshape((8, 8)),

cmap=plt.cm.binary, interpolation='nearest')
im.set_clim(0, 16)

ax[0, 5].set_title('Selection from the input data')
ax[5, 5].set_title('"New" digits drawn from the kernel density model')

plt.show()

Total running time of the script: ( 0 minutes 12.830 seconds)

Download Python source code: plot_digits_kde_sampling.py

Download Jupyter notebook: plot_digits_kde_sampling.ipynb

Generated by Sphinx-Gallery

4.20.6 Kernel Density Estimate of Species Distributions

This shows an example of a neighbors-based query (in particular a kernel density estimate) on geospatial data, using
a Ball Tree built upon the Haversine distance metric – i.e. distances over points in latitude/longitude. The dataset
is provided by Phillips et. al. (2006). If available, the example uses basemap to plot the coast lines and national
boundaries of South America.

This example does not perform any learning over the data (see Species distribution modeling for an example of classi-
fication based on the attributes in this dataset). It simply shows the kernel density estimate of observed data points in
geospatial coordinates.

The two species are:

• “Bradypus variegatus” , the Brown-throated Sloth.

• “Microryzomys minutus” , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia,
Ecuador, Peru, and Venezuela.
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References

• “Maximum entropy modeling of species geographic distributions” S. J. Phillips, R. P. Anderson, R. E. Schapire
- Ecological Modelling, 190:231-259, 2006.

Out:

- computing KDE in spherical coordinates
- plot coastlines from coverage
- computing KDE in spherical coordinates
- plot coastlines from coverage

# Author: Jake Vanderplas <jakevdp@cs.washington.edu>
#
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_species_distributions
from sklearn.datasets.species_distributions import construct_grids
from sklearn.neighbors import KernelDensity
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# if basemap is available, we'll use it.
# otherwise, we'll improvise later...
try:

from mpl_toolkits.basemap import Basemap
basemap = True

except ImportError:
basemap = False

# Get matrices/arrays of species IDs and locations
data = fetch_species_distributions()
species_names = ['Bradypus Variegatus', 'Microryzomys Minutus']

Xtrain = np.vstack([data['train']['dd lat'],
data['train']['dd long']]).T

ytrain = np.array([d.decode('ascii').startswith('micro')
for d in data['train']['species']], dtype='int')

Xtrain *= np.pi / 180. # Convert lat/long to radians

# Set up the data grid for the contour plot
xgrid, ygrid = construct_grids(data)
X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1])
land_reference = data.coverages[6][::5, ::5]
land_mask = (land_reference > -9999).ravel()

xy = np.vstack([Y.ravel(), X.ravel()]).T
xy = xy[land_mask]
xy *= np.pi / 180.

# Plot map of South America with distributions of each species
fig = plt.figure()
fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05)

for i in range(2):
plt.subplot(1, 2, i + 1)

# construct a kernel density estimate of the distribution
print(" - computing KDE in spherical coordinates")
kde = KernelDensity(bandwidth=0.04, metric='haversine',

kernel='gaussian', algorithm='ball_tree')
kde.fit(Xtrain[ytrain == i])

# evaluate only on the land: -9999 indicates ocean
Z = -9999 + np.zeros(land_mask.shape[0])
Z[land_mask] = np.exp(kde.score_samples(xy))
Z = Z.reshape(X.shape)

# plot contours of the density
levels = np.linspace(0, Z.max(), 25)
plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds)

if basemap:
print(" - plot coastlines using basemap")
m = Basemap(projection='cyl', llcrnrlat=Y.min(),

urcrnrlat=Y.max(), llcrnrlon=X.min(),
urcrnrlon=X.max(), resolution='c')

m.drawcoastlines()
m.drawcountries()
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else:
print(" - plot coastlines from coverage")
plt.contour(X, Y, land_reference,

levels=[-9999], colors="k",
linestyles="solid")

plt.xticks([])
plt.yticks([])

plt.title(species_names[i])

plt.show()

Total running time of the script: ( 0 minutes 6.856 seconds)

Download Python source code: plot_species_kde.py

Download Jupyter notebook: plot_species_kde.ipynb

Generated by Sphinx-Gallery

4.20.7 Simple 1D Kernel Density Estimation

This example uses the sklearn.neighbors.KernelDensity class to demonstrate the principles of Kernel
Density Estimation in one dimension.

The first plot shows one of the problems with using histograms to visualize the density of points in 1D. Intuitively, a
histogram can be thought of as a scheme in which a unit “block” is stacked above each point on a regular grid. As
the top two panels show, however, the choice of gridding for these blocks can lead to wildly divergent ideas about
the underlying shape of the density distribution. If we instead center each block on the point it represents, we get the
estimate shown in the bottom left panel. This is a kernel density estimation with a “top hat” kernel. This idea can be
generalized to other kernel shapes: the bottom-right panel of the first figure shows a Gaussian kernel density estimate
over the same distribution.

Scikit-learn implements efficient kernel density estimation using either a Ball Tree or KD Tree structure, through the
sklearn.neighbors.KernelDensity estimator. The available kernels are shown in the second figure of this
example.

The third figure compares kernel density estimates for a distribution of 100 samples in 1 dimension. Though this
example uses 1D distributions, kernel density estimation is easily and efficiently extensible to higher dimensions as
well.

•
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•

•

# Author: Jake Vanderplas <jakevdp@cs.washington.edu>
#
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from sklearn.neighbors import KernelDensity

#----------------------------------------------------------------------
# Plot the progression of histograms to kernels
np.random.seed(1)
N = 20
X = np.concatenate((np.random.normal(0, 1, int(0.3 * N)),

np.random.normal(5, 1, int(0.7 * N))))[:, np.newaxis]
X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis]
bins = np.linspace(-5, 10, 10)

fig, ax = plt.subplots(2, 2, sharex=True, sharey=True)
fig.subplots_adjust(hspace=0.05, wspace=0.05)

# histogram 1
ax[0, 0].hist(X[:, 0], bins=bins, fc='#AAAAFF', normed=True)
ax[0, 0].text(-3.5, 0.31, "Histogram")

# histogram 2
ax[0, 1].hist(X[:, 0], bins=bins + 0.75, fc='#AAAAFF', normed=True)
ax[0, 1].text(-3.5, 0.31, "Histogram, bins shifted")
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# tophat KDE
kde = KernelDensity(kernel='tophat', bandwidth=0.75).fit(X)
log_dens = kde.score_samples(X_plot)
ax[1, 0].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF')
ax[1, 0].text(-3.5, 0.31, "Tophat Kernel Density")

# Gaussian KDE
kde = KernelDensity(kernel='gaussian', bandwidth=0.75).fit(X)
log_dens = kde.score_samples(X_plot)
ax[1, 1].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF')
ax[1, 1].text(-3.5, 0.31, "Gaussian Kernel Density")

for axi in ax.ravel():
axi.plot(X[:, 0], np.zeros(X.shape[0]) - 0.01, '+k')
axi.set_xlim(-4, 9)
axi.set_ylim(-0.02, 0.34)

for axi in ax[:, 0]:
axi.set_ylabel('Normalized Density')

for axi in ax[1, :]:
axi.set_xlabel('x')

#----------------------------------------------------------------------
# Plot all available kernels
X_plot = np.linspace(-6, 6, 1000)[:, None]
X_src = np.zeros((1, 1))

fig, ax = plt.subplots(2, 3, sharex=True, sharey=True)
fig.subplots_adjust(left=0.05, right=0.95, hspace=0.05, wspace=0.05)

def format_func(x, loc):
if x == 0:

return '0'
elif x == 1:

return 'h'
elif x == -1:

return '-h'
else:

return '%ih' % x

for i, kernel in enumerate(['gaussian', 'tophat', 'epanechnikov',
'exponential', 'linear', 'cosine']):

axi = ax.ravel()[i]
log_dens = KernelDensity(kernel=kernel).fit(X_src).score_samples(X_plot)
axi.fill(X_plot[:, 0], np.exp(log_dens), '-k', fc='#AAAAFF')
axi.text(-2.6, 0.95, kernel)

axi.xaxis.set_major_formatter(plt.FuncFormatter(format_func))
axi.xaxis.set_major_locator(plt.MultipleLocator(1))
axi.yaxis.set_major_locator(plt.NullLocator())

axi.set_ylim(0, 1.05)
axi.set_xlim(-2.9, 2.9)

ax[0, 1].set_title('Available Kernels')
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#----------------------------------------------------------------------
# Plot a 1D density example
N = 100
np.random.seed(1)
X = np.concatenate((np.random.normal(0, 1, int(0.3 * N)),

np.random.normal(5, 1, int(0.7 * N))))[:, np.newaxis]

X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis]

true_dens = (0.3 * norm(0, 1).pdf(X_plot[:, 0])
+ 0.7 * norm(5, 1).pdf(X_plot[:, 0]))

fig, ax = plt.subplots()
ax.fill(X_plot[:, 0], true_dens, fc='black', alpha=0.2,

label='input distribution')

for kernel in ['gaussian', 'tophat', 'epanechnikov']:
kde = KernelDensity(kernel=kernel, bandwidth=0.5).fit(X)
log_dens = kde.score_samples(X_plot)
ax.plot(X_plot[:, 0], np.exp(log_dens), '-',

label="kernel = '{0}'".format(kernel))

ax.text(6, 0.38, "N={0} points".format(N))

ax.legend(loc='upper left')
ax.plot(X[:, 0], -0.005 - 0.01 * np.random.random(X.shape[0]), '+k')

ax.set_xlim(-4, 9)
ax.set_ylim(-0.02, 0.4)
plt.show()

Total running time of the script: ( 0 minutes 0.433 seconds)

Download Python source code: plot_kde_1d.py

Download Jupyter notebook: plot_kde_1d.ipynb

Generated by Sphinx-Gallery

4.21 Neural Networks

Examples concerning the sklearn.neural_network module.

4.21.1 Visualization of MLP weights on MNIST

Sometimes looking at the learned coefficients of a neural network can provide insight into the learning behavior. For
example if weights look unstructured, maybe some were not used at all, or if very large coefficients exist, maybe
regularization was too low or the learning rate too high.

This example shows how to plot some of the first layer weights in a MLPClassifier trained on the MNIST dataset.

The input data consists of 28x28 pixel handwritten digits, leading to 784 features in the dataset. Therefore the first
layer weight matrix have the shape (784, hidden_layer_sizes[0]). We can therefore visualize a single column of the
weight matrix as a 28x28 pixel image.
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To make the example run faster, we use very few hidden units, and train only for a very short time. Training longer
would result in weights with a much smoother spatial appearance.

Out:

Iteration 1, loss = 0.32212731
Iteration 2, loss = 0.15738787
Iteration 3, loss = 0.11647274
Iteration 4, loss = 0.09631113
Iteration 5, loss = 0.08074513
Iteration 6, loss = 0.07163224
Iteration 7, loss = 0.06351392
Iteration 8, loss = 0.05694146
Iteration 9, loss = 0.05213487
Iteration 10, loss = 0.04708320
Training set score: 0.985733
Test set score: 0.971000

print(__doc__)

import matplotlib.pyplot as plt
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from sklearn.datasets import fetch_mldata
from sklearn.neural_network import MLPClassifier

mnist = fetch_mldata("MNIST original")
# rescale the data, use the traditional train/test split
X, y = mnist.data / 255., mnist.target
X_train, X_test = X[:60000], X[60000:]
y_train, y_test = y[:60000], y[60000:]

# mlp = MLPClassifier(hidden_layer_sizes=(100, 100), max_iter=400, alpha=1e-4,
# solver='sgd', verbose=10, tol=1e-4, random_state=1)
mlp = MLPClassifier(hidden_layer_sizes=(50,), max_iter=10, alpha=1e-4,

solver='sgd', verbose=10, tol=1e-4, random_state=1,
learning_rate_init=.1)

mlp.fit(X_train, y_train)
print("Training set score: %f" % mlp.score(X_train, y_train))
print("Test set score: %f" % mlp.score(X_test, y_test))

fig, axes = plt.subplots(4, 4)
# use global min / max to ensure all weights are shown on the same scale
vmin, vmax = mlp.coefs_[0].min(), mlp.coefs_[0].max()
for coef, ax in zip(mlp.coefs_[0].T, axes.ravel()):

ax.matshow(coef.reshape(28, 28), cmap=plt.cm.gray, vmin=.5 * vmin,
vmax=.5 * vmax)

ax.set_xticks(())
ax.set_yticks(())

plt.show()

Total running time of the script: ( 0 minutes 13.387 seconds)

Download Python source code: plot_mnist_filters.py

Download Jupyter notebook: plot_mnist_filters.ipynb

Generated by Sphinx-Gallery

4.21.2 Compare Stochastic learning strategies for MLPClassifier

This example visualizes some training loss curves for different stochastic learning strategies, including SGD and
Adam. Because of time-constraints, we use several small datasets, for which L-BFGS might be more suitable. The
general trend shown in these examples seems to carry over to larger datasets, however.

Note that those results can be highly dependent on the value of learning_rate_init.
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Out:

learning on dataset iris
training: constant learning-rate
Training set score: 0.980000
Training set loss: 0.096922
training: constant with momentum
Training set score: 0.980000
Training set loss: 0.050260
training: constant with Nesterov's momentum
Training set score: 0.980000
Training set loss: 0.050277
training: inv-scaling learning-rate
Training set score: 0.360000
Training set loss: 0.979983
training: inv-scaling with momentum
Training set score: 0.860000
Training set loss: 0.504017
training: inv-scaling with Nesterov's momentum
Training set score: 0.860000
Training set loss: 0.504760
training: adam
Training set score: 0.980000
Training set loss: 0.046248

learning on dataset digits
training: constant learning-rate
Training set score: 0.956038
Training set loss: 0.243802
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training: constant with momentum
Training set score: 0.992766
Training set loss: 0.041297
training: constant with Nesterov's momentum
Training set score: 0.993879
Training set loss: 0.042898
training: inv-scaling learning-rate
Training set score: 0.638843
Training set loss: 1.855465
training: inv-scaling with momentum
Training set score: 0.912632
Training set loss: 0.290584
training: inv-scaling with Nesterov's momentum
Training set score: 0.909293
Training set loss: 0.318387
training: adam
Training set score: 0.991653
Training set loss: 0.045934

learning on dataset circles
training: constant learning-rate
Training set score: 0.830000
Training set loss: 0.681498
training: constant with momentum
Training set score: 0.940000
Training set loss: 0.163712
training: constant with Nesterov's momentum
Training set score: 0.940000
Training set loss: 0.163012
training: inv-scaling learning-rate
Training set score: 0.500000
Training set loss: 0.692855
training: inv-scaling with momentum
Training set score: 0.510000
Training set loss: 0.688376
training: inv-scaling with Nesterov's momentum
Training set score: 0.500000
Training set loss: 0.688593
training: adam
Training set score: 0.930000
Training set loss: 0.159988

learning on dataset moons
training: constant learning-rate
Training set score: 0.850000
Training set loss: 0.342245
training: constant with momentum
Training set score: 0.850000
Training set loss: 0.345580
training: constant with Nesterov's momentum
Training set score: 0.850000
Training set loss: 0.336284
training: inv-scaling learning-rate
Training set score: 0.500000
Training set loss: 0.689729
training: inv-scaling with momentum
Training set score: 0.830000
Training set loss: 0.512595
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training: inv-scaling with Nesterov's momentum
Training set score: 0.830000
Training set loss: 0.513034
training: adam
Training set score: 0.850000
Training set loss: 0.334243

print(__doc__)
import matplotlib.pyplot as plt
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import MinMaxScaler
from sklearn import datasets

# different learning rate schedules and momentum parameters
params = [{'solver': 'sgd', 'learning_rate': 'constant', 'momentum': 0,

'learning_rate_init': 0.2},
{'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9,
'nesterovs_momentum': False, 'learning_rate_init': 0.2},

{'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9,
'nesterovs_momentum': True, 'learning_rate_init': 0.2},

{'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': 0,
'learning_rate_init': 0.2},

{'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9,
'nesterovs_momentum': True, 'learning_rate_init': 0.2},

{'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9,
'nesterovs_momentum': False, 'learning_rate_init': 0.2},

{'solver': 'adam', 'learning_rate_init': 0.01}]

labels = ["constant learning-rate", "constant with momentum",
"constant with Nesterov's momentum",
"inv-scaling learning-rate", "inv-scaling with momentum",
"inv-scaling with Nesterov's momentum", "adam"]

plot_args = [{'c': 'red', 'linestyle': '-'},
{'c': 'green', 'linestyle': '-'},
{'c': 'blue', 'linestyle': '-'},
{'c': 'red', 'linestyle': '--'},
{'c': 'green', 'linestyle': '--'},
{'c': 'blue', 'linestyle': '--'},
{'c': 'black', 'linestyle': '-'}]

def plot_on_dataset(X, y, ax, name):
# for each dataset, plot learning for each learning strategy
print("\nlearning on dataset %s" % name)
ax.set_title(name)
X = MinMaxScaler().fit_transform(X)
mlps = []
if name == "digits":

# digits is larger but converges fairly quickly
max_iter = 15

else:
max_iter = 400
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for label, param in zip(labels, params):
print("training: %s" % label)
mlp = MLPClassifier(verbose=0, random_state=0,

max_iter=max_iter, **param)
mlp.fit(X, y)
mlps.append(mlp)
print("Training set score: %f" % mlp.score(X, y))
print("Training set loss: %f" % mlp.loss_)

for mlp, label, args in zip(mlps, labels, plot_args):
ax.plot(mlp.loss_curve_, label=label, **args)

fig, axes = plt.subplots(2, 2, figsize=(15, 10))
# load / generate some toy datasets
iris = datasets.load_iris()
digits = datasets.load_digits()
data_sets = [(iris.data, iris.target),

(digits.data, digits.target),
datasets.make_circles(noise=0.2, factor=0.5, random_state=1),
datasets.make_moons(noise=0.3, random_state=0)]

for ax, data, name in zip(axes.ravel(), data_sets, ['iris', 'digits',
'circles', 'moons']):

plot_on_dataset(*data, ax=ax, name=name)

fig.legend(ax.get_lines(), labels, ncol=3, loc="upper center")
plt.show()

Total running time of the script: ( 0 minutes 5.734 seconds)

Download Python source code: plot_mlp_training_curves.py

Download Jupyter notebook: plot_mlp_training_curves.ipynb

Generated by Sphinx-Gallery

4.21.3 Restricted Boltzmann Machine features for digit classification

For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like
handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (BernoulliRBM ) can perform
effective non-linear feature extraction.

In order to learn good latent representations from a small dataset, we artificially generate more labeled data by per-
turbing the training data with linear shifts of 1 pixel in each direction.

This example shows how to build a classification pipeline with a BernoulliRBM feature extractor and a
LogisticRegression classifier. The hyperparameters of the entire model (learning rate, hidden layer size, regu-
larization) were optimized by grid search, but the search is not reproduced here because of runtime constraints.

Logistic regression on raw pixel values is presented for comparison. The example shows that the features extracted by
the BernoulliRBM help improve the classification accuracy.
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Out:

[BernoulliRBM] Iteration 1, pseudo-likelihood = -25.39, time = 0.40s
[BernoulliRBM] Iteration 2, pseudo-likelihood = -23.77, time = 0.52s
[BernoulliRBM] Iteration 3, pseudo-likelihood = -22.94, time = 0.52s
[BernoulliRBM] Iteration 4, pseudo-likelihood = -21.91, time = 0.51s
[BernoulliRBM] Iteration 5, pseudo-likelihood = -21.69, time = 0.50s
[BernoulliRBM] Iteration 6, pseudo-likelihood = -21.06, time = 0.51s
[BernoulliRBM] Iteration 7, pseudo-likelihood = -20.89, time = 0.50s
[BernoulliRBM] Iteration 8, pseudo-likelihood = -20.64, time = 0.50s
[BernoulliRBM] Iteration 9, pseudo-likelihood = -20.36, time = 0.50s
[BernoulliRBM] Iteration 10, pseudo-likelihood = -20.09, time = 0.50s
[BernoulliRBM] Iteration 11, pseudo-likelihood = -20.08, time = 0.50s
[BernoulliRBM] Iteration 12, pseudo-likelihood = -19.82, time = 0.50s
[BernoulliRBM] Iteration 13, pseudo-likelihood = -19.64, time = 0.49s
[BernoulliRBM] Iteration 14, pseudo-likelihood = -19.61, time = 0.50s
[BernoulliRBM] Iteration 15, pseudo-likelihood = -19.57, time = 0.50s
[BernoulliRBM] Iteration 16, pseudo-likelihood = -19.41, time = 0.50s
[BernoulliRBM] Iteration 17, pseudo-likelihood = -19.30, time = 0.50s
[BernoulliRBM] Iteration 18, pseudo-likelihood = -19.25, time = 0.50s
[BernoulliRBM] Iteration 19, pseudo-likelihood = -19.27, time = 0.50s
[BernoulliRBM] Iteration 20, pseudo-likelihood = -19.01, time = 0.50s

Logistic regression using RBM features:
precision recall f1-score support

0 0.99 0.99 0.99 174
1 0.92 0.95 0.93 184
2 0.95 0.98 0.97 166
3 0.97 0.91 0.94 194
4 0.97 0.95 0.96 186
5 0.93 0.93 0.93 181
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6 0.98 0.97 0.97 207
7 0.95 1.00 0.97 154
8 0.90 0.88 0.89 182
9 0.91 0.93 0.92 169

avg / total 0.95 0.95 0.95 1797

Logistic regression using raw pixel features:
precision recall f1-score support

0 0.85 0.94 0.89 174
1 0.57 0.55 0.56 184
2 0.72 0.85 0.78 166
3 0.76 0.74 0.75 194
4 0.85 0.82 0.84 186
5 0.74 0.75 0.75 181
6 0.93 0.88 0.91 207
7 0.86 0.90 0.88 154
8 0.68 0.55 0.61 182
9 0.71 0.74 0.72 169

avg / total 0.77 0.77 0.77 1797

from __future__ import print_function

print(__doc__)

# Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve
# License: BSD

import numpy as np
import matplotlib.pyplot as plt

from scipy.ndimage import convolve
from sklearn import linear_model, datasets, metrics
from sklearn.model_selection import train_test_split
from sklearn.neural_network import BernoulliRBM
from sklearn.pipeline import Pipeline

# #############################################################################
# Setting up

def nudge_dataset(X, Y):
"""
This produces a dataset 5 times bigger than the original one,
by moving the 8x8 images in X around by 1px to left, right, down, up
"""
direction_vectors = [

[[0, 1, 0],
[0, 0, 0],
[0, 0, 0]],
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[[0, 0, 0],
[1, 0, 0],
[0, 0, 0]],

[[0, 0, 0],
[0, 0, 1],
[0, 0, 0]],

[[0, 0, 0],
[0, 0, 0],
[0, 1, 0]]]

shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant',
weights=w).ravel()

X = np.concatenate([X] +
[np.apply_along_axis(shift, 1, X, vector)
for vector in direction_vectors])

Y = np.concatenate([Y for _ in range(5)], axis=0)
return X, Y

# Load Data
digits = datasets.load_digits()
X = np.asarray(digits.data, 'float32')
X, Y = nudge_dataset(X, digits.target)
X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling

X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.2,
random_state=0)

# Models we will use
logistic = linear_model.LogisticRegression()
rbm = BernoulliRBM(random_state=0, verbose=True)

classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)])

# #############################################################################
# Training

# Hyper-parameters. These were set by cross-validation,
# using a GridSearchCV. Here we are not performing cross-validation to
# save time.
rbm.learning_rate = 0.06
rbm.n_iter = 20
# More components tend to give better prediction performance, but larger
# fitting time
rbm.n_components = 100
logistic.C = 6000.0

# Training RBM-Logistic Pipeline
classifier.fit(X_train, Y_train)

# Training Logistic regression
logistic_classifier = linear_model.LogisticRegression(C=100.0)
logistic_classifier.fit(X_train, Y_train)

# #############################################################################
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# Evaluation

print()
print("Logistic regression using RBM features:\n%s\n" % (

metrics.classification_report(
Y_test,
classifier.predict(X_test))))

print("Logistic regression using raw pixel features:\n%s\n" % (
metrics.classification_report(

Y_test,
logistic_classifier.predict(X_test))))

# #############################################################################
# Plotting

plt.figure(figsize=(4.2, 4))
for i, comp in enumerate(rbm.components_):

plt.subplot(10, 10, i + 1)
plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r,

interpolation='nearest')
plt.xticks(())
plt.yticks(())

plt.suptitle('100 components extracted by RBM', fontsize=16)
plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)

plt.show()

Total running time of the script: ( 0 minutes 32.613 seconds)

Download Python source code: plot_rbm_logistic_classification.py

Download Jupyter notebook: plot_rbm_logistic_classification.ipynb

Generated by Sphinx-Gallery

4.21.4 Varying regularization in Multi-layer Perceptron

A comparison of different values for regularization parameter ‘alpha’ on synthetic datasets. The plot shows that
different alphas yield different decision functions.

Alpha is a parameter for regularization term, aka penalty term, that combats overfitting by constraining the size of the
weights. Increasing alpha may fix high variance (a sign of overfitting) by encouraging smaller weights, resulting in
a decision boundary plot that appears with lesser curvatures. Similarly, decreasing alpha may fix high bias (a sign of
underfitting) by encouraging larger weights, potentially resulting in a more complicated decision boundary.
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print(__doc__)

# Author: Issam H. Laradji
# License: BSD 3 clause

import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier

h = .02 # step size in the mesh

alphas = np.logspace(-5, 3, 5)
names = []
for i in alphas:

names.append('alpha ' + str(i))

classifiers = []
for i in alphas:

classifiers.append(MLPClassifier(alpha=i, random_state=1))

X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
random_state=0, n_clusters_per_class=1)

rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)

datasets = [make_moons(noise=0.3, random_state=0),
make_circles(noise=0.2, factor=0.5, random_state=1),
linearly_separable]
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figure = plt.figure(figsize=(17, 9))
i = 1
# iterate over datasets
for X, y in datasets:

# preprocess dataset, split into training and test part
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

# just plot the dataset first
cm = plt.cm.RdBu
cm_bright = ListedColormap(['#FF0000', '#0000FF'])
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
# Plot the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
# and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
i += 1

# iterate over classifiers
for name, clf in zip(names, classifiers):

ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
if hasattr(clf, "decision_function"):

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
else:

Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

# Put the result into a color plot
Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)

# Plot also the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,

edgecolors='black', s=25)
# and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,

alpha=0.6, edgecolors='black', s=25)

ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(name)
ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),

size=15, horizontalalignment='right')

1108 Chapter 4. Examples



scikit-learn user guide, Release 0.19.1

i += 1

figure.subplots_adjust(left=.02, right=.98)
plt.show()

Total running time of the script: ( 0 minutes 4.975 seconds)

Download Python source code: plot_mlp_alpha.py

Download Jupyter notebook: plot_mlp_alpha.ipynb

Generated by Sphinx-Gallery

4.22 Preprocessing

Examples concerning the sklearn.preprocessing module.

4.22.1 Using FunctionTransformer to select columns

Shows how to use a function transformer in a pipeline. If you know your dataset’s first principle component is irrelevant
for a classification task, you can use the FunctionTransformer to select all but the first column of the PCA transformed
data.

•

•
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import matplotlib.pyplot as plt
import numpy as np

from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import FunctionTransformer

def _generate_vector(shift=0.5, noise=15):
return np.arange(1000) + (np.random.rand(1000) - shift) * noise

def generate_dataset():
"""
This dataset is two lines with a slope ~ 1, where one has
a y offset of ~100
"""
return np.vstack((

np.vstack((
_generate_vector(),
_generate_vector() + 100,

)).T,
np.vstack((

_generate_vector(),
_generate_vector(),

)).T,
)), np.hstack((np.zeros(1000), np.ones(1000)))

def all_but_first_column(X):
return X[:, 1:]

def drop_first_component(X, y):
"""
Create a pipeline with PCA and the column selector and use it to
transform the dataset.
"""
pipeline = make_pipeline(

PCA(), FunctionTransformer(all_but_first_column),
)
X_train, X_test, y_train, y_test = train_test_split(X, y)
pipeline.fit(X_train, y_train)
return pipeline.transform(X_test), y_test

if __name__ == '__main__':
X, y = generate_dataset()
lw = 0
plt.figure()
plt.scatter(X[:, 0], X[:, 1], c=y, lw=lw)
plt.figure()
X_transformed, y_transformed = drop_first_component(*generate_dataset())
plt.scatter(

X_transformed[:, 0],
np.zeros(len(X_transformed)),
c=y_transformed,
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lw=lw,
s=60

)
plt.show()

Total running time of the script: ( 0 minutes 0.094 seconds)

Download Python source code: plot_function_transformer.py

Download Jupyter notebook: plot_function_transformer.ipynb

Generated by Sphinx-Gallery

4.22.2 Importance of Feature Scaling

Feature scaling though standardization (or Z-score normalization) can be an important preprocessing step for many
machine learning algorithms. Standardization involves rescaling the features such that they have the properties of a
standard normal distribution with a mean of zero and a standard deviation of one.

While many algorithms (such as SVM, K-nearest neighbors, and logistic regression) require features to be normalized,
intuitively we can think of Principle Component Analysis (PCA) as being a prime example of when normalization is
important. In PCA we are interested in the components that maximize the variance. If one component (e.g. human
height) varies less than another (e.g. weight) because of their respective scales (meters vs. kilos), PCA might determine
that the direction of maximal variance more closely corresponds with the ‘weight’ axis, if those features are not scaled.
As a change in height of one meter can be considered much more important than the change in weight of one kilogram,
this is clearly incorrect.

To illustrate this, PCA is performed comparing the use of data with StandardScaler applied, to unscaled data.
The results are visualized and a clear difference noted. The 1st principal component in the unscaled set can be seen. It
can be seen that feature #13 dominates the direction, being a whole two orders of magnitude above the other features.
This is contrasted when observing the principal component for the scaled version of the data. In the scaled version,
the orders of magnitude are roughly the same across all the features.

The dataset used is the Wine Dataset available at UCI. This dataset has continuous features that are heterogeneous in
scale due to differing properties that they measure (i.e alcohol content, and malic acid).

The transformed data is then used to train a naive Bayes classifier, and a clear difference in prediction accuracies is
observed wherein the dataset which is scaled before PCA vastly outperforms the unscaled version.
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Out:

Prediction accuracy for the normal test dataset with PCA
81.48%

Prediction accuracy for the standardized test dataset with PCA
98.15%

PC 1 without scaling:
[ 1.76e-03 -8.36e-04 1.55e-04 -5.31e-03 2.02e-02 1.02e-03
1.53e-03 -1.12e-04 6.31e-04 2.33e-03 1.54e-04 7.43e-04
1.00e+00]

PC 1 with scaling:
[ 0.13 -0.26 -0.01 -0.23 0.16 0.39 0.42 -0.28 0.33 -0.11 0.3 0.38
0.28]

from __future__ import print_function
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
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from sklearn.naive_bayes import GaussianNB
from sklearn import metrics
import matplotlib.pyplot as plt
from sklearn.datasets import load_wine
from sklearn.pipeline import make_pipeline
print(__doc__)

# Code source: Tyler Lanigan <tylerlanigan@gmail.com>
# Sebastian Raschka <mail@sebastianraschka.com>

# License: BSD 3 clause

RANDOM_STATE = 42
FIG_SIZE = (10, 7)

features, target = load_wine(return_X_y=True)

# Make a train/test split using 30% test size
X_train, X_test, y_train, y_test = train_test_split(features, target,

test_size=0.30,
random_state=RANDOM_STATE)

# Fit to data and predict using pipelined GNB and PCA.
unscaled_clf = make_pipeline(PCA(n_components=2), GaussianNB())
unscaled_clf.fit(X_train, y_train)
pred_test = unscaled_clf.predict(X_test)

# Fit to data and predict using pipelined scaling, GNB and PCA.
std_clf = make_pipeline(StandardScaler(), PCA(n_components=2), GaussianNB())
std_clf.fit(X_train, y_train)
pred_test_std = std_clf.predict(X_test)

# Show prediction accuracies in scaled and unscaled data.
print('\nPrediction accuracy for the normal test dataset with PCA')
print('{:.2%}\n'.format(metrics.accuracy_score(y_test, pred_test)))

print('\nPrediction accuracy for the standardized test dataset with PCA')
print('{:.2%}\n'.format(metrics.accuracy_score(y_test, pred_test_std)))

# Extract PCA from pipeline
pca = unscaled_clf.named_steps['pca']
pca_std = std_clf.named_steps['pca']

# Show first principal componenets
print('\nPC 1 without scaling:\n', pca.components_[0])
print('\nPC 1 with scaling:\n', pca_std.components_[0])

# Scale and use PCA on X_train data for visualization.
scaler = std_clf.named_steps['standardscaler']
X_train_std = pca_std.transform(scaler.transform(X_train))

# visualize standardized vs. untouched dataset with PCA performed
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=FIG_SIZE)

for l, c, m in zip(range(0, 3), ('blue', 'red', 'green'), ('^', 's', 'o')):
ax1.scatter(X_train[y_train == l, 0], X_train[y_train == l, 1],
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color=c,
label='class %s' % l,
alpha=0.5,
marker=m
)

for l, c, m in zip(range(0, 3), ('blue', 'red', 'green'), ('^', 's', 'o')):
ax2.scatter(X_train_std[y_train == l, 0], X_train_std[y_train == l, 1],

color=c,
label='class %s' % l,
alpha=0.5,
marker=m
)

ax1.set_title('Training dataset after PCA')
ax2.set_title('Standardized training dataset after PCA')

for ax in (ax1, ax2):
ax.set_xlabel('1st principal component')
ax.set_ylabel('2nd principal component')
ax.legend(loc='upper right')
ax.grid()

plt.tight_layout()

plt.show()

Total running time of the script: ( 0 minutes 0.203 seconds)

Download Python source code: plot_scaling_importance.py

Download Jupyter notebook: plot_scaling_importance.ipynb

Generated by Sphinx-Gallery

4.22.3 Compare the effect of different scalers on data with outliers

Feature 0 (median income in a block) and feature 5 (number of households) of the California housing dataset have
very different scales and contain some very large outliers. These two characteristics lead to difficulties to visualize
the data and, more importantly, they can degrade the predictive performance of many machine learning algorithms.
Unscaled data can also slow down or even prevent the convergence of many gradient-based estimators.

Indeed many estimators are designed with the assumption that each feature takes values close to zero or more im-
portantly that all features vary on comparable scales. In particular, metric-based and gradient-based estimators often
assume approximately standardized data (centered features with unit variances). A notable exception are decision
tree-based estimators that are robust to arbitrary scaling of the data.

This example uses different scalers, transformers, and normalizers to bring the data within a pre-defined range.

Scalers are linear (or more precisely affine) transformers and differ from each other in the way to estimate the param-
eters used to shift and scale each feature.

QuantileTransformer provides a non-linear transformation in which distances between marginal outliers and
inliers are shrunk.

Unlike the previous transformations, normalization refers to a per sample transformation instead of a per feature
transformation.

The following code is a bit verbose, feel free to jump directly to the analysis of the results.
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# Author: Raghav RV <rvraghav93@gmail.com>
# Guillaume Lemaitre <g.lemaitre58@gmail.com>
# Thomas Unterthiner
# License: BSD 3 clause

from __future__ import print_function

import numpy as np

import matplotlib as mpl
from matplotlib import pyplot as plt
from matplotlib import cm

from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import minmax_scale
from sklearn.preprocessing import MaxAbsScaler
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import Normalizer
from sklearn.preprocessing.data import QuantileTransformer

from sklearn.datasets import fetch_california_housing

print(__doc__)

dataset = fetch_california_housing()
X_full, y_full = dataset.data, dataset.target

# Take only 2 features to make visualization easier
# Feature of 0 has a long tail distribution.
# Feature 5 has a few but very large outliers.

X = X_full[:, [0, 5]]

distributions = [
('Unscaled data', X),
('Data after standard scaling',

StandardScaler().fit_transform(X)),
('Data after min-max scaling',

MinMaxScaler().fit_transform(X)),
('Data after max-abs scaling',

MaxAbsScaler().fit_transform(X)),
('Data after robust scaling',

RobustScaler(quantile_range=(25, 75)).fit_transform(X)),
('Data after quantile transformation (uniform pdf)',

QuantileTransformer(output_distribution='uniform')
.fit_transform(X)),

('Data after quantile transformation (gaussian pdf)',
QuantileTransformer(output_distribution='normal')
.fit_transform(X)),

('Data after sample-wise L2 normalizing',
Normalizer().fit_transform(X))

]

# scale the output between 0 and 1 for the colorbar
y = minmax_scale(y_full)
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def create_axes(title, figsize=(16, 6)):
fig = plt.figure(figsize=figsize)
fig.suptitle(title)

# define the axis for the first plot
left, width = 0.1, 0.22
bottom, height = 0.1, 0.7
bottom_h = height + 0.15
left_h = left + width + 0.02

rect_scatter = [left, bottom, width, height]
rect_histx = [left, bottom_h, width, 0.1]
rect_histy = [left_h, bottom, 0.05, height]

ax_scatter = plt.axes(rect_scatter)
ax_histx = plt.axes(rect_histx)
ax_histy = plt.axes(rect_histy)

# define the axis for the zoomed-in plot
left = width + left + 0.2
left_h = left + width + 0.02

rect_scatter = [left, bottom, width, height]
rect_histx = [left, bottom_h, width, 0.1]
rect_histy = [left_h, bottom, 0.05, height]

ax_scatter_zoom = plt.axes(rect_scatter)
ax_histx_zoom = plt.axes(rect_histx)
ax_histy_zoom = plt.axes(rect_histy)

# define the axis for the colorbar
left, width = width + left + 0.13, 0.01

rect_colorbar = [left, bottom, width, height]
ax_colorbar = plt.axes(rect_colorbar)

return ((ax_scatter, ax_histy, ax_histx),
(ax_scatter_zoom, ax_histy_zoom, ax_histx_zoom),
ax_colorbar)

def plot_distribution(axes, X, y, hist_nbins=50, title="",
x0_label="", x1_label=""):

ax, hist_X1, hist_X0 = axes

ax.set_title(title)
ax.set_xlabel(x0_label)
ax.set_ylabel(x1_label)

# The scatter plot
colors = cm.plasma_r(y)
ax.scatter(X[:, 0], X[:, 1], alpha=0.5, marker='o', s=5, lw=0, c=colors)

# Removing the top and the right spine for aesthetics
# make nice axis layout
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.get_xaxis().tick_bottom()
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ax.get_yaxis().tick_left()
ax.spines['left'].set_position(('outward', 10))
ax.spines['bottom'].set_position(('outward', 10))

# Histogram for axis X1 (feature 5)
hist_X1.set_ylim(ax.get_ylim())
hist_X1.hist(X[:, 1], bins=hist_nbins, orientation='horizontal',

color='grey', ec='grey')
hist_X1.axis('off')

# Histogram for axis X0 (feature 0)
hist_X0.set_xlim(ax.get_xlim())
hist_X0.hist(X[:, 0], bins=hist_nbins, orientation='vertical',

color='grey', ec='grey')
hist_X0.axis('off')

Two plots will be shown for each scaler/normalizer/transformer. The left figure will show a scatter plot of the full data
set while the right figure will exclude the extreme values considering only 99 % of the data set, excluding marginal
outliers. In addition, the marginal distributions for each feature will be shown on the side of the scatter plot.

def make_plot(item_idx):
title, X = distributions[item_idx]
ax_zoom_out, ax_zoom_in, ax_colorbar = create_axes(title)
axarr = (ax_zoom_out, ax_zoom_in)
plot_distribution(axarr[0], X, y, hist_nbins=200,

x0_label="Median Income",
x1_label="Number of households",
title="Full data")

# zoom-in
zoom_in_percentile_range = (0, 99)
cutoffs_X0 = np.percentile(X[:, 0], zoom_in_percentile_range)
cutoffs_X1 = np.percentile(X[:, 1], zoom_in_percentile_range)

non_outliers_mask = (
np.all(X > [cutoffs_X0[0], cutoffs_X1[0]], axis=1) &
np.all(X < [cutoffs_X0[1], cutoffs_X1[1]], axis=1))

plot_distribution(axarr[1], X[non_outliers_mask], y[non_outliers_mask],
hist_nbins=50,
x0_label="Median Income",
x1_label="Number of households",
title="Zoom-in")

norm = mpl.colors.Normalize(y_full.min(), y_full.max())
mpl.colorbar.ColorbarBase(ax_colorbar, cmap=cm.plasma_r,

norm=norm, orientation='vertical',
label='Color mapping for values of y')

Original data

Each transformation is plotted showing two transformed features, with the left plot showing the entire dataset, and
the right zoomed-in to show the dataset without the marginal outliers. A large majority of the samples are compacted
to a specific range, [0, 10] for the median income and [0, 6] for the number of households. Note that there are
some marginal outliers (some blocks have more than 1200 households). Therefore, a specific pre-processing can
be very beneficial depending of the application. In the following, we present some insights and behaviors of those
pre-processing methods in the presence of marginal outliers.
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make_plot(0)

StandardScaler

StandardScaler removes the mean and scales the data to unit variance. However, the outliers have an influence
when computing the empirical mean and standard deviation which shrink the range of the feature values as shown in
the left figure below. Note in particular that because the outliers on each feature have different magnitudes, the spread
of the transformed data on each feature is very different: most of the data lie in the [-2, 4] range for the transformed
median income feature while the same data is squeezed in the smaller [-0.2, 0.2] range for the transformed number of
households.

StandardScaler therefore cannot guarantee balanced feature scales in the presence of outliers.

make_plot(1)

MinMaxScaler

MinMaxScaler rescales the data set such that all feature values are in the range [0, 1] as shown in the right panel
below. However, this scaling compress all inliers in the narrow range [0, 0.005] for the transformed number of
households.

As StandardScaler, MinMaxScaler is very sensitive to the presence of outliers.
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make_plot(2)

MaxAbsScaler

MaxAbsScaler differs from the previous scaler such that the absolute values are mapped in the range [0, 1]. On
positive only data, this scaler behaves similarly to MinMaxScaler and therefore also suffers from the presence of
large outliers.

make_plot(3)

RobustScaler

Unlike the previous scalers, the centering and scaling statistics of this scaler are based on percentiles and are therefore
not influenced by a few number of very large marginal outliers. Consequently, the resulting range of the transformed
feature values is larger than for the previous scalers and, more importantly, are approximately similar: for both features
most of the transformed values lie in a [-2, 3] range as seen in the zoomed-in figure. Note that the outliers themselves
are still present in the transformed data. If a separate outlier clipping is desirable, a non-linear transformation is
required (see below).

make_plot(4)
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QuantileTransformer (uniform output)

QuantileTransformer applies a non-linear transformation such that the probability density function of each
feature will be mapped to a uniform distribution. In this case, all the data will be mapped in the range [0, 1], even the
outliers which cannot be distinguished anymore from the inliers.

As RobustScaler, QuantileTransformer is robust to outliers in the sense that adding or removing outliers in
the training set will yield approximately the same transformation on held out data. But contrary to RobustScaler,
QuantileTransformer will also automatically collapse any outlier by setting them to the a priori defined range
boundaries (0 and 1).

make_plot(5)

QuantileTransformer (Gaussian output)

QuantileTransformer has an additional output_distribution parameter allowing to match a Gaussian
distribution instead of a uniform distribution. Note that this non-parametetric transformer introduces saturation arti-
facts for extreme values.

make_plot(6)
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Normalizer

The Normalizer rescales the vector for each sample to have unit norm, independently of the distribution of the
samples. It can be seen on both figures below where all samples are mapped onto the unit circle. In our example the
two selected features have only positive values; therefore the transformed data only lie in the positive quadrant. This
would not be the case if some original features had a mix of positive and negative values.

make_plot(7)
plt.show()

Total running time of the script: ( 0 minutes 6.179 seconds)

Download Python source code: plot_all_scaling.py

Download Jupyter notebook: plot_all_scaling.ipynb

Generated by Sphinx-Gallery

4.23 Semi Supervised Classification

Examples concerning the sklearn.semi_supervised module.

4.23. Semi Supervised Classification 1121

https://sphinx-gallery.readthedocs.io


scikit-learn user guide, Release 0.19.1

4.23.1 Decision boundary of label propagation versus SVM on the Iris dataset

Comparison for decision boundary generated on iris dataset between Label Propagation and SVM.

This demonstrates Label Propagation learning a good boundary even with a small amount of labeled data.

print(__doc__)

# Authors: Clay Woolam <clay@woolam.org>
# License: BSD

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn import svm
from sklearn.semi_supervised import label_propagation

rng = np.random.RandomState(0)

iris = datasets.load_iris()

X = iris.data[:, :2]
y = iris.target

# step size in the mesh
h = .02
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y_30 = np.copy(y)
y_30[rng.rand(len(y)) < 0.3] = -1
y_50 = np.copy(y)
y_50[rng.rand(len(y)) < 0.5] = -1
# we create an instance of SVM and fit out data. We do not scale our
# data since we want to plot the support vectors
ls30 = (label_propagation.LabelSpreading().fit(X, y_30),

y_30)
ls50 = (label_propagation.LabelSpreading().fit(X, y_50),

y_50)
ls100 = (label_propagation.LabelSpreading().fit(X, y), y)
rbf_svc = (svm.SVC(kernel='rbf').fit(X, y), y)

# create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

# title for the plots
titles = ['Label Spreading 30% data',

'Label Spreading 50% data',
'Label Spreading 100% data',
'SVC with rbf kernel']

color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)}

for i, (clf, y_train) in enumerate((ls30, ls50, ls100, rbf_svc)):
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
plt.subplot(2, 2, i + 1)
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
plt.axis('off')

# Plot also the training points
colors = [color_map[y] for y in y_train]
plt.scatter(X[:, 0], X[:, 1], c=colors, edgecolors='black')

plt.title(titles[i])

plt.suptitle("Unlabeled points are colored white", y=0.1)
plt.show()

Total running time of the script: ( 0 minutes 1.605 seconds)

Download Python source code: plot_label_propagation_versus_svm_iris.py

Download Jupyter notebook: plot_label_propagation_versus_svm_iris.ipynb

Generated by Sphinx-Gallery
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4.23.2 Label Propagation learning a complex structure

Example of LabelPropagation learning a complex internal structure to demonstrate “manifold learning”. The outer
circle should be labeled “red” and the inner circle “blue”. Because both label groups lie inside their own distinct
shape, we can see that the labels propagate correctly around the circle.

print(__doc__)

# Authors: Clay Woolam <clay@woolam.org>
# Andreas Mueller <amueller@ais.uni-bonn.de>
# License: BSD

import numpy as np
import matplotlib.pyplot as plt
from sklearn.semi_supervised import label_propagation
from sklearn.datasets import make_circles

# generate ring with inner box
n_samples = 200
X, y = make_circles(n_samples=n_samples, shuffle=False)
outer, inner = 0, 1
labels = -np.ones(n_samples)
labels[0] = outer
labels[-1] = inner

# #############################################################################
# Learn with LabelSpreading
label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=0.8)
label_spread.fit(X, labels)

# #############################################################################
# Plot output labels
output_labels = label_spread.transduction_
plt.figure(figsize=(8.5, 4))
plt.subplot(1, 2, 1)
plt.scatter(X[labels == outer, 0], X[labels == outer, 1], color='navy',

marker='s', lw=0, label="outer labeled", s=10)
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plt.scatter(X[labels == inner, 0], X[labels == inner, 1], color='c',
marker='s', lw=0, label='inner labeled', s=10)

plt.scatter(X[labels == -1, 0], X[labels == -1, 1], color='darkorange',
marker='.', label='unlabeled')

plt.legend(scatterpoints=1, shadow=False, loc='upper right')
plt.title("Raw data (2 classes=outer and inner)")

plt.subplot(1, 2, 2)
output_label_array = np.asarray(output_labels)
outer_numbers = np.where(output_label_array == outer)[0]
inner_numbers = np.where(output_label_array == inner)[0]
plt.scatter(X[outer_numbers, 0], X[outer_numbers, 1], color='navy',

marker='s', lw=0, s=10, label="outer learned")
plt.scatter(X[inner_numbers, 0], X[inner_numbers, 1], color='c',

marker='s', lw=0, s=10, label="inner learned")
plt.legend(scatterpoints=1, shadow=False, loc='upper right')
plt.title("Labels learned with Label Spreading (KNN)")

plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92)
plt.show()

Total running time of the script: ( 0 minutes 0.085 seconds)

Download Python source code: plot_label_propagation_structure.py

Download Jupyter notebook: plot_label_propagation_structure.ipynb

Generated by Sphinx-Gallery

4.23.3 Label Propagation digits: Demonstrating performance

This example demonstrates the power of semisupervised learning by training a Label Spreading model to classify
handwritten digits with sets of very few labels.

The handwritten digit dataset has 1797 total points. The model will be trained using all points, but only 30 will be
labeled. Results in the form of a confusion matrix and a series of metrics over each class will be very good.

At the end, the top 10 most uncertain predictions will be shown.
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Out:

Label Spreading model: 30 labeled & 300 unlabeled points (330 total)
precision recall f1-score support

0 1.00 1.00 1.00 23
1 0.58 0.50 0.54 28
2 0.93 0.93 0.93 29
3 0.00 0.00 0.00 28
4 0.92 0.88 0.90 25
5 0.96 0.76 0.85 33
6 0.97 0.97 0.97 36
7 0.89 1.00 0.94 34
8 0.51 0.79 0.62 29
9 0.51 0.80 0.62 35

avg / total 0.73 0.77 0.74 300

Confusion matrix
[[23 0 0 0 0 0 0 0 0]
[ 0 14 2 0 0 1 0 11 0]
[ 0 0 27 0 0 0 2 0 0]
[ 0 3 0 22 0 0 0 0 0]
[ 0 0 0 0 25 0 0 0 8]
[ 0 1 0 0 0 35 0 0 0]
[ 0 0 0 0 0 0 34 0 0]
[ 0 6 0 0 0 0 0 23 0]
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[ 0 0 0 2 1 0 2 2 28]]

print(__doc__)

# Authors: Clay Woolam <clay@woolam.org>
# License: BSD

import numpy as np
import matplotlib.pyplot as plt

from scipy import stats

from sklearn import datasets
from sklearn.semi_supervised import label_propagation

from sklearn.metrics import confusion_matrix, classification_report

digits = datasets.load_digits()
rng = np.random.RandomState(0)
indices = np.arange(len(digits.data))
rng.shuffle(indices)

X = digits.data[indices[:330]]
y = digits.target[indices[:330]]
images = digits.images[indices[:330]]

n_total_samples = len(y)
n_labeled_points = 30

indices = np.arange(n_total_samples)

unlabeled_set = indices[n_labeled_points:]

# #############################################################################
# Shuffle everything around
y_train = np.copy(y)
y_train[unlabeled_set] = -1

# #############################################################################
# Learn with LabelSpreading
lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5)
lp_model.fit(X, y_train)
predicted_labels = lp_model.transduction_[unlabeled_set]
true_labels = y[unlabeled_set]

cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_)

print("Label Spreading model: %d labeled & %d unlabeled points (%d total)" %
(n_labeled_points, n_total_samples - n_labeled_points, n_total_samples))

print(classification_report(true_labels, predicted_labels))

print("Confusion matrix")
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print(cm)

# #############################################################################
# Calculate uncertainty values for each transduced distribution
pred_entropies = stats.distributions.entropy(lp_model.label_distributions_.T)

# #############################################################################
# Pick the top 10 most uncertain labels
uncertainty_index = np.argsort(pred_entropies)[-10:]

# #############################################################################
# Plot
f = plt.figure(figsize=(7, 5))
for index, image_index in enumerate(uncertainty_index):

image = images[image_index]

sub = f.add_subplot(2, 5, index + 1)
sub.imshow(image, cmap=plt.cm.gray_r)
plt.xticks([])
plt.yticks([])
sub.set_title('predict: %i\ntrue: %i' % (

lp_model.transduction_[image_index], y[image_index]))

f.suptitle('Learning with small amount of labeled data')
plt.show()

Total running time of the script: ( 0 minutes 0.621 seconds)

Download Python source code: plot_label_propagation_digits.py

Download Jupyter notebook: plot_label_propagation_digits.ipynb

Generated by Sphinx-Gallery

4.23.4 Label Propagation digits active learning

Demonstrates an active learning technique to learn handwritten digits using label propagation.

We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain
points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times
to have a model trained with 30 labeled examples. Note you can increase this to label more than 30 by changing
max_iterations. Labeling more than 30 can be useful to get a sense for the speed of convergence of this active learning
technique.

A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain
mistakes, but we will train the next model with their true labels.
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Out:

Iteration 0 ______________________________________________________________________
Label Spreading model: 10 labeled & 320 unlabeled (330 total)

precision recall f1-score support

0 0.00 0.00 0.00 24
1 0.51 0.86 0.64 29
2 0.83 0.97 0.90 31
3 0.00 0.00 0.00 28
4 0.00 0.00 0.00 27
5 0.85 0.49 0.62 35
6 0.84 0.95 0.89 40
7 0.70 0.92 0.80 36
8 0.57 0.76 0.65 33
9 0.41 0.86 0.55 37

avg / total 0.51 0.62 0.54 320

Confusion matrix
[[25 3 0 0 0 0 1]
[ 1 30 0 0 0 0 0]
[ 0 0 17 7 0 1 10]
[ 2 0 0 38 0 0 0]
[ 0 3 0 0 33 0 0]
[ 8 0 0 0 0 25 0]
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[ 0 0 3 0 0 2 32]]
Iteration 1 ______________________________________________________________________
Label Spreading model: 15 labeled & 315 unlabeled (330 total)

precision recall f1-score support

0 0.00 0.00 0.00 24
1 0.51 0.75 0.61 28
2 0.91 0.97 0.94 31
3 0.00 0.00 0.00 28
4 0.00 0.00 0.00 27
5 0.84 0.97 0.90 33
6 1.00 0.95 0.97 40
7 0.75 0.92 0.83 36
8 0.46 0.81 0.59 31
9 0.43 0.78 0.56 37

avg / total 0.53 0.66 0.58 315

Confusion matrix
[[21 0 0 0 0 6 1]
[ 1 30 0 0 0 0 0]
[ 0 0 32 0 0 0 1]
[ 2 0 0 38 0 0 0]
[ 0 3 0 0 33 0 0]
[ 6 0 0 0 0 25 0]
[ 0 0 6 0 0 2 29]]

Iteration 2 ______________________________________________________________________
Label Spreading model: 20 labeled & 310 unlabeled (330 total)

precision recall f1-score support

0 1.00 1.00 1.00 22
1 0.67 0.71 0.69 28
2 0.94 0.97 0.95 31
3 0.00 0.00 0.00 28
4 0.85 0.92 0.88 24
5 0.89 0.97 0.93 33
6 1.00 0.95 0.97 40
7 1.00 0.92 0.96 36
8 0.50 0.81 0.62 31
9 0.67 0.78 0.72 37

avg / total 0.76 0.81 0.78 310

Confusion matrix
[[22 0 0 0 0 0 0 0 0]
[ 0 20 0 1 0 0 0 6 1]
[ 0 1 30 0 0 0 0 0 0]
[ 0 1 0 22 0 0 0 1 0]
[ 0 0 0 0 32 0 0 0 1]
[ 0 2 0 0 0 38 0 0 0]
[ 0 0 2 1 0 0 33 0 0]
[ 0 6 0 0 0 0 0 25 0]
[ 0 0 0 2 4 0 0 2 29]]

Iteration 3 ______________________________________________________________________
Label Spreading model: 25 labeled & 305 unlabeled (330 total)

precision recall f1-score support

0 1.00 1.00 1.00 22
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1 0.68 0.85 0.75 27
2 1.00 0.90 0.95 31
3 1.00 0.77 0.87 26
4 1.00 0.92 0.96 24
5 0.89 0.97 0.93 33
6 1.00 0.97 0.99 39
7 0.95 1.00 0.97 35
8 0.66 0.81 0.72 31
9 0.97 0.78 0.87 37

avg / total 0.91 0.90 0.90 305

Confusion matrix
[[22 0 0 0 0 0 0 0 0 0]
[ 0 23 0 0 0 0 0 0 4 0]
[ 0 1 28 0 0 0 0 2 0 0]
[ 0 0 0 20 0 0 0 0 6 0]
[ 0 1 0 0 22 0 0 0 1 0]
[ 0 0 0 0 0 32 0 0 0 1]
[ 0 1 0 0 0 0 38 0 0 0]
[ 0 0 0 0 0 0 0 35 0 0]
[ 0 6 0 0 0 0 0 0 25 0]
[ 0 2 0 0 0 4 0 0 2 29]]

Iteration 4 ______________________________________________________________________
Label Spreading model: 30 labeled & 300 unlabeled (330 total)

precision recall f1-score support

0 1.00 1.00 1.00 22
1 0.68 0.85 0.75 27
2 1.00 0.87 0.93 31
3 0.92 1.00 0.96 23
4 1.00 0.92 0.96 24
5 0.97 0.94 0.95 33
6 1.00 0.97 0.99 39
7 0.95 1.00 0.97 35
8 0.81 0.81 0.81 31
9 0.94 0.86 0.90 35

avg / total 0.93 0.92 0.92 300

Confusion matrix
[[22 0 0 0 0 0 0 0 0 0]
[ 0 23 0 0 0 0 0 0 4 0]
[ 0 1 27 1 0 0 0 2 0 0]
[ 0 0 0 23 0 0 0 0 0 0]
[ 0 1 0 0 22 0 0 0 1 0]
[ 0 0 0 0 0 31 0 0 0 2]
[ 0 1 0 0 0 0 38 0 0 0]
[ 0 0 0 0 0 0 0 35 0 0]
[ 0 6 0 0 0 0 0 0 25 0]
[ 0 2 0 1 0 1 0 0 1 30]]
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print(__doc__)

# Authors: Clay Woolam <clay@woolam.org>
# License: BSD

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

from sklearn import datasets
from sklearn.semi_supervised import label_propagation
from sklearn.metrics import classification_report, confusion_matrix

digits = datasets.load_digits()
rng = np.random.RandomState(0)
indices = np.arange(len(digits.data))
rng.shuffle(indices)

X = digits.data[indices[:330]]
y = digits.target[indices[:330]]
images = digits.images[indices[:330]]

n_total_samples = len(y)
n_labeled_points = 10
max_iterations = 5

unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:]
f = plt.figure()

for i in range(max_iterations):
if len(unlabeled_indices) == 0:

print("No unlabeled items left to label.")
break

y_train = np.copy(y)
y_train[unlabeled_indices] = -1

lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5)
lp_model.fit(X, y_train)

predicted_labels = lp_model.transduction_[unlabeled_indices]
true_labels = y[unlabeled_indices]

cm = confusion_matrix(true_labels, predicted_labels,
labels=lp_model.classes_)

print("Iteration %i %s" % (i, 70 * "_"))
print("Label Spreading model: %d labeled & %d unlabeled (%d total)"

% (n_labeled_points, n_total_samples - n_labeled_points,
n_total_samples))

print(classification_report(true_labels, predicted_labels))

print("Confusion matrix")
print(cm)

# compute the entropies of transduced label distributions
pred_entropies = stats.distributions.entropy(

lp_model.label_distributions_.T)
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# select up to 5 digit examples that the classifier is most uncertain about
uncertainty_index = np.argsort(pred_entropies)[::-1]
uncertainty_index = uncertainty_index[

np.in1d(uncertainty_index, unlabeled_indices)][:5]

# keep track of indices that we get labels for
delete_indices = np.array([])

# for more than 5 iterations, visualize the gain only on the first 5
if i < 5:

f.text(.05, (1 - (i + 1) * .183),
"model %d\n\nfit with\n%d labels" %
((i + 1), i * 5 + 10), size=10)

for index, image_index in enumerate(uncertainty_index):
image = images[image_index]

# for more than 5 iterations, visualize the gain only on the first 5
if i < 5:

sub = f.add_subplot(5, 5, index + 1 + (5 * i))
sub.imshow(image, cmap=plt.cm.gray_r, interpolation='none')
sub.set_title("predict: %i\ntrue: %i" % (

lp_model.transduction_[image_index], y[image_index]), size=10)
sub.axis('off')

# labeling 5 points, remote from labeled set
delete_index, = np.where(unlabeled_indices == image_index)
delete_indices = np.concatenate((delete_indices, delete_index))

unlabeled_indices = np.delete(unlabeled_indices, delete_indices)
n_labeled_points += len(uncertainty_index)

f.suptitle("Active learning with Label Propagation.\nRows show 5 most "
"uncertain labels to learn with the next model.", y=1.15)

plt.subplots_adjust(left=0.2, bottom=0.03, right=0.9, top=0.9, wspace=0.2,
hspace=0.85)

plt.show()

Total running time of the script: ( 0 minutes 1.353 seconds)

Download Python source code: plot_label_propagation_digits_active_learning.py

Download Jupyter notebook: plot_label_propagation_digits_active_learning.
ipynb

Generated by Sphinx-Gallery

4.24 Support Vector Machines

Examples concerning the sklearn.svm module.

4.24.1 Non-linear SVM

Perform binary classification using non-linear SVC with RBF kernel. The target to predict is a XOR of the inputs.

The color map illustrates the decision function learned by the SVC.
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm

xx, yy = np.meshgrid(np.linspace(-3, 3, 500),
np.linspace(-3, 3, 500))

np.random.seed(0)
X = np.random.randn(300, 2)
Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)

# fit the model
clf = svm.NuSVC()
clf.fit(X, Y)

# plot the decision function for each datapoint on the grid
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.imshow(Z, interpolation='nearest',
extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect='auto',
origin='lower', cmap=plt.cm.PuOr_r)

contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2,
linetypes='--')

plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired,
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edgecolors='k')
plt.xticks(())
plt.yticks(())
plt.axis([-3, 3, -3, 3])
plt.show()

Total running time of the script: ( 0 minutes 1.186 seconds)

Download Python source code: plot_svm_nonlinear.py

Download Jupyter notebook: plot_svm_nonlinear.ipynb

Generated by Sphinx-Gallery

4.24.2 SVM: Maximum margin separating hyperplane

Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machine
classifier with linear kernel.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets import make_blobs
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# we create 40 separable points
X, y = make_blobs(n_samples=40, centers=2, random_state=6)

# fit the model, don't regularize for illustration purposes
clf = svm.SVC(kernel='linear', C=1000)
clf.fit(X, y)

plt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)

# plot the decision function
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()

# create grid to evaluate model
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
Z = clf.decision_function(xy).reshape(XX.shape)

# plot decision boundary and margins
ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,

linestyles=['--', '-', '--'])
# plot support vectors
ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,

linewidth=1, facecolors='none')
plt.show()

Total running time of the script: ( 0 minutes 0.044 seconds)

Download Python source code: plot_separating_hyperplane.py

Download Jupyter notebook: plot_separating_hyperplane.ipynb

Generated by Sphinx-Gallery

4.24.3 Support Vector Regression (SVR) using linear and non-linear kernels

Toy example of 1D regression using linear, polynomial and RBF kernels.
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print(__doc__)

import numpy as np
from sklearn.svm import SVR
import matplotlib.pyplot as plt

# #############################################################################
# Generate sample data
X = np.sort(5 * np.random.rand(40, 1), axis=0)
y = np.sin(X).ravel()

# #############################################################################
# Add noise to targets
y[::5] += 3 * (0.5 - np.random.rand(8))

# #############################################################################
# Fit regression model
svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1)
svr_lin = SVR(kernel='linear', C=1e3)
svr_poly = SVR(kernel='poly', C=1e3, degree=2)
y_rbf = svr_rbf.fit(X, y).predict(X)
y_lin = svr_lin.fit(X, y).predict(X)
y_poly = svr_poly.fit(X, y).predict(X)

# #############################################################################
# Look at the results
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lw = 2
plt.scatter(X, y, color='darkorange', label='data')
plt.plot(X, y_rbf, color='navy', lw=lw, label='RBF model')
plt.plot(X, y_lin, color='c', lw=lw, label='Linear model')
plt.plot(X, y_poly, color='cornflowerblue', lw=lw, label='Polynomial model')
plt.xlabel('data')
plt.ylabel('target')
plt.title('Support Vector Regression')
plt.legend()
plt.show()

Total running time of the script: ( 0 minutes 0.965 seconds)

Download Python source code: plot_svm_regression.py

Download Jupyter notebook: plot_svm_regression.ipynb

Generated by Sphinx-Gallery

4.24.4 SVM with custom kernel

Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors.

print(__doc__)
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import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets

# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could

# avoid this ugly slicing by using a two-dim dataset
Y = iris.target

def my_kernel(X, Y):
"""
We create a custom kernel:

(2 0)
k(X, Y) = X ( ) Y.T

(0 1)
"""
M = np.array([[2, 0], [0, 1.0]])
return np.dot(np.dot(X, M), Y.T)

h = .02 # step size in the mesh

# we create an instance of SVM and fit out data.
clf = svm.SVC(kernel=my_kernel)
clf.fit(X, Y)

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired, edgecolors='k')
plt.title('3-Class classification using Support Vector Machine with custom'

' kernel')
plt.axis('tight')
plt.show()

Total running time of the script: ( 0 minutes 0.244 seconds)

Download Python source code: plot_custom_kernel.py

Download Jupyter notebook: plot_custom_kernel.ipynb

Generated by Sphinx-Gallery

4.24.5 SVM: Weighted samples

Plot decision function of a weighted dataset, where the size of points is proportional to its weight.
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The sample weighting rescales the C parameter, which means that the classifier puts more emphasis on getting these
points right. The effect might often be subtle. To emphasize the effect here, we particularly weight outliers, making
the deformation of the decision boundary very visible.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm

def plot_decision_function(classifier, sample_weight, axis, title):
# plot the decision function
xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500))

Z = classifier.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

# plot the line, the points, and the nearest vectors to the plane
axis.contourf(xx, yy, Z, alpha=0.75, cmap=plt.cm.bone)
axis.scatter(X[:, 0], X[:, 1], c=y, s=100 * sample_weight, alpha=0.9,

cmap=plt.cm.bone, edgecolors='black')

axis.axis('off')
axis.set_title(title)

# we create 20 points
np.random.seed(0)
X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)]
y = [1] * 10 + [-1] * 10
sample_weight_last_ten = abs(np.random.randn(len(X)))
sample_weight_constant = np.ones(len(X))
# and bigger weights to some outliers
sample_weight_last_ten[15:] *= 5
sample_weight_last_ten[9] *= 15

# for reference, first fit without class weights
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# fit the model
clf_weights = svm.SVC()
clf_weights.fit(X, y, sample_weight=sample_weight_last_ten)

clf_no_weights = svm.SVC()
clf_no_weights.fit(X, y)

fig, axes = plt.subplots(1, 2, figsize=(14, 6))
plot_decision_function(clf_no_weights, sample_weight_constant, axes[0],

"Constant weights")
plot_decision_function(clf_weights, sample_weight_last_ten, axes[1],

"Modified weights")

plt.show()

Total running time of the script: ( 0 minutes 0.453 seconds)

Download Python source code: plot_weighted_samples.py

Download Jupyter notebook: plot_weighted_samples.ipynb

Generated by Sphinx-Gallery

4.24.6 SVM: Separating hyperplane for unbalanced classes

Find the optimal separating hyperplane using an SVC for classes that are unbalanced.

We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automatically
correction for unbalanced classes.

Note: This example will also work by replacing SVC(kernel="linear") with
SGDClassifier(loss="hinge"). Setting the loss parameter of the SGDClassifier equal to hinge will
yield behaviour such as that of a SVC with a linear kernel.

For example try instead of the SVC:

clf = SGDClassifier(n_iter=100, alpha=0.01)

4.24. Support Vector Machines 1141

https://sphinx-gallery.readthedocs.io


scikit-learn user guide, Release 0.19.1

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm

# we create clusters with 1000 and 100 points
rng = np.random.RandomState(0)
n_samples_1 = 1000
n_samples_2 = 100
X = np.r_[1.5 * rng.randn(n_samples_1, 2),

0.5 * rng.randn(n_samples_2, 2) + [2, 2]]
y = [0] * (n_samples_1) + [1] * (n_samples_2)

# fit the model and get the separating hyperplane
clf = svm.SVC(kernel='linear', C=1.0)
clf.fit(X, y)

# fit the model and get the separating hyperplane using weighted classes
wclf = svm.SVC(kernel='linear', class_weight={1: 10})
wclf.fit(X, y)

# plot separating hyperplanes and samples
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired, edgecolors='k')
plt.legend()
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# plot the decision functions for both classifiers
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()

# create grid to evaluate model
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T

# get the separating hyperplane
Z = clf.decision_function(xy).reshape(XX.shape)

# plot decision boundary and margins
a = ax.contour(XX, YY, Z, colors='k', levels=[0], alpha=0.5, linestyles=['-'])

# get the separating hyperplane for weighted classes
Z = wclf.decision_function(xy).reshape(XX.shape)

# plot decision boundary and margins for weighted classes
b = ax.contour(XX, YY, Z, colors='r', levels=[0], alpha=0.5, linestyles=['-'])

plt.legend([a.collections[0], b.collections[0]], ["non weighted", "weighted"],
loc="upper right")

plt.show()

Total running time of the script: ( 0 minutes 0.064 seconds)

Download Python source code: plot_separating_hyperplane_unbalanced.py

Download Jupyter notebook: plot_separating_hyperplane_unbalanced.ipynb

Generated by Sphinx-Gallery

4.24.7 SVM-Kernels

Three different types of SVM-Kernels are displayed below. The polynomial and RBF are especially useful when the
data-points are not linearly separable.

•
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•

•

print(__doc__)

# Code source: Gaël Varoquaux
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm

# Our dataset and targets
X = np.c_[(.4, -.7),

(-1.5, -1),
(-1.4, -.9),
(-1.3, -1.2),
(-1.1, -.2),
(-1.2, -.4),
(-.5, 1.2),
(-1.5, 2.1),
(1, 1),
# --
(1.3, .8),
(1.2, .5),
(.2, -2),
(.5, -2.4),
(.2, -2.3),
(0, -2.7),
(1.3, 2.1)].T

Y = [0] * 8 + [1] * 8

# figure number
fignum = 1

# fit the model
for kernel in ('linear', 'poly', 'rbf'):

clf = svm.SVC(kernel=kernel, gamma=2)
clf.fit(X, Y)
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# plot the line, the points, and the nearest vectors to the plane
plt.figure(fignum, figsize=(4, 3))
plt.clf()

plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80,
facecolors='none', zorder=10, edgecolors='k')

plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired,
edgecolors='k')

plt.axis('tight')
x_min = -3
x_max = 3
y_min = -3
y_max = 3

XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])

# Put the result into a color plot
Z = Z.reshape(XX.shape)
plt.figure(fignum, figsize=(4, 3))
plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'],

levels=[-.5, 0, .5])

plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)

plt.xticks(())
plt.yticks(())
fignum = fignum + 1

plt.show()

Total running time of the script: ( 0 minutes 0.183 seconds)

Download Python source code: plot_svm_kernels.py

Download Jupyter notebook: plot_svm_kernels.ipynb

Generated by Sphinx-Gallery

4.24.8 SVM-Anova: SVM with univariate feature selection

This example shows how to perform univariate feature selection before running a SVC (support vector classifier) to
improve the classification scores.
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets, feature_selection
from sklearn.model_selection import cross_val_score
from sklearn.pipeline import Pipeline

# #############################################################################
# Import some data to play with
digits = datasets.load_digits()
y = digits.target
# Throw away data, to be in the curse of dimension settings
y = y[:200]
X = digits.data[:200]
n_samples = len(y)
X = X.reshape((n_samples, -1))
# add 200 non-informative features
X = np.hstack((X, 2 * np.random.random((n_samples, 200))))

# #############################################################################
# Create a feature-selection transform and an instance of SVM that we
# combine together to have an full-blown estimator

transform = feature_selection.SelectPercentile(feature_selection.f_classif)
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clf = Pipeline([('anova', transform), ('svc', svm.SVC(C=1.0))])

# #############################################################################
# Plot the cross-validation score as a function of percentile of features
score_means = list()
score_stds = list()
percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100)

for percentile in percentiles:
clf.set_params(anova__percentile=percentile)
# Compute cross-validation score using 1 CPU
this_scores = cross_val_score(clf, X, y, n_jobs=1)
score_means.append(this_scores.mean())
score_stds.append(this_scores.std())

plt.errorbar(percentiles, score_means, np.array(score_stds))

plt.title(
'Performance of the SVM-Anova varying the percentile of features selected')

plt.xlabel('Percentile')
plt.ylabel('Prediction rate')

plt.axis('tight')
plt.show()

Total running time of the script: ( 0 minutes 0.619 seconds)

Download Python source code: plot_svm_anova.py

Download Jupyter notebook: plot_svm_anova.ipynb

Generated by Sphinx-Gallery

4.24.9 SVM Margins Example

The plots below illustrate the effect the parameter C has on the separation line. A large value of C basically tells our
model that we do not have that much faith in our data’s distribution, and will only consider points close to line of
separation.

A small value of C includes more/all the observations, allowing the margins to be calculated using all the data in the
area.

•
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•

print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm

# we create 40 separable points
np.random.seed(0)
X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]
Y = [0] * 20 + [1] * 20

# figure number
fignum = 1

# fit the model
for name, penalty in (('unreg', 1), ('reg', 0.05)):

clf = svm.SVC(kernel='linear', C=penalty)
clf.fit(X, Y)

# get the separating hyperplane
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - (clf.intercept_[0]) / w[1]

# plot the parallels to the separating hyperplane that pass through the
# support vectors (margin away from hyperplane in direction
# perpendicular to hyperplane). This is sqrt(1+a^2) away vertically in
# 2-d.
margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2))
yy_down = yy - np.sqrt(1 + a ** 2) * margin
yy_up = yy + np.sqrt(1 + a ** 2) * margin

# plot the line, the points, and the nearest vectors to the plane
plt.figure(fignum, figsize=(4, 3))
plt.clf()
plt.plot(xx, yy, 'k-')
plt.plot(xx, yy_down, 'k--')
plt.plot(xx, yy_up, 'k--')

plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80,
facecolors='none', zorder=10, edgecolors='k')
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plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired,
edgecolors='k')

plt.axis('tight')
x_min = -4.8
x_max = 4.2
y_min = -6
y_max = 6

XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.predict(np.c_[XX.ravel(), YY.ravel()])

# Put the result into a color plot
Z = Z.reshape(XX.shape)
plt.figure(fignum, figsize=(4, 3))
plt.pcolormesh(XX, YY, Z, cmap=plt.cm.Paired)

plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)

plt.xticks(())
plt.yticks(())
fignum = fignum + 1

plt.show()

Total running time of the script: ( 0 minutes 0.119 seconds)

Download Python source code: plot_svm_margin.py

Download Jupyter notebook: plot_svm_margin.ipynb

Generated by Sphinx-Gallery

4.24.10 One-class SVM with non-linear kernel (RBF)

An example using a one-class SVM for novelty detection.

One-class SVM is an unsupervised algorithm that learns a decision function for novelty detection: classifying new
data as similar or different to the training set.
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.font_manager
from sklearn import svm

xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500))
# Generate train data
X = 0.3 * np.random.randn(100, 2)
X_train = np.r_[X + 2, X - 2]
# Generate some regular novel observations
X = 0.3 * np.random.randn(20, 2)
X_test = np.r_[X + 2, X - 2]
# Generate some abnormal novel observations
X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))

# fit the model
clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)
n_error_train = y_pred_train[y_pred_train == -1].size
n_error_test = y_pred_test[y_pred_test == -1].size
n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size
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# plot the line, the points, and the nearest vectors to the plane
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.title("Novelty Detection")
plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.PuBu)
a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='darkred')
plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='palevioletred')

s = 40
b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white', s=s, edgecolors='k')
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='blueviolet', s=s,

edgecolors='k')
c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='gold', s=s,

edgecolors='k')
plt.axis('tight')
plt.xlim((-5, 5))
plt.ylim((-5, 5))
plt.legend([a.collections[0], b1, b2, c],

["learned frontier", "training observations",
"new regular observations", "new abnormal observations"],

loc="upper left",
prop=matplotlib.font_manager.FontProperties(size=11))

plt.xlabel(
"error train: %d/200 ; errors novel regular: %d/40 ; "
"errors novel abnormal: %d/40"
% (n_error_train, n_error_test, n_error_outliers))

plt.show()

Total running time of the script: ( 0 minutes 0.269 seconds)

Download Python source code: plot_oneclass.py

Download Jupyter notebook: plot_oneclass.ipynb

Generated by Sphinx-Gallery

4.24.11 Plot different SVM classifiers in the iris dataset

Comparison of different linear SVM classifiers on a 2D projection of the iris dataset. We only consider the first 2
features of this dataset:

• Sepal length

• Sepal width

This example shows how to plot the decision surface for four SVM classifiers with different kernels.

The linear models LinearSVC() and SVC(kernel='linear') yield slightly different decision boundaries.
This can be a consequence of the following differences:

• LinearSVC minimizes the squared hinge loss while SVC minimizes the regular hinge loss.

• LinearSVC uses the One-vs-All (also known as One-vs-Rest) multiclass reduction while SVC uses the One-
vs-One multiclass reduction.

Both linear models have linear decision boundaries (intersecting hyperplanes) while the non-linear kernel models
(polynomial or Gaussian RBF) have more flexible non-linear decision boundaries with shapes that depend on the kind
of kernel and its parameters.
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Note: while plotting the decision function of classifiers for toy 2D datasets can help get an intuitive understanding
of their respective expressive power, be aware that those intuitions don’t always generalize to more realistic high-
dimensional problems.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets

def make_meshgrid(x, y, h=.02):
"""Create a mesh of points to plot in

Parameters
----------
x: data to base x-axis meshgrid on
y: data to base y-axis meshgrid on
h: stepsize for meshgrid, optional

Returns
-------
xx, yy : ndarray
"""
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x_min, x_max = x.min() - 1, x.max() + 1
y_min, y_max = y.min() - 1, y.max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))
return xx, yy

def plot_contours(ax, clf, xx, yy, **params):
"""Plot the decision boundaries for a classifier.

Parameters
----------
ax: matplotlib axes object
clf: a classifier
xx: meshgrid ndarray
yy: meshgrid ndarray
params: dictionary of params to pass to contourf, optional
"""
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
out = ax.contourf(xx, yy, Z, **params)
return out

# import some data to play with
iris = datasets.load_iris()
# Take the first two features. We could avoid this by using a two-dim dataset
X = iris.data[:, :2]
y = iris.target

# we create an instance of SVM and fit out data. We do not scale our
# data since we want to plot the support vectors
C = 1.0 # SVM regularization parameter
models = (svm.SVC(kernel='linear', C=C),

svm.LinearSVC(C=C),
svm.SVC(kernel='rbf', gamma=0.7, C=C),
svm.SVC(kernel='poly', degree=3, C=C))

models = (clf.fit(X, y) for clf in models)

# title for the plots
titles = ('SVC with linear kernel',

'LinearSVC (linear kernel)',
'SVC with RBF kernel',
'SVC with polynomial (degree 3) kernel')

# Set-up 2x2 grid for plotting.
fig, sub = plt.subplots(2, 2)
plt.subplots_adjust(wspace=0.4, hspace=0.4)

X0, X1 = X[:, 0], X[:, 1]
xx, yy = make_meshgrid(X0, X1)

for clf, title, ax in zip(models, titles, sub.flatten()):
plot_contours(ax, clf, xx, yy,

cmap=plt.cm.coolwarm, alpha=0.8)
ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
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ax.set_xlabel('Sepal length')
ax.set_ylabel('Sepal width')
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(title)

plt.show()

Total running time of the script: ( 0 minutes 0.599 seconds)

Download Python source code: plot_iris.py

Download Jupyter notebook: plot_iris.ipynb

Generated by Sphinx-Gallery

4.24.12 Scaling the regularization parameter for SVCs

The following example illustrates the effect of scaling the regularization parameter when using Support Vector Ma-
chines for classification. For SVC classification, we are interested in a risk minimization for the equation:

𝐶
∑︁
𝑖=1,𝑛

ℒ(𝑓(𝑥𝑖), 𝑦𝑖) + Ω(𝑤)

where

• 𝐶 is used to set the amount of regularization

• ℒ is a loss function of our samples and our model parameters.

• Ω is a penalty function of our model parameters

If we consider the loss function to be the individual error per sample, then the data-fit term, or the sum of the error for
each sample, will increase as we add more samples. The penalization term, however, will not increase.

When using, for example, cross validation, to set the amount of regularization with C, there will be a different amount
of samples between the main problem and the smaller problems within the folds of the cross validation.

Since our loss function is dependent on the amount of samples, the latter will influence the selected value of C. The
question that arises is How do we optimally adjust C to account for the different amount of training samples?

The figures below are used to illustrate the effect of scaling our C to compensate for the change in the number of
samples, in the case of using an l1 penalty, as well as the l2 penalty.

l1-penalty case

In the l1 case, theory says that prediction consistency (i.e. that under given hypothesis, the estimator learned predicts
as well as a model knowing the true distribution) is not possible because of the bias of the l1. It does say, however,
that model consistency, in terms of finding the right set of non-zero parameters as well as their signs, can be achieved
by scaling C1.

l2-penalty case

The theory says that in order to achieve prediction consistency, the penalty parameter should be kept constant as the
number of samples grow.
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Simulations

The two figures below plot the values of C on the x-axis and the corresponding cross-validation scores on the y-axis,
for several different fractions of a generated data-set.

In the l1 penalty case, the cross-validation-error correlates best with the test-error, when scaling our C with the number
of samples, n, which can be seen in the first figure.

For the l2 penalty case, the best result comes from the case where C is not scaled.

Note:

Two separate datasets are used for the two different plots. The reason behind this is the l1 case works better on
sparse data, while l2 is better suited to the non-sparse case.

•
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print(__doc__)

# Author: Andreas Mueller <amueller@ais.uni-bonn.de>
# Jaques Grobler <jaques.grobler@inria.fr>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.svm import LinearSVC
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import GridSearchCV
from sklearn.utils import check_random_state
from sklearn import datasets

rnd = check_random_state(1)

# set up dataset
n_samples = 100
n_features = 300

# l1 data (only 5 informative features)
X_1, y_1 = datasets.make_classification(n_samples=n_samples,

n_features=n_features, n_informative=5,
random_state=1)
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# l2 data: non sparse, but less features
y_2 = np.sign(.5 - rnd.rand(n_samples))
X_2 = rnd.randn(n_samples, n_features // 5) + y_2[:, np.newaxis]
X_2 += 5 * rnd.randn(n_samples, n_features // 5)

clf_sets = [(LinearSVC(penalty='l1', loss='squared_hinge', dual=False,
tol=1e-3),

np.logspace(-2.3, -1.3, 10), X_1, y_1),
(LinearSVC(penalty='l2', loss='squared_hinge', dual=True,

tol=1e-4),
np.logspace(-4.5, -2, 10), X_2, y_2)]

colors = ['navy', 'cyan', 'darkorange']
lw = 2

for fignum, (clf, cs, X, y) in enumerate(clf_sets):
# set up the plot for each regressor
plt.figure(fignum, figsize=(9, 10))

for k, train_size in enumerate(np.linspace(0.3, 0.7, 3)[::-1]):
param_grid = dict(C=cs)
# To get nice curve, we need a large number of iterations to
# reduce the variance
grid = GridSearchCV(clf, refit=False, param_grid=param_grid,

cv=ShuffleSplit(train_size=train_size,
n_splits=250, random_state=1))

grid.fit(X, y)
scores = grid.cv_results_['mean_test_score']

scales = [(1, 'No scaling'),
((n_samples * train_size), '1/n_samples'),
]

for subplotnum, (scaler, name) in enumerate(scales):
plt.subplot(2, 1, subplotnum + 1)
plt.xlabel('C')
plt.ylabel('CV Score')
grid_cs = cs * float(scaler) # scale the C's
plt.semilogx(grid_cs, scores, label="fraction %.2f" %

train_size, color=colors[k], lw=lw)
plt.title('scaling=%s, penalty=%s, loss=%s' %

(name, clf.penalty, clf.loss))

plt.legend(loc="best")
plt.show()

Total running time of the script: ( 0 minutes 36.497 seconds)

Download Python source code: plot_svm_scale_c.py

Download Jupyter notebook: plot_svm_scale_c.ipynb

Generated by Sphinx-Gallery

4.24.13 RBF SVM parameters

This example illustrates the effect of the parameters gamma and C of the Radial Basis Function (RBF) kernel SVM.
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Intuitively, the gamma parameter defines how far the influence of a single training example reaches, with low values
meaning ‘far’ and high values meaning ‘close’. The gamma parameters can be seen as the inverse of the radius of
influence of samples selected by the model as support vectors.

The C parameter trades off misclassification of training examples against simplicity of the decision surface. A low C
makes the decision surface smooth, while a high C aims at classifying all training examples correctly by giving the
model freedom to select more samples as support vectors.

The first plot is a visualization of the decision function for a variety of parameter values on a simplified classification
problem involving only 2 input features and 2 possible target classes (binary classification). Note that this kind of plot
is not possible to do for problems with more features or target classes.

The second plot is a heatmap of the classifier’s cross-validation accuracy as a function of C and gamma. For this
example we explore a relatively large grid for illustration purposes. In practice, a logarithmic grid from 10−3 to 103

is usually sufficient. If the best parameters lie on the boundaries of the grid, it can be extended in that direction in a
subsequent search.

Note that the heat map plot has a special colorbar with a midpoint value close to the score values of the best performing
models so as to make it easy to tell them appart in the blink of an eye.

The behavior of the model is very sensitive to the gamma parameter. If gamma is too large, the radius of the area of
influence of the support vectors only includes the support vector itself and no amount of regularization with C will be
able to prevent overfitting.

When gamma is very small, the model is too constrained and cannot capture the complexity or “shape” of the data.
The region of influence of any selected support vector would include the whole training set. The resulting model will
behave similarly to a linear model with a set of hyperplanes that separate the centers of high density of any pair of two
classes.

For intermediate values, we can see on the second plot that good models can be found on a diagonal of C and gamma.
Smooth models (lower gamma values) can be made more complex by selecting a larger number of support vectors
(larger C values) hence the diagonal of good performing models.

Finally one can also observe that for some intermediate values of gamma we get equally performing models when C
becomes very large: it is not necessary to regularize by limiting the number of support vectors. The radius of the RBF
kernel alone acts as a good structural regularizer. In practice though it might still be interesting to limit the number of
support vectors with a lower value of C so as to favor models that use less memory and that are faster to predict.

We should also note that small differences in scores results from the random splits of the cross-validation procedure.
Those spurious variations can be smoothed out by increasing the number of CV iterations n_splits at the expense
of compute time. Increasing the value number of C_range and gamma_range steps will increase the resolution of
the hyper-parameter heat map.
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•

•

Out:

The best parameters are {'C': 1.0, 'gamma': 0.10000000000000001} with a score of 0.97

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize

from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_iris
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import GridSearchCV
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# Utility function to move the midpoint of a colormap to be around
# the values of interest.

class MidpointNormalize(Normalize):

def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False):
self.midpoint = midpoint
Normalize.__init__(self, vmin, vmax, clip)

def __call__(self, value, clip=None):
x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1]
return np.ma.masked_array(np.interp(value, x, y))

# #############################################################################
# Load and prepare data set
#
# dataset for grid search

iris = load_iris()
X = iris.data
y = iris.target

# Dataset for decision function visualization: we only keep the first two
# features in X and sub-sample the dataset to keep only 2 classes and
# make it a binary classification problem.

X_2d = X[:, :2]
X_2d = X_2d[y > 0]
y_2d = y[y > 0]
y_2d -= 1

# It is usually a good idea to scale the data for SVM training.
# We are cheating a bit in this example in scaling all of the data,
# instead of fitting the transformation on the training set and
# just applying it on the test set.

scaler = StandardScaler()
X = scaler.fit_transform(X)
X_2d = scaler.fit_transform(X_2d)

# #############################################################################
# Train classifiers
#
# For an initial search, a logarithmic grid with basis
# 10 is often helpful. Using a basis of 2, a finer
# tuning can be achieved but at a much higher cost.

C_range = np.logspace(-2, 10, 13)
gamma_range = np.logspace(-9, 3, 13)
param_grid = dict(gamma=gamma_range, C=C_range)
cv = StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=42)
grid = GridSearchCV(SVC(), param_grid=param_grid, cv=cv)
grid.fit(X, y)

print("The best parameters are %s with a score of %0.2f"
% (grid.best_params_, grid.best_score_))
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# Now we need to fit a classifier for all parameters in the 2d version
# (we use a smaller set of parameters here because it takes a while to train)

C_2d_range = [1e-2, 1, 1e2]
gamma_2d_range = [1e-1, 1, 1e1]
classifiers = []
for C in C_2d_range:

for gamma in gamma_2d_range:
clf = SVC(C=C, gamma=gamma)
clf.fit(X_2d, y_2d)
classifiers.append((C, gamma, clf))

# #############################################################################
# Visualization
#
# draw visualization of parameter effects

plt.figure(figsize=(8, 6))
xx, yy = np.meshgrid(np.linspace(-3, 3, 200), np.linspace(-3, 3, 200))
for (k, (C, gamma, clf)) in enumerate(classifiers):

# evaluate decision function in a grid
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

# visualize decision function for these parameters
plt.subplot(len(C_2d_range), len(gamma_2d_range), k + 1)
plt.title("gamma=10^%d, C=10^%d" % (np.log10(gamma), np.log10(C)),

size='medium')

# visualize parameter's effect on decision function
plt.pcolormesh(xx, yy, -Z, cmap=plt.cm.RdBu)
plt.scatter(X_2d[:, 0], X_2d[:, 1], c=y_2d, cmap=plt.cm.RdBu_r,

edgecolors='k')
plt.xticks(())
plt.yticks(())
plt.axis('tight')

scores = grid.cv_results_['mean_test_score'].reshape(len(C_range),
len(gamma_range))

# Draw heatmap of the validation accuracy as a function of gamma and C
#
# The score are encoded as colors with the hot colormap which varies from dark
# red to bright yellow. As the most interesting scores are all located in the
# 0.92 to 0.97 range we use a custom normalizer to set the mid-point to 0.92 so
# as to make it easier to visualize the small variations of score values in the
# interesting range while not brutally collapsing all the low score values to
# the same color.

plt.figure(figsize=(8, 6))
plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95)
plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot,

norm=MidpointNormalize(vmin=0.2, midpoint=0.92))
plt.xlabel('gamma')
plt.ylabel('C')
plt.colorbar()
plt.xticks(np.arange(len(gamma_range)), gamma_range, rotation=45)
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plt.yticks(np.arange(len(C_range)), C_range)
plt.title('Validation accuracy')
plt.show()

Total running time of the script: ( 0 minutes 6.073 seconds)

Download Python source code: plot_rbf_parameters.py

Download Jupyter notebook: plot_rbf_parameters.ipynb

Generated by Sphinx-Gallery

4.25 Working with text documents

Examples concerning the sklearn.feature_extraction.text module.

4.25.1 FeatureHasher and DictVectorizer Comparison

Compares FeatureHasher and DictVectorizer by using both to vectorize text documents.

The example demonstrates syntax and speed only; it doesn’t actually do anything useful with the extracted vectors.
See the example scripts {document_classification_20newsgroups,clustering}.py for actual learning on text documents.

A discrepancy between the number of terms reported for DictVectorizer and for FeatureHasher is to be expected due
to hash collisions.

# Author: Lars Buitinck
# License: BSD 3 clause

from __future__ import print_function
from collections import defaultdict
import re
import sys
from time import time

import numpy as np

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction import DictVectorizer, FeatureHasher

def n_nonzero_columns(X):
"""Returns the number of non-zero columns in a CSR matrix X."""
return len(np.unique(X.nonzero()[1]))

def tokens(doc):
"""Extract tokens from doc.

This uses a simple regex to break strings into tokens. For a more
principled approach, see CountVectorizer or TfidfVectorizer.
"""
return (tok.lower() for tok in re.findall(r"\w+", doc))

def token_freqs(doc):
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"""Extract a dict mapping tokens from doc to their frequencies."""
freq = defaultdict(int)
for tok in tokens(doc):

freq[tok] += 1
return freq

categories = [
'alt.atheism',
'comp.graphics',
'comp.sys.ibm.pc.hardware',
'misc.forsale',
'rec.autos',
'sci.space',
'talk.religion.misc',

]
# Uncomment the following line to use a larger set (11k+ documents)
#categories = None

print(__doc__)
print("Usage: %s [n_features_for_hashing]" % sys.argv[0])
print(" The default number of features is 2**18.")
print()

try:
n_features = int(sys.argv[1])

except IndexError:
n_features = 2 ** 18

except ValueError:
print("not a valid number of features: %r" % sys.argv[1])
sys.exit(1)

print("Loading 20 newsgroups training data")
raw_data = fetch_20newsgroups(subset='train', categories=categories).data
data_size_mb = sum(len(s.encode('utf-8')) for s in raw_data) / 1e6
print("%d documents - %0.3fMB" % (len(raw_data), data_size_mb))
print()

print("DictVectorizer")
t0 = time()
vectorizer = DictVectorizer()
vectorizer.fit_transform(token_freqs(d) for d in raw_data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration))
print("Found %d unique terms" % len(vectorizer.get_feature_names()))
print()

print("FeatureHasher on frequency dicts")
t0 = time()
hasher = FeatureHasher(n_features=n_features)
X = hasher.transform(token_freqs(d) for d in raw_data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration))
print("Found %d unique terms" % n_nonzero_columns(X))
print()

print("FeatureHasher on raw tokens")
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t0 = time()
hasher = FeatureHasher(n_features=n_features, input_type="string")
X = hasher.transform(tokens(d) for d in raw_data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration))
print("Found %d unique terms" % n_nonzero_columns(X))

Total running time of the script: ( 0 minutes 0.000 seconds)

Download Python source code: hashing_vs_dict_vectorizer.py

Download Jupyter notebook: hashing_vs_dict_vectorizer.ipynb

Generated by Sphinx-Gallery

4.25.2 Clustering text documents using k-means

This is an example showing how the scikit-learn can be used to cluster documents by topics using a bag-of-words
approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays.

Two feature extraction methods can be used in this example:

• TfidfVectorizer uses a in-memory vocabulary (a python dict) to map the most frequent words to features indices
and hence compute a word occurrence frequency (sparse) matrix. The word frequencies are then reweighted
using the Inverse Document Frequency (IDF) vector collected feature-wise over the corpus.

• HashingVectorizer hashes word occurrences to a fixed dimensional space, possibly with collisions. The word
count vectors are then normalized to each have l2-norm equal to one (projected to the euclidean unit-ball) which
seems to be important for k-means to work in high dimensional space.

HashingVectorizer does not provide IDF weighting as this is a stateless model (the fit method does nothing).
When IDF weighting is needed it can be added by pipelining its output to a TfidfTransformer instance.

Two algorithms are demoed: ordinary k-means and its more scalable cousin minibatch k-means.

Additionally, latent semantic analysis can also be used to reduce dimensionality and discover latent patterns in the
data.

It can be noted that k-means (and minibatch k-means) are very sensitive to feature scaling and that in this case the IDF
weighting helps improve the quality of the clustering by quite a lot as measured against the “ground truth” provided
by the class label assignments of the 20 newsgroups dataset.

This improvement is not visible in the Silhouette Coefficient which is small for both as this measure seem to suffer
from the phenomenon called “Concentration of Measure” or “Curse of Dimensionality” for high dimensional datasets
such as text data. Other measures such as V-measure and Adjusted Rand Index are information theoretic based eval-
uation scores: as they are only based on cluster assignments rather than distances, hence not affected by the curse of
dimensionality.

Note: as k-means is optimizing a non-convex objective function, it will likely end up in a local optimum. Several runs
with independent random init might be necessary to get a good convergence.

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Lars Buitinck
# License: BSD 3 clause

from __future__ import print_function

from sklearn.datasets import fetch_20newsgroups
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
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from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import Normalizer
from sklearn import metrics

from sklearn.cluster import KMeans, MiniBatchKMeans

import logging
from optparse import OptionParser
import sys
from time import time

import numpy as np

# Display progress logs on stdout
logging.basicConfig(level=logging.INFO,

format='%(asctime)s %(levelname)s %(message)s')

# parse commandline arguments
op = OptionParser()
op.add_option("--lsa",

dest="n_components", type="int",
help="Preprocess documents with latent semantic analysis.")

op.add_option("--no-minibatch",
action="store_false", dest="minibatch", default=True,
help="Use ordinary k-means algorithm (in batch mode).")

op.add_option("--no-idf",
action="store_false", dest="use_idf", default=True,
help="Disable Inverse Document Frequency feature weighting.")

op.add_option("--use-hashing",
action="store_true", default=False,
help="Use a hashing feature vectorizer")

op.add_option("--n-features", type=int, default=10000,
help="Maximum number of features (dimensions)"

" to extract from text.")
op.add_option("--verbose",

action="store_true", dest="verbose", default=False,
help="Print progress reports inside k-means algorithm.")

print(__doc__)
op.print_help()

def is_interactive():
return not hasattr(sys.modules['__main__'], '__file__')

# work-around for Jupyter notebook and IPython console
argv = [] if is_interactive() else sys.argv[1:]
(opts, args) = op.parse_args(argv)
if len(args) > 0:

op.error("this script takes no arguments.")
sys.exit(1)

# #############################################################################
# Load some categories from the training set
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categories = [
'alt.atheism',
'talk.religion.misc',
'comp.graphics',
'sci.space',

]
# Uncomment the following to do the analysis on all the categories
# categories = None

print("Loading 20 newsgroups dataset for categories:")
print(categories)

dataset = fetch_20newsgroups(subset='all', categories=categories,
shuffle=True, random_state=42)

print("%d documents" % len(dataset.data))
print("%d categories" % len(dataset.target_names))
print()

labels = dataset.target
true_k = np.unique(labels).shape[0]

print("Extracting features from the training dataset using a sparse vectorizer")
t0 = time()
if opts.use_hashing:

if opts.use_idf:
# Perform an IDF normalization on the output of HashingVectorizer
hasher = HashingVectorizer(n_features=opts.n_features,

stop_words='english', alternate_sign=False,
norm=None, binary=False)

vectorizer = make_pipeline(hasher, TfidfTransformer())
else:

vectorizer = HashingVectorizer(n_features=opts.n_features,
stop_words='english',
alternate_sign=False, norm='l2',
binary=False)

else:
vectorizer = TfidfVectorizer(max_df=0.5, max_features=opts.n_features,

min_df=2, stop_words='english',
use_idf=opts.use_idf)

X = vectorizer.fit_transform(dataset.data)

print("done in %fs" % (time() - t0))
print("n_samples: %d, n_features: %d" % X.shape)
print()

if opts.n_components:
print("Performing dimensionality reduction using LSA")
t0 = time()
# Vectorizer results are normalized, which makes KMeans behave as
# spherical k-means for better results. Since LSA/SVD results are
# not normalized, we have to redo the normalization.
svd = TruncatedSVD(opts.n_components)
normalizer = Normalizer(copy=False)
lsa = make_pipeline(svd, normalizer)

X = lsa.fit_transform(X)
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print("done in %fs" % (time() - t0))

explained_variance = svd.explained_variance_ratio_.sum()
print("Explained variance of the SVD step: {}%".format(

int(explained_variance * 100)))

print()

# #############################################################################
# Do the actual clustering

if opts.minibatch:
km = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1,

init_size=1000, batch_size=1000, verbose=opts.verbose)
else:

km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_init=1,
verbose=opts.verbose)

print("Clustering sparse data with %s" % km)
t0 = time()
km.fit(X)
print("done in %0.3fs" % (time() - t0))
print()

print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_))
print("Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_))
print("V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_))
print("Adjusted Rand-Index: %.3f"

% metrics.adjusted_rand_score(labels, km.labels_))
print("Silhouette Coefficient: %0.3f"

% metrics.silhouette_score(X, km.labels_, sample_size=1000))

print()

if not opts.use_hashing:
print("Top terms per cluster:")

if opts.n_components:
original_space_centroids = svd.inverse_transform(km.cluster_centers_)
order_centroids = original_space_centroids.argsort()[:, ::-1]

else:
order_centroids = km.cluster_centers_.argsort()[:, ::-1]

terms = vectorizer.get_feature_names()
for i in range(true_k):

print("Cluster %d:" % i, end='')
for ind in order_centroids[i, :10]:

print(' %s' % terms[ind], end='')
print()

Total running time of the script: ( 0 minutes 0.000 seconds)

Download Python source code: document_clustering.py

Download Jupyter notebook: document_clustering.ipynb

Generated by Sphinx-Gallery
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4.25.3 Classification of text documents using sparse features

This is an example showing how scikit-learn can be used to classify documents by topics using a bag-of-words ap-
proach. This example uses a scipy.sparse matrix to store the features and demonstrates various classifiers that can
efficiently handle sparse matrices.

The dataset used in this example is the 20 newsgroups dataset. It will be automatically downloaded, then cached.

The bar plot indicates the accuracy, training time (normalized) and test time (normalized) of each classifier.

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Olivier Grisel <olivier.grisel@ensta.org>
# Mathieu Blondel <mathieu@mblondel.org>
# Lars Buitinck
# License: BSD 3 clause

from __future__ import print_function

import logging
import numpy as np
from optparse import OptionParser
import sys
from time import time
import matplotlib.pyplot as plt

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_selection import SelectFromModel
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.linear_model import RidgeClassifier
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import Perceptron
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import NearestCentroid
from sklearn.ensemble import RandomForestClassifier
from sklearn.utils.extmath import density
from sklearn import metrics

# Display progress logs on stdout
logging.basicConfig(level=logging.INFO,

format='%(asctime)s %(levelname)s %(message)s')

# parse commandline arguments
op = OptionParser()
op.add_option("--report",

action="store_true", dest="print_report",
help="Print a detailed classification report.")

op.add_option("--chi2_select",
action="store", type="int", dest="select_chi2",
help="Select some number of features using a chi-squared test")

op.add_option("--confusion_matrix",
action="store_true", dest="print_cm",
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help="Print the confusion matrix.")
op.add_option("--top10",

action="store_true", dest="print_top10",
help="Print ten most discriminative terms per class"

" for every classifier.")
op.add_option("--all_categories",

action="store_true", dest="all_categories",
help="Whether to use all categories or not.")

op.add_option("--use_hashing",
action="store_true",
help="Use a hashing vectorizer.")

op.add_option("--n_features",
action="store", type=int, default=2 ** 16,
help="n_features when using the hashing vectorizer.")

op.add_option("--filtered",
action="store_true",
help="Remove newsgroup information that is easily overfit: "

"headers, signatures, and quoting.")

def is_interactive():
return not hasattr(sys.modules['__main__'], '__file__')

# work-around for Jupyter notebook and IPython console
argv = [] if is_interactive() else sys.argv[1:]
(opts, args) = op.parse_args(argv)
if len(args) > 0:

op.error("this script takes no arguments.")
sys.exit(1)

print(__doc__)
op.print_help()
print()

# #############################################################################
# Load some categories from the training set
if opts.all_categories:

categories = None
else:

categories = [
'alt.atheism',
'talk.religion.misc',
'comp.graphics',
'sci.space',

]

if opts.filtered:
remove = ('headers', 'footers', 'quotes')

else:
remove = ()

print("Loading 20 newsgroups dataset for categories:")
print(categories if categories else "all")

data_train = fetch_20newsgroups(subset='train', categories=categories,
shuffle=True, random_state=42,
remove=remove)
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data_test = fetch_20newsgroups(subset='test', categories=categories,
shuffle=True, random_state=42,
remove=remove)

print('data loaded')

# order of labels in `target_names` can be different from `categories`
target_names = data_train.target_names

def size_mb(docs):
return sum(len(s.encode('utf-8')) for s in docs) / 1e6

data_train_size_mb = size_mb(data_train.data)
data_test_size_mb = size_mb(data_test.data)

print("%d documents - %0.3fMB (training set)" % (
len(data_train.data), data_train_size_mb))

print("%d documents - %0.3fMB (test set)" % (
len(data_test.data), data_test_size_mb))

print("%d categories" % len(categories))
print()

# split a training set and a test set
y_train, y_test = data_train.target, data_test.target

print("Extracting features from the training data using a sparse vectorizer")
t0 = time()
if opts.use_hashing:

vectorizer = HashingVectorizer(stop_words='english', alternate_sign=False,
n_features=opts.n_features)

X_train = vectorizer.transform(data_train.data)
else:

vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,
stop_words='english')

X_train = vectorizer.fit_transform(data_train.data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_train_size_mb / duration))
print("n_samples: %d, n_features: %d" % X_train.shape)
print()

print("Extracting features from the test data using the same vectorizer")
t0 = time()
X_test = vectorizer.transform(data_test.data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_test_size_mb / duration))
print("n_samples: %d, n_features: %d" % X_test.shape)
print()

# mapping from integer feature name to original token string
if opts.use_hashing:

feature_names = None
else:

feature_names = vectorizer.get_feature_names()

if opts.select_chi2:
print("Extracting %d best features by a chi-squared test" %

opts.select_chi2)
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t0 = time()
ch2 = SelectKBest(chi2, k=opts.select_chi2)
X_train = ch2.fit_transform(X_train, y_train)
X_test = ch2.transform(X_test)
if feature_names:

# keep selected feature names
feature_names = [feature_names[i] for i

in ch2.get_support(indices=True)]
print("done in %fs" % (time() - t0))
print()

if feature_names:
feature_names = np.asarray(feature_names)

def trim(s):
"""Trim string to fit on terminal (assuming 80-column display)"""
return s if len(s) <= 80 else s[:77] + "..."

# #############################################################################
# Benchmark classifiers
def benchmark(clf):

print('_' * 80)
print("Training: ")
print(clf)
t0 = time()
clf.fit(X_train, y_train)
train_time = time() - t0
print("train time: %0.3fs" % train_time)

t0 = time()
pred = clf.predict(X_test)
test_time = time() - t0
print("test time: %0.3fs" % test_time)

score = metrics.accuracy_score(y_test, pred)
print("accuracy: %0.3f" % score)

if hasattr(clf, 'coef_'):
print("dimensionality: %d" % clf.coef_.shape[1])
print("density: %f" % density(clf.coef_))

if opts.print_top10 and feature_names is not None:
print("top 10 keywords per class:")
for i, label in enumerate(target_names):

top10 = np.argsort(clf.coef_[i])[-10:]
print(trim("%s: %s" % (label, " ".join(feature_names[top10]))))

print()

if opts.print_report:
print("classification report:")
print(metrics.classification_report(y_test, pred,

target_names=target_names))

if opts.print_cm:
print("confusion matrix:")
print(metrics.confusion_matrix(y_test, pred))
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print()
clf_descr = str(clf).split('(')[0]
return clf_descr, score, train_time, test_time

results = []
for clf, name in (

(RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"),
(Perceptron(n_iter=50), "Perceptron"),
(PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"),
(KNeighborsClassifier(n_neighbors=10), "kNN"),
(RandomForestClassifier(n_estimators=100), "Random forest")):

print('=' * 80)
print(name)
results.append(benchmark(clf))

for penalty in ["l2", "l1"]:
print('=' * 80)
print("%s penalty" % penalty.upper())
# Train Liblinear model
results.append(benchmark(LinearSVC(penalty=penalty, dual=False,

tol=1e-3)))

# Train SGD model
results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,

penalty=penalty)))

# Train SGD with Elastic Net penalty
print('=' * 80)
print("Elastic-Net penalty")
results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,

penalty="elasticnet")))

# Train NearestCentroid without threshold
print('=' * 80)
print("NearestCentroid (aka Rocchio classifier)")
results.append(benchmark(NearestCentroid()))

# Train sparse Naive Bayes classifiers
print('=' * 80)
print("Naive Bayes")
results.append(benchmark(MultinomialNB(alpha=.01)))
results.append(benchmark(BernoulliNB(alpha=.01)))

print('=' * 80)
print("LinearSVC with L1-based feature selection")
# The smaller C, the stronger the regularization.
# The more regularization, the more sparsity.
results.append(benchmark(Pipeline([

('feature_selection', SelectFromModel(LinearSVC(penalty="l1", dual=False,
tol=1e-3))),

('classification', LinearSVC(penalty="l2"))])))

# make some plots

indices = np.arange(len(results))
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results = [[x[i] for x in results] for i in range(4)]

clf_names, score, training_time, test_time = results
training_time = np.array(training_time) / np.max(training_time)
test_time = np.array(test_time) / np.max(test_time)

plt.figure(figsize=(12, 8))
plt.title("Score")
plt.barh(indices, score, .2, label="score", color='navy')
plt.barh(indices + .3, training_time, .2, label="training time",

color='c')
plt.barh(indices + .6, test_time, .2, label="test time", color='darkorange')
plt.yticks(())
plt.legend(loc='best')
plt.subplots_adjust(left=.25)
plt.subplots_adjust(top=.95)
plt.subplots_adjust(bottom=.05)

for i, c in zip(indices, clf_names):
plt.text(-.3, i, c)

plt.show()

Total running time of the script: ( 0 minutes 0.000 seconds)

Download Python source code: document_classification_20newsgroups.py

Download Jupyter notebook: document_classification_20newsgroups.ipynb

Generated by Sphinx-Gallery

4.26 Decision Trees

Examples concerning the sklearn.tree module.

4.26.1 Decision Tree Regression

A 1D regression with decision tree.

The decision trees is used to fit a sine curve with addition noisy observation. As a result, it learns local linear regres-
sions approximating the sine curve.

We can see that if the maximum depth of the tree (controlled by the max_depth parameter) is set too high, the decision
trees learn too fine details of the training data and learn from the noise, i.e. they overfit.
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print(__doc__)

# Import the necessary modules and libraries
import numpy as np
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt

# Create a random dataset
rng = np.random.RandomState(1)
X = np.sort(5 * rng.rand(80, 1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - rng.rand(16))

# Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=2)
regr_2 = DecisionTreeRegressor(max_depth=5)
regr_1.fit(X, y)
regr_2.fit(X, y)

# Predict
X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
y_1 = regr_1.predict(X_test)
y_2 = regr_2.predict(X_test)

# Plot the results
plt.figure()
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plt.scatter(X, y, s=20, edgecolor="black",
c="darkorange", label="data")

plt.plot(X_test, y_1, color="cornflowerblue",
label="max_depth=2", linewidth=2)

plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.legend()
plt.show()

Total running time of the script: ( 0 minutes 0.043 seconds)

Download Python source code: plot_tree_regression.py

Download Jupyter notebook: plot_tree_regression.ipynb

Generated by Sphinx-Gallery

4.26.2 Multi-output Decision Tree Regression

An example to illustrate multi-output regression with decision tree.

The decision trees is used to predict simultaneously the noisy x and y observations of a circle given a single underlying
feature. As a result, it learns local linear regressions approximating the circle.

We can see that if the maximum depth of the tree (controlled by the max_depth parameter) is set too high, the decision
trees learn too fine details of the training data and learn from the noise, i.e. they overfit.
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor

# Create a random dataset
rng = np.random.RandomState(1)
X = np.sort(200 * rng.rand(100, 1) - 100, axis=0)
y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T
y[::5, :] += (0.5 - rng.rand(20, 2))

# Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=2)
regr_2 = DecisionTreeRegressor(max_depth=5)
regr_3 = DecisionTreeRegressor(max_depth=8)
regr_1.fit(X, y)
regr_2.fit(X, y)
regr_3.fit(X, y)

# Predict
X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis]
y_1 = regr_1.predict(X_test)
y_2 = regr_2.predict(X_test)
y_3 = regr_3.predict(X_test)
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# Plot the results
plt.figure()
s = 50
s = 25
plt.scatter(y[:, 0], y[:, 1], c="navy", s=s,

edgecolor="black", label="data")
plt.scatter(y_1[:, 0], y_1[:, 1], c="cornflowerblue", s=s,

edgecolor="black", label="max_depth=2")
plt.scatter(y_2[:, 0], y_2[:, 1], c="red", s=s,

edgecolor="black", label="max_depth=5")
plt.scatter(y_3[:, 0], y_3[:, 1], c="orange", s=s,

edgecolor="black", label="max_depth=8")
plt.xlim([-6, 6])
plt.ylim([-6, 6])
plt.xlabel("target 1")
plt.ylabel("target 2")
plt.title("Multi-output Decision Tree Regression")
plt.legend(loc="best")
plt.show()

Total running time of the script: ( 0 minutes 0.182 seconds)

Download Python source code: plot_tree_regression_multioutput.py

Download Jupyter notebook: plot_tree_regression_multioutput.ipynb

Generated by Sphinx-Gallery

4.26.3 Plot the decision surface of a decision tree on the iris dataset

Plot the decision surface of a decision tree trained on pairs of features of the iris dataset.

See decision tree for more information on the estimator.

For each pair of iris features, the decision tree learns decision boundaries made of combinations of simple thresholding
rules inferred from the training samples.
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print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

# Parameters
n_classes = 3
plot_colors = "ryb"
plot_step = 0.02

# Load data
iris = load_iris()

for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3],
[1, 2], [1, 3], [2, 3]]):

# We only take the two corresponding features
X = iris.data[:, pair]
y = iris.target

# Train
clf = DecisionTreeClassifier().fit(X, y)

# Plot the decision boundary
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plt.subplot(2, 3, pairidx + 1)

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),

np.arange(y_min, y_max, plot_step))
plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5)

Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu)

plt.xlabel(iris.feature_names[pair[0]])
plt.ylabel(iris.feature_names[pair[1]])

# Plot the training points
for i, color in zip(range(n_classes), plot_colors):

idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i],

cmap=plt.cm.RdYlBu, edgecolor='black', s=15)

plt.suptitle("Decision surface of a decision tree using paired features")
plt.legend(loc='lower right', borderpad=0, handletextpad=0)
plt.axis("tight")
plt.show()

Total running time of the script: ( 0 minutes 0.609 seconds)

Download Python source code: plot_iris.py

Download Jupyter notebook: plot_iris.ipynb

Generated by Sphinx-Gallery

4.26.4 Understanding the decision tree structure

The decision tree structure can be analysed to gain further insight on the relation between the features and the target
to predict. In this example, we show how to retrieve:

• the binary tree structure;

• the depth of each node and whether or not it’s a leaf;

• the nodes that were reached by a sample using the decision_path method;

• the leaf that was reached by a sample using the apply method;

• the rules that were used to predict a sample;

• the decision path shared by a group of samples.

Out:

The binary tree structure has 5 nodes and has the following tree structure:
node=0 test node: go to node 1 if X[:, 3] <= 0.800000011921 else to node 2.

node=1 leaf node.
node=2 test node: go to node 3 if X[:, 2] <= 4.94999980927 else to node 4.

node=3 leaf node.
node=4 leaf node.
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Rules used to predict sample 0:
decision id node 4 : (X_test[0, -2] (= 5.1) > -2.0)

The following samples [0, 1] share the node [0 2] in the tree
It is 40.0 % of all nodes.

import numpy as np

from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

estimator = DecisionTreeClassifier(max_leaf_nodes=3, random_state=0)
estimator.fit(X_train, y_train)

# The decision estimator has an attribute called tree_ which stores the entire
# tree structure and allows access to low level attributes. The binary tree
# tree_ is represented as a number of parallel arrays. The i-th element of each
# array holds information about the node `i`. Node 0 is the tree's root. NOTE:
# Some of the arrays only apply to either leaves or split nodes, resp. In this
# case the values of nodes of the other type are arbitrary!
#
# Among those arrays, we have:
# - left_child, id of the left child of the node
# - right_child, id of the right child of the node
# - feature, feature used for splitting the node
# - threshold, threshold value at the node
#

# Using those arrays, we can parse the tree structure:

n_nodes = estimator.tree_.node_count
children_left = estimator.tree_.children_left
children_right = estimator.tree_.children_right
feature = estimator.tree_.feature
threshold = estimator.tree_.threshold

# The tree structure can be traversed to compute various properties such
# as the depth of each node and whether or not it is a leaf.
node_depth = np.zeros(shape=n_nodes, dtype=np.int64)
is_leaves = np.zeros(shape=n_nodes, dtype=bool)
stack = [(0, -1)] # seed is the root node id and its parent depth
while len(stack) > 0:

node_id, parent_depth = stack.pop()
node_depth[node_id] = parent_depth + 1

# If we have a test node
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if (children_left[node_id] != children_right[node_id]):
stack.append((children_left[node_id], parent_depth + 1))
stack.append((children_right[node_id], parent_depth + 1))

else:
is_leaves[node_id] = True

print("The binary tree structure has %s nodes and has "
"the following tree structure:"
% n_nodes)

for i in range(n_nodes):
if is_leaves[i]:

print("%snode=%s leaf node." % (node_depth[i] * "\t", i))
else:

print("%snode=%s test node: go to node %s if X[:, %s] <= %s else to "
"node %s."
% (node_depth[i] * "\t",

i,
children_left[i],
feature[i],
threshold[i],
children_right[i],
))

print()

# First let's retrieve the decision path of each sample. The decision_path
# method allows to retrieve the node indicator functions. A non zero element of
# indicator matrix at the position (i, j) indicates that the sample i goes
# through the node j.

node_indicator = estimator.decision_path(X_test)

# Similarly, we can also have the leaves ids reached by each sample.

leave_id = estimator.apply(X_test)

# Now, it's possible to get the tests that were used to predict a sample or
# a group of samples. First, let's make it for the sample.

sample_id = 0
node_index = node_indicator.indices[node_indicator.indptr[sample_id]:

node_indicator.indptr[sample_id + 1]]

print('Rules used to predict sample %s: ' % sample_id)
for node_id in node_index:

if leave_id[sample_id] != node_id:
continue

if (X_test[sample_id, feature[node_id]] <= threshold[node_id]):
threshold_sign = "<="

else:
threshold_sign = ">"

print("decision id node %s : (X_test[%s, %s] (= %s) %s %s)"
% (node_id,

sample_id,
feature[node_id],
X_test[sample_id, feature[node_id]],
threshold_sign,
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threshold[node_id]))

# For a group of samples, we have the following common node.
sample_ids = [0, 1]
common_nodes = (node_indicator.toarray()[sample_ids].sum(axis=0) ==

len(sample_ids))

common_node_id = np.arange(n_nodes)[common_nodes]

print("\nThe following samples %s share the node %s in the tree"
% (sample_ids, common_node_id))

print("It is %s %% of all nodes." % (100 * len(common_node_id) / n_nodes,))

Total running time of the script: ( 0 minutes 0.003 seconds)

Download Python source code: plot_unveil_tree_structure.py

Download Jupyter notebook: plot_unveil_tree_structure.ipynb

Generated by Sphinx-Gallery

Download all examples in Python source code: auto_examples_python.zip

Download all examples in Jupyter notebooks: auto_examples_jupyter.zip

Generated by Sphinx-Gallery
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CHAPTER

FIVE

API REFERENCE

This is the class and function reference of scikit-learn. Please refer to the full user guide for further details, as the class
and function raw specifications may not be enough to give full guidelines on their uses.

5.1 sklearn.base: Base classes and utility functions

Base classes for all estimators.

5.1.1 Base classes

base.BaseEstimator Base class for all estimators in scikit-learn
base.BiclusterMixin Mixin class for all bicluster estimators in scikit-learn
base.ClassifierMixin Mixin class for all classifiers in scikit-learn.
base.ClusterMixin Mixin class for all cluster estimators in scikit-learn.
base.DensityMixin Mixin class for all density estimators in scikit-learn.
base.RegressorMixin Mixin class for all regression estimators in scikit-learn.
base.TransformerMixin Mixin class for all transformers in scikit-learn.

sklearn.base.BaseEstimator

class sklearn.base.BaseEstimator
Base class for all estimators in scikit-learn

Notes

All estimators should specify all the parameters that can be set at the class level in their __init__ as explicit
keyword arguments (no *args or **kwargs).

Methods

get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__()
Initialize self. See help(type(self)) for accurate signature.
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get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.base.BaseEstimator

• Feature Union with Heterogeneous Data Sources

sklearn.base.BiclusterMixin

class sklearn.base.BiclusterMixin
Mixin class for all bicluster estimators in scikit-learn

Methods

get_indices(i) Row and column indices of the i’th bicluster.
get_shape(i) Shape of the i’th bicluster.
get_submatrix(i, data) Returns the submatrix corresponding to bicluster i.

__init__()
Initialize self. See help(type(self)) for accurate signature.

biclusters_
Convenient way to get row and column indicators together.

Returns the rows_ and columns_ members.

get_indices(i)
Row and column indices of the i’th bicluster.

Only works if rows_ and columns_ attributes exist.

Parameters i : int

The index of the cluster.

Returns row_ind : np.array, dtype=np.intp

Indices of rows in the dataset that belong to the bicluster.

col_ind : np.array, dtype=np.intp
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Indices of columns in the dataset that belong to the bicluster.

get_shape(i)
Shape of the i’th bicluster.

Parameters i : int

The index of the cluster.

Returns shape : (int, int)

Number of rows and columns (resp.) in the bicluster.

get_submatrix(i, data)
Returns the submatrix corresponding to bicluster i.

Parameters i : int

The index of the cluster.

data : array

The data.

Returns submatrix : array

The submatrix corresponding to bicluster i.

Notes

Works with sparse matrices. Only works if rows_ and columns_ attributes exist.

sklearn.base.ClassifierMixin

class sklearn.base.ClassifierMixin
Mixin class for all classifiers in scikit-learn.

Methods

score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and
labels.

__init__()
Initialize self. See help(type(self)) for accurate signature.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional
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Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

sklearn.base.ClusterMixin

class sklearn.base.ClusterMixin
Mixin class for all cluster estimators in scikit-learn.

Methods

fit_predict(X[, y]) Performs clustering on X and returns cluster labels.

__init__()
Initialize self. See help(type(self)) for accurate signature.

fit_predict(X, y=None)
Performs clustering on X and returns cluster labels.

Parameters X : ndarray, shape (n_samples, n_features)

Input data.

Returns y : ndarray, shape (n_samples,)

cluster labels

sklearn.base.DensityMixin

class sklearn.base.DensityMixin
Mixin class for all density estimators in scikit-learn.

Methods

score(X[, y]) Returns the score of the model on the data X

__init__()
Initialize self. See help(type(self)) for accurate signature.

score(X, y=None)
Returns the score of the model on the data X

Parameters X : array-like, shape = (n_samples, n_features)

Returns score : float

sklearn.base.RegressorMixin

class sklearn.base.RegressorMixin
Mixin class for all regression estimators in scikit-learn.
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Methods

score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-
diction.

__init__()
Initialize self. See help(type(self)) for accurate signature.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

sklearn.base.TransformerMixin

class sklearn.base.TransformerMixin
Mixin class for all transformers in scikit-learn.

Methods

fit_transform(X[, y]) Fit to data, then transform it.

__init__()
Initialize self. See help(type(self)) for accurate signature.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]
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Transformed array.

Examples using sklearn.base.TransformerMixin

• Feature Union with Heterogeneous Data Sources

5.1.2 Functions

base.clone(estimator[, safe]) Constructs a new estimator with the same parameters.
config_context(**new_config) Context manager for global scikit-learn configuration
get_config() Retrieve current values for configuration set by

set_config
set_config([assume_finite]) Set global scikit-learn configuration

sklearn.base.clone

sklearn.base.clone(estimator, safe=True)
Constructs a new estimator with the same parameters.

Clone does a deep copy of the model in an estimator without actually copying attached data. It yields a new
estimator with the same parameters that has not been fit on any data.

Parameters estimator : estimator object, or list, tuple or set of objects

The estimator or group of estimators to be cloned

safe : boolean, optional

If safe is false, clone will fall back to a deep copy on objects that are not estimators.

sklearn.config_context

sklearn.config_context(**new_config)
Context manager for global scikit-learn configuration

Parameters assume_finite : bool, optional

If True, validation for finiteness will be skipped, saving time, but leading to potential
crashes. If False, validation for finiteness will be performed, avoiding error.

Notes

All settings, not just those presently modified, will be returned to their previous values when the context manager
is exited. This is not thread-safe.

Examples

>>> import sklearn
>>> from sklearn.utils.validation import assert_all_finite
>>> with sklearn.config_context(assume_finite=True):
... assert_all_finite([float('nan')])
>>> with sklearn.config_context(assume_finite=True):
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... with sklearn.config_context(assume_finite=False):

... assert_all_finite([float('nan')])

...
Traceback (most recent call last):
...
ValueError: Input contains NaN, ...

sklearn.get_config

sklearn.get_config()
Retrieve current values for configuration set by set_config

Returns config : dict

Keys are parameter names that can be passed to set_config.

sklearn.set_config

sklearn.set_config(assume_finite=None)
Set global scikit-learn configuration

Parameters assume_finite : bool, optional

If True, validation for finiteness will be skipped, saving time, but leading to potential
crashes. If False, validation for finiteness will be performed, avoiding error.

5.2 sklearn.calibration: Probability Calibration

Calibration of predicted probabilities.

User guide: See the Probability calibration section for further details.

calibration.CalibratedClassifierCV ([. . . ]) Probability calibration with isotonic regression or sigmoid.

5.2.1 sklearn.calibration.CalibratedClassifierCV

class sklearn.calibration.CalibratedClassifierCV(base_estimator=None,
method=’sigmoid’, cv=3)

Probability calibration with isotonic regression or sigmoid.

With this class, the base_estimator is fit on the train set of the cross-validation generator and the test set is used
for calibration. The probabilities for each of the folds are then averaged for prediction. In case that cv=”prefit”
is passed to __init__, it is assumed that base_estimator has been fitted already and all data is used for calibration.
Note that data for fitting the classifier and for calibrating it must be disjoint.

Read more in the User Guide.

Parameters base_estimator : instance BaseEstimator

The classifier whose output decision function needs to be calibrated to offer more ac-
curate predict_proba outputs. If cv=prefit, the classifier must have been fit already on
data.

method : ‘sigmoid’ or ‘isotonic’
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The method to use for calibration. Can be ‘sigmoid’ which corresponds to Platt’s
method or ‘isotonic’ which is a non-parametric approach. It is not advised to use iso-
tonic calibration with too few calibration samples (<<1000) since it tends to overfit.
Use sigmoids (Platt’s calibration) in this case.

cv : integer, cross-validation generator, iterable or “prefit”, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, if y is binary or multiclass, sklearn.
model_selection.StratifiedKFold is used. If y is neither binary nor
multiclass, sklearn.model_selection.KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

If “prefit” is passed, it is assumed that base_estimator has been fitted already and all
data is used for calibration.

Attributes classes_ : array, shape (n_classes)

The class labels.

calibrated_classifiers_ : list (len() equal to cv or 1 if cv == “prefit”)

The list of calibrated classifiers, one for each crossvalidation fold, which has been fitted
on all but the validation fold and calibrated on the validation fold.

References

[R1], [R2], [R3], [R4]

Methods

fit(X, y[, sample_weight]) Fit the calibrated model
get_params([deep]) Get parameters for this estimator.
predict(X) Predict the target of new samples.
predict_proba(X) Posterior probabilities of classification
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(base_estimator=None, method=’sigmoid’, cv=3)

fit(X, y, sample_weight=None)
Fit the calibrated model

Parameters X : array-like, shape (n_samples, n_features)

Training data.

y : array-like, shape (n_samples,)
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Target values.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted.

Returns self : object

Returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict the target of new samples. Can be different from the prediction of the uncalibrated classifier.

Parameters X : array-like, shape (n_samples, n_features)

The samples.

Returns C : array, shape (n_samples,)

The predicted class.

predict_proba(X)
Posterior probabilities of classification

This function returns posterior probabilities of classification according to each class on an array of test
vectors X.

Parameters X : array-like, shape (n_samples, n_features)

The samples.

Returns C : array, shape (n_samples, n_classes)

The predicted probas.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.calibration.CalibratedClassifierCV

• Probability calibration of classifiers

• Probability Calibration curves

• Probability Calibration for 3-class classification

calibration.calibration_curve(y_true,
y_prob)

Compute true and predicted probabilities for a calibration
curve.

5.2.2 sklearn.calibration.calibration_curve

sklearn.calibration.calibration_curve(y_true, y_prob, normalize=False, n_bins=5)
Compute true and predicted probabilities for a calibration curve.

Calibration curves may also be referred to as reliability diagrams.

Read more in the User Guide.

Parameters y_true : array, shape (n_samples,)

True targets.

y_prob : array, shape (n_samples,)

Probabilities of the positive class.

normalize : bool, optional, default=False

Whether y_prob needs to be normalized into the bin [0, 1], i.e. is not a proper proba-
bility. If True, the smallest value in y_prob is mapped onto 0 and the largest one onto
1.

n_bins : int

Number of bins. A bigger number requires more data.

Returns prob_true : array, shape (n_bins,)

The true probability in each bin (fraction of positives).

prob_pred : array, shape (n_bins,)

The mean predicted probability in each bin.

References

Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good Probabilities With Supervised Learning,
in Proceedings of the 22nd International Conference on Machine Learning (ICML). See section 4 (Qualitative
Analysis of Predictions).
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Examples using sklearn.calibration.calibration_curve

• Probability Calibration curves

• Comparison of Calibration of Classifiers

5.3 sklearn.cluster: Clustering

The sklearn.cluster module gathers popular unsupervised clustering algorithms.

User guide: See the Clustering section for further details.

5.3.1 Classes

cluster.AffinityPropagation([damping, . . . ]) Perform Affinity Propagation Clustering of data.
cluster.AgglomerativeClustering([. . . ]) Agglomerative Clustering
cluster.Birch([threshold, branching_factor, . . . ]) Implements the Birch clustering algorithm.
cluster.DBSCAN ([eps, min_samples, metric, . . . ]) Perform DBSCAN clustering from vector array or distance

matrix.
cluster.FeatureAgglomeration([n_clusters,
. . . ])

Agglomerate features.

cluster.KMeans([n_clusters, init, n_init, . . . ]) K-Means clustering
cluster.MiniBatchKMeans([n_clusters, init, . . . ]) Mini-Batch K-Means clustering
cluster.MeanShift([bandwidth, seeds, . . . ]) Mean shift clustering using a flat kernel.
cluster.SpectralClustering([n_clusters, . . . ]) Apply clustering to a projection to the normalized lapla-

cian.

sklearn.cluster.AffinityPropagation

class sklearn.cluster.AffinityPropagation(damping=0.5, max_iter=200, conver-
gence_iter=15, copy=True, preference=None,
affinity=’euclidean’, verbose=False)

Perform Affinity Propagation Clustering of data.

Read more in the User Guide.

Parameters damping : float, optional, default: 0.5

Damping factor (between 0.5 and 1) is the extent to which the current value is main-
tained relative to incoming values (weighted 1 - damping). This in order to avoid nu-
merical oscillations when updating these values (messages).

max_iter : int, optional, default: 200

Maximum number of iterations.

convergence_iter : int, optional, default: 15

Number of iterations with no change in the number of estimated clusters that stops the
convergence.

copy : boolean, optional, default: True

Make a copy of input data.

preference : array-like, shape (n_samples,) or float, optional
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Preferences for each point - points with larger values of preferences are more likely to
be chosen as exemplars. The number of exemplars, ie of clusters, is influenced by the
input preferences value. If the preferences are not passed as arguments, they will be set
to the median of the input similarities.

affinity : string, optional, default=‘‘euclidean‘‘

Which affinity to use. At the moment precomputed and euclidean are supported.
euclidean uses the negative squared euclidean distance between points.

verbose : boolean, optional, default: False

Whether to be verbose.

Attributes cluster_centers_indices_ : array, shape (n_clusters,)

Indices of cluster centers

cluster_centers_ : array, shape (n_clusters, n_features)

Cluster centers (if affinity != precomputed).

labels_ : array, shape (n_samples,)

Labels of each point

affinity_matrix_ : array, shape (n_samples, n_samples)

Stores the affinity matrix used in fit.

n_iter_ : int

Number of iterations taken to converge.

Notes

For an example, see examples/cluster/plot_affinity_propagation.py.

The algorithmic complexity of affinity propagation is quadratic in the number of points.

References

Brendan J. Frey and Delbert Dueck, “Clustering by Passing Messages Between Data Points”, Science Feb. 2007

Methods

fit(X[, y]) Create affinity matrix from negative euclidean dis-
tances, then apply affinity propagation clustering.

fit_predict(X[, y]) Performs clustering on X and returns cluster labels.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict the closest cluster each sample in X belongs to.
set_params(**params) Set the parameters of this estimator.

__init__(damping=0.5, max_iter=200, convergence_iter=15, copy=True, preference=None, affin-
ity=’euclidean’, verbose=False)

fit(X, y=None)
Create affinity matrix from negative euclidean distances, then apply affinity propagation clustering.
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Parameters X : array-like, shape (n_samples, n_features) or (n_samples, n_samples)

Data matrix or, if affinity is precomputed, matrix of similarities / affinities.

y : Ignored

fit_predict(X, y=None)
Performs clustering on X and returns cluster labels.

Parameters X : ndarray, shape (n_samples, n_features)

Input data.

Returns y : ndarray, shape (n_samples,)

cluster labels

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict the closest cluster each sample in X belongs to.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

New data to predict.

Returns labels : array, shape (n_samples,)

Index of the cluster each sample belongs to.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.cluster.AffinityPropagation

• Demo of affinity propagation clustering algorithm

• Comparing different clustering algorithms on toy datasets

sklearn.cluster.AgglomerativeClustering

class sklearn.cluster.AgglomerativeClustering(n_clusters=2, affinity=’euclidean’, mem-
ory=None, connectivity=None, com-
pute_full_tree=’auto’, linkage=’ward’,
pooling_func=<function mean>)

Agglomerative Clustering
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Recursively merges the pair of clusters that minimally increases a given linkage distance.

Read more in the User Guide.

Parameters n_clusters : int, default=2

The number of clusters to find.

affinity : string or callable, default: “euclidean”

Metric used to compute the linkage. Can be “euclidean”, “l1”, “l2”, “manhattan”, “co-
sine”, or ‘precomputed’. If linkage is “ward”, only “euclidean” is accepted.

memory : None, str or object with the joblib.Memory interface, optional

Used to cache the output of the computation of the tree. By default, no caching is done.
If a string is given, it is the path to the caching directory.

connectivity : array-like or callable, optional

Connectivity matrix. Defines for each sample the neighboring samples following a
given structure of the data. This can be a connectivity matrix itself or a callable that
transforms the data into a connectivity matrix, such as derived from kneighbors_graph.
Default is None, i.e, the hierarchical clustering algorithm is unstructured.

compute_full_tree : bool or ‘auto’ (optional)

Stop early the construction of the tree at n_clusters. This is useful to decrease compu-
tation time if the number of clusters is not small compared to the number of samples.
This option is useful only when specifying a connectivity matrix. Note also that when
varying the number of clusters and using caching, it may be advantageous to compute
the full tree.

linkage : {“ward”, “complete”, “average”}, optional, default: “ward”

Which linkage criterion to use. The linkage criterion determines which distance to use
between sets of observation. The algorithm will merge the pairs of cluster that minimize
this criterion.

• ward minimizes the variance of the clusters being merged.

• average uses the average of the distances of each observation of the two sets.

• complete or maximum linkage uses the maximum distances between all observations
of the two sets.

pooling_func : callable, default=np.mean

This combines the values of agglomerated features into a single value, and should accept
an array of shape [M, N] and the keyword argument axis=1, and reduce it to an array
of size [M].

Attributes labels_ : array [n_samples]

cluster labels for each point

n_leaves_ : int

Number of leaves in the hierarchical tree.

n_components_ : int

The estimated number of connected components in the graph.

children_ : array-like, shape (n_nodes-1, 2)
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The children of each non-leaf node. Values less than n_samples correspond to leaves
of the tree which are the original samples. A node i greater than or equal to n_samples
is a non-leaf node and has children children_[i - n_samples]. Alternatively at the i-th
iteration, children[i][0] and children[i][1] are merged to form node n_samples + i

Methods

fit(X[, y]) Fit the hierarchical clustering on the data
fit_predict(X[, y]) Performs clustering on X and returns cluster labels.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__(n_clusters=2, affinity=’euclidean’, memory=None, connectivity=None, com-
pute_full_tree=’auto’, linkage=’ward’, pooling_func=<function mean>)

fit(X, y=None)
Fit the hierarchical clustering on the data

Parameters X : array-like, shape = [n_samples, n_features]

The samples a.k.a. observations.

y : Ignored

Returns self :

fit_predict(X, y=None)
Performs clustering on X and returns cluster labels.

Parameters X : ndarray, shape (n_samples, n_features)

Input data.

Returns y : ndarray, shape (n_samples,)

cluster labels

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :
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Examples using sklearn.cluster.AgglomerativeClustering

• Agglomerative clustering with and without structure

• Agglomerative clustering with different metrics

• Comparing different clustering algorithms on toy datasets

• Various Agglomerative Clustering on a 2D embedding of digits

• A demo of structured Ward hierarchical clustering on a raccoon face image

• Hierarchical clustering: structured vs unstructured ward

sklearn.cluster.Birch

class sklearn.cluster.Birch(threshold=0.5, branching_factor=50, n_clusters=3, com-
pute_labels=True, copy=True)

Implements the Birch clustering algorithm.

It is a memory-efficient, online-learning algorithm provided as an alternative to MiniBatchKMeans. It con-
structs a tree data structure with the cluster centroids being read off the leaf. These can be either the final cluster
centroids or can be provided as input to another clustering algorithm such as AgglomerativeClustering.

Read more in the User Guide.

Parameters threshold : float, default 0.5

The radius of the subcluster obtained by merging a new sample and the closest subclus-
ter should be lesser than the threshold. Otherwise a new subcluster is started. Setting
this value to be very low promotes splitting and vice-versa.

branching_factor : int, default 50

Maximum number of CF subclusters in each node. If a new samples enters such that
the number of subclusters exceed the branching_factor then that node is split into two
nodes with the subclusters redistributed in each. The parent subcluster of that node is
removed and two new subclusters are added as parents of the 2 split nodes.

n_clusters : int, instance of sklearn.cluster model, default 3

Number of clusters after the final clustering step, which treats the subclusters from the
leaves as new samples.

• None : the final clustering step is not performed and the subclusters are returned as
they are.

• sklearn.cluster Estimator : If a model is provided, the model is fit treating the sub-
clusters as new samples and the initial data is mapped to the label of the closest
subcluster.

• int : the model fit is AgglomerativeClustering with n_clusters set to be equal
to the int.

compute_labels : bool, default True

Whether or not to compute labels for each fit.

copy : bool, default True

Whether or not to make a copy of the given data. If set to False, the initial data will be
overwritten.

Attributes root_ : _CFNode
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Root of the CFTree.

dummy_leaf_ : _CFNode

Start pointer to all the leaves.

subcluster_centers_ : ndarray,

Centroids of all subclusters read directly from the leaves.

subcluster_labels_ : ndarray,

Labels assigned to the centroids of the subclusters after they are clustered globally.

labels_ : ndarray, shape (n_samples,)

Array of labels assigned to the input data. if partial_fit is used instead of fit, they are
assigned to the last batch of data.

Notes

The tree data structure consists of nodes with each node consisting of a number of subclusters. The maximum
number of subclusters in a node is determined by the branching factor. Each subcluster maintains a linear sum,
squared sum and the number of samples in that subcluster. In addition, each subcluster can also have a node as
its child, if the subcluster is not a member of a leaf node.

For a new point entering the root, it is merged with the subcluster closest to it and the linear sum, squared sum
and the number of samples of that subcluster are updated. This is done recursively till the properties of the leaf
node are updated.

References

• Tian Zhang, Raghu Ramakrishnan, Maron Livny BIRCH: An efficient data clustering method for large
databases. http://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf

• Roberto Perdisci JBirch - Java implementation of BIRCH clustering algorithm https://code.google.com/
archive/p/jbirch

Examples

>>> from sklearn.cluster import Birch
>>> X = [[0, 1], [0.3, 1], [-0.3, 1], [0, -1], [0.3, -1], [-0.3, -1]]
>>> brc = Birch(branching_factor=50, n_clusters=None, threshold=0.5,
... compute_labels=True)
>>> brc.fit(X)
Birch(branching_factor=50, compute_labels=True, copy=True, n_clusters=None,

threshold=0.5)
>>> brc.predict(X)
array([0, 0, 0, 1, 1, 1])

Methods

fit(X[, y]) Build a CF Tree for the input data.
Continued on next page
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Table 5.16 – continued from previous page
fit_predict(X[, y]) Performs clustering on X and returns cluster labels.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
partial_fit([X, y]) Online learning.
predict(X) Predict data using the centroids_ of subclusters.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform X into subcluster centroids dimension.

__init__(threshold=0.5, branching_factor=50, n_clusters=3, compute_labels=True, copy=True)

fit(X, y=None)
Build a CF Tree for the input data.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Input data.

y : Ignored

fit_predict(X, y=None)
Performs clustering on X and returns cluster labels.

Parameters X : ndarray, shape (n_samples, n_features)

Input data.

Returns y : ndarray, shape (n_samples,)

cluster labels

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

partial_fit(X=None, y=None)
Online learning. Prevents rebuilding of CFTree from scratch.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features), None

Input data. If X is not provided, only the global clustering step is done.
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y : Ignored

predict(X)
Predict data using the centroids_ of subclusters.

Avoid computation of the row norms of X.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Input data.

Returns labels : ndarray, shape(n_samples)

Labelled data.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform X into subcluster centroids dimension.

Each dimension represents the distance from the sample point to each cluster centroid.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Input data.

Returns X_trans : {array-like, sparse matrix}, shape (n_samples, n_clusters)

Transformed data.

Examples using sklearn.cluster.Birch

• Compare BIRCH and MiniBatchKMeans

• Comparing different clustering algorithms on toy datasets

sklearn.cluster.DBSCAN

class sklearn.cluster.DBSCAN(eps=0.5, min_samples=5, metric=’euclidean’, metric_params=None,
algorithm=’auto’, leaf_size=30, p=None, n_jobs=1)

Perform DBSCAN clustering from vector array or distance matrix.

DBSCAN - Density-Based Spatial Clustering of Applications with Noise. Finds core samples of high density
and expands clusters from them. Good for data which contains clusters of similar density.

Read more in the User Guide.

Parameters eps : float, optional

The maximum distance between two samples for them to be considered as in the same
neighborhood.

min_samples : int, optional

The number of samples (or total weight) in a neighborhood for a point to be considered
as a core point. This includes the point itself.
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metric : string, or callable

The metric to use when calculating distance between instances in a feature array.
If metric is a string or callable, it must be one of the options allowed by met-
rics.pairwise.calculate_distance for its metric parameter. If metric is “precomputed”,
X is assumed to be a distance matrix and must be square. X may be a sparse matrix, in
which case only “nonzero” elements may be considered neighbors for DBSCAN.

New in version 0.17: metric precomputed to accept precomputed sparse matrix.

metric_params : dict, optional

Additional keyword arguments for the metric function.

New in version 0.19.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

The algorithm to be used by the NearestNeighbors module to compute pointwise dis-
tances and find nearest neighbors. See NearestNeighbors module documentation for
details.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

p : float, optional

The power of the Minkowski metric to be used to calculate distance between points.

n_jobs : int, optional (default = 1)

The number of parallel jobs to run. If -1, then the number of jobs is set to the number
of CPU cores.

Attributes core_sample_indices_ : array, shape = [n_core_samples]

Indices of core samples.

components_ : array, shape = [n_core_samples, n_features]

Copy of each core sample found by training.

labels_ : array, shape = [n_samples]

Cluster labels for each point in the dataset given to fit(). Noisy samples are given the
label -1.

Notes

For an example, see examples/cluster/plot_dbscan.py.

This implementation bulk-computes all neighborhood queries, which increases the memory complexity to
O(n.d) where d is the average number of neighbors, while original DBSCAN had memory complexity O(n).

Sparse neighborhoods can be precomputed using NearestNeighbors.radius_neighbors_graph
with mode='distance'.

1202 Chapter 5. API Reference



scikit-learn user guide, Release 0.19.1

References

Ester, M., H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise”. In: Proceedings of the 2nd International Conference on Knowledge Discovery
and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996

Methods

fit(X[, y, sample_weight]) Perform DBSCAN clustering from features or distance
matrix.

fit_predict(X[, y, sample_weight]) Performs clustering on X and returns cluster labels.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__(eps=0.5, min_samples=5, metric=’euclidean’, metric_params=None, algorithm=’auto’,
leaf_size=30, p=None, n_jobs=1)

fit(X, y=None, sample_weight=None)
Perform DBSCAN clustering from features or distance matrix.

Parameters X : array or sparse (CSR) matrix of shape (n_samples, n_features), or array of shape
(n_samples, n_samples)

A feature array, or array of distances between samples if metric='precomputed'.

sample_weight : array, shape (n_samples,), optional

Weight of each sample, such that a sample with a weight of at least min_samples
is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor
from being core. Note that weights are absolute, and default to 1.

y : Ignored

fit_predict(X, y=None, sample_weight=None)
Performs clustering on X and returns cluster labels.

Parameters X : array or sparse (CSR) matrix of shape (n_samples, n_features), or array of shape
(n_samples, n_samples)

A feature array, or array of distances between samples if metric='precomputed'.

sample_weight : array, shape (n_samples,), optional

Weight of each sample, such that a sample with a weight of at least min_samples
is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor
from being core. Note that weights are absolute, and default to 1.

y : Ignored

Returns y : ndarray, shape (n_samples,)

cluster labels

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.
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Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.cluster.DBSCAN

• Comparing different clustering algorithms on toy datasets

• Demo of DBSCAN clustering algorithm

sklearn.cluster.FeatureAgglomeration

class sklearn.cluster.FeatureAgglomeration(n_clusters=2, affinity=’euclidean’, mem-
ory=None, connectivity=None, com-
pute_full_tree=’auto’, linkage=’ward’, pool-
ing_func=<function mean>)

Agglomerate features.

Similar to AgglomerativeClustering, but recursively merges features instead of samples.

Read more in the User Guide.

Parameters n_clusters : int, default 2

The number of clusters to find.

affinity : string or callable, default “euclidean”

Metric used to compute the linkage. Can be “euclidean”, “l1”, “l2”, “manhattan”, “co-
sine”, or ‘precomputed’. If linkage is “ward”, only “euclidean” is accepted.

memory : None, str or object with the joblib.Memory interface, optional

Used to cache the output of the computation of the tree. By default, no caching is done.
If a string is given, it is the path to the caching directory.

connectivity : array-like or callable, optional

Connectivity matrix. Defines for each feature the neighboring features following a given
structure of the data. This can be a connectivity matrix itself or a callable that transforms
the data into a connectivity matrix, such as derived from kneighbors_graph. Default is
None, i.e, the hierarchical clustering algorithm is unstructured.

compute_full_tree : bool or ‘auto’, optional, default “auto”

Stop early the construction of the tree at n_clusters. This is useful to decrease compu-
tation time if the number of clusters is not small compared to the number of features.
This option is useful only when specifying a connectivity matrix. Note also that when
varying the number of clusters and using caching, it may be advantageous to compute
the full tree.

linkage : {“ward”, “complete”, “average”}, optional, default “ward”
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Which linkage criterion to use. The linkage criterion determines which distance to use
between sets of features. The algorithm will merge the pairs of cluster that minimize
this criterion.

• ward minimizes the variance of the clusters being merged.

• average uses the average of the distances of each feature of the two sets.

• complete or maximum linkage uses the maximum distances between all features of
the two sets.

pooling_func : callable, default np.mean

This combines the values of agglomerated features into a single value, and should accept
an array of shape [M, N] and the keyword argument axis=1, and reduce it to an array of
size [M].

Attributes labels_ : array-like, (n_features,)

cluster labels for each feature.

n_leaves_ : int

Number of leaves in the hierarchical tree.

n_components_ : int

The estimated number of connected components in the graph.

children_ : array-like, shape (n_nodes-1, 2)

The children of each non-leaf node. Values less than n_features correspond to leaves
of the tree which are the original samples. A node i greater than or equal to n_features
is a non-leaf node and has children children_[i - n_features]. Alternatively at the i-th
iteration, children[i][0] and children[i][1] are merged to form node n_features + i

Methods

fit(X[, y]) Fit the hierarchical clustering on the data
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(Xred) Inverse the transformation.
pooling_func(a[, axis, dtype, out, keepdims]) Compute the arithmetic mean along the specified axis.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform a new matrix using the built clustering

__init__(n_clusters=2, affinity=’euclidean’, memory=None, connectivity=None, com-
pute_full_tree=’auto’, linkage=’ward’, pooling_func=<function mean>)

fit(X, y=None, **params)
Fit the hierarchical clustering on the data

Parameters X : array-like, shape = [n_samples, n_features]

The data

y : Ignored

Returns self :

fit_transform(X, y=None, **fit_params)
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Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(Xred)
Inverse the transformation. Return a vector of size nb_features with the values of Xred assigned to each
group of features

Parameters Xred : array-like, shape=[n_samples, n_clusters] or [n_clusters,]

The values to be assigned to each cluster of samples

Returns X : array, shape=[n_samples, n_features] or [n_features]

A vector of size n_samples with the values of Xred assigned to each of the cluster of
samples.

pooling_func(a, axis=None, dtype=None, out=None, keepdims=<class
‘numpy._globals._NoValue’>)

Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over the flattened array by default, other-
wise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters a : array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is
attempted.

axis : None or int or tuple of ints, optional

Axis or axes along which the means are computed. The default is to compute the mean
of the flattened array.

New in version 1.7.0.

If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis
or all the axes as before.

dtype : data-type, optional

Type to use in computing the mean. For integer inputs, the default is float64; for floating
point inputs, it is the same as the input dtype.
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out : ndarray, optional

Alternate output array in which to place the result. The default is None; if provided, it
must have the same shape as the expected output, but the type will be cast if necessary.
See doc.ufuncs for details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the input array.

If the default value is passed, then keepdims will not be passed through to the mean
method of sub-classes of ndarray, however any non-default value will be. If the sub-
classes sum method does not implement keepdims any exceptions will be raised.

Returns m : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to
the output array is returned.

See also:

average Weighted average

std, var, nanmean, nanstd, nanvar

Notes

The arithmetic mean is the sum of the elements along the axis divided by the number of elements.

Note that for floating-point input, the mean is computed using the same precision the input has. Depending
on the input data, this can cause the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-precision accumulator using the dtype keyword can alleviate this issue.

By default, float16 results are computed using float32 intermediates for extra precision.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0)
array([ 2., 3.])
>>> np.mean(a, axis=1)
array([ 1.5, 3.5])

In single precision, mean can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.mean(a)
0.54999924

Computing the mean in float64 is more accurate:
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>>> np.mean(a, dtype=np.float64)
0.55000000074505806

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform a new matrix using the built clustering

Parameters X : array-like, shape = [n_samples, n_features] or [n_features]

A M by N array of M observations in N dimensions or a length M array of M one-
dimensional observations.

Returns Y : array, shape = [n_samples, n_clusters] or [n_clusters]

The pooled values for each feature cluster.

Examples using sklearn.cluster.FeatureAgglomeration

• Feature agglomeration

• Feature agglomeration vs. univariate selection

sklearn.cluster.KMeans

class sklearn.cluster.KMeans(n_clusters=8, init=’k-means++’, n_init=10, max_iter=300,
tol=0.0001, precompute_distances=’auto’, verbose=0, ran-
dom_state=None, copy_x=True, n_jobs=1, algorithm=’auto’)

K-Means clustering

Read more in the User Guide.

Parameters n_clusters : int, optional, default: 8

The number of clusters to form as well as the number of centroids to generate.

init : {‘k-means++’, ‘random’ or an ndarray}

Method for initialization, defaults to ‘k-means++’:

‘k-means++’ : selects initial cluster centers for k-mean clustering in a smart way to
speed up convergence. See section Notes in k_init for more details.

‘random’: choose k observations (rows) at random from data for the initial centroids.

If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial
centers.

n_init : int, default: 10

Number of time the k-means algorithm will be run with different centroid seeds. The
final results will be the best output of n_init consecutive runs in terms of inertia.

max_iter : int, default: 300
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Maximum number of iterations of the k-means algorithm for a single run.

tol : float, default: 1e-4

Relative tolerance with regards to inertia to declare convergence

precompute_distances : {‘auto’, True, False}

Precompute distances (faster but takes more memory).

‘auto’ : do not precompute distances if n_samples * n_clusters > 12 million. This
corresponds to about 100MB overhead per job using double precision.

True : always precompute distances

False : never precompute distances

verbose : int, default 0

Verbosity mode.

random_state : int, RandomState instance or None, optional, default: None

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

copy_x : boolean, default True

When pre-computing distances it is more numerically accurate to center the data first.
If copy_x is True, then the original data is not modified. If False, the original data is
modified, and put back before the function returns, but small numerical differences may
be introduced by subtracting and then adding the data mean.

n_jobs : int

The number of jobs to use for the computation. This works by computing each of the
n_init runs in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

algorithm : “auto”, “full” or “elkan”, default=”auto”

K-means algorithm to use. The classical EM-style algorithm is “full”. The “elkan”
variation is more efficient by using the triangle inequality, but currently doesn’t support
sparse data. “auto” chooses “elkan” for dense data and “full” for sparse data.

Attributes cluster_centers_ : array, [n_clusters, n_features]

Coordinates of cluster centers

labels_ : :

Labels of each point

inertia_ : float

Sum of squared distances of samples to their closest cluster center.

See also:

MiniBatchKMeans Alternative online implementation that does incremental updates of the centers positions
using mini-batches. For large scale learning (say n_samples > 10k) MiniBatchKMeans is probably much
faster than the default batch implementation.
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Notes

The k-means problem is solved using Lloyd’s algorithm.

The average complexity is given by O(k n T), were n is the number of samples and T is the number of iteration.

The worst case complexity is given by O(n^(k+2/p)) with n = n_samples, p = n_features. (D. Arthur and S.
Vassilvitskii, ‘How slow is the k-means method?’ SoCG2006)

In practice, the k-means algorithm is very fast (one of the fastest clustering algorithms available), but it falls in
local minima. That’s why it can be useful to restart it several times.

Examples

>>> from sklearn.cluster import KMeans
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [4, 2], [4, 4], [4, 0]])
>>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
>>> kmeans.labels_
array([0, 0, 0, 1, 1, 1], dtype=int32)
>>> kmeans.predict([[0, 0], [4, 4]])
array([0, 1], dtype=int32)
>>> kmeans.cluster_centers_
array([[ 1., 2.],

[ 4., 2.]])

Methods

fit(X[, y]) Compute k-means clustering.
fit_predict(X[, y]) Compute cluster centers and predict cluster index for

each sample.
fit_transform(X[, y]) Compute clustering and transform X to cluster-distance

space.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict the closest cluster each sample in X belongs to.
score(X[, y]) Opposite of the value of X on the K-means objective.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform X to a cluster-distance space.

__init__(n_clusters=8, init=’k-means++’, n_init=10, max_iter=300, tol=0.0001, precom-
pute_distances=’auto’, verbose=0, random_state=None, copy_x=True, n_jobs=1, al-
gorithm=’auto’)

fit(X, y=None)
Compute k-means clustering.

Parameters X : array-like or sparse matrix, shape=(n_samples, n_features)

Training instances to cluster.

y : Ignored

fit_predict(X, y=None)
Compute cluster centers and predict cluster index for each sample.
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Convenience method; equivalent to calling fit(X) followed by predict(X).

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

New data to transform.

u : Ignored

Returns labels : array, shape [n_samples,]

Index of the cluster each sample belongs to.

fit_transform(X, y=None)
Compute clustering and transform X to cluster-distance space.

Equivalent to fit(X).transform(X), but more efficiently implemented.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

New data to transform.

y : Ignored

Returns X_new : array, shape [n_samples, k]

X transformed in the new space.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict the closest cluster each sample in X belongs to.

In the vector quantization literature, cluster_centers_ is called the code book and each value returned by
predict is the index of the closest code in the code book.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

New data to predict.

Returns labels : array, shape [n_samples,]

Index of the cluster each sample belongs to.

score(X, y=None)
Opposite of the value of X on the K-means objective.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

New data.

y : Ignored

Returns score : float

Opposite of the value of X on the K-means objective.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform X to a cluster-distance space.

In the new space, each dimension is the distance to the cluster centers. Note that even if X is sparse, the
array returned by transform will typically be dense.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

New data to transform.

Returns X_new : array, shape [n_samples, k]

X transformed in the new space.

Examples using sklearn.cluster.KMeans

• K-means Clustering

• Color Quantization using K-Means

• Vector Quantization Example

• Demonstration of k-means assumptions

• A demo of K-Means clustering on the handwritten digits data

• Selecting the number of clusters with silhouette analysis on KMeans clustering

• Empirical evaluation of the impact of k-means initialization

• Comparison of the K-Means and MiniBatchKMeans clustering algorithms

• Clustering text documents using k-means

sklearn.cluster.MiniBatchKMeans

class sklearn.cluster.MiniBatchKMeans(n_clusters=8, init=’k-means++’, max_iter=100,
batch_size=100, verbose=0, compute_labels=True,
random_state=None, tol=0.0, max_no_improvement=10,
init_size=None, n_init=3, reassignment_ratio=0.01)

Mini-Batch K-Means clustering

Read more in the User Guide.

Parameters n_clusters : int, optional, default: 8

The number of clusters to form as well as the number of centroids to generate.

init : {‘k-means++’, ‘random’ or an ndarray}, default: ‘k-means++’

Method for initialization, defaults to ‘k-means++’:

‘k-means++’ : selects initial cluster centers for k-mean clustering in a smart way to
speed up convergence. See section Notes in k_init for more details.
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‘random’: choose k observations (rows) at random from data for the initial centroids.

If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial
centers.

max_iter : int, optional

Maximum number of iterations over the complete dataset before stopping independently
of any early stopping criterion heuristics.

batch_size : int, optional, default: 100

Size of the mini batches.

verbose : boolean, optional

Verbosity mode.

compute_labels : boolean, default=True

Compute label assignment and inertia for the complete dataset once the minibatch opti-
mization has converged in fit.

random_state : int, RandomState instance or None, optional, default: None

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

tol : float, default: 0.0

Control early stopping based on the relative center changes as measured by a smoothed,
variance-normalized of the mean center squared position changes. This early stopping
heuristics is closer to the one used for the batch variant of the algorithms but induces a
slight computational and memory overhead over the inertia heuristic.

To disable convergence detection based on normalized center change, set tol to 0.0
(default).

max_no_improvement : int, default: 10

Control early stopping based on the consecutive number of mini batches that does not
yield an improvement on the smoothed inertia.

To disable convergence detection based on inertia, set max_no_improvement to None.

init_size : int, optional, default: 3 * batch_size

Number of samples to randomly sample for speeding up the initialization (sometimes at
the expense of accuracy): the only algorithm is initialized by running a batch KMeans
on a random subset of the data. This needs to be larger than n_clusters.

n_init : int, default=3

Number of random initializations that are tried. In contrast to KMeans, the algorithm is
only run once, using the best of the n_init initializations as measured by inertia.

reassignment_ratio : float, default: 0.01

Control the fraction of the maximum number of counts for a center to be reassigned. A
higher value means that low count centers are more easily reassigned, which means that
the model will take longer to converge, but should converge in a better clustering.

Attributes cluster_centers_ : array, [n_clusters, n_features]

Coordinates of cluster centers

5.3. sklearn.cluster: Clustering 1213



scikit-learn user guide, Release 0.19.1

labels_ : :

Labels of each point (if compute_labels is set to True).

inertia_ : float

The value of the inertia criterion associated with the chosen partition (if compute_labels
is set to True). The inertia is defined as the sum of square distances of samples to their
nearest neighbor.

See also:

KMeans The classic implementation of the clustering method based on the Lloyd’s algorithm. It consumes the
whole set of input data at each iteration.

Notes

See http://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf

Methods

fit(X[, y]) Compute the centroids on X by chunking it into mini-
batches.

fit_predict(X[, y]) Compute cluster centers and predict cluster index for
each sample.

fit_transform(X[, y]) Compute clustering and transform X to cluster-distance
space.

get_params([deep]) Get parameters for this estimator.
partial_fit(X[, y]) Update k means estimate on a single mini-batch X.
predict(X) Predict the closest cluster each sample in X belongs to.
score(X[, y]) Opposite of the value of X on the K-means objective.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform X to a cluster-distance space.

__init__(n_clusters=8, init=’k-means++’, max_iter=100, batch_size=100, verbose=0,
compute_labels=True, random_state=None, tol=0.0, max_no_improvement=10,
init_size=None, n_init=3, reassignment_ratio=0.01)

fit(X, y=None)
Compute the centroids on X by chunking it into mini-batches.

Parameters X : array-like or sparse matrix, shape=(n_samples, n_features)

Training instances to cluster.

y : Ignored

fit_predict(X, y=None)
Compute cluster centers and predict cluster index for each sample.

Convenience method; equivalent to calling fit(X) followed by predict(X).

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

New data to transform.

u : Ignored
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Returns labels : array, shape [n_samples,]

Index of the cluster each sample belongs to.

fit_transform(X, y=None)
Compute clustering and transform X to cluster-distance space.

Equivalent to fit(X).transform(X), but more efficiently implemented.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

New data to transform.

y : Ignored

Returns X_new : array, shape [n_samples, k]

X transformed in the new space.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y=None)
Update k means estimate on a single mini-batch X.

Parameters X : array-like, shape = [n_samples, n_features]

Coordinates of the data points to cluster.

y : Ignored

predict(X)
Predict the closest cluster each sample in X belongs to.

In the vector quantization literature, cluster_centers_ is called the code book and each value returned by
predict is the index of the closest code in the code book.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

New data to predict.

Returns labels : array, shape [n_samples,]

Index of the cluster each sample belongs to.

score(X, y=None)
Opposite of the value of X on the K-means objective.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

New data.

y : Ignored

Returns score : float

Opposite of the value of X on the K-means objective.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform X to a cluster-distance space.

In the new space, each dimension is the distance to the cluster centers. Note that even if X is sparse, the
array returned by transform will typically be dense.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

New data to transform.

Returns X_new : array, shape [n_samples, k]

X transformed in the new space.

Examples using sklearn.cluster.MiniBatchKMeans

• Biclustering documents with the Spectral Co-clustering algorithm

• Compare BIRCH and MiniBatchKMeans

• Comparing different clustering algorithms on toy datasets

• Online learning of a dictionary of parts of faces

• Empirical evaluation of the impact of k-means initialization

• Comparison of the K-Means and MiniBatchKMeans clustering algorithms

• Faces dataset decompositions

• Clustering text documents using k-means

sklearn.cluster.MeanShift

class sklearn.cluster.MeanShift(bandwidth=None, seeds=None, bin_seeding=False,
min_bin_freq=1, cluster_all=True, n_jobs=1)

Mean shift clustering using a flat kernel.

Mean shift clustering aims to discover “blobs” in a smooth density of samples. It is a centroid-based algo-
rithm, which works by updating candidates for centroids to be the mean of the points within a given region.
These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of
centroids.

Seeding is performed using a binning technique for scalability.

Read more in the User Guide.

Parameters bandwidth : float, optional

Bandwidth used in the RBF kernel.

If not given, the bandwidth is estimated using sklearn.cluster.estimate_bandwidth; see
the documentation for that function for hints on scalability (see also the Notes, below).
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seeds : array, shape=[n_samples, n_features], optional

Seeds used to initialize kernels. If not set, the seeds are calculated by cluster-
ing.get_bin_seeds with bandwidth as the grid size and default values for other parame-
ters.

bin_seeding : boolean, optional

If true, initial kernel locations are not locations of all points, but rather the location of
the discretized version of points, where points are binned onto a grid whose coarseness
corresponds to the bandwidth. Setting this option to True will speed up the algorithm
because fewer seeds will be initialized. default value: False Ignored if seeds argument
is not None.

min_bin_freq : int, optional

To speed up the algorithm, accept only those bins with at least min_bin_freq points as
seeds. If not defined, set to 1.

cluster_all : boolean, default True

If true, then all points are clustered, even those orphans that are not within any kernel.
Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label
-1.

n_jobs : int

The number of jobs to use for the computation. This works by computing each of the
n_init runs in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

Attributes cluster_centers_ : array, [n_clusters, n_features]

Coordinates of cluster centers.

labels_ : :

Labels of each point.

Notes

Scalability:

Because this implementation uses a flat kernel and a Ball Tree to look up members of each kernel, the complexity
will tend towards O(T*n*log(n)) in lower dimensions, with n the number of samples and T the number of points.
In higher dimensions the complexity will tend towards O(T*n^2).

Scalability can be boosted by using fewer seeds, for example by using a higher value of min_bin_freq in the
get_bin_seeds function.

Note that the estimate_bandwidth function is much less scalable than the mean shift algorithm and will be the
bottleneck if it is used.

References

Dorin Comaniciu and Peter Meer, “Mean Shift: A robust approach toward feature space analysis”. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619.
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Methods

fit(X[, y]) Perform clustering.
fit_predict(X[, y]) Performs clustering on X and returns cluster labels.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict the closest cluster each sample in X belongs to.
set_params(**params) Set the parameters of this estimator.

__init__(bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True,
n_jobs=1)

fit(X, y=None)
Perform clustering.

Parameters X : array-like, shape=[n_samples, n_features]

Samples to cluster.

y : Ignored

fit_predict(X, y=None)
Performs clustering on X and returns cluster labels.

Parameters X : ndarray, shape (n_samples, n_features)

Input data.

Returns y : ndarray, shape (n_samples,)

cluster labels

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict the closest cluster each sample in X belongs to.

Parameters X : {array-like, sparse matrix}, shape=[n_samples, n_features]

New data to predict.

Returns labels : array, shape [n_samples,]

Index of the cluster each sample belongs to.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :
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Examples using sklearn.cluster.MeanShift

• Comparing different clustering algorithms on toy datasets

• A demo of the mean-shift clustering algorithm

sklearn.cluster.SpectralClustering

class sklearn.cluster.SpectralClustering(n_clusters=8, eigen_solver=None, ran-
dom_state=None, n_init=10, gamma=1.0, affin-
ity=’rbf’, n_neighbors=10, eigen_tol=0.0, as-
sign_labels=’kmeans’, degree=3, coef0=1, ker-
nel_params=None, n_jobs=1)

Apply clustering to a projection to the normalized laplacian.

In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex
or more generally when a measure of the center and spread of the cluster is not a suitable description of the
complete cluster. For instance when clusters are nested circles on the 2D plan.

If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts.

When calling fit, an affinity matrix is constructed using either kernel function such the Gaussian (aka RBF)
kernel of the euclidean distanced d(X, X):

np.exp(-gamma * d(X,X) ** 2)

or a k-nearest neighbors connectivity matrix.

Alternatively, using precomputed, a user-provided affinity matrix can be used.

Read more in the User Guide.

Parameters n_clusters : integer, optional

The dimension of the projection subspace.

eigen_solver : {None, ‘arpack’, ‘lobpcg’, or ‘amg’}

The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It
can be faster on very large, sparse problems, but may also lead to instabilities

random_state : int, RandomState instance or None, optional, default: None

A pseudo random number generator used for the initialization of the lobpcg eigen vec-
tors decomposition when eigen_solver == ‘amg’ and by the K-Means initialization. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

n_init : int, optional, default: 10

Number of time the k-means algorithm will be run with different centroid seeds. The
final results will be the best output of n_init consecutive runs in terms of inertia.

gamma : float, default=1.0

Kernel coefficient for rbf, poly, sigmoid, laplacian and chi2 kernels. Ignored for
affinity='nearest_neighbors'.

affinity : string, array-like or callable, default ‘rbf’
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If a string, this may be one of ‘nearest_neighbors’, ‘precomputed’, ‘rbf’ or one of the
kernels supported by sklearn.metrics.pairwise_kernels.

Only kernels that produce similarity scores (non-negative values that increase with sim-
ilarity) should be used. This property is not checked by the clustering algorithm.

n_neighbors : integer

Number of neighbors to use when constructing the affinity matrix using the nearest
neighbors method. Ignored for affinity='rbf'.

eigen_tol : float, optional, default: 0.0

Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack
eigen_solver.

assign_labels : {‘kmeans’, ‘discretize’}, default: ‘kmeans’

The strategy to use to assign labels in the embedding space. There are two ways to
assign labels after the laplacian embedding. k-means can be applied and is a popular
choice. But it can also be sensitive to initialization. Discretization is another approach
which is less sensitive to random initialization.

degree : float, default=3

Degree of the polynomial kernel. Ignored by other kernels.

coef0 : float, default=1

Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels.

kernel_params : dictionary of string to any, optional

Parameters (keyword arguments) and values for kernel passed as callable object. Ig-
nored by other kernels.

n_jobs : int, optional (default = 1)

The number of parallel jobs to run. If -1, then the number of jobs is set to the number
of CPU cores.

Attributes affinity_matrix_ : array-like, shape (n_samples, n_samples)

Affinity matrix used for clustering. Available only if after calling fit.

labels_ : :

Labels of each point

Notes

If you have an affinity matrix, such as a distance matrix, for which 0 means identical elements, and high values
means very dissimilar elements, it can be transformed in a similarity matrix that is well suited for the algorithm
by applying the Gaussian (RBF, heat) kernel:

np.exp(- dist_matrix ** 2 / (2. * delta ** 2))

Where delta is a free parameter representing the width of the Gaussian kernel.

Another alternative is to take a symmetric version of the k nearest neighbors connectivity matrix of the points.

If the pyamg package is installed, it is used: this greatly speeds up computation.
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References

• Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/
viewdoc/summary?doi=10.1.1.160.2324

• A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.165.9323

• Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/
publication/doc/2003kwayICCV.pdf

Methods

fit(X[, y]) Creates an affinity matrix for X using the selected affin-
ity, then applies spectral clustering to this affinity ma-
trix.

fit_predict(X[, y]) Performs clustering on X and returns cluster labels.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__(n_clusters=8, eigen_solver=None, random_state=None, n_init=10, gamma=1.0, affin-
ity=’rbf’, n_neighbors=10, eigen_tol=0.0, assign_labels=’kmeans’, degree=3, coef0=1,
kernel_params=None, n_jobs=1)

fit(X, y=None)
Creates an affinity matrix for X using the selected affinity, then applies spectral clustering to this affinity
matrix.

Parameters X : array-like or sparse matrix, shape (n_samples, n_features)

OR, if affinity==‘precomputed‘, a precomputed affinity matrix of shape (n_samples,
n_samples)

y : Ignored

fit_predict(X, y=None)
Performs clustering on X and returns cluster labels.

Parameters X : ndarray, shape (n_samples, n_features)

Input data.

Returns y : ndarray, shape (n_samples,)

cluster labels

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.
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The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.cluster.SpectralClustering

• Comparing different clustering algorithms on toy datasets

5.3.2 Functions

cluster.affinity_propagation(S[, . . . ]) Perform Affinity Propagation Clustering of data
cluster.dbscan(X[, eps, min_samples, . . . ]) Perform DBSCAN clustering from vector array or distance

matrix.
cluster.estimate_bandwidth(X[, quantile, . . . ]) Estimate the bandwidth to use with the mean-shift algo-

rithm.
cluster.k_means(X, n_clusters[, init, . . . ]) K-means clustering algorithm.
cluster.mean_shift(X[, bandwidth, seeds, . . . ]) Perform mean shift clustering of data using a flat kernel.
cluster.spectral_clustering(affinity[, . . . ]) Apply clustering to a projection to the normalized lapla-

cian.
cluster.ward_tree(X[, connectivity, . . . ]) Ward clustering based on a Feature matrix.

sklearn.cluster.affinity_propagation

sklearn.cluster.affinity_propagation(S, preference=None, convergence_iter=15,
max_iter=200, damping=0.5, copy=True, ver-
bose=False, return_n_iter=False)

Perform Affinity Propagation Clustering of data

Read more in the User Guide.

Parameters S : array-like, shape (n_samples, n_samples)

Matrix of similarities between points

preference : array-like, shape (n_samples,) or float, optional

Preferences for each point - points with larger values of preferences are more likely to
be chosen as exemplars. The number of exemplars, i.e. of clusters, is influenced by the
input preferences value. If the preferences are not passed as arguments, they will be set
to the median of the input similarities (resulting in a moderate number of clusters). For
a smaller amount of clusters, this can be set to the minimum value of the similarities.

convergence_iter : int, optional, default: 15

Number of iterations with no change in the number of estimated clusters that stops the
convergence.

max_iter : int, optional, default: 200

Maximum number of iterations

damping : float, optional, default: 0.5

Damping factor between 0.5 and 1.
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copy : boolean, optional, default: True

If copy is False, the affinity matrix is modified inplace by the algorithm, for memory
efficiency

verbose : boolean, optional, default: False

The verbosity level

return_n_iter : bool, default False

Whether or not to return the number of iterations.

Returns cluster_centers_indices : array, shape (n_clusters,)

index of clusters centers

labels : array, shape (n_samples,)

cluster labels for each point

n_iter : int

number of iterations run. Returned only if return_n_iter is set to True.

Notes

For an example, see examples/cluster/plot_affinity_propagation.py.

References

Brendan J. Frey and Delbert Dueck, “Clustering by Passing Messages Between Data Points”, Science Feb. 2007

Examples using sklearn.cluster.affinity_propagation

• Visualizing the stock market structure

sklearn.cluster.dbscan

sklearn.cluster.dbscan(X, eps=0.5, min_samples=5, metric=’minkowski’, metric_params=None, al-
gorithm=’auto’, leaf_size=30, p=2, sample_weight=None, n_jobs=1)

Perform DBSCAN clustering from vector array or distance matrix.

Read more in the User Guide.

Parameters X : array or sparse (CSR) matrix of shape (n_samples, n_features), or array of shape
(n_samples, n_samples)

A feature array, or array of distances between samples if metric='precomputed'.

eps : float, optional

The maximum distance between two samples for them to be considered as in the same
neighborhood.

min_samples : int, optional

The number of samples (or total weight) in a neighborhood for a point to be considered
as a core point. This includes the point itself.
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metric : string, or callable

The metric to use when calculating distance between instances in a feature array.
If metric is a string or callable, it must be one of the options allowed by met-
rics.pairwise.pairwise_distances for its metric parameter. If metric is “precomputed”,
X is assumed to be a distance matrix and must be square. X may be a sparse matrix, in
which case only “nonzero” elements may be considered neighbors for DBSCAN.

metric_params : dict, optional

Additional keyword arguments for the metric function.

New in version 0.19.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

The algorithm to be used by the NearestNeighbors module to compute pointwise dis-
tances and find nearest neighbors. See NearestNeighbors module documentation for
details.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

p : float, optional

The power of the Minkowski metric to be used to calculate distance between points.

sample_weight : array, shape (n_samples,), optional

Weight of each sample, such that a sample with a weight of at least min_samples
is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor
from being core. Note that weights are absolute, and default to 1.

n_jobs : int, optional (default = 1)

The number of parallel jobs to run for neighbors search. If -1, then the number of jobs
is set to the number of CPU cores.

Returns core_samples : array [n_core_samples]

Indices of core samples.

labels : array [n_samples]

Cluster labels for each point. Noisy samples are given the label -1.

Notes

For an example, see examples/cluster/plot_dbscan.py.

This implementation bulk-computes all neighborhood queries, which increases the memory complexity to
O(n.d) where d is the average number of neighbors, while original DBSCAN had memory complexity O(n).

Sparse neighborhoods can be precomputed using NearestNeighbors.radius_neighbors_graph
with mode='distance'.
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References

Ester, M., H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise”. In: Proceedings of the 2nd International Conference on Knowledge Discovery
and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996

sklearn.cluster.estimate_bandwidth

sklearn.cluster.estimate_bandwidth(X, quantile=0.3, n_samples=None, random_state=0,
n_jobs=1)

Estimate the bandwidth to use with the mean-shift algorithm.

That this function takes time at least quadratic in n_samples. For large datasets, it’s wise to set that parameter
to a small value.

Parameters X : array-like, shape=[n_samples, n_features]

Input points.

quantile : float, default 0.3

should be between [0, 1] 0.5 means that the median of all pairwise distances is used.

n_samples : int, optional

The number of samples to use. If not given, all samples are used.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

n_jobs : int, optional (default = 1)

The number of parallel jobs to run for neighbors search. If -1, then the number of jobs
is set to the number of CPU cores.

Returns bandwidth : float

The bandwidth parameter.

Examples using sklearn.cluster.estimate_bandwidth

• Comparing different clustering algorithms on toy datasets

• A demo of the mean-shift clustering algorithm

sklearn.cluster.k_means

sklearn.cluster.k_means(X, n_clusters, init=’k-means++’, precompute_distances=’auto’,
n_init=10, max_iter=300, verbose=False, tol=0.0001, ran-
dom_state=None, copy_x=True, n_jobs=1, algorithm=’auto’, re-
turn_n_iter=False)

K-means clustering algorithm.

Read more in the User Guide.

Parameters X : array-like or sparse matrix, shape (n_samples, n_features)

5.3. sklearn.cluster: Clustering 1225



scikit-learn user guide, Release 0.19.1

The observations to cluster.

n_clusters : int

The number of clusters to form as well as the number of centroids to generate.

init : {‘k-means++’, ‘random’, or ndarray, or a callable}, optional

Method for initialization, default to ‘k-means++’:

‘k-means++’ : selects initial cluster centers for k-mean clustering in a smart way to
speed up convergence. See section Notes in k_init for more details.

‘random’: generate k centroids from a Gaussian with mean and variance estimated from
the data.

If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial
centers.

If a callable is passed, it should take arguments X, k and and a random state and return
an initialization.

precompute_distances : {‘auto’, True, False}

Precompute distances (faster but takes more memory).

‘auto’ : do not precompute distances if n_samples * n_clusters > 12 million. This
corresponds to about 100MB overhead per job using double precision.

True : always precompute distances

False : never precompute distances

n_init : int, optional, default: 10

Number of time the k-means algorithm will be run with different centroid seeds. The
final results will be the best output of n_init consecutive runs in terms of inertia.

max_iter : int, optional, default 300

Maximum number of iterations of the k-means algorithm to run.

verbose : boolean, optional

Verbosity mode.

tol : float, optional

The relative increment in the results before declaring convergence.

random_state : int, RandomState instance or None, optional, default: None

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

copy_x : boolean, optional

When pre-computing distances it is more numerically accurate to center the data first.
If copy_x is True, then the original data is not modified. If False, the original data is
modified, and put back before the function returns, but small numerical differences may
be introduced by subtracting and then adding the data mean.

n_jobs : int
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The number of jobs to use for the computation. This works by computing each of the
n_init runs in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

algorithm : “auto”, “full” or “elkan”, default=”auto”

K-means algorithm to use. The classical EM-style algorithm is “full”. The “elkan”
variation is more efficient by using the triangle inequality, but currently doesn’t support
sparse data. “auto” chooses “elkan” for dense data and “full” for sparse data.

return_n_iter : bool, optional

Whether or not to return the number of iterations.

Returns centroid : float ndarray with shape (k, n_features)

Centroids found at the last iteration of k-means.

label : integer ndarray with shape (n_samples,)

label[i] is the code or index of the centroid the i’th observation is closest to.

inertia : float

The final value of the inertia criterion (sum of squared distances to the closest centroid
for all observations in the training set).

best_n_iter : int

Number of iterations corresponding to the best results. Returned only if return_n_iter
is set to True.

sklearn.cluster.mean_shift

sklearn.cluster.mean_shift(X, bandwidth=None, seeds=None, bin_seeding=False,
min_bin_freq=1, cluster_all=True, max_iter=300, n_jobs=1)

Perform mean shift clustering of data using a flat kernel.

Read more in the User Guide.

Parameters X : array-like, shape=[n_samples, n_features]

Input data.

bandwidth : float, optional

Kernel bandwidth.

If bandwidth is not given, it is determined using a heuristic based on the median of
all pairwise distances. This will take quadratic time in the number of samples. The
sklearn.cluster.estimate_bandwidth function can be used to do this more efficiently.

seeds : array-like, shape=[n_seeds, n_features] or None

Point used as initial kernel locations. If None and bin_seeding=False, each data point is
used as a seed. If None and bin_seeding=True, see bin_seeding.

bin_seeding : boolean, default=False

If true, initial kernel locations are not locations of all points, but rather the location of
the discretized version of points, where points are binned onto a grid whose coarseness
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corresponds to the bandwidth. Setting this option to True will speed up the algorithm
because fewer seeds will be initialized. Ignored if seeds argument is not None.

min_bin_freq : int, default=1

To speed up the algorithm, accept only those bins with at least min_bin_freq points as
seeds.

cluster_all : boolean, default True

If true, then all points are clustered, even those orphans that are not within any kernel.
Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label
-1.

max_iter : int, default 300

Maximum number of iterations, per seed point before the clustering operation termi-
nates (for that seed point), if has not converged yet.

n_jobs : int

The number of jobs to use for the computation. This works by computing each of the
n_init runs in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

New in version 0.17: Parallel Execution using n_jobs.

Returns cluster_centers : array, shape=[n_clusters, n_features]

Coordinates of cluster centers.

labels : array, shape=[n_samples]

Cluster labels for each point.

Notes

For an example, see examples/cluster/plot_mean_shift.py.

sklearn.cluster.spectral_clustering

sklearn.cluster.spectral_clustering(affinity, n_clusters=8, n_components=None,
eigen_solver=None, random_state=None, n_init=10,
eigen_tol=0.0, assign_labels=’kmeans’)

Apply clustering to a projection to the normalized laplacian.

In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex
or more generally when a measure of the center and spread of the cluster is not a suitable description of the
complete cluster. For instance when clusters are nested circles on the 2D plan.

If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts.

Read more in the User Guide.

Parameters affinity : array-like or sparse matrix, shape: (n_samples, n_samples)

The affinity matrix describing the relationship of the samples to embed. Must be sym-
metric.
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Possible examples:

• adjacency matrix of a graph,

• heat kernel of the pairwise distance matrix of the samples,

• symmetric k-nearest neighbours connectivity matrix of the samples.

n_clusters : integer, optional

Number of clusters to extract.

n_components : integer, optional, default is n_clusters

Number of eigen vectors to use for the spectral embedding

eigen_solver : {None, ‘arpack’, ‘lobpcg’, or ‘amg’}

The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It
can be faster on very large, sparse problems, but may also lead to instabilities

random_state : int, RandomState instance or None, optional, default: None

A pseudo random number generator used for the initialization of the lobpcg eigen vec-
tors decomposition when eigen_solver == ‘amg’ and by the K-Means initialization. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

n_init : int, optional, default: 10

Number of time the k-means algorithm will be run with different centroid seeds. The
final results will be the best output of n_init consecutive runs in terms of inertia.

eigen_tol : float, optional, default: 0.0

Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack
eigen_solver.

assign_labels : {‘kmeans’, ‘discretize’}, default: ‘kmeans’

The strategy to use to assign labels in the embedding space. There are two ways to
assign labels after the laplacian embedding. k-means can be applied and is a popular
choice. But it can also be sensitive to initialization. Discretization is another approach
which is less sensitive to random initialization. See the ‘Multiclass spectral clustering’
paper referenced below for more details on the discretization approach.

Returns labels : array of integers, shape: n_samples

The labels of the clusters.

Notes

The graph should contain only one connect component, elsewhere the results make little sense.

This algorithm solves the normalized cut for k=2: it is a normalized spectral clustering.

References

• Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/
viewdoc/summary?doi=10.1.1.160.2324
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• A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.165.9323

• Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/
publication/doc/2003kwayICCV.pdf

Examples using sklearn.cluster.spectral_clustering

• Segmenting the picture of a raccoon face in regions

• Spectral clustering for image segmentation

sklearn.cluster.ward_tree

sklearn.cluster.ward_tree(X, connectivity=None, n_clusters=None, return_distance=False)
Ward clustering based on a Feature matrix.

Recursively merges the pair of clusters that minimally increases within-cluster variance.

The inertia matrix uses a Heapq-based representation.

This is the structured version, that takes into account some topological structure between samples.

Read more in the User Guide.

Parameters X : array, shape (n_samples, n_features)

feature matrix representing n_samples samples to be clustered

connectivity : sparse matrix (optional).

connectivity matrix. Defines for each sample the neighboring samples following a given
structure of the data. The matrix is assumed to be symmetric and only the upper trian-
gular half is used. Default is None, i.e, the Ward algorithm is unstructured.

n_clusters : int (optional)

Stop early the construction of the tree at n_clusters. This is useful to decrease compu-
tation time if the number of clusters is not small compared to the number of samples.
In this case, the complete tree is not computed, thus the ‘children’ output is of limited
use, and the ‘parents’ output should rather be used. This option is valid only when
specifying a connectivity matrix.

return_distance : bool (optional)

If True, return the distance between the clusters.

Returns children : 2D array, shape (n_nodes-1, 2)

The children of each non-leaf node. Values less than n_samples correspond to leaves
of the tree which are the original samples. A node i greater than or equal to n_samples
is a non-leaf node and has children children_[i - n_samples]. Alternatively at the i-th
iteration, children[i][0] and children[i][1] are merged to form node n_samples + i

n_components : int

The number of connected components in the graph.

n_leaves : int

The number of leaves in the tree

parents : 1D array, shape (n_nodes, ) or None
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The parent of each node. Only returned when a connectivity matrix is specified, else-
where ‘None’ is returned.

distances : 1D array, shape (n_nodes-1, )

Only returned if return_distance is set to True (for compatibility). The distances be-
tween the centers of the nodes. distances[i] corresponds to a weighted euclidean dis-
tance between the nodes children[i, 1] and children[i, 2]. If the nodes refer to leaves of
the tree, then distances[i] is their unweighted euclidean distance. Distances are updated
in the following way (from scipy.hierarchy.linkage):

The new entry 𝑑(𝑢, 𝑣) is computed as follows,

𝑑(𝑢, 𝑣) =

√︂
|𝑣|+ |𝑠|
𝑇

𝑑(𝑣, 𝑠)2 +
|𝑣|+ |𝑡|
𝑇

𝑑(𝑣, 𝑡)2 − |𝑣|
𝑇
𝑑(𝑠, 𝑡)2

where 𝑢 is the newly joined cluster consisting of clusters 𝑠 and 𝑡, 𝑣 is an unused cluster
in the forest, 𝑇 = |𝑣|+ |𝑠|+ |𝑡|, and | * | is the cardinality of its argument. This is also
known as the incremental algorithm.

5.4 sklearn.cluster.bicluster: Biclustering

Spectral biclustering algorithms.

Authors : Kemal Eren License: BSD 3 clause

User guide: See the Biclustering section for further details.

5.4.1 Classes

SpectralBiclustering([n_clusters, method, . . . ]) Spectral biclustering (Kluger, 2003).
SpectralCoclustering([n_clusters, . . . ]) Spectral Co-Clustering algorithm (Dhillon, 2001).

sklearn.cluster.bicluster.SpectralBiclustering

class sklearn.cluster.bicluster.SpectralBiclustering(n_clusters=3,
method=’bistochastic’,
n_components=6, n_best=3,
svd_method=’randomized’,
n_svd_vecs=None,
mini_batch=False, init=’k-
means++’, n_init=10, n_jobs=1,
random_state=None)

Spectral biclustering (Kluger, 2003).

Partitions rows and columns under the assumption that the data has an underlying checkerboard structure. For
instance, if there are two row partitions and three column partitions, each row will belong to three biclusters,
and each column will belong to two biclusters. The outer product of the corresponding row and column label
vectors gives this checkerboard structure.

Read more in the User Guide.

Parameters n_clusters : integer or tuple (n_row_clusters, n_column_clusters)

The number of row and column clusters in the checkerboard structure.
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method : string, optional, default: ‘bistochastic’

Method of normalizing and converting singular vectors into biclusters. May be one
of ‘scale’, ‘bistochastic’, or ‘log’. The authors recommend using ‘log’. If the data is
sparse, however, log normalization will not work, which is why the default is ‘bistochas-
tic’. CAUTION: if method=’log’, the data must not be sparse.

n_components : integer, optional, default: 6

Number of singular vectors to check.

n_best : integer, optional, default: 3

Number of best singular vectors to which to project the data for clustering.

svd_method : string, optional, default: ‘randomized’

Selects the algorithm for finding singular vectors. May be ‘randomized’ or ‘arpack’.
If ‘randomized’, uses sklearn.utils.extmath.randomized_svd, which may be faster for
large matrices. If ‘arpack’, uses scipy.sparse.linalg.svds, which is more accurate, but
possibly slower in some cases.

n_svd_vecs : int, optional, default: None

Number of vectors to use in calculating the SVD. Corresponds to ncv when
svd_method=arpack and n_oversamples when svd_method is ‘randomized‘.

mini_batch : bool, optional, default: False

Whether to use mini-batch k-means, which is faster but may get different results.

init : {‘k-means++’, ‘random’ or an ndarray}

Method for initialization of k-means algorithm; defaults to ‘k-means++’.

n_init : int, optional, default: 10

Number of random initializations that are tried with the k-means algorithm.

If mini-batch k-means is used, the best initialization is chosen and the algorithm runs
once. Otherwise, the algorithm is run for each initialization and the best solution chosen.

n_jobs : int, optional, default: 1

The number of jobs to use for the computation. This works by breaking down the
pairwise matrix into n_jobs even slices and computing them in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

random_state : int, RandomState instance or None, optional, default: None

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes rows_ : array-like, shape (n_row_clusters, n_rows)

Results of the clustering. rows[i, r] is True if cluster i contains row r. Available only
after calling fit.

columns_ : array-like, shape (n_column_clusters, n_columns)

Results of the clustering, like rows.

row_labels_ : array-like, shape (n_rows,)
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Row partition labels.

column_labels_ : array-like, shape (n_cols,)

Column partition labels.

References

• Kluger, Yuval, et. al., 2003. Spectral biclustering of microarray data: coclustering genes and conditions.

Methods

fit(X[, y]) Creates a biclustering for X.
get_indices(i) Row and column indices of the i’th bicluster.
get_params([deep]) Get parameters for this estimator.
get_shape(i) Shape of the i’th bicluster.
get_submatrix(i, data) Returns the submatrix corresponding to bicluster i.
set_params(**params) Set the parameters of this estimator.

__init__(n_clusters=3, method=’bistochastic’, n_components=6, n_best=3,
svd_method=’randomized’, n_svd_vecs=None, mini_batch=False, init=’k-means++’,
n_init=10, n_jobs=1, random_state=None)

biclusters_
Convenient way to get row and column indicators together.

Returns the rows_ and columns_ members.

fit(X, y=None)
Creates a biclustering for X.

Parameters X : array-like, shape (n_samples, n_features)

y : Ignored

get_indices(i)
Row and column indices of the i’th bicluster.

Only works if rows_ and columns_ attributes exist.

Parameters i : int

The index of the cluster.

Returns row_ind : np.array, dtype=np.intp

Indices of rows in the dataset that belong to the bicluster.

col_ind : np.array, dtype=np.intp

Indices of columns in the dataset that belong to the bicluster.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.
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Returns params : mapping of string to any

Parameter names mapped to their values.

get_shape(i)
Shape of the i’th bicluster.

Parameters i : int

The index of the cluster.

Returns shape : (int, int)

Number of rows and columns (resp.) in the bicluster.

get_submatrix(i, data)
Returns the submatrix corresponding to bicluster i.

Parameters i : int

The index of the cluster.

data : array

The data.

Returns submatrix : array

The submatrix corresponding to bicluster i.

Notes

Works with sparse matrices. Only works if rows_ and columns_ attributes exist.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.cluster.bicluster.SpectralCoclustering

class sklearn.cluster.bicluster.SpectralCoclustering(n_clusters=3,
svd_method=’randomized’,
n_svd_vecs=None,
mini_batch=False, init=’k-
means++’, n_init=10, n_jobs=1,
random_state=None)

Spectral Co-Clustering algorithm (Dhillon, 2001).

Clusters rows and columns of an array X to solve the relaxed normalized cut of the bipartite graph created from
X as follows: the edge between row vertex i and column vertex j has weight X[i, j].

The resulting bicluster structure is block-diagonal, since each row and each column belongs to exactly one
bicluster.

Supports sparse matrices, as long as they are nonnegative.

Read more in the User Guide.
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Parameters n_clusters : integer, optional, default: 3

The number of biclusters to find.

svd_method : string, optional, default: ‘randomized’

Selects the algorithm for finding singular vectors. May be ‘randomized’ or ‘arpack’.
If ‘randomized’, use sklearn.utils.extmath.randomized_svd, which may
be faster for large matrices. If ‘arpack’, use scipy.sparse.linalg.svds, which
is more accurate, but possibly slower in some cases.

n_svd_vecs : int, optional, default: None

Number of vectors to use in calculating the SVD. Corresponds to ncv when
svd_method=arpack and n_oversamples when svd_method is ‘randomized‘.

mini_batch : bool, optional, default: False

Whether to use mini-batch k-means, which is faster but may get different results.

init : {‘k-means++’, ‘random’ or an ndarray}

Method for initialization of k-means algorithm; defaults to ‘k-means++’.

n_init : int, optional, default: 10

Number of random initializations that are tried with the k-means algorithm.

If mini-batch k-means is used, the best initialization is chosen and the algorithm runs
once. Otherwise, the algorithm is run for each initialization and the best solution chosen.

n_jobs : int, optional, default: 1

The number of jobs to use for the computation. This works by breaking down the
pairwise matrix into n_jobs even slices and computing them in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

random_state : int, RandomState instance or None, optional, default: None

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes rows_ : array-like, shape (n_row_clusters, n_rows)

Results of the clustering. rows[i, r] is True if cluster i contains row r. Available only
after calling fit.

columns_ : array-like, shape (n_column_clusters, n_columns)

Results of the clustering, like rows.

row_labels_ : array-like, shape (n_rows,)

The bicluster label of each row.

column_labels_ : array-like, shape (n_cols,)

The bicluster label of each column.
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References

• Dhillon, Inderjit S, 2001. Co-clustering documents and words using bipartite spectral graph partitioning.

Methods

fit(X[, y]) Creates a biclustering for X.
get_indices(i) Row and column indices of the i’th bicluster.
get_params([deep]) Get parameters for this estimator.
get_shape(i) Shape of the i’th bicluster.
get_submatrix(i, data) Returns the submatrix corresponding to bicluster i.
set_params(**params) Set the parameters of this estimator.

__init__(n_clusters=3, svd_method=’randomized’, n_svd_vecs=None, mini_batch=False, init=’k-
means++’, n_init=10, n_jobs=1, random_state=None)

biclusters_
Convenient way to get row and column indicators together.

Returns the rows_ and columns_ members.

fit(X, y=None)
Creates a biclustering for X.

Parameters X : array-like, shape (n_samples, n_features)

y : Ignored

get_indices(i)
Row and column indices of the i’th bicluster.

Only works if rows_ and columns_ attributes exist.

Parameters i : int

The index of the cluster.

Returns row_ind : np.array, dtype=np.intp

Indices of rows in the dataset that belong to the bicluster.

col_ind : np.array, dtype=np.intp

Indices of columns in the dataset that belong to the bicluster.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_shape(i)
Shape of the i’th bicluster.

Parameters i : int
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The index of the cluster.

Returns shape : (int, int)

Number of rows and columns (resp.) in the bicluster.

get_submatrix(i, data)
Returns the submatrix corresponding to bicluster i.

Parameters i : int

The index of the cluster.

data : array

The data.

Returns submatrix : array

The submatrix corresponding to bicluster i.

Notes

Works with sparse matrices. Only works if rows_ and columns_ attributes exist.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

5.5 sklearn.covariance: Covariance Estimators

The sklearn.covariance module includes methods and algorithms to robustly estimate the covariance of fea-
tures given a set of points. The precision matrix defined as the inverse of the covariance is also estimated. Covariance
estimation is closely related to the theory of Gaussian Graphical Models.

User guide: See the Covariance estimation section for further details.

covariance.EmpiricalCovariance([. . . ]) Maximum likelihood covariance estimator
covariance.EllipticEnvelope([. . . ]) An object for detecting outliers in a Gaussian distributed

dataset.
covariance.GraphLasso([alpha, mode, tol, . . . ]) Sparse inverse covariance estimation with an l1-penalized

estimator.
covariance.GraphLassoCV ([alphas, . . . ]) Sparse inverse covariance w/ cross-validated choice of the

l1 penalty
covariance.LedoitWolf([store_precision, . . . ]) LedoitWolf Estimator
covariance.MinCovDet([store_precision, . . . ]) Minimum Covariance Determinant (MCD): robust estima-

tor of covariance.
covariance.OAS([store_precision, . . . ]) Oracle Approximating Shrinkage Estimator
covariance.ShrunkCovariance([. . . ]) Covariance estimator with shrinkage
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5.5.1 sklearn.covariance.EmpiricalCovariance

class sklearn.covariance.EmpiricalCovariance(store_precision=True, as-
sume_centered=False)

Maximum likelihood covariance estimator

Read more in the User Guide.

Parameters store_precision : bool

Specifies if the estimated precision is stored.

assume_centered : bool

If True, data are not centered before computation. Useful when working with data
whose mean is almost, but not exactly zero. If False (default), data are centered before
computation.

Attributes covariance_ : 2D ndarray, shape (n_features, n_features)

Estimated covariance matrix

precision_ : 2D ndarray, shape (n_features, n_features)

Estimated pseudo-inverse matrix. (stored only if store_precision is True)

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covari-
ance estimators.

fit(X[, y]) Fits the Maximum Likelihood Estimator covariance
model according to the given training data and parame-
ters.

get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(observations) Computes the squared Mahalanobis distances of given

observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set with

self.covariance_ as an estimator of its covariance ma-
trix.

set_params(**params) Set the parameters of this estimator.

__init__(store_precision=True, assume_centered=False)

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameters comp_cov : array-like, shape = [n_features, n_features]

The covariance to compare with.

norm : str

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling : bool
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If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared : bool

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

Returns The Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X, y=None)
Fits the Maximum Likelihood Estimator covariance model according to the given training data and param-
eters.

Parameters X : array-like, shape = [n_samples, n_features]

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : not used, present for API consistence purpose.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returns precision_ : array-like,

The precision matrix associated to the current covariance object.

mahalanobis(observations)
Computes the squared Mahalanobis distances of given observations.

Parameters observations : array-like, shape = [n_observations, n_features]

The observations, the Mahalanobis distances of the which we compute. Observations
are assumed to be drawn from the same distribution than the data used in fit.

Returns mahalanobis_distance : array, shape = [n_observations,]

Squared Mahalanobis distances of the observations.

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

Parameters X_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features. X_test is assumed to be drawn from the
same distribution than the data used in fit (including centering).
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y : not used, present for API consistence purpose.

Returns res : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.covariance.EmpiricalCovariance

• Robust covariance estimation and Mahalanobis distances relevance

• Robust vs Empirical covariance estimate

5.5.2 sklearn.covariance.EllipticEnvelope

class sklearn.covariance.EllipticEnvelope(store_precision=True, assume_centered=False,
support_fraction=None, contamination=0.1,
random_state=None)

An object for detecting outliers in a Gaussian distributed dataset.

Read more in the User Guide.

Parameters store_precision : boolean, optional (default=True)

Specify if the estimated precision is stored.

assume_centered : boolean, optional (default=False)

If True, the support of robust location and covariance estimates is computed, and a
covariance estimate is recomputed from it, without centering the data. Useful to work
with data whose mean is significantly equal to zero but is not exactly zero. If False,
the robust location and covariance are directly computed with the FastMCD algorithm
without additional treatment.

support_fraction : float in (0., 1.), optional (default=None)

The proportion of points to be included in the support of the raw MCD estimate.
If None, the minimum value of support_fraction will be used within the algorithm:
[n_sample + n_features + 1] / 2.

contamination : float in (0., 0.5), optional (default=0.1)

The amount of contamination of the data set, i.e. the proportion of outliers in the data
set.

random_state : int, RandomState instance or None, optional (default=None)

The seed of the pseudo random number generator to use when shuffling the data. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes location_ : array-like, shape (n_features,)
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Estimated robust location

covariance_ : array-like, shape (n_features, n_features)

Estimated robust covariance matrix

precision_ : array-like, shape (n_features, n_features)

Estimated pseudo inverse matrix. (stored only if store_precision is True)

support_ : array-like, shape (n_samples,)

A mask of the observations that have been used to compute the robust estimates of
location and shape.

See also:

EmpiricalCovariance, MinCovDet

Notes

Outlier detection from covariance estimation may break or not perform well in high-dimensional settings. In
particular, one will always take care to work with n_samples > n_features ** 2.

References

Methods

correct_covariance(data) Apply a correction to raw Minimum Covariance Deter-
minant estimates.

decision_function(X[, raw_values]) Compute the decision function of the given observa-
tions.

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covari-
ance estimators.

fit(X[, y]) Fit the EllipticEnvelope model with X.
get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(observations) Computes the squared Mahalanobis distances of given

observations.
predict(X) Outlyingness of observations in X according to the fitted

model.
reweight_covariance(data) Re-weight raw Minimum Covariance Determinant esti-

mates.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(store_precision=True, assume_centered=False, support_fraction=None, contamina-
tion=0.1, random_state=None)

correct_covariance(data)
Apply a correction to raw Minimum Covariance Determinant estimates.

Correction using the empirical correction factor suggested by Rousseeuw and Van Driessen in [RVD].

Parameters data : array-like, shape (n_samples, n_features)
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The data matrix, with p features and n samples. The data set must be the one which was
used to compute the raw estimates.

Returns covariance_corrected : array-like, shape (n_features, n_features)

Corrected robust covariance estimate.

References

[RVD]

decision_function(X, raw_values=False)
Compute the decision function of the given observations.

Parameters X : array-like, shape (n_samples, n_features)

raw_values : bool

Whether or not to consider raw Mahalanobis distances as the decision function. Must
be False (default) for compatibility with the others outlier detection tools.

Returns decision : array-like, shape (n_samples, )

Decision function of the samples. It is equal to the Mahalanobis distances if raw_values
is True. By default (raw_values=False), it is equal to the cubic root of the shifted
Mahalanobis distances. In that case, the threshold for being an outlier is 0, which en-
sures a compatibility with other outlier detection tools such as the One-Class SVM.

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameters comp_cov : array-like, shape = [n_features, n_features]

The covariance to compare with.

norm : str

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling : bool

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared : bool

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

Returns The Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X, y=None)
Fit the EllipticEnvelope model with X.

Parameters X : numpy array or sparse matrix of shape [n_samples, n_features]

Training data

y : (ignored)
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get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returns precision_ : array-like,

The precision matrix associated to the current covariance object.

mahalanobis(observations)
Computes the squared Mahalanobis distances of given observations.

Parameters observations : array-like, shape = [n_observations, n_features]

The observations, the Mahalanobis distances of the which we compute. Observations
are assumed to be drawn from the same distribution than the data used in fit.

Returns mahalanobis_distance : array, shape = [n_observations,]

Squared Mahalanobis distances of the observations.

predict(X)
Outlyingness of observations in X according to the fitted model.

Parameters X : array-like, shape = (n_samples, n_features)

Returns is_outliers : array, shape = (n_samples, ), dtype = bool

For each observation, tells whether or not it should be considered as an outlier according
to the fitted model.

threshold : float,

The values of the less outlying point’s decision function.

reweight_covariance(data)
Re-weight raw Minimum Covariance Determinant estimates.

Re-weight observations using Rousseeuw’s method (equivalent to deleting outlying observations from the
data set before computing location and covariance estimates) described in [RVDriessen].

Parameters data : array-like, shape (n_samples, n_features)

The data matrix, with p features and n samples. The data set must be the one which was
used to compute the raw estimates.

Returns location_reweighted : array-like, shape (n_features, )

Re-weighted robust location estimate.

covariance_reweighted : array-like, shape (n_features, n_features)

Re-weighted robust covariance estimate.

support_reweighted : array-like, type boolean, shape (n_samples,)

A mask of the observations that have been used to compute the re-weighted robust
location and covariance estimates.
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References

[RVDriessen]

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples,) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = (n_samples,), optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.covariance.EllipticEnvelope

• Outlier detection on a real data set

• Outlier detection with several methods.

5.5.3 sklearn.covariance.GraphLasso

class sklearn.covariance.GraphLasso(alpha=0.01, mode=’cd’, tol=0.0001, enet_tol=0.0001,
max_iter=100, verbose=False, assume_centered=False)

Sparse inverse covariance estimation with an l1-penalized estimator.

Read more in the User Guide.

Parameters alpha : positive float, default 0.01

The regularization parameter: the higher alpha, the more regularization, the sparser the
inverse covariance.

mode : {‘cd’, ‘lars’}, default ‘cd’

The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse un-
derlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable.

tol : positive float, default 1e-4

The tolerance to declare convergence: if the dual gap goes below this value, iterations
are stopped.
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enet_tol : positive float, optional

The tolerance for the elastic net solver used to calculate the descent direction. This
parameter controls the accuracy of the search direction for a given column update, not
of the overall parameter estimate. Only used for mode=’cd’.

max_iter : integer, default 100

The maximum number of iterations.

verbose : boolean, default False

If verbose is True, the objective function and dual gap are plotted at each iteration.

assume_centered : boolean, default False

If True, data are not centered before computation. Useful when working with data
whose mean is almost, but not exactly zero. If False, data are centered before computa-
tion.

Attributes covariance_ : array-like, shape (n_features, n_features)

Estimated covariance matrix

precision_ : array-like, shape (n_features, n_features)

Estimated pseudo inverse matrix.

n_iter_ : int

Number of iterations run.

See also:

graph_lasso, GraphLassoCV

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covari-
ance estimators.

fit(X[, y]) Fits the GraphLasso model to X.
get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(observations) Computes the squared Mahalanobis distances of given

observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set with

self.covariance_ as an estimator of its covariance ma-
trix.

set_params(**params) Set the parameters of this estimator.

__init__(alpha=0.01, mode=’cd’, tol=0.0001, enet_tol=0.0001, max_iter=100, verbose=False, as-
sume_centered=False)

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameters comp_cov : array-like, shape = [n_features, n_features]

The covariance to compare with.

norm : str
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The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling : bool

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared : bool

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

Returns The Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X, y=None)
Fits the GraphLasso model to X.

Parameters X : ndarray, shape (n_samples, n_features)

Data from which to compute the covariance estimate

y : (ignored)

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returns precision_ : array-like,

The precision matrix associated to the current covariance object.

mahalanobis(observations)
Computes the squared Mahalanobis distances of given observations.

Parameters observations : array-like, shape = [n_observations, n_features]

The observations, the Mahalanobis distances of the which we compute. Observations
are assumed to be drawn from the same distribution than the data used in fit.

Returns mahalanobis_distance : array, shape = [n_observations,]

Squared Mahalanobis distances of the observations.

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

Parameters X_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features. X_test is assumed to be drawn from the
same distribution than the data used in fit (including centering).
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y : not used, present for API consistence purpose.

Returns res : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

5.5.4 sklearn.covariance.GraphLassoCV

class sklearn.covariance.GraphLassoCV(alphas=4, n_refinements=4, cv=None, tol=0.0001,
enet_tol=0.0001, max_iter=100, mode=’cd’, n_jobs=1,
verbose=False, assume_centered=False)

Sparse inverse covariance w/ cross-validated choice of the l1 penalty

Read more in the User Guide.

Parameters alphas : integer, or list positive float, optional

If an integer is given, it fixes the number of points on the grids of alpha to be used. If
a list is given, it gives the grid to be used. See the notes in the class docstring for more
details.

n_refinements : strictly positive integer

The number of times the grid is refined. Not used if explicit values of alphas are passed.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

tol : positive float, optional

The tolerance to declare convergence: if the dual gap goes below this value, iterations
are stopped.

enet_tol : positive float, optional

The tolerance for the elastic net solver used to calculate the descent direction. This
parameter controls the accuracy of the search direction for a given column update, not
of the overall parameter estimate. Only used for mode=’cd’.

max_iter : integer, optional

Maximum number of iterations.
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mode : {‘cd’, ‘lars’}

The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse under-
lying graphs, where number of features is greater than number of samples. Elsewhere
prefer cd which is more numerically stable.

n_jobs : int, optional

number of jobs to run in parallel (default 1).

verbose : boolean, optional

If verbose is True, the objective function and duality gap are printed at each iteration.

assume_centered : Boolean

If True, data are not centered before computation. Useful when working with data
whose mean is almost, but not exactly zero. If False, data are centered before computa-
tion.

Attributes covariance_ : numpy.ndarray, shape (n_features, n_features)

Estimated covariance matrix.

precision_ : numpy.ndarray, shape (n_features, n_features)

Estimated precision matrix (inverse covariance).

alpha_ : float

Penalization parameter selected.

cv_alphas_ : list of float

All penalization parameters explored.

grid_scores_ : 2D numpy.ndarray (n_alphas, n_folds)

Log-likelihood score on left-out data across folds.

n_iter_ : int

Number of iterations run for the optimal alpha.

See also:

graph_lasso, GraphLasso

Notes

The search for the optimal penalization parameter (alpha) is done on an iteratively refined grid: first the cross-
validated scores on a grid are computed, then a new refined grid is centered around the maximum, and so on.

One of the challenges which is faced here is that the solvers can fail to converge to a well-conditioned estimate.
The corresponding values of alpha then come out as missing values, but the optimum may be close to these
missing values.

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covari-
ance estimators.

Continued on next page
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Table 5.31 – continued from previous page
fit(X[, y]) Fits the GraphLasso covariance model to X.
get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(observations) Computes the squared Mahalanobis distances of given

observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set with

self.covariance_ as an estimator of its covariance ma-
trix.

set_params(**params) Set the parameters of this estimator.

__init__(alphas=4, n_refinements=4, cv=None, tol=0.0001, enet_tol=0.0001, max_iter=100,
mode=’cd’, n_jobs=1, verbose=False, assume_centered=False)

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameters comp_cov : array-like, shape = [n_features, n_features]

The covariance to compare with.

norm : str

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling : bool

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared : bool

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

Returns The Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X, y=None)
Fits the GraphLasso covariance model to X.

Parameters X : ndarray, shape (n_samples, n_features)

Data from which to compute the covariance estimate

y : (ignored)

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.
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get_precision()
Getter for the precision matrix.

Returns precision_ : array-like,

The precision matrix associated to the current covariance object.

grid_scores
DEPRECATED: Attribute grid_scores was deprecated in version 0.19 and will be removed in 0.21. Use
grid_scores_ instead

mahalanobis(observations)
Computes the squared Mahalanobis distances of given observations.

Parameters observations : array-like, shape = [n_observations, n_features]

The observations, the Mahalanobis distances of the which we compute. Observations
are assumed to be drawn from the same distribution than the data used in fit.

Returns mahalanobis_distance : array, shape = [n_observations,]

Squared Mahalanobis distances of the observations.

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

Parameters X_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features. X_test is assumed to be drawn from the
same distribution than the data used in fit (including centering).

y : not used, present for API consistence purpose.

Returns res : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.covariance.GraphLassoCV

• Visualizing the stock market structure

• Sparse inverse covariance estimation

5.5.5 sklearn.covariance.LedoitWolf

class sklearn.covariance.LedoitWolf(store_precision=True, assume_centered=False,
block_size=1000)

LedoitWolf Estimator
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Ledoit-Wolf is a particular form of shrinkage, where the shrinkage coefficient is computed using O. Ledoit and
M. Wolf’s formula as described in “A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices”,
Ledoit and Wolf, Journal of Multivariate Analysis, Volume 88, Issue 2, February 2004, pages 365-411.

Read more in the User Guide.

Parameters store_precision : bool, default=True

Specify if the estimated precision is stored.

assume_centered : bool, default=False

If True, data are not centered before computation. Useful when working with data
whose mean is almost, but not exactly zero. If False (default), data are centered before
computation.

block_size : int, default=1000

Size of the blocks into which the covariance matrix will be split during its Ledoit-Wolf
estimation. This is purely a memory optimization and does not affect results.

Attributes covariance_ : array-like, shape (n_features, n_features)

Estimated covariance matrix

precision_ : array-like, shape (n_features, n_features)

Estimated pseudo inverse matrix. (stored only if store_precision is True)

shrinkage_ : float, 0 <= shrinkage <= 1

Coefficient in the convex combination used for the computation of the shrunk estimate.

Notes

The regularised covariance is:

(1 - shrinkage)*cov
+ shrinkage*mu*np.identity(n_features)

where mu = trace(cov) / n_features and shrinkage is given by the Ledoit and Wolf formula (see References)

References

“A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices”, Ledoit and Wolf, Journal of Mul-
tivariate Analysis, Volume 88, Issue 2, February 2004, pages 365-411.

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covari-
ance estimators.

fit(X[, y]) Fits the Ledoit-Wolf shrunk covariance model accord-
ing to the given training data and parameters.

get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.

Continued on next page
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Table 5.32 – continued from previous page
mahalanobis(observations) Computes the squared Mahalanobis distances of given

observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set with

self.covariance_ as an estimator of its covariance ma-
trix.

set_params(**params) Set the parameters of this estimator.

__init__(store_precision=True, assume_centered=False, block_size=1000)

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameters comp_cov : array-like, shape = [n_features, n_features]

The covariance to compare with.

norm : str

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling : bool

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared : bool

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

Returns The Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X, y=None)
Fits the Ledoit-Wolf shrunk covariance model according to the given training data and parameters.

Parameters X : array-like, shape = [n_samples, n_features]

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : not used, present for API consistence purpose.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.
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get_precision()
Getter for the precision matrix.

Returns precision_ : array-like,

The precision matrix associated to the current covariance object.

mahalanobis(observations)
Computes the squared Mahalanobis distances of given observations.

Parameters observations : array-like, shape = [n_observations, n_features]

The observations, the Mahalanobis distances of the which we compute. Observations
are assumed to be drawn from the same distribution than the data used in fit.

Returns mahalanobis_distance : array, shape = [n_observations,]

Squared Mahalanobis distances of the observations.

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

Parameters X_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features. X_test is assumed to be drawn from the
same distribution than the data used in fit (including centering).

y : not used, present for API consistence purpose.

Returns res : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.covariance.LedoitWolf

• Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

• Ledoit-Wolf vs OAS estimation

• Model selection with Probabilistic PCA and Factor Analysis (FA)

5.5.6 sklearn.covariance.MinCovDet

class sklearn.covariance.MinCovDet(store_precision=True, assume_centered=False, sup-
port_fraction=None, random_state=None)

Minimum Covariance Determinant (MCD): robust estimator of covariance.

The Minimum Covariance Determinant covariance estimator is to be applied on Gaussian-distributed data, but
could still be relevant on data drawn from a unimodal, symmetric distribution. It is not meant to be used with
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multi-modal data (the algorithm used to fit a MinCovDet object is likely to fail in such a case). One should
consider projection pursuit methods to deal with multi-modal datasets.

Read more in the User Guide.

Parameters store_precision : bool

Specify if the estimated precision is stored.

assume_centered : Boolean

If True, the support of the robust location and the covariance estimates is computed, and
a covariance estimate is recomputed from it, without centering the data. Useful to work
with data whose mean is significantly equal to zero but is not exactly zero. If False,
the robust location and covariance are directly computed with the FastMCD algorithm
without additional treatment.

support_fraction : float, 0 < support_fraction < 1

The proportion of points to be included in the support of the raw MCD estimate. Default
is None, which implies that the minimum value of support_fraction will be used within
the algorithm: [n_sample + n_features + 1] / 2

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes raw_location_ : array-like, shape (n_features,)

The raw robust estimated location before correction and re-weighting.

raw_covariance_ : array-like, shape (n_features, n_features)

The raw robust estimated covariance before correction and re-weighting.

raw_support_ : array-like, shape (n_samples,)

A mask of the observations that have been used to compute the raw robust estimates of
location and shape, before correction and re-weighting.

location_ : array-like, shape (n_features,)

Estimated robust location

covariance_ : array-like, shape (n_features, n_features)

Estimated robust covariance matrix

precision_ : array-like, shape (n_features, n_features)

Estimated pseudo inverse matrix. (stored only if store_precision is True)

support_ : array-like, shape (n_samples,)

A mask of the observations that have been used to compute the robust estimates of
location and shape.

dist_ : array-like, shape (n_samples,)

Mahalanobis distances of the training set (on which fit is called) observations.

1254 Chapter 5. API Reference



scikit-learn user guide, Release 0.19.1

References

[Rouseeuw1984], [Rousseeuw], [ButlerDavies]

Methods

correct_covariance(data) Apply a correction to raw Minimum Covariance Deter-
minant estimates.

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covari-
ance estimators.

fit(X[, y]) Fits a Minimum Covariance Determinant with the
FastMCD algorithm.

get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(observations) Computes the squared Mahalanobis distances of given

observations.
reweight_covariance(data) Re-weight raw Minimum Covariance Determinant esti-

mates.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set with

self.covariance_ as an estimator of its covariance ma-
trix.

set_params(**params) Set the parameters of this estimator.

__init__(store_precision=True, assume_centered=False, support_fraction=None, ran-
dom_state=None)

correct_covariance(data)
Apply a correction to raw Minimum Covariance Determinant estimates.

Correction using the empirical correction factor suggested by Rousseeuw and Van Driessen in [RVD].

Parameters data : array-like, shape (n_samples, n_features)

The data matrix, with p features and n samples. The data set must be the one which was
used to compute the raw estimates.

Returns covariance_corrected : array-like, shape (n_features, n_features)

Corrected robust covariance estimate.

References

[RVD]

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameters comp_cov : array-like, shape = [n_features, n_features]

The covariance to compare with.

norm : str
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The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling : bool

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared : bool

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

Returns The Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X, y=None)
Fits a Minimum Covariance Determinant with the FastMCD algorithm.

Parameters X : array-like, shape = [n_samples, n_features]

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : not used, present for API consistence purpose.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returns precision_ : array-like,

The precision matrix associated to the current covariance object.

mahalanobis(observations)
Computes the squared Mahalanobis distances of given observations.

Parameters observations : array-like, shape = [n_observations, n_features]

The observations, the Mahalanobis distances of the which we compute. Observations
are assumed to be drawn from the same distribution than the data used in fit.

Returns mahalanobis_distance : array, shape = [n_observations,]

Squared Mahalanobis distances of the observations.

reweight_covariance(data)
Re-weight raw Minimum Covariance Determinant estimates.
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Re-weight observations using Rousseeuw’s method (equivalent to deleting outlying observations from the
data set before computing location and covariance estimates) described in [RVDriessen].

Parameters data : array-like, shape (n_samples, n_features)

The data matrix, with p features and n samples. The data set must be the one which was
used to compute the raw estimates.

Returns location_reweighted : array-like, shape (n_features, )

Re-weighted robust location estimate.

covariance_reweighted : array-like, shape (n_features, n_features)

Re-weighted robust covariance estimate.

support_reweighted : array-like, type boolean, shape (n_samples,)

A mask of the observations that have been used to compute the re-weighted robust
location and covariance estimates.

References

[RVDriessen]

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

Parameters X_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features. X_test is assumed to be drawn from the
same distribution than the data used in fit (including centering).

y : not used, present for API consistence purpose.

Returns res : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.covariance.MinCovDet

• Robust covariance estimation and Mahalanobis distances relevance

• Robust vs Empirical covariance estimate
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5.5.7 sklearn.covariance.OAS

class sklearn.covariance.OAS(store_precision=True, assume_centered=False)
Oracle Approximating Shrinkage Estimator

Read more in the User Guide.

OAS is a particular form of shrinkage described in “Shrinkage Algorithms for MMSE Covariance Estimation”
Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.

The formula used here does not correspond to the one given in the article. It has been taken from the Matlab
program available from the authors’ webpage (http://tbayes.eecs.umich.edu/yilun/covestimation). In the original
article, formula (23) states that 2/p is multiplied by Trace(cov*cov) in both the numerator and denominator, this
operation is omitted in the author’s MATLAB program because for a large p, the value of 2/p is so small that it
doesn’t affect the value of the estimator.

Parameters store_precision : bool, default=True

Specify if the estimated precision is stored.

assume_centered : bool, default=False

If True, data are not centered before computation. Useful when working with data
whose mean is almost, but not exactly zero. If False (default), data are centered before
computation.

Attributes covariance_ : array-like, shape (n_features, n_features)

Estimated covariance matrix.

precision_ : array-like, shape (n_features, n_features)

Estimated pseudo inverse matrix. (stored only if store_precision is True)

shrinkage_ : float, 0 <= shrinkage <= 1

coefficient in the convex combination used for the computation of the shrunk estimate.

Notes

The regularised covariance is:

(1 - shrinkage)*cov
+ shrinkage*mu*np.identity(n_features)

where mu = trace(cov) / n_features and shrinkage is given by the OAS formula (see References)

References

“Shrinkage Algorithms for MMSE Covariance Estimation” Chen et al., IEEE Trans. on Sign. Proc., Volume 58,
Issue 10, October 2010.

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covari-
ance estimators.

Continued on next page
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Table 5.34 – continued from previous page
fit(X[, y]) Fits the Oracle Approximating Shrinkage covariance

model according to the given training data and parame-
ters.

get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(observations) Computes the squared Mahalanobis distances of given

observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set with

self.covariance_ as an estimator of its covariance ma-
trix.

set_params(**params) Set the parameters of this estimator.

__init__(store_precision=True, assume_centered=False)

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameters comp_cov : array-like, shape = [n_features, n_features]

The covariance to compare with.

norm : str

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling : bool

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared : bool

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

Returns The Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X, y=None)
Fits the Oracle Approximating Shrinkage covariance model according to the given training data and pa-
rameters.

Parameters X : array-like, shape = [n_samples, n_features]

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : not used, present for API consistence purpose.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional
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If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returns precision_ : array-like,

The precision matrix associated to the current covariance object.

mahalanobis(observations)
Computes the squared Mahalanobis distances of given observations.

Parameters observations : array-like, shape = [n_observations, n_features]

The observations, the Mahalanobis distances of the which we compute. Observations
are assumed to be drawn from the same distribution than the data used in fit.

Returns mahalanobis_distance : array, shape = [n_observations,]

Squared Mahalanobis distances of the observations.

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

Parameters X_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features. X_test is assumed to be drawn from the
same distribution than the data used in fit (including centering).

y : not used, present for API consistence purpose.

Returns res : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.covariance.OAS

• Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

• Ledoit-Wolf vs OAS estimation

5.5.8 sklearn.covariance.ShrunkCovariance

class sklearn.covariance.ShrunkCovariance(store_precision=True, assume_centered=False,
shrinkage=0.1)

Covariance estimator with shrinkage
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Read more in the User Guide.

Parameters store_precision : boolean, default True

Specify if the estimated precision is stored

assume_centered : boolean, default False

If True, data are not centered before computation. Useful when working with data
whose mean is almost, but not exactly zero. If False, data are centered before computa-
tion.

shrinkage : float, 0 <= shrinkage <= 1, default 0.1

Coefficient in the convex combination used for the computation of the shrunk estimate.

Attributes covariance_ : array-like, shape (n_features, n_features)

Estimated covariance matrix

precision_ : array-like, shape (n_features, n_features)

Estimated pseudo inverse matrix. (stored only if store_precision is True)

shrinkage : float, 0 <= shrinkage <= 1

Coefficient in the convex combination used for the computation of the shrunk estimate.

Notes

The regularized covariance is given by

(1 - shrinkage)*cov

• shrinkage*mu*np.identity(n_features)

where mu = trace(cov) / n_features

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two covari-
ance estimators.

fit(X[, y]) Fits the shrunk covariance model according to the given
training data and parameters.

get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(observations) Computes the squared Mahalanobis distances of given

observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set with

self.covariance_ as an estimator of its covariance ma-
trix.

set_params(**params) Set the parameters of this estimator.

__init__(store_precision=True, assume_centered=False, shrinkage=0.1)

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).
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Parameters comp_cov : array-like, shape = [n_features, n_features]

The covariance to compare with.

norm : str

The type of norm used to compute the error. Available error types: - ‘frobenius’ (de-
fault): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_).

scaling : bool

If True (default), the squared error norm is divided by n_features. If False, the squared
error norm is not rescaled.

squared : bool

Whether to compute the squared error norm or the error norm. If True (default), the
squared error norm is returned. If False, the error norm is returned.

Returns The Mean Squared Error (in the sense of the Frobenius norm) between :

‘self‘ and ‘comp_cov‘ covariance estimators. :

fit(X, y=None)
Fits the shrunk covariance model according to the given training data and parameters.

Parameters X : array-like, shape = [n_samples, n_features]

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : not used, present for API consistence purpose.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returns precision_ : array-like,

The precision matrix associated to the current covariance object.

mahalanobis(observations)
Computes the squared Mahalanobis distances of given observations.

Parameters observations : array-like, shape = [n_observations, n_features]

The observations, the Mahalanobis distances of the which we compute. Observations
are assumed to be drawn from the same distribution than the data used in fit.

Returns mahalanobis_distance : array, shape = [n_observations,]

Squared Mahalanobis distances of the observations.
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score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance
matrix.

Parameters X_test : array-like, shape = [n_samples, n_features]

Test data of which we compute the likelihood, where n_samples is the number of sam-
ples and n_features is the number of features. X_test is assumed to be drawn from the
same distribution than the data used in fit (including centering).

y : not used, present for API consistence purpose.

Returns res : float

The likelihood of the data set with self.covariance_ as an estimator of its covariance
matrix.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.covariance.ShrunkCovariance

• Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

• Model selection with Probabilistic PCA and Factor Analysis (FA)

covariance.empirical_covariance(X[, . . . ]) Computes the Maximum likelihood covariance estimator
covariance.graph_lasso(emp_cov, alpha[, . . . ]) l1-penalized covariance estimator
covariance.ledoit_wolf(X[, assume_centered,
. . . ])

Estimates the shrunk Ledoit-Wolf covariance matrix.

covariance.oas(X[, assume_centered]) Estimate covariance with the Oracle Approximating
Shrinkage algorithm.

covariance.shrunk_covariance(emp_cov[, . . . ]) Calculates a covariance matrix shrunk on the diagonal

5.5.9 sklearn.covariance.empirical_covariance

sklearn.covariance.empirical_covariance(X, assume_centered=False)
Computes the Maximum likelihood covariance estimator

Parameters X : ndarray, shape (n_samples, n_features)

Data from which to compute the covariance estimate

assume_centered : Boolean

If True, data are not centered before computation. Useful when working with data
whose mean is almost, but not exactly zero. If False, data are centered before computa-
tion.

Returns covariance : 2D ndarray, shape (n_features, n_features)

Empirical covariance (Maximum Likelihood Estimator).
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Examples using sklearn.covariance.empirical_covariance

• Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

5.5.10 sklearn.covariance.graph_lasso

sklearn.covariance.graph_lasso(emp_cov, alpha, cov_init=None, mode=’cd’, tol=0.0001,
enet_tol=0.0001, max_iter=100, verbose=False, re-
turn_costs=False, eps=2.2204460492503131e-16, re-
turn_n_iter=False)

l1-penalized covariance estimator

Read more in the User Guide.

Parameters emp_cov : 2D ndarray, shape (n_features, n_features)

Empirical covariance from which to compute the covariance estimate.

alpha : positive float

The regularization parameter: the higher alpha, the more regularization, the sparser the
inverse covariance.

cov_init : 2D array (n_features, n_features), optional

The initial guess for the covariance.

mode : {‘cd’, ‘lars’}

The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse un-
derlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable.

tol : positive float, optional

The tolerance to declare convergence: if the dual gap goes below this value, iterations
are stopped.

enet_tol : positive float, optional

The tolerance for the elastic net solver used to calculate the descent direction. This
parameter controls the accuracy of the search direction for a given column update, not
of the overall parameter estimate. Only used for mode=’cd’.

max_iter : integer, optional

The maximum number of iterations.

verbose : boolean, optional

If verbose is True, the objective function and dual gap are printed at each iteration.

return_costs : boolean, optional

If return_costs is True, the objective function and dual gap at each iteration are returned.

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems.

return_n_iter : bool, optional

Whether or not to return the number of iterations.

Returns covariance : 2D ndarray, shape (n_features, n_features)
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The estimated covariance matrix.

precision : 2D ndarray, shape (n_features, n_features)

The estimated (sparse) precision matrix.

costs : list of (objective, dual_gap) pairs

The list of values of the objective function and the dual gap at each iteration. Returned
only if return_costs is True.

n_iter : int

Number of iterations. Returned only if return_n_iter is set to True.

See also:

GraphLasso, GraphLassoCV

Notes

The algorithm employed to solve this problem is the GLasso algorithm, from the Friedman 2008 Biostatistics
paper. It is the same algorithm as in the R glasso package.

One possible difference with the glasso R package is that the diagonal coefficients are not penalized.

5.5.11 sklearn.covariance.ledoit_wolf

sklearn.covariance.ledoit_wolf(X, assume_centered=False, block_size=1000)
Estimates the shrunk Ledoit-Wolf covariance matrix.

Read more in the User Guide.

Parameters X : array-like, shape (n_samples, n_features)

Data from which to compute the covariance estimate

assume_centered : boolean, default=False

If True, data are not centered before computation. Useful to work with data whose mean
is significantly equal to zero but is not exactly zero. If False, data are centered before
computation.

block_size : int, default=1000

Size of the blocks into which the covariance matrix will be split. This is purely a mem-
ory optimization and does not affect results.

Returns shrunk_cov : array-like, shape (n_features, n_features)

Shrunk covariance.

shrinkage : float

Coefficient in the convex combination used for the computation of the shrunk estimate.

Notes

The regularized (shrunk) covariance is:

(1 - shrinkage)*cov
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• shrinkage * mu * np.identity(n_features)

where mu = trace(cov) / n_features

Examples using sklearn.covariance.ledoit_wolf

• Sparse inverse covariance estimation

5.5.12 sklearn.covariance.oas

sklearn.covariance.oas(X, assume_centered=False)
Estimate covariance with the Oracle Approximating Shrinkage algorithm.

Parameters X : array-like, shape (n_samples, n_features)

Data from which to compute the covariance estimate.

assume_centered : boolean

If True, data are not centered before computation. Useful to work with data whose mean
is significantly equal to zero but is not exactly zero. If False, data are centered before
computation.

Returns shrunk_cov : array-like, shape (n_features, n_features)

Shrunk covariance.

shrinkage : float

Coefficient in the convex combination used for the computation of the shrunk estimate.

Notes

The regularised (shrunk) covariance is:

(1 - shrinkage)*cov

• shrinkage * mu * np.identity(n_features)

where mu = trace(cov) / n_features

The formula we used to implement the OAS does not correspond to the one given in the article. It has been
taken from the MATLAB program available from the author’s webpage (http://tbayes.eecs.umich.edu/yilun/
covestimation).

5.5.13 sklearn.covariance.shrunk_covariance

sklearn.covariance.shrunk_covariance(emp_cov, shrinkage=0.1)
Calculates a covariance matrix shrunk on the diagonal

Read more in the User Guide.

Parameters emp_cov : array-like, shape (n_features, n_features)

Covariance matrix to be shrunk

shrinkage : float, 0 <= shrinkage <= 1

Coefficient in the convex combination used for the computation of the shrunk estimate.
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Returns shrunk_cov : array-like

Shrunk covariance.

Notes

The regularized (shrunk) covariance is given by

(1 - shrinkage)*cov

• shrinkage*mu*np.identity(n_features)

where mu = trace(cov) / n_features

5.6 sklearn.cross_decomposition: Cross decomposition

User guide: See the Cross decomposition section for further details.

cross_decomposition.CCA([n_components, . . . ]) CCA Canonical Correlation Analysis.
cross_decomposition.PLSCanonical([. . . ]) PLSCanonical implements the 2 blocks canonical PLS of

the original Wold algorithm [Tenenhaus 1998] p.204, re-
ferred as PLS-C2A in [Wegelin 2000].

cross_decomposition.PLSRegression([. . . ]) PLS regression
cross_decomposition.PLSSVD([n_components,
. . . ])

Partial Least Square SVD

5.6.1 sklearn.cross_decomposition.CCA

class sklearn.cross_decomposition.CCA(n_components=2, scale=True, max_iter=500, tol=1e-06,
copy=True)

CCA Canonical Correlation Analysis.

CCA inherits from PLS with mode=”B” and deflation_mode=”canonical”.

Read more in the User Guide.

Parameters n_components : int, (default 2).

number of components to keep.

scale : boolean, (default True)

whether to scale the data?

max_iter : an integer, (default 500)

the maximum number of iterations of the NIPALS inner loop

tol : non-negative real, default 1e-06.

the tolerance used in the iterative algorithm

copy : boolean

Whether the deflation be done on a copy. Let the default value to True unless you don’t
care about side effects

Attributes x_weights_ : array, [p, n_components]
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X block weights vectors.

y_weights_ : array, [q, n_components]

Y block weights vectors.

x_loadings_ : array, [p, n_components]

X block loadings vectors.

y_loadings_ : array, [q, n_components]

Y block loadings vectors.

x_scores_ : array, [n_samples, n_components]

X scores.

y_scores_ : array, [n_samples, n_components]

Y scores.

x_rotations_ : array, [p, n_components]

X block to latents rotations.

y_rotations_ : array, [q, n_components]

Y block to latents rotations.

n_iter_ : array-like

Number of iterations of the NIPALS inner loop for each component.

See also:

PLSCanonical, PLSSVD

Notes

For each component k, find the weights u, v that maximizes max corr(Xk u, Yk v), such that |u| = |v| =
1

Note that it maximizes only the correlations between the scores.

The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score.

The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score.

References

Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case.
Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000.

In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions
Technic.

Examples
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>>> from sklearn.cross_decomposition import CCA
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> cca = CCA(n_components=1)
>>> cca.fit(X, Y)
...
CCA(copy=True, max_iter=500, n_components=1, scale=True, tol=1e-06)
>>> X_c, Y_c = cca.transform(X, Y)

Methods

fit(X, Y) Fit model to data.
fit_transform(X[, y]) Learn and apply the dimension reduction on the train

data.
get_params([deep]) Get parameters for this estimator.
predict(X[, copy]) Apply the dimension reduction learned on the train data.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.
transform(X[, Y, copy]) Apply the dimension reduction learned on the train data.

__init__(n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True)

fit(X, Y)
Fit model to data.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of predictors.

Y : array-like, shape = [n_samples, n_targets]

Target vectors, where n_samples is the number of samples and n_targets is the number
of response variables.

fit_transform(X, y=None)
Learn and apply the dimension reduction on the train data.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of predictors.

y : array-like, shape = [n_samples, n_targets]

Target vectors, where n_samples is the number of samples and n_targets is the number
of response variables.

Returns x_scores if Y is not given, (x_scores, y_scores) otherwise. :

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

5.6. sklearn.cross_decomposition: Cross decomposition 1269



scikit-learn user guide, Release 0.19.1

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X, copy=True)
Apply the dimension reduction learned on the train data.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of predictors.

copy : boolean, default True

Whether to copy X and Y, or perform in-place normalization.

Notes

This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, Y=None, copy=True)
Apply the dimension reduction learned on the train data.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of predictors.

Y : array-like, shape = [n_samples, n_targets]

Target vectors, where n_samples is the number of samples and n_targets is the number
of response variables.
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copy : boolean, default True

Whether to copy X and Y, or perform in-place normalization.

Returns x_scores if Y is not given, (x_scores, y_scores) otherwise. :

Examples using sklearn.cross_decomposition.CCA

• Multilabel classification

• Compare cross decomposition methods

5.6.2 sklearn.cross_decomposition.PLSCanonical

class sklearn.cross_decomposition.PLSCanonical(n_components=2, scale=True, algo-
rithm=’nipals’, max_iter=500, tol=1e-06,
copy=True)

PLSCanonical implements the 2 blocks canonical PLS of the original Wold algorithm [Tenenhaus 1998] p.204,
referred as PLS-C2A in [Wegelin 2000].

This class inherits from PLS with mode=”A” and deflation_mode=”canonical”, norm_y_weights=True and al-
gorithm=”nipals”, but svd should provide similar results up to numerical errors.

Read more in the User Guide.

Parameters n_components : int, (default 2).

Number of components to keep

scale : boolean, (default True)

Option to scale data

algorithm : string, “nipals” or “svd”

The algorithm used to estimate the weights. It will be called n_components times, i.e.
once for each iteration of the outer loop.

max_iter : an integer, (default 500)

the maximum number of iterations of the NIPALS inner loop (used only if algo-
rithm=”nipals”)

tol : non-negative real, default 1e-06

the tolerance used in the iterative algorithm

copy : boolean, default True

Whether the deflation should be done on a copy. Let the default value to True unless
you don’t care about side effect

Attributes x_weights_ : array, shape = [p, n_components]

X block weights vectors.

y_weights_ : array, shape = [q, n_components]

Y block weights vectors.

x_loadings_ : array, shape = [p, n_components]

X block loadings vectors.

y_loadings_ : array, shape = [q, n_components]
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Y block loadings vectors.

x_scores_ : array, shape = [n_samples, n_components]

X scores.

y_scores_ : array, shape = [n_samples, n_components]

Y scores.

x_rotations_ : array, shape = [p, n_components]

X block to latents rotations.

y_rotations_ : array, shape = [q, n_components]

Y block to latents rotations.

n_iter_ : array-like

Number of iterations of the NIPALS inner loop for each component. Not useful if the
algorithm provided is “svd”.

See also:

CCA, PLSSVD

Notes

Matrices:

T: x_scores_
U: y_scores_
W: x_weights_
C: y_weights_
P: x_loadings_
Q: y_loadings__

Are computed such that:

X = T P.T + Err and Y = U Q.T + Err
T[:, k] = Xk W[:, k] for k in range(n_components)
U[:, k] = Yk C[:, k] for k in range(n_components)
x_rotations_ = W (P.T W)^(-1)
y_rotations_ = C (Q.T C)^(-1)

where Xk and Yk are residual matrices at iteration k.

Slides explaining PLS

For each component k, find weights u, v that optimize:

max corr(Xk u, Yk v) * std(Xk u) std(Yk u), such that ``|u| = |v| = 1``

Note that it maximizes both the correlations between the scores and the intra-block variances.

The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score.

The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. This performs a canonical
symmetric version of the PLS regression. But slightly different than the CCA. This is mostly used for modeling.

This implementation provides the same results that the “plspm” package provided in the R language (R-
project), using the function plsca(X, Y). Results are equal or collinear with the function pls(..., mode
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= "canonical") of the “mixOmics” package. The difference relies in the fact that mixOmics implementa-
tion does not exactly implement the Wold algorithm since it does not normalize y_weights to one.

References

Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case.
Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000.

Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic.

Examples

>>> from sklearn.cross_decomposition import PLSCanonical
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> plsca = PLSCanonical(n_components=2)
>>> plsca.fit(X, Y)
...
PLSCanonical(algorithm='nipals', copy=True, max_iter=500, n_components=2,

scale=True, tol=1e-06)
>>> X_c, Y_c = plsca.transform(X, Y)

Methods

fit(X, Y) Fit model to data.
fit_transform(X[, y]) Learn and apply the dimension reduction on the train

data.
get_params([deep]) Get parameters for this estimator.
predict(X[, copy]) Apply the dimension reduction learned on the train data.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.
transform(X[, Y, copy]) Apply the dimension reduction learned on the train data.

__init__(n_components=2, scale=True, algorithm=’nipals’, max_iter=500, tol=1e-06, copy=True)

fit(X, Y)
Fit model to data.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of predictors.

Y : array-like, shape = [n_samples, n_targets]

Target vectors, where n_samples is the number of samples and n_targets is the number
of response variables.

fit_transform(X, y=None)
Learn and apply the dimension reduction on the train data.

Parameters X : array-like, shape = [n_samples, n_features]
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Training vectors, where n_samples is the number of samples and n_features is the num-
ber of predictors.

y : array-like, shape = [n_samples, n_targets]

Target vectors, where n_samples is the number of samples and n_targets is the number
of response variables.

Returns x_scores if Y is not given, (x_scores, y_scores) otherwise. :

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X, copy=True)
Apply the dimension reduction learned on the train data.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of predictors.

copy : boolean, default True

Whether to copy X and Y, or perform in-place normalization.

Notes

This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.
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The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, Y=None, copy=True)
Apply the dimension reduction learned on the train data.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of predictors.

Y : array-like, shape = [n_samples, n_targets]

Target vectors, where n_samples is the number of samples and n_targets is the number
of response variables.

copy : boolean, default True

Whether to copy X and Y, or perform in-place normalization.

Returns x_scores if Y is not given, (x_scores, y_scores) otherwise. :

Examples using sklearn.cross_decomposition.PLSCanonical

• Compare cross decomposition methods

5.6.3 sklearn.cross_decomposition.PLSRegression

class sklearn.cross_decomposition.PLSRegression(n_components=2, scale=True,
max_iter=500, tol=1e-06, copy=True)

PLS regression

PLSRegression implements the PLS 2 blocks regression known as PLS2 or PLS1 in case of one dimensional
response. This class inherits from _PLS with mode=”A”, deflation_mode=”regression”, norm_y_weights=False
and algorithm=”nipals”.

Read more in the User Guide.

Parameters n_components : int, (default 2)

Number of components to keep.

scale : boolean, (default True)

whether to scale the data

max_iter : an integer, (default 500)

the maximum number of iterations of the NIPALS inner loop (used only if algo-
rithm=”nipals”)

tol : non-negative real

Tolerance used in the iterative algorithm default 1e-06.

copy : boolean, default True

Whether the deflation should be done on a copy. Let the default value to True unless
you don’t care about side effect

Attributes x_weights_ : array, [p, n_components]
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X block weights vectors.

y_weights_ : array, [q, n_components]

Y block weights vectors.

x_loadings_ : array, [p, n_components]

X block loadings vectors.

y_loadings_ : array, [q, n_components]

Y block loadings vectors.

x_scores_ : array, [n_samples, n_components]

X scores.

y_scores_ : array, [n_samples, n_components]

Y scores.

x_rotations_ : array, [p, n_components]

X block to latents rotations.

y_rotations_ : array, [q, n_components]

Y block to latents rotations.

coef_ : array, [p, q]

The coefficients of the linear model: Y = X coef_ + Err

n_iter_ : array-like

Number of iterations of the NIPALS inner loop for each component.

Notes

Matrices:

T: x_scores_
U: y_scores_
W: x_weights_
C: y_weights_
P: x_loadings_
Q: y_loadings__

Are computed such that:

X = T P.T + Err and Y = U Q.T + Err
T[:, k] = Xk W[:, k] for k in range(n_components)
U[:, k] = Yk C[:, k] for k in range(n_components)
x_rotations_ = W (P.T W)^(-1)
y_rotations_ = C (Q.T C)^(-1)

where Xk and Yk are residual matrices at iteration k.

Slides explaining PLS

For each component k, find weights u, v that optimizes: max corr(Xk u, Yk v) * std(Xk u)
std(Yk u), such that |u| = 1

Note that it maximizes both the correlations between the scores and the intra-block variances.
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The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score.

The residual matrix of Y (Yk+1) block is obtained by deflation on the current X score. This performs the PLS
regression known as PLS2. This mode is prediction oriented.

This implementation provides the same results that 3 PLS packages provided in the R language (R-project):

• “mixOmics” with function pls(X, Y, mode = “regression”)

• “plspm ” with function plsreg2(X, Y)

• “pls” with function oscorespls.fit(X, Y)

References

Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case.
Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000.

In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions
Technic.

Examples

>>> from sklearn.cross_decomposition import PLSRegression
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> pls2 = PLSRegression(n_components=2)
>>> pls2.fit(X, Y)
...
PLSRegression(copy=True, max_iter=500, n_components=2, scale=True,

tol=1e-06)
>>> Y_pred = pls2.predict(X)

Methods

fit(X, Y) Fit model to data.
fit_transform(X[, y]) Learn and apply the dimension reduction on the train

data.
get_params([deep]) Get parameters for this estimator.
predict(X[, copy]) Apply the dimension reduction learned on the train data.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.
transform(X[, Y, copy]) Apply the dimension reduction learned on the train data.

__init__(n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True)

fit(X, Y)
Fit model to data.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of predictors.
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Y : array-like, shape = [n_samples, n_targets]

Target vectors, where n_samples is the number of samples and n_targets is the number
of response variables.

fit_transform(X, y=None)
Learn and apply the dimension reduction on the train data.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of predictors.

y : array-like, shape = [n_samples, n_targets]

Target vectors, where n_samples is the number of samples and n_targets is the number
of response variables.

Returns x_scores if Y is not given, (x_scores, y_scores) otherwise. :

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X, copy=True)
Apply the dimension reduction learned on the train data.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of predictors.

copy : boolean, default True

Whether to copy X and Y, or perform in-place normalization.

Notes

This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional
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Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, Y=None, copy=True)
Apply the dimension reduction learned on the train data.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of predictors.

Y : array-like, shape = [n_samples, n_targets]

Target vectors, where n_samples is the number of samples and n_targets is the number
of response variables.

copy : boolean, default True

Whether to copy X and Y, or perform in-place normalization.

Returns x_scores if Y is not given, (x_scores, y_scores) otherwise. :

Examples using sklearn.cross_decomposition.PLSRegression

• Compare cross decomposition methods

5.6.4 sklearn.cross_decomposition.PLSSVD

class sklearn.cross_decomposition.PLSSVD(n_components=2, scale=True, copy=True)
Partial Least Square SVD

Simply perform a svd on the crosscovariance matrix: X’Y There are no iterative deflation here.

Read more in the User Guide.

Parameters n_components : int, default 2

Number of components to keep.

scale : boolean, default True

Whether to scale X and Y.

copy : boolean, default True

Whether to copy X and Y, or perform in-place computations.

Attributes x_weights_ : array, [p, n_components]

X block weights vectors.

y_weights_ : array, [q, n_components]
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Y block weights vectors.

x_scores_ : array, [n_samples, n_components]

X scores.

y_scores_ : array, [n_samples, n_components]

Y scores.

See also:

PLSCanonical, CCA

Methods

fit(X, Y) Fit model to data.
fit_transform(X[, y]) Learn and apply the dimension reduction on the train

data.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, Y]) Apply the dimension reduction learned on the train data.

__init__(n_components=2, scale=True, copy=True)

fit(X, Y)
Fit model to data.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of predictors.

Y : array-like, shape = [n_samples, n_targets]

Target vectors, where n_samples is the number of samples and n_targets is the number
of response variables.

fit_transform(X, y=None)
Learn and apply the dimension reduction on the train data.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of predictors.

y : array-like, shape = [n_samples, n_targets]

Target vectors, where n_samples is the number of samples and n_targets is the number
of response variables.

Returns x_scores if Y is not given, (x_scores, y_scores) otherwise. :

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any
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Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, Y=None)
Apply the dimension reduction learned on the train data.

Parameters X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of predictors.

Y : array-like, shape = [n_samples, n_targets]

Target vectors, where n_samples is the number of samples and n_targets is the number
of response variables.

5.7 sklearn.datasets: Datasets

The sklearn.datasets module includes utilities to load datasets, including methods to load and fetch popular
reference datasets. It also features some artificial data generators.

User guide: See the Dataset loading utilities section for further details.

5.7.1 Loaders

datasets.clear_data_home([data_home]) Delete all the content of the data home cache.
datasets.dump_svmlight_file(X, y, f[, . . . ]) Dump the dataset in svmlight / libsvm file format.
datasets.fetch_20newsgroups([data_home,
. . . ])

Load the filenames and data from the 20 newsgroups
dataset.

datasets.fetch_20newsgroups_vectorized([. . . ])Load the 20 newsgroups dataset and transform it into tf-idf
vectors.

datasets.fetch_california_housing([. . . ]) Loader for the California housing dataset from StatLib.
datasets.fetch_covtype([data_home, . . . ]) Load the covertype dataset, downloading it if necessary.
datasets.fetch_kddcup99([subset, data_home,
. . . ])

Load and return the kddcup 99 dataset (classification).

datasets.fetch_lfw_pairs([subset, . . . ]) Loader for the Labeled Faces in the Wild (LFW) pairs
dataset

datasets.fetch_lfw_people([data_home, . . . ]) Loader for the Labeled Faces in the Wild (LFW) people
dataset

datasets.fetch_mldata(dataname[, . . . ]) Fetch an mldata.org data set
datasets.fetch_olivetti_faces([data_home,
. . . ])

Loader for the Olivetti faces data-set from AT&T.

datasets.fetch_rcv1([data_home, subset, . . . ]) Load the RCV1 multilabel dataset, downloading it if nec-
essary.

datasets.fetch_species_distributions([. . . ]) Loader for species distribution dataset from Phillips et.
datasets.get_data_home([data_home]) Return the path of the scikit-learn data dir.

Continued on next page
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Table 5.42 – continued from previous page
datasets.load_boston([return_X_y]) Load and return the boston house-prices dataset (regres-

sion).
datasets.load_breast_cancer([return_X_y]) Load and return the breast cancer wisconsin dataset (clas-

sification).
datasets.load_diabetes([return_X_y]) Load and return the diabetes dataset (regression).
datasets.load_digits([n_class, return_X_y]) Load and return the digits dataset (classification).
datasets.load_files(container_path[, . . . ]) Load text files with categories as subfolder names.
datasets.load_iris([return_X_y]) Load and return the iris dataset (classification).
datasets.load_linnerud([return_X_y]) Load and return the linnerud dataset (multivariate regres-

sion).
datasets.load_mlcomp(name_or_id[, set_, . . . ]) DEPRECATED: since the http://mlcomp.org/ website will

shut down in March 2017, the load_mlcomp function was
deprecated in version 0.19 and will be removed in 0.21.

datasets.load_sample_image(image_name) Load the numpy array of a single sample image
datasets.load_sample_images() Load sample images for image manipulation.
datasets.load_svmlight_file(f[, n_features,
. . . ])

Load datasets in the svmlight / libsvm format into sparse
CSR matrix

datasets.load_svmlight_files(files[, . . . ]) Load dataset from multiple files in SVMlight format
datasets.load_wine([return_X_y]) Load and return the wine dataset (classification).
datasets.mldata_filename(dataname) Convert a raw name for a data set in a mldata.org filename.

sklearn.datasets.clear_data_home

sklearn.datasets.clear_data_home(data_home=None)
Delete all the content of the data home cache.

Parameters data_home : str | None

The path to scikit-learn data dir.

sklearn.datasets.dump_svmlight_file

sklearn.datasets.dump_svmlight_file(X, y, f, zero_based=True, comment=None,
query_id=None, multilabel=False)

Dump the dataset in svmlight / libsvm file format.

This format is a text-based format, with one sample per line. It does not store zero valued features hence is
suitable for sparse dataset.

The first element of each line can be used to store a target variable to predict.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : {array-like, sparse matrix}, shape = [n_samples (, n_labels)]

Target values. Class labels must be an integer or float, or array-like objects of integer or
float for multilabel classifications.

f : string or file-like in binary mode

If string, specifies the path that will contain the data. If file-like, data will be written to
f. f should be opened in binary mode.

zero_based : boolean, optional
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Whether column indices should be written zero-based (True) or one-based (False).

comment : string, optional

Comment to insert at the top of the file. This should be either a Unicode string, which
will be encoded as UTF-8, or an ASCII byte string. If a comment is given, then it will
be preceded by one that identifies the file as having been dumped by scikit-learn. Note
that not all tools grok comments in SVMlight files.

query_id : array-like, shape = [n_samples]

Array containing pairwise preference constraints (qid in svmlight format).

multilabel : boolean, optional

Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/multilabel.html)

New in version 0.17: parameter multilabel to support multilabel datasets.

Examples using sklearn.datasets.dump_svmlight_file

• Libsvm GUI

sklearn.datasets.fetch_20newsgroups

sklearn.datasets.fetch_20newsgroups(data_home=None, subset=’train’, categories=None,
shuffle=True, random_state=42, remove=(), down-
load_if_missing=True)

Load the filenames and data from the 20 newsgroups dataset.

Read more in the User Guide.

Parameters data_home : optional, default: None

Specify a download and cache folder for the datasets. If None, all scikit-learn data is
stored in ‘~/scikit_learn_data’ subfolders.

subset : ‘train’ or ‘test’, ‘all’, optional

Select the dataset to load: ‘train’ for the training set, ‘test’ for the test set, ‘all’ for both,
with shuffled ordering.

categories : None or collection of string or unicode

If None (default), load all the categories. If not None, list of category names to load
(other categories ignored).

shuffle : bool, optional

Whether or not to shuffle the data: might be important for models that make the as-
sumption that the samples are independent and identically distributed (i.i.d.), such as
stochastic gradient descent.

random_state : numpy random number generator or seed integer

Used to shuffle the dataset.

remove : tuple
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May contain any subset of (‘headers’, ‘footers’, ‘quotes’). Each of these are kinds of
text that will be detected and removed from the newsgroup posts, preventing classifiers
from overfitting on metadata.

‘headers’ removes newsgroup headers, ‘footers’ removes blocks at the ends of posts that
look like signatures, and ‘quotes’ removes lines that appear to be quoting another post.

‘headers’ follows an exact standard; the other filters are not always correct.

download_if_missing : optional, True by default

If False, raise an IOError if the data is not locally available instead of trying to download
the data from the source site.

Examples using sklearn.datasets.fetch_20newsgroups

• Feature Union with Heterogeneous Data Sources

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

• Biclustering documents with the Spectral Co-clustering algorithm

• Sample pipeline for text feature extraction and evaluation

• Classification of text documents using sparse features

• Clustering text documents using k-means

• FeatureHasher and DictVectorizer Comparison

sklearn.datasets.fetch_20newsgroups_vectorized

sklearn.datasets.fetch_20newsgroups_vectorized(subset=’train’, remove=(),
data_home=None, down-
load_if_missing=True)

Load the 20 newsgroups dataset and transform it into tf-idf vectors.

This is a convenience function; the tf-idf transformation is done using the default settings for
sklearn.feature_extraction.text.Vectorizer. For more advanced usage (stopword filtering, n-gram extraction,
etc.), combine fetch_20newsgroups with a custom Vectorizer or CountVectorizer.

Read more in the User Guide.

Parameters subset : ‘train’ or ‘test’, ‘all’, optional

Select the dataset to load: ‘train’ for the training set, ‘test’ for the test set, ‘all’ for both,
with shuffled ordering.

remove : tuple

May contain any subset of (‘headers’, ‘footers’, ‘quotes’). Each of these are kinds of
text that will be detected and removed from the newsgroup posts, preventing classifiers
from overfitting on metadata.

‘headers’ removes newsgroup headers, ‘footers’ removes blocks at the ends of posts that
look like signatures, and ‘quotes’ removes lines that appear to be quoting another post.

data_home : optional, default: None

Specify an download and cache folder for the datasets. If None, all scikit-learn data is
stored in ‘~/scikit_learn_data’ subfolders.
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download_if_missing : optional, True by default

If False, raise an IOError if the data is not locally available instead of trying to download
the data from the source site.

Returns bunch : Bunch object

bunch.data: sparse matrix, shape [n_samples, n_features] bunch.target: array, shape
[n_samples] bunch.target_names: list, length [n_classes]

Examples using sklearn.datasets.fetch_20newsgroups_vectorized

• The Johnson-Lindenstrauss bound for embedding with random projections

• Model Complexity Influence

• Multiclass sparse logisitic regression on newgroups20

sklearn.datasets.fetch_california_housing

sklearn.datasets.fetch_california_housing(data_home=None, down-
load_if_missing=True)

Loader for the California housing dataset from StatLib.

Read more in the User Guide.

Parameters data_home : optional, default: None

Specify another download and cache folder for the datasets. By default all scikit-learn
data is stored in ‘~/scikit_learn_data’ subfolders.

download_if_missing : optional, True by default

If False, raise a IOError if the data is not locally available instead of trying to download
the data from the source site.

Returns dataset : dict-like object with the following attributes:

dataset.data : ndarray, shape [20640, 8]

Each row corresponding to the 8 feature values in order.

dataset.target : numpy array of shape (20640,)

Each value corresponds to the average house value in units of 100,000.

dataset.feature_names : array of length 8

Array of ordered feature names used in the dataset.

dataset.DESCR : string

Description of the California housing dataset.

Notes

This dataset consists of 20,640 samples and 9 features.
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Examples using sklearn.datasets.fetch_california_housing

• Partial Dependence Plots

• Compare the effect of different scalers on data with outliers

sklearn.datasets.fetch_covtype

sklearn.datasets.fetch_covtype(data_home=None, download_if_missing=True, ran-
dom_state=None, shuffle=False)

Load the covertype dataset, downloading it if necessary.

Read more in the User Guide.

Parameters data_home : string, optional

Specify another download and cache folder for the datasets. By default all scikit-learn
data is stored in ‘~/scikit_learn_data’ subfolders.

download_if_missing : boolean, default=True

If False, raise a IOError if the data is not locally available instead of trying to download
the data from the source site.

random_state : int, RandomState instance or None, optional (default=None)

Random state for shuffling the dataset. If int, random_state is the seed used by the ran-
dom number generator; If RandomState instance, random_state is the random number
generator; If None, the random number generator is the RandomState instance used by
np.random.

shuffle : bool, default=False

Whether to shuffle dataset.

Returns dataset : dict-like object with the following attributes:

dataset.data : numpy array of shape (581012, 54)

Each row corresponds to the 54 features in the dataset.

dataset.target : numpy array of shape (581012,)

Each value corresponds to one of the 7 forest covertypes with values ranging between 1
to 7.

dataset.DESCR : string

Description of the forest covertype dataset.

sklearn.datasets.fetch_kddcup99

sklearn.datasets.fetch_kddcup99(subset=None, data_home=None, shuffle=False,
random_state=None, percent10=True, down-
load_if_missing=True)

Load and return the kddcup 99 dataset (classification).

The KDD Cup ‘99 dataset was created by processing the tcpdump portions of the 1998 DARPA Intrusion Detec-
tion System (IDS) Evaluation dataset, created by MIT Lincoln Lab [1]. The artificial data was generated using
a closed network and hand-injected attacks to produce a large number of different types of attack with normal
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activity in the background. As the initial goal was to produce a large training set for supervised learning algo-
rithms, there is a large proportion (80.1%) of abnormal data which is unrealistic in real world, and inappropriate
for unsupervised anomaly detection which aims at detecting ‘abnormal’ data, ie

1. qualitatively different from normal data.

2. in large minority among the observations.

We thus transform the KDD Data set into two different data sets: SA and SF.

• SA is obtained by simply selecting all the normal data, and a small proportion of abnormal data to gives
an anomaly proportion of 1%.

• SF is obtained as in [2] by simply picking up the data whose attribute logged_in is positive, thus focusing
on the intrusion attack, which gives a proportion of 0.3% of attack.

• http and smtp are two subsets of SF corresponding with third feature equal to ‘http’ (resp. to ‘smtp’)

General KDD structure :

Samples total 4898431
Dimensionality 41
Features discrete (int) or continuous (float)
Targets str, ‘normal.’ or name of the anomaly type

SA structure :

Samples total 976158
Dimensionality 41
Features discrete (int) or continuous (float)
Targets str, ‘normal.’ or name of the anomaly type

SF structure :

Samples total 699691
Dimensionality 4
Features discrete (int) or continuous (float)
Targets str, ‘normal.’ or name of the anomaly type

http structure :

Samples total 619052
Dimensionality 3
Features discrete (int) or continuous (float)
Targets str, ‘normal.’ or name of the anomaly type

smtp structure :

Samples total 95373
Dimensionality 3
Features discrete (int) or continuous (float)
Targets str, ‘normal.’ or name of the anomaly type

New in version 0.18.
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Parameters subset : None, ‘SA’, ‘SF’, ‘http’, ‘smtp’

To return the corresponding classical subsets of kddcup 99. If None, return the entire
kddcup 99 dataset.

data_home : string, optional

Specify another download and cache folder for the datasets. By default all scikit-learn
data is stored in ‘~/scikit_learn_data’ subfolders. .. versionadded:: 0.19

shuffle : bool, default=False

Whether to shuffle dataset.

random_state : int, RandomState instance or None, optional (default=None)

Random state for shuffling the dataset. If int, random_state is the seed used by the ran-
dom number generator; If RandomState instance, random_state is the random number
generator; If None, the random number generator is the RandomState instance used by
np.random.

percent10 : bool, default=True

Whether to load only 10 percent of the data.

download_if_missing : bool, default=True

If False, raise a IOError if the data is not locally available instead of trying to download
the data from the source site.

Returns data : Bunch

Dictionary-like object, the interesting attributes are: ‘data’, the data to learn and ‘target’,
the regression target for each sample.

References

[R135], [R136]

sklearn.datasets.fetch_lfw_pairs

sklearn.datasets.fetch_lfw_pairs(subset=’train’, data_home=None, funneled=True, re-
size=0.5, color=False, slice_=(slice(70, 195, None), slice(78,
172, None)), download_if_missing=True)

Loader for the Labeled Faces in the Wild (LFW) pairs dataset

This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available
on the official website:

http://vis-www.cs.umass.edu/lfw/

Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in
range 0.0 - 1.0.

The task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the
two images are from the same person.

In the official README.txt this task is described as the “Restricted” task. As I am not sure as to implement the
“Unrestricted” variant correctly, I left it as unsupported for now.
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The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 47.

Read more in the User Guide.

Parameters subset : optional, default: ‘train’

Select the dataset to load: ‘train’ for the development training set, ‘test’ for the develop-
ment test set, and ‘10_folds’ for the official evaluation set that is meant to be used with
a 10-folds cross validation.

data_home : optional, default: None

Specify another download and cache folder for the datasets. By default all scikit-learn
data is stored in ‘~/scikit_learn_data’ subfolders.

funneled : boolean, optional, default: True

Download and use the funneled variant of the dataset.

resize : float, optional, default 0.5

Ratio used to resize the each face picture.

color : boolean, optional, default False

Keep the 3 RGB channels instead of averaging them to a single gray level channel. If
color is True the shape of the data has one more dimension than the shape with color =
False.

slice_ : optional

Provide a custom 2D slice (height, width) to extract the ‘interesting’ part of the jpeg
files and avoid use statistical correlation from the background

download_if_missing : optional, True by default

If False, raise a IOError if the data is not locally available instead of trying to download
the data from the source site.

Returns The data is returned as a Bunch object with the following attributes: :

data : numpy array of shape (2200, 5828). Shape depends on subset.

Each row corresponds to 2 ravel’d face images of original size 62 x 47 pixels. Changing
the slice_, resize or subset parameters will change the shape of the output.

pairs : numpy array of shape (2200, 2, 62, 47). Shape depends on

subset.

Each row has 2 face images corresponding to same or different person from the dataset
containing 5749 people. Changing the slice_, resize or subset parameters will
change the shape of the output.

target : numpy array of shape (2200,). Shape depends on subset.

Labels associated to each pair of images. The two label values being different persons
or the same person.

DESCR : string

Description of the Labeled Faces in the Wild (LFW) dataset.
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sklearn.datasets.fetch_lfw_people

sklearn.datasets.fetch_lfw_people(data_home=None, funneled=True, resize=0.5,
min_faces_per_person=0, color=False, slice_=(slice(70,
195, None), slice(78, 172, None)), down-
load_if_missing=True)

Loader for the Labeled Faces in the Wild (LFW) people dataset

This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available
on the official website:

http://vis-www.cs.umass.edu/lfw/

Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in
range 0.0 - 1.0.

The task is called Face Recognition (or Identification): given the picture of a face, find the name of the person
given a training set (gallery).

The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 47.

Parameters data_home : optional, default: None

Specify another download and cache folder for the datasets. By default all scikit-learn
data is stored in ‘~/scikit_learn_data’ subfolders.

funneled : boolean, optional, default: True

Download and use the funneled variant of the dataset.

resize : float, optional, default 0.5

Ratio used to resize the each face picture.

min_faces_per_person : int, optional, default None

The extracted dataset will only retain pictures of people that have at least
min_faces_per_person different pictures.

color : boolean, optional, default False

Keep the 3 RGB channels instead of averaging them to a single gray level channel. If
color is True the shape of the data has one more dimension than the shape with color =
False.

slice_ : optional

Provide a custom 2D slice (height, width) to extract the ‘interesting’ part of the jpeg
files and avoid use statistical correlation from the background

download_if_missing : optional, True by default

If False, raise a IOError if the data is not locally available instead of trying to download
the data from the source site.

Returns dataset : dict-like object with the following attributes:

dataset.data : numpy array of shape (13233, 2914)

Each row corresponds to a ravelled face image of original size 62 x 47 pixels. Changing
the slice_ or resize parameters will change the shape of the output.

dataset.images : numpy array of shape (13233, 62, 47)

Each row is a face image corresponding to one of the 5749 people in the dataset. Chang-
ing the slice_ or resize parameters will change the shape of the output.

1290 Chapter 5. API Reference

http://vis-www.cs.umass.edu/lfw/


scikit-learn user guide, Release 0.19.1

dataset.target : numpy array of shape (13233,)

Labels associated to each face image. Those labels range from 0-5748 and correspond
to the person IDs.

dataset.DESCR : string

Description of the Labeled Faces in the Wild (LFW) dataset.

Examples using sklearn.datasets.fetch_lfw_people

• Faces recognition example using eigenfaces and SVMs

sklearn.datasets.fetch_mldata

sklearn.datasets.fetch_mldata(dataname, target_name=’label’, data_name=’data’, trans-
pose_data=True, data_home=None)

Fetch an mldata.org data set

If the file does not exist yet, it is downloaded from mldata.org .

mldata.org does not have an enforced convention for storing data or naming the columns in a data set. The
default behavior of this function works well with the most common cases:

1. data values are stored in the column ‘data’, and target values in the column ‘label’

2. alternatively, the first column stores target values, and the second data values

3. the data array is stored as n_features x n_samples , and thus needs to be transposed to match the sklearn
standard

Keyword arguments allow to adapt these defaults to specific data sets (see parameters target_name, data_name,
transpose_data, and the examples below).

mldata.org data sets may have multiple columns, which are stored in the Bunch object with their original name.

Parameters dataname : str

Name of the data set on mldata.org, e.g.: “leukemia”, “Whistler Daily Snowfall”, etc.
The raw name is automatically converted to a mldata.org URL .

target_name : optional, default: ‘label’

Name or index of the column containing the target values.

data_name : optional, default: ‘data’

Name or index of the column containing the data.

transpose_data : optional, default: True

If True, transpose the downloaded data array.

data_home : optional, default: None

Specify another download and cache folder for the data sets. By default all scikit-learn
data is stored in ‘~/scikit_learn_data’ subfolders.

Returns data : Bunch

Dictionary-like object, the interesting attributes are: ‘data’, the data to learn, ‘target’, the
classification labels, ‘DESCR’, the full description of the dataset, and ‘COL_NAMES’,
the original names of the dataset columns.
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Examples

Load the ‘iris’ dataset from mldata.org:

>>> from sklearn.datasets.mldata import fetch_mldata
>>> import tempfile
>>> test_data_home = tempfile.mkdtemp()

>>> iris = fetch_mldata('iris', data_home=test_data_home)
>>> iris.target.shape
(150,)
>>> iris.data.shape
(150, 4)

Load the ‘leukemia’ dataset from mldata.org, which needs to be transposed to respects the scikit-learn axes
convention:

>>> leuk = fetch_mldata('leukemia', transpose_data=True,
... data_home=test_data_home)
>>> leuk.data.shape
(72, 7129)

Load an alternative ‘iris’ dataset, which has different names for the columns:

>>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1,
... data_name=0, data_home=test_data_home)
>>> iris3 = fetch_mldata('datasets-UCI iris',
... target_name='class', data_name='double0',
... data_home=test_data_home)

>>> import shutil
>>> shutil.rmtree(test_data_home)

Examples using sklearn.datasets.fetch_mldata

• Gaussian process regression (GPR) on Mauna Loa CO2 data.

• MNIST classfification using multinomial logistic + L1

• Classifier Chain

• Visualization of MLP weights on MNIST

sklearn.datasets.fetch_olivetti_faces

sklearn.datasets.fetch_olivetti_faces(data_home=None, shuffle=False, random_state=0,
download_if_missing=True)

Loader for the Olivetti faces data-set from AT&T.

Read more in the User Guide.

Parameters data_home : optional, default: None

Specify another download and cache folder for the datasets. By default all scikit-learn
data is stored in ‘~/scikit_learn_data’ subfolders.

shuffle : boolean, optional
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If True the order of the dataset is shuffled to avoid having images of the same person
grouped.

random_state : int, RandomState instance or None, optional (default=0)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

download_if_missing : optional, True by default

If False, raise a IOError if the data is not locally available instead of trying to download
the data from the source site.

Returns An object with the following attributes: :

data : numpy array of shape (400, 4096)

Each row corresponds to a ravelled face image of original size 64 x 64 pixels.

images : numpy array of shape (400, 64, 64)

Each row is a face image corresponding to one of the 40 subjects of the dataset.

target : numpy array of shape (400, )

Labels associated to each face image. Those labels are ranging from 0-39 and corre-
spond to the Subject IDs.

DESCR : string

Description of the modified Olivetti Faces Dataset.

Notes

This dataset consists of 10 pictures each of 40 individuals. The original database was available from (now
defunct)

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

The version retrieved here comes in MATLAB format from the personal web page of Sam Roweis:

http://www.cs.nyu.edu/~roweis/

Examples using sklearn.datasets.fetch_olivetti_faces

• Face completion with a multi-output estimators

• Online learning of a dictionary of parts of faces

• Faces dataset decompositions

• Pixel importances with a parallel forest of trees

sklearn.datasets.fetch_rcv1

sklearn.datasets.fetch_rcv1(data_home=None, subset=’all’, download_if_missing=True, ran-
dom_state=None, shuffle=False)

Load the RCV1 multilabel dataset, downloading it if necessary.

Version: RCV1-v2, vectors, full sets, topics multilabels.
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Classes 103
Samples total 804414
Dimensionality 47236
Features real, between 0 and 1

Read more in the User Guide.

New in version 0.17.

Parameters data_home : string, optional

Specify another download and cache folder for the datasets. By default all scikit-learn
data is stored in ‘~/scikit_learn_data’ subfolders.

subset : string, ‘train’, ‘test’, or ‘all’, default=’all’

Select the dataset to load: ‘train’ for the training set (23149 samples), ‘test’ for the test
set (781265 samples), ‘all’ for both, with the training samples first if shuffle is False.
This follows the official LYRL2004 chronological split.

download_if_missing : boolean, default=True

If False, raise a IOError if the data is not locally available instead of trying to download
the data from the source site.

random_state : int, RandomState instance or None, optional (default=None)

Random state for shuffling the dataset. If int, random_state is the seed used by the ran-
dom number generator; If RandomState instance, random_state is the random number
generator; If None, the random number generator is the RandomState instance used by
np.random.

shuffle : bool, default=False

Whether to shuffle dataset.

Returns dataset : dict-like object with the following attributes:

dataset.data : scipy csr array, dtype np.float64, shape (804414, 47236)

The array has 0.16% of non zero values.

dataset.target : scipy csr array, dtype np.uint8, shape (804414, 103)

Each sample has a value of 1 in its categories, and 0 in others. The array has 3.15% of
non zero values.

dataset.sample_id : numpy array, dtype np.uint32, shape (804414,)

Identification number of each sample, as ordered in dataset.data.

dataset.target_names : numpy array, dtype object, length (103)

Names of each target (RCV1 topics), as ordered in dataset.target.

dataset.DESCR : string

Description of the RCV1 dataset.

References

Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004). RCV1: A new benchmark collection for text categorization
research. The Journal of Machine Learning Research, 5, 361-397.
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sklearn.datasets.fetch_species_distributions

sklearn.datasets.fetch_species_distributions(data_home=None, down-
load_if_missing=True)

Loader for species distribution dataset from Phillips et. al. (2006)

Read more in the User Guide.

Parameters data_home : optional, default: None

Specify another download and cache folder for the datasets. By default all scikit-learn
data is stored in ‘~/scikit_learn_data’ subfolders.

download_if_missing : optional, True by default

If False, raise a IOError if the data is not locally available instead of trying to download
the data from the source site.

Returns The data is returned as a Bunch object with the following attributes: :

coverages : array, shape = [14, 1592, 1212]

These represent the 14 features measured at each point of the map grid. The lati-
tude/longitude values for the grid are discussed below. Missing data is represented
by the value -9999.

train : record array, shape = (1623,)

The training points for the data. Each point has three fields:

• train[‘species’] is the species name

• train[‘dd long’] is the longitude, in degrees

• train[‘dd lat’] is the latitude, in degrees

test : record array, shape = (619,)

The test points for the data. Same format as the training data.

Nx, Ny : integers

The number of longitudes (x) and latitudes (y) in the grid

x_left_lower_corner, y_left_lower_corner : floats

The (x,y) position of the lower-left corner, in degrees

grid_size : float

The spacing between points of the grid, in degrees

Notes

This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006).

The two species are:

• “Bradypus variegatus” , the Brown-throated Sloth.

• “Microryzomys minutus” , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia,
Ecuador, Peru, and Venezuela.

• For an example of using this dataset with scikit-learn, see exam-
ples/applications/plot_species_distribution_modeling.py.
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References

• “Maximum entropy modeling of species geographic distributions” S. J. Phillips, R. P. Anderson, R. E.
Schapire - Ecological Modelling, 190:231-259, 2006.

Examples using sklearn.datasets.fetch_species_distributions

• Species distribution modeling

• Kernel Density Estimate of Species Distributions

sklearn.datasets.get_data_home

sklearn.datasets.get_data_home(data_home=None)
Return the path of the scikit-learn data dir.

This folder is used by some large dataset loaders to avoid downloading the data several times.

By default the data dir is set to a folder named ‘scikit_learn_data’ in the user home folder.

Alternatively, it can be set by the ‘SCIKIT_LEARN_DATA’ environment variable or programmatically by giving
an explicit folder path. The ‘~’ symbol is expanded to the user home folder.

If the folder does not already exist, it is automatically created.

Parameters data_home : str | None

The path to scikit-learn data dir.

Examples using sklearn.datasets.get_data_home

• Out-of-core classification of text documents

sklearn.datasets.load_boston

sklearn.datasets.load_boston(return_X_y=False)
Load and return the boston house-prices dataset (regression).

Samples total 506
Dimensionality 13
Features real, positive
Targets real 5. - 50.

Parameters return_X_y : boolean, default=False.

If True, returns (data, target) instead of a Bunch object. See below for more
information about the data and target object.

New in version 0.18.

Returns data : Bunch

Dictionary-like object, the interesting attributes are: ‘data’, the data to learn, ‘target’,
the regression targets, and ‘DESCR’, the full description of the dataset.

(data, target) : tuple if return_X_y is True
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New in version 0.18.

Examples

>>> from sklearn.datasets import load_boston
>>> boston = load_boston()
>>> print(boston.data.shape)
(506, 13)

Examples using sklearn.datasets.load_boston

• Plotting Cross-Validated Predictions

• Imputing missing values before building an estimator

• Model Complexity Influence

• Outlier detection on a real data set

• Gradient Boosting regression

• Feature selection using SelectFromModel and LassoCV

sklearn.datasets.load_breast_cancer

sklearn.datasets.load_breast_cancer(return_X_y=False)
Load and return the breast cancer wisconsin dataset (classification).

The breast cancer dataset is a classic and very easy binary classification dataset.

Classes 2
Samples per class 212(M),357(B)
Samples total 569
Dimensionality 30
Features real, positive

Parameters return_X_y : boolean, default=False

If True, returns (data, target) instead of a Bunch object. See below for more
information about the data and target object.

New in version 0.18.

Returns data : Bunch

Dictionary-like object, the interesting attributes are: ‘data’, the data to learn, ‘target’,
the classification labels, ‘target_names’, the meaning of the labels, ‘feature_names’, the
meaning of the features, and ‘DESCR’, the full description of the dataset.

(data, target) : tuple if return_X_y is True

New in version 0.18.

The copy of UCI ML Breast Cancer Wisconsin (Diagnostic) dataset is :

downloaded from: :

https://goo.gl/U2Uwz2 :
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Examples

Let’s say you are interested in the samples 10, 50, and 85, and want to know their class name.

>>> from sklearn.datasets import load_breast_cancer
>>> data = load_breast_cancer()
>>> data.target[[10, 50, 85]]
array([0, 1, 0])
>>> list(data.target_names)
['malignant', 'benign']

sklearn.datasets.load_diabetes

sklearn.datasets.load_diabetes(return_X_y=False)
Load and return the diabetes dataset (regression).

Samples total 442
Dimensionality 10
Features real, -.2 < x < .2
Targets integer 25 - 346

Read more in the User Guide.

Parameters return_X_y : boolean, default=False.

If True, returns (data, target) instead of a Bunch object. See below for more
information about the data and target object.

New in version 0.18.

Returns data : Bunch

Dictionary-like object, the interesting attributes are: ‘data’, the data to learn and ‘target’,
the regression target for each sample.

(data, target) : tuple if return_X_y is True

New in version 0.18.

Examples using sklearn.datasets.load_diabetes

• Cross-validation on diabetes Dataset Exercise

• Lasso and Elastic Net

• Lasso path using LARS

• Lasso model selection: Cross-Validation / AIC / BIC

• Linear Regression Example

• Sparsity Example: Fitting only features 1 and 2
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sklearn.datasets.load_digits

sklearn.datasets.load_digits(n_class=10, return_X_y=False)
Load and return the digits dataset (classification).

Each datapoint is a 8x8 image of a digit.

Classes 10
Samples per class ~180
Samples total 1797
Dimensionality 64
Features integers 0-16

Read more in the User Guide.

Parameters n_class : integer, between 0 and 10, optional (default=10)

The number of classes to return.

return_X_y : boolean, default=False.

If True, returns (data, target) instead of a Bunch object. See below for more
information about the data and target object.

New in version 0.18.

Returns data : Bunch

Dictionary-like object, the interesting attributes are: ‘data’, the data to learn, ‘images’,
the images corresponding to each sample, ‘target’, the classification labels for each
sample, ‘target_names’, the meaning of the labels, and ‘DESCR’, the full description of
the dataset.

(data, target) : tuple if return_X_y is True

New in version 0.18.

This is a copy of the test set of the UCI ML hand-written digits datasets :

http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits :

Examples

To load the data and visualize the images:

>>> from sklearn.datasets import load_digits
>>> digits = load_digits()
>>> print(digits.data.shape)
(1797, 64)
>>> import matplotlib.pyplot as plt
>>> plt.gray()
>>> plt.matshow(digits.images[0])
>>> plt.show()

Examples using sklearn.datasets.load_digits

• Selecting dimensionality reduction with Pipeline and GridSearchCV
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• Pipelining: chaining a PCA and a logistic regression

• The Johnson-Lindenstrauss bound for embedding with random projections

• Explicit feature map approximation for RBF kernels

• Recognizing hand-written digits

• Feature agglomeration

• Various Agglomerative Clustering on a 2D embedding of digits

• A demo of K-Means clustering on the handwritten digits data

• The Digit Dataset

• Cross-validation on Digits Dataset Exercise

• Digits Classification Exercise

• Recursive feature elimination

• L1 Penalty and Sparsity in Logistic Regression

• Comparing various online solvers

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

• Parameter estimation using grid search with cross-validation

• Plotting Learning Curves

• Comparing randomized search and grid search for hyperparameter estimation

• Plotting Validation Curves

• Kernel Density Estimation

• Compare Stochastic learning strategies for MLPClassifier

• Restricted Boltzmann Machine features for digit classification

• Label Propagation digits: Demonstrating performance

• Label Propagation digits active learning

• SVM-Anova: SVM with univariate feature selection

sklearn.datasets.load_files

sklearn.datasets.load_files(container_path, description=None, categories=None,
load_content=True, shuffle=True, encoding=None, de-
code_error=’strict’, random_state=0)

Load text files with categories as subfolder names.

Individual samples are assumed to be files stored a two levels folder structure such as the following:

container_folder/

category_1_folder/ file_1.txt file_2.txt . . . file_42.txt

category_2_folder/ file_43.txt file_44.txt . . .

The folder names are used as supervised signal label names. The individual file names are not important.

This function does not try to extract features into a numpy array or scipy sparse matrix. In addition, if
load_content is false it does not try to load the files in memory.
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To use text files in a scikit-learn classification or clustering algorithm, you will need to use the
sklearn.feature_extraction.text module to build a feature extraction transformer that suits your problem.

If you set load_content=True, you should also specify the encoding of the text using the ‘encoding’ parame-
ter. For many modern text files, ‘utf-8’ will be the correct encoding. If you leave encoding equal to None,
then the content will be made of bytes instead of Unicode, and you will not be able to use most functions in
sklearn.feature_extraction.text.

Similar feature extractors should be built for other kind of unstructured data input such as images, audio, video,
. . .

Read more in the User Guide.

Parameters container_path : string or unicode

Path to the main folder holding one subfolder per category

description : string or unicode, optional (default=None)

A paragraph describing the characteristic of the dataset: its source, reference, etc.

categories : A collection of strings or None, optional (default=None)

If None (default), load all the categories. If not None, list of category names to load
(other categories ignored).

load_content : boolean, optional (default=True)

Whether to load or not the content of the different files. If true a ‘data’ attribute con-
taining the text information is present in the data structure returned. If not, a filenames
attribute gives the path to the files.

shuffle : bool, optional (default=True)

Whether or not to shuffle the data: might be important for models that make the as-
sumption that the samples are independent and identically distributed (i.i.d.), such as
stochastic gradient descent.

encoding : string or None (default is None)

If None, do not try to decode the content of the files (e.g. for images or other non-text
content). If not None, encoding to use to decode text files to Unicode if load_content is
True.

decode_error : {‘strict’, ‘ignore’, ‘replace’}, optional

Instruction on what to do if a byte sequence is given to analyze that contains characters
not of the given encoding. Passed as keyword argument ‘errors’ to bytes.decode.

random_state : int, RandomState instance or None, optional (default=0)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns data : Bunch

Dictionary-like object, the interesting attributes are: either data, the raw text data to
learn, or ‘filenames’, the files holding it, ‘target’, the classification labels (integer index),
‘target_names’, the meaning of the labels, and ‘DESCR’, the full description of the
dataset.
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sklearn.datasets.load_iris

sklearn.datasets.load_iris(return_X_y=False)
Load and return the iris dataset (classification).

The iris dataset is a classic and very easy multi-class classification dataset.

Classes 3
Samples per class 50
Samples total 150
Dimensionality 4
Features real, positive

Read more in the User Guide.

Parameters return_X_y : boolean, default=False.

If True, returns (data, target) instead of a Bunch object. See below for more
information about the data and target object.

New in version 0.18.

Returns data : Bunch

Dictionary-like object, the interesting attributes are: ‘data’, the data to learn, ‘target’,
the classification labels, ‘target_names’, the meaning of the labels, ‘feature_names’, the
meaning of the features, and ‘DESCR’, the full description of the dataset.

(data, target) : tuple if return_X_y is True

New in version 0.18.

Examples

Let’s say you are interested in the samples 10, 25, and 50, and want to know their class name.

>>> from sklearn.datasets import load_iris
>>> data = load_iris()
>>> data.target[[10, 25, 50]]
array([0, 0, 1])
>>> list(data.target_names)
['setosa', 'versicolor', 'virginica']

Examples using sklearn.datasets.load_iris

• Concatenating multiple feature extraction methods

• Plot classification probability

• K-means Clustering

• The Iris Dataset

• Incremental PCA

• PCA example with Iris Data-set

• Comparison of LDA and PCA 2D projection of Iris dataset
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• Plot the decision surfaces of ensembles of trees on the iris dataset

• Plot the decision boundaries of a VotingClassifier

• SVM Exercise

• Univariate Feature Selection

• Test with permutations the significance of a classification score

• Gaussian process classification (GPC) on iris dataset

• Logistic Regression 3-class Classifier

• Path with L1- Logistic Regression

• Plot multi-class SGD on the iris dataset

• GMM covariances

• Confusion matrix

• Nested versus non-nested cross-validation

• Precision-Recall

• Receiver Operating Characteristic (ROC)

• Receiver Operating Characteristic (ROC) with cross validation

• Nearest Neighbors Classification

• Nearest Centroid Classification

• Compare Stochastic learning strategies for MLPClassifier

• Decision boundary of label propagation versus SVM on the Iris dataset

• SVM with custom kernel

• Plot different SVM classifiers in the iris dataset

• RBF SVM parameters

• Plot the decision surface of a decision tree on the iris dataset

• Understanding the decision tree structure

sklearn.datasets.load_linnerud

sklearn.datasets.load_linnerud(return_X_y=False)
Load and return the linnerud dataset (multivariate regression).

Samples total 20
Dimensionality 3 (for both data and target)
Features integer
Targets integer

Parameters return_X_y : boolean, default=False.

If True, returns (data, target) instead of a Bunch object. See below for more
information about the data and target object.

New in version 0.18.

Returns data : Bunch
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Dictionary-like object, the interesting attributes are: ‘data’ and ‘targets’, the two mul-
tivariate datasets, with ‘data’ corresponding to the exercise and ‘targets’ corresponding
to the physiological measurements, as well as ‘feature_names’ and ‘target_names’.

(data, target) : tuple if return_X_y is True

New in version 0.18.

sklearn.datasets.load_mlcomp

sklearn.datasets.load_mlcomp(name_or_id, set_=’raw’, mlcomp_root=None, **kwargs)
DEPRECATED: since the http://mlcomp.org/ website will shut down in March 2017, the load_mlcomp function
was deprecated in version 0.19 and will be removed in 0.21.

Load a datasets as downloaded from http://mlcomp.org

Parameters name_or_id : the integer id or the string name metadata of the MLComp

dataset to load

set_ : select the portion to load: ‘train’, ‘test’ or ‘raw’

mlcomp_root [the filesystem path to the root folder where MLComp datasets] are
stored, if mlcomp_root is None, the MLCOMP_DATASETS_HOME environment
variable is looked up instead.

**kwargs : domain specific kwargs to be passed to the dataset loader.

Read more in the User Guide.

Returns data : Bunch

Dictionary-like object, the interesting attributes are: ‘filenames’, the files holding
the raw to learn, ‘target’, the classification labels (integer index), ‘target_names’,
the meaning of the labels, and ‘DESCR’, the full description of the dataset.

Note on the lookup process: depending on the type of name_or_id, will choose between
integer id lookup or metadata name lookup by looking at the unzipped archives and
metadata file.

TODO: implement zip dataset loading too

sklearn.datasets.load_sample_image

sklearn.datasets.load_sample_image(image_name)
Load the numpy array of a single sample image

Parameters image_name : {china.jpg, flower.jpg}

The name of the sample image loaded

Returns img : 3D array

The image as a numpy array: height x width x color

Examples
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>>> from sklearn.datasets import load_sample_image
>>> china = load_sample_image('china.jpg')
>>> china.dtype
dtype('uint8')
>>> china.shape
(427, 640, 3)
>>> flower = load_sample_image('flower.jpg')
>>> flower.dtype
dtype('uint8')
>>> flower.shape
(427, 640, 3)

Examples using sklearn.datasets.load_sample_image

• Color Quantization using K-Means

sklearn.datasets.load_sample_images

sklearn.datasets.load_sample_images()
Load sample images for image manipulation.

Loads both, china and flower.

Returns data : Bunch

Dictionary-like object with the following attributes : ‘images’, the two sample images,
‘filenames’, the file names for the images, and ‘DESCR’ the full description of the
dataset.

Examples

To load the data and visualize the images:

>>> from sklearn.datasets import load_sample_images
>>> dataset = load_sample_images()
>>> len(dataset.images)
2
>>> first_img_data = dataset.images[0]
>>> first_img_data.shape
(427, 640, 3)
>>> first_img_data.dtype
dtype('uint8')

sklearn.datasets.load_svmlight_file

sklearn.datasets.load_svmlight_file(f, n_features=None, dtype=<class ‘numpy.float64’>,
multilabel=False, zero_based=’auto’, query_id=False,
offset=0, length=-1)

Load datasets in the svmlight / libsvm format into sparse CSR matrix

This format is a text-based format, with one sample per line. It does not store zero valued features hence is
suitable for sparse dataset.

The first element of each line can be used to store a target variable to predict.
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This format is used as the default format for both svmlight and the libsvm command line programs.

Parsing a text based source can be expensive. When working on repeatedly on the same dataset, it is recom-
mended to wrap this loader with joblib.Memory.cache to store a memmapped backup of the CSR results of the
first call and benefit from the near instantaneous loading of memmapped structures for the subsequent calls.

In case the file contains a pairwise preference constraint (known as “qid” in the svmlight format) these are
ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to
constraint the combination of samples when using pairwise loss functions (as is the case in some learning to
rank problems) so that only pairs with the same query_id value are considered.

This implementation is written in Cython and is reasonably fast. However, a faster API-compatible loader is
also available at:

https://github.com/mblondel/svmlight-loader

Parameters f : {str, file-like, int}

(Path to) a file to load. If a path ends in “.gz” or “.bz2”, it will be uncompressed on
the fly. If an integer is passed, it is assumed to be a file descriptor. A file-like or file
descriptor will not be closed by this function. A file-like object must be opened in binary
mode.

n_features : int or None

The number of features to use. If None, it will be inferred. This argument is useful
to load several files that are subsets of a bigger sliced dataset: each subset might not
have examples of every feature, hence the inferred shape might vary from one slice to
another. n_features is only required if offset or length are passed a non-default
value.

dtype : numpy data type, default np.float64

Data type of dataset to be loaded. This will be the data type of the output numpy arrays
X and y.

multilabel : boolean, optional, default False

Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/multilabel.html)

zero_based : boolean or “auto”, optional, default “auto”

Whether column indices in f are zero-based (True) or one-based (False). If column
indices are one-based, they are transformed to zero-based to match Python/NumPy
conventions. If set to “auto”, a heuristic check is applied to determine this from the
file contents. Both kinds of files occur “in the wild”, but they are unfortunately not
self-identifying. Using “auto” or True should always be safe when no offset or
length is passed. If offset or length are passed, the “auto” mode falls back to
zero_based=True to avoid having the heuristic check yield inconsistent results on
different segments of the file.

query_id : boolean, default False

If True, will return the query_id array for each file.

offset : integer, optional, default 0

Ignore the offset first bytes by seeking forward, then discarding the following bytes up
until the next new line character.

length : integer, optional, default -1
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If strictly positive, stop reading any new line of data once the position in the file has
reached the (offset + length) bytes threshold.

Returns X : scipy.sparse matrix of shape (n_samples, n_features)

y : ndarray of shape (n_samples,), or, in the multilabel a list of

tuples of length n_samples.

query_id : array of shape (n_samples,)

query_id for each sample. Only returned when query_id is set to True.

See also:

load_svmlight_files similar function for loading multiple files in this

format, enforcing

Examples

To use joblib.Memory to cache the svmlight file:

from sklearn.externals.joblib import Memory
from sklearn.datasets import load_svmlight_file
mem = Memory("./mycache")

@mem.cache
def get_data():

data = load_svmlight_file("mysvmlightfile")
return data[0], data[1]

X, y = get_data()

sklearn.datasets.load_svmlight_files

sklearn.datasets.load_svmlight_files(files, n_features=None, dtype=<class
‘numpy.float64’>, multilabel=False,
zero_based=’auto’, query_id=False, offset=0, length=-
1)

Load dataset from multiple files in SVMlight format

This function is equivalent to mapping load_svmlight_file over a list of files, except that the results are concate-
nated into a single, flat list and the samples vectors are constrained to all have the same number of features.

In case the file contains a pairwise preference constraint (known as “qid” in the svmlight format) these are
ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to
constraint the combination of samples when using pairwise loss functions (as is the case in some learning to
rank problems) so that only pairs with the same query_id value are considered.

Parameters files : iterable over {str, file-like, int}

(Paths of) files to load. If a path ends in “.gz” or “.bz2”, it will be uncompressed on
the fly. If an integer is passed, it is assumed to be a file descriptor. File-likes and file
descriptors will not be closed by this function. File-like objects must be opened in
binary mode.

n_features : int or None
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The number of features to use. If None, it will be inferred from the maximum column
index occurring in any of the files.

This can be set to a higher value than the actual number of features in any of the input
files, but setting it to a lower value will cause an exception to be raised.

dtype : numpy data type, default np.float64

Data type of dataset to be loaded. This will be the data type of the output numpy arrays
X and y.

multilabel : boolean, optional

Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/multilabel.html)

zero_based : boolean or “auto”, optional

Whether column indices in f are zero-based (True) or one-based (False). If column in-
dices are one-based, they are transformed to zero-based to match Python/NumPy con-
ventions. If set to “auto”, a heuristic check is applied to determine this from the file
contents. Both kinds of files occur “in the wild”, but they are unfortunately not self-
identifying. Using “auto” or True should always be safe when no offset or length is
passed. If offset or length are passed, the “auto” mode falls back to zero_based=True to
avoid having the heuristic check yield inconsistent results on different segments of the
file.

query_id : boolean, defaults to False

If True, will return the query_id array for each file.

offset : integer, optional, default 0

Ignore the offset first bytes by seeking forward, then discarding the following bytes up
until the next new line character.

length : integer, optional, default -1

If strictly positive, stop reading any new line of data once the position in the file has
reached the (offset + length) bytes threshold.

Returns [X1, y1, . . . , Xn, yn] :

where each (Xi, yi) pair is the result from load_svmlight_file(files[i]). :

If query_id is set to True, this will return instead [X1, y1, q1, :

. . . , Xn, yn, qn] where (Xi, yi, qi) is the result from :

load_svmlight_file(files[i]) :

See also:

load_svmlight_file

Notes

When fitting a model to a matrix X_train and evaluating it against a matrix X_test, it is essential that X_train
and X_test have the same number of features (X_train.shape[1] == X_test.shape[1]). This may not be the case
if you load the files individually with load_svmlight_file.
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sklearn.datasets.load_wine

sklearn.datasets.load_wine(return_X_y=False)
Load and return the wine dataset (classification).

New in version 0.18.

The wine dataset is a classic and very easy multi-class classification dataset.

Classes 3
Samples per class [59,71,48]
Samples total 178
Dimensionality 13
Features real, positive

Read more in the User Guide.

Parameters return_X_y : boolean, default=False.

If True, returns (data, target) instead of a Bunch object. See below for more
information about the data and target object.

Returns data : Bunch

Dictionary-like object, the interesting attributes are: ‘data’, the data to learn, ‘target’,
the classification labels, ‘target_names’, the meaning of the labels, ‘feature_names’, the
meaning of the features, and ‘DESCR’, the full description of the dataset.

(data, target) : tuple if return_X_y is True

The copy of UCI ML Wine Data Set dataset is downloaded and modified to fit :

standard format from: :

https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data :

Examples

Let’s say you are interested in the samples 10, 80, and 140, and want to know their class name.

>>> from sklearn.datasets import load_wine
>>> data = load_wine()
>>> data.target[[10, 80, 140]]
array([0, 1, 2])
>>> list(data.target_names)
['class_0', 'class_1', 'class_2']

Examples using sklearn.datasets.load_wine

• Importance of Feature Scaling

sklearn.datasets.mldata_filename

sklearn.datasets.mldata_filename(dataname)
Convert a raw name for a data set in a mldata.org filename.
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Parameters dataname : str

Name of dataset

Returns fname : str

The converted dataname.

5.7.2 Samples generator

datasets.make_biclusters(shape, n_clusters) Generate an array with constant block diagonal structure
for biclustering.

datasets.make_blobs([n_samples, n_features, . . . ]) Generate isotropic Gaussian blobs for clustering.
datasets.make_checkerboard(shape, n_clusters) Generate an array with block checkerboard structure for bi-

clustering.
datasets.make_circles([n_samples, shuffle, . . . ]) Make a large circle containing a smaller circle in 2d.
datasets.make_classification([n_samples,
. . . ])

Generate a random n-class classification problem.

datasets.make_friedman1([n_samples, . . . ]) Generate the “Friedman #1” regression problem
datasets.make_friedman2([n_samples, noise,
. . . ])

Generate the “Friedman #2” regression problem

datasets.make_friedman3([n_samples, noise,
. . . ])

Generate the “Friedman #3” regression problem

datasets.make_gaussian_quantiles([mean,
. . . ])

Generate isotropic Gaussian and label samples by quantile

datasets.make_hastie_10_2([n_samples, . . . ]) Generates data for binary classification used in Hastie et al.
datasets.make_low_rank_matrix([n_samples,
. . . ])

Generate a mostly low rank matrix with bell-shaped singu-
lar values

datasets.make_moons([n_samples, shuffle, . . . ]) Make two interleaving half circles
datasets.make_multilabel_classification([. . . ])Generate a random multilabel classification problem.
datasets.make_regression([n_samples, . . . ]) Generate a random regression problem.
datasets.make_s_curve([n_samples, noise, . . . ]) Generate an S curve dataset.
datasets.make_sparse_coded_signal(n_samples,
. . . )

Generate a signal as a sparse combination of dictionary el-
ements.

datasets.make_sparse_spd_matrix([dim, . . . ]) Generate a sparse symmetric definite positive matrix.
datasets.make_sparse_uncorrelated([. . . ]) Generate a random regression problem with sparse uncor-

related design
datasets.make_spd_matrix(n_dim[, ran-
dom_state])

Generate a random symmetric, positive-definite matrix.

datasets.make_swiss_roll([n_samples, noise,
. . . ])

Generate a swiss roll dataset.

sklearn.datasets.make_biclusters

sklearn.datasets.make_biclusters(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuf-
fle=True, random_state=None)

Generate an array with constant block diagonal structure for biclustering.

Read more in the User Guide.

Parameters shape : iterable (n_rows, n_cols)

The shape of the result.

n_clusters : integer
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The number of biclusters.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise.

minval : int, optional (default=10)

Minimum value of a bicluster.

maxval : int, optional (default=100)

Maximum value of a bicluster.

shuffle : boolean, optional (default=True)

Shuffle the samples.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape shape

The generated array.

rows : array of shape (n_clusters, X.shape[0],)

The indicators for cluster membership of each row.

cols : array of shape (n_clusters, X.shape[1],)

The indicators for cluster membership of each column.

See also:

make_checkerboard

References

[R5]

Examples using sklearn.datasets.make_biclusters

• A demo of the Spectral Co-Clustering algorithm

sklearn.datasets.make_blobs

sklearn.datasets.make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0,
center_box=(-10.0, 10.0), shuffle=True, random_state=None)

Generate isotropic Gaussian blobs for clustering.

Read more in the User Guide.

Parameters n_samples : int, optional (default=100)

The total number of points equally divided among clusters.

n_features : int, optional (default=2)

The number of features for each sample.
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centers : int or array of shape [n_centers, n_features], optional

(default=3) The number of centers to generate, or the fixed center locations.

cluster_std : float or sequence of floats, optional (default=1.0)

The standard deviation of the clusters.

center_box : pair of floats (min, max), optional (default=(-10.0, 10.0))

The bounding box for each cluster center when centers are generated at random.

shuffle : boolean, optional (default=True)

Shuffle the samples.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, n_features]

The generated samples.

y : array of shape [n_samples]

The integer labels for cluster membership of each sample.

See also:

make_classification a more intricate variant

Examples

>>> from sklearn.datasets.samples_generator import make_blobs
>>> X, y = make_blobs(n_samples=10, centers=3, n_features=2,
... random_state=0)
>>> print(X.shape)
(10, 2)
>>> y
array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0])

Examples using sklearn.datasets.make_blobs

• Probability calibration of classifiers

• Probability Calibration for 3-class classification

• Normal and Shrinkage Linear Discriminant Analysis for classification

• Demo of affinity propagation clustering algorithm

• Compare BIRCH and MiniBatchKMeans

• Comparing different clustering algorithms on toy datasets

• Demo of DBSCAN clustering algorithm

• Demonstration of k-means assumptions

• Selecting the number of clusters with silhouette analysis on KMeans clustering
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• A demo of the mean-shift clustering algorithm

• Comparison of the K-Means and MiniBatchKMeans clustering algorithms

• Plot randomly generated classification dataset

• Plot multinomial and One-vs-Rest Logistic Regression

• SGD: Maximum margin separating hyperplane

• SVM: Maximum margin separating hyperplane

sklearn.datasets.make_checkerboard

sklearn.datasets.make_checkerboard(shape, n_clusters, noise=0.0, minval=10, maxval=100,
shuffle=True, random_state=None)

Generate an array with block checkerboard structure for biclustering.

Read more in the User Guide.

Parameters shape : iterable (n_rows, n_cols)

The shape of the result.

n_clusters : integer or iterable (n_row_clusters, n_column_clusters)

The number of row and column clusters.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise.

minval : int, optional (default=10)

Minimum value of a bicluster.

maxval : int, optional (default=100)

Maximum value of a bicluster.

shuffle : boolean, optional (default=True)

Shuffle the samples.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape shape

The generated array.

rows : array of shape (n_clusters, X.shape[0],)

The indicators for cluster membership of each row.

cols : array of shape (n_clusters, X.shape[1],)

The indicators for cluster membership of each column.

See also:

make_biclusters
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References

[R6]

Examples using sklearn.datasets.make_checkerboard

• A demo of the Spectral Biclustering algorithm

sklearn.datasets.make_circles

sklearn.datasets.make_circles(n_samples=100, shuffle=True, noise=None, random_state=None,
factor=0.8)

Make a large circle containing a smaller circle in 2d.

A simple toy dataset to visualize clustering and classification algorithms.

Read more in the User Guide.

Parameters n_samples : int, optional (default=100)

The total number of points generated.

shuffle : bool, optional (default=True)

Whether to shuffle the samples.

noise : double or None (default=None)

Standard deviation of Gaussian noise added to the data.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

factor : double < 1 (default=.8)

Scale factor between inner and outer circle.

Returns X : array of shape [n_samples, 2]

The generated samples.

y : array of shape [n_samples]

The integer labels (0 or 1) for class membership of each sample.

Examples using sklearn.datasets.make_circles

• Classifier comparison

• Comparing different clustering algorithms on toy datasets

• Kernel PCA

• Hashing feature transformation using Totally Random Trees

• t-SNE: The effect of various perplexity values on the shape

• Varying regularization in Multi-layer Perceptron
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• Compare Stochastic learning strategies for MLPClassifier

• Label Propagation learning a complex structure

sklearn.datasets.make_classification

sklearn.datasets.make_classification(n_samples=100, n_features=20, n_informative=2,
n_redundant=2, n_repeated=0, n_classes=2,
n_clusters_per_class=2, weights=None, flip_y=0.01,
class_sep=1.0, hypercube=True, shift=0.0, scale=1.0,
shuffle=True, random_state=None)

Generate a random n-class classification problem.

This initially creates clusters of points normally distributed (std=1) about vertices of an n_informative-
dimensional hypercube with sides of length 2*class_sep and assigns an equal number of clusters to each class.
It introduces interdependence between these features and adds various types of further noise to the data.

Prior to shuffling, X stacks a number of these primary “informative” features, “redundant” linear combinations
of these, “repeated” duplicates of sampled features, and arbitrary noise for and remaining features.

Read more in the User Guide.

Parameters n_samples : int, optional (default=100)

The number of samples.

n_features : int, optional (default=20)

The total number of features. These comprise n_informative informative fea-
tures, n_redundant redundant features, n_repeated duplicated features and n_features-
n_informative-n_redundant- n_repeated useless features drawn at random.

n_informative : int, optional (default=2)

The number of informative features. Each class is composed of a number of gaussian
clusters each located around the vertices of a hypercube in a subspace of dimension
n_informative. For each cluster, informative features are drawn independently from
N(0, 1) and then randomly linearly combined within each cluster in order to add covari-
ance. The clusters are then placed on the vertices of the hypercube.

n_redundant : int, optional (default=2)

The number of redundant features. These features are generated as random linear com-
binations of the informative features.

n_repeated : int, optional (default=0)

The number of duplicated features, drawn randomly from the informative and the re-
dundant features.

n_classes : int, optional (default=2)

The number of classes (or labels) of the classification problem.

n_clusters_per_class : int, optional (default=2)

The number of clusters per class.

weights : list of floats or None (default=None)

The proportions of samples assigned to each class. If None, then classes are balanced.
Note that if len(weights) == n_classes - 1, then the last class weight is automatically
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inferred. More than n_samples samples may be returned if the sum of weights exceeds
1.

flip_y : float, optional (default=0.01)

The fraction of samples whose class are randomly exchanged. Larger values introduce
noise in the labels and make the classification task harder.

class_sep : float, optional (default=1.0)

The factor multiplying the hypercube size. Larger values spread out the clusters/classes
and make the classification task easier.

hypercube : boolean, optional (default=True)

If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put
on the vertices of a random polytope.

shift : float, array of shape [n_features] or None, optional (default=0.0)

Shift features by the specified value. If None, then features are shifted by a random
value drawn in [-class_sep, class_sep].

scale : float, array of shape [n_features] or None, optional (default=1.0)

Multiply features by the specified value. If None, then features are scaled by a random
value drawn in [1, 100]. Note that scaling happens after shifting.

shuffle : boolean, optional (default=True)

Shuffle the samples and the features.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, n_features]

The generated samples.

y : array of shape [n_samples]

The integer labels for class membership of each sample.

See also:

make_blobs simplified variant

make_multilabel_classification unrelated generator for multilabel tasks

Notes

The algorithm is adapted from Guyon [1] and was designed to generate the “Madelon” dataset.

References

[R7]
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Examples using sklearn.datasets.make_classification

• Probability Calibration curves

• Comparison of Calibration of Classifiers

• Classifier comparison

• Plot randomly generated classification dataset

• OOB Errors for Random Forests

• Feature transformations with ensembles of trees

• Feature importances with forests of trees

• Pipeline Anova SVM

• Recursive feature elimination with cross-validation

• Varying regularization in Multi-layer Perceptron

• Scaling the regularization parameter for SVCs

sklearn.datasets.make_friedman1

sklearn.datasets.make_friedman1(n_samples=100, n_features=10, noise=0.0, ran-
dom_state=None)

Generate the “Friedman #1” regression problem

This dataset is described in Friedman [1] and Breiman [2].

Inputs X are independent features uniformly distributed on the interval [0, 1]. The output y is created according
to the formula:

y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:,
→˓3] + 5 * X[:, 4] + noise * N(0, 1).

Out of the n_features features, only 5 are actually used to compute y. The remaining features are independent
of y.

The number of features has to be >= 5.

Read more in the User Guide.

Parameters n_samples : int, optional (default=100)

The number of samples.

n_features : int, optional (default=10)

The number of features. Should be at least 5.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise applied to the output.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, n_features]
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The input samples.

y : array of shape [n_samples]

The output values.

References

[R140], [R141]

sklearn.datasets.make_friedman2

sklearn.datasets.make_friedman2(n_samples=100, noise=0.0, random_state=None)
Generate the “Friedman #2” regression problem

This dataset is described in Friedman [1] and Breiman [2].

Inputs X are 4 independent features uniformly distributed on the intervals:

0 <= X[:, 0] <= 100,
40 * pi <= X[:, 1] <= 560 * pi,
0 <= X[:, 2] <= 1,
1 <= X[:, 3] <= 11.

The output y is created according to the formula:

y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.
→˓5 + noise * N(0, 1).

Read more in the User Guide.

Parameters n_samples : int, optional (default=100)

The number of samples.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise applied to the output.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, 4]

The input samples.

y : array of shape [n_samples]

The output values.

References

[R142], [R143]
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sklearn.datasets.make_friedman3

sklearn.datasets.make_friedman3(n_samples=100, noise=0.0, random_state=None)
Generate the “Friedman #3” regression problem

This dataset is described in Friedman [1] and Breiman [2].

Inputs X are 4 independent features uniformly distributed on the intervals:

0 <= X[:, 0] <= 100,
40 * pi <= X[:, 1] <= 560 * pi,
0 <= X[:, 2] <= 1,
1 <= X[:, 3] <= 11.

The output y is created according to the formula:

y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) + noise *
→˓N(0, 1).

Read more in the User Guide.

Parameters n_samples : int, optional (default=100)

The number of samples.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise applied to the output.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, 4]

The input samples.

y : array of shape [n_samples]

The output values.

References

[R144], [R145]

sklearn.datasets.make_gaussian_quantiles

sklearn.datasets.make_gaussian_quantiles(mean=None, cov=1.0, n_samples=100,
n_features=2, n_classes=3, shuffle=True,
random_state=None)

Generate isotropic Gaussian and label samples by quantile

This classification dataset is constructed by taking a multi-dimensional standard normal distribution and defining
classes separated by nested concentric multi-dimensional spheres such that roughly equal numbers of samples
are in each class (quantiles of the 𝜒2 distribution).

Read more in the User Guide.

Parameters mean : array of shape [n_features], optional (default=None)
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The mean of the multi-dimensional normal distribution. If None then use the origin (0,
0, . . . ).

cov : float, optional (default=1.)

The covariance matrix will be this value times the unit matrix. This dataset only pro-
duces symmetric normal distributions.

n_samples : int, optional (default=100)

The total number of points equally divided among classes.

n_features : int, optional (default=2)

The number of features for each sample.

n_classes : int, optional (default=3)

The number of classes

shuffle : boolean, optional (default=True)

Shuffle the samples.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, n_features]

The generated samples.

y : array of shape [n_samples]

The integer labels for quantile membership of each sample.

Notes

The dataset is from Zhu et al [1].

References

[R8]

Examples using sklearn.datasets.make_gaussian_quantiles

• Plot randomly generated classification dataset

• Multi-class AdaBoosted Decision Trees

• Two-class AdaBoost

sklearn.datasets.make_hastie_10_2

sklearn.datasets.make_hastie_10_2(n_samples=12000, random_state=None)
Generates data for binary classification used in Hastie et al. 2009, Example 10.2.

The ten features are standard independent Gaussian and the target y is defined by:
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y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1

Read more in the User Guide.

Parameters n_samples : int, optional (default=12000)

The number of samples.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, 10]

The input samples.

y : array of shape [n_samples]

The output values.

See also:

make_gaussian_quantiles a generalization of this dataset approach

References

[R9]

Examples using sklearn.datasets.make_hastie_10_2

• Discrete versus Real AdaBoost

• Gradient Boosting regularization

• Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV

sklearn.datasets.make_low_rank_matrix

sklearn.datasets.make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10,
tail_strength=0.5, random_state=None)

Generate a mostly low rank matrix with bell-shaped singular values

Most of the variance can be explained by a bell-shaped curve of width effective_rank: the low rank part of the
singular values profile is:

(1 - tail_strength) * exp(-1.0 * (i / effective_rank) ** 2)

The remaining singular values’ tail is fat, decreasing as:

tail_strength * exp(-0.1 * i / effective_rank).

The low rank part of the profile can be considered the structured signal part of the data while the tail can be
considered the noisy part of the data that cannot be summarized by a low number of linear components (singular
vectors).

This kind of singular profiles is often seen in practice, for instance:
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• gray level pictures of faces

• TF-IDF vectors of text documents crawled from the web

Read more in the User Guide.

Parameters n_samples : int, optional (default=100)

The number of samples.

n_features : int, optional (default=100)

The number of features.

effective_rank : int, optional (default=10)

The approximate number of singular vectors required to explain most of the data by
linear combinations.

tail_strength : float between 0.0 and 1.0, optional (default=0.5)

The relative importance of the fat noisy tail of the singular values profile.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, n_features]

The matrix.

sklearn.datasets.make_moons

sklearn.datasets.make_moons(n_samples=100, shuffle=True, noise=None, random_state=None)
Make two interleaving half circles

A simple toy dataset to visualize clustering and classification algorithms. Read more in the User Guide.

Parameters n_samples : int, optional (default=100)

The total number of points generated.

shuffle : bool, optional (default=True)

Whether to shuffle the samples.

noise : double or None (default=None)

Standard deviation of Gaussian noise added to the data.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, 2]

The generated samples.

y : array of shape [n_samples]

The integer labels (0 or 1) for class membership of each sample.
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Examples using sklearn.datasets.make_moons

• Classifier comparison

• Comparing different clustering algorithms on toy datasets

• Varying regularization in Multi-layer Perceptron

• Compare Stochastic learning strategies for MLPClassifier

sklearn.datasets.make_multilabel_classification

sklearn.datasets.make_multilabel_classification(n_samples=100, n_features=20,
n_classes=5, n_labels=2, length=50,
allow_unlabeled=True, sparse=False,
return_indicator=’dense’, re-
turn_distributions=False, ran-
dom_state=None)

Generate a random multilabel classification problem.

For each sample, the generative process is:

• pick the number of labels: n ~ Poisson(n_labels)

• n times, choose a class c: c ~ Multinomial(theta)

• pick the document length: k ~ Poisson(length)

• k times, choose a word: w ~ Multinomial(theta_c)

In the above process, rejection sampling is used to make sure that n is never zero or more than n_classes, and
that the document length is never zero. Likewise, we reject classes which have already been chosen.

Read more in the User Guide.

Parameters n_samples : int, optional (default=100)

The number of samples.

n_features : int, optional (default=20)

The total number of features.

n_classes : int, optional (default=5)

The number of classes of the classification problem.

n_labels : int, optional (default=2)

The average number of labels per instance. More precisely, the number of labels per
sample is drawn from a Poisson distribution with n_labels as its expected value, but
samples are bounded (using rejection sampling) by n_classes, and must be nonzero
if allow_unlabeled is False.

length : int, optional (default=50)

The sum of the features (number of words if documents) is drawn from a Poisson dis-
tribution with this expected value.

allow_unlabeled : bool, optional (default=True)

If True, some instances might not belong to any class.

sparse : bool, optional (default=False)
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If True, return a sparse feature matrix

New in version 0.17: parameter to allow sparse output.

return_indicator : ‘dense’ (default) | ‘sparse’ | False

If dense return Y in the dense binary indicator format. If 'sparse' return Y in the
sparse binary indicator format. False returns a list of lists of labels.

return_distributions : bool, optional (default=False)

If True, return the prior class probability and conditional probabilities of features given
classes, from which the data was drawn.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, n_features]

The generated samples.

Y : array or sparse CSR matrix of shape [n_samples, n_classes]

The label sets.

p_c : array, shape [n_classes]

The probability of each class being drawn. Only returned if
return_distributions=True.

p_w_c : array, shape [n_features, n_classes]

The probability of each feature being drawn given each class. Only returned if
return_distributions=True.

Examples using sklearn.datasets.make_multilabel_classification

• Multilabel classification

• Plot randomly generated multilabel dataset

sklearn.datasets.make_regression

sklearn.datasets.make_regression(n_samples=100, n_features=100, n_informative=10,
n_targets=1, bias=0.0, effective_rank=None,
tail_strength=0.5, noise=0.0, shuffle=True, coef=False,
random_state=None)

Generate a random regression problem.

The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile. See
make_low_rank_matrix for more details.

The output is generated by applying a (potentially biased) random linear regression model with n_informative
nonzero regressors to the previously generated input and some gaussian centered noise with some adjustable
scale.

Read more in the User Guide.

Parameters n_samples : int, optional (default=100)
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The number of samples.

n_features : int, optional (default=100)

The number of features.

n_informative : int, optional (default=10)

The number of informative features, i.e., the number of features used to build the linear
model used to generate the output.

n_targets : int, optional (default=1)

The number of regression targets, i.e., the dimension of the y output vector associated
with a sample. By default, the output is a scalar.

bias : float, optional (default=0.0)

The bias term in the underlying linear model.

effective_rank : int or None, optional (default=None)

if not None: The approximate number of singular vectors required to explain most of
the input data by linear combinations. Using this kind of singular spectrum in the
input allows the generator to reproduce the correlations often observed in practice.

if None: The input set is well conditioned, centered and gaussian with unit variance.

tail_strength : float between 0.0 and 1.0, optional (default=0.5)

The relative importance of the fat noisy tail of the singular values profile if effec-
tive_rank is not None.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise applied to the output.

shuffle : boolean, optional (default=True)

Shuffle the samples and the features.

coef : boolean, optional (default=False)

If True, the coefficients of the underlying linear model are returned.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, n_features]

The input samples.

y : array of shape [n_samples] or [n_samples, n_targets]

The output values.

coef : array of shape [n_features] or [n_features, n_targets], optional

The coefficient of the underlying linear model. It is returned only if coef is True.
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Examples using sklearn.datasets.make_regression

• Prediction Latency

• HuberRegressor vs Ridge on dataset with strong outliers

• Lasso on dense and sparse data

• Robust linear model estimation using RANSAC

• Plot Ridge coefficients as a function of the L2 regularization

sklearn.datasets.make_s_curve

sklearn.datasets.make_s_curve(n_samples=100, noise=0.0, random_state=None)
Generate an S curve dataset.

Read more in the User Guide.

Parameters n_samples : int, optional (default=100)

The number of sample points on the S curve.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, 3]

The points.

t : array of shape [n_samples]

The univariate position of the sample according to the main dimension of the points in
the manifold.

Examples using sklearn.datasets.make_s_curve

• Comparison of Manifold Learning methods

• t-SNE: The effect of various perplexity values on the shape

sklearn.datasets.make_sparse_coded_signal

sklearn.datasets.make_sparse_coded_signal(n_samples, n_components, n_features,
n_nonzero_coefs, random_state=None)

Generate a signal as a sparse combination of dictionary elements.

Returns a matrix Y = DX, such as D is (n_features, n_components), X is (n_components, n_samples) and each
column of X has exactly n_nonzero_coefs non-zero elements.

Read more in the User Guide.

Parameters n_samples : int
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number of samples to generate

n_components : int,

number of components in the dictionary

n_features : int

number of features of the dataset to generate

n_nonzero_coefs : int

number of active (non-zero) coefficients in each sample

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns data : array of shape [n_features, n_samples]

The encoded signal (Y).

dictionary : array of shape [n_features, n_components]

The dictionary with normalized components (D).

code : array of shape [n_components, n_samples]

The sparse code such that each column of this matrix has exactly n_nonzero_coefs non-
zero items (X).

Examples using sklearn.datasets.make_sparse_coded_signal

• Orthogonal Matching Pursuit

sklearn.datasets.make_sparse_spd_matrix

sklearn.datasets.make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False,
smallest_coef=0.1, largest_coef=0.9, ran-
dom_state=None)

Generate a sparse symmetric definite positive matrix.

Read more in the User Guide.

Parameters dim : integer, optional (default=1)

The size of the random matrix to generate.

alpha : float between 0 and 1, optional (default=0.95)

The probability that a coefficient is zero (see notes). Larger values enforce more spar-
sity.

norm_diag : boolean, optional (default=False)

Whether to normalize the output matrix to make the leading diagonal elements all 1

smallest_coef : float between 0 and 1, optional (default=0.1)

The value of the smallest coefficient.

largest_coef : float between 0 and 1, optional (default=0.9)
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The value of the largest coefficient.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns prec : sparse matrix of shape (dim, dim)

The generated matrix.

See also:

make_spd_matrix

Notes

The sparsity is actually imposed on the cholesky factor of the matrix. Thus alpha does not translate directly into
the filling fraction of the matrix itself.

Examples using sklearn.datasets.make_sparse_spd_matrix

• Sparse inverse covariance estimation

sklearn.datasets.make_sparse_uncorrelated

sklearn.datasets.make_sparse_uncorrelated(n_samples=100, n_features=10, ran-
dom_state=None)

Generate a random regression problem with sparse uncorrelated design

This dataset is described in Celeux et al [1]. as:

X ~ N(0, 1)
y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]

Only the first 4 features are informative. The remaining features are useless.

Read more in the User Guide.

Parameters n_samples : int, optional (default=100)

The number of samples.

n_features : int, optional (default=10)

The number of features.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, n_features]

The input samples.

y : array of shape [n_samples]

The output values.
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References

[R148]

sklearn.datasets.make_spd_matrix

sklearn.datasets.make_spd_matrix(n_dim, random_state=None)
Generate a random symmetric, positive-definite matrix.

Read more in the User Guide.

Parameters n_dim : int

The matrix dimension.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_dim, n_dim]

The random symmetric, positive-definite matrix.

See also:

make_sparse_spd_matrix

sklearn.datasets.make_swiss_roll

sklearn.datasets.make_swiss_roll(n_samples=100, noise=0.0, random_state=None)
Generate a swiss roll dataset.

Read more in the User Guide.

Parameters n_samples : int, optional (default=100)

The number of sample points on the S curve.

noise : float, optional (default=0.0)

The standard deviation of the gaussian noise.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array of shape [n_samples, 3]

The points.

t : array of shape [n_samples]

The univariate position of the sample according to the main dimension of the points in
the manifold.

5.7. sklearn.datasets: Datasets 1329



scikit-learn user guide, Release 0.19.1

Notes

The algorithm is from Marsland [1].

References

[R10]

Examples using sklearn.datasets.make_swiss_roll

• Hierarchical clustering: structured vs unstructured ward

• Swiss Roll reduction with LLE

5.8 sklearn.decomposition: Matrix Decomposition

The sklearn.decomposition module includes matrix decomposition algorithms, including among others PCA,
NMF or ICA. Most of the algorithms of this module can be regarded as dimensionality reduction techniques.

User guide: See the Decomposing signals in components (matrix factorization problems) section for further details.

decomposition.DictionaryLearning([. . . ]) Dictionary learning
decomposition.FactorAnalysis([n_components,
. . . ])

Factor Analysis (FA)

decomposition.FastICA([n_components, . . . ]) FastICA: a fast algorithm for Independent Component
Analysis.

decomposition.IncrementalPCA([n_components,
. . . ])

Incremental principal components analysis (IPCA).

decomposition.KernelPCA([n_components, . . . ]) Kernel Principal component analysis (KPCA)
decomposition.LatentDirichletAllocation([. . . ])Latent Dirichlet Allocation with online variational Bayes

algorithm
decomposition.MiniBatchDictionaryLearning([. . . ])Mini-batch dictionary learning
decomposition.MiniBatchSparsePCA([. . . ]) Mini-batch Sparse Principal Components Analysis
decomposition.NMF([n_components, init, . . . ]) Non-Negative Matrix Factorization (NMF)
decomposition.PCA([n_components, copy, . . . ]) Principal component analysis (PCA)
decomposition.SparsePCA([n_components, . . . ]) Sparse Principal Components Analysis (SparsePCA)
decomposition.SparseCoder(dictionary[, . . . ]) Sparse coding
decomposition.TruncatedSVD([n_components,
. . . ])

Dimensionality reduction using truncated SVD (aka LSA).
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5.8.1 sklearn.decomposition.DictionaryLearning

class sklearn.decomposition.DictionaryLearning(n_components=None, alpha=1,
max_iter=1000, tol=1e-08,
fit_algorithm=’lars’, trans-
form_algorithm=’omp’, trans-
form_n_nonzero_coefs=None, trans-
form_alpha=None, n_jobs=1,
code_init=None, dict_init=None, ver-
bose=False, split_sign=False, ran-
dom_state=None)

Dictionary learning

Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code.

Solves the optimization problem:

(U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1
(U,V)
with || V_k ||_2 = 1 for all 0 <= k < n_components

Read more in the User Guide.

Parameters n_components : int,

number of dictionary elements to extract

alpha : float,

sparsity controlling parameter

max_iter : int,

maximum number of iterations to perform

tol : float,

tolerance for numerical error

fit_algorithm : {‘lars’, ‘cd’}

lars: uses the least angle regression method to solve the lasso problem (lin-
ear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso so-
lution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

New in version 0.17: cd coordinate descent method to improve speed.

transform_algorithm : {‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}

Algorithm used to transform the data lars: uses the least angle regression method (lin-
ear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses
the coordinate descent method to compute the Lasso solution (linear_model.Lasso).
lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal
matching pursuit to estimate the sparse solution threshold: squashes to zero all coeffi-
cients less than alpha from the projection dictionary * X'

New in version 0.17: lasso_cd coordinate descent method to improve speed.

transform_n_nonzero_coefs : int, 0.1 * n_features by default

Number of nonzero coefficients to target in each column of the solution. This is only
used by algorithm=’lars’ and algorithm=’omp’ and is overridden by alpha in the omp
case.
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transform_alpha : float, 1. by default

If algorithm=’lasso_lars’ or algorithm=’lasso_cd’, alpha is the penalty applied to the
L1 norm. If algorithm=’threshold’, alpha is the absolute value of the threshold below
which coefficients will be squashed to zero. If algorithm=’omp’, alpha is the toler-
ance parameter: the value of the reconstruction error targeted. In this case, it overrides
n_nonzero_coefs.

n_jobs : int,

number of parallel jobs to run

code_init : array of shape (n_samples, n_components),

initial value for the code, for warm restart

dict_init : array of shape (n_components, n_features),

initial values for the dictionary, for warm restart

verbose : bool, optional (default: False)

To control the verbosity of the procedure.

split_sign : bool, False by default

Whether to split the sparse feature vector into the concatenation of its negative part and
its positive part. This can improve the performance of downstream classifiers.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes components_ : array, [n_components, n_features]

dictionary atoms extracted from the data

error_ : array

vector of errors at each iteration

n_iter_ : int

Number of iterations run.

See also:

SparseCoder, MiniBatchDictionaryLearning, SparsePCA, MiniBatchSparsePCA

Notes

References:

J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (http://www.di.ens.
fr/sierra/pdfs/icml09.pdf)

Methods

fit(X[, y]) Fit the model from data in X.
Continued on next page
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Table 5.45 – continued from previous page
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Encode the data as a sparse combination of the dictio-

nary atoms.

__init__(n_components=None, alpha=1, max_iter=1000, tol=1e-08, fit_algorithm=’lars’, trans-
form_algorithm=’omp’, transform_n_nonzero_coefs=None, transform_alpha=None,
n_jobs=1, code_init=None, dict_init=None, verbose=False, split_sign=False, ran-
dom_state=None)

fit(X, y=None)
Fit the model from data in X.

Parameters X : array-like, shape (n_samples, n_features)

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : Ignored.

Returns self : object

Returns the object itself

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :
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transform(X)
Encode the data as a sparse combination of the dictionary atoms.

Coding method is determined by the object parameter transform_algorithm.

Parameters X : array of shape (n_samples, n_features)

Test data to be transformed, must have the same number of features as the data used to
train the model.

Returns X_new : array, shape (n_samples, n_components)

Transformed data

5.8.2 sklearn.decomposition.FactorAnalysis

class sklearn.decomposition.FactorAnalysis(n_components=None, tol=0.01, copy=True,
max_iter=1000, noise_variance_init=None,
svd_method=’randomized’, iterated_power=3,
random_state=0)

Factor Analysis (FA)

A simple linear generative model with Gaussian latent variables.

The observations are assumed to be caused by a linear transformation of lower dimensional latent factors and
added Gaussian noise. Without loss of generality the factors are distributed according to a Gaussian with zero
mean and unit covariance. The noise is also zero mean and has an arbitrary diagonal covariance matrix.

If we would restrict the model further, by assuming that the Gaussian noise is even isotropic (all diagonal entries
are the same) we would obtain PPCA.

FactorAnalysis performs a maximum likelihood estimate of the so-called loading matrix, the transformation of
the latent variables to the observed ones, using expectation-maximization (EM).

Read more in the User Guide.

Parameters n_components : int | None

Dimensionality of latent space, the number of components of X that are obtained after
transform. If None, n_components is set to the number of features.

tol : float

Stopping tolerance for EM algorithm.

copy : bool

Whether to make a copy of X. If False, the input X gets overwritten during fitting.

max_iter : int

Maximum number of iterations.

noise_variance_init : None | array, shape=(n_features,)

The initial guess of the noise variance for each feature. If None, it defaults to
np.ones(n_features)

svd_method : {‘lapack’, ‘randomized’}

Which SVD method to use. If ‘lapack’ use standard SVD from scipy.linalg, if ‘ran-
domized’ use fast randomized_svd function. Defaults to ‘randomized’. For most
applications ‘randomized’ will be sufficiently precise while providing significant speed
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gains. Accuracy can also be improved by setting higher values for iterated_power. If
this is not sufficient, for maximum precision you should choose ‘lapack’.

iterated_power : int, optional

Number of iterations for the power method. 3 by default. Only used if svd_method
equals ‘randomized’

random_state : int, RandomState instance or None, optional (default=0)

If int, random_state is the seed used by the random number generator; If Random-
State instance, random_state is the random number generator; If None, the random
number generator is the RandomState instance used by np.random. Only used when
svd_method equals ‘randomized’.

Attributes components_ : array, [n_components, n_features]

Components with maximum variance.

loglike_ : list, [n_iterations]

The log likelihood at each iteration.

noise_variance_ : array, shape=(n_features,)

The estimated noise variance for each feature.

n_iter_ : int

Number of iterations run.

See also:

PCA Principal component analysis is also a latent linear variable model which however assumes equal noise
variance for each feature. This extra assumption makes probabilistic PCA faster as it can be computed in
closed form.

FastICA Independent component analysis, a latent variable model with non-Gaussian latent variables.

References

Methods

fit(X[, y]) Fit the FactorAnalysis model to X using EM
fit_transform(X[, y]) Fit to data, then transform it.
get_covariance() Compute data covariance with the FactorAnalysis

model.
get_params([deep]) Get parameters for this estimator.
get_precision() Compute data precision matrix with the FactorAnalysis

model.
score(X[, y]) Compute the average log-likelihood of the samples
score_samples(X) Compute the log-likelihood of each sample
set_params(**params) Set the parameters of this estimator.
transform(X) Apply dimensionality reduction to X using the model.

__init__(n_components=None, tol=0.01, copy=True, max_iter=1000, noise_variance_init=None,
svd_method=’randomized’, iterated_power=3, random_state=0)

fit(X, y=None)
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Fit the FactorAnalysis model to X using EM

Parameters X : array-like, shape (n_samples, n_features)

Training data.

y : Ignored.

Returns self :

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_covariance()
Compute data covariance with the FactorAnalysis model.

cov = components_.T * components_ + diag(noise_variance)

Returns cov : array, shape (n_features, n_features)

Estimated covariance of data.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_precision()
Compute data precision matrix with the FactorAnalysis model.

Returns precision : array, shape (n_features, n_features)

Estimated precision of data.

score(X, y=None)
Compute the average log-likelihood of the samples

Parameters X : array, shape (n_samples, n_features)

The data

y : Ignored.

Returns ll : float

Average log-likelihood of the samples under the current model
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score_samples(X)
Compute the log-likelihood of each sample

Parameters X : array, shape (n_samples, n_features)

The data

Returns ll : array, shape (n_samples,)

Log-likelihood of each sample under the current model

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Apply dimensionality reduction to X using the model.

Compute the expected mean of the latent variables. See Barber, 21.2.33 (or Bishop, 12.66).

Parameters X : array-like, shape (n_samples, n_features)

Training data.

Returns X_new : array-like, shape (n_samples, n_components)

The latent variables of X.

Examples using sklearn.decomposition.FactorAnalysis

• Faces dataset decompositions

• Model selection with Probabilistic PCA and Factor Analysis (FA)

5.8.3 sklearn.decomposition.FastICA

class sklearn.decomposition.FastICA(n_components=None, algorithm=’parallel’, whiten=True,
fun=’logcosh’, fun_args=None, max_iter=200, tol=0.0001,
w_init=None, random_state=None)

FastICA: a fast algorithm for Independent Component Analysis.

Read more in the User Guide.

Parameters n_components : int, optional

Number of components to use. If none is passed, all are used.

algorithm : {‘parallel’, ‘deflation’}

Apply parallel or deflational algorithm for FastICA.

whiten : boolean, optional

If whiten is false, the data is already considered to be whitened, and no whitening is
performed.

fun : string or function, optional. Default: ‘logcosh’
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The functional form of the G function used in the approximation to neg-entropy. Could
be either ‘logcosh’, ‘exp’, or ‘cube’. You can also provide your own function. It should
return a tuple containing the value of the function, and of its derivative, in the point.
Example:

def my_g(x): return x ** 3, 3 * x ** 2

fun_args : dictionary, optional

Arguments to send to the functional form. If empty and if fun=’logcosh’, fun_args will
take value {‘alpha’ : 1.0}.

max_iter : int, optional

Maximum number of iterations during fit.

tol : float, optional

Tolerance on update at each iteration.

w_init : None of an (n_components, n_components) ndarray

The mixing matrix to be used to initialize the algorithm.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes components_ : 2D array, shape (n_components, n_features)

The unmixing matrix.

mixing_ : array, shape (n_features, n_components)

The mixing matrix.

n_iter_ : int

If the algorithm is “deflation”, n_iter is the maximum number of iterations run across
all components. Else they are just the number of iterations taken to converge.

Notes

Implementation based on A. Hyvarinen and E. Oja, Independent Component Analysis: Algorithms and Appli-
cations, Neural Networks, 13(4-5), 2000, pp. 411-430

Methods

fit(X[, y]) Fit the model to X.
fit_transform(X[, y]) Fit the model and recover the sources from X.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X[, copy]) Transform the sources back to the mixed data (apply

mixing matrix).
set_params(**params) Set the parameters of this estimator.
transform(X[, y, copy]) Recover the sources from X (apply the unmixing ma-

trix).
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__init__(n_components=None, algorithm=’parallel’, whiten=True, fun=’logcosh’, fun_args=None,
max_iter=200, tol=0.0001, w_init=None, random_state=None)

fit(X, y=None)
Fit the model to X.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : Ignored.

Returns self :

fit_transform(X, y=None)
Fit the model and recover the sources from X.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : Ignored.

Returns X_new : array-like, shape (n_samples, n_components)

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X, copy=True)
Transform the sources back to the mixed data (apply mixing matrix).

Parameters X : array-like, shape (n_samples, n_components)

Sources, where n_samples is the number of samples and n_components is the number
of components.

copy : bool (optional)

If False, data passed to fit are overwritten. Defaults to True.

Returns X_new : array-like, shape (n_samples, n_features)

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, y=’deprecated’, copy=True)
Recover the sources from X (apply the unmixing matrix).

Parameters X : array-like, shape (n_samples, n_features)
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Data to transform, where n_samples is the number of samples and n_features is the
number of features.

y : (ignored)

Deprecated since version 0.19: This parameter will be removed in 0.21.

copy : bool (optional)

If False, data passed to fit are overwritten. Defaults to True.

Returns X_new : array-like, shape (n_samples, n_components)

Examples using sklearn.decomposition.FastICA

• Faces dataset decompositions

• Blind source separation using FastICA

• FastICA on 2D point clouds

5.8.4 sklearn.decomposition.IncrementalPCA

class sklearn.decomposition.IncrementalPCA(n_components=None, whiten=False, copy=True,
batch_size=None)

Incremental principal components analysis (IPCA).

Linear dimensionality reduction using Singular Value Decomposition of centered data, keeping only the most
significant singular vectors to project the data to a lower dimensional space.

Depending on the size of the input data, this algorithm can be much more memory efficient than a PCA.

This algorithm has constant memory complexity, on the order of batch_size, enabling use of np.memmap
files without loading the entire file into memory.

The computational overhead of each SVD is O(batch_size * n_features ** 2), but only 2 *
batch_size samples remain in memory at a time. There will be n_samples / batch_size SVD compu-
tations to get the principal components, versus 1 large SVD of complexity O(n_samples * n_features

** 2) for PCA.

Read more in the User Guide.

Parameters n_components : int or None, (default=None)

Number of components to keep. If n_components `` is ``None, then
n_components is set to min(n_samples, n_features).

whiten : bool, optional

When True (False by default) the components_ vectors are divided by n_samples
times components_ to ensure uncorrelated outputs with unit component-wise vari-
ances.

Whitening will remove some information from the transformed signal (the relative vari-
ance scales of the components) but can sometimes improve the predictive accuracy of
the downstream estimators by making data respect some hard-wired assumptions.

copy : bool, (default=True)

If False, X will be overwritten. copy=False can be used to save memory but is unsafe
for general use.

batch_size : int or None, (default=None)
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The number of samples to use for each batch. Only used when calling fit. If
batch_size is None, then batch_size is inferred from the data and set to 5

* n_features, to provide a balance between approximation accuracy and memory
consumption.

Attributes components_ : array, shape (n_components, n_features)

Components with maximum variance.

explained_variance_ : array, shape (n_components,)

Variance explained by each of the selected components.

explained_variance_ratio_ : array, shape (n_components,)

Percentage of variance explained by each of the selected components. If all components
are stored, the sum of explained variances is equal to 1.0.

singular_values_ : array, shape (n_components,)

The singular values corresponding to each of the selected components. The singular val-
ues are equal to the 2-norms of the n_components variables in the lower-dimensional
space.

mean_ : array, shape (n_features,)

Per-feature empirical mean, aggregate over calls to partial_fit.

var_ : array, shape (n_features,)

Per-feature empirical variance, aggregate over calls to partial_fit.

noise_variance_ : float

The estimated noise covariance following the Probabilistic PCA model from Tipping
and Bishop 1999. See “Pattern Recognition and Machine Learning” by C. Bishop,
12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf.

n_components_ : int

The estimated number of components. Relevant when n_components=None.

n_samples_seen_ : int

The number of samples processed by the estimator. Will be reset on new calls to fit, but
increments across partial_fit calls.

See also:

PCA, RandomizedPCA, KernelPCA, SparsePCA, TruncatedSVD

Notes

Implements the incremental PCA model from: D. Ross, J. Lim, R. Lin, M. Yang, Incremental Learning for
Robust Visual Tracking, International Journal of Computer Vision, Volume 77, Issue 1-3, pp. 125-141, May
2008. See http://www.cs.toronto.edu/~dross/ivt/RossLimLinYang_ijcv.pdf

This model is an extension of the Sequential Karhunen-Loeve Transform from: A. Levy and M. Lindenbaum, Se-
quential Karhunen-Loeve Basis Extraction and its Application to Images, IEEE Transactions on Image Process-
ing, Volume 9, Number 8, pp. 1371-1374, August 2000. See http://www.cs.technion.ac.il/~mic/doc/skl-ip.pdf

We have specifically abstained from an optimization used by authors of both papers, a QR decomposition used
in specific situations to reduce the algorithmic complexity of the SVD. The source for this technique is Matrix
Computations, Third Edition, G. Holub and C. Van Loan, Chapter 5, section 5.4.4, pp 252-253.. This technique
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has been omitted because it is advantageous only when decomposing a matrix with n_samples (rows) >=
5/3 * n_features (columns), and hurts the readability of the implemented algorithm. This would be a good
opportunity for future optimization, if it is deemed necessary.

References

4. Ross, J. Lim, R. Lin, M. Yang. Incremental Learning for Robust Visual Tracking, International Jour-
nal of Computer Vision, Volume 77, Issue 1-3, pp. 125-141, May 2008.

7. Golub and C. Van Loan. Matrix Computations, Third Edition, Chapter 5, Section 5.4.4, pp. 252-
253.

Methods

fit(X[, y]) Fit the model with X, using minibatches of size
batch_size.

fit_transform(X[, y]) Fit to data, then transform it.
get_covariance() Compute data covariance with the generative model.
get_params([deep]) Get parameters for this estimator.
get_precision() Compute data precision matrix with the generative

model.
inverse_transform(X) Transform data back to its original space.
partial_fit(X[, y, check_input]) Incremental fit with X.
set_params(**params) Set the parameters of this estimator.
transform(X) Apply dimensionality reduction to X.

__init__(n_components=None, whiten=False, copy=True, batch_size=None)

fit(X, y=None)
Fit the model with X, using minibatches of size batch_size.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : Ignored.

Returns self : object

Returns the instance itself.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]
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Transformed array.

get_covariance()
Compute data covariance with the generative model.

cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)
where S**2 contains the explained variances, and sigma2 contains the noise variances.

Returns cov : array, shape=(n_features, n_features)

Estimated covariance of data.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_precision()
Compute data precision matrix with the generative model.

Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency.

Returns precision : array, shape=(n_features, n_features)

Estimated precision of data.

inverse_transform(X)
Transform data back to its original space.

In other words, return an input X_original whose transform would be X.

Parameters X : array-like, shape (n_samples, n_components)

New data, where n_samples is the number of samples and n_components is the number
of components.

Returns X_original array-like, shape (n_samples, n_features) :

Notes

If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes re-
versing whitening.

partial_fit(X, y=None, check_input=True)
Incremental fit with X. All of X is processed as a single batch.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

check_input : bool

Run check_array on X.

y : Ignored.

Returns self : object
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Returns the instance itself.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Apply dimensionality reduction to X.

X is projected on the first principal components previously extracted from a training set.

Parameters X : array-like, shape (n_samples, n_features)

New data, where n_samples is the number of samples and n_features is the number of
features.

Returns X_new : array-like, shape (n_samples, n_components)

Examples

>>> import numpy as np
>>> from sklearn.decomposition import IncrementalPCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> ipca = IncrementalPCA(n_components=2, batch_size=3)
>>> ipca.fit(X)
IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False)
>>> ipca.transform(X)

Examples using sklearn.decomposition.IncrementalPCA

• Incremental PCA

5.8.5 sklearn.decomposition.KernelPCA

class sklearn.decomposition.KernelPCA(n_components=None, kernel=’linear’, gamma=None,
degree=3, coef0=1, kernel_params=None, alpha=1.0,
fit_inverse_transform=False, eigen_solver=’auto’,
tol=0, max_iter=None, remove_zero_eig=False, ran-
dom_state=None, copy_X=True, n_jobs=1)

Kernel Principal component analysis (KPCA)

Non-linear dimensionality reduction through the use of kernels (see Pairwise metrics, Affinities and Kernels).

Read more in the User Guide.

Parameters n_components : int, default=None

Number of components. If None, all non-zero components are kept.

kernel : “linear” | “poly” | “rbf” | “sigmoid” | “cosine” | “precomputed”

Kernel. Default=”linear”.

gamma : float, default=1/n_features
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Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other kernels.

degree : int, default=3

Degree for poly kernels. Ignored by other kernels.

coef0 : float, default=1

Independent term in poly and sigmoid kernels. Ignored by other kernels.

kernel_params : mapping of string to any, default=None

Parameters (keyword arguments) and values for kernel passed as callable object. Ig-
nored by other kernels.

alpha : int, default=1.0

Hyperparameter of the ridge regression that learns the inverse transform (when
fit_inverse_transform=True).

fit_inverse_transform : bool, default=False

Learn the inverse transform for non-precomputed kernels. (i.e. learn to find the pre-
image of a point)

eigen_solver : string [‘auto’|’dense’|’arpack’], default=’auto’

Select eigensolver to use. If n_components is much less than the number of training
samples, arpack may be more efficient than the dense eigensolver.

tol : float, default=0

Convergence tolerance for arpack. If 0, optimal value will be chosen by arpack.

max_iter : int, default=None

Maximum number of iterations for arpack. If None, optimal value will be chosen by
arpack.

remove_zero_eig : boolean, default=False

If True, then all components with zero eigenvalues are removed, so that the number
of components in the output may be < n_components (and sometimes even zero due
to numerical instability). When n_components is None, this parameter is ignored and
components with zero eigenvalues are removed regardless.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If Random-
State instance, random_state is the random number generator; If None, the ran-
dom number generator is the RandomState instance used by np.random. Used when
eigen_solver == ‘arpack’.

New in version 0.18.

copy_X : boolean, default=True

If True, input X is copied and stored by the model in the X_fit_ attribute. If no further
changes will be done to X, setting copy_X=False saves memory by storing a reference.

New in version 0.18.

n_jobs : int, default=1

The number of parallel jobs to run. If -1, then the number of jobs is set to the number
of CPU cores.
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New in version 0.18.

Attributes lambdas_ : array, (n_components,)

Eigenvalues of the centered kernel matrix in decreasing order. If n_components and
remove_zero_eig are not set, then all values are stored.

alphas_ : array, (n_samples, n_components)

Eigenvectors of the centered kernel matrix. If n_components and remove_zero_eig are
not set, then all components are stored.

dual_coef_ : array, (n_samples, n_features)

Inverse transform matrix. Set if fit_inverse_transform is True.

X_transformed_fit_ : array, (n_samples, n_components)

Projection of the fitted data on the kernel principal components.

X_fit_ : (n_samples, n_features)

The data used to fit the model. If copy_X=False, then X_fit_ is a reference. This attribute
is used for the calls to transform.

References

Kernel PCA was introduced in: Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999.
Kernel principal component analysis. In Advances in kernel methods, MIT Press, Cambridge, MA, USA
327-352.

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit the model from data in X and transform X.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Transform X back to original space.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform X.

__init__(n_components=None, kernel=’linear’, gamma=None, degree=3, coef0=1, ker-
nel_params=None, alpha=1.0, fit_inverse_transform=False, eigen_solver=’auto’, tol=0,
max_iter=None, remove_zero_eig=False, random_state=None, copy_X=True, n_jobs=1)

fit(X, y=None)
Fit the model from data in X.

Parameters X : array-like, shape (n_samples, n_features)

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

Returns self : object

Returns the instance itself.

fit_transform(X, y=None, **params)
Fit the model from data in X and transform X.
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Parameters X : array-like, shape (n_samples, n_features)

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

Returns X_new : array-like, shape (n_samples, n_components)

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X)
Transform X back to original space.

Parameters X : array-like, shape (n_samples, n_components)

Returns X_new : array-like, shape (n_samples, n_features)

References

“Learning to Find Pre-Images”, G BakIr et al, 2004.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform X.

Parameters X : array-like, shape (n_samples, n_features)

Returns X_new : array-like, shape (n_samples, n_components)

Examples using sklearn.decomposition.KernelPCA

• Kernel PCA
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5.8.6 sklearn.decomposition.LatentDirichletAllocation

class sklearn.decomposition.LatentDirichletAllocation(n_components=10,
doc_topic_prior=None,
topic_word_prior=None,
learning_method=None,
learning_decay=0.7,
learning_offset=10.0,
max_iter=10, batch_size=128,
evaluate_every=-1, to-
tal_samples=1000000.0,
perp_tol=0.1,
mean_change_tol=0.001,
max_doc_update_iter=100,
n_jobs=1, verbose=0,
random_state=None,
n_topics=None)

Latent Dirichlet Allocation with online variational Bayes algorithm

New in version 0.17.

Read more in the User Guide.

Parameters n_components : int, optional (default=10)

Number of topics.

doc_topic_prior : float, optional (default=None)

Prior of document topic distribution theta. If the value is None, defaults to 1 /
n_components. In the literature, this is called alpha.

topic_word_prior : float, optional (default=None)

Prior of topic word distribution beta. If the value is None, defaults to 1 / n_components.
In the literature, this is called eta.

learning_method : ‘batch’ | ‘online’, default=’online’

Method used to update _component. Only used in fit method. In general, if the data
size is large, the online update will be much faster than the batch update. The default
learning method is going to be changed to ‘batch’ in the 0.20 release. Valid options:

'batch': Batch variational Bayes method. Use all training data
→˓in

each EM update.
Old `components_` will be overwritten in each iteration.

'online': Online variational Bayes method. In each EM update,
→˓use

mini-batch of training data to update the ``components_``
variable incrementally. The learning rate is controlled by

→˓the
``learning_decay`` and the ``learning_offset`` parameters.

learning_decay : float, optional (default=0.7)

It is a parameter that control learning rate in the online learning method. The value
should be set between (0.5, 1.0] to guarantee asymptotic convergence. When the value
is 0.0 and batch_size is n_samples, the update method is same as batch learning. In
the literature, this is called kappa.
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learning_offset : float, optional (default=10.)

A (positive) parameter that downweights early iterations in online learning. It should
be greater than 1.0. In the literature, this is called tau_0.

max_iter : integer, optional (default=10)

The maximum number of iterations.

batch_size : int, optional (default=128)

Number of documents to use in each EM iteration. Only used in online learning.

evaluate_every : int, optional (default=0)

How often to evaluate perplexity. Only used in fit method. set it to 0 or negative number
to not evalute perplexity in training at all. Evaluating perplexity can help you check
convergence in training process, but it will also increase total training time. Evaluating
perplexity in every iteration might increase training time up to two-fold.

total_samples : int, optional (default=1e6)

Total number of documents. Only used in the partial_fit method.

perp_tol : float, optional (default=1e-1)

Perplexity tolerance in batch learning. Only used when evaluate_every is greater
than 0.

mean_change_tol : float, optional (default=1e-3)

Stopping tolerance for updating document topic distribution in E-step.

max_doc_update_iter : int (default=100)

Max number of iterations for updating document topic distribution in the E-step.

n_jobs : int, optional (default=1)

The number of jobs to use in the E-step. If -1, all CPUs are used. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used.

verbose : int, optional (default=0)

Verbosity level.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

n_topics : int, optional (default=None)

This parameter has been renamed to n_components and will be removed in version 0.21.
.. deprecated:: 0.19

Attributes components_ : array, [n_components, n_features]

Variational parameters for topic word distribution. Since the complete conditional
for topic word distribution is a Dirichlet, components_[i, j] can be viewed
as pseudocount that represents the number of times word j was assigned to topic
i. It can also be viewed as distribution over the words for each topic after normal-
ization: model.components_ / model.components_.sum(axis=1)[:,
np.newaxis].

n_batch_iter_ : int
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Number of iterations of the EM step.

n_iter_ : int

Number of passes over the dataset.

References

[1] “Online Learning for Latent Dirichlet Allocation”, Matthew D. Hoffman, David M. Blei, Francis
Bach, 2010

[2] “Stochastic Variational Inference”, Matthew D. Hoffman, David M. Blei, Chong Wang, John Paisley,
2013

[3] Matthew D. Hoffman’s onlineldavb code. Link: http://matthewdhoffman.com//code/onlineldavb.tar

Methods

fit(X[, y]) Learn model for the data X with variational Bayes
method.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
partial_fit(X[, y]) Online VB with Mini-Batch update.
perplexity(X[, doc_topic_distr, sub_sampling]) Calculate approximate perplexity for data X.
score(X[, y]) Calculate approximate log-likelihood as score.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform data X according to the fitted model.

__init__(n_components=10, doc_topic_prior=None, topic_word_prior=None, learn-
ing_method=None, learning_decay=0.7, learning_offset=10.0, max_iter=10,
batch_size=128, evaluate_every=-1, total_samples=1000000.0, perp_tol=0.1,
mean_change_tol=0.001, max_doc_update_iter=100, n_jobs=1, verbose=0, ran-
dom_state=None, n_topics=None)

fit(X, y=None)
Learn model for the data X with variational Bayes method.

When learning_method is ‘online’, use mini-batch update. Otherwise, use batch update.

Parameters X : array-like or sparse matrix, shape=(n_samples, n_features)

Document word matrix.

y : Ignored.

Returns self :

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.
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Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y=None)
Online VB with Mini-Batch update.

Parameters X : array-like or sparse matrix, shape=(n_samples, n_features)

Document word matrix.

y : Ignored.

Returns self :

perplexity(X, doc_topic_distr=’deprecated’, sub_sampling=False)
Calculate approximate perplexity for data X.

Perplexity is defined as exp(-1. * log-likelihood per word)

Changed in version 0.19: doc_topic_distr argument has been deprecated and is ignored because user no
longer has access to unnormalized distribution

Parameters X : array-like or sparse matrix, [n_samples, n_features]

Document word matrix.

doc_topic_distr : None or array, shape=(n_samples, n_components)

Document topic distribution. This argument is deprecated and is currently being ig-
nored.

Deprecated since version 0.19.

sub_sampling : bool

Do sub-sampling or not.

Returns score : float

Perplexity score.

score(X, y=None)
Calculate approximate log-likelihood as score.

Parameters X : array-like or sparse matrix, shape=(n_samples, n_features)

Document word matrix.

y : Ignored.

Returns score : float

Use approximate bound as score.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform data X according to the fitted model.

Changed in version 0.18: doc_topic_distr is now normalized

Parameters X : array-like or sparse matrix, shape=(n_samples, n_features)

Document word matrix.

Returns doc_topic_distr : shape=(n_samples, n_components)

Document topic distribution for X.

Examples using sklearn.decomposition.LatentDirichletAllocation

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

5.8.7 sklearn.decomposition.MiniBatchDictionaryLearning

class sklearn.decomposition.MiniBatchDictionaryLearning(n_components=None, al-
pha=1, n_iter=1000,
fit_algorithm=’lars’,
n_jobs=1, batch_size=3,
shuffle=True,
dict_init=None, trans-
form_algorithm=’omp’, trans-
form_n_nonzero_coefs=None,
transform_alpha=None, ver-
bose=False, split_sign=False,
random_state=None)

Mini-batch dictionary learning

Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code.

Solves the optimization problem:

(U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1
(U,V)
with || V_k ||_2 = 1 for all 0 <= k < n_components

Read more in the User Guide.

Parameters n_components : int,

number of dictionary elements to extract

alpha : float,

sparsity controlling parameter

n_iter : int,
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total number of iterations to perform

fit_algorithm : {‘lars’, ‘cd’}

lars: uses the least angle regression method to solve the lasso problem (lin-
ear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso so-
lution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

n_jobs : int,

number of parallel jobs to run

batch_size : int,

number of samples in each mini-batch

shuffle : bool,

whether to shuffle the samples before forming batches

dict_init : array of shape (n_components, n_features),

initial value of the dictionary for warm restart scenarios

transform_algorithm : {‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}

Algorithm used to transform the data. lars: uses the least angle regression method (lin-
ear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses
the coordinate descent method to compute the Lasso solution (linear_model.Lasso).
lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal
matching pursuit to estimate the sparse solution threshold: squashes to zero all coeffi-
cients less than alpha from the projection dictionary * X’

transform_n_nonzero_coefs : int, 0.1 * n_features by default

Number of nonzero coefficients to target in each column of the solution. This is only
used by algorithm=’lars’ and algorithm=’omp’ and is overridden by alpha in the omp
case.

transform_alpha : float, 1. by default

If algorithm=’lasso_lars’ or algorithm=’lasso_cd’, alpha is the penalty applied to the
L1 norm. If algorithm=’threshold’, alpha is the absolute value of the threshold below
which coefficients will be squashed to zero. If algorithm=’omp’, alpha is the toler-
ance parameter: the value of the reconstruction error targeted. In this case, it overrides
n_nonzero_coefs.

verbose : bool, optional (default: False)

To control the verbosity of the procedure.

split_sign : bool, False by default

Whether to split the sparse feature vector into the concatenation of its negative part and
its positive part. This can improve the performance of downstream classifiers.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes components_ : array, [n_components, n_features]

components extracted from the data
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inner_stats_ : tuple of (A, B) ndarrays

Internal sufficient statistics that are kept by the algorithm. Keeping them is useful in
online settings, to avoid loosing the history of the evolution, but they shouldn’t have
any use for the end user. A (n_components, n_components) is the dictionary covariance
matrix. B (n_features, n_components) is the data approximation matrix

n_iter_ : int

Number of iterations run.

See also:

SparseCoder, DictionaryLearning, SparsePCA, MiniBatchSparsePCA

Notes

References:

J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (http://www.di.ens.
fr/sierra/pdfs/icml09.pdf)

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
partial_fit(X[, y, iter_offset]) Updates the model using the data in X as a mini-batch.
set_params(**params) Set the parameters of this estimator.
transform(X) Encode the data as a sparse combination of the dictio-

nary atoms.

__init__(n_components=None, alpha=1, n_iter=1000, fit_algorithm=’lars’, n_jobs=1,
batch_size=3, shuffle=True, dict_init=None, transform_algorithm=’omp’, trans-
form_n_nonzero_coefs=None, transform_alpha=None, verbose=False, split_sign=False,
random_state=None)

fit(X, y=None)
Fit the model from data in X.

Parameters X : array-like, shape (n_samples, n_features)

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : Ignored.

Returns self : object

Returns the instance itself.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.
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y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y=None, iter_offset=None)
Updates the model using the data in X as a mini-batch.

Parameters X : array-like, shape (n_samples, n_features)

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : Ignored.

iter_offset : integer, optional

The number of iteration on data batches that has been performed before this call to
partial_fit. This is optional: if no number is passed, the memory of the object is used.

Returns self : object

Returns the instance itself.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Encode the data as a sparse combination of the dictionary atoms.

Coding method is determined by the object parameter transform_algorithm.

Parameters X : array of shape (n_samples, n_features)

Test data to be transformed, must have the same number of features as the data used to
train the model.

Returns X_new : array, shape (n_samples, n_components)

Transformed data

Examples using sklearn.decomposition.MiniBatchDictionaryLearning

• Faces dataset decompositions
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• Image denoising using dictionary learning

5.8.8 sklearn.decomposition.MiniBatchSparsePCA

class sklearn.decomposition.MiniBatchSparsePCA(n_components=None, alpha=1,
ridge_alpha=0.01, n_iter=100, call-
back=None, batch_size=3, verbose=False,
shuffle=True, n_jobs=1, method=’lars’,
random_state=None)

Mini-batch Sparse Principal Components Analysis

Finds the set of sparse components that can optimally reconstruct the data. The amount of sparseness is control-
lable by the coefficient of the L1 penalty, given by the parameter alpha.

Read more in the User Guide.

Parameters n_components : int,

number of sparse atoms to extract

alpha : int,

Sparsity controlling parameter. Higher values lead to sparser components.

ridge_alpha : float,

Amount of ridge shrinkage to apply in order to improve conditioning when calling the
transform method.

n_iter : int,

number of iterations to perform for each mini batch

callback : callable or None, optional (default: None)

callable that gets invoked every five iterations

batch_size : int,

the number of features to take in each mini batch

verbose : int

Controls the verbosity; the higher, the more messages. Defaults to 0.

shuffle : boolean,

whether to shuffle the data before splitting it in batches

n_jobs : int,

number of parallel jobs to run, or -1 to autodetect.

method : {‘lars’, ‘cd’}

lars: uses the least angle regression method to solve the lasso problem (lin-
ear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso so-
lution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes components_ : array, [n_components, n_features]
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Sparse components extracted from the data.

error_ : array

Vector of errors at each iteration.

n_iter_ : int

Number of iterations run.

See also:

PCA, SparsePCA, DictionaryLearning

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, ridge_alpha]) Least Squares projection of the data onto the sparse

components.

__init__(n_components=None, alpha=1, ridge_alpha=0.01, n_iter=100, callback=None,
batch_size=3, verbose=False, shuffle=True, n_jobs=1, method=’lars’, ran-
dom_state=None)

fit(X, y=None)
Fit the model from data in X.

Parameters X : array-like, shape (n_samples, n_features)

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : Ignored.

Returns self : object

Returns the instance itself.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional
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If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, ridge_alpha=’deprecated’)
Least Squares projection of the data onto the sparse components.

To avoid instability issues in case the system is under-determined, regularization can be applied (Ridge
regression) via the ridge_alpha parameter.

Note that Sparse PCA components orthogonality is not enforced as in PCA hence one cannot use a simple
linear projection.

Parameters X : array of shape (n_samples, n_features)

Test data to be transformed, must have the same number of features as the data used to
train the model.

ridge_alpha : float, default: 0.01

Amount of ridge shrinkage to apply in order to improve conditioning.

Deprecated since version 0.19: This parameter will be removed in 0.21. Specify
ridge_alpha in the SparsePCA constructor.

Returns X_new array, shape (n_samples, n_components) :

Transformed data.

Examples using sklearn.decomposition.MiniBatchSparsePCA

• Faces dataset decompositions

5.8.9 sklearn.decomposition.NMF

class sklearn.decomposition.NMF(n_components=None, init=None, solver=’cd’,
beta_loss=’frobenius’, tol=0.0001, max_iter=200, ran-
dom_state=None, alpha=0.0, l1_ratio=0.0, verbose=0, shuf-
fle=False)

Non-Negative Matrix Factorization (NMF)

Find two non-negative matrices (W, H) whose product approximates the non- negative matrix X. This factoriza-
tion can be used for example for dimensionality reduction, source separation or topic extraction.

The objective function is:

0.5 * ||X - WH||_Fro^2
+ alpha * l1_ratio * ||vec(W)||_1
+ alpha * l1_ratio * ||vec(H)||_1
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+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
+ 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2

Where:

||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm)
||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm)

For multiplicative-update (‘mu’) solver, the Frobenius norm (0.5 * ||X - WH||_Fro^2) can be changed into
another beta-divergence loss, by changing the beta_loss parameter.

The objective function is minimized with an alternating minimization of W and H.

Read more in the User Guide.

Parameters n_components : int or None

Number of components, if n_components is not set all features are kept.

init : ‘random’ | ‘nndsvd’ | ‘nndsvda’ | ‘nndsvdar’ | ‘custom’

Method used to initialize the procedure. Default: ‘nndsvd’ if n_components <
n_features, otherwise random. Valid options:

• ‘random’: non-negative random matrices, scaled with: sqrt(X.mean() /
n_components)

• ‘nndsvd’: Nonnegative Double Singular Value Decomposition (NNDSVD)
initialization (better for sparseness)

• ‘nndsvda’: NNDSVD with zeros filled with the average of X (better when spar-
sity is not desired)

• ‘nndsvdar’: NNDSVD with zeros filled with small random values (generally
faster, less accurate alternative to NNDSVDa for when sparsity is not desired)

• ‘custom’: use custom matrices W and H

solver : ‘cd’ | ‘mu’

Numerical solver to use: ‘cd’ is a Coordinate Descent solver. ‘mu’ is a Multiplicative
Update solver.

New in version 0.17: Coordinate Descent solver.

New in version 0.19: Multiplicative Update solver.

beta_loss : float or string, default ‘frobenius’

String must be in {‘frobenius’, ‘kullback-leibler’, ‘itakura-saito’}. Beta divergence to
be minimized, measuring the distance between X and the dot product WH. Note that
values different from ‘frobenius’ (or 2) and ‘kullback-leibler’ (or 1) lead to significantly
slower fits. Note that for beta_loss <= 0 (or ‘itakura-saito’), the input matrix X cannot
contain zeros. Used only in ‘mu’ solver.

New in version 0.19.

tol : float, default: 1e-4

Tolerance of the stopping condition.

max_iter : integer, default: 200

Maximum number of iterations before timing out.
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random_state : int, RandomState instance or None, optional, default: None

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

alpha : double, default: 0.

Constant that multiplies the regularization terms. Set it to zero to have no regularization.

New in version 0.17: alpha used in the Coordinate Descent solver.

l1_ratio : double, default: 0.

The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the
penalty is an elementwise L2 penalty (aka Frobenius Norm). For l1_ratio = 1 it is an
elementwise L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and
L2.

New in version 0.17: Regularization parameter l1_ratio used in the Coordinate Descent
solver.

verbose : bool, default=False

Whether to be verbose.

shuffle : boolean, default: False

If true, randomize the order of coordinates in the CD solver.

New in version 0.17: shuffle parameter used in the Coordinate Descent solver.

Attributes components_ : array, [n_components, n_features]

Factorization matrix, sometimes called ‘dictionary’.

reconstruction_err_ : number

Frobenius norm of the matrix difference, or beta-divergence, between the training data
X and the reconstructed data WH from the fitted model.

n_iter_ : int

Actual number of iterations.

References

Cichocki, Andrzej, and P. H. A. N. Anh-Huy. “Fast local algorithms for large scale nonnegative matrix and ten-
sor factorizations.” IEICE transactions on fundamentals of electronics, communications and computer sciences
92.3: 708-721, 2009.

Fevotte, C., & Idier, J. (2011). Algorithms for nonnegative matrix factorization with the beta-divergence. Neural
Computation, 23(9).

Examples

>>> import numpy as np
>>> X = np.array([[1, 1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
>>> from sklearn.decomposition import NMF
>>> model = NMF(n_components=2, init='random', random_state=0)
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>>> W = model.fit_transform(X)
>>> H = model.components_

Methods

fit(X[, y]) Learn a NMF model for the data X.
fit_transform(X[, y, W, H]) Learn a NMF model for the data X and returns the trans-

formed data.
get_params([deep]) Get parameters for this estimator.
inverse_transform(W) Transform data back to its original space.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform the data X according to the fitted NMF model

__init__(n_components=None, init=None, solver=’cd’, beta_loss=’frobenius’, tol=0.0001,
max_iter=200, random_state=None, alpha=0.0, l1_ratio=0.0, verbose=0, shuffle=False)

fit(X, y=None, **params)
Learn a NMF model for the data X.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Data matrix to be decomposed

y : Ignored.

Returns self :

fit_transform(X, y=None, W=None, H=None)
Learn a NMF model for the data X and returns the transformed data.

This is more efficient than calling fit followed by transform.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Data matrix to be decomposed

y : Ignored.

W : array-like, shape (n_samples, n_components)

If init=’custom’, it is used as initial guess for the solution.

H : array-like, shape (n_components, n_features)

If init=’custom’, it is used as initial guess for the solution.

Returns W : array, shape (n_samples, n_components)

Transformed data.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.
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inverse_transform(W)
Transform data back to its original space.

Parameters W : {array-like, sparse matrix}, shape (n_samples, n_components)

Transformed data matrix

Returns X : {array-like, sparse matrix}, shape (n_samples, n_features)

Data matrix of original shape

.. versionadded:: 0.18 :

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform the data X according to the fitted NMF model

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Data matrix to be transformed by the model

Returns W : array, shape (n_samples, n_components)

Transformed data

Examples using sklearn.decomposition.NMF

• Selecting dimensionality reduction with Pipeline and GridSearchCV

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

• Faces dataset decompositions

5.8.10 sklearn.decomposition.PCA

class sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False,
svd_solver=’auto’, tol=0.0, iterated_power=’auto’, ran-
dom_state=None)

Principal component analysis (PCA)

Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimen-
sional space.

It uses the LAPACK implementation of the full SVD or a randomized truncated SVD by the method of Halko
et al. 2009, depending on the shape of the input data and the number of components to extract.

It can also use the scipy.sparse.linalg ARPACK implementation of the truncated SVD.

Notice that this class does not support sparse input. See TruncatedSVD for an alternative with sparse data.

Read more in the User Guide.

Parameters n_components : int, float, None or string

Number of components to keep. if n_components is not set all components are kept:
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n_components == min(n_samples, n_features)

if n_components == ‘mle’ and svd_solver == ‘full’, Minka’s MLE is used to guess the
dimension if 0 < n_components < 1 and svd_solver == ‘full’, select the number
of components such that the amount of variance that needs to be explained is greater than
the percentage specified by n_components n_components cannot be equal to n_features
for svd_solver == ‘arpack’.

copy : bool (default True)

If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield
the expected results, use fit_transform(X) instead.

whiten : bool, optional (default False)

When True (False by default) the components_ vectors are multiplied by the square root
of n_samples and then divided by the singular values to ensure uncorrelated outputs
with unit component-wise variances.

Whitening will remove some information from the transformed signal (the relative vari-
ance scales of the components) but can sometime improve the predictive accuracy of
the downstream estimators by making their data respect some hard-wired assumptions.

svd_solver : string {‘auto’, ‘full’, ‘arpack’, ‘randomized’}

auto : the solver is selected by a default policy based on X.shape and n_components:
if the input data is larger than 500x500 and the number of components to extract
is lower than 80% of the smallest dimension of the data, then the more efficient
‘randomized’ method is enabled. Otherwise the exact full SVD is computed and
optionally truncated afterwards.

full : run exact full SVD calling the standard LAPACK solver via scipy.linalg.svd and
select the components by postprocessing

arpack : run SVD truncated to n_components calling ARPACK solver via
scipy.sparse.linalg.svds. It requires strictly 0 < n_components < X.shape[1]

randomized : run randomized SVD by the method of Halko et al.

New in version 0.18.0.

tol : float >= 0, optional (default .0)

Tolerance for singular values computed by svd_solver == ‘arpack’.

New in version 0.18.0.

iterated_power : int >= 0, or ‘auto’, (default ‘auto’)

Number of iterations for the power method computed by svd_solver == ‘randomized’.

New in version 0.18.0.

random_state : int, RandomState instance or None, optional (default None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random. Used when svd_solver
== ‘arpack’ or ‘randomized’.

New in version 0.18.0.

Attributes components_ : array, shape (n_components, n_features)
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Principal axes in feature space, representing the directions of maximum variance in the
data. The components are sorted by explained_variance_.

explained_variance_ : array, shape (n_components,)

The amount of variance explained by each of the selected components.

Equal to n_components largest eigenvalues of the covariance matrix of X.

New in version 0.18.

explained_variance_ratio_ : array, shape (n_components,)

Percentage of variance explained by each of the selected components.

If n_components is not set then all components are stored and the sum of explained
variances is equal to 1.0.

singular_values_ : array, shape (n_components,)

The singular values corresponding to each of the selected components. The singular val-
ues are equal to the 2-norms of the n_components variables in the lower-dimensional
space.

mean_ : array, shape (n_features,)

Per-feature empirical mean, estimated from the training set.

Equal to X.mean(axis=0).

n_components_ : int

The estimated number of components. When n_components is set to ‘mle’ or a num-
ber between 0 and 1 (with svd_solver == ‘full’) this number is estimated from input
data. Otherwise it equals the parameter n_components, or n_features if n_components
is None.

noise_variance_ : float

The estimated noise covariance following the Probabilistic PCA model from Tipping
and Bishop 1999. See “Pattern Recognition and Machine Learning” by C. Bishop,
12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf. It is required to
computed the estimated data covariance and score samples.

Equal to the average of (min(n_features, n_samples) - n_components) smallest eigen-
values of the covariance matrix of X.

See also:

KernelPCA, SparsePCA, TruncatedSVD, IncrementalPCA

References

For n_components == ‘mle’, this class uses the method of Thomas P. Minka: Automatic Choice of Dimension-
ality for PCA. NIPS 2000: 598-604

Implements the probabilistic PCA model from: M. Tipping and C. Bishop, Probabilistic Principal Compo-
nent Analysis, Journal of the Royal Statistical Society, Series B, 61, Part 3, pp. 611-622 via the score and
score_samples methods. See http://www.miketipping.com/papers/met-mppca.pdf

For svd_solver == ‘arpack’, refer to scipy.sparse.linalg.svds.
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For svd_solver == ‘randomized’, see: Finding structure with randomness: Stochastic algorithms for construct-
ing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) A randomized algorithm for the decom-
position of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert

Examples

>>> import numpy as np
>>> from sklearn.decomposition import PCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = PCA(n_components=2)
>>> pca.fit(X)
PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,
svd_solver='auto', tol=0.0, whiten=False)

>>> print(pca.explained_variance_ratio_)
[ 0.99244... 0.00755...]
>>> print(pca.singular_values_)
[ 6.30061... 0.54980...]

>>> pca = PCA(n_components=2, svd_solver='full')
>>> pca.fit(X)
PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,
svd_solver='full', tol=0.0, whiten=False)

>>> print(pca.explained_variance_ratio_)
[ 0.99244... 0.00755...]
>>> print(pca.singular_values_)
[ 6.30061... 0.54980...]

>>> pca = PCA(n_components=1, svd_solver='arpack')
>>> pca.fit(X)
PCA(copy=True, iterated_power='auto', n_components=1, random_state=None,
svd_solver='arpack', tol=0.0, whiten=False)

>>> print(pca.explained_variance_ratio_)
[ 0.99244...]
>>> print(pca.singular_values_)
[ 6.30061...]

Methods

fit(X[, y]) Fit the model with X.
fit_transform(X[, y]) Fit the model with X and apply the dimensionality re-

duction on X.
get_covariance() Compute data covariance with the generative model.
get_params([deep]) Get parameters for this estimator.
get_precision() Compute data precision matrix with the generative

model.
inverse_transform(X) Transform data back to its original space.
score(X[, y]) Return the average log-likelihood of all samples.
score_samples(X) Return the log-likelihood of each sample.
set_params(**params) Set the parameters of this estimator.
transform(X) Apply dimensionality reduction to X.
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__init__(n_components=None, copy=True, whiten=False, svd_solver=’auto’, tol=0.0, iter-
ated_power=’auto’, random_state=None)

fit(X, y=None)
Fit the model with X.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples in the number of samples and n_features is the number
of features.

y : Ignored.

Returns self : object

Returns the instance itself.

fit_transform(X, y=None)
Fit the model with X and apply the dimensionality reduction on X.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : Ignored.

Returns X_new : array-like, shape (n_samples, n_components)

get_covariance()
Compute data covariance with the generative model.

cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)
where S**2 contains the explained variances, and sigma2 contains the noise variances.

Returns cov : array, shape=(n_features, n_features)

Estimated covariance of data.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_precision()
Compute data precision matrix with the generative model.

Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency.

Returns precision : array, shape=(n_features, n_features)

Estimated precision of data.

inverse_transform(X)
Transform data back to its original space.

In other words, return an input X_original whose transform would be X.

Parameters X : array-like, shape (n_samples, n_components)
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New data, where n_samples is the number of samples and n_components is the number
of components.

Returns X_original array-like, shape (n_samples, n_features) :

Notes

If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes re-
versing whitening.

score(X, y=None)
Return the average log-likelihood of all samples.

See. “Pattern Recognition and Machine Learning” by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.
com/papers/met-mppca.pdf

Parameters X : array, shape(n_samples, n_features)

The data.

y : Ignored.

Returns ll : float

Average log-likelihood of the samples under the current model

score_samples(X)
Return the log-likelihood of each sample.

See. “Pattern Recognition and Machine Learning” by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.
com/papers/met-mppca.pdf

Parameters X : array, shape(n_samples, n_features)

The data.

Returns ll : array, shape (n_samples,)

Log-likelihood of each sample under the current model

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Apply dimensionality reduction to X.

X is projected on the first principal components previously extracted from a training set.

Parameters X : array-like, shape (n_samples, n_features)

New data, where n_samples is the number of samples and n_features is the number of
features.

Returns X_new : array-like, shape (n_samples, n_components)
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Examples

>>> import numpy as np
>>> from sklearn.decomposition import IncrementalPCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> ipca = IncrementalPCA(n_components=2, batch_size=3)
>>> ipca.fit(X)
IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False)
>>> ipca.transform(X)

Examples using sklearn.decomposition.PCA

• Selecting dimensionality reduction with Pipeline and GridSearchCV

• Pipelining: chaining a PCA and a logistic regression

• Concatenating multiple feature extraction methods

• Explicit feature map approximation for RBF kernels

• Multilabel classification

• Faces recognition example using eigenfaces and SVMs

• A demo of K-Means clustering on the handwritten digits data

• The Iris Dataset

• Faces dataset decompositions

• Blind source separation using FastICA

• FastICA on 2D point clouds

• Incremental PCA

• Kernel PCA

• Principal components analysis (PCA)

• PCA example with Iris Data-set

• Model selection with Probabilistic PCA and Factor Analysis (FA)

• Comparison of LDA and PCA 2D projection of Iris dataset

• Multi-dimensional scaling

• Kernel Density Estimation

• Using FunctionTransformer to select columns

• Importance of Feature Scaling

5.8.11 sklearn.decomposition.SparsePCA

class sklearn.decomposition.SparsePCA(n_components=None, alpha=1, ridge_alpha=0.01,
max_iter=1000, tol=1e-08, method=’lars’, n_jobs=1,
U_init=None, V_init=None, verbose=False, ran-
dom_state=None)

Sparse Principal Components Analysis (SparsePCA)
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Finds the set of sparse components that can optimally reconstruct the data. The amount of sparseness is control-
lable by the coefficient of the L1 penalty, given by the parameter alpha.

Read more in the User Guide.

Parameters n_components : int,

Number of sparse atoms to extract.

alpha : float,

Sparsity controlling parameter. Higher values lead to sparser components.

ridge_alpha : float,

Amount of ridge shrinkage to apply in order to improve conditioning when calling the
transform method.

max_iter : int,

Maximum number of iterations to perform.

tol : float,

Tolerance for the stopping condition.

method : {‘lars’, ‘cd’}

lars: uses the least angle regression method to solve the lasso problem (lin-
ear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso so-
lution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

n_jobs : int,

Number of parallel jobs to run.

U_init : array of shape (n_samples, n_components),

Initial values for the loadings for warm restart scenarios.

V_init : array of shape (n_components, n_features),

Initial values for the components for warm restart scenarios.

verbose : int

Controls the verbosity; the higher, the more messages. Defaults to 0.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes components_ : array, [n_components, n_features]

Sparse components extracted from the data.

error_ : array

Vector of errors at each iteration.

n_iter_ : int

Number of iterations run.

See also:

PCA, MiniBatchSparsePCA, DictionaryLearning
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Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, ridge_alpha]) Least Squares projection of the data onto the sparse

components.

__init__(n_components=None, alpha=1, ridge_alpha=0.01, max_iter=1000, tol=1e-08,
method=’lars’, n_jobs=1, U_init=None, V_init=None, verbose=False, ran-
dom_state=None)

fit(X, y=None)
Fit the model from data in X.

Parameters X : array-like, shape (n_samples, n_features)

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : Ignored.

Returns self : object

Returns the instance itself.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :
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transform(X, ridge_alpha=’deprecated’)
Least Squares projection of the data onto the sparse components.

To avoid instability issues in case the system is under-determined, regularization can be applied (Ridge
regression) via the ridge_alpha parameter.

Note that Sparse PCA components orthogonality is not enforced as in PCA hence one cannot use a simple
linear projection.

Parameters X : array of shape (n_samples, n_features)

Test data to be transformed, must have the same number of features as the data used to
train the model.

ridge_alpha : float, default: 0.01

Amount of ridge shrinkage to apply in order to improve conditioning.

Deprecated since version 0.19: This parameter will be removed in 0.21. Specify
ridge_alpha in the SparsePCA constructor.

Returns X_new array, shape (n_samples, n_components) :

Transformed data.

5.8.12 sklearn.decomposition.SparseCoder

class sklearn.decomposition.SparseCoder(dictionary, transform_algorithm=’omp’,
transform_n_nonzero_coefs=None, trans-
form_alpha=None, split_sign=False, n_jobs=1)

Sparse coding

Finds a sparse representation of data against a fixed, precomputed dictionary.

Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array code such
that:

X ~= code * dictionary

Read more in the User Guide.

Parameters dictionary : array, [n_components, n_features]

The dictionary atoms used for sparse coding. Lines are assumed to be normalized to
unit norm.

transform_algorithm : {‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}

Algorithm used to transform the data: lars: uses the least angle regression method (lin-
ear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses
the coordinate descent method to compute the Lasso solution (linear_model.Lasso).
lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal
matching pursuit to estimate the sparse solution threshold: squashes to zero all coeffi-
cients less than alpha from the projection dictionary * X'

transform_n_nonzero_coefs : int, 0.1 * n_features by default

Number of nonzero coefficients to target in each column of the solution. This is only
used by algorithm=’lars’ and algorithm=’omp’ and is overridden by alpha in the omp
case.

transform_alpha : float, 1. by default

5.8. sklearn.decomposition: Matrix Decomposition 1371



scikit-learn user guide, Release 0.19.1

If algorithm=’lasso_lars’ or algorithm=’lasso_cd’, alpha is the penalty applied to the
L1 norm. If algorithm=’threshold’, alpha is the absolute value of the threshold below
which coefficients will be squashed to zero. If algorithm=’omp’, alpha is the toler-
ance parameter: the value of the reconstruction error targeted. In this case, it overrides
n_nonzero_coefs.

split_sign : bool, False by default

Whether to split the sparse feature vector into the concatenation of its negative part and
its positive part. This can improve the performance of downstream classifiers.

n_jobs : int,

number of parallel jobs to run

Attributes components_ : array, [n_components, n_features]

The unchanged dictionary atoms

See also:

DictionaryLearning, MiniBatchDictionaryLearning, SparsePCA,
MiniBatchSparsePCA, sparse_encode

Methods

fit(X[, y]) Do nothing and return the estimator unchanged
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Encode the data as a sparse combination of the dictio-

nary atoms.

__init__(dictionary, transform_algorithm=’omp’, transform_n_nonzero_coefs=None, trans-
form_alpha=None, split_sign=False, n_jobs=1)

fit(X, y=None)
Do nothing and return the estimator unchanged

This method is just there to implement the usual API and hence work in pipelines.

Parameters X : Ignored.

y : Ignored.

Returns self : object

Returns the object itself

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.
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Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Encode the data as a sparse combination of the dictionary atoms.

Coding method is determined by the object parameter transform_algorithm.

Parameters X : array of shape (n_samples, n_features)

Test data to be transformed, must have the same number of features as the data used to
train the model.

Returns X_new : array, shape (n_samples, n_components)

Transformed data

Examples using sklearn.decomposition.SparseCoder

• Sparse coding with a precomputed dictionary

5.8.13 sklearn.decomposition.TruncatedSVD

class sklearn.decomposition.TruncatedSVD(n_components=2, algorithm=’randomized’,
n_iter=5, random_state=None, tol=0.0)

Dimensionality reduction using truncated SVD (aka LSA).

This transformer performs linear dimensionality reduction by means of truncated singular value decomposition
(SVD). Contrary to PCA, this estimator does not center the data before computing the singular value decompo-
sition. This means it can work with scipy.sparse matrices efficiently.

In particular, truncated SVD works on term count/tf-idf matrices as returned by the vectorizers in
sklearn.feature_extraction.text. In that context, it is known as latent semantic analysis (LSA).

This estimator supports two algorithms: a fast randomized SVD solver, and a “naive” algorithm that uses
ARPACK as an eigensolver on (X * X.T) or (X.T * X), whichever is more efficient.

Read more in the User Guide.

Parameters n_components : int, default = 2
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Desired dimensionality of output data. Must be strictly less than the number of features.
The default value is useful for visualisation. For LSA, a value of 100 is recommended.

algorithm : string, default = “randomized”

SVD solver to use. Either “arpack” for the ARPACK wrapper in SciPy
(scipy.sparse.linalg.svds), or “randomized” for the randomized algorithm due to Halko
(2009).

n_iter : int, optional (default 5)

Number of iterations for randomized SVD solver. Not used by ARPACK. The default is
larger than the default in randomized_svd to handle sparse matrices that may have large
slowly decaying spectrum.

random_state : int, RandomState instance or None, optional, default = None

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

tol : float, optional

Tolerance for ARPACK. 0 means machine precision. Ignored by randomized SVD
solver.

Attributes components_ : array, shape (n_components, n_features)

explained_variance_ : array, shape (n_components,)

The variance of the training samples transformed by a projection to each component.

explained_variance_ratio_ : array, shape (n_components,)

Percentage of variance explained by each of the selected components.

singular_values_ : array, shape (n_components,)

The singular values corresponding to each of the selected components. The singular val-
ues are equal to the 2-norms of the n_components variables in the lower-dimensional
space.

See also:

PCA, RandomizedPCA

Notes

SVD suffers from a problem called “sign indeterminancy”, which means the sign of the components_ and
the output from transform depend on the algorithm and random state. To work around this, fit instances of this
class to data once, then keep the instance around to do transformations.

References

Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions
Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061
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Examples

>>> from sklearn.decomposition import TruncatedSVD
>>> from sklearn.random_projection import sparse_random_matrix
>>> X = sparse_random_matrix(100, 100, density=0.01, random_state=42)
>>> svd = TruncatedSVD(n_components=5, n_iter=7, random_state=42)
>>> svd.fit(X)
TruncatedSVD(algorithm='randomized', n_components=5, n_iter=7,

random_state=42, tol=0.0)
>>> print(svd.explained_variance_ratio_)
[ 0.0606... 0.0584... 0.0497... 0.0434... 0.0372...]
>>> print(svd.explained_variance_ratio_.sum())
0.249...
>>> print(svd.singular_values_)
[ 2.5841... 2.5245... 2.3201... 2.1753... 2.0443...]

Methods

fit(X[, y]) Fit LSI model on training data X.
fit_transform(X[, y]) Fit LSI model to X and perform dimensionality reduc-

tion on X.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Transform X back to its original space.
set_params(**params) Set the parameters of this estimator.
transform(X) Perform dimensionality reduction on X.

__init__(n_components=2, algorithm=’randomized’, n_iter=5, random_state=None, tol=0.0)

fit(X, y=None)
Fit LSI model on training data X.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data.

y : Ignored.

Returns self : object

Returns the transformer object.

fit_transform(X, y=None)
Fit LSI model to X and perform dimensionality reduction on X.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data.

y : Ignored.

Returns X_new : array, shape (n_samples, n_components)

Reduced version of X. This will always be a dense array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional
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If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X)
Transform X back to its original space.

Returns an array X_original whose transform would be X.

Parameters X : array-like, shape (n_samples, n_components)

New data.

Returns X_original : array, shape (n_samples, n_features)

Note that this is always a dense array.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Perform dimensionality reduction on X.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

New data.

Returns X_new : array, shape (n_samples, n_components)

Reduced version of X. This will always be a dense array.

Examples using sklearn.decomposition.TruncatedSVD

• Feature Union with Heterogeneous Data Sources

• Hashing feature transformation using Totally Random Trees

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

• Clustering text documents using k-means

decomposition.dict_learning(X,
n_components, . . . )

Solves a dictionary learning matrix factorization problem.

decomposition.dict_learning_online(X[,
. . . ])

Solves a dictionary learning matrix factorization problem
online.

decomposition.fastica(X[, n_components, . . . ]) Perform Fast Independent Component Analysis.
decomposition.sparse_encode(X, dictionary[,
. . . ])

Sparse coding
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5.8.14 sklearn.decomposition.dict_learning

sklearn.decomposition.dict_learning(X, n_components, alpha, max_iter=100, tol=1e-
08, method=’lars’, n_jobs=1, dict_init=None,
code_init=None, callback=None, verbose=False,
random_state=None, return_n_iter=False)

Solves a dictionary learning matrix factorization problem.

Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:

(U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1
(U,V)

with || V_k ||_2 = 1 for all 0 <= k < n_components

where V is the dictionary and U is the sparse code.

Read more in the User Guide.

Parameters X : array of shape (n_samples, n_features)

Data matrix.

n_components : int,

Number of dictionary atoms to extract.

alpha : int,

Sparsity controlling parameter.

max_iter : int,

Maximum number of iterations to perform.

tol : float,

Tolerance for the stopping condition.

method : {‘lars’, ‘cd’}

lars: uses the least angle regression method to solve the lasso problem (lin-
ear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso so-
lution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

n_jobs : int,

Number of parallel jobs to run, or -1 to autodetect.

dict_init : array of shape (n_components, n_features),

Initial value for the dictionary for warm restart scenarios.

code_init : array of shape (n_samples, n_components),

Initial value for the sparse code for warm restart scenarios.

callback : callable or None, optional (default: None)

Callable that gets invoked every five iterations

verbose : bool, optional (default: False)

To control the verbosity of the procedure.

random_state : int, RandomState instance or None, optional (default=None)
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If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

return_n_iter : bool

Whether or not to return the number of iterations.

Returns code : array of shape (n_samples, n_components)

The sparse code factor in the matrix factorization.

dictionary : array of shape (n_components, n_features),

The dictionary factor in the matrix factorization.

errors : array

Vector of errors at each iteration.

n_iter : int

Number of iterations run. Returned only if return_n_iter is set to True.

See also:

dict_learning_online, DictionaryLearning, MiniBatchDictionaryLearning,
SparsePCA, MiniBatchSparsePCA

5.8.15 sklearn.decomposition.dict_learning_online

sklearn.decomposition.dict_learning_online(X, n_components=2, alpha=1, n_iter=100,
return_code=True, dict_init=None, call-
back=None, batch_size=3, verbose=False,
shuffle=True, n_jobs=1, method=’lars’,
iter_offset=0, random_state=None, re-
turn_inner_stats=False, inner_stats=None,
return_n_iter=False)

Solves a dictionary learning matrix factorization problem online.

Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:

(U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1
(U,V)
with || V_k ||_2 = 1 for all 0 <= k < n_components

where V is the dictionary and U is the sparse code. This is accomplished by repeatedly iterating over mini-
batches by slicing the input data.

Read more in the User Guide.

Parameters X : array of shape (n_samples, n_features)

Data matrix.

n_components : int,

Number of dictionary atoms to extract.

alpha : float,

Sparsity controlling parameter.

n_iter : int,
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Number of iterations to perform.

return_code : boolean,

Whether to also return the code U or just the dictionary V.

dict_init : array of shape (n_components, n_features),

Initial value for the dictionary for warm restart scenarios.

callback : callable or None, optional (default: None)

callable that gets invoked every five iterations

batch_size : int,

The number of samples to take in each batch.

verbose : bool, optional (default: False)

To control the verbosity of the procedure.

shuffle : boolean,

Whether to shuffle the data before splitting it in batches.

n_jobs : int,

Number of parallel jobs to run, or -1 to autodetect.

method : {‘lars’, ‘cd’}

lars: uses the least angle regression method to solve the lasso problem (lin-
ear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso so-
lution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

iter_offset : int, default 0

Number of previous iterations completed on the dictionary used for initialization.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

return_inner_stats : boolean, optional

Return the inner statistics A (dictionary covariance) and B (data approximation). Useful
to restart the algorithm in an online setting. If return_inner_stats is True, return_code is
ignored

inner_stats : tuple of (A, B) ndarrays

Inner sufficient statistics that are kept by the algorithm. Passing them at initialization is
useful in online settings, to avoid loosing the history of the evolution. A (n_components,
n_components) is the dictionary covariance matrix. B (n_features, n_components) is the
data approximation matrix

return_n_iter : bool

Whether or not to return the number of iterations.

Returns code : array of shape (n_samples, n_components),

the sparse code (only returned if return_code=True)

dictionary : array of shape (n_components, n_features),
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the solutions to the dictionary learning problem

n_iter : int

Number of iterations run. Returned only if return_n_iter is set to True.

See also:

dict_learning, DictionaryLearning, MiniBatchDictionaryLearning, SparsePCA,
MiniBatchSparsePCA

5.8.16 sklearn.decomposition.fastica

sklearn.decomposition.fastica(X, n_components=None, algorithm=’parallel’, whiten=True,
fun=’logcosh’, fun_args=None, max_iter=200, tol=0.0001,
w_init=None, random_state=None, return_X_mean=False,
compute_sources=True, return_n_iter=False)

Perform Fast Independent Component Analysis.

Read more in the User Guide.

Parameters X : array-like, shape (n_samples, n_features)

Training vector, where n_samples is the number of samples and n_features is the number
of features.

n_components : int, optional

Number of components to extract. If None no dimension reduction is performed.

algorithm : {‘parallel’, ‘deflation’}, optional

Apply a parallel or deflational FASTICA algorithm.

whiten : boolean, optional

If True perform an initial whitening of the data. If False, the data is assumed to have
already been preprocessed: it should be centered, normed and white. Otherwise you
will get incorrect results. In this case the parameter n_components will be ignored.

fun : string or function, optional. Default: ‘logcosh’

The functional form of the G function used in the approximation to neg-entropy. Could
be either ‘logcosh’, ‘exp’, or ‘cube’. You can also provide your own function. It should
return a tuple containing the value of the function, and of its derivative, in the point.
Example:

def my_g(x): return x ** 3, 3 * x ** 2

fun_args : dictionary, optional

Arguments to send to the functional form. If empty or None and if fun=’logcosh’,
fun_args will take value {‘alpha’ : 1.0}

max_iter : int, optional

Maximum number of iterations to perform.

tol : float, optional

A positive scalar giving the tolerance at which the un-mixing matrix is considered to
have converged.

w_init : (n_components, n_components) array, optional
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Initial un-mixing array of dimension (n.comp,n.comp). If None (default) then an array
of normal r.v.’s is used.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

return_X_mean : bool, optional

If True, X_mean is returned too.

compute_sources : bool, optional

If False, sources are not computed, but only the rotation matrix. This can save memory
when working with big data. Defaults to True.

return_n_iter : bool, optional

Whether or not to return the number of iterations.

Returns K : array, shape (n_components, n_features) | None.

If whiten is ‘True’, K is the pre-whitening matrix that projects data onto the first
n_components principal components. If whiten is ‘False’, K is ‘None’.

W : array, shape (n_components, n_components)

Estimated un-mixing matrix. The mixing matrix can be obtained by:

w = np.dot(W, K.T)
A = w.T * (w * w.T).I

S : array, shape (n_samples, n_components) | None

Estimated source matrix

X_mean : array, shape (n_features, )

The mean over features. Returned only if return_X_mean is True.

n_iter : int

If the algorithm is “deflation”, n_iter is the maximum number of iterations run across
all components. Else they are just the number of iterations taken to converge. This is
returned only when return_n_iter is set to True.

Notes

The data matrix X is considered to be a linear combination of non-Gaussian (independent) components i.e. X
= AS where columns of S contain the independent components and A is a linear mixing matrix. In short ICA
attempts to un-mix’ the data by estimating an un-mixing matrix W where ‘‘S = W K X.‘

This implementation was originally made for data of shape [n_features, n_samples]. Now the input is transposed
before the algorithm is applied. This makes it slightly faster for Fortran-ordered input.

Implemented using FastICA: A. Hyvarinen and E. Oja, Independent Component Analysis: Algorithms and
Applications, Neural Networks, 13(4-5), 2000, pp. 411-430
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5.8.17 sklearn.decomposition.sparse_encode

sklearn.decomposition.sparse_encode(X, dictionary, gram=None, cov=None, algo-
rithm=’lasso_lars’, n_nonzero_coefs=None, al-
pha=None, copy_cov=True, init=None, max_iter=1000,
n_jobs=1, check_input=True, verbose=0)

Sparse coding

Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array code such
that:

X ~= code * dictionary

Read more in the User Guide.

Parameters X : array of shape (n_samples, n_features)

Data matrix

dictionary : array of shape (n_components, n_features)

The dictionary matrix against which to solve the sparse coding of the data. Some of the
algorithms assume normalized rows for meaningful output.

gram : array, shape=(n_components, n_components)

Precomputed Gram matrix, dictionary * dictionary’

cov : array, shape=(n_components, n_samples)

Precomputed covariance, dictionary’ * X

algorithm : {‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}

lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses
Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to
compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the es-
timated components are sparse. omp: uses orthogonal matching pursuit to estimate
the sparse solution threshold: squashes to zero all coefficients less than alpha from the
projection dictionary * X’

n_nonzero_coefs : int, 0.1 * n_features by default

Number of nonzero coefficients to target in each column of the solution. This is only
used by algorithm=’lars’ and algorithm=’omp’ and is overridden by alpha in the omp
case.

alpha : float, 1. by default

If algorithm=’lasso_lars’ or algorithm=’lasso_cd’, alpha is the penalty applied to the
L1 norm. If algorithm=’threshold’, alpha is the absolute value of the threshold below
which coefficients will be squashed to zero. If algorithm=’omp’, alpha is the toler-
ance parameter: the value of the reconstruction error targeted. In this case, it overrides
n_nonzero_coefs.

copy_cov : boolean, optional

Whether to copy the precomputed covariance matrix; if False, it may be overwritten.

init : array of shape (n_samples, n_components)

Initialization value of the sparse codes. Only used if algorithm=’lasso_cd’.

max_iter : int, 1000 by default
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Maximum number of iterations to perform if algorithm=’lasso_cd’.

n_jobs : int, optional

Number of parallel jobs to run.

check_input : boolean, optional

If False, the input arrays X and dictionary will not be checked.

verbose : int, optional

Controls the verbosity; the higher, the more messages. Defaults to 0.

Returns code : array of shape (n_samples, n_components)

The sparse codes

See also:

sklearn.linear_model.lars_path, sklearn.linear_model.orthogonal_mp, sklearn.
linear_model.Lasso, SparseCoder

5.9 sklearn.discriminant_analysis: Discriminant Analysis

Linear Discriminant Analysis and Quadratic Discriminant Analysis

User guide: See the Linear and Quadratic Discriminant Analysis section for further details.

discriminant_analysis.
LinearDiscriminantAnalysis([. . . ])

Linear Discriminant Analysis

discriminant_analysis.
QuadraticDiscriminantAnalysis([. . . ])

Quadratic Discriminant Analysis

5.9.1 sklearn.discriminant_analysis.LinearDiscriminantAnalysis

class sklearn.discriminant_analysis.LinearDiscriminantAnalysis(solver=’svd’,
shrinkage=None,
priors=None,
n_components=None,
store_covariance=False,
tol=0.0001)

Linear Discriminant Analysis

A classifier with a linear decision boundary, generated by fitting class conditional densities to the data and using
Bayes’ rule.

The model fits a Gaussian density to each class, assuming that all classes share the same covariance matrix.

The fitted model can also be used to reduce the dimensionality of the input by projecting it to the most discrim-
inative directions.

New in version 0.17: LinearDiscriminantAnalysis.

Read more in the User Guide.

Parameters solver : string, optional

Solver to use, possible values:
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• ‘svd’: Singular value decomposition (default). Does not compute the covariance
matrix, therefore this solver is recommended for data with a large number of fea-
tures.

• ‘lsqr’: Least squares solution, can be combined with shrinkage.

• ‘eigen’: Eigenvalue decomposition, can be combined with shrinkage.

shrinkage : string or float, optional

Shrinkage parameter, possible values:

• None: no shrinkage (default).

• ‘auto’: automatic shrinkage using the Ledoit-Wolf lemma.

• float between 0 and 1: fixed shrinkage parameter.

Note that shrinkage works only with ‘lsqr’ and ‘eigen’ solvers.

priors : array, optional, shape (n_classes,)

Class priors.

n_components : int, optional

Number of components (< n_classes - 1) for dimensionality reduction.

store_covariance : bool, optional

Additionally compute class covariance matrix (default False), used only in ‘svd’ solver.

New in version 0.17.

tol : float, optional, (default 1.0e-4)

Threshold used for rank estimation in SVD solver.

New in version 0.17.

Attributes coef_ : array, shape (n_features,) or (n_classes, n_features)

Weight vector(s).

intercept_ : array, shape (n_features,)

Intercept term.

covariance_ : array-like, shape (n_features, n_features)

Covariance matrix (shared by all classes).

explained_variance_ratio_ : array, shape (n_components,)

Percentage of variance explained by each of the selected components. If
n_components is not set then all components are stored and the sum of explained
variances is equal to 1.0. Only available when eigen or svd solver is used.

means_ : array-like, shape (n_classes, n_features)

Class means.

priors_ : array-like, shape (n_classes,)

Class priors (sum to 1).

scalings_ : array-like, shape (rank, n_classes - 1)

Scaling of the features in the space spanned by the class centroids.
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xbar_ : array-like, shape (n_features,)

Overall mean.

classes_ : array-like, shape (n_classes,)

Unique class labels.

See also:

sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis Quadratic Discrimi-
nant Analysis

Notes

The default solver is ‘svd’. It can perform both classification and transform, and it does not rely on the calcu-
lation of the covariance matrix. This can be an advantage in situations where the number of features is large.
However, the ‘svd’ solver cannot be used with shrinkage.

The ‘lsqr’ solver is an efficient algorithm that only works for classification. It supports shrinkage.

The ‘eigen’ solver is based on the optimization of the between class scatter to within class scatter ratio. It can
be used for both classification and transform, and it supports shrinkage. However, the ‘eigen’ solver needs to
compute the covariance matrix, so it might not be suitable for situations with a high number of features.

Examples

>>> import numpy as np
>>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = LinearDiscriminantAnalysis()
>>> clf.fit(X, y)
LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None,

solver='svd', store_covariance=False, tol=0.0001)
>>> print(clf.predict([[-0.8, -1]]))
[1]

Methods

decision_function(X) Predict confidence scores for samples.
fit(X, y) Fit LinearDiscriminantAnalysis model according to the

given training data and parameters.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
predict_log_proba(X) Estimate log probability.
predict_proba(X) Estimate probability.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
transform(X) Project data to maximize class separation.
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__init__(solver=’svd’, shrinkage=None, priors=None, n_components=None,
store_covariance=False, tol=0.0001)

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :

Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

fit(X, y)

Fit LinearDiscriminantAnalysis model according to the given training data and parameters.

Changed in version 0.19: store_covariance has been moved to main constructor.

Changed in version 0.19: tol has been moved to main constructor.

Parameters X : array-like, shape (n_samples, n_features)

Training data.

y : array, shape (n_samples,)

Target values.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.
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Returns C : array, shape = [n_samples]

Predicted class label per sample.

predict_log_proba(X)
Estimate log probability.

Parameters X : array-like, shape (n_samples, n_features)

Input data.

Returns C : array, shape (n_samples, n_classes)

Estimated log probabilities.

predict_proba(X)
Estimate probability.

Parameters X : array-like, shape (n_samples, n_features)

Input data.

Returns C : array, shape (n_samples, n_classes)

Estimated probabilities.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Project data to maximize class separation.

Parameters X : array-like, shape (n_samples, n_features)

Input data.

Returns X_new : array, shape (n_samples, n_components)

Transformed data.
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Examples using sklearn.discriminant_analysis.LinearDiscriminantAnalysis

• Normal and Shrinkage Linear Discriminant Analysis for classification

• Linear and Quadratic Discriminant Analysis with covariance ellipsoid

• Comparison of LDA and PCA 2D projection of Iris dataset

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

5.9.2 sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis

class sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis(priors=None,
reg_param=0.0,
store_covariance=False,
tol=0.0001,
store_covariances=None)

Quadratic Discriminant Analysis

A classifier with a quadratic decision boundary, generated by fitting class conditional densities to the data and
using Bayes’ rule.

The model fits a Gaussian density to each class.

New in version 0.17: QuadraticDiscriminantAnalysis

Read more in the User Guide.

Parameters priors : array, optional, shape = [n_classes]

Priors on classes

reg_param : float, optional

Regularizes the covariance estimate as (1-reg_param)*Sigma +
reg_param*np.eye(n_features)

store_covariance : boolean

If True the covariance matrices are computed and stored in the self.covariance_ at-
tribute.

New in version 0.17.

tol : float, optional, default 1.0e-4

Threshold used for rank estimation.

New in version 0.17.

Attributes covariance_ : list of array-like, shape = [n_features, n_features]

Covariance matrices of each class.

means_ : array-like, shape = [n_classes, n_features]

Class means.

priors_ : array-like, shape = [n_classes]

Class priors (sum to 1).

rotations_ : list of arrays
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For each class k an array of shape [n_features, n_k], with n_k =
min(n_features, number of elements in class k) It is the rota-
tion of the Gaussian distribution, i.e. its principal axis.

scalings_ : list of arrays

For each class k an array of shape [n_k]. It contains the scaling of the Gaussian distri-
butions along its principal axes, i.e. the variance in the rotated coordinate system.

See also:

sklearn.discriminant_analysis.LinearDiscriminantAnalysis Linear Discriminant
Analysis

Examples

>>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = QuadraticDiscriminantAnalysis()
>>> clf.fit(X, y)
...
QuadraticDiscriminantAnalysis(priors=None, reg_param=0.0,

store_covariance=False,
store_covariances=None, tol=0.0001)

>>> print(clf.predict([[-0.8, -1]]))
[1]

Methods

decision_function(X) Apply decision function to an array of samples.
fit(X, y) Fit the model according to the given training data and

parameters.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on an array of test vectors X.
predict_log_proba(X) Return posterior probabilities of classification.
predict_proba(X) Return posterior probabilities of classification.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(priors=None, reg_param=0.0, store_covariance=False, tol=0.0001,
store_covariances=None)

covariances_
DEPRECATED: Attribute covariances_ was deprecated in version 0.19 and will be removed in 0.21. Use
covariance_ instead

decision_function(X)
Apply decision function to an array of samples.

Parameters X : array-like, shape = [n_samples, n_features]
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Array of samples (test vectors).

Returns C : array, shape = [n_samples, n_classes] or [n_samples,]

Decision function values related to each class, per sample. In the two-class case, the
shape is [n_samples,], giving the log likelihood ratio of the positive class.

fit(X, y)
Fit the model according to the given training data and parameters.

Changed in version 0.19: store_covariances has been moved to main constructor as
store_covariance

Changed in version 0.19: tol has been moved to main constructor.

Parameters X : array-like, shape = [n_samples, n_features]

Training vector, where n_samples is the number of samples and n_features is the number
of features.

y : array, shape = [n_samples]

Target values (integers)

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Perform classification on an array of test vectors X.

The predicted class C for each sample in X is returned.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]

predict_log_proba(X)
Return posterior probabilities of classification.

Parameters X : array-like, shape = [n_samples, n_features]

Array of samples/test vectors.

Returns C : array, shape = [n_samples, n_classes]

Posterior log-probabilities of classification per class.

predict_proba(X)
Return posterior probabilities of classification.

Parameters X : array-like, shape = [n_samples, n_features]

Array of samples/test vectors.

Returns C : array, shape = [n_samples, n_classes]

Posterior probabilities of classification per class.
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score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis

• Classifier comparison

• Linear and Quadratic Discriminant Analysis with covariance ellipsoid

5.10 sklearn.dummy: Dummy estimators

User guide: See the Model evaluation: quantifying the quality of predictions section for further details.

dummy.DummyClassifier([strategy, . . . ]) DummyClassifier is a classifier that makes predictions us-
ing simple rules.

dummy.DummyRegressor([strategy, constant, . . . ]) DummyRegressor is a regressor that makes predictions us-
ing simple rules.

5.10.1 sklearn.dummy.DummyClassifier

class sklearn.dummy.DummyClassifier(strategy=’stratified’, random_state=None, constant=None)
DummyClassifier is a classifier that makes predictions using simple rules.

This classifier is useful as a simple baseline to compare with other (real) classifiers. Do not use it for real
problems.

Read more in the User Guide.

Parameters strategy : str, default=”stratified”
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Strategy to use to generate predictions.

• “stratified”: generates predictions by respecting the training set’s class distribution.

• “most_frequent”: always predicts the most frequent label in the training set.

• “prior”: always predicts the class that maximizes the class prior (like
“most_frequent”) and predict_proba returns the class prior.

• “uniform”: generates predictions uniformly at random.

• “constant”: always predicts a constant label that is provided by the user. This is useful
for metrics that evaluate a non-majority class

New in version 0.17: Dummy Classifier now supports prior fitting strategy using
parameter prior.

random_state : int, RandomState instance or None, optional, default=None

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

constant : int or str or array of shape = [n_outputs]

The explicit constant as predicted by the “constant” strategy. This parameter is useful
only for the “constant” strategy.

Attributes classes_ : array or list of array of shape = [n_classes]

Class labels for each output.

n_classes_ : array or list of array of shape = [n_classes]

Number of label for each output.

class_prior_ : array or list of array of shape = [n_classes]

Probability of each class for each output.

n_outputs_ : int,

Number of outputs.

outputs_2d_ : bool,

True if the output at fit is 2d, else false.

sparse_output_ : bool,

True if the array returned from predict is to be in sparse CSC format. Is automatically
set to True if the input y is passed in sparse format.

Methods

fit(X, y[, sample_weight]) Fit the random classifier.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on test vectors X.
predict_log_proba(X) Return log probability estimates for the test vectors X.
predict_proba(X) Return probability estimates for the test vectors X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
Continued on next page
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Table 5.63 – continued from previous page
set_params(**params) Set the parameters of this estimator.

__init__(strategy=’stratified’, random_state=None, constant=None)

fit(X, y, sample_weight=None)
Fit the random classifier.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

Target values.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Perform classification on test vectors X.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Input vectors, where n_samples is the number of samples and n_features is the number
of features.

Returns y : array, shape = [n_samples] or [n_samples, n_outputs]

Predicted target values for X.

predict_log_proba(X)
Return log probability estimates for the test vectors X.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Input vectors, where n_samples is the number of samples and n_features is the number
of features.

Returns P : array-like or list of array-like of shape = [n_samples, n_classes]

Returns the log probability of the sample for each class in the model, where classes are
ordered arithmetically for each output.

predict_proba(X)
Return probability estimates for the test vectors X.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]
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Input vectors, where n_samples is the number of samples and n_features is the number
of features.

Returns P : array-like or list of array-lke of shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are
ordered arithmetically, for each output.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

5.10.2 sklearn.dummy.DummyRegressor

class sklearn.dummy.DummyRegressor(strategy=’mean’, constant=None, quantile=None)
DummyRegressor is a regressor that makes predictions using simple rules.

This regressor is useful as a simple baseline to compare with other (real) regressors. Do not use it for real
problems.

Read more in the User Guide.

Parameters strategy : str

Strategy to use to generate predictions.

• “mean”: always predicts the mean of the training set

• “median”: always predicts the median of the training set

• “quantile”: always predicts a specified quantile of the training set, provided with the
quantile parameter.

• “constant”: always predicts a constant value that is provided by the user.

constant : int or float or array of shape = [n_outputs]

The explicit constant as predicted by the “constant” strategy. This parameter is useful
only for the “constant” strategy.
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quantile : float in [0.0, 1.0]

The quantile to predict using the “quantile” strategy. A quantile of 0.5 corresponds to
the median, while 0.0 to the minimum and 1.0 to the maximum.

Attributes constant_ : float or array of shape [n_outputs]

Mean or median or quantile of the training targets or constant value given by the user.

n_outputs_ : int,

Number of outputs.

outputs_2d_ : bool,

True if the output at fit is 2d, else false.

Methods

fit(X, y[, sample_weight]) Fit the random regressor.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on test vectors X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(strategy=’mean’, constant=None, quantile=None)

fit(X, y, sample_weight=None)
Fit the random regressor.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

Target values.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Perform classification on test vectors X.
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Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Input vectors, where n_samples is the number of samples and n_features is the number
of features.

Returns y : array, shape = [n_samples] or [n_samples, n_outputs]

Predicted target values for X.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

5.11 sklearn.ensemble: Ensemble Methods

The sklearn.ensemble module includes ensemble-based methods for classification, regression and anomaly de-
tection.

User guide: See the Ensemble methods section for further details.

ensemble.AdaBoostClassifier([. . . ]) An AdaBoost classifier.
ensemble.AdaBoostRegressor([base_estimator,
. . . ])

An AdaBoost regressor.

ensemble.BaggingClassifier([base_estimator,
. . . ])

A Bagging classifier.

ensemble.BaggingRegressor([base_estimator,
. . . ])

A Bagging regressor.

ensemble.ExtraTreesClassifier([. . . ]) An extra-trees classifier.
Continued on next page
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Table 5.66 – continued from previous page
ensemble.ExtraTreesRegressor([n_estimators,
. . . ])

An extra-trees regressor.

ensemble.GradientBoostingClassifier([loss,
. . . ])

Gradient Boosting for classification.

ensemble.GradientBoostingRegressor([loss,
. . . ])

Gradient Boosting for regression.

ensemble.IsolationForest([n_estimators, . . . ]) Isolation Forest Algorithm
ensemble.RandomForestClassifier([. . . ]) A random forest classifier.
ensemble.RandomForestRegressor([. . . ]) A random forest regressor.
ensemble.RandomTreesEmbedding([. . . ]) An ensemble of totally random trees.
ensemble.VotingClassifier(estimators[, . . . ]) Soft Voting/Majority Rule classifier for unfitted estimators.

5.11.1 sklearn.ensemble.AdaBoostClassifier

class sklearn.ensemble.AdaBoostClassifier(base_estimator=None, n_estimators=50, learn-
ing_rate=1.0, algorithm=’SAMME.R’, ran-
dom_state=None)

An AdaBoost classifier.

An AdaBoost [1] classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then
fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances
are adjusted such that subsequent classifiers focus more on difficult cases.

This class implements the algorithm known as AdaBoost-SAMME [2].

Read more in the User Guide.

Parameters base_estimator : object, optional (default=DecisionTreeClassifier)

The base estimator from which the boosted ensemble is built. Support for sample
weighting is required, as well as proper classes_ and n_classes_ attributes.

n_estimators : integer, optional (default=50)

The maximum number of estimators at which boosting is terminated. In case of perfect
fit, the learning procedure is stopped early.

learning_rate : float, optional (default=1.)

Learning rate shrinks the contribution of each classifier by learning_rate. There
is a trade-off between learning_rate and n_estimators.

algorithm : {‘SAMME’, ‘SAMME.R’}, optional (default=’SAMME.R’)

If ‘SAMME.R’ then use the SAMME.R real boosting algorithm. base_estimator
must support calculation of class probabilities. If ‘SAMME’ then use the SAMME
discrete boosting algorithm. The SAMME.R algorithm typically converges faster than
SAMME, achieving a lower test error with fewer boosting iterations.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes estimators_ : list of classifiers

The collection of fitted sub-estimators.

classes_ : array of shape = [n_classes]
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The classes labels.

n_classes_ : int

The number of classes.

estimator_weights_ : array of floats

Weights for each estimator in the boosted ensemble.

estimator_errors_ : array of floats

Classification error for each estimator in the boosted ensemble.

feature_importances_ : array of shape = [n_features]

The feature importances if supported by the base_estimator.

See also:

AdaBoostRegressor, GradientBoostingClassifier, DecisionTreeClassifier

References

[R11], [R12]

Methods

decision_function(X) Compute the decision function of X.
fit(X, y[, sample_weight]) Build a boosted classifier from the training set (X, y).
get_params([deep]) Get parameters for this estimator.
predict(X) Predict classes for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
staged_decision_function(X) Compute decision function of X for each boosting itera-

tion.
staged_predict(X) Return staged predictions for X.
staged_predict_proba(X) Predict class probabilities for X.
staged_score(X, y[, sample_weight]) Return staged scores for X, y.

__init__(base_estimator=None, n_estimators=50, learning_rate=1.0, algorithm=’SAMME.R’, ran-
dom_state=None)

decision_function(X)
Compute the decision function of X.

Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

Returns score : array, shape = [n_samples, k]

The decision function of the input samples. The order of outputs is the same of that of
the classes_ attribute. Binary classification is a special cases with k == 1, otherwise
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k==n_classes. For binary classification, values closer to -1 or 1 mean more like the
first or second class in classes_, respectively.

feature_importances_

Return the feature importances (the higher, the more important the feature).

Returns feature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None)
Build a boosted classifier from the training set (X, y).

Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

y : array-like of shape = [n_samples]

The target values (class labels).

sample_weight : array-like of shape = [n_samples], optional

Sample weights. If None, the sample weights are initialized to 1 / n_samples.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict classes for X.

The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in
the ensemble.

Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

Returns y : array of shape = [n_samples]

The predicted classes.

predict_log_proba(X)
Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as the weighted mean predicted class
log-probabilities of the classifiers in the ensemble.

Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.
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Returns p : array of shape = [n_samples]

The class probabilities of the input samples. The order of outputs is the same of that of
the classes_ attribute.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample is computed as the weighted mean predicted class
probabilities of the classifiers in the ensemble.

Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

Returns p : array of shape = [n_samples]

The class probabilities of the input samples. The order of outputs is the same of that of
the classes_ attribute.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

staged_decision_function(X)
Compute decision function of X for each boosting iteration.

This method allows monitoring (i.e. determine error on testing set) after each boosting iteration.

Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

Returns score : generator of array, shape = [n_samples, k]

The decision function of the input samples. The order of outputs is the same of that of
the classes_ attribute. Binary classification is a special cases with k == 1, otherwise
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k==n_classes. For binary classification, values closer to -1 or 1 mean more like the
first or second class in classes_, respectively.

staged_predict(X)
Return staged predictions for X.

The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in
the ensemble.

This generator method yields the ensemble prediction after each iteration of boosting and therefore allows
monitoring, such as to determine the prediction on a test set after each boost.

Parameters X : array-like of shape = [n_samples, n_features]

The input samples.

Returns y : generator of array, shape = [n_samples]

The predicted classes.

staged_predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample is computed as the weighted mean predicted class
probabilities of the classifiers in the ensemble.

This generator method yields the ensemble predicted class probabilities after each iteration of boosting
and therefore allows monitoring, such as to determine the predicted class probabilities on a test set after
each boost.

Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

Returns p : generator of array, shape = [n_samples]

The class probabilities of the input samples. The order of outputs is the same of that of
the classes_ attribute.

staged_score(X, y, sample_weight=None)
Return staged scores for X, y.

This generator method yields the ensemble score after each iteration of boosting and therefore allows
monitoring, such as to determine the score on a test set after each boost.

Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

y : array-like, shape = [n_samples]

Labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns z : float

Examples using sklearn.ensemble.AdaBoostClassifier

• Classifier comparison
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• Discrete versus Real AdaBoost

• Multi-class AdaBoosted Decision Trees

• Two-class AdaBoost

• Plot the decision surfaces of ensembles of trees on the iris dataset

5.11.2 sklearn.ensemble.AdaBoostRegressor

class sklearn.ensemble.AdaBoostRegressor(base_estimator=None, n_estimators=50, learn-
ing_rate=1.0, loss=’linear’, random_state=None)

An AdaBoost regressor.

An AdaBoost [1] regressor is a meta-estimator that begins by fitting a regressor on the original dataset and
then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted
according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases.

This class implements the algorithm known as AdaBoost.R2 [2].

Read more in the User Guide.

Parameters base_estimator : object, optional (default=DecisionTreeRegressor)

The base estimator from which the boosted ensemble is built. Support for sample
weighting is required.

n_estimators : integer, optional (default=50)

The maximum number of estimators at which boosting is terminated. In case of perfect
fit, the learning procedure is stopped early.

learning_rate : float, optional (default=1.)

Learning rate shrinks the contribution of each regressor by learning_rate. There
is a trade-off between learning_rate and n_estimators.

loss : {‘linear’, ‘square’, ‘exponential’}, optional (default=’linear’)

The loss function to use when updating the weights after each boosting iteration.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes estimators_ : list of classifiers

The collection of fitted sub-estimators.

estimator_weights_ : array of floats

Weights for each estimator in the boosted ensemble.

estimator_errors_ : array of floats

Regression error for each estimator in the boosted ensemble.

feature_importances_ : array of shape = [n_features]

The feature importances if supported by the base_estimator.

See also:

AdaBoostClassifier, GradientBoostingRegressor, DecisionTreeRegressor
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References

[R13], [R14]

Methods

fit(X, y[, sample_weight]) Build a boosted regressor from the training set (X, y).
get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression value for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.
staged_predict(X) Return staged predictions for X.
staged_score(X, y[, sample_weight]) Return staged scores for X, y.

__init__(base_estimator=None, n_estimators=50, learning_rate=1.0, loss=’linear’, ran-
dom_state=None)

feature_importances_

Return the feature importances (the higher, the more important the feature).

Returns feature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None)
Build a boosted regressor from the training set (X, y).

Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

y : array-like of shape = [n_samples]

The target values (real numbers).

sample_weight : array-like of shape = [n_samples], optional

Sample weights. If None, the sample weights are initialized to 1 / n_samples.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict regression value for X.
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The predicted regression value of an input sample is computed as the weighted median prediction of the
classifiers in the ensemble.

Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

Returns y : array of shape = [n_samples]

The predicted regression values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

staged_predict(X)
Return staged predictions for X.

The predicted regression value of an input sample is computed as the weighted median prediction of the
classifiers in the ensemble.

This generator method yields the ensemble prediction after each iteration of boosting and therefore allows
monitoring, such as to determine the prediction on a test set after each boost.

Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

Returns y : generator of array, shape = [n_samples]

The predicted regression values.

staged_score(X, y, sample_weight=None)
Return staged scores for X, y.
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This generator method yields the ensemble score after each iteration of boosting and therefore allows
monitoring, such as to determine the score on a test set after each boost.

Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK
and LIL are converted to CSR.

y : array-like, shape = [n_samples]

Labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns z : float

Examples using sklearn.ensemble.AdaBoostRegressor

• Decision Tree Regression with AdaBoost

5.11.3 sklearn.ensemble.BaggingClassifier

class sklearn.ensemble.BaggingClassifier(base_estimator=None, n_estimators=10,
max_samples=1.0, max_features=1.0, boot-
strap=True, bootstrap_features=False,
oob_score=False, warm_start=False, n_jobs=1,
random_state=None, verbose=0)

A Bagging classifier.

A Bagging classifier is an ensemble meta-estimator that fits base classifiers each on random subsets of the
original dataset and then aggregate their individual predictions (either by voting or by averaging) to form a
final prediction. Such a meta-estimator can typically be used as a way to reduce the variance of a black-box
estimator (e.g., a decision tree), by introducing randomization into its construction procedure and then making
an ensemble out of it.

This algorithm encompasses several works from the literature. When random subsets of the dataset are drawn
as random subsets of the samples, then this algorithm is known as Pasting [R154]. If samples are drawn with
replacement, then the method is known as Bagging [R155]. When random subsets of the dataset are drawn as
random subsets of the features, then the method is known as Random Subspaces [R156]. Finally, when base
estimators are built on subsets of both samples and features, then the method is known as Random Patches
[R157].

Read more in the User Guide.

Parameters base_estimator : object or None, optional (default=None)

The base estimator to fit on random subsets of the dataset. If None, then the base
estimator is a decision tree.

n_estimators : int, optional (default=10)

The number of base estimators in the ensemble.

max_samples : int or float, optional (default=1.0)

The number of samples to draw from X to train each base estimator.

• If int, then draw max_samples samples.

• If float, then draw max_samples * X.shape[0] samples.
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max_features : int or float, optional (default=1.0)

The number of features to draw from X to train each base estimator.

• If int, then draw max_features features.

• If float, then draw max_features * X.shape[1] features.

bootstrap : boolean, optional (default=True)

Whether samples are drawn with replacement.

bootstrap_features : boolean, optional (default=False)

Whether features are drawn with replacement.

oob_score : bool

Whether to use out-of-bag samples to estimate the generalization error.

warm_start : bool, optional (default=False)

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just fit a whole new ensemble.

New in version 0.17: warm_start constructor parameter.

n_jobs : int, optional (default=1)

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controls the verbosity of the building process.

Attributes base_estimator_ : estimator

The base estimator from which the ensemble is grown.

estimators_ : list of estimators

The collection of fitted base estimators.

estimators_samples_ : list of arrays

The subset of drawn samples (i.e., the in-bag samples) for each base estimator. Each
subset is defined by a boolean mask.

estimators_features_ : list of arrays

The subset of drawn features for each base estimator.

classes_ : array of shape = [n_classes]

The classes labels.

n_classes_ : int or list

The number of classes.

oob_score_ : float

Score of the training dataset obtained using an out-of-bag estimate.
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oob_decision_function_ : array of shape = [n_samples, n_classes]

Decision function computed with out-of-bag estimate on the training set. If
n_estimators is small it might be possible that a data point was never left out during
the bootstrap. In this case, oob_decision_function_ might contain NaN.

References

[R154], [R155], [R156], [R157]

Methods

decision_function(X) Average of the decision functions of the base classifiers.
fit(X, y[, sample_weight]) Build a Bagging ensemble of estimators from the train-

ing set (X, y).
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(base_estimator=None, n_estimators=10, max_samples=1.0, max_features=1.0, boot-
strap=True, bootstrap_features=False, oob_score=False, warm_start=False, n_jobs=1,
random_state=None, verbose=0)

decision_function(X)
Average of the decision functions of the base classifiers.

Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrices are accepted only if they are supported by
the base estimator.

Returns score : array, shape = [n_samples, k]

The decision function of the input samples. The columns correspond to the classes in
sorted order, as they appear in the attribute classes_. Regression and binary classifi-
cation are special cases with k == 1, otherwise k==n_classes.

estimators_samples_
The subset of drawn samples for each base estimator.

Returns a dynamically generated list of boolean masks identifying the samples used for fitting each mem-
ber of the ensemble, i.e., the in-bag samples.

Note: the list is re-created at each call to the property in order to reduce the object memory footprint by
not storing the sampling data. Thus fetching the property may be slower than expected.

fit(X, y, sample_weight=None)

Build a Bagging ensemble of estimators from the training set (X, y).

Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]
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The training input samples. Sparse matrices are accepted only if they are supported by
the base estimator.

y : array-like, shape = [n_samples]

The target values (class labels in classification, real numbers in regression).

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Note that this is supported
only if the base estimator supports sample weighting.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class for X.

The predicted class of an input sample is computed as the class with the highest mean predicted probability.
If base estimators do not implement a predict_proba method, then it resorts to voting.

Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrices are accepted only if they are supported by
the base estimator.

Returns y : array of shape = [n_samples]

The predicted classes.

predict_log_proba(X)
Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class
probabilities of the base estimators in the ensemble.

Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrices are accepted only if they are supported by
the base estimator.

Returns p : array of shape = [n_samples, n_classes]

The class log-probabilities of the input samples. The order of the classes corresponds to
that in the attribute classes_.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample is computed as the mean predicted class probabilities
of the base estimators in the ensemble. If base estimators do not implement a predict_proba method,
then it resorts to voting and the predicted class probabilities of an input sample represents the proportion
of estimators predicting each class.
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Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrices are accepted only if they are supported by
the base estimator.

Returns p : array of shape = [n_samples, n_classes]

The class probabilities of the input samples. The order of the classes corresponds to that
in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

5.11.4 sklearn.ensemble.BaggingRegressor

class sklearn.ensemble.BaggingRegressor(base_estimator=None, n_estimators=10,
max_samples=1.0, max_features=1.0, boot-
strap=True, bootstrap_features=False,
oob_score=False, warm_start=False, n_jobs=1,
random_state=None, verbose=0)

A Bagging regressor.

A Bagging regressor is an ensemble meta-estimator that fits base regressors each on random subsets of the
original dataset and then aggregate their individual predictions (either by voting or by averaging) to form a
final prediction. Such a meta-estimator can typically be used as a way to reduce the variance of a black-box
estimator (e.g., a decision tree), by introducing randomization into its construction procedure and then making
an ensemble out of it.

This algorithm encompasses several works from the literature. When random subsets of the dataset are drawn
as random subsets of the samples, then this algorithm is known as Pasting [R15]. If samples are drawn with
replacement, then the method is known as Bagging [R16]. When random subsets of the dataset are drawn as
random subsets of the features, then the method is known as Random Subspaces [R17]. Finally, when base
estimators are built on subsets of both samples and features, then the method is known as Random Patches
[R18].
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Read more in the User Guide.

Parameters base_estimator : object or None, optional (default=None)

The base estimator to fit on random subsets of the dataset. If None, then the base
estimator is a decision tree.

n_estimators : int, optional (default=10)

The number of base estimators in the ensemble.

max_samples : int or float, optional (default=1.0)

The number of samples to draw from X to train each base estimator.

• If int, then draw max_samples samples.

• If float, then draw max_samples * X.shape[0] samples.

max_features : int or float, optional (default=1.0)

The number of features to draw from X to train each base estimator.

• If int, then draw max_features features.

• If float, then draw max_features * X.shape[1] features.

bootstrap : boolean, optional (default=True)

Whether samples are drawn with replacement.

bootstrap_features : boolean, optional (default=False)

Whether features are drawn with replacement.

oob_score : bool

Whether to use out-of-bag samples to estimate the generalization error.

warm_start : bool, optional (default=False)

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just fit a whole new ensemble.

n_jobs : int, optional (default=1)

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controls the verbosity of the building process.

Attributes estimators_ : list of estimators

The collection of fitted sub-estimators.

estimators_samples_ : list of arrays

The subset of drawn samples (i.e., the in-bag samples) for each base estimator. Each
subset is defined by a boolean mask.

estimators_features_ : list of arrays
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The subset of drawn features for each base estimator.

oob_score_ : float

Score of the training dataset obtained using an out-of-bag estimate.

oob_prediction_ : array of shape = [n_samples]

Prediction computed with out-of-bag estimate on the training set. If n_estimators is
small it might be possible that a data point was never left out during the bootstrap. In
this case, oob_prediction_ might contain NaN.

References

[R15], [R16], [R17], [R18]

Methods

fit(X, y[, sample_weight]) Build a Bagging ensemble of estimators from the train-
ing set (X, y).

get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression target for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(base_estimator=None, n_estimators=10, max_samples=1.0, max_features=1.0, boot-
strap=True, bootstrap_features=False, oob_score=False, warm_start=False, n_jobs=1,
random_state=None, verbose=0)

estimators_samples_
The subset of drawn samples for each base estimator.

Returns a dynamically generated list of boolean masks identifying the samples used for fitting each mem-
ber of the ensemble, i.e., the in-bag samples.

Note: the list is re-created at each call to the property in order to reduce the object memory footprint by
not storing the sampling data. Thus fetching the property may be slower than expected.

fit(X, y, sample_weight=None)

Build a Bagging ensemble of estimators from the training set (X, y).

Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrices are accepted only if they are supported by
the base estimator.

y : array-like, shape = [n_samples]

The target values (class labels in classification, real numbers in regression).

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Note that this is supported
only if the base estimator supports sample weighting.

Returns self : object
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Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict regression target for X.

The predicted regression target of an input sample is computed as the mean predicted regression targets of
the estimators in the ensemble.

Parameters X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrices are accepted only if they are supported by
the base estimator.

Returns y : array of shape = [n_samples]

The predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.ensemble.BaggingRegressor

• Single estimator versus bagging: bias-variance decomposition
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5.11.5 sklearn.ensemble.IsolationForest

class sklearn.ensemble.IsolationForest(n_estimators=100, max_samples=’auto’, contam-
ination=0.1, max_features=1.0, bootstrap=False,
n_jobs=1, random_state=None, verbose=0)

Isolation Forest Algorithm

Return the anomaly score of each sample using the IsolationForest algorithm

The IsolationForest ‘isolates’ observations by randomly selecting a feature and then randomly selecting a split
value between the maximum and minimum values of the selected feature.

Since recursive partitioning can be represented by a tree structure, the number of splittings required to isolate a
sample is equivalent to the path length from the root node to the terminating node.

This path length, averaged over a forest of such random trees, is a measure of normality and our decision
function.

Random partitioning produces noticeably shorter paths for anomalies. Hence, when a forest of random trees
collectively produce shorter path lengths for particular samples, they are highly likely to be anomalies.

Read more in the User Guide.

New in version 0.18.

Parameters n_estimators : int, optional (default=100)

The number of base estimators in the ensemble.

max_samples : int or float, optional (default=”auto”)

The number of samples to draw from X to train each base estimator.

• If int, then draw max_samples samples.

• If float, then draw max_samples * X.shape[0] samples.

• If “auto”, then max_samples=min(256, n_samples).

If max_samples is larger than the number of samples provided, all samples will be used
for all trees (no sampling).

contamination : float in (0., 0.5), optional (default=0.1)

The amount of contamination of the data set, i.e. the proportion of outliers in the data
set. Used when fitting to define the threshold on the decision function.

max_features : int or float, optional (default=1.0)

The number of features to draw from X to train each base estimator.

• If int, then draw max_features features.

• If float, then draw max_features * X.shape[1] features.

bootstrap : boolean, optional (default=False)

If True, individual trees are fit on random subsets of the training data sampled with
replacement. If False, sampling without replacement is performed.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)
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If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controls the verbosity of the tree building process.

Attributes estimators_ : list of DecisionTreeClassifier

The collection of fitted sub-estimators.

estimators_samples_ : list of arrays

The subset of drawn samples (i.e., the in-bag samples) for each base estimator.

max_samples_ : integer

The actual number of samples

References

[R21], [R22]

Methods

decision_function(X) Average anomaly score of X of the base classifiers.
fit(X[, y, sample_weight]) Fit estimator.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict if a particular sample is an outlier or not.
set_params(**params) Set the parameters of this estimator.

__init__(n_estimators=100, max_samples=’auto’, contamination=0.1, max_features=1.0, boot-
strap=False, n_jobs=1, random_state=None, verbose=0)

decision_function(X)
Average anomaly score of X of the base classifiers.

The anomaly score of an input sample is computed as the mean anomaly score of the trees in the forest.

The measure of normality of an observation given a tree is the depth of the leaf containing this observation,
which is equivalent to the number of splittings required to isolate this point. In case of several observations
n_left in the leaf, the average path length of a n_left samples isolation tree is added.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

The training input samples. Sparse matrices are accepted only if they are supported by
the base estimator.

Returns scores : array of shape (n_samples,)

The anomaly score of the input samples. The lower, the more abnormal.

estimators_samples_
The subset of drawn samples for each base estimator.

Returns a dynamically generated list of boolean masks identifying the samples used for fitting each mem-
ber of the ensemble, i.e., the in-bag samples.
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Note: the list is re-created at each call to the property in order to reduce the object memory footprint by
not storing the sampling data. Thus fetching the property may be slower than expected.

fit(X, y=None, sample_weight=None)
Fit estimator.

Parameters X : array-like or sparse matrix, shape (n_samples, n_features)

The input samples. Use dtype=np.float32 for maximum efficiency. Sparse ma-
trices are also supported, use sparse csc_matrix for maximum efficiency.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict if a particular sample is an outlier or not.

Parameters X : array-like or sparse matrix, shape (n_samples, n_features)

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returns is_inlier : array, shape (n_samples,)

For each observations, tells whether or not (+1 or -1) it should be considered as an inlier
according to the fitted model.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.ensemble.IsolationForest

• Outlier detection with several methods.

• IsolationForest example
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5.11.6 sklearn.ensemble.RandomTreesEmbedding

class sklearn.ensemble.RandomTreesEmbedding(n_estimators=10, max_depth=5,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None, sparse_output=True,
n_jobs=1, random_state=None, verbose=0,
warm_start=False)

An ensemble of totally random trees.

An unsupervised transformation of a dataset to a high-dimensional sparse representation. A datapoint is coded
according to which leaf of each tree it is sorted into. Using a one-hot encoding of the leaves, this leads to a
binary coding with as many ones as there are trees in the forest.

The dimensionality of the resulting representation is n_out <= n_estimators * max_leaf_nodes.
If max_leaf_nodes == None, the number of leaf nodes is at most n_estimators * 2 **
max_depth.

Read more in the User Guide.

Parameters n_estimators : integer, optional (default=10)

Number of trees in the forest.

max_depth : integer, optional (default=5)

The maximum depth of each tree. If None, then nodes are expanded until all leaves are
pure or until all leaves contain less than min_samples_split samples.

min_samples_split : int, float, optional (default=2)

The minimum number of samples required to split an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a percentage and ceil(min_samples_split *
n_samples) is the minimum number of samples for each split.

Changed in version 0.18: Added float values for percentages.

min_samples_leaf : int, float, optional (default=1)

The minimum number of samples required to be at a leaf node:

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a percentage and ceil(min_samples_leaf *
n_samples) is the minimum number of samples for each node.

Changed in version 0.18: Added float values for percentages.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the sum total of weights (of all the input samples)
required to be at a leaf node. Samples have equal weight when sample_weight is not
provided.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes.

min_impurity_split : float,
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Threshold for early stopping in tree growth. A node will split if its impurity is above
the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in fa-
vor of min_impurity_decrease in 0.19 and will be removed in 0.21. Use
min_impurity_decrease instead.

min_impurity_decrease : float, optional (default=0.)

A node will be split if this split induces a decrease of the impurity greater than or equal
to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current
node, N_t_L is the number of samples in the left child, and N_t_R is the number of
samples in the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is
passed.

New in version 0.19.

bootstrap : boolean, optional (default=True)

Whether bootstrap samples are used when building trees.

sparse_output : bool, optional (default=True)

Whether or not to return a sparse CSR matrix, as default behavior, or to return a dense
array compatible with dense pipeline operators.

n_jobs : integer, optional (default=1)

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : int, optional (default=0)

Controls the verbosity of the tree building process.

warm_start : bool, optional (default=False)

When set to True, reuse the solution of the previous call to fit and add more estimators
to the ensemble, otherwise, just fit a whole new forest.

Attributes estimators_ : list of DecisionTreeClassifier

The collection of fitted sub-estimators.

References

[R25], [R26]
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Methods

apply(X) Apply trees in the forest to X, return leaf indices.
decision_path(X) Return the decision path in the forest
fit(X[, y, sample_weight]) Fit estimator.
fit_transform(X[, y, sample_weight]) Fit estimator and transform dataset.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform dataset.

__init__(n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, sparse_output=True, n_jobs=1, random_state=None, ver-
bose=0, warm_start=False)

apply(X)
Apply trees in the forest to X, return leaf indices.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns X_leaves : array_like, shape = [n_samples, n_estimators]

For each datapoint x in X and for each tree in the forest, return the index of the leaf x
ends up in.

decision_path(X)
Return the decision path in the forest

New in version 0.18.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, its dtype will be converted to dtype=np.float32. If
a sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns indicator : sparse csr array, shape = [n_samples, n_nodes]

Return a node indicator matrix where non zero elements indicates that the samples goes
through the nodes.

n_nodes_ptr : array of size (n_estimators + 1, )

The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value
for the i-th estimator.

feature_importances_

Return the feature importances (the higher, the more important the feature).

Returns feature_importances_ : array, shape = [n_features]

fit(X, y=None, sample_weight=None)
Fit estimator.

Parameters X : array-like or sparse matrix, shape=(n_samples, n_features)

The input samples. Use dtype=np.float32 for maximum efficiency. Sparse ma-
trices are also supported, use sparse csc_matrix for maximum efficiency.
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sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

Returns self : object

Returns self.

fit_transform(X, y=None, sample_weight=None)
Fit estimator and transform dataset.

Parameters X : array-like or sparse matrix, shape=(n_samples, n_features)

Input data used to build forests. Use dtype=np.float32 for maximum efficiency.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. In the case of classification, splits are also ignored if they would result in
any single class carrying a negative weight in either child node.

Returns X_transformed : sparse matrix, shape=(n_samples, n_out)

Transformed dataset.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform dataset.

Parameters X : array-like or sparse matrix, shape=(n_samples, n_features)

Input data to be transformed. Use dtype=np.float32 for maximum efficiency.
Sparse matrices are also supported, use sparse csr_matrix for maximum efficiency.

Returns X_transformed : sparse matrix, shape=(n_samples, n_out)

Transformed dataset.
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Examples using sklearn.ensemble.RandomTreesEmbedding

• Feature transformations with ensembles of trees

• Hashing feature transformation using Totally Random Trees

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

5.11.7 sklearn.ensemble.VotingClassifier

class sklearn.ensemble.VotingClassifier(estimators, voting=’hard’, weights=None, n_jobs=1,
flatten_transform=None)

Soft Voting/Majority Rule classifier for unfitted estimators.

New in version 0.17.

Read more in the User Guide.

Parameters estimators : list of (string, estimator) tuples

Invoking the fitmethod on the VotingClassifierwill fit clones of those original
estimators that will be stored in the class attribute self.estimators_. An estimator
can be set to None using set_params.

voting : str, {‘hard’, ‘soft’} (default=’hard’)

If ‘hard’, uses predicted class labels for majority rule voting. Else if ‘soft’, predicts
the class label based on the argmax of the sums of the predicted probabilities, which is
recommended for an ensemble of well-calibrated classifiers.

weights : array-like, shape = [n_classifiers], optional (default=‘None‘)

Sequence of weights (float or int) to weight the occurrences of predicted class labels
(hard voting) or class probabilities before averaging (soft voting). Uses uniform weights
if None.

n_jobs : int, optional (default=1)

The number of jobs to run in parallel for fit. If -1, then the number of jobs is set to
the number of cores.

flatten_transform : bool, optional (default=None)

Affects shape of transform output only when voting=’soft’ If voting=’soft’ and
flatten_transform=True, transform method returns matrix with shape (n_samples,
n_classifiers * n_classes). If flatten_transform=False, it returns (n_classifiers,
n_samples, n_classes).

Attributes estimators_ : list of classifiers

The collection of fitted sub-estimators as defined in estimators that are not None.

classes_ : array-like, shape = [n_predictions]

The classes labels.

Examples
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>>> import numpy as np
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.ensemble import RandomForestClassifier, VotingClassifier
>>> clf1 = LogisticRegression(random_state=1)
>>> clf2 = RandomForestClassifier(random_state=1)
>>> clf3 = GaussianNB()
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> eclf1 = VotingClassifier(estimators=[
... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard')
>>> eclf1 = eclf1.fit(X, y)
>>> print(eclf1.predict(X))
[1 1 1 2 2 2]
>>> eclf2 = VotingClassifier(estimators=[
... ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
... voting='soft')
>>> eclf2 = eclf2.fit(X, y)
>>> print(eclf2.predict(X))
[1 1 1 2 2 2]
>>> eclf3 = VotingClassifier(estimators=[
... ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
... voting='soft', weights=[2,1,1],
... flatten_transform=True)
>>> eclf3 = eclf3.fit(X, y)
>>> print(eclf3.predict(X))
[1 1 1 2 2 2]
>>> print(eclf3.transform(X).shape)
(6, 6)
>>>

Methods

fit(X, y[, sample_weight]) Fit the estimators.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get the parameters of the VotingClassifier
predict(X) Predict class labels for X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Setting the parameters for the voting classifier
transform(X) Return class labels or probabilities for X for each esti-

mator.

__init__(estimators, voting=’hard’, weights=None, n_jobs=1, flatten_transform=None)

fit(X, y, sample_weight=None)
Fit the estimators.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values.
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sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Note that this is supported
only if all underlying estimators support sample weights.

Returns self : object

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get the parameters of the VotingClassifier

Parameters deep: bool :

Setting it to True gets the various classifiers and the parameters of the classifiers as well

predict(X)
Predict class labels for X.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

Returns maj : array-like, shape = [n_samples]

Predicted class labels.

predict_proba
Compute probabilities of possible outcomes for samples in X.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

Returns avg : array-like, shape = [n_samples, n_classes]

Weighted average probability for each class per sample.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.
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sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Setting the parameters for the voting classifier

Valid parameter keys can be listed with get_params().

Parameters params: keyword arguments :

Specific parameters using e.g. set_params(parameter_name=new_value) In addition, to
setting the parameters of the VotingClassifier, the individual classifiers of the
VotingClassifier can also be set or replaced by setting them to None.

Examples

# In this example, the RandomForestClassifier is removed clf1 = LogisticRegression() clf2 = Random-
ForestClassifier() eclf = VotingClassifier(estimators=[(‘lr’, clf1), (‘rf’, clf2)] eclf.set_params(rf=None)

transform(X)
Return class labels or probabilities for X for each estimator.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

Returns If ‘voting=’soft’‘ and ‘flatten_transform=True‘: :

array-like = (n_classifiers, n_samples * n_classes) otherwise array-like = (n_classifiers,
n_samples, n_classes)

Class probabilities calculated by each classifier.

If ‘voting=’hard’‘: :

array-like = [n_samples, n_classifiers] Class labels predicted by each classifier.

Examples using sklearn.ensemble.VotingClassifier

• Plot the decision boundaries of a VotingClassifier

• Plot class probabilities calculated by the VotingClassifier

5.11.8 partial dependence

Partial dependence plots for tree ensembles.

ensemble.partial_dependence.
partial_dependence(. . . )

Partial dependence of target_variables.

ensemble.partial_dependence.
plot_partial_dependence(. . . )

Partial dependence plots for features.
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sklearn.ensemble.partial_dependence.partial_dependence

sklearn.ensemble.partial_dependence.partial_dependence(gbrt, target_variables,
grid=None, X=None,
percentiles=(0.05, 0.95),
grid_resolution=100)

Partial dependence of target_variables.

Partial dependence plots show the dependence between the joint values of the target_variables and the
function represented by the gbrt.

Read more in the User Guide.

Parameters gbrt : BaseGradientBoosting

A fitted gradient boosting model.

target_variables : array-like, dtype=int

The target features for which the partial dependecy should be computed (size should be
smaller than 3 for visual renderings).

grid : array-like, shape=(n_points, len(target_variables))

The grid of target_variables values for which the partial dependecy should be
evaluated (either grid or X must be specified).

X : array-like, shape=(n_samples, n_features)

The data on which gbrt was trained. It is used to generate a grid for the
target_variables. The grid comprises grid_resolution equally spaced
points between the two percentiles.

percentiles : (low, high), default=(0.05, 0.95)

The lower and upper percentile used create the extreme values for the grid. Only if X
is not None.

grid_resolution : int, default=100

The number of equally spaced points on the grid.

Returns pdp : array, shape=(n_classes, n_points)

The partial dependence function evaluated on the grid. For regression and binary
classification n_classes==1.

axes : seq of ndarray or None

The axes with which the grid has been created or None if the grid has been given.

Examples

>>> samples = [[0, 0, 2], [1, 0, 0]]
>>> labels = [0, 1]
>>> from sklearn.ensemble import GradientBoostingClassifier
>>> gb = GradientBoostingClassifier(random_state=0).fit(samples, labels)
>>> kwargs = dict(X=samples, percentiles=(0, 1), grid_resolution=2)
>>> partial_dependence(gb, [0], **kwargs)
(array([[-4.52..., 4.52...]]), [array([ 0., 1.])])
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sklearn.ensemble.partial_dependence.plot_partial_dependence

sklearn.ensemble.partial_dependence.plot_partial_dependence(gbrt, X, features, fea-
ture_names=None,
label=None,
n_cols=3,
grid_resolution=100,
percentiles=(0.05,
0.95), n_jobs=1, ver-
bose=0, ax=None,
line_kw=None,
contour_kw=None,
**fig_kw)

Partial dependence plots for features.

The len(features) plots are arranged in a grid with n_cols columns. Two-way partial dependence plots
are plotted as contour plots.

Read more in the User Guide.

Parameters gbrt : BaseGradientBoosting

A fitted gradient boosting model.

X : array-like, shape=(n_samples, n_features)

The data on which gbrt was trained.

features : seq of ints, strings, or tuples of ints or strings

If seq[i] is an int or a tuple with one int value, a one-way PDP is created; if seq[i] is a
tuple of two ints, a two-way PDP is created. If feature_names is specified and seq[i] is
an int, seq[i] must be < len(feature_names). If seq[i] is a string, feature_names must be
specified, and seq[i] must be in feature_names.

feature_names : seq of str

Name of each feature; feature_names[i] holds the name of the feature with index i.

label : object

The class label for which the PDPs should be computed. Only if gbrt is a multi-class
model. Must be in gbrt.classes_.

n_cols : int

The number of columns in the grid plot (default: 3).

percentiles : (low, high), default=(0.05, 0.95)

The lower and upper percentile used to create the extreme values for the PDP axes.

grid_resolution : int, default=100

The number of equally spaced points on the axes.

n_jobs : int

The number of CPUs to use to compute the PDs. -1 means ‘all CPUs’. Defaults to 1.

verbose : int

Verbose output during PD computations. Defaults to 0.

ax : Matplotlib axis object, default None
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An axis object onto which the plots will be drawn.

line_kw : dict

Dict with keywords passed to the matplotlib.pyplot.plot call. For one-way
partial dependence plots.

contour_kw : dict

Dict with keywords passed to the matplotlib.pyplot.plot call. For two-way
partial dependence plots.

fig_kw : dict

Dict with keywords passed to the figure() call. Note that all keywords not recognized
above will be automatically included here.

Returns fig : figure

The Matplotlib Figure object.

axs : seq of Axis objects

A seq of Axis objects, one for each subplot.

Examples

>>> from sklearn.datasets import make_friedman1
>>> from sklearn.ensemble import GradientBoostingRegressor
>>> X, y = make_friedman1()
>>> clf = GradientBoostingRegressor(n_estimators=10).fit(X, y)
>>> fig, axs = plot_partial_dependence(clf, X, [0, (0, 1)])
...

Examples using sklearn.ensemble.partial_dependence.plot_partial_dependence

• Partial Dependence Plots

5.12 sklearn.exceptions: Exceptions and warnings

The sklearn.exceptions module includes all custom warnings and error classes used across scikit-learn.

exceptions.ChangedBehaviorWarning Warning class used to notify the user of any change in the
behavior.

exceptions.ConvergenceWarning Custom warning to capture convergence problems
exceptions.DataConversionWarning Warning used to notify implicit data conversions happening

in the code.
exceptions.DataDimensionalityWarning Custom warning to notify potential issues with data dimen-

sionality.
exceptions.EfficiencyWarning Warning used to notify the user of inefficient computation.
exceptions.FitFailedWarning Warning class used if there is an error while fitting the es-

timator.
exceptions.NotFittedError Exception class to raise if estimator is used before fitting.

Continued on next page
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Table 5.76 – continued from previous page
exceptions.NonBLASDotWarning Warning used when the dot operation does not use BLAS.
exceptions.UndefinedMetricWarning Warning used when the metric is invalid

5.12.1 sklearn.exceptions.ChangedBehaviorWarning

class sklearn.exceptions.ChangedBehaviorWarning
Warning class used to notify the user of any change in the behavior.

Changed in version 0.18: Moved from sklearn.base.

Methods

with_traceback Exception.with_traceback(tb) – set self.__traceback__
to tb and return self.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

5.12.2 sklearn.exceptions.ConvergenceWarning

class sklearn.exceptions.ConvergenceWarning
Custom warning to capture convergence problems

Changed in version 0.18: Moved from sklearn.utils.

Methods

with_traceback Exception.with_traceback(tb) – set self.__traceback__
to tb and return self.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

5.12.3 sklearn.exceptions.DataConversionWarning

class sklearn.exceptions.DataConversionWarning
Warning used to notify implicit data conversions happening in the code.

This warning occurs when some input data needs to be converted or interpreted in a way that may not match the
user’s expectations.

For example, this warning may occur when the user

• passes an integer array to a function which expects float input and will convert the input

• requests a non-copying operation, but a copy is required to meet the implementation’s data-type ex-
pectations;

• passes an input whose shape can be interpreted ambiguously.
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Changed in version 0.18: Moved from sklearn.utils.validation.

Methods

with_traceback Exception.with_traceback(tb) – set self.__traceback__
to tb and return self.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

5.12.4 sklearn.exceptions.DataDimensionalityWarning

class sklearn.exceptions.DataDimensionalityWarning
Custom warning to notify potential issues with data dimensionality.

For example, in random projection, this warning is raised when the number of components, which quantifies
the dimensionality of the target projection space, is higher than the number of features, which quantifies the
dimensionality of the original source space, to imply that the dimensionality of the problem will not be reduced.

Changed in version 0.18: Moved from sklearn.utils.

Methods

with_traceback Exception.with_traceback(tb) – set self.__traceback__
to tb and return self.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

5.12.5 sklearn.exceptions.EfficiencyWarning

class sklearn.exceptions.EfficiencyWarning
Warning used to notify the user of inefficient computation.

This warning notifies the user that the efficiency may not be optimal due to some reason which may be included
as a part of the warning message. This may be subclassed into a more specific Warning class.

New in version 0.18.

Methods

with_traceback Exception.with_traceback(tb) – set self.__traceback__
to tb and return self.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
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5.12.6 sklearn.exceptions.FitFailedWarning

class sklearn.exceptions.FitFailedWarning
Warning class used if there is an error while fitting the estimator.

This Warning is used in meta estimators GridSearchCV and RandomizedSearchCV and the cross-validation
helper function cross_val_score to warn when there is an error while fitting the estimator.

Examples

>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.svm import LinearSVC
>>> from sklearn.exceptions import FitFailedWarning
>>> import warnings
>>> warnings.simplefilter('always', FitFailedWarning)
>>> gs = GridSearchCV(LinearSVC(), {'C': [-1, -2]}, error_score=0)
>>> X, y = [[1, 2], [3, 4], [5, 6], [7, 8], [8, 9]], [0, 0, 0, 1, 1]
>>> with warnings.catch_warnings(record=True) as w:
... try:
... gs.fit(X, y) # This will raise a ValueError since C is < 0
... except ValueError:
... pass
... print(repr(w[-1].message))
...
FitFailedWarning("Classifier fit failed. The score on this train-test
partition for these parameters will be set to 0.000000. Details:
\nValueError('Penalty term must be positive; got (C=-2)',)",)

Changed in version 0.18: Moved from sklearn.cross_validation.

Methods

with_traceback Exception.with_traceback(tb) – set self.__traceback__
to tb and return self.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

5.12.7 sklearn.exceptions.NotFittedError

class sklearn.exceptions.NotFittedError
Exception class to raise if estimator is used before fitting.

This class inherits from both ValueError and AttributeError to help with exception handling and backward
compatibility.

Examples

>>> from sklearn.svm import LinearSVC
>>> from sklearn.exceptions import NotFittedError
>>> try:
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... LinearSVC().predict([[1, 2], [2, 3], [3, 4]])

... except NotFittedError as e:

... print(repr(e))

...
NotFittedError('This LinearSVC instance is not fitted yet',)

Changed in version 0.18: Moved from sklearn.utils.validation.

Methods

with_traceback Exception.with_traceback(tb) – set self.__traceback__
to tb and return self.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

5.12.8 sklearn.exceptions.NonBLASDotWarning

class sklearn.exceptions.NonBLASDotWarning
Warning used when the dot operation does not use BLAS.

This warning is used to notify the user that BLAS was not used for dot operation and hence the efficiency may
be affected.

Changed in version 0.18: Moved from sklearn.utils.validation, extends EfficiencyWarning.

Methods

with_traceback Exception.with_traceback(tb) – set self.__traceback__
to tb and return self.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

5.12.9 sklearn.exceptions.UndefinedMetricWarning

class sklearn.exceptions.UndefinedMetricWarning
Warning used when the metric is invalid

Changed in version 0.18: Moved from sklearn.base.

Methods

with_traceback Exception.with_traceback(tb) – set self.__traceback__
to tb and return self.
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with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

5.13 sklearn.feature_extraction: Feature Extraction

The sklearn.feature_extraction module deals with feature extraction from raw data. It currently includes
methods to extract features from text and images.

User guide: See the Feature extraction section for further details.

feature_extraction.DictVectorizer([dtype,
. . . ])

Transforms lists of feature-value mappings to vectors.

feature_extraction.FeatureHasher([. . . ]) Implements feature hashing, aka the hashing trick.

5.13.1 sklearn.feature_extraction.DictVectorizer

class sklearn.feature_extraction.DictVectorizer(dtype=<class ‘numpy.float64’>, separa-
tor=’=’, sparse=True, sort=True)

Transforms lists of feature-value mappings to vectors.

This transformer turns lists of mappings (dict-like objects) of feature names to feature values into Numpy arrays
or scipy.sparse matrices for use with scikit-learn estimators.

When feature values are strings, this transformer will do a binary one-hot (aka one-of-K) coding: one boolean-
valued feature is constructed for each of the possible string values that the feature can take on. For instance, a
feature “f” that can take on the values “ham” and “spam” will become two features in the output, one signifying
“f=ham”, the other “f=spam”.

However, note that this transformer will only do a binary one-hot encoding when feature values are of type
string. If categorical features are represented as numeric values such as int, the DictVectorizer can be followed
by OneHotEncoder to complete binary one-hot encoding.

Features that do not occur in a sample (mapping) will have a zero value in the resulting array/matrix.

Read more in the User Guide.

Parameters dtype : callable, optional

The type of feature values. Passed to Numpy array/scipy.sparse matrix constructors as
the dtype argument.

separator : string, optional

Separator string used when constructing new features for one-hot coding.

sparse : boolean, optional.

Whether transform should produce scipy.sparse matrices. True by default.

sort : boolean, optional.

Whether feature_names_ and vocabulary_ should be sorted when fitting. True
by default.

Attributes vocabulary_ : dict

A dictionary mapping feature names to feature indices.

feature_names_ : list
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A list of length n_features containing the feature names (e.g., “f=ham” and “f=spam”).

See also:

FeatureHasher performs vectorization using only a hash function.

sklearn.preprocessing.OneHotEncoder handles nominal/categorical features encoded as columns
of integers.

Examples

>>> from sklearn.feature_extraction import DictVectorizer
>>> v = DictVectorizer(sparse=False)
>>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
>>> X = v.fit_transform(D)
>>> X
array([[ 2., 0., 1.],

[ 0., 1., 3.]])
>>> v.inverse_transform(X) == [{'bar': 2.0, 'foo': 1.0}, {'baz': 1.0, 'foo
→˓': 3.0}]
True
>>> v.transform({'foo': 4, 'unseen_feature': 3})
array([[ 0., 0., 4.]])

Methods

fit(X[, y]) Learn a list of feature name -> indices mappings.
fit_transform(X[, y]) Learn a list of feature name -> indices mappings and

transform X.
get_feature_names() Returns a list of feature names, ordered by their indices.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X[, dict_type]) Transform array or sparse matrix X back to feature map-

pings.
restrict(support[, indices]) Restrict the features to those in support using feature

selection.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform feature->value dicts to array or sparse ma-

trix.

__init__(dtype=<class ‘numpy.float64’>, separator=’=’, sparse=True, sort=True)

fit(X, y=None)
Learn a list of feature name -> indices mappings.

Parameters X : Mapping or iterable over Mappings

Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values
(strings or convertible to dtype).

y : (ignored)

Returns self :

fit_transform(X, y=None)
Learn a list of feature name -> indices mappings and transform X.
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Like fit(X) followed by transform(X), but does not require materializing X in memory.

Parameters X : Mapping or iterable over Mappings

Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values
(strings or convertible to dtype).

y : (ignored)

Returns Xa : {array, sparse matrix}

Feature vectors; always 2-d.

get_feature_names()
Returns a list of feature names, ordered by their indices.

If one-of-K coding is applied to categorical features, this will include the constructed feature names but
not the original ones.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X, dict_type=<class ‘dict’>)
Transform array or sparse matrix X back to feature mappings.

X must have been produced by this DictVectorizer’s transform or fit_transform method; it may only have
passed through transformers that preserve the number of features and their order.

In the case of one-hot/one-of-K coding, the constructed feature names and values are returned rather than
the original ones.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Sample matrix.

dict_type : callable, optional

Constructor for feature mappings. Must conform to the collections.Mapping API.

Returns D : list of dict_type objects, length = n_samples

Feature mappings for the samples in X.

restrict(support, indices=False)
Restrict the features to those in support using feature selection.

This function modifies the estimator in-place.

Parameters support : array-like

Boolean mask or list of indices (as returned by the get_support member of feature se-
lectors).

indices : boolean, optional

Whether support is a list of indices.

Returns self :
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Examples

>>> from sklearn.feature_extraction import DictVectorizer
>>> from sklearn.feature_selection import SelectKBest, chi2
>>> v = DictVectorizer()
>>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
>>> X = v.fit_transform(D)
>>> support = SelectKBest(chi2, k=2).fit(X, [0, 1])
>>> v.get_feature_names()
['bar', 'baz', 'foo']
>>> v.restrict(support.get_support())
DictVectorizer(dtype=..., separator='=', sort=True,

sparse=True)
>>> v.get_feature_names()
['bar', 'foo']

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform feature->value dicts to array or sparse matrix.

Named features not encountered during fit or fit_transform will be silently ignored.

Parameters X : Mapping or iterable over Mappings, length = n_samples

Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values
(strings or convertible to dtype).

Returns Xa : {array, sparse matrix}

Feature vectors; always 2-d.

Examples using sklearn.feature_extraction.DictVectorizer

• Feature Union with Heterogeneous Data Sources

• FeatureHasher and DictVectorizer Comparison

5.13.2 sklearn.feature_extraction.FeatureHasher

class sklearn.feature_extraction.FeatureHasher(n_features=1048576, input_type=’dict’,
dtype=<class ‘numpy.float64’>, alter-
nate_sign=True, non_negative=False)

Implements feature hashing, aka the hashing trick.

This class turns sequences of symbolic feature names (strings) into scipy.sparse matrices, using a hash function
to compute the matrix column corresponding to a name. The hash function employed is the signed 32-bit version
of Murmurhash3.

Feature names of type byte string are used as-is. Unicode strings are converted to UTF-8 first, but no Unicode
normalization is done. Feature values must be (finite) numbers.

1434 Chapter 5. API Reference



scikit-learn user guide, Release 0.19.1

This class is a low-memory alternative to DictVectorizer and CountVectorizer, intended for large-scale (online)
learning and situations where memory is tight, e.g. when running prediction code on embedded devices.

Read more in the User Guide.

Parameters n_features : integer, optional

The number of features (columns) in the output matrices. Small numbers of features are
likely to cause hash collisions, but large numbers will cause larger coefficient dimen-
sions in linear learners.

input_type : string, optional, default “dict”

Either “dict” (the default) to accept dictionaries over (feature_name, value); “pair” to
accept pairs of (feature_name, value); or “string” to accept single strings. feature_name
should be a string, while value should be a number. In the case of “string”, a value of 1
is implied. The feature_name is hashed to find the appropriate column for the feature.
The value’s sign might be flipped in the output (but see non_negative, below).

dtype : numpy type, optional, default np.float64

The type of feature values. Passed to scipy.sparse matrix constructors as the dtype
argument. Do not set this to bool, np.boolean or any unsigned integer type.

alternate_sign : boolean, optional, default True

When True, an alternating sign is added to the features as to approximately conserve the
inner product in the hashed space even for small n_features. This approach is similar to
sparse random projection.

non_negative : boolean, optional, default False

When True, an absolute value is applied to the features matrix prior to returning it.
When used in conjunction with alternate_sign=True, this significantly reduces the inner
product preservation property.

Deprecated since version 0.19: This option will be removed in 0.21.

See also:

DictVectorizer vectorizes string-valued features using a hash table.

sklearn.preprocessing.OneHotEncoder handles nominal/categorical features encoded as columns
of integers.

Examples

>>> from sklearn.feature_extraction import FeatureHasher
>>> h = FeatureHasher(n_features=10)
>>> D = [{'dog': 1, 'cat':2, 'elephant':4},{'dog': 2, 'run': 5}]
>>> f = h.transform(D)
>>> f.toarray()
array([[ 0., 0., -4., -1., 0., 0., 0., 0., 0., 2.],

[ 0., 0., 0., -2., -5., 0., 0., 0., 0., 0.]])

Methods
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fit([X, y]) No-op.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(raw_X) Transform a sequence of instances to a scipy.sparse ma-

trix.

__init__(n_features=1048576, input_type=’dict’, dtype=<class ‘numpy.float64’>, alter-
nate_sign=True, non_negative=False)

fit(X=None, y=None)
No-op.

This method doesn’t do anything. It exists purely for compatibility with the scikit-learn transformer API.

Parameters X : array-like

Returns self : FeatureHasher

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(raw_X)
Transform a sequence of instances to a scipy.sparse matrix.

Parameters raw_X : iterable over iterable over raw features, length = n_samples

Samples. Each sample must be iterable an (e.g., a list or tuple) containing/generating
feature names (and optionally values, see the input_type constructor argument) which
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will be hashed. raw_X need not support the len function, so it can be the result of a
generator; n_samples is determined on the fly.

Returns X : scipy.sparse matrix, shape = (n_samples, self.n_features)

Feature matrix, for use with estimators or further transformers.

Examples using sklearn.feature_extraction.FeatureHasher

• FeatureHasher and DictVectorizer Comparison

5.13.3 From images

The sklearn.feature_extraction.image submodule gathers utilities to extract features from images.

feature_extraction.image.
extract_patches_2d(. . . )

Reshape a 2D image into a collection of patches

feature_extraction.image.
grid_to_graph(n_x, n_y)

Graph of the pixel-to-pixel connections

feature_extraction.image.
img_to_graph(img[, . . . ])

Graph of the pixel-to-pixel gradient connections

feature_extraction.image.
reconstruct_from_patches_2d(. . . )

Reconstruct the image from all of its patches.

feature_extraction.image.
PatchExtractor([. . . ])

Extracts patches from a collection of images

sklearn.feature_extraction.image.extract_patches_2d

sklearn.feature_extraction.image.extract_patches_2d(image, patch_size,
max_patches=None, ran-
dom_state=None)

Reshape a 2D image into a collection of patches

The resulting patches are allocated in a dedicated array.

Read more in the User Guide.

Parameters image : array, shape = (image_height, image_width) or

(image_height, image_width, n_channels) The original image data. For color images,
the last dimension specifies the channel: a RGB image would have n_channels=3.

patch_size : tuple of ints (patch_height, patch_width)

the dimensions of one patch

max_patches : integer or float, optional default is None

The maximum number of patches to extract. If max_patches is a float between 0 and 1,
it is taken to be a proportion of the total number of patches.

random_state : int, RandomState instance or None, optional (default=None)

Pseudo number generator state used for random sampling to use if max_patches is not
None. If int, random_state is the seed used by the random number generator; If Ran-
domState instance, random_state is the random number generator; If None, the random
number generator is the RandomState instance used by np.random.
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Returns patches : array, shape = (n_patches, patch_height, patch_width) or

(n_patches, patch_height, patch_width, n_channels) The collection of patches extracted
from the image, where n_patches is either max_patches or the total number of patches
that can be extracted.

Examples

>>> from sklearn.feature_extraction import image
>>> one_image = np.arange(16).reshape((4, 4))
>>> one_image
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])

>>> patches = image.extract_patches_2d(one_image, (2, 2))
>>> print(patches.shape)
(9, 2, 2)
>>> patches[0]
array([[0, 1],

[4, 5]])
>>> patches[1]
array([[1, 2],

[5, 6]])
>>> patches[8]
array([[10, 11],

[14, 15]])

Examples using sklearn.feature_extraction.image.extract_patches_2d

• Online learning of a dictionary of parts of faces

• Image denoising using dictionary learning

sklearn.feature_extraction.image.grid_to_graph

sklearn.feature_extraction.image.grid_to_graph(n_x, n_y, n_z=1,
mask=None, return_as=<class
‘scipy.sparse.coo.coo_matrix’>,
dtype=<class ‘int’>)

Graph of the pixel-to-pixel connections

Edges exist if 2 voxels are connected.

Parameters n_x : int

Dimension in x axis

n_y : int

Dimension in y axis

n_z : int, optional, default 1

Dimension in z axis

mask : ndarray of booleans, optional
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An optional mask of the image, to consider only part of the pixels.

return_as : np.ndarray or a sparse matrix class, optional

The class to use to build the returned adjacency matrix.

dtype : dtype, optional, default int

The data of the returned sparse matrix. By default it is int

Notes

For scikit-learn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix
instance. Going forward, np.ndarray returns an np.ndarray, as expected.

For compatibility, user code relying on this method should wrap its calls in np.asarray to avoid type issues.

sklearn.feature_extraction.image.img_to_graph

sklearn.feature_extraction.image.img_to_graph(img, mask=None, return_as=<class
‘scipy.sparse.coo.coo_matrix’>,
dtype=None)

Graph of the pixel-to-pixel gradient connections

Edges are weighted with the gradient values.

Read more in the User Guide.

Parameters img : ndarray, 2D or 3D

2D or 3D image

mask : ndarray of booleans, optional

An optional mask of the image, to consider only part of the pixels.

return_as : np.ndarray or a sparse matrix class, optional

The class to use to build the returned adjacency matrix.

dtype : None or dtype, optional

The data of the returned sparse matrix. By default it is the dtype of img

Notes

For scikit-learn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix
instance. Going forward, np.ndarray returns an np.ndarray, as expected.

For compatibility, user code relying on this method should wrap its calls in np.asarray to avoid type issues.

sklearn.feature_extraction.image.reconstruct_from_patches_2d

sklearn.feature_extraction.image.reconstruct_from_patches_2d(patches, im-
age_size)

Reconstruct the image from all of its patches.

Patches are assumed to overlap and the image is constructed by filling in the patches from left to right, top to
bottom, averaging the overlapping regions.
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Read more in the User Guide.

Parameters patches : array, shape = (n_patches, patch_height, patch_width) or

(n_patches, patch_height, patch_width, n_channels) The complete set of patches. If
the patches contain colour information, channels are indexed along the last dimension:
RGB patches would have n_channels=3.

image_size : tuple of ints (image_height, image_width) or

(image_height, image_width, n_channels) the size of the image that will be recon-
structed

Returns image : array, shape = image_size

the reconstructed image

Examples using sklearn.feature_extraction.image.reconstruct_from_patches_2d

• Image denoising using dictionary learning

sklearn.feature_extraction.image.PatchExtractor

class sklearn.feature_extraction.image.PatchExtractor(patch_size=None,
max_patches=None, ran-
dom_state=None)

Extracts patches from a collection of images

Read more in the User Guide.

Parameters patch_size : tuple of ints (patch_height, patch_width)

the dimensions of one patch

max_patches : integer or float, optional default is None

The maximum number of patches per image to extract. If max_patches is a float in (0,
1), it is taken to mean a proportion of the total number of patches.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Methods

fit(X[, y]) Do nothing and return the estimator unchanged
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transforms the image samples in X into a matrix of

patch data.

__init__(patch_size=None, max_patches=None, random_state=None)

fit(X, y=None)
Do nothing and return the estimator unchanged
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This method is just there to implement the usual API and hence work in pipelines.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transforms the image samples in X into a matrix of patch data.

Parameters X : array, shape = (n_samples, image_height, image_width) or

(n_samples, image_height, image_width, n_channels) Array of images from which to
extract patches. For color images, the last dimension specifies the channel: a RGB
image would have n_channels=3.

Returns patches : array, shape = (n_patches, patch_height, patch_width) or

(n_patches, patch_height, patch_width, n_channels) The collection of patches extracted
from the images, where n_patches is either n_samples * max_patches or the total num-
ber of patches that can be extracted.

5.13.4 From text

The sklearn.feature_extraction.text submodule gathers utilities to build feature vectors from text doc-
uments.

feature_extraction.text.
CountVectorizer([. . . ])

Convert a collection of text documents to a matrix of token
counts

feature_extraction.text.
HashingVectorizer([. . . ])

Convert a collection of text documents to a matrix of token
occurrences

feature_extraction.text.
TfidfTransformer([. . . ])

Transform a count matrix to a normalized tf or tf-idf repre-
sentation

feature_extraction.text.
TfidfVectorizer([. . . ])

Convert a collection of raw documents to a matrix of TF-
IDF features.
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sklearn.feature_extraction.text.CountVectorizer

class sklearn.feature_extraction.text.CountVectorizer(input=’content’, encoding=’utf-
8’, decode_error=’strict’,
strip_accents=None, low-
ercase=True, preproces-
sor=None, tokenizer=None,
stop_words=None, to-
ken_pattern=’(?u)\b\w\w+\b’,
ngram_range=(1, 1), ana-
lyzer=’word’, max_df=1.0,
min_df=1, max_features=None,
vocabulary=None, binary=False,
dtype=<class ‘numpy.int64’>)

Convert a collection of text documents to a matrix of token counts

This implementation produces a sparse representation of the counts using scipy.sparse.csr_matrix.

If you do not provide an a-priori dictionary and you do not use an analyzer that does some kind of feature
selection then the number of features will be equal to the vocabulary size found by analyzing the data.

Read more in the User Guide.

Parameters input : string {‘filename’, ‘file’, ‘content’}

If ‘filename’, the sequence passed as an argument to fit is expected to be a list of file-
names that need reading to fetch the raw content to analyze.

If ‘file’, the sequence items must have a ‘read’ method (file-like object) that is called to
fetch the bytes in memory.

Otherwise the input is expected to be the sequence strings or bytes items are expected
to be analyzed directly.

encoding : string, ‘utf-8’ by default.

If bytes or files are given to analyze, this encoding is used to decode.

decode_error : {‘strict’, ‘ignore’, ‘replace’}

Instruction on what to do if a byte sequence is given to analyze that contains characters
not of the given encoding. By default, it is ‘strict’, meaning that a UnicodeDecodeError
will be raised. Other values are ‘ignore’ and ‘replace’.

strip_accents : {‘ascii’, ‘unicode’, None}

Remove accents during the preprocessing step. ‘ascii’ is a fast method that only works
on characters that have an direct ASCII mapping. ‘unicode’ is a slightly slower method
that works on any characters. None (default) does nothing.

analyzer : string, {‘word’, ‘char’, ‘char_wb’} or callable

Whether the feature should be made of word or character n-grams. Option ‘char_wb’
creates character n-grams only from text inside word boundaries; n-grams at the edges
of words are padded with space.

If a callable is passed it is used to extract the sequence of features out of the raw, unpro-
cessed input.

preprocessor : callable or None (default)

Override the preprocessing (string transformation) stage while preserving the tokenizing
and n-grams generation steps.
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tokenizer : callable or None (default)

Override the string tokenization step while preserving the preprocessing and n-grams
generation steps. Only applies if analyzer == 'word'.

ngram_range : tuple (min_n, max_n)

The lower and upper boundary of the range of n-values for different n-grams to be
extracted. All values of n such that min_n <= n <= max_n will be used.

stop_words : string {‘english’}, list, or None (default)

If ‘english’, a built-in stop word list for English is used.

If a list, that list is assumed to contain stop words, all of which will be removed from
the resulting tokens. Only applies if analyzer == 'word'.

If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0)
to automatically detect and filter stop words based on intra corpus document frequency
of terms.

lowercase : boolean, True by default

Convert all characters to lowercase before tokenizing.

token_pattern : string

Regular expression denoting what constitutes a “token”, only used if analyzer ==
'word'. The default regexp select tokens of 2 or more alphanumeric characters (punc-
tuation is completely ignored and always treated as a token separator).

max_df : float in range [0.0, 1.0] or int, default=1.0

When building the vocabulary ignore terms that have a document frequency strictly
higher than the given threshold (corpus-specific stop words). If float, the parameter
represents a proportion of documents, integer absolute counts. This parameter is ignored
if vocabulary is not None.

min_df : float in range [0.0, 1.0] or int, default=1

When building the vocabulary ignore terms that have a document frequency strictly
lower than the given threshold. This value is also called cut-off in the literature. If
float, the parameter represents a proportion of documents, integer absolute counts. This
parameter is ignored if vocabulary is not None.

max_features : int or None, default=None

If not None, build a vocabulary that only consider the top max_features ordered by term
frequency across the corpus.

This parameter is ignored if vocabulary is not None.

vocabulary : Mapping or iterable, optional

Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature
matrix, or an iterable over terms. If not given, a vocabulary is determined from the input
documents. Indices in the mapping should not be repeated and should not have any gap
between 0 and the largest index.

binary : boolean, default=False

If True, all non zero counts are set to 1. This is useful for discrete probabilistic models
that model binary events rather than integer counts.

dtype : type, optional
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Type of the matrix returned by fit_transform() or transform().

Attributes vocabulary_ : dict

A mapping of terms to feature indices.

stop_words_ : set

Terms that were ignored because they either:

• occurred in too many documents (max_df )

• occurred in too few documents (min_df )

• were cut off by feature selection (max_features).

This is only available if no vocabulary was given.

See also:

HashingVectorizer, TfidfVectorizer

Notes

The stop_words_ attribute can get large and increase the model size when pickling. This attribute is provided
only for introspection and can be safely removed using delattr or set to None before pickling.

Methods

build_analyzer() Return a callable that handles preprocessing and tok-
enization

build_preprocessor() Return a function to preprocess the text before tokeniza-
tion

build_tokenizer() Return a function that splits a string into a sequence of
tokens

decode(doc) Decode the input into a string of unicode symbols
fit(raw_documents[, y]) Learn a vocabulary dictionary of all tokens in the raw

documents.
fit_transform(raw_documents[, y]) Learn the vocabulary dictionary and return term-

document matrix.
get_feature_names() Array mapping from feature integer indices to feature

name
get_params([deep]) Get parameters for this estimator.
get_stop_words() Build or fetch the effective stop words list
inverse_transform(X) Return terms per document with nonzero entries in X.
set_params(**params) Set the parameters of this estimator.
transform(raw_documents) Transform documents to document-term matrix.

__init__(input=’content’, encoding=’utf-8’, decode_error=’strict’, strip_accents=None,
lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, to-
ken_pattern=’(?u)\b\w\w+\b’, ngram_range=(1, 1), analyzer=’word’, max_df=1.0,
min_df=1, max_features=None, vocabulary=None, binary=False, dtype=<class
‘numpy.int64’>)

build_analyzer()
Return a callable that handles preprocessing and tokenization
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build_preprocessor()
Return a function to preprocess the text before tokenization

build_tokenizer()
Return a function that splits a string into a sequence of tokens

decode(doc)
Decode the input into a string of unicode symbols

The decoding strategy depends on the vectorizer parameters.

fit(raw_documents, y=None)
Learn a vocabulary dictionary of all tokens in the raw documents.

Parameters raw_documents : iterable

An iterable which yields either str, unicode or file objects.

Returns self :

fit_transform(raw_documents, y=None)
Learn the vocabulary dictionary and return term-document matrix.

This is equivalent to fit followed by transform, but more efficiently implemented.

Parameters raw_documents : iterable

An iterable which yields either str, unicode or file objects.

Returns X : array, [n_samples, n_features]

Document-term matrix.

get_feature_names()
Array mapping from feature integer indices to feature name

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_stop_words()
Build or fetch the effective stop words list

inverse_transform(X)
Return terms per document with nonzero entries in X.

Parameters X : {array, sparse matrix}, shape = [n_samples, n_features]

Returns X_inv : list of arrays, len = n_samples

List of arrays of terms.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.
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Returns self :

transform(raw_documents)
Transform documents to document-term matrix.

Extract token counts out of raw text documents using the vocabulary fitted with fit or the one provided to
the constructor.

Parameters raw_documents : iterable

An iterable which yields either str, unicode or file objects.

Returns X : sparse matrix, [n_samples, n_features]

Document-term matrix.

Examples using sklearn.feature_extraction.text.CountVectorizer

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

• Sample pipeline for text feature extraction and evaluation

sklearn.feature_extraction.text.HashingVectorizer

class sklearn.feature_extraction.text.HashingVectorizer(input=’content’,
encoding=’utf-8’, de-
code_error=’strict’,
strip_accents=None, low-
ercase=True, preproces-
sor=None, tokenizer=None,
stop_words=None, to-
ken_pattern=’(?u)\b\w\w+\b’,
ngram_range=(1,
1), analyzer=’word’,
n_features=1048576, bi-
nary=False, norm=’l2’,
alternate_sign=True,
non_negative=False,
dtype=<class
‘numpy.float64’>)

Convert a collection of text documents to a matrix of token occurrences

It turns a collection of text documents into a scipy.sparse matrix holding token occurrence counts (or binary
occurrence information), possibly normalized as token frequencies if norm=’l1’ or projected on the euclidean
unit sphere if norm=’l2’.

This text vectorizer implementation uses the hashing trick to find the token string name to feature integer index
mapping.

This strategy has several advantages:

• it is very low memory scalable to large datasets as there is no need to store a vocabulary dictionary in
memory

• it is fast to pickle and un-pickle as it holds no state besides the constructor parameters

• it can be used in a streaming (partial fit) or parallel pipeline as there is no state computed during fit.

There are also a couple of cons (vs using a CountVectorizer with an in-memory vocabulary):
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• there is no way to compute the inverse transform (from feature indices to string feature names) which can
be a problem when trying to introspect which features are most important to a model.

• there can be collisions: distinct tokens can be mapped to the same feature index. However in practice this
is rarely an issue if n_features is large enough (e.g. 2 ** 18 for text classification problems).

• no IDF weighting as this would render the transformer stateful.

The hash function employed is the signed 32-bit version of Murmurhash3.

Read more in the User Guide.

Parameters input : string {‘filename’, ‘file’, ‘content’}

If ‘filename’, the sequence passed as an argument to fit is expected to be a list of file-
names that need reading to fetch the raw content to analyze.

If ‘file’, the sequence items must have a ‘read’ method (file-like object) that is called to
fetch the bytes in memory.

Otherwise the input is expected to be the sequence strings or bytes items are expected
to be analyzed directly.

encoding : string, default=’utf-8’

If bytes or files are given to analyze, this encoding is used to decode.

decode_error : {‘strict’, ‘ignore’, ‘replace’}

Instruction on what to do if a byte sequence is given to analyze that contains characters
not of the given encoding. By default, it is ‘strict’, meaning that a UnicodeDecodeError
will be raised. Other values are ‘ignore’ and ‘replace’.

strip_accents : {‘ascii’, ‘unicode’, None}

Remove accents during the preprocessing step. ‘ascii’ is a fast method that only works
on characters that have an direct ASCII mapping. ‘unicode’ is a slightly slower method
that works on any characters. None (default) does nothing.

analyzer : string, {‘word’, ‘char’, ‘char_wb’} or callable

Whether the feature should be made of word or character n-grams. Option ‘char_wb’
creates character n-grams only from text inside word boundaries; n-grams at the edges
of words are padded with space.

If a callable is passed it is used to extract the sequence of features out of the raw, unpro-
cessed input.

preprocessor : callable or None (default)

Override the preprocessing (string transformation) stage while preserving the tokenizing
and n-grams generation steps.

tokenizer : callable or None (default)

Override the string tokenization step while preserving the preprocessing and n-grams
generation steps. Only applies if analyzer == 'word'.

ngram_range : tuple (min_n, max_n), default=(1, 1)

The lower and upper boundary of the range of n-values for different n-grams to be
extracted. All values of n such that min_n <= n <= max_n will be used.

stop_words : string {‘english’}, list, or None (default)
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If ‘english’, a built-in stop word list for English is used.

If a list, that list is assumed to contain stop words, all of which will be removed from
the resulting tokens. Only applies if analyzer == 'word'.

lowercase : boolean, default=True

Convert all characters to lowercase before tokenizing.

token_pattern : string

Regular expression denoting what constitutes a “token”, only used if analyzer ==
'word'. The default regexp selects tokens of 2 or more alphanumeric characters
(punctuation is completely ignored and always treated as a token separator).

n_features : integer, default=(2 ** 20)

The number of features (columns) in the output matrices. Small numbers of features are
likely to cause hash collisions, but large numbers will cause larger coefficient dimen-
sions in linear learners.

norm : ‘l1’, ‘l2’ or None, optional

Norm used to normalize term vectors. None for no normalization.

binary : boolean, default=False.

If True, all non zero counts are set to 1. This is useful for discrete probabilistic models
that model binary events rather than integer counts.

dtype : type, optional

Type of the matrix returned by fit_transform() or transform().

alternate_sign : boolean, optional, default True

When True, an alternating sign is added to the features as to approximately conserve the
inner product in the hashed space even for small n_features. This approach is similar to
sparse random projection.

New in version 0.19.

non_negative : boolean, optional, default False

When True, an absolute value is applied to the features matrix prior to returning it.
When used in conjunction with alternate_sign=True, this significantly reduces the inner
product preservation property.

Deprecated since version 0.19: This option will be removed in 0.21.

See also:

CountVectorizer, TfidfVectorizer

Methods

build_analyzer() Return a callable that handles preprocessing and tok-
enization

build_preprocessor() Return a function to preprocess the text before tokeniza-
tion

build_tokenizer() Return a function that splits a string into a sequence of
tokens

Continued on next page
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Table 5.93 – continued from previous page
decode(doc) Decode the input into a string of unicode symbols
fit(X[, y]) Does nothing: this transformer is stateless.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_stop_words() Build or fetch the effective stop words list
partial_fit(X[, y]) Does nothing: this transformer is stateless.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform a sequence of documents to a document-term

matrix.

__init__(input=’content’, encoding=’utf-8’, decode_error=’strict’, strip_accents=None,
lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, to-
ken_pattern=’(?u)\b\w\w+\b’, ngram_range=(1, 1), analyzer=’word’, n_features=1048576,
binary=False, norm=’l2’, alternate_sign=True, non_negative=False, dtype=<class
‘numpy.float64’>)

build_analyzer()
Return a callable that handles preprocessing and tokenization

build_preprocessor()
Return a function to preprocess the text before tokenization

build_tokenizer()
Return a function that splits a string into a sequence of tokens

decode(doc)
Decode the input into a string of unicode symbols

The decoding strategy depends on the vectorizer parameters.

fit(X, y=None)
Does nothing: this transformer is stateless.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.
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get_stop_words()
Build or fetch the effective stop words list

partial_fit(X, y=None)
Does nothing: this transformer is stateless.

This method is just there to mark the fact that this transformer can work in a streaming setup.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform a sequence of documents to a document-term matrix.

Parameters X : iterable over raw text documents, length = n_samples

Samples. Each sample must be a text document (either bytes or unicode strings, file
name or file object depending on the constructor argument) which will be tokenized and
hashed.

Returns X : scipy.sparse matrix, shape = (n_samples, self.n_features)

Document-term matrix.

Examples using sklearn.feature_extraction.text.HashingVectorizer

• Out-of-core classification of text documents

• Classification of text documents using sparse features

• Clustering text documents using k-means

sklearn.feature_extraction.text.TfidfTransformer

class sklearn.feature_extraction.text.TfidfTransformer(norm=’l2’, use_idf=True,
smooth_idf=True, sublin-
ear_tf=False)

Transform a count matrix to a normalized tf or tf-idf representation

Tf means term-frequency while tf-idf means term-frequency times inverse document-frequency. This is a com-
mon term weighting scheme in information retrieval, that has also found good use in document classification.

The goal of using tf-idf instead of the raw frequencies of occurrence of a token in a given document is to scale
down the impact of tokens that occur very frequently in a given corpus and that are hence empirically less
informative than features that occur in a small fraction of the training corpus.

The formula that is used to compute the tf-idf of term t is tf-idf(d, t) = tf(t) * idf(d, t), and the idf is computed
as idf(d, t) = log [ n / df(d, t) ] + 1 (if smooth_idf=False), where n is the total number of documents and
df(d, t) is the document frequency; the document frequency is the number of documents d that contain term t.
The effect of adding “1” to the idf in the equation above is that terms with zero idf, i.e., terms that occur in
all documents in a training set, will not be entirely ignored. (Note that the idf formula above differs from the
standard textbook notation that defines the idf as idf(d, t) = log [ n / (df(d, t) + 1) ]).
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If smooth_idf=True (the default), the constant “1” is added to the numerator and denominator of the idf
as if an extra document was seen containing every term in the collection exactly once, which prevents zero
divisions: idf(d, t) = log [ (1 + n) / (1 + df(d, t)) ] + 1.

Furthermore, the formulas used to compute tf and idf depend on parameter settings that correspond to the
SMART notation used in IR as follows:

Tf is “n” (natural) by default, “l” (logarithmic) when sublinear_tf=True. Idf is “t” when use_idf is given,
“n” (none) otherwise. Normalization is “c” (cosine) when norm='l2', “n” (none) when norm=None.

Read more in the User Guide.

Parameters norm : ‘l1’, ‘l2’ or None, optional

Norm used to normalize term vectors. None for no normalization.

use_idf : boolean, default=True

Enable inverse-document-frequency reweighting.

smooth_idf : boolean, default=True

Smooth idf weights by adding one to document frequencies, as if an extra document
was seen containing every term in the collection exactly once. Prevents zero divisions.

sublinear_tf : boolean, default=False

Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).

References

[Yates2011], [MRS2008]

Methods

fit(X[, y]) Learn the idf vector (global term weights)
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, copy]) Transform a count matrix to a tf or tf-idf representation

__init__(norm=’l2’, use_idf=True, smooth_idf=True, sublinear_tf=False)

fit(X, y=None)
Learn the idf vector (global term weights)

Parameters X : sparse matrix, [n_samples, n_features]

a matrix of term/token counts

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]
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Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, copy=True)
Transform a count matrix to a tf or tf-idf representation

Parameters X : sparse matrix, [n_samples, n_features]

a matrix of term/token counts

copy : boolean, default True

Whether to copy X and operate on the copy or perform in-place operations.

Returns vectors : sparse matrix, [n_samples, n_features]

Examples using sklearn.feature_extraction.text.TfidfTransformer

• Sample pipeline for text feature extraction and evaluation

• Clustering text documents using k-means

1452 Chapter 5. API Reference



scikit-learn user guide, Release 0.19.1

sklearn.feature_extraction.text.TfidfVectorizer

class sklearn.feature_extraction.text.TfidfVectorizer(input=’content’, encoding=’utf-
8’, decode_error=’strict’,
strip_accents=None, low-
ercase=True, preproces-
sor=None, tokenizer=None, ana-
lyzer=’word’, stop_words=None,
token_pattern=’(?u)\b\w\w+\b’,
ngram_range=(1, 1),
max_df=1.0, min_df=1,
max_features=None, vocab-
ulary=None, binary=False,
dtype=<class ‘numpy.int64’>,
norm=’l2’, use_idf=True,
smooth_idf=True, sublin-
ear_tf=False)

Convert a collection of raw documents to a matrix of TF-IDF features.

Equivalent to CountVectorizer followed by TfidfTransformer.

Read more in the User Guide.

Parameters input : string {‘filename’, ‘file’, ‘content’}

If ‘filename’, the sequence passed as an argument to fit is expected to be a list of file-
names that need reading to fetch the raw content to analyze.

If ‘file’, the sequence items must have a ‘read’ method (file-like object) that is called to
fetch the bytes in memory.

Otherwise the input is expected to be the sequence strings or bytes items are expected
to be analyzed directly.

encoding : string, ‘utf-8’ by default.

If bytes or files are given to analyze, this encoding is used to decode.

decode_error : {‘strict’, ‘ignore’, ‘replace’}

Instruction on what to do if a byte sequence is given to analyze that contains characters
not of the given encoding. By default, it is ‘strict’, meaning that a UnicodeDecodeError
will be raised. Other values are ‘ignore’ and ‘replace’.

strip_accents : {‘ascii’, ‘unicode’, None}

Remove accents during the preprocessing step. ‘ascii’ is a fast method that only works
on characters that have an direct ASCII mapping. ‘unicode’ is a slightly slower method
that works on any characters. None (default) does nothing.

analyzer : string, {‘word’, ‘char’} or callable

Whether the feature should be made of word or character n-grams.

If a callable is passed it is used to extract the sequence of features out of the raw, unpro-
cessed input.

preprocessor : callable or None (default)

Override the preprocessing (string transformation) stage while preserving the tokenizing
and n-grams generation steps.

tokenizer : callable or None (default)
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Override the string tokenization step while preserving the preprocessing and n-grams
generation steps. Only applies if analyzer == 'word'.

ngram_range : tuple (min_n, max_n)

The lower and upper boundary of the range of n-values for different n-grams to be
extracted. All values of n such that min_n <= n <= max_n will be used.

stop_words : string {‘english’}, list, or None (default)

If a string, it is passed to _check_stop_list and the appropriate stop list is returned.
‘english’ is currently the only supported string value.

If a list, that list is assumed to contain stop words, all of which will be removed from
the resulting tokens. Only applies if analyzer == 'word'.

If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0)
to automatically detect and filter stop words based on intra corpus document frequency
of terms.

lowercase : boolean, default True

Convert all characters to lowercase before tokenizing.

token_pattern : string

Regular expression denoting what constitutes a “token”, only used if analyzer ==
'word'. The default regexp selects tokens of 2 or more alphanumeric characters
(punctuation is completely ignored and always treated as a token separator).

max_df : float in range [0.0, 1.0] or int, default=1.0

When building the vocabulary ignore terms that have a document frequency strictly
higher than the given threshold (corpus-specific stop words). If float, the parameter
represents a proportion of documents, integer absolute counts. This parameter is ignored
if vocabulary is not None.

min_df : float in range [0.0, 1.0] or int, default=1

When building the vocabulary ignore terms that have a document frequency strictly
lower than the given threshold. This value is also called cut-off in the literature. If
float, the parameter represents a proportion of documents, integer absolute counts. This
parameter is ignored if vocabulary is not None.

max_features : int or None, default=None

If not None, build a vocabulary that only consider the top max_features ordered by term
frequency across the corpus.

This parameter is ignored if vocabulary is not None.

vocabulary : Mapping or iterable, optional

Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature
matrix, or an iterable over terms. If not given, a vocabulary is determined from the input
documents.

binary : boolean, default=False

If True, all non-zero term counts are set to 1. This does not mean outputs will have only
0/1 values, only that the tf term in tf-idf is binary. (Set idf and normalization to False to
get 0/1 outputs.)

dtype : type, optional
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Type of the matrix returned by fit_transform() or transform().

norm : ‘l1’, ‘l2’ or None, optional

Norm used to normalize term vectors. None for no normalization.

use_idf : boolean, default=True

Enable inverse-document-frequency reweighting.

smooth_idf : boolean, default=True

Smooth idf weights by adding one to document frequencies, as if an extra document
was seen containing every term in the collection exactly once. Prevents zero divisions.

sublinear_tf : boolean, default=False

Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).

Attributes vocabulary_ : dict

A mapping of terms to feature indices.

idf_ : array, shape = [n_features], or None

The learned idf vector (global term weights) when use_idf is set to True, None oth-
erwise.

stop_words_ : set

Terms that were ignored because they either:

• occurred in too many documents (max_df )

• occurred in too few documents (min_df )

• were cut off by feature selection (max_features).

This is only available if no vocabulary was given.

See also:

CountVectorizer Tokenize the documents and count the occurrences of token and return them as a sparse
matrix

TfidfTransformer Apply Term Frequency Inverse Document Frequency normalization to a sparse matrix
of occurrence counts.

Notes

The stop_words_ attribute can get large and increase the model size when pickling. This attribute is provided
only for introspection and can be safely removed using delattr or set to None before pickling.

Methods

build_analyzer() Return a callable that handles preprocessing and tok-
enization

build_preprocessor() Return a function to preprocess the text before tokeniza-
tion

Continued on next page
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Table 5.95 – continued from previous page
build_tokenizer() Return a function that splits a string into a sequence of

tokens
decode(doc) Decode the input into a string of unicode symbols
fit(raw_documents[, y]) Learn vocabulary and idf from training set.
fit_transform(raw_documents[, y]) Learn vocabulary and idf, return term-document matrix.
get_feature_names() Array mapping from feature integer indices to feature

name
get_params([deep]) Get parameters for this estimator.
get_stop_words() Build or fetch the effective stop words list
inverse_transform(X) Return terms per document with nonzero entries in X.
set_params(**params) Set the parameters of this estimator.
transform(raw_documents[, copy]) Transform documents to document-term matrix.

__init__(input=’content’, encoding=’utf-8’, decode_error=’strict’, strip_accents=None, lower-
case=True, preprocessor=None, tokenizer=None, analyzer=’word’, stop_words=None,
token_pattern=’(?u)\b\w\w+\b’, ngram_range=(1, 1), max_df=1.0, min_df=1,
max_features=None, vocabulary=None, binary=False, dtype=<class ‘numpy.int64’>,
norm=’l2’, use_idf=True, smooth_idf=True, sublinear_tf=False)

build_analyzer()
Return a callable that handles preprocessing and tokenization

build_preprocessor()
Return a function to preprocess the text before tokenization

build_tokenizer()
Return a function that splits a string into a sequence of tokens

decode(doc)
Decode the input into a string of unicode symbols

The decoding strategy depends on the vectorizer parameters.

fit(raw_documents, y=None)
Learn vocabulary and idf from training set.

Parameters raw_documents : iterable

an iterable which yields either str, unicode or file objects

Returns self : TfidfVectorizer

fit_transform(raw_documents, y=None)
Learn vocabulary and idf, return term-document matrix.

This is equivalent to fit followed by transform, but more efficiently implemented.

Parameters raw_documents : iterable

an iterable which yields either str, unicode or file objects

Returns X : sparse matrix, [n_samples, n_features]

Tf-idf-weighted document-term matrix.

get_feature_names()
Array mapping from feature integer indices to feature name

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional
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If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_stop_words()
Build or fetch the effective stop words list

inverse_transform(X)
Return terms per document with nonzero entries in X.

Parameters X : {array, sparse matrix}, shape = [n_samples, n_features]

Returns X_inv : list of arrays, len = n_samples

List of arrays of terms.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(raw_documents, copy=True)
Transform documents to document-term matrix.

Uses the vocabulary and document frequencies (df) learned by fit (or fit_transform).

Parameters raw_documents : iterable

an iterable which yields either str, unicode or file objects

copy : boolean, default True

Whether to copy X and operate on the copy or perform in-place operations.

Returns X : sparse matrix, [n_samples, n_features]

Tf-idf-weighted document-term matrix.

Examples using sklearn.feature_extraction.text.TfidfVectorizer

• Feature Union with Heterogeneous Data Sources

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

• Biclustering documents with the Spectral Co-clustering algorithm

• Classification of text documents using sparse features

• Clustering text documents using k-means

5.14 sklearn.feature_selection: Feature Selection

The sklearn.feature_selection module implements feature selection algorithms. It currently includes uni-
variate filter selection methods and the recursive feature elimination algorithm.

User guide: See the Feature selection section for further details.
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feature_selection.
GenericUnivariateSelect([. . . ])

Univariate feature selector with configurable strategy.

feature_selection.SelectPercentile([. . . ]) Select features according to a percentile of the highest
scores.

feature_selection.SelectKBest([score_func,
k])

Select features according to the k highest scores.

feature_selection.SelectFpr([score_func, al-
pha])

Filter: Select the pvalues below alpha based on a FPR test.

feature_selection.SelectFdr([score_func, al-
pha])

Filter: Select the p-values for an estimated false discovery
rate

feature_selection.
SelectFromModel(estimator)

Meta-transformer for selecting features based on impor-
tance weights.

feature_selection.SelectFwe([score_func, al-
pha])

Filter: Select the p-values corresponding to Family-wise
error rate

feature_selection.RFE(estimator[, . . . ]) Feature ranking with recursive feature elimination.
feature_selection.RFECV (estimator[, step, . . . ]) Feature ranking with recursive feature elimination and

cross-validated selection of the best number of features.
feature_selection.
VarianceThreshold([threshold])

Feature selector that removes all low-variance features.

5.14.1 sklearn.feature_selection.GenericUnivariateSelect

class sklearn.feature_selection.GenericUnivariateSelect(score_func=<function
f_classif>, mode=’percentile’,
param=1e-05)

Univariate feature selector with configurable strategy.

Read more in the User Guide.

Parameters score_func : callable

Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues). For
modes ‘percentile’ or ‘kbest’ it can return a single array scores.

mode : {‘percentile’, ‘k_best’, ‘fpr’, ‘fdr’, ‘fwe’}

Feature selection mode.

param : float or int depending on the feature selection mode

Parameter of the corresponding mode.

Attributes scores_ : array-like, shape=(n_features,)

Scores of features.

pvalues_ : array-like, shape=(n_features,)

p-values of feature scores, None if score_func returned scores only.

See also:

f_classif ANOVA F-value between label/feature for classification tasks.

mutual_info_classif Mutual information for a discrete target.

chi2 Chi-squared stats of non-negative features for classification tasks.

f_regression F-value between label/feature for regression tasks.
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mutual_info_regression Mutual information for a continuous target.

SelectPercentile Select features based on percentile of the highest scores.

SelectKBest Select features based on the k highest scores.

SelectFpr Select features based on a false positive rate test.

SelectFdr Select features based on an estimated false discovery rate.

SelectFwe Select features based on family-wise error rate.

Methods

fit(X, y) Run score function on (X, y) and get the appropriate
features.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(score_func=<function f_classif>, mode=’percentile’, param=1e-05)

fit(X, y)
Run score function on (X, y) and get the appropriate features.

Parameters X : array-like, shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (class labels in classification, real numbers in regression).

Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional
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If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters indices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returns support : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters X : array of shape [n_samples, n_selected_features]

The input samples.

Returns X_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Reduce X to the selected features.

Parameters X : array of shape [n_samples, n_features]

The input samples.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

5.14.2 sklearn.feature_selection.SelectPercentile

class sklearn.feature_selection.SelectPercentile(score_func=<function f_classif>, per-
centile=10)

Select features according to a percentile of the highest scores.

Read more in the User Guide.

Parameters score_func : callable
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Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues)
or a single array with scores. Default is f_classif (see below “See also”). The default
function only works with classification tasks.

percentile : int, optional, default=10

Percent of features to keep.

Attributes scores_ : array-like, shape=(n_features,)

Scores of features.

pvalues_ : array-like, shape=(n_features,)

p-values of feature scores, None if score_func returned only scores.

See also:

f_classif ANOVA F-value between label/feature for classification tasks.

mutual_info_classif Mutual information for a discrete target.

chi2 Chi-squared stats of non-negative features for classification tasks.

f_regression F-value between label/feature for regression tasks.

mutual_info_regression Mutual information for a continuous target.

SelectKBest Select features based on the k highest scores.

SelectFpr Select features based on a false positive rate test.

SelectFdr Select features based on an estimated false discovery rate.

SelectFwe Select features based on family-wise error rate.

GenericUnivariateSelect Univariate feature selector with configurable mode.

Notes

Ties between features with equal scores will be broken in an unspecified way.

Methods

fit(X, y) Run score function on (X, y) and get the appropriate
features.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(score_func=<function f_classif>, percentile=10)

fit(X, y)
Run score function on (X, y) and get the appropriate features.

Parameters X : array-like, shape = [n_samples, n_features]
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The training input samples.

y : array-like, shape = [n_samples]

The target values (class labels in classification, real numbers in regression).

Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters indices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returns support : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters X : array of shape [n_samples, n_selected_features]

The input samples.

Returns X_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

set_params(**params)
Set the parameters of this estimator.
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The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Reduce X to the selected features.

Parameters X : array of shape [n_samples, n_features]

The input samples.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.feature_selection.SelectPercentile

• Feature agglomeration vs. univariate selection

• Univariate Feature Selection

• SVM-Anova: SVM with univariate feature selection

5.14.3 sklearn.feature_selection.SelectKBest

class sklearn.feature_selection.SelectKBest(score_func=<function f_classif>, k=10)
Select features according to the k highest scores.

Read more in the User Guide.

Parameters score_func : callable

Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues)
or a single array with scores. Default is f_classif (see below “See also”). The default
function only works with classification tasks.

k : int or “all”, optional, default=10

Number of top features to select. The “all” option bypasses selection, for use in a
parameter search.

Attributes scores_ : array-like, shape=(n_features,)

Scores of features.

pvalues_ : array-like, shape=(n_features,)

p-values of feature scores, None if score_func returned only scores.

See also:

f_classif ANOVA F-value between label/feature for classification tasks.

mutual_info_classif Mutual information for a discrete target.

chi2 Chi-squared stats of non-negative features for classification tasks.

f_regression F-value between label/feature for regression tasks.

mutual_info_regression Mutual information for a continuous target.

SelectPercentile Select features based on percentile of the highest scores.
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SelectFpr Select features based on a false positive rate test.

SelectFdr Select features based on an estimated false discovery rate.

SelectFwe Select features based on family-wise error rate.

GenericUnivariateSelect Univariate feature selector with configurable mode.

Notes

Ties between features with equal scores will be broken in an unspecified way.

Methods

fit(X, y) Run score function on (X, y) and get the appropriate
features.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(score_func=<function f_classif>, k=10)

fit(X, y)
Run score function on (X, y) and get the appropriate features.

Parameters X : array-like, shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (class labels in classification, real numbers in regression).

Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional
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If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters indices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returns support : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters X : array of shape [n_samples, n_selected_features]

The input samples.

Returns X_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Reduce X to the selected features.

Parameters X : array of shape [n_samples, n_features]

The input samples.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.feature_selection.SelectKBest

• Selecting dimensionality reduction with Pipeline and GridSearchCV

• Concatenating multiple feature extraction methods

• Pipeline Anova SVM

• Classification of text documents using sparse features
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5.14.4 sklearn.feature_selection.SelectFpr

class sklearn.feature_selection.SelectFpr(score_func=<function f_classif>, alpha=0.05)
Filter: Select the pvalues below alpha based on a FPR test.

FPR test stands for False Positive Rate test. It controls the total amount of false detections.

Read more in the User Guide.

Parameters score_func : callable

Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues).
Default is f_classif (see below “See also”). The default function only works with clas-
sification tasks.

alpha : float, optional

The highest p-value for features to be kept.

Attributes scores_ : array-like, shape=(n_features,)

Scores of features.

pvalues_ : array-like, shape=(n_features,)

p-values of feature scores.

See also:

f_classif ANOVA F-value between label/feature for classification tasks.

chi2 Chi-squared stats of non-negative features for classification tasks.

mutual_info_classif

f_regression F-value between label/feature for regression tasks.

mutual_info_regression Mutual information between features and the target.

SelectPercentile Select features based on percentile of the highest scores.

SelectKBest Select features based on the k highest scores.

SelectFdr Select features based on an estimated false discovery rate.

SelectFwe Select features based on family-wise error rate.

GenericUnivariateSelect Univariate feature selector with configurable mode.

Methods

fit(X, y) Run score function on (X, y) and get the appropriate
features.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(score_func=<function f_classif>, alpha=0.05)
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fit(X, y)
Run score function on (X, y) and get the appropriate features.

Parameters X : array-like, shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (class labels in classification, real numbers in regression).

Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters indices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returns support : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters X : array of shape [n_samples, n_selected_features]

The input samples.

Returns X_r : array of shape [n_samples, n_original_features]
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X with columns of zeros inserted where features would have been removed by trans-
form.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Reduce X to the selected features.

Parameters X : array of shape [n_samples, n_features]

The input samples.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

5.14.5 sklearn.feature_selection.SelectFdr

class sklearn.feature_selection.SelectFdr(score_func=<function f_classif>, alpha=0.05)
Filter: Select the p-values for an estimated false discovery rate

This uses the Benjamini-Hochberg procedure. alpha is an upper bound on the expected false discovery rate.

Read more in the User Guide.

Parameters score_func : callable

Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues).
Default is f_classif (see below “See also”). The default function only works with clas-
sification tasks.

alpha : float, optional

The highest uncorrected p-value for features to keep.

Attributes scores_ : array-like, shape=(n_features,)

Scores of features.

pvalues_ : array-like, shape=(n_features,)

p-values of feature scores.

See also:

f_classif ANOVA F-value between label/feature for classification tasks.

mutual_info_classif Mutual information for a discrete target.

chi2 Chi-squared stats of non-negative features for classification tasks.

f_regression F-value between label/feature for regression tasks.

mutual_info_regression Mutual information for a contnuous target.

SelectPercentile Select features based on percentile of the highest scores.

SelectKBest Select features based on the k highest scores.
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SelectFpr Select features based on a false positive rate test.

SelectFwe Select features based on family-wise error rate.

GenericUnivariateSelect Univariate feature selector with configurable mode.

References

https://en.wikipedia.org/wiki/False_discovery_rate

Methods

fit(X, y) Run score function on (X, y) and get the appropriate
features.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(score_func=<function f_classif>, alpha=0.05)

fit(X, y)
Run score function on (X, y) and get the appropriate features.

Parameters X : array-like, shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (class labels in classification, real numbers in regression).

Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional
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If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters indices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returns support : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters X : array of shape [n_samples, n_selected_features]

The input samples.

Returns X_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Reduce X to the selected features.

Parameters X : array of shape [n_samples, n_features]

The input samples.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

5.14.6 sklearn.feature_selection.SelectFromModel

class sklearn.feature_selection.SelectFromModel(estimator, threshold=None, prefit=False,
norm_order=1)

Meta-transformer for selecting features based on importance weights.

New in version 0.17.

Parameters estimator : object
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The base estimator from which the transformer is built. This can be both a fitted (if
prefit is set to True) or a non-fitted estimator. The estimator must have either a
feature_importances_ or coef_ attribute after fitting.

threshold : string, float, optional default None

The threshold value to use for feature selection. Features whose importance is greater
or equal are kept while the others are discarded. If “median” (resp. “mean”), then
the threshold value is the median (resp. the mean) of the feature importances. A
scaling factor (e.g., “1.25*mean”) may also be used. If None and if the estimator has
a parameter penalty set to l1, either explicitly or implicitly (e.g, Lasso), the threshold
used is 1e-5. Otherwise, “mean” is used by default.

prefit : bool, default False

Whether a prefit model is expected to be passed into the constructor directly or not. If
True, transform must be called directly and SelectFromModel cannot be used with
cross_val_score, GridSearchCV and similar utilities that clone the estimator.
Otherwise train the model using fit and then transform to do feature selection.

norm_order : non-zero int, inf, -inf, default 1

Order of the norm used to filter the vectors of coefficients below threshold in the
case where the coef_ attribute of the estimator is of dimension 2.

Attributes estimator_ : an estimator

The base estimator from which the transformer is built. This is stored only when a
non-fitted estimator is passed to the SelectFromModel, i.e when prefit is False.

threshold_ : float

The threshold value used for feature selection.

Methods

fit(X[, y]) Fit the SelectFromModel meta-transformer.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
partial_fit(X[, y]) Fit the SelectFromModel meta-transformer only once.
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(estimator, threshold=None, prefit=False, norm_order=1)

fit(X, y=None, **fit_params)
Fit the SelectFromModel meta-transformer.

Parameters X : array-like of shape (n_samples, n_features)

The training input samples.

y : array-like, shape (n_samples,)

The target values (integers that correspond to classes in classification, real numbers in
regression).

**fit_params : Other estimator specific parameters
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Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters indices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returns support : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters X : array of shape [n_samples, n_selected_features]

The input samples.

Returns X_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

partial_fit(X, y=None, **fit_params)
Fit the SelectFromModel meta-transformer only once.

Parameters X : array-like of shape (n_samples, n_features)

The training input samples.

y : array-like, shape (n_samples,)
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The target values (integers that correspond to classes in classification, real numbers in
regression).

**fit_params : Other estimator specific parameters

Returns self : object

Returns self.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Reduce X to the selected features.

Parameters X : array of shape [n_samples, n_features]

The input samples.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.feature_selection.SelectFromModel

• Feature selection using SelectFromModel and LassoCV

• Classification of text documents using sparse features

5.14.7 sklearn.feature_selection.SelectFwe

class sklearn.feature_selection.SelectFwe(score_func=<function f_classif>, alpha=0.05)
Filter: Select the p-values corresponding to Family-wise error rate

Read more in the User Guide.

Parameters score_func : callable

Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues).
Default is f_classif (see below “See also”). The default function only works with clas-
sification tasks.

alpha : float, optional

The highest uncorrected p-value for features to keep.

Attributes scores_ : array-like, shape=(n_features,)

Scores of features.

pvalues_ : array-like, shape=(n_features,)

p-values of feature scores.

See also:

f_classif ANOVA F-value between label/feature for classification tasks.
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chi2 Chi-squared stats of non-negative features for classification tasks.

f_regression F-value between label/feature for regression tasks.

SelectPercentile Select features based on percentile of the highest scores.

SelectKBest Select features based on the k highest scores.

SelectFpr Select features based on a false positive rate test.

SelectFdr Select features based on an estimated false discovery rate.

GenericUnivariateSelect Univariate feature selector with configurable mode.

Methods

fit(X, y) Run score function on (X, y) and get the appropriate
features.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(score_func=<function f_classif>, alpha=0.05)

fit(X, y)
Run score function on (X, y) and get the appropriate features.

Parameters X : array-like, shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values (class labels in classification, real numbers in regression).

Returns self : object

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional
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If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters indices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returns support : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters X : array of shape [n_samples, n_selected_features]

The input samples.

Returns X_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Reduce X to the selected features.

Parameters X : array of shape [n_samples, n_features]

The input samples.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

5.14.8 sklearn.feature_selection.RFE

class sklearn.feature_selection.RFE(estimator, n_features_to_select=None, step=1, verbose=0)
Feature ranking with recursive feature elimination.

Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model), the goal of
recursive feature elimination (RFE) is to select features by recursively considering smaller and smaller sets of
features. First, the estimator is trained on the initial set of features and the importance of each feature is obtained
either through a coef_ attribute or through a feature_importances_ attribute. Then, the least important
features are pruned from current set of features. That procedure is recursively repeated on the pruned set until
the desired number of features to select is eventually reached.
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Read more in the User Guide.

Parameters estimator : object

A supervised learning estimator with a fit method that provides informa-
tion about feature importance either through a coef_ attribute or through a
feature_importances_ attribute.

n_features_to_select : int or None (default=None)

The number of features to select. If None, half of the features are selected.

step : int or float, optional (default=1)

If greater than or equal to 1, then step corresponds to the (integer) number of features
to remove at each iteration. If within (0.0, 1.0), then step corresponds to the percentage
(rounded down) of features to remove at each iteration.

verbose : int, default=0

Controls verbosity of output.

Attributes n_features_ : int

The number of selected features.

support_ : array of shape [n_features]

The mask of selected features.

ranking_ : array of shape [n_features]

The feature ranking, such that ranking_[i] corresponds to the ranking position of
the i-th feature. Selected (i.e., estimated best) features are assigned rank 1.

estimator_ : object

The external estimator fit on the reduced dataset.

References

[R27]

Examples

The following example shows how to retrieve the 5 right informative features in the Friedman #1 dataset.

>>> from sklearn.datasets import make_friedman1
>>> from sklearn.feature_selection import RFE
>>> from sklearn.svm import SVR
>>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
>>> estimator = SVR(kernel="linear")
>>> selector = RFE(estimator, 5, step=1)
>>> selector = selector.fit(X, y)
>>> selector.support_
array([ True, True, True, True, True,

False, False, False, False, False], dtype=bool)
>>> selector.ranking_
array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5])
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Methods

decision_function(X)
fit(X, y) Fit the RFE model and then the underlying estimator on

the selected features.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
predict(X) Reduce X to the selected features and then predict using

the underlying estimator.
predict_log_proba(X)
predict_proba(X)
score(X, y) Reduce X to the selected features and then return the

score of the underlying estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(estimator, n_features_to_select=None, step=1, verbose=0)

fit(X, y)

Fit the RFE model and then the underlying estimator on the selected features.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

The training input samples.

y : array-like, shape = [n_samples]

The target values.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.
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get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters indices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returns support : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters X : array of shape [n_samples, n_selected_features]

The input samples.

Returns X_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

predict(X)

Reduce X to the selected features and then predict using the underlying estimator.

Parameters X : array of shape [n_samples, n_features]

The input samples.

Returns y : array of shape [n_samples]

The predicted target values.

score(X, y)

Reduce X to the selected features and then return the score of the underlying estimator.

Parameters X : array of shape [n_samples, n_features]

The input samples.

y : array of shape [n_samples]

The target values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Reduce X to the selected features.

Parameters X : array of shape [n_samples, n_features]

The input samples.
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Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.feature_selection.RFE

• Recursive feature elimination

5.14.9 sklearn.feature_selection.RFECV

class sklearn.feature_selection.RFECV(estimator, step=1, cv=None, scoring=None, verbose=0,
n_jobs=1)

Feature ranking with recursive feature elimination and cross-validated selection of the best number of features.

Read more in the User Guide.

Parameters estimator : object

A supervised learning estimator with a fit method that provides informa-
tion about feature importance either through a coef_ attribute or through a
feature_importances_ attribute.

step : int or float, optional (default=1)

If greater than or equal to 1, then step corresponds to the (integer) number of features
to remove at each iteration. If within (0.0, 1.0), then step corresponds to the percentage
(rounded down) of features to remove at each iteration.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, if y is binary or multiclass, sklearn.
model_selection.StratifiedKFold is used. If the estimator is a classifier
or if y is neither binary nor multiclass, sklearn.model_selection.KFold is
used.

Refer User Guide for the various cross-validation strategies that can be used here.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

verbose : int, default=0

Controls verbosity of output.

n_jobs : int, default 1

Number of cores to run in parallel while fitting across folds. Defaults to 1 core. If
n_jobs=-1, then number of jobs is set to number of cores.

Attributes n_features_ : int

The number of selected features with cross-validation.
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support_ : array of shape [n_features]

The mask of selected features.

ranking_ : array of shape [n_features]

The feature ranking, such that ranking_[i] corresponds to the ranking position of the
i-th feature. Selected (i.e., estimated best) features are assigned rank 1.

grid_scores_ : array of shape [n_subsets_of_features]

The cross-validation scores such that grid_scores_[i] corresponds to the CV
score of the i-th subset of features.

estimator_ : object

The external estimator fit on the reduced dataset.

Notes

The size of grid_scores_ is equal to ceil((n_features - 1) / step) + 1, where step is the number of features
removed at each iteration.

References

[R28]

Examples

The following example shows how to retrieve the a-priori not known 5 informative features in the Friedman #1
dataset.

>>> from sklearn.datasets import make_friedman1
>>> from sklearn.feature_selection import RFECV
>>> from sklearn.svm import SVR
>>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
>>> estimator = SVR(kernel="linear")
>>> selector = RFECV(estimator, step=1, cv=5)
>>> selector = selector.fit(X, y)
>>> selector.support_
array([ True, True, True, True, True,

False, False, False, False, False], dtype=bool)
>>> selector.ranking_
array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5])

Methods

decision_function(X)
fit(X, y) Fit the RFE model and automatically tune the number

of selected features.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.

Continued on next page
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Table 5.105 – continued from previous page
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
predict(X) Reduce X to the selected features and then predict using

the underlying estimator.
predict_log_proba(X)
predict_proba(X)
score(X, y) Reduce X to the selected features and then return the

score of the underlying estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(estimator, step=1, cv=None, scoring=None, verbose=0, n_jobs=1)

fit(X, y)

Fit the RFE model and automatically tune the number of selected features.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vector, where n_samples is the number of samples and n_features is the total
number of features.

y : array-like, shape = [n_samples]

Target values (integers for classification, real numbers for regression).

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters indices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returns support : array
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An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters X : array of shape [n_samples, n_selected_features]

The input samples.

Returns X_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

predict(X)

Reduce X to the selected features and then predict using the underlying estimator.

Parameters X : array of shape [n_samples, n_features]

The input samples.

Returns y : array of shape [n_samples]

The predicted target values.

score(X, y)

Reduce X to the selected features and then return the score of the underlying estimator.

Parameters X : array of shape [n_samples, n_features]

The input samples.

y : array of shape [n_samples]

The target values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Reduce X to the selected features.

Parameters X : array of shape [n_samples, n_features]

The input samples.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Examples using sklearn.feature_selection.RFECV

• Recursive feature elimination with cross-validation
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5.14.10 sklearn.feature_selection.VarianceThreshold

class sklearn.feature_selection.VarianceThreshold(threshold=0.0)
Feature selector that removes all low-variance features.

This feature selection algorithm looks only at the features (X), not the desired outputs (y), and can thus be used
for unsupervised learning.

Read more in the User Guide.

Parameters threshold : float, optional

Features with a training-set variance lower than this threshold will be removed. The
default is to keep all features with non-zero variance, i.e. remove the features that have
the same value in all samples.

Attributes variances_ : array, shape (n_features,)

Variances of individual features.

Examples

The following dataset has integer features, two of which are the same in every sample. These are removed with
the default setting for threshold:

>>> X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]]
>>> selector = VarianceThreshold()
>>> selector.fit_transform(X)
array([[2, 0],

[1, 4],
[1, 1]])

Methods

fit(X[, y]) Learn empirical variances from X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(threshold=0.0)

fit(X, y=None)
Learn empirical variances from X.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Sample vectors from which to compute variances.

y : any

Ignored. This parameter exists only for compatibility with sklearn.pipeline.Pipeline.

Returns self :
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fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters indices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returns support : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters X : array of shape [n_samples, n_selected_features]

The input samples.

Returns X_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Reduce X to the selected features.
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Parameters X : array of shape [n_samples, n_features]

The input samples.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

feature_selection.chi2(X, y) Compute chi-squared stats between each non-negative fea-
ture and class.

feature_selection.f_classif(X, y) Compute the ANOVA F-value for the provided sample.
feature_selection.f_regression(X, y[, cen-
ter])

Univariate linear regression tests.

feature_selection.
mutual_info_classif(X, y)

Estimate mutual information for a discrete target variable.

feature_selection.
mutual_info_regression(X, y)

Estimate mutual information for a continuous target vari-
able.

5.14.11 sklearn.feature_selection.chi2

sklearn.feature_selection.chi2(X, y)
Compute chi-squared stats between each non-negative feature and class.

This score can be used to select the n_features features with the highest values for the test chi-squared statistic
from X, which must contain only non-negative features such as booleans or frequencies (e.g., term counts in
document classification), relative to the classes.

Recall that the chi-square test measures dependence between stochastic variables, so using this function “weeds
out” the features that are the most likely to be independent of class and therefore irrelevant for classification.

Read more in the User Guide.

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features_in)

Sample vectors.

y : array-like, shape = (n_samples,)

Target vector (class labels).

Returns chi2 : array, shape = (n_features,)

chi2 statistics of each feature.

pval : array, shape = (n_features,)

p-values of each feature.

See also:

f_classif ANOVA F-value between label/feature for classification tasks.

f_regression F-value between label/feature for regression tasks.

Notes

Complexity of this algorithm is O(n_classes * n_features).
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Examples using sklearn.feature_selection.chi2

• Selecting dimensionality reduction with Pipeline and GridSearchCV

• Classification of text documents using sparse features

5.14.12 sklearn.feature_selection.f_classif

sklearn.feature_selection.f_classif(X, y)
Compute the ANOVA F-value for the provided sample.

Read more in the User Guide.

Parameters X : {array-like, sparse matrix} shape = [n_samples, n_features]

The set of regressors that will be tested sequentially.

y : array of shape(n_samples)

The data matrix.

Returns F : array, shape = [n_features,]

The set of F values.

pval : array, shape = [n_features,]

The set of p-values.

See also:

chi2 Chi-squared stats of non-negative features for classification tasks.

f_regression F-value between label/feature for regression tasks.

Examples using sklearn.feature_selection.f_classif

• Univariate Feature Selection

• SVM-Anova: SVM with univariate feature selection

5.14.13 sklearn.feature_selection.f_regression

sklearn.feature_selection.f_regression(X, y, center=True)
Univariate linear regression tests.

Linear model for testing the individual effect of each of many regressors. This is a scoring function to be used
in a feature seletion procedure, not a free standing feature selection procedure.

This is done in 2 steps:

1. The correlation between each regressor and the target is computed, that is, ((X[:, i] - mean(X[:, i])) * (y -
mean_y)) / (std(X[:, i]) * std(y)).

2. It is converted to an F score then to a p-value.

For more on usage see the User Guide.

Parameters X : {array-like, sparse matrix} shape = (n_samples, n_features)

The set of regressors that will be tested sequentially.
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y : array of shape(n_samples).

The data matrix

center : True, bool,

If true, X and y will be centered.

Returns F : array, shape=(n_features,)

F values of features.

pval : array, shape=(n_features,)

p-values of F-scores.

See also:

mutual_info_regression Mutual information for a continuous target.

f_classif ANOVA F-value between label/feature for classification tasks.

chi2 Chi-squared stats of non-negative features for classification tasks.

SelectKBest Select features based on the k highest scores.

SelectFpr Select features based on a false positive rate test.

SelectFdr Select features based on an estimated false discovery rate.

SelectFwe Select features based on family-wise error rate.

SelectPercentile Select features based on percentile of the highest scores.

Examples using sklearn.feature_selection.f_regression

• Feature agglomeration vs. univariate selection

• Comparison of F-test and mutual information

• Pipeline Anova SVM

5.14.14 sklearn.feature_selection.mutual_info_classif

sklearn.feature_selection.mutual_info_classif(X, y, discrete_features=’auto’,
n_neighbors=3, copy=True, ran-
dom_state=None)

Estimate mutual information for a discrete target variable.

Mutual information (MI) [R172] between two random variables is a non-negative value, which measures the
dependency between the variables. It is equal to zero if and only if two random variables are independent, and
higher values mean higher dependency.

The function relies on nonparametric methods based on entropy estimation from k-nearest neighbors distances
as described in [R173] and [R174]. Both methods are based on the idea originally proposed in [R175].

It can be used for univariate features selection, read more in the User Guide.

Parameters X : array_like or sparse matrix, shape (n_samples, n_features)

Feature matrix.

y : array_like, shape (n_samples,)

Target vector.
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discrete_features : {‘auto’, bool, array_like}, default ‘auto’

If bool, then determines whether to consider all features discrete or continuous. If array,
then it should be either a boolean mask with shape (n_features,) or array with indices of
discrete features. If ‘auto’, it is assigned to False for dense X and to True for sparse X.

n_neighbors : int, default 3

Number of neighbors to use for MI estimation for continuous variables, see [R173] and
[R174]. Higher values reduce variance of the estimation, but could introduce a bias.

copy : bool, default True

Whether to make a copy of the given data. If set to False, the initial data will be over-
written.

random_state : int, RandomState instance or None, optional, default None

The seed of the pseudo random number generator for adding small noise to continuous
variables in order to remove repeated values. If int, random_state is the seed used by
the random number generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the RandomState instance
used by np.random.

Returns mi : ndarray, shape (n_features,)

Estimated mutual information between each feature and the target.

Notes

1. The term “discrete features” is used instead of naming them “categorical”, because it describes the essence
more accurately. For example, pixel intensities of an image are discrete features (but hardly categorical)
and you will get better results if mark them as such. Also note, that treating a continuous variable as
discrete and vice versa will usually give incorrect results, so be attentive about that.

2. True mutual information can’t be negative. If its estimate turns out to be negative, it is replaced by zero.

References

[R172], [R173], [R174], [R175]

5.14.15 sklearn.feature_selection.mutual_info_regression

sklearn.feature_selection.mutual_info_regression(X, y, discrete_features=’auto’,
n_neighbors=3, copy=True, ran-
dom_state=None)

Estimate mutual information for a continuous target variable.

Mutual information (MI) [R29] between two random variables is a non-negative value, which measures the
dependency between the variables. It is equal to zero if and only if two random variables are independent, and
higher values mean higher dependency.

The function relies on nonparametric methods based on entropy estimation from k-nearest neighbors distances
as described in [R30] and [R31]. Both methods are based on the idea originally proposed in [R32].

It can be used for univariate features selection, read more in the User Guide.

Parameters X : array_like or sparse matrix, shape (n_samples, n_features)
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Feature matrix.

y : array_like, shape (n_samples,)

Target vector.

discrete_features : {‘auto’, bool, array_like}, default ‘auto’

If bool, then determines whether to consider all features discrete or continuous. If array,
then it should be either a boolean mask with shape (n_features,) or array with indices of
discrete features. If ‘auto’, it is assigned to False for dense X and to True for sparse X.

n_neighbors : int, default 3

Number of neighbors to use for MI estimation for continuous variables, see [R30] and
[R31]. Higher values reduce variance of the estimation, but could introduce a bias.

copy : bool, default True

Whether to make a copy of the given data. If set to False, the initial data will be over-
written.

random_state : int, RandomState instance or None, optional, default None

The seed of the pseudo random number generator for adding small noise to continuous
variables in order to remove repeated values. If int, random_state is the seed used by
the random number generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the RandomState instance
used by np.random.

Returns mi : ndarray, shape (n_features,)

Estimated mutual information between each feature and the target.

Notes

1. The term “discrete features” is used instead of naming them “categorical”, because it describes the essence
more accurately. For example, pixel intensities of an image are discrete features (but hardly categorical)
and you will get better results if mark them as such. Also note, that treating a continuous variable as
discrete and vice versa will usually give incorrect results, so be attentive about that.

2. True mutual information can’t be negative. If its estimate turns out to be negative, it is replaced by zero.

References

[R29], [R30], [R31], [R32]

Examples using sklearn.feature_selection.mutual_info_regression

• Comparison of F-test and mutual information

5.15 sklearn.gaussian_process: Gaussian Processes

The sklearn.gaussian_process module implements Gaussian Process based regression and classification.

User guide: See the Gaussian Processes section for further details.
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gaussian_process.GaussianProcessClassifier([. . . ])Gaussian process classification (GPC) based on Laplace
approximation.

gaussian_process.GaussianProcessRegressor([. . . ])Gaussian process regression (GPR).

5.15.1 sklearn.gaussian_process.GaussianProcessClassifier

class sklearn.gaussian_process.GaussianProcessClassifier(kernel=None, opti-
mizer=’fmin_l_bfgs_b’,
n_restarts_optimizer=0,
max_iter_predict=100,
warm_start=False,
copy_X_train=True,
random_state=None,
multi_class=’one_vs_rest’,
n_jobs=1)

Gaussian process classification (GPC) based on Laplace approximation.

The implementation is based on Algorithm 3.1, 3.2, and 5.1 of Gaussian Processes for Machine Learning
(GPML) by Rasmussen and Williams.

Internally, the Laplace approximation is used for approximating the non-Gaussian posterior by a Gaussian.

Currently, the implementation is restricted to using the logistic link function. For multi-class classification,
several binary one-versus rest classifiers are fitted. Note that this class thus does not implement a true multi-
class Laplace approximation.

Parameters kernel : kernel object

The kernel specifying the covariance function of the GP. If None is passed, the kernel
“1.0 * RBF(1.0)” is used as default. Note that the kernel’s hyperparameters are opti-
mized during fitting.

optimizer : string or callable, optional (default: “fmin_l_bfgs_b”)

Can either be one of the internally supported optimizers for optimizing the kernel’s
parameters, specified by a string, or an externally defined optimizer passed as a callable.
If a callable is passed, it must have the signature:

def optimizer(obj_func, initial_theta, bounds):
# * 'obj_func' is the objective function to be maximized,

→˓which
# takes the hyperparameters theta as parameter and an
# optional flag eval_gradient, which determines if the
# gradient is returned additionally to the function value
# * 'initial_theta': the initial value for theta, which can

→˓be
# used by local optimizers
# * 'bounds': the bounds on the values of theta
....
# Returned are the best found hyperparameters theta and
# the corresponding value of the target function.
return theta_opt, func_min

Per default, the ‘fmin_l_bfgs_b’ algorithm from scipy.optimize is used. If None is
passed, the kernel’s parameters are kept fixed. Available internal optimizers are:
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'fmin_l_bfgs_b'

n_restarts_optimizer : int, optional (default: 0)

The number of restarts of the optimizer for finding the kernel’s parameters which max-
imize the log-marginal likelihood. The first run of the optimizer is performed from the
kernel’s initial parameters, the remaining ones (if any) from thetas sampled log-uniform
randomly from the space of allowed theta-values. If greater than 0, all bounds must be
finite. Note that n_restarts_optimizer=0 implies that one run is performed.

max_iter_predict : int, optional (default: 100)

The maximum number of iterations in Newton’s method for approximating the posterior
during predict. Smaller values will reduce computation time at the cost of worse results.

warm_start : bool, optional (default: False)

If warm-starts are enabled, the solution of the last Newton iteration on the Laplace
approximation of the posterior mode is used as initialization for the next call of _pos-
terior_mode(). This can speed up convergence when _posterior_mode is called several
times on similar problems as in hyperparameter optimization.

copy_X_train : bool, optional (default: True)

If True, a persistent copy of the training data is stored in the object. Otherwise, just a
reference to the training data is stored, which might cause predictions to change if the
data is modified externally.

random_state : int, RandomState instance or None, optional (default: None)

The generator used to initialize the centers. If int, random_state is the seed used by
the random number generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the RandomState instance
used by np.random.

multi_class : string, default

Specifies how multi-class classification problems are handled. Supported are
“one_vs_rest” and “one_vs_one”. In “one_vs_rest”, one binary Gaussian process clas-
sifier is fitted for each class, which is trained to separate this class from the rest. In
“one_vs_one”, one binary Gaussian process classifier is fitted for each pair of classes,
which is trained to separate these two classes. The predictions of these binary predic-
tors are combined into multi-class predictions. Note that “one_vs_one” does not support
predicting probability estimates.

n_jobs : int, optional, default: 1

The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no
parallel computing code is used at all, which is useful for debugging. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used.

Attributes kernel_ : kernel object

The kernel used for prediction. In case of binary classification, the structure of the
kernel is the same as the one passed as parameter but with optimized hyperparameters.
In case of multi-class classification, a CompoundKernel is returned which consists of
the different kernels used in the one-versus-rest classifiers.

log_marginal_likelihood_value_ : float

The log-marginal-likelihood of self.kernel_.theta

5.15. sklearn.gaussian_process: Gaussian Processes 1491



scikit-learn user guide, Release 0.19.1

classes_ : array-like, shape = (n_classes,)

Unique class labels.

n_classes_ : int

The number of classes in the training data

.. versionadded:: 0.18 :

Methods

fit(X, y) Fit Gaussian process classification model
get_params([deep]) Get parameters for this estimator.
log_marginal_likelihood([theta,
eval_gradient])

Returns log-marginal likelihood of theta for training
data.

predict(X) Perform classification on an array of test vectors X.
predict_proba(X) Return probability estimates for the test vector X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(kernel=None, optimizer=’fmin_l_bfgs_b’, n_restarts_optimizer=0, max_iter_predict=100,
warm_start=False, copy_X_train=True, random_state=None, multi_class=’one_vs_rest’,
n_jobs=1)

fit(X, y)
Fit Gaussian process classification model

Parameters X : array-like, shape = (n_samples, n_features)

Training data

y : array-like, shape = (n_samples,)

Target values, must be binary

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

log_marginal_likelihood(theta=None, eval_gradient=False)
Returns log-marginal likelihood of theta for training data.

In the case of multi-class classification, the mean log-marginal likelihood of the one-versus-rest classifiers
are returned.

Parameters theta : array-like, shape = (n_kernel_params,) or none

Kernel hyperparameters for which the log-marginal likelihood is evaluated. In the case
of multi-class classification, theta may be the hyperparameters of the compound kernel
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or of an individual kernel. In the latter case, all individual kernel get assigned the same
theta values. If None, the precomputed log_marginal_likelihood of self.kernel_.
theta is returned.

eval_gradient : bool, default: False

If True, the gradient of the log-marginal likelihood with respect to the kernel hyperpa-
rameters at position theta is returned additionally. Note that gradient computation is not
supported for non-binary classification. If True, theta must not be None.

Returns log_likelihood : float

Log-marginal likelihood of theta for training data.

log_likelihood_gradient : array, shape = (n_kernel_params,), optional

Gradient of the log-marginal likelihood with respect to the kernel hyperparameters at
position theta. Only returned when eval_gradient is True.

predict(X)
Perform classification on an array of test vectors X.

Parameters X : array-like, shape = (n_samples, n_features)

Returns C : array, shape = (n_samples,)

Predicted target values for X, values are from classes_

predict_proba(X)
Return probability estimates for the test vector X.

Parameters X : array-like, shape = (n_samples, n_features)

Returns C : array-like, shape = (n_samples, n_classes)

Returns the probability of the samples for each class in the model. The columns corre-
spond to the classes in sorted order, as they appear in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.
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Returns self :

Examples using sklearn.gaussian_process.GaussianProcessClassifier

• Plot classification probability

• Classifier comparison

• Probabilistic predictions with Gaussian process classification (GPC)

• Gaussian process classification (GPC) on iris dataset

• Iso-probability lines for Gaussian Processes classification (GPC)

• Illustration of Gaussian process classification (GPC) on the XOR dataset

5.15.2 sklearn.gaussian_process.GaussianProcessRegressor

class sklearn.gaussian_process.GaussianProcessRegressor(kernel=None, alpha=1e-10,
optimizer=’fmin_l_bfgs_b’,
n_restarts_optimizer=0,
normalize_y=False,
copy_X_train=True, ran-
dom_state=None)

Gaussian process regression (GPR).

The implementation is based on Algorithm 2.1 of Gaussian Processes for Machine Learning (GPML) by Ras-
mussen and Williams.

In addition to standard scikit-learn estimator API, GaussianProcessRegressor:

• allows prediction without prior fitting (based on the GP prior)

• provides an additional method sample_y(X), which evaluates samples drawn from the GPR (prior or pos-
terior) at given inputs

• exposes a method log_marginal_likelihood(theta), which can be used externally for other ways of selecting
hyperparameters, e.g., via Markov chain Monte Carlo.

Read more in the User Guide.

New in version 0.18.

Parameters kernel : kernel object

The kernel specifying the covariance function of the GP. If None is passed, the kernel
“1.0 * RBF(1.0)” is used as default. Note that the kernel’s hyperparameters are opti-
mized during fitting.

alpha : float or array-like, optional (default: 1e-10)

Value added to the diagonal of the kernel matrix during fitting. Larger values correspond
to increased noise level in the observations. This can also prevent a potential numeri-
cal issue during fitting, by ensuring that the calculated values form a positive definite
matrix. If an array is passed, it must have the same number of entries as the data used
for fitting and is used as datapoint-dependent noise level. Note that this is equivalent to
adding a WhiteKernel with c=alpha. Allowing to specify the noise level directly as a
parameter is mainly for convenience and for consistency with Ridge.

optimizer : string or callable, optional (default: “fmin_l_bfgs_b”)
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Can either be one of the internally supported optimizers for optimizing the kernel’s
parameters, specified by a string, or an externally defined optimizer passed as a callable.
If a callable is passed, it must have the signature:

def optimizer(obj_func, initial_theta, bounds):
# * 'obj_func' is the objective function to be maximized,

→˓which
# takes the hyperparameters theta as parameter and an
# optional flag eval_gradient, which determines if the
# gradient is returned additionally to the function value
# * 'initial_theta': the initial value for theta, which can

→˓be
# used by local optimizers
# * 'bounds': the bounds on the values of theta
....
# Returned are the best found hyperparameters theta and
# the corresponding value of the target function.
return theta_opt, func_min

Per default, the ‘fmin_l_bfgs_b’ algorithm from scipy.optimize is used. If None is
passed, the kernel’s parameters are kept fixed. Available internal optimizers are:

'fmin_l_bfgs_b'

n_restarts_optimizer : int, optional (default: 0)

The number of restarts of the optimizer for finding the kernel’s parameters which max-
imize the log-marginal likelihood. The first run of the optimizer is performed from the
kernel’s initial parameters, the remaining ones (if any) from thetas sampled log-uniform
randomly from the space of allowed theta-values. If greater than 0, all bounds must be
finite. Note that n_restarts_optimizer == 0 implies that one run is performed.

normalize_y : boolean, optional (default: False)

Whether the target values y are normalized, i.e., the mean of the observed target val-
ues become zero. This parameter should be set to True if the target values’ mean is
expected to differ considerable from zero. When enabled, the normalization effectively
modifies the GP’s prior based on the data, which contradicts the likelihood principle;
normalization is thus disabled per default.

copy_X_train : bool, optional (default: True)

If True, a persistent copy of the training data is stored in the object. Otherwise, just a
reference to the training data is stored, which might cause predictions to change if the
data is modified externally.

random_state : int, RandomState instance or None, optional (default: None)

The generator used to initialize the centers. If int, random_state is the seed used by
the random number generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the RandomState instance
used by np.random.

Attributes X_train_ : array-like, shape = (n_samples, n_features)

Feature values in training data (also required for prediction)

y_train_ : array-like, shape = (n_samples, [n_output_dims])

Target values in training data (also required for prediction)

kernel_ : kernel object
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The kernel used for prediction. The structure of the kernel is the same as the one passed
as parameter but with optimized hyperparameters

L_ : array-like, shape = (n_samples, n_samples)

Lower-triangular Cholesky decomposition of the kernel in X_train_

alpha_ : array-like, shape = (n_samples,)

Dual coefficients of training data points in kernel space

log_marginal_likelihood_value_ : float

The log-marginal-likelihood of self.kernel_.theta

Methods

fit(X, y) Fit Gaussian process regression model.
get_params([deep]) Get parameters for this estimator.
log_marginal_likelihood([theta,
eval_gradient])

Returns log-marginal likelihood of theta for training
data.

predict(X[, return_std, return_cov]) Predict using the Gaussian process regression model
sample_y(X[, n_samples, random_state]) Draw samples from Gaussian process and evaluate at X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(kernel=None, alpha=1e-10, optimizer=’fmin_l_bfgs_b’, n_restarts_optimizer=0, normal-
ize_y=False, copy_X_train=True, random_state=None)

fit(X, y)
Fit Gaussian process regression model.

Parameters X : array-like, shape = (n_samples, n_features)

Training data

y : array-like, shape = (n_samples, [n_output_dims])

Target values

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

log_marginal_likelihood(theta=None, eval_gradient=False)
Returns log-marginal likelihood of theta for training data.

Parameters theta : array-like, shape = (n_kernel_params,) or None

Kernel hyperparameters for which the log-marginal likelihood is evaluated. If None, the
precomputed log_marginal_likelihood of self.kernel_.theta is returned.
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eval_gradient : bool, default: False

If True, the gradient of the log-marginal likelihood with respect to the kernel hyperpa-
rameters at position theta is returned additionally. If True, theta must not be None.

Returns log_likelihood : float

Log-marginal likelihood of theta for training data.

log_likelihood_gradient : array, shape = (n_kernel_params,), optional

Gradient of the log-marginal likelihood with respect to the kernel hyperparameters at
position theta. Only returned when eval_gradient is True.

predict(X, return_std=False, return_cov=False)
Predict using the Gaussian process regression model

We can also predict based on an unfitted model by using the GP prior. In addition to the mean of the pre-
dictive distribution, also its standard deviation (return_std=True) or covariance (return_cov=True). Note
that at most one of the two can be requested.

Parameters X : array-like, shape = (n_samples, n_features)

Query points where the GP is evaluated

return_std : bool, default: False

If True, the standard-deviation of the predictive distribution at the query points is re-
turned along with the mean.

return_cov : bool, default: False

If True, the covariance of the joint predictive distribution at the query points is returned
along with the mean

Returns y_mean : array, shape = (n_samples, [n_output_dims])

Mean of predictive distribution a query points

y_std : array, shape = (n_samples,), optional

Standard deviation of predictive distribution at query points. Only returned when re-
turn_std is True.

y_cov : array, shape = (n_samples, n_samples), optional

Covariance of joint predictive distribution a query points. Only returned when re-
turn_cov is True.

rng
DEPRECATED: Attribute rng was deprecated in version 0.19 and will be removed in 0.21.

sample_y(X, n_samples=1, random_state=0)
Draw samples from Gaussian process and evaluate at X.

Parameters X : array-like, shape = (n_samples_X, n_features)

Query points where the GP samples are evaluated

n_samples : int, default: 1

The number of samples drawn from the Gaussian process

random_state : int, RandomState instance or None, optional (default=0)
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If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns y_samples : array, shape = (n_samples_X, [n_output_dims], n_samples)

Values of n_samples samples drawn from Gaussian process and evaluated at query
points.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

y_train_mean
DEPRECATED: Attribute y_train_mean was deprecated in version 0.19 and will be removed in 0.21.

Examples using sklearn.gaussian_process.GaussianProcessRegressor

• Comparison of kernel ridge and Gaussian process regression

• Gaussian process regression (GPR) on Mauna Loa CO2 data.

• Gaussian process regression (GPR) with noise-level estimation

• Gaussian Processes regression: basic introductory example

• Illustration of prior and posterior Gaussian process for different kernels

Kernels:

gaussian_process.kernels.
CompoundKernel(kernels)

Kernel which is composed of a set of other kernels.

Continued on next page
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Table 5.111 – continued from previous page
gaussian_process.kernels.
ConstantKernel([. . . ])

Constant kernel.

gaussian_process.kernels.
DotProduct([. . . ])

Dot-Product kernel.

gaussian_process.kernels.
ExpSineSquared([. . . ])

Exp-Sine-Squared kernel.

gaussian_process.kernels.
Exponentiation(. . . )

Exponentiate kernel by given exponent.

gaussian_process.kernels.Hyperparameter A kernel hyperparameter’s specification in form of a
namedtuple.

gaussian_process.kernels.Kernel Base class for all kernels.
gaussian_process.kernels.Matern([. . . ]) Matern kernel.
gaussian_process.kernels.
PairwiseKernel([. . . ])

Wrapper for kernels in sklearn.metrics.pairwise.

gaussian_process.kernels.Product(k1, k2) Product-kernel k1 * k2 of two kernels k1 and k2.
gaussian_process.kernels.RBF([length_scale,
. . . ])

Radial-basis function kernel (aka squared-exponential ker-
nel).

gaussian_process.kernels.
RationalQuadratic([. . . ])

Rational Quadratic kernel.

gaussian_process.kernels.Sum(k1, k2) Sum-kernel k1 + k2 of two kernels k1 and k2.
gaussian_process.kernels.
WhiteKernel([. . . ])

White kernel.

5.15.3 sklearn.gaussian_process.kernels.CompoundKernel

class sklearn.gaussian_process.kernels.CompoundKernel(kernels)
Kernel which is composed of a set of other kernels.

New in version 0.18.

Methods

clone_with_theta(theta) Returns a clone of self with given hyperparameters
theta.

diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(kernels)

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Note that this compound kernel returns the results of all simple kernel stacked along an additional axis.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Y : array, shape (n_samples_Y, n_features), (optional, default=None)

Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead.
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eval_gradient : bool (optional, default=False)

Determines whether the gradient with respect to the kernel hyperparameter is deter-
mined.

Returns K : array, shape (n_samples_X, n_samples_Y, n_kernels)

Kernel k(X, Y)

K_gradient : array, shape (n_samples_X, n_samples_X, n_dims, n_kernels)

The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel.
Only returned when eval_gradient is True.

bounds
Returns the log-transformed bounds on the theta.

Returns bounds : array, shape (n_dims, 2)

The log-transformed bounds on the kernel’s hyperparameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Returns K_diag : array, shape (n_samples_X, n_kernels)

Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

n_dims
Returns the number of non-fixed hyperparameters of the kernel.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns self :
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theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns theta : array, shape (n_dims,)

The non-fixed, log-transformed hyperparameters of the kernel

5.15.4 sklearn.gaussian_process.kernels.ConstantKernel

class sklearn.gaussian_process.kernels.ConstantKernel(constant_value=1.0,
constant_value_bounds=(1e-
05, 100000.0))

Constant kernel.

Can be used as part of a product-kernel where it scales the magnitude of the other factor (kernel) or as part of a
sum-kernel, where it modifies the mean of the Gaussian process.

k(x_1, x_2) = constant_value for all x_1, x_2

New in version 0.18.

Parameters constant_value : float, default: 1.0

The constant value which defines the covariance: k(x_1, x_2) = constant_value

constant_value_bounds : pair of floats >= 0, default: (1e-5, 1e5)

The lower and upper bound on constant_value

Methods

clone_with_theta(theta) Returns a clone of self with given hyperparameters
theta.

diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(constant_value=1.0, constant_value_bounds=(1e-05, 100000.0))

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Y : array, shape (n_samples_Y, n_features), (optional, default=None)

Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead.

eval_gradient : bool (optional, default=False)

Determines whether the gradient with respect to the kernel hyperparameter is deter-
mined. Only supported when Y is None.
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Returns K : array, shape (n_samples_X, n_samples_Y)

Kernel k(X, Y)

K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims)

The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel.
Only returned when eval_gradient is True.

bounds
Returns the log-transformed bounds on the theta.

Returns bounds : array, shape (n_dims, 2)

The log-transformed bounds on the kernel’s hyperparameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Returns K_diag : array, shape (n_samples_X,)

Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

n_dims
Returns the number of non-fixed hyperparameters of the kernel.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns self :

theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.
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Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns theta : array, shape (n_dims,)

The non-fixed, log-transformed hyperparameters of the kernel

Examples using sklearn.gaussian_process.kernels.ConstantKernel

• Iso-probability lines for Gaussian Processes classification (GPC)

• Gaussian Processes regression: basic introductory example

• Illustration of prior and posterior Gaussian process for different kernels

5.15.5 sklearn.gaussian_process.kernels.DotProduct

class sklearn.gaussian_process.kernels.DotProduct(sigma_0=1.0, sigma_0_bounds=(1e-
05, 100000.0))

Dot-Product kernel.

The DotProduct kernel is non-stationary and can be obtained from linear regression by putting N(0, 1) priors
on the coefficients of x_d (d = 1, . . . , D) and a prior of N(0, sigma_0^2) on the bias. The DotProduct
kernel is invariant to a rotation of the coordinates about the origin, but not translations. It is parameterized by
a parameter sigma_0^2. For sigma_0^2 =0, the kernel is called the homogeneous linear kernel, otherwise it is
inhomogeneous. The kernel is given by

k(x_i, x_j) = sigma_0 ^ 2 + x_i cdot x_j

The DotProduct kernel is commonly combined with exponentiation.

New in version 0.18.

Parameters sigma_0 : float >= 0, default: 1.0

Parameter controlling the inhomogenity of the kernel. If sigma_0=0, the kernel is ho-
mogenous.

sigma_0_bounds : pair of floats >= 0, default: (1e-5, 1e5)

The lower and upper bound on l

Methods

clone_with_theta(theta) Returns a clone of self with given hyperparameters
theta.

diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(sigma_0=1.0, sigma_0_bounds=(1e-05, 100000.0))

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.
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Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Y : array, shape (n_samples_Y, n_features), (optional, default=None)

Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead.

eval_gradient : bool (optional, default=False)

Determines whether the gradient with respect to the kernel hyperparameter is deter-
mined. Only supported when Y is None.

Returns K : array, shape (n_samples_X, n_samples_Y)

Kernel k(X, Y)

K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims)

The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel.
Only returned when eval_gradient is True.

bounds
Returns the log-transformed bounds on the theta.

Returns bounds : array, shape (n_dims, 2)

The log-transformed bounds on the kernel’s hyperparameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Returns K_diag : array, shape (n_samples_X,)

Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

n_dims
Returns the number of non-fixed hyperparameters of the kernel.
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set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns self :

theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns theta : array, shape (n_dims,)

The non-fixed, log-transformed hyperparameters of the kernel

Examples using sklearn.gaussian_process.kernels.DotProduct

• Iso-probability lines for Gaussian Processes classification (GPC)

• Illustration of Gaussian process classification (GPC) on the XOR dataset

• Illustration of prior and posterior Gaussian process for different kernels

5.15.6 sklearn.gaussian_process.kernels.ExpSineSquared

class sklearn.gaussian_process.kernels.ExpSineSquared(length_scale=1.0,
periodicity=1.0,
length_scale_bounds=(1e-
05, 100000.0),
periodicity_bounds=(1e-05,
100000.0))

Exp-Sine-Squared kernel.

The ExpSineSquared kernel allows modeling periodic functions. It is parameterized by a length-scale parameter
length_scale>0 and a periodicity parameter periodicity>0. Only the isotropic variant where l is a scalar is
supported at the moment. The kernel given by:

k(x_i, x_j) = exp(-2 (sin(pi / periodicity * d(x_i, x_j)) / length_scale) ^ 2)

New in version 0.18.

Parameters length_scale : float > 0, default: 1.0

The length scale of the kernel.

periodicity : float > 0, default: 1.0

The periodicity of the kernel.

length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5)

The lower and upper bound on length_scale

periodicity_bounds : pair of floats >= 0, default: (1e-5, 1e5)

The lower and upper bound on periodicity
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Methods

clone_with_theta(theta) Returns a clone of self with given hyperparameters
theta.

diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(length_scale=1.0, periodicity=1.0, length_scale_bounds=(1e-05, 100000.0),
periodicity_bounds=(1e-05, 100000.0))

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Y : array, shape (n_samples_Y, n_features), (optional, default=None)

Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead.

eval_gradient : bool (optional, default=False)

Determines whether the gradient with respect to the kernel hyperparameter is deter-
mined. Only supported when Y is None.

Returns K : array, shape (n_samples_X, n_samples_Y)

Kernel k(X, Y)

K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims)

The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel.
Only returned when eval_gradient is True.

bounds
Returns the log-transformed bounds on the theta.

Returns bounds : array, shape (n_dims, 2)

The log-transformed bounds on the kernel’s hyperparameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Returns K_diag : array, shape (n_samples_X,)

Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.
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Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

n_dims
Returns the number of non-fixed hyperparameters of the kernel.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns self :

theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns theta : array, shape (n_dims,)

The non-fixed, log-transformed hyperparameters of the kernel

Examples using sklearn.gaussian_process.kernels.ExpSineSquared

• Comparison of kernel ridge and Gaussian process regression

• Gaussian process regression (GPR) on Mauna Loa CO2 data.

• Illustration of prior and posterior Gaussian process for different kernels

5.15.7 sklearn.gaussian_process.kernels.Exponentiation

class sklearn.gaussian_process.kernels.Exponentiation(kernel, exponent)
Exponentiate kernel by given exponent.

The resulting kernel is defined as k_exp(X, Y) = k(X, Y) ** exponent

New in version 0.18.

Parameters kernel : Kernel object

The base kernel

exponent : float

The exponent for the base kernel
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Methods

clone_with_theta(theta) Returns a clone of self with given hyperparameters
theta.

diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(kernel, exponent)

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Y : array, shape (n_samples_Y, n_features), (optional, default=None)

Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead.

eval_gradient : bool (optional, default=False)

Determines whether the gradient with respect to the kernel hyperparameter is deter-
mined.

Returns K : array, shape (n_samples_X, n_samples_Y)

Kernel k(X, Y)

K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims)

The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel.
Only returned when eval_gradient is True.

bounds
Returns the log-transformed bounds on the theta.

Returns bounds : array, shape (n_dims, 2)

The log-transformed bounds on the kernel’s hyperparameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Returns K_diag : array, shape (n_samples_X,)

Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters deep : boolean, optional
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If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

hyperparameters
Returns a list of all hyperparameter.

is_stationary()
Returns whether the kernel is stationary.

n_dims
Returns the number of non-fixed hyperparameters of the kernel.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns self :

theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns theta : array, shape (n_dims,)

The non-fixed, log-transformed hyperparameters of the kernel

5.15.8 sklearn.gaussian_process.kernels.Hyperparameter

class sklearn.gaussian_process.kernels.Hyperparameter
A kernel hyperparameter’s specification in form of a namedtuple.

New in version 0.18.

Attributes name : string

The name of the hyperparameter. Note that a kernel using a hyperparameter with name
“x” must have the attributes self.x and self.x_bounds

value_type : string

The type of the hyperparameter. Currently, only “numeric” hyperparameters are sup-
ported.

bounds : pair of floats >= 0 or “fixed”

The lower and upper bound on the parameter. If n_elements>1, a pair of 1d array with
n_elements each may be given alternatively. If the string “fixed” is passed as bounds,
the hyperparameter’s value cannot be changed.

n_elements : int, default=1

The number of elements of the hyperparameter value. Defaults to 1, which corresponds
to a scalar hyperparameter. n_elements > 1 corresponds to a hyperparameter which is
vector-valued, such as, e.g., anisotropic length-scales.
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fixed : bool, default: None

Whether the value of this hyperparameter is fixed, i.e., cannot be changed during hyper-
parameter tuning. If None is passed, the “fixed” is derived based on the given bounds.

Methods

count(. . . )
index((value, [start, . . . ) Raises ValueError if the value is not present.

__init__()
Initialize self. See help(type(self)) for accurate signature.

__call__(*args, **kwargs)
Call self as a function.

bounds
Alias for field number 2

count(value)→ integer – return number of occurrences of value

fixed
Alias for field number 4

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

n_elements
Alias for field number 3

name
Alias for field number 0

value_type
Alias for field number 1

5.15.9 sklearn.gaussian_process.kernels.Kernel

class sklearn.gaussian_process.kernels.Kernel
Base class for all kernels.

New in version 0.18.

Methods

clone_with_theta(theta) Returns a clone of self with given hyperparameters
theta.

diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__()
Initialize self. See help(type(self)) for accurate signature.
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__call__(X, Y=None, eval_gradient=False)
Evaluate the kernel.

bounds
Returns the log-transformed bounds on the theta.

Returns bounds : array, shape (n_dims, 2)

The log-transformed bounds on the kernel’s hyperparameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Returns K_diag : array, shape (n_samples_X,)

Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

n_dims
Returns the number of non-fixed hyperparameters of the kernel.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns self :

theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns theta : array, shape (n_dims,)

The non-fixed, log-transformed hyperparameters of the kernel
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5.15.10 sklearn.gaussian_process.kernels.Matern

class sklearn.gaussian_process.kernels.Matern(length_scale=1.0, length_scale_bounds=(1e-
05, 100000.0), nu=1.5)

Matern kernel.

The class of Matern kernels is a generalization of the RBF and the absolute exponential kernel parameterized by
an additional parameter nu. The smaller nu, the less smooth the approximated function is. For nu=inf, the kernel
becomes equivalent to the RBF kernel and for nu=0.5 to the absolute exponential kernel. Important intermediate
values are nu=1.5 (once differentiable functions) and nu=2.5 (twice differentiable functions).

See Rasmussen and Williams 2006, pp84 for details regarding the different variants of the Matern kernel.

New in version 0.18.

Parameters length_scale : float or array with shape (n_features,), default: 1.0

The length scale of the kernel. If a float, an isotropic kernel is used. If an array, an
anisotropic kernel is used where each dimension of l defines the length-scale of the
respective feature dimension.

length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5)

The lower and upper bound on length_scale

nu: float, default: 1.5 :

The parameter nu controlling the smoothness of the learned function. The smaller nu,
the less smooth the approximated function is. For nu=inf, the kernel becomes equivalent
to the RBF kernel and for nu=0.5 to the absolute exponential kernel. Important interme-
diate values are nu=1.5 (once differentiable functions) and nu=2.5 (twice differentiable
functions). Note that values of nu not in [0.5, 1.5, 2.5, inf] incur a considerably higher
computational cost (appr. 10 times higher) since they require to evaluate the modified
Bessel function. Furthermore, in contrast to l, nu is kept fixed to its initial value and not
optimized.

Methods

clone_with_theta(theta) Returns a clone of self with given hyperparameters
theta.

diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(length_scale=1.0, length_scale_bounds=(1e-05, 100000.0), nu=1.5)

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Y : array, shape (n_samples_Y, n_features), (optional, default=None)

Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead.

eval_gradient : bool (optional, default=False)
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Determines whether the gradient with respect to the kernel hyperparameter is deter-
mined. Only supported when Y is None.

Returns K : array, shape (n_samples_X, n_samples_Y)

Kernel k(X, Y)

K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims)

The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel.
Only returned when eval_gradient is True.

bounds
Returns the log-transformed bounds on the theta.

Returns bounds : array, shape (n_dims, 2)

The log-transformed bounds on the kernel’s hyperparameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Returns K_diag : array, shape (n_samples_X,)

Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

n_dims
Returns the number of non-fixed hyperparameters of the kernel.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns self :
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theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns theta : array, shape (n_dims,)

The non-fixed, log-transformed hyperparameters of the kernel

Examples using sklearn.gaussian_process.kernels.Matern

• Illustration of prior and posterior Gaussian process for different kernels

5.15.11 sklearn.gaussian_process.kernels.PairwiseKernel

class sklearn.gaussian_process.kernels.PairwiseKernel(gamma=1.0,
gamma_bounds=(1e-05,
100000.0), metric=’linear’, pair-
wise_kernels_kwargs=None)

Wrapper for kernels in sklearn.metrics.pairwise.

A thin wrapper around the functionality of the kernels in sklearn.metrics.pairwise.

Note: Evaluation of eval_gradient is not analytic but numeric and all kernels support only isotropic dis-
tances. The parameter gamma is considered to be a hyperparameter and may be optimized. The other
kernel parameters are set directly at initialization and are kept fixed.

New in version 0.18.

Parameters gamma: float >= 0, default: 1.0 :

Parameter gamma of the pairwise kernel specified by metric

gamma_bounds : pair of floats >= 0, default: (1e-5, 1e5)

The lower and upper bound on gamma

metric : string, or callable, default: “linear”

The metric to use when calculating kernel between instances in a feature
array. If metric is a string, it must be one of the metrics in pair-
wise.PAIRWISE_KERNEL_FUNCTIONS. If metric is “precomputed”, X is assumed
to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable should take two
arrays from X as input and return a value indicating the distance between them.

pairwise_kernels_kwargs : dict, default: None

All entries of this dict (if any) are passed as keyword arguments to the pairwise kernel
function.

Methods
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clone_with_theta(theta) Returns a clone of self with given hyperparameters
theta.

diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(gamma=1.0, gamma_bounds=(1e-05, 100000.0), metric=’linear’, pair-
wise_kernels_kwargs=None)

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Y : array, shape (n_samples_Y, n_features), (optional, default=None)

Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead.

eval_gradient : bool (optional, default=False)

Determines whether the gradient with respect to the kernel hyperparameter is deter-
mined. Only supported when Y is None.

Returns K : array, shape (n_samples_X, n_samples_Y)

Kernel k(X, Y)

K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims)

The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel.
Only returned when eval_gradient is True.

bounds
Returns the log-transformed bounds on the theta.

Returns bounds : array, shape (n_dims, 2)

The log-transformed bounds on the kernel’s hyperparameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Returns K_diag : array, shape (n_samples_X,)

Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters deep : boolean, optional
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If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

n_dims
Returns the number of non-fixed hyperparameters of the kernel.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns self :

theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns theta : array, shape (n_dims,)

The non-fixed, log-transformed hyperparameters of the kernel

5.15.12 sklearn.gaussian_process.kernels.Product

class sklearn.gaussian_process.kernels.Product(k1, k2)
Product-kernel k1 * k2 of two kernels k1 and k2.

The resulting kernel is defined as k_prod(X, Y) = k1(X, Y) * k2(X, Y)

New in version 0.18.

Parameters k1 : Kernel object

The first base-kernel of the product-kernel

k2 : Kernel object

The second base-kernel of the product-kernel

Methods

clone_with_theta(theta) Returns a clone of self with given hyperparameters
theta.

diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.

Continued on next page
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Table 5.121 – continued from previous page
set_params(**params) Set the parameters of this kernel.

__init__(k1, k2)

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Y : array, shape (n_samples_Y, n_features), (optional, default=None)

Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead.

eval_gradient : bool (optional, default=False)

Determines whether the gradient with respect to the kernel hyperparameter is deter-
mined.

Returns K : array, shape (n_samples_X, n_samples_Y)

Kernel k(X, Y)

K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims)

The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel.
Only returned when eval_gradient is True.

bounds
Returns the log-transformed bounds on the theta.

Returns bounds : array, shape (n_dims, 2)

The log-transformed bounds on the kernel’s hyperparameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Returns K_diag : array, shape (n_samples_X,)

Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

5.15. sklearn.gaussian_process: Gaussian Processes 1517



scikit-learn user guide, Release 0.19.1

hyperparameters
Returns a list of all hyperparameter.

is_stationary()
Returns whether the kernel is stationary.

n_dims
Returns the number of non-fixed hyperparameters of the kernel.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns self :

theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns theta : array, shape (n_dims,)

The non-fixed, log-transformed hyperparameters of the kernel

5.15.13 sklearn.gaussian_process.kernels.RBF

class sklearn.gaussian_process.kernels.RBF(length_scale=1.0, length_scale_bounds=(1e-05,
100000.0))

Radial-basis function kernel (aka squared-exponential kernel).

The RBF kernel is a stationary kernel. It is also known as the “squared exponential” kernel. It is parameterized
by a length-scale parameter length_scale>0, which can either be a scalar (isotropic variant of the kernel) or a
vector with the same number of dimensions as the inputs X (anisotropic variant of the kernel). The kernel is
given by:

k(x_i, x_j) = exp(-1 / 2 d(x_i / length_scale, x_j / length_scale)^2)

This kernel is infinitely differentiable, which implies that GPs with this kernel as covariance function have mean
square derivatives of all orders, and are thus very smooth.

New in version 0.18.

Parameters length_scale : float or array with shape (n_features,), default: 1.0

The length scale of the kernel. If a float, an isotropic kernel is used. If an array, an
anisotropic kernel is used where each dimension of l defines the length-scale of the
respective feature dimension.

length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5)

The lower and upper bound on length_scale

Methods
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clone_with_theta(theta) Returns a clone of self with given hyperparameters
theta.

diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(length_scale=1.0, length_scale_bounds=(1e-05, 100000.0))

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Y : array, shape (n_samples_Y, n_features), (optional, default=None)

Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead.

eval_gradient : bool (optional, default=False)

Determines whether the gradient with respect to the kernel hyperparameter is deter-
mined. Only supported when Y is None.

Returns K : array, shape (n_samples_X, n_samples_Y)

Kernel k(X, Y)

K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims)

The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel.
Only returned when eval_gradient is True.

bounds
Returns the log-transformed bounds on the theta.

Returns bounds : array, shape (n_dims, 2)

The log-transformed bounds on the kernel’s hyperparameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Returns K_diag : array, shape (n_samples_X,)

Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.
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Returns params : mapping of string to any

Parameter names mapped to their values.

hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

n_dims
Returns the number of non-fixed hyperparameters of the kernel.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns self :

theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns theta : array, shape (n_dims,)

The non-fixed, log-transformed hyperparameters of the kernel

Examples using sklearn.gaussian_process.kernels.RBF

• Plot classification probability

• Classifier comparison

• Probabilistic predictions with Gaussian process classification (GPC)

• Gaussian process classification (GPC) on iris dataset

• Illustration of Gaussian process classification (GPC) on the XOR dataset

• Gaussian process regression (GPR) on Mauna Loa CO2 data.

• Gaussian process regression (GPR) with noise-level estimation

• Gaussian Processes regression: basic introductory example

• Illustration of prior and posterior Gaussian process for different kernels

5.15.14 sklearn.gaussian_process.kernels.RationalQuadratic

class sklearn.gaussian_process.kernels.RationalQuadratic(length_scale=1.0,
alpha=1.0,
length_scale_bounds=(1e-
05, 100000.0),
alpha_bounds=(1e-05,
100000.0))

Rational Quadratic kernel.
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The RationalQuadratic kernel can be seen as a scale mixture (an infinite sum) of RBF kernels with different
characteristic length-scales. It is parameterized by a length-scale parameter length_scale>0 and a scale mixture
parameter alpha>0. Only the isotropic variant where length_scale is a scalar is supported at the moment. The
kernel given by:

k(x_i, x_j) = (1 + d(x_i, x_j)^2 / (2*alpha * length_scale^2))^-alpha

New in version 0.18.

Parameters length_scale : float > 0, default: 1.0

The length scale of the kernel.

alpha : float > 0, default: 1.0

Scale mixture parameter

length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5)

The lower and upper bound on length_scale

alpha_bounds : pair of floats >= 0, default: (1e-5, 1e5)

The lower and upper bound on alpha

Methods

clone_with_theta(theta) Returns a clone of self with given hyperparameters
theta.

diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(length_scale=1.0, alpha=1.0, length_scale_bounds=(1e-05, 100000.0), alpha_bounds=(1e-
05, 100000.0))

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Y : array, shape (n_samples_Y, n_features), (optional, default=None)

Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead.

eval_gradient : bool (optional, default=False)

Determines whether the gradient with respect to the kernel hyperparameter is deter-
mined. Only supported when Y is None.

Returns K : array, shape (n_samples_X, n_samples_Y)

Kernel k(X, Y)

K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims)

The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel.
Only returned when eval_gradient is True.
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bounds
Returns the log-transformed bounds on the theta.

Returns bounds : array, shape (n_dims, 2)

The log-transformed bounds on the kernel’s hyperparameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Returns K_diag : array, shape (n_samples_X,)

Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

n_dims
Returns the number of non-fixed hyperparameters of the kernel.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns self :

theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns theta : array, shape (n_dims,)

The non-fixed, log-transformed hyperparameters of the kernel
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Examples using sklearn.gaussian_process.kernels.RationalQuadratic

• Gaussian process regression (GPR) on Mauna Loa CO2 data.

• Illustration of prior and posterior Gaussian process for different kernels

5.15.15 sklearn.gaussian_process.kernels.Sum

class sklearn.gaussian_process.kernels.Sum(k1, k2)
Sum-kernel k1 + k2 of two kernels k1 and k2.

The resulting kernel is defined as k_sum(X, Y) = k1(X, Y) + k2(X, Y)

New in version 0.18.

Parameters k1 : Kernel object

The first base-kernel of the sum-kernel

k2 : Kernel object

The second base-kernel of the sum-kernel

Methods

clone_with_theta(theta) Returns a clone of self with given hyperparameters
theta.

diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(k1, k2)

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Y : array, shape (n_samples_Y, n_features), (optional, default=None)

Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead.

eval_gradient : bool (optional, default=False)

Determines whether the gradient with respect to the kernel hyperparameter is deter-
mined.

Returns K : array, shape (n_samples_X, n_samples_Y)

Kernel k(X, Y)

K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims)

The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel.
Only returned when eval_gradient is True.
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bounds
Returns the log-transformed bounds on the theta.

Returns bounds : array, shape (n_dims, 2)

The log-transformed bounds on the kernel’s hyperparameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Returns K_diag : array, shape (n_samples_X,)

Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

hyperparameters
Returns a list of all hyperparameter.

is_stationary()
Returns whether the kernel is stationary.

n_dims
Returns the number of non-fixed hyperparameters of the kernel.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns self :

theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns theta : array, shape (n_dims,)

The non-fixed, log-transformed hyperparameters of the kernel
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5.15.16 sklearn.gaussian_process.kernels.WhiteKernel

class sklearn.gaussian_process.kernels.WhiteKernel(noise_level=1.0,
noise_level_bounds=(1e-05,
100000.0))

White kernel.

The main use-case of this kernel is as part of a sum-kernel where it explains the noise-component of the signal.
Tuning its parameter corresponds to estimating the noise-level.

k(x_1, x_2) = noise_level if x_1 == x_2 else 0

New in version 0.18.

Parameters noise_level : float, default: 1.0

Parameter controlling the noise level

noise_level_bounds : pair of floats >= 0, default: (1e-5, 1e5)

The lower and upper bound on noise_level

Methods

clone_with_theta(theta) Returns a clone of self with given hyperparameters
theta.

diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(noise_level=1.0, noise_level_bounds=(1e-05, 100000.0))

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Y : array, shape (n_samples_Y, n_features), (optional, default=None)

Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead.

eval_gradient : bool (optional, default=False)

Determines whether the gradient with respect to the kernel hyperparameter is deter-
mined. Only supported when Y is None.

Returns K : array, shape (n_samples_X, n_samples_Y)

Kernel k(X, Y)

K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims)

The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel.
Only returned when eval_gradient is True.

bounds
Returns the log-transformed bounds on the theta.

Returns bounds : array, shape (n_dims, 2)
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The log-transformed bounds on the kernel’s hyperparameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters X : array, shape (n_samples_X, n_features)

Left argument of the returned kernel k(X, Y)

Returns K_diag : array, shape (n_samples_X,)

Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

n_dims
Returns the number of non-fixed hyperparameters of the kernel.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns self :

theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns theta : array, shape (n_dims,)

The non-fixed, log-transformed hyperparameters of the kernel

Examples using sklearn.gaussian_process.kernels.WhiteKernel

• Comparison of kernel ridge and Gaussian process regression

• Gaussian process regression (GPR) on Mauna Loa CO2 data.

1526 Chapter 5. API Reference



scikit-learn user guide, Release 0.19.1

• Gaussian process regression (GPR) with noise-level estimation

5.16 sklearn.isotonic: Isotonic regression

User guide: See the Isotonic regression section for further details.

isotonic.IsotonicRegression([y_min, y_max,
. . . ])

Isotonic regression model.

5.16.1 sklearn.isotonic.IsotonicRegression

class sklearn.isotonic.IsotonicRegression(y_min=None, y_max=None, increasing=True,
out_of_bounds=’nan’)

Isotonic regression model.

The isotonic regression optimization problem is defined by:

min sum w_i (y[i] - y_[i]) ** 2

subject to y_[i] <= y_[j] whenever X[i] <= X[j]
and min(y_) = y_min, max(y_) = y_max

where:

• y[i] are inputs (real numbers)

• y_[i] are fitted

• X specifies the order. If X is non-decreasing then y_ is non-decreasing.

• w[i] are optional strictly positive weights (default to 1.0)

Read more in the User Guide.

Parameters y_min : optional, default: None

If not None, set the lowest value of the fit to y_min.

y_max : optional, default: None

If not None, set the highest value of the fit to y_max.

increasing : boolean or string, optional, default: True

If boolean, whether or not to fit the isotonic regression with y increasing or decreasing.

The string value “auto” determines whether y should increase or decrease based on the
Spearman correlation estimate’s sign.

out_of_bounds : string, optional, default: “nan”

The out_of_bounds parameter handles how x-values outside of the training domain
are handled. When set to “nan”, predicted y-values will be NaN. When set to “clip”,
predicted y-values will be set to the value corresponding to the nearest train interval
endpoint. When set to “raise”, allow interp1d to throw ValueError.

Attributes X_min_ : float

Minimum value of input array X_ for left bound.
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X_max_ : float

Maximum value of input array X_ for right bound.

f_ : function

The stepwise interpolating function that covers the domain X_.

Notes

Ties are broken using the secondary method from Leeuw, 1977.

References

Isotonic Median Regression: A Linear Programming Approach Nilotpal Chakravarti Mathematics of Operations
Research Vol. 14, No. 2 (May, 1989), pp. 303-308

Isotone Optimization in R : Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods Leeuw, Hornik,
Mair Journal of Statistical Software 2009

Correctness of Kruskal’s algorithms for monotone regression with ties Leeuw, Psychometrica, 1977

Methods

fit(X, y[, sample_weight]) Fit the model using X, y as training data.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(T) Predict new data by linear interpolation.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.
transform(T) Transform new data by linear interpolation

__init__(y_min=None, y_max=None, increasing=True, out_of_bounds=’nan’)

X_
DEPRECATED: Attribute X_ is deprecated in version 0.18 and will be removed in version 0.20.

fit(X, y, sample_weight=None)
Fit the model using X, y as training data.

Parameters X : array-like, shape=(n_samples,)

Training data.

y : array-like, shape=(n_samples,)

Training target.

sample_weight : array-like, shape=(n_samples,), optional, default: None

Weights. If set to None, all weights will be set to 1 (equal weights).

Returns self : object

Returns an instance of self.
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Notes

X is stored for future use, as transform needs X to interpolate new input data.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(T)
Predict new data by linear interpolation.

Parameters T : array-like, shape=(n_samples,)

Data to transform.

Returns T_ : array, shape=(n_samples,)

Transformed data.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(T)
Transform new data by linear interpolation

Parameters T : array-like, shape=(n_samples,)

Data to transform.

Returns T_ : array, shape=(n_samples,)

The transformed data

y_
DEPRECATED: Attribute y_ is deprecated in version 0.18 and will be removed in version 0.20.

Examples using sklearn.isotonic.IsotonicRegression

• Isotonic Regression

isotonic.check_increasing(x, y) Determine whether y is monotonically correlated with x.
isotonic.isotonic_regression(y[, . . . ]) Solve the isotonic regression model:

5.16.2 sklearn.isotonic.check_increasing

sklearn.isotonic.check_increasing(x, y)
Determine whether y is monotonically correlated with x.

y is found increasing or decreasing with respect to x based on a Spearman correlation test.

Parameters x : array-like, shape=(n_samples,)

Training data.

y : array-like, shape=(n_samples,)

Training target.

Returns increasing_bool : boolean

Whether the relationship is increasing or decreasing.

Notes

The Spearman correlation coefficient is estimated from the data, and the sign of the resulting estimate is used as
the result.

In the event that the 95% confidence interval based on Fisher transform spans zero, a warning is raised.
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References

Fisher transformation. Wikipedia. https://en.wikipedia.org/wiki/Fisher_transformation

5.16.3 sklearn.isotonic.isotonic_regression

sklearn.isotonic.isotonic_regression(y, sample_weight=None, y_min=None, y_max=None,
increasing=True)

Solve the isotonic regression model:

min sum w[i] (y[i] - y_[i]) ** 2

subject to y_min = y_[1] <= y_[2] ... <= y_[n] = y_max

where:

• y[i] are inputs (real numbers)

• y_[i] are fitted

• w[i] are optional strictly positive weights (default to 1.0)

Read more in the User Guide.

Parameters y : iterable of floating-point values

The data.

sample_weight : iterable of floating-point values, optional, default: None

Weights on each point of the regression. If None, weight is set to 1 (equal weights).

y_min : optional, default: None

If not None, set the lowest value of the fit to y_min.

y_max : optional, default: None

If not None, set the highest value of the fit to y_max.

increasing : boolean, optional, default: True

Whether to compute y_ is increasing (if set to True) or decreasing (if set to False)

Returns y_ : list of floating-point values

Isotonic fit of y.

References

“Active set algorithms for isotonic regression; A unifying framework” by Michael J. Best and Nilotpal
Chakravarti, section 3.

5.17 sklearn.kernel_approximation Kernel Approximation

The sklearn.kernel_approximation module implements several approximate kernel feature maps base on
Fourier transforms.
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User guide: See the Kernel Approximation section for further details.

kernel_approximation.
AdditiveChi2Sampler([. . . ])

Approximate feature map for additive chi2 kernel.

kernel_approximation.Nystroem([kernel, . . . ]) Approximate a kernel map using a subset of the training
data.

kernel_approximation.RBFSampler([gamma,
. . . ])

Approximates feature map of an RBF kernel by Monte
Carlo approximation of its Fourier transform.

kernel_approximation.
SkewedChi2Sampler([. . . ])

Approximates feature map of the “skewed chi-squared”
kernel by Monte Carlo approximation of its Fourier trans-
form.

5.17.1 sklearn.kernel_approximation.AdditiveChi2Sampler

class sklearn.kernel_approximation.AdditiveChi2Sampler(sample_steps=2, sam-
ple_interval=None)

Approximate feature map for additive chi2 kernel.

Uses sampling the fourier transform of the kernel characteristic at regular intervals.

Since the kernel that is to be approximated is additive, the components of the input vectors can be treated
separately. Each entry in the original space is transformed into 2*sample_steps+1 features, where sample_steps
is a parameter of the method. Typical values of sample_steps include 1, 2 and 3.

Optimal choices for the sampling interval for certain data ranges can be computed (see the reference). The
default values should be reasonable.

Read more in the User Guide.

Parameters sample_steps : int, optional

Gives the number of (complex) sampling points.

sample_interval : float, optional

Sampling interval. Must be specified when sample_steps not in {1,2,3}.

See also:

SkewedChi2Sampler A Fourier-approximation to a non-additive variant of the chi squared kernel.

sklearn.metrics.pairwise.chi2_kernel The exact chi squared kernel.

sklearn.metrics.pairwise.additive_chi2_kernel The exact additive chi squared kernel.

Notes

This estimator approximates a slightly different version of the additive chi squared kernel then metric.
additive_chi2 computes.

References

See “Efficient additive kernels via explicit feature maps” A. Vedaldi and A. Zisserman, Pattern Analysis and
Machine Intelligence, 2011
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Methods

fit(X[, y]) Set parameters.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Apply approximate feature map to X.

__init__(sample_steps=2, sample_interval=None)

fit(X, y=None)
Set parameters.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Apply approximate feature map to X.

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Returns X_new : {array, sparse matrix}, shape = (n_samples, n_features * (2*sample_steps +
1))

Whether the return value is an array of sparse matrix depends on the type of the input
X.
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5.17.2 sklearn.kernel_approximation.Nystroem

class sklearn.kernel_approximation.Nystroem(kernel=’rbf’, gamma=None, coef0=None,
degree=None, kernel_params=None,
n_components=100, random_state=None)

Approximate a kernel map using a subset of the training data.

Constructs an approximate feature map for an arbitrary kernel using a subset of the data as basis.

Read more in the User Guide.

Parameters kernel : string or callable, default=”rbf”

Kernel map to be approximated. A callable should accept two arguments and the key-
word arguments passed to this object as kernel_params, and should return a floating
point number.

n_components : int

Number of features to construct. How many data points will be used to construct the
mapping.

gamma : float, default=None

Gamma parameter for the RBF, laplacian, polynomial, exponential chi2 and sigmoid
kernels. Interpretation of the default value is left to the kernel; see the documentation
for sklearn.metrics.pairwise. Ignored by other kernels.

degree : float, default=None

Degree of the polynomial kernel. Ignored by other kernels.

coef0 : float, default=None

Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels.

kernel_params : mapping of string to any, optional

Additional parameters (keyword arguments) for kernel function passed as callable ob-
ject.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes components_ : array, shape (n_components, n_features)

Subset of training points used to construct the feature map.

component_indices_ : array, shape (n_components)

Indices of components_ in the training set.

normalization_ : array, shape (n_components, n_components)

Normalization matrix needed for embedding. Square root of the kernel matrix on
components_.

See also:

RBFSampler An approximation to the RBF kernel using random Fourier features.

sklearn.metrics.pairwise.kernel_metrics List of built-in kernels.
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References

• Williams, C.K.I. and Seeger, M. “Using the Nystroem method to speed up kernel machines”, Advances in
neural information processing systems 2001

• T. Yang, Y. Li, M. Mahdavi, R. Jin and Z. Zhou “Nystroem Method vs Random Fourier Features: A
Theoretical and Empirical Comparison”, Advances in Neural Information Processing Systems 2012

Methods

fit(X[, y]) Fit estimator to data.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Apply feature map to X.

__init__(kernel=’rbf’, gamma=None, coef0=None, degree=None, kernel_params=None,
n_components=100, random_state=None)

fit(X, y=None)
Fit estimator to data.

Samples a subset of training points, computes kernel on these and computes normalization matrix.

Parameters X : array-like, shape=(n_samples, n_feature)

Training data.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.
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The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Apply feature map to X.

Computes an approximate feature map using the kernel between some training points and X.

Parameters X : array-like, shape=(n_samples, n_features)

Data to transform.

Returns X_transformed : array, shape=(n_samples, n_components)

Transformed data.

Examples using sklearn.kernel_approximation.Nystroem

• Explicit feature map approximation for RBF kernels

5.17.3 sklearn.kernel_approximation.RBFSampler

class sklearn.kernel_approximation.RBFSampler(gamma=1.0, n_components=100, ran-
dom_state=None)

Approximates feature map of an RBF kernel by Monte Carlo approximation of its Fourier transform.

It implements a variant of Random Kitchen Sinks.[1]

Read more in the User Guide.

Parameters gamma : float

Parameter of RBF kernel: exp(-gamma * x^2)

n_components : int

Number of Monte Carlo samples per original feature. Equals the dimensionality of the
computed feature space.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Notes

See “Random Features for Large-Scale Kernel Machines” by A. Rahimi and Benjamin Recht.

[1] “Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning” by A.
Rahimi and Benjamin Recht. (http://people.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf)

Methods
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fit(X[, y]) Fit the model with X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Apply the approximate feature map to X.

__init__(gamma=1.0, n_components=100, random_state=None)

fit(X, y=None)
Fit the model with X.

Samples random projection according to n_features.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data, where n_samples in the number of samples and n_features is the number
of features.

Returns self : object

Returns the transformer.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Apply the approximate feature map to X.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)
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New data, where n_samples in the number of samples and n_features is the number of
features.

Returns X_new : array-like, shape (n_samples, n_components)

Examples using sklearn.kernel_approximation.RBFSampler

• Explicit feature map approximation for RBF kernels

5.17.4 sklearn.kernel_approximation.SkewedChi2Sampler

class sklearn.kernel_approximation.SkewedChi2Sampler(skewedness=1.0,
n_components=100, ran-
dom_state=None)

Approximates feature map of the “skewed chi-squared” kernel by Monte Carlo approximation of its Fourier
transform.

Read more in the User Guide.

Parameters skewedness : float

“skewedness” parameter of the kernel. Needs to be cross-validated.

n_components : int

number of Monte Carlo samples per original feature. Equals the dimensionality of the
computed feature space.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

See also:

AdditiveChi2Sampler A different approach for approximating an additive variant of the chi squared ker-
nel.

sklearn.metrics.pairwise.chi2_kernel The exact chi squared kernel.

References

See “Random Fourier Approximations for Skewed Multiplicative Histogram Kernels” by Fuxin Li, Catalin
Ionescu and Cristian Sminchisescu.

Methods

fit(X[, y]) Fit the model with X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Apply the approximate feature map to X.

1538 Chapter 5. API Reference



scikit-learn user guide, Release 0.19.1

__init__(skewedness=1.0, n_components=100, random_state=None)

fit(X, y=None)
Fit the model with X.

Samples random projection according to n_features.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples in the number of samples and n_features is the number
of features.

Returns self : object

Returns the transformer.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Apply the approximate feature map to X.

Parameters X : array-like, shape (n_samples, n_features)

New data, where n_samples in the number of samples and n_features is the number of
features. All values of X must be strictly greater than “-skewedness”.

Returns X_new : array-like, shape (n_samples, n_components)
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5.18 sklearn.kernel_ridge Kernel Ridge Regression

Module sklearn.kernel_ridge implements kernel ridge regression.

User guide: See the Kernel ridge regression section for further details.

kernel_ridge.KernelRidge([alpha, kernel, . . . ]) Kernel ridge regression.

5.18.1 sklearn.kernel_ridge.KernelRidge

class sklearn.kernel_ridge.KernelRidge(alpha=1, kernel=’linear’, gamma=None, degree=3,
coef0=1, kernel_params=None)

Kernel ridge regression.

Kernel ridge regression (KRR) combines ridge regression (linear least squares with l2-norm regularization) with
the kernel trick. It thus learns a linear function in the space induced by the respective kernel and the data. For
non-linear kernels, this corresponds to a non-linear function in the original space.

The form of the model learned by KRR is identical to support vector regression (SVR). However, different loss
functions are used: KRR uses squared error loss while support vector regression uses epsilon-insensitive loss,
both combined with l2 regularization. In contrast to SVR, fitting a KRR model can be done in closed-form and
is typically faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower
than SVR, which learns a sparse model for epsilon > 0, at prediction-time.

This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples,
n_targets]).

Read more in the User Guide.

Parameters alpha : {float, array-like}, shape = [n_targets]

Small positive values of alpha improve the conditioning of the problem and reduce the
variance of the estimates. Alpha corresponds to (2*C)^-1 in other linear models such
as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be
specific to the targets. Hence they must correspond in number.

kernel : string or callable, default=”linear”

Kernel mapping used internally. A callable should accept two arguments and the key-
word arguments passed to this object as kernel_params, and should return a floating
point number.

gamma : float, default=None

Gamma parameter for the RBF, laplacian, polynomial, exponential chi2 and sigmoid
kernels. Interpretation of the default value is left to the kernel; see the documentation
for sklearn.metrics.pairwise. Ignored by other kernels.

degree : float, default=3

Degree of the polynomial kernel. Ignored by other kernels.

coef0 : float, default=1

Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels.

kernel_params : mapping of string to any, optional

Additional parameters (keyword arguments) for kernel function passed as callable ob-
ject.
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Attributes dual_coef_ : array, shape = [n_samples] or [n_samples, n_targets]

Representation of weight vector(s) in kernel space

X_fit_ : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training data, which is also required for prediction

See also:

Ridge Linear ridge regression.

SVR Support Vector Regression implemented using libsvm.

References

• Kevin P. Murphy “Machine Learning: A Probabilistic Perspective”, The MIT Press chapter 14.4.3, pp.
492-493

Examples

>>> from sklearn.kernel_ridge import KernelRidge
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> rng = np.random.RandomState(0)
>>> y = rng.randn(n_samples)
>>> X = rng.randn(n_samples, n_features)
>>> clf = KernelRidge(alpha=1.0)
>>> clf.fit(X, y)
KernelRidge(alpha=1.0, coef0=1, degree=3, gamma=None, kernel='linear',

kernel_params=None)

Methods

fit(X[, y, sample_weight]) Fit Kernel Ridge regression model
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the kernel ridge model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1, kernel=’linear’, gamma=None, degree=3, coef0=1, kernel_params=None)

fit(X, y=None, sample_weight=None)
Fit Kernel Ridge regression model

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training data

y : array-like, shape = [n_samples] or [n_samples, n_targets]

Target values

sample_weight : float or array-like of shape [n_samples]
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Individual weights for each sample, ignored if None is passed.

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the kernel ridge model

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

Returns C : array, shape = [n_samples] or [n_samples, n_targets]

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.kernel_ridge.KernelRidge

• Comparison of kernel ridge regression and SVR

• Comparison of kernel ridge and Gaussian process regression
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5.19 sklearn.linear_model: Generalized Linear Models

The sklearn.linear_model module implements generalized linear models. It includes Ridge regression,
Bayesian Regression, Lasso and Elastic Net estimators computed with Least Angle Regression and coordinate de-
scent. It also implements Stochastic Gradient Descent related algorithms.

User guide: See the Generalized Linear Models section for further details.

linear_model.ARDRegression([n_iter, tol, . . . ]) Bayesian ARD regression.
linear_model.BayesianRidge([n_iter, tol, . . . ]) Bayesian ridge regression
linear_model.ElasticNet([alpha, l1_ratio, . . . ]) Linear regression with combined L1 and L2 priors as regu-

larizer.
linear_model.ElasticNetCV ([l1_ratio, eps, . . . ]) Elastic Net model with iterative fitting along a regulariza-

tion path
linear_model.HuberRegressor([epsilon, . . . ]) Linear regression model that is robust to outliers.
linear_model.Lars([fit_intercept, verbose, . . . ]) Least Angle Regression model a.k.a.
linear_model.LarsCV ([fit_intercept, . . . ]) Cross-validated Least Angle Regression model
linear_model.Lasso([alpha, fit_intercept, . . . ]) Linear Model trained with L1 prior as regularizer (aka the

Lasso)
linear_model.LassoCV ([eps, n_alphas, . . . ]) Lasso linear model with iterative fitting along a regulariza-

tion path
linear_model.LassoLars([alpha, . . . ]) Lasso model fit with Least Angle Regression a.k.a.
linear_model.LassoLarsCV ([fit_intercept, . . . ]) Cross-validated Lasso, using the LARS algorithm
linear_model.LassoLarsIC([criterion, . . . ]) Lasso model fit with Lars using BIC or AIC for model se-

lection
linear_model.LinearRegression([. . . ]) Ordinary least squares Linear Regression.
linear_model.LogisticRegression([penalty,
. . . ])

Logistic Regression (aka logit, MaxEnt) classifier.

linear_model.LogisticRegressionCV ([Cs,
. . . ])

Logistic Regression CV (aka logit, MaxEnt) classifier.

linear_model.MultiTaskLasso([alpha, . . . ]) Multi-task Lasso model trained with L1/L2 mixed-norm as
regularizer

linear_model.MultiTaskElasticNet([alpha,
. . . ])

Multi-task ElasticNet model trained with L1/L2 mixed-
norm as regularizer

linear_model.MultiTaskLassoCV ([eps, . . . ]) Multi-task L1/L2 Lasso with built-in cross-validation.
linear_model.MultiTaskElasticNetCV ([. . . ]) Multi-task L1/L2 ElasticNet with built-in cross-validation.
linear_model.OrthogonalMatchingPursuit([. . . ])Orthogonal Matching Pursuit model (OMP)
linear_model.OrthogonalMatchingPursuitCV ([. . . ])Cross-validated Orthogonal Matching Pursuit model

(OMP)
linear_model.PassiveAggressiveClassifier([. . . ])Passive Aggressive Classifier
linear_model.PassiveAggressiveRegressor([C,
. . . ])

Passive Aggressive Regressor

linear_model.Perceptron([penalty, alpha, . . . ]) Read more in the User Guide.
linear_model.RANSACRegressor([. . . ]) RANSAC (RANdom SAmple Consensus) algorithm.
linear_model.Ridge([alpha, fit_intercept, . . . ]) Linear least squares with l2 regularization.
linear_model.RidgeClassifier([alpha, . . . ]) Classifier using Ridge regression.
linear_model.RidgeClassifierCV ([alphas,
. . . ])

Ridge classifier with built-in cross-validation.

linear_model.RidgeCV ([alphas, . . . ]) Ridge regression with built-in cross-validation.
linear_model.SGDClassifier([loss, penalty,
. . . ])

Linear classifiers (SVM, logistic regression, a.o.) with
SGD training.

Continued on next page
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Table 5.136 – continued from previous page
linear_model.SGDRegressor([loss, penalty, . . . ]) Linear model fitted by minimizing a regularized empirical

loss with SGD
linear_model.TheilSenRegressor([. . . ]) Theil-Sen Estimator: robust multivariate regression model.

5.19.1 sklearn.linear_model.ARDRegression

class sklearn.linear_model.ARDRegression(n_iter=300, tol=0.001, alpha_1=1e-
06, alpha_2=1e-06, lambda_1=1e-06,
lambda_2=1e-06, compute_score=False, thresh-
old_lambda=10000.0, fit_intercept=True, normal-
ize=False, copy_X=True, verbose=False)

Bayesian ARD regression.

Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed
to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the
weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures
(Evidence Maximization)

Read more in the User Guide.

Parameters n_iter : int, optional

Maximum number of iterations. Default is 300

tol : float, optional

Stop the algorithm if w has converged. Default is 1.e-3.

alpha_1 : float, optional

Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha
parameter. Default is 1.e-6.

alpha_2 : float, optional

Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution
prior over the alpha parameter. Default is 1.e-6.

lambda_1 : float, optional

Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda
parameter. Default is 1.e-6.

lambda_2 : float, optional

Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution
prior over the lambda parameter. Default is 1.e-6.

compute_score : boolean, optional

If True, compute the objective function at each step of the model. Default is False.

threshold_lambda : float, optional

threshold for removing (pruning) weights with high precision from the computation.
Default is 1.e+4.

fit_intercept : boolean, optional

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered). Default is True.
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normalize : boolean, optional, default False

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

copy_X : boolean, optional, default True.

If True, X will be copied; else, it may be overwritten.

verbose : boolean, optional, default False

Verbose mode when fitting the model.

Attributes coef_ : array, shape = (n_features)

Coefficients of the regression model (mean of distribution)

alpha_ : float

estimated precision of the noise.

lambda_ : array, shape = (n_features)

estimated precisions of the weights.

sigma_ : array, shape = (n_features, n_features)

estimated variance-covariance matrix of the weights

scores_ : float

if computed, value of the objective function (to be maximized)

Notes

For an example, see examples/linear_model/plot_ard.py.

References

D. J. C. MacKay, Bayesian nonlinear modeling for the prediction competition, ASHRAE Transactions, 1994.

R. Salakhutdinov, Lecture notes on Statistical Machine Learning, http://www.utstat.toronto.edu/~rsalakhu/
sta4273/notes/Lecture2.pdf#page=15 Their beta is our self.alpha_ Their alpha is our self.lambda_
ARD is a little different than the slide: only dimensions/features for which self.lambda_ < self.
threshold_lambda are kept and the rest are discarded.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.ARDRegression()
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
...
ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False,

copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06,
n_iter=300, normalize=False, threshold_lambda=10000.0, tol=0.001,
verbose=False)
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>>> clf.predict([[1, 1]])
array([ 1.])

Methods

fit(X, y) Fit the ARDRegression model according to the given
training data and parameters.

get_params([deep]) Get parameters for this estimator.
predict(X[, return_std]) Predict using the linear model.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(n_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-
06, compute_score=False, threshold_lambda=10000.0, fit_intercept=True, normal-
ize=False, copy_X=True, verbose=False)

fit(X, y)
Fit the ARDRegression model according to the given training data and parameters.

Iterative procedure to maximize the evidence

Parameters X : array-like, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array, shape = [n_samples]

Target values (integers). Will be cast to X’s dtype if necessary

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X, return_std=False)
Predict using the linear model.

In addition to the mean of the predictive distribution, also its standard deviation can be returned.

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

return_std : boolean, optional

Whether to return the standard deviation of posterior prediction.

Returns y_mean : array, shape = (n_samples,)

Mean of predictive distribution of query points.
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y_std : array, shape = (n_samples,)

Standard deviation of predictive distribution of query points.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.linear_model.ARDRegression

• Automatic Relevance Determination Regression (ARD)

5.19.2 sklearn.linear_model.BayesianRidge

class sklearn.linear_model.BayesianRidge(n_iter=300, tol=0.001, alpha_1=1e-06,
alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-
06, compute_score=False, fit_intercept=True,
normalize=False, copy_X=True, verbose=False)

Bayesian ridge regression

Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and
alpha (precision of the noise).

Read more in the User Guide.

Parameters n_iter : int, optional

Maximum number of iterations. Default is 300.

tol : float, optional

Stop the algorithm if w has converged. Default is 1.e-3.

alpha_1 : float, optional
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Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha
parameter. Default is 1.e-6

alpha_2 : float, optional

Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution
prior over the alpha parameter. Default is 1.e-6.

lambda_1 : float, optional

Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda
parameter. Default is 1.e-6.

lambda_2 : float, optional

Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution
prior over the lambda parameter. Default is 1.e-6

compute_score : boolean, optional

If True, compute the objective function at each step of the model. Default is False

fit_intercept : boolean, optional

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered). Default is True.

normalize : boolean, optional, default False

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

verbose : boolean, optional, default False

Verbose mode when fitting the model.

Attributes coef_ : array, shape = (n_features)

Coefficients of the regression model (mean of distribution)

alpha_ : float

estimated precision of the noise.

lambda_ : float

estimated precision of the weights.

sigma_ : array, shape = (n_features, n_features)

estimated variance-covariance matrix of the weights

scores_ : float

if computed, value of the objective function (to be maximized)

Notes

For an example, see examples/linear_model/plot_bayesian_ridge.py.

1548 Chapter 5. API Reference



scikit-learn user guide, Release 0.19.1

References

D. J. C. MacKay, Bayesian Interpolation, Computation and Neural Systems, Vol. 4, No. 3, 1992.

R. Salakhutdinov, Lecture notes on Statistical Machine Learning, http://www.utstat.toronto.edu/~rsalakhu/
sta4273/notes/Lecture2.pdf#page=15 Their beta is our self.alpha_ Their alpha is our self.lambda_

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.BayesianRidge()
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
...
BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False,

copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06,
n_iter=300, normalize=False, tol=0.001, verbose=False)

>>> clf.predict([[1, 1]])
array([ 1.])

Methods

fit(X, y) Fit the model
get_params([deep]) Get parameters for this estimator.
predict(X[, return_std]) Predict using the linear model.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(n_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-
06, compute_score=False, fit_intercept=True, normalize=False, copy_X=True, ver-
bose=False)

fit(X, y)
Fit the model

Parameters X : numpy array of shape [n_samples,n_features]

Training data

y : numpy array of shape [n_samples]

Target values. Will be cast to X’s dtype if necessary

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.
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predict(X, return_std=False)
Predict using the linear model.

In addition to the mean of the predictive distribution, also its standard deviation can be returned.

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

return_std : boolean, optional

Whether to return the standard deviation of posterior prediction.

Returns y_mean : array, shape = (n_samples,)

Mean of predictive distribution of query points.

y_std : array, shape = (n_samples,)

Standard deviation of predictive distribution of query points.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.linear_model.BayesianRidge

• Feature agglomeration vs. univariate selection

• Bayesian Ridge Regression
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5.19.3 sklearn.linear_model.ElasticNet

class sklearn.linear_model.ElasticNet(alpha=1.0, l1_ratio=0.5, fit_intercept=True, nor-
malize=False, precompute=False, max_iter=1000,
copy_X=True, tol=0.0001, warm_start=False, posi-
tive=False, random_state=None, selection=’cyclic’)

Linear regression with combined L1 and L2 priors as regularizer.

Minimizes the objective function:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:

a * L1 + b * L2

where:

alpha = a + b and l1_ratio = a / (a + b)

The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda
parameter in glmnet. Specifically, l1_ratio = 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable,
unless you supply your own sequence of alpha.

Read more in the User Guide.

Parameters alpha : float, optional

Constant that multiplies the penalty terms. Defaults to 1.0. See the notes for the ex-
act mathematical meaning of this parameter.‘‘alpha = 0‘‘ is equivalent to an ordinary
least square, solved by the LinearRegression object. For numerical reasons, us-
ing alpha = 0 with the Lasso object is not advised. Given this, you should use the
LinearRegression object.

l1_ratio : float

The ElasticNet mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio =
0 the penalty is an L2 penalty. For l1_ratio = 1 it is an L1 penalty. For 0 <
l1_ratio < 1, the penalty is a combination of L1 and L2.

fit_intercept : bool

Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered.

normalize : boolean, optional, default False

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

precompute : True | False | array-like

Whether to use a precomputed Gram matrix to speed up calculations. The Gram matrix
can also be passed as argument. For sparse input this option is always True to preserve
sparsity.

max_iter : int, optional
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The maximum number of iterations

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, other-
wise, just erase the previous solution.

positive : bool, optional

When set to True, forces the coefficients to be positive.

random_state : int, RandomState instance or None, optional, default None

The seed of the pseudo random number generator that selects a random feature to up-
date. If int, random_state is the seed used by the random number generator; If Ran-
domState instance, random_state is the random number generator; If None, the ran-
dom number generator is the RandomState instance used by np.random. Used when
selection == ‘random’.

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4.

Attributes coef_ : array, shape (n_features,) | (n_targets, n_features)

parameter vector (w in the cost function formula)

sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | (n_targets, n_features)

sparse_coef_ is a readonly property derived from coef_

intercept_ : float | array, shape (n_targets,)

independent term in decision function.

n_iter_ : array-like, shape (n_targets,)

number of iterations run by the coordinate descent solver to reach the specified toler-
ance.

See also:

SGDRegressor implements elastic net regression with incremental training.

SGDClassifier implements logistic regression with elastic net penalty
(SGDClassifier(loss="log", penalty="elasticnet")).

Notes

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.
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Examples

>>> from sklearn.linear_model import ElasticNet
>>> from sklearn.datasets import make_regression
>>>
>>> X, y = make_regression(n_features=2, random_state=0)
>>> regr = ElasticNet(random_state=0)
>>> regr.fit(X, y)
ElasticNet(alpha=1.0, copy_X=True, fit_intercept=True, l1_ratio=0.5,

max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=0, selection='cyclic', tol=0.0001, warm_start=False)

>>> print(regr.coef_)
[ 18.83816048 64.55968825]
>>> print(regr.intercept_)
1.45126075617
>>> print(regr.predict([[0, 0]]))
[ 1.45126076]

Methods

fit(X, y[, check_input]) Fit model with coordinate descent.
get_params([deep]) Get parameters for this estimator.
path(X, y[, l1_ratio, eps, n_alphas, . . . ]) Compute elastic net path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False,
max_iter=1000, copy_X=True, tol=0.0001, warm_start=False, positive=False, ran-
dom_state=None, selection=’cyclic’)

fit(X, y, check_input=True)
Fit model with coordinate descent.

Parameters X : ndarray or scipy.sparse matrix, (n_samples, n_features)

Data

y : ndarray, shape (n_samples,) or (n_samples, n_targets)

Target. Will be cast to X’s dtype if necessary

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

Notes

Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically
convert the X input as a Fortran-contiguous numpy array if necessary.

To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.
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get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

static path(X, y, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’,
Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, posi-
tive=False, check_input=True, **params)

Compute elastic net path with coordinate descent

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters X : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,) or (n_samples, n_outputs)

Target values

l1_ratio : float, optional

float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties).
l1_ratio=1 corresponds to the Lasso

eps : float

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like
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Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

return_n_iter : bool

whether to return the number of iterations or not.

positive : bool, default False

If set to True, forces coefficients to be positive. (Only allowed when y.ndim == 1).

check_input : bool, default True

Skip input validation checks, including the Gram matrix when provided assuming there
are handled by the caller when check_input=False.

**params : kwargs

keyword arguments passed to the coordinate descent solver.

Returns alphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha. (Is returned when return_n_iter is set to True).

See also:

MultiTaskElasticNet, MultiTaskElasticNetCV , ElasticNet, ElasticNetCV

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)
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Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sparse_coef_
sparse representation of the fitted coef_

Examples using sklearn.linear_model.ElasticNet

• Lasso and Elastic Net for Sparse Signals

• Train error vs Test error

5.19.4 sklearn.linear_model.HuberRegressor

class sklearn.linear_model.HuberRegressor(epsilon=1.35, max_iter=100, alpha=0.0001,
warm_start=False, fit_intercept=True, tol=1e-05)

Linear regression model that is robust to outliers.

The Huber Regressor optimizes the squared loss for the samples where |(y - X'w) / sigma| <
epsilon and the absolute loss for the samples where |(y - X'w) / sigma| > epsilon, where w
and sigma are parameters to be optimized. The parameter sigma makes sure that if y is scaled up or down by a
certain factor, one does not need to rescale epsilon to achieve the same robustness. Note that this does not take
into account the fact that the different features of X may be of different scales.

This makes sure that the loss function is not heavily influenced by the outliers while not completely ignoring
their effect.
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Read more in the User Guide

New in version 0.18.

Parameters epsilon : float, greater than 1.0, default 1.35

The parameter epsilon controls the number of samples that should be classified as out-
liers. The smaller the epsilon, the more robust it is to outliers.

max_iter : int, default 100

Maximum number of iterations that scipy.optimize.fmin_l_bfgs_b should run for.

alpha : float, default 0.0001

Regularization parameter.

warm_start : bool, default False

This is useful if the stored attributes of a previously used model has to be reused. If set
to False, then the coefficients will be rewritten for every call to fit.

fit_intercept : bool, default True

Whether or not to fit the intercept. This can be set to False if the data is already centered
around the origin.

tol : float, default 1e-5

The iteration will stop when max{|proj g_i | i = 1, ..., n} <= tol
where pg_i is the i-th component of the projected gradient.

Attributes coef_ : array, shape (n_features,)

Features got by optimizing the Huber loss.

intercept_ : float

Bias.

scale_ : float

The value by which |y - X'w - c| is scaled down.

n_iter_ : int

Number of iterations that fmin_l_bfgs_b has run for. Not available if SciPy version is
0.9 and below.

outliers_ : array, shape (n_samples,)

A boolean mask which is set to True where the samples are identified as outliers.

References

[R33], [R34]

Methods

fit(X, y[, sample_weight]) Fit the model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model

Continued on next page
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Table 5.140 – continued from previous page
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(epsilon=1.35, max_iter=100, alpha=0.0001, warm_start=False, fit_intercept=True, tol=1e-
05)

fit(X, y, sample_weight=None)
Fit the model according to the given training data.

Parameters X : array-like, shape (n_samples, n_features)

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array-like, shape (n_samples,)

Target vector relative to X.

sample_weight : array-like, shape (n_samples,)

Weight given to each sample.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.
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sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.linear_model.HuberRegressor

• HuberRegressor vs Ridge on dataset with strong outliers

• Robust linear estimator fitting

5.19.5 sklearn.linear_model.Lars

class sklearn.linear_model.Lars(fit_intercept=True, verbose=False, normalize=True, precom-
pute=’auto’, n_nonzero_coefs=500, eps=2.2204460492503131e-
16, copy_X=True, fit_path=True, positive=False)

Least Angle Regression model a.k.a. LAR

Read more in the User Guide.

Parameters fit_intercept : boolean

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional, default True

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

n_nonzero_coefs : int, optional

Target number of non-zero coefficients. Use np.inf for no limit.

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems. Unlike the tol parameter in some
iterative optimization-based algorithms, this parameter does not control the tolerance of
the optimization.
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copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

fit_path : boolean

If True the full path is stored in the coef_path_ attribute. If you compute the solu-
tion for a large problem or many targets, setting fit_path to False will lead to a
speedup, especially with a small alpha.

positive : boolean (default=False)

Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept
which is set True by default.

Attributes alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays

Maximum of covariances (in absolute value) at each iteration. n_alphas is either
n_nonzero_coefs or n_features, whichever is smaller.

active_ : list, length = n_alphas | list of n_targets such lists

Indices of active variables at the end of the path.

coef_path_ : array, shape (n_features, n_alphas + 1) | list of n_targets such arrays

The varying values of the coefficients along the path. It is not present if the fit_path
parameter is False.

coef_ : array, shape (n_features,) or (n_targets, n_features)

Parameter vector (w in the formulation formula).

intercept_ : float | array, shape (n_targets,)

Independent term in decision function.

n_iter_ : array-like or int

The number of iterations taken by lars_path to find the grid of alphas for each target.

See also:

lars_path, LarsCV , sklearn.decomposition.sparse_encode

Examples

>>> from sklearn import linear_model
>>> reg = linear_model.Lars(n_nonzero_coefs=1)
>>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
...
Lars(copy_X=True, eps=..., fit_intercept=True, fit_path=True,

n_nonzero_coefs=1, normalize=True, positive=False, precompute='auto',
verbose=False)

>>> print(reg.coef_)
[ 0. -1.11...]

Methods
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fit(X, y[, Xy]) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(fit_intercept=True, verbose=False, normalize=True, precompute=’auto’,
n_nonzero_coefs=500, eps=2.2204460492503131e-16, copy_X=True, fit_path=True,
positive=False)

fit(X, y, Xy=None)
Fit the model using X, y as training data.

Parameters X : array-like, shape (n_samples, n_features)

Training data.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values.

Xy : array-like, shape (n_samples,) or (n_samples, n_targets), optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

Returns self : object

returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)
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Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

5.19.6 sklearn.linear_model.Lasso

class sklearn.linear_model.Lasso(alpha=1.0, fit_intercept=True, normalize=False, precom-
pute=False, copy_X=True, max_iter=1000, tol=0.0001,
warm_start=False, positive=False, random_state=None, selec-
tion=’cyclic’)

Linear Model trained with L1 prior as regularizer (aka the Lasso)

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Technically the Lasso model is optimizing the same objective function as the Elastic Net with l1_ratio=1.0
(no L2 penalty).

Read more in the User Guide.

Parameters alpha : float, optional

Constant that multiplies the L1 term. Defaults to 1.0. alpha = 0 is equivalent to
an ordinary least square, solved by the LinearRegression object. For numerical
reasons, using alpha = 0 with the Lasso object is not advised. Given this, you
should use the LinearRegression object.

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

precompute : True | False | array-like, default=False
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Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument. For sparse input this
option is always True to preserve sparsity.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

max_iter : int, optional

The maximum number of iterations

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.

positive : bool, optional

When set to True, forces the coefficients to be positive.

random_state : int, RandomState instance or None, optional, default None

The seed of the pseudo random number generator that selects a random feature to up-
date. If int, random_state is the seed used by the random number generator; If Ran-
domState instance, random_state is the random number generator; If None, the ran-
dom number generator is the RandomState instance used by np.random. Used when
selection == ‘random’.

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4.

Attributes coef_ : array, shape (n_features,) | (n_targets, n_features)

parameter vector (w in the cost function formula)

sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | (n_targets, n_features)

sparse_coef_ is a readonly property derived from coef_

intercept_ : float | array, shape (n_targets,)

independent term in decision function.

n_iter_ : int | array-like, shape (n_targets,)

number of iterations run by the coordinate descent solver to reach the specified toler-
ance.

See also:

lars_path, lasso_path, LassoLars, LassoCV , LassoLarsCV , sklearn.decomposition.
sparse_encode
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Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.Lasso(alpha=0.1)
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,

normalize=False, positive=False, precompute=False, random_state=None,
selection='cyclic', tol=0.0001, warm_start=False)

>>> print(clf.coef_)
[ 0.85 0. ]
>>> print(clf.intercept_)
0.15

Methods

fit(X, y[, check_input]) Fit model with coordinate descent.
get_params([deep]) Get parameters for this estimator.
path(X, y[, l1_ratio, eps, n_alphas, . . . ]) Compute elastic net path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True,
max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None,
selection=’cyclic’)

fit(X, y, check_input=True)
Fit model with coordinate descent.

Parameters X : ndarray or scipy.sparse matrix, (n_samples, n_features)

Data

y : ndarray, shape (n_samples,) or (n_samples, n_targets)

Target. Will be cast to X’s dtype if necessary

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

Notes

Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically
convert the X input as a Fortran-contiguous numpy array if necessary.
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To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

static path(X, y, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’,
Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, posi-
tive=False, check_input=True, **params)

Compute elastic net path with coordinate descent

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters X : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,) or (n_samples, n_outputs)

Target values

l1_ratio : float, optional

float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties).
l1_ratio=1 corresponds to the Lasso

eps : float

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically
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precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

return_n_iter : bool

whether to return the number of iterations or not.

positive : bool, default False

If set to True, forces coefficients to be positive. (Only allowed when y.ndim == 1).

check_input : bool, default True

Skip input validation checks, including the Gram matrix when provided assuming there
are handled by the caller when check_input=False.

**params : kwargs

keyword arguments passed to the coordinate descent solver.

Returns alphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha. (Is returned when return_n_iter is set to True).

See also:

MultiTaskElasticNet, MultiTaskElasticNetCV , ElasticNet, ElasticNetCV

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

predict(X)
Predict using the linear model
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Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sparse_coef_
sparse representation of the fitted coef_

Examples using sklearn.linear_model.Lasso

• Compressive sensing: tomography reconstruction with L1 prior (Lasso)

• Cross-validation on diabetes Dataset Exercise

• Lasso and Elastic Net for Sparse Signals

• Lasso on dense and sparse data

• Joint feature selection with multi-task Lasso

5.19.7 sklearn.linear_model.LassoLars

class sklearn.linear_model.LassoLars(alpha=1.0, fit_intercept=True, verbose=False, nor-
malize=True, precompute=’auto’, max_iter=500,
eps=2.2204460492503131e-16, copy_X=True,
fit_path=True, positive=False)

Lasso model fit with Least Angle Regression a.k.a. Lars
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It is a Linear Model trained with an L1 prior as regularizer.

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Read more in the User Guide.

Parameters alpha : float

Constant that multiplies the penalty term. Defaults to 1.0. alpha = 0 is equivalent
to an ordinary least square, solved by LinearRegression. For numerical reasons,
using alpha = 0 with the LassoLars object is not advised and you should prefer the
LinearRegression object.

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional, default True

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

max_iter : integer, optional

Maximum number of iterations to perform.

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems. Unlike the tol parameter in some
iterative optimization-based algorithms, this parameter does not control the tolerance of
the optimization.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

fit_path : boolean

If True the full path is stored in the coef_path_ attribute. If you compute the
solution for a large problem or many targets, setting fit_path to False will lead to
a speedup, especially with a small alpha.

positive : boolean (default=False)

Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept
which is set True by default. Under the positive restriction the model coefficients will
not converge to the ordinary-least-squares solution for small values of alpha. Only co-
efficients up to the smallest alpha value (alphas_[alphas_ > 0.].min() when
fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congru-
ence with the solution of the coordinate descent Lasso estimator.
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Attributes alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays

Maximum of covariances (in absolute value) at each iteration. n_alphas is either
max_iter, n_features, or the number of nodes in the path with correlation greater
than alpha, whichever is smaller.

active_ : list, length = n_alphas | list of n_targets such lists

Indices of active variables at the end of the path.

coef_path_ : array, shape (n_features, n_alphas + 1) or list

If a list is passed it’s expected to be one of n_targets such arrays. The varying values of
the coefficients along the path. It is not present if the fit_path parameter is False.

coef_ : array, shape (n_features,) or (n_targets, n_features)

Parameter vector (w in the formulation formula).

intercept_ : float | array, shape (n_targets,)

Independent term in decision function.

n_iter_ : array-like or int.

The number of iterations taken by lars_path to find the grid of alphas for each target.

See also:

lars_path, lasso_path, Lasso, LassoCV , LassoLarsCV , sklearn.decomposition.
sparse_encode

Examples

>>> from sklearn import linear_model
>>> reg = linear_model.LassoLars(alpha=0.01)
>>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1])
...
LassoLars(alpha=0.01, copy_X=True, eps=..., fit_intercept=True,

fit_path=True, max_iter=500, normalize=True, positive=False,
precompute='auto', verbose=False)

>>> print(reg.coef_)
[ 0. -0.963257...]

Methods

fit(X, y[, Xy]) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, fit_intercept=True, verbose=False, normalize=True, precompute=’auto’,
max_iter=500, eps=2.2204460492503131e-16, copy_X=True, fit_path=True, posi-
tive=False)

fit(X, y, Xy=None)
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Fit the model using X, y as training data.

Parameters X : array-like, shape (n_samples, n_features)

Training data.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values.

Xy : array-like, shape (n_samples,) or (n_samples, n_targets), optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

Returns self : object

returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

5.19.8 sklearn.linear_model.LinearRegression

class sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False,
copy_X=True, n_jobs=1)

Ordinary least squares Linear Regression.

Parameters fit_intercept : boolean, optional, default True

whether to calculate the intercept for this model. If set to False, no intercept will be
used in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

n_jobs : int, optional, default 1

The number of jobs to use for the computation. If -1 all CPUs are used. This will only
provide speedup for n_targets > 1 and sufficient large problems.

Attributes coef_ : array, shape (n_features, ) or (n_targets, n_features)

Estimated coefficients for the linear regression problem. If multiple targets are passed
during the fit (y 2D), this is a 2D array of shape (n_targets, n_features), while if only
one target is passed, this is a 1D array of length n_features.

intercept_ : array

Independent term in the linear model.

Notes

From the implementation point of view, this is just plain Ordinary Least Squares (scipy.linalg.lstsq) wrapped as
a predictor object.

Methods

fit(X, y[, sample_weight]) Fit linear model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model

Continued on next page
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Table 5.144 – continued from previous page
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1)

fit(X, y, sample_weight=None)
Fit linear model.

Parameters X : numpy array or sparse matrix of shape [n_samples,n_features]

Training data

y : numpy array of shape [n_samples, n_targets]

Target values. Will be cast to X’s dtype if necessary

sample_weight : numpy array of shape [n_samples]

Individual weights for each sample

New in version 0.17: parameter sample_weight support to LinearRegression.

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional
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Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.linear_model.LinearRegression

• Plotting Cross-Validated Predictions

• Isotonic Regression

• Face completion with a multi-output estimators

• Automatic Relevance Determination Regression (ARD)

• Bayesian Ridge Regression

• Logistic function

• Linear Regression Example

• Sparsity Example: Fitting only features 1 and 2

• Ordinary Least Squares and Ridge Regression Variance

• Robust linear model estimation using RANSAC

• Robust linear estimator fitting

• Theil-Sen Regression

• Underfitting vs. Overfitting

5.19.9 sklearn.linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001,
C=1.0, fit_intercept=True, inter-
cept_scaling=1, class_weight=None,
random_state=None, solver=’liblinear’,
max_iter=100, multi_class=’ovr’, ver-
bose=0, warm_start=False, n_jobs=1)

Logistic Regression (aka logit, MaxEnt) classifier.

In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the ‘multi_class’ option is
set to ‘ovr’, and uses the cross- entropy loss if the ‘multi_class’ option is set to ‘multinomial’. (Currently the
‘multinomial’ option is supported only by the ‘lbfgs’, ‘sag’ and ‘newton-cg’ solvers.)

This class implements regularized logistic regression using the ‘liblinear’ library, ‘newton-cg’, ‘sag’ and ‘lbfgs’
solvers. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit
floats for optimal performance; any other input format will be converted (and copied).

The ‘newton-cg’, ‘sag’, and ‘lbfgs’ solvers support only L2 regularization with primal formulation. The ‘liblin-
ear’ solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty.
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Read more in the User Guide.

Parameters penalty : str, ‘l1’ or ‘l2’, default: ‘l2’

Used to specify the norm used in the penalization. The ‘newton-cg’, ‘sag’ and ‘lbfgs’
solvers support only l2 penalties.

New in version 0.19: l1 penalty with SAGA solver (allowing ‘multinomial’ + L1)

dual : bool, default: False

Dual or primal formulation. Dual formulation is only implemented for l2 penalty with
liblinear solver. Prefer dual=False when n_samples > n_features.

tol : float, default: 1e-4

Tolerance for stopping criteria.

C : float, default: 1.0

Inverse of regularization strength; must be a positive float. Like in support vector ma-
chines, smaller values specify stronger regularization.

fit_intercept : bool, default: True

Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function.

intercept_scaling : float, default 1.

Useful only when the solver ‘liblinear’ is used and self.fit_intercept is set to True. In this
case, x becomes [x, self.intercept_scaling], i.e. a “synthetic” feature with constant value
equal to intercept_scaling is appended to the instance vector. The intercept becomes
intercept_scaling * synthetic_feature_weight.

Note! the synthetic feature weight is subject to l1/l2 regularization as all other features.
To lessen the effect of regularization on synthetic feature weight (and therefore on the
intercept) intercept_scaling has to be increased.

class_weight : dict or ‘balanced’, default: None

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y)).

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

New in version 0.17: class_weight=’balanced’

random_state : int, RandomState instance or None, optional, default: None

The seed of the pseudo random number generator to use when shuffling the data. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random. Used when solver ==
‘sag’ or ‘liblinear’.

solver : {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’},

default: ‘liblinear’ Algorithm to use in the optimization problem.

• For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ and ‘saga’ are
faster for large ones.
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• For multiclass problems, only ‘newton-cg’, ‘sag’, ‘saga’ and ‘lbfgs’ handle
multinomial loss; ‘liblinear’ is limited to one-versus-rest schemes.

• ‘newton-cg’, ‘lbfgs’ and ‘sag’ only handle L2 penalty, whereas ‘liblinear’ and
‘saga’ handle L1 penalty.

Note that ‘sag’ and ‘saga’ fast convergence is only guaranteed on features with
approximately the same scale. You can preprocess the data with a scaler from
sklearn.preprocessing.

New in version 0.17: Stochastic Average Gradient descent solver.

New in version 0.19: SAGA solver.

max_iter : int, default: 100

Useful only for the newton-cg, sag and lbfgs solvers. Maximum number of iterations
taken for the solvers to converge.

multi_class : str, {‘ovr’, ‘multinomial’}, default: ‘ovr’

Multiclass option can be either ‘ovr’ or ‘multinomial’. If the option chosen is ‘ovr’,
then a binary problem is fit for each label. Else the loss minimised is the multinomial
loss fit across the entire probability distribution. Does not work for liblinear solver.

New in version 0.18: Stochastic Average Gradient descent solver for ‘multinomial’
case.

verbose : int, default: 0

For the liblinear and lbfgs solvers set verbose to any positive number for verbosity.

warm_start : bool, default: False

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution. Useless for liblinear solver.

New in version 0.17: warm_start to support lbfgs, newton-cg, sag, saga solvers.

n_jobs : int, default: 1

Number of CPU cores used when parallelizing over classes if multi_class=’ovr’”.
This parameter is ignored when the ‘‘solver‘‘is set to ‘liblinear’ regardless of whether
‘multi_class’ is specified or not. If given a value of -1, all cores are used.

Attributes coef_ : array, shape (1, n_features) or (n_classes, n_features)

Coefficient of the features in the decision function.

coef_ is of shape (1, n_features) when the given problem is binary.

intercept_ : array, shape (1,) or (n_classes,)

Intercept (a.k.a. bias) added to the decision function.

If fit_intercept is set to False, the intercept is set to zero. intercept_ is of shape(1,) when
the problem is binary.

n_iter_ : array, shape (n_classes,) or (1, )

Actual number of iterations for all classes. If binary or multinomial, it returns only 1
element. For liblinear solver, only the maximum number of iteration across all classes
is given.

See also:
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SGDClassifier incrementally trained logistic regression (when given the parameter loss="log").

sklearn.svm.LinearSVC learns SVM models using the same algorithm.

Notes

The underlying C implementation uses a random number generator to select features when fitting the model.
It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with a
smaller tol parameter.

Predict output may not match that of standalone liblinear in certain cases. See differences from liblinear in the
narrative documentation.

References

LIBLINEAR – A Library for Large Linear Classification http://www.csie.ntu.edu.tw/~cjlin/liblinear/

SAG – Mark Schmidt, Nicolas Le Roux, and Francis Bach Minimizing Finite Sums with the Stochastic Av-
erage Gradient https://hal.inria.fr/hal-00860051/document

SAGA – Defazio, A., Bach F. & Lacoste-Julien S. (2014). SAGA: A Fast Incremental Gradient Method With
Support for Non-Strongly Convex Composite Objectives https://arxiv.org/abs/1407.0202

Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descent methods for logistic re-
gression and maximum entropy models. Machine Learning 85(1-2):41-75. http://www.csie.ntu.edu.tw/
~cjlin/papers/maxent_dual.pdf

Methods

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, sample_weight]) Fit the model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
predict_log_proba(X) Log of probability estimates.
predict_proba(X) Probability estimates.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
sparsify() Convert coefficient matrix to sparse format.

__init__(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1,
class_weight=None, random_state=None, solver=’liblinear’, max_iter=100,
multi_class=’ovr’, verbose=0, warm_start=False, n_jobs=1)

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :
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Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returns self : estimator

fit(X, y, sample_weight=None)
Fit the model according to the given training data.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Training vector, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, shape (n_samples,)

Target vector relative to X.

sample_weight : array-like, shape (n_samples,) optional

Array of weights that are assigned to individual samples. If not provided, then each
sample is given unit weight.

New in version 0.17: sample_weight support to LogisticRegression.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

Returns C : array, shape = [n_samples]

Predicted class label per sample.

predict_log_proba(X)
Log of probability estimates.

The returned estimates for all classes are ordered by the label of classes.

Parameters X : array-like, shape = [n_samples, n_features]

Returns T : array-like, shape = [n_samples, n_classes]
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Returns the log-probability of the sample for each class in the model, where classes are
ordered as they are in self.classes_.

predict_proba(X)
Probability estimates.

The returned estimates for all classes are ordered by the label of classes.

For a multi_class problem, if multi_class is set to be “multinomial” the softmax function is used to find
the predicted probability of each class. Else use a one-vs-rest approach, i.e calculate the probability of
each class assuming it to be positive using the logistic function. and normalize these values across all the
classes.

Parameters X : array-like, shape = [n_samples, n_features]

Returns T : array-like, shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are
ordered as they are in self.classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returns self : estimator
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Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

Examples using sklearn.linear_model.LogisticRegression

• Pipelining: chaining a PCA and a logistic regression

• Probability Calibration curves

• Comparison of Calibration of Classifiers

• Plot classification probability

• Feature transformations with ensembles of trees

• Plot class probabilities calculated by the VotingClassifier

• Digits Classification Exercise

• Logistic Regression 3-class Classifier

• Logistic function

• L1 Penalty and Sparsity in Logistic Regression

• Plot multinomial and One-vs-Rest Logistic Regression

• Path with L1- Logistic Regression

• Comparing various online solvers

• Multiclass sparse logisitic regression on newgroups20

• MNIST classfification using multinomial logistic + L1

• Classifier Chain

• Restricted Boltzmann Machine features for digit classification

5.19.10 sklearn.linear_model.MultiTaskLasso

class sklearn.linear_model.MultiTaskLasso(alpha=1.0, fit_intercept=True, normalize=False,
copy_X=True, max_iter=1000, tol=0.0001,
warm_start=False, random_state=None, selec-
tion=’cyclic’)

Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}
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i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters alpha : float, optional

Constant that multiplies the L1/L2 term. Defaults to 1.0

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

max_iter : int, optional

The maximum number of iterations

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, other-
wise, just erase the previous solution.

random_state : int, RandomState instance or None, optional, default None

The seed of the pseudo random number generator that selects a random feature to up-
date. If int, random_state is the seed used by the random number generator; If Ran-
domState instance, random_state is the random number generator; If None, the ran-
dom number generator is the RandomState instance used by np.random. Used when
selection == ‘random’.

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4

Attributes coef_ : array, shape (n_tasks, n_features)

Parameter vector (W in the cost function formula). Note that coef_ stores the trans-
pose of W, W.T.

intercept_ : array, shape (n_tasks,)

independent term in decision function.

n_iter_ : int

number of iterations run by the coordinate descent solver to reach the specified toler-
ance.
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See also:

Lasso, MultiTaskElasticNet

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.MultiTaskLasso(alpha=0.1)
>>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]])
MultiTaskLasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,

normalize=False, random_state=None, selection='cyclic', tol=0.0001,
warm_start=False)

>>> print(clf.coef_)
[[ 0.89393398 0. ]
[ 0.89393398 0. ]]
>>> print(clf.intercept_)
[ 0.10606602 0.10606602]

Methods

fit(X, y) Fit MultiTaskElasticNet model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y[, l1_ratio, eps, n_alphas, . . . ]) Compute elastic net path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000,
tol=0.0001, warm_start=False, random_state=None, selection=’cyclic’)

fit(X, y)
Fit MultiTaskElasticNet model with coordinate descent

Parameters X : ndarray, shape (n_samples, n_features)

Data

y : ndarray, shape (n_samples, n_tasks)

Target. Will be cast to X’s dtype if necessary
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Notes

Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically
convert the X input as a Fortran-contiguous numpy array if necessary.

To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

path(X, y, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’, Xy=None,
copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False,
check_input=True, **params)

Compute elastic net path with coordinate descent

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters X : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,) or (n_samples, n_outputs)

Target values

l1_ratio : float, optional

float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties).
l1_ratio=1 corresponds to the Lasso

eps : float

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3
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n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

return_n_iter : bool

whether to return the number of iterations or not.

positive : bool, default False

If set to True, forces coefficients to be positive. (Only allowed when y.ndim == 1).

check_input : bool, default True

Skip input validation checks, including the Gram matrix when provided assuming there
are handled by the caller when check_input=False.

**params : kwargs

keyword arguments passed to the coordinate descent solver.

Returns alphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha. (Is returned when return_n_iter is set to True).

See also:

MultiTaskElasticNet, MultiTaskElasticNetCV , ElasticNet, ElasticNetCV
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Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sparse_coef_
sparse representation of the fitted coef_

Examples using sklearn.linear_model.MultiTaskLasso

• Joint feature selection with multi-task Lasso
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5.19.11 sklearn.linear_model.MultiTaskElasticNet

class sklearn.linear_model.MultiTaskElasticNet(alpha=1.0, l1_ratio=0.5,
fit_intercept=True, normalize=False,
copy_X=True, max_iter=1000, tol=0.0001,
warm_start=False, random_state=None,
selection=’cyclic’)

Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer

The optimization objective for MultiTaskElasticNet is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters alpha : float, optional

Constant that multiplies the L1/L2 term. Defaults to 1.0

l1_ratio : float

The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 1 the penalty is
an L1/L2 penalty. For l1_ratio = 0 it is an L2 penalty. For 0 < l1_ratio < 1, the
penalty is a combination of L1/L2 and L2.

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

max_iter : int, optional

The maximum number of iterations

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization
code checks the dual gap for optimality and continues until it is smaller than tol.

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, other-
wise, just erase the previous solution.

random_state : int, RandomState instance or None, optional, default None
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The seed of the pseudo random number generator that selects a random feature to up-
date. If int, random_state is the seed used by the random number generator; If Ran-
domState instance, random_state is the random number generator; If None, the ran-
dom number generator is the RandomState instance used by np.random. Used when
selection == ‘random’.

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping
over features sequentially by default. This (setting to ‘random’) often leads to signifi-
cantly faster convergence especially when tol is higher than 1e-4.

Attributes intercept_ : array, shape (n_tasks,)

Independent term in decision function.

coef_ : array, shape (n_tasks, n_features)

Parameter vector (W in the cost function formula). If a 1D y is passed in at fit (non
multi-task usage), coef_ is then a 1D array. Note that coef_ stores the transpose of
W, W.T.

n_iter_ : int

number of iterations run by the coordinate descent solver to reach the specified toler-
ance.

See also:

ElasticNet, MultiTaskLasso

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.MultiTaskElasticNet(alpha=0.1)
>>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]])
...
MultiTaskElasticNet(alpha=0.1, copy_X=True, fit_intercept=True,

l1_ratio=0.5, max_iter=1000, normalize=False, random_state=None,
selection='cyclic', tol=0.0001, warm_start=False)

>>> print(clf.coef_)
[[ 0.45663524 0.45612256]
[ 0.45663524 0.45612256]]
>>> print(clf.intercept_)
[ 0.0872422 0.0872422]

Methods
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fit(X, y) Fit MultiTaskElasticNet model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y[, l1_ratio, eps, n_alphas, . . . ]) Compute elastic net path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True,
max_iter=1000, tol=0.0001, warm_start=False, random_state=None, selection=’cyclic’)

fit(X, y)
Fit MultiTaskElasticNet model with coordinate descent

Parameters X : ndarray, shape (n_samples, n_features)

Data

y : ndarray, shape (n_samples, n_tasks)

Target. Will be cast to X’s dtype if necessary

Notes

Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically
convert the X input as a Fortran-contiguous numpy array if necessary.

To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

path(X, y, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’, Xy=None,
copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False,
check_input=True, **params)

Compute elastic net path with coordinate descent

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
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Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters X : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,) or (n_samples, n_outputs)

Target values

l1_ratio : float, optional

float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties).
l1_ratio=1 corresponds to the Lasso

eps : float

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

return_n_iter : bool

whether to return the number of iterations or not.

positive : bool, default False

If set to True, forces coefficients to be positive. (Only allowed when y.ndim == 1).

check_input : bool, default True

Skip input validation checks, including the Gram matrix when provided assuming there
are handled by the caller when check_input=False.
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**params : kwargs

keyword arguments passed to the coordinate descent solver.

Returns alphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha. (Is returned when return_n_iter is set to True).

See also:

MultiTaskElasticNet, MultiTaskElasticNetCV , ElasticNet, ElasticNetCV

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sparse_coef_
sparse representation of the fitted coef_

5.19.12 sklearn.linear_model.OrthogonalMatchingPursuit

class sklearn.linear_model.OrthogonalMatchingPursuit(n_nonzero_coefs=None,
tol=None, fit_intercept=True, nor-
malize=True, precompute=’auto’)

Orthogonal Matching Pursuit model (OMP)

Read more in the User Guide.

Parameters n_nonzero_coefs : int, optional

Desired number of non-zero entries in the solution. If None (by default) this value is set
to 10% of n_features.

tol : float, optional

Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

fit_intercept : boolean, optional

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default True

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

precompute : {True, False, ‘auto’}, default ‘auto’

Whether to use a precomputed Gram and Xy matrix to speed up calculations. Improves
performance when n_targets or n_samples is very large. Note that if you already have
such matrices, you can pass them directly to the fit method.

Attributes coef_ : array, shape (n_features,) or (n_targets, n_features)

parameter vector (w in the formula)

intercept_ : float or array, shape (n_targets,)

independent term in decision function.

n_iter_ : int or array-like

Number of active features across every target.

See also:

orthogonal_mp, orthogonal_mp_gram, lars_path, Lars, LassoLars, decomposition.
sparse_encode
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Notes

Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency
dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
(http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of
the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008.
http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

Methods

fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(n_nonzero_coefs=None, tol=None, fit_intercept=True, normalize=True, precom-
pute=’auto’)

fit(X, y)
Fit the model using X, y as training data.

Parameters X : array-like, shape (n_samples, n_features)

Training data.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values. Will be cast to X’s dtype if necessary

Returns self : object

returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.
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score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.linear_model.OrthogonalMatchingPursuit

• Orthogonal Matching Pursuit

5.19.13 sklearn.linear_model.PassiveAggressiveClassifier

class sklearn.linear_model.PassiveAggressiveClassifier(C=1.0, fit_intercept=True,
max_iter=None, tol=None,
shuffle=True, verbose=0,
loss=’hinge’, n_jobs=1,
random_state=None,
warm_start=False,
class_weight=None, aver-
age=False, n_iter=None)

Passive Aggressive Classifier

Read more in the User Guide.

Parameters C : float

Maximum step size (regularization). Defaults to 1.0.

fit_intercept : bool, default=False

Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered.

max_iter : int, optional
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The maximum number of passes over the training data (aka epochs). It only impacts
the behavior in the fit method, and not the partial_fit. Defaults to 5. Defaults to 1000
from 0.21, or if tol is not None.

New in version 0.19.

tol : float or None, optional

The stopping criterion. If it is not None, the iterations will stop when (loss > previ-
ous_loss - tol). Defaults to None. Defaults to 1e-3 from 0.21.

New in version 0.19.

shuffle : bool, default=True

Whether or not the training data should be shuffled after each epoch.

verbose : integer, optional

The verbosity level

loss : string, optional

The loss function to be used: hinge: equivalent to PA-I in the reference paper.
squared_hinge: equivalent to PA-II in the reference paper.

n_jobs : integer, optional

The number of CPUs to use to do the OVA (One Versus All, for multi-class problems)
computation. -1 means ‘all CPUs’. Defaults to 1.

random_state : int, RandomState instance or None, optional, default=None

The seed of the pseudo random number generator to use when shuffling the data. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.

class_weight : dict, {class_label: weight} or “balanced” or None, optional

Preset for the class_weight fit parameter.

Weights associated with classes. If not given, all classes are supposed to have weight
one.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

New in version 0.17: parameter class_weight to automatically weight samples.

average : bool or int, optional

When set to True, computes the averaged SGD weights and stores the result in the
coef_ attribute. If set to an int greater than 1, averaging will begin once the total
number of samples seen reaches average. So average=10 will begin averaging after
seeing 10 samples.

New in version 0.19: parameter average to use weights averaging in SGD

n_iter : int, optional
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The number of passes over the training data (aka epochs). Defaults to None. Depre-
cated, will be removed in 0.21.

Changed in version 0.19: Deprecated

Attributes coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes, n_features]

Weights assigned to the features.

intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]

Constants in decision function.

n_iter_ : int

The actual number of iterations to reach the stopping criterion. For multiclass fits, it is
the maximum over every binary fit.

See also:

SGDClassifier, Perceptron

References

Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.
pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006)

Examples

>>> from sklearn.linear_model import PassiveAggressiveClassifier
>>> from sklearn.datasets import make_classification
>>>
>>> X, y = make_classification(n_features=4, random_state=0)
>>> clf = PassiveAggressiveClassifier(random_state=0)
>>> clf.fit(X, y)
PassiveAggressiveClassifier(C=1.0, average=False, class_weight=None,

fit_intercept=True, loss='hinge', max_iter=None, n_iter=None,
n_jobs=1, random_state=0, shuffle=True, tol=None, verbose=0,
warm_start=False)

>>> print(clf.coef_)
[[ 0.49324685 1.0552176 1.49519589 1.33798314]]
>>> print(clf.intercept_)
[ 2.18438388]
>>> print(clf.predict([[0, 0, 0, 0]]))
[1]

Methods

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, coef_init, intercept_init]) Fit linear model with Passive Aggressive algorithm.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes]) Fit linear model with Passive Aggressive algorithm.
predict(X) Predict class labels for samples in X.

Continued on next page
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Table 5.149 – continued from previous page
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(*args, **kwargs)
sparsify() Convert coefficient matrix to sparse format.

__init__(C=1.0, fit_intercept=True, max_iter=None, tol=None, shuffle=True, verbose=0,
loss=’hinge’, n_jobs=1, random_state=None, warm_start=False, class_weight=None,
average=False, n_iter=None)

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :

Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returns self : estimator

fit(X, y, coef_init=None, intercept_init=None)
Fit linear model with Passive Aggressive algorithm.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training data

y : numpy array of shape [n_samples]

Target values

coef_init : array, shape = [n_classes,n_features]

The initial coefficients to warm-start the optimization.

intercept_init : array, shape = [n_classes]

The initial intercept to warm-start the optimization.

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.
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loss_function
DEPRECATED: Attribute loss_function was deprecated in version 0.19 and will be removed in 0.21. Use
loss_function_ instead

partial_fit(X, y, classes=None)
Fit linear model with Passive Aggressive algorithm.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Subset of the training data

y : numpy array of shape [n_samples]

Subset of the target values

classes : array, shape = [n_classes]

Classes across all calls to partial_fit. Can be obtained by via np.unique(y_all), where
y_all is the target vector of the entire dataset. This argument is required for the first call
to partial_fit and can be omitted in the subsequent calls. Note that y doesn’t need to
contain all labels in classes.

Returns self : returns an instance of self.

predict(X)
Predict class labels for samples in X.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

Returns C : array, shape = [n_samples]

Predicted class label per sample.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returns self : estimator
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Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

Examples using sklearn.linear_model.PassiveAggressiveClassifier

• Out-of-core classification of text documents

• Comparing various online solvers

• Classification of text documents using sparse features

5.19.14 sklearn.linear_model.PassiveAggressiveRegressor

class sklearn.linear_model.PassiveAggressiveRegressor(C=1.0, fit_intercept=True,
max_iter=None, tol=None,
shuffle=True, verbose=0,
loss=’epsilon_insensitive’, ep-
silon=0.1, random_state=None,
warm_start=False, aver-
age=False, n_iter=None)

Passive Aggressive Regressor

Read more in the User Guide.

Parameters C : float

Maximum step size (regularization). Defaults to 1.0.

fit_intercept : bool

Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered. Defaults to True.

max_iter : int, optional

The maximum number of passes over the training data (aka epochs). It only impacts
the behavior in the fit method, and not the partial_fit. Defaults to 5. Defaults to 1000
from 0.21, or if tol is not None.

New in version 0.19.

tol : float or None, optional

The stopping criterion. If it is not None, the iterations will stop when (loss > previ-
ous_loss - tol). Defaults to None. Defaults to 1e-3 from 0.21.

New in version 0.19.

shuffle : bool, default=True

Whether or not the training data should be shuffled after each epoch.

verbose : integer, optional

The verbosity level
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loss : string, optional

The loss function to be used: epsilon_insensitive: equivalent to PA-I in the reference
paper. squared_epsilon_insensitive: equivalent to PA-II in the reference paper.

epsilon : float

If the difference between the current prediction and the correct label is below this thresh-
old, the model is not updated.

random_state : int, RandomState instance or None, optional, default=None

The seed of the pseudo random number generator to use when shuffling the data. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.

average : bool or int, optional

When set to True, computes the averaged SGD weights and stores the result in the
coef_ attribute. If set to an int greater than 1, averaging will begin once the total
number of samples seen reaches average. So average=10 will begin averaging after
seeing 10 samples.

New in version 0.19: parameter average to use weights averaging in SGD

n_iter : int, optional

The number of passes over the training data (aka epochs). Defaults to None. Depre-
cated, will be removed in 0.21.

Changed in version 0.19: Deprecated

Attributes coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes, n_features]

Weights assigned to the features.

intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]

Constants in decision function.

n_iter_ : int

The actual number of iterations to reach the stopping criterion.

See also:

SGDRegressor

References

Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.
pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006)
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Examples

>>> from sklearn.linear_model import PassiveAggressiveRegressor
>>> from sklearn.datasets import make_regression
>>>
>>> X, y = make_regression(n_features=4, random_state=0)
>>> regr = PassiveAggressiveRegressor(random_state=0)
>>> regr.fit(X, y)
PassiveAggressiveRegressor(C=1.0, average=False, epsilon=0.1,

fit_intercept=True, loss='epsilon_insensitive',
max_iter=None, n_iter=None, random_state=0, shuffle=True,
tol=None, verbose=0, warm_start=False)

>>> print(regr.coef_)
[ 20.48736655 34.18818427 67.59122734 87.94731329]
>>> print(regr.intercept_)
[-0.02306214]
>>> print(regr.predict([[0, 0, 0, 0]]))
[-0.02306214]

Methods

densify() Convert coefficient matrix to dense array format.
fit(X, y[, coef_init, intercept_init]) Fit linear model with Passive Aggressive algorithm.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y) Fit linear model with Passive Aggressive algorithm.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(*args, **kwargs)
sparsify() Convert coefficient matrix to sparse format.

__init__(C=1.0, fit_intercept=True, max_iter=None, tol=None, shuffle=True, verbose=0,
loss=’epsilon_insensitive’, epsilon=0.1, random_state=None, warm_start=False, av-
erage=False, n_iter=None)

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returns self : estimator

fit(X, y, coef_init=None, intercept_init=None)
Fit linear model with Passive Aggressive algorithm.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training data

y : numpy array of shape [n_samples]

Target values

coef_init : array, shape = [n_features]
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The initial coefficients to warm-start the optimization.

intercept_init : array, shape = [1]

The initial intercept to warm-start the optimization.

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y)
Fit linear model with Passive Aggressive algorithm.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Subset of training data

y : numpy array of shape [n_samples]

Subset of target values

Returns self : returns an instance of self.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Returns array, shape (n_samples,) :

Predicted target values per element in X.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.
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sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returns self : estimator

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

5.19.15 sklearn.linear_model.Perceptron

class sklearn.linear_model.Perceptron(penalty=None, alpha=0.0001, fit_intercept=True,
max_iter=None, tol=None, shuffle=True, ver-
bose=0, eta0=1.0, n_jobs=1, random_state=0,
class_weight=None, warm_start=False, n_iter=None)

Read more in the User Guide.

Parameters penalty : None, ‘l2’ or ‘l1’ or ‘elasticnet’

The penalty (aka regularization term) to be used. Defaults to None.

alpha : float

Constant that multiplies the regularization term if regularization is used. Defaults to
0.0001

fit_intercept : bool

Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered. Defaults to True.

max_iter : int, optional

The maximum number of passes over the training data (aka epochs). It only impacts
the behavior in the fit method, and not the partial_fit. Defaults to 5. Defaults to 1000
from 0.21, or if tol is not None.

New in version 0.19.

tol : float or None, optional

The stopping criterion. If it is not None, the iterations will stop when (loss > previ-
ous_loss - tol). Defaults to None. Defaults to 1e-3 from 0.21.

New in version 0.19.

shuffle : bool, optional, default True

Whether or not the training data should be shuffled after each epoch.

verbose : integer, optional
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The verbosity level

eta0 : double

Constant by which the updates are multiplied. Defaults to 1.

n_jobs : integer, optional

The number of CPUs to use to do the OVA (One Versus All, for multi-class problems)
computation. -1 means ‘all CPUs’. Defaults to 1.

random_state : int, RandomState instance or None, optional, default None

The seed of the pseudo random number generator to use when shuffling the data. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

class_weight : dict, {class_label: weight} or “balanced” or None, optional

Preset for the class_weight fit parameter.

Weights associated with classes. If not given, all classes are supposed to have weight
one.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.

n_iter : int, optional

The number of passes over the training data (aka epochs). Defaults to None. Depre-
cated, will be removed in 0.21.

Changed in version 0.19: Deprecated

Attributes coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes, n_features]

Weights assigned to the features.

intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]

Constants in decision function.

n_iter_ : int

The actual number of iterations to reach the stopping criterion. For multiclass fits, it is
the maximum over every binary fit.

See also:

SGDClassifier

Notes

Perceptron and SGDClassifier share the same underlying implementation. In fact, Perceptron() is equivalent to
SGDClassifier(loss=”perceptron”, eta0=1, learning_rate=”constant”, penalty=None).
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References

https://en.wikipedia.org/wiki/Perceptron and references therein.

Methods

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, coef_init, intercept_init, . . . ]) Fit linear model with Stochastic Gradient Descent.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight]) Fit linear model with Stochastic Gradient Descent.
predict(X) Predict class labels for samples in X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(*args, **kwargs)
sparsify() Convert coefficient matrix to sparse format.

__init__(penalty=None, alpha=0.0001, fit_intercept=True, max_iter=None, tol=None, shuffle=True,
verbose=0, eta0=1.0, n_jobs=1, random_state=0, class_weight=None, warm_start=False,
n_iter=None)

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :

Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returns self : estimator

fit(X, y, coef_init=None, intercept_init=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data

y : numpy array, shape (n_samples,)

Target values

coef_init : array, shape (n_classes, n_features)

The initial coefficients to warm-start the optimization.

intercept_init : array, shape (n_classes,)
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The initial intercept to warm-start the optimization.

sample_weight : array-like, shape (n_samples,), optional

Weights applied to individual samples. If not provided, uniform weights are assumed.
These weights will be multiplied with class_weight (passed through the constructor) if
class_weight is specified

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

loss_function
DEPRECATED: Attribute loss_function was deprecated in version 0.19 and will be removed in 0.21. Use
loss_function_ instead

partial_fit(X, y, classes=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Subset of the training data

y : numpy array, shape (n_samples,)

Subset of the target values

classes : array, shape (n_classes,)

Classes across all calls to partial_fit. Can be obtained by via np.unique(y_all), where
y_all is the target vector of the entire dataset. This argument is required for the first call
to partial_fit and can be omitted in the subsequent calls. Note that y doesn’t need to
contain all labels in classes.

sample_weight : array-like, shape (n_samples,), optional

Weights applied to individual samples. If not provided, uniform weights are assumed.

Returns self : returns an instance of self.

predict(X)
Predict class labels for samples in X.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

Returns C : array, shape = [n_samples]

Predicted class label per sample.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.
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Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returns self : estimator

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

Examples using sklearn.linear_model.Perceptron

• Out-of-core classification of text documents

• Comparing various online solvers

• Classification of text documents using sparse features

5.19.16 sklearn.linear_model.RANSACRegressor

class sklearn.linear_model.RANSACRegressor(base_estimator=None, min_samples=None,
residual_threshold=None, is_data_valid=None,
is_model_valid=None, max_trials=100,
max_skips=inf, stop_n_inliers=inf,
stop_score=inf, stop_probability=0.99, resid-
ual_metric=None, loss=’absolute_loss’, ran-
dom_state=None)

RANSAC (RANdom SAmple Consensus) algorithm.

RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the
complete data set. More information can be found in the general documentation of linear models.

A detailed description of the algorithm can be found in the documentation of the linear_model sub-package.

Read more in the User Guide.
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Parameters base_estimator : object, optional

Base estimator object which implements the following methods:

• fit(X, y): Fit model to given training data and target values.

• score(X, y): Returns the mean accuracy on the given test data, which is used for the
stop criterion defined by stop_score. Additionally, the score is used to decide which
of two equally large consensus sets is chosen as the better one.

If base_estimator is None, then base_estimator=sklearn.linear_model.
LinearRegression() is used for target values of dtype float.

Note that the current implementation only supports regression estimators.

min_samples : int (>= 1) or float ([0, 1]), optional

Minimum number of samples chosen randomly from original data. Treated as an
absolute number of samples for min_samples >= 1, treated as a relative number
ceil(min_samples * X.shape[0]) for min_samples < 1. This is typically chosen as the
minimal number of samples necessary to estimate the given base_estimator. By default
a sklearn.linear_model.LinearRegression() estimator is assumed and
min_samples is chosen as X.shape[1] + 1.

residual_threshold : float, optional

Maximum residual for a data sample to be classified as an inlier. By default the threshold
is chosen as the MAD (median absolute deviation) of the target values y.

is_data_valid : callable, optional

This function is called with the randomly selected data before the model is fitted to it:
is_data_valid(X, y). If its return value is False the current randomly chosen sub-sample
is skipped.

is_model_valid : callable, optional

This function is called with the estimated model and the randomly selected data:
is_model_valid(model, X, y). If its return value is False the current randomly chosen
sub-sample is skipped. Rejecting samples with this function is computationally costlier
than with is_data_valid. is_model_valid should therefore only be used if the estimated
model is needed for making the rejection decision.

max_trials : int, optional

Maximum number of iterations for random sample selection.

max_skips : int, optional

Maximum number of iterations that can be skipped due to finding zero inliers or invalid
data defined by is_data_valid or invalid models defined by is_model_valid.

New in version 0.19.

stop_n_inliers : int, optional

Stop iteration if at least this number of inliers are found.

stop_score : float, optional

Stop iteration if score is greater equal than this threshold.

stop_probability : float in range [0, 1], optional

RANSAC iteration stops if at least one outlier-free set of the training data is sampled in
RANSAC. This requires to generate at least N samples (iterations):
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N >= log(1 - probability) / log(1 - e**m)

where the probability (confidence) is typically set to high value such as 0.99 (the default)
and e is the current fraction of inliers w.r.t. the total number of samples.

residual_metric : callable, optional

Metric to reduce the dimensionality of the residuals to 1 for multi-dimensional target
values y.shape[1] > 1. By default the sum of absolute differences is used:

lambda dy: np.sum(np.abs(dy), axis=1)

Deprecated since version 0.18: residual_metric is deprecated from 0.18 and will
be removed in 0.20. Use loss instead.

loss : string, callable, optional, default “absolute_loss”

String inputs, “absolute_loss” and “squared_loss” are supported which find the absolute
loss and squared loss per sample respectively.

If loss is a callable, then it should be a function that takes two arrays as inputs, the true
and predicted value and returns a 1-D array with the i-th value of the array corresponding
to the loss on X[i].

If the loss on a sample is greater than the residual_threshold, then this sample
is classified as an outlier.

random_state : int, RandomState instance or None, optional, default None

The generator used to initialize the centers. If int, random_state is the seed used by
the random number generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the RandomState instance
used by np.random.

Attributes estimator_ : object

Best fitted model (copy of the base_estimator object).

n_trials_ : int

Number of random selection trials until one of the stop criteria is met. It is always <=
max_trials.

inlier_mask_ : bool array of shape [n_samples]

Boolean mask of inliers classified as True.

n_skips_no_inliers_ : int

Number of iterations skipped due to finding zero inliers.

New in version 0.19.

n_skips_invalid_data_ : int

Number of iterations skipped due to invalid data defined by is_data_valid.

New in version 0.19.

n_skips_invalid_model_ : int

Number of iterations skipped due to an invalid model defined by is_model_valid.

New in version 0.19.
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References

[R35], [R36], [R37]

Methods

fit(X, y[, sample_weight]) Fit estimator using RANSAC algorithm.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the estimated model.
score(X, y) Returns the score of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(base_estimator=None, min_samples=None, residual_threshold=None,
is_data_valid=None, is_model_valid=None, max_trials=100, max_skips=inf,
stop_n_inliers=inf, stop_score=inf, stop_probability=0.99, residual_metric=None,
loss=’absolute_loss’, random_state=None)

fit(X, y, sample_weight=None)
Fit estimator using RANSAC algorithm.

Parameters X : array-like or sparse matrix, shape [n_samples, n_features]

Training data.

y : array-like, shape = [n_samples] or [n_samples, n_targets]

Target values.

sample_weight : array-like, shape = [n_samples]

Individual weights for each sample raises error if sample_weight is passed and
base_estimator fit method does not support it.

Raises ValueError :

If no valid consensus set could be found. This occurs if is_data_valid and
is_model_valid return False for all max_trials randomly chosen sub-samples.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the estimated model.

This is a wrapper for estimator_.predict(X).

Parameters X : numpy array of shape [n_samples, n_features]

Returns y : array, shape = [n_samples] or [n_samples, n_targets]

Returns predicted values.
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score(X, y)
Returns the score of the prediction.

This is a wrapper for estimator_.score(X, y).

Parameters X : numpy array or sparse matrix of shape [n_samples, n_features]

Training data.

y : array, shape = [n_samples] or [n_samples, n_targets]

Target values.

Returns z : float

Score of the prediction.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.linear_model.RANSACRegressor

• Robust linear model estimation using RANSAC

• Robust linear estimator fitting

• Theil-Sen Regression

5.19.17 sklearn.linear_model.Ridge

class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False,
copy_X=True, max_iter=None, tol=0.001, solver=’auto’,
random_state=None)

Linear least squares with l2 regularization.

This model solves a regression model where the loss function is the linear least squares function and regulariza-
tion is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has
built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]).

Read more in the User Guide.

Parameters alpha : {float, array-like}, shape (n_targets)

Regularization strength; must be a positive float. Regularization improves the condi-
tioning of the problem and reduces the variance of the estimates. Larger values specify
stronger regularization. Alpha corresponds to C^-1 in other linear models such as
LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be
specific to the targets. Hence they must correspond in number.

fit_intercept : boolean

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False
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This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

max_iter : int, optional

Maximum number of iterations for conjugate gradient solver. For ‘sparse_cg’ and ‘lsqr’
solvers, the default value is determined by scipy.sparse.linalg. For ‘sag’ solver, the
default value is 1000.

tol : float

Precision of the solution.

solver : {‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’}

Solver to use in the computational routines:

• ‘auto’ chooses the solver automatically based on the type of data.

• ‘svd’ uses a Singular Value Decomposition of X to compute the Ridge coefficients.
More stable for singular matrices than ‘cholesky’.

• ‘cholesky’ uses the standard scipy.linalg.solve function to obtain a closed-form solu-
tion.

• ‘sparse_cg’ uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As
an iterative algorithm, this solver is more appropriate than ‘cholesky’ for large-scale
data (possibility to set tol and max_iter).

• ‘lsqr’ uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It
is the fastest but may not be available in old scipy versions. It also uses an iterative
procedure.

• ‘sag’ uses a Stochastic Average Gradient descent, and ‘saga’ uses its improved, unbi-
ased version named SAGA. Both methods also use an iterative procedure, and are of-
ten faster than other solvers when both n_samples and n_features are large. Note that
‘sag’ and ‘saga’ fast convergence is only guaranteed on features with approximately
the same scale. You can preprocess the data with a scaler from sklearn.preprocessing.

All last five solvers support both dense and sparse data. However, only ‘sag’ and ‘saga’
supports sparse input when fit_intercept is True.

New in version 0.17: Stochastic Average Gradient descent solver.

New in version 0.19: SAGA solver.

random_state : int, RandomState instance or None, optional, default None

The seed of the pseudo random number generator to use when shuffling the data. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random. Used when solver ==
‘sag’.

New in version 0.17: random_state to support Stochastic Average Gradient.

Attributes coef_ : array, shape (n_features,) or (n_targets, n_features)

Weight vector(s).
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intercept_ : float | array, shape = (n_targets,)

Independent term in decision function. Set to 0.0 if fit_intercept = False.

n_iter_ : array or None, shape (n_targets,)

Actual number of iterations for each target. Available only for sag and lsqr solvers.
Other solvers will return None.

New in version 0.17.

See also:

RidgeClassifier, RidgeCV , sklearn.kernel_ridge.KernelRidge

Examples

>>> from sklearn.linear_model import Ridge
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = Ridge(alpha=1.0)
>>> clf.fit(X, y)
Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,

normalize=False, random_state=None, solver='auto', tol=0.001)

Methods

fit(X, y[, sample_weight]) Fit Ridge regression model
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001,
solver=’auto’, random_state=None)

fit(X, y, sample_weight=None)
Fit Ridge regression model

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training data

y : array-like, shape = [n_samples] or [n_samples, n_targets]

Target values

sample_weight : float or numpy array of shape [n_samples]

Individual weights for each sample

Returns self : returns an instance of self.
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get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.linear_model.Ridge

• Prediction Latency

• Compressive sensing: tomography reconstruction with L1 prior (Lasso)

• HuberRegressor vs Ridge on dataset with strong outliers

• Ordinary Least Squares and Ridge Regression Variance
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• Polynomial interpolation

• Plot Ridge coefficients as a function of the L2 regularization

• Plot Ridge coefficients as a function of the regularization

5.19.18 sklearn.linear_model.RidgeClassifier

class sklearn.linear_model.RidgeClassifier(alpha=1.0, fit_intercept=True, normalize=False,
copy_X=True, max_iter=None, tol=0.001,
class_weight=None, solver=’auto’, ran-
dom_state=None)

Classifier using Ridge regression.

Read more in the User Guide.

Parameters alpha : float

Regularization strength; must be a positive float. Regularization improves the condi-
tioning of the problem and reduces the variance of the estimates. Larger values specify
stronger regularization. Alpha corresponds to C^-1 in other linear models such as Lo-
gisticRegression or LinearSVC.

fit_intercept : boolean

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

This parameter is ignored when fit_intercept is set to False. If True, the regres-
sors X will be normalized before regression by subtracting the mean and dividing by
the l2-norm. If you wish to standardize, please use sklearn.preprocessing.
StandardScaler before calling fit on an estimator with normalize=False.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

max_iter : int, optional

Maximum number of iterations for conjugate gradient solver. The default value is de-
termined by scipy.sparse.linalg.

tol : float

Precision of the solution.

class_weight : dict or ‘balanced’, optional

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

solver : {‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’}

Solver to use in the computational routines:

• ‘auto’ chooses the solver automatically based on the type of data.
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• ‘svd’ uses a Singular Value Decomposition of X to compute the Ridge coefficients.
More stable for singular matrices than ‘cholesky’.

• ‘cholesky’ uses the standard scipy.linalg.solve function to obtain a closed-form solu-
tion.

• ‘sparse_cg’ uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As
an iterative algorithm, this solver is more appropriate than ‘cholesky’ for large-scale
data (possibility to set tol and max_iter).

• ‘lsqr’ uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It
is the fastest but may not be available in old scipy versions. It also uses an iterative
procedure.

• ‘sag’ uses a Stochastic Average Gradient descent, and ‘saga’ uses its unbiased and
more flexible version named SAGA. Both methods use an iterative procedure, and
are often faster than other solvers when both n_samples and n_features are large.
Note that ‘sag’ and ‘saga’ fast convergence is only guaranteed on features with
approximately the same scale. You can preprocess the data with a scaler from
sklearn.preprocessing.

New in version 0.17: Stochastic Average Gradient descent solver.

New in version 0.19: SAGA solver.

random_state : int, RandomState instance or None, optional, default None

The seed of the pseudo random number generator to use when shuffling the data. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random. Used when solver ==
‘sag’.

Attributes coef_ : array, shape (n_features,) or (n_classes, n_features)

Weight vector(s).

intercept_ : float | array, shape = (n_targets,)

Independent term in decision function. Set to 0.0 if fit_intercept = False.

n_iter_ : array or None, shape (n_targets,)

Actual number of iterations for each target. Available only for sag and lsqr solvers.
Other solvers will return None.

See also:

Ridge, RidgeClassifierCV

Notes

For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is
implemented by taking advantage of the multi-variate response support in Ridge.

Methods

decision_function(X) Predict confidence scores for samples.
Continued on next page

1614 Chapter 5. API Reference



scikit-learn user guide, Release 0.19.1

Table 5.154 – continued from previous page
fit(X, y[, sample_weight]) Fit Ridge regression model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001,
class_weight=None, solver=’auto’, random_state=None)

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :

Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

fit(X, y, sample_weight=None)
Fit Ridge regression model.

Parameters X : {array-like, sparse matrix}, shape = [n_samples,n_features]

Training data

y : array-like, shape = [n_samples]

Target values

sample_weight : float or numpy array of shape (n_samples,)

Sample weight.

New in version 0.17: sample_weight support to Classifier.

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

Returns C : array, shape = [n_samples]

Predicted class label per sample.
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score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.linear_model.RidgeClassifier

• Classification of text documents using sparse features

5.19.19 sklearn.linear_model.SGDClassifier

class sklearn.linear_model.SGDClassifier(loss=’hinge’, penalty=’l2’, alpha=0.0001,
l1_ratio=0.15, fit_intercept=True, max_iter=None,
tol=None, shuffle=True, verbose=0, ep-
silon=0.1, n_jobs=1, random_state=None, learn-
ing_rate=’optimal’, eta0=0.0, power_t=0.5,
class_weight=None, warm_start=False, aver-
age=False, n_iter=None)

Linear classifiers (SVM, logistic regression, a.o.) with SGD training.

This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gra-
dient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing
strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning, see the partial_fit
method. For best results using the default learning rate schedule, the data should have zero mean and unit
variance.

This implementation works with data represented as dense or sparse arrays of floating point values for the
features. The model it fits can be controlled with the loss parameter; by default, it fits a linear support vector
machine (SVM).

The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector
using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If
the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for
learning sparse models and achieve online feature selection.
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Read more in the User Guide.

Parameters loss : str, default: ‘hinge’

The loss function to be used. Defaults to ‘hinge’, which gives a linear SVM.

The possible options are ‘hinge’, ‘log’, ‘modified_huber’, ‘squared_hinge’, ‘per-
ceptron’, or a regression loss: ‘squared_loss’, ‘huber’, ‘epsilon_insensitive’, or
‘squared_epsilon_insensitive’.

The ‘log’ loss gives logistic regression, a probabilistic classifier. ‘modified_huber’ is
another smooth loss that brings tolerance to outliers as well as probability estimates.
‘squared_hinge’ is like hinge but is quadratically penalized. ‘perceptron’ is the linear
loss used by the perceptron algorithm. The other losses are designed for regression but
can be useful in classification as well; see SGDRegressor for a description.

penalty : str, ‘none’, ‘l2’, ‘l1’, or ‘elasticnet’

The penalty (aka regularization term) to be used. Defaults to ‘l2’ which is the standard
regularizer for linear SVM models. ‘l1’ and ‘elasticnet’ might bring sparsity to the
model (feature selection) not achievable with ‘l2’.

alpha : float

Constant that multiplies the regularization term. Defaults to 0.0001 Also used to com-
pute learning_rate when set to ‘optimal’.

l1_ratio : float

The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to
L2 penalty, l1_ratio=1 to L1. Defaults to 0.15.

fit_intercept : bool

Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered. Defaults to True.

max_iter : int, optional

The maximum number of passes over the training data (aka epochs). It only impacts
the behavior in the fit method, and not the partial_fit. Defaults to 5. Defaults to 1000
from 0.21, or if tol is not None.

New in version 0.19.

tol : float or None, optional

The stopping criterion. If it is not None, the iterations will stop when (loss > previ-
ous_loss - tol). Defaults to None. Defaults to 1e-3 from 0.21.

New in version 0.19.

shuffle : bool, optional

Whether or not the training data should be shuffled after each epoch. Defaults to True.

verbose : integer, optional

The verbosity level

epsilon : float

Epsilon in the epsilon-insensitive loss functions; only if loss is ‘huber’, ‘ep-
silon_insensitive’, or ‘squared_epsilon_insensitive’. For ‘huber’, determines the thresh-
old at which it becomes less important to get the prediction exactly right. For epsilon-
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insensitive, any differences between the current prediction and the correct label are
ignored if they are less than this threshold.

n_jobs : integer, optional

The number of CPUs to use to do the OVA (One Versus All, for multi-class problems)
computation. -1 means ‘all CPUs’. Defaults to 1.

random_state : int, RandomState instance or None, optional (default=None)

The seed of the pseudo random number generator to use when shuffling the data. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

learning_rate : string, optional

The learning rate schedule:

• ‘constant’: eta = eta0

• ‘optimal’: eta = 1.0 / (alpha * (t + t0)) [default]

• ‘invscaling’: eta = eta0 / pow(t, power_t)

where t0 is chosen by a heuristic proposed by Leon Bottou.

eta0 : double

The initial learning rate for the ‘constant’ or ‘invscaling’ schedules. The default value
is 0.0 as eta0 is not used by the default schedule ‘optimal’.

power_t : double

The exponent for inverse scaling learning rate [default 0.5].

class_weight : dict, {class_label: weight} or “balanced” or None, optional

Preset for the class_weight fit parameter.

Weights associated with classes. If not given, all classes are supposed to have weight
one.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.

average : bool or int, optional

When set to True, computes the averaged SGD weights and stores the result in the
coef_ attribute. If set to an int greater than 1, averaging will begin once the total
number of samples seen reaches average. So average=10 will begin averaging after
seeing 10 samples.

n_iter : int, optional

The number of passes over the training data (aka epochs). Defaults to None. Depre-
cated, will be removed in 0.21.

Changed in version 0.19: Deprecated

Attributes coef_ : array, shape (1, n_features) if n_classes == 2 else (n_classes, n_features)
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Weights assigned to the features.

intercept_ : array, shape (1,) if n_classes == 2 else (n_classes,)

Constants in decision function.

n_iter_ : int

The actual number of iterations to reach the stopping criterion. For multiclass fits, it is
the maximum over every binary fit.

loss_function_ : concrete LossFunction

See also:

LinearSVC, LogisticRegression, Perceptron

Examples

>>> import numpy as np
>>> from sklearn import linear_model
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> Y = np.array([1, 1, 2, 2])
>>> clf = linear_model.SGDClassifier()
>>> clf.fit(X, Y)
...
SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1,

eta0=0.0, fit_intercept=True, l1_ratio=0.15,
learning_rate='optimal', loss='hinge', max_iter=None, n_iter=None,
n_jobs=1, penalty='l2', power_t=0.5, random_state=None,
shuffle=True, tol=None, verbose=0, warm_start=False)

>>> print(clf.predict([[-0.8, -1]]))
[1]

Methods

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, coef_init, intercept_init, . . . ]) Fit linear model with Stochastic Gradient Descent.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight]) Fit linear model with Stochastic Gradient Descent.
predict(X) Predict class labels for samples in X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(*args, **kwargs)
sparsify() Convert coefficient matrix to sparse format.

__init__(loss=’hinge’, penalty=’l2’, alpha=0.0001, l1_ratio=0.15, fit_intercept=True,
max_iter=None, tol=None, shuffle=True, verbose=0, epsilon=0.1, n_jobs=1, ran-
dom_state=None, learning_rate=’optimal’, eta0=0.0, power_t=0.5, class_weight=None,
warm_start=False, average=False, n_iter=None)

decision_function(X)
Predict confidence scores for samples.
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The confidence score for a sample is the signed distance of that sample to the hyperplane.

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :

Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returns self : estimator

fit(X, y, coef_init=None, intercept_init=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data

y : numpy array, shape (n_samples,)

Target values

coef_init : array, shape (n_classes, n_features)

The initial coefficients to warm-start the optimization.

intercept_init : array, shape (n_classes,)

The initial intercept to warm-start the optimization.

sample_weight : array-like, shape (n_samples,), optional

Weights applied to individual samples. If not provided, uniform weights are assumed.
These weights will be multiplied with class_weight (passed through the constructor) if
class_weight is specified

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

loss_function
DEPRECATED: Attribute loss_function was deprecated in version 0.19 and will be removed in 0.21. Use
loss_function_ instead

partial_fit(X, y, classes=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)
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Subset of the training data

y : numpy array, shape (n_samples,)

Subset of the target values

classes : array, shape (n_classes,)

Classes across all calls to partial_fit. Can be obtained by via np.unique(y_all), where
y_all is the target vector of the entire dataset. This argument is required for the first call
to partial_fit and can be omitted in the subsequent calls. Note that y doesn’t need to
contain all labels in classes.

sample_weight : array-like, shape (n_samples,), optional

Weights applied to individual samples. If not provided, uniform weights are assumed.

Returns self : returns an instance of self.

predict(X)
Predict class labels for samples in X.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

Returns C : array, shape = [n_samples]

Predicted class label per sample.

predict_log_proba
Log of probability estimates.

This method is only available for log loss and modified Huber loss.

When loss=”modified_huber”, probability estimates may be hard zeros and ones, so taking the logarithm
is not possible.

See predict_proba for details.

Parameters X : array-like, shape (n_samples, n_features)

Returns T : array-like, shape (n_samples, n_classes)

Returns the log-probability of the sample for each class in the model, where classes are
ordered as they are in self.classes_.

predict_proba
Probability estimates.

This method is only available for log loss and modified Huber loss.

Multiclass probability estimates are derived from binary (one-vs.-rest) estimates by simple normalization,
as recommended by Zadrozny and Elkan.

Binary probability estimates for loss=”modified_huber” are given by (clip(decision_function(X), -1, 1) +
1) / 2. For other loss functions it is necessary to perform proper probability calibration by wrapping the
classifier with sklearn.calibration.CalibratedClassifierCV instead.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Returns array, shape (n_samples, n_classes) :

Returns the probability of the sample for each class in the model, where classes are
ordered as they are in self.classes_.
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References

Zadrozny and Elkan, “Transforming classifier scores into multiclass probability estimates”, SIGKDD‘02,
http://www.research.ibm.com/people/z/zadrozny/kdd2002-Transf.pdf

The justification for the formula in the loss=”modified_huber” case is in the appendix B in: http://jmlr.
csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returns self : estimator

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

Examples using sklearn.linear_model.SGDClassifier

• Model Complexity Influence

• Out-of-core classification of text documents

• Comparing various online solvers

• Plot multi-class SGD on the iris dataset

• SGD: Maximum margin separating hyperplane

• SGD: Weighted samples
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• Sample pipeline for text feature extraction and evaluation

• Classification of text documents using sparse features

5.19.20 sklearn.linear_model.SGDRegressor

class sklearn.linear_model.SGDRegressor(loss=’squared_loss’, penalty=’l2’, alpha=0.0001,
l1_ratio=0.15, fit_intercept=True, max_iter=None,
tol=None, shuffle=True, verbose=0, epsilon=0.1,
random_state=None, learning_rate=’invscaling’,
eta0=0.01, power_t=0.25, warm_start=False, aver-
age=False, n_iter=None)

Linear model fitted by minimizing a regularized empirical loss with SGD

SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the
model is updated along the way with a decreasing strength schedule (aka learning rate).

The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector
using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If
the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for
learning sparse models and achieve online feature selection.

This implementation works with data represented as dense numpy arrays of floating point values for the features.

Read more in the User Guide.

Parameters loss : str, default: ‘squared_loss’

The loss function to be used. The possible values are ‘squared_loss’, ‘huber’, ‘ep-
silon_insensitive’, or ‘squared_epsilon_insensitive’

The ‘squared_loss’ refers to the ordinary least squares fit. ‘huber’ modifies
‘squared_loss’ to focus less on getting outliers correct by switching from squared
to linear loss past a distance of epsilon. ‘epsilon_insensitive’ ignores errors
less than epsilon and is linear past that; this is the loss function used in SVR.
‘squared_epsilon_insensitive’ is the same but becomes squared loss past a tolerance
of epsilon.

penalty : str, ‘none’, ‘l2’, ‘l1’, or ‘elasticnet’

The penalty (aka regularization term) to be used. Defaults to ‘l2’ which is the standard
regularizer for linear SVM models. ‘l1’ and ‘elasticnet’ might bring sparsity to the
model (feature selection) not achievable with ‘l2’.

alpha : float

Constant that multiplies the regularization term. Defaults to 0.0001 Also used to com-
pute learning_rate when set to ‘optimal’.

l1_ratio : float

The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to
L2 penalty, l1_ratio=1 to L1. Defaults to 0.15.

fit_intercept : bool

Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered. Defaults to True.

max_iter : int, optional
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The maximum number of passes over the training data (aka epochs). It only impacts
the behavior in the fit method, and not the partial_fit. Defaults to 5. Defaults to 1000
from 0.21, or if tol is not None.

New in version 0.19.

tol : float or None, optional

The stopping criterion. If it is not None, the iterations will stop when (loss > previ-
ous_loss - tol). Defaults to None. Defaults to 1e-3 from 0.21.

New in version 0.19.

shuffle : bool, optional

Whether or not the training data should be shuffled after each epoch. Defaults to True.

verbose : integer, optional

The verbosity level.

epsilon : float

Epsilon in the epsilon-insensitive loss functions; only if loss is ‘huber’, ‘ep-
silon_insensitive’, or ‘squared_epsilon_insensitive’. For ‘huber’, determines the thresh-
old at which it becomes less important to get the prediction exactly right. For epsilon-
insensitive, any differences between the current prediction and the correct label are
ignored if they are less than this threshold.

random_state : int, RandomState instance or None, optional (default=None)

The seed of the pseudo random number generator to use when shuffling the data. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

learning_rate : string, optional

The learning rate schedule:

• ‘constant’: eta = eta0

• ‘optimal’: eta = 1.0 / (alpha * (t + t0)) [default]

• ‘invscaling’: eta = eta0 / pow(t, power_t)

where t0 is chosen by a heuristic proposed by Leon Bottou.

eta0 : double, optional

The initial learning rate [default 0.01].

power_t : double, optional

The exponent for inverse scaling learning rate [default 0.25].

warm_start : bool, optional

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.

average : bool or int, optional

When set to True, computes the averaged SGD weights and stores the result in the
coef_ attribute. If set to an int greater than 1, averaging will begin once the total
number of samples seen reaches average. So average=10 will begin averaging after
seeing 10 samples.
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n_iter : int, optional

The number of passes over the training data (aka epochs). Defaults to None. Depre-
cated, will be removed in 0.21.

Changed in version 0.19: Deprecated

Attributes coef_ : array, shape (n_features,)

Weights assigned to the features.

intercept_ : array, shape (1,)

The intercept term.

average_coef_ : array, shape (n_features,)

Averaged weights assigned to the features.

average_intercept_ : array, shape (1,)

The averaged intercept term.

n_iter_ : int

The actual number of iterations to reach the stopping criterion.

See also:

Ridge, ElasticNet, Lasso, SVR

Examples

>>> import numpy as np
>>> from sklearn import linear_model
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = linear_model.SGDRegressor()
>>> clf.fit(X, y)
...
SGDRegressor(alpha=0.0001, average=False, epsilon=0.1, eta0=0.01,

fit_intercept=True, l1_ratio=0.15, learning_rate='invscaling',
loss='squared_loss', max_iter=None, n_iter=None, penalty='l2',
power_t=0.25, random_state=None, shuffle=True, tol=None,
verbose=0, warm_start=False)

Methods

densify() Convert coefficient matrix to dense array format.
fit(X, y[, coef_init, intercept_init, . . . ]) Fit linear model with Stochastic Gradient Descent.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, sample_weight]) Fit linear model with Stochastic Gradient Descent.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
Continued on next page
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Table 5.156 – continued from previous page
set_params(*args, **kwargs)
sparsify() Convert coefficient matrix to sparse format.

__init__(loss=’squared_loss’, penalty=’l2’, alpha=0.0001, l1_ratio=0.15, fit_intercept=True,
max_iter=None, tol=None, shuffle=True, verbose=0, epsilon=0.1, random_state=None,
learning_rate=’invscaling’, eta0=0.01, power_t=0.25, warm_start=False, average=False,
n_iter=None)

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returns self : estimator

fit(X, y, coef_init=None, intercept_init=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data

y : numpy array, shape (n_samples,)

Target values

coef_init : array, shape (n_features,)

The initial coefficients to warm-start the optimization.

intercept_init : array, shape (1,)

The initial intercept to warm-start the optimization.

sample_weight : array-like, shape (n_samples,), optional

Weights applied to individual samples (1. for unweighted).

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Subset of training data

y : numpy array of shape (n_samples,)

Subset of target values

sample_weight : array-like, shape (n_samples,), optional
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Weights applied to individual samples. If not provided, uniform weights are assumed.

Returns self : returns an instance of self.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Returns array, shape (n_samples,) :

Predicted target values per element in X.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returns self : estimator

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

Examples using sklearn.linear_model.SGDRegressor

• Prediction Latency
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5.19.21 sklearn.linear_model.TheilSenRegressor

class sklearn.linear_model.TheilSenRegressor(fit_intercept=True, copy_X=True,
max_subpopulation=10000.0,
n_subsamples=None, max_iter=300,
tol=0.001, random_state=None, n_jobs=1,
verbose=False)

Theil-Sen Estimator: robust multivariate regression model.

The algorithm calculates least square solutions on subsets with size n_subsamples of the samples in X. Any value
of n_subsamples between the number of features and samples leads to an estimator with a compromise between
robustness and efficiency. Since the number of least square solutions is “n_samples choose n_subsamples”, it
can be extremely large and can therefore be limited with max_subpopulation. If this limit is reached, the subsets
are chosen randomly. In a final step, the spatial median (or L1 median) is calculated of all least square solutions.

Read more in the User Guide.

Parameters fit_intercept : boolean, optional, default True

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

max_subpopulation : int, optional, default 1e4

Instead of computing with a set of cardinality ‘n choose k’, where n is the number
of samples and k is the number of subsamples (at least number of features), consider
only a stochastic subpopulation of a given maximal size if ‘n choose k’ is larger than
max_subpopulation. For other than small problem sizes this parameter will determine
memory usage and runtime if n_subsamples is not changed.

n_subsamples : int, optional, default None

Number of samples to calculate the parameters. This is at least the number of features
(plus 1 if fit_intercept=True) and the number of samples as a maximum. A lower num-
ber leads to a higher breakdown point and a low efficiency while a high number leads
to a low breakdown point and a high efficiency. If None, take the minimum number
of subsamples leading to maximal robustness. If n_subsamples is set to n_samples,
Theil-Sen is identical to least squares.

max_iter : int, optional, default 300

Maximum number of iterations for the calculation of spatial median.

tol : float, optional, default 1.e-3

Tolerance when calculating spatial median.

random_state : int, RandomState instance or None, optional, default None

A random number generator instance to define the state of the random permutations
generator. If int, random_state is the seed used by the random number generator; If
RandomState instance, random_state is the random number generator; If None, the
random number generator is the RandomState instance used by np.random.

n_jobs : integer, optional, default 1

Number of CPUs to use during the cross validation. If -1, use all the CPUs.

verbose : boolean, optional, default False
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Verbose mode when fitting the model.

Attributes coef_ : array, shape = (n_features)

Coefficients of the regression model (median of distribution).

intercept_ : float

Estimated intercept of regression model.

breakdown_ : float

Approximated breakdown point.

n_iter_ : int

Number of iterations needed for the spatial median.

n_subpopulation_ : int

Number of combinations taken into account from ‘n choose k’, where n is the number
of samples and k is the number of subsamples.

References

• Theil-Sen Estimators in a Multiple Linear Regression Model, 2009 Xin Dang, Hanxiang Peng, Xueqin
Wang and Heping Zhang http://home.olemiss.edu/~xdang/papers/MTSE.pdf

Methods

fit(X, y) Fit linear model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(fit_intercept=True, copy_X=True, max_subpopulation=10000.0, n_subsamples=None,
max_iter=300, tol=0.001, random_state=None, n_jobs=1, verbose=False)

fit(X, y)
Fit linear model.

Parameters X : numpy array of shape [n_samples, n_features]

Training data

y : numpy array of shape [n_samples]

Target values

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.
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Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.linear_model.TheilSenRegressor

• Robust linear estimator fitting

• Theil-Sen Regression

linear_model.enet_path(X, y[, l1_ratio, . . . ]) Compute elastic net path with coordinate descent
linear_model.lars_path(X, y[, Xy, Gram, . . . ]) Compute Least Angle Regression or Lasso path using

LARS algorithm [1]
linear_model.lasso_path(X, y[, eps, . . . ]) Compute Lasso path with coordinate descent
linear_model.lasso_stability_path(X, y[,
. . . ])

DEPRECATED: The function lasso_stability_path is dep-
recated in 0.19 and will be removed in 0.21.

linear_model.logistic_regression_path(X,
y)

Compute a Logistic Regression model for a list of regular-
ization parameters.

Continued on next page
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Table 5.158 – continued from previous page
linear_model.orthogonal_mp(X, y[, . . . ]) Orthogonal Matching Pursuit (OMP)
linear_model.orthogonal_mp_gram(Gram, Xy[,
. . . ])

Gram Orthogonal Matching Pursuit (OMP)

5.19.22 sklearn.linear_model.enet_path

sklearn.linear_model.enet_path(X, y, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None,
precompute=’auto’, Xy=None, copy_X=True, coef_init=None,
verbose=False, return_n_iter=False, positive=False,
check_input=True, **params)

Compute elastic net path with coordinate descent

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters X : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,) or (n_samples, n_outputs)

Target values

l1_ratio : float, optional

float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties).
l1_ratio=1 corresponds to the Lasso

eps : float

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like
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Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

return_n_iter : bool

whether to return the number of iterations or not.

positive : bool, default False

If set to True, forces coefficients to be positive. (Only allowed when y.ndim == 1).

check_input : bool, default True

Skip input validation checks, including the Gram matrix when provided assuming there
are handled by the caller when check_input=False.

**params : kwargs

keyword arguments passed to the coordinate descent solver.

Returns alphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha. (Is returned when return_n_iter is set to True).

See also:

MultiTaskElasticNet, MultiTaskElasticNetCV , ElasticNet, ElasticNetCV

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

Examples using sklearn.linear_model.enet_path

• Lasso and Elastic Net
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5.19.23 sklearn.linear_model.lars_path

sklearn.linear_model.lars_path(X, y, Xy=None, Gram=None, max_iter=500, alpha_min=0,
method=’lar’, copy_X=True, eps=2.2204460492503131e-
16, copy_Gram=True, verbose=0, return_path=True, re-
turn_n_iter=False, positive=False)

Compute Least Angle Regression or Lasso path using LARS algorithm [1]

The optimization objective for the case method=’lasso’ is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

in the case of method=’lars’, the objective function is only known in the form of an implicit equation (see
discussion in [1])

Read more in the User Guide.

Parameters X : array, shape: (n_samples, n_features)

Input data.

y : array, shape: (n_samples)

Input targets.

Xy : array-like, shape (n_samples,) or (n_samples, n_targets), optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

Gram : None, ‘auto’, array, shape: (n_features, n_features), optional

Precomputed Gram matrix (X’ * X), if 'auto', the Gram matrix is precomputed from
the given X, if there are more samples than features.

max_iter : integer, optional (default=500)

Maximum number of iterations to perform, set to infinity for no limit.

alpha_min : float, optional (default=0)

Minimum correlation along the path. It corresponds to the regularization parameter
alpha parameter in the Lasso.

method : {‘lar’, ‘lasso’}, optional (default=’lar’)

Specifies the returned model. Select 'lar' for Least Angle Regression, 'lasso' for
the Lasso.

copy_X : bool, optional (default=True)

If False, X is overwritten.

eps : float, optional (default=‘‘np.finfo(np.float).eps‘‘)

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems.

copy_Gram : bool, optional (default=True)

If False, Gram is overwritten.

verbose : int (default=0)

Controls output verbosity.

return_path : bool, optional (default=True)
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If return_path==True returns the entire path, else returns only the last point of the
path.

return_n_iter : bool, optional (default=False)

Whether to return the number of iterations.

positive : boolean (default=False)

Restrict coefficients to be >= 0. When using this option together with method ‘lasso’
the model coefficients will not converge to the ordinary-least-squares solution for small
values of alpha (neither will they when using method ‘lar’ ..). Only coefficients up to
the smallest alpha value (alphas_[alphas_ > 0.].min() when fit_path=True)
reached by the stepwise Lars-Lasso algorithm are typically in congruence with the so-
lution of the coordinate descent lasso_path function.

Returns alphas : array, shape: [n_alphas + 1]

Maximum of covariances (in absolute value) at each iteration. n_alphas is ei-
ther max_iter, n_features or the number of nodes in the path with alpha >=
alpha_min, whichever is smaller.

active : array, shape [n_alphas]

Indices of active variables at the end of the path.

coefs : array, shape (n_features, n_alphas + 1)

Coefficients along the path

n_iter : int

Number of iterations run. Returned only if return_n_iter is set to True.

See also:

lasso_path, LassoLars, Lars, LassoLarsCV , LarsCV , sklearn.decomposition.
sparse_encode

References

[R38], [R39], [R40]

Examples using sklearn.linear_model.lars_path

• Lasso path using LARS

5.19.24 sklearn.linear_model.lasso_path

sklearn.linear_model.lasso_path(X, y, eps=0.001, n_alphas=100, alphas=None, precom-
pute=’auto’, Xy=None, copy_X=True, coef_init=None, ver-
bose=False, return_n_iter=False, positive=False, **params)

Compute Lasso path with coordinate descent

The Lasso optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
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For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory
duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,), or (n_samples, n_outputs)

Target values

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

return_n_iter : bool

whether to return the number of iterations or not.

positive : bool, default False

If set to True, forces coefficients to be positive. (Only allowed when y.ndim == 1).

**params : kwargs

keyword arguments passed to the coordinate descent solver.

Returns alphas : array, shape (n_alphas,)
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The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified
tolerance for each alpha.

See also:

lars_path, Lasso, LassoLars, LassoCV , LassoLarsCV , sklearn.decomposition.
sparse_encode

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particu-
lar, linear interpolation can be used to retrieve model coefficients between the values output by lars_path

Examples

Comparing lasso_path and lars_path with interpolation:

>>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T
>>> y = np.array([1, 2, 3.1])
>>> # Use lasso_path to compute a coefficient path
>>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5])
>>> print(coef_path)
[[ 0. 0. 0.46874778]
[ 0.2159048 0.4425765 0.23689075]]

>>> # Now use lars_path and 1D linear interpolation to compute the
>>> # same path
>>> from sklearn.linear_model import lars_path
>>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso')
>>> from scipy import interpolate
>>> coef_path_continuous = interpolate.interp1d(alphas[::-1],
... coef_path_lars[:, ::-1])
>>> print(coef_path_continuous([5., 1., .5]))
[[ 0. 0. 0.46915237]
[ 0.2159048 0.4425765 0.23668876]]

Examples using sklearn.linear_model.lasso_path

• Lasso and Elastic Net
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5.19.25 sklearn.linear_model.lasso_stability_path

sklearn.linear_model.lasso_stability_path(X, y, scaling=0.5, ran-
dom_state=None, n_resampling=200,
n_grid=100, sample_fraction=0.75,
eps=8.8817841970012523e-16, n_jobs=1,
verbose=False)

DEPRECATED: The function lasso_stability_path is deprecated in 0.19 and will be removed in 0.21.

Stability path based on randomized Lasso estimates

Parameters X : array-like, shape = [n_samples, n_features]

training data.

y [array-like, shape = [n_samples]] target values.

scaling [float, optional, default=0.5] The alpha parameter in the stability selection arti-
cle used to randomly scale the features. Should be between 0 and 1.

random_state [int, RandomState instance or None, optional, default=None] The gen-
erator used to randomize the design. If int, random_state is the seed used by the ran-
dom number generator; If RandomState instance, random_state is the random number
generator; If None, the random number generator is the RandomState instance used
by np.random.

n_resampling [int, optional, default=200] Number of randomized models.

n_grid [int, optional, default=100] Number of grid points. The path is linearly reinter-
polated on a grid between 0 and 1 before computing the scores.

sample_fraction [float, optional, default=0.75] The fraction of samples to be used in
each randomized design. Should be between 0 and 1. If 1, all samples are used.

eps [float, optional] Smallest value of alpha / alpha_max considered

n_jobs [integer, optional] Number of CPUs to use during the resampling. If ‘-1’, use
all the CPUs

verbose [boolean or integer, optional] Sets the verbosity amount

Returns alphas_grid : array, shape ~ [n_grid]

The grid points between 0 and 1: alpha/alpha_max

scores_path [array, shape = [n_features, n_grid]] The scores for each feature along the
path.
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5.19.26 sklearn.linear_model.logistic_regression_path

sklearn.linear_model.logistic_regression_path(X, y, pos_class=None, Cs=10,
fit_intercept=True, max_iter=100,
tol=0.0001, verbose=0, solver=’lbfgs’,
coef=None, class_weight=None,
dual=False, penalty=’l2’, inter-
cept_scaling=1.0, multi_class=’ovr’,
random_state=None, check_input=True,
max_squared_sum=None, sam-
ple_weight=None)

Compute a Logistic Regression model for a list of regularization parameters.

This is an implementation that uses the result of the previous model to speed up computations along the set of
solutions, making it faster than sequentially calling LogisticRegression for the different parameters. Note that
there will be no speedup with liblinear solver, since it does not handle warm-starting.

Read more in the User Guide.

Parameters X : array-like or sparse matrix, shape (n_samples, n_features)

Input data.

y : array-like, shape (n_samples,)

Input data, target values.

pos_class : int, None

The class with respect to which we perform a one-vs-all fit. If None, then it is assumed
that the given problem is binary.

Cs : int | array-like, shape (n_cs,)

List of values for the regularization parameter or integer specifying the number of reg-
ularization parameters that should be used. In this case, the parameters will be chosen
in a logarithmic scale between 1e-4 and 1e4.

fit_intercept : bool

Whether to fit an intercept for the model. In this case the shape of the returned array is
(n_cs, n_features + 1).

max_iter : int

Maximum number of iterations for the solver.

tol : float

Stopping criterion. For the newton-cg and lbfgs solvers, the iteration will stop when
max{|g_i | i = 1, ..., n} <= tolwhere g_i is the i-th component of the
gradient.

verbose : int

For the liblinear and lbfgs solvers set verbose to any positive number for verbosity.

solver : {‘lbfgs’, ‘newton-cg’, ‘liblinear’, ‘sag’, ‘saga’}

Numerical solver to use.

coef : array-like, shape (n_features,), default None

Initialization value for coefficients of logistic regression. Useless for liblinear solver.

class_weight : dict or ‘balanced’, optional
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Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y)).

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

dual : bool

Dual or primal formulation. Dual formulation is only implemented for l2 penalty with
liblinear solver. Prefer dual=False when n_samples > n_features.

penalty : str, ‘l1’ or ‘l2’

Used to specify the norm used in the penalization. The ‘newton-cg’, ‘sag’ and ‘lbfgs’
solvers support only l2 penalties.

intercept_scaling : float, default 1.

Useful only when the solver ‘liblinear’ is used and self.fit_intercept is set to True. In this
case, x becomes [x, self.intercept_scaling], i.e. a “synthetic” feature with constant value
equal to intercept_scaling is appended to the instance vector. The intercept becomes
intercept_scaling * synthetic_feature_weight.

Note! the synthetic feature weight is subject to l1/l2 regularization as all other features.
To lessen the effect of regularization on synthetic feature weight (and therefore on the
intercept) intercept_scaling has to be increased.

multi_class : str, {‘ovr’, ‘multinomial’}

Multiclass option can be either ‘ovr’ or ‘multinomial’. If the option chosen is ‘ovr’, then
a binary problem is fit for each label. Else the loss minimised is the multinomial loss
fit across the entire probability distribution. Works only for the ‘lbfgs’ and ‘newton-cg’
solvers.

random_state : int, RandomState instance or None, optional, default None

The seed of the pseudo random number generator to use when shuffling the data. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random. Used when solver ==
‘sag’ or ‘liblinear’.

check_input : bool, default True

If False, the input arrays X and y will not be checked.

max_squared_sum : float, default None

Maximum squared sum of X over samples. Used only in SAG solver. If None, it will
be computed, going through all the samples. The value should be precomputed to speed
up cross validation.

sample_weight : array-like, shape(n_samples,) optional

Array of weights that are assigned to individual samples. If not provided, then each
sample is given unit weight.

Returns coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1)
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List of coefficients for the Logistic Regression model. If fit_intercept is set to True
then the second dimension will be n_features + 1, where the last item represents the
intercept.

Cs : ndarray

Grid of Cs used for cross-validation.

n_iter : array, shape (n_cs,)

Actual number of iteration for each Cs.

Notes

You might get slightly different results with the solver liblinear than with the others since this uses LIBLINEAR
which penalizes the intercept.

Changed in version 0.19: The “copy” parameter was removed.

5.19.27 sklearn.linear_model.orthogonal_mp

sklearn.linear_model.orthogonal_mp(X, y, n_nonzero_coefs=None, tol=None, precom-
pute=False, copy_X=True, return_path=False, re-
turn_n_iter=False)

Orthogonal Matching Pursuit (OMP)

Solves n_targets Orthogonal Matching Pursuit problems. An instance of the problem has the form:

When parametrized by the number of non-zero coefficients using n_nonzero_coefs: argmin ||y - Xgamma||^2
subject to ||gamma||_0 <= n_{nonzero coefs}

When parametrized by error using the parameter tol: argmin ||gamma||_0 subject to ||y - Xgamma||^2 <= tol

Read more in the User Guide.

Parameters X : array, shape (n_samples, n_features)

Input data. Columns are assumed to have unit norm.

y : array, shape (n_samples,) or (n_samples, n_targets)

Input targets

n_nonzero_coefs : int

Desired number of non-zero entries in the solution. If None (by default) this value is set
to 10% of n_features.

tol : float

Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

precompute : {True, False, ‘auto’},

Whether to perform precomputations. Improves performance when n_targets or
n_samples is very large.

copy_X : bool, optional

Whether the design matrix X must be copied by the algorithm. A false value is only
helpful if X is already Fortran-ordered, otherwise a copy is made anyway.

return_path : bool, optional. Default: False
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Whether to return every value of the nonzero coefficients along the forward path. Useful
for cross-validation.

return_n_iter : bool, optional default False

Whether or not to return the number of iterations.

Returns coef : array, shape (n_features,) or (n_features, n_targets)

Coefficients of the OMP solution. If return_path=True, this contains the whole coef-
ficient path. In this case its shape is (n_features, n_features) or (n_features, n_targets,
n_features) and iterating over the last axis yields coefficients in increasing order of ac-
tive features.

n_iters : array-like or int

Number of active features across every target. Returned only if return_n_iter is set to
True.

See also:

OrthogonalMatchingPursuit, orthogonal_mp_gram, lars_path, decomposition.
sparse_encode

Notes

Orthogonal matching pursuit was introduced in S. Mallat, Z. Zhang, Matching pursuits with time-frequency
dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
(http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of
the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008.
http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

5.19.28 sklearn.linear_model.orthogonal_mp_gram

sklearn.linear_model.orthogonal_mp_gram(Gram, Xy, n_nonzero_coefs=None, tol=None,
norms_squared=None, copy_Gram=True,
copy_Xy=True, return_path=False, re-
turn_n_iter=False)

Gram Orthogonal Matching Pursuit (OMP)

Solves n_targets Orthogonal Matching Pursuit problems using only the Gram matrix X.T * X and the product
X.T * y.

Read more in the User Guide.

Parameters Gram : array, shape (n_features, n_features)

Gram matrix of the input data: X.T * X

Xy : array, shape (n_features,) or (n_features, n_targets)

Input targets multiplied by X: X.T * y

n_nonzero_coefs : int

Desired number of non-zero entries in the solution. If None (by default) this value is set
to 10% of n_features.

tol : float
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Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

norms_squared : array-like, shape (n_targets,)

Squared L2 norms of the lines of y. Required if tol is not None.

copy_Gram : bool, optional

Whether the gram matrix must be copied by the algorithm. A false value is only helpful
if it is already Fortran-ordered, otherwise a copy is made anyway.

copy_Xy : bool, optional

Whether the covariance vector Xy must be copied by the algorithm. If False, it may be
overwritten.

return_path : bool, optional. Default: False

Whether to return every value of the nonzero coefficients along the forward path. Useful
for cross-validation.

return_n_iter : bool, optional default False

Whether or not to return the number of iterations.

Returns coef : array, shape (n_features,) or (n_features, n_targets)

Coefficients of the OMP solution. If return_path=True, this contains the whole coef-
ficient path. In this case its shape is (n_features, n_features) or (n_features, n_targets,
n_features) and iterating over the last axis yields coefficients in increasing order of ac-
tive features.

n_iters : array-like or int

Number of active features across every target. Returned only if return_n_iter is set to
True.

See also:

OrthogonalMatchingPursuit, orthogonal_mp, lars_path, decomposition.
sparse_encode

Notes

Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency
dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
(http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of
the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008.
http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

5.20 sklearn.manifold: Manifold Learning

The sklearn.manifold module implements data embedding techniques.

User guide: See the Manifold learning section for further details.

manifold.Isomap([n_neighbors, n_components, . . . ]) Isomap Embedding
Continued on next page
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Table 5.159 – continued from previous page
manifold.LocallyLinearEmbedding([. . . ]) Locally Linear Embedding
manifold.MDS([n_components, metric, n_init, . . . ]) Multidimensional scaling
manifold.SpectralEmbedding([n_components,
. . . ])

Spectral embedding for non-linear dimensionality reduc-
tion.

manifold.TSNE([n_components, perplexity, . . . ]) t-distributed Stochastic Neighbor Embedding.

5.20.1 sklearn.manifold.Isomap

class sklearn.manifold.Isomap(n_neighbors=5, n_components=2, eigen_solver=’auto’, tol=0,
max_iter=None, path_method=’auto’, neighbors_algorithm=’auto’,
n_jobs=1)

Isomap Embedding

Non-linear dimensionality reduction through Isometric Mapping

Read more in the User Guide.

Parameters n_neighbors : integer

number of neighbors to consider for each point.

n_components : integer

number of coordinates for the manifold

eigen_solver : [‘auto’|’arpack’|’dense’]

‘auto’ : Attempt to choose the most efficient solver for the given problem.

‘arpack’ : Use Arnoldi decomposition to find the eigenvalues and eigenvectors.

‘dense’ : Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition.

tol : float

Convergence tolerance passed to arpack or lobpcg. not used if eigen_solver == ‘dense’.

max_iter : integer

Maximum number of iterations for the arpack solver. not used if eigen_solver ==
‘dense’.

path_method : string [‘auto’|’FW’|’D’]

Method to use in finding shortest path.

‘auto’ : attempt to choose the best algorithm automatically.

‘FW’ : Floyd-Warshall algorithm.

‘D’ : Dijkstra’s algorithm.

neighbors_algorithm : string [‘auto’|’brute’|’kd_tree’|’ball_tree’]

Algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors
instance.

n_jobs : int, optional (default = 1)

The number of parallel jobs to run. If -1, then the number of jobs is set to the number
of CPU cores.

Attributes embedding_ : array-like, shape (n_samples, n_components)
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Stores the embedding vectors.

kernel_pca_ : object

KernelPCA object used to implement the embedding.

training_data_ : array-like, shape (n_samples, n_features)

Stores the training data.

nbrs_ : sklearn.neighbors.NearestNeighbors instance

Stores nearest neighbors instance, including BallTree or KDtree if applicable.

dist_matrix_ : array-like, shape (n_samples, n_samples)

Stores the geodesic distance matrix of training data.

References

[R41]

Methods

fit(X[, y]) Compute the embedding vectors for data X
fit_transform(X[, y]) Fit the model from data in X and transform X.
get_params([deep]) Get parameters for this estimator.
reconstruction_error() Compute the reconstruction error for the embedding.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform X.

__init__(n_neighbors=5, n_components=2, eigen_solver=’auto’, tol=0, max_iter=None,
path_method=’auto’, neighbors_algorithm=’auto’, n_jobs=1)

fit(X, y=None)
Compute the embedding vectors for data X

Parameters X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors}

Sample data, shape = (n_samples, n_features), in the form of a numpy array, precom-
puted tree, or NearestNeighbors object.

y: Ignored. :

Returns self : returns an instance of self.

fit_transform(X, y=None)
Fit the model from data in X and transform X.

Parameters X : {array-like, sparse matrix, BallTree, KDTree}

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y: Ignored. :

Returns X_new : array-like, shape (n_samples, n_components)

get_params(deep=True)
Get parameters for this estimator.
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Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

reconstruction_error()
Compute the reconstruction error for the embedding.

Returns reconstruction_error : float

Notes

The cost function of an isomap embedding is

E = frobenius_norm[K(D) - K(D_fit)] / n_samples

Where D is the matrix of distances for the input data X, D_fit is the matrix of distances for the output
embedding X_fit, and K is the isomap kernel:

K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform X.

This is implemented by linking the points X into the graph of geodesic distances of the training data. First
the n_neighbors nearest neighbors of X are found in the training data, and from these the shortest geodesic
distances from each point in X to each point in the training data are computed in order to construct the
kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set.

Parameters X : array-like, shape (n_samples, n_features)

Returns X_new : array-like, shape (n_samples, n_components)

Examples using sklearn.manifold.Isomap

• Comparison of Manifold Learning methods

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

• Manifold Learning methods on a severed sphere
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5.20.2 sklearn.manifold.LocallyLinearEmbedding

class sklearn.manifold.LocallyLinearEmbedding(n_neighbors=5, n_components=2,
reg=0.001, eigen_solver=’auto’, tol=1e-
06, max_iter=100, method=’standard’,
hessian_tol=0.0001, modified_tol=1e-
12, neighbors_algorithm=’auto’, ran-
dom_state=None, n_jobs=1)

Locally Linear Embedding

Read more in the User Guide.

Parameters n_neighbors : integer

number of neighbors to consider for each point.

n_components : integer

number of coordinates for the manifold

reg : float

regularization constant, multiplies the trace of the local covariance matrix of the dis-
tances.

eigen_solver : string, {‘auto’, ‘arpack’, ‘dense’}

auto : algorithm will attempt to choose the best method for input data

arpack [use arnoldi iteration in shift-invert mode.] For this method, M may be a dense
matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable
for some problems. It is best to try several random seeds in order to check results.

dense [use standard dense matrix operations for the eigenvalue] decomposition. For
this method, M must be an array or matrix type. This method should be avoided for
large problems.

tol : float, optional

Tolerance for ‘arpack’ method Not used if eigen_solver==’dense’.

max_iter : integer

maximum number of iterations for the arpack solver. Not used if
eigen_solver==’dense’.

method : string (‘standard’, ‘hessian’, ‘modified’ or ‘ltsa’)

standard [use the standard locally linear embedding algorithm. see] reference [1]

hessian [use the Hessian eigenmap method. This method requires] n_neighbors >
n_components * (1 + (n_components + 1) / 2 see reference [2]

modified [use the modified locally linear embedding algorithm.] see reference [3]

ltsa [use local tangent space alignment algorithm] see reference [4]

hessian_tol : float, optional

Tolerance for Hessian eigenmapping method. Only used if method == 'hessian'

modified_tol : float, optional

Tolerance for modified LLE method. Only used if method == 'modified'

neighbors_algorithm : string [‘auto’|’brute’|’kd_tree’|’ball_tree’]
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algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors
instance

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If Random-
State instance, random_state is the random number generator; If None, the ran-
dom number generator is the RandomState instance used by np.random. Used when
eigen_solver == ‘arpack’.

n_jobs : int, optional (default = 1)

The number of parallel jobs to run. If -1, then the number of jobs is set to the number
of CPU cores.

Attributes embedding_vectors_ : array-like, shape [n_components, n_samples]

Stores the embedding vectors

reconstruction_error_ : float

Reconstruction error associated with embedding_vectors_

nbrs_ : NearestNeighbors object

Stores nearest neighbors instance, including BallTree or KDtree if applicable.

References

[R42], [R43], [R44], [R45]

Methods

fit(X[, y]) Compute the embedding vectors for data X
fit_transform(X[, y]) Compute the embedding vectors for data X and trans-

form X.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform new points into embedding space.

__init__(n_neighbors=5, n_components=2, reg=0.001, eigen_solver=’auto’, tol=1e-06,
max_iter=100, method=’standard’, hessian_tol=0.0001, modified_tol=1e-12, neigh-
bors_algorithm=’auto’, random_state=None, n_jobs=1)

fit(X, y=None)
Compute the embedding vectors for data X

Parameters X : array-like of shape [n_samples, n_features]

training set.

y: Ignored. :

Returns self : returns an instance of self.

fit_transform(X, y=None)
Compute the embedding vectors for data X and transform X.

Parameters X : array-like of shape [n_samples, n_features]

5.20. sklearn.manifold: Manifold Learning 1647



scikit-learn user guide, Release 0.19.1

training set.

y: Ignored. :

Returns X_new : array-like, shape (n_samples, n_components)

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform new points into embedding space.

Parameters X : array-like, shape = [n_samples, n_features]

Returns X_new : array, shape = [n_samples, n_components]

Notes

Because of scaling performed by this method, it is discouraged to use it together with methods that are not
scale-invariant (like SVMs)

Examples using sklearn.manifold.LocallyLinearEmbedding

• Visualizing the stock market structure

• Comparison of Manifold Learning methods

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

• Manifold Learning methods on a severed sphere

5.20.3 sklearn.manifold.MDS

class sklearn.manifold.MDS(n_components=2, metric=True, n_init=4, max_iter=300, verbose=0,
eps=0.001, n_jobs=1, random_state=None, dissimilarity=’euclidean’)

Multidimensional scaling

Read more in the User Guide.

Parameters n_components : int, optional, default: 2

Number of dimensions in which to immerse the dissimilarities.

metric : boolean, optional, default: True
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If True, perform metric MDS; otherwise, perform nonmetric MDS.

n_init : int, optional, default: 4

Number of times the SMACOF algorithm will be run with different initializations. The
final results will be the best output of the runs, determined by the run with the smallest
final stress.

max_iter : int, optional, default: 300

Maximum number of iterations of the SMACOF algorithm for a single run.

verbose : int, optional, default: 0

Level of verbosity.

eps : float, optional, default: 1e-3

Relative tolerance with respect to stress at which to declare convergence.

n_jobs : int, optional, default: 1

The number of jobs to use for the computation. If multiple initializations are used
(n_init), each run of the algorithm is computed in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is
useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used.
Thus for n_jobs = -2, all CPUs but one are used.

random_state : int, RandomState instance or None, optional, default: None

The generator used to initialize the centers. If int, random_state is the seed used by
the random number generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the RandomState instance
used by np.random.

dissimilarity : ‘euclidean’ | ‘precomputed’, optional, default: ‘euclidean’

Dissimilarity measure to use:

• ‘euclidean’: Pairwise Euclidean distances between points in the dataset.

• ‘precomputed’: Pre-computed dissimilarities are passed directly to fit and
fit_transform.

Attributes embedding_ : array-like, shape (n_components, n_samples)

Stores the position of the dataset in the embedding space.

stress_ : float

The final value of the stress (sum of squared distance of the disparities and the distances
for all constrained points).

References

“Modern Multidimensional Scaling - Theory and Applications” Borg, I.; Groenen P. Springer Series in Statistics
(1997)

“Nonmetric multidimensional scaling: a numerical method” Kruskal, J. Psychometrika, 29 (1964)

“Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis” Kruskal, J. Psychometrika,
29, (1964)
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Methods

fit(X[, y, init]) Computes the position of the points in the embedding
space

fit_transform(X[, y, init]) Fit the data from X, and returns the embedded coordi-
nates

get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__(n_components=2, metric=True, n_init=4, max_iter=300, verbose=0, eps=0.001, n_jobs=1,
random_state=None, dissimilarity=’euclidean’)

fit(X, y=None, init=None)
Computes the position of the points in the embedding space

Parameters X : array, shape (n_samples, n_features) or (n_samples, n_samples)

Input data. If dissimilarity=='precomputed', the input should be the dissim-
ilarity matrix.

y: Ignored. :

init : ndarray, shape (n_samples,), optional, default: None

Starting configuration of the embedding to initialize the SMACOF algorithm. By de-
fault, the algorithm is initialized with a randomly chosen array.

fit_transform(X, y=None, init=None)
Fit the data from X, and returns the embedded coordinates

Parameters X : array, shape (n_samples, n_features) or (n_samples, n_samples)

Input data. If dissimilarity=='precomputed', the input should be the dissim-
ilarity matrix.

y: Ignored. :

init : ndarray, shape (n_samples,), optional, default: None

Starting configuration of the embedding to initialize the SMACOF algorithm. By de-
fault, the algorithm is initialized with a randomly chosen array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :
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Examples using sklearn.manifold.MDS

• Comparison of Manifold Learning methods

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

• Manifold Learning methods on a severed sphere

• Multi-dimensional scaling

5.20.4 sklearn.manifold.SpectralEmbedding

class sklearn.manifold.SpectralEmbedding(n_components=2, affinity=’nearest_neighbors’,
gamma=None, random_state=None,
eigen_solver=None, n_neighbors=None, n_jobs=1)

Spectral embedding for non-linear dimensionality reduction.

Forms an affinity matrix given by the specified function and applies spectral decomposition to the corresponding
graph laplacian. The resulting transformation is given by the value of the eigenvectors for each data point.

Note : Laplacian Eigenmaps is the actual algorithm implemented here.

Read more in the User Guide.

Parameters n_components : integer, default: 2

The dimension of the projected subspace.

affinity : string or callable, default

How to construct the affinity matrix.

• ‘nearest_neighbors’ : construct affinity matrix by knn graph

• ‘rbf’ : construct affinity matrix by rbf kernel

• ‘precomputed’ : interpret X as precomputed affinity matrix

• callable : use passed in function as affinity the function takes in data matrix
(n_samples, n_features) and return affinity matrix (n_samples, n_samples).

gamma : float, optional, default

Kernel coefficient for rbf kernel.

random_state : int, RandomState instance or None, optional, default: None

A pseudo random number generator used for the initialization of the lobpcg eigenvec-
tors. If int, random_state is the seed used by the random number generator; If Ran-
domState instance, random_state is the random number generator; If None, the ran-
dom number generator is the RandomState instance used by np.random. Used when
solver == ‘amg’.

eigen_solver : {None, ‘arpack’, ‘lobpcg’, or ‘amg’}

The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It
can be faster on very large, sparse problems, but may also lead to instabilities.

n_neighbors : int, default

Number of nearest neighbors for nearest_neighbors graph building.

n_jobs : int, optional (default = 1)
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The number of parallel jobs to run. If -1, then the number of jobs is set to the number
of CPU cores.

Attributes embedding_ : array, shape = (n_samples, n_components)

Spectral embedding of the training matrix.

affinity_matrix_ : array, shape = (n_samples, n_samples)

Affinity_matrix constructed from samples or precomputed.

References

• A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.165.9323

• On Spectral Clustering: Analysis and an algorithm, 2001 Andrew Y. Ng, Michael I. Jordan, Yair Weiss
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.8100

• Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/
viewdoc/summary?doi=10.1.1.160.2324

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit the model from data in X and transform X.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__(n_components=2, affinity=’nearest_neighbors’, gamma=None, random_state=None,
eigen_solver=None, n_neighbors=None, n_jobs=1)

fit(X, y=None)
Fit the model from data in X.

Parameters X : array-like, shape (n_samples, n_features)

Training vector, where n_samples is the number of samples and n_features is the number
of features.

If affinity is “precomputed” X : array-like, shape (n_samples, n_samples), Interpret X
as precomputed adjacency graph computed from samples.

Y: Ignored. :

Returns self : object

Returns the instance itself.

fit_transform(X, y=None)
Fit the model from data in X and transform X.

Parameters X : array-like, shape (n_samples, n_features)

Training vector, where n_samples is the number of samples and n_features is the number
of features.

If affinity is “precomputed” X : array-like, shape (n_samples, n_samples), Interpret X
as precomputed adjacency graph computed from samples.
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Y: Ignored. :

Returns X_new : array-like, shape (n_samples, n_components)

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.manifold.SpectralEmbedding

• Various Agglomerative Clustering on a 2D embedding of digits

• Comparison of Manifold Learning methods

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

• Manifold Learning methods on a severed sphere

5.20.5 sklearn.manifold.TSNE

class sklearn.manifold.TSNE(n_components=2, perplexity=30.0, early_exaggeration=12.0,
learning_rate=200.0, n_iter=1000, n_iter_without_progress=300,
min_grad_norm=1e-07, metric=’euclidean’, init=’random’, verbose=0,
random_state=None, method=’barnes_hut’, angle=0.5)

t-distributed Stochastic Neighbor Embedding.

t-SNE [1] is a tool to visualize high-dimensional data. It converts similarities between data points to joint
probabilities and tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-
dimensional embedding and the high-dimensional data. t-SNE has a cost function that is not convex, i.e. with
different initializations we can get different results.

It is highly recommended to use another dimensionality reduction method (e.g. PCA for dense data or Truncat-
edSVD for sparse data) to reduce the number of dimensions to a reasonable amount (e.g. 50) if the number of
features is very high. This will suppress some noise and speed up the computation of pairwise distances between
samples. For more tips see Laurens van der Maaten’s FAQ [2].

Read more in the User Guide.

Parameters n_components : int, optional (default: 2)

Dimension of the embedded space.

perplexity : float, optional (default: 30)
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The perplexity is related to the number of nearest neighbors that is used in other man-
ifold learning algorithms. Larger datasets usually require a larger perplexity. Consider
selecting a value between 5 and 50. The choice is not extremely critical since t-SNE is
quite insensitive to this parameter.

early_exaggeration : float, optional (default: 12.0)

Controls how tight natural clusters in the original space are in the embedded space and
how much space will be between them. For larger values, the space between natural
clusters will be larger in the embedded space. Again, the choice of this parameter is
not very critical. If the cost function increases during initial optimization, the early
exaggeration factor or the learning rate might be too high.

learning_rate : float, optional (default: 200.0)

The learning rate for t-SNE is usually in the range [10.0, 1000.0]. If the learning rate is
too high, the data may look like a ‘ball’ with any point approximately equidistant from
its nearest neighbours. If the learning rate is too low, most points may look compressed
in a dense cloud with few outliers. If the cost function gets stuck in a bad local minimum
increasing the learning rate may help.

n_iter : int, optional (default: 1000)

Maximum number of iterations for the optimization. Should be at least 250.

n_iter_without_progress : int, optional (default: 300)

Maximum number of iterations without progress before we abort the optimization, used
after 250 initial iterations with early exaggeration. Note that progress is only checked
every 50 iterations so this value is rounded to the next multiple of 50.

New in version 0.17: parameter n_iter_without_progress to control stopping criteria.

min_grad_norm : float, optional (default: 1e-7)

If the gradient norm is below this threshold, the optimization will be stopped.

metric : string or callable, optional

The metric to use when calculating distance between instances in a feature
array. If metric is a string, it must be one of the options allowed by
scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pair-
wise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is “precomputed”, X is assumed
to be a distance matrix. Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable should take two
arrays from X as input and return a value indicating the distance between them. The
default is “euclidean” which is interpreted as squared euclidean distance.

init : string or numpy array, optional (default: “random”)

Initialization of embedding. Possible options are ‘random’, ‘pca’, and a numpy array of
shape (n_samples, n_components). PCA initialization cannot be used with precomputed
distances and is usually more globally stable than random initialization.

verbose : int, optional (default: 0)

Verbosity level.

random_state : int, RandomState instance or None, optional (default: None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
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generator is the RandomState instance used by np.random. Note that different initial-
izations might result in different local minima of the cost function.

method : string (default: ‘barnes_hut’)

By default the gradient calculation algorithm uses Barnes-Hut approximation running in
O(NlogN) time. method=’exact’ will run on the slower, but exact, algorithm in O(N^2)
time. The exact algorithm should be used when nearest-neighbor errors need to be better
than 3%. However, the exact method cannot scale to millions of examples.

New in version 0.17: Approximate optimization method via the Barnes-Hut.

angle : float (default: 0.5)

Only used if method=’barnes_hut’ This is the trade-off between speed and accuracy for
Barnes-Hut T-SNE. ‘angle’ is the angular size (referred to as theta in [3]) of a distant
node as measured from a point. If this size is below ‘angle’ then it is used as a summary
node of all points contained within it. This method is not very sensitive to changes
in this parameter in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing
computation time and angle greater 0.8 has quickly increasing error.

Attributes embedding_ : array-like, shape (n_samples, n_components)

Stores the embedding vectors.

kl_divergence_ : float

Kullback-Leibler divergence after optimization.

n_iter_ : int

Number of iterations run.

References

[1] van der Maaten, L.J.P.; Hinton, G.E. Visualizing High-Dimensional Data Using t-SNE. Journal of Ma-
chine Learning Research 9:2579-2605, 2008.

[2] van der Maaten, L.J.P. t-Distributed Stochastic Neighbor Embedding http://homepage.tudelft.nl/
19j49/t-SNE.html

[3] L.J.P. van der Maaten. Accelerating t-SNE using Tree-Based Algorithms. Journal of Machine Learn-
ing Research 15(Oct):3221-3245, 2014. http://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf

Examples

>>> import numpy as np
>>> from sklearn.manifold import TSNE
>>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
>>> X_embedded = TSNE(n_components=2).fit_transform(X)
>>> X_embedded.shape
(4, 2)

Methods
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fit(X[, y]) Fit X into an embedded space.
fit_transform(X[, y]) Fit X into an embedded space and return that trans-

formed output.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__(n_components=2, perplexity=30.0, early_exaggeration=12.0, learning_rate=200.0,
n_iter=1000, n_iter_without_progress=300, min_grad_norm=1e-07, metric=’euclidean’,
init=’random’, verbose=0, random_state=None, method=’barnes_hut’, angle=0.5)

fit(X, y=None)
Fit X into an embedded space.

Parameters X : array, shape (n_samples, n_features) or (n_samples, n_samples)

If the metric is ‘precomputed’ X must be a square distance matrix. Otherwise it contains
a sample per row. If the method is ‘exact’, X may be a sparse matrix of type ‘csr’, ‘csc’
or ‘coo’.

y : Ignored.

fit_transform(X, y=None)
Fit X into an embedded space and return that transformed output.

Parameters X : array, shape (n_samples, n_features) or (n_samples, n_samples)

If the metric is ‘precomputed’ X must be a square distance matrix. Otherwise it contains
a sample per row.

y : Ignored.

Returns X_new : array, shape (n_samples, n_components)

Embedding of the training data in low-dimensional space.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

n_iter_final
DEPRECATED: Attribute n_iter_final was deprecated in version 0.19 and will be removed in 0.21. Use
n_iter_ instead

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :
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Examples using sklearn.manifold.TSNE

• Comparison of Manifold Learning methods

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

• Manifold Learning methods on a severed sphere

• t-SNE: The effect of various perplexity values on the shape

manifold.locally_linear_embedding(X, . . . [,
. . . ])

Perform a Locally Linear Embedding analysis on the data.

manifold.smacof(dissimilarities[, metric, . . . ]) Computes multidimensional scaling using the SMACOF
algorithm.

manifold.spectral_embedding(adjacency[, . . . ]) Project the sample on the first eigenvectors of the graph
Laplacian.

5.20.6 sklearn.manifold.locally_linear_embedding

sklearn.manifold.locally_linear_embedding(X, n_neighbors, n_components, reg=0.001,
eigen_solver=’auto’, tol=1e-06, max_iter=100,
method=’standard’, hessian_tol=0.0001,
modified_tol=1e-12, random_state=None,
n_jobs=1)

Perform a Locally Linear Embedding analysis on the data.

Read more in the User Guide.

Parameters X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors}

Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse
array, precomputed tree, or NearestNeighbors object.

n_neighbors : integer

number of neighbors to consider for each point.

n_components : integer

number of coordinates for the manifold.

reg : float

regularization constant, multiplies the trace of the local covariance matrix of the dis-
tances.

eigen_solver : string, {‘auto’, ‘arpack’, ‘dense’}

auto : algorithm will attempt to choose the best method for input data

arpack [use arnoldi iteration in shift-invert mode.] For this method, M may be a dense
matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable
for some problems. It is best to try several random seeds in order to check results.

dense [use standard dense matrix operations for the eigenvalue] decomposition. For
this method, M must be an array or matrix type. This method should be avoided for
large problems.

tol : float, optional

Tolerance for ‘arpack’ method Not used if eigen_solver==’dense’.

5.20. sklearn.manifold: Manifold Learning 1657



scikit-learn user guide, Release 0.19.1

max_iter : integer

maximum number of iterations for the arpack solver.

method : {‘standard’, ‘hessian’, ‘modified’, ‘ltsa’}

standard [use the standard locally linear embedding algorithm.] see reference [R46]

hessian [use the Hessian eigenmap method. This method requires] n_neighbors >
n_components * (1 + (n_components + 1) / 2. see reference [R47]

modified [use the modified locally linear embedding algorithm.] see reference [R48]

ltsa [use local tangent space alignment algorithm] see reference [R49]

hessian_tol : float, optional

Tolerance for Hessian eigenmapping method. Only used if method == ‘hessian’

modified_tol : float, optional

Tolerance for modified LLE method. Only used if method == ‘modified’

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random. Used when solver ==
‘arpack’.

n_jobs : int, optional (default = 1)

The number of parallel jobs to run for neighbors search. If -1, then the number of jobs
is set to the number of CPU cores.

Returns Y : array-like, shape [n_samples, n_components]

Embedding vectors.

squared_error : float

Reconstruction error for the embedding vectors. Equivalent to norm(Y - W Y,
'fro')**2, where W are the reconstruction weights.

References

[R46], [R47], [R48], [R49]

Examples using sklearn.manifold.locally_linear_embedding

• Swiss Roll reduction with LLE

5.20.7 sklearn.manifold.smacof

sklearn.manifold.smacof(dissimilarities, metric=True, n_components=2, init=None, n_init=8,
n_jobs=1, max_iter=300, verbose=0, eps=0.001, random_state=None, re-
turn_n_iter=False)

Computes multidimensional scaling using the SMACOF algorithm.

The SMACOF (Scaling by MAjorizing a COmplicated Function) algorithm is a multidimensional scaling algo-
rithm which minimizes an objective function (the stress) using a majorization technique. Stress majorization,
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also known as the Guttman Transform, guarantees a monotone convergence of stress, and is more powerful than
traditional techniques such as gradient descent.

The SMACOF algorithm for metric MDS can summarized by the following steps:

1. Set an initial start configuration, randomly or not.

2. Compute the stress

3. Compute the Guttman Transform

4. Iterate 2 and 3 until convergence.

The nonmetric algorithm adds a monotonic regression step before computing the stress.

Parameters dissimilarities : ndarray, shape (n_samples, n_samples)

Pairwise dissimilarities between the points. Must be symmetric.

metric : boolean, optional, default: True

Compute metric or nonmetric SMACOF algorithm.

n_components : int, optional, default: 2

Number of dimensions in which to immerse the dissimilarities. If an init array is
provided, this option is overridden and the shape of init is used to determine the
dimensionality of the embedding space.

init : ndarray, shape (n_samples, n_components), optional, default: None

Starting configuration of the embedding to initialize the algorithm. By default, the
algorithm is initialized with a randomly chosen array.

n_init : int, optional, default: 8

Number of times the SMACOF algorithm will be run with different initializations. The
final results will be the best output of the runs, determined by the run with the smallest
final stress. If init is provided, this option is overridden and a single run is performed.

n_jobs : int, optional, default: 1

The number of jobs to use for the computation. If multiple initializations are used
(n_init), each run of the algorithm is computed in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is
useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used.
Thus for n_jobs = -2, all CPUs but one are used.

max_iter : int, optional, default: 300

Maximum number of iterations of the SMACOF algorithm for a single run.

verbose : int, optional, default: 0

Level of verbosity.

eps : float, optional, default: 1e-3

Relative tolerance with respect to stress at which to declare convergence.

random_state : int, RandomState instance or None, optional, default: None

The generator used to initialize the centers. If int, random_state is the seed used by
the random number generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the RandomState instance
used by np.random.
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return_n_iter : bool, optional, default: False

Whether or not to return the number of iterations.

Returns X : ndarray, shape (n_samples, n_components)

Coordinates of the points in a n_components-space.

stress : float

The final value of the stress (sum of squared distance of the disparities and the distances
for all constrained points).

n_iter : int

The number of iterations corresponding to the best stress. Returned only if
return_n_iter is set to True.

Notes

“Modern Multidimensional Scaling - Theory and Applications” Borg, I.; Groenen P. Springer Series in Statistics
(1997)

“Nonmetric multidimensional scaling: a numerical method” Kruskal, J. Psychometrika, 29 (1964)

“Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis” Kruskal, J. Psychometrika,
29, (1964)

5.20.8 sklearn.manifold.spectral_embedding

sklearn.manifold.spectral_embedding(adjacency, n_components=8, eigen_solver=None, ran-
dom_state=None, eigen_tol=0.0, norm_laplacian=True,
drop_first=True)

Project the sample on the first eigenvectors of the graph Laplacian.

The adjacency matrix is used to compute a normalized graph Laplacian whose spectrum (especially the eigen-
vectors associated to the smallest eigenvalues) has an interpretation in terms of minimal number of cuts neces-
sary to split the graph into comparably sized components.

This embedding can also ‘work’ even if the adjacency variable is not strictly the adjacency matrix of a graph
but more generally an affinity or similarity matrix between samples (for instance the heat kernel of a euclidean
distance matrix or a k-NN matrix).

However care must taken to always make the affinity matrix symmetric so that the eigenvector decomposition
works as expected.

Note : Laplacian Eigenmaps is the actual algorithm implemented here.

Read more in the User Guide.

Parameters adjacency : array-like or sparse matrix, shape: (n_samples, n_samples)

The adjacency matrix of the graph to embed.

n_components : integer, optional, default 8

The dimension of the projection subspace.

eigen_solver : {None, ‘arpack’, ‘lobpcg’, or ‘amg’}, default None

The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It
can be faster on very large, sparse problems, but may also lead to instabilities.
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random_state : int, RandomState instance or None, optional, default: None

A pseudo random number generator used for the initialization of the lobpcg eigenvectors
decomposition. If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator; If None, the
random number generator is the RandomState instance used by np.random. Used when
solver == ‘amg’.

eigen_tol : float, optional, default=0.0

Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack
eigen_solver.

norm_laplacian : bool, optional, default=True

If True, then compute normalized Laplacian.

drop_first : bool, optional, default=True

Whether to drop the first eigenvector. For spectral embedding, this should be True as
the first eigenvector should be constant vector for connected graph, but for spectral
clustering, this should be kept as False to retain the first eigenvector.

Returns embedding : array, shape=(n_samples, n_components)

The reduced samples.

Notes

Spectral Embedding (Laplacian Eigenmaps) is most useful when the graph has one connected component. If
there graph has many components, the first few eigenvectors will simply uncover the connected components of
the graph.

References

• https://en.wikipedia.org/wiki/LOBPCG

• Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gra-
dient Method Andrew V. Knyazev http://dx.doi.org/10.1137%2FS1064827500366124

5.21 sklearn.metrics: Metrics

See the Model evaluation: quantifying the quality of predictions section and the Pairwise metrics, Affinities and
Kernels section of the user guide for further details. The sklearn.metrics module includes score functions,
performance metrics and pairwise metrics and distance computations.

5.21.1 Model Selection Interface

See the The scoring parameter: defining model evaluation rules section of the user guide for further details.

metrics.get_scorer(scoring) Get a scorer from string
metrics.make_scorer(score_func[, . . . ]) Make a scorer from a performance metric or loss function.
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sklearn.metrics.get_scorer

sklearn.metrics.get_scorer(scoring)
Get a scorer from string

Parameters scoring : str | callable

scoring method as string. If callable it is returned as is.

Returns scorer : callable

The scorer.

sklearn.metrics.make_scorer

sklearn.metrics.make_scorer(score_func, greater_is_better=True, needs_proba=False,
needs_threshold=False, **kwargs)

Make a scorer from a performance metric or loss function.

This factory function wraps scoring functions for use in GridSearchCV and cross_val_score. It takes
a score function, such as accuracy_score, mean_squared_error, adjusted_rand_index or
average_precision and returns a callable that scores an estimator’s output.

Read more in the User Guide.

Parameters score_func : callable,

Score function (or loss function) with signature score_func(y, y_pred,

**kwargs).

greater_is_better : boolean, default=True

Whether score_func is a score function (default), meaning high is good, or a loss func-
tion, meaning low is good. In the latter case, the scorer object will sign-flip the outcome
of the score_func.

needs_proba : boolean, default=False

Whether score_func requires predict_proba to get probability estimates out of a classi-
fier.

needs_threshold : boolean, default=False

Whether score_func takes a continuous decision certainty. This only works for binary
classification using estimators that have either a decision_function or predict_proba
method.

For example average_precision or the area under the roc curve can not be com-
puted using discrete predictions alone.

**kwargs : additional arguments

Additional parameters to be passed to score_func.

Returns scorer : callable

Callable object that returns a scalar score; greater is better.
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Examples

>>> from sklearn.metrics import fbeta_score, make_scorer
>>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
>>> ftwo_scorer
make_scorer(fbeta_score, beta=2)
>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.svm import LinearSVC
>>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]},
... scoring=ftwo_scorer)

Examples using sklearn.metrics.make_scorer

• Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV

5.21.2 Classification metrics

See the Classification metrics section of the user guide for further details.

metrics.accuracy_score(y_true, y_pred[, . . . ]) Accuracy classification score.
metrics.auc(x, y[, reorder]) Compute Area Under the Curve (AUC) using the trape-

zoidal rule
metrics.average_precision_score(y_true,
y_score)

Compute average precision (AP) from prediction scores

metrics.brier_score_loss(y_true, y_prob[, . . . ]) Compute the Brier score.
metrics.classification_report(y_true,
y_pred)

Build a text report showing the main classification metrics

metrics.cohen_kappa_score(y1, y2[, labels, . . . ]) Cohen’s kappa: a statistic that measures inter-annotator
agreement.

metrics.confusion_matrix(y_true, y_pred[, . . . ]) Compute confusion matrix to evaluate the accuracy of a
classification

metrics.f1_score(y_true, y_pred[, labels, . . . ]) Compute the F1 score, also known as balanced F-score or
F-measure

metrics.fbeta_score(y_true, y_pred, beta[, . . . ]) Compute the F-beta score
metrics.hamming_loss(y_true, y_pred[, . . . ]) Compute the average Hamming loss.
metrics.hinge_loss(y_true, pred_decision[, . . . ]) Average hinge loss (non-regularized)
metrics.jaccard_similarity_score(y_true,
y_pred)

Jaccard similarity coefficient score

metrics.log_loss(y_true, y_pred[, eps, . . . ]) Log loss, aka logistic loss or cross-entropy loss.
metrics.matthews_corrcoef(y_true, y_pred[,
. . . ])

Compute the Matthews correlation coefficient (MCC)

metrics.precision_recall_curve(y_true, . . . ) Compute precision-recall pairs for different probability
thresholds

metrics.precision_recall_fscore_support(. . . )Compute precision, recall, F-measure and support for each
class

metrics.precision_score(y_true, y_pred[, . . . ]) Compute the precision
metrics.recall_score(y_true, y_pred[, . . . ]) Compute the recall
metrics.roc_auc_score(y_true, y_score[, . . . ]) Compute Area Under the Receiver Operating Characteris-

tic Curve (ROC AUC) from prediction scores.
metrics.roc_curve(y_true, y_score[, . . . ]) Compute Receiver operating characteristic (ROC)

Continued on next page
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Table 5.167 – continued from previous page
metrics.zero_one_loss(y_true, y_pred[, . . . ]) Zero-one classification loss.

sklearn.metrics.accuracy_score

sklearn.metrics.accuracy_score(y_true, y_pred, normalize=True, sample_weight=None)
Accuracy classification score.

In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must
exactly match the corresponding set of labels in y_true.

Read more in the User Guide.

Parameters y_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) labels.

y_pred : 1d array-like, or label indicator array / sparse matrix

Predicted labels, as returned by a classifier.

normalize : bool, optional (default=True)

If False, return the number of correctly classified samples. Otherwise, return the
fraction of correctly classified samples.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returns score : float

If normalize == True, return the correctly classified samples (float), else it returns
the number of correctly classified samples (int).

The best performance is 1 with normalize == True and the number of samples
with normalize == False.

See also:

jaccard_similarity_score, hamming_loss, zero_one_loss

Notes

In binary and multiclass classification, this function is equal to the jaccard_similarity_score function.

Examples

>>> import numpy as np
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2

In the multilabel case with binary label indicators:
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>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

Examples using sklearn.metrics.accuracy_score

• Multi-class AdaBoosted Decision Trees

• Probabilistic predictions with Gaussian process classification (GPC)

• Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV

• Importance of Feature Scaling

• Classification of text documents using sparse features

sklearn.metrics.auc

sklearn.metrics.auc(x, y, reorder=False)
Compute Area Under the Curve (AUC) using the trapezoidal rule

This is a general function, given points on a curve. For computing the area under the ROC-
curve, see roc_auc_score. For an alternative way to summarize a precision-recall curve, see
average_precision_score.

Parameters x : array, shape = [n]

x coordinates.

y : array, shape = [n]

y coordinates.

reorder : boolean, optional (default=False)

If True, assume that the curve is ascending in the case of ties, as for an ROC curve. If
the curve is non-ascending, the result will be wrong.

Returns auc : float

See also:

roc_auc_score Compute the area under the ROC curve

average_precision_score Compute average precision from prediction scores

precision_recall_curve Compute precision-recall pairs for different probability thresholds

Examples

>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> pred = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2)
>>> metrics.auc(fpr, tpr)
0.75

5.21. sklearn.metrics: Metrics 1665



scikit-learn user guide, Release 0.19.1

Examples using sklearn.metrics.auc

• Species distribution modeling

• Receiver Operating Characteristic (ROC)

• Receiver Operating Characteristic (ROC) with cross validation

sklearn.metrics.average_precision_score

sklearn.metrics.average_precision_score(y_true, y_score, average=’macro’, sam-
ple_weight=None)

Compute average precision (AP) from prediction scores

AP summarizes a precision-recall curve as the weighted mean of precisions achieved at each threshold, with the
increase in recall from the previous threshold used as the weight:

AP =
∑︁
𝑛

(𝑅𝑛 −𝑅𝑛−1)𝑃𝑛

where 𝑃𝑛 and𝑅𝑛 are the precision and recall at the nth threshold [R52]. This implementation is not interpolated
and is different from computing the area under the precision-recall curve with the trapezoidal rule, which uses
linear interpolation and can be too optimistic.

Note: this implementation is restricted to the binary classification task or multilabel classification task.

Read more in the User Guide.

Parameters y_true : array, shape = [n_samples] or [n_samples, n_classes]

True binary labels in binary label indicators.

y_score : array, shape = [n_samples] or [n_samples, n_classes]

Target scores, can either be probability estimates of the positive class, confidence values,
or non-thresholded measure of decisions (as returned by “decision_function” on some
classifiers).

average : string, [None, ‘micro’, ‘macro’ (default), ‘samples’, ‘weighted’]

If None, the scores for each class are returned. Otherwise, this determines the type of
averaging performed on the data:

'micro': Calculate metrics globally by considering each element of the label indica-
tor matrix as a label.

'macro': Calculate metrics for each label, and find their unweighted mean. This does
not take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average, weighted by
support (the number of true instances for each label).

'samples': Calculate metrics for each instance, and find their average.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returns average_precision : float

See also:

roc_auc_score Compute the area under the ROC curve
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precision_recall_curve Compute precision-recall pairs for different probability thresholds

References

[R52]

Examples

>>> import numpy as np
>>> from sklearn.metrics import average_precision_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> average_precision_score(y_true, y_scores)
0.83...

Examples using sklearn.metrics.average_precision_score

• Precision-Recall

sklearn.metrics.brier_score_loss

sklearn.metrics.brier_score_loss(y_true, y_prob, sample_weight=None, pos_label=None)
Compute the Brier score.

The smaller the Brier score, the better, hence the naming with “loss”.

Across all items in a set N predictions, the Brier score measures the mean squared difference between (1) the
predicted probability assigned to the possible outcomes for item i, and (2) the actual outcome. Therefore, the
lower the Brier score is for a set of predictions, the better the predictions are calibrated. Note that the Brier score
always takes on a value between zero and one, since this is the largest possible difference between a predicted
probability (which must be between zero and one) and the actual outcome (which can take on values of only 0
and 1).

The Brier score is appropriate for binary and categorical outcomes that can be structured as true or false, but
is inappropriate for ordinal variables which can take on three or more values (this is because the Brier score
assumes that all possible outcomes are equivalently “distant” from one another). Which label is considered to
be the positive label is controlled via the parameter pos_label, which defaults to 1.

Read more in the User Guide.

Parameters y_true : array, shape (n_samples,)

True targets.

y_prob : array, shape (n_samples,)

Probabilities of the positive class.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

pos_label : int or str, default=None

Label of the positive class. If None, the maximum label is used as positive class
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Returns score : float

Brier score

References

[R53]

Examples

>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss
>>> y_true = np.array([0, 1, 1, 0])
>>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"])
>>> y_prob = np.array([0.1, 0.9, 0.8, 0.3])
>>> brier_score_loss(y_true, y_prob)
0.037...
>>> brier_score_loss(y_true, 1-y_prob, pos_label=0)
0.037...
>>> brier_score_loss(y_true_categorical, y_prob, pos_
→˓label="ham")
0.037...
>>> brier_score_loss(y_true, np.array(y_prob) > 0.5)
0.0

Examples using sklearn.metrics.brier_score_loss

• Probability calibration of classifiers

• Probability Calibration curves

sklearn.metrics.classification_report

sklearn.metrics.classification_report(y_true, y_pred, labels=None, target_names=None,
sample_weight=None, digits=2)

Build a text report showing the main classification metrics

Read more in the User Guide.

Parameters y_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) target values.

y_pred : 1d array-like, or label indicator array / sparse matrix

Estimated targets as returned by a classifier.

labels : array, shape = [n_labels]

Optional list of label indices to include in the report.

target_names : list of strings

Optional display names matching the labels (same order).

sample_weight : array-like of shape = [n_samples], optional
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Sample weights.

digits : int

Number of digits for formatting output floating point values

Returns report : string

Text summary of the precision, recall, F1 score for each class.

The reported averages are a prevalence-weighted macro-average across classes (equiva-
lent to precision_recall_fscore_supportwith average='weighted').

Note that in binary classification, recall of the positive class is also known as “sensitiv-
ity”; recall of the negative class is “specificity”.

Examples

>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 2]
>>> y_pred = [0, 0, 2, 2, 1]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))

precision recall f1-score support

class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3

avg / total 0.70 0.60 0.61 5

Examples using sklearn.metrics.classification_report

• Feature Union with Heterogeneous Data Sources

• Faces recognition example using eigenfaces and SVMs

• Recognizing hand-written digits

• Pipeline Anova SVM

• Parameter estimation using grid search with cross-validation

• Restricted Boltzmann Machine features for digit classification

• Label Propagation digits: Demonstrating performance

• Label Propagation digits active learning

• Classification of text documents using sparse features

sklearn.metrics.cohen_kappa_score

sklearn.metrics.cohen_kappa_score(y1, y2, labels=None, weights=None, sam-
ple_weight=None)

Cohen’s kappa: a statistic that measures inter-annotator agreement.
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This function computes Cohen’s kappa [R202], a score that expresses the level of agreement between two
annotators on a classification problem. It is defined as

𝜅 = (𝑝𝑜 − 𝑝𝑒)/(1− 𝑝𝑒)

where 𝑝𝑜 is the empirical probability of agreement on the label assigned to any sample (the observed agreement
ratio), and 𝑝𝑒 is the expected agreement when both annotators assign labels randomly. 𝑝𝑒 is estimated using a
per-annotator empirical prior over the class labels [R203].

Read more in the User Guide.

Parameters y1 : array, shape = [n_samples]

Labels assigned by the first annotator.

y2 : array, shape = [n_samples]

Labels assigned by the second annotator. The kappa statistic is symmetric, so swapping
y1 and y2 doesn’t change the value.

labels : array, shape = [n_classes], optional

List of labels to index the matrix. This may be used to select a subset of labels. If None,
all labels that appear at least once in y1 or y2 are used.

weights : str, optional

List of weighting type to calculate the score. None means no weighted; “linear” means
linear weighted; “quadratic” means quadratic weighted.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returns kappa : float

The kappa statistic, which is a number between -1 and 1. The maximum value means
complete agreement; zero or lower means chance agreement.

References

[R202], [R203], [R204]

sklearn.metrics.confusion_matrix

sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None, sample_weight=None)
Compute confusion matrix to evaluate the accuracy of a classification

By definition a confusion matrix 𝐶 is such that 𝐶𝑖,𝑗 is equal to the number of observations known to be in group
𝑖 but predicted to be in group 𝑗.

Thus in binary classification, the count of true negatives is 𝐶0,0, false negatives is 𝐶1,0, true positives is 𝐶1,1

and false positives is 𝐶0,1.

Read more in the User Guide.

Parameters y_true : array, shape = [n_samples]

Ground truth (correct) target values.

y_pred : array, shape = [n_samples]

Estimated targets as returned by a classifier.
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labels : array, shape = [n_classes], optional

List of labels to index the matrix. This may be used to reorder or select a subset of
labels. If none is given, those that appear at least once in y_true or y_pred are used
in sorted order.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returns C : array, shape = [n_classes, n_classes]

Confusion matrix

References

[R55]

Examples

>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],

[0, 0, 1],
[1, 0, 2]])

>>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
>>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
>>> confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"])
array([[2, 0, 0],

[0, 0, 1],
[1, 0, 2]])

In the binary case, we can extract true positives, etc as follows:

>>> tn, fp, fn, tp = confusion_matrix([0, 1, 0, 1], [1, 1, 1, 0]).ravel()
>>> (tn, fp, fn, tp)
(0, 2, 1, 1)

Examples using sklearn.metrics.confusion_matrix

• Faces recognition example using eigenfaces and SVMs

• Recognizing hand-written digits

• Confusion matrix

• Label Propagation digits: Demonstrating performance

• Label Propagation digits active learning

• Classification of text documents using sparse features
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sklearn.metrics.f1_score

sklearn.metrics.f1_score(y_true, y_pred, labels=None, pos_label=1, average=’binary’, sam-
ple_weight=None)

Compute the F1 score, also known as balanced F-score or F-measure

The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its
best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal.
The formula for the F1 score is:

F1 = 2 * (precision * recall) / (precision + recall)

In the multi-class and multi-label case, this is the weighted average of the F1 score of each class.

Read more in the User Guide.

Parameters y_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) target values.

y_pred : 1d array-like, or label indicator array / sparse matrix

Estimated targets as returned by a classifier.

labels : list, optional

The set of labels to include when average != 'binary', and their order if
average is None. Labels present in the data can be excluded, for example to cal-
culate a multiclass average ignoring a majority negative class, while labels not present
in the data will result in 0 components in a macro average. For multilabel targets, labels
are column indices. By default, all labels in y_true and y_pred are used in sorted
order.

Changed in version 0.17: parameter labels improved for multiclass problem.

pos_label : str or int, 1 by default

The class to report if average='binary' and the data is binary. If the data are
multiclass or multilabel, this will be ignored; setting labels=[pos_label] and
average != 'binary' will report scores for that label only.

average : string, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘samples’, ‘weighted’]

This parameter is required for multiclass/multilabel targets. If None, the scores for each
class are returned. Otherwise, this determines the type of averaging performed on the
data:

'binary': Only report results for the class specified by pos_label. This is appli-
cable only if targets (y_{true,pred}) are binary.

'micro': Calculate metrics globally by counting the total true positives, false nega-
tives and false positives.

'macro': Calculate metrics for each label, and find their unweighted mean. This does
not take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average, weighted by
support (the number of true instances for each label). This alters ‘macro’ to account
for label imbalance; it can result in an F-score that is not between precision and recall.

'samples': Calculate metrics for each instance, and find their average (only mean-
ingful for multilabel classification where this differs from accuracy_score).

sample_weight : array-like of shape = [n_samples], optional
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Sample weights.

Returns f1_score : float or array of float, shape = [n_unique_labels]

F1 score of the positive class in binary classification or weighted average of the F1
scores of each class for the multiclass task.

References

[R56]

Examples

>>> from sklearn.metrics import f1_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> f1_score(y_true, y_pred, average='macro')
0.26...
>>> f1_score(y_true, y_pred, average='micro')
0.33...
>>> f1_score(y_true, y_pred, average='weighted')
0.26...
>>> f1_score(y_true, y_pred, average=None)
array([ 0.8, 0. , 0. ])

Examples using sklearn.metrics.f1_score

• Probability Calibration curves

sklearn.metrics.fbeta_score

sklearn.metrics.fbeta_score(y_true, y_pred, beta, labels=None, pos_label=1, average=’binary’,
sample_weight=None)

Compute the F-beta score

The F-beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its
worst value at 0.

The beta parameter determines the weight of precision in the combined score. beta < 1 lends more weight to
precision, while beta > 1 favors recall (beta -> 0 considers only precision, beta -> inf only recall).

Read more in the User Guide.

Parameters y_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) target values.

y_pred : 1d array-like, or label indicator array / sparse matrix

Estimated targets as returned by a classifier.

beta : float

Weight of precision in harmonic mean.

labels : list, optional
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The set of labels to include when average != 'binary', and their order if
average is None. Labels present in the data can be excluded, for example to cal-
culate a multiclass average ignoring a majority negative class, while labels not present
in the data will result in 0 components in a macro average. For multilabel targets, labels
are column indices. By default, all labels in y_true and y_pred are used in sorted
order.

Changed in version 0.17: parameter labels improved for multiclass problem.

pos_label : str or int, 1 by default

The class to report if average='binary' and the data is binary. If the data are
multiclass or multilabel, this will be ignored; setting labels=[pos_label] and
average != 'binary' will report scores for that label only.

average : string, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘samples’, ‘weighted’]

This parameter is required for multiclass/multilabel targets. If None, the scores for each
class are returned. Otherwise, this determines the type of averaging performed on the
data:

'binary': Only report results for the class specified by pos_label. This is appli-
cable only if targets (y_{true,pred}) are binary.

'micro': Calculate metrics globally by counting the total true positives, false nega-
tives and false positives.

'macro': Calculate metrics for each label, and find their unweighted mean. This does
not take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average, weighted by
support (the number of true instances for each label). This alters ‘macro’ to account
for label imbalance; it can result in an F-score that is not between precision and recall.

'samples': Calculate metrics for each instance, and find their average (only mean-
ingful for multilabel classification where this differs from accuracy_score).

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returns fbeta_score : float (if average is not None) or array of float, shape = [n_unique_labels]

F-beta score of the positive class in binary classification or weighted average of the
F-beta score of each class for the multiclass task.

References

[R209], [R210]

Examples

>>> from sklearn.metrics import fbeta_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> fbeta_score(y_true, y_pred, average='macro', beta=0.5)
...
0.23...
>>> fbeta_score(y_true, y_pred, average='micro', beta=0.5)
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...
0.33...
>>> fbeta_score(y_true, y_pred, average='weighted', beta=0.5)
...
0.23...
>>> fbeta_score(y_true, y_pred, average=None, beta=0.5)
...
array([ 0.71..., 0. , 0. ])

sklearn.metrics.hamming_loss

sklearn.metrics.hamming_loss(y_true, y_pred, labels=None, sample_weight=None,
classes=None)

Compute the average Hamming loss.

The Hamming loss is the fraction of labels that are incorrectly predicted.

Read more in the User Guide.

Parameters y_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) labels.

y_pred : 1d array-like, or label indicator array / sparse matrix

Predicted labels, as returned by a classifier.

labels : array, shape = [n_labels], optional (default=None)

Integer array of labels. If not provided, labels will be inferred from y_true and y_pred.

New in version 0.18.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

New in version 0.18.

classes : array, shape = [n_labels], optional

Integer array of labels.

Deprecated since version 0.18: This parameter has been deprecated in favor of labels
in version 0.18 and will be removed in 0.20. Use labels instead.

Returns loss : float or int,

Return the average Hamming loss between element of y_true and y_pred.

See also:

accuracy_score, jaccard_similarity_score, zero_one_loss

Notes

In multiclass classification, the Hamming loss correspond to the Hamming distance between y_true and
y_pred which is equivalent to the subset zero_one_loss function.

In multilabel classification, the Hamming loss is different from the subset zero-one loss. The zero-one loss
considers the entire set of labels for a given sample incorrect if it does entirely match the true set of labels.
Hamming loss is more forgiving in that it penalizes the individual labels.
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The Hamming loss is upperbounded by the subset zero-one loss. When normalized over samples, the Hamming
loss is always between 0 and 1.

References

[R57], [R58]

Examples

>>> from sklearn.metrics import hamming_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> hamming_loss(y_true, y_pred)
0.25

In the multilabel case with binary label indicators:

>>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2)))
0.75

Examples using sklearn.metrics.hamming_loss

• Model Complexity Influence

sklearn.metrics.hinge_loss

sklearn.metrics.hinge_loss(y_true, pred_decision, labels=None, sample_weight=None)
Average hinge loss (non-regularized)

In binary class case, assuming labels in y_true are encoded with +1 and -1, when a prediction mistake is
made, margin = y_true * pred_decision is always negative (since the signs disagree), implying
1 - margin is always greater than 1. The cumulated hinge loss is therefore an upper bound of the number of
mistakes made by the classifier.

In multiclass case, the function expects that either all the labels are included in y_true or an optional labels
argument is provided which contains all the labels. The multilabel margin is calculated according to Crammer-
Singer’s method. As in the binary case, the cumulated hinge loss is an upper bound of the number of mistakes
made by the classifier.

Read more in the User Guide.

Parameters y_true : array, shape = [n_samples]

True target, consisting of integers of two values. The positive label must be greater than
the negative label.

pred_decision : array, shape = [n_samples] or [n_samples, n_classes]

Predicted decisions, as output by decision_function (floats).

labels : array, optional, default None

Contains all the labels for the problem. Used in multiclass hinge loss.

sample_weight : array-like of shape = [n_samples], optional
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Sample weights.

Returns loss : float

References

[R215], [R216], [R217]

Examples

>>> from sklearn import svm
>>> from sklearn.metrics import hinge_loss
>>> X = [[0], [1]]
>>> y = [-1, 1]
>>> est = svm.LinearSVC(random_state=0)
>>> est.fit(X, y)
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,

intercept_scaling=1, loss='squared_hinge', max_iter=1000,
multi_class='ovr', penalty='l2', random_state=0, tol=0.0001,
verbose=0)

>>> pred_decision = est.decision_function([[-2], [3], [0.5]])
>>> pred_decision
array([-2.18..., 2.36..., 0.09...])
>>> hinge_loss([-1, 1, 1], pred_decision)
0.30...

In the multiclass case:

>>> X = np.array([[0], [1], [2], [3]])
>>> Y = np.array([0, 1, 2, 3])
>>> labels = np.array([0, 1, 2, 3])
>>> est = svm.LinearSVC()
>>> est.fit(X, Y)
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,

intercept_scaling=1, loss='squared_hinge', max_iter=1000,
multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
verbose=0)

>>> pred_decision = est.decision_function([[-1], [2], [3]])
>>> y_true = [0, 2, 3]
>>> hinge_loss(y_true, pred_decision, labels)
0.56...

sklearn.metrics.jaccard_similarity_score

sklearn.metrics.jaccard_similarity_score(y_true, y_pred, normalize=True, sam-
ple_weight=None)

Jaccard similarity coefficient score

The Jaccard index [1], or Jaccard similarity coefficient, defined as the size of the intersection divided by the size
of the union of two label sets, is used to compare set of predicted labels for a sample to the corresponding set of
labels in y_true.

Read more in the User Guide.

Parameters y_true : 1d array-like, or label indicator array / sparse matrix
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Ground truth (correct) labels.

y_pred : 1d array-like, or label indicator array / sparse matrix

Predicted labels, as returned by a classifier.

normalize : bool, optional (default=True)

If False, return the sum of the Jaccard similarity coefficient over the sample set. Oth-
erwise, return the average of Jaccard similarity coefficient.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returns score : float

If normalize == True, return the average Jaccard similarity coefficient, else it
returns the sum of the Jaccard similarity coefficient over the sample set.

The best performance is 1 with normalize == True and the number of samples
with normalize == False.

See also:

accuracy_score, hamming_loss, zero_one_loss

Notes

In binary and multiclass classification, this function is equivalent to the accuracy_score. It differs in the
multilabel classification problem.

References

[R60]

Examples

>>> import numpy as np
>>> from sklearn.metrics import jaccard_similarity_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> jaccard_similarity_score(y_true, y_pred)
0.5
>>> jaccard_similarity_score(y_true, y_pred, normalize=False)
2

In the multilabel case with binary label indicators:

>>> jaccard_similarity_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.75

Examples using sklearn.metrics.jaccard_similarity_score

• Classifier Chain

1678 Chapter 5. API Reference



scikit-learn user guide, Release 0.19.1

sklearn.metrics.log_loss

sklearn.metrics.log_loss(y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None, la-
bels=None)

Log loss, aka logistic loss or cross-entropy loss.

This is the loss function used in (multinomial) logistic regression and extensions of it such as neural networks,
defined as the negative log-likelihood of the true labels given a probabilistic classifier’s predictions. The log loss
is only defined for two or more labels. For a single sample with true label yt in {0,1} and estimated probability
yp that yt = 1, the log loss is

-log P(yt|yp) = -(yt log(yp) + (1 - yt) log(1 - yp))

Read more in the User Guide.

Parameters y_true : array-like or label indicator matrix

Ground truth (correct) labels for n_samples samples.

y_pred : array-like of float, shape = (n_samples, n_classes) or (n_samples,)

Predicted probabilities, as returned by a classifier’s predict_proba method. If y_pred.
shape = (n_samples,) the probabilities provided are assumed to be that of the
positive class. The labels in y_pred are assumed to be ordered alphabetically, as done
by preprocessing.LabelBinarizer.

eps : float

Log loss is undefined for p=0 or p=1, so probabilities are clipped to max(eps, min(1 -
eps, p)).

normalize : bool, optional (default=True)

If true, return the mean loss per sample. Otherwise, return the sum of the per-sample
losses.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

labels : array-like, optional (default=None)

If not provided, labels will be inferred from y_true. If labels is None and y_pred
has shape (n_samples,) the labels are assumed to be binary and are inferred from
y_true. .. versionadded:: 0.18

Returns loss : float

Notes

The logarithm used is the natural logarithm (base-e).

References

C.M. Bishop (2006). Pattern Recognition and Machine Learning. Springer, p. 209.
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Examples

>>> log_loss(["spam", "ham", "ham", "spam"],
... [[.1, .9], [.9, .1], [.8, .2], [.35, .65]])
0.21616...

Examples using sklearn.metrics.log_loss

• Probability Calibration for 3-class classification

• Probabilistic predictions with Gaussian process classification (GPC)

sklearn.metrics.matthews_corrcoef

sklearn.metrics.matthews_corrcoef(y_true, y_pred, sample_weight=None)
Compute the Matthews correlation coefficient (MCC)

The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary (two-
class) classifications. It takes into account true and false positives and negatives and is generally regarded as a
balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a
correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average
random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source:
Wikipedia]

Binary and multiclass labels are supported. Only in the binary case does this relate to information about true
and false positives and negatives. See references below.

Read more in the User Guide.

Parameters y_true : array, shape = [n_samples]

Ground truth (correct) target values.

y_pred : array, shape = [n_samples]

Estimated targets as returned by a classifier.

sample_weight : array-like of shape = [n_samples], default None

Sample weights.

Returns mcc : float

The Matthews correlation coefficient (+1 represents a perfect prediction, 0 an average
random prediction and -1 and inverse prediction).

References

[R221], [R222], [R223], [R224]

Examples
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>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred)
-0.33...

sklearn.metrics.precision_recall_curve

sklearn.metrics.precision_recall_curve(y_true, probas_pred, pos_label=None, sam-
ple_weight=None)

Compute precision-recall pairs for different probability thresholds

Note: this implementation is restricted to the binary classification task.

The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of
false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is
negative.

The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false
negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This
ensures that the graph starts on the x axis.

Read more in the User Guide.

Parameters y_true : array, shape = [n_samples]

True targets of binary classification in range {-1, 1} or {0, 1}.

probas_pred : array, shape = [n_samples]

Estimated probabilities or decision function.

pos_label : int or str, default=None

The label of the positive class

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returns precision : array, shape = [n_thresholds + 1]

Precision values such that element i is the precision of predictions with score >= thresh-
olds[i] and the last element is 1.

recall : array, shape = [n_thresholds + 1]

Decreasing recall values such that element i is the recall of predictions with score >=
thresholds[i] and the last element is 0.

thresholds : array, shape = [n_thresholds <= len(np.unique(probas_pred))]

Increasing thresholds on the decision function used to compute precision and recall.

See also:

average_precision_score Compute average precision from prediction scores

roc_curve Compute Receiver operating characteristic (ROC) curve
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Examples

>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, thresholds = precision_recall_curve(
... y_true, y_scores)
>>> precision
array([ 0.66..., 0.5 , 1. , 1. ])
>>> recall
array([ 1. , 0.5, 0.5, 0. ])
>>> thresholds
array([ 0.35, 0.4 , 0.8 ])

Examples using sklearn.metrics.precision_recall_curve

• Precision-Recall

sklearn.metrics.precision_recall_fscore_support

sklearn.metrics.precision_recall_fscore_support(y_true, y_pred, beta=1.0, la-
bels=None, pos_label=1, aver-
age=None, warn_for=(‘precision’,
’recall’, ’f-score’), sam-
ple_weight=None)

Compute precision, recall, F-measure and support for each class

The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of
false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is
negative.

The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false
negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

The F-beta score can be interpreted as a weighted harmonic mean of the precision and recall, where an F-beta
score reaches its best value at 1 and worst score at 0.

The F-beta score weights recall more than precision by a factor of beta. beta == 1.0 means recall and
precision are equally important.

The support is the number of occurrences of each class in y_true.

If pos_label is None and in binary classification, this function returns the average precision, recall and
F-measure if average is one of 'micro', 'macro', 'weighted' or 'samples'.

Read more in the User Guide.

Parameters y_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) target values.

y_pred : 1d array-like, or label indicator array / sparse matrix

Estimated targets as returned by a classifier.

beta : float, 1.0 by default

The strength of recall versus precision in the F-score.
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labels : list, optional

The set of labels to include when average != 'binary', and their order if
average is None. Labels present in the data can be excluded, for example to cal-
culate a multiclass average ignoring a majority negative class, while labels not present
in the data will result in 0 components in a macro average. For multilabel targets, labels
are column indices. By default, all labels in y_true and y_pred are used in sorted
order.

pos_label : str or int, 1 by default

The class to report if average='binary' and the data is binary. If the data are
multiclass or multilabel, this will be ignored; setting labels=[pos_label] and
average != 'binary' will report scores for that label only.

average : string, [None (default), ‘binary’, ‘micro’, ‘macro’, ‘samples’, ‘weighted’]

If None, the scores for each class are returned. Otherwise, this determines the type of
averaging performed on the data:

'binary': Only report results for the class specified by pos_label. This is appli-
cable only if targets (y_{true,pred}) are binary.

'micro': Calculate metrics globally by counting the total true positives, false nega-
tives and false positives.

'macro': Calculate metrics for each label, and find their unweighted mean. This does
not take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average, weighted by
support (the number of true instances for each label). This alters ‘macro’ to account
for label imbalance; it can result in an F-score that is not between precision and recall.

'samples': Calculate metrics for each instance, and find their average (only mean-
ingful for multilabel classification where this differs from accuracy_score).

warn_for : tuple or set, for internal use

This determines which warnings will be made in the case that this function is being used
to return only one of its metrics.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returns precision : float (if average is not None) or array of float, shape = [n_unique_labels]

recall : float (if average is not None) or array of float, , shape = [n_unique_labels]

fbeta_score : float (if average is not None) or array of float, shape = [n_unique_labels]

support : int (if average is not None) or array of int, shape = [n_unique_labels]

The number of occurrences of each label in y_true.

References

[R225], [R226], [R227]

5.21. sklearn.metrics: Metrics 1683



scikit-learn user guide, Release 0.19.1

Examples

>>> from sklearn.metrics import precision_recall_fscore_support
>>> y_true = np.array(['cat', 'dog', 'pig', 'cat', 'dog', 'pig'])
>>> y_pred = np.array(['cat', 'pig', 'dog', 'cat', 'cat', 'dog'])
>>> precision_recall_fscore_support(y_true, y_pred, average='macro')
...
(0.22..., 0.33..., 0.26..., None)
>>> precision_recall_fscore_support(y_true, y_pred, average='micro')
...
(0.33..., 0.33..., 0.33..., None)
>>> precision_recall_fscore_support(y_true, y_pred, average='weighted')
...
(0.22..., 0.33..., 0.26..., None)

It is possible to compute per-label precisions, recalls, F1-scores and supports instead of averaging: >>> pre-
cision_recall_fscore_support(y_true, y_pred, average=None, . . . labels=[‘pig’, ‘dog’, ‘cat’]) . . . # doctest:
+ELLIPSIS,+NORMALIZE_WHITESPACE (array([ 0. , 0. , 0.66. . . ]),

array([ 0., 0., 1.]), array([ 0. , 0. , 0.8]), array([2, 2, 2]))

sklearn.metrics.precision_score

sklearn.metrics.precision_score(y_true, y_pred, labels=None, pos_label=1, average=’binary’,
sample_weight=None)

Compute the precision

The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of
false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is
negative.

The best value is 1 and the worst value is 0.

Read more in the User Guide.

Parameters y_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) target values.

y_pred : 1d array-like, or label indicator array / sparse matrix

Estimated targets as returned by a classifier.

labels : list, optional

The set of labels to include when average != 'binary', and their order if
average is None. Labels present in the data can be excluded, for example to cal-
culate a multiclass average ignoring a majority negative class, while labels not present
in the data will result in 0 components in a macro average. For multilabel targets, labels
are column indices. By default, all labels in y_true and y_pred are used in sorted
order.

Changed in version 0.17: parameter labels improved for multiclass problem.

pos_label : str or int, 1 by default

The class to report if average='binary' and the data is binary. If the data are
multiclass or multilabel, this will be ignored; setting labels=[pos_label] and
average != 'binary' will report scores for that label only.

average : string, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘samples’, ‘weighted’]
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This parameter is required for multiclass/multilabel targets. If None, the scores for each
class are returned. Otherwise, this determines the type of averaging performed on the
data:

'binary': Only report results for the class specified by pos_label. This is appli-
cable only if targets (y_{true,pred}) are binary.

'micro': Calculate metrics globally by counting the total true positives, false nega-
tives and false positives.

'macro': Calculate metrics for each label, and find their unweighted mean. This does
not take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average, weighted by
support (the number of true instances for each label). This alters ‘macro’ to account
for label imbalance; it can result in an F-score that is not between precision and recall.

'samples': Calculate metrics for each instance, and find their average (only mean-
ingful for multilabel classification where this differs from accuracy_score).

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returns precision : float (if average is not None) or array of float, shape = [n_unique_labels]

Precision of the positive class in binary classification or weighted average of the preci-
sion of each class for the multiclass task.

Examples

>>> from sklearn.metrics import precision_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> precision_score(y_true, y_pred, average='macro')
0.22...
>>> precision_score(y_true, y_pred, average='micro')
0.33...
>>> precision_score(y_true, y_pred, average='weighted')
...
0.22...
>>> precision_score(y_true, y_pred, average=None)
array([ 0.66..., 0. , 0. ])

Examples using sklearn.metrics.precision_score

• Probability Calibration curves

sklearn.metrics.recall_score

sklearn.metrics.recall_score(y_true, y_pred, labels=None, pos_label=1, average=’binary’, sam-
ple_weight=None)

Compute the recall

The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false
negatives. The recall is intuitively the ability of the classifier to find all the positive samples.
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The best value is 1 and the worst value is 0.

Read more in the User Guide.

Parameters y_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) target values.

y_pred : 1d array-like, or label indicator array / sparse matrix

Estimated targets as returned by a classifier.

labels : list, optional

The set of labels to include when average != 'binary', and their order if
average is None. Labels present in the data can be excluded, for example to cal-
culate a multiclass average ignoring a majority negative class, while labels not present
in the data will result in 0 components in a macro average. For multilabel targets, labels
are column indices. By default, all labels in y_true and y_pred are used in sorted
order.

Changed in version 0.17: parameter labels improved for multiclass problem.

pos_label : str or int, 1 by default

The class to report if average='binary' and the data is binary. If the data are
multiclass or multilabel, this will be ignored; setting labels=[pos_label] and
average != 'binary' will report scores for that label only.

average : string, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘samples’, ‘weighted’]

This parameter is required for multiclass/multilabel targets. If None, the scores for each
class are returned. Otherwise, this determines the type of averaging performed on the
data:

'binary': Only report results for the class specified by pos_label. This is appli-
cable only if targets (y_{true,pred}) are binary.

'micro': Calculate metrics globally by counting the total true positives, false nega-
tives and false positives.

'macro': Calculate metrics for each label, and find their unweighted mean. This does
not take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average, weighted by
support (the number of true instances for each label). This alters ‘macro’ to account
for label imbalance; it can result in an F-score that is not between precision and recall.

'samples': Calculate metrics for each instance, and find their average (only mean-
ingful for multilabel classification where this differs from accuracy_score).

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returns recall : float (if average is not None) or array of float, shape = [n_unique_labels]

Recall of the positive class in binary classification or weighted average of the recall of
each class for the multiclass task.
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Examples

>>> from sklearn.metrics import recall_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> recall_score(y_true, y_pred, average='macro')
0.33...
>>> recall_score(y_true, y_pred, average='micro')
0.33...
>>> recall_score(y_true, y_pred, average='weighted')
0.33...
>>> recall_score(y_true, y_pred, average=None)
array([ 1., 0., 0.])

Examples using sklearn.metrics.recall_score

• Probability Calibration curves

sklearn.metrics.roc_auc_score

sklearn.metrics.roc_auc_score(y_true, y_score, average=’macro’, sample_weight=None)
Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

Note: this implementation is restricted to the binary classification task or multilabel classification task in label
indicator format.

Read more in the User Guide.

Parameters y_true : array, shape = [n_samples] or [n_samples, n_classes]

True binary labels in binary label indicators.

y_score : array, shape = [n_samples] or [n_samples, n_classes]

Target scores, can either be probability estimates of the positive class, confidence values,
or non-thresholded measure of decisions (as returned by “decision_function” on some
classifiers).

average : string, [None, ‘micro’, ‘macro’ (default), ‘samples’, ‘weighted’]

If None, the scores for each class are returned. Otherwise, this determines the type of
averaging performed on the data:

'micro': Calculate metrics globally by considering each element of the label indica-
tor matrix as a label.

'macro': Calculate metrics for each label, and find their unweighted mean. This does
not take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average, weighted by
support (the number of true instances for each label).

'samples': Calculate metrics for each instance, and find their average.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returns auc : float
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See also:

average_precision_score Area under the precision-recall curve

roc_curve Compute Receiver operating characteristic (ROC) curve

References

[R229]

Examples

>>> import numpy as np
>>> from sklearn.metrics import roc_auc_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> roc_auc_score(y_true, y_scores)
0.75

sklearn.metrics.roc_curve

sklearn.metrics.roc_curve(y_true, y_score, pos_label=None, sample_weight=None,
drop_intermediate=True)

Compute Receiver operating characteristic (ROC)

Note: this implementation is restricted to the binary classification task.

Read more in the User Guide.

Parameters y_true : array, shape = [n_samples]

True binary labels in range {0, 1} or {-1, 1}. If labels are not binary, pos_label should
be explicitly given.

y_score : array, shape = [n_samples]

Target scores, can either be probability estimates of the positive class, confidence values,
or non-thresholded measure of decisions (as returned by “decision_function” on some
classifiers).

pos_label : int or str, default=None

Label considered as positive and others are considered negative.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

drop_intermediate : boolean, optional (default=True)

Whether to drop some suboptimal thresholds which would not appear on a plotted ROC
curve. This is useful in order to create lighter ROC curves.

New in version 0.17: parameter drop_intermediate.

Returns fpr : array, shape = [>2]

Increasing false positive rates such that element i is the false positive rate of predictions
with score >= thresholds[i].
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tpr : array, shape = [>2]

Increasing true positive rates such that element i is the true positive rate of predictions
with score >= thresholds[i].

thresholds : array, shape = [n_thresholds]

Decreasing thresholds on the decision function used to compute fpr and tpr. thresh-
olds[0] represents no instances being predicted and is arbitrarily set to max(y_score) +
1.

See also:

roc_auc_score Compute the area under the ROC curve

Notes

Since the thresholds are sorted from low to high values, they are reversed upon returning them to ensure they
correspond to both fpr and tpr, which are sorted in reversed order during their calculation.

References

[R62]

Examples

>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)
>>> fpr
array([ 0. , 0.5, 0.5, 1. ])
>>> tpr
array([ 0.5, 0.5, 1. , 1. ])
>>> thresholds
array([ 0.8 , 0.4 , 0.35, 0.1 ])

Examples using sklearn.metrics.roc_curve

• Species distribution modeling

• Feature transformations with ensembles of trees

• Receiver Operating Characteristic (ROC)

• Receiver Operating Characteristic (ROC) with cross validation

sklearn.metrics.zero_one_loss

sklearn.metrics.zero_one_loss(y_true, y_pred, normalize=True, sample_weight=None)
Zero-one classification loss.
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If normalize is True, return the fraction of misclassifications (float), else it returns the number of misclassifica-
tions (int). The best performance is 0.

Read more in the User Guide.

Parameters y_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) labels.

y_pred : 1d array-like, or label indicator array / sparse matrix

Predicted labels, as returned by a classifier.

normalize : bool, optional (default=True)

If False, return the number of misclassifications. Otherwise, return the fraction of
misclassifications.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returns loss : float or int,

If normalize == True, return the fraction of misclassifications (float), else it re-
turns the number of misclassifications (int).

See also:

accuracy_score, hamming_loss, jaccard_similarity_score

Notes

In multilabel classification, the zero_one_loss function corresponds to the subset zero-one loss: for each sample,
the entire set of labels must be correctly predicted, otherwise the loss for that sample is equal to one.

Examples

>>> from sklearn.metrics import zero_one_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> zero_one_loss(y_true, y_pred)
0.25
>>> zero_one_loss(y_true, y_pred, normalize=False)
1

In the multilabel case with binary label indicators:

>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

Examples using sklearn.metrics.zero_one_loss

• Discrete versus Real AdaBoost
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5.21.3 Regression metrics

See the Regression metrics section of the user guide for further details.

metrics.explained_variance_score(y_true,
y_pred)

Explained variance regression score function

metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
metrics.mean_squared_error(y_true, y_pred[,
. . . ])

Mean squared error regression loss

metrics.mean_squared_log_error(y_true,
y_pred)

Mean squared logarithmic error regression loss

metrics.median_absolute_error(y_true,
y_pred)

Median absolute error regression loss

metrics.r2_score(y_true, y_pred[, . . . ]) R^2 (coefficient of determination) regression score func-
tion.

sklearn.metrics.explained_variance_score

sklearn.metrics.explained_variance_score(y_true, y_pred, sample_weight=None, multiout-
put=’uniform_average’)

Explained variance regression score function

Best possible score is 1.0, lower values are worse.

Read more in the User Guide.

Parameters y_true : array-like of shape = (n_samples) or (n_samples, n_outputs)

Ground truth (correct) target values.

y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs)

Estimated target values.

sample_weight : array-like of shape = (n_samples), optional

Sample weights.

multioutput : string in [‘raw_values’, ‘uniform_average’, ‘variance_weighted’] or array-like of
shape (n_outputs)

Defines aggregating of multiple output scores. Array-like value defines weights used to
average scores.

‘raw_values’ : Returns a full set of scores in case of multioutput input.

‘uniform_average’ : Scores of all outputs are averaged with uniform weight.

‘variance_weighted’ : Scores of all outputs are averaged, weighted by the variances
of each individual output.

Returns score : float or ndarray of floats

The explained variance or ndarray if ‘multioutput’ is ‘raw_values’.

Notes

This is not a symmetric function.
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Examples

>>> from sklearn.metrics import explained_variance_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> explained_variance_score(y_true, y_pred)
0.957...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> explained_variance_score(y_true, y_pred, multioutput='uniform_average')
...
0.983...

sklearn.metrics.mean_absolute_error

sklearn.metrics.mean_absolute_error(y_true, y_pred, sample_weight=None, multiout-
put=’uniform_average’)

Mean absolute error regression loss

Read more in the User Guide.

Parameters y_true : array-like of shape = (n_samples) or (n_samples, n_outputs)

Ground truth (correct) target values.

y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs)

Estimated target values.

sample_weight : array-like of shape = (n_samples), optional

Sample weights.

multioutput : string in [‘raw_values’, ‘uniform_average’]

or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-
like value defines weights used to average errors.

‘raw_values’ : Returns a full set of errors in case of multioutput input.

‘uniform_average’ : Errors of all outputs are averaged with uniform weight.

Returns loss : float or ndarray of floats

If multioutput is ‘raw_values’, then mean absolute error is returned for each output sep-
arately. If multioutput is ‘uniform_average’ or an ndarray of weights, then the weighted
average of all output errors is returned.

MAE output is non-negative floating point. The best value is 0.0.

Examples

>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
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>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([ 0.5, 1. ])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
...
0.849...

sklearn.metrics.mean_squared_error

sklearn.metrics.mean_squared_error(y_true, y_pred, sample_weight=None, multiout-
put=’uniform_average’)

Mean squared error regression loss

Read more in the User Guide.

Parameters y_true : array-like of shape = (n_samples) or (n_samples, n_outputs)

Ground truth (correct) target values.

y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs)

Estimated target values.

sample_weight : array-like of shape = (n_samples), optional

Sample weights.

multioutput : string in [‘raw_values’, ‘uniform_average’]

or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-
like value defines weights used to average errors.

‘raw_values’ : Returns a full set of errors in case of multioutput input.

‘uniform_average’ : Errors of all outputs are averaged with uniform weight.

Returns loss : float or ndarray of floats

A non-negative floating point value (the best value is 0.0), or an array of floating point
values, one for each individual target.

Examples

>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [[0.5, 1],[-1, 1],[7, -6]]
>>> y_pred = [[0, 2],[-1, 2],[8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.708...
>>> mean_squared_error(y_true, y_pred, multioutput='raw_values')
...
array([ 0.416..., 1. ])
>>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7])
...
0.824...
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Examples using sklearn.metrics.mean_squared_error

• Model Complexity Influence

• Gradient Boosting regression

• Linear Regression Example

• Plot Ridge coefficients as a function of the L2 regularization

• Robust linear estimator fitting

sklearn.metrics.mean_squared_log_error

sklearn.metrics.mean_squared_log_error(y_true, y_pred, sample_weight=None, multiout-
put=’uniform_average’)

Mean squared logarithmic error regression loss

Read more in the User Guide.

Parameters y_true : array-like of shape = (n_samples) or (n_samples, n_outputs)

Ground truth (correct) target values.

y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs)

Estimated target values.

sample_weight : array-like of shape = (n_samples), optional

Sample weights.

multioutput : string in [‘raw_values’, ‘uniform_average’] or array-like of shape = (n_outputs)

Defines aggregating of multiple output values. Array-like value defines weights used to
average errors.

‘raw_values’ : Returns a full set of errors when the input is of multioutput format.

‘uniform_average’ : Errors of all outputs are averaged with uniform weight.

Returns loss : float or ndarray of floats

A non-negative floating point value (the best value is 0.0), or an array of floating point
values, one for each individual target.

Examples

>>> from sklearn.metrics import mean_squared_log_error
>>> y_true = [3, 5, 2.5, 7]
>>> y_pred = [2.5, 5, 4, 8]
>>> mean_squared_log_error(y_true, y_pred)
0.039...
>>> y_true = [[0.5, 1], [1, 2], [7, 6]]
>>> y_pred = [[0.5, 2], [1, 2.5], [8, 8]]
>>> mean_squared_log_error(y_true, y_pred)
0.044...
>>> mean_squared_log_error(y_true, y_pred, multioutput='raw_values')
...
array([ 0.004..., 0.083...])
>>> mean_squared_log_error(y_true, y_pred, multioutput=[0.3, 0.7])
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...
0.060...

sklearn.metrics.median_absolute_error

sklearn.metrics.median_absolute_error(y_true, y_pred)
Median absolute error regression loss

Read more in the User Guide.

Parameters y_true : array-like of shape = (n_samples)

Ground truth (correct) target values.

y_pred : array-like of shape = (n_samples)

Estimated target values.

Returns loss : float

A positive floating point value (the best value is 0.0).

Examples

>>> from sklearn.metrics import median_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> median_absolute_error(y_true, y_pred)
0.5

sklearn.metrics.r2_score

sklearn.metrics.r2_score(y_true, y_pred, sample_weight=None, multioutput=’uniform_average’)
R^2 (coefficient of determination) regression score function.

Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model
that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Read more in the User Guide.

Parameters y_true : array-like of shape = (n_samples) or (n_samples, n_outputs)

Ground truth (correct) target values.

y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs)

Estimated target values.

sample_weight : array-like of shape = (n_samples), optional

Sample weights.

multioutput : string in [‘raw_values’, ‘uniform_average’, ‘variance_weighted’] or None or
array-like of shape (n_outputs)

Defines aggregating of multiple output scores. Array-like value defines weights used to
average scores. Default is “uniform_average”.

‘raw_values’ : Returns a full set of scores in case of multioutput input.
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‘uniform_average’ : Scores of all outputs are averaged with uniform weight.

‘variance_weighted’ : Scores of all outputs are averaged, weighted by the variances
of each individual output.

Changed in version 0.19: Default value of multioutput is ‘uniform_average’.

Returns z : float or ndarray of floats

The R^2 score or ndarray of scores if ‘multioutput’ is ‘raw_values’.

Notes

This is not a symmetric function.

Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R).

References

[R61]

Examples

>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='variance_weighted')
...
0.938...
>>> y_true = [1,2,3]
>>> y_pred = [1,2,3]
>>> r2_score(y_true, y_pred)
1.0
>>> y_true = [1,2,3]
>>> y_pred = [2,2,2]
>>> r2_score(y_true, y_pred)
0.0
>>> y_true = [1,2,3]
>>> y_pred = [3,2,1]
>>> r2_score(y_true, y_pred)
-3.0

Examples using sklearn.metrics.r2_score

• Lasso and Elastic Net for Sparse Signals

• Linear Regression Example
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5.21.4 Multilabel ranking metrics

See the Multilabel ranking metrics section of the user guide for further details.

metrics.coverage_error(y_true, y_score[, . . . ]) Coverage error measure
metrics.label_ranking_average_precision_score(. . . )Compute ranking-based average precision
metrics.label_ranking_loss(y_true, y_score) Compute Ranking loss measure

sklearn.metrics.coverage_error

sklearn.metrics.coverage_error(y_true, y_score, sample_weight=None)
Coverage error measure

Compute how far we need to go through the ranked scores to cover all true labels. The best value is equal to the
average number of labels in y_true per sample.

Ties in y_scores are broken by giving maximal rank that would have been assigned to all tied values.

Note: Our implementation’s score is 1 greater than the one given in Tsoumakas et al., 2010. This extends it to
handle the degenerate case in which an instance has 0 true labels.

Read more in the User Guide.

Parameters y_true : array, shape = [n_samples, n_labels]

True binary labels in binary indicator format.

y_score : array, shape = [n_samples, n_labels]

Target scores, can either be probability estimates of the positive class, confidence values,
or non-thresholded measure of decisions (as returned by “decision_function” on some
classifiers).

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returns coverage_error : float

References

[R207]

sklearn.metrics.label_ranking_average_precision_score

sklearn.metrics.label_ranking_average_precision_score(y_true, y_score)
Compute ranking-based average precision

Label ranking average precision (LRAP) is the average over each ground truth label assigned to each sample, of
the ratio of true vs. total labels with lower score.

This metric is used in multilabel ranking problem, where the goal is to give better rank to the labels associated
to each sample.

The obtained score is always strictly greater than 0 and the best value is 1.

Read more in the User Guide.

Parameters y_true : array or sparse matrix, shape = [n_samples, n_labels]
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True binary labels in binary indicator format.

y_score : array, shape = [n_samples, n_labels]

Target scores, can either be probability estimates of the positive class, confidence values,
or non-thresholded measure of decisions (as returned by “decision_function” on some
classifiers).

Returns score : float

Examples

>>> import numpy as np
>>> from sklearn.metrics import label_ranking_average_precision_score
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_average_precision_score(y_true, y_score)
0.416...

sklearn.metrics.label_ranking_loss

sklearn.metrics.label_ranking_loss(y_true, y_score, sample_weight=None)
Compute Ranking loss measure

Compute the average number of label pairs that are incorrectly ordered given y_score weighted by the size of
the label set and the number of labels not in the label set.

This is similar to the error set size, but weighted by the number of relevant and irrelevant labels. The best
performance is achieved with a ranking loss of zero.

Read more in the User Guide.

New in version 0.17: A function label_ranking_loss

Parameters y_true : array or sparse matrix, shape = [n_samples, n_labels]

True binary labels in binary indicator format.

y_score : array, shape = [n_samples, n_labels]

Target scores, can either be probability estimates of the positive class, confidence values,
or non-thresholded measure of decisions (as returned by “decision_function” on some
classifiers).

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returns loss : float

References

[R220]
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5.21.5 Clustering metrics

See the Clustering performance evaluation section of the user guide for further details. The sklearn.metrics.
cluster submodule contains evaluation metrics for cluster analysis results. There are two forms of evaluation:

• supervised, which uses a ground truth class values for each sample.

• unsupervised, which does not and measures the ‘quality’ of the model itself.

metrics.adjusted_mutual_info_score(. . . ) Adjusted Mutual Information between two clusterings.
metrics.adjusted_rand_score(labels_true, . . . ) Rand index adjusted for chance.
metrics.calinski_harabaz_score(X, labels) Compute the Calinski and Harabaz score.
metrics.completeness_score(labels_true, . . . ) Completeness metric of a cluster labeling given a ground

truth.
metrics.fowlkes_mallows_score(labels_true,
. . . )

Measure the similarity of two clusterings of a set of points.

metrics.homogeneity_completeness_v_measure(. . . )Compute the homogeneity and completeness and V-
Measure scores at once.

metrics.homogeneity_score(labels_true, . . . ) Homogeneity metric of a cluster labeling given a ground
truth.

metrics.mutual_info_score(labels_true, . . . ) Mutual Information between two clusterings.
metrics.normalized_mutual_info_score(. . . ) Normalized Mutual Information between two clusterings.
metrics.silhouette_score(X, labels[, . . . ]) Compute the mean Silhouette Coefficient of all samples.
metrics.silhouette_samples(X, labels[, metric]) Compute the Silhouette Coefficient for each sample.
metrics.v_measure_score(labels_true, la-
bels_pred)

V-measure cluster labeling given a ground truth.

sklearn.metrics.adjusted_mutual_info_score

sklearn.metrics.adjusted_mutual_info_score(labels_true, labels_pred)
Adjusted Mutual Information between two clusterings.

Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for
chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of
clusters, regardless of whether there is actually more information shared. For two clusterings 𝑈 and 𝑉 , the AMI
is given as:

AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))]

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score
value. This can be useful to measure the agreement of two independent label assignments strategies on the same
dataset when the real ground truth is not known.

Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand
Index.

Read more in the User Guide.

Parameters labels_true : int array, shape = [n_samples]

A clustering of the data into disjoint subsets.

labels_pred : array, shape = [n_samples]
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A clustering of the data into disjoint subsets.

Returns ami: float(upperlimited by 1.0) :

The AMI returns a value of 1 when the two partitions are identical (ie perfectly
matched). Random partitions (independent labellings) have an expected AMI around
0 on average hence can be negative.

See also:

adjusted_rand_score Adjusted Rand Index

mutual_information_score Mutual Information (not adjusted for chance)

References

[R50], [R51]

Examples

Perfect labelings are both homogeneous and complete, hence have score 1.0:

>>> from sklearn.metrics.cluster import adjusted_mutual_info_score
>>> adjusted_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> adjusted_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

If classes members are completely split across different clusters, the assignment is totally in-complete, hence
the AMI is null:

>>> adjusted_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0

Examples using sklearn.metrics.adjusted_mutual_info_score

• Adjustment for chance in clustering performance evaluation

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• A demo of K-Means clustering on the handwritten digits data

sklearn.metrics.adjusted_rand_score

sklearn.metrics.adjusted_rand_score(labels_true, labels_pred)
Rand index adjusted for chance.

The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and
counting pairs that are assigned in the same or different clusters in the predicted and true clusterings.

The raw RI score is then “adjusted for chance” into the ARI score using the following scheme:
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ARI = (RI - Expected_RI) / (max(RI) - Expected_RI)

The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the
number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation).

ARI is a symmetric measure:

adjusted_rand_score(a, b) == adjusted_rand_score(b, a)

Read more in the User Guide.

Parameters labels_true : int array, shape = [n_samples]

Ground truth class labels to be used as a reference

labels_pred : array, shape = [n_samples]

Cluster labels to evaluate

Returns ari : float

Similarity score between -1.0 and 1.0. Random labelings have an ARI close to 0.0. 1.0
stands for perfect match.

See also:

adjusted_mutual_info_score Adjusted Mutual Information

References

[Hubert1985], [wk]

Examples

Perfectly matching labelings have a score of 1 even

>>> from sklearn.metrics.cluster import adjusted_rand_score
>>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> adjusted_rand_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

Labelings that assign all classes members to the same clusters are complete be not always pure, hence penalized:

>>> adjusted_rand_score([0, 0, 1, 2], [0, 0, 1, 1])
0.57...

ARI is symmetric, so labelings that have pure clusters with members coming from the same classes but unnec-
essary splits are penalized:

>>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 2])
0.57...

If classes members are completely split across different clusters, the assignment is totally incomplete, hence the
ARI is very low:
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>>> adjusted_rand_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0

Examples using sklearn.metrics.adjusted_rand_score

• Adjustment for chance in clustering performance evaluation

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• A demo of K-Means clustering on the handwritten digits data

• Clustering text documents using k-means

sklearn.metrics.calinski_harabaz_score

sklearn.metrics.calinski_harabaz_score(X, labels)
Compute the Calinski and Harabaz score.

The score is defined as ratio between the within-cluster dispersion and the between-cluster dispersion.

Read more in the User Guide.

Parameters X : array-like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data
point.

labels : array-like, shape (n_samples,)

Predicted labels for each sample.

Returns score : float

The resulting Calinski-Harabaz score.

References

[R201]

sklearn.metrics.completeness_score

sklearn.metrics.completeness_score(labels_true, labels_pred)
Completeness metric of a cluster labeling given a ground truth.

A clustering result satisfies completeness if all the data points that are members of a given class are elements of
the same cluster.

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is not symmetric: switching label_true with label_pred will return the
homogeneity_score which will be different in general.

Read more in the User Guide.

Parameters labels_true : int array, shape = [n_samples]
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ground truth class labels to be used as a reference

labels_pred : array, shape = [n_samples]

cluster labels to evaluate

Returns completeness : float

score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

See also:

homogeneity_score, v_measure_score

References

[R54]

Examples

Perfect labelings are complete:

>>> from sklearn.metrics.cluster import completeness_score
>>> completeness_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

Non-perfect labelings that assign all classes members to the same clusters are still complete:

>>> print(completeness_score([0, 0, 1, 1], [0, 0, 0, 0]))
1.0
>>> print(completeness_score([0, 1, 2, 3], [0, 0, 1, 1]))
1.0

If classes members are split across different clusters, the assignment cannot be complete:

>>> print(completeness_score([0, 0, 1, 1], [0, 1, 0, 1]))
0.0
>>> print(completeness_score([0, 0, 0, 0], [0, 1, 2, 3]))
0.0

Examples using sklearn.metrics.completeness_score

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• A demo of K-Means clustering on the handwritten digits data

• Clustering text documents using k-means

sklearn.metrics.fowlkes_mallows_score

sklearn.metrics.fowlkes_mallows_score(labels_true, labels_pred, sparse=False)
Measure the similarity of two clusterings of a set of points.

The Fowlkes-Mallows index (FMI) is defined as the geometric mean between of the precision and recall:
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FMI = TP / sqrt((TP + FP) * (TP + FN))

Where TP is the number of True Positive (i.e. the number of pair of points that belongs in the same clusters
in both labels_true and labels_pred), FP is the number of False Positive (i.e. the number of pair of
points that belongs in the same clusters in labels_true and not in labels_pred) and FN is the number
of False Negative (i.e the number of pair of points that belongs in the same clusters in labels_pred and not
in labels_True).

The score ranges from 0 to 1. A high value indicates a good similarity between two clusters.

Read more in the User Guide.

Parameters labels_true : int array, shape = (n_samples,)

A clustering of the data into disjoint subsets.

labels_pred : array, shape = (n_samples, )

A clustering of the data into disjoint subsets.

sparse : bool

Compute contingency matrix internally with sparse matrix.

Returns score : float

The resulting Fowlkes-Mallows score.

References

[R211], [R212]

Examples

Perfect labelings are both homogeneous and complete, hence have score 1.0:

>>> from sklearn.metrics.cluster import fowlkes_mallows_score
>>> fowlkes_mallows_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> fowlkes_mallows_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

If classes members are completely split across different clusters, the assignment is totally random, hence the
FMI is null:

>>> fowlkes_mallows_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0

sklearn.metrics.homogeneity_completeness_v_measure

sklearn.metrics.homogeneity_completeness_v_measure(labels_true, labels_pred)
Compute the homogeneity and completeness and V-Measure scores at once.

Those metrics are based on normalized conditional entropy measures of the clustering labeling to evaluate given
the knowledge of a Ground Truth class labels of the same samples.
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A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a
single class.

A clustering result satisfies completeness if all the data points that are members of a given class are elements of
the same cluster.

Both scores have positive values between 0.0 and 1.0, larger values being desirable.

Those 3 metrics are independent of the absolute values of the labels: a permutation of the class or cluster label
values won’t change the score values in any way.

V-Measure is furthermore symmetric: swapping labels_true and label_pred will give the same score.
This does not hold for homogeneity and completeness.

Read more in the User Guide.

Parameters labels_true : int array, shape = [n_samples]

ground truth class labels to be used as a reference

labels_pred : array, shape = [n_samples]

cluster labels to evaluate

Returns homogeneity : float

score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling

completeness : float

score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

v_measure : float

harmonic mean of the first two

See also:

homogeneity_score, completeness_score, v_measure_score

sklearn.metrics.homogeneity_score

sklearn.metrics.homogeneity_score(labels_true, labels_pred)
Homogeneity metric of a cluster labeling given a ground truth.

A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a
single class.

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is not symmetric: switching label_true with label_pred will return the
completeness_score which will be different in general.

Read more in the User Guide.

Parameters labels_true : int array, shape = [n_samples]

ground truth class labels to be used as a reference

labels_pred : array, shape = [n_samples]

cluster labels to evaluate

Returns homogeneity : float

score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling
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See also:

completeness_score, v_measure_score

References

[R59]

Examples

Perfect labelings are homogeneous:

>>> from sklearn.metrics.cluster import homogeneity_score
>>> homogeneity_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

Non-perfect labelings that further split classes into more clusters can be perfectly homogeneous:

>>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 1, 2]))
...
1.0...
>>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 2, 3]))
...
1.0...

Clusters that include samples from different classes do not make for an homogeneous labeling:

>>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 0, 1]))
...
0.0...
>>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 0, 0]))
...
0.0...

Examples using sklearn.metrics.homogeneity_score

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• A demo of K-Means clustering on the handwritten digits data

• Clustering text documents using k-means

sklearn.metrics.mutual_info_score

sklearn.metrics.mutual_info_score(labels_true, labels_pred, contingency=None)
Mutual Information between two clusterings.

The Mutual Information is a measure of the similarity between two labels of the same data. Where |𝑈𝑖| is the
number of the samples in cluster 𝑈𝑖 and |𝑉𝑗 | is the number of the samples in cluster 𝑉𝑗 , the Mutual Information
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between clusterings 𝑈 and 𝑉 is given as:

𝑀𝐼(𝑈, 𝑉 ) =

|∑︁
𝑖=1

𝑈 |
|∑︁

𝑗=1

𝑉 | |𝑈𝑖 ∩ 𝑉𝑗 |
𝑁

log
𝑁 |𝑈𝑖 ∩ 𝑉𝑗 |
|𝑈𝑖||𝑉𝑗 |

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score
value. This can be useful to measure the agreement of two independent label assignments strategies on the same
dataset when the real ground truth is not known.

Read more in the User Guide.

Parameters labels_true : int array, shape = [n_samples]

A clustering of the data into disjoint subsets.

labels_pred : array, shape = [n_samples]

A clustering of the data into disjoint subsets.

contingency : {None, array, sparse matrix},

shape = [n_classes_true, n_classes_pred]

A contingency matrix given by the contingency_matrix function. If value is
None, it will be computed, otherwise the given value is used, with labels_true and
labels_pred ignored.

Returns mi : float

Mutual information, a non-negative value

See also:

adjusted_mutual_info_score Adjusted against chance Mutual Information

normalized_mutual_info_score Normalized Mutual Information

Examples using sklearn.metrics.mutual_info_score

• Adjustment for chance in clustering performance evaluation

sklearn.metrics.normalized_mutual_info_score

sklearn.metrics.normalized_mutual_info_score(labels_true, labels_pred)
Normalized Mutual Information between two clusterings.

Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the
results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is
normalized by sqrt(H(labels_true) * H(labels_pred))

This measure is not adjusted for chance. Therefore adjusted_mustual_info_score might be preferred.

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score
value. This can be useful to measure the agreement of two independent label assignments strategies on the same
dataset when the real ground truth is not known.
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Read more in the User Guide.

Parameters labels_true : int array, shape = [n_samples]

A clustering of the data into disjoint subsets.

labels_pred : array, shape = [n_samples]

A clustering of the data into disjoint subsets.

Returns nmi : float

score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

See also:

adjusted_rand_score Adjusted Rand Index

adjusted_mutual_info_score Adjusted Mutual Information (adjusted against chance)

Examples

Perfect labelings are both homogeneous and complete, hence have score 1.0:

>>> from sklearn.metrics.cluster import normalized_mutual_info_score
>>> normalized_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> normalized_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

If classes members are completely split across different clusters, the assignment is totally in-complete, hence
the NMI is null:

>>> normalized_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0

sklearn.metrics.silhouette_score

sklearn.metrics.silhouette_score(X, labels, metric=’euclidean’, sample_size=None, ran-
dom_state=None, **kwds)

Compute the mean Silhouette Coefficient of all samples.

The Silhouette Coefficient is calculated using the mean intra-cluster distance (a) and the mean nearest-cluster
distance (b) for each sample. The Silhouette Coefficient for a sample is (b - a) / max(a, b). To clarify,
b is the distance between a sample and the nearest cluster that the sample is not a part of. Note that Silhouette
Coefficient is only defined if number of labels is 2 <= n_labels <= n_samples - 1.

This function returns the mean Silhouette Coefficient over all samples. To obtain the values for each sample,
use silhouette_samples.

The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values
generally indicate that a sample has been assigned to the wrong cluster, as a different cluster is more similar.

Read more in the User Guide.

Parameters X : array [n_samples_a, n_samples_a] if metric == “precomputed”, or, [n_samples_a,
n_features] otherwise

Array of pairwise distances between samples, or a feature array.
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labels : array, shape = [n_samples]

Predicted labels for each sample.

metric : string, or callable

The metric to use when calculating distance between instances in a feature ar-
ray. If metric is a string, it must be one of the options allowed by metrics.
pairwise.pairwise_distances. If X is the distance array itself, use
metric="precomputed".

sample_size : int or None

The size of the sample to use when computing the Silhouette Coefficient on a random
subset of the data. If sample_size is None, no sampling is used.

random_state : int, RandomState instance or None, optional (default=None)

The generator used to randomly select a subset of samples. If int, random_state is the
seed used by the random number generator; If RandomState instance, random_state is
the random number generator; If None, the random number generator is the Random-
State instance used by np.random. Used when sample_size is not None.

**kwds : optional keyword parameters

Any further parameters are passed directly to the distance function. If using a
scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy
docs for usage examples.

Returns silhouette : float

Mean Silhouette Coefficient for all samples.

References

[R65], [R66]

Examples using sklearn.metrics.silhouette_score

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• A demo of K-Means clustering on the handwritten digits data

• Selecting the number of clusters with silhouette analysis on KMeans clustering

• Clustering text documents using k-means

sklearn.metrics.silhouette_samples

sklearn.metrics.silhouette_samples(X, labels, metric=’euclidean’, **kwds)
Compute the Silhouette Coefficient for each sample.

The Silhouette Coefficient is a measure of how well samples are clustered with samples that are similar to
themselves. Clustering models with a high Silhouette Coefficient are said to be dense, where samples in the
same cluster are similar to each other, and well separated, where samples in different clusters are not very
similar to each other.
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The Silhouette Coefficient is calculated using the mean intra-cluster distance (a) and the mean nearest-cluster
distance (b) for each sample. The Silhouette Coefficient for a sample is (b - a) / max(a, b). Note that
Silhouette Coefficient is only defined if number of labels is 2 <= n_labels <= n_samples - 1.

This function returns the Silhouette Coefficient for each sample.

The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters.

Read more in the User Guide.

Parameters X : array [n_samples_a, n_samples_a] if metric == “precomputed”, or, [n_samples_a,
n_features] otherwise

Array of pairwise distances between samples, or a feature array.

labels : array, shape = [n_samples]

label values for each sample

metric : string, or callable

The metric to use when calculating distance between instances in a feature array. If
metric is a string, it must be one of the options allowed by sklearn.metrics.
pairwise.pairwise_distances. If X is the distance array itself, use “precom-
puted” as the metric.

**kwds : optional keyword parameters

Any further parameters are passed directly to the distance function. If using a scipy.
spatial.distance metric, the parameters are still metric dependent. See the scipy
docs for usage examples.

Returns silhouette : array, shape = [n_samples]

Silhouette Coefficient for each samples.

References

[R63], [R64]

Examples using sklearn.metrics.silhouette_samples

• Selecting the number of clusters with silhouette analysis on KMeans clustering

sklearn.metrics.v_measure_score

sklearn.metrics.v_measure_score(labels_true, labels_pred)
V-measure cluster labeling given a ground truth.

This score is identical to normalized_mutual_info_score.

The V-measure is the harmonic mean between homogeneity and completeness:

v = 2 * (homogeneity * completeness) / (homogeneity + completeness)

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.
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This metric is furthermore symmetric: switching label_true with label_pred will return the same score
value. This can be useful to measure the agreement of two independent label assignments strategies on the same
dataset when the real ground truth is not known.

Read more in the User Guide.

Parameters labels_true : int array, shape = [n_samples]

ground truth class labels to be used as a reference

labels_pred : array, shape = [n_samples]

cluster labels to evaluate

Returns v_measure : float

score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

See also:

homogeneity_score, completeness_score

References

[R67]

Examples

Perfect labelings are both homogeneous and complete, hence have score 1.0:

>>> from sklearn.metrics.cluster import v_measure_score
>>> v_measure_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> v_measure_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

Labelings that assign all classes members to the same clusters are complete be not homogeneous, hence penal-
ized:

>>> print("%.6f" % v_measure_score([0, 0, 1, 2], [0, 0, 1, 1]))
...
0.8...
>>> print("%.6f" % v_measure_score([0, 1, 2, 3], [0, 0, 1, 1]))
...
0.66...

Labelings that have pure clusters with members coming from the same classes are homogeneous but un-
necessary splits harms completeness and thus penalize V-measure as well:

>>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 1, 2]))
...
0.8...
>>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 1, 2, 3]))
...
0.66...

If classes members are completely split across different clusters, the assignment is totally incomplete, hence the
V-Measure is null:
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>>> print("%.6f" % v_measure_score([0, 0, 0, 0], [0, 1, 2, 3]))
...
0.0...

Clusters that include samples from totally different classes totally destroy the homogeneity of the labeling,
hence:

>>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 0, 0]))
...
0.0...

Examples using sklearn.metrics.v_measure_score

• Biclustering documents with the Spectral Co-clustering algorithm

• Adjustment for chance in clustering performance evaluation

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• A demo of K-Means clustering on the handwritten digits data

• Clustering text documents using k-means

5.21.6 Biclustering metrics

See the Biclustering evaluation section of the user guide for further details.

metrics.consensus_score(a, b[, similarity]) The similarity of two sets of biclusters.

sklearn.metrics.consensus_score

sklearn.metrics.consensus_score(a, b, similarity=’jaccard’)
The similarity of two sets of biclusters.

Similarity between individual biclusters is computed. Then the best matching between sets is found using the
Hungarian algorithm. The final score is the sum of similarities divided by the size of the larger set.

Read more in the User Guide.

Parameters a : (rows, columns)

Tuple of row and column indicators for a set of biclusters.

b : (rows, columns)

Another set of biclusters like a.

similarity : string or function, optional, default: “jaccard”

May be the string “jaccard” to use the Jaccard coefficient, or any function that takes
four arguments, each of which is a 1d indicator vector: (a_rows, a_columns, b_rows,
b_columns).
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References

• Hochreiter, Bodenhofer, et. al., 2010. FABIA: factor analysis for bicluster acquisition.

Examples using sklearn.metrics.consensus_score

• A demo of the Spectral Biclustering algorithm

• A demo of the Spectral Co-Clustering algorithm

5.21.7 Pairwise metrics

See the Pairwise metrics, Affinities and Kernels section of the user guide for further details.

metrics.pairwise.additive_chi2_kernel(X[,
Y])

Computes the additive chi-squared kernel between obser-
vations in X and Y

metrics.pairwise.chi2_kernel(X[, Y, gamma]) Computes the exponential chi-squared kernel X and Y.
metrics.pairwise.cosine_similarity(X[, Y,
. . . ])

Compute cosine similarity between samples in X and Y.

metrics.pairwise.cosine_distances(X[, Y]) Compute cosine distance between samples in X and Y.
metrics.pairwise.distance_metrics() Valid metrics for pairwise_distances.
metrics.pairwise.euclidean_distances(X[,
Y, . . . ])

Considering the rows of X (and Y=X) as vectors, compute
the distance matrix between each pair of vectors.

metrics.pairwise.kernel_metrics() Valid metrics for pairwise_kernels
metrics.pairwise.laplacian_kernel(X[, Y,
gamma])

Compute the laplacian kernel between X and Y.

metrics.pairwise.linear_kernel(X[, Y]) Compute the linear kernel between X and Y.
metrics.pairwise.manhattan_distances(X[,
Y, . . . ])

Compute the L1 distances between the vectors in X and Y.

metrics.pairwise.pairwise_distances(X[,
Y, . . . ])

Compute the distance matrix from a vector array X and op-
tional Y.

metrics.pairwise.pairwise_kernels(X[, Y,
. . . ])

Compute the kernel between arrays X and optional array Y.

metrics.pairwise.polynomial_kernel(X[, Y,
. . . ])

Compute the polynomial kernel between X and Y:

metrics.pairwise.rbf_kernel(X[, Y, gamma]) Compute the rbf (gaussian) kernel between X and Y:
metrics.pairwise.sigmoid_kernel(X[, Y, . . . ]) Compute the sigmoid kernel between X and Y:
metrics.pairwise.paired_euclidean_distances(X,
Y)

Computes the paired euclidean distances between X and Y

metrics.pairwise.paired_manhattan_distances(X,
Y)

Compute the L1 distances between the vectors in X and Y.

metrics.pairwise.paired_cosine_distances(X,
Y)

Computes the paired cosine distances between X and Y

metrics.pairwise.paired_distances(X, Y[,
metric])

Computes the paired distances between X and Y.

metrics.pairwise_distances(X[, Y, metric, . . . ]) Compute the distance matrix from a vector array X and op-
tional Y.

metrics.pairwise_distances_argmin(X, Y[,
. . . ])

Compute minimum distances between one point and a set
of points.

Continued on next page
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Table 5.172 – continued from previous page
metrics.pairwise_distances_argmin_min(X,
Y)

Compute minimum distances between one point and a set
of points.

sklearn.metrics.pairwise.additive_chi2_kernel

sklearn.metrics.pairwise.additive_chi2_kernel(X, Y=None)
Computes the additive chi-squared kernel between observations in X and Y

The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative.
This kernel is most commonly applied to histograms.

The chi-squared kernel is given by:

k(x, y) = -Sum [(x - y)^2 / (x + y)]

It can be interpreted as a weighted difference per entry.

Read more in the User Guide.

Parameters X : array-like of shape (n_samples_X, n_features)

Y : array of shape (n_samples_Y, n_features)

Returns kernel_matrix : array of shape (n_samples_X, n_samples_Y)

See also:

chi2_kernel The exponentiated version of the kernel, which is usually preferable.

sklearn.kernel_approximation.AdditiveChi2Sampler A Fourier approximation to this ker-
nel.

Notes

As the negative of a distance, this kernel is only conditionally positive definite.

References

• Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification
of texture and object categories: A comprehensive study International Journal of Computer Vision 2007
http://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf

sklearn.metrics.pairwise.chi2_kernel

sklearn.metrics.pairwise.chi2_kernel(X, Y=None, gamma=1.0)
Computes the exponential chi-squared kernel X and Y.

The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative.
This kernel is most commonly applied to histograms.

The chi-squared kernel is given by:

k(x, y) = exp(-gamma Sum [(x - y)^2 / (x + y)])
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It can be interpreted as a weighted difference per entry.

Read more in the User Guide.

Parameters X : array-like of shape (n_samples_X, n_features)

Y : array of shape (n_samples_Y, n_features)

gamma : float, default=1.

Scaling parameter of the chi2 kernel.

Returns kernel_matrix : array of shape (n_samples_X, n_samples_Y)

See also:

additive_chi2_kernel The additive version of this kernel

sklearn.kernel_approximation.AdditiveChi2Sampler A Fourier approximation to the addi-
tive version of this kernel.

References

• Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification
of texture and object categories: A comprehensive study International Journal of Computer Vision 2007
http://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf

sklearn.metrics.pairwise.cosine_similarity

sklearn.metrics.pairwise.cosine_similarity(X, Y=None, dense_output=True)
Compute cosine similarity between samples in X and Y.

Cosine similarity, or the cosine kernel, computes similarity as the normalized dot product of X and Y:

K(X, Y) = <X, Y> / (||X||*||Y||)

On L2-normalized data, this function is equivalent to linear_kernel.

Read more in the User Guide.

Parameters X : ndarray or sparse array, shape: (n_samples_X, n_features)

Input data.

Y : ndarray or sparse array, shape: (n_samples_Y, n_features)

Input data. If None, the output will be the pairwise similarities between all samples in
X.

dense_output : boolean (optional), default True

Whether to return dense output even when the input is sparse. If False, the output is
sparse if both input arrays are sparse.

New in version 0.17: parameter dense_output for dense output.

Returns kernel matrix : array

An array with shape (n_samples_X, n_samples_Y).
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sklearn.metrics.pairwise.cosine_distances

sklearn.metrics.pairwise.cosine_distances(X, Y=None)
Compute cosine distance between samples in X and Y.

Cosine distance is defined as 1.0 minus the cosine similarity.

Read more in the User Guide.

Parameters X : array_like, sparse matrix

with shape (n_samples_X, n_features).

Y : array_like, sparse matrix (optional)

with shape (n_samples_Y, n_features).

Returns distance matrix : array

An array with shape (n_samples_X, n_samples_Y).

See also:

sklearn.metrics.pairwise.cosine_similarity , scipy.spatial.distance.cosine

sklearn.metrics.pairwise.distance_metrics

sklearn.metrics.pairwise.distance_metrics()
Valid metrics for pairwise_distances.

This function simply returns the valid pairwise distance metrics. It exists to allow for a description of the
mapping for each of the valid strings.

The valid distance metrics, and the function they map to, are:

metric Function
‘cityblock’ metrics.pairwise.manhattan_distances
‘cosine’ metrics.pairwise.cosine_distances
‘euclidean’ metrics.pairwise.euclidean_distances
‘l1’ metrics.pairwise.manhattan_distances
‘l2’ metrics.pairwise.euclidean_distances
‘manhattan’ metrics.pairwise.manhattan_distances

Read more in the User Guide.

sklearn.metrics.pairwise.euclidean_distances

sklearn.metrics.pairwise.euclidean_distances(X, Y=None, Y_norm_squared=None,
squared=False, X_norm_squared=None)

Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors.

For efficiency reasons, the euclidean distance between a pair of row vector x and y is computed as:

dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y))

This formulation has two advantages over other ways of computing distances. First, it is computationally ef-
ficient when dealing with sparse data. Second, if one argument varies but the other remains unchanged, then
dot(x, x) and/or dot(y, y) can be pre-computed.
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However, this is not the most precise way of doing this computation, and the distance matrix returned by this
function may not be exactly symmetric as required by, e.g., scipy.spatial.distance functions.

Read more in the User Guide.

Parameters X : {array-like, sparse matrix}, shape (n_samples_1, n_features)

Y : {array-like, sparse matrix}, shape (n_samples_2, n_features)

Y_norm_squared : array-like, shape (n_samples_2, ), optional

Pre-computed dot-products of vectors in Y (e.g., (Y**2).sum(axis=1))

squared : boolean, optional

Return squared Euclidean distances.

X_norm_squared : array-like, shape = [n_samples_1], optional

Pre-computed dot-products of vectors in X (e.g., (X**2).sum(axis=1))

Returns distances : {array, sparse matrix}, shape (n_samples_1, n_samples_2)

See also:

paired_distances distances betweens pairs of elements of X and Y.

Examples

>>> from sklearn.metrics.pairwise import euclidean_distances
>>> X = [[0, 1], [1, 1]]
>>> # distance between rows of X
>>> euclidean_distances(X, X)
array([[ 0., 1.],

[ 1., 0.]])
>>> # get distance to origin
>>> euclidean_distances(X, [[0, 0]])
array([[ 1. ],

[ 1.41421356]])

sklearn.metrics.pairwise.kernel_metrics

sklearn.metrics.pairwise.kernel_metrics()
Valid metrics for pairwise_kernels

This function simply returns the valid pairwise distance metrics. It exists, however, to allow for a verbose
description of the mapping for each of the valid strings.

The valid distance metrics, and the function they map to, are:
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metric Function
‘additive_chi2’ sklearn.pairwise.additive_chi2_kernel
‘chi2’ sklearn.pairwise.chi2_kernel
‘linear’ sklearn.pairwise.linear_kernel
‘poly’ sklearn.pairwise.polynomial_kernel
‘polynomial’ sklearn.pairwise.polynomial_kernel
‘rbf’ sklearn.pairwise.rbf_kernel
‘laplacian’ sklearn.pairwise.laplacian_kernel
‘sigmoid’ sklearn.pairwise.sigmoid_kernel
‘cosine’ sklearn.pairwise.cosine_similarity

Read more in the User Guide.

sklearn.metrics.pairwise.laplacian_kernel

sklearn.metrics.pairwise.laplacian_kernel(X, Y=None, gamma=None)
Compute the laplacian kernel between X and Y.

The laplacian kernel is defined as:

K(x, y) = exp(-gamma ||x-y||_1)

for each pair of rows x in X and y in Y. Read more in the User Guide.

New in version 0.17.

Parameters X : array of shape (n_samples_X, n_features)

Y : array of shape (n_samples_Y, n_features)

gamma : float, default None

If None, defaults to 1.0 / n_features

Returns kernel_matrix : array of shape (n_samples_X, n_samples_Y)

sklearn.metrics.pairwise.linear_kernel

sklearn.metrics.pairwise.linear_kernel(X, Y=None)
Compute the linear kernel between X and Y.

Read more in the User Guide.

Parameters X : array of shape (n_samples_1, n_features)

Y : array of shape (n_samples_2, n_features)

Returns Gram matrix : array of shape (n_samples_1, n_samples_2)

sklearn.metrics.pairwise.manhattan_distances

sklearn.metrics.pairwise.manhattan_distances(X, Y=None, sum_over_features=True,
size_threshold=None)

Compute the L1 distances between the vectors in X and Y.

With sum_over_features equal to False it returns the componentwise distances.

Read more in the User Guide.
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Parameters X : array_like

An array with shape (n_samples_X, n_features).

Y : array_like, optional

An array with shape (n_samples_Y, n_features).

sum_over_features : bool, default=True

If True the function returns the pairwise distance matrix else it returns the component-
wise L1 pairwise-distances. Not supported for sparse matrix inputs.

size_threshold : int, default=5e8

Unused parameter.

Returns D : array

If sum_over_features is False shape is (n_samples_X * n_samples_Y, n_features) and D
contains the componentwise L1 pairwise-distances (ie. absolute difference), else shape
is (n_samples_X, n_samples_Y) and D contains the pairwise L1 distances.

Examples

>>> from sklearn.metrics.pairwise import manhattan_distances
>>> manhattan_distances([[3]], [[3]])
array([[ 0.]])
>>> manhattan_distances([[3]], [[2]])
array([[ 1.]])
>>> manhattan_distances([[2]], [[3]])
array([[ 1.]])
>>> manhattan_distances([[1, 2], [3, 4]], [[1, 2], [0, 3]])
array([[ 0., 2.],

[ 4., 4.]])
>>> import numpy as np
>>> X = np.ones((1, 2))
>>> y = 2 * np.ones((2, 2))
>>> manhattan_distances(X, y, sum_over_features=False)
array([[ 1., 1.],

[ 1., 1.]]...)

sklearn.metrics.pairwise.pairwise_distances

sklearn.metrics.pairwise.pairwise_distances(X, Y=None, metric=’euclidean’, n_jobs=1,
**kwds)

Compute the distance matrix from a vector array X and optional Y.

This method takes either a vector array or a distance matrix, and returns a distance matrix. If the input is a vector
array, the distances are computed. If the input is a distances matrix, it is returned instead.

This method provides a safe way to take a distance matrix as input, while preserving compatibility with many
other algorithms that take a vector array.

If Y is given (default is None), then the returned matrix is the pairwise distance between the arrays from both X
and Y.

Valid values for metric are:
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• From scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]. These metrics support sparse
matrix inputs.

• From scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’, ‘dice’, ‘hamming’, ‘jac-
card’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’,
‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’] See the documentation for scipy.spatial.distance for
details on these metrics. These metrics do not support sparse matrix inputs.

Note that in the case of ‘cityblock’, ‘cosine’ and ‘euclidean’ (which are valid scipy.spatial.distance met-
rics), the scikit-learn implementation will be used, which is faster and has support for sparse matrices (ex-
cept for ‘cityblock’). For a verbose description of the metrics from scikit-learn, see the __doc__ of the
sklearn.pairwise.distance_metrics function.

Read more in the User Guide.

Parameters X : array [n_samples_a, n_samples_a] if metric == “precomputed”, or, [n_samples_a,
n_features] otherwise

Array of pairwise distances between samples, or a feature array.

Y : array [n_samples_b, n_features], optional

An optional second feature array. Only allowed if metric != “precomputed”.

metric : string, or callable

The metric to use when calculating distance between instances in a feature
array. If metric is a string, it must be one of the options allowed by
scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pair-
wise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is “precomputed”, X is assumed
to be a distance matrix. Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable should take two
arrays from X as input and return a value indicating the distance between them.

n_jobs : int

The number of jobs to use for the computation. This works by breaking down the
pairwise matrix into n_jobs even slices and computing them in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

**kwds : optional keyword parameters

Any further parameters are passed directly to the distance function. If using a
scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy
docs for usage examples.

Returns D : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]

A distance matrix D such that D_{i, j} is the distance between the ith and jth vectors of
the given matrix X, if Y is None. If Y is not None, then D_{i, j} is the distance between
the ith array from X and the jth array from Y.

sklearn.metrics.pairwise.pairwise_kernels

sklearn.metrics.pairwise.pairwise_kernels(X, Y=None, metric=’linear’, fil-
ter_params=False, n_jobs=1, **kwds)

Compute the kernel between arrays X and optional array Y.
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This method takes either a vector array or a kernel matrix, and returns a kernel matrix. If the input is a vector
array, the kernels are computed. If the input is a kernel matrix, it is returned instead.

This method provides a safe way to take a kernel matrix as input, while preserving compatibility with many
other algorithms that take a vector array.

If Y is given (default is None), then the returned matrix is the pairwise kernel between the arrays from both X
and Y.

Valid values for metric are:: [‘rbf’, ‘sigmoid’, ‘polynomial’, ‘poly’, ‘linear’, ‘cosine’]

Read more in the User Guide.

Parameters X : array [n_samples_a, n_samples_a] if metric == “precomputed”, or, [n_samples_a,
n_features] otherwise

Array of pairwise kernels between samples, or a feature array.

Y : array [n_samples_b, n_features]

A second feature array only if X has shape [n_samples_a, n_features].

metric : string, or callable

The metric to use when calculating kernel between instances in a feature
array. If metric is a string, it must be one of the metrics in pair-
wise.PAIRWISE_KERNEL_FUNCTIONS. If metric is “precomputed”, X is assumed
to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable should take two
arrays from X as input and return a value indicating the distance between them.

filter_params : boolean

Whether to filter invalid parameters or not.

n_jobs : int

The number of jobs to use for the computation. This works by breaking down the
pairwise matrix into n_jobs even slices and computing them in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

**kwds : optional keyword parameters

Any further parameters are passed directly to the kernel function.

Returns K : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]

A kernel matrix K such that K_{i, j} is the kernel between the ith and jth vectors of the
given matrix X, if Y is None. If Y is not None, then K_{i, j} is the kernel between the
ith array from X and the jth array from Y.

Notes

If metric is ‘precomputed’, Y is ignored and X is returned.
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sklearn.metrics.pairwise.polynomial_kernel

sklearn.metrics.pairwise.polynomial_kernel(X, Y=None, degree=3, gamma=None,
coef0=1)

Compute the polynomial kernel between X and Y:

K(X, Y) = (gamma <X, Y> + coef0)^degree

Read more in the User Guide.

Parameters X : ndarray of shape (n_samples_1, n_features)

Y : ndarray of shape (n_samples_2, n_features)

degree : int, default 3

gamma : float, default None

if None, defaults to 1.0 / n_features

coef0 : int, default 1

Returns Gram matrix : array of shape (n_samples_1, n_samples_2)

sklearn.metrics.pairwise.rbf_kernel

sklearn.metrics.pairwise.rbf_kernel(X, Y=None, gamma=None)
Compute the rbf (gaussian) kernel between X and Y:

K(x, y) = exp(-gamma ||x-y||^2)

for each pair of rows x in X and y in Y.

Read more in the User Guide.

Parameters X : array of shape (n_samples_X, n_features)

Y : array of shape (n_samples_Y, n_features)

gamma : float, default None

If None, defaults to 1.0 / n_features

Returns kernel_matrix : array of shape (n_samples_X, n_samples_Y)

sklearn.metrics.pairwise.sigmoid_kernel

sklearn.metrics.pairwise.sigmoid_kernel(X, Y=None, gamma=None, coef0=1)
Compute the sigmoid kernel between X and Y:

K(X, Y) = tanh(gamma <X, Y> + coef0)

Read more in the User Guide.

Parameters X : ndarray of shape (n_samples_1, n_features)

Y : ndarray of shape (n_samples_2, n_features)

gamma : float, default None

If None, defaults to 1.0 / n_features

coef0 : int, default 1
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Returns Gram matrix : array of shape (n_samples_1, n_samples_2)

sklearn.metrics.pairwise.paired_euclidean_distances

sklearn.metrics.pairwise.paired_euclidean_distances(X, Y)
Computes the paired euclidean distances between X and Y

Read more in the User Guide.

Parameters X : array-like, shape (n_samples, n_features)

Y : array-like, shape (n_samples, n_features)

Returns distances : ndarray (n_samples, )

sklearn.metrics.pairwise.paired_manhattan_distances

sklearn.metrics.pairwise.paired_manhattan_distances(X, Y)
Compute the L1 distances between the vectors in X and Y.

Read more in the User Guide.

Parameters X : array-like, shape (n_samples, n_features)

Y : array-like, shape (n_samples, n_features)

Returns distances : ndarray (n_samples, )

sklearn.metrics.pairwise.paired_cosine_distances

sklearn.metrics.pairwise.paired_cosine_distances(X, Y)
Computes the paired cosine distances between X and Y

Read more in the User Guide.

Parameters X : array-like, shape (n_samples, n_features)

Y : array-like, shape (n_samples, n_features)

Returns distances : ndarray, shape (n_samples, )

Notes

The cosine distance is equivalent to the half the squared euclidean distance if each sample is normalized to unit
norm

sklearn.metrics.pairwise.paired_distances

sklearn.metrics.pairwise.paired_distances(X, Y, metric=’euclidean’, **kwds)
Computes the paired distances between X and Y.

Computes the distances between (X[0], Y[0]), (X[1], Y[1]), etc. . .

Read more in the User Guide.

Parameters X : ndarray (n_samples, n_features)

Array 1 for distance computation.
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Y : ndarray (n_samples, n_features)

Array 2 for distance computation.

metric : string or callable

The metric to use when calculating distance between instances in a feature array. If
metric is a string, it must be one of the options specified in PAIRED_DISTANCES,
including “euclidean”, “manhattan”, or “cosine”. Alternatively, if metric is a callable
function, it is called on each pair of instances (rows) and the resulting value recorded.
The callable should take two arrays from X as input and return a value indicating the
distance between them.

Returns distances : ndarray (n_samples, )

See also:

pairwise_distances pairwise distances.

Examples

>>> from sklearn.metrics.pairwise import paired_distances
>>> X = [[0, 1], [1, 1]]
>>> Y = [[0, 1], [2, 1]]
>>> paired_distances(X, Y)
array([ 0., 1.])

sklearn.metrics.pairwise_distances

sklearn.metrics.pairwise_distances(X, Y=None, metric=’euclidean’, n_jobs=1, **kwds)
Compute the distance matrix from a vector array X and optional Y.

This method takes either a vector array or a distance matrix, and returns a distance matrix. If the input is a vector
array, the distances are computed. If the input is a distances matrix, it is returned instead.

This method provides a safe way to take a distance matrix as input, while preserving compatibility with many
other algorithms that take a vector array.

If Y is given (default is None), then the returned matrix is the pairwise distance between the arrays from both X
and Y.

Valid values for metric are:

• From scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]. These metrics support sparse
matrix inputs.

• From scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’, ‘dice’, ‘hamming’, ‘jac-
card’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’,
‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’] See the documentation for scipy.spatial.distance for
details on these metrics. These metrics do not support sparse matrix inputs.

Note that in the case of ‘cityblock’, ‘cosine’ and ‘euclidean’ (which are valid scipy.spatial.distance met-
rics), the scikit-learn implementation will be used, which is faster and has support for sparse matrices (ex-
cept for ‘cityblock’). For a verbose description of the metrics from scikit-learn, see the __doc__ of the
sklearn.pairwise.distance_metrics function.

Read more in the User Guide.
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Parameters X : array [n_samples_a, n_samples_a] if metric == “precomputed”, or, [n_samples_a,
n_features] otherwise

Array of pairwise distances between samples, or a feature array.

Y : array [n_samples_b, n_features], optional

An optional second feature array. Only allowed if metric != “precomputed”.

metric : string, or callable

The metric to use when calculating distance between instances in a feature
array. If metric is a string, it must be one of the options allowed by
scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pair-
wise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is “precomputed”, X is assumed
to be a distance matrix. Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable should take two
arrays from X as input and return a value indicating the distance between them.

n_jobs : int

The number of jobs to use for the computation. This works by breaking down the
pairwise matrix into n_jobs even slices and computing them in parallel.

If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which
is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used.

**kwds : optional keyword parameters

Any further parameters are passed directly to the distance function. If using a
scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy
docs for usage examples.

Returns D : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]

A distance matrix D such that D_{i, j} is the distance between the ith and jth vectors of
the given matrix X, if Y is None. If Y is not None, then D_{i, j} is the distance between
the ith array from X and the jth array from Y.

Examples using sklearn.metrics.pairwise_distances

• Agglomerative clustering with different metrics

sklearn.metrics.pairwise_distances_argmin

sklearn.metrics.pairwise_distances_argmin(X, Y, axis=1, metric=’euclidean’,
batch_size=500, metric_kwargs=None)

Compute minimum distances between one point and a set of points.

This function computes for each row in X, the index of the row of Y which is closest (according to the specified
distance).

This is mostly equivalent to calling:

pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis)

but uses much less memory, and is faster for large arrays.

This function works with dense 2D arrays only.
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Parameters X : array-like

Arrays containing points. Respective shapes (n_samples1, n_features) and
(n_samples2, n_features)

Y : array-like

Arrays containing points. Respective shapes (n_samples1, n_features) and
(n_samples2, n_features)

axis : int, optional, default 1

Axis along which the argmin and distances are to be computed.

metric : string or callable

metric to use for distance computation. Any metric from scikit-learn or
scipy.spatial.distance can be used.

If metric is a callable function, it is called on each pair of instances (rows) and the
resulting value recorded. The callable should take two arrays as input and return one
value indicating the distance between them. This works for Scipy’s metrics, but is less
efficient than passing the metric name as a string.

Distance matrices are not supported.

Valid values for metric are:

• from scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]

• from scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’,
‘dice’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’,
‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeu-
clidean’, ‘yule’]

See the documentation for scipy.spatial.distance for details on these metrics.

batch_size : integer

To reduce memory consumption over the naive solution, data are processed in batches,
comprising batch_size rows of X and batch_size rows of Y. The default value is quite
conservative, but can be changed for fine-tuning. The larger the number, the larger the
memory usage.

metric_kwargs : dict

keyword arguments to pass to specified metric function.

Returns argmin : numpy.ndarray

Y[argmin[i], :] is the row in Y that is closest to X[i, :].

See also:

sklearn.metrics.pairwise_distances, sklearn.metrics.pairwise_distances_argmin_min

Examples using sklearn.metrics.pairwise_distances_argmin

• Color Quantization using K-Means

• Comparison of the K-Means and MiniBatchKMeans clustering algorithms
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sklearn.metrics.pairwise_distances_argmin_min

sklearn.metrics.pairwise_distances_argmin_min(X, Y, axis=1, metric=’euclidean’,
batch_size=500, metric_kwargs=None)

Compute minimum distances between one point and a set of points.

This function computes for each row in X, the index of the row of Y which is closest (according to the specified
distance). The minimal distances are also returned.

This is mostly equivalent to calling:

(pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis), pairwise_distances(X, Y=Y,
metric=metric).min(axis=axis))

but uses much less memory, and is faster for large arrays.

Parameters X : {array-like, sparse matrix}, shape (n_samples1, n_features)

Array containing points.

Y : {array-like, sparse matrix}, shape (n_samples2, n_features)

Arrays containing points.

axis : int, optional, default 1

Axis along which the argmin and distances are to be computed.

metric : string or callable, default ‘euclidean’

metric to use for distance computation. Any metric from scikit-learn or
scipy.spatial.distance can be used.

If metric is a callable function, it is called on each pair of instances (rows) and the
resulting value recorded. The callable should take two arrays as input and return one
value indicating the distance between them. This works for Scipy’s metrics, but is less
efficient than passing the metric name as a string.

Distance matrices are not supported.

Valid values for metric are:

• from scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]

• from scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’,
‘dice’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’,
‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeu-
clidean’, ‘yule’]

See the documentation for scipy.spatial.distance for details on these metrics.

batch_size : integer

To reduce memory consumption over the naive solution, data are processed in batches,
comprising batch_size rows of X and batch_size rows of Y. The default value is quite
conservative, but can be changed for fine-tuning. The larger the number, the larger the
memory usage.

metric_kwargs : dict, optional

Keyword arguments to pass to specified metric function.

Returns argmin : numpy.ndarray

Y[argmin[i], :] is the row in Y that is closest to X[i, :].

distances : numpy.ndarray
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distances[i] is the distance between the i-th row in X and the argmin[i]-th row in Y.

See also:

sklearn.metrics.pairwise_distances, sklearn.metrics.pairwise_distances_argmin

5.22 sklearn.mixture: Gaussian Mixture Models

The sklearn.mixture module implements mixture modeling algorithms.

User guide: See the Gaussian mixture models section for further details.

mixture.BayesianGaussianMixture([. . . ]) Variational Bayesian estimation of a Gaussian mixture.
mixture.GaussianMixture([n_components, . . . ]) Gaussian Mixture.

5.22.1 sklearn.mixture.BayesianGaussianMixture

class sklearn.mixture.BayesianGaussianMixture(n_components=1, covariance_type=’full’,
tol=0.001, reg_covar=1e-06, max_iter=100,
n_init=1, init_params=’kmeans’,
weight_concentration_prior_type=’dirichlet_process’,
weight_concentration_prior=None,
mean_precision_prior=None,
mean_prior=None, de-
grees_of_freedom_prior=None, covari-
ance_prior=None, random_state=None,
warm_start=False, verbose=0, ver-
bose_interval=10)

Variational Bayesian estimation of a Gaussian mixture.

This class allows to infer an approximate posterior distribution over the parameters of a Gaussian mixture
distribution. The effective number of components can be inferred from the data.

This class implements two types of prior for the weights distribution: a finite mixture model with Dirichlet
distribution and an infinite mixture model with the Dirichlet Process. In practice Dirichlet Process inference
algorithm is approximated and uses a truncated distribution with a fixed maximum number of components
(called the Stick-breaking representation). The number of components actually used almost always depends on
the data.

New in version 0.18.

Read more in the User Guide.

Parameters n_components : int, defaults to 1.

The number of mixture components. Depending on the data and the value of the
weight_concentration_prior the model can decide to not use all the components by
setting some component weights_ to values very close to zero. The number of effective
components is therefore smaller than n_components.

covariance_type : {‘full’, ‘tied’, ‘diag’, ‘spherical’}, defaults to ‘full’

String describing the type of covariance parameters to use. Must be one of:

'full' (each component has its own general covariance matrix),
'tied' (all components share the same general covariance
→˓matrix),
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'diag' (each component has its own diagonal covariance matrix),
'spherical' (each component has its own single variance).

tol : float, defaults to 1e-3.

The convergence threshold. EM iterations will stop when the lower bound average gain
on the likelihood (of the training data with respect to the model) is below this threshold.

reg_covar : float, defaults to 1e-6.

Non-negative regularization added to the diagonal of covariance. Allows to assure that
the covariance matrices are all positive.

max_iter : int, defaults to 100.

The number of EM iterations to perform.

n_init : int, defaults to 1.

The number of initializations to perform. The result with the highest lower bound value
on the likelihood is kept.

init_params : {‘kmeans’, ‘random’}, defaults to ‘kmeans’.

The method used to initialize the weights, the means and the covariances. Must be one
of:

'kmeans' : responsibilities are initialized using kmeans.
'random' : responsibilities are initialized randomly.

weight_concentration_prior_type : str, defaults to ‘dirichlet_process’.

String describing the type of the weight concentration prior. Must be one of:

'dirichlet_process' (using the Stick-breaking representation),
'dirichlet_distribution' (can favor more uniform weights).

weight_concentration_prior : float | None, optional.

The dirichlet concentration of each component on the weight distribution (Dirichlet).
This is commonly called gamma in the literature. The higher concentration puts more
mass in the center and will lead to more components being active, while a lower con-
centration parameter will lead to more mass at the edge of the mixture weights simplex.
The value of the parameter must be greater than 0. If it is None, it’s set to 1. /
n_components.

mean_precision_prior : float | None, optional.

The precision prior on the mean distribution (Gaussian). Controls the extend to where
means can be placed. Smaller values concentrate the means of each clusters around
mean_prior. The value of the parameter must be greater than 0. If it is None, it’s set to
1.

mean_prior : array-like, shape (n_features,), optional

The prior on the mean distribution (Gaussian). If it is None, it’s set to the mean of X.

degrees_of_freedom_prior : float | None, optional.

The prior of the number of degrees of freedom on the covariance distributions (Wishart).
If it is None, it’s set to n_features.

covariance_prior : float or array-like, optional
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The prior on the covariance distribution (Wishart). If it is None, the emiprical co-
variance prior is initialized using the covariance of X. The shape depends on covari-
ance_type:

(n_features, n_features) if 'full',
(n_features, n_features) if 'tied',
(n_features) if 'diag',
float if 'spherical'

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

warm_start : bool, default to False.

If ‘warm_start’ is True, the solution of the last fitting is used as initialization for the next
call of fit(). This can speed up convergence when fit is called several time on similar
problems.

verbose : int, default to 0.

Enable verbose output. If 1 then it prints the current initialization and each iteration
step. If greater than 1 then it prints also the log probability and the time needed for each
step.

verbose_interval : int, default to 10.

Number of iteration done before the next print.

Attributes weights_ : array-like, shape (n_components,)

The weights of each mixture components.

means_ : array-like, shape (n_components, n_features)

The mean of each mixture component.

covariances_ : array-like

The covariance of each mixture component. The shape depends on covariance_type:

(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'

precisions_ : array-like

The precision matrices for each component in the mixture. A precision matrix is the
inverse of a covariance matrix. A covariance matrix is symmetric positive definite so
the mixture of Gaussian can be equivalently parameterized by the precision matrices.
Storing the precision matrices instead of the covariance matrices makes it more effi-
cient to compute the log-likelihood of new samples at test time. The shape depends on
covariance_type:

(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'

precisions_cholesky_ : array-like
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The cholesky decomposition of the precision matrices of each mixture component. A
precision matrix is the inverse of a covariance matrix. A covariance matrix is symmetric
positive definite so the mixture of Gaussian can be equivalently parameterized by the
precision matrices. Storing the precision matrices instead of the covariance matrices
makes it more efficient to compute the log-likelihood of new samples at test time. The
shape depends on covariance_type:

(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'

converged_ : bool

True when convergence was reached in fit(), False otherwise.

n_iter_ : int

Number of step used by the best fit of inference to reach the convergence.

lower_bound_ : float

Lower bound value on the likelihood (of the training data with respect to the model) of
the best fit of inference.

weight_concentration_prior_ : tuple or float

The dirichlet concentration of each component on the weight distribution (Dirichlet).
The type depends on weight_concentration_prior_type:

(float, float) if 'dirichlet_process' (Beta parameters),
float if 'dirichlet_distribution' (Dirichlet
→˓parameters).

The higher concentration puts more mass in the center and will lead to more components
being active, while a lower concentration parameter will lead to more mass at the edge
of the simplex.

weight_concentration_ : array-like, shape (n_components,)

The dirichlet concentration of each component on the weight distribution (Dirichlet).

mean_precision_prior : float

The precision prior on the mean distribution (Gaussian). Controls the extend to where
means can be placed. Smaller values concentrate the means of each clusters around
mean_prior.

mean_precision_ : array-like, shape (n_components,)

The precision of each components on the mean distribution (Gaussian).

means_prior_ : array-like, shape (n_features,)

The prior on the mean distribution (Gaussian).

degrees_of_freedom_prior_ : float

The prior of the number of degrees of freedom on the covariance distributions (Wishart).

degrees_of_freedom_ : array-like, shape (n_components,)

The number of degrees of freedom of each components in the model.

covariance_prior_ : float or array-like
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The prior on the covariance distribution (Wishart). The shape depends on covari-
ance_type:

(n_features, n_features) if 'full',
(n_features, n_features) if 'tied',
(n_features) if 'diag',
float if 'spherical'

See also:

GaussianMixture Finite Gaussian mixture fit with EM.

References

[R68], [R69], [R70]

Methods

fit(X[, y]) Estimate model parameters with the EM algorithm.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict the labels for the data samples in X using trained

model.
predict_proba(X) Predict posterior probability of each component given

the data.
sample([n_samples]) Generate random samples from the fitted Gaussian dis-

tribution.
score(X[, y]) Compute the per-sample average log-likelihood of the

given data X.
score_samples(X) Compute the weighted log probabilities for each sam-

ple.
set_params(**params) Set the parameters of this estimator.

__init__(n_components=1, covariance_type=’full’, tol=0.001, reg_covar=1e-06, max_iter=100,
n_init=1, init_params=’kmeans’, weight_concentration_prior_type=’dirichlet_process’,
weight_concentration_prior=None, mean_precision_prior=None, mean_prior=None,
degrees_of_freedom_prior=None, covariance_prior=None, random_state=None,
warm_start=False, verbose=0, verbose_interval=10)

fit(X, y=None)
Estimate model parameters with the EM algorithm.

The method fit the model n_init times and set the parameters with which the model has the largest likeli-
hood or lower bound. Within each trial, the method iterates between E-step and M-step for max_iter times
until the change of likelihood or lower bound is less than tol, otherwise, a ConvergenceWarning is raised.

Parameters X : array-like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns self :

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional
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If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict the labels for the data samples in X using trained model.

Parameters X : array-like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns labels : array, shape (n_samples,)

Component labels.

predict_proba(X)
Predict posterior probability of each component given the data.

Parameters X : array-like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns resp : array, shape (n_samples, n_components)

Returns the probability each Gaussian (state) in the model given each sample.

sample(n_samples=1)
Generate random samples from the fitted Gaussian distribution.

Parameters n_samples : int, optional

Number of samples to generate. Defaults to 1.

Returns X : array, shape (n_samples, n_features)

Randomly generated sample

y : array, shape (nsamples,)

Component labels

score(X, y=None)
Compute the per-sample average log-likelihood of the given data X.

Parameters X : array-like, shape (n_samples, n_dimensions)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns log_likelihood : float

Log likelihood of the Gaussian mixture given X.

score_samples(X)
Compute the weighted log probabilities for each sample.

Parameters X : array-like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns log_prob : array, shape (n_samples,)

Log probabilities of each data point in X.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.mixture.BayesianGaussianMixture

• Concentration Prior Type Analysis of Variation Bayesian Gaussian Mixture

• Gaussian Mixture Model Ellipsoids

• Gaussian Mixture Model Sine Curve

5.22.2 sklearn.mixture.GaussianMixture

class sklearn.mixture.GaussianMixture(n_components=1, covariance_type=’full’, tol=0.001,
reg_covar=1e-06, max_iter=100, n_init=1,
init_params=’kmeans’, weights_init=None,
means_init=None, precisions_init=None, ran-
dom_state=None, warm_start=False, verbose=0,
verbose_interval=10)

Gaussian Mixture.

Representation of a Gaussian mixture model probability distribution. This class allows to estimate the parame-
ters of a Gaussian mixture distribution.

Read more in the User Guide.

New in version 0.18.

Parameters n_components : int, defaults to 1.

The number of mixture components.

covariance_type : {‘full’, ‘tied’, ‘diag’, ‘spherical’},

defaults to ‘full’.

String describing the type of covariance parameters to use. Must be one of:

'full' (each component has its own general covariance matrix),
'tied' (all components share the same general covariance
→˓matrix),
'diag' (each component has its own diagonal covariance matrix),
'spherical' (each component has its own single variance).

tol : float, defaults to 1e-3.

The convergence threshold. EM iterations will stop when the lower bound average gain
is below this threshold.

reg_covar : float, defaults to 1e-6.

Non-negative regularization added to the diagonal of covariance. Allows to assure that
the covariance matrices are all positive.

max_iter : int, defaults to 100.
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The number of EM iterations to perform.

n_init : int, defaults to 1.

The number of initializations to perform. The best results are kept.

init_params : {‘kmeans’, ‘random’}, defaults to ‘kmeans’.

The method used to initialize the weights, the means and the precisions. Must be one
of:

'kmeans' : responsibilities are initialized using kmeans.
'random' : responsibilities are initialized randomly.

weights_init : array-like, shape (n_components, ), optional

The user-provided initial weights, defaults to None. If it None, weights are initialized
using the init_params method.

means_init : array-like, shape (n_components, n_features), optional

The user-provided initial means, defaults to None, If it None, means are initialized using
the init_params method.

precisions_init : array-like, optional.

The user-provided initial precisions (inverse of the covariance matrices), defaults to
None. If it None, precisions are initialized using the ‘init_params’ method. The shape
depends on ‘covariance_type’:

(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

warm_start : bool, default to False.

If ‘warm_start’ is True, the solution of the last fitting is used as initialization for the next
call of fit(). This can speed up convergence when fit is called several time on similar
problems.

verbose : int, default to 0.

Enable verbose output. If 1 then it prints the current initialization and each iteration
step. If greater than 1 then it prints also the log probability and the time needed for each
step.

verbose_interval : int, default to 10.

Number of iteration done before the next print.

Attributes weights_ : array-like, shape (n_components,)

The weights of each mixture components.

means_ : array-like, shape (n_components, n_features)

The mean of each mixture component.
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covariances_ : array-like

The covariance of each mixture component. The shape depends on covariance_type:

(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'

precisions_ : array-like

The precision matrices for each component in the mixture. A precision matrix is the
inverse of a covariance matrix. A covariance matrix is symmetric positive definite so
the mixture of Gaussian can be equivalently parameterized by the precision matrices.
Storing the precision matrices instead of the covariance matrices makes it more effi-
cient to compute the log-likelihood of new samples at test time. The shape depends on
covariance_type:

(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'

precisions_cholesky_ : array-like

The cholesky decomposition of the precision matrices of each mixture component. A
precision matrix is the inverse of a covariance matrix. A covariance matrix is symmetric
positive definite so the mixture of Gaussian can be equivalently parameterized by the
precision matrices. Storing the precision matrices instead of the covariance matrices
makes it more efficient to compute the log-likelihood of new samples at test time. The
shape depends on covariance_type:

(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'

converged_ : bool

True when convergence was reached in fit(), False otherwise.

n_iter_ : int

Number of step used by the best fit of EM to reach the convergence.

lower_bound_ : float

Log-likelihood of the best fit of EM.

See also:

BayesianGaussianMixture Gaussian mixture model fit with a variational inference.

Methods

aic(X) Akaike information criterion for the current model on
the input X.

Continued on next page
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Table 5.175 – continued from previous page
bic(X) Bayesian information criterion for the current model on

the input X.
fit(X[, y]) Estimate model parameters with the EM algorithm.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict the labels for the data samples in X using trained

model.
predict_proba(X) Predict posterior probability of each component given

the data.
sample([n_samples]) Generate random samples from the fitted Gaussian dis-

tribution.
score(X[, y]) Compute the per-sample average log-likelihood of the

given data X.
score_samples(X) Compute the weighted log probabilities for each sam-

ple.
set_params(**params) Set the parameters of this estimator.

__init__(n_components=1, covariance_type=’full’, tol=0.001, reg_covar=1e-06, max_iter=100,
n_init=1, init_params=’kmeans’, weights_init=None, means_init=None, pre-
cisions_init=None, random_state=None, warm_start=False, verbose=0, ver-
bose_interval=10)

aic(X)
Akaike information criterion for the current model on the input X.

Parameters X : array of shape (n_samples, n_dimensions)

Returns aic : float

The lower the better.

bic(X)
Bayesian information criterion for the current model on the input X.

Parameters X : array of shape (n_samples, n_dimensions)

Returns bic : float

The lower the better.

fit(X, y=None)
Estimate model parameters with the EM algorithm.

The method fit the model n_init times and set the parameters with which the model has the largest likeli-
hood or lower bound. Within each trial, the method iterates between E-step and M-step for max_iter times
until the change of likelihood or lower bound is less than tol, otherwise, a ConvergenceWarning is raised.

Parameters X : array-like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns self :

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any
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Parameter names mapped to their values.

predict(X)
Predict the labels for the data samples in X using trained model.

Parameters X : array-like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns labels : array, shape (n_samples,)

Component labels.

predict_proba(X)
Predict posterior probability of each component given the data.

Parameters X : array-like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns resp : array, shape (n_samples, n_components)

Returns the probability each Gaussian (state) in the model given each sample.

sample(n_samples=1)
Generate random samples from the fitted Gaussian distribution.

Parameters n_samples : int, optional

Number of samples to generate. Defaults to 1.

Returns X : array, shape (n_samples, n_features)

Randomly generated sample

y : array, shape (nsamples,)

Component labels

score(X, y=None)
Compute the per-sample average log-likelihood of the given data X.

Parameters X : array-like, shape (n_samples, n_dimensions)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns log_likelihood : float

Log likelihood of the Gaussian mixture given X.

score_samples(X)
Compute the weighted log probabilities for each sample.

Parameters X : array-like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns log_prob : array, shape (n_samples,)

Log probabilities of each data point in X.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :
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Examples using sklearn.mixture.GaussianMixture

• Comparing different clustering algorithms on toy datasets

• Gaussian Mixture Model Ellipsoids

• GMM covariances

• Density Estimation for a Gaussian mixture

• Gaussian Mixture Model Selection

• Gaussian Mixture Model Sine Curve

5.23 sklearn.model_selection: Model Selection

User guide: See the Cross-validation: evaluating estimator performance, Tuning the hyper-parameters of an estima-
tor and Learning curve sections for further details.

5.23.1 Splitter Classes

model_selection.GroupKFold([n_splits]) K-fold iterator variant with non-overlapping groups.
model_selection.GroupShuffleSplit([. . . ]) Shuffle-Group(s)-Out cross-validation iterator
model_selection.KFold([n_splits, shuffle, . . . ]) K-Folds cross-validator
model_selection.LeaveOneGroupOut() Leave One Group Out cross-validator
model_selection.LeavePGroupsOut(n_groups) Leave P Group(s) Out cross-validator
model_selection.LeaveOneOut() Leave-One-Out cross-validator
model_selection.LeavePOut(p) Leave-P-Out cross-validator
model_selection.PredefinedSplit(test_fold) Predefined split cross-validator
model_selection.RepeatedKFold([n_splits,
. . . ])

Repeated K-Fold cross validator.

model_selection.RepeatedStratifiedKFold([. . . ])Repeated Stratified K-Fold cross validator.
model_selection.ShuffleSplit([n_splits, . . . ]) Random permutation cross-validator
model_selection.StratifiedKFold([n_splits,
. . . ])

Stratified K-Folds cross-validator

model_selection.StratifiedShuffleSplit([. . . ])Stratified ShuffleSplit cross-validator
model_selection.TimeSeriesSplit([n_splits,
. . . ])

Time Series cross-validator

sklearn.model_selection.GroupKFold

class sklearn.model_selection.GroupKFold(n_splits=3)
K-fold iterator variant with non-overlapping groups.

The same group will not appear in two different folds (the number of distinct groups has to be at least equal to
the number of folds).

The folds are approximately balanced in the sense that the number of distinct groups is approximately the same
in each fold.

Parameters n_splits : int, default=3

Number of folds. Must be at least 2.

See also:
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LeaveOneGroupOut For splitting the data according to explicit domain-specific stratification of the dataset.

Examples

>>> from sklearn.model_selection import GroupKFold
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 3, 4])
>>> groups = np.array([0, 0, 2, 2])
>>> group_kfold = GroupKFold(n_splits=2)
>>> group_kfold.get_n_splits(X, y, groups)
2
>>> print(group_kfold)
GroupKFold(n_splits=2)
>>> for train_index, test_index in group_kfold.split(X, y, groups):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
...
TRAIN: [0 1] TEST: [2 3]
[[1 2]
[3 4]] [[5 6]
[7 8]] [1 2] [3 4]

TRAIN: [2 3] TEST: [0 1]
[[5 6]
[7 8]] [[1 2]
[3 4]] [3 4] [1 2]

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the cross-
validator

split(X[, y, groups]) Generate indices to split data into training and test set.

__init__(n_splits=3)

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters X : object

Always ignored, exists for compatibility.

y : object

Always ignored, exists for compatibility.

groups : object

Always ignored, exists for compatibility.

Returns n_splits : int

Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generate indices to split data into training and test set.
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Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, shape (n_samples,)

The target variable for supervised learning problems.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set.

Returns train : ndarray

The training set indices for that split.

test : ndarray

The testing set indices for that split.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results
identical by setting random_state to an integer.

sklearn.model_selection.GroupShuffleSplit

class sklearn.model_selection.GroupShuffleSplit(n_splits=5, test_size=’default’,
train_size=None, random_state=None)

Shuffle-Group(s)-Out cross-validation iterator

Provides randomized train/test indices to split data according to a third-party provided group. This group infor-
mation can be used to encode arbitrary domain specific stratifications of the samples as integers.

For instance the groups could be the year of collection of the samples and thus allow for cross-validation against
time-based splits.

The difference between LeavePGroupsOut and GroupShuffleSplit is that the former generates splits using all
subsets of size p unique groups, whereas GroupShuffleSplit generates a user-determined number of random test
splits, each with a user-determined fraction of unique groups.

For example, a less computationally intensive alternative to LeavePGroupsOut(p=10) would be
GroupShuffleSplit(test_size=10, n_splits=100).

Note: The parameters test_size and train_size refer to groups, and not to samples, as in ShuffleSplit.

Parameters n_splits : int (default 5)

Number of re-shuffling & splitting iterations.

test_size : float, int, None, optional

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the test split. If int, represents the absolute number of test samples. If None,
the value is set to the complement of the train size. By default, the value is set to 0.2.
The default will change in version 0.21. It will remain 0.2 only if train_size is
unspecified, otherwise it will complement the specified train_size.

train_size : float, int, or None, default is None
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If float, should be between 0.0 and 1.0 and represent the proportion of the groups to
include in the train split. If int, represents the absolute number of train groups. If None,
the value is automatically set to the complement of the test size.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the cross-
validator

split(X[, y, groups]) Generate indices to split data into training and test set.

__init__(n_splits=5, test_size=’default’, train_size=None, random_state=None)

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters X : object

Always ignored, exists for compatibility.

y : object

Always ignored, exists for compatibility.

groups : object

Always ignored, exists for compatibility.

Returns n_splits : int

Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, shape (n_samples,)

The target variable for supervised learning problems.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set.

Returns train : ndarray

The training set indices for that split.

test : ndarray

The testing set indices for that split.
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Notes

Randomized CV splitters may return different results for each call of split. You can make the results
identical by setting random_state to an integer.

sklearn.model_selection.KFold

class sklearn.model_selection.KFold(n_splits=3, shuffle=False, random_state=None)
K-Folds cross-validator

Provides train/test indices to split data in train/test sets. Split dataset into k consecutive folds (without shuffling
by default).

Each fold is then used once as a validation while the k - 1 remaining folds form the training set.

Read more in the User Guide.

Parameters n_splits : int, default=3

Number of folds. Must be at least 2.

shuffle : boolean, optional

Whether to shuffle the data before splitting into batches.

random_state : int, RandomState instance or None, optional, default=None

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random. Used when shuffle ==
True.

See also:

StratifiedKFold Takes group information into account to avoid building folds with imbalanced class
distributions (for binary or multiclass classification tasks).

GroupKFold K-fold iterator variant with non-overlapping groups.

RepeatedKFold Repeats K-Fold n times.

Notes

The first n_samples % n_splits folds have size n_samples // n_splits + 1, other folds have
size n_samples // n_splits, where n_samples is the number of samples.

Examples

>>> from sklearn.model_selection import KFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([1, 2, 3, 4])
>>> kf = KFold(n_splits=2)
>>> kf.get_n_splits(X)
2
>>> print(kf)
KFold(n_splits=2, random_state=None, shuffle=False)
>>> for train_index, test_index in kf.split(X):
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... print("TRAIN:", train_index, "TEST:", test_index)

... X_train, X_test = X[train_index], X[test_index]

... y_train, y_test = y[train_index], y[test_index]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [0 1] TEST: [2 3]

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the cross-
validator

split(X[, y, groups]) Generate indices to split data into training and test set.

__init__(n_splits=3, shuffle=False, random_state=None)

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters X : object

Always ignored, exists for compatibility.

y : object

Always ignored, exists for compatibility.

groups : object

Always ignored, exists for compatibility.

Returns n_splits : int

Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, shape (n_samples,)

The target variable for supervised learning problems.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set.

Returns train : ndarray

The training set indices for that split.

test : ndarray

The testing set indices for that split.
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Notes

Randomized CV splitters may return different results for each call of split. You can make the results
identical by setting random_state to an integer.

Examples using sklearn.model_selection.KFold

• Feature agglomeration vs. univariate selection

• Gradient Boosting Out-of-Bag estimates

• Cross-validation on diabetes Dataset Exercise

• Nested versus non-nested cross-validation

sklearn.model_selection.LeaveOneGroupOut

class sklearn.model_selection.LeaveOneGroupOut
Leave One Group Out cross-validator

Provides train/test indices to split data according to a third-party provided group. This group information can be
used to encode arbitrary domain specific stratifications of the samples as integers.

For instance the groups could be the year of collection of the samples and thus allow for cross-validation against
time-based splits.

Read more in the User Guide.

Examples

>>> from sklearn.model_selection import LeaveOneGroupOut
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 1, 2])
>>> groups = np.array([1, 1, 2, 2])
>>> logo = LeaveOneGroupOut()
>>> logo.get_n_splits(X, y, groups)
2
>>> logo.get_n_splits(groups=groups) # 'groups' is always required
2
>>> print(logo)
LeaveOneGroupOut()
>>> for train_index, test_index in logo.split(X, y, groups):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
TRAIN: [2 3] TEST: [0 1]
[[5 6]
[7 8]] [[1 2]
[3 4]] [1 2] [1 2]

TRAIN: [0 1] TEST: [2 3]
[[1 2]
[3 4]] [[5 6]
[7 8]] [1 2] [1 2]
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Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the cross-
validator

split(X[, y, groups]) Generate indices to split data into training and test set.

__init__()

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters X : object, optional

Always ignored, exists for compatibility.

y : object, optional

Always ignored, exists for compatibility.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set. This
‘groups’ parameter must always be specified to calculate the number of splits, though
the other parameters can be omitted.

Returns n_splits : int

Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, of length n_samples

The target variable for supervised learning problems.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set.

Returns train : ndarray

The training set indices for that split.

test : ndarray

The testing set indices for that split.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results
identical by setting random_state to an integer.
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sklearn.model_selection.LeavePGroupsOut

class sklearn.model_selection.LeavePGroupsOut(n_groups)
Leave P Group(s) Out cross-validator

Provides train/test indices to split data according to a third-party provided group. This group information can be
used to encode arbitrary domain specific stratifications of the samples as integers.

For instance the groups could be the year of collection of the samples and thus allow for cross-validation against
time-based splits.

The difference between LeavePGroupsOut and LeaveOneGroupOut is that the former builds the test sets with
all the samples assigned to p different values of the groups while the latter uses samples all assigned the same
groups.

Read more in the User Guide.

Parameters n_groups : int

Number of groups (p) to leave out in the test split.

See also:

GroupKFold K-fold iterator variant with non-overlapping groups.

Examples

>>> from sklearn.model_selection import LeavePGroupsOut
>>> X = np.array([[1, 2], [3, 4], [5, 6]])
>>> y = np.array([1, 2, 1])
>>> groups = np.array([1, 2, 3])
>>> lpgo = LeavePGroupsOut(n_groups=2)
>>> lpgo.get_n_splits(X, y, groups)
3
>>> lpgo.get_n_splits(groups=groups) # 'groups' is always required
3
>>> print(lpgo)
LeavePGroupsOut(n_groups=2)
>>> for train_index, test_index in lpgo.split(X, y, groups):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
TRAIN: [2] TEST: [0 1]
[[5 6]] [[1 2]
[3 4]] [1] [1 2]

TRAIN: [1] TEST: [0 2]
[[3 4]] [[1 2]
[5 6]] [2] [1 1]

TRAIN: [0] TEST: [1 2]
[[1 2]] [[3 4]
[5 6]] [1] [2 1]

Methods
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get_n_splits([X, y, groups]) Returns the number of splitting iterations in the cross-
validator

split(X[, y, groups]) Generate indices to split data into training and test set.

__init__(n_groups)

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters X : object, optional

Always ignored, exists for compatibility.

y : object, optional

Always ignored, exists for compatibility.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set. This
‘groups’ parameter must always be specified to calculate the number of splits, though
the other parameters can be omitted.

Returns n_splits : int

Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, of length n_samples

The target variable for supervised learning problems.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set.

Returns train : ndarray

The training set indices for that split.

test : ndarray

The testing set indices for that split.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results
identical by setting random_state to an integer.

sklearn.model_selection.LeaveOneOut

class sklearn.model_selection.LeaveOneOut
Leave-One-Out cross-validator
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Provides train/test indices to split data in train/test sets. Each sample is used once as a test set (singleton) while
the remaining samples form the training set.

Note: LeaveOneOut() is equivalent to KFold(n_splits=n) and LeavePOut(p=1) where n is the
number of samples.

Due to the high number of test sets (which is the same as the number of samples) this cross-validation method
can be very costly. For large datasets one should favor KFold, ShuffleSplit or StratifiedKFold.

Read more in the User Guide.

See also:

LeaveOneGroupOut For splitting the data according to explicit, domain-specific stratification of the dataset.

GroupKFold K-fold iterator variant with non-overlapping groups.

Examples

>>> from sklearn.model_selection import LeaveOneOut
>>> X = np.array([[1, 2], [3, 4]])
>>> y = np.array([1, 2])
>>> loo = LeaveOneOut()
>>> loo.get_n_splits(X)
2
>>> print(loo)
LeaveOneOut()
>>> for train_index, test_index in loo.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
TRAIN: [1] TEST: [0]
[[3 4]] [[1 2]] [2] [1]
TRAIN: [0] TEST: [1]
[[1 2]] [[3 4]] [1] [2]

Methods

get_n_splits(X[, y, groups]) Returns the number of splitting iterations in the cross-
validator

split(X[, y, groups]) Generate indices to split data into training and test set.

__init__()

get_n_splits(X, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : object

Always ignored, exists for compatibility.
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groups : object

Always ignored, exists for compatibility.

Returns n_splits : int

Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, of length n_samples

The target variable for supervised learning problems.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set.

Returns train : ndarray

The training set indices for that split.

test : ndarray

The testing set indices for that split.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results
identical by setting random_state to an integer.

sklearn.model_selection.LeavePOut

class sklearn.model_selection.LeavePOut(p)
Leave-P-Out cross-validator

Provides train/test indices to split data in train/test sets. This results in testing on all distinct samples of size p,
while the remaining n - p samples form the training set in each iteration.

Note: LeavePOut(p) is NOT equivalent to KFold(n_splits=n_samples // p) which creates non-
overlapping test sets.

Due to the high number of iterations which grows combinatorically with the number of samples this cross-
validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or
ShuffleSplit.

Read more in the User Guide.

Parameters p : int

Size of the test sets.
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Examples

>>> from sklearn.model_selection import LeavePOut
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 3, 4])
>>> lpo = LeavePOut(2)
>>> lpo.get_n_splits(X)
6
>>> print(lpo)
LeavePOut(p=2)
>>> for train_index, test_index in lpo.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [1 3] TEST: [0 2]
TRAIN: [1 2] TEST: [0 3]
TRAIN: [0 3] TEST: [1 2]
TRAIN: [0 2] TEST: [1 3]
TRAIN: [0 1] TEST: [2 3]

Methods

get_n_splits(X[, y, groups]) Returns the number of splitting iterations in the cross-
validator

split(X[, y, groups]) Generate indices to split data into training and test set.

__init__(p)

get_n_splits(X, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : object

Always ignored, exists for compatibility.

groups : object

Always ignored, exists for compatibility.

split(X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, of length n_samples

The target variable for supervised learning problems.

groups : array-like, with shape (n_samples,), optional
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Group labels for the samples used while splitting the dataset into train/test set.

Returns train : ndarray

The training set indices for that split.

test : ndarray

The testing set indices for that split.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results
identical by setting random_state to an integer.

sklearn.model_selection.PredefinedSplit

class sklearn.model_selection.PredefinedSplit(test_fold)
Predefined split cross-validator

Provides train/test indices to split data into train/test sets using a predefined scheme specified by the user with
the test_fold parameter.

Read more in the User Guide.

Parameters test_fold : array-like, shape (n_samples,)

The entry test_fold[i] represents the index of the test set that sample i belongs
to. It is possible to exclude sample i from any test set (i.e. include sample i in every
training set) by setting test_fold[i] equal to -1.

Examples

>>> from sklearn.model_selection import PredefinedSplit
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> test_fold = [0, 1, -1, 1]
>>> ps = PredefinedSplit(test_fold)
>>> ps.get_n_splits()
2
>>> print(ps)
PredefinedSplit(test_fold=array([ 0, 1, -1, 1]))
>>> for train_index, test_index in ps.split():
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [1 2 3] TEST: [0]
TRAIN: [0 2] TEST: [1 3]

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the cross-
validator

Continued on next page

1752 Chapter 5. API Reference



scikit-learn user guide, Release 0.19.1

Table 5.184 – continued from previous page
split([X, y, groups]) Generate indices to split data into training and test set.

__init__(test_fold)

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters X : object

Always ignored, exists for compatibility.

y : object

Always ignored, exists for compatibility.

groups : object

Always ignored, exists for compatibility.

Returns n_splits : int

Returns the number of splitting iterations in the cross-validator.

split(X=None, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters X : object

Always ignored, exists for compatibility.

y : object

Always ignored, exists for compatibility.

groups : object

Always ignored, exists for compatibility.

Returns train : ndarray

The training set indices for that split.

test : ndarray

The testing set indices for that split.

sklearn.model_selection.RepeatedKFold

class sklearn.model_selection.RepeatedKFold(n_splits=5, n_repeats=10, ran-
dom_state=None)

Repeated K-Fold cross validator.

Repeats K-Fold n times with different randomization in each repetition.

Read more in the User Guide.

Parameters n_splits : int, default=5

Number of folds. Must be at least 2.

n_repeats : int, default=10

Number of times cross-validator needs to be repeated.

random_state : int, RandomState instance or None, optional, default=None
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If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

See also:

RepeatedStratifiedKFold Repeates Stratified K-Fold n times.

Examples

>>> from sklearn.model_selection import RepeatedKFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> rkf = RepeatedKFold(n_splits=2, n_repeats=2, random_state=2652124)
>>> for train_index, test_index in rkf.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
...
TRAIN: [0 1] TEST: [2 3]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [1 2] TEST: [0 3]
TRAIN: [0 3] TEST: [1 2]

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the cross-
validator

split(X[, y, groups]) Generates indices to split data into training and test set.

__init__(n_splits=5, n_repeats=10, random_state=None)

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters X : object

Always ignored, exists for compatibility. np.zeros(n_samples) may be used as
a placeholder.

y : object

Always ignored, exists for compatibility. np.zeros(n_samples) may be used as
a placeholder.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set.

Returns n_splits : int

Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generates indices to split data into training and test set.

Parameters X : array-like, shape (n_samples, n_features)
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Training data, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, of length n_samples

The target variable for supervised learning problems.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set.

Returns train : ndarray

The training set indices for that split.

test : ndarray

The testing set indices for that split.

sklearn.model_selection.RepeatedStratifiedKFold

class sklearn.model_selection.RepeatedStratifiedKFold(n_splits=5, n_repeats=10, ran-
dom_state=None)

Repeated Stratified K-Fold cross validator.

Repeats Stratified K-Fold n times with different randomization in each repetition.

Read more in the User Guide.

Parameters n_splits : int, default=5

Number of folds. Must be at least 2.

n_repeats : int, default=10

Number of times cross-validator needs to be repeated.

random_state : None, int or RandomState, default=None

Random state to be used to generate random state for each repetition.

See also:

RepeatedKFold Repeats K-Fold n times.

Examples

>>> from sklearn.model_selection import RepeatedStratifiedKFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> rskf = RepeatedStratifiedKFold(n_splits=2, n_repeats=2,
... random_state=36851234)
>>> for train_index, test_index in rskf.split(X, y):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
...
TRAIN: [1 2] TEST: [0 3]
TRAIN: [0 3] TEST: [1 2]
TRAIN: [1 3] TEST: [0 2]
TRAIN: [0 2] TEST: [1 3]
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Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the cross-
validator

split(X[, y, groups]) Generates indices to split data into training and test set.

__init__(n_splits=5, n_repeats=10, random_state=None)

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters X : object

Always ignored, exists for compatibility. np.zeros(n_samples) may be used as
a placeholder.

y : object

Always ignored, exists for compatibility. np.zeros(n_samples) may be used as
a placeholder.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set.

Returns n_splits : int

Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generates indices to split data into training and test set.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, of length n_samples

The target variable for supervised learning problems.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set.

Returns train : ndarray

The training set indices for that split.

test : ndarray

The testing set indices for that split.

sklearn.model_selection.ShuffleSplit

class sklearn.model_selection.ShuffleSplit(n_splits=10, test_size=’default’,
train_size=None, random_state=None)

Random permutation cross-validator

Yields indices to split data into training and test sets.

Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different,
although this is still very likely for sizeable datasets.
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Read more in the User Guide.

Parameters n_splits : int, default 10

Number of re-shuffling & splitting iterations.

test_size : float, int, None, default=0.1

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the test split. If int, represents the absolute number of test samples. If None,
the value is set to the complement of the train size. By default (the is parameter unspec-
ified), the value is set to 0.1. The default will change in version 0.21. It will remain
0.1 only if train_size is unspecified, otherwise it will complement the specified
train_size.

train_size : float, int, or None, default=None

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the train split. If int, represents the absolute number of train samples. If
None, the value is automatically set to the complement of the test size.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Examples

>>> from sklearn.model_selection import ShuffleSplit
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 1, 2])
>>> rs = ShuffleSplit(n_splits=3, test_size=.25, random_state=0)
>>> rs.get_n_splits(X)
3
>>> print(rs)
ShuffleSplit(n_splits=3, random_state=0, test_size=0.25, train_size=None)
>>> for train_index, test_index in rs.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)
...
TRAIN: [3 1 0] TEST: [2]
TRAIN: [2 1 3] TEST: [0]
TRAIN: [0 2 1] TEST: [3]
>>> rs = ShuffleSplit(n_splits=3, train_size=0.5, test_size=.25,
... random_state=0)
>>> for train_index, test_index in rs.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)
...
TRAIN: [3 1] TEST: [2]
TRAIN: [2 1] TEST: [0]
TRAIN: [0 2] TEST: [3]

Methods
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get_n_splits([X, y, groups]) Returns the number of splitting iterations in the cross-
validator

split(X[, y, groups]) Generate indices to split data into training and test set.

__init__(n_splits=10, test_size=’default’, train_size=None, random_state=None)

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters X : object

Always ignored, exists for compatibility.

y : object

Always ignored, exists for compatibility.

groups : object

Always ignored, exists for compatibility.

Returns n_splits : int

Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, shape (n_samples,)

The target variable for supervised learning problems.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set.

Returns train : ndarray

The training set indices for that split.

test : ndarray

The testing set indices for that split.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results
identical by setting random_state to an integer.

Examples using sklearn.model_selection.ShuffleSplit

• Plotting Learning Curves

• Scaling the regularization parameter for SVCs
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sklearn.model_selection.StratifiedKFold

class sklearn.model_selection.StratifiedKFold(n_splits=3, shuffle=False, ran-
dom_state=None)

Stratified K-Folds cross-validator

Provides train/test indices to split data in train/test sets.

This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving
the percentage of samples for each class.

Read more in the User Guide.

Parameters n_splits : int, default=3

Number of folds. Must be at least 2.

shuffle : boolean, optional

Whether to shuffle each stratification of the data before splitting into batches.

random_state : int, RandomState instance or None, optional, default=None

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random. Used when shuffle ==
True.

See also:

RepeatedStratifiedKFold Repeats Stratified K-Fold n times.

Notes

All the folds have size trunc(n_samples / n_splits), the last one has the complementary.

Examples

>>> from sklearn.model_selection import StratifiedKFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> skf = StratifiedKFold(n_splits=2)
>>> skf.get_n_splits(X, y)
2
>>> print(skf)
StratifiedKFold(n_splits=2, random_state=None, shuffle=False)
>>> for train_index, test_index in skf.split(X, y):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [1 3] TEST: [0 2]
TRAIN: [0 2] TEST: [1 3]

Methods
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get_n_splits([X, y, groups]) Returns the number of splitting iterations in the cross-
validator

split(X, y[, groups]) Generate indices to split data into training and test set.

__init__(n_splits=3, shuffle=False, random_state=None)

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters X : object

Always ignored, exists for compatibility.

y : object

Always ignored, exists for compatibility.

groups : object

Always ignored, exists for compatibility.

Returns n_splits : int

Returns the number of splitting iterations in the cross-validator.

split(X, y, groups=None)
Generate indices to split data into training and test set.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

Note that providing y is sufficient to generate the splits and hence np.
zeros(n_samples) may be used as a placeholder for X instead of actual training
data.

y : array-like, shape (n_samples,)

The target variable for supervised learning problems. Stratification is done based on the
y labels.

groups : object

Always ignored, exists for compatibility.

Returns train : ndarray

The training set indices for that split.

test : ndarray

The testing set indices for that split.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results
identical by setting random_state to an integer.
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Examples using sklearn.model_selection.StratifiedKFold

• Test with permutations the significance of a classification score

• Recursive feature elimination with cross-validation

• GMM covariances

• Receiver Operating Characteristic (ROC) with cross validation

sklearn.model_selection.StratifiedShuffleSplit

class sklearn.model_selection.StratifiedShuffleSplit(n_splits=10, test_size=’default’,
train_size=None, ran-
dom_state=None)

Stratified ShuffleSplit cross-validator

Provides train/test indices to split data in train/test sets.

This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized
folds. The folds are made by preserving the percentage of samples for each class.

Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different,
although this is still very likely for sizeable datasets.

Read more in the User Guide.

Parameters n_splits : int, default 10

Number of re-shuffling & splitting iterations.

test_size : float, int, None, optional

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the test split. If int, represents the absolute number of test samples. If None,
the value is set to the complement of the train size. By default, the value is set to 0.1.
The default will change in version 0.21. It will remain 0.1 only if train_size is
unspecified, otherwise it will complement the specified train_size.

train_size : float, int, or None, default is None

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the train split. If int, represents the absolute number of train samples. If
None, the value is automatically set to the complement of the test size.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Examples

>>> from sklearn.model_selection import StratifiedShuffleSplit
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> sss = StratifiedShuffleSplit(n_splits=3, test_size=0.5, random_state=0)
>>> sss.get_n_splits(X, y)
3
>>> print(sss)
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StratifiedShuffleSplit(n_splits=3, random_state=0, ...)
>>> for train_index, test_index in sss.split(X, y):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [1 2] TEST: [3 0]
TRAIN: [0 2] TEST: [1 3]
TRAIN: [0 2] TEST: [3 1]

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the cross-
validator

split(X, y[, groups]) Generate indices to split data into training and test set.

__init__(n_splits=10, test_size=’default’, train_size=None, random_state=None)

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters X : object

Always ignored, exists for compatibility.

y : object

Always ignored, exists for compatibility.

groups : object

Always ignored, exists for compatibility.

Returns n_splits : int

Returns the number of splitting iterations in the cross-validator.

split(X, y, groups=None)
Generate indices to split data into training and test set.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

Note that providing y is sufficient to generate the splits and hence np.
zeros(n_samples) may be used as a placeholder for X instead of actual training
data.

y : array-like, shape (n_samples,)

The target variable for supervised learning problems. Stratification is done based on the
y labels.

groups : object

Always ignored, exists for compatibility.

Returns train : ndarray

The training set indices for that split.
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test : ndarray

The testing set indices for that split.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results
identical by setting random_state to an integer.

Examples using sklearn.model_selection.StratifiedShuffleSplit

• RBF SVM parameters

sklearn.model_selection.TimeSeriesSplit

class sklearn.model_selection.TimeSeriesSplit(n_splits=3, max_train_size=None)
Time Series cross-validator

Provides train/test indices to split time series data samples that are observed at fixed time intervals, in train/test
sets. In each split, test indices must be higher than before, and thus shuffling in cross validator is inappropriate.

This cross-validation object is a variation of KFold. In the kth split, it returns first k folds as train set and the
(k+1)th fold as test set.

Note that unlike standard cross-validation methods, successive training sets are supersets of those that come
before them.

Read more in the User Guide.

Parameters n_splits : int, default=3

Number of splits. Must be at least 1.

max_train_size : int, optional

Maximum size for a single training set.

Notes

The training set has size i * n_samples // (n_splits + 1) + n_samples % (n_splits
+ 1) in the i``th split, with a test set of size ``n_samples//(n_splits + 1),
where n_samples is the number of samples.

Examples

>>> from sklearn.model_selection import TimeSeriesSplit
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([1, 2, 3, 4])
>>> tscv = TimeSeriesSplit(n_splits=3)
>>> print(tscv)
TimeSeriesSplit(max_train_size=None, n_splits=3)
>>> for train_index, test_index in tscv.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
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... y_train, y_test = y[train_index], y[test_index]
TRAIN: [0] TEST: [1]
TRAIN: [0 1] TEST: [2]
TRAIN: [0 1 2] TEST: [3]

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the cross-
validator

split(X[, y, groups]) Generate indices to split data into training and test set.

__init__(n_splits=3, max_train_size=None)

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters X : object

Always ignored, exists for compatibility.

y : object

Always ignored, exists for compatibility.

groups : object

Always ignored, exists for compatibility.

Returns n_splits : int

Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, shape (n_samples,)

Always ignored, exists for compatibility.

groups : array-like, with shape (n_samples,), optional

Always ignored, exists for compatibility.

Returns train : ndarray

The training set indices for that split.

test : ndarray

The testing set indices for that split.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results
identical by setting random_state to an integer.
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5.23.2 Splitter Functions

model_selection.check_cv([cv, y, classifier]) Input checker utility for building a cross-validator
model_selection.train_test_split(*arrays,
. . . )

Split arrays or matrices into random train and test subsets

sklearn.model_selection.check_cv

sklearn.model_selection.check_cv(cv=3, y=None, classifier=False)
Input checker utility for building a cross-validator

Parameters cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, if classifier is True and y is either binary or multiclass,
StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

y : array-like, optional

The target variable for supervised learning problems.

classifier : boolean, optional, default False

Whether the task is a classification task, in which case stratified KFold will be used.

Returns checked_cv : a cross-validator instance.

The return value is a cross-validator which generates the train/test splits via the split
method.

sklearn.model_selection.train_test_split

sklearn.model_selection.train_test_split(*arrays, **options)
Split arrays or matrices into random train and test subsets

Quick utility that wraps input validation and next(ShuffleSplit().split(X, y)) and application to
input data into a single call for splitting (and optionally subsampling) data in a oneliner.

Read more in the User Guide.

Parameters *arrays : sequence of indexables with same length / shape[0]

Allowed inputs are lists, numpy arrays, scipy-sparse matrices or pandas dataframes.

test_size : float, int, None, optional

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the test split. If int, represents the absolute number of test samples. If None,
the value is set to the complement of the train size. By default, the value is set to 0.25.
The default will change in version 0.21. It will remain 0.25 only if train_size is
unspecified, otherwise it will complement the specified train_size.
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train_size : float, int, or None, default None

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the train split. If int, represents the absolute number of train samples. If
None, the value is automatically set to the complement of the test size.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

shuffle : boolean, optional (default=True)

Whether or not to shuffle the data before splitting. If shuffle=False then stratify must be
None.

stratify : array-like or None (default is None)

If not None, data is split in a stratified fashion, using this as the class labels.

Returns splitting : list, length=2 * len(arrays)

List containing train-test split of inputs.

New in version 0.16: If the input is sparse, the output will be a scipy.sparse.
csr_matrix. Else, output type is the same as the input type.

Examples

>>> import numpy as np
>>> from sklearn.model_selection import train_test_split
>>> X, y = np.arange(10).reshape((5, 2)), range(5)
>>> X
array([[0, 1],

[2, 3],
[4, 5],
[6, 7],
[8, 9]])

>>> list(y)
[0, 1, 2, 3, 4]

>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.33, random_state=42)
...
>>> X_train
array([[4, 5],

[0, 1],
[6, 7]])

>>> y_train
[2, 0, 3]
>>> X_test
array([[2, 3],

[8, 9]])
>>> y_test
[1, 4]

>>> train_test_split(y, shuffle=False)
[[0, 1, 2], [3, 4]]
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Examples using sklearn.model_selection.train_test_split

• Faces recognition example using eigenfaces and SVMs

• Prediction Latency

• Probability calibration of classifiers

• Probability Calibration curves

• Classifier comparison

• Feature transformations with ensembles of trees

• Gradient Boosting Out-of-Bag estimates

• Partial Dependence Plots

• Comparing random forests and the multi-output meta estimator

• Pipeline Anova SVM

• Comparing various online solvers

• Multiclass sparse logisitic regression on newgroups20

• MNIST classfification using multinomial logistic + L1

• Confusion matrix

• Parameter estimation using grid search with cross-validation

• Precision-Recall

• Receiver Operating Characteristic (ROC)

• Classifier Chain

• Varying regularization in Multi-layer Perceptron

• Restricted Boltzmann Machine features for digit classification

• Using FunctionTransformer to select columns

• Importance of Feature Scaling

• Understanding the decision tree structure

5.23.3 Hyper-parameter optimizers

model_selection.GridSearchCV (estimator, . . . ) Exhaustive search over specified parameter values for an
estimator.

model_selection.ParameterGrid(param_grid) Grid of parameters with a discrete number of values for
each.

model_selection.ParameterSampler(. . . [, . . . ]) Generator on parameters sampled from given distributions.
model_selection.RandomizedSearchCV (. . . [,
. . . ])

Randomized search on hyper parameters.
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sklearn.model_selection.GridSearchCV

class sklearn.model_selection.GridSearchCV(estimator, param_grid, scoring=None,
fit_params=None, n_jobs=1, iid=True,
refit=True, cv=None, verbose=0,
pre_dispatch=‘2*n_jobs’, error_score=’raise’,
return_train_score=’warn’)

Exhaustive search over specified parameter values for an estimator.

Important members are fit, predict.

GridSearchCV implements a “fit” and a “score” method. It also implements “predict”, “predict_proba”, “deci-
sion_function”, “transform” and “inverse_transform” if they are implemented in the estimator used.

The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over
a parameter grid.

Read more in the User Guide.

Parameters estimator : estimator object.

This is assumed to implement the scikit-learn estimator interface. Either estimator needs
to provide a score function, or scoring must be passed.

param_grid : dict or list of dictionaries

Dictionary with parameters names (string) as keys and lists of parameter settings to try
as values, or a list of such dictionaries, in which case the grids spanned by each dic-
tionary in the list are explored. This enables searching over any sequence of parameter
settings.

scoring : string, callable, list/tuple, dict or None, default: None

A single string (see The scoring parameter: defining model evaluation rules) or a
callable (see Defining your scoring strategy from metric functions) to evaluate the pre-
dictions on the test set.

For evaluating multiple metrics, either give a list of (unique) strings or a dict with names
as keys and callables as values.

NOTE that when using custom scorers, each scorer should return a single value. Metric
functions returning a list/array of values can be wrapped into multiple scorers that return
one value each.

See Specifying multiple metrics for evaluation for an example.

If None, the estimator’s default scorer (if available) is used.

fit_params : dict, optional

Parameters to pass to the fit method.

Deprecated since version 0.19: fit_params as a constructor argument was depre-
cated in version 0.19 and will be removed in version 0.21. Pass fit parameters to the
fit method instead.

n_jobs : int, default=1

Number of jobs to run in parallel.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:
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• None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

• An int, giving the exact number of total jobs that are spawned

• A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

iid : boolean, default=True

If True, the data is assumed to be identically distributed across the folds, and the loss
minimized is the total loss per sample, and not the mean loss across the folds.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross validation,

• integer, to specify the number of folds in a (Stratified)KFold,

• An object to be used as a cross-validation generator.

• An iterable yielding train, test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or multi-
class, StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

refit : boolean, or string, default=True

Refit an estimator using the best found parameters on the whole dataset.

For multiple metric evaluation, this needs to be a string denoting the scorer is used to
find the best parameters for refitting the estimator at the end.

The refitted estimator is made available at the best_estimator_ attribute and per-
mits using predict directly on this GridSearchCV instance.

Also for multiple metric evaluation, the attributes best_index_, best_score_
and best_parameters_ will only be available if refit is set and all of them will
be determined w.r.t this specific scorer.

See scoring parameter to know more about multiple metric evaluation.

verbose : integer

Controls the verbosity: the higher, the more messages.

error_score : ‘raise’ (default) or numeric

Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the
error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter
does not affect the refit step, which will always raise the error.

return_train_score : boolean, optional

If False, the cv_results_ attribute will not include training scores.

Current default is 'warn', which behaves as True in addition to raising a warning
when a training score is looked up. That default will be changed to False in 0.21.
Computing training scores is used to get insights on how different parameter settings im-
pact the overfitting/underfitting trade-off. However computing the scores on the training
set can be computationally expensive and is not strictly required to select the parameters
that yield the best generalization performance.
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Attributes cv_results_ : dict of numpy (masked) ndarrays

A dict with keys as column headers and values as columns, that can be imported into a
pandas DataFrame.

For instance the below given table

param_kernel param_gamma param_degree split0_test_score. . . rank_t. . .
‘poly’ – 2 0.8 . . . 2
‘poly’ – 3 0.7 . . . 4
‘rbf’ 0.1 – 0.8 . . . 3
‘rbf’ 0.2 – 0.9 . . . 1

will be represented by a cv_results_ dict of:

{
'param_kernel': masked_array(data = ['poly', 'poly', 'rbf', 'rbf
→˓'],

mask = [False False False False]...
→˓)
'param_gamma': masked_array(data = [-- -- 0.1 0.2],

mask = [ True True False False]...
→˓),
'param_degree': masked_array(data = [2.0 3.0 -- --],

mask = [False False True True]...
→˓),
'split0_test_score' : [0.8, 0.7, 0.8, 0.9],
'split1_test_score' : [0.82, 0.5, 0.7, 0.78],
'mean_test_score' : [0.81, 0.60, 0.75, 0.82],
'std_test_score' : [0.02, 0.01, 0.03, 0.03],
'rank_test_score' : [2, 4, 3, 1],
'split0_train_score' : [0.8, 0.9, 0.7],
'split1_train_score' : [0.82, 0.5, 0.7],
'mean_train_score' : [0.81, 0.7, 0.7],
'std_train_score' : [0.03, 0.03, 0.04],
'mean_fit_time' : [0.73, 0.63, 0.43, 0.49],
'std_fit_time' : [0.01, 0.02, 0.01, 0.01],
'mean_score_time' : [0.007, 0.06, 0.04, 0.04],
'std_score_time' : [0.001, 0.002, 0.003, 0.005],
'params' : [{'kernel': 'poly', 'degree': 2}, ...],
}

NOTE

The key 'params' is used to store a list of parameter settings dicts for all the param-
eter candidates.

The mean_fit_time, std_fit_time, mean_score_time and
std_score_time are all in seconds.

For multi-metric evaluation, the scores for all the scorers are available
in the cv_results_ dict at the keys ending with that scorer’s name
('_<scorer_name>') instead of '_score' shown above. (‘split0_test_precision’,
‘mean_train_precision’ etc.)

best_estimator_ : estimator or dict

Estimator that was chosen by the search, i.e. estimator which gave highest score (or
smallest loss if specified) on the left out data. Not available if refit=False.
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See refit parameter for more information on allowed values.

best_score_ : float

Mean cross-validated score of the best_estimator

For multi-metric evaluation, this is present only if refit is specified.

best_params_ : dict

Parameter setting that gave the best results on the hold out data.

For multi-metric evaluation, this is present only if refit is specified.

best_index_ : int

The index (of the cv_results_ arrays) which corresponds to the best candidate pa-
rameter setting.

The dict at search.cv_results_['params'][search.best_index_]
gives the parameter setting for the best model, that gives the highest mean score
(search.best_score_).

For multi-metric evaluation, this is present only if refit is specified.

scorer_ : function or a dict

Scorer function used on the held out data to choose the best parameters for the model.

For multi-metric evaluation, this attribute holds the validated scoring dict which
maps the scorer key to the scorer callable.

n_splits_ : int

The number of cross-validation splits (folds/iterations).

See also:

ParameterGrid generates all the combinations of a hyperparameter grid.

sklearn.model_selection.train_test_split utility function to split the data into a development
set usable for fitting a GridSearchCV instance and an evaluation set for its final evaluation.

sklearn.metrics.make_scorer Make a scorer from a performance metric or loss function.

Notes

The parameters selected are those that maximize the score of the left out data, unless an explicit score is passed
in which case it is used instead.

If n_jobs was set to a value higher than one, the data is copied for each point in the grid (and not n_jobs times).
This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is
large and not enough memory is available. A workaround in this case is to set pre_dispatch. Then, the memory
is copied only pre_dispatch many times. A reasonable value for pre_dispatch is 2 * n_jobs.

Examples

>>> from sklearn import svm, datasets
>>> from sklearn.model_selection import GridSearchCV
>>> iris = datasets.load_iris()
>>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
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>>> svc = svm.SVC()
>>> clf = GridSearchCV(svc, parameters)
>>> clf.fit(iris.data, iris.target)
...
GridSearchCV(cv=None, error_score=...,

estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=...,
decision_function_shape='ovr', degree=..., gamma=...,
kernel='rbf', max_iter=-1, probability=False,
random_state=None, shrinking=True, tol=...,
verbose=False),

fit_params=None, iid=..., n_jobs=1,
param_grid=..., pre_dispatch=..., refit=..., return_train_score=...,
scoring=..., verbose=...)

>>> sorted(clf.cv_results_.keys())
...
['mean_fit_time', 'mean_score_time', 'mean_test_score',...
'mean_train_score', 'param_C', 'param_kernel', 'params',...
'rank_test_score', 'split0_test_score',...
'split0_train_score', 'split1_test_score', 'split1_train_score',...
'split2_test_score', 'split2_train_score',...
'std_fit_time', 'std_score_time', 'std_test_score', 'std_train_score'...]

Methods

decision_function(X) Call decision_function on the estimator with the best
found parameters.

fit(X[, y, groups]) Run fit with all sets of parameters.
get_params([deep]) Get parameters for this estimator.
inverse_transform(Xt) Call inverse_transform on the estimator with the best

found params.
predict(X) Call predict on the estimator with the best found param-

eters.
predict_log_proba(X) Call predict_log_proba on the estimator with the best

found parameters.
predict_proba(X) Call predict_proba on the estimator with the best found

parameters.
score(X[, y]) Returns the score on the given data, if the estimator has

been refit.
set_params(**params) Set the parameters of this estimator.
transform(X) Call transform on the estimator with the best found pa-

rameters.

__init__(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, re-
fit=True, cv=None, verbose=0, pre_dispatch=‘2*n_jobs’, error_score=’raise’, re-
turn_train_score=’warn’)

decision_function(X)
Call decision_function on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports decision_function.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.
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fit(X, y=None, groups=None, **fit_params)
Run fit with all sets of parameters.

Parameters X : array-like, shape = [n_samples, n_features]

Training vector, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, shape = [n_samples] or [n_samples, n_output], optional

Target relative to X for classification or regression; None for unsupervised learning.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set.

**fit_params : dict of string -> object

Parameters passed to the fit method of the estimator

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(Xt)
Call inverse_transform on the estimator with the best found params.

Only available if the underlying estimator implements inverse_transform and refit=True.

Parameters Xt : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

predict(X)
Call predict on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

predict_log_proba(X)
Call predict_log_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_log_proba.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

predict_proba(X)
Call predict_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_proba.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.
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score(X, y=None)
Returns the score on the given data, if the estimator has been refit.

This uses the score defined by scoring where provided, and the best_estimator_.score method
otherwise.

Parameters X : array-like, shape = [n_samples, n_features]

Input data, where n_samples is the number of samples and n_features is the number of
features.

y : array-like, shape = [n_samples] or [n_samples, n_output], optional

Target relative to X for classification or regression; None for unsupervised learning.

Returns score : float

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Call transform on the estimator with the best found parameters.

Only available if the underlying estimator supports transform and refit=True.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

Examples using sklearn.model_selection.GridSearchCV

• Selecting dimensionality reduction with Pipeline and GridSearchCV

• Pipelining: chaining a PCA and a logistic regression

• Concatenating multiple feature extraction methods

• Comparison of kernel ridge regression and SVR

• Faces recognition example using eigenfaces and SVMs

• Feature agglomeration vs. univariate selection

• Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

• Model selection with Probabilistic PCA and Factor Analysis (FA)

• Cross-validation on diabetes Dataset Exercise

• Comparison of kernel ridge and Gaussian process regression

• Sample pipeline for text feature extraction and evaluation

• Parameter estimation using grid search with cross-validation

• Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV

• Nested versus non-nested cross-validation

• Comparing randomized search and grid search for hyperparameter estimation
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• Kernel Density Estimation

• RBF SVM parameters

• Scaling the regularization parameter for SVCs

sklearn.model_selection.ParameterGrid

class sklearn.model_selection.ParameterGrid(param_grid)
Grid of parameters with a discrete number of values for each.

Can be used to iterate over parameter value combinations with the Python built-in function iter.

Read more in the User Guide.

Parameters param_grid : dict of string to sequence, or sequence of such

The parameter grid to explore, as a dictionary mapping estimator parameters to se-
quences of allowed values.

An empty dict signifies default parameters.

A sequence of dicts signifies a sequence of grids to search, and is useful to avoid ex-
ploring parameter combinations that make no sense or have no effect. See the examples
below.

See also:

GridSearchCV

Uses class:ParameterGrid to perform a full parallelized parameter search.

Examples

>>> from sklearn.model_selection import ParameterGrid
>>> param_grid = {'a': [1, 2], 'b': [True, False]}
>>> list(ParameterGrid(param_grid)) == (
... [{'a': 1, 'b': True}, {'a': 1, 'b': False},
... {'a': 2, 'b': True}, {'a': 2, 'b': False}])
True

>>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}]
>>> list(ParameterGrid(grid)) == [{'kernel': 'linear'},
... {'kernel': 'rbf', 'gamma': 1},
... {'kernel': 'rbf', 'gamma': 10}]
True
>>> ParameterGrid(grid)[1] == {'kernel': 'rbf', 'gamma': 1}
True
.. automethod:: __init__

sklearn.model_selection.ParameterSampler

class sklearn.model_selection.ParameterSampler(param_distributions, n_iter, ran-
dom_state=None)

Generator on parameters sampled from given distributions.

Non-deterministic iterable over random candidate combinations for hyper- parameter search. If all parameters
are presented as a list, sampling without replacement is performed. If at least one parameter is given as a
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distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for
continuous parameters.

Note that before SciPy 0.16, the scipy.stats.distributions do not accept a custom RNG instance
and always use the singleton RNG from numpy.random. Hence setting random_state will not guarantee
a deterministic iteration whenever scipy.stats distributions are used to define the parameter search space.
Deterministic behavior is however guaranteed from SciPy 0.16 onwards.

Read more in the User Guide.

Parameters param_distributions : dict

Dictionary where the keys are parameters and values are distributions from which a
parameter is to be sampled. Distributions either have to provide a rvs function to
sample from them, or can be given as a list of values, where a uniform distribution is
assumed.

n_iter : integer

Number of parameter settings that are produced.

random_state : int, RandomState instance or None, optional (default=None)

Pseudo random number generator state used for random uniform sampling from lists of
possible values instead of scipy.stats distributions. If int, random_state is the seed used
by the random number generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the RandomState instance
used by np.random.

Returns params : dict of string to any

Yields dictionaries mapping each estimator parameter to as sampled value.

Examples

>>> from sklearn.model_selection import ParameterSampler
>>> from scipy.stats.distributions import expon
>>> import numpy as np
>>> np.random.seed(0)
>>> param_grid = {'a':[1, 2], 'b': expon()}
>>> param_list = list(ParameterSampler(param_grid, n_iter=4))
>>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items())
... for d in param_list]
>>> rounded_list == [{'b': 0.89856, 'a': 1},
... {'b': 0.923223, 'a': 1},
... {'b': 1.878964, 'a': 2},
... {'b': 1.038159, 'a': 2}]
True
.. automethod:: __init__
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sklearn.model_selection.RandomizedSearchCV

class sklearn.model_selection.RandomizedSearchCV(estimator, param_distributions,
n_iter=10, scoring=None,
fit_params=None, n_jobs=1, iid=True,
refit=True, cv=None, verbose=0,
pre_dispatch=‘2*n_jobs’, ran-
dom_state=None, error_score=’raise’,
return_train_score=’warn’)

Randomized search on hyper parameters.

RandomizedSearchCV implements a “fit” and a “score” method. It also implements “predict”, “predict_proba”,
“decision_function”, “transform” and “inverse_transform” if they are implemented in the estimator used.

The parameters of the estimator used to apply these methods are optimized by cross-validated search over
parameter settings.

In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter
settings is sampled from the specified distributions. The number of parameter settings that are tried is given by
n_iter.

If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter
is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous
distributions for continuous parameters.

Read more in the User Guide.

Parameters estimator : estimator object.

A object of that type is instantiated for each grid point. This is assumed to implement
the scikit-learn estimator interface. Either estimator needs to provide a score function,
or scoring must be passed.

param_distributions : dict

Dictionary with parameters names (string) as keys and distributions or lists of parame-
ters to try. Distributions must provide a rvs method for sampling (such as those from
scipy.stats.distributions). If a list is given, it is sampled uniformly.

n_iter : int, default=10

Number of parameter settings that are sampled. n_iter trades off runtime vs quality of
the solution.

scoring : string, callable, list/tuple, dict or None, default: None

A single string (see The scoring parameter: defining model evaluation rules) or a
callable (see Defining your scoring strategy from metric functions) to evaluate the pre-
dictions on the test set.

For evaluating multiple metrics, either give a list of (unique) strings or a dict with names
as keys and callables as values.

NOTE that when using custom scorers, each scorer should return a single value. Metric
functions returning a list/array of values can be wrapped into multiple scorers that return
one value each.

See Specifying multiple metrics for evaluation for an example.

If None, the estimator’s default scorer (if available) is used.

fit_params : dict, optional
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Parameters to pass to the fit method.

Deprecated since version 0.19: fit_params as a constructor argument was depre-
cated in version 0.19 and will be removed in version 0.21. Pass fit parameters to the
fit method instead.

n_jobs : int, default=1

Number of jobs to run in parallel.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

• None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

• An int, giving the exact number of total jobs that are spawned

• A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

iid : boolean, default=True

If True, the data is assumed to be identically distributed across the folds, and the loss
minimized is the total loss per sample, and not the mean loss across the folds.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross validation,

• integer, to specify the number of folds in a (Stratified)KFold,

• An object to be used as a cross-validation generator.

• An iterable yielding train, test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or multi-
class, StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

refit : boolean, or string default=True

Refit an estimator using the best found parameters on the whole dataset.

For multiple metric evaluation, this needs to be a string denoting the scorer that would
be used to find the best parameters for refitting the estimator at the end.

The refitted estimator is made available at the best_estimator_ attribute and per-
mits using predict directly on this RandomizedSearchCV instance.

Also for multiple metric evaluation, the attributes best_index_, best_score_
and best_parameters_ will only be available if refit is set and all of them will
be determined w.r.t this specific scorer.

See scoring parameter to know more about multiple metric evaluation.

verbose : integer

Controls the verbosity: the higher, the more messages.

random_state : int, RandomState instance or None, optional, default=None
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Pseudo random number generator state used for random uniform sampling from lists of
possible values instead of scipy.stats distributions. If int, random_state is the seed used
by the random number generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the RandomState instance
used by np.random.

error_score : ‘raise’ (default) or numeric

Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the
error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter
does not affect the refit step, which will always raise the error.

return_train_score : boolean, optional

If False, the cv_results_ attribute will not include training scores.

Current default is 'warn', which behaves as True in addition to raising a warning
when a training score is looked up. That default will be changed to False in 0.21.
Computing training scores is used to get insights on how different parameter settings im-
pact the overfitting/underfitting trade-off. However computing the scores on the training
set can be computationally expensive and is not strictly required to select the parameters
that yield the best generalization performance.

Attributes cv_results_ : dict of numpy (masked) ndarrays

A dict with keys as column headers and values as columns, that can be imported into a
pandas DataFrame.

For instance the below given table

param_kernel param_gamma split0_test_score . . . rank_test_score
‘rbf’ 0.1 0.8 . . . 2
‘rbf’ 0.2 0.9 . . . 1
‘rbf’ 0.3 0.7 . . . 1

will be represented by a cv_results_ dict of:

{
'param_kernel' : masked_array(data = ['rbf', 'rbf', 'rbf'],

mask = False),
'param_gamma' : masked_array(data = [0.1 0.2 0.3], mask =
→˓False),
'split0_test_score' : [0.8, 0.9, 0.7],
'split1_test_score' : [0.82, 0.5, 0.7],
'mean_test_score' : [0.81, 0.7, 0.7],
'std_test_score' : [0.02, 0.2, 0.],
'rank_test_score' : [3, 1, 1],
'split0_train_score' : [0.8, 0.9, 0.7],
'split1_train_score' : [0.82, 0.5, 0.7],
'mean_train_score' : [0.81, 0.7, 0.7],
'std_train_score' : [0.03, 0.03, 0.04],
'mean_fit_time' : [0.73, 0.63, 0.43, 0.49],
'std_fit_time' : [0.01, 0.02, 0.01, 0.01],
'mean_score_time' : [0.007, 0.06, 0.04, 0.04],
'std_score_time' : [0.001, 0.002, 0.003, 0.005],
'params' : [{'kernel' : 'rbf', 'gamma' : 0.1}, ...],
}

NOTE
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The key 'params' is used to store a list of parameter settings dicts for all the param-
eter candidates.

The mean_fit_time, std_fit_time, mean_score_time and
std_score_time are all in seconds.

For multi-metric evaluation, the scores for all the scorers are available
in the cv_results_ dict at the keys ending with that scorer’s name
('_<scorer_name>') instead of '_score' shown above. (‘split0_test_precision’,
‘mean_train_precision’ etc.)

best_estimator_ : estimator or dict

Estimator that was chosen by the search, i.e. estimator which gave highest score (or
smallest loss if specified) on the left out data. Not available if refit=False.

For multi-metric evaluation, this attribute is present only if refit is specified.

See refit parameter for more information on allowed values.

best_score_ : float

Mean cross-validated score of the best_estimator.

For multi-metric evaluation, this is not available if refit is False. See refit
parameter for more information.

best_params_ : dict

Parameter setting that gave the best results on the hold out data.

For multi-metric evaluation, this is not available if refit is False. See refit
parameter for more information.

best_index_ : int

The index (of the cv_results_ arrays) which corresponds to the best candidate pa-
rameter setting.

The dict at search.cv_results_['params'][search.best_index_]
gives the parameter setting for the best model, that gives the highest mean score
(search.best_score_).

For multi-metric evaluation, this is not available if refit is False. See refit
parameter for more information.

scorer_ : function or a dict

Scorer function used on the held out data to choose the best parameters for the model.

For multi-metric evaluation, this attribute holds the validated scoring dict which
maps the scorer key to the scorer callable.

n_splits_ : int

The number of cross-validation splits (folds/iterations).

See also:

GridSearchCV Does exhaustive search over a grid of parameters.

ParameterSampler A generator over parameter settins, constructed from param_distributions.
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Notes

The parameters selected are those that maximize the score of the held-out data, according to the scoring param-
eter.

If n_jobs was set to a value higher than one, the data is copied for each parameter setting(and not n_jobs times).
This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is
large and not enough memory is available. A workaround in this case is to set pre_dispatch. Then, the memory
is copied only pre_dispatch many times. A reasonable value for pre_dispatch is 2 * n_jobs.

Methods

decision_function(X) Call decision_function on the estimator with the best
found parameters.

fit(X[, y, groups]) Run fit with all sets of parameters.
get_params([deep]) Get parameters for this estimator.
inverse_transform(Xt) Call inverse_transform on the estimator with the best

found params.
predict(X) Call predict on the estimator with the best found param-

eters.
predict_log_proba(X) Call predict_log_proba on the estimator with the best

found parameters.
predict_proba(X) Call predict_proba on the estimator with the best found

parameters.
score(X[, y]) Returns the score on the given data, if the estimator has

been refit.
set_params(**params) Set the parameters of this estimator.
transform(X) Call transform on the estimator with the best found pa-

rameters.

__init__(estimator, param_distributions, n_iter=10, scoring=None, fit_params=None, n_jobs=1,
iid=True, refit=True, cv=None, verbose=0, pre_dispatch=‘2*n_jobs’, random_state=None,
error_score=’raise’, return_train_score=’warn’)

decision_function(X)
Call decision_function on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports decision_function.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

fit(X, y=None, groups=None, **fit_params)
Run fit with all sets of parameters.

Parameters X : array-like, shape = [n_samples, n_features]

Training vector, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, shape = [n_samples] or [n_samples, n_output], optional

Target relative to X for classification or regression; None for unsupervised learning.

groups : array-like, with shape (n_samples,), optional
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Group labels for the samples used while splitting the dataset into train/test set.

**fit_params : dict of string -> object

Parameters passed to the fit method of the estimator

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(Xt)
Call inverse_transform on the estimator with the best found params.

Only available if the underlying estimator implements inverse_transform and refit=True.

Parameters Xt : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

predict(X)
Call predict on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

predict_log_proba(X)
Call predict_log_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_log_proba.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

predict_proba(X)
Call predict_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_proba.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

score(X, y=None)
Returns the score on the given data, if the estimator has been refit.

This uses the score defined by scoring where provided, and the best_estimator_.score method
otherwise.

Parameters X : array-like, shape = [n_samples, n_features]

Input data, where n_samples is the number of samples and n_features is the number of
features.

y : array-like, shape = [n_samples] or [n_samples, n_output], optional

Target relative to X for classification or regression; None for unsupervised learning.
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Returns score : float

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Call transform on the estimator with the best found parameters.

Only available if the underlying estimator supports transform and refit=True.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

Examples using sklearn.model_selection.RandomizedSearchCV

• Comparing randomized search and grid search for hyperparameter estimation

model_selection.fit_grid_point(X, y, . . . [,
. . . ])

Run fit on one set of parameters.

sklearn.model_selection.fit_grid_point

sklearn.model_selection.fit_grid_point(X, y, estimator, parameters, train, test, scorer, ver-
bose, error_score=’raise’, **fit_params)

Run fit on one set of parameters.

Parameters X : array-like, sparse matrix or list

Input data.

y : array-like or None

Targets for input data.

estimator : estimator object

A object of that type is instantiated for each grid point. This is assumed to implement
the scikit-learn estimator interface. Either estimator needs to provide a score function,
or scoring must be passed.

parameters : dict

Parameters to be set on estimator for this grid point.

train : ndarray, dtype int or bool

Boolean mask or indices for training set.

test : ndarray, dtype int or bool

Boolean mask or indices for test set.

scorer : callable or None
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The scorer callable object / function must have its signature as scorer(estimator,
X, y).

If None the estimator’s default scorer is used.

verbose : int

Verbosity level.

**fit_params : kwargs

Additional parameter passed to the fit function of the estimator.

error_score : ‘raise’ (default) or numeric

Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the
error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter
does not affect the refit step, which will always raise the error.

Returns score : float

Score of this parameter setting on given training / test split.

parameters : dict

The parameters that have been evaluated.

n_samples_test : int

Number of test samples in this split.

5.23.4 Model validation

model_selection.cross_validate(estimator,
X)

Evaluate metric(s) by cross-validation and also record
fit/score times.

model_selection.cross_val_predict(estimator,
X)

Generate cross-validated estimates for each input data point

model_selection.cross_val_score(estimator,
X)

Evaluate a score by cross-validation

model_selection.learning_curve(estimator, X,
y)

Learning curve.

model_selection.permutation_test_score(. . . )Evaluate the significance of a cross-validated score with
permutations

model_selection.validation_curve(estimator,
. . . )

Validation curve.

sklearn.model_selection.cross_validate

sklearn.model_selection.cross_validate(estimator, X, y=None, groups=None, scor-
ing=None, cv=None, n_jobs=1, verbose=0,
fit_params=None, pre_dispatch=‘2*n_jobs’, re-
turn_train_score=’warn’)

Evaluate metric(s) by cross-validation and also record fit/score times.

Read more in the User Guide.

Parameters estimator : estimator object implementing ‘fit’

The object to use to fit the data.
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X : array-like

The data to fit. Can be for example a list, or an array.

y : array-like, optional, default: None

The target variable to try to predict in the case of supervised learning.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set.

scoring : string, callable, list/tuple, dict or None, default: None

A single string (see The scoring parameter: defining model evaluation rules) or a
callable (see Defining your scoring strategy from metric functions) to evaluate the pre-
dictions on the test set.

For evaluating multiple metrics, either give a list of (unique) strings or a dict with names
as keys and callables as values.

NOTE that when using custom scorers, each scorer should return a single value. Metric
functions returning a list/array of values can be wrapped into multiple scorers that return
one value each.

See Specifying multiple metrics for evaluation for an example.

If None, the estimator’s default scorer (if available) is used.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross validation,

• integer, to specify the number of folds in a (Stratified)KFold,

• An object to be used as a cross-validation generator.

• An iterable yielding train, test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or multi-
class, StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

n_jobs : integer, optional

The number of CPUs to use to do the computation. -1 means ‘all CPUs’.

verbose : integer, optional

The verbosity level.

fit_params : dict, optional

Parameters to pass to the fit method of the estimator.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

• None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs
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• An int, giving the exact number of total jobs that are spawned

• A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

return_train_score : boolean, optional

Whether to include train scores.

Current default is 'warn', which behaves as True in addition to raising a warning
when a training score is looked up. That default will be changed to False in 0.21.
Computing training scores is used to get insights on how different parameter settings im-
pact the overfitting/underfitting trade-off. However computing the scores on the training
set can be computationally expensive and is not strictly required to select the parameters
that yield the best generalization performance.

Returns scores : dict of float arrays of shape=(n_splits,)

Array of scores of the estimator for each run of the cross validation.

A dict of arrays containing the score/time arrays for each scorer is returned. The possi-
ble keys for this dict are:

test_score The score array for test scores on each cv split.

train_score The score array for train scores on each cv split. This is available
only if return_train_score parameter is True.

fit_time The time for fitting the estimator on the train set for each cv split.

score_time The time for scoring the estimator on the test set for each
cv split. (Note time for scoring on the train set is not included even if
return_train_score is set to True

See also:

sklearn.model_selection.cross_val_score Run cross-validation for single metric evaluation.

sklearn.metrics.make_scorer Make a scorer from a performance metric or loss function.

Examples

>>> from sklearn import datasets, linear_model
>>> from sklearn.model_selection import cross_validate
>>> from sklearn.metrics.scorer import make_scorer
>>> from sklearn.metrics import confusion_matrix
>>> from sklearn.svm import LinearSVC
>>> diabetes = datasets.load_diabetes()
>>> X = diabetes.data[:150]
>>> y = diabetes.target[:150]
>>> lasso = linear_model.Lasso()

Single metric evaluation using cross_validate

>>> cv_results = cross_validate(lasso, X, y, return_train_score=False)
>>> sorted(cv_results.keys())
['fit_time', 'score_time', 'test_score']
>>> cv_results['test_score']
array([ 0.33..., 0.08..., 0.03...])
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Multiple metric evaluation using cross_validate (please refer the scoring parameter doc for more in-
formation)

>>> scores = cross_validate(lasso, X, y,
... scoring=('r2', 'neg_mean_squared_error'))
>>> print(scores['test_neg_mean_squared_error'])
[-3635.5... -3573.3... -6114.7...]
>>> print(scores['train_r2'])
[ 0.28... 0.39... 0.22...]

sklearn.model_selection.cross_val_predict

sklearn.model_selection.cross_val_predict(estimator, X, y=None, groups=None, cv=None,
n_jobs=1, verbose=0, fit_params=None,
pre_dispatch=‘2*n_jobs’, method=’predict’)

Generate cross-validated estimates for each input data point

Read more in the User Guide.

Parameters estimator : estimator object implementing ‘fit’ and ‘predict’

The object to use to fit the data.

X : array-like

The data to fit. Can be, for example a list, or an array at least 2d.

y : array-like, optional, default: None

The target variable to try to predict in the case of supervised learning.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross validation,

• integer, to specify the number of folds in a (Stratified)KFold,

• An object to be used as a cross-validation generator.

• An iterable yielding train, test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or multi-
class, StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

n_jobs : integer, optional

The number of CPUs to use to do the computation. -1 means ‘all CPUs’.

verbose : integer, optional

The verbosity level.

fit_params : dict, optional

Parameters to pass to the fit method of the estimator.

pre_dispatch : int, or string, optional
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Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

• None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

• An int, giving the exact number of total jobs that are spawned

• A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

method : string, optional, default: ‘predict’

Invokes the passed method name of the passed estimator. For method=’predict_proba’,
the columns correspond to the classes in sorted order.

Returns predictions : ndarray

This is the result of calling method

Notes

In the case that one or more classes are absent in a training portion, a default score needs to be assigned to
all instances for that class if method produces columns per class, as in {‘decision_function’, ‘predict_proba’,
‘predict_log_proba’}. For predict_proba this value is 0. In order to ensure finite output, we approximate
negative infinity by the minimum finite float value for the dtype in other cases.

Examples

>>> from sklearn import datasets, linear_model
>>> from sklearn.model_selection import cross_val_predict
>>> diabetes = datasets.load_diabetes()
>>> X = diabetes.data[:150]
>>> y = diabetes.target[:150]
>>> lasso = linear_model.Lasso()
>>> y_pred = cross_val_predict(lasso, X, y)

Examples using sklearn.model_selection.cross_val_predict

• Plotting Cross-Validated Predictions

sklearn.model_selection.cross_val_score

sklearn.model_selection.cross_val_score(estimator, X, y=None, groups=None, scor-
ing=None, cv=None, n_jobs=1, verbose=0,
fit_params=None, pre_dispatch=‘2*n_jobs’)

Evaluate a score by cross-validation

Read more in the User Guide.

Parameters estimator : estimator object implementing ‘fit’

The object to use to fit the data.

X : array-like
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The data to fit. Can be for example a list, or an array.

y : array-like, optional, default: None

The target variable to try to predict in the case of supervised learning.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross validation,

• integer, to specify the number of folds in a (Stratified)KFold,

• An object to be used as a cross-validation generator.

• An iterable yielding train, test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or multi-
class, StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

n_jobs : integer, optional

The number of CPUs to use to do the computation. -1 means ‘all CPUs’.

verbose : integer, optional

The verbosity level.

fit_params : dict, optional

Parameters to pass to the fit method of the estimator.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

• None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

• An int, giving the exact number of total jobs that are spawned

• A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

Returns scores : array of float, shape=(len(list(cv)),)

Array of scores of the estimator for each run of the cross validation.

See also:

sklearn.model_selection.cross_validate To run cross-validation on multiple metrics and also
to return train scores, fit times and score times.

sklearn.metrics.make_scorer Make a scorer from a performance metric or loss function.
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Examples

>>> from sklearn import datasets, linear_model
>>> from sklearn.model_selection import cross_val_score
>>> diabetes = datasets.load_diabetes()
>>> X = diabetes.data[:150]
>>> y = diabetes.target[:150]
>>> lasso = linear_model.Lasso()
>>> print(cross_val_score(lasso, X, y))
[ 0.33150734 0.08022311 0.03531764]

Examples using sklearn.model_selection.cross_val_score

• Imputing missing values before building an estimator

• Model selection with Probabilistic PCA and Factor Analysis (FA)

• Cross-validation on Digits Dataset Exercise

• Nested versus non-nested cross-validation

• Underfitting vs. Overfitting

• SVM-Anova: SVM with univariate feature selection

sklearn.model_selection.learning_curve

sklearn.model_selection.learning_curve(estimator, X, y, groups=None, train_sizes=array([
0.1, 0.33, 0.55, 0.78, 1. ]), cv=None, scoring=None,
exploit_incremental_learning=False, n_jobs=1,
pre_dispatch=’all’, verbose=0, shuffle=False,
random_state=None)

Learning curve.

Determines cross-validated training and test scores for different training set sizes.

A cross-validation generator splits the whole dataset k times in training and test data. Subsets of the training set
with varying sizes will be used to train the estimator and a score for each training subset size and the test set
will be computed. Afterwards, the scores will be averaged over all k runs for each training subset size.

Read more in the User Guide.

Parameters estimator : object type that implements the “fit” and “predict” methods

An object of that type which is cloned for each validation.

X : array-like, shape (n_samples, n_features)

Training vector, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, shape (n_samples) or (n_samples, n_features), optional

Target relative to X for classification or regression; None for unsupervised learning.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set.

train_sizes : array-like, shape (n_ticks,), dtype float or int
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Relative or absolute numbers of training examples that will be used to generate the
learning curve. If the dtype is float, it is regarded as a fraction of the maximum size
of the training set (that is determined by the selected validation method), i.e. it has to
be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. Note
that for classification the number of samples usually have to be big enough to contain at
least one sample from each class. (default: np.linspace(0.1, 1.0, 5))

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross validation,

• integer, to specify the number of folds in a (Stratified)KFold,

• An object to be used as a cross-validation generator.

• An iterable yielding train, test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or multi-
class, StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

exploit_incremental_learning : boolean, optional, default: False

If the estimator supports incremental learning, this will be used to speed up fitting for
different training set sizes.

n_jobs : integer, optional

Number of jobs to run in parallel (default 1).

pre_dispatch : integer or string, optional

Number of predispatched jobs for parallel execution (default is all). The option can
reduce the allocated memory. The string can be an expression like ‘2*n_jobs’.

verbose : integer, optional

Controls the verbosity: the higher, the more messages.

shuffle : boolean, optional

Whether to shuffle training data before taking prefixes of it based on‘‘train_sizes‘‘.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random. Used when shuffle is
True.

Returns train_sizes_abs : array, shape = (n_unique_ticks,), dtype int

Numbers of training examples that has been used to generate the learning curve. Note
that the number of ticks might be less than n_ticks because duplicate entries will be
removed.

train_scores : array, shape (n_ticks, n_cv_folds)

Scores on training sets.
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test_scores : array, shape (n_ticks, n_cv_folds)

Scores on test set.

Notes

See examples/model_selection/plot_learning_curve.py

sklearn.model_selection.permutation_test_score

sklearn.model_selection.permutation_test_score(estimator, X, y, groups=None, cv=None,
n_permutations=100, n_jobs=1,
random_state=0, verbose=0, scor-
ing=None)

Evaluate the significance of a cross-validated score with permutations

Read more in the User Guide.

Parameters estimator : estimator object implementing ‘fit’

The object to use to fit the data.

X : array-like of shape at least 2D

The data to fit.

y : array-like

The target variable to try to predict in the case of supervised learning.

groups : array-like, with shape (n_samples,), optional

Labels to constrain permutation within groups, i.e. y values are permuted among sam-
ples with the same group identifier. When not specified, y values are permuted among
all samples.

When a grouped cross-validator is used, the group labels are also passed on to the
split method of the cross-validator. The cross-validator uses them for grouping the
samples while splitting the dataset into train/test set.

scoring : string, callable or None, optional, default: None

A single string (see The scoring parameter: defining model evaluation rules) or a
callable (see Defining your scoring strategy from metric functions) to evaluate the pre-
dictions on the test set.

If None the estimator’s default scorer, if available, is used.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross validation,

• integer, to specify the number of folds in a (Stratified)KFold,

• An object to be used as a cross-validation generator.

• An iterable yielding train, test splits.
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For integer/None inputs, if the estimator is a classifier and y is either binary or multi-
class, StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

n_permutations : integer, optional

Number of times to permute y.

n_jobs : integer, optional

The number of CPUs to use to do the computation. -1 means ‘all CPUs’.

random_state : int, RandomState instance or None, optional (default=0)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : integer, optional

The verbosity level.

Returns score : float

The true score without permuting targets.

permutation_scores : array, shape (n_permutations,)

The scores obtained for each permutations.

pvalue : float

The p-value, which approximates the probability that the score would be obtained by
chance. This is calculated as:

(C + 1) / (n_permutations + 1)

Where C is the number of permutations whose score >= the true score.

The best possible p-value is 1/(n_permutations + 1), the worst is 1.0.

Notes

This function implements Test 1 in:

Ojala and Garriga. Permutation Tests for Studying Classifier Performance. The Journal of Machine
Learning Research (2010) vol. 11

Examples using sklearn.model_selection.permutation_test_score

• Test with permutations the significance of a classification score

sklearn.model_selection.validation_curve

sklearn.model_selection.validation_curve(estimator, X, y, param_name, param_range,
groups=None, cv=None, scoring=None,
n_jobs=1, pre_dispatch=’all’, verbose=0)

Validation curve.

Determine training and test scores for varying parameter values.
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Compute scores for an estimator with different values of a specified parameter. This is similar to grid search
with one parameter. However, this will also compute training scores and is merely a utility for plotting the
results.

Read more in the User Guide.

Parameters estimator : object type that implements the “fit” and “predict” methods

An object of that type which is cloned for each validation.

X : array-like, shape (n_samples, n_features)

Training vector, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, shape (n_samples) or (n_samples, n_features), optional

Target relative to X for classification or regression; None for unsupervised learning.

param_name : string

Name of the parameter that will be varied.

param_range : array-like, shape (n_values,)

The values of the parameter that will be evaluated.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross validation,

• integer, to specify the number of folds in a (Stratified)KFold,

• An object to be used as a cross-validation generator.

• An iterable yielding train, test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or multi-
class, StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

n_jobs : integer, optional

Number of jobs to run in parallel (default 1).

pre_dispatch : integer or string, optional

Number of predispatched jobs for parallel execution (default is all). The option can
reduce the allocated memory. The string can be an expression like ‘2*n_jobs’.

verbose : integer, optional

Controls the verbosity: the higher, the more messages.

Returns train_scores : array, shape (n_ticks, n_cv_folds)

Scores on training sets.
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test_scores : array, shape (n_ticks, n_cv_folds)

Scores on test set.

Notes

See Plotting Validation Curves

Examples using sklearn.model_selection.validation_curve

• Plotting Validation Curves

5.24 sklearn.multiclass: Multiclass and multilabel classification

5.24.1 Multiclass and multilabel classification strategies

This module implements multiclass learning algorithms:

• one-vs-the-rest / one-vs-all

• one-vs-one

• error correcting output codes

The estimators provided in this module are meta-estimators: they require a base estimator to be provided in their
constructor. For example, it is possible to use these estimators to turn a binary classifier or a regressor into a multiclass
classifier. It is also possible to use these estimators with multiclass estimators in the hope that their accuracy or runtime
performance improves.

All classifiers in scikit-learn implement multiclass classification; you only need to use this module if you want to
experiment with custom multiclass strategies.

The one-vs-the-rest meta-classifier also implements a predict_proba method, so long as such a method is implemented
by the base classifier. This method returns probabilities of class membership in both the single label and multilabel
case. Note that in the multilabel case, probabilities are the marginal probability that a given sample falls in the given
class. As such, in the multilabel case the sum of these probabilities over all possible labels for a given sample will not
sum to unity, as they do in the single label case.

User guide: See the Multiclass and multilabel algorithms section for further details.

multiclass.OneVsRestClassifier(estimator[,
. . . ])

One-vs-the-rest (OvR) multiclass/multilabel strategy

multiclass.OneVsOneClassifier(estimator[,
. . . ])

One-vs-one multiclass strategy

multiclass.OutputCodeClassifier(estimator[,
. . . ])

(Error-Correcting) Output-Code multiclass strategy

5.24.2 sklearn.multiclass.OneVsRestClassifier

class sklearn.multiclass.OneVsRestClassifier(estimator, n_jobs=1)
One-vs-the-rest (OvR) multiclass/multilabel strategy

Also known as one-vs-all, this strategy consists in fitting one classifier per class. For each classifier, the class
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is fitted against all the other classes. In addition to its computational efficiency (only n_classes classifiers are
needed), one advantage of this approach is its interpretability. Since each class is represented by one and one
classifier only, it is possible to gain knowledge about the class by inspecting its corresponding classifier. This is
the most commonly used strategy for multiclass classification and is a fair default choice.

This strategy can also be used for multilabel learning, where a classifier is used to predict multiple labels for
instance, by fitting on a 2-d matrix in which cell [i, j] is 1 if sample i has label j and 0 otherwise.

In the multilabel learning literature, OvR is also known as the binary relevance method.

Read more in the User Guide.

Parameters estimator : estimator object

An estimator object implementing fit and one of decision_function or predict_proba.

n_jobs : int, optional, default: 1

The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no
parallel computing code is used at all, which is useful for debugging. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used.

Attributes estimators_ : list of n_classes estimators

Estimators used for predictions.

classes_ : array, shape = [n_classes]

Class labels.

label_binarizer_ : LabelBinarizer object

Object used to transform multiclass labels to binary labels and vice-versa.

multilabel_ : boolean

Whether a OneVsRestClassifier is a multilabel classifier.

Methods

decision_function(X) Returns the distance of each sample from the decision
boundary for each class.

fit(X, y) Fit underlying estimators.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes]) Partially fit underlying estimators
predict(X) Predict multi-class targets using underlying estimators.
predict_proba(X) Probability estimates.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(estimator, n_jobs=1)

decision_function(X)
Returns the distance of each sample from the decision boundary for each class. This can only be used with
estimators which implement the decision_function method.

Parameters X : array-like, shape = [n_samples, n_features]

Returns T : array-like, shape = [n_samples, n_classes]
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fit(X, y)
Fit underlying estimators.

Parameters X : (sparse) array-like, shape = [n_samples, n_features]

Data.

y : (sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]

Multi-class targets. An indicator matrix turns on multilabel classification.

Returns self :

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

multilabel_
Whether this is a multilabel classifier

partial_fit(X, y, classes=None)
Partially fit underlying estimators

Should be used when memory is inefficient to train all data. Chunks of data can be passed in several
iteration.

Parameters X : (sparse) array-like, shape = [n_samples, n_features]

Data.

y : (sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]

Multi-class targets. An indicator matrix turns on multilabel classification.

classes : array, shape (n_classes, )

Classes across all calls to partial_fit. Can be obtained via np.unique(y_all), where y_all
is the target vector of the entire dataset. This argument is only required in the first call
of partial_fit and can be omitted in the subsequent calls.

Returns self :

predict(X)
Predict multi-class targets using underlying estimators.

Parameters X : (sparse) array-like, shape = [n_samples, n_features]

Data.

Returns y : (sparse) array-like, shape = [n_samples, ], [n_samples, n_classes].

Predicted multi-class targets.

predict_proba(X)
Probability estimates.

The returned estimates for all classes are ordered by label of classes.
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Note that in the multilabel case, each sample can have any number of labels. This returns the marginal
probability that the given sample has the label in question. For example, it is entirely consistent that two
labels both have a 90% probability of applying to a given sample.

In the single label multiclass case, the rows of the returned matrix sum to 1.

Parameters X : array-like, shape = [n_samples, n_features]

Returns T : (sparse) array-like, shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are
ordered as they are in self.classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.multiclass.OneVsRestClassifier

• Multilabel classification

• Precision-Recall

• Receiver Operating Characteristic (ROC)

• Classifier Chain

5.24.3 sklearn.multiclass.OneVsOneClassifier

class sklearn.multiclass.OneVsOneClassifier(estimator, n_jobs=1)
One-vs-one multiclass strategy

This strategy consists in fitting one classifier per class pair. At prediction time, the class which received the
most votes is selected. Since it requires to fit n_classes * (n_classes - 1) / 2 classifiers, this method is usually
slower than one-vs-the-rest, due to its O(n_classes^2) complexity. However, this method may be advantageous
for algorithms such as kernel algorithms which don’t scale well with n_samples. This is because each individual
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learning problem only involves a small subset of the data whereas, with one-vs-the-rest, the complete dataset is
used n_classes times.

Read more in the User Guide.

Parameters estimator : estimator object

An estimator object implementing fit and one of decision_function or predict_proba.

n_jobs : int, optional, default: 1

The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no
parallel computing code is used at all, which is useful for debugging. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used.

Attributes estimators_ : list of n_classes * (n_classes - 1) / 2 estimators

Estimators used for predictions.

classes_ : numpy array of shape [n_classes]

Array containing labels.

Methods

decision_function(X) Decision function for the OneVsOneClassifier.
fit(X, y) Fit underlying estimators.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes]) Partially fit underlying estimators
predict(X) Estimate the best class label for each sample in X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(estimator, n_jobs=1)

decision_function(X)
Decision function for the OneVsOneClassifier.

The decision values for the samples are computed by adding the normalized sum of pair-wise classification
confidence levels to the votes in order to disambiguate between the decision values when the votes for all
the classes are equal leading to a tie.

Parameters X : array-like, shape = [n_samples, n_features]

Returns Y : array-like, shape = [n_samples, n_classes]

fit(X, y)
Fit underlying estimators.

Parameters X : (sparse) array-like, shape = [n_samples, n_features]

Data.

y : array-like, shape = [n_samples]

Multi-class targets.

Returns self :

get_params(deep=True)
Get parameters for this estimator.

5.24. sklearn.multiclass: Multiclass and multilabel classification 1799



scikit-learn user guide, Release 0.19.1

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y, classes=None)
Partially fit underlying estimators

Should be used when memory is inefficient to train all data. Chunks of data can be passed in several
iteration, where the first call should have an array of all target variables.

Parameters X : (sparse) array-like, shape = [n_samples, n_features]

Data.

y : array-like, shape = [n_samples]

Multi-class targets.

classes : array, shape (n_classes, )

Classes across all calls to partial_fit. Can be obtained via np.unique(y_all), where y_all
is the target vector of the entire dataset. This argument is only required in the first call
of partial_fit and can be omitted in the subsequent calls.

Returns self :

predict(X)
Estimate the best class label for each sample in X.

This is implemented as argmax(decision_function(X), axis=1) which will return the label
of the class with most votes by estimators predicting the outcome of a decision for each possible class pair.

Parameters X : (sparse) array-like, shape = [n_samples, n_features]

Data.

Returns y : numpy array of shape [n_samples]

Predicted multi-class targets.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

5.24.4 sklearn.multiclass.OutputCodeClassifier

class sklearn.multiclass.OutputCodeClassifier(estimator, code_size=1.5, ran-
dom_state=None, n_jobs=1)

(Error-Correcting) Output-Code multiclass strategy

Output-code based strategies consist in representing each class with a binary code (an array of 0s and 1s). At
fitting time, one binary classifier per bit in the code book is fitted. At prediction time, the classifiers are used to
project new points in the class space and the class closest to the points is chosen. The main advantage of these
strategies is that the number of classifiers used can be controlled by the user, either for compressing the model
(0 < code_size < 1) or for making the model more robust to errors (code_size > 1). See the documentation for
more details.

Read more in the User Guide.

Parameters estimator : estimator object

An estimator object implementing fit and one of decision_function or predict_proba.

code_size : float

Percentage of the number of classes to be used to create the code book. A number
between 0 and 1 will require fewer classifiers than one-vs-the-rest. A number greater
than 1 will require more classifiers than one-vs-the-rest.

random_state : int, RandomState instance or None, optional, default: None

The generator used to initialize the codebook. If int, random_state is the seed used by
the random number generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the RandomState instance
used by np.random.

n_jobs : int, optional, default: 1

The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no
parallel computing code is used at all, which is useful for debugging. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used.

Attributes estimators_ : list of int(n_classes * code_size) estimators

Estimators used for predictions.

classes_ : numpy array of shape [n_classes]

Array containing labels.

code_book_ : numpy array of shape [n_classes, code_size]

Binary array containing the code of each class.
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References

[R239], [R240], [R241]

Methods

fit(X, y) Fit underlying estimators.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict multi-class targets using underlying estimators.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(estimator, code_size=1.5, random_state=None, n_jobs=1)

fit(X, y)
Fit underlying estimators.

Parameters X : (sparse) array-like, shape = [n_samples, n_features]

Data.

y : numpy array of shape [n_samples]

Multi-class targets.

Returns self :

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict multi-class targets using underlying estimators.

Parameters X : (sparse) array-like, shape = [n_samples, n_features]

Data.

Returns y : numpy array of shape [n_samples]

Predicted multi-class targets.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)
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True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

5.25 sklearn.multioutput: Multioutput regression and classifica-
tion

This module implements multioutput regression and classification.

The estimators provided in this module are meta-estimators: they require a base estimator to be provided in their
constructor. The meta-estimator extends single output estimators to multioutput estimators.

User guide: See the Multiclass and multilabel algorithms section for further details.

multioutput.ClassifierChain(base_estimator) A multi-label model that arranges binary classifiers into a
chain.

multioutput.MultiOutputRegressor(estimator) Multi target regression
multioutput.MultiOutputClassifier(estimator) Multi target classification

5.25.1 sklearn.multioutput.ClassifierChain

class sklearn.multioutput.ClassifierChain(base_estimator, order=None, cv=None, ran-
dom_state=None)

A multi-label model that arranges binary classifiers into a chain.

Each model makes a prediction in the order specified by the chain using all of the available features provided to
the model plus the predictions of models that are earlier in the chain.

Parameters base_estimator : estimator

The base estimator from which the classifier chain is built.

order : array-like, shape=[n_outputs] or ‘random’, optional

By default the order will be determined by the order of columns in the label matrix Y.:

order = [0, 1, 2, ..., Y.shape[1] - 1]

The order of the chain can be explicitly set by providing a list of integers. For example,
for a chain of length 5.:

order = [1, 3, 2, 4, 0]
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means that the first model in the chain will make predictions for column 1 in the Y
matrix, the second model will make predictions for column 3, etc.

If order is ‘random’ a random ordering will be used.

cv : int, cross-validation generator or an iterable, optional (

default=None) :

Determines whether to use cross validated predictions or true labels for the results of
previous estimators in the chain. If cv is None the true labels are used when fitting.
Otherwise possible inputs for cv are:

• integer, to specify the number of folds in a (Stratified)KFold,

• An object to be used as a cross-validation generator.

• An iterable yielding train, test splits.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

The random number generator is used to generate random chain orders.

Attributes classes_ : list

A list of arrays of length len(estimators_) containing the class labels for each
estimator in the chain.

estimators_ : list

A list of clones of base_estimator.

order_ : list

The order of labels in the classifier chain.

References

Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank, “Classifier Chains for Multi-label Classification”,
2009.

Methods

decision_function(X) Evaluate the decision_function of the models in the
chain.

fit(X, Y) Fit the model to data matrix X and targets Y.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict on the data matrix X using the ClassifierChain

model.
predict_proba(X) Predict probability estimates.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(base_estimator, order=None, cv=None, random_state=None)
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decision_function(X)
Evaluate the decision_function of the models in the chain.

Parameters X : array-like, shape (n_samples, n_features)

Returns Y_decision : array-like, shape (n_samples, n_classes )

Returns the decision function of the sample for each model in the chain.

fit(X, Y)
Fit the model to data matrix X and targets Y.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

The input data.

Y : array-like, shape (n_samples, n_classes)

The target values.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict on the data matrix X using the ClassifierChain model.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

The input data.

Returns Y_pred : array-like, shape (n_samples, n_classes)

The predicted values.

predict_proba(X)
Predict probability estimates.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Returns Y_prob : array-like, shape (n_samples, n_classes)

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional
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Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.multioutput.ClassifierChain

• Classifier Chain

5.25.2 sklearn.multioutput.MultiOutputRegressor

class sklearn.multioutput.MultiOutputRegressor(estimator, n_jobs=1)
Multi target regression

This strategy consists of fitting one regressor per target. This is a simple strategy for extending regressors that
do not natively support multi-target regression.

Parameters estimator : estimator object

An estimator object implementing fit and predict.

n_jobs : int, optional, default=1

The number of jobs to run in parallel for fit. If -1, then the number of jobs is set to the
number of cores. When individual estimators are fast to train or predict using n_jobs>1
can result in slower performance due to the overhead of spawning processes.

Methods

fit(X, y[, sample_weight]) Fit the model to data.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, sample_weight]) Incrementally fit the model to data.
predict(X) Predict multi-output variable using a model trained for

each target variable.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(estimator, n_jobs=1)

fit(X, y, sample_weight=None)
Fit the model to data. Fit a separate model for each output variable.

Parameters X : (sparse) array-like, shape (n_samples, n_features)

Data.
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y : (sparse) array-like, shape (n_samples, n_outputs)

Multi-output targets. An indicator matrix turns on multilabel estimation.

sample_weight : array-like, shape = (n_samples) or None

Sample weights. If None, then samples are equally weighted. Only supported if the
underlying regressor supports sample weights.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y, sample_weight=None)
Incrementally fit the model to data. Fit a separate model for each output variable.

Parameters X : (sparse) array-like, shape (n_samples, n_features)

Data.

y : (sparse) array-like, shape (n_samples, n_outputs)

Multi-output targets.

sample_weight : array-like, shape = (n_samples) or None

Sample weights. If None, then samples are equally weighted. Only supported if the
underlying regressor supports sample weights.

Returns self : object

Returns self.

predict(X)

Predict multi-output variable using a model trained for each target variable.

Parameters X : (sparse) array-like, shape (n_samples, n_features)

Data.

Returns y : (sparse) array-like, shape (n_samples, n_outputs)

Multi-output targets predicted across multiple predictors. Note: Separate models are
generated for each predictor.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the regression sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape (n_samples, n_features)
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Test samples.

y : array-like, shape (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

Notes

R^2 is calculated by weighting all the targets equally using multioutput=’uniform_average’.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.multioutput.MultiOutputRegressor

• Comparing random forests and the multi-output meta estimator

5.25.3 sklearn.multioutput.MultiOutputClassifier

class sklearn.multioutput.MultiOutputClassifier(estimator, n_jobs=1)
Multi target classification

This strategy consists of fitting one classifier per target. This is a simple strategy for extending classifiers that
do not natively support multi-target classification

Parameters estimator : estimator object

An estimator object implementing fit, score and predict_proba.

n_jobs : int, optional, default=1

The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given,
no parallel computing code is used at all, which is useful for debugging. For n_jobs
below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are
used. The number of jobs to use for the computation. It does each target variable in y
in parallel.

Attributes estimators_ : list of n_output estimators

Estimators used for predictions.

Methods
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fit(X, y[, sample_weight]) Fit the model to data.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight]) Incrementally fit the model to data.
predict(X) Predict multi-output variable using a model trained for

each target variable.
predict_proba(X) Probability estimates.
score(X, y) “Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(estimator, n_jobs=1)

fit(X, y, sample_weight=None)
Fit the model to data. Fit a separate model for each output variable.

Parameters X : (sparse) array-like, shape (n_samples, n_features)

Data.

y : (sparse) array-like, shape (n_samples, n_outputs)

Multi-output targets. An indicator matrix turns on multilabel estimation.

sample_weight : array-like, shape = (n_samples) or None

Sample weights. If None, then samples are equally weighted. Only supported if the
underlying regressor supports sample weights.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y, classes=None, sample_weight=None)
Incrementally fit the model to data. Fit a separate model for each output variable.

Parameters X : (sparse) array-like, shape (n_samples, n_features)

Data.

y : (sparse) array-like, shape (n_samples, n_outputs)

Multi-output targets.

classes : list of numpy arrays, shape (n_outputs)

Each array is unique classes for one output in str/int Can be obtained by via [np.
unique(y[:, i]) for i in range(y.shape[1])], where y is the target
matrix of the entire dataset. This argument is required for the first call to partial_fit and
can be omitted in the subsequent calls. Note that y doesn’t need to contain all labels in
classes.

sample_weight : array-like, shape = (n_samples) or None
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Sample weights. If None, then samples are equally weighted. Only supported if the
underlying regressor supports sample weights.

Returns self : object

Returns self.

predict(X)

Predict multi-output variable using a model trained for each target variable.

Parameters X : (sparse) array-like, shape (n_samples, n_features)

Data.

Returns y : (sparse) array-like, shape (n_samples, n_outputs)

Multi-output targets predicted across multiple predictors. Note: Separate models are
generated for each predictor.

predict_proba(X)
Probability estimates. Returns prediction probabilities for each class of each output.

Parameters X : array-like, shape (n_samples, n_features)

Data

Returns p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if
n_outputs > 1.

The class probabilities of the input samples. The order of the classes corresponds to that
in the attribute classes_.

score(X, y)
“Returns the mean accuracy on the given test data and labels.

Parameters X : array-like, shape [n_samples, n_features]

Test samples

y : array-like, shape [n_samples, n_outputs]

True values for X

Returns scores : float

accuracy_score of self.predict(X) versus y

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

5.26 sklearn.naive_bayes: Naive Bayes

The sklearn.naive_bayes module implements Naive Bayes algorithms. These are supervised learning methods
based on applying Bayes’ theorem with strong (naive) feature independence assumptions.

User guide: See the Naive Bayes section for further details.
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naive_bayes.BernoulliNB([alpha, binarize, . . . ]) Naive Bayes classifier for multivariate Bernoulli models.
naive_bayes.GaussianNB([priors]) Gaussian Naive Bayes (GaussianNB)
naive_bayes.MultinomialNB([alpha, . . . ]) Naive Bayes classifier for multinomial models

5.26.1 sklearn.naive_bayes.BernoulliNB

class sklearn.naive_bayes.BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True,
class_prior=None)

Naive Bayes classifier for multivariate Bernoulli models.

Like MultinomialNB, this classifier is suitable for discrete data. The difference is that while MultinomialNB
works with occurrence counts, BernoulliNB is designed for binary/boolean features.

Read more in the User Guide.

Parameters alpha : float, optional (default=1.0)

Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing).

binarize : float or None, optional (default=0.0)

Threshold for binarizing (mapping to booleans) of sample features. If None, input is
presumed to already consist of binary vectors.

fit_prior : boolean, optional (default=True)

Whether to learn class prior probabilities or not. If false, a uniform prior will be used.

class_prior : array-like, size=[n_classes,], optional (default=None)

Prior probabilities of the classes. If specified the priors are not adjusted according to the
data.

Attributes class_log_prior_ : array, shape = [n_classes]

Log probability of each class (smoothed).

feature_log_prob_ : array, shape = [n_classes, n_features]

Empirical log probability of features given a class, P(x_i|y).

class_count_ : array, shape = [n_classes]

Number of samples encountered for each class during fitting. This value is weighted by
the sample weight when provided.

feature_count_ : array, shape = [n_classes, n_features]

Number of samples encountered for each (class, feature) during fitting. This value is
weighted by the sample weight when provided.

References

C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge Univer-
sity Press, pp. 234-265. http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html

A. McCallum and K. Nigam (1998). A comparison of event models for naive Bayes text classification. Proc.
AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48.

V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with naive Bayes – Which naive Bayes?
3rd Conf. on Email and Anti-Spam (CEAS).
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Examples

>>> import numpy as np
>>> X = np.random.randint(2, size=(6, 100))
>>> Y = np.array([1, 2, 3, 4, 4, 5])
>>> from sklearn.naive_bayes import BernoulliNB
>>> clf = BernoulliNB()
>>> clf.fit(X, Y)
BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)
>>> print(clf.predict(X[2:3]))
[3]

Methods

fit(X, y[, sample_weight]) Fit Naive Bayes classifier according to X, y
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight]) Incremental fit on a batch of samples.
predict(X) Perform classification on an array of test vectors X.
predict_log_proba(X) Return log-probability estimates for the test vector X.
predict_proba(X) Return probability estimates for the test vector X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None)

fit(X, y, sample_weight=None)
Fit Naive Bayes classifier according to X, y

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values.

sample_weight : array-like, shape = [n_samples], (default=None)

Weights applied to individual samples (1. for unweighted).

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.
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partial_fit(X, y, classes=None, sample_weight=None)
Incremental fit on a batch of samples.

This method is expected to be called several times consecutively on different chunks of a dataset so as to
implement out-of-core or online learning.

This is especially useful when the whole dataset is too big to fit in memory at once.

This method has some performance overhead hence it is better to call partial_fit on chunks of data that are
as large as possible (as long as fitting in the memory budget) to hide the overhead.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values.

classes : array-like, shape = [n_classes] (default=None)

List of all the classes that can possibly appear in the y vector.

Must be provided at the first call to partial_fit, can be omitted in subsequent calls.

sample_weight : array-like, shape = [n_samples] (default=None)

Weights applied to individual samples (1. for unweighted).

Returns self : object

Returns self.

predict(X)
Perform classification on an array of test vectors X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]

Predicted target values for X

predict_log_proba(X)
Return log-probability estimates for the test vector X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array-like, shape = [n_samples, n_classes]

Returns the log-probability of the samples for each class in the model. The columns
correspond to the classes in sorted order, as they appear in the attribute classes_.

predict_proba(X)
Return probability estimates for the test vector X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array-like, shape = [n_samples, n_classes]

Returns the probability of the samples for each class in the model. The columns corre-
spond to the classes in sorted order, as they appear in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.
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Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.naive_bayes.BernoulliNB

• Hashing feature transformation using Totally Random Trees

• Classification of text documents using sparse features

5.26.2 sklearn.naive_bayes.GaussianNB

class sklearn.naive_bayes.GaussianNB(priors=None)
Gaussian Naive Bayes (GaussianNB)

Can perform online updates to model parameters via partial_fit method. For details on algorithm used to update
feature means and variance online, see Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque:

http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf

Read more in the User Guide.

Parameters priors : array-like, shape (n_classes,)

Prior probabilities of the classes. If specified the priors are not adjusted according to the
data.

Attributes class_prior_ : array, shape (n_classes,)

probability of each class.

class_count_ : array, shape (n_classes,)

number of training samples observed in each class.

theta_ : array, shape (n_classes, n_features)

mean of each feature per class

sigma_ : array, shape (n_classes, n_features)

variance of each feature per class
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Examples

>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> Y = np.array([1, 1, 1, 2, 2, 2])
>>> from sklearn.naive_bayes import GaussianNB
>>> clf = GaussianNB()
>>> clf.fit(X, Y)
GaussianNB(priors=None)
>>> print(clf.predict([[-0.8, -1]]))
[1]
>>> clf_pf = GaussianNB()
>>> clf_pf.partial_fit(X, Y, np.unique(Y))
GaussianNB(priors=None)
>>> print(clf_pf.predict([[-0.8, -1]]))
[1]

Methods

fit(X, y[, sample_weight]) Fit Gaussian Naive Bayes according to X, y
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight]) Incremental fit on a batch of samples.
predict(X) Perform classification on an array of test vectors X.
predict_log_proba(X) Return log-probability estimates for the test vector X.
predict_proba(X) Return probability estimates for the test vector X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(priors=None)

fit(X, y, sample_weight=None)
Fit Gaussian Naive Bayes according to X, y

Parameters X : array-like, shape (n_samples, n_features)

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape (n_samples,)

Target values.

sample_weight : array-like, shape (n_samples,), optional (default=None)

Weights applied to individual samples (1. for unweighted).

New in version 0.17: Gaussian Naive Bayes supports fitting with sample_weight.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional
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If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y, classes=None, sample_weight=None)
Incremental fit on a batch of samples.

This method is expected to be called several times consecutively on different chunks of a dataset so as to
implement out-of-core or online learning.

This is especially useful when the whole dataset is too big to fit in memory at once.

This method has some performance and numerical stability overhead, hence it is better to call partial_fit on
chunks of data that are as large as possible (as long as fitting in the memory budget) to hide the overhead.

Parameters X : array-like, shape (n_samples, n_features)

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape (n_samples,)

Target values.

classes : array-like, shape (n_classes,), optional (default=None)

List of all the classes that can possibly appear in the y vector.

Must be provided at the first call to partial_fit, can be omitted in subsequent calls.

sample_weight : array-like, shape (n_samples,), optional (default=None)

Weights applied to individual samples (1. for unweighted).

New in version 0.17.

Returns self : object

Returns self.

predict(X)
Perform classification on an array of test vectors X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]

Predicted target values for X

predict_log_proba(X)
Return log-probability estimates for the test vector X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array-like, shape = [n_samples, n_classes]

Returns the log-probability of the samples for each class in the model. The columns
correspond to the classes in sorted order, as they appear in the attribute classes_.

predict_proba(X)
Return probability estimates for the test vector X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array-like, shape = [n_samples, n_classes]
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Returns the probability of the samples for each class in the model. The columns corre-
spond to the classes in sorted order, as they appear in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.naive_bayes.GaussianNB

• Probability calibration of classifiers

• Probability Calibration curves

• Comparison of Calibration of Classifiers

• Classifier comparison

• Plot class probabilities calculated by the VotingClassifier

• Plotting Learning Curves

• Importance of Feature Scaling

5.26.3 sklearn.naive_bayes.MultinomialNB

class sklearn.naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)
Naive Bayes classifier for multinomial models

The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for
text classification). The multinomial distribution normally requires integer feature counts. However, in practice,
fractional counts such as tf-idf may also work.

Read more in the User Guide.

Parameters alpha : float, optional (default=1.0)

Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing).
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fit_prior : boolean, optional (default=True)

Whether to learn class prior probabilities or not. If false, a uniform prior will be used.

class_prior : array-like, size (n_classes,), optional (default=None)

Prior probabilities of the classes. If specified the priors are not adjusted according to the
data.

Attributes class_log_prior_ : array, shape (n_classes, )

Smoothed empirical log probability for each class.

intercept_ : property

Mirrors class_log_prior_ for interpreting MultinomialNB as a linear model.

feature_log_prob_ : array, shape (n_classes, n_features)

Empirical log probability of features given a class, P(x_i|y).

coef_ : property

Mirrors feature_log_prob_ for interpreting MultinomialNB as a linear model.

class_count_ : array, shape (n_classes,)

Number of samples encountered for each class during fitting. This value is weighted by
the sample weight when provided.

feature_count_ : array, shape (n_classes, n_features)

Number of samples encountered for each (class, feature) during fitting. This value is
weighted by the sample weight when provided.

Notes

For the rationale behind the names coef_ and intercept_, i.e. naive Bayes as a linear classifier, see J. Rennie et
al. (2003), Tackling the poor assumptions of naive Bayes text classifiers, ICML.

References

C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge Uni-
versity Press, pp. 234-265. http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.
html

Examples

>>> import numpy as np
>>> X = np.random.randint(5, size=(6, 100))
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> from sklearn.naive_bayes import MultinomialNB
>>> clf = MultinomialNB()
>>> clf.fit(X, y)
MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
>>> print(clf.predict(X[2:3]))
[3]
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Methods

fit(X, y[, sample_weight]) Fit Naive Bayes classifier according to X, y
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight]) Incremental fit on a batch of samples.
predict(X) Perform classification on an array of test vectors X.
predict_log_proba(X) Return log-probability estimates for the test vector X.
predict_proba(X) Return probability estimates for the test vector X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, fit_prior=True, class_prior=None)

fit(X, y, sample_weight=None)
Fit Naive Bayes classifier according to X, y

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target values.

sample_weight : array-like, shape = [n_samples], (default=None)

Weights applied to individual samples (1. for unweighted).

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y, classes=None, sample_weight=None)
Incremental fit on a batch of samples.

This method is expected to be called several times consecutively on different chunks of a dataset so as to
implement out-of-core or online learning.

This is especially useful when the whole dataset is too big to fit in memory at once.

This method has some performance overhead hence it is better to call partial_fit on chunks of data that are
as large as possible (as long as fitting in the memory budget) to hide the overhead.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]
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Target values.

classes : array-like, shape = [n_classes] (default=None)

List of all the classes that can possibly appear in the y vector.

Must be provided at the first call to partial_fit, can be omitted in subsequent calls.

sample_weight : array-like, shape = [n_samples] (default=None)

Weights applied to individual samples (1. for unweighted).

Returns self : object

Returns self.

predict(X)
Perform classification on an array of test vectors X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]

Predicted target values for X

predict_log_proba(X)
Return log-probability estimates for the test vector X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array-like, shape = [n_samples, n_classes]

Returns the log-probability of the samples for each class in the model. The columns
correspond to the classes in sorted order, as they appear in the attribute classes_.

predict_proba(X)
Return probability estimates for the test vector X.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array-like, shape = [n_samples, n_classes]

Returns the probability of the samples for each class in the model. The columns corre-
spond to the classes in sorted order, as they appear in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.naive_bayes.MultinomialNB

• Out-of-core classification of text documents

• Classification of text documents using sparse features

5.27 sklearn.neighbors: Nearest Neighbors

The sklearn.neighbors module implements the k-nearest neighbors algorithm.

User guide: See the Nearest Neighbors section for further details.

neighbors.BallTree BallTree for fast generalized N-point problems
neighbors.DistanceMetric DistanceMetric class
neighbors.KDTree KDTree for fast generalized N-point problems
neighbors.KernelDensity([bandwidth, . . . ]) Kernel Density Estimation
neighbors.KNeighborsClassifier([. . . ]) Classifier implementing the k-nearest neighbors vote.
neighbors.KNeighborsRegressor([n_neighbors,
. . . ])

Regression based on k-nearest neighbors.

neighbors.LocalOutlierFactor([n_neighbors,
. . . ])

Unsupervised Outlier Detection using Local Outlier Factor
(LOF)

neighbors.RadiusNeighborsClassifier([. . . ]) Classifier implementing a vote among neighbors within a
given radius

neighbors.RadiusNeighborsRegressor([radius,
. . . ])

Regression based on neighbors within a fixed radius.

neighbors.NearestCentroid([metric, . . . ]) Nearest centroid classifier.
neighbors.NearestNeighbors([n_neighbors,
. . . ])

Unsupervised learner for implementing neighbor searches.

5.27.1 sklearn.neighbors.BallTree

class sklearn.neighbors.BallTree
BallTree for fast generalized N-point problems

BallTree(X, leaf_size=40, metric=’minkowski’, **kwargs)

Parameters X : array-like, shape = [n_samples, n_features]

n_samples is the number of points in the data set, and n_features is the dimension of
the parameter space. Note: if X is a C-contiguous array of doubles then data will not be
copied. Otherwise, an internal copy will be made.

leaf_size : positive integer (default = 40)

Number of points at which to switch to brute-force. Changing leaf_size will not affect
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the results of a query, but can significantly impact the speed of a query and the memory
required to store the constructed tree. The amount of memory needed to store the tree
scales as approximately n_samples / leaf_size. For a specified leaf_size, a leaf
node is guaranteed to satisfy leaf_size <= n_points <= 2 * leaf_size,
except in the case that n_samples < leaf_size.

metric : string or DistanceMetric object

the distance metric to use for the tree. Default=’minkowski’ with p=2 (that is, a eu-
clidean metric). See the documentation of the DistanceMetric class for a list of available
metrics. ball_tree.valid_metrics gives a list of the metrics which are valid for BallTree.

Additional keywords are passed to the distance metric class. :

Attributes data : np.ndarray

The training data

Examples

Query for k-nearest neighbors

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = BallTree(X, leaf_size=2)
>>> dist, ind = tree.query([X[0]], k=3)
>>> print(ind) # indices of 3 closest neighbors
[0 3 1]
>>> print(dist) # distances to 3 closest neighbors
[ 0. 0.19662693 0.29473397]

Pickle and Unpickle a tree. Note that the state of the tree is saved in the pickle operation: the tree needs not be
rebuilt upon unpickling.

>>> import numpy as np
>>> import pickle
>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = BallTree(X, leaf_size=2)
>>> s = pickle.dumps(tree)
>>> tree_copy = pickle.loads(s)
>>> dist, ind = tree_copy.query(X[0], k=3)
>>> print(ind) # indices of 3 closest neighbors
[0 3 1]
>>> print(dist) # distances to 3 closest neighbors
[ 0. 0.19662693 0.29473397]

Query for neighbors within a given radius

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = BallTree(X, leaf_size=2)
>>> print(tree.query_radius(X[0], r=0.3, count_only=True))
3
>>> ind = tree.query_radius(X[0], r=0.3)
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>>> print(ind) # indices of neighbors within distance 0.3
[3 0 1]

Compute a gaussian kernel density estimate:

>>> import numpy as np
>>> np.random.seed(1)
>>> X = np.random.random((100, 3))
>>> tree = BallTree(X)
>>> tree.kernel_density(X[:3], h=0.1, kernel='gaussian')
array([ 6.94114649, 7.83281226, 7.2071716 ])

Compute a two-point auto-correlation function

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((30, 3))
>>> r = np.linspace(0, 1, 5)
>>> tree = BallTree(X)
>>> tree.two_point_correlation(X, r)
array([ 30, 62, 278, 580, 820])

Methods

get_arrays
get_n_calls
get_tree_stats
kernel_density(self, X, h[, kernel, atol, . . . ]) Compute the kernel density estimate at points X with

the given kernel, using the distance metric specified at
tree creation.

query(X[, k, return_distance, dualtree, . . . ]) query the tree for the k nearest neighbors
query_radius query_radius(self, X, r, count_only = False):
reset_n_calls
two_point_correlation Compute the two-point correlation function

__init__()
Initialize self. See help(type(self)) for accurate signature.

kernel_density(self, X, h, kernel=’gaussian’, atol=0, rtol=1E-8, breadth_first=True, re-
turn_log=False)

Compute the kernel density estimate at points X with the given kernel, using the distance metric specified
at tree creation.

Parameters X : array_like

An array of points to query. Last dimension should match dimension of training data.

h : float

the bandwidth of the kernel

kernel : string

specify the kernel to use. Options are - ‘gaussian’ - ‘tophat’ - ‘epanechnikov’ - ‘expo-
nential’ - ‘linear’ - ‘cosine’ Default is kernel = ‘gaussian’
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atol, rtol : float (default = 0)

Specify the desired relative and absolute tolerance of the result. If the true result is
K_true, then the returned result K_ret satisfies abs(K_true - K_ret) < atol
+ rtol * K_ret The default is zero (i.e. machine precision) for both.

breadth_first : boolean (default = False)

if True, use a breadth-first search. If False (default) use a depth-first search. Breadth-
first is generally faster for compact kernels and/or high tolerances.

return_log : boolean (default = False)

return the logarithm of the result. This can be more accurate than returning the result
itself for narrow kernels.

Returns density : ndarray

The array of (log)-density evaluations, shape = X.shape[:-1]

Examples

Compute a gaussian kernel density estimate:

>>> import numpy as np
>>> np.random.seed(1)
>>> X = np.random.random((100, 3))
>>> tree = BinaryTree(X)
>>> tree.kernel_density(X[:3], h=0.1, kernel='gaussian')
array([ 6.94114649, 7.83281226, 7.2071716 ])

query(X, k=1, return_distance=True, dualtree=False, breadth_first=False)
query the tree for the k nearest neighbors

Parameters X : array-like, last dimension self.dim

An array of points to query

k : integer (default = 1)

The number of nearest neighbors to return

return_distance : boolean (default = True)

if True, return a tuple (d, i) of distances and indices if False, return array i

dualtree : boolean (default = False)

if True, use the dual tree formalism for the query: a tree is built for the query points,
and the pair of trees is used to efficiently search this space. This can lead to better
performance as the number of points grows large.

breadth_first : boolean (default = False)

if True, then query the nodes in a breadth-first manner. Otherwise, query the nodes in a
depth-first manner.

sort_results : boolean (default = True)

if True, then distances and indices of each point are sorted on return, so that the first
column contains the closest points. Otherwise, neighbors are returned in an arbitrary
order.
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Returns i : if return_distance == False

(d,i) : if return_distance == True

d : array of doubles - shape: x.shape[:-1] + (k,)

each entry gives the list of distances to the neighbors of the corresponding point

i : array of integers - shape: x.shape[:-1] + (k,)

each entry gives the list of indices of neighbors of the corresponding point

Examples

Query for k-nearest neighbors

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = BinaryTree(X, leaf_size=2)
>>> dist, ind = tree.query(X[0], k=3)
>>> print(ind) # indices of 3 closest neighbors
[0 3 1]
>>> print(dist) # distances to 3 closest neighbors
[ 0. 0.19662693 0.29473397]

query_radius()
query_radius(self, X, r, count_only = False):

query the tree for neighbors within a radius r

Parameters X : array-like, last dimension self.dim

An array of points to query

r : distance within which neighbors are returned

r can be a single value, or an array of values of shape x.shape[:-1] if different radii are
desired for each point.

return_distance : boolean (default = False)

if True, return distances to neighbors of each point if False, return only neighbors Note
that unlike the query() method, setting return_distance=True here adds to the computa-
tion time. Not all distances need to be calculated explicitly for return_distance=False.
Results are not sorted by default: see sort_results keyword.

count_only : boolean (default = False)

if True, return only the count of points within distance r if False, return the indices of all
points within distance r If return_distance==True, setting count_only=True will result
in an error.

sort_results : boolean (default = False)

if True, the distances and indices will be sorted before being returned. If False, the
results will not be sorted. If return_distance == False, setting sort_results = True will
result in an error.

Returns count : if count_only == True

ind : if count_only == False and return_distance == False
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(ind, dist) : if count_only == False and return_distance == True

count : array of integers, shape = X.shape[:-1]

each entry gives the number of neighbors within a distance r of the corresponding point.

ind : array of objects, shape = X.shape[:-1]

each element is a numpy integer array listing the indices of neighbors of the correspond-
ing point. Note that unlike the results of a k-neighbors query, the returned neighbors are
not sorted by distance by default.

dist : array of objects, shape = X.shape[:-1]

each element is a numpy double array listing the distances corresponding to indices in
i.

Examples

Query for neighbors in a given radius

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = BinaryTree(X, leaf_size=2)
>>> print(tree.query_radius(X[0], r=0.3, count_only=True))
3
>>> ind = tree.query_radius(X[0], r=0.3)
>>> print(ind) # indices of neighbors within distance 0.3
[3 0 1]

two_point_correlation()
Compute the two-point correlation function

Parameters X : array_like

An array of points to query. Last dimension should match dimension of training data.

r : array_like

A one-dimensional array of distances

dualtree : boolean (default = False)

If true, use a dualtree algorithm. Otherwise, use a single-tree algorithm. Dual tree
algorithms can have better scaling for large N.

Returns counts : ndarray

counts[i] contains the number of pairs of points with distance less than or equal to r[i]

Examples

Compute the two-point autocorrelation function of X:

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((30, 3))
>>> r = np.linspace(0, 1, 5)
>>> tree = BinaryTree(X)
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>>> tree.two_point_correlation(X, r)
array([ 30, 62, 278, 580, 820])

5.27.2 sklearn.neighbors.DistanceMetric

class sklearn.neighbors.DistanceMetric
DistanceMetric class

This class provides a uniform interface to fast distance metric functions. The various metrics can be accessed
via the get_metric class method and the metric string identifier (see below). For example, to use the Euclidean
distance:

>>> dist = DistanceMetric.get_metric('euclidean')
>>> X = [[0, 1, 2],

[3, 4, 5]]
>>> dist.pairwise(X)
array([[ 0. , 5.19615242],

[ 5.19615242, 0. ]])

Available Metrics The following lists the string metric identifiers and the associated distance metric classes:

Metrics intended for real-valued vector spaces:

identifier class name args distance function
“euclidean” EuclideanDistance

•
sqrt(sum((x -
y)^2))

“manhattan” ManhattanDistance
•

sum(|x - y|)

“chebyshev” ChebyshevDistance
•

max(|x - y|)

“minkowski” MinkowskiDistance p sum(|x -
y|^p)^(1/p)

“wminkowski” WMinkowskiDistance p, w sum(w * |x -
y|^p)^(1/p)

“seuclidean” SEuclideanDistance V sqrt(sum((x -
y)^2 / V))

“mahalanobis” MahalanobisDistance V or VI sqrt((x - y)'
V^-1 (x - y))

Metrics intended for two-dimensional vector spaces: Note that the haversine distance metric requires data in
the form of [latitude, longitude] and both inputs and outputs are in units of radians.

identifier class name distance function
“haversine” HaversineDistance

2 arcsin(sqrt(sin^2(0.5*dx)
•

cos(x1)cos(x2)sin^2(0.5*dy)))
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Metrics intended for integer-valued vector spaces: Though intended for integer-valued vectors, these are also
valid metrics in the case of real-valued vectors.

identifier class name distance function
“hamming” HammingDistance N_unequal(x, y) / N_tot
“canberra” CanberraDistance sum(|x - y| / (|x| + |y|))
“braycurtis” BrayCurtisDistance sum(|x - y|) / (sum(|x|) + sum(|y|))

Metrics intended for boolean-valued vector spaces: Any nonzero entry is evaluated to “True”. In the listings
below, the following abbreviations are used:

• N : number of dimensions

• NTT : number of dims in which both values are True

• NTF : number of dims in which the first value is True, second is False

• NFT : number of dims in which the first value is False, second is True

• NFF : number of dims in which both values are False

• NNEQ : number of non-equal dimensions, NNEQ = NTF + NFT

• NNZ : number of nonzero dimensions, NNZ = NTF + NFT + NTT

identifier class name distance function
“jaccard” JaccardDistance NNEQ / NNZ
“matching” MatchingDistance NNEQ / N
“dice” DiceDistance NNEQ / (NTT + NNZ)
“kulsinski” KulsinskiDistance (NNEQ + N - NTT) / (NNEQ + N)
“rogerstanimoto” RogersTanimotoDistance 2 * NNEQ / (N + NNEQ)
“russellrao” RussellRaoDistance NNZ / N
“sokalmichener” SokalMichenerDistance 2 * NNEQ / (N + NNEQ)
“sokalsneath” SokalSneathDistance NNEQ / (NNEQ + 0.5 * NTT)

User-defined distance:

identifier class name args
“pyfunc” PyFuncDistance func

Here func is a function which takes two one-dimensional numpy arrays, and returns a distance. Note that
in order to be used within the BallTree, the distance must be a true metric: i.e. it must satisfy the following
properties

1. Non-negativity: d(x, y) >= 0

2. Identity: d(x, y) = 0 if and only if x == y

3. Symmetry: d(x, y) = d(y, x)

4. Triangle Inequality: d(x, y) + d(y, z) >= d(x, z)

Because of the Python object overhead involved in calling the python function, this will be fairly slow, but it
will have the same scaling as other distances.
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Methods

dist_to_rdist Convert the true distance to the reduced distance.
get_metric Get the given distance metric from the string identifier.
pairwise Compute the pairwise distances between X and Y
rdist_to_dist Convert the Reduced distance to the true distance.

__init__()
Initialize self. See help(type(self)) for accurate signature.

dist_to_rdist()
Convert the true distance to the reduced distance.

The reduced distance, defined for some metrics, is a computationally more efficient measure which pre-
serves the rank of the true distance. For example, in the Euclidean distance metric, the reduced distance is
the squared-euclidean distance.

get_metric()
Get the given distance metric from the string identifier.

See the docstring of DistanceMetric for a list of available metrics.

Parameters metric : string or class name

The distance metric to use

**kwargs :

additional arguments will be passed to the requested metric

pairwise()
Compute the pairwise distances between X and Y

This is a convenience routine for the sake of testing. For many metrics, the utilities in
scipy.spatial.distance.cdist and scipy.spatial.distance.pdist will be faster.

Parameters X : array_like

Array of shape (Nx, D), representing Nx points in D dimensions.

Y : array_like (optional)

Array of shape (Ny, D), representing Ny points in D dimensions. If not specified, then
Y=X.

Returns :

——- :

dist : ndarray

The shape (Nx, Ny) array of pairwise distances between points in X and Y.

rdist_to_dist()
Convert the Reduced distance to the true distance.

The reduced distance, defined for some metrics, is a computationally more efficient measure which pre-
serves the rank of the true distance. For example, in the Euclidean distance metric, the reduced distance is
the squared-euclidean distance.
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5.27.3 sklearn.neighbors.KDTree

class sklearn.neighbors.KDTree
KDTree for fast generalized N-point problems

KDTree(X, leaf_size=40, metric=’minkowski’, **kwargs)

Parameters X : array-like, shape = [n_samples, n_features]

n_samples is the number of points in the data set, and n_features is the dimension of
the parameter space. Note: if X is a C-contiguous array of doubles then data will not be
copied. Otherwise, an internal copy will be made.

leaf_size : positive integer (default = 40)

Number of points at which to switch to brute-force. Changing leaf_size will not affect
the results of a query, but can significantly impact the speed of a query and the memory
required to store the constructed tree. The amount of memory needed to store the tree
scales as approximately n_samples / leaf_size. For a specified leaf_size, a leaf
node is guaranteed to satisfy leaf_size <= n_points <= 2 * leaf_size,
except in the case that n_samples < leaf_size.

metric : string or DistanceMetric object

the distance metric to use for the tree. Default=’minkowski’ with p=2 (that is, a eu-
clidean metric). See the documentation of the DistanceMetric class for a list of available
metrics. kd_tree.valid_metrics gives a list of the metrics which are valid for KDTree.

Additional keywords are passed to the distance metric class. :

Attributes data : np.ndarray

The training data

Examples

Query for k-nearest neighbors

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = KDTree(X, leaf_size=2)
>>> dist, ind = tree.query([X[0]], k=3)
>>> print(ind) # indices of 3 closest neighbors
[0 3 1]
>>> print(dist) # distances to 3 closest neighbors
[ 0. 0.19662693 0.29473397]

Pickle and Unpickle a tree. Note that the state of the tree is saved in the pickle operation: the tree needs not be
rebuilt upon unpickling.

>>> import numpy as np
>>> import pickle
>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = KDTree(X, leaf_size=2)
>>> s = pickle.dumps(tree)
>>> tree_copy = pickle.loads(s)
>>> dist, ind = tree_copy.query(X[0], k=3)
>>> print(ind) # indices of 3 closest neighbors
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[0 3 1]
>>> print(dist) # distances to 3 closest neighbors
[ 0. 0.19662693 0.29473397]

Query for neighbors within a given radius

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = KDTree(X, leaf_size=2)
>>> print(tree.query_radius(X[0], r=0.3, count_only=True))
3
>>> ind = tree.query_radius(X[0], r=0.3)
>>> print(ind) # indices of neighbors within distance 0.3
[3 0 1]

Compute a gaussian kernel density estimate:

>>> import numpy as np
>>> np.random.seed(1)
>>> X = np.random.random((100, 3))
>>> tree = KDTree(X)
>>> tree.kernel_density(X[:3], h=0.1, kernel='gaussian')
array([ 6.94114649, 7.83281226, 7.2071716 ])

Compute a two-point auto-correlation function

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((30, 3))
>>> r = np.linspace(0, 1, 5)
>>> tree = KDTree(X)
>>> tree.two_point_correlation(X, r)
array([ 30, 62, 278, 580, 820])

Methods

get_arrays
get_n_calls
get_tree_stats
kernel_density(self, X, h[, kernel, atol, . . . ]) Compute the kernel density estimate at points X with

the given kernel, using the distance metric specified at
tree creation.

query(X[, k, return_distance, dualtree, . . . ]) query the tree for the k nearest neighbors
query_radius query_radius(self, X, r, count_only = False):
reset_n_calls
two_point_correlation Compute the two-point correlation function

__init__()
Initialize self. See help(type(self)) for accurate signature.

kernel_density(self, X, h, kernel=’gaussian’, atol=0, rtol=1E-8, breadth_first=True, re-
turn_log=False)

Compute the kernel density estimate at points X with the given kernel, using the distance metric specified
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at tree creation.

Parameters X : array_like

An array of points to query. Last dimension should match dimension of training data.

h : float

the bandwidth of the kernel

kernel : string

specify the kernel to use. Options are - ‘gaussian’ - ‘tophat’ - ‘epanechnikov’ - ‘expo-
nential’ - ‘linear’ - ‘cosine’ Default is kernel = ‘gaussian’

atol, rtol : float (default = 0)

Specify the desired relative and absolute tolerance of the result. If the true result is
K_true, then the returned result K_ret satisfies abs(K_true - K_ret) < atol
+ rtol * K_ret The default is zero (i.e. machine precision) for both.

breadth_first : boolean (default = False)

if True, use a breadth-first search. If False (default) use a depth-first search. Breadth-
first is generally faster for compact kernels and/or high tolerances.

return_log : boolean (default = False)

return the logarithm of the result. This can be more accurate than returning the result
itself for narrow kernels.

Returns density : ndarray

The array of (log)-density evaluations, shape = X.shape[:-1]

Examples

Compute a gaussian kernel density estimate:

>>> import numpy as np
>>> np.random.seed(1)
>>> X = np.random.random((100, 3))
>>> tree = BinaryTree(X)
>>> tree.kernel_density(X[:3], h=0.1, kernel='gaussian')
array([ 6.94114649, 7.83281226, 7.2071716 ])

query(X, k=1, return_distance=True, dualtree=False, breadth_first=False)
query the tree for the k nearest neighbors

Parameters X : array-like, last dimension self.dim

An array of points to query

k : integer (default = 1)

The number of nearest neighbors to return

return_distance : boolean (default = True)

if True, return a tuple (d, i) of distances and indices if False, return array i

dualtree : boolean (default = False)
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if True, use the dual tree formalism for the query: a tree is built for the query points,
and the pair of trees is used to efficiently search this space. This can lead to better
performance as the number of points grows large.

breadth_first : boolean (default = False)

if True, then query the nodes in a breadth-first manner. Otherwise, query the nodes in a
depth-first manner.

sort_results : boolean (default = True)

if True, then distances and indices of each point are sorted on return, so that the first
column contains the closest points. Otherwise, neighbors are returned in an arbitrary
order.

Returns i : if return_distance == False

(d,i) : if return_distance == True

d : array of doubles - shape: x.shape[:-1] + (k,)

each entry gives the list of distances to the neighbors of the corresponding point

i : array of integers - shape: x.shape[:-1] + (k,)

each entry gives the list of indices of neighbors of the corresponding point

Examples

Query for k-nearest neighbors

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = BinaryTree(X, leaf_size=2)
>>> dist, ind = tree.query(X[0], k=3)
>>> print(ind) # indices of 3 closest neighbors
[0 3 1]
>>> print(dist) # distances to 3 closest neighbors
[ 0. 0.19662693 0.29473397]

query_radius()
query_radius(self, X, r, count_only = False):

query the tree for neighbors within a radius r

Parameters X : array-like, last dimension self.dim

An array of points to query

r : distance within which neighbors are returned

r can be a single value, or an array of values of shape x.shape[:-1] if different radii are
desired for each point.

return_distance : boolean (default = False)

if True, return distances to neighbors of each point if False, return only neighbors Note
that unlike the query() method, setting return_distance=True here adds to the computa-
tion time. Not all distances need to be calculated explicitly for return_distance=False.
Results are not sorted by default: see sort_results keyword.

count_only : boolean (default = False)
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if True, return only the count of points within distance r if False, return the indices of all
points within distance r If return_distance==True, setting count_only=True will result
in an error.

sort_results : boolean (default = False)

if True, the distances and indices will be sorted before being returned. If False, the
results will not be sorted. If return_distance == False, setting sort_results = True will
result in an error.

Returns count : if count_only == True

ind : if count_only == False and return_distance == False

(ind, dist) : if count_only == False and return_distance == True

count : array of integers, shape = X.shape[:-1]

each entry gives the number of neighbors within a distance r of the corresponding point.

ind : array of objects, shape = X.shape[:-1]

each element is a numpy integer array listing the indices of neighbors of the correspond-
ing point. Note that unlike the results of a k-neighbors query, the returned neighbors are
not sorted by distance by default.

dist : array of objects, shape = X.shape[:-1]

each element is a numpy double array listing the distances corresponding to indices in
i.

Examples

Query for neighbors in a given radius

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
>>> tree = BinaryTree(X, leaf_size=2)
>>> print(tree.query_radius(X[0], r=0.3, count_only=True))
3
>>> ind = tree.query_radius(X[0], r=0.3)
>>> print(ind) # indices of neighbors within distance 0.3
[3 0 1]

two_point_correlation()
Compute the two-point correlation function

Parameters X : array_like

An array of points to query. Last dimension should match dimension of training data.

r : array_like

A one-dimensional array of distances

dualtree : boolean (default = False)

If true, use a dualtree algorithm. Otherwise, use a single-tree algorithm. Dual tree
algorithms can have better scaling for large N.

Returns counts : ndarray
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counts[i] contains the number of pairs of points with distance less than or equal to r[i]

Examples

Compute the two-point autocorrelation function of X:

>>> import numpy as np
>>> np.random.seed(0)
>>> X = np.random.random((30, 3))
>>> r = np.linspace(0, 1, 5)
>>> tree = BinaryTree(X)
>>> tree.two_point_correlation(X, r)
array([ 30, 62, 278, 580, 820])

5.27.4 sklearn.neighbors.KernelDensity

class sklearn.neighbors.KernelDensity(bandwidth=1.0, algorithm=’auto’, kernel=’gaussian’,
metric=’euclidean’, atol=0, rtol=0, breadth_first=True,
leaf_size=40, metric_params=None)

Kernel Density Estimation

Read more in the User Guide.

Parameters bandwidth : float

The bandwidth of the kernel.

algorithm : string

The tree algorithm to use. Valid options are [‘kd_tree’|’ball_tree’|’auto’]. Default is
‘auto’.

kernel : string

The kernel to use. Valid kernels are [‘gaus-
sian’|’tophat’|’epanechnikov’|’exponential’|’linear’|’cosine’] Default is ‘gaussian’.

metric : string

The distance metric to use. Note that not all metrics are valid with all algorithms.
Refer to the documentation of BallTree and KDTree for a description of available
algorithms. Note that the normalization of the density output is correct only for the
Euclidean distance metric. Default is ‘euclidean’.

atol : float

The desired absolute tolerance of the result. A larger tolerance will generally lead to
faster execution. Default is 0.

rtol : float

The desired relative tolerance of the result. A larger tolerance will generally lead to
faster execution. Default is 1E-8.

breadth_first : boolean

If true (default), use a breadth-first approach to the problem. Otherwise use a depth-first
approach.

leaf_size : int
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Specify the leaf size of the underlying tree. See BallTree or KDTree for details.
Default is 40.

metric_params : dict

Additional parameters to be passed to the tree for use with the metric. For more infor-
mation, see the documentation of BallTree or KDTree.

Methods

fit(X[, y]) Fit the Kernel Density model on the data.
get_params([deep]) Get parameters for this estimator.
sample([n_samples, random_state]) Generate random samples from the model.
score(X[, y]) Compute the total log probability under the model.
score_samples(X) Evaluate the density model on the data.
set_params(**params) Set the parameters of this estimator.

__init__(bandwidth=1.0, algorithm=’auto’, kernel=’gaussian’, metric=’euclidean’, atol=0, rtol=0,
breadth_first=True, leaf_size=40, metric_params=None)

fit(X, y=None)
Fit the Kernel Density model on the data.

Parameters X : array_like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

sample(n_samples=1, random_state=None)
Generate random samples from the model.

Currently, this is implemented only for gaussian and tophat kernels.

Parameters n_samples : int, optional

Number of samples to generate. Defaults to 1.

random_state : int, RandomState instance or None. default to None

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns X : array_like, shape (n_samples, n_features)

List of samples.

score(X, y=None)
Compute the total log probability under the model.

Parameters X : array_like, shape (n_samples, n_features)
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List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns logprob : float

Total log-likelihood of the data in X.

score_samples(X)
Evaluate the density model on the data.

Parameters X : array_like, shape (n_samples, n_features)

An array of points to query. Last dimension should match dimension of training data
(n_features).

Returns density : ndarray, shape (n_samples,)

The array of log(density) evaluations.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.neighbors.KernelDensity

• Kernel Density Estimation

• Simple 1D Kernel Density Estimation

• Kernel Density Estimate of Species Distributions

5.27.5 sklearn.neighbors.KNeighborsClassifier

class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights=’uniform’, al-
gorithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, metric_params=None,
n_jobs=1, **kwargs)

Classifier implementing the k-nearest neighbors vote.

Read more in the User Guide.

Parameters n_neighbors : int, optional (default = 5)

Number of neighbors to use by default for kneighbors queries.

weights : str or callable, optional (default = ‘uniform’)

weight function used in prediction. Possible values:

• ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

• ‘distance’ : weight points by the inverse of their distance. in this case, closer neigh-
bors of a query point will have a greater influence than neighbors which are further
away.

• [callable] : a user-defined function which accepts an array of distances, and returns
an array of the same shape containing the weights.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

5.27. sklearn.neighbors: Nearest Neighbors 1837



scikit-learn user guide, Release 0.19.1

Algorithm used to compute the nearest neighbors:

• ‘ball_tree’ will use BallTree

• ‘kd_tree’ will use KDTree

• ‘brute’ will use a brute-force search.

• ‘auto’ will attempt to decide the most appropriate algorithm based on the values
passed to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or KDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

p : integer, optional (default = 2)

Power parameter for the Minkowski metric. When p = 1, this is equivalent to us-
ing manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric : string or callable, default ‘minkowski’

the distance metric to use for the tree. The default metric is minkowski, and with p=2
is equivalent to the standard Euclidean metric. See the documentation of the Distance-
Metric class for a list of available metrics.

metric_params : dict, optional (default = None)

Additional keyword arguments for the metric function.

n_jobs : int, optional (default = 1)

The number of parallel jobs to run for neighbors search. If -1, then the number of jobs
is set to the number of CPU cores. Doesn’t affect fit method.

See also:

RadiusNeighborsClassifier, KNeighborsRegressor, RadiusNeighborsRegressor,
NearestNeighbors

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

Warning: Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor k+1 and
k, have identical distances but different labels, the results will depend on the ordering of the training data.

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples
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>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import KNeighborsClassifier
>>> neigh = KNeighborsClassifier(n_neighbors=3)
>>> neigh.fit(X, y)
KNeighborsClassifier(...)
>>> print(neigh.predict([[1.1]]))
[0]
>>> print(neigh.predict_proba([[0.9]]))
[[ 0.66666667 0.33333333]]

Methods

fit(X, y) Fit the model using X as training data and y as target
values

get_params([deep]) Get parameters for this estimator.
kneighbors([X, n_neighbors, return_distance]) Finds the K-neighbors of a point.
kneighbors_graph([X, n_neighbors, mode]) Computes the (weighted) graph of k-Neighbors for

points in X
predict(X) Predict the class labels for the provided data
predict_proba(X) Return probability estimates for the test data X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(n_neighbors=5, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, metric_params=None, n_jobs=1, **kwargs)

fit(X, y)
Fit the model using X as training data and y as target values

Parameters X : {array-like, sparse matrix, BallTree, KDTree}

Training data. If array or matrix, shape [n_samples, n_features], or [n_samples,
n_samples] if metric=’precomputed’.

y : {array-like, sparse matrix}

Target values of shape = [n_samples] or [n_samples, n_outputs]

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

kneighbors(X=None, n_neighbors=None, return_distance=True)
Finds the K-neighbors of a point.

Returns indices of and distances to the neighbors of each point.
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Parameters X : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

n_neighbors : int

Number of neighbors to get (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.

If False, distances will not be returned

Returns dist : array

Array representing the lengths to points, only present if return_distance=True

ind : array

Indices of the nearest points in the population matrix.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> print(neigh.kneighbors([[1., 1., 1.]]))
(array([[ 0.5]]), array([[2]]...))

As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third
element of samples (indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False)
array([[1],

[2]]...)

kneighbors_graph(X=None, n_neighbors=None, mode=’connectivity’)
Computes the (weighted) graph of k-Neighbors for points in X

Parameters X : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

n_neighbors : int

Number of neighbors for each sample. (default is value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit]
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n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight
of edge that connects i to j.

See also:

NearestNeighbors.radius_neighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 1.],
[ 1., 0., 1.]])

predict(X)
Predict the class labels for the provided data

Parameters X : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

Test samples.

Returns y : array of shape [n_samples] or [n_samples, n_outputs]

Class labels for each data sample.

predict_proba(X)
Return probability estimates for the test data X.

Parameters X : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

Test samples.

Returns p : array of shape = [n_samples, n_classes], or a list of n_outputs

of such arrays if n_outputs > 1. The class probabilities of the input samples. Classes are
ordered by lexicographic order.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.
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Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.neighbors.KNeighborsClassifier

• Classifier comparison

• Plot the decision boundaries of a VotingClassifier

• Digits Classification Exercise

• Nearest Neighbors Classification

• Classification of text documents using sparse features

5.27.6 sklearn.neighbors.KNeighborsRegressor

class sklearn.neighbors.KNeighborsRegressor(n_neighbors=5, weights=’uniform’, algo-
rithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, metric_params=None,
n_jobs=1, **kwargs)

Regression based on k-nearest neighbors.

The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set.

Read more in the User Guide.

Parameters n_neighbors : int, optional (default = 5)

Number of neighbors to use by default for kneighbors queries.

weights : str or callable

weight function used in prediction. Possible values:

• ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

• ‘distance’ : weight points by the inverse of their distance. in this case, closer neigh-
bors of a query point will have a greater influence than neighbors which are further
away.

• [callable] : a user-defined function which accepts an array of distances, and returns
an array of the same shape containing the weights.

Uniform weights are used by default.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

Algorithm used to compute the nearest neighbors:

• ‘ball_tree’ will use BallTree

• ‘kd_tree’ will use KDTree
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• ‘brute’ will use a brute-force search.

• ‘auto’ will attempt to decide the most appropriate algorithm based on the values
passed to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or KDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

p : integer, optional (default = 2)

Power parameter for the Minkowski metric. When p = 1, this is equivalent to us-
ing manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric : string or callable, default ‘minkowski’

the distance metric to use for the tree. The default metric is minkowski, and with p=2
is equivalent to the standard Euclidean metric. See the documentation of the Distance-
Metric class for a list of available metrics.

metric_params : dict, optional (default = None)

Additional keyword arguments for the metric function.

n_jobs : int, optional (default = 1)

The number of parallel jobs to run for neighbors search. If -1, then the number of jobs
is set to the number of CPU cores. Doesn’t affect fit method.

See also:

NearestNeighbors, RadiusNeighborsRegressor, KNeighborsClassifier,
RadiusNeighborsClassifier

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

Warning: Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor k+1 and
k, have identical distances but different labels, the results will depend on the ordering of the training data.

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import KNeighborsRegressor
>>> neigh = KNeighborsRegressor(n_neighbors=2)
>>> neigh.fit(X, y)
KNeighborsRegressor(...)
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>>> print(neigh.predict([[1.5]]))
[ 0.5]

Methods

fit(X, y) Fit the model using X as training data and y as target
values

get_params([deep]) Get parameters for this estimator.
kneighbors([X, n_neighbors, return_distance]) Finds the K-neighbors of a point.
kneighbors_graph([X, n_neighbors, mode]) Computes the (weighted) graph of k-Neighbors for

points in X
predict(X) Predict the target for the provided data
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(n_neighbors=5, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, metric_params=None, n_jobs=1, **kwargs)

fit(X, y)
Fit the model using X as training data and y as target values

Parameters X : {array-like, sparse matrix, BallTree, KDTree}

Training data. If array or matrix, shape [n_samples, n_features], or [n_samples,
n_samples] if metric=’precomputed’.

y : {array-like, sparse matrix}

Target values, array of float values, shape = [n_samples] or [n_samples, n_outputs]

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

kneighbors(X=None, n_neighbors=None, return_distance=True)
Finds the K-neighbors of a point.

Returns indices of and distances to the neighbors of each point.

Parameters X : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

n_neighbors : int

Number of neighbors to get (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.
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If False, distances will not be returned

Returns dist : array

Array representing the lengths to points, only present if return_distance=True

ind : array

Indices of the nearest points in the population matrix.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> print(neigh.kneighbors([[1., 1., 1.]]))
(array([[ 0.5]]), array([[2]]...))

As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third
element of samples (indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False)
array([[1],

[2]]...)

kneighbors_graph(X=None, n_neighbors=None, mode=’connectivity’)
Computes the (weighted) graph of k-Neighbors for points in X

Parameters X : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

n_neighbors : int

Number of neighbors for each sample. (default is value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit]

n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight
of edge that connects i to j.

See also:

NearestNeighbors.radius_neighbors_graph
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Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 1.],
[ 1., 0., 1.]])

predict(X)
Predict the target for the provided data

Parameters X : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

Test samples.

Returns y : array of int, shape = [n_samples] or [n_samples, n_outputs]

Target values

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.neighbors.KNeighborsRegressor

• Face completion with a multi-output estimators
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• Nearest Neighbors regression

5.27.7 sklearn.neighbors.LocalOutlierFactor

class sklearn.neighbors.LocalOutlierFactor(n_neighbors=20, algorithm=’auto’,
leaf_size=30, metric=’minkowski’, p=2,
metric_params=None, contamination=0.1,
n_jobs=1)

Unsupervised Outlier Detection using Local Outlier Factor (LOF)

The anomaly score of each sample is called Local Outlier Factor. It measures the local deviation of density of
a given sample with respect to its neighbors. It is local in that the anomaly score depends on how isolated the
object is with respect to the surrounding neighborhood. More precisely, locality is given by k-nearest neighbors,
whose distance is used to estimate the local density. By comparing the local density of a sample to the local
densities of its neighbors, one can identify samples that have a substantially lower density than their neighbors.
These are considered outliers.

Parameters n_neighbors : int, optional (default=20)

Number of neighbors to use by default for kneighbors queries. If n_neighbors is
larger than the number of samples provided, all samples will be used.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

Algorithm used to compute the nearest neighbors:

• ‘ball_tree’ will use BallTree

• ‘kd_tree’ will use KDTree

• ‘brute’ will use a brute-force search.

• ‘auto’ will attempt to decide the most appropriate algorithm based on the values
passed to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size : int, optional (default=30)

Leaf size passed to BallTree or KDTree. This can affect the speed of the construc-
tion and query, as well as the memory required to store the tree. The optimal value
depends on the nature of the problem.

metric : string or callable, default ‘minkowski’

metric used for the distance computation. Any metric from scikit-learn or
scipy.spatial.distance can be used.

If ‘precomputed’, the training input X is expected to be a distance matrix.

If metric is a callable function, it is called on each pair of instances (rows) and the
resulting value recorded. The callable should take two arrays as input and return one
value indicating the distance between them. This works for Scipy’s metrics, but is less
efficient than passing the metric name as a string.

Valid values for metric are:

• from scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]

• from scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’,
‘dice’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’,
‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeu-
clidean’, ‘yule’]
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See the documentation for scipy.spatial.distance for details on these metrics: http://docs.
scipy.org/doc/scipy/reference/spatial.distance.html

p : integer, optional (default=2)

Parameter for the Minkowski metric from sklearn.metrics.pairwise.
pairwise_distances. When p = 1, this is equivalent to using manhattan_distance
(l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is
used.

metric_params : dict, optional (default=None)

Additional keyword arguments for the metric function.

contamination : float in (0., 0.5), optional (default=0.1)

The amount of contamination of the data set, i.e. the proportion of outliers in the data
set. When fitting this is used to define the threshold on the decision function.

n_jobs : int, optional (default=1)

The number of parallel jobs to run for neighbors search. If -1, then the num-
ber of jobs is set to the number of CPU cores. Affects only kneighbors and
kneighbors_graph methods.

Attributes negative_outlier_factor_ : numpy array, shape (n_samples,)

The opposite LOF of the training samples. The lower, the more abnormal. Inliers tend
to have a LOF score close to 1, while outliers tend to have a larger LOF score.

The local outlier factor (LOF) of a sample captures its supposed ‘degree of abnormality’.
It is the average of the ratio of the local reachability density of a sample and those of its
k-nearest neighbors.

n_neighbors_ : integer

The actual number of neighbors used for kneighbors queries.

References

[R71]

Methods

fit(X[, y]) Fit the model using X as training data.
fit_predict(X[, y]) “Fits the model to the training set X and returns the la-

bels
get_params([deep]) Get parameters for this estimator.
kneighbors([X, n_neighbors, return_distance]) Finds the K-neighbors of a point.
kneighbors_graph([X, n_neighbors, mode]) Computes the (weighted) graph of k-Neighbors for

points in X
set_params(**params) Set the parameters of this estimator.

__init__(n_neighbors=20, algorithm=’auto’, leaf_size=30, metric=’minkowski’, p=2, met-
ric_params=None, contamination=0.1, n_jobs=1)

fit(X, y=None)
Fit the model using X as training data.
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Parameters X : {array-like, sparse matrix, BallTree, KDTree}

Training data. If array or matrix, shape [n_samples, n_features], or [n_samples,
n_samples] if metric=’precomputed’.

Returns self : object

Returns self.

fit_predict(X, y=None)
“Fits the model to the training set X and returns the labels (1 inlier, -1 outlier) on the training set according
to the LOF score and the contamination parameter.

Parameters X : array-like, shape (n_samples, n_features), default=None

The query sample or samples to compute the Local Outlier Factor w.r.t. to the training
samples.

Returns is_inlier : array, shape (n_samples,)

Returns -1 for anomalies/outliers and 1 for inliers.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

kneighbors(X=None, n_neighbors=None, return_distance=True)
Finds the K-neighbors of a point.

Returns indices of and distances to the neighbors of each point.

Parameters X : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

n_neighbors : int

Number of neighbors to get (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.

If False, distances will not be returned

Returns dist : array

Array representing the lengths to points, only present if return_distance=True

ind : array

Indices of the nearest points in the population matrix.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1,1,1]
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>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> print(neigh.kneighbors([[1., 1., 1.]]))
(array([[ 0.5]]), array([[2]]...))

As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third
element of samples (indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False)
array([[1],

[2]]...)

kneighbors_graph(X=None, n_neighbors=None, mode=’connectivity’)
Computes the (weighted) graph of k-Neighbors for points in X

Parameters X : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

n_neighbors : int

Number of neighbors for each sample. (default is value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit]

n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight
of edge that connects i to j.

See also:

NearestNeighbors.radius_neighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 1.],
[ 1., 0., 1.]])

set_params(**params)
Set the parameters of this estimator.
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The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.neighbors.LocalOutlierFactor

• Outlier detection with several methods.

• Anomaly detection with Local Outlier Factor (LOF)

5.27.8 sklearn.neighbors.RadiusNeighborsClassifier

class sklearn.neighbors.RadiusNeighborsClassifier(radius=1.0, weights=’uniform’, algo-
rithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, outlier_label=None,
metric_params=None, **kwargs)

Classifier implementing a vote among neighbors within a given radius

Read more in the User Guide.

Parameters radius : float, optional (default = 1.0)

Range of parameter space to use by default for radius_neighbors queries.

weights : str or callable

weight function used in prediction. Possible values:

• ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

• ‘distance’ : weight points by the inverse of their distance. in this case, closer neigh-
bors of a query point will have a greater influence than neighbors which are further
away.

• [callable] : a user-defined function which accepts an array of distances, and returns
an array of the same shape containing the weights.

Uniform weights are used by default.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

Algorithm used to compute the nearest neighbors:

• ‘ball_tree’ will use BallTree

• ‘kd_tree’ will use KDTree

• ‘brute’ will use a brute-force search.

• ‘auto’ will attempt to decide the most appropriate algorithm based on the values
passed to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or KDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

p : integer, optional (default = 2)
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Power parameter for the Minkowski metric. When p = 1, this is equivalent to us-
ing manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric : string or callable, default ‘minkowski’

the distance metric to use for the tree. The default metric is minkowski, and with p=2
is equivalent to the standard Euclidean metric. See the documentation of the Distance-
Metric class for a list of available metrics.

outlier_label : int, optional (default = None)

Label, which is given for outlier samples (samples with no neighbors on given radius).
If set to None, ValueError is raised, when outlier is detected.

metric_params : dict, optional (default = None)

Additional keyword arguments for the metric function.

See also:

KNeighborsClassifier, RadiusNeighborsRegressor, KNeighborsRegressor,
NearestNeighbors

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import RadiusNeighborsClassifier
>>> neigh = RadiusNeighborsClassifier(radius=1.0)
>>> neigh.fit(X, y)
RadiusNeighborsClassifier(...)
>>> print(neigh.predict([[1.5]]))
[0]

Methods

fit(X, y) Fit the model using X as training data and y as target
values

get_params([deep]) Get parameters for this estimator.
predict(X) Predict the class labels for the provided data
radius_neighbors([X, radius, return_distance]) Finds the neighbors within a given radius of a point or

points.
radius_neighbors_graph([X, radius, mode]) Computes the (weighted) graph of Neighbors for points

in X
Continued on next page
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Table 5.217 – continued from previous page
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(radius=1.0, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, metric=’minkowski’,
outlier_label=None, metric_params=None, **kwargs)

fit(X, y)
Fit the model using X as training data and y as target values

Parameters X : {array-like, sparse matrix, BallTree, KDTree}

Training data. If array or matrix, shape [n_samples, n_features], or [n_samples,
n_samples] if metric=’precomputed’.

y : {array-like, sparse matrix}

Target values of shape = [n_samples] or [n_samples, n_outputs]

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict the class labels for the provided data

Parameters X : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

Test samples.

Returns y : array of shape [n_samples] or [n_samples, n_outputs]

Class labels for each data sample.

radius_neighbors(X=None, radius=None, return_distance=True)
Finds the neighbors within a given radius of a point or points.

Return the indices and distances of each point from the dataset lying in a ball with size radius around
the points of the query array. Points lying on the boundary are included in the results.

The result points are not necessarily sorted by distance to their query point.

Parameters X : array-like, (n_samples, n_features), optional

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

radius : float

Limiting distance of neighbors to return. (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.

If False, distances will not be returned

Returns dist : array, shape (n_samples,) of arrays
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Array representing the distances to each point, only present if return_distance=True.
The distance values are computed according to the metric constructor parameter.

ind : array, shape (n_samples,) of arrays

An array of arrays of indices of the approximate nearest points from the population
matrix that lie within a ball of size radius around the query points.

Notes

Because the number of neighbors of each point is not necessarily equal, the results for multiple query
points cannot be fit in a standard data array. For efficiency, radius_neighbors returns arrays of objects,
where each object is a 1D array of indices or distances.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1, 1, 1]:

>>> import numpy as np
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> rng = neigh.radius_neighbors([[1., 1., 1.]])
>>> print(np.asarray(rng[0][0]))
[ 1.5 0.5]
>>> print(np.asarray(rng[1][0]))
[1 2]

The first array returned contains the distances to all points which are closer than 1.6, while the second
array returned contains their indices. In general, multiple points can be queried at the same time.

radius_neighbors_graph(X=None, radius=None, mode=’connectivity’)
Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

Parameters X : array-like, shape = [n_samples, n_features], optional

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

radius : float

Radius of neighborhoods. (default is the value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples]

A[i, j] is assigned the weight of edge that connects i to j.

See also:

kneighbors_graph
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Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 0.],
[ 1., 0., 1.]])

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

5.27.9 sklearn.neighbors.RadiusNeighborsRegressor

class sklearn.neighbors.RadiusNeighborsRegressor(radius=1.0, weights=’uniform’, algo-
rithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, metric_params=None,
**kwargs)

Regression based on neighbors within a fixed radius.

The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set.

Read more in the User Guide.

Parameters radius : float, optional (default = 1.0)

Range of parameter space to use by default for radius_neighbors queries.

weights : str or callable
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weight function used in prediction. Possible values:

• ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

• ‘distance’ : weight points by the inverse of their distance. in this case, closer neigh-
bors of a query point will have a greater influence than neighbors which are further
away.

• [callable] : a user-defined function which accepts an array of distances, and returns
an array of the same shape containing the weights.

Uniform weights are used by default.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

Algorithm used to compute the nearest neighbors:

• ‘ball_tree’ will use BallTree

• ‘kd_tree’ will use KDTree

• ‘brute’ will use a brute-force search.

• ‘auto’ will attempt to decide the most appropriate algorithm based on the values
passed to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or KDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

p : integer, optional (default = 2)

Power parameter for the Minkowski metric. When p = 1, this is equivalent to us-
ing manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric : string or callable, default ‘minkowski’

the distance metric to use for the tree. The default metric is minkowski, and with p=2
is equivalent to the standard Euclidean metric. See the documentation of the Distance-
Metric class for a list of available metrics.

metric_params : dict, optional (default = None)

Additional keyword arguments for the metric function.

See also:

NearestNeighbors, KNeighborsRegressor, KNeighborsClassifier,
RadiusNeighborsClassifier

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
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Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import RadiusNeighborsRegressor
>>> neigh = RadiusNeighborsRegressor(radius=1.0)
>>> neigh.fit(X, y)
RadiusNeighborsRegressor(...)
>>> print(neigh.predict([[1.5]]))
[ 0.5]

Methods

fit(X, y) Fit the model using X as training data and y as target
values

get_params([deep]) Get parameters for this estimator.
predict(X) Predict the target for the provided data
radius_neighbors([X, radius, return_distance]) Finds the neighbors within a given radius of a point or

points.
radius_neighbors_graph([X, radius, mode]) Computes the (weighted) graph of Neighbors for points

in X
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(radius=1.0, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, metric=’minkowski’,
metric_params=None, **kwargs)

fit(X, y)
Fit the model using X as training data and y as target values

Parameters X : {array-like, sparse matrix, BallTree, KDTree}

Training data. If array or matrix, shape [n_samples, n_features], or [n_samples,
n_samples] if metric=’precomputed’.

y : {array-like, sparse matrix}

Target values, array of float values, shape = [n_samples] or [n_samples, n_outputs]

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict the target for the provided data

Parameters X : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’
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Test samples.

Returns y : array of int, shape = [n_samples] or [n_samples, n_outputs]

Target values

radius_neighbors(X=None, radius=None, return_distance=True)
Finds the neighbors within a given radius of a point or points.

Return the indices and distances of each point from the dataset lying in a ball with size radius around
the points of the query array. Points lying on the boundary are included in the results.

The result points are not necessarily sorted by distance to their query point.

Parameters X : array-like, (n_samples, n_features), optional

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

radius : float

Limiting distance of neighbors to return. (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.

If False, distances will not be returned

Returns dist : array, shape (n_samples,) of arrays

Array representing the distances to each point, only present if return_distance=True.
The distance values are computed according to the metric constructor parameter.

ind : array, shape (n_samples,) of arrays

An array of arrays of indices of the approximate nearest points from the population
matrix that lie within a ball of size radius around the query points.

Notes

Because the number of neighbors of each point is not necessarily equal, the results for multiple query
points cannot be fit in a standard data array. For efficiency, radius_neighbors returns arrays of objects,
where each object is a 1D array of indices or distances.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1, 1, 1]:

>>> import numpy as np
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> rng = neigh.radius_neighbors([[1., 1., 1.]])
>>> print(np.asarray(rng[0][0]))
[ 1.5 0.5]
>>> print(np.asarray(rng[1][0]))
[1 2]
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The first array returned contains the distances to all points which are closer than 1.6, while the second
array returned contains their indices. In general, multiple points can be queried at the same time.

radius_neighbors_graph(X=None, radius=None, mode=’connectivity’)
Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

Parameters X : array-like, shape = [n_samples, n_features], optional

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

radius : float

Radius of neighborhoods. (default is the value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples]

A[i, j] is assigned the weight of edge that connects i to j.

See also:

kneighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 0.],
[ 1., 0., 1.]])

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.
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Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

5.27.10 sklearn.neighbors.NearestCentroid

class sklearn.neighbors.NearestCentroid(metric=’euclidean’, shrink_threshold=None)
Nearest centroid classifier.

Each class is represented by its centroid, with test samples classified to the class with the nearest centroid.

Read more in the User Guide.

Parameters metric : string, or callable

The metric to use when calculating distance between instances in a feature array.
If metric is a string or callable, it must be one of the options allowed by met-
rics.pairwise.pairwise_distances for its metric parameter. The centroids for the samples
corresponding to each class is the point from which the sum of the distances (according
to the metric) of all samples that belong to that particular class are minimized. If the
“manhattan” metric is provided, this centroid is the median and for all other metrics, the
centroid is now set to be the mean.

shrink_threshold : float, optional (default = None)

Threshold for shrinking centroids to remove features.

Attributes centroids_ : array-like, shape = [n_classes, n_features]

Centroid of each class

See also:

sklearn.neighbors.KNeighborsClassifier nearest neighbors classifier

Notes

When used for text classification with tf-idf vectors, this classifier is also known as the Rocchio classifier.

References

Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of multiple cancer types by shrunken
centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of America,
99(10), 6567-6572. The National Academy of Sciences.

1860 Chapter 5. API Reference



scikit-learn user guide, Release 0.19.1

Examples

>>> from sklearn.neighbors.nearest_centroid import NearestCentroid
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = NearestCentroid()
>>> clf.fit(X, y)
NearestCentroid(metric='euclidean', shrink_threshold=None)
>>> print(clf.predict([[-0.8, -1]]))
[1]

Methods

fit(X, y) Fit the NearestCentroid model according to the given
training data.

get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on an array of test vectors X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(metric=’euclidean’, shrink_threshold=None)

fit(X, y)
Fit the NearestCentroid model according to the given training data.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features. Note that centroid shrinking cannot be used with sparse matrices.

y : array, shape = [n_samples]

Target values (integers)

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Perform classification on an array of test vectors X.

The predicted class C for each sample in X is returned.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = [n_samples]
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Notes

If the metric constructor parameter is “precomputed”, X is assumed to be the distance matrix between the
data to be predicted and self.centroids_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.neighbors.NearestCentroid

• Nearest Centroid Classification

• Classification of text documents using sparse features

5.27.11 sklearn.neighbors.NearestNeighbors

class sklearn.neighbors.NearestNeighbors(n_neighbors=5, radius=1.0, algorithm=’auto’,
leaf_size=30, metric=’minkowski’, p=2, met-
ric_params=None, n_jobs=1, **kwargs)

Unsupervised learner for implementing neighbor searches.

Read more in the User Guide.

Parameters n_neighbors : int, optional (default = 5)

Number of neighbors to use by default for kneighbors queries.

radius : float, optional (default = 1.0)

Range of parameter space to use by default for radius_neighbors queries.

algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

Algorithm used to compute the nearest neighbors:
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• ‘ball_tree’ will use BallTree

• ‘kd_tree’ will use KDTree

• ‘brute’ will use a brute-force search.

• ‘auto’ will attempt to decide the most appropriate algorithm based on the values
passed to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size : int, optional (default = 30)

Leaf size passed to BallTree or KDTree. This can affect the speed of the construction
and query, as well as the memory required to store the tree. The optimal value depends
on the nature of the problem.

metric : string or callable, default ‘minkowski’

metric to use for distance computation. Any metric from scikit-learn or
scipy.spatial.distance can be used.

If metric is a callable function, it is called on each pair of instances (rows) and the
resulting value recorded. The callable should take two arrays as input and return one
value indicating the distance between them. This works for Scipy’s metrics, but is less
efficient than passing the metric name as a string.

Distance matrices are not supported.

Valid values for metric are:

• from scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]

• from scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’,
‘dice’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’,
‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeu-
clidean’, ‘yule’]

See the documentation for scipy.spatial.distance for details on these metrics.

p : integer, optional (default = 2)

Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances.
When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

metric_params : dict, optional (default = None)

Additional keyword arguments for the metric function.

n_jobs : int, optional (default = 1)

The number of parallel jobs to run for neighbors search. If -1, then the num-
ber of jobs is set to the number of CPU cores. Affects only kneighbors and
kneighbors_graph methods.

See also:

KNeighborsClassifier, RadiusNeighborsClassifier, KNeighborsRegressor,
RadiusNeighborsRegressor, BallTree
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Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> import numpy as np
>>> from sklearn.neighbors import NearestNeighbors
>>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]]

>>> neigh = NearestNeighbors(2, 0.4)
>>> neigh.fit(samples)
NearestNeighbors(...)

>>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False)
...
array([[2, 0]]...)

>>> nbrs = neigh.radius_neighbors([[0, 0, 1.3]], 0.4, return_distance=False)
>>> np.asarray(nbrs[0][0])
array(2)

Methods

fit(X[, y]) Fit the model using X as training data
get_params([deep]) Get parameters for this estimator.
kneighbors([X, n_neighbors, return_distance]) Finds the K-neighbors of a point.
kneighbors_graph([X, n_neighbors, mode]) Computes the (weighted) graph of k-Neighbors for

points in X
radius_neighbors([X, radius, return_distance]) Finds the neighbors within a given radius of a point or

points.
radius_neighbors_graph([X, radius, mode]) Computes the (weighted) graph of Neighbors for points

in X
set_params(**params) Set the parameters of this estimator.

__init__(n_neighbors=5, radius=1.0, algorithm=’auto’, leaf_size=30, metric=’minkowski’, p=2,
metric_params=None, n_jobs=1, **kwargs)

fit(X, y=None)
Fit the model using X as training data

Parameters X : {array-like, sparse matrix, BallTree, KDTree}

Training data. If array or matrix, shape [n_samples, n_features], or [n_samples,
n_samples] if metric=’precomputed’.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional
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If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

kneighbors(X=None, n_neighbors=None, return_distance=True)
Finds the K-neighbors of a point.

Returns indices of and distances to the neighbors of each point.

Parameters X : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

n_neighbors : int

Number of neighbors to get (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.

If False, distances will not be returned

Returns dist : array

Array representing the lengths to points, only present if return_distance=True

ind : array

Indices of the nearest points in the population matrix.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> print(neigh.kneighbors([[1., 1., 1.]]))
(array([[ 0.5]]), array([[2]]...))

As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third
element of samples (indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False)
array([[1],

[2]]...)

kneighbors_graph(X=None, n_neighbors=None, mode=’connectivity’)
Computes the (weighted) graph of k-Neighbors for points in X

Parameters X : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

5.27. sklearn.neighbors: Nearest Neighbors 1865



scikit-learn user guide, Release 0.19.1

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

n_neighbors : int

Number of neighbors for each sample. (default is value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit]

n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight
of edge that connects i to j.

See also:

NearestNeighbors.radius_neighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 1.],
[ 1., 0., 1.]])

radius_neighbors(X=None, radius=None, return_distance=True)
Finds the neighbors within a given radius of a point or points.

Return the indices and distances of each point from the dataset lying in a ball with size radius around
the points of the query array. Points lying on the boundary are included in the results.

The result points are not necessarily sorted by distance to their query point.

Parameters X : array-like, (n_samples, n_features), optional

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

radius : float

Limiting distance of neighbors to return. (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True.

If False, distances will not be returned

Returns dist : array, shape (n_samples,) of arrays

Array representing the distances to each point, only present if return_distance=True.
The distance values are computed according to the metric constructor parameter.

ind : array, shape (n_samples,) of arrays
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An array of arrays of indices of the approximate nearest points from the population
matrix that lie within a ball of size radius around the query points.

Notes

Because the number of neighbors of each point is not necessarily equal, the results for multiple query
points cannot be fit in a standard data array. For efficiency, radius_neighbors returns arrays of objects,
where each object is a 1D array of indices or distances.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1, 1, 1]:

>>> import numpy as np
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> rng = neigh.radius_neighbors([[1., 1., 1.]])
>>> print(np.asarray(rng[0][0]))
[ 1.5 0.5]
>>> print(np.asarray(rng[1][0]))
[1 2]

The first array returned contains the distances to all points which are closer than 1.6, while the second
array returned contains their indices. In general, multiple points can be queried at the same time.

radius_neighbors_graph(X=None, radius=None, mode=’connectivity’)
Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

Parameters X : array-like, shape = [n_samples, n_features], optional

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

radius : float

Radius of neighborhoods. (default is the value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples]

A[i, j] is assigned the weight of edge that connects i to j.

See also:

kneighbors_graph

5.27. sklearn.neighbors: Nearest Neighbors 1867



scikit-learn user guide, Release 0.19.1

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 0.],
[ 1., 0., 1.]])

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

neighbors.kneighbors_graph(X, n_neighbors[,
. . . ])

Computes the (weighted) graph of k-Neighbors for points
in X

neighbors.radius_neighbors_graph(X, radius) Computes the (weighted) graph of Neighbors for points in
X

5.27.12 sklearn.neighbors.kneighbors_graph

sklearn.neighbors.kneighbors_graph(X, n_neighbors, mode=’connectivity’, met-
ric=’minkowski’, p=2, metric_params=None, in-
clude_self=False, n_jobs=1)

Computes the (weighted) graph of k-Neighbors for points in X

Read more in the User Guide.

Parameters X : array-like or BallTree, shape = [n_samples, n_features]

Sample data, in the form of a numpy array or a precomputed BallTree.

n_neighbors : int

Number of neighbors for each sample.

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, and ‘distance’ will return the distances between neighbors according to the
given metric.

metric : string, default ‘minkowski’

The distance metric used to calculate the k-Neighbors for each sample point. The Dis-
tanceMetric class gives a list of available metrics. The default distance is ‘euclidean’
(‘minkowski’ metric with the p param equal to 2.)

p : int, default 2
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Power parameter for the Minkowski metric. When p = 1, this is equivalent to us-
ing manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric_params : dict, optional

additional keyword arguments for the metric function.

include_self : bool, default=False.

Whether or not to mark each sample as the first nearest neighbor to itself. If None,
then True is used for mode=’connectivity’ and False for mode=’distance’ as this will
preserve backwards compatibilty.

n_jobs : int, optional (default = 1)

The number of parallel jobs to run for neighbors search. If -1, then the number of jobs
is set to the number of CPU cores.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples]

A[i, j] is assigned the weight of edge that connects i to j.

See also:

radius_neighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import kneighbors_graph
>>> A = kneighbors_graph(X, 2, mode='connectivity', include_self=True)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 1.],
[ 1., 0., 1.]])

Examples using sklearn.neighbors.kneighbors_graph

• Agglomerative clustering with and without structure

• Comparing different clustering algorithms on toy datasets

• Hierarchical clustering: structured vs unstructured ward

5.27.13 sklearn.neighbors.radius_neighbors_graph

sklearn.neighbors.radius_neighbors_graph(X, radius, mode=’connectivity’, met-
ric=’minkowski’, p=2, metric_params=None,
include_self=False, n_jobs=1)

Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

Read more in the User Guide.

Parameters X : array-like or BallTree, shape = [n_samples, n_features]

Sample data, in the form of a numpy array or a precomputed BallTree.
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radius : float

Radius of neighborhoods.

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, and ‘distance’ will return the distances between neighbors according to the
given metric.

metric : string, default ‘minkowski’

The distance metric used to calculate the neighbors within a given radius for each sam-
ple point. The DistanceMetric class gives a list of available metrics. The default distance
is ‘euclidean’ (‘minkowski’ metric with the param equal to 2.)

p : int, default 2

Power parameter for the Minkowski metric. When p = 1, this is equivalent to us-
ing manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric_params : dict, optional

additional keyword arguments for the metric function.

include_self : bool, default=False

Whether or not to mark each sample as the first nearest neighbor to itself. If None,
then True is used for mode=’connectivity’ and False for mode=’distance’ as this will
preserve backwards compatibilty.

n_jobs : int, optional (default = 1)

The number of parallel jobs to run for neighbors search. If -1, then the number of jobs
is set to the number of CPU cores.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples]

A[i, j] is assigned the weight of edge that connects i to j.

See also:

kneighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import radius_neighbors_graph
>>> A = radius_neighbors_graph(X, 1.5, mode='connectivity', include_self=True)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 0.],
[ 1., 0., 1.]])

5.28 sklearn.neural_network: Neural network models

The sklearn.neural_network module includes models based on neural networks.
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User guide: See the Neural network models (supervised) and Neural network models (unsupervised) sections for
further details.

neural_network.BernoulliRBM ([n_components,
. . . ])

Bernoulli Restricted Boltzmann Machine (RBM).

neural_network.MLPClassifier([. . . ]) Multi-layer Perceptron classifier.
neural_network.MLPRegressor([. . . ]) Multi-layer Perceptron regressor.

5.28.1 sklearn.neural_network.BernoulliRBM

class sklearn.neural_network.BernoulliRBM(n_components=256, learning_rate=0.1,
batch_size=10, n_iter=10, verbose=0, ran-
dom_state=None)

Bernoulli Restricted Boltzmann Machine (RBM).

A Restricted Boltzmann Machine with binary visible units and binary hidden units. Parameters are estimated
using Stochastic Maximum Likelihood (SML), also known as Persistent Contrastive Divergence (PCD) [2].

The time complexity of this implementation is O(d ** 2) assuming d ~ n_features ~ n_components.

Read more in the User Guide.

Parameters n_components : int, optional

Number of binary hidden units.

learning_rate : float, optional

The learning rate for weight updates. It is highly recommended to tune this hyper-
parameter. Reasonable values are in the 10**[0., -3.] range.

batch_size : int, optional

Number of examples per minibatch.

n_iter : int, optional

Number of iterations/sweeps over the training dataset to perform during training.

verbose : int, optional

The verbosity level. The default, zero, means silent mode.

random_state : integer or numpy.RandomState, optional

A random number generator instance to define the state of the random permutations
generator. If an integer is given, it fixes the seed. Defaults to the global numpy random
number generator.

Attributes intercept_hidden_ : array-like, shape (n_components,)

Biases of the hidden units.

intercept_visible_ : array-like, shape (n_features,)

Biases of the visible units.

components_ : array-like, shape (n_components, n_features)

Weight matrix, where n_features in the number of visible units and n_components is
the number of hidden units.
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Examples

>>> import numpy as np
>>> from sklearn.neural_network import BernoulliRBM
>>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
>>> model = BernoulliRBM(n_components=2)
>>> model.fit(X)
BernoulliRBM(batch_size=10, learning_rate=0.1, n_components=2, n_iter=10,

random_state=None, verbose=0)

Methods

fit(X[, y]) Fit the model to the data X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
gibbs(v) Perform one Gibbs sampling step.
partial_fit(X[, y]) Fit the model to the data X which should contain a par-

tial segment of the data.
score_samples(X) Compute the pseudo-likelihood of X.
set_params(**params) Set the parameters of this estimator.
transform(X) Compute the hidden layer activation probabilities,

P(h=1|v=X).

__init__(n_components=256, learning_rate=0.1, batch_size=10, n_iter=10, verbose=0, ran-
dom_state=None)

fit(X, y=None)
Fit the model to the data X.

Parameters X : {array-like, sparse matrix} shape (n_samples, n_features)

Training data.

Returns self : BernoulliRBM

The fitted model.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]
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Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

gibbs(v)
Perform one Gibbs sampling step.

Parameters v : array-like, shape (n_samples, n_features)

Values of the visible layer to start from.

Returns v_new : array-like, shape (n_samples, n_features)

Values of the visible layer after one Gibbs step.

partial_fit(X, y=None)
Fit the model to the data X which should contain a partial segment of the data.

Parameters X : array-like, shape (n_samples, n_features)

Training data.

Returns self : BernoulliRBM

The fitted model.

score_samples(X)
Compute the pseudo-likelihood of X.

Parameters X : {array-like, sparse matrix} shape (n_samples, n_features)

Values of the visible layer. Must be all-boolean (not checked).

Returns pseudo_likelihood : array-like, shape (n_samples,)

Value of the pseudo-likelihood (proxy for likelihood).

Notes

This method is not deterministic: it computes a quantity called the free energy on X, then on a randomly
corrupted version of X, and returns the log of the logistic function of the difference.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :
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transform(X)
Compute the hidden layer activation probabilities, P(h=1|v=X).

Parameters X : {array-like, sparse matrix} shape (n_samples, n_features)

The data to be transformed.

Returns h : array, shape (n_samples, n_components)

Latent representations of the data.

Examples using sklearn.neural_network.BernoulliRBM

• Restricted Boltzmann Machine features for digit classification

5.28.2 sklearn.neural_network.MLPClassifier

class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100, ), activa-
tion=’relu’, solver=’adam’, alpha=0.0001,
batch_size=’auto’, learning_rate=’constant’,
learning_rate_init=0.001, power_t=0.5,
max_iter=200, shuffle=True, ran-
dom_state=None, tol=0.0001, verbose=False,
warm_start=False, momentum=0.9, nes-
terovs_momentum=True, early_stopping=False,
validation_fraction=0.1, beta_1=0.9,
beta_2=0.999, epsilon=1e-08)

Multi-layer Perceptron classifier.

This model optimizes the log-loss function using LBFGS or stochastic gradient descent.

New in version 0.18.

Parameters hidden_layer_sizes : tuple, length = n_layers - 2, default (100,)

The ith element represents the number of neurons in the ith hidden layer.

activation : {‘identity’, ‘logistic’, ‘tanh’, ‘relu’}, default ‘relu’

Activation function for the hidden layer.

• ‘identity’, no-op activation, useful to implement linear bottleneck, returns f(x) = x

• ‘logistic’, the logistic sigmoid function, returns f(x) = 1 / (1 + exp(-x)).

• ‘tanh’, the hyperbolic tan function, returns f(x) = tanh(x).

• ‘relu’, the rectified linear unit function, returns f(x) = max(0, x)

solver : {‘lbfgs’, ‘sgd’, ‘adam’}, default ‘adam’

The solver for weight optimization.

• ‘lbfgs’ is an optimizer in the family of quasi-Newton methods.

• ‘sgd’ refers to stochastic gradient descent.

• ‘adam’ refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik,
and Jimmy Ba

Note: The default solver ‘adam’ works pretty well on relatively large datasets (with
thousands of training samples or more) in terms of both training time and validation
score. For small datasets, however, ‘lbfgs’ can converge faster and perform better.
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alpha : float, optional, default 0.0001

L2 penalty (regularization term) parameter.

batch_size : int, optional, default ‘auto’

Size of minibatches for stochastic optimizers. If the solver is ‘lbfgs’, the classifier will
not use minibatch. When set to “auto”, batch_size=min(200, n_samples)

learning_rate : {‘constant’, ‘invscaling’, ‘adaptive’}, default ‘constant’

Learning rate schedule for weight updates.

• ‘constant’ is a constant learning rate given by ‘learning_rate_init’.

• ‘invscaling’ gradually decreases the learning rate learning_rate_ at each time
step ‘t’ using an inverse scaling exponent of ‘power_t’. effective_learning_rate =
learning_rate_init / pow(t, power_t)

• ‘adaptive’ keeps the learning rate constant to ‘learning_rate_init’ as long as training
loss keeps decreasing. Each time two consecutive epochs fail to decrease training loss
by at least tol, or fail to increase validation score by at least tol if ‘early_stopping’ is
on, the current learning rate is divided by 5.

Only used when solver='sgd'.

learning_rate_init : double, optional, default 0.001

The initial learning rate used. It controls the step-size in updating the weights. Only
used when solver=’sgd’ or ‘adam’.

power_t : double, optional, default 0.5

The exponent for inverse scaling learning rate. It is used in updating effective learning
rate when the learning_rate is set to ‘invscaling’. Only used when solver=’sgd’.

max_iter : int, optional, default 200

Maximum number of iterations. The solver iterates until convergence (determined by
‘tol’) or this number of iterations. For stochastic solvers (‘sgd’, ‘adam’), note that this
determines the number of epochs (how many times each data point will be used), not
the number of gradient steps.

shuffle : bool, optional, default True

Whether to shuffle samples in each iteration. Only used when solver=’sgd’ or ‘adam’.

random_state : int, RandomState instance or None, optional, default None

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

tol : float, optional, default 1e-4

Tolerance for the optimization. When the loss or score is not improving by at least tol
for two consecutive iterations, unless learning_rate is set to ‘adaptive’, convergence is
considered to be reached and training stops.

verbose : bool, optional, default False

Whether to print progress messages to stdout.

warm_start : bool, optional, default False

5.28. sklearn.neural_network: Neural network models 1875



scikit-learn user guide, Release 0.19.1

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.

momentum : float, default 0.9

Momentum for gradient descent update. Should be between 0 and 1. Only used when
solver=’sgd’.

nesterovs_momentum : boolean, default True

Whether to use Nesterov’s momentum. Only used when solver=’sgd’ and momentum >
0.

early_stopping : bool, default False

Whether to use early stopping to terminate training when validation score is not im-
proving. If set to true, it will automatically set aside 10% of training data as validation
and terminate training when validation score is not improving by at least tol for two
consecutive epochs. Only effective when solver=’sgd’ or ‘adam’

validation_fraction : float, optional, default 0.1

The proportion of training data to set aside as validation set for early stopping. Must be
between 0 and 1. Only used if early_stopping is True

beta_1 : float, optional, default 0.9

Exponential decay rate for estimates of first moment vector in adam, should be in [0,
1). Only used when solver=’adam’

beta_2 : float, optional, default 0.999

Exponential decay rate for estimates of second moment vector in adam, should be in [0,
1). Only used when solver=’adam’

epsilon : float, optional, default 1e-8

Value for numerical stability in adam. Only used when solver=’adam’

Attributes classes_ : array or list of array of shape (n_classes,)

Class labels for each output.

loss_ : float

The current loss computed with the loss function.

coefs_ : list, length n_layers - 1

The ith element in the list represents the weight matrix corresponding to layer i.

intercepts_ : list, length n_layers - 1

The ith element in the list represents the bias vector corresponding to layer i + 1.

n_iter_ : int,

The number of iterations the solver has ran.

n_layers_ : int

Number of layers.

n_outputs_ : int

Number of outputs.

out_activation_ : string

1876 Chapter 5. API Reference



scikit-learn user guide, Release 0.19.1

Name of the output activation function.

Notes

MLPClassifier trains iteratively since at each time step the partial derivatives of the loss function with respect to
the model parameters are computed to update the parameters.

It can also have a regularization term added to the loss function that shrinks model parameters to prevent over-
fitting.

This implementation works with data represented as dense numpy arrays or sparse scipy arrays of floating point
values.

References

Hinton, Geoffrey E. “Connectionist learning procedures.” Artificial intelligence 40.1 (1989): 185-234.

Glorot, Xavier, and Yoshua Bengio. “Understanding the difficulty of training deep feedforward neural net-
works.” International Conference on Artificial Intelligence and Statistics. 2010.

He, Kaiming, et al. “Delving deep into rectifiers: Surpassing human-level performance on imagenet classi-
fication.” arXiv preprint arXiv:1502.01852 (2015).

Kingma, Diederik, and Jimmy Ba. “Adam: A method for stochastic optimization.” arXiv preprint
arXiv:1412.6980 (2014).

Methods

fit(X, y) Fit the model to data matrix X and target(s) y.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the multi-layer perceptron classifier
predict_log_proba(X) Return the log of probability estimates.
predict_proba(X) Probability estimates.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(hidden_layer_sizes=(100, ), activation=’relu’, solver=’adam’, alpha=0.0001,
batch_size=’auto’, learning_rate=’constant’, learning_rate_init=0.001, power_t=0.5,
max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False,
warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False,
validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08)

fit(X, y)
Fit the model to data matrix X and target(s) y.

Parameters X : array-like or sparse matrix, shape (n_samples, n_features)

The input data.

y : array-like, shape (n_samples,) or (n_samples, n_outputs)

The target values (class labels in classification, real numbers in regression).

Returns self : returns a trained MLP model.
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get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

partial_fit
Fit the model to data matrix X and target y.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

The input data.

y : array-like, shape (n_samples,)

The target values.

classes : array, shape (n_classes)

Classes across all calls to partial_fit. Can be obtained via np.unique(y_all), where y_all
is the target vector of the entire dataset. This argument is required for the first call to
partial_fit and can be omitted in the subsequent calls. Note that y doesn’t need to contain
all labels in classes.

Returns self : returns a trained MLP model.

predict(X)
Predict using the multi-layer perceptron classifier

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

The input data.

Returns y : array-like, shape (n_samples,) or (n_samples, n_classes)

The predicted classes.

predict_log_proba(X)
Return the log of probability estimates.

Parameters X : array-like, shape (n_samples, n_features)

The input data.

Returns log_y_prob : array-like, shape (n_samples, n_classes)

The predicted log-probability of the sample for each class in the model, where classes
are ordered as they are in self.classes_. Equivalent to log(predict_proba(X))

predict_proba(X)
Probability estimates.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

The input data.

Returns y_prob : array-like, shape (n_samples, n_classes)

The predicted probability of the sample for each class in the model, where classes are
ordered as they are in self.classes_.
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score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.neural_network.MLPClassifier

• Classifier comparison

• Varying regularization in Multi-layer Perceptron

• Compare Stochastic learning strategies for MLPClassifier

• Visualization of MLP weights on MNIST

5.28.3 sklearn.neural_network.MLPRegressor

class sklearn.neural_network.MLPRegressor(hidden_layer_sizes=(100, ), activa-
tion=’relu’, solver=’adam’, alpha=0.0001,
batch_size=’auto’, learning_rate=’constant’,
learning_rate_init=0.001, power_t=0.5,
max_iter=200, shuffle=True, random_state=None,
tol=0.0001, verbose=False, warm_start=False,
momentum=0.9, nesterovs_momentum=True,
early_stopping=False, validation_fraction=0.1,
beta_1=0.9, beta_2=0.999, epsilon=1e-08)

Multi-layer Perceptron regressor.

This model optimizes the squared-loss using LBFGS or stochastic gradient descent.

New in version 0.18.

Parameters hidden_layer_sizes : tuple, length = n_layers - 2, default (100,)

The ith element represents the number of neurons in the ith hidden layer.

activation : {‘identity’, ‘logistic’, ‘tanh’, ‘relu’}, default ‘relu’
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Activation function for the hidden layer.

• ‘identity’, no-op activation, useful to implement linear bottleneck, returns f(x) = x

• ‘logistic’, the logistic sigmoid function, returns f(x) = 1 / (1 + exp(-x)).

• ‘tanh’, the hyperbolic tan function, returns f(x) = tanh(x).

• ‘relu’, the rectified linear unit function, returns f(x) = max(0, x)

solver : {‘lbfgs’, ‘sgd’, ‘adam’}, default ‘adam’

The solver for weight optimization.

• ‘lbfgs’ is an optimizer in the family of quasi-Newton methods.

• ‘sgd’ refers to stochastic gradient descent.

• ‘adam’ refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik,
and Jimmy Ba

Note: The default solver ‘adam’ works pretty well on relatively large datasets (with
thousands of training samples or more) in terms of both training time and validation
score. For small datasets, however, ‘lbfgs’ can converge faster and perform better.

alpha : float, optional, default 0.0001

L2 penalty (regularization term) parameter.

batch_size : int, optional, default ‘auto’

Size of minibatches for stochastic optimizers. If the solver is ‘lbfgs’, the classifier will
not use minibatch. When set to “auto”, batch_size=min(200, n_samples)

learning_rate : {‘constant’, ‘invscaling’, ‘adaptive’}, default ‘constant’

Learning rate schedule for weight updates.

• ‘constant’ is a constant learning rate given by ‘learning_rate_init’.

• ‘invscaling’ gradually decreases the learning rate learning_rate_ at each time
step ‘t’ using an inverse scaling exponent of ‘power_t’. effective_learning_rate =
learning_rate_init / pow(t, power_t)

• ‘adaptive’ keeps the learning rate constant to ‘learning_rate_init’ as long as training
loss keeps decreasing. Each time two consecutive epochs fail to decrease training loss
by at least tol, or fail to increase validation score by at least tol if ‘early_stopping’ is
on, the current learning rate is divided by 5.

Only used when solver=’sgd’.

learning_rate_init : double, optional, default 0.001

The initial learning rate used. It controls the step-size in updating the weights. Only
used when solver=’sgd’ or ‘adam’.

power_t : double, optional, default 0.5

The exponent for inverse scaling learning rate. It is used in updating effective learning
rate when the learning_rate is set to ‘invscaling’. Only used when solver=’sgd’.

max_iter : int, optional, default 200

Maximum number of iterations. The solver iterates until convergence (determined by
‘tol’) or this number of iterations. For stochastic solvers (‘sgd’, ‘adam’), note that this
determines the number of epochs (how many times each data point will be used), not
the number of gradient steps.
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shuffle : bool, optional, default True

Whether to shuffle samples in each iteration. Only used when solver=’sgd’ or ‘adam’.

random_state : int, RandomState instance or None, optional, default None

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

tol : float, optional, default 1e-4

Tolerance for the optimization. When the loss or score is not improving by at least tol
for two consecutive iterations, unless learning_rate is set to ‘adaptive’, convergence is
considered to be reached and training stops.

verbose : bool, optional, default False

Whether to print progress messages to stdout.

warm_start : bool, optional, default False

When set to True, reuse the solution of the previous call to fit as initialization, otherwise,
just erase the previous solution.

momentum : float, default 0.9

Momentum for gradient descent update. Should be between 0 and 1. Only used when
solver=’sgd’.

nesterovs_momentum : boolean, default True

Whether to use Nesterov’s momentum. Only used when solver=’sgd’ and momentum >
0.

early_stopping : bool, default False

Whether to use early stopping to terminate training when validation score is not im-
proving. If set to true, it will automatically set aside 10% of training data as validation
and terminate training when validation score is not improving by at least tol for two
consecutive epochs. Only effective when solver=’sgd’ or ‘adam’

validation_fraction : float, optional, default 0.1

The proportion of training data to set aside as validation set for early stopping. Must be
between 0 and 1. Only used if early_stopping is True

beta_1 : float, optional, default 0.9

Exponential decay rate for estimates of first moment vector in adam, should be in [0,
1). Only used when solver=’adam’

beta_2 : float, optional, default 0.999

Exponential decay rate for estimates of second moment vector in adam, should be in [0,
1). Only used when solver=’adam’

epsilon : float, optional, default 1e-8

Value for numerical stability in adam. Only used when solver=’adam’

Attributes loss_ : float

The current loss computed with the loss function.

coefs_ : list, length n_layers - 1
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The ith element in the list represents the weight matrix corresponding to layer i.

intercepts_ : list, length n_layers - 1

The ith element in the list represents the bias vector corresponding to layer i + 1.

n_iter_ : int,

The number of iterations the solver has ran.

n_layers_ : int

Number of layers.

n_outputs_ : int

Number of outputs.

out_activation_ : string

Name of the output activation function.

Notes

MLPRegressor trains iteratively since at each time step the partial derivatives of the loss function with respect
to the model parameters are computed to update the parameters.

It can also have a regularization term added to the loss function that shrinks model parameters to prevent over-
fitting.

This implementation works with data represented as dense and sparse numpy arrays of floating point values.

References

Hinton, Geoffrey E. “Connectionist learning procedures.” Artificial intelligence 40.1 (1989): 185-234.

Glorot, Xavier, and Yoshua Bengio. “Understanding the difficulty of training deep feedforward neural net-
works.” International Conference on Artificial Intelligence and Statistics. 2010.

He, Kaiming, et al. “Delving deep into rectifiers: Surpassing human-level performance on imagenet classi-
fication.” arXiv preprint arXiv:1502.01852 (2015).

Kingma, Diederik, and Jimmy Ba. “Adam: A method for stochastic optimization.” arXiv preprint
arXiv:1412.6980 (2014).

Methods

fit(X, y) Fit the model to data matrix X and target(s) y.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the multi-layer perceptron model.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.
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__init__(hidden_layer_sizes=(100, ), activation=’relu’, solver=’adam’, alpha=0.0001,
batch_size=’auto’, learning_rate=’constant’, learning_rate_init=0.001, power_t=0.5,
max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False,
warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False,
validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08)

fit(X, y)
Fit the model to data matrix X and target(s) y.

Parameters X : array-like or sparse matrix, shape (n_samples, n_features)

The input data.

y : array-like, shape (n_samples,) or (n_samples, n_outputs)

The target values (class labels in classification, real numbers in regression).

Returns self : returns a trained MLP model.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

partial_fit
Fit the model to data matrix X and target y.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

The input data.

y : array-like, shape (n_samples,)

The target values.

Returns self : returns a trained MLP model.

predict(X)
Predict using the multi-layer perceptron model.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

The input data.

Returns y : array-like, shape (n_samples, n_outputs)

The predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)
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True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

5.29 sklearn.pipeline: Pipeline

The sklearn.pipeline module implements utilities to build a composite estimator, as a chain of transforms and
estimators.

pipeline.FeatureUnion(transformer_list[, . . . ]) Concatenates results of multiple transformer objects.
pipeline.Pipeline(steps[, memory]) Pipeline of transforms with a final estimator.

5.29.1 sklearn.pipeline.FeatureUnion

class sklearn.pipeline.FeatureUnion(transformer_list, n_jobs=1, transformer_weights=None)
Concatenates results of multiple transformer objects.

This estimator applies a list of transformer objects in parallel to the input data, then concatenates the results.
This is useful to combine several feature extraction mechanisms into a single transformer.

Parameters of the transformers may be set using its name and the parameter name separated by a ‘__’. A
transformer may be replaced entirely by setting the parameter with its name to another transformer, or removed
by setting to None.

Read more in the User Guide.

Parameters transformer_list : list of (string, transformer) tuples

List of transformer objects to be applied to the data. The first half of each tuple is the
name of the transformer.

n_jobs : int, optional

Number of jobs to run in parallel (default 1).

transformer_weights : dict, optional

Multiplicative weights for features per transformer. Keys are transformer names, values
the weights.

Methods

1884 Chapter 5. API Reference



scikit-learn user guide, Release 0.19.1

fit(X[, y]) Fit all transformers using X.
fit_transform(X[, y]) Fit all transformers, transform the data and concatenate

results.
get_feature_names() Get feature names from all transformers.
get_params([deep]) Get parameters for this estimator.
set_params(**kwargs) Set the parameters of this estimator.
transform(X) Transform X separately by each transformer, concate-

nate results.

__init__(transformer_list, n_jobs=1, transformer_weights=None)

fit(X, y=None)
Fit all transformers using X.

Parameters X : iterable or array-like, depending on transformers

Input data, used to fit transformers.

y : array-like, shape (n_samples, . . . ), optional

Targets for supervised learning.

Returns self : FeatureUnion

This estimator

fit_transform(X, y=None, **fit_params)
Fit all transformers, transform the data and concatenate results.

Parameters X : iterable or array-like, depending on transformers

Input data to be transformed.

y : array-like, shape (n_samples, . . . ), optional

Targets for supervised learning.

Returns X_t : array-like or sparse matrix, shape (n_samples, sum_n_components)

hstack of results of transformers. sum_n_components is the sum of n_components (out-
put dimension) over transformers.

get_feature_names()
Get feature names from all transformers.

Returns feature_names : list of strings

Names of the features produced by transform.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**kwargs)
Set the parameters of this estimator.

Valid parameter keys can be listed with get_params().
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Returns self :

transform(X)
Transform X separately by each transformer, concatenate results.

Parameters X : iterable or array-like, depending on transformers

Input data to be transformed.

Returns X_t : array-like or sparse matrix, shape (n_samples, sum_n_components)

hstack of results of transformers. sum_n_components is the sum of n_components (out-
put dimension) over transformers.

Examples using sklearn.pipeline.FeatureUnion

• Feature Union with Heterogeneous Data Sources

• Concatenating multiple feature extraction methods

5.29.2 sklearn.pipeline.Pipeline

class sklearn.pipeline.Pipeline(steps, memory=None)
Pipeline of transforms with a final estimator.

Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be ‘trans-
forms’, that is, they must implement fit and transform methods. The final estimator only needs to implement fit.
The transformers in the pipeline can be cached using memory argument.

The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting differ-
ent parameters. For this, it enables setting parameters of the various steps using their names and the parameter
name separated by a ‘__’, as in the example below. A step’s estimator may be replaced entirely by setting the
parameter with its name to another estimator, or a transformer removed by setting to None.

Read more in the User Guide.

Parameters steps : list

List of (name, transform) tuples (implementing fit/transform) that are chained, in the
order in which they are chained, with the last object an estimator.

memory : None, str or object with the joblib.Memory interface, optional

Used to cache the fitted transformers of the pipeline. By default, no caching is per-
formed. If a string is given, it is the path to the caching directory. Enabling caching
triggers a clone of the transformers before fitting. Therefore, the transformer instance
given to the pipeline cannot be inspected directly. Use the attribute named_steps or
steps to inspect estimators within the pipeline. Caching the transformers is advanta-
geous when fitting is time consuming.

Attributes named_steps : bunch object, a dictionary with attribute access

Read-only attribute to access any step parameter by user given name. Keys are step
names and values are steps parameters.
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Examples

>>> from sklearn import svm
>>> from sklearn.datasets import samples_generator
>>> from sklearn.feature_selection import SelectKBest
>>> from sklearn.feature_selection import f_regression
>>> from sklearn.pipeline import Pipeline
>>> # generate some data to play with
>>> X, y = samples_generator.make_classification(
... n_informative=5, n_redundant=0, random_state=42)
>>> # ANOVA SVM-C
>>> anova_filter = SelectKBest(f_regression, k=5)
>>> clf = svm.SVC(kernel='linear')
>>> anova_svm = Pipeline([('anova', anova_filter), ('svc', clf)])
>>> # You can set the parameters using the names issued
>>> # For instance, fit using a k of 10 in the SelectKBest
>>> # and a parameter 'C' of the svm
>>> anova_svm.set_params(anova__k=10, svc__C=.1).fit(X, y)
...
Pipeline(memory=None,

steps=[('anova', SelectKBest(...)),
('svc', SVC(...))])

>>> prediction = anova_svm.predict(X)
>>> anova_svm.score(X, y)
0.829...
>>> # getting the selected features chosen by anova_filter
>>> anova_svm.named_steps['anova'].get_support()
...
array([False, False, True, True, False, False, True, True, False,

True, False, True, True, False, True, False, True, True,
False, False], dtype=bool)

>>> # Another way to get selected features chosen by anova_filter
>>> anova_svm.named_steps.anova.get_support()
...
array([False, False, True, True, False, False, True, True, False,

True, False, True, True, False, True, False, True, True,
False, False], dtype=bool)

Methods

decision_function(X) Apply transforms, and decision_function of the final es-
timator

fit(X[, y]) Fit the model
fit_predict(X[, y]) Applies fit_predict of last step in pipeline after trans-

forms.
fit_transform(X[, y]) Fit the model and transform with the final estimator
get_params([deep]) Get parameters for this estimator.
predict(X) Apply transforms to the data, and predict with the final

estimator
predict_log_proba(X) Apply transforms, and predict_log_proba of the final es-

timator
predict_proba(X) Apply transforms, and predict_proba of the final estima-

tor
Continued on next page
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Table 5.228 – continued from previous page
score(X[, y, sample_weight]) Apply transforms, and score with the final estimator
set_params(**kwargs) Set the parameters of this estimator.

__init__(steps, memory=None)

decision_function(X)
Apply transforms, and decision_function of the final estimator

Parameters X : iterable

Data to predict on. Must fulfill input requirements of first step of the pipeline.

Returns y_score : array-like, shape = [n_samples, n_classes]

fit(X, y=None, **fit_params)
Fit the model

Fit all the transforms one after the other and transform the data, then fit the transformed data using the final
estimator.

Parameters X : iterable

Training data. Must fulfill input requirements of first step of the pipeline.

y : iterable, default=None

Training targets. Must fulfill label requirements for all steps of the pipeline.

**fit_params : dict of string -> object

Parameters passed to the fit method of each step, where each parameter name is pre-
fixed such that parameter p for step s has key s__p.

Returns self : Pipeline

This estimator

fit_predict(X, y=None, **fit_params)
Applies fit_predict of last step in pipeline after transforms.

Applies fit_transforms of a pipeline to the data, followed by the fit_predict method of the final estimator in
the pipeline. Valid only if the final estimator implements fit_predict.

Parameters X : iterable

Training data. Must fulfill input requirements of first step of the pipeline.

y : iterable, default=None

Training targets. Must fulfill label requirements for all steps of the pipeline.

**fit_params : dict of string -> object

Parameters passed to the fit method of each step, where each parameter name is pre-
fixed such that parameter p for step s has key s__p.

Returns y_pred : array-like

fit_transform(X, y=None, **fit_params)
Fit the model and transform with the final estimator

Fits all the transforms one after the other and transforms the data, then uses fit_transform on transformed
data with the final estimator.

Parameters X : iterable
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Training data. Must fulfill input requirements of first step of the pipeline.

y : iterable, default=None

Training targets. Must fulfill label requirements for all steps of the pipeline.

**fit_params : dict of string -> object

Parameters passed to the fit method of each step, where each parameter name is pre-
fixed such that parameter p for step s has key s__p.

Returns Xt : array-like, shape = [n_samples, n_transformed_features]

Transformed samples

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform
Apply inverse transformations in reverse order

All estimators in the pipeline must support inverse_transform.

Parameters Xt : array-like, shape = [n_samples, n_transformed_features]

Data samples, where n_samples is the number of samples and n_features is
the number of features. Must fulfill input requirements of last step of pipeline’s
inverse_transform method.

Returns Xt : array-like, shape = [n_samples, n_features]

predict(X)
Apply transforms to the data, and predict with the final estimator

Parameters X : iterable

Data to predict on. Must fulfill input requirements of first step of the pipeline.

Returns y_pred : array-like

predict_log_proba(X)
Apply transforms, and predict_log_proba of the final estimator

Parameters X : iterable

Data to predict on. Must fulfill input requirements of first step of the pipeline.

Returns y_score : array-like, shape = [n_samples, n_classes]

predict_proba(X)
Apply transforms, and predict_proba of the final estimator

Parameters X : iterable

Data to predict on. Must fulfill input requirements of first step of the pipeline.

Returns y_proba : array-like, shape = [n_samples, n_classes]
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score(X, y=None, sample_weight=None)
Apply transforms, and score with the final estimator

Parameters X : iterable

Data to predict on. Must fulfill input requirements of first step of the pipeline.

y : iterable, default=None

Targets used for scoring. Must fulfill label requirements for all steps of the pipeline.

sample_weight : array-like, default=None

If not None, this argument is passed as sample_weight keyword argument to the
score method of the final estimator.

Returns score : float

set_params(**kwargs)
Set the parameters of this estimator.

Valid parameter keys can be listed with get_params().

Returns self :

transform
Apply transforms, and transform with the final estimator

This also works where final estimator is None: all prior transformations are applied.

Parameters X : iterable

Data to transform. Must fulfill input requirements of first step of the pipeline.

Returns Xt : array-like, shape = [n_samples, n_transformed_features]

Examples using sklearn.pipeline.Pipeline

• Feature Union with Heterogeneous Data Sources

• Selecting dimensionality reduction with Pipeline and GridSearchCV

• Pipelining: chaining a PCA and a logistic regression

• Concatenating multiple feature extraction methods

• Explicit feature map approximation for RBF kernels

• Imputing missing values before building an estimator

• Feature agglomeration vs. univariate selection

• Sample pipeline for text feature extraction and evaluation

• Underfitting vs. Overfitting

• Restricted Boltzmann Machine features for digit classification

• SVM-Anova: SVM with univariate feature selection

• Classification of text documents using sparse features

pipeline.make_pipeline(*steps, **kwargs) Construct a Pipeline from the given estimators.
pipeline.make_union(*transformers, **kwargs) Construct a FeatureUnion from the given transformers.

1890 Chapter 5. API Reference



scikit-learn user guide, Release 0.19.1

5.29.3 sklearn.pipeline.make_pipeline

sklearn.pipeline.make_pipeline(*steps, **kwargs)
Construct a Pipeline from the given estimators.

This is a shorthand for the Pipeline constructor; it does not require, and does not permit, naming the estimators.
Instead, their names will be set to the lowercase of their types automatically.

Parameters *steps : list of estimators,

memory : None, str or object with the joblib.Memory interface, optional

Used to cache the fitted transformers of the pipeline. By default, no caching is per-
formed. If a string is given, it is the path to the caching directory. Enabling caching
triggers a clone of the transformers before fitting. Therefore, the transformer instance
given to the pipeline cannot be inspected directly. Use the attribute named_steps or
steps to inspect estimators within the pipeline. Caching the transformers is advanta-
geous when fitting is time consuming.

Returns p : Pipeline

Examples

>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.preprocessing import StandardScaler
>>> make_pipeline(StandardScaler(), GaussianNB(priors=None))
...
Pipeline(memory=None,

steps=[('standardscaler',
StandardScaler(copy=True, with_mean=True, with_std=True)),

('gaussiannb', GaussianNB(priors=None))])

Examples using sklearn.pipeline.make_pipeline

• Feature transformations with ensembles of trees

• Pipeline Anova SVM

• Polynomial interpolation

• Robust linear estimator fitting

• Using FunctionTransformer to select columns

• Importance of Feature Scaling

• Clustering text documents using k-means

5.29.4 sklearn.pipeline.make_union

sklearn.pipeline.make_union(*transformers, **kwargs)
Construct a FeatureUnion from the given transformers.

This is a shorthand for the FeatureUnion constructor; it does not require, and does not permit, naming the
transformers. Instead, they will be given names automatically based on their types. It also does not allow
weighting.
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Parameters *transformers : list of estimators

n_jobs : int, optional

Number of jobs to run in parallel (default 1).

Returns f : FeatureUnion

Examples

>>> from sklearn.decomposition import PCA, TruncatedSVD
>>> from sklearn.pipeline import make_union
>>> make_union(PCA(), TruncatedSVD())
FeatureUnion(n_jobs=1,

transformer_list=[('pca',
PCA(copy=True, iterated_power='auto',

n_components=None, random_state=None,
svd_solver='auto', tol=0.0, whiten=False)),

('truncatedsvd',
TruncatedSVD(algorithm='randomized',
n_components=2, n_iter=5,
random_state=None, tol=0.0))],

transformer_weights=None)

5.30 sklearn.preprocessing: Preprocessing and Normalization

The sklearn.preprocessing module includes scaling, centering, normalization, binarization and imputation
methods.

User guide: See the Preprocessing data section for further details.

preprocessing.Binarizer([threshold, copy]) Binarize data (set feature values to 0 or 1) according to a
threshold

preprocessing.FunctionTransformer([func,
. . . ])

Constructs a transformer from an arbitrary callable.

preprocessing.Imputer([missing_values, . . . ]) Imputation transformer for completing missing values.
preprocessing.KernelCenterer Center a kernel matrix
preprocessing.LabelBinarizer([neg_label,
. . . ])

Binarize labels in a one-vs-all fashion

preprocessing.LabelEncoder Encode labels with value between 0 and n_classes-1.
preprocessing.MultiLabelBinarizer([classes,
. . . ])

Transform between iterable of iterables and a multilabel
format

preprocessing.MaxAbsScaler([copy]) Scale each feature by its maximum absolute value.
preprocessing.MinMaxScaler([feature_range,
copy])

Transforms features by scaling each feature to a given
range.

preprocessing.Normalizer([norm, copy]) Normalize samples individually to unit norm.
preprocessing.OneHotEncoder([n_values, . . . ]) Encode categorical integer features using a one-hot aka

one-of-K scheme.
preprocessing.PolynomialFeatures([degree,
. . . ])

Generate polynomial and interaction features.

preprocessing.QuantileTransformer([. . . ]) Transform features using quantiles information.
Continued on next page
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Table 5.230 – continued from previous page
preprocessing.RobustScaler([with_centering,
. . . ])

Scale features using statistics that are robust to outliers.

preprocessing.StandardScaler([copy, . . . ]) Standardize features by removing the mean and scaling to
unit variance

5.30.1 sklearn.preprocessing.Binarizer

class sklearn.preprocessing.Binarizer(threshold=0.0, copy=True)
Binarize data (set feature values to 0 or 1) according to a threshold

Values greater than the threshold map to 1, while values less than or equal to the threshold map to 0. With the
default threshold of 0, only positive values map to 1.

Binarization is a common operation on text count data where the analyst can decide to only consider the presence
or absence of a feature rather than a quantified number of occurrences for instance.

It can also be used as a pre-processing step for estimators that consider boolean random variables (e.g. modelled
using the Bernoulli distribution in a Bayesian setting).

Read more in the User Guide.

Parameters threshold : float, optional (0.0 by default)

Feature values below or equal to this are replaced by 0, above it by 1. Threshold may
not be less than 0 for operations on sparse matrices.

copy : boolean, optional, default True

set to False to perform inplace binarization and avoid a copy (if the input is already a
numpy array or a scipy.sparse CSR matrix).

See also:

binarize Equivalent function without the estimator API.

Notes

If the input is a sparse matrix, only the non-zero values are subject to update by the Binarizer class.

This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used
in a pipeline.

Methods

fit(X[, y]) Do nothing and return the estimator unchanged
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, y, copy]) Binarize each element of X

__init__(threshold=0.0, copy=True)

fit(X, y=None)
Do nothing and return the estimator unchanged
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This method is just there to implement the usual API and hence work in pipelines.

Parameters X : array-like

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, y=’deprecated’, copy=None)
Binarize each element of X

Parameters X : {array-like, sparse matrix}, shape [n_samples, n_features]

The data to binarize, element by element. scipy.sparse matrices should be in CSR format
to avoid an un-necessary copy.

y : (ignored)

Deprecated since version 0.19: This parameter will be removed in 0.21.

copy : bool

Copy the input X or not.

5.30.2 sklearn.preprocessing.FunctionTransformer

class sklearn.preprocessing.FunctionTransformer(func=None, inverse_func=None, val-
idate=True, accept_sparse=False,
pass_y=’deprecated’, kw_args=None,
inv_kw_args=None)

Constructs a transformer from an arbitrary callable.
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A FunctionTransformer forwards its X (and optionally y) arguments to a user-defined function or function
object and returns the result of this function. This is useful for stateless transformations such as taking the log
of frequencies, doing custom scaling, etc.

A FunctionTransformer will not do any checks on its function’s output.

Note: If a lambda is used as the function, then the resulting transformer will not be pickleable.

New in version 0.17.

Read more in the User Guide.

Parameters func : callable, optional default=None

The callable to use for the transformation. This will be passed the same arguments
as transform, with args and kwargs forwarded. If func is None, then func will be the
identity function.

inverse_func : callable, optional default=None

The callable to use for the inverse transformation. This will be passed the same argu-
ments as inverse transform, with args and kwargs forwarded. If inverse_func is None,
then inverse_func will be the identity function.

validate : bool, optional default=True

Indicate that the input X array should be checked before calling func. If validate is false,
there will be no input validation. If it is true, then X will be converted to a 2-dimensional
NumPy array or sparse matrix. If this conversion is not possible or X contains NaN or
infinity, an exception is raised.

accept_sparse : boolean, optional

Indicate that func accepts a sparse matrix as input. If validate is False, this has no effect.
Otherwise, if accept_sparse is false, sparse matrix inputs will cause an exception to be
raised.

pass_y : bool, optional default=False

Indicate that transform should forward the y argument to the inner callable.

kw_args : dict, optional

Dictionary of additional keyword arguments to pass to func.

inv_kw_args : dict, optional

Dictionary of additional keyword arguments to pass to inverse_func.

Methods

fit(X[, y]) Fit transformer by checking X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X[, y]) Transform X using the inverse function.
set_params(**params) Set the parameters of this estimator.
transform(X[, y]) Transform X using the forward function.

__init__(func=None, inverse_func=None, validate=True, accept_sparse=False,
pass_y=’deprecated’, kw_args=None, inv_kw_args=None)
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fit(X, y=None)
Fit transformer by checking X.

If validate is True, X will be checked.

Parameters X : array-like, shape (n_samples, n_features)

Input array.

Returns self :

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X, y=’deprecated’)
Transform X using the inverse function.

Parameters X : array-like, shape (n_samples, n_features)

Input array.

y : (ignored)

Returns X_out : array-like, shape (n_samples, n_features)

Transformed input.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, y=’deprecated’)
Transform X using the forward function.

Parameters X : array-like, shape (n_samples, n_features)
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Input array.

y : (ignored)

Returns X_out : array-like, shape (n_samples, n_features)

Transformed input.

Examples using sklearn.preprocessing.FunctionTransformer

• Using FunctionTransformer to select columns

5.30.3 sklearn.preprocessing.Imputer

class sklearn.preprocessing.Imputer(missing_values=’NaN’, strategy=’mean’, axis=0, ver-
bose=0, copy=True)

Imputation transformer for completing missing values.

Read more in the User Guide.

Parameters missing_values : integer or “NaN”, optional (default=”NaN”)

The placeholder for the missing values. All occurrences of missing_values will be im-
puted. For missing values encoded as np.nan, use the string value “NaN”.

strategy : string, optional (default=”mean”)

The imputation strategy.

• If “mean”, then replace missing values using the mean along the axis.

• If “median”, then replace missing values using the median along the axis.

• If “most_frequent”, then replace missing using the most frequent value along the axis.

axis : integer, optional (default=0)

The axis along which to impute.

• If axis=0, then impute along columns.

• If axis=1, then impute along rows.

verbose : integer, optional (default=0)

Controls the verbosity of the imputer.

copy : boolean, optional (default=True)

If True, a copy of X will be created. If False, imputation will be done in-place whenever
possible. Note that, in the following cases, a new copy will always be made, even if
copy=False:

• If X is not an array of floating values;

• If X is sparse and missing_values=0;

• If axis=0 and X is encoded as a CSR matrix;

• If axis=1 and X is encoded as a CSC matrix.

Attributes statistics_ : array of shape (n_features,)

The imputation fill value for each feature if axis == 0.
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Notes

• When axis=0, columns which only contained missing values at fit are discarded upon transform.

• When axis=1, an exception is raised if there are rows for which it is not possible to fill in the missing
values (e.g., because they only contain missing values).

Methods

fit(X[, y]) Fit the imputer on X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Impute all missing values in X.

__init__(missing_values=’NaN’, strategy=’mean’, axis=0, verbose=0, copy=True)

fit(X, y=None)
Fit the imputer on X.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Input data, where n_samples is the number of samples and n_features is the
number of features.

Returns self : Imputer

Returns self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.
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The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Impute all missing values in X.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

The input data to complete.

Examples using sklearn.preprocessing.Imputer

• Imputing missing values before building an estimator

5.30.4 sklearn.preprocessing.KernelCenterer

class sklearn.preprocessing.KernelCenterer
Center a kernel matrix

Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space.
KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is
equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False).

Read more in the User Guide.

Methods

fit(K[, y]) Fit KernelCenterer
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(K[, y, copy]) Center kernel matrix.

__init__()
Initialize self. See help(type(self)) for accurate signature.

fit(K, y=None)
Fit KernelCenterer

Parameters K : numpy array of shape [n_samples, n_samples]

Kernel matrix.

Returns self : returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]
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Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(K, y=’deprecated’, copy=True)
Center kernel matrix.

Parameters K : numpy array of shape [n_samples1, n_samples2]

Kernel matrix.

y : (ignored)

Deprecated since version 0.19: This parameter will be removed in 0.21.

copy : boolean, optional, default True

Set to False to perform inplace computation.

Returns K_new : numpy array of shape [n_samples1, n_samples2]

5.30.5 sklearn.preprocessing.LabelBinarizer

class sklearn.preprocessing.LabelBinarizer(neg_label=0, pos_label=1,
sparse_output=False)

Binarize labels in a one-vs-all fashion

Several regression and binary classification algorithms are available in the scikit. A simple way to extend these
algorithms to the multi-class classification case is to use the so-called one-vs-all scheme.

At learning time, this simply consists in learning one regressor or binary classifier per class. In doing so, one
needs to convert multi-class labels to binary labels (belong or does not belong to the class). LabelBinarizer
makes this process easy with the transform method.

At prediction time, one assigns the class for which the corresponding model gave the greatest confidence. La-
belBinarizer makes this easy with the inverse_transform method.

Read more in the User Guide.

Parameters neg_label : int (default: 0)

Value with which negative labels must be encoded.
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pos_label : int (default: 1)

Value with which positive labels must be encoded.

sparse_output : boolean (default: False)

True if the returned array from transform is desired to be in sparse CSR format.

Attributes classes_ : array of shape [n_class]

Holds the label for each class.

y_type_ : str,

Represents the type of the target data as evaluated by utils.multiclass.type_of_target.
Possible type are ‘continuous’, ‘continuous-multioutput’, ‘binary’, ‘multiclass’,
‘multiclass-multioutput’, ‘multilabel-indicator’, and ‘unknown’.

sparse_input_ : boolean,

True if the input data to transform is given as a sparse matrix, False otherwise.

See also:

label_binarize function to perform the transform operation of LabelBinarizer with fixed classes.

sklearn.preprocessing.OneHotEncoder encode categorical integer features using a one-hot aka
one-of-K scheme.

Examples

>>> from sklearn import preprocessing
>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit([1, 2, 6, 4, 2])
LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False)
>>> lb.classes_
array([1, 2, 4, 6])
>>> lb.transform([1, 6])
array([[1, 0, 0, 0],

[0, 0, 0, 1]])

Binary targets transform to a column vector

>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit_transform(['yes', 'no', 'no', 'yes'])
array([[1],

[0],
[0],
[1]])

Passing a 2D matrix for multilabel classification

>>> import numpy as np
>>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]]))
LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False)
>>> lb.classes_
array([0, 1, 2])
>>> lb.transform([0, 1, 2, 1])
array([[1, 0, 0],

[0, 1, 0],
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[0, 0, 1],
[0, 1, 0]])

Methods

fit(y) Fit label binarizer
fit_transform(y) Fit label binarizer and transform multi-class labels to

binary labels.
get_params([deep]) Get parameters for this estimator.
inverse_transform(Y[, threshold]) Transform binary labels back to multi-class labels
set_params(**params) Set the parameters of this estimator.
transform(y) Transform multi-class labels to binary labels

__init__(neg_label=0, pos_label=1, sparse_output=False)

fit(y)
Fit label binarizer

Parameters y : array of shape [n_samples,] or [n_samples, n_classes]

Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classi-
fication.

Returns self : returns an instance of self.

fit_transform(y)
Fit label binarizer and transform multi-class labels to binary labels.

The output of transform is sometimes referred to as the 1-of-K coding scheme.

Parameters y : array or sparse matrix of shape [n_samples,] or [n_samples, n_classes]

Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classi-
fication. Sparse matrix can be CSR, CSC, COO, DOK, or LIL.

Returns Y : array or CSR matrix of shape [n_samples, n_classes]

Shape will be [n_samples, 1] for binary problems.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(Y, threshold=None)
Transform binary labels back to multi-class labels

Parameters Y : numpy array or sparse matrix with shape [n_samples, n_classes]

Target values. All sparse matrices are converted to CSR before inverse transformation.

threshold : float or None

1902 Chapter 5. API Reference



scikit-learn user guide, Release 0.19.1

Threshold used in the binary and multi-label cases.

Use 0 when Y contains the output of decision_function (classifier). Use 0.5 when Y
contains the output of predict_proba.

If None, the threshold is assumed to be half way between neg_label and pos_label.

Returns y : numpy array or CSR matrix of shape [n_samples] Target values.

Notes

In the case when the binary labels are fractional (probabilistic), inverse_transform chooses the class with
the greatest value. Typically, this allows to use the output of a linear model’s decision_function method
directly as the input of inverse_transform.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(y)
Transform multi-class labels to binary labels

The output of transform is sometimes referred to by some authors as the 1-of-K coding scheme.

Parameters y : array or sparse matrix of shape [n_samples,] or [n_samples, n_classes]

Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classi-
fication. Sparse matrix can be CSR, CSC, COO, DOK, or LIL.

Returns Y : numpy array or CSR matrix of shape [n_samples, n_classes]

Shape will be [n_samples, 1] for binary problems.

5.30.6 sklearn.preprocessing.LabelEncoder

class sklearn.preprocessing.LabelEncoder
Encode labels with value between 0 and n_classes-1.

Read more in the User Guide.

Attributes classes_ : array of shape (n_class,)

Holds the label for each class.

See also:

sklearn.preprocessing.OneHotEncoder encode categorical integer features using a one-hot aka
one-of-K scheme.

Examples

LabelEncoder can be used to normalize labels.
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>>> from sklearn import preprocessing
>>> le = preprocessing.LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
>>> le.transform([1, 1, 2, 6])
array([0, 0, 1, 2]...)
>>> le.inverse_transform([0, 0, 1, 2])
array([1, 1, 2, 6])

It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical
labels.

>>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
['amsterdam', 'paris', 'tokyo']
>>> le.transform(["tokyo", "tokyo", "paris"])
array([2, 2, 1]...)
>>> list(le.inverse_transform([2, 2, 1]))
['tokyo', 'tokyo', 'paris']

Methods

fit(y) Fit label encoder
fit_transform(y) Fit label encoder and return encoded labels
get_params([deep]) Get parameters for this estimator.
inverse_transform(y) Transform labels back to original encoding.
set_params(**params) Set the parameters of this estimator.
transform(y) Transform labels to normalized encoding.

__init__()
Initialize self. See help(type(self)) for accurate signature.

fit(y)
Fit label encoder

Parameters y : array-like of shape (n_samples,)

Target values.

Returns self : returns an instance of self.

fit_transform(y)
Fit label encoder and return encoded labels

Parameters y : array-like of shape [n_samples]

Target values.

Returns y : array-like of shape [n_samples]

get_params(deep=True)
Get parameters for this estimator.
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Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(y)
Transform labels back to original encoding.

Parameters y : numpy array of shape [n_samples]

Target values.

Returns y : numpy array of shape [n_samples]

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(y)
Transform labels to normalized encoding.

Parameters y : array-like of shape [n_samples]

Target values.

Returns y : array-like of shape [n_samples]

5.30.7 sklearn.preprocessing.MultiLabelBinarizer

class sklearn.preprocessing.MultiLabelBinarizer(classes=None, sparse_output=False)
Transform between iterable of iterables and a multilabel format

Although a list of sets or tuples is a very intuitive format for multilabel data, it is unwieldy to process. This
transformer converts between this intuitive format and the supported multilabel format: a (samples x classes)
binary matrix indicating the presence of a class label.

Parameters classes : array-like of shape [n_classes] (optional)

Indicates an ordering for the class labels

sparse_output : boolean (default: False),

Set to true if output binary array is desired in CSR sparse format

Attributes classes_ : array of labels

A copy of the classes parameter where provided, or otherwise, the sorted set of classes
found when fitting.

See also:

sklearn.preprocessing.OneHotEncoder encode categorical integer features using a one-hot aka
one-of-K scheme.
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Examples

>>> from sklearn.preprocessing import MultiLabelBinarizer
>>> mlb = MultiLabelBinarizer()
>>> mlb.fit_transform([(1, 2), (3,)])
array([[1, 1, 0],

[0, 0, 1]])
>>> mlb.classes_
array([1, 2, 3])

>>> mlb.fit_transform([set(['sci-fi', 'thriller']), set(['comedy'])])
array([[0, 1, 1],

[1, 0, 0]])
>>> list(mlb.classes_)
['comedy', 'sci-fi', 'thriller']

Methods

fit(y) Fit the label sets binarizer, storing classes_
fit_transform(y) Fit the label sets binarizer and transform the given label

sets
get_params([deep]) Get parameters for this estimator.
inverse_transform(yt) Transform the given indicator matrix into label sets
set_params(**params) Set the parameters of this estimator.
transform(y) Transform the given label sets

__init__(classes=None, sparse_output=False)

fit(y)
Fit the label sets binarizer, storing classes_

Parameters y : iterable of iterables

A set of labels (any orderable and hashable object) for each sample. If the classes
parameter is set, y will not be iterated.

Returns self : returns this MultiLabelBinarizer instance

fit_transform(y)
Fit the label sets binarizer and transform the given label sets

Parameters y : iterable of iterables

A set of labels (any orderable and hashable object) for each sample. If the classes
parameter is set, y will not be iterated.

Returns y_indicator : array or CSR matrix, shape (n_samples, n_classes)

A matrix such that y_indicator[i, j] = 1 iff classes_[j] is in y[i], and 0 otherwise.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.
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Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(yt)
Transform the given indicator matrix into label sets

Parameters yt : array or sparse matrix of shape (n_samples, n_classes)

A matrix containing only 1s ands 0s.

Returns y : list of tuples

The set of labels for each sample such that y[i] consists of classes_[j] for each yt[i, j]
== 1.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(y)
Transform the given label sets

Parameters y : iterable of iterables

A set of labels (any orderable and hashable object) for each sample. If the classes
parameter is set, y will not be iterated.

Returns y_indicator : array or CSR matrix, shape (n_samples, n_classes)

A matrix such that y_indicator[i, j] = 1 iff classes_[j] is in y[i], and 0 otherwise.

5.30.8 sklearn.preprocessing.MaxAbsScaler

class sklearn.preprocessing.MaxAbsScaler(copy=True)
Scale each feature by its maximum absolute value.

This estimator scales and translates each feature individually such that the maximal absolute value of each
feature in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity.

This scaler can also be applied to sparse CSR or CSC matrices.

New in version 0.17.

Parameters copy : boolean, optional, default is True

Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy
array).

Attributes scale_ : ndarray, shape (n_features,)

Per feature relative scaling of the data.

New in version 0.17: scale_ attribute.

max_abs_ : ndarray, shape (n_features,)

Per feature maximum absolute value.

n_samples_seen_ : int
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The number of samples processed by the estimator. Will be reset on new calls to fit, but
increments across partial_fit calls.

See also:

maxabs_scale Equivalent function without the estimator API.

Notes

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

Methods

fit(X[, y]) Compute the maximum absolute value to be used for
later scaling.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Scale back the data to the original representation
partial_fit(X[, y]) Online computation of max absolute value of X for later

scaling.
set_params(**params) Set the parameters of this estimator.
transform(X) Scale the data

__init__(copy=True)

fit(X, y=None)
Compute the maximum absolute value to be used for later scaling.

Parameters X : {array-like, sparse matrix}, shape [n_samples, n_features]

The data used to compute the per-feature minimum and maximum used for later scaling
along the features axis.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.
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Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X)
Scale back the data to the original representation

Parameters X : {array-like, sparse matrix}

The data that should be transformed back.

partial_fit(X, y=None)
Online computation of max absolute value of X for later scaling. All of X is processed as a single batch.
This is intended for cases when fit is not feasible due to very large number of n_samples or because X is
read from a continuous stream.

Parameters X : {array-like, sparse matrix}, shape [n_samples, n_features]

The data used to compute the mean and standard deviation used for later scaling along
the features axis.

y : Passthrough for Pipeline compatibility.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Scale the data

Parameters X : {array-like, sparse matrix}

The data that should be scaled.

Examples using sklearn.preprocessing.MaxAbsScaler

• Compare the effect of different scalers on data with outliers

5.30.9 sklearn.preprocessing.MinMaxScaler

class sklearn.preprocessing.MinMaxScaler(feature_range=(0, 1), copy=True)
Transforms features by scaling each feature to a given range.

This estimator scales and translates each feature individually such that it is in the given range on the training set,
i.e. between zero and one.

The transformation is given by:

X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
X_scaled = X_std * (max - min) + min

where min, max = feature_range.

This transformation is often used as an alternative to zero mean, unit variance scaling.

Read more in the User Guide.
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Parameters feature_range : tuple (min, max), default=(0, 1)

Desired range of transformed data.

copy : boolean, optional, default True

Set to False to perform inplace row normalization and avoid a copy (if the input is
already a numpy array).

Attributes min_ : ndarray, shape (n_features,)

Per feature adjustment for minimum.

scale_ : ndarray, shape (n_features,)

Per feature relative scaling of the data.

New in version 0.17: scale_ attribute.

data_min_ : ndarray, shape (n_features,)

Per feature minimum seen in the data

New in version 0.17: data_min_

data_max_ : ndarray, shape (n_features,)

Per feature maximum seen in the data

New in version 0.17: data_max_

data_range_ : ndarray, shape (n_features,)

Per feature range (data_max_ - data_min_) seen in the data

New in version 0.17: data_range_

See also:

minmax_scale Equivalent function without the estimator API.

Notes

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

Examples

>>> from sklearn.preprocessing import MinMaxScaler
>>>
>>> data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
>>> scaler = MinMaxScaler()
>>> print(scaler.fit(data))
MinMaxScaler(copy=True, feature_range=(0, 1))
>>> print(scaler.data_max_)
[ 1. 18.]
>>> print(scaler.transform(data))
[[ 0. 0. ]
[ 0.25 0.25]
[ 0.5 0.5 ]
[ 1. 1. ]]
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>>> print(scaler.transform([[2, 2]]))
[[ 1.5 0. ]]

Methods

fit(X[, y]) Compute the minimum and maximum to be used for
later scaling.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Undo the scaling of X according to feature_range.
partial_fit(X[, y]) Online computation of min and max on X for later scal-

ing.
set_params(**params) Set the parameters of this estimator.
transform(X) Scaling features of X according to feature_range.

__init__(feature_range=(0, 1), copy=True)

fit(X, y=None)
Compute the minimum and maximum to be used for later scaling.

Parameters X : array-like, shape [n_samples, n_features]

The data used to compute the per-feature minimum and maximum used for later scaling
along the features axis.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X)
Undo the scaling of X according to feature_range.

Parameters X : array-like, shape [n_samples, n_features]

Input data that will be transformed. It cannot be sparse.
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partial_fit(X, y=None)
Online computation of min and max on X for later scaling. All of X is processed as a single batch. This
is intended for cases when fit is not feasible due to very large number of n_samples or because X is read
from a continuous stream.

Parameters X : array-like, shape [n_samples, n_features]

The data used to compute the mean and standard deviation used for later scaling along
the features axis.

y : Passthrough for Pipeline compatibility.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Scaling features of X according to feature_range.

Parameters X : array-like, shape [n_samples, n_features]

Input data that will be transformed.

Examples using sklearn.preprocessing.MinMaxScaler

• Compare Stochastic learning strategies for MLPClassifier

• Compare the effect of different scalers on data with outliers

5.30.10 sklearn.preprocessing.Normalizer

class sklearn.preprocessing.Normalizer(norm=’l2’, copy=True)
Normalize samples individually to unit norm.

Each sample (i.e. each row of the data matrix) with at least one non zero component is rescaled independently
of other samples so that its norm (l1 or l2) equals one.

This transformer is able to work both with dense numpy arrays and scipy.sparse matrix (use CSR format if you
want to avoid the burden of a copy / conversion).

Scaling inputs to unit norms is a common operation for text classification or clustering for instance. For instance
the dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and is the base
similarity metric for the Vector Space Model commonly used by the Information Retrieval community.

Read more in the User Guide.

Parameters norm : ‘l1’, ‘l2’, or ‘max’, optional (‘l2’ by default)

The norm to use to normalize each non zero sample.

copy : boolean, optional, default True

set to False to perform inplace row normalization and avoid a copy (if the input is
already a numpy array or a scipy.sparse CSR matrix).

See also:
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normalize Equivalent function without the estimator API.

Notes

This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used
in a pipeline.

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

Methods

fit(X[, y]) Do nothing and return the estimator unchanged
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, y, copy]) Scale each non zero row of X to unit norm

__init__(norm=’l2’, copy=True)

fit(X, y=None)
Do nothing and return the estimator unchanged

This method is just there to implement the usual API and hence work in pipelines.

Parameters X : array-like

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.
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The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, y=’deprecated’, copy=None)
Scale each non zero row of X to unit norm

Parameters X : {array-like, sparse matrix}, shape [n_samples, n_features]

The data to normalize, row by row. scipy.sparse matrices should be in CSR format to
avoid an un-necessary copy.

y : (ignored)

Deprecated since version 0.19: This parameter will be removed in 0.21.

copy : bool, optional (default: None)

Copy the input X or not.

Examples using sklearn.preprocessing.Normalizer

• Compare the effect of different scalers on data with outliers

• Clustering text documents using k-means

5.30.11 sklearn.preprocessing.OneHotEncoder

class sklearn.preprocessing.OneHotEncoder(n_values=’auto’, categorical_features=’all’,
dtype=<class ‘numpy.float64’>, sparse=True,
handle_unknown=’error’)

Encode categorical integer features using a one-hot aka one-of-K scheme.

The input to this transformer should be a matrix of integers, denoting the values taken on by categorical (discrete)
features. The output will be a sparse matrix where each column corresponds to one possible value of one feature.
It is assumed that input features take on values in the range [0, n_values).

This encoding is needed for feeding categorical data to many scikit-learn estimators, notably linear models and
SVMs with the standard kernels.

Note: a one-hot encoding of y labels should use a LabelBinarizer instead.

Read more in the User Guide.

Parameters n_values : ‘auto’, int or array of ints

Number of values per feature.

• ‘auto’ : determine value range from training data.

• int [number of categorical values per feature.] Each feature value should be in
range(n_values)

• array [n_values[i] is the number of categorical values in] X[:, i]. Each
feature value should be in range(n_values[i])

categorical_features : “all” or array of indices or mask

Specify what features are treated as categorical.

• ‘all’ (default): All features are treated as categorical.
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• array of indices: Array of categorical feature indices.

• mask: Array of length n_features and with dtype=bool.

Non-categorical features are always stacked to the right of the matrix.

dtype : number type, default=np.float

Desired dtype of output.

sparse : boolean, default=True

Will return sparse matrix if set True else will return an array.

handle_unknown : str, ‘error’ or ‘ignore’

Whether to raise an error or ignore if a unknown categorical feature is present during
transform.

Attributes active_features_ : array

Indices for active features, meaning values that actually occur in the training set. Only
available when n_values is 'auto'.

feature_indices_ : array of shape (n_features,)

Indices to feature ranges. Feature i in the original data is mapped to features from
feature_indices_[i] to feature_indices_[i+1] (and then potentially
masked by active_features_ afterwards)

n_values_ : array of shape (n_features,)

Maximum number of values per feature.

See also:

sklearn.feature_extraction.DictVectorizer performs a one-hot encoding of dictionary items
(also handles string-valued features).

sklearn.feature_extraction.FeatureHasher performs an approximate one-hot encoding of dic-
tionary items or strings.

sklearn.preprocessing.LabelBinarizer binarizes labels in a one-vs-all fashion.

sklearn.preprocessing.MultiLabelBinarizer transforms between iterable of iterables and a
multilabel format, e.g. a (samples x classes) binary matrix indicating the presence of a class label.

sklearn.preprocessing.LabelEncoder encodes labels with values between 0 and n_classes-1.

Examples

Given a dataset with three features and four samples, we let the encoder find the maximum value per feature and
transform the data to a binary one-hot encoding.

>>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder()
>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])
OneHotEncoder(categorical_features='all', dtype=<... 'numpy.float64'>,

handle_unknown='error', n_values='auto', sparse=True)
>>> enc.n_values_
array([2, 3, 4])
>>> enc.feature_indices_
array([0, 2, 5, 9])
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>>> enc.transform([[0, 1, 1]]).toarray()
array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]])

Methods

fit(X[, y]) Fit OneHotEncoder to X.
fit_transform(X[, y]) Fit OneHotEncoder to X, then transform X.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform X using one-hot encoding.

__init__(n_values=’auto’, categorical_features=’all’, dtype=<class ‘numpy.float64’>, sparse=True,
handle_unknown=’error’)

fit(X, y=None)
Fit OneHotEncoder to X.

Parameters X : array-like, shape [n_samples, n_feature]

Input array of type int.

Returns self :

fit_transform(X, y=None)
Fit OneHotEncoder to X, then transform X.

Equivalent to self.fit(X).transform(X), but more convenient and more efficient. See fit for the parameters,
transform for the return value.

Parameters X : array-like, shape [n_samples, n_feature]

Input array of type int.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform X using one-hot encoding.

Parameters X : array-like, shape [n_samples, n_features]

Input array of type int.
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Returns X_out : sparse matrix if sparse=True else a 2-d array, dtype=int

Transformed input.

Examples using sklearn.preprocessing.OneHotEncoder

• Feature transformations with ensembles of trees

5.30.12 sklearn.preprocessing.PolynomialFeatures

class sklearn.preprocessing.PolynomialFeatures(degree=2, interaction_only=False, in-
clude_bias=True)

Generate polynomial and interaction features.

Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than
or equal to the specified degree. For example, if an input sample is two dimensional and of the form [a, b], the
degree-2 polynomial features are [1, a, b, a^2, ab, b^2].

Parameters degree : integer

The degree of the polynomial features. Default = 2.

interaction_only : boolean, default = False

If true, only interaction features are produced: features that are products of at most
degree distinct input features (so not x[1] ** 2, x[0] * x[2] ** 3, etc.).

include_bias : boolean

If True (default), then include a bias column, the feature in which all polynomial powers
are zero (i.e. a column of ones - acts as an intercept term in a linear model).

Attributes powers_ : array, shape (n_output_features, n_input_features)

powers_[i, j] is the exponent of the jth input in the ith output.

n_input_features_ : int

The total number of input features.

n_output_features_ : int

The total number of polynomial output features. The number of output features is com-
puted by iterating over all suitably sized combinations of input features.

Notes

Be aware that the number of features in the output array scales polynomially in the number of features of the
input array, and exponentially in the degree. High degrees can cause overfitting.

See examples/linear_model/plot_polynomial_interpolation.py

Examples

>>> X = np.arange(6).reshape(3, 2)
>>> X
array([[0, 1],

[2, 3],
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[4, 5]])
>>> poly = PolynomialFeatures(2)
>>> poly.fit_transform(X)
array([[ 1., 0., 1., 0., 0., 1.],

[ 1., 2., 3., 4., 6., 9.],
[ 1., 4., 5., 16., 20., 25.]])

>>> poly = PolynomialFeatures(interaction_only=True)
>>> poly.fit_transform(X)
array([[ 1., 0., 1., 0.],

[ 1., 2., 3., 6.],
[ 1., 4., 5., 20.]])

Methods

fit(X[, y]) Compute number of output features.
fit_transform(X[, y]) Fit to data, then transform it.
get_feature_names([input_features]) Return feature names for output features
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform data to polynomial features

__init__(degree=2, interaction_only=False, include_bias=True)

fit(X, y=None)
Compute number of output features.

Parameters X : array-like, shape (n_samples, n_features)

The data.

Returns self : instance

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_feature_names(input_features=None)
Return feature names for output features

Parameters input_features : list of string, length n_features, optional

String names for input features if available. By default, “x0”, “x1”, . . . “xn_features”
is used.

Returns output_feature_names : list of string, length n_output_features
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get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Transform data to polynomial features

Parameters X : array-like, shape [n_samples, n_features]

The data to transform, row by row.

Returns XP : np.ndarray shape [n_samples, NP]

The matrix of features, where NP is the number of polynomial features generated from
the combination of inputs.

Examples using sklearn.preprocessing.PolynomialFeatures

• Polynomial interpolation

• Robust linear estimator fitting

• Underfitting vs. Overfitting

5.30.13 sklearn.preprocessing.QuantileTransformer

class sklearn.preprocessing.QuantileTransformer(n_quantiles=1000, out-
put_distribution=’uniform’, ig-
nore_implicit_zeros=False, subsam-
ple=100000, random_state=None,
copy=True)

Transform features using quantiles information.

This method transforms the features to follow a uniform or a normal distribution. Therefore, for a given feature,
this transformation tends to spread out the most frequent values. It also reduces the impact of (marginal) outliers:
this is therefore a robust preprocessing scheme.

The transformation is applied on each feature independently. The cumulative density function of a feature is
used to project the original values. Features values of new/unseen data that fall below or above the fitted range
will be mapped to the bounds of the output distribution. Note that this transform is non-linear. It may distort
linear correlations between variables measured at the same scale but renders variables measured at different
scales more directly comparable.

Read more in the User Guide.
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Parameters n_quantiles : int, optional (default=1000)

Number of quantiles to be computed. It corresponds to the number of landmarks used
to discretize the cumulative density function.

output_distribution : str, optional (default=’uniform’)

Marginal distribution for the transformed data. The choices are ‘uniform’ (default) or
‘normal’.

ignore_implicit_zeros : bool, optional (default=False)

Only applies to sparse matrices. If True, the sparse entries of the matrix are discarded
to compute the quantile statistics. If False, these entries are treated as zeros.

subsample : int, optional (default=1e5)

Maximum number of samples used to estimate the quantiles for computational effi-
ciency. Note that the subsampling procedure may differ for value-identical sparse and
dense matrices.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random. Note that this is used by
subsampling and smoothing noise.

copy : boolean, optional, (default=True)

Set to False to perform inplace transformation and avoid a copy (if the input is already
a numpy array).

Attributes quantiles_ : ndarray, shape (n_quantiles, n_features)

The values corresponding the quantiles of reference.

references_ : ndarray, shape(n_quantiles, )

Quantiles of references.

See also:

quantile_transform Equivalent function without the estimator API.

StandardScaler perform standardization that is faster, but less robust to outliers.

RobustScaler perform robust standardization that removes the influence of outliers but does not put outliers
and inliers on the same scale.

Notes

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

Examples

>>> import numpy as np
>>> from sklearn.preprocessing import QuantileTransformer
>>> rng = np.random.RandomState(0)
>>> X = np.sort(rng.normal(loc=0.5, scale=0.25, size=(25, 1)), axis=0)
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>>> qt = QuantileTransformer(n_quantiles=10, random_state=0)
>>> qt.fit_transform(X)
array([...])

Methods

fit(X[, y]) Compute the quantiles used for transforming.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Back-projection to the original space.
set_params(**params) Set the parameters of this estimator.
transform(X) Feature-wise transformation of the data.

__init__(n_quantiles=1000, output_distribution=’uniform’, ignore_implicit_zeros=False, subsam-
ple=100000, random_state=None, copy=True)

fit(X, y=None)
Compute the quantiles used for transforming.

Parameters X : ndarray or sparse matrix, shape (n_samples, n_features)

The data used to scale along the features axis. If a sparse matrix is provided, it will
be converted into a sparse csc_matrix. Additionally, the sparse matrix needs to be
nonnegative if ignore_implicit_zeros is False.

Returns self : object

Returns self

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X)
Back-projection to the original space.
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Parameters X : ndarray or sparse matrix, shape (n_samples, n_features)

The data used to scale along the features axis. If a sparse matrix is provided, it will
be converted into a sparse csc_matrix. Additionally, the sparse matrix needs to be
nonnegative if ignore_implicit_zeros is False.

Returns Xt : ndarray or sparse matrix, shape (n_samples, n_features)

The projected data.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Feature-wise transformation of the data.

Parameters X : ndarray or sparse matrix, shape (n_samples, n_features)

The data used to scale along the features axis. If a sparse matrix is provided, it will
be converted into a sparse csc_matrix. Additionally, the sparse matrix needs to be
nonnegative if ignore_implicit_zeros is False.

Returns Xt : ndarray or sparse matrix, shape (n_samples, n_features)

The projected data.

Examples using sklearn.preprocessing.QuantileTransformer

• Compare the effect of different scalers on data with outliers

5.30.14 sklearn.preprocessing.RobustScaler

class sklearn.preprocessing.RobustScaler(with_centering=True, with_scaling=True, quan-
tile_range=(25.0, 75.0), copy=True)

Scale features using statistics that are robust to outliers.

This Scaler removes the median and scales the data according to the quantile range (defaults to IQR: Interquartile
Range). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile).

Centering and scaling happen independently on each feature (or each sample, depending on the axis argument)
by computing the relevant statistics on the samples in the training set. Median and interquartile range are then
stored to be used on later data using the transform method.

Standardization of a dataset is a common requirement for many machine learning estimators. Typically this is
done by removing the mean and scaling to unit variance. However, outliers can often influence the sample mean
/ variance in a negative way. In such cases, the median and the interquartile range often give better results.

New in version 0.17.

Read more in the User Guide.

Parameters with_centering : boolean, True by default

If True, center the data before scaling. This will cause transform to raise an ex-
ception when attempted on sparse matrices, because centering them entails building a
dense matrix which in common use cases is likely to be too large to fit in memory.
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with_scaling : boolean, True by default

If True, scale the data to interquartile range.

quantile_range : tuple (q_min, q_max), 0.0 < q_min < q_max < 100.0

Default: (25.0, 75.0) = (1st quantile, 3rd quantile) = IQR Quantile range used to calcu-
late scale_.

New in version 0.18.

copy : boolean, optional, default is True

If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to
always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix,
a copy may still be returned.

Attributes center_ : array of floats

The median value for each feature in the training set.

scale_ : array of floats

The (scaled) interquartile range for each feature in the training set.

New in version 0.17: scale_ attribute.

See also:

robust_scale Equivalent function without the estimator API.

sklearn.decomposition.PCA Further removes the linear correlation across features with
‘whiten=True’.

Notes

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

https://en.wikipedia.org/wiki/Median_(statistics) https://en.wikipedia.org/wiki/Interquartile_range

Methods

fit(X[, y]) Compute the median and quantiles to be used for scal-
ing.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Scale back the data to the original representation
set_params(**params) Set the parameters of this estimator.
transform(X) Center and scale the data.

__init__(with_centering=True, with_scaling=True, quantile_range=(25.0, 75.0), copy=True)

fit(X, y=None)
Compute the median and quantiles to be used for scaling.

Parameters X : array-like, shape [n_samples, n_features]

The data used to compute the median and quantiles used for later scaling along the
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features axis.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X)
Scale back the data to the original representation

Parameters X : array-like

The data used to scale along the specified axis.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Center and scale the data.

Can be called on sparse input, provided that RobustScaler has been fitted to dense input and
with_centering=False.

Parameters X : {array-like, sparse matrix}

The data used to scale along the specified axis.

Examples using sklearn.preprocessing.RobustScaler

• Compare the effect of different scalers on data with outliers
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5.30.15 sklearn.preprocessing.StandardScaler

class sklearn.preprocessing.StandardScaler(copy=True, with_mean=True, with_std=True)
Standardize features by removing the mean and scaling to unit variance

Centering and scaling happen independently on each feature by computing the relevant statistics on the samples
in the training set. Mean and standard deviation are then stored to be used on later data using the transform
method.

Standardization of a dataset is a common requirement for many machine learning estimators: they might behave
badly if the individual feature do not more or less look like standard normally distributed data (e.g. Gaussian
with 0 mean and unit variance).

For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of
Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered
around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger
that others, it might dominate the objective function and make the estimator unable to learn from other features
correctly as expected.

This scaler can also be applied to sparse CSR or CSC matrices by passing with_mean=False to avoid breaking
the sparsity structure of the data.

Read more in the User Guide.

Parameters copy : boolean, optional, default True

If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to
always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix,
a copy may still be returned.

with_mean : boolean, True by default

If True, center the data before scaling. This does not work (and will raise an exception)
when attempted on sparse matrices, because centering them entails building a dense
matrix which in common use cases is likely to be too large to fit in memory.

with_std : boolean, True by default

If True, scale the data to unit variance (or equivalently, unit standard deviation).

Attributes scale_ : ndarray, shape (n_features,)

Per feature relative scaling of the data.

New in version 0.17: scale_

mean_ : array of floats with shape [n_features]

The mean value for each feature in the training set.

var_ : array of floats with shape [n_features]

The variance for each feature in the training set. Used to compute scale_

n_samples_seen_ : int

The number of samples processed by the estimator. Will be reset on new calls to fit, but
increments across partial_fit calls.

See also:

scale Equivalent function without the estimator API.

sklearn.decomposition.PCA Further removes the linear correlation across features with
‘whiten=True’.
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Notes

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

Examples

>>> from sklearn.preprocessing import StandardScaler
>>>
>>> data = [[0, 0], [0, 0], [1, 1], [1, 1]]
>>> scaler = StandardScaler()
>>> print(scaler.fit(data))
StandardScaler(copy=True, with_mean=True, with_std=True)
>>> print(scaler.mean_)
[ 0.5 0.5]
>>> print(scaler.transform(data))
[[-1. -1.]
[-1. -1.]
[ 1. 1.]
[ 1. 1.]]

>>> print(scaler.transform([[2, 2]]))
[[ 3. 3.]]

Methods

fit(X[, y]) Compute the mean and std to be used for later scaling.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X[, copy]) Scale back the data to the original representation
partial_fit(X[, y]) Online computation of mean and std on X for later scal-

ing.
set_params(**params) Set the parameters of this estimator.
transform(X[, y, copy]) Perform standardization by centering and scaling

__init__(copy=True, with_mean=True, with_std=True)

fit(X, y=None)
Compute the mean and std to be used for later scaling.

Parameters X : {array-like, sparse matrix}, shape [n_samples, n_features]

The data used to compute the mean and standard deviation used for later scaling along
the features axis.

y : Passthrough for Pipeline compatibility.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.
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y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X, copy=None)
Scale back the data to the original representation

Parameters X : array-like, shape [n_samples, n_features]

The data used to scale along the features axis.

copy : bool, optional (default: None)

Copy the input X or not.

Returns X_tr : array-like, shape [n_samples, n_features]

Transformed array.

partial_fit(X, y=None)
Online computation of mean and std on X for later scaling. All of X is processed as a single batch. This
is intended for cases when fit is not feasible due to very large number of n_samples or because X is read
from a continuous stream.

The algorithm for incremental mean and std is given in Equation 1.5a,b in Chan, Tony F., Gene H. Golub,
and Randall J. LeVeque. “Algorithms for computing the sample variance: Analysis and recommendations.”
The American Statistician 37.3 (1983): 242-247:

Parameters X : {array-like, sparse matrix}, shape [n_samples, n_features]

The data used to compute the mean and standard deviation used for later scaling along
the features axis.

y : Passthrough for Pipeline compatibility.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X, y=’deprecated’, copy=None)
Perform standardization by centering and scaling

Parameters X : array-like, shape [n_samples, n_features]

The data used to scale along the features axis.
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y : (ignored)

Deprecated since version 0.19: This parameter will be removed in 0.21.

copy : bool, optional (default: None)

Copy the input X or not.

Examples using sklearn.preprocessing.StandardScaler

• Prediction Latency

• Classifier comparison

• Comparing different clustering algorithms on toy datasets

• Demo of DBSCAN clustering algorithm

• L1 Penalty and Sparsity in Logistic Regression

• MNIST classfification using multinomial logistic + L1

• Varying regularization in Multi-layer Perceptron

• Compare the effect of different scalers on data with outliers

• Importance of Feature Scaling

• RBF SVM parameters

preprocessing.add_dummy_feature(X[, value]) Augment dataset with an additional dummy feature.
preprocessing.binarize(X[, threshold, copy]) Boolean thresholding of array-like or scipy.sparse matrix
preprocessing.label_binarize(y, classes[, . . . ]) Binarize labels in a one-vs-all fashion
preprocessing.maxabs_scale(X[, axis, copy]) Scale each feature to the [-1, 1] range without breaking the

sparsity.
preprocessing.minmax_scale(X[, . . . ]) Transforms features by scaling each feature to a given

range.
preprocessing.normalize(X[, norm, axis, . . . ]) Scale input vectors individually to unit norm (vector

length).
preprocessing.quantile_transform(X[, axis,
. . . ])

Transform features using quantiles information.

preprocessing.robust_scale(X[, axis, . . . ]) Standardize a dataset along any axis
preprocessing.scale(X[, axis, with_mean, . . . ]) Standardize a dataset along any axis

5.30.16 sklearn.preprocessing.add_dummy_feature

sklearn.preprocessing.add_dummy_feature(X, value=1.0)
Augment dataset with an additional dummy feature.

This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly.

Parameters X : {array-like, sparse matrix}, shape [n_samples, n_features]

Data.

value : float

Value to use for the dummy feature.

Returns X : {array, sparse matrix}, shape [n_samples, n_features + 1]
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Same data with dummy feature added as first column.

Examples

>>> from sklearn.preprocessing import add_dummy_feature
>>> add_dummy_feature([[0, 1], [1, 0]])
array([[ 1., 0., 1.],

[ 1., 1., 0.]])

5.30.17 sklearn.preprocessing.binarize

sklearn.preprocessing.binarize(X, threshold=0.0, copy=True)
Boolean thresholding of array-like or scipy.sparse matrix

Read more in the User Guide.

Parameters X : {array-like, sparse matrix}, shape [n_samples, n_features]

The data to binarize, element by element. scipy.sparse matrices should be in CSR or
CSC format to avoid an un-necessary copy.

threshold : float, optional (0.0 by default)

Feature values below or equal to this are replaced by 0, above it by 1. Threshold may
not be less than 0 for operations on sparse matrices.

copy : boolean, optional, default True

set to False to perform inplace binarization and avoid a copy (if the input is already a
numpy array or a scipy.sparse CSR / CSC matrix and if axis is 1).

See also:

Binarizer Performs binarization using the Transformer API (e.g. as part of a preprocessing sklearn.
pipeline.Pipeline).

5.30.18 sklearn.preprocessing.label_binarize

sklearn.preprocessing.label_binarize(y, classes, neg_label=0, pos_label=1,
sparse_output=False)

Binarize labels in a one-vs-all fashion

Several regression and binary classification algorithms are available in the scikit. A simple way to extend these
algorithms to the multi-class classification case is to use the so-called one-vs-all scheme.

This function makes it possible to compute this transformation for a fixed set of class labels known ahead of
time.

Parameters y : array-like

Sequence of integer labels or multilabel data to encode.

classes : array-like of shape [n_classes]

Uniquely holds the label for each class.

neg_label : int (default: 0)

Value with which negative labels must be encoded.
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pos_label : int (default: 1)

Value with which positive labels must be encoded.

sparse_output : boolean (default: False),

Set to true if output binary array is desired in CSR sparse format

Returns Y : numpy array or CSR matrix of shape [n_samples, n_classes]

Shape will be [n_samples, 1] for binary problems.

See also:

LabelBinarizer class used to wrap the functionality of label_binarize and allow for fitting to classes inde-
pendently of the transform operation

Examples

>>> from sklearn.preprocessing import label_binarize
>>> label_binarize([1, 6], classes=[1, 2, 4, 6])
array([[1, 0, 0, 0],

[0, 0, 0, 1]])

The class ordering is preserved:

>>> label_binarize([1, 6], classes=[1, 6, 4, 2])
array([[1, 0, 0, 0],

[0, 1, 0, 0]])

Binary targets transform to a column vector

>>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes'])
array([[1],

[0],
[0],
[1]])

Examples using sklearn.preprocessing.label_binarize

• Precision-Recall

• Receiver Operating Characteristic (ROC)

5.30.19 sklearn.preprocessing.maxabs_scale

sklearn.preprocessing.maxabs_scale(X, axis=0, copy=True)
Scale each feature to the [-1, 1] range without breaking the sparsity.

This estimator scales each feature individually such that the maximal absolute value of each feature in the
training set will be 1.0.

This scaler can also be applied to sparse CSR or CSC matrices.

Parameters X : array-like, shape (n_samples, n_features)

The data.
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axis : int (0 by default)

axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale
each sample.

copy : boolean, optional, default is True

Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy
array).

See also:

MaxAbsScaler Performs scaling to the [-1, 1] range using the‘‘Transformer‘‘ API (e.g. as part of a prepro-
cessing sklearn.pipeline.Pipeline).

Notes

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

5.30.20 sklearn.preprocessing.minmax_scale

sklearn.preprocessing.minmax_scale(X, feature_range=(0, 1), axis=0, copy=True)
Transforms features by scaling each feature to a given range.

This estimator scales and translates each feature individually such that it is in the given range on the training set,
i.e. between zero and one.

The transformation is given by:

X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
X_scaled = X_std * (max - min) + min

where min, max = feature_range.

This transformation is often used as an alternative to zero mean, unit variance scaling.

Read more in the User Guide.

New in version 0.17: minmax_scale function interface to sklearn.preprocessing.MinMaxScaler.

Parameters X : array-like, shape (n_samples, n_features)

The data.

feature_range : tuple (min, max), default=(0, 1)

Desired range of transformed data.

axis : int (0 by default)

axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale
each sample.

copy : boolean, optional, default is True

Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy
array).

See also:
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MinMaxScaler Performs scaling to a given range using the‘‘Transformer‘‘ API (e.g. as part of a preprocess-
ing sklearn.pipeline.Pipeline).

Notes

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

Examples using sklearn.preprocessing.minmax_scale

• Compare the effect of different scalers on data with outliers

5.30.21 sklearn.preprocessing.normalize

sklearn.preprocessing.normalize(X, norm=’l2’, axis=1, copy=True, return_norm=False)
Scale input vectors individually to unit norm (vector length).

Read more in the User Guide.

Parameters X : {array-like, sparse matrix}, shape [n_samples, n_features]

The data to normalize, element by element. scipy.sparse matrices should be in CSR
format to avoid an un-necessary copy.

norm : ‘l1’, ‘l2’, or ‘max’, optional (‘l2’ by default)

The norm to use to normalize each non zero sample (or each non-zero feature if axis is
0).

axis : 0 or 1, optional (1 by default)

axis used to normalize the data along. If 1, independently normalize each sample, oth-
erwise (if 0) normalize each feature.

copy : boolean, optional, default True

set to False to perform inplace row normalization and avoid a copy (if the input is
already a numpy array or a scipy.sparse CSR matrix and if axis is 1).

return_norm : boolean, default False

whether to return the computed norms

Returns X : {array-like, sparse matrix}, shape [n_samples, n_features]

Normalized input X.

norms : array, shape [n_samples] if axis=1 else [n_features]

An array of norms along given axis for X. When X is sparse, a NotImplementedError
will be raised for norm ‘l1’ or ‘l2’.

See also:

Normalizer Performs normalization using the Transformer API (e.g. as part of a preprocessing
sklearn.pipeline.Pipeline).
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Notes

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

5.30.22 sklearn.preprocessing.quantile_transform

sklearn.preprocessing.quantile_transform(X, axis=0, n_quantiles=1000, out-
put_distribution=’uniform’, ig-
nore_implicit_zeros=False, subsample=100000,
random_state=None, copy=False)

Transform features using quantiles information.

This method transforms the features to follow a uniform or a normal distribution. Therefore, for a given feature,
this transformation tends to spread out the most frequent values. It also reduces the impact of (marginal) outliers:
this is therefore a robust preprocessing scheme.

The transformation is applied on each feature independently. The cumulative density function of a feature is
used to project the original values. Features values of new/unseen data that fall below or above the fitted range
will be mapped to the bounds of the output distribution. Note that this transform is non-linear. It may distort
linear correlations between variables measured at the same scale but renders variables measured at different
scales more directly comparable.

Read more in the User Guide.

Parameters X : array-like, sparse matrix

The data to transform.

axis : int, (default=0)

Axis used to compute the means and standard deviations along. If 0, transform each
feature, otherwise (if 1) transform each sample.

n_quantiles : int, optional (default=1000)

Number of quantiles to be computed. It corresponds to the number of landmarks used
to discretize the cumulative density function.

output_distribution : str, optional (default=’uniform’)

Marginal distribution for the transformed data. The choices are ‘uniform’ (default) or
‘normal’.

ignore_implicit_zeros : bool, optional (default=False)

Only applies to sparse matrices. If True, the sparse entries of the matrix are discarded
to compute the quantile statistics. If False, these entries are treated as zeros.

subsample : int, optional (default=1e5)

Maximum number of samples used to estimate the quantiles for computational effi-
ciency. Note that the subsampling procedure may differ for value-identical sparse and
dense matrices.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random. Note that this is used by
subsampling and smoothing noise.
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copy : boolean, optional, (default=True)

Set to False to perform inplace transformation and avoid a copy (if the input is already
a numpy array).

Attributes quantiles_ : ndarray, shape (n_quantiles, n_features)

The values corresponding the quantiles of reference.

references_ : ndarray, shape(n_quantiles, )

Quantiles of references.

See also:

QuantileTransformer Performs quantile-based scaling using the Transformer API (e.g. as part of a
preprocessing sklearn.pipeline.Pipeline).

scale perform standardization that is faster, but less robust to outliers.

robust_scale perform robust standardization that removes the influence of outliers but does not put outliers
and inliers on the same scale.

Notes

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

Examples

>>> import numpy as np
>>> from sklearn.preprocessing import quantile_transform
>>> rng = np.random.RandomState(0)
>>> X = np.sort(rng.normal(loc=0.5, scale=0.25, size=(25, 1)), axis=0)
>>> quantile_transform(X, n_quantiles=10, random_state=0)
...
array([...])

5.30.23 sklearn.preprocessing.robust_scale

sklearn.preprocessing.robust_scale(X, axis=0, with_centering=True, with_scaling=True,
quantile_range=(25.0, 75.0), copy=True)

Standardize a dataset along any axis

Center to the median and component wise scale according to the interquartile range.

Read more in the User Guide.

Parameters X : array-like

The data to center and scale.

axis : int (0 by default)

axis used to compute the medians and IQR along. If 0, independently scale each feature,
otherwise (if 1) scale each sample.

with_centering : boolean, True by default
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If True, center the data before scaling.

with_scaling : boolean, True by default

If True, scale the data to unit variance (or equivalently, unit standard deviation).

quantile_range : tuple (q_min, q_max), 0.0 < q_min < q_max < 100.0

Default: (25.0, 75.0) = (1st quantile, 3rd quantile) = IQR Quantile range used to calcu-
late scale_.

New in version 0.18.

copy : boolean, optional, default is True

set to False to perform inplace row normalization and avoid a copy (if the input is
already a numpy array or a scipy.sparse CSR matrix and if axis is 1).

See also:

RobustScaler Performs centering and scaling using the Transformer API (e.g. as part of a preprocess-
ing sklearn.pipeline.Pipeline).

Notes

This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would
potentially crash the program with memory exhaustion problems.

Instead the caller is expected to either set explicitly with_centering=False (in that case, only variance scaling
will be performed on the features of the CSR matrix) or to call X.toarray() if he/she expects the materialized
dense array to fit in memory.

To avoid memory copy the caller should pass a CSR matrix.

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

5.30.24 sklearn.preprocessing.scale

sklearn.preprocessing.scale(X, axis=0, with_mean=True, with_std=True, copy=True)
Standardize a dataset along any axis

Center to the mean and component wise scale to unit variance.

Read more in the User Guide.

Parameters X : {array-like, sparse matrix}

The data to center and scale.

axis : int (0 by default)

axis used to compute the means and standard deviations along. If 0, independently
standardize each feature, otherwise (if 1) standardize each sample.

with_mean : boolean, True by default

If True, center the data before scaling.

with_std : boolean, True by default

If True, scale the data to unit variance (or equivalently, unit standard deviation).
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copy : boolean, optional, default True

set to False to perform inplace row normalization and avoid a copy (if the input is
already a numpy array or a scipy.sparse CSC matrix and if axis is 1).

See also:

StandardScaler Performs scaling to unit variance using the‘‘Transformer‘‘ API (e.g. as part of a prepro-
cessing sklearn.pipeline.Pipeline).

Notes

This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would
potentially crash the program with memory exhaustion problems.

Instead the caller is expected to either set explicitly with_mean=False (in that case, only variance scaling will
be performed on the features of the CSC matrix) or to call X.toarray() if he/she expects the materialized dense
array to fit in memory.

To avoid memory copy the caller should pass a CSC matrix.

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

Examples using sklearn.preprocessing.scale

• A demo of K-Means clustering on the handwritten digits data

5.31 sklearn.random_projection: Random projection

Random Projection transformers

Random Projections are a simple and computationally efficient way to reduce the dimensionality of the data by trading
a controlled amount of accuracy (as additional variance) for faster processing times and smaller model sizes.

The dimensions and distribution of Random Projections matrices are controlled so as to preserve the pairwise distances
between any two samples of the dataset.

The main theoretical result behind the efficiency of random projection is the Johnson-Lindenstrauss lemma (quoting
Wikipedia):

In mathematics, the Johnson-Lindenstrauss lemma is a result concerning low-distortion embeddings of
points from high-dimensional into low-dimensional Euclidean space. The lemma states that a small set
of points in a high-dimensional space can be embedded into a space of much lower dimension in such a
way that distances between the points are nearly preserved. The map used for the embedding is at least
Lipschitz, and can even be taken to be an orthogonal projection.

User guide: See the Random Projection section for further details.

random_projection.
GaussianRandomProjection([. . . ])

Reduce dimensionality through Gaussian random projec-
tion

random_projection.
SparseRandomProjection([. . . ])

Reduce dimensionality through sparse random projection
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5.31.1 sklearn.random_projection.GaussianRandomProjection

class sklearn.random_projection.GaussianRandomProjection(n_components=’auto’,
eps=0.1, ran-
dom_state=None)

Reduce dimensionality through Gaussian random projection

The components of the random matrix are drawn from N(0, 1 / n_components).

Read more in the User Guide.

Parameters n_components : int or ‘auto’, optional (default = ‘auto’)

Dimensionality of the target projection space.

n_components can be automatically adjusted according to the number of samples in
the dataset and the bound given by the Johnson-Lindenstrauss lemma. In that case the
quality of the embedding is controlled by the eps parameter.

It should be noted that Johnson-Lindenstrauss lemma can yield very conservative esti-
mated of the required number of components as it makes no assumption on the structure
of the dataset.

eps : strictly positive float, optional (default=0.1)

Parameter to control the quality of the embedding according to the Johnson-
Lindenstrauss lemma when n_components is set to ‘auto’.

Smaller values lead to better embedding and higher number of dimensions
(n_components) in the target projection space.

random_state : int, RandomState instance or None, optional (default=None)

Control the pseudo random number generator used to generate the matrix at fit time.
If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes n_component_ : int

Concrete number of components computed when n_components=”auto”.

components_ : numpy array of shape [n_components, n_features]

Random matrix used for the projection.

See also:

SparseRandomProjection

Methods

fit(X[, y]) Generate a sparse random projection matrix
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Project the data by using matrix product with the ran-

dom matrix

__init__(n_components=’auto’, eps=0.1, random_state=None)
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fit(X, y=None)
Generate a sparse random projection matrix

Parameters X : numpy array or scipy.sparse of shape [n_samples, n_features]

Training set: only the shape is used to find optimal random matrix dimensions based on
the theory referenced in the afore mentioned papers.

y : is not used: placeholder to allow for usage in a Pipeline.

Returns self :

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Project the data by using matrix product with the random matrix

Parameters X : numpy array or scipy.sparse of shape [n_samples, n_features]

The input data to project into a smaller dimensional space.

Returns X_new : numpy array or scipy sparse of shape [n_samples, n_components]

Projected array.
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5.31.2 sklearn.random_projection.SparseRandomProjection

class sklearn.random_projection.SparseRandomProjection(n_components=’auto’,
density=’auto’, eps=0.1,
dense_output=False, ran-
dom_state=None)

Reduce dimensionality through sparse random projection

Sparse random matrix is an alternative to dense random projection matrix that guarantees similar embedding
quality while being much more memory efficient and allowing faster computation of the projected data.

If we note s = 1 / density the components of the random matrix are drawn from:

• -sqrt(s) / sqrt(n_components) with probability 1 / 2s

• 0 with probability 1 - 1 / s

• +sqrt(s) / sqrt(n_components) with probability 1 / 2s

Read more in the User Guide.

Parameters n_components : int or ‘auto’, optional (default = ‘auto’)

Dimensionality of the target projection space.

n_components can be automatically adjusted according to the number of samples in
the dataset and the bound given by the Johnson-Lindenstrauss lemma. In that case the
quality of the embedding is controlled by the eps parameter.

It should be noted that Johnson-Lindenstrauss lemma can yield very conservative esti-
mated of the required number of components as it makes no assumption on the structure
of the dataset.

density : float in range ]0, 1], optional (default=’auto’)

Ratio of non-zero component in the random projection matrix.

If density = ‘auto’, the value is set to the minimum density as recommended by Ping Li
et al.: 1 / sqrt(n_features).

Use density = 1 / 3.0 if you want to reproduce the results from Achlioptas, 2001.

eps : strictly positive float, optional, (default=0.1)

Parameter to control the quality of the embedding according to the Johnson-
Lindenstrauss lemma when n_components is set to ‘auto’.

Smaller values lead to better embedding and higher number of dimensions
(n_components) in the target projection space.

dense_output : boolean, optional (default=False)

If True, ensure that the output of the random projection is a dense numpy array even if
the input and random projection matrix are both sparse. In practice, if the number of
components is small the number of zero components in the projected data will be very
small and it will be more CPU and memory efficient to use a dense representation.

If False, the projected data uses a sparse representation if the input is sparse.

random_state : int, RandomState instance or None, optional (default=None)

Control the pseudo random number generator used to generate the matrix at fit time.
If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.
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Attributes n_component_ : int

Concrete number of components computed when n_components=”auto”.

components_ : CSR matrix with shape [n_components, n_features]

Random matrix used for the projection.

density_ : float in range 0.0 - 1.0

Concrete density computed from when density = “auto”.

See also:

GaussianRandomProjection

References

[R72], [R73]

Methods

fit(X[, y]) Generate a sparse random projection matrix
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Project the data by using matrix product with the ran-

dom matrix

__init__(n_components=’auto’, density=’auto’, eps=0.1, dense_output=False, ran-
dom_state=None)

fit(X, y=None)
Generate a sparse random projection matrix

Parameters X : numpy array or scipy.sparse of shape [n_samples, n_features]

Training set: only the shape is used to find optimal random matrix dimensions based on
the theory referenced in the afore mentioned papers.

y : is not used: placeholder to allow for usage in a Pipeline.

Returns self :

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.
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get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Project the data by using matrix product with the random matrix

Parameters X : numpy array or scipy.sparse of shape [n_samples, n_features]

The input data to project into a smaller dimensional space.

Returns X_new : numpy array or scipy sparse of shape [n_samples, n_components]

Projected array.

Examples using sklearn.random_projection.SparseRandomProjection

• The Johnson-Lindenstrauss bound for embedding with random projections

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

random_projection.
johnson_lindenstrauss_min_dim(. . . )

Find a ‘safe’ number of components to randomly project to

5.31.3 sklearn.random_projection.johnson_lindenstrauss_min_dim

sklearn.random_projection.johnson_lindenstrauss_min_dim(n_samples, eps=0.1)
Find a ‘safe’ number of components to randomly project to

The distortion introduced by a random projection p only changes the distance between two points by a factor (1
+- eps) in an euclidean space with good probability. The projection p is an eps-embedding as defined by:

(1 - eps) ||u - v||^2 < ||p(u) - p(v)||^2 < (1 + eps) ||u - v||^2

Where u and v are any rows taken from a dataset of shape [n_samples, n_features], eps is in ]0, 1[ and p is a
projection by a random Gaussian N(0, 1) matrix with shape [n_components, n_features] (or a sparse Achlioptas
matrix).

The minimum number of components to guarantee the eps-embedding is given by:

n_components >= 4 log(n_samples) / (eps^2 / 2 - eps^3 / 3)

Note that the number of dimensions is independent of the original number of features but instead depends on
the size of the dataset: the larger the dataset, the higher is the minimal dimensionality of an eps-embedding.
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Read more in the User Guide.

Parameters n_samples : int or numpy array of int greater than 0,

Number of samples. If an array is given, it will compute a safe number of components
array-wise.

eps : float or numpy array of float in ]0,1[, optional (default=0.1)

Maximum distortion rate as defined by the Johnson-Lindenstrauss lemma. If an array is
given, it will compute a safe number of components array-wise.

Returns n_components : int or numpy array of int,

The minimal number of components to guarantee with good probability an eps-
embedding with n_samples.

References

[R74], [R75]

Examples

>>> johnson_lindenstrauss_min_dim(1e6, eps=0.5)
663

>>> johnson_lindenstrauss_min_dim(1e6, eps=[0.5, 0.1, 0.01])
array([ 663, 11841, 1112658])

>>> johnson_lindenstrauss_min_dim([1e4, 1e5, 1e6], eps=0.1)
array([ 7894, 9868, 11841])

Examples using sklearn.random_projection.johnson_lindenstrauss_min_dim

• The Johnson-Lindenstrauss bound for embedding with random projections

5.32 sklearn.semi_supervised Semi-Supervised Learning

The sklearn.semi_supervised module implements semi-supervised learning algorithms. These algorithms
utilized small amounts of labeled data and large amounts of unlabeled data for classification tasks. This module
includes Label Propagation.

User guide: See the Semi-Supervised section for further details.

semi_supervised.LabelPropagation([kernel,
. . . ])

Label Propagation classifier

semi_supervised.LabelSpreading([kernel,
. . . ])

LabelSpreading model for semi-supervised learning
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5.32.1 sklearn.semi_supervised.LabelPropagation

class sklearn.semi_supervised.LabelPropagation(kernel=’rbf’, gamma=20, n_neighbors=7,
alpha=None, max_iter=1000, tol=0.001,
n_jobs=1)

Label Propagation classifier

Read more in the User Guide.

Parameters kernel : {‘knn’, ‘rbf’, callable}

String identifier for kernel function to use or the kernel function itself. Only ‘rbf’ and
‘knn’ strings are valid inputs. The function passed should take two inputs, each of shape
[n_samples, n_features], and return a [n_samples, n_samples] shaped weight matrix.

gamma : float

Parameter for rbf kernel

n_neighbors : integer > 0

Parameter for knn kernel

alpha : float

Clamping factor.

Deprecated since version 0.19: This parameter will be removed in 0.21. ‘alpha’ is fixed
to zero in ‘LabelPropagation’.

max_iter : integer

Change maximum number of iterations allowed

tol : float

Convergence tolerance: threshold to consider the system at steady state

n_jobs : int, optional (default = 1)

The number of parallel jobs to run. If -1, then the number of jobs is set to the number
of CPU cores.

Attributes X_ : array, shape = [n_samples, n_features]

Input array.

classes_ : array, shape = [n_classes]

The distinct labels used in classifying instances.

label_distributions_ : array, shape = [n_samples, n_classes]

Categorical distribution for each item.

transduction_ : array, shape = [n_samples]

Label assigned to each item via the transduction.

n_iter_ : int

Number of iterations run.

See also:

LabelSpreading Alternate label propagation strategy more robust to noise
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References

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation. Tech-
nical Report CMU-CALD-02-107, Carnegie Mellon University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/
CMU-CALD-02-107.pdf

Examples

>>> from sklearn import datasets
>>> from sklearn.semi_supervised import LabelPropagation
>>> label_prop_model = LabelPropagation()
>>> iris = datasets.load_iris()
>>> rng = np.random.RandomState(42)
>>> random_unlabeled_points = rng.rand(len(iris.target)) < 0.3
>>> labels = np.copy(iris.target)
>>> labels[random_unlabeled_points] = -1
>>> label_prop_model.fit(iris.data, labels)
...
LabelPropagation(...)

Methods

fit(X, y)
get_params([deep]) Get parameters for this estimator.
predict(X) Performs inductive inference across the model.
predict_proba(X) Predict probability for each possible outcome.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(kernel=’rbf’, gamma=20, n_neighbors=7, alpha=None, max_iter=1000, tol=0.001,
n_jobs=1)

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Performs inductive inference across the model.

Parameters X : array_like, shape = [n_samples, n_features]

Returns y : array_like, shape = [n_samples]

Predictions for input data

predict_proba(X)
Predict probability for each possible outcome.
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Compute the probability estimates for each single sample in X and each possible outcome seen during
training (categorical distribution).

Parameters X : array_like, shape = [n_samples, n_features]

Returns probabilities : array, shape = [n_samples, n_classes]

Normalized probability distributions across class labels

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

5.32.2 sklearn.semi_supervised.LabelSpreading

class sklearn.semi_supervised.LabelSpreading(kernel=’rbf’, gamma=20, n_neighbors=7, al-
pha=0.2, max_iter=30, tol=0.001, n_jobs=1)

LabelSpreading model for semi-supervised learning

This model is similar to the basic Label Propagation algorithm, but uses affinity matrix based on the normalized
graph Laplacian and soft clamping across the labels.

Read more in the User Guide.

Parameters kernel : {‘knn’, ‘rbf’, callable}

String identifier for kernel function to use or the kernel function itself. Only ‘rbf’ and
‘knn’ strings are valid inputs. The function passed should take two inputs, each of shape
[n_samples, n_features], and return a [n_samples, n_samples] shaped weight matrix

gamma : float

parameter for rbf kernel

n_neighbors : integer > 0

parameter for knn kernel

alpha : float
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Clamping factor. A value in [0, 1] that specifies the relative amount that an instance
should adopt the information from its neighbors as opposed to its initial label. alpha=0
means keeping the initial label information; alpha=1 means replacing all initial infor-
mation.

max_iter : integer

maximum number of iterations allowed

tol : float

Convergence tolerance: threshold to consider the system at steady state

n_jobs : int, optional (default = 1)

The number of parallel jobs to run. If -1, then the number of jobs is set to the number
of CPU cores.

Attributes X_ : array, shape = [n_samples, n_features]

Input array.

classes_ : array, shape = [n_classes]

The distinct labels used in classifying instances.

label_distributions_ : array, shape = [n_samples, n_classes]

Categorical distribution for each item.

transduction_ : array, shape = [n_samples]

Label assigned to each item via the transduction.

n_iter_ : int

Number of iterations run.

See also:

LabelPropagation Unregularized graph based semi-supervised learning

References

Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, Bernhard Schoelkopf. Learning with
local and global consistency (2004) http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219

Examples

>>> from sklearn import datasets
>>> from sklearn.semi_supervised import LabelSpreading
>>> label_prop_model = LabelSpreading()
>>> iris = datasets.load_iris()
>>> rng = np.random.RandomState(42)
>>> random_unlabeled_points = rng.rand(len(iris.target)) < 0.3
>>> labels = np.copy(iris.target)
>>> labels[random_unlabeled_points] = -1
>>> label_prop_model.fit(iris.data, labels)
...
LabelSpreading(...)
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Methods

fit(X, y) Fit a semi-supervised label propagation model based
get_params([deep]) Get parameters for this estimator.
predict(X) Performs inductive inference across the model.
predict_proba(X) Predict probability for each possible outcome.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(kernel=’rbf’, gamma=20, n_neighbors=7, alpha=0.2, max_iter=30, tol=0.001, n_jobs=1)

fit(X, y)
Fit a semi-supervised label propagation model based

All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a
dedicated marker value for unlabeled samples.

Parameters X : array-like, shape = [n_samples, n_features]

A {n_samples by n_samples} size matrix will be created from this

y : array_like, shape = [n_samples]

n_labeled_samples (unlabeled points are marked as -1) All unlabeled samples will be
transductively assigned labels

Returns self : returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Performs inductive inference across the model.

Parameters X : array_like, shape = [n_samples, n_features]

Returns y : array_like, shape = [n_samples]

Predictions for input data

predict_proba(X)
Predict probability for each possible outcome.

Compute the probability estimates for each single sample in X and each possible outcome seen during
training (categorical distribution).

Parameters X : array_like, shape = [n_samples, n_features]

Returns probabilities : array, shape = [n_samples, n_classes]

Normalized probability distributions across class labels
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score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.semi_supervised.LabelSpreading

• Label Propagation digits: Demonstrating performance

• Label Propagation digits active learning

• Label Propagation learning a complex structure

• Decision boundary of label propagation versus SVM on the Iris dataset

5.33 sklearn.svm: Support Vector Machines

The sklearn.svm module includes Support Vector Machine algorithms.

User guide: See the Support Vector Machines section for further details.

5.33.1 Estimators

svm.LinearSVC([penalty, loss, dual, tol, C, . . . ]) Linear Support Vector Classification.
svm.LinearSVR([epsilon, tol, C, loss, . . . ]) Linear Support Vector Regression.
svm.NuSVC([nu, kernel, degree, gamma, . . . ]) Nu-Support Vector Classification.
svm.NuSVR([nu, C, kernel, degree, gamma, . . . ]) Nu Support Vector Regression.
svm.OneClassSVM ([kernel, degree, gamma, . . . ]) Unsupervised Outlier Detection.
svm.SVC([C, kernel, degree, gamma, coef0, . . . ]) C-Support Vector Classification.
svm.SVR([kernel, degree, gamma, coef0, tol, . . . ]) Epsilon-Support Vector Regression.
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sklearn.svm.LinearSVC

class sklearn.svm.LinearSVC(penalty=’l2’, loss=’squared_hinge’, dual=True, tol=0.0001,
C=1.0, multi_class=’ovr’, fit_intercept=True, intercept_scaling=1,
class_weight=None, verbose=0, random_state=None, max_iter=1000)

Linear Support Vector Classification.

Similar to SVC with parameter kernel=’linear’, but implemented in terms of liblinear rather than libsvm, so it
has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of
samples.

This class supports both dense and sparse input and the multiclass support is handled according to a one-vs-the-
rest scheme.

Read more in the User Guide.

Parameters penalty : string, ‘l1’ or ‘l2’ (default=’l2’)

Specifies the norm used in the penalization. The ‘l2’ penalty is the standard used in
SVC. The ‘l1’ leads to coef_ vectors that are sparse.

loss : string, ‘hinge’ or ‘squared_hinge’ (default=’squared_hinge’)

Specifies the loss function. ‘hinge’ is the standard SVM loss (used e.g. by the SVC
class) while ‘squared_hinge’ is the square of the hinge loss.

dual : bool, (default=True)

Select the algorithm to either solve the dual or primal optimization problem. Prefer
dual=False when n_samples > n_features.

tol : float, optional (default=1e-4)

Tolerance for stopping criteria.

C : float, optional (default=1.0)

Penalty parameter C of the error term.

multi_class : string, ‘ovr’ or ‘crammer_singer’ (default=’ovr’)

Determines the multi-class strategy if y contains more than two classes. "ovr" trains
n_classes one-vs-rest classifiers, while "crammer_singer" optimizes a joint objec-
tive over all classes. While crammer_singer is interesting from a theoretical perspective
as it is consistent, it is seldom used in practice as it rarely leads to better accuracy and
is more expensive to compute. If "crammer_singer" is chosen, the options loss,
penalty and dual will be ignored.

fit_intercept : boolean, optional (default=True)

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (i.e. data is expected to be already centered).

intercept_scaling : float, optional (default=1)

When self.fit_intercept is True, instance vector x becomes [x, self.
intercept_scaling], i.e. a “synthetic” feature with constant value equals
to intercept_scaling is appended to the instance vector. The intercept becomes inter-
cept_scaling * synthetic feature weight Note! the synthetic feature weight is subject
to l1/l2 regularization as all other features. To lessen the effect of regularization on
synthetic feature weight (and therefore on the intercept) intercept_scaling has to be
increased.

class_weight : {dict, ‘balanced’}, optional
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Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all
classes are supposed to have weight one. The “balanced” mode uses the values of y
to automatically adjust weights inversely proportional to class frequencies in the input
data as n_samples / (n_classes * np.bincount(y))

verbose : int, (default=0)

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in liblinear that, if enabled, may not work properly in a multithreaded context.

random_state : int, RandomState instance or None, optional (default=None)

The seed of the pseudo random number generator to use when shuffling the data. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

max_iter : int, (default=1000)

The maximum number of iterations to be run.

Attributes coef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features]

Weights assigned to the features (coefficients in the primal problem). This is only avail-
able in the case of a linear kernel.

coef_ is a readonly property derived from raw_coef_ that follows the internal mem-
ory layout of liblinear.

intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]

Constants in decision function.

See also:

SVC Implementation of Support Vector Machine classifier using libsvm: the kernel can be non-linear but its
SMO algorithm does not scale to large number of samples as LinearSVC does. Furthermore SVC multi-
class mode is implemented using one vs one scheme while LinearSVC uses one vs the rest. It is possible to
implement one vs the rest with SVC by using the sklearn.multiclass.OneVsRestClassifier
wrapper. Finally SVC can fit dense data without memory copy if the input is C-contiguous. Sparse data
will still incur memory copy though.

sklearn.linear_model.SGDClassifier SGDClassifier can optimize the same cost function as Lin-
earSVC by adjusting the penalty and loss parameters. In addition it requires less memory, allows incre-
mental (online) learning, and implements various loss functions and regularization regimes.

Notes

The underlying C implementation uses a random number generator to select features when fitting the model.
It is thus not uncommon to have slightly different results for the same input data. If that happens, try with a
smaller tol parameter.

The underlying implementation, liblinear, uses a sparse internal representation for the data that will incur a
memory copy.

Predict output may not match that of standalone liblinear in certain cases. See differences from liblinear in the
narrative documentation.
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References

LIBLINEAR: A Library for Large Linear Classification

Examples

>>> from sklearn.svm import LinearSVC
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_features=4, random_state=0)
>>> clf = LinearSVC(random_state=0)
>>> clf.fit(X, y)
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,

intercept_scaling=1, loss='squared_hinge', max_iter=1000,
multi_class='ovr', penalty='l2', random_state=0, tol=0.0001,
verbose=0)

>>> print(clf.coef_)
[[ 0.08551385 0.39414796 0.49847831 0.37513797]]
>>> print(clf.intercept_)
[ 0.28418066]
>>> print(clf.predict([[0, 0, 0, 0]]))
[1]

Methods

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, sample_weight]) Fit the model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
sparsify() Convert coefficient matrix to sparse format.

__init__(penalty=’l2’, loss=’squared_hinge’, dual=True, tol=0.0001, C=1.0, multi_class=’ovr’,
fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, ran-
dom_state=None, max_iter=1000)

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) :

Confidence scores per (sample, class) combination. In the binary case, confidence score
for self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.
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Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returns self : estimator

fit(X, y, sample_weight=None)
Fit the model according to the given training data.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target vector relative to X

sample_weight : array-like, shape = [n_samples], optional

Array of weights that are assigned to individual samples. If not provided, then each
sample is given unit weight.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Samples.

Returns C : array, shape = [n_samples]

Predicted class label per sample.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.
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Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returns self : estimator

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

Examples using sklearn.svm.LinearSVC

• Selecting dimensionality reduction with Pipeline and GridSearchCV

• Explicit feature map approximation for RBF kernels

• Probability Calibration curves

• Comparison of Calibration of Classifiers

• Precision-Recall

• Plot different SVM classifiers in the iris dataset

• Scaling the regularization parameter for SVCs

• Classification of text documents using sparse features

sklearn.svm.LinearSVR

class sklearn.svm.LinearSVR(epsilon=0.0, tol=0.0001, C=1.0, loss=’epsilon_insensitive’,
fit_intercept=True, intercept_scaling=1.0, dual=True, verbose=0,
random_state=None, max_iter=1000)

Linear Support Vector Regression.

Similar to SVR with parameter kernel=’linear’, but implemented in terms of liblinear rather than libsvm, so it
has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of
samples.
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This class supports both dense and sparse input.

Read more in the User Guide.

Parameters C : float, optional (default=1.0)

Penalty parameter C of the error term. The penalty is a squared l2 penalty. The bigger
this parameter, the less regularization is used.

loss : string, ‘epsilon_insensitive’ or ‘squared_epsilon_insensitive’ (de-
fault=’epsilon_insensitive’)

Specifies the loss function. ‘l1’ is the epsilon-insensitive loss (standard SVR) while ‘l2’
is the squared epsilon-insensitive loss.

epsilon : float, optional (default=0.1)

Epsilon parameter in the epsilon-insensitive loss function. Note that the value of this
parameter depends on the scale of the target variable y. If unsure, set epsilon=0.

dual : bool, (default=True)

Select the algorithm to either solve the dual or primal optimization problem. Prefer
dual=False when n_samples > n_features.

tol : float, optional (default=1e-4)

Tolerance for stopping criteria.

fit_intercept : boolean, optional (default=True)

Whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (i.e. data is expected to be already centered).

intercept_scaling : float, optional (default=1)

When self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling],
i.e. a “synthetic” feature with constant value equals to intercept_scaling is appended to
the instance vector. The intercept becomes intercept_scaling * synthetic feature weight
Note! the synthetic feature weight is subject to l1/l2 regularization as all other features.
To lessen the effect of regularization on synthetic feature weight (and therefore on the
intercept) intercept_scaling has to be increased.

verbose : int, (default=0)

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in liblinear that, if enabled, may not work properly in a multithreaded context.

random_state : int, RandomState instance or None, optional (default=None)

The seed of the pseudo random number generator to use when shuffling the data. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

max_iter : int, (default=1000)

The maximum number of iterations to be run.

Attributes coef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features]

Weights assigned to the features (coefficients in the primal problem). This is only avail-
able in the case of a linear kernel.

coef_ is a readonly property derived from raw_coef_ that follows the internal memory
layout of liblinear.
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intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]

Constants in decision function.

See also:

LinearSVC Implementation of Support Vector Machine classifier using the same library as this class (liblin-
ear).

SVR Implementation of Support Vector Machine regression using libsvm: the kernel can be non-linear but its
SMO algorithm does not scale to large number of samples as LinearSVC does.

sklearn.linear_model.SGDRegressor SGDRegressor can optimize the same cost function as Lin-
earSVR by adjusting the penalty and loss parameters. In addition it requires less memory, allows incre-
mental (online) learning, and implements various loss functions and regularization regimes.

Examples

>>> from sklearn.svm import LinearSVR
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(n_features=4, random_state=0)
>>> regr = LinearSVR(random_state=0)
>>> regr.fit(X, y)
LinearSVR(C=1.0, dual=True, epsilon=0.0, fit_intercept=True,

intercept_scaling=1.0, loss='epsilon_insensitive', max_iter=1000,
random_state=0, tol=0.0001, verbose=0)

>>> print(regr.coef_)
[ 16.35750999 26.91499923 42.30652207 60.47843124]
>>> print(regr.intercept_)
[-4.29756543]
>>> print(regr.predict([[0, 0, 0, 0]]))
[-4.29756543]

Methods

fit(X, y[, sample_weight]) Fit the model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(epsilon=0.0, tol=0.0001, C=1.0, loss=’epsilon_insensitive’, fit_intercept=True, inter-
cept_scaling=1.0, dual=True, verbose=0, random_state=None, max_iter=1000)

fit(X, y, sample_weight=None)
Fit the model according to the given training data.

Parameters X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples]

Target vector relative to X
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sample_weight : array-like, shape = [n_samples], optional

Array of weights that are assigned to individual samples. If not provided, then each
sample is given unit weight.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict using the linear model

Parameters X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :
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sklearn.svm.NuSVC

class sklearn.svm.NuSVC(nu=0.5, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shrinking=True,
probability=False, tol=0.001, cache_size=200, class_weight=None,
verbose=False, max_iter=-1, decision_function_shape=’ovr’, ran-
dom_state=None)

Nu-Support Vector Classification.

Similar to SVC but uses a parameter to control the number of support vectors.

The implementation is based on libsvm.

Read more in the User Guide.

Parameters nu : float, optional (default=0.5)

An upper bound on the fraction of training errors and a lower bound of the fraction of
support vectors. Should be in the interval (0, 1].

kernel : string, optional (default=’rbf’)

Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’,
‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a
callable is given it is used to precompute the kernel matrix.

degree : int, optional (default=3)

Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels.

gamma : float, optional (default=’auto’)

Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. If gamma is ‘auto’ then 1/n_features
will be used instead.

coef0 : float, optional (default=0.0)

Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.

probability : boolean, optional (default=False)

Whether to enable probability estimates. This must be enabled prior to calling fit, and
will slow down that method.

shrinking : boolean, optional (default=True)

Whether to use the shrinking heuristic.

tol : float, optional (default=1e-3)

Tolerance for stopping criterion.

cache_size : float, optional

Specify the size of the kernel cache (in MB).

class_weight : {dict, ‘balanced’}, optional

Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes
are supposed to have weight one. The “balanced” mode uses the values of y to auto-
matically adjust weights inversely proportional to class frequencies as n_samples /
(n_classes * np.bincount(y))

verbose : bool, default: False

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in libsvm that, if enabled, may not work properly in a multithreaded context.
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max_iter : int, optional (default=-1)

Hard limit on iterations within solver, or -1 for no limit.

decision_function_shape : ‘ovo’, ‘ovr’, default=’ovr’

Whether to return a one-vs-rest (‘ovr’) decision function of shape (n_samples,
n_classes) as all other classifiers, or the original one-vs-one (‘ovo’) decision function of
libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2).

Changed in version 0.19: decision_function_shape is ‘ovr’ by default.

New in version 0.17: decision_function_shape=’ovr’ is recommended.

Changed in version 0.17: Deprecated decision_function_shape=’ovo’ and None.

random_state : int, RandomState instance or None, optional (default=None)

The seed of the pseudo random number generator to use when shuffling the data. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes support_ : array-like, shape = [n_SV]

Indices of support vectors.

support_vectors_ : array-like, shape = [n_SV, n_features]

Support vectors.

n_support_ : array-like, dtype=int32, shape = [n_class]

Number of support vectors for each class.

dual_coef_ : array, shape = [n_class-1, n_SV]

Coefficients of the support vector in the decision function. For multiclass, coefficient for
all 1-vs-1 classifiers. The layout of the coefficients in the multiclass case is somewhat
non-trivial. See the section about multi-class classification in the SVM section of the
User Guide for details.

coef_ : array, shape = [n_class-1, n_features]

Weights assigned to the features (coefficients in the primal problem). This is only avail-
able in the case of a linear kernel.

coef_ is readonly property derived from dual_coef_ and support_vectors_.

intercept_ : array, shape = [n_class * (n_class-1) / 2]

Constants in decision function.

See also:

SVC Support Vector Machine for classification using libsvm.

LinearSVC Scalable linear Support Vector Machine for classification using liblinear.

Examples
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>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> from sklearn.svm import NuSVC
>>> clf = NuSVC()
>>> clf.fit(X, y)
NuSVC(cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, nu=0.5, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)

>>> print(clf.predict([[-0.8, -1]]))
[1]

Methods

decision_function(X) Distance of the samples X to the separating hyperplane.
fit(X, y[, sample_weight]) Fit the SVM model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on samples in X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(nu=0.5, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shrinking=True, probabil-
ity=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1,
decision_function_shape=’ovr’, random_state=None)

decision_function(X)
Distance of the samples X to the separating hyperplane.

Parameters X : array-like, shape (n_samples, n_features)

Returns X : array-like, shape (n_samples, n_classes * (n_classes-1) / 2)

Returns the decision function of the sample for each class in the model. If deci-
sion_function_shape=’ovr’, the shape is (n_samples, n_classes)

fit(X, y, sample_weight=None)
Fit the SVM model according to the given training data.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features. For kernel=”precomputed”, the expected shape of X is (n_samples,
n_samples).

y : array-like, shape (n_samples,)

Target values (class labels in classification, real numbers in regression)

sample_weight : array-like, shape (n_samples,)

Per-sample weights. Rescale C per sample. Higher weights force the classifier to put
more emphasis on these points.

Returns self : object

Returns self.
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Notes

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X
and/or y may be copied.

If X is a dense array, then the other methods will not support sparse matrices as input.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Perform classification on samples in X.

For an one-class model, +1 or -1 is returned.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is [n_samples_test,
n_samples_train]

Returns y_pred : array, shape (n_samples,)

Class labels for samples in X.

predict_log_proba
Compute log probabilities of possible outcomes for samples in X.

The model need to have probability information computed at training time: fit with attribute probability
set to True.

Parameters X : array-like, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is [n_samples_test,
n_samples_train]

Returns T : array-like, shape (n_samples, n_classes)

Returns the log-probabilities of the sample for each class in the model. The columns
correspond to the classes in sorted order, as they appear in the attribute classes_.

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will produce meaningless results on very small datasets.

predict_proba
Compute probabilities of possible outcomes for samples in X.

The model need to have probability information computed at training time: fit with attribute probability
set to True.

Parameters X : array-like, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is [n_samples_test,
n_samples_train]
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Returns T : array-like, shape (n_samples, n_classes)

Returns the probability of the sample for each class in the model. The columns corre-
spond to the classes in sorted order, as they appear in the attribute classes_.

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will produce meaningless results on very small datasets.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.svm.NuSVC

• Non-linear SVM

sklearn.svm.NuSVR

class sklearn.svm.NuSVR(nu=0.5, C=1.0, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shrink-
ing=True, tol=0.001, cache_size=200, verbose=False, max_iter=-1)

Nu Support Vector Regression.

Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However,
unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR.

The implementation is based on libsvm.

Read more in the User Guide.

Parameters C : float, optional (default=1.0)

Penalty parameter C of the error term.

5.33. sklearn.svm: Support Vector Machines 1961



scikit-learn user guide, Release 0.19.1

nu : float, optional

An upper bound on the fraction of training errors and a lower bound of the fraction of
support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken.

kernel : string, optional (default=’rbf’)

Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’,
‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a
callable is given it is used to precompute the kernel matrix.

degree : int, optional (default=3)

Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels.

gamma : float, optional (default=’auto’)

Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. If gamma is ‘auto’ then 1/n_features
will be used instead.

coef0 : float, optional (default=0.0)

Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.

shrinking : boolean, optional (default=True)

Whether to use the shrinking heuristic.

tol : float, optional (default=1e-3)

Tolerance for stopping criterion.

cache_size : float, optional

Specify the size of the kernel cache (in MB).

verbose : bool, default: False

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in libsvm that, if enabled, may not work properly in a multithreaded context.

max_iter : int, optional (default=-1)

Hard limit on iterations within solver, or -1 for no limit.

Attributes support_ : array-like, shape = [n_SV]

Indices of support vectors.

support_vectors_ : array-like, shape = [nSV, n_features]

Support vectors.

dual_coef_ : array, shape = [1, n_SV]

Coefficients of the support vector in the decision function.

coef_ : array, shape = [1, n_features]

Weights assigned to the features (coefficients in the primal problem). This is only avail-
able in the case of a linear kernel.

coef_ is readonly property derived from dual_coef_ and support_vectors_.

intercept_ : array, shape = [1]

Constants in decision function.

See also:
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NuSVC Support Vector Machine for classification implemented with libsvm with a parameter to control the
number of support vectors.

SVR epsilon Support Vector Machine for regression implemented with libsvm.

Examples

>>> from sklearn.svm import NuSVR
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = NuSVR(C=1.0, nu=0.1)
>>> clf.fit(X, y)
NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma='auto',

kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001,
verbose=False)

Methods

fit(X, y[, sample_weight]) Fit the SVM model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform regression on samples in X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(nu=0.5, C=1.0, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shrinking=True,
tol=0.001, cache_size=200, verbose=False, max_iter=-1)

fit(X, y, sample_weight=None)
Fit the SVM model according to the given training data.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features. For kernel=”precomputed”, the expected shape of X is (n_samples,
n_samples).

y : array-like, shape (n_samples,)

Target values (class labels in classification, real numbers in regression)

sample_weight : array-like, shape (n_samples,)

Per-sample weights. Rescale C per sample. Higher weights force the classifier to put
more emphasis on these points.

Returns self : object

Returns self.
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Notes

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X
and/or y may be copied.

If X is a dense array, then the other methods will not support sparse matrices as input.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Perform regression on samples in X.

For an one-class model, +1 (inlier) or -1 (outlier) is returned.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is (n_samples_test,
n_samples_train).

Returns y_pred : array, shape (n_samples,)

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :
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Examples using sklearn.svm.NuSVR

• Model Complexity Influence

sklearn.svm.OneClassSVM

class sklearn.svm.OneClassSVM(kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, tol=0.001,
nu=0.5, shrinking=True, cache_size=200, verbose=False,
max_iter=-1, random_state=None)

Unsupervised Outlier Detection.

Estimate the support of a high-dimensional distribution.

The implementation is based on libsvm.

Read more in the User Guide.

Parameters kernel : string, optional (default=’rbf’)

Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’,
‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a
callable is given it is used to precompute the kernel matrix.

nu : float, optional

An upper bound on the fraction of training errors and a lower bound of the fraction of
support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken.

degree : int, optional (default=3)

Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels.

gamma : float, optional (default=’auto’)

Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. If gamma is ‘auto’ then 1/n_features
will be used instead.

coef0 : float, optional (default=0.0)

Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.

tol : float, optional

Tolerance for stopping criterion.

shrinking : boolean, optional

Whether to use the shrinking heuristic.

cache_size : float, optional

Specify the size of the kernel cache (in MB).

verbose : bool, default: False

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in libsvm that, if enabled, may not work properly in a multithreaded context.

max_iter : int, optional (default=-1)

Hard limit on iterations within solver, or -1 for no limit.

random_state : int, RandomState instance or None, optional (default=None)
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The seed of the pseudo random number generator to use when shuffling the data. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes support_ : array-like, shape = [n_SV]

Indices of support vectors.

support_vectors_ : array-like, shape = [nSV, n_features]

Support vectors.

dual_coef_ : array, shape = [1, n_SV]

Coefficients of the support vectors in the decision function.

coef_ : array, shape = [1, n_features]

Weights assigned to the features (coefficients in the primal problem). This is only avail-
able in the case of a linear kernel.

coef_ is readonly property derived from dual_coef_ and support_vectors_

intercept_ : array, shape = [1,]

Constant in the decision function.

Methods

decision_function(X) Signed distance to the separating hyperplane.
fit(X[, y, sample_weight]) Detects the soft boundary of the set of samples X.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on samples in X.
set_params(**params) Set the parameters of this estimator.

__init__(kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, tol=0.001, nu=0.5, shrinking=True,
cache_size=200, verbose=False, max_iter=-1, random_state=None)

decision_function(X)
Signed distance to the separating hyperplane.

Signed distance is positive for an inlier and negative for an outlier.

Parameters X : array-like, shape (n_samples, n_features)

Returns X : array-like, shape (n_samples,)

Returns the decision function of the samples.

fit(X, y=None, sample_weight=None, **params)
Detects the soft boundary of the set of samples X.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Set of samples, where n_samples is the number of samples and n_features is the number
of features.

sample_weight : array-like, shape (n_samples,)

Per-sample weights. Rescale C per sample. Higher weights force the classifier to put
more emphasis on these points.
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Returns self : object

Returns self.

Notes

If X is not a C-ordered contiguous array it is copied.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Perform classification on samples in X.

For an one-class model, +1 or -1 is returned.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is [n_samples_test,
n_samples_train]

Returns y_pred : array, shape (n_samples,)

Class labels for samples in X.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.svm.OneClassSVM

• Outlier detection on a real data set

• Species distribution modeling

• Libsvm GUI

• Outlier detection with several methods.

• One-class SVM with non-linear kernel (RBF)

sklearn.svm.SVC

class sklearn.svm.SVC(C=1.0, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shrinking=True,
probability=False, tol=0.001, cache_size=200, class_weight=None, ver-
bose=False, max_iter=-1, decision_function_shape=’ovr’, random_state=None)

C-Support Vector Classification.
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The implementation is based on libsvm. The fit time complexity is more than quadratic with the number of
samples which makes it hard to scale to dataset with more than a couple of 10000 samples.

The multiclass support is handled according to a one-vs-one scheme.

For details on the precise mathematical formulation of the provided kernel functions and how gamma, coef0 and
degree affect each other, see the corresponding section in the narrative documentation: Kernel functions.

Read more in the User Guide.

Parameters C : float, optional (default=1.0)

Penalty parameter C of the error term.

kernel : string, optional (default=’rbf’)

Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’,
‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If
a callable is given it is used to pre-compute the kernel matrix from data matrices; that
matrix should be an array of shape (n_samples, n_samples).

degree : int, optional (default=3)

Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels.

gamma : float, optional (default=’auto’)

Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. If gamma is ‘auto’ then 1/n_features
will be used instead.

coef0 : float, optional (default=0.0)

Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.

probability : boolean, optional (default=False)

Whether to enable probability estimates. This must be enabled prior to calling fit, and
will slow down that method.

shrinking : boolean, optional (default=True)

Whether to use the shrinking heuristic.

tol : float, optional (default=1e-3)

Tolerance for stopping criterion.

cache_size : float, optional

Specify the size of the kernel cache (in MB).

class_weight : {dict, ‘balanced’}, optional

Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes
are supposed to have weight one. The “balanced” mode uses the values of y to auto-
matically adjust weights inversely proportional to class frequencies in the input data as
n_samples / (n_classes * np.bincount(y))

verbose : bool, default: False

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in libsvm that, if enabled, may not work properly in a multithreaded context.

max_iter : int, optional (default=-1)

Hard limit on iterations within solver, or -1 for no limit.

decision_function_shape : ‘ovo’, ‘ovr’, default=’ovr’
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Whether to return a one-vs-rest (‘ovr’) decision function of shape (n_samples,
n_classes) as all other classifiers, or the original one-vs-one (‘ovo’) decision function of
libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2).

Changed in version 0.19: decision_function_shape is ‘ovr’ by default.

New in version 0.17: decision_function_shape=’ovr’ is recommended.

Changed in version 0.17: Deprecated decision_function_shape=’ovo’ and None.

random_state : int, RandomState instance or None, optional (default=None)

The seed of the pseudo random number generator to use when shuffling the data. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes support_ : array-like, shape = [n_SV]

Indices of support vectors.

support_vectors_ : array-like, shape = [n_SV, n_features]

Support vectors.

n_support_ : array-like, dtype=int32, shape = [n_class]

Number of support vectors for each class.

dual_coef_ : array, shape = [n_class-1, n_SV]

Coefficients of the support vector in the decision function. For multiclass, coefficient for
all 1-vs-1 classifiers. The layout of the coefficients in the multiclass case is somewhat
non-trivial. See the section about multi-class classification in the SVM section of the
User Guide for details.

coef_ : array, shape = [n_class-1, n_features]

Weights assigned to the features (coefficients in the primal problem). This is only avail-
able in the case of a linear kernel.

coef_ is a readonly property derived from dual_coef_ and support_vectors_.

intercept_ : array, shape = [n_class * (n_class-1) / 2]

Constants in decision function.

See also:

SVR Support Vector Machine for Regression implemented using libsvm.

LinearSVC Scalable Linear Support Vector Machine for classification implemented using liblinear. Check
the See also section of LinearSVC for more comparison element.

Examples

>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> from sklearn.svm import SVC
>>> clf = SVC()
>>> clf.fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
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decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

>>> print(clf.predict([[-0.8, -1]]))
[1]

Methods

decision_function(X) Distance of the samples X to the separating hyperplane.
fit(X, y[, sample_weight]) Fit the SVM model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on samples in X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(C=1.0, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shrinking=True, probabil-
ity=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1,
decision_function_shape=’ovr’, random_state=None)

decision_function(X)
Distance of the samples X to the separating hyperplane.

Parameters X : array-like, shape (n_samples, n_features)

Returns X : array-like, shape (n_samples, n_classes * (n_classes-1) / 2)

Returns the decision function of the sample for each class in the model. If deci-
sion_function_shape=’ovr’, the shape is (n_samples, n_classes)

fit(X, y, sample_weight=None)
Fit the SVM model according to the given training data.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features. For kernel=”precomputed”, the expected shape of X is (n_samples,
n_samples).

y : array-like, shape (n_samples,)

Target values (class labels in classification, real numbers in regression)

sample_weight : array-like, shape (n_samples,)

Per-sample weights. Rescale C per sample. Higher weights force the classifier to put
more emphasis on these points.

Returns self : object

Returns self.

Notes

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X
and/or y may be copied.
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If X is a dense array, then the other methods will not support sparse matrices as input.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Perform classification on samples in X.

For an one-class model, +1 or -1 is returned.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is [n_samples_test,
n_samples_train]

Returns y_pred : array, shape (n_samples,)

Class labels for samples in X.

predict_log_proba
Compute log probabilities of possible outcomes for samples in X.

The model need to have probability information computed at training time: fit with attribute probability
set to True.

Parameters X : array-like, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is [n_samples_test,
n_samples_train]

Returns T : array-like, shape (n_samples, n_classes)

Returns the log-probabilities of the sample for each class in the model. The columns
correspond to the classes in sorted order, as they appear in the attribute classes_.

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will produce meaningless results on very small datasets.

predict_proba
Compute probabilities of possible outcomes for samples in X.

The model need to have probability information computed at training time: fit with attribute probability
set to True.

Parameters X : array-like, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is [n_samples_test,
n_samples_train]

Returns T : array-like, shape (n_samples, n_classes)

Returns the probability of the sample for each class in the model. The columns corre-
spond to the classes in sorted order, as they appear in the attribute classes_.
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Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will produce meaningless results on very small datasets.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.svm.SVC

• Feature Union with Heterogeneous Data Sources

• Concatenating multiple feature extraction methods

• Explicit feature map approximation for RBF kernels

• Multilabel classification

• Faces recognition example using eigenfaces and SVMs

• Libsvm GUI

• Plot classification probability

• Classifier comparison

• Recognizing hand-written digits

• Plot the decision boundaries of a VotingClassifier

• Cross-validation on Digits Dataset Exercise

• SVM Exercise

• Univariate Feature Selection

• Pipeline Anova SVM

1972 Chapter 5. API Reference



scikit-learn user guide, Release 0.19.1

• Test with permutations the significance of a classification score

• Recursive feature elimination

• Recursive feature elimination with cross-validation

• Confusion matrix

• Parameter estimation using grid search with cross-validation

• Plotting Learning Curves

• Nested versus non-nested cross-validation

• Receiver Operating Characteristic (ROC)

• Receiver Operating Characteristic (ROC) with cross validation

• Plotting Validation Curves

• Decision boundary of label propagation versus SVM on the Iris dataset

• SVM with custom kernel

• Plot different SVM classifiers in the iris dataset

• RBF SVM parameters

• SVM: Maximum margin separating hyperplane

• SVM: Separating hyperplane for unbalanced classes

• SVM-Anova: SVM with univariate feature selection

• SVM-Kernels

• SVM Margins Example

• SVM: Weighted samples

sklearn.svm.SVR

class sklearn.svm.SVR(kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, tol=0.001, C=1.0, ep-
silon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1)

Epsilon-Support Vector Regression.

The free parameters in the model are C and epsilon.

The implementation is based on libsvm.

Read more in the User Guide.

Parameters C : float, optional (default=1.0)

Penalty parameter C of the error term.

epsilon : float, optional (default=0.1)

Epsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty
is associated in the training loss function with points predicted within a distance epsilon
from the actual value.

kernel : string, optional (default=’rbf’)

Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’,
‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a
callable is given it is used to precompute the kernel matrix.
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degree : int, optional (default=3)

Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels.

gamma : float, optional (default=’auto’)

Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. If gamma is ‘auto’ then 1/n_features
will be used instead.

coef0 : float, optional (default=0.0)

Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.

shrinking : boolean, optional (default=True)

Whether to use the shrinking heuristic.

tol : float, optional (default=1e-3)

Tolerance for stopping criterion.

cache_size : float, optional

Specify the size of the kernel cache (in MB).

verbose : bool, default: False

Enable verbose output. Note that this setting takes advantage of a per-process runtime
setting in libsvm that, if enabled, may not work properly in a multithreaded context.

max_iter : int, optional (default=-1)

Hard limit on iterations within solver, or -1 for no limit.

Attributes support_ : array-like, shape = [n_SV]

Indices of support vectors.

support_vectors_ : array-like, shape = [nSV, n_features]

Support vectors.

dual_coef_ : array, shape = [1, n_SV]

Coefficients of the support vector in the decision function.

coef_ : array, shape = [1, n_features]

Weights assigned to the features (coefficients in the primal problem). This is only avail-
able in the case of a linear kernel.

coef_ is readonly property derived from dual_coef_ and support_vectors_.

intercept_ : array, shape = [1]

Constants in decision function.

sample_weight : array-like, shape = [n_samples]

Individual weights for each sample

See also:

NuSVR Support Vector Machine for regression implemented using libsvm using a parameter to control the
number of support vectors.

LinearSVR Scalable Linear Support Vector Machine for regression implemented using liblinear.
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Examples

>>> from sklearn.svm import SVR
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = SVR(C=1.0, epsilon=0.2)
>>> clf.fit(X, y)
SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma='auto',

kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)

Methods

fit(X, y[, sample_weight]) Fit the SVM model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform regression on samples in X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrink-
ing=True, cache_size=200, verbose=False, max_iter=-1)

fit(X, y, sample_weight=None)
Fit the SVM model according to the given training data.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features. For kernel=”precomputed”, the expected shape of X is (n_samples,
n_samples).

y : array-like, shape (n_samples,)

Target values (class labels in classification, real numbers in regression)

sample_weight : array-like, shape (n_samples,)

Per-sample weights. Rescale C per sample. Higher weights force the classifier to put
more emphasis on these points.

Returns self : object

Returns self.

Notes

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X
and/or y may be copied.

If X is a dense array, then the other methods will not support sparse matrices as input.

get_params(deep=True)
Get parameters for this estimator.
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Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Perform regression on samples in X.

For an one-class model, +1 (inlier) or -1 (outlier) is returned.

Parameters X : {array-like, sparse matrix}, shape (n_samples, n_features)

For kernel=”precomputed”, the expected shape of X is (n_samples_test,
n_samples_train).

Returns y_pred : array, shape (n_samples,)

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.svm.SVR

• Comparison of kernel ridge regression and SVR

• Prediction Latency

• Support Vector Regression (SVR) using linear and non-linear kernels
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svm.l1_min_c(X, y[, loss, fit_intercept, . . . ]) Return the lowest bound for C such that for C in (l1_min_C,
infinity) the model is guaranteed not to be empty.

sklearn.svm.l1_min_c

sklearn.svm.l1_min_c(X, y, loss=’squared_hinge’, fit_intercept=True, intercept_scaling=1.0)
Return the lowest bound for C such that for C in (l1_min_C, infinity) the model is guaranteed not
to be empty. This applies to l1 penalized classifiers, such as LinearSVC with penalty=’l1’ and lin-
ear_model.LogisticRegression with penalty=’l1’.

This value is valid if class_weight parameter in fit() is not set.

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array, shape = [n_samples]

Target vector relative to X

loss : {‘squared_hinge’, ‘log’}, default ‘squared_hinge’

Specifies the loss function. With ‘squared_hinge’ it is the squared hinge loss (a.k.a. L2
loss). With ‘log’ it is the loss of logistic regression models. ‘l2’ is accepted as an alias
for ‘squared_hinge’, for backward compatibility reasons, but should not be used in new
code.

fit_intercept : bool, default: True

Specifies if the intercept should be fitted by the model. It must match the fit() method
parameter.

intercept_scaling : float, default: 1

when fit_intercept is True, instance vector x becomes [x, intercept_scaling], i.e. a “syn-
thetic” feature with constant value equals to intercept_scaling is appended to the in-
stance vector. It must match the fit() method parameter.

Returns l1_min_c : float

minimum value for C

Examples using sklearn.svm.l1_min_c

• Path with L1- Logistic Regression

5.33.2 Low-level methods

svm.libsvm.cross_validation Binding of the cross-validation routine (low-level routine)
svm.libsvm.decision_function Predict margin (libsvm name for this is predict_values)
svm.libsvm.fit Train the model using libsvm (low-level method)
svm.libsvm.predict Predict target values of X given a model (low-level method)
svm.libsvm.predict_proba Predict probabilities
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sklearn.svm.libsvm.cross_validation

sklearn.svm.libsvm.cross_validation()
Binding of the cross-validation routine (low-level routine)

Parameters X : array-like, dtype=float, size=[n_samples, n_features]

Y : array, dtype=float, size=[n_samples]

target vector

svm_type : {0, 1, 2, 3, 4}

Type of SVM: C SVC, nu SVC, one class, epsilon SVR, nu SVR

kernel : {‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’, ‘precomputed’}

Kernel to use in the model: linear, polynomial, RBF, sigmoid or precomputed.

degree : int

Degree of the polynomial kernel (only relevant if kernel is set to polynomial)

gamma : float

Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other kernels. 0.1 by
default.

coef0 : float

Independent parameter in poly/sigmoid kernel.

tol : float

Stopping criteria.

C : float

C parameter in C-Support Vector Classification

nu : float

cache_size : float

random_seed : int, optional

Seed for the random number generator used for probability estimates. 0 by default.

Returns target : array, float

sklearn.svm.libsvm.decision_function

sklearn.svm.libsvm.decision_function()
Predict margin (libsvm name for this is predict_values)

We have to reconstruct model and parameters to make sure we stay in sync with the python object.

sklearn.svm.libsvm.fit

sklearn.svm.libsvm.fit()
Train the model using libsvm (low-level method)

Parameters X : array-like, dtype=float64, size=[n_samples, n_features]

Y : array, dtype=float64, size=[n_samples]
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target vector

svm_type : {0, 1, 2, 3, 4}, optional

Type of SVM: C_SVC, NuSVC, OneClassSVM, EpsilonSVR or NuSVR respectively.
0 by default.

kernel : {‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’, ‘precomputed’}, optional

Kernel to use in the model: linear, polynomial, RBF, sigmoid or precomputed. ‘rbf’ by
default.

degree : int32, optional

Degree of the polynomial kernel (only relevant if kernel is set to polynomial), 3 by
default.

gamma : float64, optional

Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other kernels. 0.1 by
default.

coef0 : float64, optional

Independent parameter in poly/sigmoid kernel. 0 by default.

tol : float64, optional

Numeric stopping criterion (WRITEME). 1e-3 by default.

C : float64, optional

C parameter in C-Support Vector Classification. 1 by default.

nu : float64, optional

0.5 by default.

epsilon : double, optional

0.1 by default.

class_weight : array, dtype float64, shape (n_classes,), optional

np.empty(0) by default.

sample_weight : array, dtype float64, shape (n_samples,), optional

np.empty(0) by default.

shrinking : int, optional

1 by default.

probability : int, optional

0 by default.

cache_size : float64, optional

Cache size for gram matrix columns (in megabytes). 100 by default.

max_iter : int (-1 for no limit), optional.

Stop solver after this many iterations regardless of accuracy (XXX Currently there is no
API to know whether this kicked in.) -1 by default.

random_seed : int, optional

Seed for the random number generator used for probability estimates. 0 by default.
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Returns support : array, shape=[n_support]

index of support vectors

support_vectors : array, shape=[n_support, n_features]

support vectors (equivalent to X[support]). Will return an empty array in the case of
precomputed kernel.

n_class_SV : array

number of support vectors in each class.

sv_coef : array

coefficients of support vectors in decision function.

intercept : array

intercept in decision function

probA, probB : array

probability estimates, empty array for probability=False

sklearn.svm.libsvm.predict

sklearn.svm.libsvm.predict()
Predict target values of X given a model (low-level method)

Parameters X : array-like, dtype=float, size=[n_samples, n_features]

svm_type : {0, 1, 2, 3, 4}

Type of SVM: C SVC, nu SVC, one class, epsilon SVR, nu SVR

kernel : {‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’, ‘precomputed’}

Type of kernel.

degree : int

Degree of the polynomial kernel.

gamma : float

Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other kernels. 0.1 by
default.

coef0 : float

Independent parameter in poly/sigmoid kernel.

Returns dec_values : array

predicted values.

sklearn.svm.libsvm.predict_proba

sklearn.svm.libsvm.predict_proba()
Predict probabilities

svm_model stores all parameters needed to predict a given value.

For speed, all real work is done at the C level in function copy_predict (libsvm_helper.c).
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We have to reconstruct model and parameters to make sure we stay in sync with the python object.

See sklearn.svm.predict for a complete list of parameters.

Parameters X : array-like, dtype=float

kernel : {‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’, ‘precomputed’}

Returns dec_values : array

predicted values.

5.34 sklearn.tree: Decision Trees

The sklearn.tree module includes decision tree-based models for classification and regression.

User guide: See the Decision Trees section for further details.

tree.DecisionTreeClassifier([criterion, . . . ]) A decision tree classifier.
tree.DecisionTreeRegressor([criterion, . . . ]) A decision tree regressor.
tree.ExtraTreeClassifier([criterion, . . . ]) An extremely randomized tree classifier.
tree.ExtraTreeRegressor([criterion, . . . ]) An extremely randomized tree regressor.

5.34.1 sklearn.tree.DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=None, ran-
dom_state=None, max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None, class_weight=None,
presort=False)

A decision tree classifier.

Read more in the User Guide.

Parameters criterion : string, optional (default=”gini”)

The function to measure the quality of a split. Supported criteria are “gini” for the Gini
impurity and “entropy” for the information gain.

splitter : string, optional (default=”best”)

The strategy used to choose the split at each node. Supported strategies are “best” to
choose the best split and “random” to choose the best random split.

max_depth : int or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves are
pure or until all leaves contain less than min_samples_split samples.

min_samples_split : int, float, optional (default=2)

The minimum number of samples required to split an internal node:

• If int, then consider min_samples_split as the minimum number.
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• If float, then min_samples_split is a percentage and ceil(min_samples_split *
n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for percentages.

min_samples_leaf : int, float, optional (default=1)

The minimum number of samples required to be at a leaf node:

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a percentage and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for percentages.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the sum total of weights (of all the input samples)
required to be at a leaf node. Samples have equal weight when sample_weight is not
provided.

max_features : int, float, string or None, optional (default=None)

The number of features to consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a percentage and int(max_features * n_features) features
are considered at each split.

• If “auto”, then max_features=sqrt(n_features).

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

max_leaf_nodes : int or None, optional (default=None)

Grow a tree with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes.

min_impurity_decrease : float, optional (default=0.)

A node will be split if this split induces a decrease of the impurity greater than or equal
to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)
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where N is the total number of samples, N_t is the number of samples at the current
node, N_t_L is the number of samples in the left child, and N_t_R is the number of
samples in the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is
passed.

New in version 0.19.

min_impurity_split : float,

Threshold for early stopping in tree growth. A node will split if its impurity is above
the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in fa-
vor of min_impurity_decrease in 0.19 and will be removed in 0.21. Use
min_impurity_decrease instead.

class_weight : dict, list of dicts, “balanced” or None, default=None

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one. For multi-output problems, a list of
dicts can be provided in the same order as the columns of y.

Note that for multioutput (including multilabel) weights should be defined for each class
of every column in its own dict. For example, for four-class multilabel classification
weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of
[{1:1}, {2:5}, {3:1}, {4:1}].

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

For multi-output, the weights of each column of y will be multiplied.

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

presort : bool, optional (default=False)

Whether to presort the data to speed up the finding of best splits in fitting. For the
default settings of a decision tree on large datasets, setting this to true may slow down
the training process. When using either a smaller dataset or a restricted depth, this may
speed up the training.

Attributes classes_ : array of shape = [n_classes] or a list of such arrays

The classes labels (single output problem), or a list of arrays of class labels (multi-output
problem).

feature_importances_ : array of shape = [n_features]

The feature importances. The higher, the more important the feature. The importance
of a feature is computed as the (normalized) total reduction of the criterion brought by
that feature. It is also known as the Gini importance [R79].

max_features_ : int,

The inferred value of max_features.

n_classes_ : int or list

The number of classes (for single output problems), or a list containing the number of
classes for each output (for multi-output problems).
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n_features_ : int

The number of features when fit is performed.

n_outputs_ : int

The number of outputs when fit is performed.

tree_ : Tree object

The underlying Tree object.

See also:

DecisionTreeRegressor

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth,
min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on
some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by
setting those parameter values.

The features are always randomly permuted at each split. Therefore, the best found split may vary, even with
the same training data and max_features=n_features, if the improvement of the criterion is identical for
several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting,
random_state has to be fixed.

References

[R76], [R77], [R78], [R79]

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.tree import DecisionTreeClassifier
>>> clf = DecisionTreeClassifier(random_state=0)
>>> iris = load_iris()
>>> cross_val_score(clf, iris.data, iris.target, cv=10)
...
...
array([ 1. , 0.93..., 0.86..., 0.93..., 0.93...,

0.93..., 0.93..., 1. , 0.93..., 1. ])

Methods

apply(X[, check_input]) Returns the index of the leaf that each sample is pre-
dicted as.

decision_path(X[, check_input]) Return the decision path in the tree
fit(X, y[, sample_weight, check_input, . . . ]) Build a decision tree classifier from the training set (X,

y).
Continued on next page
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Table 5.265 – continued from previous page
get_params([deep]) Get parameters for this estimator.
predict(X[, check_input]) Predict class or regression value for X.
predict_log_proba(X) Predict class log-probabilities of the input samples X.
predict_proba(X[, check_input]) Predict class probabilities of the input samples X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(criterion=’gini’, splitter=’best’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,
random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, class_weight=None, presort=False)

apply(X, check_input=True)
Returns the index of the leaf that each sample is predicted as.

New in version 0.17.

Parameters X : array_like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

Returns X_leaves : array_like, shape = [n_samples,]

For each datapoint x in X, return the index of the leaf x ends up in. Leaves are numbered
within [0; self.tree_.node_count), possibly with gaps in the numbering.

decision_path(X, check_input=True)
Return the decision path in the tree

New in version 0.18.

Parameters X : array_like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

Returns indicator : sparse csr array, shape = [n_samples, n_nodes]

Return a node indicator matrix where non zero elements indicates that the samples goes
through the nodes.

feature_importances_
Return the feature importances.

The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that
feature. It is also known as the Gini importance.

Returns feature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None, check_input=True, X_idx_sorted=None)
Build a decision tree classifier from the training set (X, y).
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Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The training input samples. Internally, it will be converted to dtype=np.float32
and if a sparse matrix is provided to a sparse csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (class labels) as integers or strings.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. Splits are also ignored if they would result in any single class carrying a
negative weight in either child node.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

X_idx_sorted : array-like, shape = [n_samples, n_features], optional

The indexes of the sorted training input samples. If many tree are grown on the same
dataset, this allows the ordering to be cached between trees. If None, the data will be
sorted here. Don’t use this parameter unless you know what to do.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X, check_input=True)
Predict class or regression value for X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the predicted value based on X is returned.

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

Returns y : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted classes, or the predict values.

predict_log_proba(X)
Predict class log-probabilities of the input samples X.

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]
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The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returns p : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class log-probabilities of the input samples. The order
of the classes corresponds to that in the attribute classes_.

predict_proba(X, check_input=True)
Predict class probabilities of the input samples X.

The predicted class probability is the fraction of samples of the same class in a leaf.

check_input [boolean, (default=True)] Allow to bypass several input checking. Don’t use this parameter
unless you know what you do.

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : bool

Run check_array on X.

Returns p : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class probabilities of the input samples. The order of
the classes corresponds to that in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :
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Examples using sklearn.tree.DecisionTreeClassifier

• Classifier comparison

• Discrete versus Real AdaBoost

• Multi-class AdaBoosted Decision Trees

• Two-class AdaBoost

• Plot the decision surfaces of ensembles of trees on the iris dataset

• Plot the decision boundaries of a VotingClassifier

• Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV

• Plot the decision surface of a decision tree on the iris dataset

• Understanding the decision tree structure

5.34.2 sklearn.tree.DecisionTreeRegressor

class sklearn.tree.DecisionTreeRegressor(criterion=’mse’, splitter=’best’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=None,
random_state=None, max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None, presort=False)

A decision tree regressor.

Read more in the User Guide.

Parameters criterion : string, optional (default=”mse”)

The function to measure the quality of a split. Supported criteria are “mse” for the
mean squared error, which is equal to variance reduction as feature selection criterion
and minimizes the L2 loss using the mean of each terminal node, “friedman_mse”,
which uses mean squared error with Friedman’s improvement score for potential splits,
and “mae” for the mean absolute error, which minimizes the L1 loss using the median
of each terminal node.

New in version 0.18: Mean Absolute Error (MAE) criterion.

splitter : string, optional (default=”best”)

The strategy used to choose the split at each node. Supported strategies are “best” to
choose the best split and “random” to choose the best random split.

max_depth : int or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves are
pure or until all leaves contain less than min_samples_split samples.

min_samples_split : int, float, optional (default=2)

The minimum number of samples required to split an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a percentage and ceil(min_samples_split *
n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for percentages.
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min_samples_leaf : int, float, optional (default=1)

The minimum number of samples required to be at a leaf node:

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a percentage and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for percentages.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the sum total of weights (of all the input samples)
required to be at a leaf node. Samples have equal weight when sample_weight is not
provided.

max_features : int, float, string or None, optional (default=None)

The number of features to consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a percentage and int(max_features * n_features) features
are considered at each split.

• If “auto”, then max_features=n_features.

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

max_leaf_nodes : int or None, optional (default=None)

Grow a tree with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes.

min_impurity_decrease : float, optional (default=0.)

A node will be split if this split induces a decrease of the impurity greater than or equal
to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current
node, N_t_L is the number of samples in the left child, and N_t_R is the number of
samples in the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is
passed.
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New in version 0.19.

min_impurity_split : float,

Threshold for early stopping in tree growth. A node will split if its impurity is above
the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in fa-
vor of min_impurity_decrease in 0.19 and will be removed in 0.21. Use
min_impurity_decrease instead.

presort : bool, optional (default=False)

Whether to presort the data to speed up the finding of best splits in fitting. For the
default settings of a decision tree on large datasets, setting this to true may slow down
the training process. When using either a smaller dataset or a restricted depth, this may
speed up the training.

Attributes feature_importances_ : array of shape = [n_features]

The feature importances. The higher, the more important the feature. The importance
of a feature is computed as the (normalized) total reduction of the criterion brought by
that feature. It is also known as the Gini importance [R83].

max_features_ : int,

The inferred value of max_features.

n_features_ : int

The number of features when fit is performed.

n_outputs_ : int

The number of outputs when fit is performed.

tree_ : Tree object

The underlying Tree object.

See also:

DecisionTreeClassifier

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth,
min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on
some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by
setting those parameter values.

The features are always randomly permuted at each split. Therefore, the best found split may vary, even with
the same training data and max_features=n_features, if the improvement of the criterion is identical for
several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting,
random_state has to be fixed.

References

[R80], [R81], [R82], [R83]
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Examples

>>> from sklearn.datasets import load_boston
>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.tree import DecisionTreeRegressor
>>> boston = load_boston()
>>> regressor = DecisionTreeRegressor(random_state=0)
>>> cross_val_score(regressor, boston.data, boston.target, cv=10)
...
...
array([ 0.61..., 0.57..., -0.34..., 0.41..., 0.75...,

0.07..., 0.29..., 0.33..., -1.42..., -1.77...])

Methods

apply(X[, check_input]) Returns the index of the leaf that each sample is pre-
dicted as.

decision_path(X[, check_input]) Return the decision path in the tree
fit(X, y[, sample_weight, check_input, . . . ]) Build a decision tree regressor from the training set (X,

y).
get_params([deep]) Get parameters for this estimator.
predict(X[, check_input]) Predict class or regression value for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(criterion=’mse’, splitter=’best’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,
random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, presort=False)

apply(X, check_input=True)
Returns the index of the leaf that each sample is predicted as.

New in version 0.17.

Parameters X : array_like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

Returns X_leaves : array_like, shape = [n_samples,]

For each datapoint x in X, return the index of the leaf x ends up in. Leaves are numbered
within [0; self.tree_.node_count), possibly with gaps in the numbering.

decision_path(X, check_input=True)
Return the decision path in the tree

New in version 0.18.

Parameters X : array_like or sparse matrix, shape = [n_samples, n_features]
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The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

Returns indicator : sparse csr array, shape = [n_samples, n_nodes]

Return a node indicator matrix where non zero elements indicates that the samples goes
through the nodes.

feature_importances_
Return the feature importances.

The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that
feature. It is also known as the Gini importance.

Returns feature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None, check_input=True, X_idx_sorted=None)
Build a decision tree regressor from the training set (X, y).

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The training input samples. Internally, it will be converted to dtype=np.float32
and if a sparse matrix is provided to a sparse csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (real numbers). Use dtype=np.float64 and order='C' for
maximum efficiency.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

X_idx_sorted : array-like, shape = [n_samples, n_features], optional

The indexes of the sorted training input samples. If many tree are grown on the same
dataset, this allows the ordering to be cached between trees. If None, the data will be
sorted here. Don’t use this parameter unless you know what to do.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.
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predict(X, check_input=True)
Predict class or regression value for X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the predicted value based on X is returned.

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

Returns y : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted classes, or the predict values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

Examples using sklearn.tree.DecisionTreeRegressor

• Decision Tree Regression with AdaBoost

• Single estimator versus bagging: bias-variance decomposition

• Decision Tree Regression

• Multi-output Decision Tree Regression
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5.34.3 sklearn.tree.ExtraTreeClassifier

class sklearn.tree.ExtraTreeClassifier(criterion=’gini’, splitter=’random’,
max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=’auto’, random_state=None,
max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, class_weight=None)

An extremely randomized tree classifier.

Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate
the samples of a node into two groups, random splits are drawn for each of the max_features randomly selected
features and the best split among those is chosen. When max_features is set 1, this amounts to building a totally
random decision tree.

Warning: Extra-trees should only be used within ensemble methods.

Read more in the User Guide.

Parameters criterion : string, optional (default=”gini”)

The function to measure the quality of a split. Supported criteria are “gini” for the Gini
impurity and “entropy” for the information gain.

splitter : string, optional (default=”best”)

The strategy used to choose the split at each node. Supported strategies are “best” to
choose the best split and “random” to choose the best random split.

max_depth : int or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves are
pure or until all leaves contain less than min_samples_split samples.

min_samples_split : int, float, optional (default=2)

The minimum number of samples required to split an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a percentage and ceil(min_samples_split *
n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for percentages.

min_samples_leaf : int, float, optional (default=1)

The minimum number of samples required to be at a leaf node:

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a percentage and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for percentages.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the sum total of weights (of all the input samples)
required to be at a leaf node. Samples have equal weight when sample_weight is not
provided.

max_features : int, float, string or None, optional (default=None)

The number of features to consider when looking for the best split:
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• If int, then consider max_features features at each split.

• If float, then max_features is a percentage and int(max_features * n_features) features
are considered at each split.

• If “auto”, then max_features=sqrt(n_features).

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

max_leaf_nodes : int or None, optional (default=None)

Grow a tree with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes.

min_impurity_decrease : float, optional (default=0.)

A node will be split if this split induces a decrease of the impurity greater than or equal
to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current
node, N_t_L is the number of samples in the left child, and N_t_R is the number of
samples in the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is
passed.

New in version 0.19.

min_impurity_split : float,

Threshold for early stopping in tree growth. A node will split if its impurity is above
the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in fa-
vor of min_impurity_decrease in 0.19 and will be removed in 0.21. Use
min_impurity_decrease instead.

class_weight : dict, list of dicts, “balanced” or None, default=None

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one. For multi-output problems, a list of
dicts can be provided in the same order as the columns of y.

Note that for multioutput (including multilabel) weights should be defined for each class
of every column in its own dict. For example, for four-class multilabel classification
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weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of
[{1:1}, {2:5}, {3:1}, {4:1}].

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes

* np.bincount(y))

For multi-output, the weights of each column of y will be multiplied.

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

See also:

ExtraTreeRegressor, ExtraTreesClassifier, ExtraTreesRegressor

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth,
min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on
some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by
setting those parameter values.

References

[R256]

Methods

apply(X[, check_input]) Returns the index of the leaf that each sample is pre-
dicted as.

decision_path(X[, check_input]) Return the decision path in the tree
fit(X, y[, sample_weight, check_input, . . . ]) Build a decision tree classifier from the training set (X,

y).
get_params([deep]) Get parameters for this estimator.
predict(X[, check_input]) Predict class or regression value for X.
predict_log_proba(X) Predict class log-probabilities of the input samples X.
predict_proba(X[, check_input]) Predict class probabilities of the input samples X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(criterion=’gini’, splitter=’random’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, class_weight=None)

apply(X, check_input=True)
Returns the index of the leaf that each sample is predicted as.

New in version 0.17.

Parameters X : array_like or sparse matrix, shape = [n_samples, n_features]
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The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

Returns X_leaves : array_like, shape = [n_samples,]

For each datapoint x in X, return the index of the leaf x ends up in. Leaves are numbered
within [0; self.tree_.node_count), possibly with gaps in the numbering.

decision_path(X, check_input=True)
Return the decision path in the tree

New in version 0.18.

Parameters X : array_like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

Returns indicator : sparse csr array, shape = [n_samples, n_nodes]

Return a node indicator matrix where non zero elements indicates that the samples goes
through the nodes.

feature_importances_
Return the feature importances.

The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that
feature. It is also known as the Gini importance.

Returns feature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None, check_input=True, X_idx_sorted=None)
Build a decision tree classifier from the training set (X, y).

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]

The training input samples. Internally, it will be converted to dtype=np.float32
and if a sparse matrix is provided to a sparse csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (class labels) as integers or strings.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node. Splits are also ignored if they would result in any single class carrying a
negative weight in either child node.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

X_idx_sorted : array-like, shape = [n_samples, n_features], optional
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The indexes of the sorted training input samples. If many tree are grown on the same
dataset, this allows the ordering to be cached between trees. If None, the data will be
sorted here. Don’t use this parameter unless you know what to do.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X, check_input=True)
Predict class or regression value for X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the predicted value based on X is returned.

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

Returns y : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted classes, or the predict values.

predict_log_proba(X)
Predict class log-probabilities of the input samples X.

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

Returns p : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class log-probabilities of the input samples. The order
of the classes corresponds to that in the attribute classes_.

predict_proba(X, check_input=True)
Predict class probabilities of the input samples X.

The predicted class probability is the fraction of samples of the same class in a leaf.

check_input [boolean, (default=True)] Allow to bypass several input checking. Don’t use this parameter
unless you know what you do.

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.
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check_input : bool

Run check_array on X.

Returns p : array of shape = [n_samples, n_classes], or a list of n_outputs

such arrays if n_outputs > 1. The class probabilities of the input samples. The order of
the classes corresponds to that in the attribute classes_.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

5.34.4 sklearn.tree.ExtraTreeRegressor

class sklearn.tree.ExtraTreeRegressor(criterion=’mse’, splitter=’random’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=’auto’,
random_state=None, min_impurity_decrease=0.0,
min_impurity_split=None, max_leaf_nodes=None)

An extremely randomized tree regressor.

Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate
the samples of a node into two groups, random splits are drawn for each of the max_features randomly selected
features and the best split among those is chosen. When max_features is set 1, this amounts to building a totally
random decision tree.

Warning: Extra-trees should only be used within ensemble methods.

Read more in the User Guide.

Parameters criterion : string, optional (default=”mse”)

The function to measure the quality of a split. Supported criteria are “mse” for the
mean squared error, which is equal to variance reduction as feature selection criterion,
and “mae” for the mean absolute error.
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New in version 0.18: Mean Absolute Error (MAE) criterion.

splitter : string, optional (default=”best”)

The strategy used to choose the split at each node. Supported strategies are “best” to
choose the best split and “random” to choose the best random split.

max_depth : int or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves are
pure or until all leaves contain less than min_samples_split samples.

min_samples_split : int, float, optional (default=2)

The minimum number of samples required to split an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a percentage and ceil(min_samples_split *
n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for percentages.

min_samples_leaf : int, float, optional (default=1)

The minimum number of samples required to be at a leaf node:

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a percentage and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for percentages.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the sum total of weights (of all the input samples)
required to be at a leaf node. Samples have equal weight when sample_weight is not
provided.

max_features : int, float, string or None, optional (default=None)

The number of features to consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a percentage and int(max_features * n_features) features
are considered at each split.

• If “auto”, then max_features=n_features.

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node
samples is found, even if it requires to effectively inspect more than max_features
features.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

min_impurity_decrease : float, optional (default=0.)
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A node will be split if this split induces a decrease of the impurity greater than or equal
to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current
node, N_t_L is the number of samples in the left child, and N_t_R is the number of
samples in the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is
passed.

New in version 0.19.

min_impurity_split : float,

Threshold for early stopping in tree growth. A node will split if its impurity is above
the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in fa-
vor of min_impurity_decrease in 0.19 and will be removed in 0.21. Use
min_impurity_decrease instead.

max_leaf_nodes : int or None, optional (default=None)

Grow a tree with max_leaf_nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes.

See also:

ExtraTreeClassifier, ExtraTreesClassifier, ExtraTreesRegressor

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth,
min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on
some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by
setting those parameter values.

References

[R257]

Methods

apply(X[, check_input]) Returns the index of the leaf that each sample is pre-
dicted as.

decision_path(X[, check_input]) Return the decision path in the tree
fit(X, y[, sample_weight, check_input, . . . ]) Build a decision tree regressor from the training set (X,

y).
get_params([deep]) Get parameters for this estimator.

Continued on next page
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Table 5.268 – continued from previous page
predict(X[, check_input]) Predict class or regression value for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-

diction.
set_params(**params) Set the parameters of this estimator.

__init__(criterion=’mse’, splitter=’random’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
random_state=None, min_impurity_decrease=0.0, min_impurity_split=None,
max_leaf_nodes=None)

apply(X, check_input=True)
Returns the index of the leaf that each sample is predicted as.

New in version 0.17.

Parameters X : array_like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

Returns X_leaves : array_like, shape = [n_samples,]

For each datapoint x in X, return the index of the leaf x ends up in. Leaves are numbered
within [0; self.tree_.node_count), possibly with gaps in the numbering.

decision_path(X, check_input=True)
Return the decision path in the tree

New in version 0.18.

Parameters X : array_like or sparse matrix, shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

Returns indicator : sparse csr array, shape = [n_samples, n_nodes]

Return a node indicator matrix where non zero elements indicates that the samples goes
through the nodes.

feature_importances_
Return the feature importances.

The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that
feature. It is also known as the Gini importance.

Returns feature_importances_ : array, shape = [n_features]

fit(X, y, sample_weight=None, check_input=True, X_idx_sorted=None)
Build a decision tree regressor from the training set (X, y).

Parameters X : array-like or sparse matrix, shape = [n_samples, n_features]
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The training input samples. Internally, it will be converted to dtype=np.float32
and if a sparse matrix is provided to a sparse csc_matrix.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

The target values (real numbers). Use dtype=np.float64 and order='C' for
maximum efficiency.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create
child nodes with net zero or negative weight are ignored while searching for a split in
each node.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

X_idx_sorted : array-like, shape = [n_samples, n_features], optional

The indexes of the sorted training input samples. If many tree are grown on the same
dataset, this allows the ordering to be cached between trees. If None, the data will be
sorted here. Don’t use this parameter unless you know what to do.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X, check_input=True)
Predict class or regression value for X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the predicted value based on X is returned.

Parameters X : array-like or sparse matrix of shape = [n_samples, n_features]

The input samples. Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csr_matrix.

check_input : boolean, (default=True)

Allow to bypass several input checking. Don’t use this parameter unless you know what
you do.

Returns y : array of shape = [n_samples] or [n_samples, n_outputs]

The predicted classes, or the predict values.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
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is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

tree.export_graphviz(decision_tree[, . . . ]) Export a decision tree in DOT format.

5.34.5 sklearn.tree.export_graphviz

sklearn.tree.export_graphviz(decision_tree, out_file=”tree.dot”, max_depth=None, fea-
ture_names=None, class_names=None, label=’all’, filled=False,
leaves_parallel=False, impurity=True, node_ids=False,
proportion=False, rotate=False, rounded=False, spe-
cial_characters=False, precision=3)

Export a decision tree in DOT format.

This function generates a GraphViz representation of the decision tree, which is then written into out_file. Once
exported, graphical renderings can be generated using, for example:

$ dot -Tps tree.dot -o tree.ps (PostScript format)
$ dot -Tpng tree.dot -o tree.png (PNG format)

The sample counts that are shown are weighted with any sample_weights that might be present.

Read more in the User Guide.

Parameters decision_tree : decision tree classifier

The decision tree to be exported to GraphViz.

out_file : file object or string, optional (default=’tree.dot’)

Handle or name of the output file. If None, the result is returned as a string. This will
the default from version 0.20.

max_depth : int, optional (default=None)

The maximum depth of the representation. If None, the tree is fully generated.

feature_names : list of strings, optional (default=None)
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Names of each of the features.

class_names : list of strings, bool or None, optional (default=None)

Names of each of the target classes in ascending numerical order. Only relevant for clas-
sification and not supported for multi-output. If True, shows a symbolic representation
of the class name.

label : {‘all’, ‘root’, ‘none’}, optional (default=’all’)

Whether to show informative labels for impurity, etc. Options include ‘all’ to show at
every node, ‘root’ to show only at the top root node, or ‘none’ to not show at any node.

filled : bool, optional (default=False)

When set to True, paint nodes to indicate majority class for classification, extremity of
values for regression, or purity of node for multi-output.

leaves_parallel : bool, optional (default=False)

When set to True, draw all leaf nodes at the bottom of the tree.

impurity : bool, optional (default=True)

When set to True, show the impurity at each node.

node_ids : bool, optional (default=False)

When set to True, show the ID number on each node.

proportion : bool, optional (default=False)

When set to True, change the display of ‘values’ and/or ‘samples’ to be proportions
and percentages respectively.

rotate : bool, optional (default=False)

When set to True, orient tree left to right rather than top-down.

rounded : bool, optional (default=False)

When set to True, draw node boxes with rounded corners and use Helvetica fonts
instead of Times-Roman.

special_characters : bool, optional (default=False)

When set to False, ignore special characters for PostScript compatibility.

precision : int, optional (default=3)

Number of digits of precision for floating point in the values of impurity, threshold and
value attributes of each node.

Returns dot_data : string

String representation of the input tree in GraphViz dot format. Only returned if
out_file is None.

New in version 0.18.

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
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>>> clf = tree.DecisionTreeClassifier()
>>> iris = load_iris()

>>> clf = clf.fit(iris.data, iris.target)
>>> tree.export_graphviz(clf,
... out_file='tree.dot')

5.35 sklearn.utils: Utilities

The sklearn.utils module includes various utilities.

Developer guide: See the Utilities for Developers page for further details.

utils.as_float_array(X[, copy, force_all_finite]) Converts an array-like to an array of floats.
utils.assert_all_finite(X) Throw a ValueError if X contains NaN or infinity.
utils.check_X_y(X, y[, accept_sparse, . . . ]) Input validation for standard estimators.
utils.check_array(array[, accept_sparse, . . . ]) Input validation on an array, list, sparse matrix or similar.
utils.check_consistent_length(*arrays) Check that all arrays have consistent first dimensions.
utils.check_random_state(seed) Turn seed into a np.random.RandomState instance
utils.class_weight.
compute_class_weight(. . . )

Estimate class weights for unbalanced datasets.

utils.class_weight.
compute_sample_weight(. . . )

Estimate sample weights by class for unbalanced datasets.

utils.estimator_checks.
check_estimator(Estimator)

Check if estimator adheres to scikit-learn conventions.

utils.extmath.safe_sparse_dot(a, b[, . . . ]) Dot product that handle the sparse matrix case correctly
utils.indexable(*iterables) Make arrays indexable for cross-validation.
utils.resample(*arrays, **options) Resample arrays or sparse matrices in a consistent way
utils.safe_indexing(X, indices) Return items or rows from X using indices.
utils.shuffle(*arrays, **options) Shuffle arrays or sparse matrices in a consistent way
utils.sparsefuncs.
incr_mean_variance_axis(X, . . . )

Compute incremental mean and variance along an axix on
a CSR or CSC matrix.

utils.sparsefuncs.
inplace_column_scale(X, scale)

Inplace column scaling of a CSC/CSR matrix.

utils.sparsefuncs.inplace_row_scale(X,
scale)

Inplace row scaling of a CSR or CSC matrix.

utils.sparsefuncs.inplace_swap_row(X, m,
n)

Swaps two rows of a CSC/CSR matrix in-place.

utils.sparsefuncs.
inplace_swap_column(X, m, n)

Swaps two columns of a CSC/CSR matrix in-place.

utils.sparsefuncs.mean_variance_axis(X,
axis)

Compute mean and variance along an axix on a CSR or
CSC matrix

utils.validation.check_is_fitted(estimator,
. . . )

Perform is_fitted validation for estimator.

utils.validation.check_memory(memory) Check that memory is joblib.Memory-like.
utils.validation.check_symmetric(array[,
. . . ])

Make sure that array is 2D, square and symmetric.

utils.validation.column_or_1d(y[, warn]) Ravel column or 1d numpy array, else raises an error
utils.validation.has_fit_parameter(. . . ) Checks whether the estimator’s fit method supports the

given parameter.
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5.35.1 sklearn.utils.as_float_array

sklearn.utils.as_float_array(X, copy=True, force_all_finite=True)
Converts an array-like to an array of floats.

The new dtype will be np.float32 or np.float64, depending on the original type. The function can create a copy
or modify the argument depending on the argument copy.

Parameters X : {array-like, sparse matrix}

copy : bool, optional

If True, a copy of X will be created. If False, a copy may still be returned if X’s dtype
is not a floating point type.

force_all_finite : boolean (default=True)

Whether to raise an error on np.inf and np.nan in X.

Returns XT : {array, sparse matrix}

An array of type np.float

5.35.2 sklearn.utils.assert_all_finite

sklearn.utils.assert_all_finite(X)
Throw a ValueError if X contains NaN or infinity.

Parameters X : array or sparse matrix

5.35.3 sklearn.utils.check_X_y

sklearn.utils.check_X_y(X, y, accept_sparse=False, dtype=’numeric’, order=None,
copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False,
multi_output=False, ensure_min_samples=1, ensure_min_features=1,
y_numeric=False, warn_on_dtype=False, estimator=None)

Input validation for standard estimators.

Checks X and y for consistent length, enforces X 2d and y 1d. Standard input checks are only applied to y, such
as checking that y does not have np.nan or np.inf targets. For multi-label y, set multi_output=True to allow 2d
and sparse y. If the dtype of X is object, attempt converting to float, raising on failure.

Parameters X : nd-array, list or sparse matrix

Input data.

y : nd-array, list or sparse matrix

Labels.

accept_sparse : string, boolean or list of string (default=False)

String[s] representing allowed sparse matrix formats, such as ‘csc’, ‘csr’, etc. If the
input is sparse but not in the allowed format, it will be converted to the first listed
format. True allows the input to be any format. False means that a sparse matrix input
will raise an error.

Deprecated since version 0.19: Passing ‘None’ to parameter accept_sparse
in methods is deprecated in version 0.19 “and will be removed in 0.21. Use
accept_sparse=False instead.
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dtype : string, type, list of types or None (default=”numeric”)

Data type of result. If None, the dtype of the input is preserved. If “numeric”, dtype is
preserved unless array.dtype is object. If dtype is a list of types, conversion on the first
type is only performed if the dtype of the input is not in the list.

order : ‘F’, ‘C’ or None (default=None)

Whether an array will be forced to be fortran or c-style.

copy : boolean (default=False)

Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a
conversion.

force_all_finite : boolean (default=True)

Whether to raise an error on np.inf and np.nan in X. This parameter does not influence
whether y can have np.inf or np.nan values.

ensure_2d : boolean (default=True)

Whether to make X at least 2d.

allow_nd : boolean (default=False)

Whether to allow X.ndim > 2.

multi_output : boolean (default=False)

Whether to allow 2-d y (array or sparse matrix). If false, y will be validated as a vector.
y cannot have np.nan or np.inf values if multi_output=True.

ensure_min_samples : int (default=1)

Make sure that X has a minimum number of samples in its first axis (rows for a 2D
array).

ensure_min_features : int (default=1)

Make sure that the 2D array has some minimum number of features (columns). The
default value of 1 rejects empty datasets. This check is only enforced when X has
effectively 2 dimensions or is originally 1D and ensure_2d is True. Setting to 0
disables this check.

y_numeric : boolean (default=False)

Whether to ensure that y has a numeric type. If dtype of y is object, it is converted to
float64. Should only be used for regression algorithms.

warn_on_dtype : boolean (default=False)

Raise DataConversionWarning if the dtype of the input data structure does not match
the requested dtype, causing a memory copy.

estimator : str or estimator instance (default=None)

If passed, include the name of the estimator in warning messages.

Returns X_converted : object

The converted and validated X.

y_converted : object

The converted and validated y.
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5.35.4 sklearn.utils.check_array

sklearn.utils.check_array(array, accept_sparse=False, dtype=’numeric’, order=None,
copy=False, force_all_finite=True, ensure_2d=True, al-
low_nd=False, ensure_min_samples=1, ensure_min_features=1,
warn_on_dtype=False, estimator=None)

Input validation on an array, list, sparse matrix or similar.

By default, the input is converted to an at least 2D numpy array. If the dtype of the array is object, attempt
converting to float, raising on failure.

Parameters array : object

Input object to check / convert.

accept_sparse : string, boolean or list/tuple of strings (default=False)

String[s] representing allowed sparse matrix formats, such as ‘csc’, ‘csr’, etc. If the
input is sparse but not in the allowed format, it will be converted to the first listed
format. True allows the input to be any format. False means that a sparse matrix input
will raise an error.

Deprecated since version 0.19: Passing ‘None’ to parameter accept_sparse
in methods is deprecated in version 0.19 “and will be removed in 0.21. Use
accept_sparse=False instead.

dtype : string, type, list of types or None (default=”numeric”)

Data type of result. If None, the dtype of the input is preserved. If “numeric”, dtype is
preserved unless array.dtype is object. If dtype is a list of types, conversion on the first
type is only performed if the dtype of the input is not in the list.

order : ‘F’, ‘C’ or None (default=None)

Whether an array will be forced to be fortran or c-style. When order is None (default),
then if copy=False, nothing is ensured about the memory layout of the output array; oth-
erwise (copy=True) the memory layout of the returned array is kept as close as possible
to the original array.

copy : boolean (default=False)

Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a
conversion.

force_all_finite : boolean (default=True)

Whether to raise an error on np.inf and np.nan in X.

ensure_2d : boolean (default=True)

Whether to raise a value error if X is not 2d.

allow_nd : boolean (default=False)

Whether to allow X.ndim > 2.

ensure_min_samples : int (default=1)

Make sure that the array has a minimum number of samples in its first axis (rows for a
2D array). Setting to 0 disables this check.

ensure_min_features : int (default=1)

Make sure that the 2D array has some minimum number of features (columns). The
default value of 1 rejects empty datasets. This check is only enforced when the input
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data has effectively 2 dimensions or is originally 1D and ensure_2d is True. Setting
to 0 disables this check.

warn_on_dtype : boolean (default=False)

Raise DataConversionWarning if the dtype of the input data structure does not match
the requested dtype, causing a memory copy.

estimator : str or estimator instance (default=None)

If passed, include the name of the estimator in warning messages.

Returns X_converted : object

The converted and validated X.

5.35.5 sklearn.utils.check_consistent_length

sklearn.utils.check_consistent_length(*arrays)
Check that all arrays have consistent first dimensions.

Checks whether all objects in arrays have the same shape or length.

Parameters *arrays : list or tuple of input objects.

Objects that will be checked for consistent length.

5.35.6 sklearn.utils.check_random_state

sklearn.utils.check_random_state(seed)
Turn seed into a np.random.RandomState instance

Parameters seed : None | int | instance of RandomState

If seed is None, return the RandomState singleton used by np.random. If seed is an int,
return a new RandomState instance seeded with seed. If seed is already a RandomState
instance, return it. Otherwise raise ValueError.

Examples using sklearn.utils.check_random_state

• Isotonic Regression

• Face completion with a multi-output estimators

• Empirical evaluation of the impact of k-means initialization

• MNIST classfification using multinomial logistic + L1

• Manifold Learning methods on a severed sphere

• Scaling the regularization parameter for SVCs

5.35.7 sklearn.utils.class_weight.compute_class_weight

sklearn.utils.class_weight.compute_class_weight(class_weight, classes, y)
Estimate class weights for unbalanced datasets.

Parameters class_weight : dict, ‘balanced’ or None

2010 Chapter 5. API Reference



scikit-learn user guide, Release 0.19.1

If ‘balanced’, class weights will be given by n_samples / (n_classes * np.
bincount(y)). If a dictionary is given, keys are classes and values are correspond-
ing class weights. If None is given, the class weights will be uniform.

classes : ndarray

Array of the classes occurring in the data, as given by np.unique(y_org) with
y_org the original class labels.

y : array-like, shape (n_samples,)

Array of original class labels per sample;

Returns class_weight_vect : ndarray, shape (n_classes,)

Array with class_weight_vect[i] the weight for i-th class

References

The “balanced” heuristic is inspired by Logistic Regression in Rare Events Data, King, Zen, 2001.

5.35.8 sklearn.utils.class_weight.compute_sample_weight

sklearn.utils.class_weight.compute_sample_weight(class_weight, y, indices=None)
Estimate sample weights by class for unbalanced datasets.

Parameters class_weight : dict, list of dicts, “balanced”, or None, optional

Weights associated with classes in the form {class_label: weight}. If not
given, all classes are supposed to have weight one. For multi-output problems, a list of
dicts can be provided in the same order as the columns of y.

Note that for multioutput (including multilabel) weights should be defined for each class
of every column in its own dict. For example, for four-class multilabel classification
weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of
[{1:1}, {2:5}, {3:1}, {4:1}].

The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data: n_samples / (n_classes *
np.bincount(y)).

For multi-output, the weights of each column of y will be multiplied.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

Array of original class labels per sample.

indices : array-like, shape (n_subsample,), or None

Array of indices to be used in a subsample. Can be of length less than n_samples in the
case of a subsample, or equal to n_samples in the case of a bootstrap subsample with
repeated indices. If None, the sample weight will be calculated over the full sample.
Only “balanced” is supported for class_weight if this is provided.

Returns sample_weight_vect : ndarray, shape (n_samples,)

Array with sample weights as applied to the original y
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5.35.9 sklearn.utils.estimator_checks.check_estimator

sklearn.utils.estimator_checks.check_estimator(Estimator)
Check if estimator adheres to scikit-learn conventions.

This estimator will run an extensive test-suite for input validation, shapes, etc. Additional tests for classifiers,
regressors, clustering or transformers will be run if the Estimator class inherits from the corresponding mixin
from sklearn.base.

This test can be applied to classes or instances. Classes currently have some additional tests that related to
construction, while passing instances allows the testing of multiple options.

Parameters estimator : estimator object or class

Estimator to check. Estimator is a class object or instance.

5.35.10 sklearn.utils.extmath.safe_sparse_dot

sklearn.utils.extmath.safe_sparse_dot(a, b, dense_output=False)
Dot product that handle the sparse matrix case correctly

Uses BLAS GEMM as replacement for numpy.dot where possible to avoid unnecessary copies.

Parameters a : array or sparse matrix

b : array or sparse matrix

dense_output : boolean, default False

When False, either a or b being sparse will yield sparse output. When True, output will
always be an array.

Returns dot_product : array or sparse matrix

sparse if a or b is sparse and dense_output=False.

5.35.11 sklearn.utils.indexable

sklearn.utils.indexable(*iterables)
Make arrays indexable for cross-validation.

Checks consistent length, passes through None, and ensures that everything can be indexed by converting sparse
matrices to csr and converting non-interable objects to arrays.

Parameters *iterables : lists, dataframes, arrays, sparse matrices

List of objects to ensure sliceability.

5.35.12 sklearn.utils.resample

sklearn.utils.resample(*arrays, **options)
Resample arrays or sparse matrices in a consistent way

The default strategy implements one step of the bootstrapping procedure.

Parameters *arrays : sequence of indexable data-structures

Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with
consistent first dimension.
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replace : boolean, True by default

Implements resampling with replacement. If False, this will implement (sliced) random
permutations.

n_samples : int, None by default

Number of samples to generate. If left to None this is automatically set to the first
dimension of the arrays. If replace is False it should not be larger than the length of
arrays.

random_state : int, RandomState instance or None, optional (default=None)

The seed of the pseudo random number generator to use when shuffling the data. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns resampled_arrays : sequence of indexable data-structures

Sequence of resampled views of the collections. The original arrays are not impacted.

See also:

sklearn.utils.shuffle

Examples

It is possible to mix sparse and dense arrays in the same run:

>>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
>>> y = np.array([0, 1, 2])

>>> from scipy.sparse import coo_matrix
>>> X_sparse = coo_matrix(X)

>>> from sklearn.utils import resample
>>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0)
>>> X
array([[ 1., 0.],

[ 2., 1.],
[ 1., 0.]])

>>> X_sparse
<3x2 sparse matrix of type '<... 'numpy.float64'>'

with 4 stored elements in Compressed Sparse Row format>

>>> X_sparse.toarray()
array([[ 1., 0.],

[ 2., 1.],
[ 1., 0.]])

>>> y
array([0, 1, 0])

>>> resample(y, n_samples=2, random_state=0)
array([0, 1])
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5.35.13 sklearn.utils.safe_indexing

sklearn.utils.safe_indexing(X, indices)
Return items or rows from X using indices.

Allows simple indexing of lists or arrays.

Parameters X : array-like, sparse-matrix, list, pandas.DataFrame, pandas.Series.

Data from which to sample rows or items.

indices : array-like of int

Indices according to which X will be subsampled.

Returns subset :

Subset of X on first axis

Notes

CSR, CSC, and LIL sparse matrices are supported. COO sparse matrices are not supported.

5.35.14 sklearn.utils.shuffle

sklearn.utils.shuffle(*arrays, **options)
Shuffle arrays or sparse matrices in a consistent way

This is a convenience alias to resample(*arrays, replace=False) to do random permutations of the
collections.

Parameters *arrays : sequence of indexable data-structures

Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with
consistent first dimension.

random_state : int, RandomState instance or None, optional (default=None)

The seed of the pseudo random number generator to use when shuffling the data. If
int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

n_samples : int, None by default

Number of samples to generate. If left to None this is automatically set to the first
dimension of the arrays.

Returns shuffled_arrays : sequence of indexable data-structures

Sequence of shuffled views of the collections. The original arrays are not impacted.

See also:

sklearn.utils.resample

Examples

It is possible to mix sparse and dense arrays in the same run:
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>>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
>>> y = np.array([0, 1, 2])

>>> from scipy.sparse import coo_matrix
>>> X_sparse = coo_matrix(X)

>>> from sklearn.utils import shuffle
>>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0)
>>> X
array([[ 0., 0.],

[ 2., 1.],
[ 1., 0.]])

>>> X_sparse
<3x2 sparse matrix of type '<... 'numpy.float64'>'

with 3 stored elements in Compressed Sparse Row format>

>>> X_sparse.toarray()
array([[ 0., 0.],

[ 2., 1.],
[ 1., 0.]])

>>> y
array([2, 1, 0])

>>> shuffle(y, n_samples=2, random_state=0)
array([0, 1])

Examples using sklearn.utils.shuffle

• Model Complexity Influence

• Prediction Latency

• Color Quantization using K-Means

• Empirical evaluation of the impact of k-means initialization

• Gradient Boosting regression

5.35.15 sklearn.utils.sparsefuncs.incr_mean_variance_axis

sklearn.utils.sparsefuncs.incr_mean_variance_axis(X, axis, last_mean, last_var, last_n)
Compute incremental mean and variance along an axix on a CSR or CSC matrix.

last_mean, last_var are the statistics computed at the last step by this function. Both must be initilized to 0-arrays
of the proper size, i.e. the number of features in X. last_n is the number of samples encountered until now.

Parameters X : CSR or CSC sparse matrix, shape (n_samples, n_features)

Input data.

axis : int (either 0 or 1)

Axis along which the axis should be computed.

last_mean : float array with shape (n_features,)

Array of feature-wise means to update with the new data X.
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last_var : float array with shape (n_features,)

Array of feature-wise var to update with the new data X.

last_n : int

Number of samples seen so far, excluded X.

Returns means : float array with shape (n_features,)

Updated feature-wise means.

variances : float array with shape (n_features,)

Updated feature-wise variances.

n : int

Updated number of seen samples.

5.35.16 sklearn.utils.sparsefuncs.inplace_column_scale

sklearn.utils.sparsefuncs.inplace_column_scale(X, scale)
Inplace column scaling of a CSC/CSR matrix.

Scale each feature of the data matrix by multiplying with specific scale provided by the caller assuming a
(n_samples, n_features) shape.

Parameters X : CSC or CSR matrix with shape (n_samples, n_features)

Matrix to normalize using the variance of the features.

scale : float array with shape (n_features,)

Array of precomputed feature-wise values to use for scaling.

5.35.17 sklearn.utils.sparsefuncs.inplace_row_scale

sklearn.utils.sparsefuncs.inplace_row_scale(X, scale)
Inplace row scaling of a CSR or CSC matrix.

Scale each row of the data matrix by multiplying with specific scale provided by the caller assuming a
(n_samples, n_features) shape.

Parameters X : CSR or CSC sparse matrix, shape (n_samples, n_features)

Matrix to be scaled.

scale : float array with shape (n_features,)

Array of precomputed sample-wise values to use for scaling.

5.35.18 sklearn.utils.sparsefuncs.inplace_swap_row

sklearn.utils.sparsefuncs.inplace_swap_row(X, m, n)
Swaps two rows of a CSC/CSR matrix in-place.

Parameters X : CSR or CSC sparse matrix, shape=(n_samples, n_features)

Matrix whose two rows are to be swapped.

m : int
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Index of the row of X to be swapped.

n : int

Index of the row of X to be swapped.

5.35.19 sklearn.utils.sparsefuncs.inplace_swap_column

sklearn.utils.sparsefuncs.inplace_swap_column(X, m, n)
Swaps two columns of a CSC/CSR matrix in-place.

Parameters X : CSR or CSC sparse matrix, shape=(n_samples, n_features)

Matrix whose two columns are to be swapped.

m : int

Index of the column of X to be swapped.

n : int

Index of the column of X to be swapped.

5.35.20 sklearn.utils.sparsefuncs.mean_variance_axis

sklearn.utils.sparsefuncs.mean_variance_axis(X, axis)
Compute mean and variance along an axix on a CSR or CSC matrix

Parameters X : CSR or CSC sparse matrix, shape (n_samples, n_features)

Input data.

axis : int (either 0 or 1)

Axis along which the axis should be computed.

Returns means : float array with shape (n_features,)

Feature-wise means

variances : float array with shape (n_features,)

Feature-wise variances

5.35.21 sklearn.utils.validation.check_is_fitted

sklearn.utils.validation.check_is_fitted(estimator, attributes, msg=None,
all_or_any=<built-in function all>)

Perform is_fitted validation for estimator.

Checks if the estimator is fitted by verifying the presence of “all_or_any” of the passed attributes and raises a
NotFittedError with the given message.

Parameters estimator : estimator instance.

estimator instance for which the check is performed.

attributes : attribute name(s) given as string or a list/tuple of strings

Eg.: ["coef_", "estimator_", ...], "coef_"

msg : string
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The default error message is, “This %(name)s instance is not fitted yet. Call ‘fit’ with
appropriate arguments before using this method.”

For custom messages if “%(name)s” is present in the message string, it is substituted
for the estimator name.

Eg. : “Estimator, %(name)s, must be fitted before sparsifying”.

all_or_any : callable, {all, any}, default all

Specify whether all or any of the given attributes must exist.

Returns None :

Raises NotFittedError :

If the attributes are not found.

5.35.22 sklearn.utils.validation.check_memory

sklearn.utils.validation.check_memory(memory)
Check that memory is joblib.Memory-like.

joblib.Memory-like means that memory can be converted into a sklearn.externals.joblib.Memory instance (typ-
ically a str denoting the cachedir) or has the same interface (has a cache method).

Parameters memory : None, str or object with the joblib.Memory interface

Returns memory : object with the joblib.Memory interface

Raises ValueError :

If memory is not joblib.Memory-like.

5.35.23 sklearn.utils.validation.check_symmetric

sklearn.utils.validation.check_symmetric(array, tol=1e-10, raise_warning=True,
raise_exception=False)

Make sure that array is 2D, square and symmetric.

If the array is not symmetric, then a symmetrized version is returned. Optionally, a warning or exception is
raised if the matrix is not symmetric.

Parameters array : nd-array or sparse matrix

Input object to check / convert. Must be two-dimensional and square, otherwise a Val-
ueError will be raised.

tol : float

Absolute tolerance for equivalence of arrays. Default = 1E-10.

raise_warning : boolean (default=True)

If True then raise a warning if conversion is required.

raise_exception : boolean (default=False)

If True then raise an exception if array is not symmetric.

Returns array_sym : ndarray or sparse matrix

Symmetrized version of the input array, i.e. the average of array and array.transpose().
If sparse, then duplicate entries are first summed and zeros are eliminated.
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5.35.24 sklearn.utils.validation.column_or_1d

sklearn.utils.validation.column_or_1d(y, warn=False)
Ravel column or 1d numpy array, else raises an error

Parameters y : array-like

warn : boolean, default False

To control display of warnings.

Returns y : array

5.35.25 sklearn.utils.validation.has_fit_parameter

sklearn.utils.validation.has_fit_parameter(estimator, parameter)
Checks whether the estimator’s fit method supports the given parameter.

Parameters estimator : object

An estimator to inspect.

parameter: str :

The searched parameter.

Returns is_parameter: bool :

Whether the parameter was found to be a named parameter of the estimator’s fit method.

Examples

>>> from sklearn.svm import SVC
>>> has_fit_parameter(SVC(), "sample_weight")
True

5.36 Recently deprecated

5.36.1 To be removed in 0.21

linear_model.RandomizedLasso(*args,
**kwargs)

Randomized Lasso.

linear_model.RandomizedLogisticRegression(. . . )Randomized Logistic Regression
neighbors.LSHForest([n_estimators, radius, . . . ]) Performs approximate nearest neighbor search using LSH

forest.

sklearn.linear_model.RandomizedLasso

Warning: DEPRECATED

class sklearn.linear_model.RandomizedLasso(*args, **kwargs)
Randomized Lasso.
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Randomized Lasso works by subsampling the training data and computing a Lasso estimate where the penalty
of a random subset of coefficients has been scaled. By performing this double randomization several times, the
method assigns high scores to features that are repeatedly selected across randomizations. This is known as
stability selection. In short, features selected more often are considered good features.

Parameters alpha : float, ‘aic’, or ‘bic’, optional

The regularization parameter alpha parameter in the Lasso. Warning: this is not the
alpha parameter in the stability selection article which is scaling.

scaling : float, optional

The s parameter used to randomly scale the penalty of different features. Should be
between 0 and 1.

sample_fraction : float, optional

The fraction of samples to be used in each randomized design. Should be between 0
and 1. If 1, all samples are used.

n_resampling : int, optional

Number of randomized models.

selection_threshold : float, optional

The score above which features should be selected.

fit_intercept : boolean, optional

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional, default True

If True, the regressors X will be normalized before regression. This parameter is ignored
when fit_intercept is set to False. When the regressors are normalized, note that this
makes the hyperparameters learned more robust and almost independent of the number
of samples. The same property is not valid for standardized data. However, if you
wish to standardize, please use preprocessing.StandardScaler before calling fit on an
estimator with normalize=False.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let
us decide. The Gram matrix can also be passed as argument, but it will be used only for
the selection of parameter alpha, if alpha is ‘aic’ or ‘bic’.

max_iter : integer, optional

Maximum number of iterations to perform in the Lars algorithm.

eps : float, optional

The machine-precision regularization in the computation of the Cholesky diagonal fac-
tors. Increase this for very ill-conditioned systems. Unlike the ‘tol’ parameter in some
iterative optimization-based algorithms, this parameter does not control the tolerance of
the optimization.

random_state : int, RandomState instance or None, optional (default=None)
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If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

n_jobs : integer, optional

Number of CPUs to use during the resampling. If ‘-1’, use all the CPUs

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

• None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

• An int, giving the exact number of total jobs that are spawned

• A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

memory : None, str or object with the joblib.Memory interface, optional (default=None)

Used for internal caching. By default, no caching is done. If a string is given, it is the
path to the caching directory.

Attributes scores_ : array, shape = [n_features]

Feature scores between 0 and 1.

all_scores_ : array, shape = [n_features, n_reg_parameter]

Feature scores between 0 and 1 for all values of the regularization parameter. The
reference article suggests scores_ is the max of all_scores_.

See also:

RandomizedLogisticRegression, Lasso, ElasticNet

References

Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B
Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x

Examples

>>> from sklearn.linear_model import RandomizedLasso
>>> randomized_lasso = RandomizedLasso()

Methods

fit(X, y) Fit the model using X, y as training data.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected

Continued on next page
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Table 5.272 – continued from previous page
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(*args, **kwargs)
DEPRECATED: The class RandomizedLasso is deprecated in 0.19 and will be removed in 0.21.

fit(X, y)
Fit the model using X, y as training data.

Parameters X : array-like, shape = [n_samples, n_features]

Training data.

y : array-like, shape = [n_samples]

Target values. Will be cast to X’s dtype if necessary

Returns self : object

Returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters indices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returns support : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.
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inverse_transform(X)
Reverse the transformation operation

Parameters X : array of shape [n_samples, n_selected_features]

The input samples.

Returns X_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Reduce X to the selected features.

Parameters X : array of shape [n_samples, n_features]

The input samples.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

sklearn.linear_model.RandomizedLogisticRegression

Warning: DEPRECATED

class sklearn.linear_model.RandomizedLogisticRegression(*args, **kwargs)
Randomized Logistic Regression

Randomized Logistic Regression works by subsampling the training data and fitting a L1-penalized LogisticRe-
gression model where the penalty of a random subset of coefficients has been scaled. By performing this double
randomization several times, the method assigns high scores to features that are repeatedly selected across ran-
domizations. This is known as stability selection. In short, features selected more often are considered good
features.

Parameters C : float or array-like of shape [n_reg_parameter], optional, default=1

The regularization parameter C in the LogisticRegression. When C is an array, fit will
take each regularization parameter in C one by one for LogisticRegression and store re-
sults for each one in all_scores_, where columns and rows represent corresponding
reg_parameters and features.

scaling : float, optional, default=0.5

The s parameter used to randomly scale the penalty of different features. Should be
between 0 and 1.

sample_fraction : float, optional, default=0.75

The fraction of samples to be used in each randomized design. Should be between 0
and 1. If 1, all samples are used.

5.36. Recently deprecated 2023



scikit-learn user guide, Release 0.19.1

n_resampling : int, optional, default=200

Number of randomized models.

selection_threshold : float, optional, default=0.25

The score above which features should be selected.

tol : float, optional, default=1e-3

tolerance for stopping criteria of LogisticRegression

fit_intercept : boolean, optional, default=True

whether to calculate the intercept for this model. If set to false, no intercept will be used
in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional, default True

If True, the regressors X will be normalized before regression. This parameter is ignored
when fit_intercept is set to False. When the regressors are normalized, note that this
makes the hyperparameters learnt more robust and almost independent of the number
of samples. The same property is not valid for standardized data. However, if you
wish to standardize, please use preprocessing.StandardScaler before calling fit on an
estimator with normalize=False.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

n_jobs : integer, optional

Number of CPUs to use during the resampling. If ‘-1’, use all the CPUs

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

• None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

• An int, giving the exact number of total jobs that are spawned

• A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

memory : None, str or object with the joblib.Memory interface, optional (default=None)

Used for internal caching. By default, no caching is done. If a string is given, it is the
path to the caching directory.

Attributes scores_ : array, shape = [n_features]

Feature scores between 0 and 1.

all_scores_ : array, shape = [n_features, n_reg_parameter]

Feature scores between 0 and 1 for all values of the regularization parameter. The
reference article suggests scores_ is the max of all_scores_.
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See also:

RandomizedLasso, LogisticRegression

References

Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B
Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x

Examples

>>> from sklearn.linear_model import RandomizedLogisticRegression
>>> randomized_logistic = RandomizedLogisticRegression()

Methods

fit(X, y) Fit the model using X, y as training data.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(*args, **kwargs)
DEPRECATED: The class RandomizedLogisticRegression is deprecated in 0.19 and will be removed in
0.21.

fit(X, y)
Fit the model using X, y as training data.

Parameters X : array-like, shape = [n_samples, n_features]

Training data.

y : array-like, shape = [n_samples]

Target values. Will be cast to X’s dtype if necessary

Returns self : object

Returns an instance of self.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.
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Returns X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters indices : boolean (default False)

If True, the return value will be an array of integers, rather than a boolean mask.

Returns support : array

An index that selects the retained features from a feature vector. If indices is False,
this is a boolean array of shape [# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is True, this is an integer array
of shape [# output features] whose values are indices into the input feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters X : array of shape [n_samples, n_selected_features]

The input samples.

Returns X_r : array of shape [n_samples, n_original_features]

X with columns of zeros inserted where features would have been removed by trans-
form.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Reduce X to the selected features.

Parameters X : array of shape [n_samples, n_features]

The input samples.

Returns X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.
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sklearn.neighbors.LSHForest

Warning: DEPRECATED

class sklearn.neighbors.LSHForest(n_estimators=10, radius=1.0, n_candidates=50,
n_neighbors=5, min_hash_match=4, radius_cutoff_ratio=0.9,
random_state=None)

Performs approximate nearest neighbor search using LSH forest.

LSH Forest: Locality Sensitive Hashing forest [1] is an alternative method for vanilla approximate nearest
neighbor search methods. LSH forest data structure has been implemented using sorted arrays and binary
search and 32 bit fixed-length hashes. Random projection is used as the hash family which approximates cosine
distance.

The cosine distance is defined as 1 - cosine_similarity: the lowest value is 0 (identical point) but it is
bounded above by 2 for the farthest points. Its value does not depend on the norm of the vector points but only
on their relative angles.

Parameters n_estimators : int (default = 10)

Number of trees in the LSH Forest.

radius : float, optinal (default = 1.0)

Radius from the data point to its neighbors. This is the parameter space to use by default
for the radius_neighbors queries.

n_candidates : int (default = 50)

Minimum number of candidates evaluated per estimator, assuming enough items meet
the min_hash_match constraint.

n_neighbors : int (default = 5)

Number of neighbors to be returned from query function when it is not provided to the
kneighbors method.

min_hash_match : int (default = 4)

lowest hash length to be searched when candidate selection is performed for nearest
neighbors.

radius_cutoff_ratio : float, optional (default = 0.9)

A value ranges from 0 to 1. Radius neighbors will be searched until the ratio between
total neighbors within the radius and the total candidates becomes less than this value
unless it is terminated by hash length reaching min_hash_match.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes hash_functions_ : list of GaussianRandomProjectionHash objects

Hash function g(p,x) for a tree is an array of 32 randomly generated float arrays with the
same dimension as the data set. This array is stored in GaussianRandomProjectionHash
object and can be obtained from components_ attribute.

trees_ : array, shape (n_estimators, n_samples)
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Each tree (corresponding to a hash function) contains an array of sorted hashed values.
The array representation may change in future versions.

original_indices_ : array, shape (n_estimators, n_samples)

Original indices of sorted hashed values in the fitted index.

References

[R242]

Examples

>>> from sklearn.neighbors import LSHForest

>>> X_train = [[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]]
>>> X_test = [[9, 1, 6], [3, 1, 10], [7, 10, 3]]
>>> lshf = LSHForest(random_state=42)
>>> lshf.fit(X_train)
LSHForest(min_hash_match=4, n_candidates=50, n_estimators=10,

n_neighbors=5, radius=1.0, radius_cutoff_ratio=0.9,
random_state=42)

>>> distances, indices = lshf.kneighbors(X_test, n_neighbors=2)
>>> distances
array([[ 0.069..., 0.149...],

[ 0.229..., 0.481...],
[ 0.004..., 0.014...]])

>>> indices
array([[1, 2],

[2, 0],
[4, 0]])

Methods

fit(X[, y]) Fit the LSH forest on the data.
get_params([deep]) Get parameters for this estimator.
kneighbors(X[, n_neighbors, return_distance]) Returns n_neighbors of approximate nearest neighbors.
kneighbors_graph([X, n_neighbors, mode]) Computes the (weighted) graph of k-Neighbors for

points in X
partial_fit(X[, y]) Inserts new data into the already fitted LSH Forest.
radius_neighbors(X[, radius, return_distance]) Finds the neighbors within a given radius of a point or

points.
radius_neighbors_graph([X, radius, mode]) Computes the (weighted) graph of Neighbors for points

in X
set_params(**params) Set the parameters of this estimator.

__init__(n_estimators=10, radius=1.0, n_candidates=50, n_neighbors=5, min_hash_match=4, ra-
dius_cutoff_ratio=0.9, random_state=None)

fit(X, y=None)
Fit the LSH forest on the data.
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This creates binary hashes of input data points by getting the dot product of input points and hash_function
then transforming the projection into a binary string array based on the sign (positive/negative) of the
projection. A sorted array of binary hashes is created.

Parameters X : array_like or sparse (CSR) matrix, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns self : object

Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

kneighbors(X, n_neighbors=None, return_distance=True)
Returns n_neighbors of approximate nearest neighbors.

Parameters X : array_like or sparse (CSR) matrix, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single query.

n_neighbors : int, optional (default = None)

Number of neighbors required. If not provided, this will return the number specified at
the initialization.

return_distance : boolean, optional (default = True)

Returns the distances of neighbors if set to True.

Returns dist : array, shape (n_samples, n_neighbors)

Array representing the cosine distances to each point, only present if re-
turn_distance=True.

ind : array, shape (n_samples, n_neighbors)

Indices of the approximate nearest points in the population matrix.

kneighbors_graph(X=None, n_neighbors=None, mode=’connectivity’)
Computes the (weighted) graph of k-Neighbors for points in X

Parameters X : array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric ==
‘precomputed’

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

n_neighbors : int

Number of neighbors for each sample. (default is value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit]
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n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight
of edge that connects i to j.

See also:

NearestNeighbors.radius_neighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 1.],
[ 1., 0., 1.]])

partial_fit(X, y=None)
Inserts new data into the already fitted LSH Forest. Cost is proportional to new total size, so additions
should be batched.

Parameters X : array_like or sparse (CSR) matrix, shape (n_samples, n_features)

New data point to be inserted into the LSH Forest.

radius_neighbors(X, radius=None, return_distance=True)
Finds the neighbors within a given radius of a point or points.

Return the indices and distances of some points from the dataset lying in a ball with size radius around
the points of the query array. Points lying on the boundary are included in the results.

The result points are not necessarily sorted by distance to their query point.

LSH Forest being an approximate method, some true neighbors from the indexed dataset might be missing
from the results.

Parameters X : array_like or sparse (CSR) matrix, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single query.

radius : float

Limiting distance of neighbors to return. (default is the value passed to the constructor).

return_distance : boolean, optional (default = False)

Returns the distances of neighbors if set to True.

Returns dist : array, shape (n_samples,) of arrays

Each element is an array representing the cosine distances to some points found within
radius of the respective query. Only present if return_distance=True.

ind : array, shape (n_samples,) of arrays

Each element is an array of indices for neighbors within radius of the respective
query.
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radius_neighbors_graph(X=None, radius=None, mode=’connectivity’)
Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

Parameters X : array-like, shape = [n_samples, n_features], optional

The query point or points. If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

radius : float

Radius of neighborhoods. (default is the value passed to the constructor).

mode : {‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones
and zeros, in ‘distance’ the edges are Euclidean distance between points.

Returns A : sparse matrix in CSR format, shape = [n_samples, n_samples]

A[i, j] is assigned the weight of edge that connects i to j.

See also:

kneighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[ 1., 0., 1.],

[ 0., 1., 0.],
[ 1., 0., 1.]])

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

5.36.2 To be removed in 0.20

cross_validation.KFold(n[, n_folds, . . . ]) K-Folds cross validation iterator.
cross_validation.LabelKFold(labels[, n_folds]) K-fold iterator variant with non-overlapping labels.
cross_validation.LeaveOneLabelOut(labels) Leave-One-Label_Out cross-validation iterator
cross_validation.LeaveOneOut(n) Leave-One-Out cross validation iterator.
cross_validation.LeavePOut(n, p) Leave-P-Out cross validation iterator
cross_validation.LeavePLabelOut(labels, p) Leave-P-Label_Out cross-validation iterator

Continued on next page
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Table 5.275 – continued from previous page
cross_validation.LabelShuffleSplit(labels[,
. . . ])

Shuffle-Labels-Out cross-validation iterator

cross_validation.ShuffleSplit(n[, n_iter,
. . . ])

Random permutation cross-validation iterator.

cross_validation.StratifiedKFold(y[, . . . ]) Stratified K-Folds cross validation iterator
cross_validation.StratifiedShuffleSplit(y[,
. . . ])

Stratified ShuffleSplit cross validation iterator

cross_validation.PredefinedSplit(test_fold) Predefined split cross validation iterator
decomposition.RandomizedPCA(*args, **kwargs) Principal component analysis (PCA) using randomized

SVD
gaussian_process.GaussianProcess(*args,
**kwargs)

The legacy Gaussian Process model class.

grid_search.ParameterGrid(param_grid) Grid of parameters with a discrete number of values for
each.

grid_search.ParameterSampler(. . . [, ran-
dom_state])

Generator on parameters sampled from given distributions.

grid_search.GridSearchCV (estimator,
param_grid)

Exhaustive search over specified parameter values for an
estimator.

grid_search.RandomizedSearchCV (estimator,
. . . )

Randomized search on hyper parameters.

mixture.DPGMM (*args, **kwargs) Dirichlet Process Gaussian Mixture Models
mixture.GMM (*args, **kwargs) Legacy Gaussian Mixture Model
mixture.VBGMM (*args, **kwargs) Variational Inference for the Gaussian Mixture Model

sklearn.cross_validation.KFold

Warning: DEPRECATED

class sklearn.cross_validation.KFold(n, n_folds=3, shuffle=False, random_state=None)
K-Folds cross validation iterator.

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
KFold instead.

Provides train/test indices to split data in train test sets. Split dataset into k consecutive folds (without shuffling
by default).

Each fold is then used as a validation set once while the k - 1 remaining fold(s) form the training set.

Read more in the User Guide.

Parameters n : int

Total number of elements.

n_folds : int, default=3

Number of folds. Must be at least 2.

shuffle : boolean, optional

Whether to shuffle the data before splitting into batches.

random_state : int, RandomState instance or None, optional, default=None
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If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random. Used when shuffle ==
True.

See also:

StratifiedKFold, folds, classification

LabelKFold K-fold iterator variant with non-overlapping labels.

Notes

The first n % n_folds folds have size n // n_folds + 1, other folds have size n // n_folds.

Examples

>>> from sklearn.cross_validation import KFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([1, 2, 3, 4])
>>> kf = KFold(4, n_folds=2)
>>> len(kf)
2
>>> print(kf)
sklearn.cross_validation.KFold(n=4, n_folds=2, shuffle=False,

random_state=None)
>>> for train_index, test_index in kf:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [0 1] TEST: [2 3]
.. automethod:: __init__

sklearn.cross_validation.LabelKFold

Warning: DEPRECATED

class sklearn.cross_validation.LabelKFold(labels, n_folds=3)
K-fold iterator variant with non-overlapping labels.

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
GroupKFold instead.

The same label will not appear in two different folds (the number of distinct labels has to be at least equal to the
number of folds).

The folds are approximately balanced in the sense that the number of distinct labels is approximately the same
in each fold.

New in version 0.17.

Parameters labels : array-like with shape (n_samples, )
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Contains a label for each sample. The folds are built so that the same label does not
appear in two different folds.

n_folds : int, default=3

Number of folds. Must be at least 2.

See also:

LeaveOneLabelOut, domain-specific

Examples

>>> from sklearn.cross_validation import LabelKFold
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 3, 4])
>>> labels = np.array([0, 0, 2, 2])
>>> label_kfold = LabelKFold(labels, n_folds=2)
>>> len(label_kfold)
2
>>> print(label_kfold)
sklearn.cross_validation.LabelKFold(n_labels=4, n_folds=2)
>>> for train_index, test_index in label_kfold:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
...
TRAIN: [0 1] TEST: [2 3]
[[1 2]
[3 4]] [[5 6]
[7 8]] [1 2] [3 4]

TRAIN: [2 3] TEST: [0 1]
[[5 6]
[7 8]] [[1 2]
[3 4]] [3 4] [1 2]

.. automethod:: __init__

sklearn.cross_validation.LeaveOneLabelOut

Warning: DEPRECATED

class sklearn.cross_validation.LeaveOneLabelOut(labels)
Leave-One-Label_Out cross-validation iterator

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
LeaveOneGroupOut instead.

Provides train/test indices to split data according to a third-party provided label. This label information can be
used to encode arbitrary domain specific stratifications of the samples as integers.

For instance the labels could be the year of collection of the samples and thus allow for cross-validation against
time-based splits.

Read more in the User Guide.
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Parameters labels : array-like of int with shape (n_samples,)

Arbitrary domain-specific stratification of the data to be used to draw the splits.

See also:

LabelKFold K-fold iterator variant with non-overlapping labels.

Examples

>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 1, 2])
>>> labels = np.array([1, 1, 2, 2])
>>> lol = cross_validation.LeaveOneLabelOut(labels)
>>> len(lol)
2
>>> print(lol)
sklearn.cross_validation.LeaveOneLabelOut(labels=[1 1 2 2])
>>> for train_index, test_index in lol:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
TRAIN: [2 3] TEST: [0 1]
[[5 6]
[7 8]] [[1 2]
[3 4]] [1 2] [1 2]

TRAIN: [0 1] TEST: [2 3]
[[1 2]
[3 4]] [[5 6]
[7 8]] [1 2] [1 2]

.. automethod:: __init__

sklearn.cross_validation.LeaveOneOut

Warning: DEPRECATED

class sklearn.cross_validation.LeaveOneOut(n)
Leave-One-Out cross validation iterator.

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
LeaveOneOut instead.

Provides train/test indices to split data in train test sets. Each sample is used once as a test set (singleton) while
the remaining samples form the training set.

Note: LeaveOneOut(n) is equivalent to KFold(n, n_folds=n) and LeavePOut(n, p=1).

Due to the high number of test sets (which is the same as the number of samples) this cross validation method
can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit.

Read more in the User Guide.

Parameters n : int
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Total number of elements in dataset.

See also:

LeaveOneLabelOut, domain-specific

Examples

>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4]])
>>> y = np.array([1, 2])
>>> loo = cross_validation.LeaveOneOut(2)
>>> len(loo)
2
>>> print(loo)
sklearn.cross_validation.LeaveOneOut(n=2)
>>> for train_index, test_index in loo:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
TRAIN: [1] TEST: [0]
[[3 4]] [[1 2]] [2] [1]
TRAIN: [0] TEST: [1]
[[1 2]] [[3 4]] [1] [2]
.. automethod:: __init__

sklearn.cross_validation.LeavePOut

Warning: DEPRECATED

class sklearn.cross_validation.LeavePOut(n, p)
Leave-P-Out cross validation iterator

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
LeavePOut instead.

Provides train/test indices to split data in train test sets. This results in testing on all distinct samples of size p,
while the remaining n - p samples form the training set in each iteration.

Note: LeavePOut(n, p) is NOT equivalent to KFold(n, n_folds=n // p) which creates non-
overlapping test sets.

Due to the high number of iterations which grows combinatorically with the number of samples this cross
validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit.

Read more in the User Guide.

Parameters n : int

Total number of elements in dataset.

p : int

Size of the test sets.

2036 Chapter 5. API Reference



scikit-learn user guide, Release 0.19.1

Examples

>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 3, 4])
>>> lpo = cross_validation.LeavePOut(4, 2)
>>> len(lpo)
6
>>> print(lpo)
sklearn.cross_validation.LeavePOut(n=4, p=2)
>>> for train_index, test_index in lpo:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [1 3] TEST: [0 2]
TRAIN: [1 2] TEST: [0 3]
TRAIN: [0 3] TEST: [1 2]
TRAIN: [0 2] TEST: [1 3]
TRAIN: [0 1] TEST: [2 3]
.. automethod:: __init__

sklearn.cross_validation.LeavePLabelOut

Warning: DEPRECATED

class sklearn.cross_validation.LeavePLabelOut(labels, p)
Leave-P-Label_Out cross-validation iterator

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
LeavePGroupsOut instead.

Provides train/test indices to split data according to a third-party provided label. This label information can be
used to encode arbitrary domain specific stratifications of the samples as integers.

For instance the labels could be the year of collection of the samples and thus allow for cross-validation against
time-based splits.

The difference between LeavePLabelOut and LeaveOneLabelOut is that the former builds the test sets with all
the samples assigned to p different values of the labels while the latter uses samples all assigned the same labels.

Read more in the User Guide.

Parameters labels : array-like of int with shape (n_samples,)

Arbitrary domain-specific stratification of the data to be used to draw the splits.

p : int

Number of samples to leave out in the test split.

See also:

LabelKFold K-fold iterator variant with non-overlapping labels.
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Examples

>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4], [5, 6]])
>>> y = np.array([1, 2, 1])
>>> labels = np.array([1, 2, 3])
>>> lpl = cross_validation.LeavePLabelOut(labels, p=2)
>>> len(lpl)
3
>>> print(lpl)
sklearn.cross_validation.LeavePLabelOut(labels=[1 2 3], p=2)
>>> for train_index, test_index in lpl:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
TRAIN: [2] TEST: [0 1]
[[5 6]] [[1 2]
[3 4]] [1] [1 2]

TRAIN: [1] TEST: [0 2]
[[3 4]] [[1 2]
[5 6]] [2] [1 1]

TRAIN: [0] TEST: [1 2]
[[1 2]] [[3 4]
[5 6]] [1] [2 1]

.. automethod:: __init__

sklearn.cross_validation.LabelShuffleSplit

Warning: DEPRECATED

class sklearn.cross_validation.LabelShuffleSplit(labels, n_iter=5, test_size=0.2,
train_size=None, random_state=None)

Shuffle-Labels-Out cross-validation iterator

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
GroupShuffleSplit instead.

Provides randomized train/test indices to split data according to a third-party provided label. This label infor-
mation can be used to encode arbitrary domain specific stratifications of the samples as integers.

For instance the labels could be the year of collection of the samples and thus allow for cross-validation against
time-based splits.

The difference between LeavePLabelOut and LabelShuffleSplit is that the former generates splits using all
subsets of size p unique labels, whereas LabelShuffleSplit generates a user-determined number of random test
splits, each with a user-determined fraction of unique labels.

For example, a less computationally intensive alternative to LeavePLabelOut(labels, p=10) would be
LabelShuffleSplit(labels, test_size=10, n_iter=100).

Note: The parameters test_size and train_size refer to labels, and not to samples, as in ShuffleSplit.

New in version 0.17.

Parameters labels : array, [n_samples]
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Labels of samples

n_iter : int (default 5)

Number of re-shuffling and splitting iterations.

test_size : float (default 0.2), int, or None

If float, should be between 0.0 and 1.0 and represent the proportion of the labels to
include in the test split. If int, represents the absolute number of test labels. If None,
the value is automatically set to the complement of the train size.

train_size : float, int, or None (default is None)

If float, should be between 0.0 and 1.0 and represent the proportion of the labels to
include in the train split. If int, represents the absolute number of train labels. If None,
the value is automatically set to the complement of the test size.

random_state : int, RandomState instance or None, optional (default None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

__init__(labels, n_iter=5, test_size=0.2, train_size=None, random_state=None)

sklearn.cross_validation.ShuffleSplit

Warning: DEPRECATED

class sklearn.cross_validation.ShuffleSplit(n, n_iter=10, test_size=0.1, train_size=None,
random_state=None)

Random permutation cross-validation iterator.

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
ShuffleSplit instead.

Yields indices to split data into training and test sets.

Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different,
although this is still very likely for sizeable datasets.

Read more in the User Guide.

Parameters n : int

Total number of elements in the dataset.

n_iter : int (default 10)

Number of re-shuffling & splitting iterations.

test_size : float (default 0.1), int, or None

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the test split. If int, represents the absolute number of test samples. If None,
the value is automatically set to the complement of the train size.

train_size : float, int, or None (default is None)
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If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the train split. If int, represents the absolute number of train samples. If
None, the value is automatically set to the complement of the test size.

random_state : int, RandomState instance or None, optional (default None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Examples

>>> from sklearn import cross_validation
>>> rs = cross_validation.ShuffleSplit(4, n_iter=3,
... test_size=.25, random_state=0)
>>> len(rs)
3
>>> print(rs)
...
ShuffleSplit(4, n_iter=3, test_size=0.25, ...)
>>> for train_index, test_index in rs:
... print("TRAIN:", train_index, "TEST:", test_index)
...
TRAIN: [3 1 0] TEST: [2]
TRAIN: [2 1 3] TEST: [0]
TRAIN: [0 2 1] TEST: [3]

>>> rs = cross_validation.ShuffleSplit(4, n_iter=3,
... train_size=0.5, test_size=.25, random_state=0)
>>> for train_index, test_index in rs:
... print("TRAIN:", train_index, "TEST:", test_index)
...
TRAIN: [3 1] TEST: [2]
TRAIN: [2 1] TEST: [0]
TRAIN: [0 2] TEST: [3]
.. automethod:: __init__

sklearn.cross_validation.StratifiedKFold

Warning: DEPRECATED

class sklearn.cross_validation.StratifiedKFold(y, n_folds=3, shuffle=False, ran-
dom_state=None)

Stratified K-Folds cross validation iterator

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
StratifiedKFold instead.

Provides train/test indices to split data in train test sets.

This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving
the percentage of samples for each class.

Read more in the User Guide.
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Parameters y : array-like, [n_samples]

Samples to split in K folds.

n_folds : int, default=3

Number of folds. Must be at least 2.

shuffle : boolean, optional

Whether to shuffle each stratification of the data before splitting into batches.

random_state : int, RandomState instance or None, optional, default=None

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random. Used when shuffle ==
True.

See also:

LabelKFold K-fold iterator variant with non-overlapping labels.

Notes

All the folds have size trunc(n_samples / n_folds), the last one has the complementary.

Examples

>>> from sklearn.cross_validation import StratifiedKFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> skf = StratifiedKFold(y, n_folds=2)
>>> len(skf)
2
>>> print(skf)
sklearn.cross_validation.StratifiedKFold(labels=[0 0 1 1], n_folds=2,

shuffle=False, random_state=None)
>>> for train_index, test_index in skf:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [1 3] TEST: [0 2]
TRAIN: [0 2] TEST: [1 3]
.. automethod:: __init__

sklearn.cross_validation.StratifiedShuffleSplit

Warning: DEPRECATED

class sklearn.cross_validation.StratifiedShuffleSplit(y, n_iter=10, test_size=0.1,
train_size=None, ran-
dom_state=None)

Stratified ShuffleSplit cross validation iterator
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Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
StratifiedShuffleSplit instead.

Provides train/test indices to split data in train test sets.

This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized
folds. The folds are made by preserving the percentage of samples for each class.

Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different,
although this is still very likely for sizeable datasets.

Read more in the User Guide.

Parameters y : array, [n_samples]

Labels of samples.

n_iter : int (default 10)

Number of re-shuffling & splitting iterations.

test_size : float (default 0.1), int, or None

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the test split. If int, represents the absolute number of test samples. If None,
the value is automatically set to the complement of the train size.

train_size : float, int, or None (default is None)

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the train split. If int, represents the absolute number of train samples. If
None, the value is automatically set to the complement of the test size.

random_state : int, RandomState instance or None, optional (default None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Examples

>>> from sklearn.cross_validation import StratifiedShuffleSplit
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> sss = StratifiedShuffleSplit(y, 3, test_size=0.5, random_state=0)
>>> len(sss)
3
>>> print(sss)
StratifiedShuffleSplit(labels=[0 0 1 1], n_iter=3, ...)
>>> for train_index, test_index in sss:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [1 2] TEST: [3 0]
TRAIN: [0 2] TEST: [1 3]
TRAIN: [0 2] TEST: [3 1]
.. automethod:: __init__
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sklearn.cross_validation.PredefinedSplit

Warning: DEPRECATED

class sklearn.cross_validation.PredefinedSplit(test_fold)
Predefined split cross validation iterator

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
PredefinedSplit instead.

Splits the data into training/test set folds according to a predefined scheme. Each sample can be assigned to at
most one test set fold, as specified by the user through the test_fold parameter.

Read more in the User Guide.

Parameters test_fold : “array-like, shape (n_samples,)

test_fold[i] gives the test set fold of sample i. A value of -1 indicates that the corre-
sponding sample is not part of any test set folds, but will instead always be put into the
training fold.

Examples

>>> from sklearn.cross_validation import PredefinedSplit
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> ps = PredefinedSplit(test_fold=[0, 1, -1, 1])
>>> len(ps)
2
>>> print(ps)
sklearn.cross_validation.PredefinedSplit(test_fold=[ 0 1 -1 1])
>>> for train_index, test_index in ps:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [1 2 3] TEST: [0]
TRAIN: [0 2] TEST: [1 3]
.. automethod:: __init__

sklearn.decomposition.RandomizedPCA

Warning: DEPRECATED

class sklearn.decomposition.RandomizedPCA(*args, **kwargs)
Principal component analysis (PCA) using randomized SVD

Deprecated since version 0.18: This class will be removed in 0.20. Use PCA with parameter svd_solver ‘ran-
domized’ instead. The new implementation DOES NOT store whiten components_. Apply transform to get
them.

Linear dimensionality reduction using approximated Singular Value Decomposition of the data and keeping
only the most significant singular vectors to project the data to a lower dimensional space.
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Read more in the User Guide.

Parameters n_components : int, optional

Maximum number of components to keep. When not given or None, this is set to
n_features (the second dimension of the training data).

copy : bool

If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield
the expected results, use fit_transform(X) instead.

iterated_power : int, default=2

Number of iterations for the power method.

Changed in version 0.18.

whiten : bool, optional

When True (False by default) the components_ vectors are multiplied by the square root
of (n_samples) and divided by the singular values to ensure uncorrelated outputs with
unit component-wise variances.

Whitening will remove some information from the transformed signal (the relative vari-
ance scales of the components) but can sometime improve the predictive accuracy of
the downstream estimators by making their data respect some hard-wired assumptions.

random_state : int, RandomState instance or None, optional, default=None

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Attributes components_ : array, shape (n_components, n_features)

Components with maximum variance.

explained_variance_ratio_ : array, shape (n_components,)

Percentage of variance explained by each of the selected components. If k is not set
then all components are stored and the sum of explained variances is equal to 1.0.

singular_values_ : array, shape (n_components,)

The singular values corresponding to each of the selected components. The singular val-
ues are equal to the 2-norms of the n_components variables in the lower-dimensional
space.

mean_ : array, shape (n_features,)

Per-feature empirical mean, estimated from the training set.

See also:

PCA, TruncatedSVD

References

[Halko2009], [MRT]
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Examples

>>> import numpy as np
>>> from sklearn.decomposition import RandomizedPCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = RandomizedPCA(n_components=2)
>>> pca.fit(X)
RandomizedPCA(copy=True, iterated_power=2, n_components=2,

random_state=None, whiten=False)
>>> print(pca.explained_variance_ratio_)
[ 0.99244... 0.00755...]
>>> print(pca.singular_values_)
[ 6.30061... 0.54980...]

Methods

fit(X[, y]) Fit the model with X by extracting the first principal
components.

fit_transform(X[, y]) Fit the model with X and apply the dimensionality re-
duction on X.

get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Transform data back to its original space.
set_params(**params) Set the parameters of this estimator.
transform(X) Apply dimensionality reduction on X.

__init__(*args, **kwargs)
DEPRECATED: RandomizedPCA was deprecated in 0.18 and will be removed in 0.20. Use
PCA(svd_solver=’randomized’) instead. The new implementation DOES NOT store whiten
components_. Apply transform to get them.

fit(X, y=None)
Fit the model with X by extracting the first principal components.

Parameters X : array-like, shape (n_samples, n_features)

Training data, where n_samples in the number of samples and n_features is the number
of features.

y : Ignored.

Returns self : object

Returns the instance itself.

fit_transform(X, y=None)
Fit the model with X and apply the dimensionality reduction on X.

Parameters X : array-like, shape (n_samples, n_features)

New data, where n_samples in the number of samples and n_features is the number of
features.

y : Ignored.

Returns X_new : array-like, shape (n_samples, n_components)
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get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(X)
Transform data back to its original space.

Returns an array X_original whose transform would be X.

Parameters X : array-like, shape (n_samples, n_components)

New data, where n_samples in the number of samples and n_components is the number
of components.

Returns X_original array-like, shape (n_samples, n_features) :

Notes

If whitening is enabled, inverse_transform does not compute the exact inverse operation of transform.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Apply dimensionality reduction on X.

X is projected on the first principal components previous extracted from a training set.

Parameters X : array-like, shape (n_samples, n_features)

New data, where n_samples in the number of samples and n_features is the number of
features.

Returns X_new : array-like, shape (n_samples, n_components)

sklearn.gaussian_process.GaussianProcess

Warning: DEPRECATED

class sklearn.gaussian_process.GaussianProcess(*args, **kwargs)
The legacy Gaussian Process model class.

Deprecated since version 0.18: This class will be removed in 0.20. Use the GaussianProcessRegressor
instead.

Read more in the User Guide.
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Parameters regr : string or callable, optional

A regression function returning an array of outputs of the linear regression functional
basis. The number of observations n_samples should be greater than the size p of this
basis. Default assumes a simple constant regression trend. Available built-in regression
models are:

'constant', 'linear', 'quadratic'

corr : string or callable, optional

A stationary autocorrelation function returning the autocorrelation between two points
x and x’. Default assumes a squared-exponential autocorrelation model. Built-in corre-
lation models are:

'absolute_exponential', 'squared_exponential',
'generalized_exponential', 'cubic', 'linear'

beta0 : double array_like, optional

The regression weight vector to perform Ordinary Kriging (OK). Default assumes Uni-
versal Kriging (UK) so that the vector beta of regression weights is estimated using the
maximum likelihood principle.

storage_mode : string, optional

A string specifying whether the Cholesky decomposition of the correlation matrix
should be stored in the class (storage_mode = ‘full’) or not (storage_mode = ‘light’).
Default assumes storage_mode = ‘full’, so that the Cholesky decomposition of the cor-
relation matrix is stored. This might be a useful parameter when one is not interested
in the MSE and only plan to estimate the BLUP, for which the correlation matrix is not
required.

verbose : boolean, optional

A boolean specifying the verbose level. Default is verbose = False.

theta0 : double array_like, optional

An array with shape (n_features, ) or (1, ). The parameters in the autocorrelation model.
If thetaL and thetaU are also specified, theta0 is considered as the starting point for the
maximum likelihood estimation of the best set of parameters. Default assumes isotropic
autocorrelation model with theta0 = 1e-1.

thetaL : double array_like, optional

An array with shape matching theta0’s. Lower bound on the autocorrelation parame-
ters for maximum likelihood estimation. Default is None, so that it skips maximum
likelihood estimation and it uses theta0.

thetaU : double array_like, optional

An array with shape matching theta0’s. Upper bound on the autocorrelation parame-
ters for maximum likelihood estimation. Default is None, so that it skips maximum
likelihood estimation and it uses theta0.

normalize : boolean, optional

Input X and observations y are centered and reduced wrt means and standard deviations
estimated from the n_samples observations provided. Default is normalize = True so
that data is normalized to ease maximum likelihood estimation.

nugget : double or ndarray, optional
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Introduce a nugget effect to allow smooth predictions from noisy data. If nugget is
an ndarray, it must be the same length as the number of data points used for the fit.
The nugget is added to the diagonal of the assumed training covariance; in this way
it acts as a Tikhonov regularization in the problem. In the special case of the squared
exponential correlation function, the nugget mathematically represents the variance of
the input values. Default assumes a nugget close to machine precision for the sake of
robustness (nugget = 10. * MACHINE_EPSILON).

optimizer : string, optional

A string specifying the optimization algorithm to be used. Default uses ‘fmin_cobyla’
algorithm from scipy.optimize. Available optimizers are:

'fmin_cobyla', 'Welch'

‘Welch’ optimizer is dued to Welch et al., see reference [WBSWM1992]. It consists
in iterating over several one-dimensional optimizations instead of running one single
multi-dimensional optimization.

random_start : int, optional

The number of times the Maximum Likelihood Estimation should be performed from a
random starting point. The first MLE always uses the specified starting point (theta0),
the next starting points are picked at random according to an exponential distribution
(log-uniform on [thetaL, thetaU]). Default does not use random starting point (ran-
dom_start = 1).

random_state : int, RandomState instance or None, optional (default=None)

The generator used to shuffle the sequence of coordinates of theta in the Welch opti-
mizer. If int, random_state is the seed used by the random number generator; If Ran-
domState instance, random_state is the random number generator; If None, the random
number generator is the RandomState instance used by np.random.

Attributes theta_ : array

Specified theta OR the best set of autocorrelation parameters (the sought maximizer of
the reduced likelihood function).

reduced_likelihood_function_value_ : array

The optimal reduced likelihood function value.

Notes

The presentation implementation is based on a translation of the DACE Matlab toolbox, see reference
[NLNS2002].

References

[NLNS2002], [WBSWM1992]

Examples
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>>> import numpy as np
>>> from sklearn.gaussian_process import GaussianProcess
>>> X = np.array([[1., 3., 5., 6., 7., 8.]]).T
>>> y = (X * np.sin(X)).ravel()
>>> gp = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1.)
>>> gp.fit(X, y)
GaussianProcess(beta0=None...

...

Methods

fit(X, y) The Gaussian Process model fitting method.
get_params([deep]) Get parameters for this estimator.
predict(X[, eval_MSE, batch_size]) This function evaluates the Gaussian Process model at

x.
reduced_likelihood_function([theta]) This function determines the BLUP parameters and

evaluates the reduced likelihood function for the given
autocorrelation parameters theta.

score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the pre-
diction.

set_params(**params) Set the parameters of this estimator.

__init__(*args, **kwargs)
DEPRECATED: GaussianProcess was deprecated in version 0.18 and will be removed in 0.20. Use the
GaussianProcessRegressor instead.

fit(X, y)
The Gaussian Process model fitting method.

Parameters X : double array_like

An array with shape (n_samples, n_features) with the input at which observations were
made.

y : double array_like

An array with shape (n_samples, ) or shape (n_samples, n_targets) with the observations
of the output to be predicted.

Returns gp : self

A fitted Gaussian Process model object awaiting data to perform predictions.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X, eval_MSE=False, batch_size=None)
This function evaluates the Gaussian Process model at x.
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Parameters X : array_like

An array with shape (n_eval, n_features) giving the point(s) at which the prediction(s)
should be made.

eval_MSE : boolean, optional

A boolean specifying whether the Mean Squared Error should be evaluated or not. De-
fault assumes evalMSE = False and evaluates only the BLUP (mean prediction).

batch_size : integer, optional

An integer giving the maximum number of points that can be evaluated simultaneously
(depending on the available memory). Default is None so that all given points are eval-
uated at the same time.

Returns y : array_like, shape (n_samples, ) or (n_samples, n_targets)

An array with shape (n_eval, ) if the Gaussian Process was trained on an array of shape
(n_samples, ) or an array with shape (n_eval, n_targets) if the Gaussian Process was
trained on an array of shape (n_samples, n_targets) with the Best Linear Unbiased Pre-
diction at x.

MSE : array_like, optional (if eval_MSE == True)

An array with shape (n_eval, ) or (n_eval, n_targets) as with y, with the Mean Squared
Error at x.

reduced_likelihood_function(theta=None)
This function determines the BLUP parameters and evaluates the reduced likelihood function for the given
autocorrelation parameters theta.

Maximizing this function wrt the autocorrelation parameters theta is equivalent to maximizing the likeli-
hood of the assumed joint Gaussian distribution of the observations y evaluated onto the design of experi-
ments X.

Parameters theta : array_like, optional

An array containing the autocorrelation parameters at which the Gaussian Process
model parameters should be determined. Default uses the built-in autocorrelation pa-
rameters (ie theta = self.theta_).

Returns reduced_likelihood_function_value : double

The value of the reduced likelihood function associated to the given autocorrelation
parameters theta.

par : dict

A dictionary containing the requested Gaussian Process model parameters:

• sigma2 is the Gaussian Process variance.

• beta is the generalized least-squares regression weights for Universal Kriging or
given beta0 for Ordinary Kriging.

• gamma is the Gaussian Process weights.

• C is the Cholesky decomposition of the correlation matrix [R].

• Ft is the solution of the linear equation system [R] x Ft = F

• G is the QR decomposition of the matrix Ft.
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score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.grid_search.ParameterGrid

Warning: DEPRECATED

class sklearn.grid_search.ParameterGrid(param_grid)
Grid of parameters with a discrete number of values for each.

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
ParameterGrid instead.

Can be used to iterate over parameter value combinations with the Python built-in function iter.

Read more in the User Guide.

Parameters param_grid : dict of string to sequence, or sequence of such

The parameter grid to explore, as a dictionary mapping estimator parameters to se-
quences of allowed values.

An empty dict signifies default parameters.

A sequence of dicts signifies a sequence of grids to search, and is useful to avoid ex-
ploring parameter combinations that make no sense or have no effect. See the examples
below.

See also:

GridSearchCV uses ParameterGrid to perform a full parallelized parameter search.
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Examples

>>> from sklearn.grid_search import ParameterGrid
>>> param_grid = {'a': [1, 2], 'b': [True, False]}
>>> list(ParameterGrid(param_grid)) == (
... [{'a': 1, 'b': True}, {'a': 1, 'b': False},
... {'a': 2, 'b': True}, {'a': 2, 'b': False}])
True

>>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}]
>>> list(ParameterGrid(grid)) == [{'kernel': 'linear'},
... {'kernel': 'rbf', 'gamma': 1},
... {'kernel': 'rbf', 'gamma': 10}]
True
>>> ParameterGrid(grid)[1] == {'kernel': 'rbf', 'gamma': 1}
True
.. automethod:: __init__

sklearn.grid_search.ParameterSampler

Warning: DEPRECATED

class sklearn.grid_search.ParameterSampler(param_distributions, n_iter, ran-
dom_state=None)

Generator on parameters sampled from given distributions.

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
ParameterSampler instead.

Non-deterministic iterable over random candidate combinations for hyper- parameter search. If all parameters
are presented as a list, sampling without replacement is performed. If at least one parameter is given as a
distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for
continuous parameters.

Note that as of SciPy 0.12, the scipy.stats.distributions do not accept a custom RNG instance and
always use the singleton RNG from numpy.random. Hence setting random_state will not guarantee a
deterministic iteration whenever scipy.stats distributions are used to define the parameter search space.

Read more in the User Guide.

Parameters param_distributions : dict

Dictionary where the keys are parameters and values are distributions from which a
parameter is to be sampled. Distributions either have to provide a rvs function to
sample from them, or can be given as a list of values, where a uniform distribution is
assumed.

n_iter : integer

Number of parameter settings that are produced.

random_state : int, RandomState instance or None, optional (default=None)

Pseudo random number generator state used for random uniform sampling from lists of
possible values instead of scipy.stats distributions. If int, random_state is the seed used
by the random number generator; If RandomState instance, random_state is the random
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number generator; If None, the random number generator is the RandomState instance
used by np.random.

Returns params : dict of string to any

Yields dictionaries mapping each estimator parameter to as sampled value.

Examples

>>> from sklearn.grid_search import ParameterSampler
>>> from scipy.stats.distributions import expon
>>> import numpy as np
>>> np.random.seed(0)
>>> param_grid = {'a':[1, 2], 'b': expon()}
>>> param_list = list(ParameterSampler(param_grid, n_iter=4))
>>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items())
... for d in param_list]
>>> rounded_list == [{'b': 0.89856, 'a': 1},
... {'b': 0.923223, 'a': 1},
... {'b': 1.878964, 'a': 2},
... {'b': 1.038159, 'a': 2}]
True
.. automethod:: __init__

sklearn.grid_search.GridSearchCV

Warning: DEPRECATED

class sklearn.grid_search.GridSearchCV(estimator, param_grid, scoring=None,
fit_params=None, n_jobs=1, iid=True, refit=True,
cv=None, verbose=0, pre_dispatch=‘2*n_jobs’,
error_score=’raise’)

Exhaustive search over specified parameter values for an estimator.

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
GridSearchCV instead.

Important members are fit, predict.

GridSearchCV implements a “fit” and a “score” method. It also implements “predict”, “predict_proba”, “deci-
sion_function”, “transform” and “inverse_transform” if they are implemented in the estimator used.

The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over
a parameter grid.

Read more in the User Guide.

Parameters estimator : estimator object.

A object of that type is instantiated for each grid point. This is assumed to implement
the scikit-learn estimator interface. Either estimator needs to provide a score function,
or scoring must be passed.

param_grid : dict or list of dictionaries
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Dictionary with parameters names (string) as keys and lists of parameter settings to try
as values, or a list of such dictionaries, in which case the grids spanned by each dic-
tionary in the list are explored. This enables searching over any sequence of parameter
settings.

scoring : string, callable or None, default=None

A string (see model evaluation documentation) or a scorer callable object / function
with signature scorer(estimator, X, y). If None, the score method of the
estimator is used.

fit_params : dict, optional

Parameters to pass to the fit method.

n_jobs: int, default: 1 : :

The maximum number of estimators fit in parallel.

• If -1 all CPUs are used.

• If 1 is given, no parallel computing code is used at all, which is useful for debugging.

• For n_jobs below -1, (n_cpus + n_jobs + 1) are used. For example, with
n_jobs = -2 all CPUs but one are used.

Changed in version 0.17: Upgraded to joblib 0.9.3.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

• None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

• An int, giving the exact number of total jobs that are spawned

• A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

iid : boolean, default=True

If True, the data is assumed to be identically distributed across the folds, and the loss
minimized is the total loss per sample, and not the mean loss across the folds.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or mul-
ticlass, sklearn.model_selection.StratifiedKFold is used. In all other
cases, sklearn.model_selection.KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

refit : boolean, default=True
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Refit the best estimator with the entire dataset. If “False”, it is impossible to make
predictions using this GridSearchCV instance after fitting.

verbose : integer

Controls the verbosity: the higher, the more messages.

error_score : ‘raise’ (default) or numeric

Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the
error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter
does not affect the refit step, which will always raise the error.

Attributes grid_scores_ : list of named tuples

Contains scores for all parameter combinations in param_grid. Each entry corresponds
to one parameter setting. Each named tuple has the attributes:

• parameters, a dict of parameter settings

• mean_validation_score, the mean score over the cross-validation folds

• cv_validation_scores, the list of scores for each fold

best_estimator_ : estimator

Estimator that was chosen by the search, i.e. estimator which gave highest score (or
smallest loss if specified) on the left out data. Not available if refit=False.

best_score_ : float

Score of best_estimator on the left out data.

best_params_ : dict

Parameter setting that gave the best results on the hold out data.

scorer_ : function

Scorer function used on the held out data to choose the best parameters for the model.

See also:

ParameterGrid generates all the combinations of a hyperparameter grid.

sklearn.cross_validation.train_test_split utility function to split the data into a develop-
ment set usable for fitting a GridSearchCV instance and an evaluation set for its final evaluation.

sklearn.metrics.make_scorer Make a scorer from a performance metric or loss function.

Notes

The parameters selected are those that maximize the score of the left out data, unless an explicit score is passed
in which case it is used instead.

If n_jobs was set to a value higher than one, the data is copied for each point in the grid (and not n_jobs times).
This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is
large and not enough memory is available. A workaround in this case is to set pre_dispatch. Then, the memory
is copied only pre_dispatch many times. A reasonable value for pre_dispatch is 2 * n_jobs.
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Examples

>>> from sklearn import svm, grid_search, datasets
>>> iris = datasets.load_iris()
>>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
>>> svr = svm.SVC()
>>> clf = grid_search.GridSearchCV(svr, parameters)
>>> clf.fit(iris.data, iris.target)
...
GridSearchCV(cv=None, error_score=...,

estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=...,
decision_function_shape='ovr', degree=..., gamma=...,
kernel='rbf', max_iter=-1, probability=False,
random_state=None, shrinking=True, tol=...,
verbose=False),

fit_params={}, iid=..., n_jobs=1,
param_grid=..., pre_dispatch=..., refit=...,
scoring=..., verbose=...)

Methods

decision_function(X) Call decision_function on the estimator with the best
found parameters.

fit(X[, y]) Run fit with all sets of parameters.
get_params([deep]) Get parameters for this estimator.
inverse_transform(Xt) Call inverse_transform on the estimator with the best

found parameters.
predict(X) Call predict on the estimator with the best found param-

eters.
predict_log_proba(X) Call predict_log_proba on the estimator with the best

found parameters.
predict_proba(X) Call predict_proba on the estimator with the best found

parameters.
score(X[, y]) Returns the score on the given data, if the estimator has

been refit.
set_params(**params) Set the parameters of this estimator.
transform(X) Call transform on the estimator with the best found pa-

rameters.

__init__(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True,
cv=None, verbose=0, pre_dispatch=‘2*n_jobs’, error_score=’raise’)

decision_function(X)
Call decision_function on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports decision_function.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

fit(X, y=None)
Run fit with all sets of parameters.

Parameters X : array-like, shape = [n_samples, n_features]
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Training vector, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, shape = [n_samples] or [n_samples, n_output], optional

Target relative to X for classification or regression; None for unsupervised learning.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(Xt)
Call inverse_transform on the estimator with the best found parameters.

Only available if the underlying estimator implements inverse_transform and refit=True.

Parameters Xt : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

predict(X)
Call predict on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

predict_log_proba(X)
Call predict_log_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_log_proba.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

predict_proba(X)
Call predict_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_proba.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

score(X, y=None)
Returns the score on the given data, if the estimator has been refit.

This uses the score defined by scoring where provided, and the best_estimator_.score method
otherwise.

Parameters X : array-like, shape = [n_samples, n_features]

Input data, where n_samples is the number of samples and n_features is the number of
features.

y : array-like, shape = [n_samples] or [n_samples, n_output], optional
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Target relative to X for classification or regression; None for unsupervised learning.

Returns score : float

Notes

• The long-standing behavior of this method changed in version 0.16.

• It no longer uses the metric provided by estimator.score if the scoring parameter was set
when fitting.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Call transform on the estimator with the best found parameters.

Only available if the underlying estimator supports transform and refit=True.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

sklearn.grid_search.RandomizedSearchCV

Warning: DEPRECATED

class sklearn.grid_search.RandomizedSearchCV(estimator, param_distributions, n_iter=10,
scoring=None, fit_params=None, n_jobs=1,
iid=True, refit=True, cv=None, ver-
bose=0, pre_dispatch=‘2*n_jobs’, ran-
dom_state=None, error_score=’raise’)

Randomized search on hyper parameters.

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
RandomizedSearchCV instead.

RandomizedSearchCV implements a “fit” and a “score” method. It also implements “predict”, “predict_proba”,
“decision_function”, “transform” and “inverse_transform” if they are implemented in the estimator used.

The parameters of the estimator used to apply these methods are optimized by cross-validated search over
parameter settings.

In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter
settings is sampled from the specified distributions. The number of parameter settings that are tried is given by
n_iter.

If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter
is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous
distributions for continuous parameters.

Read more in the User Guide.
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Parameters estimator : estimator object.

A object of that type is instantiated for each grid point. This is assumed to implement
the scikit-learn estimator interface. Either estimator needs to provide a score function,
or scoring must be passed.

param_distributions : dict

Dictionary with parameters names (string) as keys and distributions or lists of parame-
ters to try. Distributions must provide a rvs method for sampling (such as those from
scipy.stats.distributions). If a list is given, it is sampled uniformly.

n_iter : int, default=10

Number of parameter settings that are sampled. n_iter trades off runtime vs quality of
the solution.

scoring : string, callable or None, default=None

A string (see model evaluation documentation) or a scorer callable object / function
with signature scorer(estimator, X, y). If None, the score method of the
estimator is used.

fit_params : dict, optional

Parameters to pass to the fit method.

n_jobs: int, default: 1 : :

The maximum number of estimators fit in parallel.

• If -1 all CPUs are used.

• If 1 is given, no parallel computing code is used at all, which is useful for debugging.

• For n_jobs below -1, (n_cpus + n_jobs + 1) are used. For example, with
n_jobs = -2 all CPUs but one are used.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

• None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

• An int, giving the exact number of total jobs that are spawned

• A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

iid : boolean, default=True

If True, the data is assumed to be identically distributed across the folds, and the loss
minimized is the total loss per sample, and not the mean loss across the folds.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.
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• An iterable yielding train/test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or mul-
ticlass, sklearn.model_selection.StratifiedKFold is used. In all other
cases, sklearn.model_selection.KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

refit : boolean, default=True

Refit the best estimator with the entire dataset. If “False”, it is impossible to make
predictions using this RandomizedSearchCV instance after fitting.

verbose : integer

Controls the verbosity: the higher, the more messages.

random_state : int, RandomState instance or None, optional, default=None

Pseudo random number generator state used for random uniform sampling from lists of
possible values instead of scipy.stats distributions. If int, random_state is the seed used
by the random number generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the RandomState instance
used by np.random.

error_score : ‘raise’ (default) or numeric

Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the
error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter
does not affect the refit step, which will always raise the error.

Attributes grid_scores_ : list of named tuples

Contains scores for all parameter combinations in param_grid. Each entry corresponds
to one parameter setting. Each named tuple has the attributes:

• parameters, a dict of parameter settings

• mean_validation_score, the mean score over the cross-validation folds

• cv_validation_scores, the list of scores for each fold

best_estimator_ : estimator

Estimator that was chosen by the search, i.e. estimator which gave highest score (or
smallest loss if specified) on the left out data. Not available if refit=False.

best_score_ : float

Score of best_estimator on the left out data.

best_params_ : dict

Parameter setting that gave the best results on the hold out data.

See also:

GridSearchCV Does exhaustive search over a grid of parameters.

ParameterSampler A generator over parameter settings, constructed from param_distributions.
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Notes

The parameters selected are those that maximize the score of the held-out data, according to the scoring param-
eter.

If n_jobs was set to a value higher than one, the data is copied for each parameter setting(and not n_jobs times).
This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is
large and not enough memory is available. A workaround in this case is to set pre_dispatch. Then, the memory
is copied only pre_dispatch many times. A reasonable value for pre_dispatch is 2 * n_jobs.

Methods

decision_function(X) Call decision_function on the estimator with the best
found parameters.

fit(X[, y]) Run fit on the estimator with randomly drawn parame-
ters.

get_params([deep]) Get parameters for this estimator.
inverse_transform(Xt) Call inverse_transform on the estimator with the best

found parameters.
predict(X) Call predict on the estimator with the best found param-

eters.
predict_log_proba(X) Call predict_log_proba on the estimator with the best

found parameters.
predict_proba(X) Call predict_proba on the estimator with the best found

parameters.
score(X[, y]) Returns the score on the given data, if the estimator has

been refit.
set_params(**params) Set the parameters of this estimator.
transform(X) Call transform on the estimator with the best found pa-

rameters.

__init__(estimator, param_distributions, n_iter=10, scoring=None, fit_params=None, n_jobs=1,
iid=True, refit=True, cv=None, verbose=0, pre_dispatch=‘2*n_jobs’, random_state=None,
error_score=’raise’)

decision_function(X)
Call decision_function on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports decision_function.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

fit(X, y=None)
Run fit on the estimator with randomly drawn parameters.

Parameters X : array-like, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the num-
ber of features.

y : array-like, shape = [n_samples] or [n_samples, n_output], optional

Target relative to X for classification or regression; None for unsupervised learning.
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get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(Xt)
Call inverse_transform on the estimator with the best found parameters.

Only available if the underlying estimator implements inverse_transform and refit=True.

Parameters Xt : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

predict(X)
Call predict on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

predict_log_proba(X)
Call predict_log_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_log_proba.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

predict_proba(X)
Call predict_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_proba.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

score(X, y=None)
Returns the score on the given data, if the estimator has been refit.

This uses the score defined by scoring where provided, and the best_estimator_.score method
otherwise.

Parameters X : array-like, shape = [n_samples, n_features]

Input data, where n_samples is the number of samples and n_features is the number of
features.

y : array-like, shape = [n_samples] or [n_samples, n_output], optional

Target relative to X for classification or regression; None for unsupervised learning.

Returns score : float
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Notes

• The long-standing behavior of this method changed in version 0.16.

• It no longer uses the metric provided by estimator.score if the scoring parameter was set
when fitting.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

transform(X)
Call transform on the estimator with the best found parameters.

Only available if the underlying estimator supports transform and refit=True.

Parameters X : indexable, length n_samples

Must fulfill the input assumptions of the underlying estimator.

sklearn.mixture.DPGMM

Warning: DEPRECATED

class sklearn.mixture.DPGMM(*args, **kwargs)
Dirichlet Process Gaussian Mixture Models

Deprecated since version 0.18: This class will be removed in 0.20.
Use sklearn.mixture.BayesianGaussianMixture with parameter
weight_concentration_prior_type='dirichlet_process' instead.

Methods

aic(X) Akaike information criterion for the current model fit
and the proposed data.

bic(X) Bayesian information criterion for the current model fit
and the proposed data.

fit(X[, y]) Estimate model parameters with the EM algorithm.
fit_predict(X[, y]) Fit and then predict labels for data.
get_params([deep]) Get parameters for this estimator.
lower_bound(X, z) returns a lower bound on model evidence based on X

and membership
predict(X) Predict label for data.
predict_proba(X) Predict posterior probability of data under each Gaus-

sian in the model.
sample([n_samples, random_state]) Generate random samples from the model.
score(X[, y]) Compute the log probability under the model.

Continued on next page
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Table 5.280 – continued from previous page
score_samples(X) Return the likelihood of the data under the model.
set_params(**params) Set the parameters of this estimator.

__init__(*args, **kwargs)
DEPRECATED: The DPGMM class is not working correctly and it’s bet-
ter to use sklearn.mixture.BayesianGaussianMixture class with parameter
weight_concentration_prior_type=’dirichlet_process’ instead. DPGMM is deprecated in 0.18 and
will be removed in 0.20.

aic(X)
Akaike information criterion for the current model fit and the proposed data.

Parameters X : array of shape(n_samples, n_dimensions)

Returns aic : float (the lower the better)

bic(X)
Bayesian information criterion for the current model fit and the proposed data.

Parameters X : array of shape(n_samples, n_dimensions)

Returns bic : float (the lower the better)

fit(X, y=None)
Estimate model parameters with the EM algorithm.

A initialization step is performed before entering the expectation-maximization (EM) algorithm. If you
want to avoid this step, set the keyword argument init_params to the empty string ‘’ when creating the
GMM object. Likewise, if you would like just to do an initialization, set n_iter=0.

Parameters X : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns self :

fit_predict(X, y=None)
Fit and then predict labels for data.

Warning: Due to the final maximization step in the EM algorithm, with low iterations the prediction may
not be 100% accurate.

New in version 0.17: fit_predict method in Gaussian Mixture Model.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = (n_samples,) component memberships

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

lower_bound(X, z)
returns a lower bound on model evidence based on X and membership
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predict(X)
Predict label for data.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = (n_samples,) component memberships

predict_proba(X)
Predict posterior probability of data under each Gaussian in the model.

Parameters X : array-like, shape = [n_samples, n_features]

Returns responsibilities : array-like, shape = (n_samples, n_components)

Returns the probability of the sample for each Gaussian (state) in the model.

sample(n_samples=1, random_state=None)
Generate random samples from the model.

Parameters n_samples : int, optional

Number of samples to generate. Defaults to 1.

Returns X : array_like, shape (n_samples, n_features)

List of samples

score(X, y=None)
Compute the log probability under the model.

Parameters X : array_like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns logprob : array_like, shape (n_samples,)

Log probabilities of each data point in X

score_samples(X)
Return the likelihood of the data under the model.

Compute the bound on log probability of X under the model and return the posterior distribution (respon-
sibilities) of each mixture component for each element of X.

This is done by computing the parameters for the mean-field of z for each observation.

Parameters X : array_like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns logprob : array_like, shape (n_samples,)

Log probabilities of each data point in X

responsibilities : array_like, shape (n_samples, n_components)

Posterior probabilities of each mixture component for each observation

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :
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sklearn.mixture.GMM

Warning: DEPRECATED

class sklearn.mixture.GMM(*args, **kwargs)
Legacy Gaussian Mixture Model

Deprecated since version 0.18: This class will be removed in 0.20. Use sklearn.mixture.
GaussianMixture instead.

Methods

aic(X) Akaike information criterion for the current model fit
and the proposed data.

bic(X) Bayesian information criterion for the current model fit
and the proposed data.

fit(X[, y]) Estimate model parameters with the EM algorithm.
fit_predict(X[, y]) Fit and then predict labels for data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict label for data.
predict_proba(X) Predict posterior probability of data under each Gaus-

sian in the model.
sample([n_samples, random_state]) Generate random samples from the model.
score(X[, y]) Compute the log probability under the model.
score_samples(X) Return the per-sample likelihood of the data under the

model.
set_params(**params) Set the parameters of this estimator.

__init__(*args, **kwargs)
DEPRECATED: The class GMM is deprecated in 0.18 and will be removed in 0.20. Use class Gaussian-
Mixture instead.

aic(X)
Akaike information criterion for the current model fit and the proposed data.

Parameters X : array of shape(n_samples, n_dimensions)

Returns aic : float (the lower the better)

bic(X)
Bayesian information criterion for the current model fit and the proposed data.

Parameters X : array of shape(n_samples, n_dimensions)

Returns bic : float (the lower the better)

fit(X, y=None)
Estimate model parameters with the EM algorithm.

A initialization step is performed before entering the expectation-maximization (EM) algorithm. If you
want to avoid this step, set the keyword argument init_params to the empty string ‘’ when creating the
GMM object. Likewise, if you would like just to do an initialization, set n_iter=0.

Parameters X : array_like, shape (n, n_features)
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List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns self :

fit_predict(X, y=None)
Fit and then predict labels for data.

Warning: Due to the final maximization step in the EM algorithm, with low iterations the prediction may
not be 100% accurate.

New in version 0.17: fit_predict method in Gaussian Mixture Model.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = (n_samples,) component memberships

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

predict(X)
Predict label for data.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = (n_samples,) component memberships

predict_proba(X)
Predict posterior probability of data under each Gaussian in the model.

Parameters X : array-like, shape = [n_samples, n_features]

Returns responsibilities : array-like, shape = (n_samples, n_components)

Returns the probability of the sample for each Gaussian (state) in the model.

sample(n_samples=1, random_state=None)
Generate random samples from the model.

Parameters n_samples : int, optional

Number of samples to generate. Defaults to 1.

Returns X : array_like, shape (n_samples, n_features)

List of samples

score(X, y=None)
Compute the log probability under the model.

Parameters X : array_like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns logprob : array_like, shape (n_samples,)

Log probabilities of each data point in X
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score_samples(X)
Return the per-sample likelihood of the data under the model.

Compute the log probability of X under the model and return the posterior distribution (responsibilities)
of each mixture component for each element of X.

Parameters X : array_like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns logprob : array_like, shape (n_samples,)

Log probabilities of each data point in X.

responsibilities : array_like, shape (n_samples, n_components)

Posterior probabilities of each mixture component for each observation

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

sklearn.mixture.VBGMM

Warning: DEPRECATED

class sklearn.mixture.VBGMM(*args, **kwargs)
Variational Inference for the Gaussian Mixture Model

Deprecated since version 0.18: This class will be removed in 0.20.
Use sklearn.mixture.BayesianGaussianMixture with parameter
weight_concentration_prior_type='dirichlet_distribution' instead.

Variational inference for a Gaussian mixture model probability distribution. This class allows for easy and
efficient inference of an approximate posterior distribution over the parameters of a Gaussian mixture model
with a fixed number of components.

Initialization is with normally-distributed means and identity covariance, for proper convergence.

Read more in the User Guide.

Parameters n_components : int, default 1

Number of mixture components.

covariance_type : string, default ‘diag’

String describing the type of covariance parameters to use. Must be one of ‘spherical’,
‘tied’, ‘diag’, ‘full’.

alpha : float, default 1

Real number representing the concentration parameter of the dirichlet distribution. Intu-
itively, the higher the value of alpha the more likely the variational mixture of Gaussians
model will use all components it can.

tol : float, default 1e-3
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Convergence threshold.

n_iter : int, default 10

Maximum number of iterations to perform before convergence.

params : string, default ‘wmc’

Controls which parameters are updated in the training process. Can contain any combi-
nation of ‘w’ for weights, ‘m’ for means, and ‘c’ for covars.

init_params : string, default ‘wmc’

Controls which parameters are updated in the initialization process. Can contain any
combination of ‘w’ for weights, ‘m’ for means, and ‘c’ for covars. Defaults to ‘wmc’.

verbose : int, default 0

Controls output verbosity.

Attributes covariance_type : string

String describing the type of covariance parameters used by the DP-GMM. Must be one
of ‘spherical’, ‘tied’, ‘diag’, ‘full’.

n_features : int

Dimensionality of the Gaussians.

n_components : int (read-only)

Number of mixture components.

weights_ : array, shape (n_components,)

Mixing weights for each mixture component.

means_ : array, shape (n_components, n_features)

Mean parameters for each mixture component.

precs_ : array

Precision (inverse covariance) parameters for each mixture component. The shape de-
pends on covariance_type:

(`n_components`, 'n_features') if 'spherical',
(`n_features`, `n_features`) if 'tied',
(`n_components`, `n_features`) if 'diag',
(`n_components`, `n_features`, `n_features`) if 'full'

converged_ : bool

True when convergence was reached in fit(), False otherwise.

See also:

GMM Finite Gaussian mixture model fit with EM

DPGMM Infinite Gaussian mixture model, using the dirichlet process, fit with a variational algorithm

Methods
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aic(X) Akaike information criterion for the current model fit
and the proposed data.

bic(X) Bayesian information criterion for the current model fit
and the proposed data.

fit(X[, y]) Estimate model parameters with the EM algorithm.
fit_predict(X[, y]) Fit and then predict labels for data.
get_params([deep]) Get parameters for this estimator.
lower_bound(X, z) returns a lower bound on model evidence based on X

and membership
predict(X) Predict label for data.
predict_proba(X) Predict posterior probability of data under each Gaus-

sian in the model.
sample([n_samples, random_state]) Generate random samples from the model.
score(X[, y]) Compute the log probability under the model.
score_samples(X) Return the likelihood of the data under the model.
set_params(**params) Set the parameters of this estimator.

__init__(*args, **kwargs)
DEPRECATED: The VBGMM class is not working correctly and it’s bet-
ter to use sklearn.mixture.BayesianGaussianMixture class with parameter
weight_concentration_prior_type=’dirichlet_distribution’ instead. VBGMM is deprecated in 0.18
and will be removed in 0.20.

aic(X)
Akaike information criterion for the current model fit and the proposed data.

Parameters X : array of shape(n_samples, n_dimensions)

Returns aic : float (the lower the better)

bic(X)
Bayesian information criterion for the current model fit and the proposed data.

Parameters X : array of shape(n_samples, n_dimensions)

Returns bic : float (the lower the better)

fit(X, y=None)
Estimate model parameters with the EM algorithm.

A initialization step is performed before entering the expectation-maximization (EM) algorithm. If you
want to avoid this step, set the keyword argument init_params to the empty string ‘’ when creating the
GMM object. Likewise, if you would like just to do an initialization, set n_iter=0.

Parameters X : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns self :

fit_predict(X, y=None)
Fit and then predict labels for data.

Warning: Due to the final maximization step in the EM algorithm, with low iterations the prediction may
not be 100% accurate.

New in version 0.17: fit_predict method in Gaussian Mixture Model.

Parameters X : array-like, shape = [n_samples, n_features]
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Returns C : array, shape = (n_samples,) component memberships

get_params(deep=True)
Get parameters for this estimator.

Parameters deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are
estimators.

Returns params : mapping of string to any

Parameter names mapped to their values.

lower_bound(X, z)
returns a lower bound on model evidence based on X and membership

predict(X)
Predict label for data.

Parameters X : array-like, shape = [n_samples, n_features]

Returns C : array, shape = (n_samples,) component memberships

predict_proba(X)
Predict posterior probability of data under each Gaussian in the model.

Parameters X : array-like, shape = [n_samples, n_features]

Returns responsibilities : array-like, shape = (n_samples, n_components)

Returns the probability of the sample for each Gaussian (state) in the model.

sample(n_samples=1, random_state=None)
Generate random samples from the model.

Parameters n_samples : int, optional

Number of samples to generate. Defaults to 1.

Returns X : array_like, shape (n_samples, n_features)

List of samples

score(X, y=None)
Compute the log probability under the model.

Parameters X : array_like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns logprob : array_like, shape (n_samples,)

Log probabilities of each data point in X

score_samples(X)
Return the likelihood of the data under the model.

Compute the bound on log probability of X under the model and return the posterior distribution (respon-
sibilities) of each mixture component for each element of X.

This is done by computing the parameters for the mean-field of z for each observation.

Parameters X : array_like, shape (n_samples, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

Returns logprob : array_like, shape (n_samples,)
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Log probabilities of each data point in X

responsibilities : array_like, shape (n_samples, n_components)

Posterior probabilities of each mixture component for each observation

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Returns self :

cross_validation.check_cv(cv[, X, y, classifier]) Input checker utility for building a CV in a user friendly
way.

cross_validation.cross_val_predict(estimator,
X)

Generate cross-validated estimates for each input data point

cross_validation.cross_val_score(estimator,
X)

Evaluate a score by cross-validation

cross_validation.permutation_test_score(. . . )Evaluate the significance of a cross-validated score with
permutations

cross_validation.train_test_split(*arrays,
. . . )

Split arrays or matrices into random train and test subsets

grid_search.fit_grid_point(X, y, estimator,
. . . )

Run fit on one set of parameters.

learning_curve.learning_curve(estimator, X,
y)

Learning curve.

learning_curve.validation_curve(estimator,
. . . )

Validation curve.

sklearn.cross_validation.check_cv

Warning: DEPRECATED

sklearn.cross_validation.check_cv(cv, X=None, y=None, classifier=False)
Input checker utility for building a CV in a user friendly way.

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
check_cv instead.

Parameters cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, if classifier is True and y is binary or multiclass,
StratifiedKFold is used. In all other cases, KFold is used.
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Refer User Guide for the various cross-validation strategies that can be used here.

X : array-like

The data the cross-val object will be applied on.

y : array-like

The target variable for a supervised learning problem.

classifier : boolean optional

Whether the task is a classification task, in which case stratified KFold will be used.

Returns checked_cv : a cross-validation generator instance.

The return value is guaranteed to be a cv generator instance, whatever the input type.

sklearn.cross_validation.cross_val_predict

Warning: DEPRECATED

sklearn.cross_validation.cross_val_predict(estimator, X, y=None, cv=None,
n_jobs=1, verbose=0, fit_params=None,
pre_dispatch=‘2*n_jobs’)

Generate cross-validated estimates for each input data point

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
cross_val_predict instead.

Read more in the User Guide.

Parameters estimator : estimator object implementing ‘fit’ and ‘predict’

The object to use to fit the data.

X : array-like

The data to fit. Can be, for example a list, or an array at least 2d.

y : array-like, optional, default: None

The target variable to try to predict in the case of supervised learning.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or multi-
class, StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

n_jobs : integer, optional

The number of CPUs to use to do the computation. -1 means ‘all CPUs’.
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verbose : integer, optional

The verbosity level.

fit_params : dict, optional

Parameters to pass to the fit method of the estimator.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

• None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

• An int, giving the exact number of total jobs that are spawned

• A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

Returns preds : ndarray

This is the result of calling ‘predict’

Examples

>>> from sklearn import datasets, linear_model
>>> from sklearn.cross_validation import cross_val_predict
>>> diabetes = datasets.load_diabetes()
>>> X = diabetes.data[:150]
>>> y = diabetes.target[:150]
>>> lasso = linear_model.Lasso()
>>> y_pred = cross_val_predict(lasso, X, y)

sklearn.cross_validation.cross_val_score

Warning: DEPRECATED

sklearn.cross_validation.cross_val_score(estimator, X, y=None, scoring=None, cv=None,
n_jobs=1, verbose=0, fit_params=None,
pre_dispatch=‘2*n_jobs’)

Evaluate a score by cross-validation

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
cross_val_score instead.

Read more in the User Guide.

Parameters estimator : estimator object implementing ‘fit’

The object to use to fit the data.

X : array-like

The data to fit. Can be, for example a list, or an array at least 2d.

y : array-like, optional, default: None
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The target variable to try to predict in the case of supervised learning.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or multi-
class, StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

n_jobs : integer, optional

The number of CPUs to use to do the computation. -1 means ‘all CPUs’.

verbose : integer, optional

The verbosity level.

fit_params : dict, optional

Parameters to pass to the fit method of the estimator.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing
this number can be useful to avoid an explosion of memory consumption when more
jobs get dispatched than CPUs can process. This parameter can be:

• None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the
jobs

• An int, giving the exact number of total jobs that are spawned

• A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

Returns scores : array of float, shape=(len(list(cv)),)

Array of scores of the estimator for each run of the cross validation.

See also:

sklearn.metrics.make_scorer Make a scorer from a performance metric or loss function.

Examples

>>> from sklearn import datasets, linear_model
>>> from sklearn.cross_validation import cross_val_score
>>> diabetes = datasets.load_diabetes()
>>> X = diabetes.data[:150]
>>> y = diabetes.target[:150]
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>>> lasso = linear_model.Lasso()
>>> print(cross_val_score(lasso, X, y))
[ 0.33150734 0.08022311 0.03531764]

sklearn.cross_validation.permutation_test_score

Warning: DEPRECATED

sklearn.cross_validation.permutation_test_score(estimator, X, y, cv=None,
n_permutations=100, n_jobs=1,
labels=None, random_state=0, ver-
bose=0, scoring=None)

Evaluate the significance of a cross-validated score with permutations

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
permutation_test_score instead.

Read more in the User Guide.

Parameters estimator : estimator object implementing ‘fit’

The object to use to fit the data.

X : array-like of shape at least 2D

The data to fit.

y : array-like

The target variable to try to predict in the case of supervised learning.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or multi-
class, StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

n_permutations : integer, optional

Number of times to permute y.

n_jobs : integer, optional

The number of CPUs to use to do the computation. -1 means ‘all CPUs’.

labels : array-like of shape [n_samples] (optional)
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Labels constrain the permutation among groups of samples with a same label.

random_state : int, RandomState instance or None, optional (default=0)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

verbose : integer, optional

The verbosity level.

Returns score : float

The true score without permuting targets.

permutation_scores : array, shape (n_permutations,)

The scores obtained for each permutations.

pvalue : float

The p-value, which approximates the probability that the score would be obtained by
chance. This is calculated as:

(C + 1) / (n_permutations + 1)

Where C is the number of permutations whose score >= the true score.

The best possible p-value is 1/(n_permutations + 1), the worst is 1.0.

Notes

This function implements Test 1 in:

Ojala and Garriga. Permutation Tests for Studying Classifier Performance. The Journal of Machine
Learning Research (2010) vol. 11

sklearn.cross_validation.train_test_split

Warning: DEPRECATED

sklearn.cross_validation.train_test_split(*arrays, **options)
Split arrays or matrices into random train and test subsets

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
train_test_split instead.

Quick utility that wraps input validation and next(iter(ShuffleSplit(n_samples))) and applica-
tion to input data into a single call for splitting (and optionally subsampling) data in a oneliner.

Read more in the User Guide.

Parameters *arrays : sequence of indexables with same length / shape[0]

Allowed inputs are lists, numpy arrays, scipy-sparse matrices or pandas dataframes.

test_size : float, int, or None (default is None)
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If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the test split. If int, represents the absolute number of test samples. If None,
the value is automatically set to the complement of the train size. If train size is also
None, test size is set to 0.25.

train_size : float, int, or None (default is None)

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the train split. If int, represents the absolute number of train samples. If
None, the value is automatically set to the complement of the test size.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState
instance, random_state is the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

stratify : array-like or None (default is None)

If not None, data is split in a stratified fashion, using this as the labels array.

New in version 0.17: stratify splitting

Returns splitting : list, length = 2 * len(arrays),

List containing train-test split of inputs.

New in version 0.16: If the input is sparse, the output will be a scipy.sparse.
csr_matrix. Else, output type is the same as the input type.

Examples

>>> import numpy as np
>>> from sklearn.cross_validation import train_test_split
>>> X, y = np.arange(10).reshape((5, 2)), range(5)
>>> X
array([[0, 1],

[2, 3],
[4, 5],
[6, 7],
[8, 9]])

>>> list(y)
[0, 1, 2, 3, 4]

>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.33, random_state=42)
...
>>> X_train
array([[4, 5],

[0, 1],
[6, 7]])

>>> y_train
[2, 0, 3]
>>> X_test
array([[2, 3],

[8, 9]])
>>> y_test
[1, 4]
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sklearn.grid_search.fit_grid_point

Warning: DEPRECATED

sklearn.grid_search.fit_grid_point(X, y, estimator, parameters, train, test, scorer, verbose, er-
ror_score=’raise’, **fit_params)

Run fit on one set of parameters.

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
fit_grid_point instead.

Parameters X : array-like, sparse matrix or list

Input data.

y : array-like or None

Targets for input data.

estimator : estimator object

A object of that type is instantiated for each grid point. This is assumed to implement
the scikit-learn estimator interface. Either estimator needs to provide a score function,
or scoring must be passed.

parameters : dict

Parameters to be set on estimator for this grid point.

train : ndarray, dtype int or bool

Boolean mask or indices for training set.

test : ndarray, dtype int or bool

Boolean mask or indices for test set.

scorer : callable or None.

If provided must be a scorer callable object / function with signature
scorer(estimator, X, y).

verbose : int

Verbosity level.

**fit_params : kwargs

Additional parameter passed to the fit function of the estimator.

error_score : ‘raise’ (default) or numeric

Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the
error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter
does not affect the refit step, which will always raise the error.

Returns score : float

Score of this parameter setting on given training / test split.

parameters : dict

The parameters that have been evaluated.

n_samples_test : int
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Number of test samples in this split.

sklearn.learning_curve.learning_curve

Warning: DEPRECATED

sklearn.learning_curve.learning_curve(estimator, X, y, train_sizes=array([ 0.1, 0.33,
0.55, 0.78, 1. ]), cv=None, scoring=None,
exploit_incremental_learning=False, n_jobs=1,
pre_dispatch=’all’, verbose=0, error_score=’raise’)

Learning curve.

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
learning_curve instead.

Determines cross-validated training and test scores for different training set sizes.

A cross-validation generator splits the whole dataset k times in training and test data. Subsets of the training set
with varying sizes will be used to train the estimator and a score for each training subset size and the test set
will be computed. Afterwards, the scores will be averaged over all k runs for each training subset size.

Read more in the User Guide.

Parameters estimator : object type that implements the “fit” and “predict” methods

An object of that type which is cloned for each validation.

X : array-like, shape (n_samples, n_features)

Training vector, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, shape (n_samples) or (n_samples, n_features), optional

Target relative to X for classification or regression; None for unsupervised learning.

train_sizes : array-like, shape (n_ticks,), dtype float or int

Relative or absolute numbers of training examples that will be used to generate the
learning curve. If the dtype is float, it is regarded as a fraction of the maximum size
of the training set (that is determined by the selected validation method), i.e. it has to
be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. Note
that for classification the number of samples usually have to be big enough to contain at
least one sample from each class. (default: np.linspace(0.1, 1.0, 5))

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or mul-
ticlass, sklearn.model_selection.StratifiedKFold is used. In all other
cases, sklearn.model_selection.KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.
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scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

exploit_incremental_learning : boolean, optional, default: False

If the estimator supports incremental learning, this will be used to speed up fitting for
different training set sizes.

n_jobs : integer, optional

Number of jobs to run in parallel (default 1).

pre_dispatch : integer or string, optional

Number of predispatched jobs for parallel execution (default is all). The option can
reduce the allocated memory. The string can be an expression like ‘2*n_jobs’.

verbose : integer, optional

Controls the verbosity: the higher, the more messages.

error_score : ‘raise’ (default) or numeric

Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the
error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter
does not affect the refit step, which will always raise the error.

Returns train_sizes_abs : array, shape = (n_unique_ticks,), dtype int

Numbers of training examples that has been used to generate the learning curve. Note
that the number of ticks might be less than n_ticks because duplicate entries will be
removed.

train_scores : array, shape (n_ticks, n_cv_folds)

Scores on training sets.

test_scores : array, shape (n_ticks, n_cv_folds)

Scores on test set.

Notes

See examples/model_selection/plot_learning_curve.py

sklearn.learning_curve.validation_curve

Warning: DEPRECATED

sklearn.learning_curve.validation_curve(estimator, X, y, param_name, param_range,
cv=None, scoring=None, n_jobs=1,
pre_dispatch=’all’, verbose=0)

Validation curve.

Deprecated since version 0.18: This module will be removed in 0.20. Use sklearn.model_selection.
validation_curve instead.

Determine training and test scores for varying parameter values.
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Compute scores for an estimator with different values of a specified parameter. This is similar to grid search
with one parameter. However, this will also compute training scores and is merely a utility for plotting the
results.

Read more in the User Guide.

Parameters estimator : object type that implements the “fit” and “predict” methods

An object of that type which is cloned for each validation.

X : array-like, shape (n_samples, n_features)

Training vector, where n_samples is the number of samples and n_features is the number
of features.

y : array-like, shape (n_samples) or (n_samples, n_features), optional

Target relative to X for classification or regression; None for unsupervised learning.

param_name : string

Name of the parameter that will be varied.

param_range : array-like, shape (n_values,)

The values of the parameter that will be evaluated.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross-validation,

• integer, to specify the number of folds.

• An object to be used as a cross-validation generator.

• An iterable yielding train/test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or mul-
ticlass, sklearn.model_selection.StratifiedKFold is used. In all other
cases, sklearn.model_selection.KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y).

n_jobs : integer, optional

Number of jobs to run in parallel (default 1).

pre_dispatch : integer or string, optional

Number of predispatched jobs for parallel execution (default is all). The option can
reduce the allocated memory. The string can be an expression like ‘2*n_jobs’.

verbose : integer, optional

Controls the verbosity: the higher, the more messages.

Returns train_scores : array, shape (n_ticks, n_cv_folds)

Scores on training sets.

test_scores : array, shape (n_ticks, n_cv_folds)
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Scores on test set.

Notes

See examples/model_selection/plot_validation_curve.py

5.36. Recently deprecated 2083



scikit-learn user guide, Release 0.19.1

2084 Chapter 5. API Reference



CHAPTER

SIX

DEVELOPER’S GUIDE

6.1 Contributing

This project is a community effort, and everyone is welcome to contribute.

The project is hosted on https://github.com/scikit-learn/scikit-learn

Scikit-learn is somewhat selective when it comes to adding new algorithms, and the best way to contribute and to help
the project is to start working on known issues. See Issues for New Contributors to get started.

Our community, our values

We are a community based on openness and friendly, didactic, discussions.

We aspire to treat everybody equally, and value their contributions.

Decisions are made based on technical merit and consensus.

Code is not the only way to help the project. Reviewing pull requests, answering questions to help others on
mailing lists or issues, organizing and teaching tutorials, working on the website, improving the documentation, are
all priceless contributions.

We abide by the principles of openness, respect, and consideration of others of the Python Software Foundation:
https://www.python.org/psf/codeofconduct/

6.1.1 Submitting a bug report

In case you experience issues using this package, do not hesitate to submit a ticket to the Bug Tracker. You are also
welcome to post feature requests or pull requests.

6.1.2 Ways to contribute

There are many ways to contribute to scikit-learn, with the most common ones being contribution of code or docu-
mentation to the project. Improving the documentation is no less important than improving the library itself. If you
find a typo in the documentation, or have made improvements, do not hesitate to send an email to the mailing list or
preferably submit a GitHub pull request. Full documentation can be found under the doc/ directory.
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But there are many other ways to help. In particular answering queries on the issue tracker, investigating bugs,
and reviewing other developers’ pull requests are very valuable contributions that decrease the burden on the project
maintainers.

Another way to contribute is to report issues you’re facing, and give a “thumbs up” on issues that others reported and
that are relevant to you. It also helps us if you spread the word: reference the project from your blog and articles, link
to it from your website, or simply say “I use it”:

6.1.3 Retrieving the latest code

We use Git for version control and GitHub for hosting our main repository.

You can check out the latest sources with the command:

git clone git://github.com/scikit-learn/scikit-learn.git

or if you have write privileges:

git clone git@github.com:scikit-learn/scikit-learn.git

If you run the development version, it is cumbersome to reinstall the package each time you update the sources. It is
thus preferred that you add the scikit-learn directory to your PYTHONPATH and build the extension in place:

python setup.py build_ext --inplace

Another option is to install the package in editable mode if you change your code a lot and do not want to have to
reinstall every time. This basically builds the extension in place and creates a link to the development directory (see
the pip docs):

pip install --editable .

Note: This is fundamentally similar to using the command python setup.py develop (see the setuptool
docs). It is however preferred to use pip.

Note: If you decide to do an editable install you have to rerun:

python setup.py build_ext --inplace

every time the source code of a compiled extension is changed (for instance when switching branches or pulling
changes from upstream).

On Unix-like systems, you can simply type make in the top-level folder to build in-place and launch all the tests. Have
a look at the Makefile for additional utilities.

6.1.4 Contributing code

Note: To avoid duplicating work, it is highly advised that you contact the developers on the mailing list before starting
work on a non-trivial feature.

https://mail.python.org/mailman/listinfo/scikit-learn
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How to contribute

The preferred way to contribute to scikit-learn is to fork the main repository on GitHub, then submit a “pull request”
(PR):

1. Create an account on GitHub if you do not already have one.

2. Fork the project repository: click on the ‘Fork’ button near the top of the page. This creates a copy of the code
under your account on the GitHub server. For more details on how to fork a repository see this guide.

3. Clone this copy to your local disk:

$ git clone git@github.com:YourLogin/scikit-learn.git

4. Create a branch to hold your changes:

$ git checkout -b my-feature

and start making changes. Never work in the master branch!

5. Work on this copy, on your computer, using Git to do the version control. When you’re done editing, do:

$ git add modified_files
$ git commit

to record your changes in Git, then push them to GitHub with:

$ git push -u origin my-feature

Finally, follow these instructions to create a pull request from your fork. This will send an email to the committers.
You may want to consider sending an email to the mailing list for more visibility.

Note: In the above setup, your origin remote repository points to YourLogin/scikit-learn.git. If you wish to
fetch/merge from the main repository instead of your forked one, you will need to add another remote to use instead
of origin. If we choose the name upstream for it, the command will be:

$ git remote add upstream https://github.com/scikit-learn/scikit-learn.git

If any of the above seems like magic to you, then look up the Git documentation and the Git development workflow
on the web.

If some conflicts arise between your branch and the master branch, you need to merge master. The command will
be:

$ git merge master

with master being synchronized with the upstream.

Subsequently, you need to solve the conflicts. You can refer to the Git documentation related to resolving merge
conflict using the command line.

Note: In the past, the policy to resolve conflicts was to rebase your branch on master. GitHub interface deals with
merging master better than in the past.
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Contributing pull requests

It is recommended to check that your contribution complies with the following rules before submitting a pull request:

• Follow the coding-guidelines (see below). To make sure that your PR does not add PEP8 violations you can run
./build_tools/travis/flake8_diff.sh or make flake8-diff on a Unix-like system.

• When applicable, use the validation tools and other code in the sklearn.utils submodule. A list of utility
routines available for developers can be found in the Utilities for Developers page.

• Give your pull request a helpful title that summarises what your contribution does. In some cases “Fix <ISSUE
TITLE>” is enough. “Fix #<ISSUE NUMBER>” is not enough.

• Often pull requests resolve one or more other issues (or pull requests). If merging your pull request means that
some other issues/PRs should be closed, you should use keywords to create link to them (e.g., Fixes #1234;
multiple issues/PRs are allowed as long as each one is preceded by a keyword). Upon merging, those issues/PRs
will automatically be closed by GitHub. If your pull request is simply related to some other issues/PRs, create a
link to them without using the keywords (e.g., See also #1234).

• All public methods should have informative docstrings with sample usage presented as doctests when appropri-
ate.

• Please prefix the title of your pull request with [MRG] if the contribution is complete and should be subjected
to a detailed review. Two core developers will review your code and change the prefix of the pull request to
[MRG + 1] and [MRG + 2] on approval, making it eligible for merging. An incomplete contribution –
where you expect to do more work before receiving a full review – should be prefixed [WIP] (to indicate a
work in progress) and changed to [MRG] when it matures. WIPs may be useful to: indicate you are working on
something to avoid duplicated work, request broad review of functionality or API, or seek collaborators. WIPs
often benefit from the inclusion of a task list in the PR description.

• All other tests pass when everything is rebuilt from scratch. On Unix-like systems, check with (from the toplevel
source folder):

$ make

• When adding additional functionality, provide at least one example script in the examples/ folder. Have
a look at other examples for reference. Examples should demonstrate why the new functionality is useful in
practice and, if possible, compare it to other methods available in scikit-learn.

• Documentation and high-coverage tests are necessary for enhancements to be accepted. Bug-fixes or new fea-
tures should be provided with non-regression tests. These tests verify the correct behavior of the fix or feature.
In this manner, further modifications on the code base are granted to be consistent with the desired behavior. For
the case of bug fixes, at the time of the PR, the non-regression tests should fail for the code base in the master
branch and pass for the PR code.

• At least one paragraph of narrative documentation with links to references in the literature (with PDF links when
possible) and the example. For more details on writing and building the documentation, see the Documentation
section.

You can also check for common programming errors with the following tools:

• Code with a good unittest coverage (at least 90%, better 100%), check with:

$ pip install nose coverage
$ nosetests --with-coverage path/to/tests_for_package

see also Testing and improving test coverage

• No pyflakes warnings, check with:
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$ pip install pyflakes
$ pyflakes path/to/module.py

• No PEP8 warnings, check with:

$ pip install pep8
$ pep8 path/to/module.py

• AutoPEP8 can help you fix some of the easy redundant errors:

$ pip install autopep8
$ autopep8 path/to/pep8.py

Bonus points for contributions that include a performance analysis with a benchmark script and profiling output (please
report on the mailing list or on the GitHub wiki).

Also check out the How to optimize for speed guide for more details on profiling and Cython optimizations.

Note: The current state of the scikit-learn code base is not compliant with all of those guidelines, but we expect that
enforcing those constraints on all new contributions will get the overall code base quality in the right direction.

Note: For two very well documented and more detailed guides on development workflow, please pay a visit to the
Scipy Development Workflow - and the Astropy Workflow for Developers sections.

Continuous Integration (CI)

• Travis is used for testing on Linux platforms

• Appveyor is used for testing on Windows platforms

• CircleCI is used to build the docs for viewing

Please note that if one of the following markers appear in the latest commit message, the following actions are
taken.

Commit Message Marker Action Taken by CI
[ci skip] CI is skipped completely
[doc skip] Docs are not built
[doc quick] Docs built, but excludes example gallery plots
[doc build] Docs built including example gallery plots

Filing Bugs

We use Github issues to track all bugs and feature requests; feel free to open an issue if you have found a bug or wish
to see a feature implemented.

It is recommended to check that your issue complies with the following rules before submitting:

• Verify that your issue is not being currently addressed by other issues or pull requests.

• If you are submitting an algorithm or feature request, please verify that the algorithm fulfills our new algorithm
requirements.
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• Please ensure all code snippets and error messages are formatted in appropriate code blocks. See Creating and
highlighting code blocks.

• Please include your operating system type and version number, as well as your Python, scikit-learn, numpy, and
scipy versions. This information can be found by running the following code snippet:

import platform; print(platform.platform())
import sys; print("Python", sys.version)
import numpy; print("NumPy", numpy.__version__)
import scipy; print("SciPy", scipy.__version__)
import sklearn; print("Scikit-Learn", sklearn.__version__)

• Please be specific about what estimators and/or functions are involved and the shape of the data, as appropriate;
please include a reproducible code snippet or link to a gist. If an exception is raised, please provide the traceback.

Issues for New Contributors

New contributors should look for the following tags when looking for issues. We strongly recommend that new
contributors tackle “easy” issues first: this helps the contributor become familiar with the contribution workflow, and
for the core devs to become acquainted with the contributor; besides which, we frequently underestimate how easy an
issue is to solve!

good first issue tag

A great way to start contributing to scikit-learn is to pick an item from the list of good first issues in the issue tracker.
Resolving these issues allow you to start contributing to the project without much prior knowledge. If you have
already contributed to scikit-learn, you should look at Easy issues instead.

Easy tag

Another great way to contribute to scikit-learn is to pick an item from the list of Easy issues in the issue tracker.
Your assistance in this area will be greatly appreciated by the more experienced developers as it helps free up their
time to concentrate on other issues.

help wanted tag

We often use the help wanted tag to mark issues regardless of difficulty. Additionally, we use the help wanted tag to
mark Pull Requests which have been abandoned by their original contributor and are available for someone to pick
up where the original contributor left off. The list of issues with the help wanted tag can be found here .

Note that not all issues which need contributors will have this tag.

Documentation

We are glad to accept any sort of documentation: function docstrings, reStructuredText documents (like this one),
tutorials, etc. reStructuredText documents live in the source code repository under the doc/ directory.

You can edit the documentation using any text editor, and then generate the HTML output by typing make html from
the doc/ directory. Alternatively, make html-noplot can be used to quickly generate the documentation without
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the example gallery. The resulting HTML files will be placed in _build/html/ and are viewable in a web browser. See
the README file in the doc/ directory for more information.

For building the documentation, you will need sphinx, matplotlib and pillow.

When you are writing documentation, it is important to keep a good compromise between mathematical and algo-
rithmic details, and give intuition to the reader on what the algorithm does.

Basically, to elaborate on the above, it is best to always start with a small paragraph with a hand-waving explanation of
what the method does to the data. Then, it is very helpful to point out why the feature is useful and when it should be
used - the latter also including “big O” (𝑂 (𝑔 (𝑛))) complexities of the algorithm, as opposed to just rules of thumb, as
the latter can be very machine-dependent. If those complexities are not available, then rules of thumb may be provided
instead.

Secondly, a generated figure from an example (as mentioned in the previous paragraph) should then be included to
further provide some intuition.

Next, one or two small code examples to show its use can be added.

Next, any math and equations, followed by references, can be added to further the documentation. Not starting the
documentation with the maths makes it more friendly towards users that are just interested in what the feature will do,
as opposed to how it works “under the hood”.

You may also be asked to show your changes when it’s built. When you create a pull request or make changes in an
existing one modifying the docs, CircleCI automatically builds them. Thus, you can easily view your changes in the
built artifacts using the following URL:

http://scikit-learn.org/circle?{BUILD_NUMBER}

We attempt to assemble a more precise set of changed files in the documentation at:

http://scikit-learn.org/circle?{BUILD_NUMBER}/_changed.html

Note: When you visit the details page of the CircleCI tests, you can find your BUILD_NUMBER mentioned as ‘build
#’ which is different from your pull request number, which is presented as ‘pull/#’.

Finally, follow the formatting rules below to make it consistently good:

• Add “See also” in docstrings for related classes/functions.

• “See also” in docstrings should be one line per reference, with a colon and an explanation, for example:

See also
--------
SelectKBest : Select features based on the k highest scores.
SelectFpr : Select features based on a false positive rate test.

• For unwritten formatting rules, try to follow existing good works:

– For “References” in docstrings, see the Silhouette Coefficient (sklearn.metrics.
silhouette_score).

Warning: Sphinx version

While we do our best to have the documentation build under as many version of Sphinx as possible, the different
versions tend to behave slightly differently. To get the best results, you should use version 1.0.
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Testing and improving test coverage

High-quality unit testing is a corner-stone of the scikit-learn development process. For this purpose, we use the nose
package. The tests are functions appropriately named, located in tests subdirectories, that check the validity of the
algorithms and the different options of the code.

The full scikit-learn tests can be run using ‘make’ in the root folder. Alternatively, running ‘nosetests’ in a folder will
run all the tests of the corresponding subpackages.

We expect code coverage of new features to be at least around 90%.

Note: Workflow to improve test coverage

To test code coverage, you need to install the coverage package in addition to nose.

1. Run ‘make test-coverage’. The output lists for each file the line numbers that are not tested.

2. Find a low hanging fruit, looking at which lines are not tested, write or adapt a test specifically for these lines.

3. Loop.

Developers web site

More information can be found on the developer’s wiki.

Issue Tracker Tags

All issues and pull requests on the Github issue tracker should have (at least) one of the following tags:

Bug / Crash Something is happening that clearly shouldn’t happen. Wrong results as well as unexpected
errors from estimators go here.

Cleanup / Enhancement Improving performance, usability, consistency.

Documentation Missing, incorrect or sub-standard documentations and examples.

New Feature Feature requests and pull requests implementing a new feature.

There are four other tags to help new contributors:

good first issue This issue is ideal for a first contribution to scikit-learn. Ask for help if the formulation
is unclear. If you have already contributed to scikit-learn, look at Easy issues instead.

Easy This issue can be tackled without much prior experience.

Moderate Might need some knowledge of machine learning or the package, but is still approachable for
someone new to the project.

help wanted This tag marks an issue which currently lacks a contributor or a PR that needs another
contributor to take over the work. These issues can range in difficulty, and may not be approachable
for new contributors. Note that not all issues which need contributors will have this tag.

6.1.5 Coding guidelines

The following are some guidelines on how new code should be written. Of course, there are special cases and there
will be exceptions to these rules. However, following these rules when submitting new code makes the review easier
so new code can be integrated in less time.
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Uniformly formatted code makes it easier to share code ownership. The scikit-learn project tries to closely follow the
official Python guidelines detailed in PEP8 that detail how code should be formatted and indented. Please read it and
follow it.

In addition, we add the following guidelines:

• Use underscores to separate words in non class names: n_samples rather than nsamples.

• Avoid multiple statements on one line. Prefer a line return after a control flow statement (if/for).

• Use relative imports for references inside scikit-learn.

• Unit tests are an exception to the previous rule; they should use absolute imports, exactly as client code would.
A corollary is that, if sklearn.foo exports a class or function that is implemented in sklearn.foo.bar.
baz, the test should import it from sklearn.foo.

• Please don’t use import * in any case. It is considered harmful by the official Python recommendations. It
makes the code harder to read as the origin of symbols is no longer explicitly referenced, but most important, it
prevents using a static analysis tool like pyflakes to automatically find bugs in scikit-learn.

• Use the numpy docstring standard in all your docstrings.

A good example of code that we like can be found here.

Input validation

The module sklearn.utils contains various functions for doing input validation and conversion. Sometimes,
np.asarray suffices for validation; do not use np.asanyarray or np.atleast_2d, since those let NumPy’s
np.matrix through, which has a different API (e.g., * means dot product on np.matrix, but Hadamard product
on np.ndarray).

In other cases, be sure to call check_array on any array-like argument passed to a scikit-learn API function. The
exact parameters to use depends mainly on whether and which scipy.sparse matrices must be accepted.

For more information, refer to the Utilities for Developers page.

Random Numbers

If your code depends on a random number generator, do not use numpy.random.random() or similar routines.
To ensure repeatability in error checking, the routine should accept a keyword random_state and use this to con-
struct a numpy.random.RandomState object. See sklearn.utils.check_random_state in Utilities
for Developers.

Here’s a simple example of code using some of the above guidelines:

from sklearn.utils import check_array, check_random_state

def choose_random_sample(X, random_state=0):
"""
Choose a random point from X

Parameters
----------
X : array-like, shape = (n_samples, n_features)

array representing the data
random_state : RandomState or an int seed (0 by default)

A random number generator instance to define the state of the
random permutations generator.
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Returns
-------
x : numpy array, shape = (n_features,)

A random point selected from X
"""
X = check_array(X)
random_state = check_random_state(random_state)
i = random_state.randint(X.shape[0])
return X[i]

If you use randomness in an estimator instead of a freestanding function, some additional guidelines apply.

First off, the estimator should take a random_state argument to its __init__ with a default value of
None. It should store that argument’s value, unmodified, in an attribute random_state. fit can call
check_random_state on that attribute to get an actual random number generator. If, for some reason, ran-
domness is needed after fit, the RNG should be stored in an attribute random_state_. The following example
should make this clear:

class GaussianNoise(BaseEstimator, TransformerMixin):
"""This estimator ignores its input and returns random Gaussian noise.

It also does not adhere to all scikit-learn conventions,
but showcases how to handle randomness.
"""

def __init__(self, n_components=100, random_state=None):
self.random_state = random_state

# the arguments are ignored anyway, so we make them optional
def fit(self, X=None, y=None):

self.random_state_ = check_random_state(self.random_state)

def transform(self, X):
n_samples = X.shape[0]
return self.random_state_.randn(n_samples, n_components)

The reason for this setup is reproducibility: when an estimator is fit twice to the same data, it should produce an
identical model both times, hence the validation in fit, not __init__.

Deprecation

If any publicly accessible method, function, attribute or parameter is renamed, we still support the old one for two
releases and issue a deprecation warning when it is called/passed/accessed. E.g., if the function zero_one is re-
named to zero_one_loss, we add the decorator deprecated (from sklearn.utils) to zero_one and call
zero_one_loss from that function:

from ..utils import deprecated

def zero_one_loss(y_true, y_pred, normalize=True):
# actual implementation
pass

@deprecated("Function 'zero_one' was renamed to 'zero_one_loss' "
"in version 0.13 and will be removed in release 0.15. "
"Default behavior is changed from 'normalize=False' to "
"'normalize=True'")
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def zero_one(y_true, y_pred, normalize=False):
return zero_one_loss(y_true, y_pred, normalize)

If an attribute is to be deprecated, use the decorator deprecated on a property. E.g., renaming an attribute labels_
to classes_ can be done as:

@property
@deprecated("Attribute labels_ was deprecated in version 0.13 and "

"will be removed in 0.15. Use 'classes_' instead")
def labels_(self):

return self.classes_

If a parameter has to be deprecated, use DeprecationWarning appropriately. In the following example, k is
deprecated and renamed to n_clusters:

import warnings

def example_function(n_clusters=8, k=None):
if k is not None:

warnings.warn("'k' was renamed to n_clusters in version 0.13 and "
"will be removed in 0.15.", DeprecationWarning)

n_clusters = k

As in these examples, the warning message should always give both the version in which the deprecation happened
and the version in which the old behavior will be removed. If the deprecation happened in version 0.x-dev, the message
should say deprecation occurred in version 0.x and the removal will be in 0.(x+2). For example, if the deprecation
happened in version 0.18-dev, the message should say it happened in version 0.18 and the old behavior will be removed
in version 0.20.

In addition, a deprecation note should be added in the docstring, recalling the same information as the deprecation
warning as explained above. Use the .. deprecated:: directive:

.. deprecated:: 0.13
``k`` was renamed to ``n_clusters`` in version 0.13 and will be removed
in 0.15.

Python versions supported

All scikit-learn code should work unchanged in both Python 2.7 and 3.4 or newer. Since Python 3.x is not backwards
compatible, that may require changes to code and it certainly requires testing on both 2.7 and 3.4 or newer.

For most numerical algorithms, Python 3.x support is easy: just remember that print is a function and integer
division is written //. String handling has been overhauled, though, as have parts of the Python standard library. The
six package helps with cross-compatibility and is included in scikit-learn as sklearn.externals.six.

6.1.6 Code Review Guidelines

Reviewing code contributed to the project as PRs is a crucial component of scikit-learn development. We encourage
anyone to start reviewing code of other developers. The code review process is often highly educational for everybody
involved. This is particularly appropriate if it is a feature you would like to use, and so can respond critically about
whether the PR meets your needs. While each pull request needs to be signed off by two core developers, you can
speed up this process by providing your feedback.

Here are a few important aspects that need to be covered in any code review, from high-level questions to a more
detailed check-list.
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• Do we want this in the library? Is it likely to be used? Do you, as a scikit-learn user, like the change and intend
to use it? Is it in the scope of scikit-learn? Will the cost of maintaining a new feature be worth its benefits?

• Is the code consistent with the API of scikit-learn? Are public functions/classes/parameters well named and
intuitively designed?

• Are all public functions/classes and their parameters, return types, and stored attributes named according to
scikit-learn conventions and documented clearly?

• Is any new functionality described in the user-guide and illustrated with examples?

• Is every public function/class tested? Are a reasonable set of parameters, their values, value types, and combi-
nations tested? Do the tests validate that the code is correct, i.e. doing what the documentation says it does? If
the change is a bug-fix, is a non-regression test included? Look at this to get started with testing in Python.

• Do the tests pass in the continuous integration build? If appropriate, help the contributor understand why tests
failed.

• Do the tests cover every line of code (see the coverage report in the build log)? If not, are the lines missing
coverage good exceptions?

• Is the code easy to read and low on redundancy? Should variable names be improved for clarity or consistency?
Should comments be added? Should comments be removed as unhelpful or extraneous?

• Could the code easily be rewritten to run much more efficiently for relevant settings?

• Is the code backwards compatible with previous versions? (or is a deprecation cycle necessary?)

• Will the new code add any dependencies on other libraries? (this is unlikely to be accepted)

• Does the documentation render properly (see the Documentation section for more details), and are the plots
instructive?

6.1.7 APIs of scikit-learn objects

To have a uniform API, we try to have a common basic API for all the objects. In addition, to avoid the proliferation
of framework code, we try to adopt simple conventions and limit to a minimum the number of methods an object must
implement.

Different objects

The main objects in scikit-learn are (one class can implement multiple interfaces):

Estimator The base object, implements a fit method to learn from data, either:

estimator = obj.fit(data, targets)

or:

estimator = obj.fit(data)

Predictor For supervised learning, or some unsupervised problems, implements:

prediction = obj.predict(data)

Classification algorithms usually also offer a way to quantify certainty of a prediction, either using
decision_function or predict_proba:
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probability = obj.predict_proba(data)

Transformer For filtering or modifying the data, in a supervised or unsupervised way, implements:

new_data = obj.transform(data)

When fitting and transforming can be performed much more efficiently together than separately,
implements:

new_data = obj.fit_transform(data)

Model A model that can give a goodness of fit measure or a likelihood of unseen data, implements (higher
is better):

score = obj.score(data)

Estimators

The API has one predominant object: the estimator. A estimator is an object that fits a model based on some training
data and is capable of inferring some properties on new data. It can be, for instance, a classifier or a regressor. All
estimators implement the fit method:

estimator.fit(X, y)

All built-in estimators also have a set_params method, which sets data-independent parameters (overriding previ-
ous parameter values passed to __init__).

All estimators in the main scikit-learn codebase should inherit from sklearn.base.BaseEstimator.

Instantiation

This concerns the creation of an object. The object’s __init__ method might accept constants as arguments that
determine the estimator’s behavior (like the C constant in SVMs). It should not, however, take the actual training data
as an argument, as this is left to the fit() method:

clf2 = SVC(C=2.3)
clf3 = SVC([[1, 2], [2, 3]], [-1, 1]) # WRONG!

The arguments accepted by __init__ should all be keyword arguments with a default value. In other words, a user
should be able to instantiate an estimator without passing any arguments to it. The arguments should all correspond to
hyperparameters describing the model or the optimisation problem the estimator tries to solve. These initial arguments
(or parameters) are always remembered by the estimator. Also note that they should not be documented under the
“Attributes” section, but rather under the “Parameters” section for that estimator.

In addition, every keyword argument accepted by __init__ should correspond to an attribute on the instance.
Scikit-learn relies on this to find the relevant attributes to set on an estimator when doing model selection.

To summarize, an __init__ should look like:

def __init__(self, param1=1, param2=2):
self.param1 = param1
self.param2 = param2

There should be no logic, not even input validation, and the parameters should not be changed. The corresponding
logic should be put where the parameters are used, typically in fit. The following is wrong:
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def __init__(self, param1=1, param2=2, param3=3):
# WRONG: parameters should not be modified
if param1 > 1:

param2 += 1
self.param1 = param1
# WRONG: the object's attributes should have exactly the name of
# the argument in the constructor
self.param3 = param2

The reason for postponing the validation is that the same validation would have to be performed in set_params,
which is used in algorithms like GridSearchCV.

Fitting

The next thing you will probably want to do is to estimate some parameters in the model. This is implemented in the
fit() method.

The fit() method takes the training data as arguments, which can be one array in the case of unsupervised learning,
or two arrays in the case of supervised learning.

Note that the model is fitted using X and y, but the object holds no reference to X and y. There are, however, some
exceptions to this, as in the case of precomputed kernels where this data must be stored for use by the predict method.

Parameters
X array-like, with shape = [N, D], where N is the number of samples and D is the number of features.
y array, with shape = [N], where N is the number of samples.
kwargs optional data-dependent parameters.

X.shape[0] should be the same as y.shape[0]. If this requisite is not met, an exception of type ValueError
should be raised.

y might be ignored in the case of unsupervised learning. However, to make it possible to use the estimator as part of
a pipeline that can mix both supervised and unsupervised transformers, even unsupervised estimators need to accept
a y=None keyword argument in the second position that is just ignored by the estimator. For the same reason,
fit_predict, fit_transform, score and partial_fitmethods need to accept a y argument in the second
place if they are implemented.

The method should return the object (self). This pattern is useful to be able to implement quick one liners in an
IPython session such as:

y_predicted = SVC(C=100).fit(X_train, y_train).predict(X_test)

Depending on the nature of the algorithm, fit can sometimes also accept additional keywords arguments. However,
any parameter that can have a value assigned prior to having access to the data should be an __init__ keyword
argument. fit parameters should be restricted to directly data dependent variables. For instance a Gram matrix
or an affinity matrix which are precomputed from the data matrix X are data dependent. A tolerance stopping criterion
tol is not directly data dependent (although the optimal value according to some scoring function probably is).

Estimated Attributes

Attributes that have been estimated from the data must always have a name ending with trailing underscore, for
example the coefficients of some regression estimator would be stored in a coef_ attribute after fit has been called.
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The last-mentioned attributes are expected to be overridden when you call fit a second time without taking any
previous value into account: fit should be idempotent.

Optional Arguments

In iterative algorithms, the number of iterations should be specified by an integer called n_iter.

6.1.8 Rolling your own estimator

If you want to implement a new estimator that is scikit-learn-compatible, whether it is just for you or for contributing it
to scikit-learn, there are several internals of scikit-learn that you should be aware of in addition to the scikit-learn API
outlined above. You can check whether your estimator adheres to the scikit-learn interface and standards by running
utils.estimator_checks.check_estimator on the class:

>>> from sklearn.utils.estimator_checks import check_estimator
>>> from sklearn.svm import LinearSVC
>>> check_estimator(LinearSVC) # passes

The main motivation to make a class compatible to the scikit-learn estimator interface might be that you want
to use it together with model evaluation and selection tools such as model_selection.GridSearchCV and
pipeline.Pipeline.

Before detailing the required interface below, we describe two ways to achieve the correct interface more easily.

Project template:

We provide a project template which helps in the creation of Python packages containing scikit-learn compatible
estimators. It provides:

• an initial git repository with Python package directory structure

• a template of a scikit-learn estimator

• an initial test suite including use of check_estimator

• directory structures and scripts to compile documentation and example galleries

• scripts to manage continuous integration (testing on Linux and Windows)

• instructions from getting started to publishing on PyPi

BaseEstimator and mixins:

We tend to use use “duck typing”, so building an estimator which follows the API suffices for compatibility, without
needing to inherit from or even import any scikit-learn classes.

However, if a dependency on scikit-learn is acceptable in your code, you can prevent a lot of boilerplate code by
deriving a class from BaseEstimator and optionally the mixin classes in sklearn.base. For example, below
is a custom classifier, with more examples included in the scikit-learn-contrib project template.
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>>> import numpy as np
>>> from sklearn.base import BaseEstimator, ClassifierMixin
>>> from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
>>> from sklearn.utils.multiclass import unique_labels
>>> from sklearn.metrics import euclidean_distances
>>> class TemplateClassifier(BaseEstimator, ClassifierMixin):
...
... def __init__(self, demo_param='demo'):
... self.demo_param = demo_param
...
... def fit(self, X, y):
...
... # Check that X and y have correct shape
... X, y = check_X_y(X, y)
... # Store the classes seen during fit
... self.classes_ = unique_labels(y)
...
... self.X_ = X
... self.y_ = y
... # Return the classifier
... return self
...
... def predict(self, X):
...
... # Check is fit had been called
... check_is_fitted(self, ['X_', 'y_'])
...
... # Input validation
... X = check_array(X)
...
... closest = np.argmin(euclidean_distances(X, self.X_), axis=1)
... return self.y_[closest]

get_params and set_params

All scikit-learn estimators have get_params and set_params functions. The get_params function takes no
arguments and returns a dict of the __init__ parameters of the estimator, together with their values. It must take
one keyword argument, deep, which receives a boolean value that determines whether the method should return the
parameters of sub-estimators (for most estimators, this can be ignored). The default value for deep should be true.

The set_params on the other hand takes as input a dict of the form 'parameter': value and sets the
parameter of the estimator using this dict. Return value must be estimator itself.

While the get_params mechanism is not essential (see Cloning below), the set_params function is necessary as
it is used to set parameters during grid searches.

The easiest way to implement these functions, and to get a sensible __repr__ method, is to inherit from sklearn.
base.BaseEstimator. If you do not want to make your code dependent on scikit-learn, the easiest way to
implement the interface is:

def get_params(self, deep=True):
# suppose this estimator has parameters "alpha" and "recursive"
return {"alpha": self.alpha, "recursive": self.recursive}

def set_params(self, **parameters):
for parameter, value in parameters.items():
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setattr(self, parameter, value)
return self

Parameters and init

As model_selection.GridSearchCV uses set_params to apply parameter setting to estimators, it is essen-
tial that calling set_params has the same effect as setting parameters using the __init__ method. The easiest
and recommended way to accomplish this is to not do any parameter validation in __init__. All logic behind
estimator parameters, like translating string arguments into functions, should be done in fit.

Also it is expected that parameters with trailing _ are not to be set inside the __init__ method. All and only the
public attributes set by fit have a trailing _. As a result the existence of parameters with trailing _ is used to check if
the estimator has been fitted.

Cloning

For use with the model_selection module, an estimator must support the base.clone function to repli-
cate an estimator. This can be done by providing a get_params method. If get_params is present, then
clone(estimator) will be an instance of type(estimator) on which set_params has been called with
clones of the result of estimator.get_params().

Objects that do not provide this method will be deep-copied (using the Python standard function copy.deepcopy)
if safe=False is passed to clone.

Pipeline compatibility

For an estimator to be usable together with pipeline.Pipeline in any but the last step, it needs to provide a fit
or fit_transform function. To be able to evaluate the pipeline on any data but the training set, it also needs to
provide a transform function. There are no special requirements for the last step in a pipeline, except that it has a
fit function. All fit and fit_transform functions must take arguments X, y, even if y is not used. Similarly,
for score to be usable, the last step of the pipeline needs to have a score function that accepts an optional y.

Estimator types

Some common functionality depends on the kind of estimator passed. For example, cross-validation in
model_selection.GridSearchCV and model_selection.cross_val_score defaults to being strat-
ified when used on a classifier, but not otherwise. Similarly, scorers for average precision that take a continuous
prediction need to call decision_function for classifiers, but predict for regressors. This distinction be-
tween classifiers and regressors is implemented using the _estimator_type attribute, which takes a string value.
It should be "classifier" for classifiers and "regressor" for regressors and "clusterer" for clustering
methods, to work as expected. Inheriting from ClassifierMixin, RegressorMixin or ClusterMixin will
set the attribute automatically.

Working notes

For unresolved issues, TODOs, and remarks on ongoing work, developers are advised to maintain notes on the GitHub
wiki.
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Specific models

Classifiers should accept y (target) arguments to fit that are sequences (lists, arrays) of either strings or integers.
They should not assume that the class labels are a contiguous range of integers; instead, they should store a list of
classes in a classes_ attribute or property. The order of class labels in this attribute should match the order in which
predict_proba, predict_log_proba and decision_function return their values. The easiest way to
achieve this is to put:

self.classes_, y = np.unique(y, return_inverse=True)

in fit. This returns a new y that contains class indexes, rather than labels, in the range [0, n_classes).

A classifier’s predict method should return arrays containing class labels from classes_. In a classifier that
implements decision_function, this can be achieved with:

def predict(self, X):
D = self.decision_function(X)
return self.classes_[np.argmax(D, axis=1)]

In linear models, coefficients are stored in an array called coef_, and the independent term is stored in intercept_.
sklearn.linear_model.base contains a few base classes and mixins that implement common linear model
patterns.

The sklearn.utils.multiclass module contains useful functions for working with multiclass and multilabel
problems.

6.2 Developers’ Tips and Tricks

6.2.1 Productivity and sanity-preserving tips

In this section we gather some useful advice and tools that may increase your quality-of-life when reviewing pull
requests, running unit tests, and so forth. Some of these tricks consist of userscripts that require a browser extension
such as TamperMonkey or GreaseMonkey; to set up userscripts you must have one of these extensions installed,
enabled and running. We provide userscripts as GitHub gists; to install them, click on the “Raw” button on the gist
page.

Viewing the rendered HTML documentation for a pull request

We use CircleCI to build the HTML documentation for every pull request. To access that documentation, we provide
a redirect as described in the documentation section of the contributor guide. Instead of typing the address by hand,
we provide a userscript that adds a button to every PR. After installing the userscript, navigate to any GitHub PR; a
new button labeled “See CircleCI doc for this PR” should appear in the top-right area.

Folding and unfolding outdated diffs on pull requests

GitHub hides discussions on PRs when the corresponding lines of code have been changed in the mean while. This
userscript provides a button to unfold all such hidden discussions at once, so you can catch up.

Checking out pull requests as remote-tracking branches

In your local fork, add to your .git/config, under the [remote "upstream"] heading, the line:
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fetch = +refs/pull/*/head:refs/remotes/upstream/pr/*

You may then use git checkout pr/PR_NUMBER to navigate to the code of the pull-request with the given
number. (Read more in this gist.)

Display code coverage in pull requests

To overlay the code coverage reports generated by the CodeCov continuous integration, consider this browser exten-
sion. The coverage of each line will be displayed as a color background behind the line number.

Useful pytest aliases and flags

We recommend using pytest to run unit tests. When a unit tests fail, the following tricks can make debugging easier:

1. The command line argument pytest -l instructs pytest to print the local variables when a failure occurs.

2. The argument pytest --pdb drops into the Python debugger on failure. To instead drop into the rich IPython
debugger ipdb, you may set up a shell alias to:

pytest --pdbcls=IPython.terminal.debugger:TerminalPdb --capture no

6.2.2 Debugging memory errors in Cython with valgrind

While python/numpy’s built-in memory management is relatively robust, it can lead to performance penalties for some
routines. For this reason, much of the high-performance code in scikit-learn in written in cython. This performance
gain comes with a tradeoff, however: it is very easy for memory bugs to crop up in cython code, especially in situations
where that code relies heavily on pointer arithmetic.

Memory errors can manifest themselves a number of ways. The easiest ones to debug are often segmentation faults
and related glibc errors. Uninitialized variables can lead to unexpected behavior that is difficult to track down. A very
useful tool when debugging these sorts of errors is valgrind.

Valgrind is a command-line tool that can trace memory errors in a variety of code. Follow these steps:

1. Install valgrind on your system.

2. Download the python valgrind suppression file: valgrind-python.supp.

3. Follow the directions in the README.valgrind file to customize your python suppressions. If you don’t, you
will have spurious output coming related to the python interpreter instead of your own code.

4. Run valgrind as follows:

$> valgrind -v --suppressions=valgrind-python.supp python my_test_script.py

The result will be a list of all the memory-related errors, which reference lines in the C-code generated by cython
from your .pyx file. If you examine the referenced lines in the .c file, you will see comments which indicate the
corresponding location in your .pyx source file. Hopefully the output will give you clues as to the source of your
memory error.

For more information on valgrind and the array of options it has, see the tutorials and documentation on the valgrind
web site.
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6.3 Utilities for Developers

Scikit-learn contains a number of utilities to help with development. These are located in sklearn.utils, and
include tools in a number of categories. All the following functions and classes are in the module sklearn.utils.

Warning: These utilities are meant to be used internally within the scikit-learn package. They are not guar-
anteed to be stable between versions of scikit-learn. Backports, in particular, will be removed as the scikit-learn
dependencies evolve.

6.3.1 Validation Tools

These are tools used to check and validate input. When you write a function which accepts arrays, matrices, or sparse
matrices as arguments, the following should be used when applicable.

• assert_all_finite: Throw an error if array contains NaNs or Infs.

• as_float_array: convert input to an array of floats. If a sparse matrix is passed, a sparse matrix will be
returned.

• check_array: convert input to 2d array, raise error on sparse matrices. Allowed sparse matrix formats can
be given optionally, as well as allowing 1d or nd arrays. Calls assert_all_finite by default.

• check_X_y: check that X and y have consistent length, calls check_array on X, and column_or_1d on y. For
multilabel classification or multitarget regression, specify multi_output=True, in which case check_array will
be called on y.

• indexable: check that all input arrays have consistent length and can be sliced or indexed using safe_index.
This is used to validate input for cross-validation.

• validation.check_memory checks that input is joblib.Memory-like, which means that it can be con-
verted into a sklearn.externals.joblib.Memory instance (typically a str denoting the cachedir)
or has the same interface.

If your code relies on a random number generator, it should never use functions like numpy.random.random
or numpy.random.normal. This approach can lead to repeatability issues in unit tests. Instead, a numpy.
random.RandomState object should be used, which is built from a random_state argument passed to the class
or function. The function check_random_state, below, can then be used to create a random number generator
object.

• check_random_state: create a np.random.RandomState object from a parameter random_state.

– If random_state is None or np.random, then a randomly-initialized RandomState object is re-
turned.

– If random_state is an integer, then it is used to seed a new RandomState object.

– If random_state is a RandomState object, then it is passed through.

For example:

>>> from sklearn.utils import check_random_state
>>> random_state = 0
>>> random_state = check_random_state(random_state)
>>> random_state.rand(4)
array([ 0.5488135 , 0.71518937, 0.60276338, 0.54488318])

When developing your own scikit-learn compatible estimator, the following helpers are available.
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• validation.check_is_fitted: check that the estimator has been fitted before calling transform,
predict, or similar methods. This helper allows to raise a standardized error message across estimator.

• validation.has_fit_parameter: check that a given parameter is supported in the fit method of a
given estimator.

6.3.2 Efficient Linear Algebra & Array Operations

• extmath.randomized_range_finder: construct an orthonormal matrix whose range approximates the
range of the input. This is used in extmath.randomized_svd, below.

• extmath.randomized_svd: compute the k-truncated randomized SVD. This algorithm finds the exact
truncated singular values decomposition using randomization to speed up the computations. It is particularly
fast on large matrices on which you wish to extract only a small number of components.

• arrayfuncs.cholesky_delete: (used in sklearn.linear_model.least_angle.
lars_path) Remove an item from a cholesky factorization.

• arrayfuncs.min_pos: (used in sklearn.linear_model.least_angle) Find the minimum of the
positive values within an array.

• extmath.fast_logdet: efficiently compute the log of the determinant of a matrix.

• extmath.density: efficiently compute the density of a sparse vector

• extmath.safe_sparse_dot: dot product which will correctly handle scipy.sparse inputs. If the
inputs are dense, it is equivalent to numpy.dot.

• extmath.weighted_mode: an extension of scipy.stats.mode which allows each item to have a real-
valued weight.

• resample: Resample arrays or sparse matrices in a consistent way. used in shuffle, below.

• shuffle: Shuffle arrays or sparse matrices in a consistent way. Used in sklearn.cluster.k_means.

6.3.3 Efficient Random Sampling

• random.sample_without_replacement: implements efficient algorithms for sampling n_samples
integers from a population of size n_population without replacement.

6.3.4 Efficient Routines for Sparse Matrices

The sklearn.utils.sparsefuncs cython module hosts compiled extensions to efficiently process scipy.
sparse data.

• sparsefuncs.mean_variance_axis: compute the means and variances along a specified axis of a CSR
matrix. Used for normalizing the tolerance stopping criterion in sklearn.cluster.k_means_.KMeans.

• sparsefuncs.inplace_csr_row_normalize_l1 and sparsefuncs.
inplace_csr_row_normalize_l2: can be used to normalize individual sparse samples to unit L1
or L2 norm as done in sklearn.preprocessing.Normalizer.

• sparsefuncs.inplace_csr_column_scale: can be used to multiply the columns of a CSR matrix
by a constant scale (one scale per column). Used for scaling features to unit standard deviation in sklearn.
preprocessing.StandardScaler.
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6.3.5 Graph Routines

• graph.single_source_shortest_path_length: (not currently used in scikit-learn) Return the
shortest path from a single source to all connected nodes on a graph. Code is adapted from networkx.
If this is ever needed again, it would be far faster to use a single iteration of Dijkstra’s algorithm from
graph_shortest_path.

• graph_shortest_path.graph_shortest_path: (used in sklearn.manifold.Isomap) Return
the shortest path between all pairs of connected points on a directed or undirected graph. Both the Floyd-
Warshall algorithm and Dijkstra’s algorithm are available. The algorithm is most efficient when the connectivity
matrix is a scipy.sparse.csr_matrix.

Benchmarking

• bench.total_seconds (back-ported from timedelta.total_seconds in Python 2.7). Used in
benchmarks/bench_glm.py.

6.3.6 Testing Functions

• testing.assert_in, testing.assert_not_in: Assertions for container membership. Designed for
forward compatibility with Nose 1.0.

• testing.assert_raise_message: Assertions for checking the error raise message.

• testing.mock_mldata_urlopen: Mocks the urlopen function to fake requests to mldata.org. Used in
tests of sklearn.datasets.

• testing.all_estimators : returns a list of all estimators in scikit-learn to test for consistent behavior
and interfaces.

6.3.7 Multiclass and multilabel utility function

• multiclass.is_multilabel: Helper function to check if the task is a multi-label classification one.

• multiclass.is_label_indicator_matrix: Helper function to check if a classification output is in
label indicator matrix format.

• multiclass.unique_labels: Helper function to extract an ordered array of unique labels from different
formats of target.

6.3.8 Helper Functions

• gen_even_slices: generator to create n-packs of slices going up to n. Used in sklearn.
decomposition.dict_learning and sklearn.cluster.k_means.

• safe_mask: Helper function to convert a mask to the format expected by the numpy array or scipy sparse
matrix on which to use it (sparse matrices support integer indices only while numpy arrays support both boolean
masks and integer indices).

• safe_sqr: Helper function for unified squaring (**2) of array-likes, matrices and sparse matrices.
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6.3.9 Hash Functions

• murmurhash3_32 provides a python wrapper for the MurmurHash3_x86_32 C++ non cryptographic hash
function. This hash function is suitable for implementing lookup tables, Bloom filters, Count Min Sketch, feature
hashing and implicitly defined sparse random projections:

>>> from sklearn.utils import murmurhash3_32
>>> murmurhash3_32("some feature", seed=0) == -384616559
True

>>> murmurhash3_32("some feature", seed=0, positive=True) == 3910350737
True

The sklearn.utils.murmurhash module can also be “cimported” from other cython modules so as to
benefit from the high performance of MurmurHash while skipping the overhead of the Python interpreter.

6.3.10 Warnings and Exceptions

• deprecated: Decorator to mark a function or class as deprecated.

• sklearn.exceptions.ConvergenceWarning: Custom warning to catch convergence problems. Used
in sklearn.covariance.graph_lasso.

6.4 How to optimize for speed

The following gives some practical guidelines to help you write efficient code for the scikit-learn project.

Note: While it is always useful to profile your code so as to check performance assumptions, it is also highly
recommended to review the literature to ensure that the implemented algorithm is the state of the art for the task
before investing into costly implementation optimization.

Times and times, hours of efforts invested in optimizing complicated implementation details have been rendered
irrelevant by the subsequent discovery of simple algorithmic tricks, or by using another algorithm altogether that is
better suited to the problem.

The section A sample algorithmic trick: warm restarts for cross validation gives an example of such a trick.

6.4.1 Python, Cython or C/C++?

In general, the scikit-learn project emphasizes the readability of the source code to make it easy for the project
users to dive into the source code so as to understand how the algorithm behaves on their data but also for ease of
maintainability (by the developers).

When implementing a new algorithm is thus recommended to start implementing it in Python using Numpy and
Scipy by taking care of avoiding looping code using the vectorized idioms of those libraries. In practice this means
trying to replace any nested for loops by calls to equivalent Numpy array methods. The goal is to avoid the CPU
wasting time in the Python interpreter rather than crunching numbers to fit your statistical model. It’s generally a good
idea to consider NumPy and SciPy performance tips: http://scipy.github.io/old-wiki/pages/PerformanceTips

Sometimes however an algorithm cannot be expressed efficiently in simple vectorized Numpy code. In this case, the
recommended strategy is the following:
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1. Profile the Python implementation to find the main bottleneck and isolate it in a dedicated module level func-
tion. This function will be reimplemented as a compiled extension module.

2. If there exists a well maintained BSD or MIT C/C++ implementation of the same algorithm that is not too
big, you can write a Cython wrapper for it and include a copy of the source code of the library in the scikit-
learn source tree: this strategy is used for the classes svm.LinearSVC, svm.SVC and linear_model.
LogisticRegression (wrappers for liblinear and libsvm).

3. Otherwise, write an optimized version of your Python function using Cython directly. This strategy is used for
the linear_model.ElasticNet and linear_model.SGDClassifier classes for instance.

4. Move the Python version of the function in the tests and use it to check that the results of the compiled
extension are consistent with the gold standard, easy to debug Python version.

5. Once the code is optimized (not simple bottleneck spottable by profiling), check whether it is possible to have
coarse grained parallelism that is amenable to multi-processing by using the joblib.Parallel class.

When using Cython, use either

$ python setup.py build_ext -i $ python setup.py install

to generate C files. You are responsible for adding .c/.cpp extensions along with build parameters in each submodule
setup.py.

C/C++ generated files are embedded in distributed stable packages. The goal is to make it possible to install scikit-learn
stable version on any machine with Python, Numpy, Scipy and C/C++ compiler.

6.4.2 Profiling Python code

In order to profile Python code we recommend to write a script that loads and prepare you data and then use the
IPython integrated profiler for interactively exploring the relevant part for the code.

Suppose we want to profile the Non Negative Matrix Factorization module of the scikit. Let us setup a new IPython
session and load the digits dataset and as in the Recognizing hand-written digits example:

In [1]: from sklearn.decomposition import NMF

In [2]: from sklearn.datasets import load_digits

In [3]: X = load_digits().data

Before starting the profiling session and engaging in tentative optimization iterations, it is important to measure the
total execution time of the function we want to optimize without any kind of profiler overhead and save it somewhere
for later reference:

In [4]: %timeit NMF(n_components=16, tol=1e-2).fit(X)
1 loops, best of 3: 1.7 s per loop

To have a look at the overall performance profile using the %prun magic command:

In [5]: %prun -l nmf.py NMF(n_components=16, tol=1e-2).fit(X)
14496 function calls in 1.682 CPU seconds

Ordered by: internal time
List reduced from 90 to 9 due to restriction <'nmf.py'>

ncalls tottime percall cumtime percall filename:lineno(function)
36 0.609 0.017 1.499 0.042 nmf.py:151(_nls_subproblem)

1263 0.157 0.000 0.157 0.000 nmf.py:18(_pos)
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1 0.053 0.053 1.681 1.681 nmf.py:352(fit_transform)
673 0.008 0.000 0.057 0.000 nmf.py:28(norm)

1 0.006 0.006 0.047 0.047 nmf.py:42(_initialize_nmf)
36 0.001 0.000 0.010 0.000 nmf.py:36(_sparseness)
30 0.001 0.000 0.001 0.000 nmf.py:23(_neg)
1 0.000 0.000 0.000 0.000 nmf.py:337(__init__)
1 0.000 0.000 1.681 1.681 nmf.py:461(fit)

The tottime column is the most interesting: it gives to total time spent executing the code of a given function
ignoring the time spent in executing the sub-functions. The real total time (local code + sub-function calls) is given by
the cumtime column.

Note the use of the -l nmf.py that restricts the output to lines that contains the “nmf.py” string. This is useful to
have a quick look at the hotspot of the nmf Python module it-self ignoring anything else.

Here is the beginning of the output of the same command without the -l nmf.py filter:

In [5] %prun NMF(n_components=16, tol=1e-2).fit(X)
16159 function calls in 1.840 CPU seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
2833 0.653 0.000 0.653 0.000 {numpy.core._dotblas.dot}

46 0.651 0.014 1.636 0.036 nmf.py:151(_nls_subproblem)
1397 0.171 0.000 0.171 0.000 nmf.py:18(_pos)
2780 0.167 0.000 0.167 0.000 {method 'sum' of 'numpy.ndarray'

→˓objects}
1 0.064 0.064 1.840 1.840 nmf.py:352(fit_transform)

1542 0.043 0.000 0.043 0.000 {method 'flatten' of 'numpy.ndarray'
→˓objects}

337 0.019 0.000 0.019 0.000 {method 'all' of 'numpy.ndarray'
→˓objects}

2734 0.011 0.000 0.181 0.000 fromnumeric.py:1185(sum)
2 0.010 0.005 0.010 0.005 {numpy.linalg.lapack_lite.dgesdd}

748 0.009 0.000 0.065 0.000 nmf.py:28(norm)
...

The above results show that the execution is largely dominated by dot products operations (delegated to blas). Hence
there is probably no huge gain to expect by rewriting this code in Cython or C/C++: in this case out of the 1.7s total
execution time, almost 0.7s are spent in compiled code we can consider optimal. By rewriting the rest of the Python
code and assuming we could achieve a 1000% boost on this portion (which is highly unlikely given the shallowness
of the Python loops), we would not gain more than a 2.4x speed-up globally.

Hence major improvements can only be achieved by algorithmic improvements in this particular example (e.g.
trying to find operation that are both costly and useless to avoid computing then rather than trying to optimize their
implementation).

It is however still interesting to check what’s happening inside the _nls_subproblem function which is the hotspot
if we only consider Python code: it takes around 100% of the accumulated time of the module. In order to better
understand the profile of this specific function, let us install line_profiler and wire it to IPython:

$ pip install line_profiler

• Under IPython 0.13+, first create a configuration profile:

$ ipython profile create
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Then register the line_profiler extension in ~/.ipython/profile_default/ipython_config.py:

c.TerminalIPythonApp.extensions.append('line_profiler')
c.InteractiveShellApp.extensions.append('line_profiler')

This will register the %lprun magic command in the IPython terminal application and the other frontends such
as qtconsole and notebook.

Now restart IPython and let us use this new toy:

In [1]: from sklearn.datasets import load_digits

In [2]: from sklearn.decomposition.nmf import _nls_subproblem, NMF

In [3]: X = load_digits().data

In [4]: %lprun -f _nls_subproblem NMF(n_components=16, tol=1e-2).fit(X)
Timer unit: 1e-06 s

File: sklearn/decomposition/nmf.py
Function: _nls_subproblem at line 137
Total time: 1.73153 s

Line # Hits Time Per Hit % Time Line Contents
==============================================================

137 def _nls_subproblem(V, W, H_init,
→˓tol, max_iter):

138 """Non-negative least square
→˓solver

...
170 """
171 48 5863 122.1 0.3 if (H_init < 0).any():
172 raise ValueError("Negative

→˓values in H_init passed to NLS solver.")
173
174 48 139 2.9 0.0 H = H_init
175 48 112141 2336.3 5.8 WtV = np.dot(W.T, V)
176 48 16144 336.3 0.8 WtW = np.dot(W.T, W)
177
178 # values justified in the paper
179 48 144 3.0 0.0 alpha = 1
180 48 113 2.4 0.0 beta = 0.1
181 638 1880 2.9 0.1 for n_iter in xrange(1, max_iter

→˓+ 1):
182 638 195133 305.9 10.2 grad = np.dot(WtW, H) - WtV
183 638 495761 777.1 25.9 proj_gradient = norm(grad[np.

→˓logical_or(grad < 0, H > 0)])
184 638 2449 3.8 0.1 if proj_gradient < tol:
185 48 130 2.7 0.0 break
186
187 1474 4474 3.0 0.2 for inner_iter in xrange(1,

→˓20):
188 1474 83833 56.9 4.4 Hn = H - alpha * grad
189 # Hn = np.where(Hn > 0,

→˓Hn, 0)
190 1474 194239 131.8 10.1 Hn = _pos(Hn)
191 1474 48858 33.1 2.5 d = Hn - H
192 1474 150407 102.0 7.8 gradd = np.sum(grad * d)
193 1474 515390 349.7 26.9 dQd = np.sum(np.dot(WtW,

→˓d) * d)
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...

By looking at the top values of the % Time column it is really easy to pin-point the most expensive expressions that
would deserve additional care.

6.4.3 Memory usage profiling

You can analyze in detail the memory usage of any Python code with the help of memory_profiler. First, install the
latest version:

$ pip install -U memory_profiler

Then, setup the magics in a manner similar to line_profiler.

• Under IPython 0.11+, first create a configuration profile:

$ ipython profile create

Then register the extension in ~/.ipython/profile_default/ipython_config.py alongside the
line profiler:

c.TerminalIPythonApp.extensions.append('memory_profiler')
c.InteractiveShellApp.extensions.append('memory_profiler')

This will register the %memit and %mprun magic commands in the IPython terminal application and the other
frontends such as qtconsole and notebook.

%mprun is useful to examine, line-by-line, the memory usage of key functions in your program. It is very similar to
%lprun, discussed in the previous section. For example, from the memory_profiler examples directory:

In [1] from example import my_func

In [2] %mprun -f my_func my_func()
Filename: example.py

Line # Mem usage Increment Line Contents
==============================================

3 @profile
4 5.97 MB 0.00 MB def my_func():
5 13.61 MB 7.64 MB a = [1] * (10 ** 6)
6 166.20 MB 152.59 MB b = [2] * (2 * 10 ** 7)
7 13.61 MB -152.59 MB del b
8 13.61 MB 0.00 MB return a

Another useful magic that memory_profiler defines is %memit, which is analogous to %timeit. It can be used
as follows:

In [1]: import numpy as np

In [2]: %memit np.zeros(1e7)
maximum of 3: 76.402344 MB per loop

For more details, see the docstrings of the magics, using %memit? and %mprun?.
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6.4.4 Performance tips for the Cython developer

If profiling of the Python code reveals that the Python interpreter overhead is larger by one order of magnitude or
more than the cost of the actual numerical computation (e.g. for loops over vector components, nested evaluation
of conditional expression, scalar arithmetic. . . ), it is probably adequate to extract the hotspot portion of the code as a
standalone function in a .pyx file, add static type declarations and then use Cython to generate a C program suitable
to be compiled as a Python extension module.

The official documentation available at http://docs.cython.org/ contains a tutorial and reference guide for developing
such a module. In the following we will just highlight a couple of tricks that we found important in practice on the
existing cython codebase in the scikit-learn project.

TODO: html report, type declarations, bound checks, division by zero checks, memory alignment, direct blas calls. . .

• https://www.youtube.com/watch?v=gMvkiQ-gOW8

• http://conference.scipy.org/proceedings/SciPy2009/paper_1/

• http://conference.scipy.org/proceedings/SciPy2009/paper_2/

6.4.5 Profiling compiled extensions

When working with compiled extensions (written in C/C++ with a wrapper or directly as Cython extension), the default
Python profiler is useless: we need a dedicated tool to introspect what’s happening inside the compiled extension it-
self.

Using yep and google-perftools

Easy profiling without special compilation options use yep:

• https://pypi.python.org/pypi/yep

• http://fa.bianp.net/blog/2011/a-profiler-for-python-extensions

Note: google-perftools provides a nice ‘line by line’ report mode that can be triggered with the --lines option.
However this does not seem to work correctly at the time of writing. This issue can be tracked on the project issue
tracker.

Using gprof

In order to profile compiled Python extensions one could use gprof after having recompiled the project with gcc
-pg and using the python-dbg variant of the interpreter on debian / ubuntu: however this approach requires to also
have numpy and scipy recompiled with -pg which is rather complicated to get working.

Fortunately there exist two alternative profilers that don’t require you to recompile everything.

Using valgrind / callgrind / kcachegrind

TODO
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6.4.6 Multi-core parallelism using joblib.Parallel

TODO: give a simple teaser example here.

Checkout the official joblib documentation:

• https://pythonhosted.org/joblib

6.4.7 A sample algorithmic trick: warm restarts for cross validation

TODO: demonstrate the warm restart tricks for cross validation of linear regression with Coordinate Descent.

6.5 Advanced installation instructions

There are different ways to get scikit-learn installed:

• Install the version of scikit-learn provided by your operating system or Python distribution. This is the quickest
option for those who have operating systems that distribute scikit-learn.

• Install an official release. This is the best approach for users who want a stable version number and aren’t
concerned about running a slightly older version of scikit-learn.

• Install the latest development version. This is best for users who want the latest-and-greatest features and aren’t
afraid of running brand-new code.

Note: If you wish to contribute to the project, you need to install the latest development version.

6.5.1 Installing an official release

Scikit-learn requires:

• Python (>= 2.7 or >= 3.3),

• NumPy (>= 1.8.2),

• SciPy (>= 0.13.3).

Mac OSX

Scikit-learn and its dependencies are all available as wheel packages for OSX:

pip install -U numpy scipy scikit-learn

Linux

At this time scikit-learn does not provide official binary packages for Linux so you have to build from source if
you want the latest version. If you don’t need the newest version, consider using your package manager to install
scikit-learn. It is usually the easiest way, but might not provide the newest version.
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Installing build dependencies

Installing from source requires you to have installed the scikit-learn runtime dependencies, Python development head-
ers and a working C/C++ compiler. Under Debian-based operating systems, which include Ubuntu, if you have Python
2 you can install all these requirements by issuing:

sudo apt-get install build-essential python-dev python-setuptools \
python-numpy python-scipy \
libatlas-dev libatlas3gf-base

If you have Python 3:

sudo apt-get install build-essential python3-dev python3-setuptools \
python3-numpy python3-scipy \
libatlas-dev libatlas3gf-base

On recent Debian and Ubuntu (e.g. Ubuntu 13.04 or later) make sure that ATLAS is used to provide the implementation
of the BLAS and LAPACK linear algebra routines:

sudo update-alternatives --set libblas.so.3 \
/usr/lib/atlas-base/atlas/libblas.so.3

sudo update-alternatives --set liblapack.so.3 \
/usr/lib/atlas-base/atlas/liblapack.so.3

Note: In order to build the documentation and run the example code contains in this documentation you will need
matplotlib:

sudo apt-get install python-matplotlib

Note: The above installs the ATLAS implementation of BLAS (the Basic Linear Algebra Subprograms library).
Ubuntu 11.10 and later, and recent (testing) versions of Debian, offer an alternative implementation called OpenBLAS.

Using OpenBLAS can give speedups in some scikit-learn modules, but can freeze joblib/multiprocessing prior to
OpenBLAS version 0.2.8-4, so using it is not recommended unless you know what you’re doing.

If you do want to use OpenBLAS, then replacing ATLAS only requires a couple of commands. ATLAS has to be
removed, otherwise NumPy may not work:

sudo apt-get remove libatlas3gf-base libatlas-dev
sudo apt-get install libopenblas-dev

sudo update-alternatives --set libblas.so.3 \
/usr/lib/openblas-base/libopenblas.so.0

sudo update-alternatives --set liblapack.so.3 \
/usr/lib/lapack/liblapack.so.3

On Red Hat and clones (e.g. CentOS), install the dependencies using:

sudo yum -y install gcc gcc-c++ numpy python-devel scipy
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Building scikit-learn with pip

This is usually the fastest way to install or upgrade to the latest stable release:

pip install --user --install-option="--prefix=" -U scikit-learn

The --user flag asks pip to install scikit-learn in the $HOME/.local folder therefore not requiring root permission.
This flag should make pip ignore any old version of scikit-learn previously installed on the system while benefiting
from system packages for numpy and scipy. Those dependencies can be long and complex to build correctly from
source.

The --install-option="--prefix=" flag is only required if Python has a distutils.cfg configuration
with a predefined prefix= entry.

From source package

download the source package from pypi, unpack the sources and cd into the source directory.

This packages uses distutils, which is the default way of installing python modules. The install command is:

python setup.py install

or alternatively (also from within the scikit-learn source folder):

pip install .

Warning: Packages installed with the python setup.py install command cannot be uninstalled nor
upgraded by pip later. To properly uninstall scikit-learn in that case it is necessary to delete the sklearn folder
from your Python site-packages directory.

Windows

First, you need to install numpy and scipy from their own official installers.

Wheel packages (.whl files) for scikit-learn from pypi can be installed with the pip utility. Open a console and type
the following to install or upgrade scikit-learn to the latest stable release:

pip install -U scikit-learn

If there are no binary packages matching your python, version you might to try to install scikit-learn and its dependen-
cies from christoph gohlke unofficial windows installers or from a python distribution instead.

6.5.2 Third party distributions of scikit-learn

Some third-party distributions are now providing versions of scikit-learn integrated with their package-management
systems.

These can make installation and upgrading much easier for users since the integration includes the ability to automat-
ically install dependencies (numpy, scipy) that scikit-learn requires.

The following is an incomplete list of python and os distributions that provide their own version of scikit-learn.
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MacPorts for Mac OSX

The MacPorts package is named py<XY>-scikits-learn, where XY denotes the Python version. It can be
installed by typing the following command:

sudo port install py26-scikit-learn

or:

sudo port install py27-scikit-learn

Arch Linux

Arch Linux’s package is provided through the official repositories as python-scikit-learn for Python 3 and
python2-scikit-learn for Python 2. It can be installed by typing the following command:

# pacman -S python-scikit-learn

or:

# pacman -S python2-scikit-learn

depending on the version of Python you use.

NetBSD

scikit-learn is available via pkgsrc-wip:

http://pkgsrc.se/wip/py-scikit_learn

Fedora

The Fedora package is called python-scikit-learn for the Python 2 version and python3-scikit-learn
for the Python 3 version. Both versions can be installed using yum:

$ sudo yum install python-scikit-learn

or:

$ sudo yum install python3-scikit-learn

Building on windows

To build scikit-learn on Windows you need a working C/C++ compiler in addition to numpy, scipy and setuptools.

Picking the right compiler depends on the version of Python (2 or 3) and the architecture of the Python interpreter,
32-bit or 64-bit. You can check the Python version by running the following in cmd or powershell console:

python --version

and the architecture with:
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python -c "import struct; print(struct.calcsize('P') * 8)"

The above commands assume that you have the Python installation folder in your PATH environment variable.

32-bit Python

For 32-bit python it is possible use the standalone installers for microsoft visual c++ express 2008 for Python 2 or
Microsoft Visual C++ Express 2010 for Python 3.

Once installed you should be able to build scikit-learn without any particular configuration by running the following
command in the scikit-learn folder:

python setup.py install

64-bit Python

For the 64-bit architecture, you either need the full Visual Studio or the free Windows SDKs that can be downloaded
from the links below.

The Windows SDKs include the MSVC compilers both for 32 and 64-bit architectures. They come as a
GRMSDKX_EN_DVD.iso file that can be mounted as a new drive with a setup.exe installer in it.

• For Python 2 you need SDK v7.0: MS Windows SDK for Windows 7 and .NET Framework 3.5 SP1

• For Python 3 you need SDK v7.1: MS Windows SDK for Windows 7 and .NET Framework 4

Both SDKs can be installed in parallel on the same host. To use the Windows SDKs, you need to setup the environment
of a cmd console launched with the following flags (at least for SDK v7.0):

cmd /E:ON /V:ON /K

Then configure the build environment with:

SET DISTUTILS_USE_SDK=1
SET MSSdk=1
"C:\Program Files\Microsoft SDKs\Windows\v7.0\Setup\WindowsSdkVer.exe" -q -version:v7.
→˓0
"C:\Program Files\Microsoft SDKs\Windows\v7.0\Bin\SetEnv.cmd" /x64 /release

Finally you can build scikit-learn in the same cmd console:

python setup.py install

Replace v7.0 by the v7.1 in the above commands to do the same for Python 3 instead of Python 2.

Replace /x64 by /x86 to build for 32-bit Python instead of 64-bit Python.

Building binary packages and installers

The .whl package and .exe installers can be built with:

pip install wheel
python setup.py bdist_wheel bdist_wininst -b doc/logos/scikit-learn-logo.bmp

The resulting packages are generated in the dist/ folder.
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Using an alternative compiler

It is possible to use MinGW (a port of GCC to Windows OS) as an alternative to MSVC for 32-bit Python. Not that
extensions built with mingw32 can be redistributed as reusable packages as they depend on GCC runtime libraries
typically not installed on end-users environment.

To force the use of a particular compiler, pass the --compiler flag to the build step:

python setup.py build --compiler=my_compiler install

where my_compiler should be one of mingw32 or msvc.

6.5.3 Bleeding Edge

See section Retrieving the latest code on how to get the development version. Then follow the previous instructions to
build from source depending on your platform. You will also require Cython >=0.23 in order to build the development
version.

6.5.4 Testing

Testing scikit-learn once installed

Testing requires having the nose library. After installation, the package can be tested by executing from outside the
source directory:

$ nosetests -v sklearn

Under Windows, it is recommended to use the following command (adjust the path to the python.exe program) as
using the nosetests.exe program can badly interact with tests that use multiprocessing:

C:\Python34\python.exe -c "import nose; nose.main()" -v sklearn

This should give you a lot of output (and some warnings) but eventually should finish with a message similar to:

Ran 3246 tests in 260.618s
OK (SKIP=20)

Otherwise, please consider posting an issue into the bug tracker or to the Mailing List including the traceback of the
individual failures and errors. Please include your operating system, your version of NumPy, SciPy and scikit-learn,
and how you installed scikit-learn.

Testing scikit-learn from within the source folder

Scikit-learn can also be tested without having the package installed. For this you must compile the sources inplace
from the source directory:

python setup.py build_ext --inplace

Test can now be run using nosetests:

nosetests -v sklearn/

This is automated by the commands:

2118 Chapter 6. Developer’s Guide

http://www.mingw.org
https://nose.readthedocs.io/en/latest/
https://github.com/scikit-learn/scikit-learn/issues


scikit-learn user guide, Release 0.19.1

make in

and:

make test

You can also install a symlink named site-packages/scikit-learn.egg-link to the development folder
of scikit-learn with:

pip install --editable .

6.6 Maintainer / core-developer information

For more information see https://github.com/scikit-learn/scikit-learn/wiki/How-to-make-a-release

6.6.1 Making a release

1. Update docs:

• edit the doc/whats_new.rst file to add release title and commit statistics. You can retrieve commit statistics
with:

$ git shortlog -ns 0.998..

• edit the doc/index.rst to change the ‘News’ entry of the front page.

2. Update the version number in sklearn/__init__.py, the __version__ variable

3. Create the tag and push it:

$ git tag 0.999

$ git push origin --tags

4. create tarballs:

• Wipe clean your repo:

$ git clean -xfd

• Register and upload on PyPI:

$ python setup.py sdist register upload

5. Push the documentation to the website. Circle CI should do this automatically for master and <N>.<N>.X
branches.

6. Build binaries using dedicated CI servers by updating the git submodule reference to the new scikit-learn tag of
the release at:

https://github.com/MacPython/scikit-learn-wheels

Once the CI has completed successfully, collect the generated binary wheel packages and upload them to PyPI
by running the following commands in the scikit-learn source folder (checked out at the release tag):
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$ pip install -U wheelhouse_uploader
$ python setup.py sdist fetch_artifacts upload_all

7. FOR FINAL RELEASE: Update the release date in What’s New
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method), 1997

decision_path() (sklearn.tree.ExtraTreeRegressor
method), 2002

DecisionTreeClassifier (class in sklearn.tree), 1981
DecisionTreeRegressor (class in sklearn.tree), 1988
decode() (sklearn.feature_extraction.text.CountVectorizer

method), 1445
decode() (sklearn.feature_extraction.text.HashingVectorizer

method), 1449
decode() (sklearn.feature_extraction.text.TfidfVectorizer

method), 1456
densify() (sklearn.linear_model.LogisticRegression

method), 1577
densify() (sklearn.linear_model.LogisticRegressionCV

method), 409
densify() (sklearn.linear_model.PassiveAggressiveClassifier

method), 1595
densify() (sklearn.linear_model.PassiveAggressiveRegressor

method), 1599
densify() (sklearn.linear_model.Perceptron method),

1603
densify() (sklearn.linear_model.SGDClassifier method),

1620
densify() (sklearn.linear_model.SGDRegressor method),

1626
densify() (sklearn.svm.LinearSVC method), 1951
DensityMixin (class in sklearn.base), 1186
diag() (sklearn.gaussian_process.kernels.CompoundKernel

method), 1500
diag() (sklearn.gaussian_process.kernels.ConstantKernel

method), 1502
diag() (sklearn.gaussian_process.kernels.DotProduct

method), 1504
diag() (sklearn.gaussian_process.kernels.Exponentiation

method), 1508
diag() (sklearn.gaussian_process.kernels.ExpSineSquared

method), 1506
diag() (sklearn.gaussian_process.kernels.Kernel method),

1511
diag() (sklearn.gaussian_process.kernels.Matern

method), 1513
diag() (sklearn.gaussian_process.kernels.PairwiseKernel

method), 1515
diag() (sklearn.gaussian_process.kernels.Product

method), 1517
diag() (sklearn.gaussian_process.kernels.RationalQuadratic

method), 1522
diag() (sklearn.gaussian_process.kernels.RBF method),

1519

diag() (sklearn.gaussian_process.kernels.Sum method),
1524

diag() (sklearn.gaussian_process.kernels.WhiteKernel
method), 1526

dict_learning() (in module sklearn.decomposition), 1377
dict_learning_online() (in module

sklearn.decomposition), 1378
DictionaryLearning (class in sklearn.decomposition),

1331
DictVectorizer (class in sklearn.feature_extraction), 1431
dist_to_rdist() (sklearn.neighbors.DistanceMetric

method), 1829
distance_metrics() (in module sklearn.metrics.pairwise),

1716
DistanceMetric (class in sklearn.neighbors), 1827
DotProduct (class in sklearn.gaussian_process.kernels),

1503
DPGMM (class in sklearn.mixture), 2063
DummyClassifier (class in sklearn.dummy), 1391
DummyRegressor (class in sklearn.dummy), 1394
dump_svmlight_file() (in module sklearn.datasets), 1282

E
EfficiencyWarning (class in sklearn.exceptions), 1428
ElasticNet (class in sklearn.linear_model), 1551
ElasticNetCV (class in sklearn.linear_model), 387
EllipticEnvelope (class in sklearn.covariance), 1240
empirical_covariance() (in module sklearn.covariance),

1263
EmpiricalCovariance (class in sklearn.covariance), 1238
enet_path() (in module sklearn.linear_model), 1631
error_norm() (sklearn.covariance.EllipticEnvelope

method), 1242
error_norm() (sklearn.covariance.EmpiricalCovariance

method), 1238
error_norm() (sklearn.covariance.GraphLasso method),

1245
error_norm() (sklearn.covariance.GraphLassoCV

method), 1249
error_norm() (sklearn.covariance.LedoitWolf method),

1252
error_norm() (sklearn.covariance.MinCovDet method),

1255
error_norm() (sklearn.covariance.OAS method), 1259
error_norm() (sklearn.covariance.ShrunkCovariance

method), 1261
estimate_bandwidth() (in module sklearn.cluster), 1225
estimators_samples_ (sklearn.ensemble.BaggingClassifier

attribute), 1407
estimators_samples_ (sklearn.ensemble.BaggingRegressor

attribute), 1411
estimators_samples_ (sklearn.ensemble.IsolationForest

attribute), 1414
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euclidean_distances() (in module
sklearn.metrics.pairwise), 1716

explained_variance_score() (in module sklearn.metrics),
1691

Exponentiation (class in
sklearn.gaussian_process.kernels), 1507

export_graphviz() (in module sklearn.tree), 2004
ExpSineSquared (class in

sklearn.gaussian_process.kernels), 1505
extract_patches_2d() (in module

sklearn.feature_extraction.image), 1437
ExtraTreeClassifier (class in sklearn.tree), 1994
ExtraTreeRegressor (class in sklearn.tree), 1999
ExtraTreesClassifier (class in sklearn.ensemble), 448
ExtraTreesRegressor (class in sklearn.ensemble), 454

F
f1_score() (in module sklearn.metrics), 1672
f_classif() (in module sklearn.feature_selection), 1486
f_regression() (in module sklearn.feature_selection),

1486
FactorAnalysis (class in sklearn.decomposition), 1334
FastICA (class in sklearn.decomposition), 1337
fastica() (in module sklearn.decomposition), 1380
fbeta_score() (in module sklearn.metrics), 1673
feature_importances_ (sklearn.ensemble.AdaBoostClassifier

attribute), 1399
feature_importances_ (sklearn.ensemble.AdaBoostRegressor

attribute), 1403
feature_importances_ (sklearn.ensemble.ExtraTreesClassifier

attribute), 452
feature_importances_ (sklearn.ensemble.ExtraTreesRegressor

attribute), 458
feature_importances_ (sklearn.ensemble.GradientBoostingClassifier

attribute), 464
feature_importances_ (sklearn.ensemble.GradientBoostingRegressor

attribute), 471
feature_importances_ (sklearn.ensemble.RandomForestClassifier

attribute), 439
feature_importances_ (sklearn.ensemble.RandomForestRegressor

attribute), 446
feature_importances_ (sklearn.ensemble.RandomTreesEmbedding

attribute), 1418
feature_importances_ (sklearn.tree.DecisionTreeClassifier

attribute), 1985
feature_importances_ (sklearn.tree.DecisionTreeRegressor

attribute), 1992
feature_importances_ (sklearn.tree.ExtraTreeClassifier

attribute), 1997
feature_importances_ (sklearn.tree.ExtraTreeRegressor

attribute), 2002
FeatureAgglomeration (class in sklearn.cluster), 1204
FeatureHasher (class in sklearn.feature_extraction), 1434
FeatureUnion (class in sklearn.pipeline), 1884

fetch_20newsgroups() (in module sklearn.datasets), 1283
fetch_20newsgroups_vectorized() (in module

sklearn.datasets), 1284
fetch_california_housing() (in module sklearn.datasets),

1285
fetch_covtype() (in module sklearn.datasets), 1286
fetch_kddcup99() (in module sklearn.datasets), 1286
fetch_lfw_pairs() (in module sklearn.datasets), 1288
fetch_lfw_people() (in module sklearn.datasets), 1290
fetch_mldata() (in module sklearn.datasets), 1291
fetch_olivetti_faces() (in module sklearn.datasets), 1292
fetch_rcv1() (in module sklearn.datasets), 1293
fetch_species_distributions() (in module

sklearn.datasets), 1295
fit() (in module sklearn.svm.libsvm), 1978
fit() (sklearn.calibration.CalibratedClassifierCV method),

1190
fit() (sklearn.cluster.AffinityPropagation method), 1194
fit() (sklearn.cluster.AgglomerativeClustering method),

1197
fit() (sklearn.cluster.bicluster.SpectralBiclustering

method), 1233
fit() (sklearn.cluster.bicluster.SpectralCoclustering

method), 1236
fit() (sklearn.cluster.Birch method), 1200
fit() (sklearn.cluster.DBSCAN method), 1203
fit() (sklearn.cluster.FeatureAgglomeration method),

1205
fit() (sklearn.cluster.KMeans method), 1210
fit() (sklearn.cluster.MeanShift method), 1218
fit() (sklearn.cluster.MiniBatchKMeans method), 1214
fit() (sklearn.cluster.SpectralClustering method), 1221
fit() (sklearn.covariance.EllipticEnvelope method), 1242
fit() (sklearn.covariance.EmpiricalCovariance method),

1239
fit() (sklearn.covariance.GraphLasso method), 1246
fit() (sklearn.covariance.GraphLassoCV method), 1249
fit() (sklearn.covariance.LedoitWolf method), 1252
fit() (sklearn.covariance.MinCovDet method), 1256
fit() (sklearn.covariance.OAS method), 1259
fit() (sklearn.covariance.ShrunkCovariance method),

1262
fit() (sklearn.cross_decomposition.CCA method), 1269
fit() (sklearn.cross_decomposition.PLSCanonical

method), 1273
fit() (sklearn.cross_decomposition.PLSRegression

method), 1277
fit() (sklearn.cross_decomposition.PLSSVD method),

1280
fit() (sklearn.decomposition.DictionaryLearning method),

1333
fit() (sklearn.decomposition.FactorAnalysis method),

1335
fit() (sklearn.decomposition.FastICA method), 1339
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fit() (sklearn.decomposition.IncrementalPCA method),
1342

fit() (sklearn.decomposition.KernelPCA method), 1346
fit() (sklearn.decomposition.LatentDirichletAllocation

method), 1350
fit() (sklearn.decomposition.MiniBatchDictionaryLearning

method), 1354
fit() (sklearn.decomposition.MiniBatchSparsePCA

method), 1357
fit() (sklearn.decomposition.NMF method), 1361
fit() (sklearn.decomposition.PCA method), 1366
fit() (sklearn.decomposition.RandomizedPCA method),

2045
fit() (sklearn.decomposition.SparseCoder method), 1372
fit() (sklearn.decomposition.SparsePCA method), 1370
fit() (sklearn.decomposition.TruncatedSVD method),

1375
fit() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis

method), 1386
fit() (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis

method), 1390
fit() (sklearn.dummy.DummyClassifier method), 1393
fit() (sklearn.dummy.DummyRegressor method), 1395
fit() (sklearn.ensemble.AdaBoostClassifier method), 1399
fit() (sklearn.ensemble.AdaBoostRegressor method),

1403
fit() (sklearn.ensemble.BaggingClassifier method), 1407
fit() (sklearn.ensemble.BaggingRegressor method), 1411
fit() (sklearn.ensemble.ExtraTreesClassifier method), 452
fit() (sklearn.ensemble.ExtraTreesRegressor method),

458
fit() (sklearn.ensemble.GradientBoostingClassifier

method), 464
fit() (sklearn.ensemble.GradientBoostingRegressor

method), 471
fit() (sklearn.ensemble.IsolationForest method), 1415
fit() (sklearn.ensemble.RandomForestClassifier method),

440
fit() (sklearn.ensemble.RandomForestRegressor method),

446
fit() (sklearn.ensemble.RandomTreesEmbedding

method), 1418
fit() (sklearn.ensemble.VotingClassifier method), 1421
fit() (sklearn.feature_extraction.DictVectorizer method),

1432
fit() (sklearn.feature_extraction.FeatureHasher method),

1436
fit() (sklearn.feature_extraction.image.PatchExtractor

method), 1440
fit() (sklearn.feature_extraction.text.CountVectorizer

method), 1445
fit() (sklearn.feature_extraction.text.HashingVectorizer

method), 1449

fit() (sklearn.feature_extraction.text.TfidfTransformer
method), 1451

fit() (sklearn.feature_extraction.text.TfidfVectorizer
method), 1456

fit() (sklearn.feature_selection.GenericUnivariateSelect
method), 1459

fit() (sklearn.feature_selection.RFE method), 1477
fit() (sklearn.feature_selection.RFECV method), 1481
fit() (sklearn.feature_selection.SelectFdr method), 1469
fit() (sklearn.feature_selection.SelectFpr method), 1466
fit() (sklearn.feature_selection.SelectFromModel

method), 1471
fit() (sklearn.feature_selection.SelectFwe method), 1474
fit() (sklearn.feature_selection.SelectKBest method),

1464
fit() (sklearn.feature_selection.SelectPercentile method),

1461
fit() (sklearn.feature_selection.VarianceThreshold

method), 1483
fit() (sklearn.gaussian_process.GaussianProcess method),

2049
fit() (sklearn.gaussian_process.GaussianProcessClassifier

method), 1492
fit() (sklearn.gaussian_process.GaussianProcessRegressor

method), 1496
fit() (sklearn.grid_search.GridSearchCV method), 2056
fit() (sklearn.grid_search.RandomizedSearchCV

method), 2061
fit() (sklearn.isotonic.IsotonicRegression method), 1528
fit() (sklearn.kernel_approximation.AdditiveChi2Sampler

method), 1533
fit() (sklearn.kernel_approximation.Nystroem method),

1535
fit() (sklearn.kernel_approximation.RBFSampler

method), 1537
fit() (sklearn.kernel_approximation.SkewedChi2Sampler

method), 1539
fit() (sklearn.kernel_ridge.KernelRidge method), 1541
fit() (sklearn.linear_model.ARDRegression method),

1546
fit() (sklearn.linear_model.BayesianRidge method), 1549
fit() (sklearn.linear_model.ElasticNet method), 1553
fit() (sklearn.linear_model.ElasticNetCV method), 390
fit() (sklearn.linear_model.HuberRegressor method),

1558
fit() (sklearn.linear_model.Lars method), 1561
fit() (sklearn.linear_model.LarsCV method), 395
fit() (sklearn.linear_model.Lasso method), 1564
fit() (sklearn.linear_model.LassoCV method), 398
fit() (sklearn.linear_model.LassoLars method), 1569
fit() (sklearn.linear_model.LassoLarsCV method), 404
fit() (sklearn.linear_model.LassoLarsIC method), 433
fit() (sklearn.linear_model.LinearRegression method),

1572
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fit() (sklearn.linear_model.LogisticRegression method),
1577

fit() (sklearn.linear_model.LogisticRegressionCV
method), 409

fit() (sklearn.linear_model.MultiTaskElasticNet method),
1587

fit() (sklearn.linear_model.MultiTaskElasticNetCV
method), 414

fit() (sklearn.linear_model.MultiTaskLasso method),
1581

fit() (sklearn.linear_model.MultiTaskLassoCV method),
419

fit() (sklearn.linear_model.OrthogonalMatchingPursuit
method), 1591

fit() (sklearn.linear_model.OrthogonalMatchingPursuitCV
method), 423

fit() (sklearn.linear_model.PassiveAggressiveClassifier
method), 1595

fit() (sklearn.linear_model.PassiveAggressiveRegressor
method), 1599

fit() (sklearn.linear_model.Perceptron method), 1603
fit() (sklearn.linear_model.RandomizedLasso method),

2022
fit() (sklearn.linear_model.RandomizedLogisticRegression

method), 2025
fit() (sklearn.linear_model.RANSACRegressor method),

1608
fit() (sklearn.linear_model.Ridge method), 1611
fit() (sklearn.linear_model.RidgeClassifier method), 1615
fit() (sklearn.linear_model.RidgeClassifierCV method),

430
fit() (sklearn.linear_model.RidgeCV method), 426
fit() (sklearn.linear_model.SGDClassifier method), 1620
fit() (sklearn.linear_model.SGDRegressor method), 1626
fit() (sklearn.linear_model.TheilSenRegressor method),

1629
fit() (sklearn.manifold.Isomap method), 1644
fit() (sklearn.manifold.LocallyLinearEmbedding

method), 1647
fit() (sklearn.manifold.MDS method), 1650
fit() (sklearn.manifold.SpectralEmbedding method), 1652
fit() (sklearn.manifold.TSNE method), 1656
fit() (sklearn.mixture.BayesianGaussianMixture method),

1732
fit() (sklearn.mixture.DPGMM method), 2064
fit() (sklearn.mixture.GaussianMixture method), 1737
fit() (sklearn.mixture.GMM method), 2066
fit() (sklearn.mixture.VBGMM method), 2070
fit() (sklearn.model_selection.GridSearchCV method),

1772
fit() (sklearn.model_selection.RandomizedSearchCV

method), 1781
fit() (sklearn.multiclass.OneVsOneClassifier method),

1799

fit() (sklearn.multiclass.OneVsRestClassifier method),
1796

fit() (sklearn.multiclass.OutputCodeClassifier method),
1802

fit() (sklearn.multioutput.ClassifierChain method), 1805
fit() (sklearn.multioutput.MultiOutputClassifier method),

1809
fit() (sklearn.multioutput.MultiOutputRegressor method),

1806
fit() (sklearn.naive_bayes.BernoulliNB method), 1812
fit() (sklearn.naive_bayes.GaussianNB method), 1815
fit() (sklearn.naive_bayes.MultinomialNB method), 1819
fit() (sklearn.neighbors.KernelDensity method), 1836
fit() (sklearn.neighbors.KNeighborsClassifier method),

1839
fit() (sklearn.neighbors.KNeighborsRegressor method),

1844
fit() (sklearn.neighbors.LocalOutlierFactor method), 1848
fit() (sklearn.neighbors.LSHForest method), 2028
fit() (sklearn.neighbors.NearestCentroid method), 1861
fit() (sklearn.neighbors.NearestNeighbors method), 1864
fit() (sklearn.neighbors.RadiusNeighborsClassifier

method), 1853
fit() (sklearn.neighbors.RadiusNeighborsRegressor

method), 1857
fit() (sklearn.neural_network.BernoulliRBM method),

1872
fit() (sklearn.neural_network.MLPClassifier method),

1877
fit() (sklearn.neural_network.MLPRegressor method),

1883
fit() (sklearn.pipeline.FeatureUnion method), 1885
fit() (sklearn.pipeline.Pipeline method), 1888
fit() (sklearn.preprocessing.Binarizer method), 1893
fit() (sklearn.preprocessing.FunctionTransformer

method), 1895
fit() (sklearn.preprocessing.Imputer method), 1898
fit() (sklearn.preprocessing.KernelCenterer method),

1899
fit() (sklearn.preprocessing.LabelBinarizer method), 1902
fit() (sklearn.preprocessing.LabelEncoder method), 1904
fit() (sklearn.preprocessing.MaxAbsScaler method), 1908
fit() (sklearn.preprocessing.MinMaxScaler method), 1911
fit() (sklearn.preprocessing.MultiLabelBinarizer method),

1906
fit() (sklearn.preprocessing.Normalizer method), 1913
fit() (sklearn.preprocessing.OneHotEncoder method),

1916
fit() (sklearn.preprocessing.PolynomialFeatures method),

1918
fit() (sklearn.preprocessing.QuantileTransformer

method), 1921
fit() (sklearn.preprocessing.RobustScaler method), 1923
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fit() (sklearn.preprocessing.StandardScaler method),
1926

fit() (sklearn.random_projection.GaussianRandomProjection
method), 1937

fit() (sklearn.random_projection.SparseRandomProjection
method), 1940

fit() (sklearn.semi_supervised.LabelSpreading method),
1947

fit() (sklearn.svm.LinearSVC method), 1952
fit() (sklearn.svm.LinearSVR method), 1955
fit() (sklearn.svm.NuSVC method), 1959
fit() (sklearn.svm.NuSVR method), 1963
fit() (sklearn.svm.OneClassSVM method), 1966
fit() (sklearn.svm.SVC method), 1970
fit() (sklearn.svm.SVR method), 1975
fit() (sklearn.tree.DecisionTreeClassifier method), 1985
fit() (sklearn.tree.DecisionTreeRegressor method), 1992
fit() (sklearn.tree.ExtraTreeClassifier method), 1997
fit() (sklearn.tree.ExtraTreeRegressor method), 2002
fit_grid_point() (in module sklearn.grid_search), 2079
fit_grid_point() (in module sklearn.model_selection),

1783
fit_predict() (sklearn.base.ClusterMixin method), 1186
fit_predict() (sklearn.cluster.AffinityPropagation

method), 1195
fit_predict() (sklearn.cluster.AgglomerativeClustering

method), 1197
fit_predict() (sklearn.cluster.Birch method), 1200
fit_predict() (sklearn.cluster.DBSCAN method), 1203
fit_predict() (sklearn.cluster.KMeans method), 1210
fit_predict() (sklearn.cluster.MeanShift method), 1218
fit_predict() (sklearn.cluster.MiniBatchKMeans method),

1214
fit_predict() (sklearn.cluster.SpectralClustering method),

1221
fit_predict() (sklearn.mixture.DPGMM method), 2064
fit_predict() (sklearn.mixture.GMM method), 2067
fit_predict() (sklearn.mixture.VBGMM method), 2070
fit_predict() (sklearn.neighbors.LocalOutlierFactor

method), 1849
fit_predict() (sklearn.pipeline.Pipeline method), 1888
fit_transform() (sklearn.base.TransformerMixin method),

1187
fit_transform() (sklearn.cluster.Birch method), 1200
fit_transform() (sklearn.cluster.FeatureAgglomeration

method), 1205
fit_transform() (sklearn.cluster.KMeans method), 1211
fit_transform() (sklearn.cluster.MiniBatchKMeans

method), 1215
fit_transform() (sklearn.cross_decomposition.CCA

method), 1269
fit_transform() (sklearn.cross_decomposition.PLSCanonical

method), 1273

fit_transform() (sklearn.cross_decomposition.PLSRegression
method), 1278

fit_transform() (sklearn.cross_decomposition.PLSSVD
method), 1280

fit_transform() (sklearn.decomposition.DictionaryLearning
method), 1333

fit_transform() (sklearn.decomposition.FactorAnalysis
method), 1336

fit_transform() (sklearn.decomposition.FastICA method),
1339

fit_transform() (sklearn.decomposition.IncrementalPCA
method), 1342

fit_transform() (sklearn.decomposition.KernelPCA
method), 1346

fit_transform() (sklearn.decomposition.LatentDirichletAllocation
method), 1350

fit_transform() (sklearn.decomposition.MiniBatchDictionaryLearning
method), 1354

fit_transform() (sklearn.decomposition.MiniBatchSparsePCA
method), 1357

fit_transform() (sklearn.decomposition.NMF method),
1361

fit_transform() (sklearn.decomposition.PCA method),
1366

fit_transform() (sklearn.decomposition.RandomizedPCA
method), 2045

fit_transform() (sklearn.decomposition.SparseCoder
method), 1372

fit_transform() (sklearn.decomposition.SparsePCA
method), 1370

fit_transform() (sklearn.decomposition.TruncatedSVD
method), 1375

fit_transform() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis
method), 1386

fit_transform() (sklearn.ensemble.RandomTreesEmbedding
method), 1419

fit_transform() (sklearn.ensemble.VotingClassifier
method), 1422

fit_transform() (sklearn.feature_extraction.DictVectorizer
method), 1432

fit_transform() (sklearn.feature_extraction.FeatureHasher
method), 1436

fit_transform() (sklearn.feature_extraction.text.CountVectorizer
method), 1445

fit_transform() (sklearn.feature_extraction.text.HashingVectorizer
method), 1449

fit_transform() (sklearn.feature_extraction.text.TfidfTransformer
method), 1451

fit_transform() (sklearn.feature_extraction.text.TfidfVectorizer
method), 1456

fit_transform() (sklearn.feature_selection.GenericUnivariateSelect
method), 1459

fit_transform() (sklearn.feature_selection.RFE method),
1477
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fit_transform() (sklearn.feature_selection.RFECV
method), 1481

fit_transform() (sklearn.feature_selection.SelectFdr
method), 1469

fit_transform() (sklearn.feature_selection.SelectFpr
method), 1467

fit_transform() (sklearn.feature_selection.SelectFromModel
method), 1472

fit_transform() (sklearn.feature_selection.SelectFwe
method), 1474

fit_transform() (sklearn.feature_selection.SelectKBest
method), 1464

fit_transform() (sklearn.feature_selection.SelectPercentile
method), 1462

fit_transform() (sklearn.feature_selection.VarianceThreshold
method), 1483

fit_transform() (sklearn.isotonic.IsotonicRegression
method), 1529

fit_transform() (sklearn.kernel_approximation.AdditiveChi2Sampler
method), 1533

fit_transform() (sklearn.kernel_approximation.Nystroem
method), 1535

fit_transform() (sklearn.kernel_approximation.RBFSampler
method), 1537

fit_transform() (sklearn.kernel_approximation.SkewedChi2Sampler
method), 1539

fit_transform() (sklearn.linear_model.RandomizedLasso
method), 2022

fit_transform() (sklearn.linear_model.RandomizedLogisticRegression
method), 2025

fit_transform() (sklearn.manifold.Isomap method), 1644
fit_transform() (sklearn.manifold.LocallyLinearEmbedding

method), 1647
fit_transform() (sklearn.manifold.MDS method), 1650
fit_transform() (sklearn.manifold.SpectralEmbedding

method), 1652
fit_transform() (sklearn.manifold.TSNE method), 1656
fit_transform() (sklearn.neural_network.BernoulliRBM

method), 1872
fit_transform() (sklearn.pipeline.FeatureUnion method),

1885
fit_transform() (sklearn.pipeline.Pipeline method), 1888
fit_transform() (sklearn.preprocessing.Binarizer method),

1894
fit_transform() (sklearn.preprocessing.FunctionTransformer

method), 1896
fit_transform() (sklearn.preprocessing.Imputer method),

1898
fit_transform() (sklearn.preprocessing.KernelCenterer

method), 1899
fit_transform() (sklearn.preprocessing.LabelBinarizer

method), 1902
fit_transform() (sklearn.preprocessing.LabelEncoder

method), 1904

fit_transform() (sklearn.preprocessing.MaxAbsScaler
method), 1908

fit_transform() (sklearn.preprocessing.MinMaxScaler
method), 1911

fit_transform() (sklearn.preprocessing.MultiLabelBinarizer
method), 1906

fit_transform() (sklearn.preprocessing.Normalizer
method), 1913

fit_transform() (sklearn.preprocessing.OneHotEncoder
method), 1916

fit_transform() (sklearn.preprocessing.PolynomialFeatures
method), 1918

fit_transform() (sklearn.preprocessing.QuantileTransformer
method), 1921

fit_transform() (sklearn.preprocessing.RobustScaler
method), 1924

fit_transform() (sklearn.preprocessing.StandardScaler
method), 1926

fit_transform() (sklearn.random_projection.GaussianRandomProjection
method), 1938

fit_transform() (sklearn.random_projection.SparseRandomProjection
method), 1940

FitFailedWarning (class in sklearn.exceptions), 1429
fixed (sklearn.gaussian_process.kernels.Hyperparameter

attribute), 1510
fowlkes_mallows_score() (in module sklearn.metrics),

1703
FunctionTransformer (class in sklearn.preprocessing),

1894

G
GaussianMixture (class in sklearn.mixture), 1734
GaussianNB (class in sklearn.naive_bayes), 1814
GaussianProcess (class in sklearn.gaussian_process),

2046
GaussianProcessClassifier (class in

sklearn.gaussian_process), 1490
GaussianProcessRegressor (class in

sklearn.gaussian_process), 1494
GaussianRandomProjection (class in

sklearn.random_projection), 1937
GenericUnivariateSelect (class in

sklearn.feature_selection), 1458
get_config() (in module sklearn), 1189
get_covariance() (sklearn.decomposition.FactorAnalysis

method), 1336
get_covariance() (sklearn.decomposition.IncrementalPCA

method), 1343
get_covariance() (sklearn.decomposition.PCA method),

1366
get_data_home() (in module sklearn.datasets), 1296
get_feature_names() (sklearn.feature_extraction.DictVectorizer

method), 1433
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get_feature_names() (sklearn.feature_extraction.text.CountVectorizer
method), 1445

get_feature_names() (sklearn.feature_extraction.text.TfidfVectorizer
method), 1456

get_feature_names() (sklearn.pipeline.FeatureUnion
method), 1885

get_feature_names() (sklearn.preprocessing.PolynomialFeatures
method), 1918

get_indices() (sklearn.base.BiclusterMixin method), 1184
get_indices() (sklearn.cluster.bicluster.SpectralBiclustering

method), 1233
get_indices() (sklearn.cluster.bicluster.SpectralCoclustering

method), 1236
get_metric() (sklearn.neighbors.DistanceMetric method),

1829
get_n_splits() (sklearn.model_selection.GroupKFold

method), 1740
get_n_splits() (sklearn.model_selection.GroupShuffleSplit

method), 1742
get_n_splits() (sklearn.model_selection.KFold method),

1744
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method), 1746
get_n_splits() (sklearn.model_selection.LeaveOneOut

method), 1749
get_n_splits() (sklearn.model_selection.LeavePGroupsOut

method), 1748
get_n_splits() (sklearn.model_selection.LeavePOut

method), 1751
get_n_splits() (sklearn.model_selection.PredefinedSplit

method), 1753
get_n_splits() (sklearn.model_selection.RepeatedKFold

method), 1754
get_n_splits() (sklearn.model_selection.RepeatedStratifiedKFold

method), 1756
get_n_splits() (sklearn.model_selection.ShuffleSplit

method), 1758
get_n_splits() (sklearn.model_selection.StratifiedKFold

method), 1760
get_n_splits() (sklearn.model_selection.StratifiedShuffleSplit

method), 1762
get_n_splits() (sklearn.model_selection.TimeSeriesSplit

method), 1764
get_params() (sklearn.base.BaseEstimator method), 1183
get_params() (sklearn.calibration.CalibratedClassifierCV

method), 1191
get_params() (sklearn.cluster.AffinityPropagation

method), 1195
get_params() (sklearn.cluster.AgglomerativeClustering

method), 1197
get_params() (sklearn.cluster.bicluster.SpectralBiclustering

method), 1233
get_params() (sklearn.cluster.bicluster.SpectralCoclustering

method), 1236

get_params() (sklearn.cluster.Birch method), 1200
get_params() (sklearn.cluster.DBSCAN method), 1203
get_params() (sklearn.cluster.FeatureAgglomeration

method), 1206
get_params() (sklearn.cluster.KMeans method), 1211
get_params() (sklearn.cluster.MeanShift method), 1218
get_params() (sklearn.cluster.MiniBatchKMeans

method), 1215
get_params() (sklearn.cluster.SpectralClustering

method), 1221
get_params() (sklearn.covariance.EllipticEnvelope

method), 1242
get_params() (sklearn.covariance.EmpiricalCovariance

method), 1239
get_params() (sklearn.covariance.GraphLasso method),

1246
get_params() (sklearn.covariance.GraphLassoCV

method), 1249
get_params() (sklearn.covariance.LedoitWolf method),

1252
get_params() (sklearn.covariance.MinCovDet method),

1256
get_params() (sklearn.covariance.OAS method), 1259
get_params() (sklearn.covariance.ShrunkCovariance

method), 1262
get_params() (sklearn.cross_decomposition.CCA

method), 1269
get_params() (sklearn.cross_decomposition.PLSCanonical

method), 1274
get_params() (sklearn.cross_decomposition.PLSRegression

method), 1278
get_params() (sklearn.cross_decomposition.PLSSVD

method), 1280
get_params() (sklearn.decomposition.DictionaryLearning

method), 1333
get_params() (sklearn.decomposition.FactorAnalysis

method), 1336
get_params() (sklearn.decomposition.FastICA method),

1339
get_params() (sklearn.decomposition.IncrementalPCA

method), 1343
get_params() (sklearn.decomposition.KernelPCA

method), 1347
get_params() (sklearn.decomposition.LatentDirichletAllocation

method), 1351
get_params() (sklearn.decomposition.MiniBatchDictionaryLearning

method), 1355
get_params() (sklearn.decomposition.MiniBatchSparsePCA

method), 1357
get_params() (sklearn.decomposition.NMF method),

1361
get_params() (sklearn.decomposition.PCA method),
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get_params() (sklearn.decomposition.RandomizedPCA
method), 2045

get_params() (sklearn.decomposition.SparseCoder
method), 1373

get_params() (sklearn.decomposition.SparsePCA
method), 1370

get_params() (sklearn.decomposition.TruncatedSVD
method), 1375

get_params() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis
method), 1386

get_params() (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis
method), 1390

get_params() (sklearn.dummy.DummyClassifier
method), 1393

get_params() (sklearn.dummy.DummyRegressor
method), 1395

get_params() (sklearn.ensemble.AdaBoostClassifier
method), 1399

get_params() (sklearn.ensemble.AdaBoostRegressor
method), 1403

get_params() (sklearn.ensemble.BaggingClassifier
method), 1408

get_params() (sklearn.ensemble.BaggingRegressor
method), 1412

get_params() (sklearn.ensemble.ExtraTreesClassifier
method), 452

get_params() (sklearn.ensemble.ExtraTreesRegressor
method), 458

get_params() (sklearn.ensemble.GradientBoostingClassifier
method), 464

get_params() (sklearn.ensemble.GradientBoostingRegressor
method), 471

get_params() (sklearn.ensemble.IsolationForest method),
1415

get_params() (sklearn.ensemble.RandomForestClassifier
method), 440

get_params() (sklearn.ensemble.RandomForestRegressor
method), 446

get_params() (sklearn.ensemble.RandomTreesEmbedding
method), 1419

get_params() (sklearn.ensemble.VotingClassifier
method), 1422

get_params() (sklearn.feature_extraction.DictVectorizer
method), 1433

get_params() (sklearn.feature_extraction.FeatureHasher
method), 1436

get_params() (sklearn.feature_extraction.image.PatchExtractor
method), 1441

get_params() (sklearn.feature_extraction.text.CountVectorizer
method), 1445

get_params() (sklearn.feature_extraction.text.HashingVectorizer
method), 1449

get_params() (sklearn.feature_extraction.text.TfidfTransformer
method), 1452

get_params() (sklearn.feature_extraction.text.TfidfVectorizer
method), 1456

get_params() (sklearn.feature_selection.GenericUnivariateSelect
method), 1459

get_params() (sklearn.feature_selection.RFE method),
1477

get_params() (sklearn.feature_selection.RFECV
method), 1481

get_params() (sklearn.feature_selection.SelectFdr
method), 1469

get_params() (sklearn.feature_selection.SelectFpr
method), 1467

get_params() (sklearn.feature_selection.SelectFromModel
method), 1472

get_params() (sklearn.feature_selection.SelectFwe
method), 1474

get_params() (sklearn.feature_selection.SelectKBest
method), 1464

get_params() (sklearn.feature_selection.SelectPercentile
method), 1462

get_params() (sklearn.feature_selection.VarianceThreshold
method), 1484

get_params() (sklearn.gaussian_process.GaussianProcess
method), 2049

get_params() (sklearn.gaussian_process.GaussianProcessClassifier
method), 1492

get_params() (sklearn.gaussian_process.GaussianProcessRegressor
method), 1496

get_params() (sklearn.gaussian_process.kernels.CompoundKernel
method), 1500

get_params() (sklearn.gaussian_process.kernels.ConstantKernel
method), 1502

get_params() (sklearn.gaussian_process.kernels.DotProduct
method), 1504

get_params() (sklearn.gaussian_process.kernels.Exponentiation
method), 1508

get_params() (sklearn.gaussian_process.kernels.ExpSineSquared
method), 1506

get_params() (sklearn.gaussian_process.kernels.Kernel
method), 1511

get_params() (sklearn.gaussian_process.kernels.Matern
method), 1513

get_params() (sklearn.gaussian_process.kernels.PairwiseKernel
method), 1515

get_params() (sklearn.gaussian_process.kernels.Product
method), 1517

get_params() (sklearn.gaussian_process.kernels.RationalQuadratic
method), 1522

get_params() (sklearn.gaussian_process.kernels.RBF
method), 1519

get_params() (sklearn.gaussian_process.kernels.Sum
method), 1524

get_params() (sklearn.gaussian_process.kernels.WhiteKernel
method), 1526
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get_params() (sklearn.grid_search.GridSearchCV
method), 2057

get_params() (sklearn.grid_search.RandomizedSearchCV
method), 2061

get_params() (sklearn.isotonic.IsotonicRegression
method), 1529

get_params() (sklearn.kernel_approximation.AdditiveChi2Sampler
method), 1533

get_params() (sklearn.kernel_approximation.Nystroem
method), 1535

get_params() (sklearn.kernel_approximation.RBFSampler
method), 1537

get_params() (sklearn.kernel_approximation.SkewedChi2Sampler
method), 1539

get_params() (sklearn.kernel_ridge.KernelRidge
method), 1542

get_params() (sklearn.linear_model.ARDRegression
method), 1546

get_params() (sklearn.linear_model.BayesianRidge
method), 1549

get_params() (sklearn.linear_model.ElasticNet method),
1553

get_params() (sklearn.linear_model.ElasticNetCV
method), 390

get_params() (sklearn.linear_model.HuberRegressor
method), 1558

get_params() (sklearn.linear_model.Lars method), 1561
get_params() (sklearn.linear_model.LarsCV method),

395
get_params() (sklearn.linear_model.Lasso method), 1565
get_params() (sklearn.linear_model.LassoCV method),

398
get_params() (sklearn.linear_model.LassoLars method),

1570
get_params() (sklearn.linear_model.LassoLarsCV

method), 404
get_params() (sklearn.linear_model.LassoLarsIC

method), 433
get_params() (sklearn.linear_model.LinearRegression

method), 1572
get_params() (sklearn.linear_model.LogisticRegression

method), 1577
get_params() (sklearn.linear_model.LogisticRegressionCV

method), 409
get_params() (sklearn.linear_model.MultiTaskElasticNet

method), 1587
get_params() (sklearn.linear_model.MultiTaskElasticNetCV

method), 414
get_params() (sklearn.linear_model.MultiTaskLasso

method), 1582
get_params() (sklearn.linear_model.MultiTaskLassoCV

method), 419
get_params() (sklearn.linear_model.OrthogonalMatchingPursuit

method), 1591

get_params() (sklearn.linear_model.OrthogonalMatchingPursuitCV
method), 424

get_params() (sklearn.linear_model.PassiveAggressiveClassifier
method), 1595

get_params() (sklearn.linear_model.PassiveAggressiveRegressor
method), 1600

get_params() (sklearn.linear_model.Perceptron method),
1604

get_params() (sklearn.linear_model.RandomizedLasso
method), 2022

get_params() (sklearn.linear_model.RandomizedLogisticRegression
method), 2026

get_params() (sklearn.linear_model.RANSACRegressor
method), 1608

get_params() (sklearn.linear_model.Ridge method), 1611
get_params() (sklearn.linear_model.RidgeClassifier

method), 1615
get_params() (sklearn.linear_model.RidgeClassifierCV

method), 430
get_params() (sklearn.linear_model.RidgeCV method),

427
get_params() (sklearn.linear_model.SGDClassifier

method), 1620
get_params() (sklearn.linear_model.SGDRegressor

method), 1626
get_params() (sklearn.linear_model.TheilSenRegressor

method), 1629
get_params() (sklearn.manifold.Isomap method), 1644
get_params() (sklearn.manifold.LocallyLinearEmbedding

method), 1648
get_params() (sklearn.manifold.MDS method), 1650
get_params() (sklearn.manifold.SpectralEmbedding

method), 1653
get_params() (sklearn.manifold.TSNE method), 1656
get_params() (sklearn.mixture.BayesianGaussianMixture

method), 1732
get_params() (sklearn.mixture.DPGMM method), 2064
get_params() (sklearn.mixture.GaussianMixture method),

1737
get_params() (sklearn.mixture.GMM method), 2067
get_params() (sklearn.mixture.VBGMM method), 2071
get_params() (sklearn.model_selection.GridSearchCV

method), 1773
get_params() (sklearn.model_selection.RandomizedSearchCV

method), 1782
get_params() (sklearn.multiclass.OneVsOneClassifier

method), 1799
get_params() (sklearn.multiclass.OneVsRestClassifier

method), 1797
get_params() (sklearn.multiclass.OutputCodeClassifier

method), 1802
get_params() (sklearn.multioutput.ClassifierChain

method), 1805
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get_params() (sklearn.multioutput.MultiOutputClassifier
method), 1809

get_params() (sklearn.multioutput.MultiOutputRegressor
method), 1807

get_params() (sklearn.naive_bayes.BernoulliNB
method), 1812

get_params() (sklearn.naive_bayes.GaussianNB method),
1815

get_params() (sklearn.naive_bayes.MultinomialNB
method), 1819

get_params() (sklearn.neighbors.KernelDensity method),
1836

get_params() (sklearn.neighbors.KNeighborsClassifier
method), 1839

get_params() (sklearn.neighbors.KNeighborsRegressor
method), 1844

get_params() (sklearn.neighbors.LocalOutlierFactor
method), 1849

get_params() (sklearn.neighbors.LSHForest method),
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method), 1861

get_params() (sklearn.neighbors.NearestNeighbors
method), 1864

get_params() (sklearn.neighbors.RadiusNeighborsClassifier
method), 1853
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method), 1857
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method), 1873
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method), 1877
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method), 1883

get_params() (sklearn.pipeline.FeatureUnion method),
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get_params() (sklearn.preprocessing.FunctionTransformer

method), 1896
get_params() (sklearn.preprocessing.Imputer method),
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method), 1900
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method), 1902
get_params() (sklearn.preprocessing.LabelEncoder

method), 1904
get_params() (sklearn.preprocessing.MaxAbsScaler

method), 1908
get_params() (sklearn.preprocessing.MinMaxScaler

method), 1911

get_params() (sklearn.preprocessing.MultiLabelBinarizer
method), 1906

get_params() (sklearn.preprocessing.Normalizer
method), 1913

get_params() (sklearn.preprocessing.OneHotEncoder
method), 1916

get_params() (sklearn.preprocessing.PolynomialFeatures
method), 1918

get_params() (sklearn.preprocessing.QuantileTransformer
method), 1921

get_params() (sklearn.preprocessing.RobustScaler
method), 1924

get_params() (sklearn.preprocessing.StandardScaler
method), 1927

get_params() (sklearn.random_projection.GaussianRandomProjection
method), 1938
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method), 1940
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method), 1944
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method), 1947
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get_params() (sklearn.svm.NuSVC method), 1960
get_params() (sklearn.svm.NuSVR method), 1964
get_params() (sklearn.svm.OneClassSVM method), 1967
get_params() (sklearn.svm.SVC method), 1971
get_params() (sklearn.svm.SVR method), 1975
get_params() (sklearn.tree.DecisionTreeClassifier

method), 1986
get_params() (sklearn.tree.DecisionTreeRegressor

method), 1992
get_params() (sklearn.tree.ExtraTreeClassifier method),
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get_params() (sklearn.tree.ExtraTreeRegressor method),

2003
get_precision() (sklearn.covariance.EllipticEnvelope

method), 1243
get_precision() (sklearn.covariance.EmpiricalCovariance

method), 1239
get_precision() (sklearn.covariance.GraphLasso method),

1246
get_precision() (sklearn.covariance.GraphLassoCV

method), 1249
get_precision() (sklearn.covariance.LedoitWolf method),

1252
get_precision() (sklearn.covariance.MinCovDet method),

1256
get_precision() (sklearn.covariance.OAS method), 1260
get_precision() (sklearn.covariance.ShrunkCovariance

method), 1262
get_precision() (sklearn.decomposition.FactorAnalysis

method), 1336

Index 2145



scikit-learn user guide, Release 0.19.1

get_precision() (sklearn.decomposition.IncrementalPCA
method), 1343

get_precision() (sklearn.decomposition.PCA method),
1366

get_scorer() (in module sklearn.metrics), 1662
get_shape() (sklearn.base.BiclusterMixin method), 1185
get_shape() (sklearn.cluster.bicluster.SpectralBiclustering

method), 1234
get_shape() (sklearn.cluster.bicluster.SpectralCoclustering

method), 1236
get_stop_words() (sklearn.feature_extraction.text.CountVectorizer

method), 1445
get_stop_words() (sklearn.feature_extraction.text.HashingVectorizer

method), 1449
get_stop_words() (sklearn.feature_extraction.text.TfidfVectorizer

method), 1457
get_submatrix() (sklearn.base.BiclusterMixin method),

1185
get_submatrix() (sklearn.cluster.bicluster.SpectralBiclustering

method), 1234
get_submatrix() (sklearn.cluster.bicluster.SpectralCoclustering

method), 1237
get_support() (sklearn.feature_selection.GenericUnivariateSelect

method), 1460
get_support() (sklearn.feature_selection.RFE method),

1477
get_support() (sklearn.feature_selection.RFECV

method), 1481
get_support() (sklearn.feature_selection.SelectFdr

method), 1470
get_support() (sklearn.feature_selection.SelectFpr

method), 1467
get_support() (sklearn.feature_selection.SelectFromModel

method), 1472
get_support() (sklearn.feature_selection.SelectFwe

method), 1475
get_support() (sklearn.feature_selection.SelectKBest

method), 1465
get_support() (sklearn.feature_selection.SelectPercentile

method), 1462
get_support() (sklearn.feature_selection.VarianceThreshold

method), 1484
get_support() (sklearn.linear_model.RandomizedLasso

method), 2022
get_support() (sklearn.linear_model.RandomizedLogisticRegression

method), 2026
gibbs() (sklearn.neural_network.BernoulliRBM method),

1873
GMM (class in sklearn.mixture), 2066
GradientBoostingClassifier (class in sklearn.ensemble),

459
GradientBoostingRegressor (class in sklearn.ensemble),

467
graph_lasso() (in module sklearn.covariance), 1264

GraphLasso (class in sklearn.covariance), 1244
GraphLassoCV (class in sklearn.covariance), 1247
grid_scores (sklearn.covariance.GraphLassoCV at-

tribute), 1250
grid_to_graph() (in module

sklearn.feature_extraction.image), 1438
GridSearchCV (class in sklearn.grid_search), 2053
GridSearchCV (class in sklearn.model_selection), 1768
GroupKFold (class in sklearn.model_selection), 1739
GroupShuffleSplit (class in sklearn.model_selection),

1741

H
hamming_loss() (in module sklearn.metrics), 1675
has_fit_parameter() (in module sklearn.utils.validation),

2019
HashingVectorizer (class in

sklearn.feature_extraction.text), 1446
hinge_loss() (in module sklearn.metrics), 1676
homogeneity_completeness_v_measure() (in module

sklearn.metrics), 1704
homogeneity_score() (in module sklearn.metrics), 1705
HuberRegressor (class in sklearn.linear_model), 1556
Hyperparameter (class in

sklearn.gaussian_process.kernels), 1509
hyperparameters (sklearn.gaussian_process.kernels.CompoundKernel

attribute), 1500
hyperparameters (sklearn.gaussian_process.kernels.ConstantKernel

attribute), 1502
hyperparameters (sklearn.gaussian_process.kernels.DotProduct

attribute), 1504
hyperparameters (sklearn.gaussian_process.kernels.Exponentiation

attribute), 1509
hyperparameters (sklearn.gaussian_process.kernels.ExpSineSquared

attribute), 1507
hyperparameters (sklearn.gaussian_process.kernels.Kernel

attribute), 1511
hyperparameters (sklearn.gaussian_process.kernels.Matern

attribute), 1513
hyperparameters (sklearn.gaussian_process.kernels.PairwiseKernel

attribute), 1516
hyperparameters (sklearn.gaussian_process.kernels.Product

attribute), 1517
hyperparameters (sklearn.gaussian_process.kernels.RationalQuadratic

attribute), 1522
hyperparameters (sklearn.gaussian_process.kernels.RBF

attribute), 1520
hyperparameters (sklearn.gaussian_process.kernels.Sum

attribute), 1524
hyperparameters (sklearn.gaussian_process.kernels.WhiteKernel

attribute), 1526
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img_to_graph() (in module

sklearn.feature_extraction.image), 1439
Imputer (class in sklearn.preprocessing), 1897
incr_mean_variance_axis() (in module

sklearn.utils.sparsefuncs), 2015
IncrementalPCA (class in sklearn.decomposition), 1340
index() (sklearn.gaussian_process.kernels.Hyperparameter

method), 1510
indexable() (in module sklearn.utils), 2012
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sklearn.utils.sparsefuncs), 2016
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sklearn.utils.sparsefuncs), 2016
inverse_transform (sklearn.pipeline.Pipeline attribute),
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method), 1339
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method), 1343
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method), 2062
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method), 2022
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method), 1782
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method), 1896
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method), 1902
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method), 1905
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method), 1909
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method), 1911
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method), 1907
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is_stationary() (sklearn.gaussian_process.kernels.CompoundKernel
method), 1500
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method), 1502
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method), 1507
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method), 1518
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