il

STRATEGIC DATAPROJECT

ADOPT: CODING
STYLE GUIDE

SDP TOOLKIT

FOR EFFECTIVE DATA USE IN EDUCATION AGENCIES

www.gse.harvard.edu/sdp/toolkit

Toolkit Documents \

An Introduction to the SDP Toolkit for Effective Data Use

G/mm Identify: Data Specification Guide
0 ogo; Clean: Data Building Guide for College-Going

m=.m Clean: Data Building Guide for Human Capital BETA

Connect: Data Linking Guide for College-Going
Connect: Data Linking Guide for Human Capital BETA

Analyze: College-Going Success Analysis Guide
Analyze: Human Capital Analysis Guide BETA

g% Adopt: Coding Style Guide

SDP Stata Glossary

VERSION: 1.2

Last Modified: September 2, 2013 | Authored by Todd Kawakita and Jared Silver

J

TABLE OF CONTENTS

5. Adopt: CEPR Coding Style Guide

To ensure that statistical code is easily shared across a team and is replicable

CL - by future users, SDP and the Center fpr Education Pglicy Research (CEPR)
recommends that you follow best coding, programming, and data management
practices.

INTRODUCTION 4
Overview 4
Scope 4
Intended Audience 4
Document Structure 4
Terminology 4

NAMING CONVENTIONS 5
General Naming Conventions 5
Abbreviations and Acronyms 5
Folder Naming and Structure 6
File Naming 7
Variable Naming 7

COMMENTING AND READABILITY 8
Comments 8
General Commenting Guidelines 8
File Headers 11
White Space and Readability 11

CODING GUIDELINES 15
Initializing Your Environment (Stata) 15
Logging Output (Stata) 15
Global Macros as Switches 16
Conditions 17
Hard Coding vs Macros 18
Macros as File Paths 19
Closing 19

SDP TOOLKIT FOR EFFECTIVE DATA USE | ADOPT 3

INTRODUCTION

Overview

In our context, ‘Programs’ are coded instructions to
conduct analyses using statistical software. These
programs are often co-written by several analysts
working collaboratively. Since most analysts work

In teams, programs written to conduct statistical
analyses serve as building blocks for increased
knowledge sharing across a department. These
programs, when written clearly, can be sampled or
entirely reused by other analysts to avoid “reinventing
the wheel.”

The Center for Education Policy Research (CEPR) and
the Strategic Data Project (SDP) recommend analysts
follow published standards when writing programs.
Though every programmer has her own idiosyncratic
style, CEPR encourages using standards that facilitate
a common methodology for creating programs and
sharing code.

The CEPR Coding Style Guide is intended for analysts
familiar with statistical programs that require some
level of programming. Ideally, analysts who use this
guide have manipulated large datasets and conducted
statistical analyses with a programming language
such as Stata or SQL. If you have not used these
software programs, but are comfortable writing code,
this Coding Style Guide will be accessible to you.

Scope

The CEPR Coding Style Guide establishes standards
for writing programs and codes to conduct statistical
analyses in Stata - the software CEPR's research
team uses. However, many conventions, are
applicable to any programming language. These
conventions are meant to facilitate standardization,
not provide insight into language functionality or
syntax.

4 SDP TOOLKIT FOR EFFECTIVE DATA USE | ADOPT

This guide outlines best practices to:

e name data files and folders
name variables and macros within a program
establish code structure
document and comment on code
write programs to ensure understanding across
a team of analysts

The sample code in this document is specific to

the SDP Human Capital diagnostic analyses on
recruitment. The variables and file names used serve
only as examples for syntax.

Document Structure

This document is broken into three sections:
e Naming Conventions
e Commenting and Readability
e Coding Guidelines

The latter two sections contain examples of code

in either green or red blocks. Green blocks are
exemplar code that should be mimicked, red blocks
are coding style that should be avoided.

Terminology

As mentioned before, nomenclature used in this
document is based on Stata terminology. Please use
the table below to guide your understing of key terms
in this document:

Stata Term SQL Term C# Term
Observation Row or Record Object

Variable Column Field or Attribute
Macro Variable Variable

NAMING CONVENTIONS

General Naming Conventions

When you name folders, files, variables, or macros,
keep in mind that the name should be intuitive enough
for others to interpret the meaning and content at
first glance. In general, do not shy away from longer
descriptive names with multiple words as opposed

to shorter abbreviated names that may not convey

the proper meaning. Other general guidelines for
naming:

e Separate words in any file, folder, or variable
name with underscores (_] to ensure readability.
Avoid using spaces in names.

e Avoid using other punctuation such as periods,
hyphens, exclamation points, etc.

e Avoid mixed-case names (uppercase and
lowercase at the same time) when possible.
Uppercasing is acceptable for acronyms (e.g.
Boston Public Schools = BPS]

Abbreviations and Acronyms

To ensure that names are not overly lengthy, the
following abbreviations are accepted for commonly
used terms:

Term Abbreviation

School sch
Principal prnor p
Student stuors
Teacher tchort
Class clsorc
Grade Level gr
Subject subj
Year yr
Primary pri
Secondary sec
College clg
Graduate/Graduation grad
Elementary School es
Middle School ms
Junior High School jhs
High School hs
Charter School chs
Maximum max
Minimum min
Mean or Average avg
Count cnt
Date dt
Number num or n
Standard Deviation sd
English Language Arts ela
Verbal verb
Performance perf

SDP TOOLKIT FOR EFFECTIVE DATA USE | ADOPT 5

NAMING CONVENTIONS

Additional terms can be abbreviated only if the
abbreviation is intuitive. When in doubt, spell it out!

Also, it is acceptable to use acronyms for partner
agencies, projects, and analyses. For example:

Term Abbreviation

Strategic Data Project SDP
National Center for Teacher Effectiveness NCTE
The New Teacher Project TNTP
Fort Worth Independent School District FWISD
Delaware Department of Education DEDOE
Human Capital Diagnostic HK
College Going Diagnostic CG
Strategic Performance Indicator SPI

6 SDP TOOLKIT FOR EFFECTIVE DATA USE | ADOPT

Folder Naming and Structure

To organize files properly on any server, we
recommend you adhere to the following guidelines:

e The root folder should be named according to the
project that data and analyses contained within
belong to (e.g. School_Reports).

Sub-folders within a project should be named
according to their contents, with the most
common being “data” (with sub-folders for “raw”
and “clean” files), “programs” or “do_files”,
“logs” or “log_files”, "notes”, and “tables_
figures”.

b School_Reports »

File Edit View Tools Help
Organize = Include in library - Share wi
0 Favorites Hane
Bl Desktop | data
'lP,L-_I Recent Places) log_files
\ notes
4 Libraries |\ programs

@ Documents , tables_figures

e Forthose programming in a Windows
environment, pin commonly accessed folders to
the Favorites bar in Windows Explorer for easier

access.

: File Edit _View Tools IHelp

Include in library + Share with +

Organize = L |pen |

477 Favorite
Ml Desktop | School_Reports

=] Recent PI -
8 RECENtPIECSS 0 Create link in Favorites

-

NAMING CONVENTIONS

File Naming

Files should be named using “compositional identifiers” that allow an individual to understand the contents of

a file at a high level without having to open the file. This is especially important for program files (e.g. Stata .do
files or SQL scripts) and graphs. The Compositional identifiers file name should descend in order of importance
so the files group together in an intuitive order when sorted by name (default in Windows Explorer]. For
example, files should be named with the following compositional identifiers in the following order of importance:

e Project Name,
e Component of process - for instance student demographic data or survey data,
» Date (in YYYYMMDD format), version number, or state of file (i.e. temp, test, review, final, etc]

So, for example:

e School_Report_Student_Attributes_20110601_DRAFT.do
e School_Report_Student_Attributes_20110601_REVIEW.do
e School_Report_Student_Attributes_20110601_FINAL.do

Even though folder structure may imply the contents of a file and the above guidelines may seem redundant,
files can be shared across departments in your organization or with other external entities and therefore names
should convey the same meaning outside of folder structure.

Additionally, file names should be as consistent as possible, especially output files [graphs, logs) related to a
program file. For example, a graph output of the above Stata .do file may be named School_Report_Student_
Attributes_20110601_FINAL_ethnicity.gph.

Variable Naming

The number of characters used to name variables is limited. For example, Stata variable names may contain up
to 32 characters. Database columns may be limited to 30 characters depending on platform. Additionally, many
Stata commands only print 12 characters by default. Keep this in mind when you name variables. Try to be both
specific and concise in your variable names.

All variables in a Stata dataset should be labeled (as should database columns). For commonly used variables
with existing definitions, consider reading in labels from a common external file rather than entering labels
manually or by copy/paste. Alternatively, call upon a separate .do file in your main code that contains standard

labels rather than including labeling code in your primary .do file.

// label variables in standard student file
do "Sprograms/dcps_ student labeling.do"

// label variables not in standard labeling do file
label stu struc move "student had structural move, moving schools"

SDP TOOLKIT FOR EFFECTIVE DATA USE | ADOPT 7

COMMENTING AND READABILITY

Comments

Comments are important in any program (Stata, SQL, or otherwise) and should be used generously but also
deliberately. Comments should be used as often as necessary to explain the logic and use of each portion of
code without being burdensome to write. The goal of commenting is to give insight into your program - not only
for others (e.g. your peers) but also for you! When you've spent hours, days, weeks, months, or years between

writing and reading your own code, you'll thank yourself for the comments!

Generally speaking, a comment every few lines of code is good practice. Try to write comments that address one
or both of these questions:

e What does this block do?
e Why did | implement this block this particular way?

General Commenting Guidelines

Comments can be entered in Stata, SAL, and other programming languages using a number of different
syntaxes. Some of the syntaxes are common to most (or all] languages, some not. To ensure consistency
between types of programs (Stata, SQL, etc), please use the following guidelines. These guidelines ensure that
your programs are readable when printed or viewed in a normal text editor that does not do syntax highlighting.

e Use the double-forward-slash syntax (/) for a single-line comment or an end-of-line comment (a comment
at the end of a line of code)

1

1 // This is a single-line comment

1

1

1t local row = 1 // This is an end-of-line comment

e Use the slash-star syntax [/* and */) for a block comment [multiple line comment].
e Precede each line with an additional asterisk. It is a good idea to align the asterisks.

1
1/* This is a block comment
: * on multiple lines */

e Avoid in-line comments between pieces of code

8 SDP TOOLKIT FOR EFFECTIVE DATA USE | ADOPT

COMMENTING AND READABILITY

* Keep comments as succinct as possible (e.g., one line) while not losing meaning.
e Leave one space between the // or /* and your comment's first character.

1
1 // compute average test score
' egen average = mean (score), by (studentid)

1 //The following line is meant to compute the average of a student's test score.

:egen average = mean (score), by (studentid)

e If asingle-line comment needs to be long enough to extend beyond the screen/page width, turn it into a

block comment.

e Similarly, if a single line of code [command) is long enough to extend beyond the screen/page, break the
code into multiple lines and use the triple-slash syntax (///) at the end of each line. Always indent the

continuing lines of code.

s black s asian s hispanic s nativeamer s white ///
s _retained s schoolcode, by (s year schoolname)

e Alternatively, if you expect to have a series of commands that extend beyond the screen/page, change the
end-of-line delimiter from a carriage return to a semicolon. When you have finished the series, return the

end-of-line delimiter to the default carriage return.

#delimit ;

collapse (mean) s male s race s lep s lunch s sped s math std s read std
s black s _asian s hispanic s nativeamer s white
s _retained s schoolcode, by (s year schoolname) ;

#delimit cr

e Use a string of asterisks in a comment to distinguish between a high-level description of a block of code

from more granular comments. End the block with a similar string.

I// kkkhkkkhkhkk kA kkhkhkkkkk Data Set Macros kkkhkkkhkhkk kA kkhkhkkkkk
L}

1 local location YCe\test” // Location of files
local file name “filenamel” // Name of source data file

local xwalk file “id xwalk” // Name of crosswalk file

// R R I b S b I S b S b I 2 R I Sb I b I b e S b e S b S S S b S b 2 S 2 b S 2 S b 3

collapse (mean) s male s race s lep s lunch s sped s math std s read std ///

local source id “studentid” // Variable containing the unique id in data file

local masked id “sdpsid” // Variable containing masked id in crosswalk

SDP TOOLKIT FOR EFFECTIVE DATA USE | ADOPT 9

COMMENTING AND READABILITY

e Mark the end of a large block of nested conditional logic - such as a loop or if statement.

foreach subj in math read {
use “Sdata/student teacher “subj' vam.dta”, clear

// LOTS OF STUFF

forval yr = 2(1) numyrs' {
gen late exp "yr' = ever late hire*t exp yr'

// LOTS OF STUFF

} // End of loop over years

1
|
|
|
1
|
|
|
1
|
|
|
1
|
|
|
1
|
|
|
1
|
|
|
1 // MORE STUFF
1

|

|

|

1

} // End of loop over subjects

e End-of-line comments are discouraged (except for annotating a group of aligned variables or marking the
end of a block of nested code]. Instead, comments should precede a line of code.

1 // merge teacher VA math

:merge 1:m studentid year using “Sdata/student teacher math tre.dta”, nogen

! merge 1:m studentid year using “$data/student teacher math tre.dta”, nogen
// merge VA math

1
R R R R R R R R R R R EEEE—E——_——==

e Commenting can help you keep track of future analyses you'll want to come back to. For example, make
explicit call-outs to pieces of code that need to be implemented, reviewed, updated, or configured with “TO
DO".

// TO DO: generate new hire and late hire variable using hire date

update variables based on school year

// TO DO: test the following block for correctness on a larger data set

~
~
H
O
g
O

10 SDP TOOLKIT FOR EFFECTIVE DATA USE | ADOPT

COMMENTING AND READABILITY

File Headers

At the top of program files should be a block comment that summarizes your program, names the file, names
the author (first letter of first name and last name), lists the date created, provides a description, and lists
inputs,outputs, and updates. The description should walk through high level logical steps. These steps should
be identified in the actual code. Consider what is done here:

/**

File name: crosswalk masked ids.do
Author (s) : JSilver
Date: 5/27/11

Description: This program creates the crosswalk of student ids to random
research ids by:
1. Inputting the universe of student ids
2. Filtering the distinct set of student ids
3. Generating random ids and associating to student ids

Inputs: ../raw/students/studentyearsch.dta
./raw/students/englang.dta

Outputs: ../data/bps_student school year.dta

Update 1: TKawakita, 6/1/11 - Added check to ensure random ids are unique

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
***/

clear

set more off

capture log close

set mem 8000m

global raw “//cepr-files/projects/DCPS/Raw”

global data “//cepr-files/projects/DCPS/Data”

global log “//cepr-files/projects/DCPS/Log Files”

[[x***x*k*x Step 1: Input universe of student ids ***x*x*xx

[[****xkkx Step 2: Filter distinct set of student ids ***xkxxx*

//****x** Step 3: Generate random ids and associate to student ids ******x*

//****x** Update 1: Add check to ensure ids unique ******x%*

White Space and Readability

White space refers to indentation and extra lines that make code readable. Lack of white space is referred to as
“spaghetti code” since it is difficult to ascertain where one command ends and the next begins.

Code should be indented to make clear which blocks of code are nested inside of others (especially when
working with loops or conditional statements). An indent should result in four spaces so that code prints and
displays identically within other applications or computers.

SDP TOOLKIT FOR EFFECTIVE DATA USE | ADOPT 11

COMMENTING AND READABILITY

The following is an example of well indented code:

The following is an example of poorly indented code:

Do not indent braces following a condition.

Also, do not double or triple indent when a single indent is sufficient.

12 SDP TOOLKIT FOR EFFECTIVE DATA USE | ADOPT

COMMENTING AND READABILITY

As mentioned earlier, if a single command or line of code extends beyond the text window, break the command
into several lines, indent the lines following the start of the command, and use the triple-slash:

collapse (mean) s male s race s lep s lunch s sped s math std s read std ///
s black s asian s hispanic s nativeamer s white ///
s _retained s schoolcode, by (s year schoolname)

Or change the delimiter to a semicolon, make sure to put a semicolon at the end of your statement, and return
the delimiter to a carriage return. This can often be a better solution than using the triple-slash:

r
[}
[}
[}
[}
[}
[}
L}
[}
[}
[}

collapse (mean) s _asian s black s hispanic s lep s lunch s male s math- std s nativeamer

#delimit ;

collapse (mean) s male s race s lep s lunch s sped s math std s read std
s _black s _asian s hispanic s nativeamer s white
s_retained s schoolcode, by (s year schoolname) ;

#delimit cr

s _race s read std s retained s schoolcode s white, by (studentid)

Follow the same guidelines for Stata graphing code:

r
[}
[}
L}
L}
[}
[}
L}
[}
[}
[}
L}
[}
[}
L}
L}

[}
L

#delimit ;

graph bar alt cert alt cert with exp, over (subject) blabel (bar, format (%6.3f))

#delimit cr

legend (label (1 “No Teacher Controls”) label (2 “Controls for Experience”))

title (“WA of Teachers with Prov Cert” “Relative to Teachers with Regular Cert”)
ytitle (“Difference in Value-Added”)

yline (0, lpattern(dash) lcolor (black))

yscale (range (-0.15, 0.15)) ytick(-0.15(0.05)0.15) ylabel(-0.15(0.05)0.15)
Sgraphcolorpref;

Indent the contents between preserve and restore in Stata.

preserve

collapse te* tch testsizemath, by (t latid math old t year)
rename t latid math old t latid
tempfile tch
save “tch'”
restore

preserve
collapse te* tch testsizemath, by (t latid math old t year)
rename t latid math old t latid

tempfile tch

save “tch'”

restore

SDP TOOLKIT FOR EFFECTIVE DATA USE | ADOPT 13

COMMENTING AND READABILITY

When multiple commands with the same function are grouped together, they should be properly indented and
the components of the command should be aligned.

Finally, more white space is better than less. Make it easy for peers to read your code!

14 SDP TOOLKIT FOR EFFECTIVE DATA USE | ADOPT

CODING GUIDELINES

Initializing Your Environment (Stata)

The first guideline when writing a Stata program, either within a .do file or using ad-hoc commands, is to

initialize your environment. This is done by:

1. Clearing existing data from memory

2. Setting the “more” option to “off” - this allows your program to output without waiting for user input (e.g.

hitting the spacebar] to scroll pages

3. Ensuring open logs are closed. The “capture” prefix prevents an error from occurring if there is no open

log
4. Setting the usable memory in the environment

These should be the first commands following your file header.

// Initialize environment
clear

set more off

capture log close

set mem 8000m

Logging Output (Stata)

It is important to log the output of Stata programs and ad-hoc commands so the results can be reviewed later.
Stata does not automatically capture output displayed to a log file. If a log file is not explicitly opened before
commands are made, the results can only be saved if they are copied out of Stata’s output window.

Log your work as a text file so it can be viewed outside of Stata:

SDP TOOLKIT FOR EFFECTIVE DATA USE | ADOPT 15

CODING GUIDELINES

Capture segments of your .do file to separate logs rather than having one log for the entire program. For
instance, rather than having one log file for the entire School Report analysis, you may want to log each
component of the analysis. Survey analyses would be logged separately from student demographics analyses.

capture log close
clear matrix

if Snew hires by pov==1 ({
log using “$log/dcps recruitment new hires by pov”, text replace
use “$data/dcps teacher tre.dta”, clear
// OTHER STUFF

log close

}

clear matrix

if $late hire over time==1 ({
use “$data/dcps teacher tre.dta”, clear
log using “$log/dcps recruitment late hire over time”, text replace
// OTHER STUFF

log close

Global Macros as Switches

You may want to run only parts of the program at a time. To do this, use global variables that act as “switches”
to section off distinct and independent parts of the program. A switch is essentially a variable that takes a
binary value - 0 or 1 - to turn parts of your program on and off (like a light switch).

// SWITCHES

global teacher N0
global student “0”
global test N0

if Steacher==1 {
// STUFF

}

if $student==1 {
// STUFF

}

if Stest==1 {
// STUFF

16 SDP TOOLKIT FOR EFFECTIVE DATA USE | ADOPT

CODING GUIDELINES

You may also put brackets around code without a condition or global. In the Stata do-file interface, this will
collapse any code in the brackets and minimize the amount of scrolling up and down you will need to do.

Conditions

Conditions, or conditional code, refer to pieces of code that execute if a certain Boolean logic statement is
“true”. Conditions take the form of if/else statements or loops. Conditional logic was used in the previous
example to demonstrate switches.

A code block executed as a result of a condition should be encapsulated in braces ({}). The open-brace or left-
brace ({) should always be on the same line as the condition and the close-brace or right-brace (}) should
always be on its own line:

Not:

If a branch involves a single statement, then braces are not necessary. However, it is still advised to use them in
case more statements are added within the condition later. Regardless, always put the conditional code on the
line following the condition and never on the same line as the condition:

=z

ot:

SDP TOOLKIT FOR EFFECTIVE DATA USE | ADOPT 17

CODING GUIDELINES

Hard Coding vs Macros

Hard coding is the practice of using literal values in code instead of variables. Hard coding should be avoided
whenever possible. Take the following code (which generates a “late hire” flag for teachers hired within a
certain date range for a certain school year] as an example:

Instead of hard-coding dates and years, variables and looping can be used:

Initially, it may seem that hard coding is more intuitive and easier to read. However, hard-coding is much more
difficult to maintain. Take the scenario where the two sections of code above were to be changed to function on
years 2000-2004, with cut-off dates shifted a month ahead. For the hard-coded program, 27 literal values would
need to be changed. In the more elegant version that uses macros defined at the beginning of the program,
only 4 changes need to be made.

18 SDP TOOLKIT FOR EFFECTIVE DATA USE | ADOPT

CODING GUIDELINES

If hard coding appears necessary [though with some more thought it likely isn't), make a large and distinct call

out to this with a comment.

Macros as File Paths

When defining file paths using macros to define “input” information is preferable to hard-coding. Often, a
program references input data or output locations and files. By using a global macro at the beginning of
the program, you can easily change the location of input and output files. This is especially important when

transporting your program outside of your work environment to work on-site.

1

1/ Location of input data files
:local location “C:\test\data\input”
1

:// List of data file names

1local filenames “filenamel” “ilename2” “filename3”
1

[}
|// R R e I b I i b e S b b I S R B S S R i S e I B b B b S b b I I b S b B I b B B R B 2 B b B b i 2
[}

:// Change directories to location of files
:cd “location'”

1

\// Merge masked ids onto files

| foreach filename in " ‘filenames'” ({
use “ filename'”

merge m:1 sourceid using xwalkfile, nogen assert (2 3) keep(3)

save “'filename' masked”, replace

Closing

This guide is not an exhaustive list of best practices for programming. However, these guidelines will equip you
and your team to conduct analyses effectively, efficiently, and reliably. These coding practices, will improve your
ability to share knowledge across your organization and build capacity to construct sophisticated analyses with

statistical software.

SDP TOOLKIT FOR EFFECTIVE DATA USE | ADOPT 19

The Strategic Data Project

OVERVIEW

The Strategic Data Project (SDP), housed at the Center for
Education Policy Research at Harvard University, partners with
school districts, school networks, and state agencies across
the US. Our mission is to transform the use of data in

education to improve student achievement. We believe _ Riowr
that with the right people, the right data, and the right
analyses, we can improve the quality of strategic policy and ANALYSIS

management decisions.

SDP AT A GLANCE

23 AGENCY PARTNERS

14 SCHOOL DISTRICTS

7 STATE EDUCATION DEPARTMENTS
2 CHARTER SCHOOL ORGANIZATIONS

79 FELLOWS
54 CURRENT
25 ALUMNI

CORE STRATEGIES

1. Placing and supporting top-notch analytic leaders as “Fellows”
for two years with our partner agencies

2. Conducting rigorous diagnostic analyses of teacher effectiveness
and college-going success using existing agency data

3. Disseminating our tools, methods, and lessons learned to many
more education agencies

SDP DIAGNOSTICS

SDP’s second core strategy,
conducting rigorous diagnostic
analyses using existing agency
data, focuses on two core areas:

(1) college-going success and
attainment for students and (2)
human capital (primarily examining
teacher effectiveness).

The diagnostics are a set of analy-
ses that frame actionable questions
for education leaders. By asking
questions such as, “How well do
students transition to postsecondary
education?” or “How successfully is an
agency recruiting effective teach-
ers?”we support education leaders
to develop a deep understanding of
student achievement in their agency.

ABOUT THE SDP TOOLKIT FOR EFFECTIVE DATA USE

SDP’s third core strategy is to disseminate our tools, methods, and lessons learned to
many more educational agencies. This toolkit is meant to help analysts in all educa-
tional agencies collect data and produce meaningful analyses in the areas of college-
going success and teacher effectiveness. Notably, the analyses in this release of our
toolkit primarily support questions related to college-going success. The data collec-
tion (Identify) and best practices (Adopt) stages of the toolkit, however, are applicable
to any sort of diagnostic and convey general data use guidelines valuable to any
analysts interested in increasing the quality and rigor of their analyses. Later releases
will address analyses relating to teacher effectiveness.

Y Center for Education Policy Research

CENTER FOR EDUCATION POLICY RESEARCH
STRATEGIC DATA PROJECT

sl

HARVARD UNIVERSITY

©2013 Presidents and Fellows of Harvard College. All rights reserved.

50 CHURCH ST., 4TH FLOOR, CAMBRIDGE, MA 02138
VOX 617.496.1563

FAX 617.495.2614

WWW.GSE.HARVARD.EDU/SDP

