
Assignment 2: Search Algorithms

The Problem

Consider the ship routing problem. A large container ship needs to move from port S to
port G in the minimum amount of time, but at the same time it needs to avoid regions
of land that it cannot pass through.

We can depict this situation in 2D using ASCII art:

+-------------------------------+

| |

| XXXXXX X |

| XXXXXXX XX |

| XXXX XG |

| XXXX XXXX |

| XX XXX |

| XXX |

| XXS XXXXXXX |

| XXXXXX XXX X |

| XXX XXXXXXXXX XX |

| XXXXXX X |

| |

+-------------------------------+

where X denotes the presence of land, S denotes the start port, G denotes the destination
port, a space denotes open ocean, and the symbols |,+, and - denote impassable bounds
of the map.

A path through the map can be denoted by a sequence of periods, e.g.

+-------------------------------+

| |

| .XXXXXX ... X . |

| . XXXXXXX XX . |

| . XXXX XG... |

| ... XXXX XXXX |

| XX . XXX |

| XXX . |

| XXS... XXXXXXX |

| XXXXXX XXX X |

| XXX XXXXXXXXX XX |

| XXXXXX X |

| |

+-------------------------------+

shows a route between the ports which is not particularly optimal but gets to the desti-
nation none-the-less.

1

We will assume for simplicity that all ships can only move one square north, south,
east or west, at a time, and that the cost of each move is 1.

Part 1: Implement a data structure for paths

Before tackling the bigger problem of finding the shortest path between ports, we first
of all need to construct a suitable data structure in Clojure for representing states, (a
state being a map with a partial path).

One suggestion is to use a hashmap, e.g.

{:map ["XSX X",

"X X",

"X X",

"XX X",

"XX GX"]

:path [:south :south :east]}

}

but the actual representation you use is up to you.
Next, implement the following functions:

• read-map-from-file, which takes a filename and reads in a map. The map will
be in text format. A newly created state with a zero length path is returned by
this function.

• print-state, which takes a state and pretty prints it to the console. Both the
map and the path associated with the state as a sequence of periods should be
displayed.

• position, which takes a state and returns the coordinates of the ship on the map,
which can be worked out by following the path from the start.

• start, which takes a state and returns the coordinates of the starting port marked
by S on the map.

• goal, which takes a state and which returns the coordinates of the destination
port marked by G on the map.

• cost, which takes a state and returns the cost of the state (i.e. the length of the
path).

• heuristic, which takes a state and computes its heuristic value using the Eu-
clidean distance metric which is given by:

h(px, py) =
√

(px − gx)2 + (py − gy)2 (1)

where (px, py) is the ship’s current position and (gx, gy) is the goal’s position.

2

• expand, which takes a state returns a list of new states obtained by extending the
length of the given state’s path by one in all possible valid directions. A path
is valid as long as it does not collide with (i) land and (ii) itself (i.e. no cycles
allowed) and (iii) the border of the map.

Part 2: Implement Best First and A* algorithms

The state representation and data structure in the previous part should enable you to
“easily” implement both the Best-First and A* search algorithms for finding a path
across the map. The main difference between the algorithms is the value function: for
Best-First search, it is simply the heuristic value of the state; but for A* it is the sum
of the state’s cost and heuristic value.

See the lecture notes or textbook for details on how the algorithms work. The
requirements for this part:

• Provide two functions best-first and a-star to run the algorithms. They both
take a single parameter, that being the name of a text file containing the map.

• Your program should have a global variable verbose flag that can be set to true or
false for debugging. If it is true, then every single state that is evaluated is printed
out so you can check its correctness. If verbosity is off, then only the final state is
printed. Turn verbosity off when the map size is large.

• Count the number of state expansions performed by each algorithm and have your
algorithms print that out as well.

• (Optional) States in Clojure are immutable and most of the functions in Part 1
are pure, so in theory using memoize might speed up your program. Does it?

• (Terminology Tip) Best-First search for this assignment is also called “greedy”
search and “pure heuristic” search elsewhere. Some sources use the term “best
first” to refer to the A* algorithm, so be careful when you are reading!

• (Tip) Start with a very small map, maybe even smaller than the map I have given
you, to ensure that the program works without errors.

Part 3: Compare the algorithms

Three maps will be provided for this assignment. You should compare Best-First and A*
on all three of these maps, and write up a short report showing (i) the best route found
by both algorithms and (ii) the number of state expansions required by each algorithm.

Finally, create your own fourth map. The aim of the map is demonstrate that Best-
First is not optimal, but A* is. Therefore you should construct your map so that the
Best-First algorithm finds a sub-optimal route, and include this in your report.

Overall, the report should be 3-4 pages or so, including all diagrams.

3

Submission

Your submission to Moodle should consist of a zip file containing one Clojure 1.8/9
project folders and one report in PDF format.

4

Appendix

Map 1 (small starter map):

+-------------------------------+

| |

| XXXXXX X |

| XXXXXXX XX |

| XXXX XG |

| XXXX XXXX |

| XX XXX |

| XXX |

| XXS XXXXXXX |

| XXXXXX XXX X |

| XXX XXXXXXXXX XX |

| XXXXXX X |

| |

+-------------------------------+

5

Map 2 (larger map):

+------------------------------------+

| |

| XXXXX |

| XXXXXXX |

| XXXXXXXXX |

| XXXXXXXG |

| XXXXX |

| XXXXXXXXX |

| XXXXXXXXXXX |

| XXXXXXXXXXXX |

| XXXXXXX |

| XXXXXXXXXX |

| XXXXXXXXX |

| XXXXXXXXXX |

| XXXXXXXXX |

| XXXXXXXX |

| X |

| |

| |

| |

| |

| XXXXX |

| XXXXXX |

| XXXXXXX |

| XXXXXX |

| XXXXXXX |

| SXXXXXXXXX |

| XXXXXXXX |

| XXXXXXX |

| XXXXXXXX |

| XXXXXX |

| |

+------------------------------------+

6

Map 3 (map with a trap):

+---+

| |

| XXXXXXXXXXXXX |

| XXXXXXXXXXXXXXX |

| XXXX XXXX |

| XXXXX |

| XXXXX |

| XXXX |

| XXXX |

| XXXXX |

| XXXX XXXXXG |

| SXXX XXXXXXXXXXXXXX |

| XXXX XXXX XXXXX |

| XXXXXX XXXXXX XXXXX |

| XXXXXXXX XXXXX |

| XXXXX XXXX |

| XXXX |

| XXXX |

| |

+---+

7

