

1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.4

1.4.1

1.4.1.1

1.4.1.2

1.4.1.3

1.4.1.4

1.4.1.5

1.4.1.6

1.4.1.7

1.4.1.8

1.4.1.9

1.4.1.10

1.4.1.11

1.4.1.12

1.4.1.13

1.4.2

1.4.2.1

1.4.2.2

Table	of	Contents
Introduction

Getting	Started

Installing	Serene	From	Visual	Studio	Marketplace

Installing	Serene	Directly	From	Visual	Studio

Instaling	Serene	Asp.Net	Core	Version	with	Serin

Starting	Serene

A	Tour	Of	Serene	Features

Theming

Localization

User	and	Role	Management

Listing	Pages

Edit	Dialogs

Tutorials

Movie	Database

Creating	Movie	Table

Generating	Code	For	Movie	Table

Customizing	Movie	Interface

Handling	Movie	Navigation

Customizing	Quick	Search

Adding	a	Movie	Kind	Field

Adding	Movie	Genres

Updating	Serenity	Packages

Allowing	Multiple	Genre	Selection

Filtering	with	Multiple	Genre	List

The	Cast	and	Characters	They	Played

Listing	Movies	in	Person	Dialog

Adding	Primary	and	Gallery	Images

Multi	Tenancy

Adding	Tenants	Table	and	TenantId	Field

Generating	Code	for	Tenants	Table

2

1.4.2.3

1.4.2.4

1.4.2.5

1.4.2.6

1.4.2.7

1.4.2.8

1.4.2.9

1.4.2.10

1.4.2.11

1.4.2.12

1.4.2.13

1.4.3

1.4.3.1

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.5.8

1.5.9

1.5.10

1.5.11

1.5.12

1.6

1.7

1.8

1.8.1

1.8.2

1.8.3

1.8.4

1.8.5

Tenant	Selection	in	User	Dialog

Filtering	Users	By	TenantId

Removing	Tenant	Dropdown	From	User	Form

Securing	Tenant	Selection	At	Server	Side

Setting	TenantId	For	New	Users

Preventing	Edits	To	Users	From	Other	Tenants

Hiding	the	Tenant	Administration	Permission

Making	Roles	Multi-Tenant

Using	Serenity	Service	Behaviors

Extending	Multi-Tenant	Behavior	To	Northwind

Handling	Lookup	Scripts

Meeting	Management

Creating	Lookup	Tables

How	To	Guides

How	To:	Remove	Northwind	&	Other	Samples	From	Serene

How	To:	Update	Serenity	NuGet	Packages

How	To:	Upgrade	to	Serenity	2.0	and	Enable	TypeScript

How	To:	Authenticate	With	Active	Directory	or	LDAP

How	To:	Use	a	SlickGrid	Formatter

How	To:	Add	a	Row	Selection	Column

How	To:	Setup	Cascaded	Editors

How	To:	Use	Recaptcha

How	To:	Register	Permissions	in	Serene

How	To:	Use	a	Third	Party	Plugin	With	Serenity

How	To:	Enable	Script	Bundling

How	To:	Debugging	with	Serenity	Sources

Frequently	Asked	Questions

Troubleshooting

Service	Locator	&	Initialization

Dependency	Static	Class

IDependencyResolver	Interface

IDependencyRegistrar	Interface

MunqContainer	Class

CommonInitialization	Static	Class

3

1.9

1.9.1

1.9.2

1.9.3

1.9.4

1.9.5

1.9.6

1.10

1.10.1

1.10.2

1.10.3

1.10.4

1.11

1.11.1

1.11.2

1.11.3

1.11.4

1.11.5

1.11.5.1

1.11.6

1.11.6.1

1.11.6.2

1.11.6.3

1.11.6.4

1.12

1.12.1

1.12.1.1

1.12.1.2

1.12.1.3

1.12.2

1.12.2.1

1.12.2.2

1.12.2.3

Authentication	&	Authorization

IAuthenticationService	Interface

IAuthorizationService	Interface

IPermissionService	Interface

IUserDefinition	Interface

IUserRetrieveService	Interface

Authorization	Static	Class

Configuration	System

Defining	Configuration	Settings

IConfigurationRepository	Interface

AppSettingsJsonConfigRepository

Config	Static	Class

Localization

LocalText	Class

Language	Identifiers

Language	Fallbacks

ILocalTextRegistry	Interface

LocalTextRegistry	Class

Pending	Approval	Mode

Registering	Translations

Manually	Registering	Translations

Nested	Local	Texts

Enumeration	Texts

JSON	Local	Texts

Caching

Local	Caching

ILocalCache	Interface

LocalCache	Static	Class

User	Profile	Caching	Sample

Distributed	Caching

WEB	Farms	and	Caching

IDistributedCache	Interface

Distributed	Cache	Static	Class

4

1.12.2.4

1.12.2.5

1.12.2.6

1.12.3

1.12.3.1

1.12.3.2

1.13

1.13.1

1.13.2

1.14

1.14.1

1.14.2

1.15

1.16

1.16.1

1.16.2

1.16.3

1.16.4

1.16.5

1.16.6

1.16.7

1.17

1.17.1

1.17.2

1.18

1.18.1

1.18.2

1.18.3

1.18.4

1.18.5

1.19

1.20

1.20.1

1.20.2

DistributedCacheEmulator	Class

CouchbaseDistributedCache	Class

RedisDistributedCache	Class

Two	Level	Caching

Using	Local	Cache	and	Distributed	Cache	In	Sync

TwoLevelCache	Class

Entities	(Row)

Mapping	Attributes

FieldFlags	Enumeration

Fluent	SQL

SqlQuery	Object

Criteria	Objects

Connections	and	Transactions

SQL	Database	Types

Working	with	Other	Databases

Setting	Connection	Dialect

Dialect	Based	Expressions

PostgreSQL

MySQL

Sqlite

Oracle

Services

Service	Endpoints

List	Request	Handler

Widgets

ScriptContext	Class

Widget	Class

Widget	With	Options

TemplatedWidget	Class

TemplatedDialog	Class

Attributes

Grids

Formatter	Types

Persisting	Settings

5

1.21

1.22

Code	Generator	(Sergen)

Used	Tools	&	Libraries

6

Introduction

What	is	Serenity	Platform
Serenity	is	an	ASP.NET	Core	/	MVC	/	TypeScript	application	platform	which	has	been	built
on	open	source	technologies.

It	aims	to	make	development	easier	while	reducing	maintenance	costs	by	avoiding	boiler-
plate	code,	reducing	the	time	spent	on	repetitive	tasks	and	applying	the	best	software	design
practices.

Who/What	This	Platform	Is	For
Serenity	is	best	suited	to	business	applications	with	many	data	entry	forms	or	administrative
interface	of	public	facing	web	sites.	It's	features	can	be	useful	for	other	kinds	of	web
applications	as	well.

Where	To	Look	For	Information
After	reading	this	guide	and	its	tutorials,	follow	resources	below	for	more	information	about
Serenity.

Home	Page:
http://serenity.is

Blog:
http://serenity.is/blog

Github	Repository:
https://github.com/volkanceylan/Serenity

Issues	/	Questions
https://github.com/volkanceylan/Serenity/issues

Wiki	(FAQ,	Troubleshooting	and	Other	Community	Content)
https://github.com/volkanceylan/Serenity/wiki

Change	Log:
https://github.com/volkanceylan/Serenity/blob/master/CHANGELOG.md

Introduction

7

http://serenity.is
http://serenity.is/blog
https://github.com/volkanceylan/Serenity
https://github.com/volkanceylan/Serenity/issues
https://github.com/volkanceylan/Serenity/wiki
https://github.com/volkanceylan/Serenity/blob/master/CHANGELOG.md

Serene	Application	Template:
https://marketplace.visualstudio.com/items?
itemName=VolkanCeylan.SereneSerenityApplicationTemplate

What's	In	The	Name
Serenity	has	dictionary	meanings	of	peace,	comfort	and	calmness.

This	is	what	we	are	trying	to	achieve	with	Serenity.	We	hope	that	after	installing	and	using	it
you	will	feel	this	way	too...

What	Features	It	Provides
A	modular,	service	based	web	application	model
Code	generator	to	produce	initial	services	/	user	interface	code	for	an	SQL	table
T4	based	code	generation	on	server	to	reference	script	widgets	with	intellisense	/
compile	time	validation
T4	based	code	generation	to	provide	compile	time	type	safety	and	intellisense	while
calling	AJAX	services	from	script	side.
An	attribute	based	form	definition	system	(prepare	UI	in	server	side	with	a	simple	C#
class)
Automatic	seamless	data-binding	through	form	definitions	(form	<->	entity	<->	service).
Caching	Helpers	(Local	/	Distributed)
Automatic	cache	validation
Configuration	System	(storage	medium	independent.	store	settings	in	database,	file,
whatever...)
Simple	Logging
Reporting	(reports	just	provide	data,	has	no	dependency	on	rendering,	similar	to	MVC)
Script	bundling,	minification	(making	use	of	Node	/	UglifyJS	/	CleanCSS)	and	content
versioning	(no	more	F5	/	clear	browser	cache)
Fluent	SQL	Builder	(SELECT/INSERT/UPDATE/DELETE)
Micro	ORM	(also	Dapper	is	integrated)
Customizable	handlers	for	REST	like	services	that	work	by	reusing	information	in	entity
classes	and	do	automatic	validation.
Attribute	based	navigation	menu
UI	Localization	(store	localized	texts	in	json	files,	embedded	resource,	database,	in
memory	class,	anywhere)
Data	Localization	(using	an	extension	table	mechanism	helps	to	localize	even	data
entered	by	users,	like	lookup	tables)

Introduction

8

https://marketplace.visualstudio.com/items?itemName=VolkanCeylan.SereneSerenityApplicationTemplate

Script	widget	system	(inspired	by	jQueryUI	but	more	suitable	for	C#	code)
Client	side	and	server	side	validation	(based	on	jQuery	validate	plugin,	but	abstracts
dependency)
Audit	logging	(where	CDC	is	not	available)
System	for	data	based	integration	tests
Dynamic	scripts
Script	side	templates

Background
This	part	was	originally	written	for	a	CodeProject	article	as	an	introduction	to	Serenity.
The	article	was	rejected	with	the	reason	that	it	didn't	contain	code	but	was	an	ad	for
code.	They	were	right,	as	i	did	put	a	link	to	Movie	tutorial	in	this	guide,	instead	of	copy
pasting	code.

You	can	safely	skip	to	next	chapter,	if	you	don't	like	reading	history	:)

We,	developers,	are	all	solving	the	same	sets	of	problems	everyday.	Just	like	college
students	working	on	their	problem	books.

Even	though	we	know	that	they	are	already	solved	and	have	answers	somewhere,	it	doesn't
stop	us	from	working	on	them.	Actually,	it	helps	us	improve	our	skills,	and	hey	you	can't
learn	without	making	some	mistakes,	can	you?	But	we	should	learn	where	to	draw	a	line
between	training	and	wasting	time.

When	you	start	a	new	project,	you	have	several	decisions	to	make	on	platform,	architecture
and	set	of	libraries.	Today	you	have	so	many	choices	for	every	single	topic.	Yes,	having
some	options	is	good,	as	long	as	they	are	limited,	as	our	time	is	not	infinite.

Here	is	a	short	history	about	Serenity,	which	aims	to	handle	common	tasks	you	deal	with
business	applications,	and	let	you	spare	your	precious	time	focusing	on	features	specific	to
your	application	domain.

My	first	real	job	in	web	technologies	was	in	a	web	agency	designing	country-specific	web
sites	of	some	of	big	names	in	industry,	e.g.	automative	companies	(btw,	we	are	talking	about
10+	years	past,	time	flows	fast).

As	I	had	a	software	architect	career	in	desktop	applications	before	I	signed	there,	I	was
asked	to	design	a	ASP.NET	WebForms	platform	for	them.	They	explained	that	they	have
many	shared	modules,	like	news,	galleries,	navigation	at	each	site,	but	as	requirements	are
different,	they	had	to	copy/paste	then	customize	code	specific	to	every	customer.	When	they
wanted	to	add	a	common	feature,	they	had	to	repeat	it	for	every	site.

Introduction

9

At	that	time,	there	weren't	so	many	CMS	systems	in	market,	and	I	designed	one	for	them,
without	even	knowing	it	was	called	a	CMS.	For	me,	it	wasn't	perfect,	not	even	good	enough
as	I	just	had	a	few	weeks	to	design	it.	But	they	were	very	pleased	with	the	result,	as	it	took
development	of	new	sites	down	to	days/weeks	from	months.	Also	resulting	code	was	more
manageable	than	before.

Learning	from	that	experience,	and	mistakes,	that	poor-mans	CMS	became	something
better.	Later,	that	platform	is	evolved	to	be	used	by	applications	in	varying	domains,	like	a
help-desk	system,	a	CRM,	ERP,	personnel	management,	electronic	document	management,
university	student	information	system	and	more.

To	be	compatible	with	different	kinds	of	applications,	systems	and	even	legacy	databases,	it
had	to	be	flexible	and	went	through	many	architectural	changes.

Now	it	takes	us	to	Serenity.	Even	though	it	is	an	open	source	project	for	about	2	years,	it	has
a	much	older	background.	But	it	is	also	young,	energetic,	and	is	not	afraid	of	change.	It	can
adapt	to	new	technologies	as	they	became	popular	and	stable.	This	might	mean	breaking
changes	from	time	to	time,	but	we	strive	to	keep	them	to	a	minimum	without	being	paranoid
about	backwards	compability.

Introduction

10

Getting	Started
The	best	and	fastest	way	to	get	your	hands	dirty	on	Serenity	is	SERENE,	which	is	a	sample
application	template.

You	have	three	options	to	install	SERENE	template:

Please	check	prerequisites	below	before	trying	to	install	Serene.

Installing	SERENE	from	Visual	Studio	Marketplace	(Windows)

Installing	SERENE	directly	from	Visual	Studio	(Windows)

Installing	SERENE	for	Asp.Net	Core	with	SERIN	(Linux,	OSX,	Windows)

Prerequisites

Visual	Studio	Version

Serene	.NET	Framework	version	(ASP.NET	MVC	4)	requires	Visual	Studio	2017	or	Visual
Studio	2015	with	Update	3	installed.

If	you	have	Visual	Studio	2015,	please	make	sure	that	you	have	Update	3	installed	by
looking	at	Help	=>	About

Getting	Started

11

It	might	be	possible	to	work	with	Visual	Studio	2013	as	well	but	you'll	have	many
intellisense	errors	as	TypeScript	2.5.2	can't	be	installed	in	VS2013.

Serene	ASP.NET	Core	2.0	version	only	works	in	Visual	Studio	2017,	or	using	command	line.

Microsoft	recently	obsoleted	project.json	based	projects	and	replaced	them	with	a
lighter	version	of	MsBuild	based	CSPROJ	projects.	This	new	project	system	only	works
in	Visual	Studio	2017,	so	if	you	want	to	work	with	.NET	Core	version	of	Serene,	either
you	need	to	use	Visual	Studio	2017	or	go	lighter	with	Visual	Studio	Code	/	Command
Line.

.NET	Core	SDK

If	you	are	going	to	use	ASP.NET	Core	version	of	Serene,	please	install	.NET	Core	2.0	SDK
from:

https://www.microsoft.com/net/download/core

Visual	Studio	TypeScript	Extension

As	of	writing,	the	recommended	version	of	TypeScript	is	2.5.2.

Getting	Started

12

https://www.microsoft.com/net/download/core

Even	though	Serene	uses	NodeJS	based	TypeScript	compiler	(tsc)	on	build,	Visual	Studio
still	uses	its	own	version	of	TypeScript	for	intellisense	and	refactoring	etc.	If	you	have	an
older	version	of	that	extension,	you'll	be	greeted	with	many	errors	as	soon	as	you	open	a
Serene	project.

To	check	what	version	of	TypeScript	Visual	Studio	Extension	you	have,	again	see	Help	=>
About:

Visual	Studio	2017	comes	with	TypeScript	2.1.5	by	default,	but	Visual	Studio	2015	might
include	older	versions.

If	you	have	something	lower	than	2.3.4	there,	you	might	need	to	install	TypeScript	for	Visual
Studio	extension.

TypeScript	version	you	see	in	Control	Panel	/	Add	Remove	Programs	doesn't	matter	at
all.	What	matters	is	the	one	that	is	enabled	in	Visual	Studio.

TypeScript	versions	after	1.8.6	requires	Visual	Studio	2015	Update	3	to	be	installed	first,	so
even	if	you	try	to	install	the	extension	it	will	raise	an	error,	so	please	first	install	Update	3.

You	can	get	TypeScript	extension	for	your	Visual	Studio	version	from
http://www.typescriptlang.org/#download-links.

Getting	Started

13

http://www.typescriptlang.org/#download-links

Here	is	the	link	for	Visual	Studio	2015:

https://www.microsoft.com/en-us/download/details.aspx?id=48593

But	don't	click	the	download	button	right	away.	Expand	Details	section,	and	select	the
exact	version	you	need	(e.g.	2.5.2):

Latest	version	of	TypeScript	might	probably	work	but	keeping	in	sync	with	the	version	we
currently	use,	can	help	you	avoid	compatibility	problems	that	could	come	with	them.

NodeJS	/	NPM

Serene	uses	NodeJS	/	NPM	for	these:

TypeScript	typings	(.d.ts)	for	libraries	like	jQuery,	Bootstrap	etc.

Getting	Started

14

https://www.microsoft.com/en-us/download/details.aspx?id=48593

TypeScript	compiler	itself	(tsc)
Less	compilation	(lessjs)
T4	Code	generation	by	parsing	TypeScript	sources

It	requires	NodeJS	v6.9+	and	NPM	3.10+

Serene	will	check	their	versions	on	project	creation	and	ask	for	confirmation	to	download
and	install	them.	Anyway,	please	check	your	versions	manually	by	opening	a	command
prompt:

>	npm	-v

3.10.10

>	node	-v

6.9.4

If	you	get	an	error,	they	might	not	be	installed	or	not	in	path.	Please	install	LTS	(long	term
support)	versions	from	https://nodejs.org/en/

Current	version	might	also	work	but	is	not	tested.

Visual	Studio	and	External	Web	Tool	Paths

Even	if	you	have	correct	Node	/	NPM	installed,	Visual	Studio	might	still	be	trying	to	use	its
own	integrated,	and	older	version	of	NodeJS.

Click	Tools	=>	Options,	and	then	under	Projects	and	Solutions	=>	External	Web	Tools	add
C:\Program	Files\nodejs	to	the	top	of	the	list	by	clicking	plus	folder	icon,	typing	C:\Program
Files\nodejs	and	using	Up	Arrow	to	move	it	to	the	start:

Getting	Started

15

https://nodejs.org/en/

Getting	Started

16

Installing	Serene	From	Visual	Studio
Marketplace

Downloading	Template
Open	URL	below	in	your	browser:

https://marketplace.visualstudio.com/items?
itemName=VolkanCeylan.SereneSerenityApplicationTemplate

Click	Download	to	transfer	VSIX	file	to	your	computer.

Install	Template	into	Visual	Studio
After	download	is	finished,	double	click	the	downloaded	VSIX	file	to	start	Visual	Studio
extension	installation	dialog

Installing	Serene	From	Visual	Studio	Marketplace

17

https://marketplace.visualstudio.com/items?itemName=VolkanCeylan.SereneSerenityApplicationTemplate

If	you	have	both	Visual	Studio	2017	and	2015	installed,	sometimes	Visual	Studio	2015
installer	might	pick	up	VSIX	file	so	it	only	installs	in	Visual	Studio	2015.	If	you
experience	this	issue,	right	click	the	file,	click	Open	With	and	choose	Visual	Studio
Version	Selector.

Click	Install	when	prompted.

Note	that	this	application	template	requires	Visual	Studio	2012	or	higher.	Make	you	sure
you	have	the	latest	Visual	Studio	updates	installed.	ASP.NET	MVC	Core	version
requires	Visual	Studio	2017	with	Update	3

Creating	a	New	Project	in	Visual	Studio

Installing	Serene	From	Visual	Studio	Marketplace

18

Start	Visual	Studio	(if	it	was	already	open,	restart	it).	Click	File	=>	New	Project.	You	should
see	Serene	template	under	Templates	=>	Visual	C#	section.

We	have	two	versions	of	Serene	template.	One	that	uses	classic	ASP.NET	MVC	4
(SERENE)	and	another	one	that	works	on	ASP.NET	CORE	MVC	2.0	/	.NET	CORE	2.0.

ASP.NET	Core	is	a	recent	technology	and	is	platform	independent	(as	long	as	you	target
.NET	Core	it	also	runs	on	Linux	/	OSX).

ASP.NET	MVC	only	runs	on	Windows	and	.NET	framework	but	more	mature	(latest	version
is	dated	2/9/2015).

We	can	say	both	versions	of	Serene	is	pretty	stable.

Here	is	a	document	from	Microsoft	that	might	help	you	choose	between	two	frameworks:

https://docs.microsoft.com/en-us/aspnet/core/choose-aspnet-framework

Name	your	application	something	like	MyCompany,	MyProduct,	HelloWorld	or	leave	the
default	Serene1.

Please	don't	name	it	Serenity.	It	may	conflict	with	other	Serenity	assemblies.

Please	use	Pascal	casing,	e.g.	a	name	that	starts	with	a	Capital	Letter.	Don't	name	your
project	something	like		myProject	.

Click	OK.

Feature	Selection

Installing	Serene	From	Visual	Studio	Marketplace

19

https://docs.microsoft.com/en-us/aspnet/core/choose-aspnet-framework

Serene	will	prompt	you	to	choose	features	you	would	like	to	see.

All	of	these	features	/	samples	are	optional.	Initially	we	recommend	you	to	leave	them	all
checked	so	that	you	might	have	a	look	at	how	they	are	implemented.

After	having	some	experience	with	Serene,	you	might	create	a	new	application	and	clear	all
these	checkboxes	to	have	a	bare	minimum	project.

Choose	features	you	like,	click	OK	and	take	a	break	while	Visual	Studio	creates	the	solution.

Installing	Serene	From	Visual	Studio	Marketplace

20

Installing	Serene	Directly	From	Visual
Studio
Start	Visual	Studio	and	Click	New	=>	Project.

Note	that	this	application	template	requires	Visual	Studio	2012	or	higher.	Make	sure	you
have	the	latest	Visual	Studio	updates	installed.

In	the	New	Project	dialog	box	Recent,	Installed	and	Online	sections	will	be	shown	on	left	and
Installed	is	the	active	one.

Click	the	Online	section	and	wait	a	bit	while	Retrieving	information	message	is	on	screen.

Please	wait	while	it	is	loading	results.

Serene	might	be	already	showing	on	top	of	the	list.	If	it	is	not,	type	SERENE	into	input	box
with	Search	Online	Templates	label	and	press	ENTER.

You	will	see	Serene	(Serenity	Application	Template):

Installing	Serene	Directly	From	Visual	Studio

21

Creating	a	New	Project	in	Visual	Studio	2015
and	Older
Name	your	application	something	like	MyCompany,	MyProduct,	HelloWorld	or	leave	the
default	Serene1.

Please	don't	name	it	Serenity.	It	may	conflict	with	other	Serenity	assemblies.

After	you	create	your	first	project,	Serene	template	is	installed	into	Visual	Studio,	so	you
can	use	the	Installed	section	in	New	Project	dialog	to	create	another	Serenity
application.

Click	OK	to	download	Serene	and	create	your	new	project

Your	project	will	use	ASP.NET	MVC	4	version	of	Serene,	next	time	you	may	choose
ASP.NET	Core	version	from	New	Project	dialog,	Installed	section.

Creating	a	New	Project	in	Visual	Studio	2017
Unfortunately	Visual	Studio	2017	changed	template	installation	process.	When	you	select
Serene	from	Online	section	and	click	OK,	you'll	see	this	dialog:

Installing	Serene	Directly	From	Visual	Studio

22

When	you	click	Modify,	you'll	be	asked	to	terminate	Visual	Studio	and	other	related
processes.

After	installation,	Visual	Studio	won't	restart	itself.	You'll	have	to	manually	relaunch	Visual
Studio.

Now,	if	you	again	go	to	Online	section	and	click	Serene,	you'll	get	this	error	message:

Unfortunately,	this	is	a	VS2017	bug.

Please	close	Online	section,	and	find	Serene	under	New	Project	=>	Installed	=>	Visual	C#:

Installing	Serene	Directly	From	Visual	Studio

23

After	you	create	your	first	project,	Serene	template	is	installed	into	Visual	Studio,	so	you
can	use	the	Installed	section	in	New	Project	dialog	to	create	another	Serenity
application.

Name	your	application	something	like	MyCompany,	MyProduct,	HelloWorld	or	leave	the
default	Serene1.

Please	don't	name	it	Serenity.	It	may	conflict	with	other	Serenity	assemblies.

Please	use	Pascal	casing,	e.g.	a	name	that	starts	with	a	Capital	Letter.	Don't	name	your
project	something	like		myProject	.

Click	OK.

Choosing	Between	ASP.NET	MVC	/	ASP.NET
Core
We	have	two	versions	of	Serene	template.	One	that	uses	classic	ASP.NET	MVC	4
(SERENE)	and	another	one	that	works	on	ASP.NET	CORE	2.0	/	.NET	CORE	2.0.

ASP.NET	Core	is	a	recent	technology	and	is	platform	independent	(as	long	as	you	target
.NET	Core	it	also	runs	on	Linux	/	OSX).

ASP.NET	MVC	only	runs	on	Windows	and	.NET	framework	but	more	mature	(latest	version
is	dated	2/9/2015).

We	can	say	both	versions	of	Serene	is	pretty	stable.

Installing	Serene	Directly	From	Visual	Studio

24

Here	is	a	document	from	Microsoft	that	might	help	you	choose	between	two	frameworks:

https://docs.microsoft.com/en-us/aspnet/core/choose-aspnet-framework

Unfortunately	Visual	Studio	2015	doesn't	let	you	choose	which	version	to	use	on	first
install.	But,	you	will	see	ASP.NET	Core	version	after	installation	on	New	Project	dialog.

Feature	Selection
Serene	will	prompt	you	to	choose	features	you	would	like	to	see.

All	of	these	features	/	samples	are	optional.	Initially	we	recommend	you	to	leave	them	all
checked	so	that	you	might	have	a	look	at	how	they	are	implemented.

After	having	some	experience	with	Serene,	you	might	create	a	new	application	and	clear	all
these	checkboxes	to	have	a	bare	minimum	project.

Choose	features	you	like,	click	OK	and	take	a	break	while	Visual	Studio	creates	the	solution.

Installing	Serene	Directly	From	Visual	Studio

25

https://docs.microsoft.com/en-us/aspnet/core/choose-aspnet-framework

Installing	Serene	Asp.Net	Core	Version
with	SERIN
This	section	is	for	users	who	doesn't	or	can't	use	Visual	Studio	(in	Linux	/	OSX).

Serene	Asp.Net	Core	version	supports	Linux	and	OSX	in	addition	to	Windows.

We	recommend	Visual	Studio	Code	for	all	platforms,	but	it	is	also	possible	to	work	with
a	basic	text	editor	like	Notepad	/	VIM.	There	are	also	other	nice	options	e.g.	Atom.

Install	.NET	Core	2.0	SDK
Please	go	to	address	below	and	follow	instructions	for	your	specific	platform:

https://www.microsoft.com/net/download/core

Install	NodeJS
As	TypeScript	(and	our	SERene	project	INitializer	-	SERIN)	runs	on	NodeJS	you	need	to
install	Node/NPM	from:

https://nodejs.org/en/download/

or	using	your	favorite	package	manager:

https://nodejs.org/en/download/package-manager/

Install	SERIN	as	a	Global	Tool

Install	our	project	initializer,	SERIN	as	a	global	tool	using	NPM:

Linux	/	OSX:

>	sudo	npm	install	-g	serin

Windows:

>	npm	install	-g	serin

Instaling	Serene	Asp.Net	Core	Version	with	Serin

26

https://www.microsoft.com/net/download/core
https://nodejs.org/en/download/
https://nodejs.org/en/download/package-manager/

Thanks	to	Victor	(@vctor)	for	Linux	screenshots

Create	Folder	for	New	Project

Create	an	empty	MySerene	(or	a	name	you	like)	folder.

Linux	/	OSX:

>	cd	~

>	mkdir	MySerene

>	cd	MySerene

Windows:

>	cd	c:\Projects

>	mkdir	MySerene

>	cd	MySerene

Serin	has	to	be	run	from	a	completely	empty	directory

Run	Serin	to	Create	a	New	Project

While	inside	an	empty	directory,	run	serin:

>	serin

Type	an	application	name,	e.g.	MySerene	and	press	enter.	Take	a	break	while	Serin	creates
your	project,	initializes	static	content	and	restores	packages	etc.

Instaling	Serene	Asp.Net	Core	Version	with	Serin

27

After	Serin	creates	your	project,	you	will	have	a	MySerene.Web	folder	under	current
directory.	Enter	that	directory:

>	cd	MySerene.Web

Running	Serene
For	OSX	/	Linux,	first	restore	packages:

>	dotnet	restore

Make	sure	you	run	this	command	under	MySerene.AspNetCore	folder.

Then	type:

>	dotnet	run

Now	open	a	browser	and	navigate	to		http://localhost:5000	.

Actual	port	may	vary.	You'll	see	it	on	console	after	executing	dotnet	run.

Instaling	Serene	Asp.Net	Core	Version	with	Serin

28

Starting	Serene
After	your	first	project	is	created	in	Visual	Studio	using	Serene	template,	you	will	see	a
solution	like	this:

Asp.Net	Core	users	don't	have	to	use	Visual	Studio,	but	we'll	use	Visual	Studio	in	this
guide	as	we	think	most	of	our	users	will.

Your	solution	contains	Serene1.Web	project,	which	is	an	ASP.NET	MVC	(or	ASP.NET	Core)
application.

It	includes	server	side	code	written	in	C#	(.cs)	and	client	side	code	that	is	written	in
TypeScript	(.ts).

Serene.Web	has	references	to	Serenity	NuGet	packages,	so	you	can	update	it	using
package	manager	console	anytime	necessary.

Asp.Net	Core	version	can	also	be	updated	by	hand	editing	.CSPROJ	file.

Serene	automatically	creates	its	database	in	SQL	local	db	at	first	run,	so	just	press	F5	and
you	are	ready	to	go.

When	application	launches	use		admin		user	and		serenity		password	to	login.	You	can
change	password	or	create	more	users	later,	using	Administration	/	User	Management	page.

Starting	Serene

29

The	sample	application	includes	old	and	famous	Northwind	data	along	with	services	and
user	interface	to	edit	it,	which	is	mostly	produced	by	Serenity	Code	Generator.

Troubleshooting	Connection	Problems

If	you	are	getting	a	connection	error	like	the	following	while	starting	Serene	for	first	time:

>	A	network-related	or	instance-specific	error	occurred	

>	while	establishing	a	connection	to	SQL	Server.	

>	The	server	was	not	found	or	was	not	accessible.	

>	Verify	that	the	instance	name	is	correct...

This	error	might	mean	that	you	don't	have	SQL	Server	Local	DB	2012	installed.	This	server
comes	preinstalled	with	Visual	Studio	2012	and	2013.

ASP.NET	MVC

In		web.config		file	there	are	Default	and	Northwind	connection	entries:

<connectionStrings>

				<add	name="Default"	connectionString="Data	Source=(LocalDb)\v11.0;	

								Initial	Catalog=Serene_Default_v1;	Integrated	Security=True"	

								providerName="System.Data.SqlClient"	/>

		</connectionStrings>

Starting	Serene

30

ASP.NET	Core

In		appsettings.json		file	you'll	find	Default	and	Northwind	connection	entries:

		"Data":	{

				"Default":	{

						"ConnectionString":	"Server=(localdb)\\MsSqlLocalDB;Database=Serene2_Default_v1;

Integrated	Security=true",

						"ProviderName":	"System.Data.SqlClient"

				},

				"Northwind":	{

						"ConnectionString":	"Server=(localdb)\\MsSqlLocalDB;Database=Serene2_Northwind_v

1;Integrated	Security=true",

						"ProviderName":	"System.Data.SqlClient"

				}

		}

Fixing	Connection	Strings

	(localdb)\v11.0		corresponds	to	default	SQL	Server	2012	LocalDB	instance,	while
	(localdb)\MsSqlLocalDB		is	an	instance	of	SQL	2014+	LocalDB.

If	you	don't	have	SQL	LocalDB	2012,	you	can	install	it	from:

http://www.microsoft.com/en-us/download/details.aspx?id=29062

Visual	Studio	2015	comes	with	SQL	Server	2014	LocalDB.	It's	default	instance	name	is
renamed	to	MsSqlLocalDB	by	default.	Thus,	if	you	have	VS2015,	try	changing	connection
strings	from		(localdb)\v11.0		to		(localdb)\MsSqlLocalDB	.

<connectionStrings>

				<add	name="Default"	connectionString="Data	Source=(LocalDb)\MsSqlLocalDB;	

								Initial	Catalog=Serene_Default_v1;	Integrated	Security=True"	

								providerName="System.Data.SqlClient"	/>

		</connectionStrings>

If	you	still	have	an	error,	open	an	administrative	command	prompt	and	type

>	sqllocaldb	info

This	will	list	localdb	instances	like:

MSSqlLocalDB

test

Starting	Serene

31

http://www.microsoft.com/en-us/download/details.aspx?id=29062

If	you	don't	have	MsSqlLocalDB	listed,	you	can	create	it:

>	sqllocaldb	create	MsSqlLocalDB

If	you	have	another	SQL	server	instance,	for	example	SQL	Express,	change	data	source	to
	.\SqlExpress	:

<connectionStrings>

				<add	name="Default"	connectionString="Data	Source=.\SqlExpress;	

								Initial	Catalog=Serene_Default_v1;	Integrated	Security=True"	

								providerName="System.Data.SqlClient"	/>

		</connectionStrings>

You	can	also	use	another	SQL	server.	Just	change	the	connection	string.

Perform	these	steps	for	both	Default	and	Northwind	databases.

Starting	Serene

32

A	Tour	Of	Serene	Features
After	logging	to	Serene,	you	are	greeted	with	the	dashboard	page.

This	page	is	taken	as	a	sample	from	free	AdminLTE
(https://almsaeedstudio.com/themes/AdminLTE/index.html)	theme.

The	page	content,	except	some	numbers	calculated	from	Northwind	tables,	contains	random
data.

There	is	an	accordion	navigation	menu	on	left	which	has	a	search	feature	by	input	above	it.
We'll	talk	about	how	to	customize	items	there	in	later	sections.

On	top	navigation,	there	is	site	name	on	left,	along	with	a	dropdown	containing	current	user
name	on	right,	and	a	settings	button	through	which	we	change	change	theme	or	active
language.

Theming
Localization

A	Tour	Of	Serene	Features

33

https://almsaeedstudio.com/themes/AdminLTE/index.html

Theming
Serene	initially	starts	with	a	dark/blue	theme.	On	top	right	of	the	screen,	next	to	username,
click	the	settings	button	and	change	theme	to	another	one.

This	feature	is	implemented	by	replacing	a	body	CSS	class.

If	you	look	at	the	source,	you	may	spot	a	skin	class	like	below	inside		<body>		tag:

<body	id="s-DashboardPage"	class="fixed	sidebar-mini	hold-transition	

				skin-blue	has-layout-event">

When	you	select	the	light	yellow	skin,	it	actually	changes	to	this:

<body	id="s-DashboardPage"	class="fixed	sidebar-mini	hold-transition	

				skin-yellow-light	has-layout-event">

This	is	done	in	memory	so	no	page	reload	is	required.

Theming

34

Also	cookie,	"ThemePreference""	with	the	content	"yellow-light"	is	added	to	your	browser.	So
next	time	you	launch	Serene,	it	will	remember	your	preference	and	start	with	a	light	yellow
theme.

These	skin	files	are	located	under	"Content/adminlte/skins/"	of	the	Serene.Web	project.	If
you	look	there	you	can	see	files	with	names:

_all-skins.less

skin.black-light.less

site.blue.less

site.yellow-light.less

site.yellow.less

We	are	using	LESS	for	CSS	generation	so	you	should	try	editing	LESS	files,	not	CSS.	Next
time	you	build	your	project,	LESS	files	will	be	compiled	to	CSS	(using	Less.js	compiler	for
Node).

This	operation	is	configured	with	a	build	step	in	Serene.Web.csproj	file:

...

<Target	Name="CompileSiteLess"	AfterTargets="AfterBuild">

				<Exec	Command=""$(ProjectDir)tools\node\lessc.cmd"

								"$(ProjectDir)Content\site\site.less"	>

								"$(ProjectDir)Content\site\site.css"">

				</Exec>

</Target>

...

Here	site.less	file	is	compiled	to	its	corresponding	css	file	in	the	same	directory.

See	http://lesscss.org/	for	more	information	on	LESS	compiler	and	its	syntax.

Theming

35

http://lesscss.org/

Localization
Serene	allows	you	to	change	the	active	language	from	top	right	settings	menu	.

Try	changing	active	language	to	Spanish.

I	don't	speak	Spanish	and	used	machine	translation,	so	sorry	for	errors...

When	you	changed	the	language,	page	is	reloaded,	unlike	the	theme	selection	where	no
page	reload	is	required.

Serene,	also	added	a	cookie,	"LanguagePreference"	with	content	"es"	to	your	browser,	so
next	time	you	visit	the	site,	it	will	remember	your	last	selection	and	start	with	Spanish.

When	you	launched	Serene	first	time,	you	might	have	seen	the	site	in	English,	but	it	is	also
possible	that	it	started	in	Spanish,	Turkish	or	Russian	(these	are	currently	available	sample
languages)	if	you	have	an	operating	system	or	browser	of	that	language.

This	is	controlled	by	a	web.config	setting:

<globalization	culture="en-US"	uiCulture="auto:en-US"	/>

Localization

36

Here	we	set	UI	culture	to	automatic,	while	en-US	is	a	fallback	(if	system	can't	determine	your
browser	language).

It	is	also	possible	to	set	another	language	as	fallback:

<globalization	culture="en-US"	uiCulture="auto:tr-TR"	/>

Or	set	a	language	as	default,	whatever	visiting	users	browser	language	is:

<globalization	culture="en-US"	uiCulture="es"	/>

If	you	don't	want	to	let	users	to	change	UI	language,	you	should	remove	the	language
selection	dropdown.

You	may	add	more	languages	to	the	language	selection	dropdown	by	using	Languages
page	under	Administration	menu.

Localizing	UI	Texts
Serene	includes	ability	to	translate	its	text	resources	live.

Click	Administration	then	Translations	link	in	navigation.

Type	navigation	into	top	left	search	box	to	see	list	of	texts	related	to	navigation	menu.
Choose	English	as	source	language	and	Spanish	as	target	language.

Type	Welcome	Page	into	line	with	Navigation.Dashboard	local	text	key.

Click	Save	Changes.

Localization

37

When	you	switch	to	Spanish	language,	Dashboard	menu	item	will	be	changed	to	Welcome
Page	instead	of	Salpicadero.

When	you	saved	changes,	Serene	created	a		user.texts.es.json		file	in	folder
	App_Data/texts		with	content	like	below:

{

				"Navigation.Dashboard":	"Welcome	Page"

}

In	the		~/scripts/site/texts		folder,	there	are	also	other	similar	JSON	files	with	default
translations	for	Serene	interface:

site.texts.es.json
site.texts.invariant.json
site.texts.tr.json

It	is	recommended	to	transfer	your	translations	from	user.texts.xx.json	files	to
site.texts.xx.json	files	before	publishing.	You	can	also	keep	them	under	version	control
this	way,	if	App_Data	folder	is	ignored.

Localization

38

User	and	Role	Management
Serene	has	user,	role	and	rights	management	built	in.

This	feature	is	not	embedded	in	Serenity	itself.	It	is	just	a	sample,	so	you	can	always
implement	and	use	your	user	management	of	choice.	We'll	take	a	look	at	how	in
following	chapters.

Open	Administration	/	Roles	to	create	roles	Administrators	and	Translators.

Click	New	Role	and	and	type	Administrators,	then	click	Save.

Repeat	it	for	Translators.

Then	click	role	Administrators	to	open	edit	form,	and	click	Edit	Permissons	button	to	modify
its	permissions.	Check	all	boxes	to	grant	every	permisson	to	this	role,	then	click	OK.

User	and	Role	Management

39

Repeat	same	steps	for	the	Translations	role	but	this	time	grant	only	the	Administration:
Languages	and	Translations	permission.

Navigate	to	Administration	/	User	Management	page	to	add	more	users.

Click	admin	user	to	edit	its	details.

User	and	Role	Management

40

Here	you	can	change	admin	details	like	username,	display	name,	email.

You	can	also	change	its	password	(which	is	serenity	by	default)	by	typing	into	Password	and
Confirm	Password	inputs	and	clicking	Update.

You	can	also	delete	it	but	this	would	make	your	site	unusable	as	you	wouldn't	be	able	to
login.

admin	is	a	special	user	in	Serene,	as	it	has	all	permissions	even	if	none	is	explicitly	granted
to	him.

Lets	create	another	one	and	grant	roles	/	permissions	to	it.

Close	this	dialog,	click	new	user	and	type	translator	as	username.	Fill	in	other	fields	as	you'd
like,	then	click	Update.

User	and	Role	Management

41

You	may	have	noticed	there	is	a	Apply	Changes	button	with	a	black	disk	icon	without
title,	next	to	Save.	Unlike	Save,	when	you	use	it,	the	form	stays	open,	so	you	can	see
how	your	record	looks	like	after	saving,	also	you	can	edit	roles	and	permissions	before
closing	the	form.

Now	click	Translator	role	to	open	its	edit	form	and	click	Edit	Roles.	Grant	him	Translators
role	and	click	OK.

User	and	Role	Management

42

When	you	grant	a	role	to	a	user,	he	gets	all	permissions	granted	to	the	role
automatically.	By	clicking	Edit	Permissions	and	you	can	also	grant	extra	permissions
explicitly.	You	can	also	revoke	a	role	permission	from	a	user	explicitly.

Now	close	all	dialogs	and	logout	by	clicking	admin	on	top	right	of	site	and	clicking	Logout.

Try	logging	in	with	translator	and	the	password	you	set.

Translator	user	will	only	have	access	to	Dashboard,	Theme	Samples,	Languages	and
Translations	pages.

User	and	Role	Management

43

User	and	Role	Management

44

Listing	Pages
Serene	has	listing	pages	and	editing	interface	for	Northwind	database.	Let's	have	a	look	at
the	Products	page	under	Northwind	module.

Here	we	see	list	of	products	sorted	by	product	name	(initial	sort	order).

Grid	component	is	SlickGrid	with	a	customized	theme.

https://github.com/mleibman/SlickGrid

You	can	change	order	by	clicking	column	headers.	To	sort	descending,	click	the	same
column	header	again.

To	sort	by	multiple	columns,	you	can	use	Shift+Click.

Here	is	what	it	looks	like	after	sorting	by	Category	then	Supplier	columns:

Listing	Pages

45

https://github.com/mleibman/SlickGrid

When	you	changed	sort	order,	grid	loaded	data	from	a	service	with	an	AJAX	request.

When	you	open	the	page	first	time,	initial	records	were	also	loaded	by	an	AJAX	call.

By	default	grid	loads	records	by	100	page	size.	Only	records	in	current	page	are	loaded	from
server.	In	the	sample	image,	i	changed	page	size	to	20	(bottom	left	of	grid)	to	show	paging	in
effect.

On	top	left	of	the	grid,	you	can	type	something	to	do	a	simple	search.

Type	coffee	for	example	to	see	products	containing	it	in	their	names.

It	searched	in	product	name	field.	It	is	also	possible	to	use	another,	or	multiple	fields	for
quick	search.	We'll	see	how	in	later	chapters.

Listing	Pages

46

On	top	right	of	the	grid,	there	are	quick	filtering	dropdowns	for	Supplier	and	Category	fields.

Dropdown	component	used	is	Select2

https://github.com/select2/select2

Choose	Seafood	as	Category	and	it	will	show	only	products	in	that	category.

All	sorting,	paging	and	filtering	is	done	on	server	side	with	dynamic	SQL	queries
generated	by	Serenity	service	handlers.

It	is	also	possible	to	filter	by	any	column	by	clicking	edit	filter	link	at	bottom	right	of	the	grid.

Here	you	can	add	criteria	by	any	column	by	clicking	add	criteria	and	choosing	column	name,
choosing	comparison	operator	from	next	dropdown,	and	setting	a	value.

Listing	Pages

47

https://github.com/select2/select2

Some	value	editors	are	simple	textboxes	while	some	others	may	have	dropdowns	and	other
custom	editors	depending	on	column	type.

It	is	also	possible	to	change	and	to	or	by	clicking	on	it.

You	can	also	group	criteria	by	clicking	parenthesis.	Groups	will	have	a	bit	more	space
between	them	than	ordinary	lines.

Listing	Pages

48

Edit	Dialogs
When	you	click	a	product	name	in	Products	page,	an	editing	dialog	for	that	row	is	displayed.

This	dialog	is	shown	on	client	side,	there	is	no	post-back	happening.	Data	for	the	clicked
entity	is	loaded	from	server	side	using	an	AJAX	request	(only	data,	not	markup).	Dialog	itself
is	a	customized	version	of	jQuery	UI	dialog.

In	this	form	we	have	three	categories	for	fields:	General,	Pricing	and	Status.	By	clicking
category	links	on	top	blue	bar	you	can	navigate	to	start	of	that	category.

Each	form	field	occupies	a	row	with	label	and	editor.	You	may	choose	to	show	more	than
one	field	in	a	row	if	required	(with	CSS).

Fields	marked	with	"*"	are	required	(cannot	be	empty).

Each	field	has	a	specific	type	of	editor	tailored	to	its	data	type	like	string,	image	upload,
checkbox,	select	etc.

We	would	see	such	an	HTML	code	if	we	looked	at	the	source	(simplified	for	brevity):

Edit	Dialogs

49

<div	class="field	ProductName">

				<label>Product	Name</label>

				<input	type="text"	class="editor	s-StringEditor"	/>

</div>

<div	class="field	ProductImage">

				<label	class="caption">	Product	Image</label>

				<div	class="editor	s-ImageUploadEditor">

								...

				</div>

</div>

...

Every	field	has	a	separate	"div"	of	its	own	with	class	"field".	Inside	this	div,	there	is	a	"label"
element	and	another	element	(input,	select,	div)	that	changes	with	the	editor	type	for	that
field.

We	can	look	at	the	class	names	of	these	elements	to	identify	their	editor	types	(e.g.	s-
StringEditor,	s-ImageUploadEditor)

In	the	toolbar	we	have	a	button	to	save	current	entity	and	close	dialog	(Update),	next	to	it	a
smaller	one	that	keeps	dialog	open	after	save	and	another	one	to	delete	current	entity
(obviously).

Most	Serenity	editing	dialogs	has	this	familiar	interface,	though	you	can	always	customize
buttons,	fields,	add	tabs,	and	other	interface	elements.

Edit	Dialogs

50

Tutorials
Movie	Database	(similar	to	IMDB)
Multi	Tenancy

Tutorials

51

Tutorial:	Movie	Database
Let's	create	editing	interface	for	some	site	similar	to	IMDB	with	Serenity.

You	can	find	source	code	for	this	tutorial	at:

https://github.com/volkanceylan/MovieTutorial

Create	a	new	project	named	MovieTutorial

In	Visual	Studio	click	File	->	New	Project.	Make	sure	you	choose	Serene	template.	Type
MovieTutorial	as	name	and	click	OK.

You	might	also	choose	Serene	(AspNetCore)	version.	A	few	things	will	be	different.
We'll	try	to	list	those	differences.

In	Solution	explorer,	you	should	see	one	project	with	name	MovieTutorial.Web.

MovieTutorial.Web	project	is	an	ASP.NET	MVC	(or	Core)	application	that	contains	server
side	code	plus	static	resources	like	css	files,	images	etc.

MovieTutorial.Web	also	has	a	tsconfig.json	file	at	root,	which	specifies	that	it	is	also	a
TypeScript	project.	All	.ts	files	under	Modules/	and	Scripts/	directories	are	compiled	on	save,
and	their	outputs	are	combined	into	a	script	file	under	scripts/site/	folder	with	name
MovieTutorial.Web.js.

Please	make	sure	that	you	have	TypeScript	2.5.2+	installed.	Check	your	version	from
Visual	Studio	Extensions	dialog.

To	install	TypeScript	2.5.2+	in	Visual	Studio,	you'll	need	to	install	Visual	Studio	2015
Update	3.

Download	its	latest	version	from	http://www.typescriptlang.org/#download-links	for	your
Visual	Studio.

Also	check	prerequisites	in	Getting	Started	section.

Movie	Database

52

https://github.com/volkanceylan/MovieTutorial
http://www.typescriptlang.org/#download-links

Creating	Movie	Table
To	store	list	of	movies	we	need	a	Movie	table.	We	could	create	this	table	using	old-school
techniques	like	SQL	Management	Studio	but	we	prefer	creating	it	as	a	migration	using
Fluent	Migrator:

Fluent	Migrator	is	a	migration	framework	for	.NET	much	like	Ruby	on	Rails	Migrations.
Migrations	are	a	structured	way	to	alter	your	database	schema	and	are	an	alternative	to
creating	lots	of	sql	scripts	that	have	to	be	run	manually	by	every	developer	involved.
Migrations	solve	the	problem	of	evolving	a	database	schema	for	multiple	databases	(for
example,	the	developer’s	local	database,	the	test	database	and	the	production
database).	Database	schema	changes	are	described	in	classes	written	in	C#	that	can
be	checked	into	a	version	control	system.

See	https://github.com/schambers/fluentmigrator	for	more	information	on
FluentMigrator.

Please	Note

As	we	are	using	FluentMigrator	in	our	samples,	some	users	assume	Serenity	doesn't	work
without	it.	That's	not	correct.	You	don't	have	to	use	migrations.	Serenity	has	no	direct
dependency	on	migrations.

If	you	like,	instead	of	using	these	migrations	you	may	manually	create	tables	in	SQL
Management	Studio.

You	could	also	work	with	an	existing	database.

Locating	Migration	Folder
Using	Solution	Explorer	navigate	to	Migrations	/	DefaultDB.

Creating	Movie	Table

53

https://github.com/schambers/fluentmigrator

Here	we	already	have	several	migrations.	A	migration	is	like	a	DML	script	that	manipulates
database	structure.

DefaultDB_20141103_140000_Initial.cs	for	example,	contains	our	initial	migration	that
created	Northwind	tables	and	Users	table.

Create	a	new	migration	file	in	the	same	folder	with	name
DefaultDB_20160519_115100_MovieTable.cs.	You	can	copy	and	change	one	of	the	existing
migration	files,	rename	it	and	change	contents.

Migration	file	name	/	class	name	is	actually	not	important	but	recommended	for
consistency	and	correct	ordering.

20160519_115100	corresponds	to	the	time	we	are	writing	this	migration	in
yyyyMMdd_HHmmss	format.	It	will	also	act	as	a	unique	key	for	this	migration.

Our	migration	file	should	look	like	below:

Creating	Movie	Table

54

using	FluentMigrator;

using	System;

namespace	MovieTutorial.Migrations.DefaultDB

{

				[Migration(20160519115100)]

				public	class	DefaultDB_20160519_115100_MovieTable	:	Migration

				{

								public	override	void	Up()

								{

												Create.Schema("mov");

												Create.Table("Movie").InSchema("mov")

																.WithColumn("MovieId").AsInt32()

																				.Identity().PrimaryKey().NotNullable()

																.WithColumn("Title").AsString(200).NotNullable()

																.WithColumn("Description").AsString(1000).Nullable()

																.WithColumn("Storyline").AsString(Int32.MaxValue).Nullable()

																.WithColumn("Year").AsInt32().Nullable()

																.WithColumn("ReleaseDate").AsDateTime().Nullable()

																.WithColumn("Runtime").AsInt32().Nullable();				

								}

								public	override	void	Down()

								{

								}

				}

}

Make	sure	you	use	the	namespace	MovieTutorial.Migrations.DefaultDB	as	Serene
template	applies	migrations	only	in	this	namespace	to	the	default	database.

In	Up()	method	we	specify	that	this	migration,	when	applied,	will	create	a	schema	named
mov.	We	will	use	a	separate	schema	for	movie	tables	to	avoid	clashes	with	existing	tables.	It
will	also	create	a	table	named	Movie	with	"MovieId,	Title,	Description..."	fields	on	it.

We	could	implement	Down()	method	to	make	it	possible	to	undo	this	migration	(drop	movie
table	and	mov	schema	etc),	but	for	the	scope	of	this	sample,	lets	leave	it	empty.

Inability	to	undo	a	migration	might	not	hurt	much,	but	deleting	a	table	by	mistake	could
do	more	damage.

On	top	of	our	class	we	applied	a	Migration	attribute.

[Migration(20160519115100)]

Creating	Movie	Table

55

This	specifies	a	unique	key	for	this	migration.	After	a	migration	is	applied	to	a	database,	its
key	is	recorded	in	a	special	table	specific	to	FluentMigrator	([dbo].[VersionInfo]),	so	same
migration	won't	be	applied	again.

Migration	key	should	be	in	sync	with	class	name	(for	consistency)	but	without
underscore	as	migration	keys	are	Int64	numbers.

Migrations	are	executed	in	the	key	order,	so	using	a	sortable	datetime	pattern	like
yyyyMMdd	for	migration	keys	looks	like	a	good	idea.

Please	make	sure	you	always	use	same	number	of	characters	for	migration	keys	e.g.	14
(20160519115100).	Otherwise	your	migration	order	will	get	messed	up,	and	you	will	have
migration	errors,	due	to	migrations	running	in	unexpected	order.

Running	Migrations

By	default,	Serene	template	runs	all	migrations	in	MovieTutorial.Migrations.DefaultDB
namespace.	This	happens	on	application	start	automatically.

The	code	that	runs	migrations	are	in	App_Start/SiteInitialization.cs	and
App_Start/SiteInitialization.Migrations.cs	files:

In	Asp.Net	Core	version,	they	are	under	Initialization/Startup.cs	and
Initialization/DataMigrations.cs	files	as	there	is	no	App_Start	folder	in	ASP.NET	Core.

SiteInitialization.Migrations.cs	(or	DataMigrations.cs):

namespace	MovieTutorial

{

				//...

				public	static	partial	class	SiteInitialization

				{

								private	static	string[]	databaseKeys	=	new[]	{	"Default",	"Northwind"	};

								//...

								private	static	void	EnsureDatabase(string	databaseKey)

								{

											//...

								}

								public	static	bool	SkippedMigrations	{	get;	private	set;	}

								private	static	void	RunMigrations(string	databaseKey)

								{

												//	...

												//	safety	check	to	ensure	that	we	are	not	modifying	an	

Creating	Movie	Table

56

												//	arbitrary	database.	remove	these	two	lines	if	you	want	

												//	MovieTutorial	migrations	to	run	on	your	DB.

												if	(cs.ConnectionString.IndexOf(typeof(SiteInitialization).Namespace	+

																				@"_"	+	databaseKey	+	"_v1",	

																								StringComparison.OrdinalIgnoreCase)	<	0)

												{

																SkippedMigrations	=	true;

																return;

												}

												//	...

												using	(var	sw	=	new	StringWriter())

												{

																//	...

																var	runner	=	new	RunnerContext(announcer)

																{

																				Database	=	databaseType,

																				Connection	=	cs.ConnectionString,

																				Targets	=	new	string[]	{	

																								typeof(SiteInitialization).Assembly.Location	},

																				Task	=	"migrate:up",

																				WorkingDirectory	=	Path.GetDirectoryName(

																								typeof(SiteInitialization).Assembly.Location),

																				Namespace	=	"MovieTutorial.Migrations."	+	databaseKey	+	"DB"

																};

																new	TaskExecutor(runner).Execute();

												}

								}

				}

}

There	is	a	safety	check	on	database	name	to	avoid	running	migrations	on	some
arbitrary	database	other	than	the	default	Serene	database	(MovieTutorial_Default_v1).
You	can	remove	this	check	if	you	understand	the	risks.	For	example,	if	you	change
Northwind	connection	in	web.config	to	your	own	production	database,	migrations	will
run	on	it	and	you	will	have	Northwind	etc	tables	even	if	you	didn't	mean	to.

Now	press	F5	to	run	your	application	and	create	Movie	table	in	default	database.

Verifying	That	the	Migration	is	Run

Using	Sql	Server	Management	Studio	or	Visual	Studio	->	Connection	To	Database,	open	a
connection	to	MovieTutorial_Default_v1	database	in	server	(localdb)\MsSqlLocalDB	or
(localdb)\v11.0	depending	on	version	you	use.

Creating	Movie	Table

57

(localdb)\v11.0	is	a	LocalDB	instance	created	by	SQL	Server	2012	LocalDB.
(localdb)\MsSqlLocalDB	is	an	instance	created	by	SQL	2014+	LocalDB.

If	you	didn't	install	LocalDB	yet,	download	it	from	https://www.microsoft.com/en-
us/download/details.aspx?id=29062.

If	you	have	SQL	Server	2014	LocalDB,	your	server	name	would	be
(localdb)\MSSqlLocalDB	or	(localdb)\v12.0,	so	change	connection	string	in	web.config
file.

You	could	also	use	another	SQL	server	instance,	just	change	the	connection	string	to
target	server	and	remove	the	migration	safety	check.

You	should	see	[mov].[Movies]	table	in	SQL	object	explorer.

Also	when	you	view	data	in	[dbo].[VersionInfo]	table,	Version	column	in	the	last	row	of	the
table	should	be	20160519115100.	This	specifies	that	the	migration	with	that	version	number
(migration	key)	is	already	executed	on	this	database.

So,	even	if	you	change	migration	source	code,	that	migration	won't	ever	run	again	in
this	database.	Try	to	avoid	modifying	migrations	after	they	run	on	your	DB.	Create	a
new	migration	if	possible.

Usually,	you	don't	have	to	do	these	checks	after	every	migration.	Here	we	show	these
to	explain	where	to	look,	in	case	you'll	have	any	trouble	in	the	future.

Creating	Movie	Table

58

https://www.microsoft.com/en-us/download/details.aspx?id=29062

Generating	Code	For	Movie	Table

Serenity	Code	Generator	(ASP.NET	MVC)
These	steps	applies	only	to	ASP.NET	MVC	version,	not	ASP.NET	Core	version.	Keep
reading	to	see	how	to	run	Sergen	in	ASP.NET	Core	version.

After	making	sure	that	our	table	exists	in	the	database,	we	will	use	Serenity	Code	Generator
(sergen.exe)	to	generate	initial	editing	interface.

In	Visual	Studio,	open	Package	Manager	Console	by	clicking	View	=>	Other	Windows	=>
Package	Manager	Console.

Type	sergen	and	press	Enter.

Resolving	Sergen	is	not	Recognized	Issue

Sometimes	NuGet	package	manager	can't	set	PATH	correctly	and	you	may	get	an	error	like
below	while	trying	to	execute	Sergen.

Unfortunately,	this	is	a	bug	of	Visual	Studio	/	NuGet	and	is	not	related	to	Serenity	or	Sergen
itself.

Most	of	the	times,	restarting	Visual	Studio	might	resolve	the	issue.

If	it	doesn't,	you	may	open	Sergen.exe	from	Windows	Explorer.	Right	click	on	MovieTutorial
solution	in	Solution	Explorer,	click	Open	In	File	Explorer.	Sergen.exe	is	under
packages\Serenity.CodeGenerator.X.Y.Z\tools	directory.

Generating	Code	For	Movie	Table

59

Sergen	UI

Setting	Project	Location

When	you	first	run	Sergen,	Web	Project	field	will	be	prefilled	for	you	to:

Generating	Code	For	Movie	Table

60

..\..\..\MovieTutorial\MovieTutorial.Web\MovieTutorial.Web.csproj

If	you	change	this	value	and	other	options,	and	generate	your	first	page,	you	won't	have	to
set	them	again.	All	these	options	will	be	saved	in	Serenity.CodeGenerator.config	in	your
solution	directory.

This	value	is	required,	as	Sergen	will	automatically	include	generated	files	to	your	WEB
project.

Script	project	field	should	be	empty	for	v2.1+.	This	is	for	users	of	older	Serene,	who
might	still	have	code	that	was	written	with	Saltaralle	compiler,	instead	of	TypeScript.

Root	Namespace	Option

Your	root	namespace	option	is	set	to	the	Solution	name	you	used,	e.g.	MovieTutorial.	If	your
project	name	is	MyProject.Web,	your	root	namespace	is	MyProject	by	default.

This	is	critical	so	make	sure	you	don't	set	it	to	anything	different,	as	by	default,	Serene
template	expects	all	generated	code	to	be	under	this	root	namespace.

It	is	also	very	important	to	understand	that	Root	Namespace	is	case	sensitive	and	must
exactly	match	your	project	name,	e.g.	not	movietutorial	or	movieTutorial	but	MovieTutorial.

This	option	is	also	saved,	so	next	time	you	won't	have	to	fill	it	in.

Choosing	Connection	String

Once	you	set	Web	project	name,	Sergen	populates	connection	dropdown	with	connection
strings	from	your	web.config	file.	We	might	have	Default	and	Northwind	in	there.	Choose
Default	one.

Selecting	Table	To	Generate	Code	For

Sergen	can	generate	code	for	multiple	tables,	but	we'll	generate	for	only	one	now.	Once	we
choose	connection	string,	table	grid	is	populated	with	table	names	from	that	database.

Mark	checkbox	next	to	Movie	table.

Identifier

This	usually	corresponds	to	the	table	name	but	sometimes	table	names	might	have
underscores	or	other	invalid	characters,	so	you	decide	what	to	name	your	entity	in
generated	code	(a	valid	identifier	name).

Generating	Code	For	Movie	Table

61

Our	table	name	is	Movie	so	it	is	also	a	valid	and	fine	C#	identifier,	so	let's	leave	Movie	as	the
entity	identifier.	Our	entity	class	will	be	named	MovieRow.

This	name	is	also	used	in	other	class	names.	For	example	our	page	controller	will	be	named
MovieController.

It	also	determines	the	page	url,	in	this	sample	our	editing	page	will	be	at	URL
/MovieDB/Movie.

Please	Note!

Identifier	must	always	be	in	Pascal	case,	e.g.	something	that	starts	with	a	CAPITAL	letter.
	myTable	,		mycoolTable	,		aTable		are	invalid	module	names.		MyCoolTable		is	OK.

We'll	add	a	validation	to	Sergen	for	this	soon.

Setting	Module	Name

In	Serenity	terms,	a	module	is	a	logical	group	of	pages,	sharing	a	common	purpose.

For	example,	in	Serene	template,	all	pages	related	to	Northwind	sample	belongs	to
Northwind	module.

Pages	that	are	related	to	general	management	of	site,	like	users,	roles	etc.	belongs	to
Administration	module.

A	module	usually	corresponds	to	a	database	schema,	or	a	single	database	but	there	is
nothing	that	prevents	you	from	using	multiple	modules	in	a	single	database	/	schema,	or	the
opposite,	multiple	databases	in	one	module.

For	this	tutorial,	we	will	use	MovieDB	(analogous	to	IMDB)	for	all	pages.

Module	name	is	used	in	determining	namespace	and	url	of	generated	pages.

For	example,	our	new	page	will	be	under	MovieTutorial.MovieDB	namespace	and	will	use
/MovieDB	relative	url.

Please	Note!

Module	names	must	also	be	in	Pascal	case,	e.g.	something	that	starts	with	a	CAPITAL	letter.
	myModule	,		mycoolmodule	,		aModule		are	invalid	module	names.		MyCoolModule		is	fine.

Permission	Key

Generating	Code	For	Movie	Table

62

In	Serenity,	access	control	to	resources	(pages,	services	etc.)	are	controlled	by	permission
keys	which	are	simple	strings.	Users	or	roles	are	granted	these	permissions.

Our	Movie	page	will	be	only	used	by	administrative	users	(or	maybe	later	content
moderators)	so	let's	leave	it	as	Administration:General	for	now.	By	default,	in	Serene
template,	only	the	admin	user	has	this	permission.

ConnectionKey	Parameter

Connection	key	is	set	to	the	connection	key	of	selected	connection	string	in	web.config	file.
You	usually	don't	have	to	change	it,	just	leave	default.

Generating	Code	for	First	Page

After	setting	parameters	as	shown	in	the	image	above	(you	only	have	to	set	Module	Name,
others	were	prefilled),	click	Generate	Code	for	Entity	button.

Sergen	will	generate	several	files	and	include	them	in	MovieTutorial.Web	and
MovieTutorial.Script	projects.

Now	you	can	close	Sergen,	and	return	to	Visual	Studio.

Serenity	Code	Generator	(ASP.NET	Core)
These	steps	applies	only	to	ASP.NET	Core	version,	not	ASP.NET	MVC	version.

As	ASP.NET	Core	has	cross-platform	support,	.NET	Core	version	of	Sergen	also	needs	to
run	in	OSX	/	Linux	/	Windows.	Thus,	its	UI	is	currently	console	based.

We	first	need	to	open	a	command	prompt	at	project	folder.	Right	click	MovieTutorial.Web
project	and	click	Open	Folder	in	File	Explorer.

Click	File	menu	in	file	explorer,	and	click	Open	Windows	Powershell	or	Open	Command
Prompt.

You	may	also	install	this	extension	(https://marketplace.visualstudio.com/items?
itemName=MadsKristensen.OpenCommandLine)	to	easily	open	a	command	line	next
time.	I	can't	understand	why	there	is	still	not	such	an	option	in	Visual	Studio	itself.

Make	sure	you	are	at		MovieTutorial.Web		directory.

Type		dotnet	sergen	g		to	open	Sergen	code	generation	UI	(console).

Generating	Code	For	Movie	Table

63

https://marketplace.visualstudio.com/items?itemName=MadsKristensen.OpenCommandLine

If	you	receive	an	error,	type		dotnet	restore		before	running	sergen.

Sergen	will	list	connections	in	appsettings.json	file.

You	can	use	TAB	completion,	e.g.	type	D	and	press	TAB	to	complete	Default.

After	pressing	Enter	you'll	get	a	list	of	tables	in	that	database:

Clear		dbo.		using	backspace,	and	type		mov.Movie		or	type		m		and	use	TAB	completion	to
select		mov.Movie	,	then	press	ENTER.

Next,	Sergen	will	ask	for	a	module	name,	enter	MovieDB.

When	prompted,	enter	Movie	as	identifier.

Leave	permission	as	Administration:General	and	press	enter	again.

Generating	Code	For	Movie	Table

64

Sergen	will	ask	you	which	files	to	generate,	leave	default	RSU	option	(e.g.	Row,	Service	and
User	Interface)	and	press	ENTER	last	time.

Now	you	can	quit	command	prompt,	and	return	back	to	Visual	Studio	(or	Notepad	:)

After	Generating	Code
As	project	is	modified,	Visual	Studio	may	ask	if	you	want	to	reload	changes,	click	Reload	All.

REBUILD	the	Solution	and	then	press	F5	to	launch	application.

Use	admin	as	username,	and	serenity	as	password	to	login.

When	you	are	greeted	with	Dashboard	page,	you	will	notice	that	there	is	a	new	section,
MovieDB	on	the	bottom	of	left	navigation.

Click	to	expand	it	and	click	Movie	to	open	our	first	generated	page.

Now	try	adding	a	new	movie,	than	try	updating	and	deleting	it.

Sergen	generated	code	for	our	table,	and	it	just	works	without	writing	a	single	line	of	code.

Generating	Code	For	Movie	Table

65

This	doesn't	mean	i	don't	like	writing	code.	In	contrast,	i	love	it.	Actually	i'm	not	a	fan	of
most	designers	and	code	generators.	The	code	they	produce	is	usually	unmanagable
mess.

Sergen	just	helped	us	here	for	initial	setup	which	is	required	for	layered	architecture
and	platform	standards.	We	would	have	to	create	about	10	files	for	entity,	repository,
page,	endpoint,	grid,	form	etc.	Also	we	needed	to	do	some	setup	in	a	few	other	places.

Even	if	we	did	copy	paste	and	replace	code	from	some	other	page,	it	would	be	error
prone	and	take	about	5-10	mins.

The	code	files	Sergen	generates	has	minimum	code	with	the	absolute	basics.	This	is
thanks	to	the	base	classes	in	Serenity	that	handles	the	most	logic.	Once	we	generate
code	for	some	table,	we'll	probably	never	use	Sergen	again	(for	this	table),	and	modify
this	generated	code	to	our	needs.	We'll	see	how.

Generating	Code	For	Movie	Table

66

Customizing	Movie	Interface

Customizing	Field	Captions

In	our	movie	grid	and	form,	we	have	a	field	named	Runtime.	This	field	expects	an	integer
number	in	minutes,	but	in	its	title	there	is	no	sign	of	this.	Let's	change	its	title	to	Runtime
(mins).

There	are	several	ways	to	do	this.	Our	options	include	server	side	form	definition,	server
side	columns	definition,	from	script	grid	code	etc.	But	let's	make	this	change	in	the	central
location,	the	entity	itself,	so	its	title	changes	everywhere.

When	Sergen	generated	code	for	Movie	table,	it	created	a	entity	class	named	MovieRow.
You	can	find	it	at	Modules/MovieDB/Movie/MovieRow.cs.

Here	is	an	excerpt	from	its	source	with	our	Runtime	property:

namespace	MovieTutorial.MovieDB.Entities

{

				//	...

				[ConnectionKey("Default"),	DisplayName("Movie"),	

					InstanceName("Movie"),	TwoLevelCached]

				public	sealed	class	MovieRow	:	Row,	IIdRow,	INameRow

				{

								//	...

								[DisplayName("Runtime")]

								public	Int32?	Runtime

								{

												get	{	return	Fields.Runtime[this];	}

												set	{	Fields.Runtime[this]	=	value;	}

								}

								//...

				}

}

We'll	talk	about	entities	(or	rows)	later,	let's	now	focus	on	our	target	and	change	its
DisplayName	attribute	value	to	*Runtime	(mins)":

Customizing	Movie	Interface

67

namespace	MovieTutorial.MovieDB.Entities

{

				//	...

				[ConnectionKey("Default"),	DisplayName("Movie"),	InstanceName("Movie"),	

					TwoLevelCached]

				public	sealed	class	MovieRow	:	Row,	IIdRow,	INameRow

				{

								//	...

								[DisplayName("Runtime	(mins)")]

								public	Int32?	Runtime

								{

												get	{	return	Fields.Runtime[this];	}

												set	{	Fields.Runtime[this]	=	value;	}

								}

								//...

				}

}

Now	build	solution	and	run	application.	You'll	see	that	field	title	is	changed	in	both	grid	and
dialog.

Column	title	has	"..."	in	it	as	column	is	not	wide	enough,	though	its	hint	shows	the	full
title.	We'll	see	how	to	handle	this	soon.

Overriding	Column	Title	and	Width

So	far	so	good,	what	if	we	wanted	to	show	another	title	in	grid	(columns)	or	dialog	(form).
We	can	override	it	corresponding	definition	file.

Customizing	Movie	Interface

68

Let's	do	it	on	columns	first.	Next	to	MovieRow.cs,	you	can	find	a	source	file	named
MovieColumns.cs:

namespace	MovieTutorial.MovieDB.Columns

{

				//	...

				[ColumnsScript("MovieDB.Movie")]

				[BasedOnRow(typeof(Entities.MovieRow))]

				public	class	MovieColumns

				{

								[EditLink,	DisplayName("Db.Shared.RecordId"),	AlignRight]

								public	Int32	MovieId	{	get;	set;	}

								//...

								public	Int32	Runtime	{	get;	set;	}

				}

}

You	may	notice	that	this	columns	definition	is	based	on	the	Movie	entity	(BasedOnRow
attribute).

Any	attribute	written	here	will	override	attributes	defined	in	the	entity	class.

Let's	add	a	DisplayName	attribute	to	the	Runtime	property:

namespace	MovieTutorial.MovieDB.Columns

{

				//	...

				[ColumnsScript("MovieDB.Movie")]

				[BasedOnRow(typeof(Entities.MovieRow))]

				public	class	MovieColumns

				{

								[EditLink,	DisplayName("Db.Shared.RecordId"),	AlignRight]

								public	Int32	MovieId	{	get;	set;	}

								//...

								[DisplayName("Runtime	in	Minutes"),	Width(150),	AlignRight]

								public	Int32	Runtime	{	get;	set;	}

				}

}

Now	we	set	column	caption	to	"Runtime	in	Minutes".

We	actually	added	two	more	attributes.

One	to	override	column	width	to	150px.

Serenity	applies	an	automatic	width	to	columns	based	on	field	type	and	character
length,	unless	you	set	the	width	explicitly.

Customizing	Movie	Interface

69

And	another	one	to	align	column	to	right	(AlignCenter,	AlignLeft	is	also	available).

Let's	build	and	run	again,	than	we	get:

Form	field	title	stayed	same,	while	column	title	changed.

If	we	wanted	to	override	form	field	title	instead,	we	would	do	similar	steps	in
MovieForm.cs

Changing	Editor	Type	For	Description	and	Storyline

Description	and	Storyline	fields	can	be	a	bit	longer	compared	to	Title	field,	so	lets	change
their	editor	types	to	a	textarea.

Open	MovieForm.cs	in	the	same	folder	with	MovieColumns.cs	and	MovieRow.cs.

Customizing	Movie	Interface

70

namespace	MovieTutorial.MovieDB.Forms

{

				//...

				[FormScript("MovieDB.Movie")]

				[BasedOnRow(typeof(Entities.MovieRow))]

				public	class	MovieForm

				{

								public	String	Title	{	get;	set;	}

								public	String	Description	{	get;	set;	}

								public	String	Storyline	{	get;	set;	}

								public	Int32	Year	{	get;	set;	}

								public	DateTime	ReleaseDate	{	get;	set;	}

								public	Int32	Runtime	{	get;	set;	}

				}

}

and	add	TextAreaEditor	attributes	to	both:

namespace	MovieTutorial.MovieDB.Forms

{

				//...

				[FormScript("MovieDB.Movie")]

				[BasedOnRow(typeof(Entities.MovieRow))]

				public	class	MovieForm

				{

								public	String	Title	{	get;	set;	}

								[TextAreaEditor(Rows	=	3)]

								public	String	Description	{	get;	set;	}

								[TextAreaEditor(Rows	=	8)]

								public	String	Storyline	{	get;	set;	}

								public	Int32	Year	{	get;	set;	}

								public	DateTime	ReleaseDate	{	get;	set;	}

								public	Int32	Runtime	{	get;	set;	}

				}

}

I	left	more	editing	rows	for	Storyline	(8)	compared	to	Description	(3)	as	Storyline	should	be
much	longer.

After	rebuild	and	run,	we	have	this:

Customizing	Movie	Interface

71

Serene	has	several	editor	types	to	choose	from.	Some	are	automatically	picked	based	on
field	data	type,	while	you	need	to	explicitly	set	others.

You	can	also	develop	your	own	editor	types.	You	can	take	existing	editor	types	as	base
classes,	or	develop	your	own	from	stratch.	We'll	see	how	in	following	chapters.

As	editors	became	a	bit	higher,	form	height	exceeded	the	default	Serenity	form	height	(which
is	about	260px)	and	now	we	have	a	vertical	scroll	bar.	Let's	remove	it.

Setting	Initial	Dialog	Size	With	CSS	(Less)

Sergen	generated	some	CSS	for	our	movie	dialog	in
MovieTutorial.Web/Content/site/site.less	file.

If	you	open	it,	and	scroll	to	bottom,	you	will	see	this:

/*	---	*/

/*	APPENDED	BY	CODE	GENERATOR,	MOVE	TO	CORRECT	PLACE	AND	REMOVE	THIS	COMMENT	*/

/*	---	*/

.s-MovieDB-MovieDialog	{

				>	.size	{	width:	650px;	}

				.caption	{	width:	150px;	}

}

Customizing	Movie	Interface

72

You	can	safely	remove	the	3	comment	lines	(appended	by	code	generator...).	This	is	just	a
reminder	for	you	to	move	them	to	a	better	place	like	a	site.movies.less	file	specific	to	this
module	(recommended).

These	rules	are	applied	to	elements	with	.s-MovieDB-MovieDialog	class.	Our	Movie	dialog
has	this	class	by	default,	which	is	generated	by	"s-"	+	ModuleName	+	"-"	+	ClassName.

In	the	second	line	it	is	specified	that	this	dialog	is	650px	wide	by	default.

In	third	line,	we	specify	that	field	labels	should	be	150px	(@l:	150px).

Let's	change	our	initial	dialog	height	to	500px	(in	desktop	mode),	so	it	won't	require	a	vertical
scroll	bar:

.s-MovieDialog	{

				>	.size	{	width:	650px);	height:	500px;	}

				.caption	{	width:	150px;	}

}

For	this	change	to	be	applied	to	your	dialog,	you	need	to	build	solution.	As	this	"site.less"	file
is	compiled	to	a	"site.css"	file	on	build.	Now	build	and	refresh	the	page.

What	i	mean	by	desktop	mode	above	will	become	clearer	soon.	Serenity	dialogs	are
responsive	by	default.	Let's	resize	our	browser	window	to	a	width	about	350px.	I'll	use
mobile	mode	of	my	Chrome	browser	to	switch	to	iPhone	6:

Customizing	Movie	Interface

73

And	now	an	iPad	in	landscape	mode:

Customizing	Movie	Interface

74

So,	the	height	we	set	here	is	only	meaningfull	for	desktop	mode.	Dialog	will	turn	into	a
responsive,	device	size	specific	mode	in	mobile,	without	having	to	mess	with	CSS	@media
queries.

Changing	Page	Title

Our	page	has	title	of	Movie.	Let's	change	it	to	Movies.

Open	MovieRow.cs	again.

namespace	MovieTutorial.MovieDB.Entities

{

				//	...

				[ConnectionKey("Default"),	DisplayName("Movie"),	InstanceName("Movie"),	

					TwoLevelCached]

				public	sealed	class	MovieRow	:	Row,	IIdRow,	INameRow

				{

								[DisplayName("Movie	Id"),	Identity]

								public	Int32?	MovieId

Change	DisplayName	attribute	value	to	Movies.	This	is	the	name	that	is	used	when	this
table	is	referenced,	and	it	is	usually	a	plural	name.	This	attribute	is	used	for	determining
default	page	title.

It	is	also	possible	to	override	the	page	title	in	MoviePage.Index.cshtml	file	but	as	before,
we	prefer	to	do	it	from	a	central	location	so	that	this	information	can	be	reused	in	other
places.

InstanceName	corresponds	to	singular	name	and	is	used	in	New	Record	(New	Movie)
button	of	the	grid	and	also	determines	the	dialog	title	(e.g.	Edit	Movie).

namespace	MovieTutorial.MovieDB.Entities

{

				//	...

				[ConnectionKey("Default"),	DisplayName("Movies"),	InstanceName("Movie"),	

					TwoLevelCached]

				public	sealed	class	MovieRow	:	Row,	IIdRow,	INameRow

				{

								[DisplayName("Movie	Id"),	Identity]

								public	Int32?	MovieId

Customizing	Movie	Interface

75

Handling	Movie	Navigation

Setting	Navigation	Item	Title	and	Icon

When	Sergen	generated	code	for	Movie	table,	it	also	created	a	navigation	item	entry.	In
Serene,	navigation	items	are	created	with	special	assembly	attributes.

Open	MoviePage.cs	in	the	same	folder,	on	top	of	it	you'll	find	this	line:

[assembly:Serenity.Navigation.NavigationLink(int.MaxValue,	"MovieDB/Movie",	

				typeof(MovieTutorial.MovieDB.Pages.MovieController))]

namespace	MovieTutorial.MovieDB.Pages

{

				//...

First	argument	to	this	attribute	is	display	order	for	this	navigation	item.	As	we	only	have	one
navigation	item	in	Movie	category	yet,	we	don't	have	to	mess	with	ordering	yet.

Second	parameter	is	navigation	title	in	"Section	Title/Link	Title"	format.	Section	and
navigation	items	are	seperated	with	a	slash	(/).

Lets	change	it	to	Movie	Database/Movies.

[assembly:Serenity.Navigation.NavigationLink(int.MaxValue,	"Movie	Database/Movies",	

				typeof(MovieTutorial.MovieDB.Pages.MovieController),	icon:	"icon-camrecorder")]

namespace	MovieTutorial.MovieDB.Pages

{

//..

Handling	Movie	Navigation

76

We	also	changed	navigation	item	icon	to	icon-camcorder.	Serene	template	has	two	sets	of
font	icons,	Simple	Line	Icons	and	Font	Awesome.	Here	we	used	a	glyph	from	simple	line
icons	set.

To	see	list	of	simple	line	icons	and	their	css	classes,	visit	link	below:

http://thesabbir.github.io/simple-line-icons/

FontAwesome	is	available	here:

https://fortawesome.github.io/Font-Awesome/icons/

There	is	also	a	page	in	Serene	under	Theme	Samples	/	UI	Elements	/	Icons	containing
a	list	of	these	icon	sets.

Ordering	Navigation	Sections

As	our	Movie	Database	section	is	auto	generated	last,	it	is	displayed	at	the	bottom	of
navigation	menu.

We'll	move	it	before	Northwind	menu.

As	we	saw	recently,	Sergen	created	a	navigation	item	in	MoviePage.cs.	If	navigation	items
are	scattered	through	pages	like	this,	it	would	be	hard	to	see	the	big	picture	(list	of	all
navigation	items)	and	order	them	easily.

So	we	move	it	to	our	central	location	which	is	at
MovieTutorial.Web/Modules/Common/Navigation/NavigationItems.cs.

Handling	Movie	Navigation

77

http://thesabbir.github.io/simple-line-icons/
https://fortawesome.github.io/Font-Awesome/icons/

Just	cut	the	below	lines	from	MoviePage.cs:

[assembly:Serenity.Navigation.NavigationLink(int.MaxValue,	"Movie	Database/Movies",	

				typeof(MovieTutorial.MovieDB.Pages.MovieController),	icon:	"icon-camrecorder")]

Move	it	into	NavigationItems.cs	and	modify	it	like	this:

using	Serenity.Navigation;

using	Northwind	=	MovieTutorial.Northwind.Pages;

using	Administration	=	MovieTutorial.Administration.Pages;

using	MovieDB	=	MovieTutorial.MovieDB.Pages;

[assembly:	NavigationLink(1000,	"Dashboard",	url:	"~/",	permission:	"",

				icon:	"icon-speedometer")]

[assembly:	NavigationMenu(2000,	"Movie	Database",	icon:	"icon-film")]

[assembly:	NavigationLink(2100,	"Movie	Database/Movies",	

				typeof(MovieDB.MovieController),	icon:	"icon-camrecorder")]

[assembly:	NavigationMenu(8000,	"Northwind",	icon:	"icon-anchor")]

[assembly:	NavigationLink(8200,	"Northwind/Customers",	

				typeof(Northwind.CustomerController),	icon:	"icon-wallet")]

[assembly:	NavigationLink(8300,	"Northwind/Products",	

				typeof(Northwind.ProductController),	icon:	"icon-present")]

//	...

Here	we	also	declared	a	navigation	menu	(Movie	Database)	with	film	icon.	When	you	don't
have	an	explicitly	defined	navigation	menu,	Serenity	implicitly	creates	one,	but	in	this	case
you	can't	order	menu	yourself,	or	set	menu	icon.

We	assigned	it	a	display	order	of	2000	so	this	menu	will	display	just	after	Dashboard	link
(1000)	but	before	Northwind	menu	(8000).

We	assigned	our	Movies	link	a	display	order	value	of	2100	but	it	doesn't	matter	right	now,	as
we	have	only	one	navigation	item	under	Movie	Database	menu	yet.

First	level	links	and	navigation	menus	are	sorted	according	to	their	display	order	first,
then	second	level	links	among	their	siblings.

Here	is	how	it	looks	like	after	these	changes:

Handling	Movie	Navigation

78

Troubleshooting	Some	Issues	with	Visual	Studio

In	case	you	didn't	notice	already,	Visual	Studio	doesn't	let	you	modify	code	while	your	site	is
running.	Also	your	site	stops	when	you	stop	debugging,	so	you	can't	keep	browser	window
open	and	refresh	after	rebuilding.

To	solve	this	issue,	we	need	to	disable	Edit	And	Continue	(have	no	idea	why).

Right	Click	MovieTutorial.Web	project,	click	Properties,	in	the	Web	tab,	uncheck	Enable	Edit
And	Continue	under	Debuggers.

Unfortunately,	the	solution	above	stops	works	in	Visual	Studio	2015	Update	2.	Only
workaround	so	far	seems	like	starting	without	debugging,	e.g.	Ctrl+F5	instead	of	F5.

Solution	above	only	applies	to	ASP.NET	MVC	version,	not	ASP.NET	CORE	version.

Also,	on	your	site,	top	blue	progress	bar	(which	is	a	Pace.js	animation),	keeps	running	all	the
time	like	it	is	still	loading	something.	It	is	thanks	to	the	Browser	Link	feature	of	Visual	Studio.
To	disable	it,	locate	its	button	in	Visual	Studio	toolbar	that	looks	like	a	refresh	button	(next	to
play	icon	with	browser	name	like	Chrome),	click	dropdown	and	uncheck	Enable	Browser
Link.

It's	also	possible	to	disable	it	with	a	web.config	setting

Handling	Movie	Navigation

79

<appsettings>

				<add	key="vs:EnableBrowserLink"	value="false"	/>

</appsettings>

Serene	1.5.4	and	later	has	this	in	web.config	by	default,	so	you	might	not	experience
this	issue

I'm	not	sure	if	there	is	a	corresponding	setting	in	appsettings.json	file	of	ASP.NET	Core
version

Handling	Movie	Navigation

80

Customizing	Quick	Search

Adding	Several	Movie	Entries

For	the	following	sections,	we	need	some	sample	data.	We	can	copy	and	paste	some	from
IMDB.

If	you	don't	want	to	waste	your	time	entering	this	sample	data,	it	is	available	as	a	migration
at	the	link	below:

https://github.com/volkanceylan/MovieTutorial/blob/master/MovieTutorial/MovieTutorial.
Web/Modules/Common/Migrations/DefaultDB/DefaultDB_20160519_135200_SampleM
ovies.cs

If	we	typed	go	into	search	box,	we	would	see	two	movies	are	filtered:	The	Good,	the	Bad
and	the	Ugly	and	The	Godfather.

If	we	typed	Gandalf	we	wouldn't	be	able	to	find	anything.

By	default,	Sergen	determines	first	textual	field	of	a	table	as	the	name	field.	In	movies	table
it	is	Title.	This	field	has	a	QuickSearch	attribute	on	it	that	specifies	that	text	searches	should
be	performed	on	it.

The	name	field	also	determines	initial	sorting	order	and	shown	in	edit	dialog	titles.

Sometimes,	first	textual	column	might	not	be	the	name	field.	If	you	wanted	to	change	it	to
another	field,	you	would	do	it	in	MovieRow.cs:

Customizing	Quick	Search

81

https://github.com/volkanceylan/MovieTutorial/blob/master/MovieTutorial/MovieTutorial.Web/Modules/Common/Migrations/DefaultDB/DefaultDB_20160519_135200_SampleMovies.cs

namespace	MovieTutorial.MovieDB.Entities

{

				//...

				public	sealed	class	MovieRow	:	Row,	IIdRow,	INameRow

				{

								//...

								StringField	INameRow.NameField

								{

												get	{	return	Fields.Title;	}

								}

}

Code	generator	determined	that	first	textual	(string)	field	in	our	table	is	Title.	So	it	added	a
INameRow	interface	to	our	Movies	row	and	implemented	it	by	returning	Title	field.	If	wanted
to	use	Description	as	name	field,	we	would	just	replace	it.

Here,	Title	is	actually	the	name	field,	so	we	leave	it	as	is.	But	we	want	Serenity	to	search
also	in	Description	and	Storyline	fields.	To	do	this,	you	need	to	add	QuickSearch	attribute	to
these	fields	too,	as	shown	below:

Customizing	Quick	Search

82

namespace	MovieTutorial.MovieDB.Entities

{

				//...

				public	sealed	class	MovieRow	:	Row,	IIdRow,	INameRow

				{

								//...

								[DisplayName("Title"),	Size(200),	NotNull,	QuickSearch]

								public	String	Title

								{

												get	{	return	Fields.Title[this];	}

												set	{	Fields.Title[this]	=	value;	}

								}

								[DisplayName("Description"),	Size(1000),	QuickSearch]

								public	String	Description

								{

												get	{	return	Fields.Description[this];	}

												set	{	Fields.Description[this]	=	value;	}

								}

								[DisplayName("Storyline"),	QuickSearch]

								public	String	Storyline

								{

												get	{	return	Fields.Storyline[this];	}

												set	{	Fields.Storyline[this]	=	value;	}

								}

								//...

				}

}

Now,	if	we	search	for	Gandalf,	we'll	get	a	The	Lord	of	the	Rings	entry:

Customizing	Quick	Search

83

QuickSearch	attribute,	by	default,	searches	with	contains	filter.	It	has	some	options	to	make
it	match	by	starts	with	filter	or	match	only	exact	values.

If	we	wanted	it	to	show	only	rows	that	starts	with	typed	text,	we	would	change	attribute	to:

[DisplayName("Title"),	Size(200),	NotNull,	QuickSearch(SearchType.StartsWith)]

public	String	Title

{

				get	{	return	Fields.Title[this];	}

				set	{	Fields.Title[this]	=	value;	}

}

Here	this	quick	search	feature	is	not	very	useful,	but	for	values	like	SSN,	serial	number,
identification	number,	phone	number	etc,	it	might	be.

If	we	wanted	to	search	also	in	year	column,	but	only	exact	integer	values	(1999	matches	but
not	19):

[DisplayName("Year"),	QuickSearch(SearchType.Equals,	numericOnly:	1)]

public	Int32?	Year

{

				get	{	return	Fields.Year[this];	}

				set	{	Fields.Year[this]	=	value;	}

}

You	might	have	noticed	that	we	are	not	writing	any	C#	or	SQL	code	for	these	basic
features	to	work.	We	just	specify	what	we	want,	rather	than	how	to	do	it.	This	is	what
declarative	programming	is.

It	is	also	possible	to	provide	user	with	ability	to	determine	which	field	she	wants	to	search
on.

Open	MovieTutorial.Web/Modules/MovieDB/Movie/MovieGrid.ts	and	modify	it	like:

Customizing	Quick	Search

84

namespace	MovieTutorial.MovieDB	{

				@Serenity.Decorators.registerClass()

				export	class	MovieGrid	extends	

										Serenity.EntityGrid<MovieRow,	any>	{

								//...

								constructor(container:	JQuery)	{

												super(container);

								}

								protected	getQuickSearchFields():

														Serenity.QuickSearchField[]	{

												return	[

																{	name:	"",	title:	"all"	},

																{	name:	"Description",	title:	"description"	},

																{	name:	"Storyline",	title:	"storyline"	},

																{	name:	"Year",	title:	"year"	}

];

								}

				}

}

Once	you	save	that	file,	we'll	have	a	dropdown	in	quick	search	input:

Unlike	prior	samples	where	we	modified	Server	side	code,	this	time	we	did	changes	in
client	side,	and	modified	Javascript	(TypeScript)	code.

Running	T4	Templates	(.tt	files,	ASP.NET	MVC	Version)

Customizing	Quick	Search

85

In	prior	sample	we	harcoded	field	names	like	Description,	Storyline	etc.	This	may	lead	to
typing	errors	if	we	forgot	actual	property	names	or	their	casing	at	server	side	(javascript	is
case	sensitive).

Serene	contains	some	T4	(.tt)	files	to	transfer	such	information	from	server	side	(rows	etc	in
C#)	to	client	side	(TypeScript)	for	intellisense	purposes.

Before	running	these	templates,	please	make	sure	that	your	solution	builds	successfully	as
templates	uses	your	output	DLL	file	(MovieTutorial.Web.dll)	to	generate	code.

After	building	your	solution,	click	on	Build	menu,	than	Transform	All	Templates.

Running	T4	Templates	(ASP.NET	Core	Version)

You	don't	have	to	transform	templates	in	ASP.NET	Core	version.	Serene	does	it
automatically	on	build.

Actually,	there	isn't	any	T4	file	in	ASP.NET	Core	version.

So	from	now	on,	when	we	say	transform	templates,	just	build	your	project	(if	you	use
ASP.NET	Core	version).

It	is	also	possible	to	open	a	command	prompt	in	project	directory	and	type		dotnet	sergen	t	
to	transform	templates	manually.

Intellisense	on	TypeScript	Code	(After	transforming
templates)

We	can	now	use	intellisense	to	replace	hardcoded	field	names	with	compile	time	checked
versions:

Customizing	Quick	Search

86

namespace	MovieTutorial.MovieDB

{

				//...

				public	class	MovieGrid	extends	EntityGrid<MovieRow,	any>

				{

								constructor(container:	JQuery)	{

												super(container);

								}

								protected	getQuickSearchFields():	Serenity.QuickSearchField[]

								{

												let	fld	=	MovieRow.Fields;

												return	[

																{	name:	"",	title:	"all"	},

																{	name:	fld.Description,	title:	"description"	},

																{	name:	fld.Storyline,	title:	"storyline"	},

																{	name:	fld.Year,	title:	"year"	}

];

								}

				}

				///...

}

What	about	field	titles?	It	is	not	so	critical	as	field	names,	but	can	be	useful	for	localization
purposes	(if	we	later	decide	to	translate	it):

namespace	MovieTutorial.MovieDB

{

				//...

				public	class	MovieGrid	extends	EntityGrid<MovieRow,	any>

				{

								constructor(container:	JQuery)	{

												super(container);

								}

								protected	getQuickSearchFields():	Serenity.QuickSearchField[]	{

												let	fld	=	MovieRow.Fields;

												let	txt	=	(s)	=>	Q.text("Db."	+	

																MovieRow.localTextPrefix	+	"."	+	s).toLowerCase();

												return	[

																{	name:	"",	title:	"all"	},

																{	name:	fld.Description,	title:	txt(fld.Description)	},

																{	name:	fld.Storyline,	title:	txt(fld.Storyline)	},

																{	name:	fld.Year,	title:	txt(fld.Year)	}

];

								}

				}

				///...

}

Customizing	Quick	Search

87

We	made	use	of	the	local	text	dictionary	(translations)	available	at	client	side.	It's	something
like	this:

{

			//	...

			"Db.MovieDB.Movie.Description":	"Description",

			"Db.MovieDB.Movie.Storyline":	"Storyline",

			"Db.MovieDB.Movie.Year":	"Year"

			//	...

}

Local	text	keys	for	row	fields	are	generated	from	"Db."	+	(LocalTextPrefix	for	Row)	+	"."	+
FieldName.

Their	values	are	generated	from	[DisplayName]	attributes	on	your	fields	by	but	might	be
something	else	in	another	culture	if	they	are	translated.

LocalTextPrefix	corresponds	to	ModuleName	+	"."	+	RowClassName	by	default,	but	can	be
changed	in	Row	fields	constructor.

Customizing	Quick	Search

88

Adding	a	Movie	Kind	Field
If	we	wanted	to	also	keep	TV	series	and	mini	series	in	our	movie	table,	we	would	need
another	field	to	store	it:	MovieKind.

As	we	didn't	add	it	while	creating	the	Movie	table,	now	we'll	write	another	migration	to	add	it
to	our	database.

Don't	modify	existing	migrations,	they	won't	run	again.

Create	another	migration	file	under	Modules/Common/Migrations/DefaultDB/
DefaultDB_20160519_145500_MovieKind.cs:

using	FluentMigrator;

namespace	MovieTutorial.Migrations.DefaultDB

{

				[Migration(20160519145500)]

				public	class	DefaultDB_20160519_145500_MovieKind	:	Migration

				{

								public	override	void	Up()

								{

												Alter.Table("Movie").InSchema("mov")

																.AddColumn("Kind").AsInt32().NotNullable()

																				.WithDefaultValue(1);

								}

								public	override	void	Down()

								{

								}

				}

}

Declaring	a	MovieKind	Enumeration

Now	as	we	added	Kind	column	to	Movie	table,	we	need	a	set	of	movie	kind	values.	Let's
define	it	as	an	enumeration	at	MovieTutorial.Web/Modules/MovieDB/Movie/MovieKind.cs:

Adding	a	Movie	Kind	Field

89

using	Serenity.ComponentModel;

using	System.ComponentModel;

namespace	MovieTutorial.MovieDB

{

				[EnumKey("MovieDB.MovieKind")]

				public	enum	MovieKind

				{

								[Description("Film")]

								Film	=	1,

								[Description("TV	Series")]

								TvSeries	=	2,

								[Description("Mini	Series")]

								MiniSeries	=	3

				}

}

Adding	Kind	Field	to	MovieRow	Entity

As	we	are	not	using	Sergen	anymore,	we	need	to	add	a	mapping	in	our	MovieRow.cs	for
Kind	column	manually.	Add	following	property	declaration	in	MovieRow.cs	after	Runtime
property:

[DisplayName("Runtime	(mins)")]

public	Int32?	Runtime

{

				get	{	return	Fields.Runtime[this];	}

				set	{	Fields.Runtime[this]	=	value;	}

}

[DisplayName("Kind"),	NotNull]

public	MovieKind?	Kind

{

				get	{	return	(MovieKind?)Fields.Kind[this];	}

				set	{	Fields.Kind[this]	=	(Int32?)value;	}

}

We	also	need	to	declare	a	Int32Field	object	which	is	required	for	Serenity	entity	system.	On
the	bottom	of	MovieRow.cs	locate	RowFields	class	and	modify	it	to	add	Kind	field	after	the
Runtime	field:

Adding	a	Movie	Kind	Field

90

public	class	RowFields	:	RowFieldsBase

{

				//	...

				public	readonly	Int32Field	Runtime;

				public	readonly	Int32Field	Kind;

				public	RowFields()

								:	base("[mov].Movie")

				{

								LocalTextPrefix	=	"MovieDB.Movie";

				}

}

Adding	Kind	Selection	To	Our	Movie	Form

If	we	build	and	run	our	project	now,	we'll	see	that	there	is	no	change	in	the	Movie	form,	even
if	we	added	Kind	field	mapping	to	the	MovieRow.	This	is	because,	fields	shown/edited	in	the
form	are	controlled	by	declerations	in	MovieForm.cs.

Modify	MovieForm.cs	as	below:

namespace	MovieTutorial.MovieDB.Forms

{

				//	...

				[FormScript("MovieDB.Movie")]

				[BasedOnRow(typeof(Entities.MovieRow))]

				public	class	MovieForm

				{

								//	...

								public	MovieKind	Kind	{	get;	set;	}

								public	Int32	Runtime	{	get;	set;	}

				}

}

Now,	build	your	solution	and	run	it.	When	you	try	to	edit	a	movie	or	add	a	new	one,	nothing
will	happen.	This	is	an	expected	situation.	If	you	check	developer	tools	console	of	your
browser	(F12,	inspect	element	etc.)	you'll	see	such	an	error:

You	might	not	have	this	error	with	ASP.NET	Core	version	as	it	auto	transforms	T4

Uncaught	Can't	find	MovieTutorial.MovieDB.MovieKind	enum	type!

Please	Note!

Adding	a	Movie	Kind	Field

91

Whenever	such	a	thing	happens,	e.g.	some	button	not	working,	you	got	an	empty	page,	grid
etc,	please	first	check	browser	console	for	errors,	before	reporting	it.

Why	We	Had	This	Error?

This	error	is	caused	by	MoveKind	enumeration	not	available	client	side.	We	should	run	our
T4	templates	before	executing	our	program.

Now	in	Visual	Studio,	click	Build	->	Transform	All	Templates	again.

Rebuild	your	solution	and	execute	it.	Now	we	have	a	nice	dropdown	in	our	form	to	select
movie	kind.

Just	build	project	for	ASP.NET	Core	version,	as	there	is	no	T4	template

Declaring	a	Default	Value	for	Movie	Kind

As	Kind	is	a	required	field,	we	need	to	fill	it	in	Add	Movie	dialog,	otherwise	we'll	get	a
validation	error.

But	most	movies	we'll	store	are	feature	films,	so	its	default	should	be	this	value.

To	add	a	default	value	for	Kind	property,	add	a	DefaultValue	attribute	like	this:

Adding	a	Movie	Kind	Field

92

[DisplayName("Kind"),	NotNull,	DefaultValue(MovieKind.Film)]

public	MovieKind?	Kind

{

				get	{	return	(MovieKind?)Fields.Kind[this];	}

				set	{	Fields.Kind[this]	=	(Int32?)value;	}

}

Now,	in	Add	Movie	dialog,	Kind	field	will	come	prefilled	as	Film.

Adding	a	Movie	Kind	Field

93

Adding	Movie	Genres

Adding	Genre	Field

To	hold	Movie	genres	we	need	a	lookup	table.	For	Kind	field	we	used	an	enumeration	but
this	time	genres	might	not	be	that	static	to	declare	them	as	an	enumeration.

As	usual,	we	start	with	a	migration.

Modules/Common/Migrations/DefaultDB/	DefaultDB_20160519_154700_GenreTable.cs:

using	FluentMigrator;

using	System;

namespace	MovieTutorial.Migrations.DefaultDB

{

				[Migration(20160519154700)]

				public	class	DefaultDB_20160519_154700_GenreTable	:	Migration

				{

								public	override	void	Up()

								{

												Create.Table("Genre").InSchema("mov")

																.WithColumn("GenreId").AsInt32().NotNullable()

																				.PrimaryKey().Identity()

																.WithColumn("Name").AsString(100).NotNullable();

												Alter.Table("Movie").InSchema("mov")

																.AddColumn("GenreId").AsInt32().Nullable()

																				.ForeignKey("FK_Movie_GenreId",	"mov",	"Genre",	"GenreId");

								}

								public	override	void	Down()

								{

								}

				}

}

We	also	added	a	GenreId	field	to	Movie	table.

Actually	a	movie	can	have	multiple	genres	so	we	should	keep	it	in	a	separate
MovieGenres	table.	But	for	now,	we	think	it	as	single.	We'll	see	how	to	change	it	to
multiple	later.

Generating	Code	For	Genre	Table

Adding	Movie	Genres

94

Fire	sergen.exe	using	Package	Manager	Console	again	and	generate	code	for	Genre	table
with	the	parameters	shown	below:

Use	parameters	shown	with		dotnet	sergen	g		if	you	are	using	ASP.NET	Core	version.

This	screenshot	belongs	to	an	older	version	of	Sergen,	just	use	parameters	shown	in
new	version

Rebuild	solution	and	run	it.	We'll	get	a	new	page	like	this:

Adding	Movie	Genres

95

As	you	see	in	screenshot,	it	is	generated	under	a	new	section	MovieDB	instead	of	the	one
we	renamed	recently:	Movie	Database.

This	is	because	Sergen	has	no	idea	of	what	customizations	we	performed	on	our	Movie
page.	So	we	need	to	movie	it	under	Movie	Database	manually.

Open	Modules/Movie/GenrePage.cs,	cut	the	navigation	link	shown	below:

[assembly:Serenity.Navigation.NavigationLink(int.MaxValue,	"MovieDB/Genre",

				typeof(MovieTutorial.MovieDB.Pages.GenreController))]

`

And	move	it	to	Modules/Common/Navigation/NavigationItems.cs:

//...

[assembly:	NavigationMenu(2000,	"Movie	Database",	icon:	"icon-film")]

[assembly:	NavigationLink(2100,	"Movie	Database/Movies",	

				typeof(MovieDB.MovieController),	icon:	"icon-camcorder")]

[assembly:	NavigationLink(2200,	"Movie	Database/Genres",	

				typeof(MovieDB.GenreController),	icon:	"icon-pin")]

//...

Adding	Several	Genre	Definitions

Now	let's	add	some	sample	genres.	I'll	do	it	through	migration,	to	not	to	repeat	it	in	another
PC,	but	you	might	want	to	add	them	manually	through	Genre	page.

Adding	Movie	Genres

96

using	FluentMigrator;

using	System;

namespace	MovieTutorial.Migrations.DefaultDB

{

				[Migration(20160519181800)]

				public	class	DefaultDB_20160519_181800_SampleGenres	:	Migration

				{

								public	override	void	Up()

								{

												Insert.IntoTable("Genre").InSchema("mov")

																.Row(new

																{

																				Name	=	"Action"

																})

																.Row(new

																{

																				Name	=	"Drama"

																})

																.Row(new

																{

																				Name	=	"Comedy"

																})

																.Row(new

																{

																				Name	=	"Sci-fi"

																})

																.Row(new

																{

																				Name	=	"Fantasy"

																})

																.Row(new

																{

																				Name	=	"Documentary"

																});

								}

								public	override	void	Down()

								{

								}

				}

}

Mapping	GenreId	Field	in	MovieRow

As	we	did	with	Kind	field	before,	GenreId	field	needs	to	be	mapped	in	MovieRow.cs.

Adding	Movie	Genres

97

namespace	MovieTutorial.MovieDB.Entities

{

				//	...

				public	sealed	class	MovieRow	:	Row,	IIdRow,	INameRow

				{

								[DisplayName("Kind"),	NotNull,	DefaultValue(1)]

								public	MovieKind?	Kind

								{

												get	{	return	(MovieKind?)Fields.Kind[this];	}

												set	{	Fields.Kind[this]	=	(Int32?)value;	}

								}

								[DisplayName("Genre"),	ForeignKey("[mov].Genre",	"GenreId"),	LeftJoin("g")]

								public	Int32?	GenreId

								{

												get	{	return	Fields.GenreId[this];	}

												set	{	Fields.GenreId[this]	=	value;	}

								}

								[DisplayName("Genre"),	Expression("g.Name")]

								public	String	GenreName

								{

												get	{	return	Fields.GenreName[this];	}

												set	{	Fields.GenreName[this]	=	value;	}

								}

								//	...

								public	class	RowFields	:	RowFieldsBase

								{

												//	...

												public	readonly	Int32Field	Kind;

												public	readonly	Int32Field	GenreId;

												public	readonly	StringField	GenreName;

												public	RowFields()

																:	base("[mov].Movie")

												{

																LocalTextPrefix	=	"MovieDB.Movie";

												}

								}

				}

}

Here	we	mapped	GenreId	field	and	also	declared	that	it	has	a	foreign	key	relation	to	GenreId
field	in	[mov].Genre	table	using	ForeignKey	attribute.

If	we	did	generate	code	for	Movie	table	after	we	added	this	Genre	table,	Sergen	would
understand	this	relation	by	checking	foreign	key	definition	at	database	level,	and
generate	similar	code	for	us.

Adding	Movie	Genres

98

We	also	added	another	field,	GenreName	that	is	not	actually	a	field	in	Movie	table,	but	in
Genre	table.

Serenity	entities	are	more	like	SQL	views.	You	can	bring	in	fields	from	other	tables	with	joins.

By	adding	LeftJoin("g")	attribute	to	MovieId	property,	we	declared	that	whenever	Genre	table
needs	to	be	joined	to,	its	alias	will	be	g.

So	when	Serenity	needs	to	select	from	Movies	table,	it	will	produce	an	SQL	query	like	this:

SELECT	t0.MovieId,	t0.Kind,	t0.GenreId,	g.Name	as	GenreName	

FROM	Movies	t0

LEFT	JOIN	Genre	g	on	t0.GenreId	=	g.GenreId

This	join	will	only	be	performed	if	a	field	from	Genre	table	requested	to	be	selected,	e.g.
its	column	is	visible	in	a	data	grid.

By	adding	Expression("g.Name")	on	top	of	GenreName	property,	we	specified	that	this	field
has	an	SQL	expression	of	g.Name,	thus	it	is	a	view	field	originating	from	our	g	join.

Adding	Genre	Selection	To	Movie	Form

Let's	add	GenreId	field	to	our	form	in	MovieForm.cs:

namespace	MovieTutorial.MovieDB.Forms

{

				//...

				[FormScript("MovieDB.Movie")]

				[BasedOnRow(typeof(Entities.MovieRow))]

				public	class	MovieForm

				{

								//...

								public	Int32	GenreId	{	get;	set;	}

								public	MovieKind	Kind	{	get;	set;	}

				}

}

Now	if	we	build	and	run	application,	we'll	see	that	a	Genre	field	is	added	to	our	form.	The
problem	is,	it	accepts	data	entry	as	an	integer.	We	want	it	to	use	a	dropdown.

It's	clear	that	we	need	to	change	editor	type	for	GenreId	field.

Declaring	a	Lookup	Script	for	Genres

To	show	an	editor	for	Genre	field,	list	of	genres	in	our	database	should	be	available	at	client
side.

Adding	Movie	Genres

99

For	enumeration	values,	it	was	simple,	we	just	run	T4	templates,	and	they	copied	enum
declaration	to	script	side.

Here	we	can't	do	the	same.	Genre	list	is	a	database	based	dynamic	list.

Serenity	has	notion	of	dynamic	scripts	to	make	dynamic	data	available	to	script	side	in	the
form	of	runtime	generated	scripts.

Dynamic	scripts	are	similar	to	web	services,	but	their	outputs	are	dynamic	javascript
files	that	can	be	cached	on	client	side.

The	dynamic	here	corresponds	to	the	data	they	contain,	not	their	behavior.	Unlike	web
services,	dynamic	scripts	can't	accept	any	parameters.	And	their	data	is	shared	among
all	users	of	your	site.	They	are	like	singletons	or	static	variables.

You	shouldn't	try	to	write	a	dynamic	script	(e.g.	lookup)	that	acts	like	a	web	service.

To	declare	a	dynamic	lookup	script	for	Genre	table,	open	GenreRow.cs	and	modify	it	like
below:

namespace	MovieTutorial.MovieDB.Entities

{

				//	...

				[ConnectionKey("Default"),	DisplayName("Genre"),	InstanceName("Genre"),	

								TwoLevelCached]

				[ReadPermission("Administration")]

				[ModifyPermission("Administration")]

				[JsonConverter(typeof(JsonRowConverter))]

				[LookupScript("MovieDB.Genre")]

				public	sealed	class	GenreRow	:	Row,	IIdRow,	INameRow

				{

								//	...

				}

We	just	added	line	with	[LookupScript("MovieDB.Genre")].

Rebuild	your	project,	launch	it,	after	logging	in,	open	developer	console	by	F12.

Type	Q.getLookup('MovieDB.Genre')

and	you	will	get	something	like	this:

Adding	Movie	Genres

100

Here	MovieDB.Genre	is	the	lookup	key	we	assigned	to	this	lookup	script	when	declaring	it
with:

[LookupScript("MovieDB.Genre")]

This	step	was	just	to	show	how	to	check	if	a	lookup	script	is	available	client	side.

Lookup	key,	"MovieDB.Genre"	is	case	sensitive.	Make	sure	you	type	exact	same	case
everywhere.

Using	LookupEditor	for	Genre	Field

There	are	two	places	to	set	editor	type	for	GenreId	field.	One	is	MovieForm.cs,	other	is
MovieRow.cs.

I	usually	prefer	the	latter,	as	it	is	the	central	place,	but	you	may	choose	to	set	it	on	a	form,	if
that	editor	type	is	specific	to	that	form	only.

Information	defined	on	a	form	can't	be	reused.	For	example,	grids	use	information	in
XYZColumn.cs	/	XYZRow.cs	while	dialogs	use	information	in	XYZForm.cs	/
XYZRow.cs.	So	it's	usually	better	to	define	things	in	XYZRow.cs.

Open	MovieRow.cs	and	add	LookupEditor	attribute	to	GenreId	property	as	shown	below:

				[DisplayName("Genre"),	ForeignKey("[mov].Genre",	"GenreId"),	LeftJoin("g")]

				[LookupEditor("MovieDB.Genre")]

				public	Int32?	GenreId

				{

								get	{	return	Fields.GenreId[this];	}

								set	{	Fields.GenreId[this]	=	value;	}

				}

Adding	Movie	Genres

101

After	we	build	and	launch	our	project,	we'll	now	have	a	searchable	dropdown	(Select2.js)	on
our	Genre	field.

While	defining	[LookupEditor]	we	hardcoded	the	lookup	key.	It's	also	possible	to	reuse
information	on	GenreRow:

				[DisplayName("Genre"),	ForeignKey("[mov].Genre",	"GenreId"),	LeftJoin("g")]

				[LookupEditor(typeof(GenreRow))]

				public	Int32?	GenreId

				{

								get	{	return	Fields.GenreId[this];	}

								set	{	Fields.GenreId[this]	=	value;	}

				}

This	is	functionally	equivalent.	I'd	prefer	latter.	Here,	Serenity	will	locate	the	[LookupScript]
attribute	on	GenreRow,	and	get	lookup	key	information	from	there.	If	we	had	no
[LookupScript]	attribute	on	GenreRow,	you'd	get	an	error	on	application	startup:

Server	Error	in	'/'	Application.

'MovieTutorial.MovieDB.Entities.GenreRow'	type	doesn't	have	a	

[LookupScript]	attribute,	so	it	can't	be	used	with	a	LookupEditor!

Parameter	name:	lookupType

Adding	Movie	Genres

102

Forms	are	scanned	at	application	startup,	so	there	is	no	way	to	handle	this	error	without
fixing	the	issue.

Display	Genre	in	Movie	Grid

Currently,	movie	genre	can	be	edited	in	the	form	but	is	not	displayed	in	Movie	grid.	Edit
MovieColumns.cs	to	show	GenreName	(not	GenreId).

namespace	MovieTutorial.MovieDB.Columns

{

				//	...

				public	class	MovieColumns

				{

								//...

								[Width(100)]

								public	String	GenreName	{	get;	set;	}

								[DisplayName("Runtime	in	Minutes"),	Width(150),	AlignRight]

								public	Int32	Runtime	{	get;	set;	}

				}

}

Now	GenreName	is	shown	in	the	grid.

Making	It	Possible	To	Define	A	New	Genre	Inplace

While	setting	genre	for	our	sample	movies,	we	notice	that	The	Good,	the	Bad	and	the	Ugly
is	Western	but	there	is	no	such	genre	in	Genre	dropdown	yet	(so	I	had	to	choose	Drama).

One	option	is	to	open	Genres	page,	add	it,	and	come	back	to	movie	form	again.	Not	so
pretty...

Adding	Movie	Genres

103

Fortunately,	Serenity	has	integrated	inplace	item	definition	ability	for	lookup	editors.

Open	MovieRow.cs	and	modify	LookupEditor	attribute	like	this:

[DisplayName("Genre"),	ForeignKey("[mov].Genre",	"GenreId"),	LeftJoin("g")]

[LookupEditor(typeof(GenreRow),	InplaceAdd	=	true)]

public	Int32?	GenreId

{

				get	{	return	Fields.GenreId[this];	}

				set	{	Fields.GenreId[this]	=	value;	}

}

Now	we	can	define	a	new	Genre	by	clicking	star/pen	icon	next	to	genre	field.

Here	we	also	see	that	we	can	use	a	dialog	from	another	page	(GenreDialog)	in	the
movies	page.	In	Serenity	applications,	all	client	side	objects	(dialogs,	grids,	editors,
formatters	etc.)	are	self-contained	reusable	components	(widgets)	that	are	not	bound	to
any	page.

It	is	also	possible	to	start	typing	in	genre	editor,	and	it	will	provide	you	with	an	option	to	add	a
new	genre.

Adding	Movie	Genres

104

How	Did	It	Determine	Which	Dialog	Type	To	Use

You	probably	didn't	notice	this	detail.	Our	lookup	editor	for	genre	selection,	automatically
opened	a	new	GenreDialog	when	you	wanted	to	add	a	new	genre	inplace.

Here,	our	lookup	editor	made	use	of	a	convention.	Because	its	lookup	key	is
MovieDB.Genre,	it	searched	for	a	dialog	class	with	full	names	below:

MovieDB.GenreDialog

MovieTutorial.MovieDB.GenreDialog

...

...

Luckily,	we	have	a	GenreDialog,	which	is	defined	in	Modules/Genre/GenreDialog.ts	and	its
full	name	is	MovieTutorial.MovieDB.GenreDialog.

namespace	MovieTutorial.MovieDB	{

				@Serenity.Decorators.registerClass()

				@Serenity.Decorators.responsive()

				export	class	GenreDialog	extends	Serenity.EntityDialog<GenreRow,	any>	{

								protected	getFormKey()	{	return	GenreForm.formKey;	}

								protected	getIdProperty()	{	return	GenreRow.idProperty;	}

								protected	getLocalTextPrefix()	{	return	GenreRow.localTextPrefix;	}

								protected	getNameProperty()	{	return	GenreRow.nameProperty;	}

								protected	getService()	{	return	GenreService.baseUrl;	}

								protected	form	=	new	GenreForm(this.idPrefix);

				}

}

If,	lookup	key	for	GenreRow	and	its	dialog	class	didn't	match,	we	would	get	an	error	in
browser	console,	as	soon	as	we	click	the	inplace	add	button:

Uncaught	MovieDB.GenreDialog	dialog	class	is	not	found!

But	this	is	not	the	case	as	they	match.	In	such	a	case,	either	you'd	have	to	use	a	compatible
lookup	key	like	"ModuleName.RowType",	or	you'd	need	to	specify	dialog	type	explicitly:

Adding	Movie	Genres

105

[DisplayName("Genre"),	ForeignKey("[mov].Genre",	"GenreId"),	LeftJoin("g")]

[LookupEditor(typeof(GenreRow),	InplaceAdd	=	true,	DialogType	=	"MovieDB.Genre")]

public	Int32?	GenreId

{

				get	{	return	Fields.GenreId[this];	}

				set	{	Fields.GenreId[this]	=	value;	}

}

You	shouldn't	specify	Dialog	suffix,	nor	the	full	namespace,	e.g.
MovieTutorial.MovieDB.Genre,	as	Serenity	automatically	searches	for	them.

Adding	Quick	Filter	for	Genre	To	Grid

As	our	list	of	movies	becomes	larger,	we	might	need	to	filter	movies	based	on	values	of
some	fields,	besides	the	quick	search	functionality.

Serenity	has	several	filtering	methods.	One	of	them	is	Quick	Filter,	which	we'll	use	on	Genre
field.

Edit	Modules/MovieDB/Movie/MovieColumns.cs	to	add	a	[QuickFilter]	attribute	on	top	of
GenreName	field:

public	class	MovieColumns

{

				//...

				public	DateTime	ReleaseDate	{	get;	set;	}

				[Width(100),	QuickFilter]

				public	String	GenreName	{	get;	set;	}

				[DisplayName("Runtime	in	Minutes"),	Width(150),	AlignRight]

				public	Int32	Runtime	{	get;	set;	}

}

Build	and	navigate	to	Movies	page.	You'll	a	quick	filtering	dropdown	for	genre	field	is
available:

Adding	Movie	Genres

106

The	field	that	is	filtered	is	actually	GenreId	not	GenreName	that	we	attached	this	attribute	to.
Serenity	is	clever	enough	to	understand	this	relation,	and	determined	editor	type	to	use	by
looking	at	attributes	of	GenreId	property	in	GenreRow.cs.

Re-runing	T4	Templates

As	we	added	a	new	entity	to	our	application,	we	should	run	T4	templates	after	building
solution.

Adding	Movie	Genres

107

Updating	Serenity	Packages	(ASP.NET
MVC	Version)
When	i	started	writing	this	tutorial,	Serenity	(NuGet	packages	containing	Serenity
assemblies	and	standard	scripts	libraries)	and	Serene	(the	application	template)	was	at
version	2.1.8.

When	you	read	this	you	are	probably	using	a	later	version,	so	you	might	not	have	to	update
serenity	yet.

But,	i	want	to	show	how	you	can	update	Serenity	NuGet	packages,	in	case	another	version
comes	out	in	the	future.

I	prefer	to	work	with	NuGet	from	Package	Manager	Console	instead	of	using	NuGet	GUI
interface	as	it	performs	much	faster.

So,	click	View	->	Other	Windows	->	Package	Manager	Console.

Type:

Update-Package	Serenity.Web

This	will	also	update	following	NuGet	packages	in	MovieTutorial.Web	because	of
dependencies:

Serenity.Core

Serenity.Data

Serenity.Data.Entity

Serenity.Services

To	update	Serenity.CodeGenerator	(containg	sergen.exe),	type:

Update-Package	Serenity.CodeGenerator

Serenity.CodeGenerator	is	also	installed	in	MovieTutorial.Web	project.

During	updates,	if	NuGet	asks	to	override	changes	in	some	script	files,	you	can	safely
say	yes	unless	you	did	manual	modifications	to	Serenity	script	files	(which	i	suggest
you	avoid).

Updating	Serenity	Packages	(ASP.NET

Updating	Serenity	Packages

108

Core	Version)
Theorically,	you	should	be	able	to	update	Serenity	just	like	ASP.NET	MVC	version	using
NuGet	package	manager	console,	but	it	might	not	work,	probably	due	to	some	conditionals
in	CSPROJ	file	confusing	NuGet.

These	conditionals	are	there	to	support	switching	easily	to	full	.NET	Framework	if	you	have
to.

Right	click	your	project	file,	click	Edit	MySerene.csproj:

<PackageReference	Include="Serenity.Web"	Version="3.0.5"	/>

<PackageReference	Include="Serenity.Web.AspNetCore"	Version="3.0.5"	/>

<DotNetCliToolReference	Include="Serenity.CodeGenerator"	Version="3.0.5"	>

Find	three	lines	that	include	Serenity.Web,	Serenity.Web.AspNetCore	and
Serenity.CodeGenerator	like	shown	above	and	change	their	versions	to	latest	Serenity
version.

Open	a	command	prompt	in	your	project	directory	and	type	these	two	lines:

dotnet	restore

dotnet	sergen	restore

Building	Project

Now	rebuild	your	solution	and	it	should	build	successfully.

From	time	to	time,	breaking	changes	might	happen	in	Serenity,	but	they	are	kept	to
minimum,	and	you	might	have	to	do	a	few	manual	changes	in	your	application	code.

Such	changes	are	documented	with	a	[BREAKING	CHANGE]	tag	in	change	log	at:
https://github.com/volkanceylan/Serenity/blob/master/CHANGELOG.md

If	you	still	have	a	problem	after	upgrade,	feel	free	to	open	an	issue	at:
https://github.com/volkanceylan/Serenity/issues

What	Is	Updated

Updating	Serenity	NuGet	packages,	takes	Serenity	assemblies	up	to	the	latest	version.

It	might	also	update	some	other	third-party	packages	like	ASP.NET	MVC,	FluentMigrator,
Select2.js,	SlickGrid	etc.

Updating	Serenity	Packages

109

https://github.com/volkanceylan/Serenity/blob/master/CHANGELOG.md
https://github.com/volkanceylan/Serenity/issues

Please	don't	update	Select2.js	to	a	version	after	3.5.1	yet	as	it	has	some	compability
problems	with	jQuery	validation.

Serenity.Web	package	also	comes	with	some	static	script	and	css	resources	like	the
following:

Content/serenity/serenity.css

Scripts/saltarelle/mscorlib.js

Scripts/saltarelle/linq.js

Scripts/serenity/Serenity.CoreLib.js

Scripts/serenity/Serenity.Script.UI.js

So,	these	and	a	few	more	are	also	updated	in	MovieApplication.Web.

What	Is	Not	Updated	(OR	Can't	Be	Updated	Automatically)

Updating	Serenity	packages,	updates	Serenity	assemblies	and	most	static	scripts,	but	not	all
Serene	template	content	is	updated.

We	are	trying	to	keep	updating	your	application	as	simple	as	possible,	but	Serene	is	just	a
project	template,	not	a	static	package.	Your	application	is	a	customizable	copy	of	Serene.

You	might	have	done	modifications	to	application	source,	so	updating	a	Serene	application
created	with	an	older	version	of	Serene	template,	might	not	be	as	easy	as	it	sounds.

So	sometimes	you	might	have	to	create	a	new	Serene	application	with	up-to-date	Serene
template	version,	and	compare	it	to	your	application,	and	merge	features	you	need.	This	is	a
manual	process.

Usually,	updating	Serenity	packages	is	enough.	Updating	Serene	itself	is	not	required	unless
you	need	some	recent	features	from	latest	Serene	version.

We	have	some	plans	to	make	parts	of	Serene	template	also	a	NuGet	package,	but	it	is
still	not	trivial	how	to	update	your	application	without	overriding	your	changes,	e.g.	to
shared	code	like	Navigation	items.	And	what	if	you	removed	Northwind	code,	but	our
update	reinstalls	it?	I'm	open	to	suggestions...

Updating	Serenity	Packages

110

Allowing	Multiple	Genre	Selection
It	happens.	Requirements	change.	Now	we	want	to	allow	selecting	multiple	genres	for	a
movie.

For	this,	we	need	a	M-N	mapping	table	that	will	let	us	link	any	movie	to	multiple	genres.

Creating	MovieGenres	Table

As	usual,	we	start	with	a	migration:

Modules/Common/Migrations/DefaultDB/
DefaultDB_20160528_115400_MovieGenres.cs:

Allowing	Multiple	Genre	Selection

111

using	FluentMigrator;

namespace	MovieTutorial.Migrations.DefaultDB

{

				[Migration(20160528115400)]

				public	class	DefaultDB_20160528_115400_MovieGenres	:	Migration

				{

								public	override	void	Up()

								{

												Create.Table("MovieGenres").InSchema("mov")

																.WithColumn("MovieGenreId").AsInt32()

																				.Identity().PrimaryKey().NotNullable()

																.WithColumn("MovieId").AsInt32().NotNullable()

																				.ForeignKey("FK_MovieGenres_MovieId",	

																								"mov",	"Movie",	"MovieId")

																.WithColumn("GenreId").AsInt32().NotNullable()

																				.ForeignKey("FK_MovieGenres_GenreId",	

																								"mov",	"Genre",	"GenreId");

												Execute.Sql(

														@"INSERT	INTO	mov.MovieGenres	(MovieId,	GenreId)	

																				SELECT	m.MovieId,	m.GenreId	

																				FROM	mov.Movie	m	

																				WHERE	m.GenreId	IS	NOT	NULL");

												Delete.ForeignKey("FK_Movie_GenreId")

																.OnTable("Movie").InSchema("mov");

												Delete.Column("GenreId")

																.FromTable("Movie").InSchema("mov");

								}

								public	override	void	Down()

								{

								}

				}

}

I	tried	to	save	existing	Genre	declarations	on	Movie	table,	by	copying	them	to	our	new
MovieGenres	table.	The	line	above	with	Execute.Sql	does	this.

Then	we	should	remove	GenreId	column,	by	first	deleting	the	foreign	key	declaration
FK_Movie_GenreId	that	we	defined	on	it	previously.

Deleting	Mapping	for	GenreId	Column

As	soon	as	you	build	and	open	the	Movies	page,	you'll	get	this	error:

Allowing	Multiple	Genre	Selection

112

This	is	because	we	still	have	mapping	for	GenreId	column	in	our	row.	Error	above	is
received	from	AJAX	call	to	List	service	handler	for	Movie	table.

Repeating	of	error	message	originates	from	SQL	server.	MovieId	column	name	passes
several	times	within	the	generated	dynamic	SQL.

Remove	GenreId	and	GenreName	properties	and	their	related	field	objects	from
MovieRow.cs:

//	remove	this

public	Int32?	GenreId

{

				get	{	return	Fields.GenreId[this];	}

				set	{	Fields.GenreId[this]	=	value;	}

}

//	remove	this

public	String	GenreName

{

				get	{	return	Fields.GenreName[this];	}

				set	{	Fields.GenreName[this]	=	value;	}

}

public	class	RowFields	:	RowFieldsBase

{

				//	and	remove	these

				public	Int32Field	GenreId;

				public	StringField	GenreName;

}

Remove	GenreName	property	from	MovieColumns.cs:

//	remove	this

[Width(100),	QuickFilter]

public	String	GenreName	{	get;	set;	}

Remove	GenreId	property	from	MovieForm.cs:

Allowing	Multiple	Genre	Selection

113

//	remove	this

public	Int32	GenreId	{	get;	set;	}

After	building,	we	at	least	have	a	working	Movies	page	again.

Generating	Code	For	MovieGenres	Table

Fire	up	sergen	and	generate	code	for	MovieGenres	table	as	usual:

As	we're	not	going	to	edit	movie	genres	from	a	separate	page,	you	can	safely	delete	the
generated	files	below:

MovieGenresColumns.cs

MovieGenresDialog.ts

MovieGenresEndpoint.cs

MovieGenresForm.cs

MovieGenresGrid.cs

MovieGenresIndex.cshtml

MovieGenresPage.cs

You	can	also	remove	CSS	entries	for	s-MovieDB-MovieGenresDialog	from	site.less.

Only	leave	last	two	files,	MovieGenresRow.cs	and	MovieGenresRepository.cs.

After	building,	run	T4	templates	to	be	sure,	no	T4	generated	files	related	to
MovieGenresForm	etc.	is	left	behind.

Allowing	Multiple	Genre	Selection

114

Adding	GenreList	Field

As	one	movie	might	have	multiple	genres	now,	instead	of	a	Int32	property,	we	need	a	list	of
Int32	values,	e.g.		List<Int32>	.	Add	the	GenreList	property	to	MovieRow.cs:

You	might	have	to	add	System.Collections.Generic	to	usings.

//...

[DisplayName("Kind"),	NotNull,	DefaultValue(MovieKind.Film)]

public	MovieKind?	Kind

{

				get	{	return	(MovieKind?)Fields.Kind[this];	}

				set	{	Fields.Kind[this]	=	(Int32?)value;	}

}

[DisplayName("Genres")]

[LookupEditor(typeof(GenreRow),	Multiple	=	true),	NotMapped]

[LinkingSetRelation(typeof(MovieGenresRow),	"MovieId",	"GenreId")]

public	List<Int32>	GenreList

{

				get	{	return	Fields.GenreList[this];	}

				set	{	Fields.GenreList[this]	=	value;	}

}

public	class	RowFields	:	RowFieldsBase

{

				//...

				public	Int32Field	Kind;

				public	ListField<Int32>	GenreList;

Our	property	has	[LookupEditor]	attribute	just	like	GenreId	property	had,	but	with	one
difference.	This	one	accepts	multiple	genre	selection.	We	set	it	with	Multiple	=	true
argument.

This	property	also	has	NotMapped	flag,	which	is	something	similar	to	Unmapped	fields	in
Serenity.	It	specifies	that	this	property	has	no	matching	database	column	in	database.

We	don't	have	a	GenreList	column	in	Movie	table,	so	we	should	set	it	as	an	unmapped	field.
Otherwise,	Serenity	will	try	to	SELECT	it,	and	we'll	get	SQL	errors.

In	the	next	line,	we	use	another	new	attribute,	LinkingSetRelation:

[LinkingSetRelation(typeof(MovieGenresRow),	"MovieId",	"GenreId")]

This	is	an	attribute	which	is	specific	to	M-N	releations	that	links	a	row	in	this	table	to	multiple
rows	from	another	table.

Allowing	Multiple	Genre	Selection

115

First	argument	of	it	is	the	type	of	M-N	mapping	row,	which	is	MovieGenresRow	here.

Second	argument	is	the	property	name	of	field	in	that	row	(MovieGenresRow)	that	matches
this	row's	ID	property,	e.g.	MovieId.

Third	argument	is	the	property	name	of	field	in	that	row	(MovieGenresRow)	that	links
multiple	Genres	by	their	IDs,	e.g.	GenreId.

LinkingSetRelation	has	a	related	Serenity	service	behavior,	named
LinkingSetRelationBehavior	that	is	automatically	activated	for	all	fields	with	a
LinkingSetRelation	attribute.

This	behavior,	will	intercept	service	handlers	for	Create,	Update,	Delete,	Retrieve	and
List	and	inject	code	to	populate	or	update	our	GenreList	column	and	its	related
MovieGenres	table.

We'll	talk	about	Serenity	service	behaviors	in	following	chapters.

Adding	Genre	List	To	Form

Edit	MovieForm.cs	and	add	GenreList	property:

		public	class	MovieForm

		{

						//...

						public	List<Int32>	GenreList	{	get;	set;	}

						public	MovieKind	Kind	{	get;	set;	}

						public	Int32	Runtime	{	get;	set;	}

		}

Now	we	can	add	multiple	genres	to	a	Movie:

Allowing	Multiple	Genre	Selection

116

Showing	Selected	Genres	in	a	Column

Previously,	when	we	had	only	one	Genre	per	Movie.	We	could	show	the	selected	genre	in	a
column,	by	adding	a	view	field	to	MovieRow.cs.	It	is	not	going	to	be	so	simple	this	time.

Let's	start	by	adding	GenreList	property	to	MovieColumns.cs:

public	class	MovieColumns

{

				//...

				[Width(200)]

				public	List<Int32>	GenreList	{	get;	set;	}

				[DisplayName("Runtime	in	Minutes"),	Width(150),	AlignRight]

				public	Int32	Runtime	{	get;	set;	}

}

This	is	what	we	got:

Allowing	Multiple	Genre	Selection

117

GenreList	column	contains	a	list	of	Int32	values,	which	corresponds	to	an	array	in
Javascript.	Luckily,	Javascript	.toString()	method	for	an	array	returns	items	separated	by
comma,	so	we	got	"1,2"	for	Fight	Club	movie.

We	would	prefer	genre	names	instead	of	Genre	IDs,	so	it's	clear	that	we	need	to	format
these	values,	by	converting	GenreId	to	their	Genre	name	equivalents.

Creating	GenreListFormatter	Class

It's	time	to	write	a	SlickGrid	column	formatter.	Create	file	GenreListFormatter.ts	next	to
MovieGrid.ts:

Allowing	Multiple	Genre	Selection

118

namespace	MovieTutorial.MovieDB	{

				@Serenity.Decorators.registerFormatter()

				export	class	GenreListFormatter	implements	Slick.Formatter	{

								format(ctx:	Slick.FormatterContext)	{

												let	idList	=	ctx.value	as	number[];

												if	(!idList	||	!idList.length)

																return	"";

												let	byId	=	GenreRow.getLookup().itemById;

												return	idList.map(x	=>	{

																let	g	=	byId[x];

																if	(!g)

																				return	x.toString();

																return	Q.htmlEncode(g.Name);

												}).join(",	");

								}

				}

}

Here	we	define	a	new	formatter,	GenreListFormatter	and	register	it	with	Serenity	type
system,	using	@Serenity.Decorators.registerFormatter	decorator.	Decorators	are	similar	to
.NET	attributes.

All	formatters	should	implement	Slick.Formatter	interface,	which	has	a	format	method	that
takes	a	ctx	parameter	of	type	Slick.FormatterContext.

ctx,	which	is	the	formatting	context,	is	an	object	with	several	members.	One	of	them	is	value
that	contains	the	column	value	for	current	grid	row/column	being	formatted.

As	we	know	that	we'll	use	this	formatter	on	column	with	a		List<Int32>		value,	we	start	by
casting	value	to	number[].

There	is	no	Int32	type	in	Javascript.	Int32,	Double,	Single	etc.	corresponds	to	number
type.	Also,	generic		List<>		type	in	C#	corresponds	to	an	Array	in	Javascript.

If	the	array	is	empty	or	null,	we	can	safely	return	an	empty	string:

let	idList	=	ctx.value	as	number[];

if	(!idList	||	!idList.length)

				return	"";

Then	we	get	a	reference	to	Genre	lookup,	which	has	a	dictionary	of	Genre	rows	in	its
itemById	property:

Allowing	Multiple	Genre	Selection

119

let	byId	=	GenreRow.getLookup().itemById;

Next,	we	start	mapping	these	ID	values	in	our	idList	to	their	Genre	name	equivalents,	using
Array.map	function	in	Javascript,	which	is	pretty	similar	to	LINQ	Select	statement:

return	idList.map(x	=>	{

We	lookup	an	ID	in	our	Genre	dictionary.	It	should	be	in	dictionary,	but	we	play	safe	here,
and	return	its	numeric	value,	if	the	genre	is	not	found	in	dictionary.

let	g	=	byId[x];

if	(!g)

				return	x.toString();

If	we	could	find	the	genre	row,	corresponding	to	this	ID,	we	return	its	Name	value.	We
should	HTML	encode	the	genre	name,	just	in	case	it	contains	invalid	HTML	characters,	like
	<	,		>		or		&	.

return	Q.htmlEncode(g.Name);

We	could	also	write	a	generic	formatter	that	works	with	any	type	of	lookup	list,	but	it's
beyond	scope	of	this	tutorial.

Assigning	GenreListFormatter	to	GenreList	Column

As	we	defined	a	new	formatter	class,	we	should	build	and	transform	T4	files,	so	that	we	can
reference	GenreListFormatter	in	server	side	code.

After	building	and	transforming,	open	MovieColumns.cs	and	attach	this	formatter	to
MovieList	property:

public	class	MovieColumns

{

				//...

				[Width(200),	GenreListFormatter]

				public	List<Int32>	GenreList	{	get;	set;	}

				[DisplayName("Runtime	in	Minutes"),	Width(150),	AlignRight]

				public	Int32	Runtime	{	get;	set;	}

}

Now	we	can	see	Genre	names	in	Genres	column:

Allowing	Multiple	Genre	Selection

120

Allowing	Multiple	Genre	Selection

121

Filtering	with	Multiple	Genre	List
Remember	that	when	we	had	only	one	Genre	per	Movie,	it	was	easy	to	quick	filter,	by
adding	a	[QuickFilter]	attribute	to	GenreId	field.

Let's	try	to	do	similar	in	MovieColumns.cs:

[ColumnsScript("MovieDB.Movie")]

[BasedOnRow(typeof(Entities.MovieRow))]

public	class	MovieColumns

{

				//...

				[Width(200),	GenreListFormatter,	QuickFilter]

				public	List<Int32>	GenreList	{	get;	set;	}

}

As	soon	as	you	type	a	Genre	into	Genres	you'll	have	this	error:

As	of	Serenity	2.6.3,	LinkingSetRelation	will	automatically	handle	equality	filter	for	its
field,	so	you	won't	get	this	error	and	it	will	just	work.	Anyway,	it's	still	recommended	to
follow	steps	below	as	it	is	a	good	sample	for	defining	custom	list	requests	and	handling
them	when	required.

ListHandler	tried	to	filter	by	GenreList	field,	but	as	there	is	no	such	column	in	database,	we
got	this	error.

So,	now	we	have	to	handle	it	somehow.

Declaring	MovieListRequest	Type

Filtering	with	Multiple	Genre	List

122

As	we	are	going	to	do	something	non-standard,	e.g.	filtering	by	values	in	a	linking	set	table,
we	need	to	prevent	ListHandler	from	filtering	itself	on	GenreList	property.

We	could	process	the	request	Criteria	object	(which	is	similar	to	an	expression	tree)	using	a
visitor	and	handle	GenreList	ourself,	but	it	would	be	a	bit	complex.	So	i'll	take	a	simpler	road
for	now.

Let's	take	a	subclass	of	standard	ListRequest	object	and	add	our	Genres	filter	parameter
there.	Add	a	MovieListRequest.cs	file	next	to	MovieRepository.cs:

namespace	MovieTutorial.MovieDB

{

				using	Serenity.Services;

				using	System.Collections.Generic;

				public	class	MovieListRequest	:	ListRequest

				{

								public	List<int>	Genres	{	get;	set;	}

				}

}

We	added	a	Genres	property	to	our	list	request	object,	which	will	hold	the	optional	Genres
we	want	movies	to	be	filtered	on.

Modifying	Repository/Endpoint	for	New	Request	Type

For	our	list	handler	and	service	to	use	our	new	list	request	type,	need	to	do	changes	in	a	few
places.

Start	with	MovieRepository.cs:

public	class	MovieRepository

{

				//...

				public	ListResponse<MyRow>	List(IDbConnection	connection,	MovieListRequest	request

)

				{

								return	new	MyListHandler().Process(connection,	request);

				}

				//...

				private	class	MyListHandler	:	ListRequestHandler<MyRow,	MovieListRequest>	{	}

}

We	changed	ListRequest	to	MovieListRequest	in	List	method	and	added	a	generic
parameter	to	MyListHandler,	to	use	our	new	type	instead	of	ListRequest.

Filtering	with	Multiple	Genre	List

123

And	another	little	change	in	MovieEndpoint.cs,	which	is	the	actual	web	service:

public	class	MovieController	:	ServiceEndpoint

{

				//...

				public	ListResponse<MyRow>	List(IDbConnection	connection,	MovieListRequest	request

)

				{

								return	new	MyRepository().List(connection,	request);

				}

}

Now	its	time	to	build	and	transform	templates,	so	our	MovieListRequest	object	and	related
service	methods	will	be	available	at	client	side.

Moving	Quick	Filter	to	Genres	Parameter

We	still	have	the	same	error	as	quick	filter	is	not	aware	of	the	parameter	we	just	added	to	list
request	type	and	still	uses	the	Criteria	parameter.

Need	to	intercept	quick	filter	item	and	move	the	genre	list	to	Genres	property	of	our
MovieListRequest.

Edit	MovieGrid.ts:

export	class	MovieGrid	extends	Serenity.EntityGrid<MovieRow,	any>	{

				//...

				protected	getQuickFilters()	{

								let	items	=	super.getQuickFilters();

								var	genreListFilter	=	Q.first(items,	x	=>

												x.field	==	MovieRow.Fields.GenreList);

								genreListFilter.handler	=	h	=>	{

												var	request	=	(h.request	as	MovieListRequest);

												var	values	=	(h.widget	as	Serenity.LookupEditor).values;

												request.Genres	=	values.map(x	=>	parseInt(x,	10));

												h.handled	=	true;

								};

								return	items;

				}

}

getQuickFilters	is	a	method	that	is	called	to	get	a	list	of	quick	filter	objects	for	this	grid	type.

Filtering	with	Multiple	Genre	List

124

By	default	grid	enumerates	properties	with	[QuickFilter]	attributes	in	MovieColumns.cs	and
creates	suitable	quick	filter	objects	for	them.

We	start	by	getting	list	of	QuickFilter	objects	from	super	class.

let	items	=	super.getQuickFilters();

Then	locate	the	quick	filter	object	for	GenreList	property:

var	genreListFilter	=	Q.first(items,	x	=>

				x.field	==	MovieRow.Fields.GenreList);

Actually	there	is	only	one	quick	filter	now,	but	we	want	to	play	safe.

Next	step	is	to	set	the	handler	method.	This	is	where	a	quick	filter	object	reads	the	editor
value	and	applies	it	to	request's	Criteria	(if	multiple)	or	EqualityFilter	(if	single	value)
parameters,	just	before	its	submitted	to	list	service.

genreListFilter.handler	=	h	=>	{

Then	we	get	a	reference	to	current	ListRequest	being	prepared:

var	request	=	(h.request	as	MovieListRequest);

And	read	the	current	value	in	lookup	editor:

var	values	=	(h.widget	as	Serenity.LookupEditor).values;

Set	it	in	request.Genres	property:

request.Genres	=	values.map(x	=>	parseInt(x,	10));

As	values	is	a	list	of	string,	we	needed	to	convert	them	to	integer.

Last	step	is	to	set	handled	to	true,	to	disable	default	behavior	of	quick	filter	object,	so	it	won't
set	Criteria	or	EqualityFilter	itself:

h.handled	=	true;

Now	we'll	no	longer	have	Invalid	Column	Name	GenreList	error	but	Genres	filter	is	not
applied	server	side	yet.

Filtering	with	Multiple	Genre	List

125

Handling	Genre	Filtering	In	Repository

Modify	MyListHandler	in	MovieRepository.cs	like	below:

private	class	MyListHandler	:	ListRequestHandler<MyRow,	MovieListRequest>

{

				protected	override	void	ApplyFilters(SqlQuery	query)

				{

								base.ApplyFilters(query);

								if	(!Request.Genres.IsEmptyOrNull())

								{

												var	mg	=	Entities.MovieGenresRow.Fields.As("mg");

												query.Where(Criteria.Exists(

																query.SubQuery()

																				.From(mg)

																				.Select("1")

																				.Where(

																								mg.MovieId	==	fld.MovieId	&&

																								mg.GenreId.In(Request.Genres))

																				.ToString()));

								}

				}

}

ApplyFilters	is	a	method	that	is	called	to	apply	filters	specified	in	list	request's	Criteria	and
EqualityFilter	parameters.	This	is	a	good	place	to	apply	our	custom	filter.

We	first	check	if	Request.Genres	is	null	or	an	empty	list.	If	so	no	filtering	needs	to	be	done.

Next,	we	get	a	reference	to	MovieGenresRow's	fields	with	alias	mg.

var	mg	=	Entities.MovieGenresRow.Fields.As("mg");

Here	it	needs	some	explanation,	as	we	didn't	cover	Serenity	entity	system	yet.

Let's	start	by	not	aliasing	MovieGenresRow.Fields:

var	x	=	MovieGenresRow.Fields;

new	SqlQuery()

		.From(x)

		.Select(x.MovieId)

		.Select(x.GenreId);

If	we	wrote	a	query	like	above,	its	SQL	output	would	be	something	like	this:

Filtering	with	Multiple	Genre	List

126

SELECT	t0.MovieId,	t0.GenreId	FROM	MovieGenres	t0

Unless	told	otherwise,	Serenity	always	assigns	t0	to	a	row's	primary	table.	Even	if	we	named
MovieGenresRow.Fields	as	variable	x,	it's	alias	will	still	be	t0.

Because	when	compiled,	x	won't	be	there	and	Serenity	has	no	way	to	know	its	variable
name.	Serenity	entity	system	doesn't	use	an	expression	tree	like	in	LINQ	to	SQL	or
Entity	Framework.	It	makes	use	of	very	simple	string	/	query	builders.

So,	if	wanted	it	to	use	x	as	an	alias,	we'd	have	to	write	it	explicitly:

var	x	=	MovieGenresRow.Fields.As("x");

new	SqlQuery()

		.From(x)

		.Select(x.MovieId)

		.Select(x.GenreId);

...results	at:

SELECT	x.MovieId,	x.GenreId	FROM	MovieGenres	x

In	MyListHandler,	which	is	for	MovieRow	entities,	t0	is	already	used	for	MovieRow	fields.	So,
to	prevent	clashes	with	MovieGenresRow	fields	(which	is	named	fld),	i	had	to	assign
MovieGenresRow	an	alias,	mg.

var	mg	=	Entities.MovieGenresRow.Fields.As("mg");

What	i'm	trying	to	achieve,	is	a	query	like	this	(just	the	way	we'd	do	this	in	bare	SQL):

SELECT	t0.MovieId,	t0.Title,	...	FROM	Movies	t0

WHERE	EXISTS	(

			SELECT	1	

			FROM	MovieGenres	mg	

			WHERE	

					mg.MovieId	=	t0.MovieId	AND

					mg.GenreId	IN	(1,	3,	5,	7)

)

So	i'm	adding	a	WHERE	filter	to	main	query	with	Where	method,	using	an	EXISTS	criteria:

query.Where(Criteria.Exists(

Filtering	with	Multiple	Genre	List

127

Then	starting	to	write	the	subquery:

query.SubQuery()

				.From(mg)

				.Select("1")

And	adding	the	where	statement	for	subquery:

.Where(

				mg.MovieId	==	fld.MovieId	&&

				mg.GenreId.In(Request.Genres))

Here	fld	actually	contains	the	alias	t0	for	MovieRow	fields.

As	Criteria.Exists	method	expects	a	simple	string,	i	had	to	use	.ToString()	at	the	end,	to
convert	subquery	to	a	string:

Yes,	i	should	add	one	overload	that	accepts	a	subquery...	noted.

.ToString()));

It	might	look	a	bit	alien	at	start,	but	by	time	you'll	understand	that	Serenity	query	system
matches	SQL	almost	99%.	It	can't	be	the	exact	SQL	as	we	have	to	work	in	a	different
language,	C#.

Now	our	filtering	for	GenreList	property	works	perfectly...

Filtering	with	Multiple	Genre	List

128

The	Cast	and	Characters	They	Played
If	we	wanted	to	keep	a	record	of	actors	and	the	roles	they	played	like	this:

Actor/Actress Character

Keanu	Reeves Neo

Laurence	Fishburne Morpheus

Carrie-Anne	Moss Trinity

We	need	a	table	MovieCast	with	columns	like:

MovieCastId MovieId PersonId Character

...

11 2	(Matrix) 77	(Keanu	Reeves) Neo

12 2	(Matrix) 99	(Laurence	Fisburne) Morpheus

13 2	(Matrix) 30	(Carrie-Anne	Moss) Trinitity

...

It's	clear	that	we	also	need	a	Person	table	as	we'll	keep	actors/actresses	by	their	ID.

It's	better	to	call	it	Person	as	actors/actresses	might	become	directors,	scenario	writers
and	such	later.

Creating	Person	and	MovieCast	Tables

Now	its	time	to	create	a	migration	with	two	tables:

MovieTutorial.Web/Modules/Common/Migrations/DefaultDB/
DefaultDB_20160528_141600_PersonAndMovieCast.cs:

The	Cast	and	Characters	They	Played

129

using	FluentMigrator;

using	System;

namespace	MovieTutorial.Migrations.DefaultDB

{

				[Migration(20160528141600)]

				public	class	DefaultDB_20160528_141600_PersonAndMovieCast	:	Migration

				{

								public	override	void	Up()

								{

												Create.Table("Person").InSchema("mov")

																.WithColumn("PersonId").AsInt32().Identity()

																				.PrimaryKey().NotNullable()

																.WithColumn("Firstname").AsString(50).NotNullable()

																.WithColumn("Lastname").AsString(50).NotNullable()

																.WithColumn("BirthDate").AsDateTime().Nullable()

																.WithColumn("BirthPlace").AsString(100).Nullable()

																.WithColumn("Gender").AsInt32().Nullable()

																.WithColumn("Height").AsInt32().Nullable();

												Create.Table("MovieCast").InSchema("mov")

																.WithColumn("MovieCastId").AsInt32().Identity()

																				.PrimaryKey().NotNullable()

																.WithColumn("MovieId").AsInt32().NotNullable()

																				.ForeignKey("FK_MovieCast_MovieId",	"mov",	"Movie",	"MovieId")

																.WithColumn("PersonId").AsInt32().NotNullable()

																				.ForeignKey("FK_MovieCast_PersonId",	"mov",	"Person",	"PersonId")

																.WithColumn("Character").AsString(50).Nullable();

								}

								public	override	void	Down()

								{

								}

				}

}

Generating	Code	For	Person	Table

First	generate	code	for	Person	table:

The	Cast	and	Characters	They	Played

130

Changing	Gender	To	Enumeration

Gender	column	in	Person	table	should	be	an	enumeration.	Declare	a	Gender	enumeration	in
Gender.cs	next	to	PersonRow.cs:

using	Serenity.ComponentModel;

using	System.ComponentModel;

namespace	MovieTutorial.MovieDB

{

				[EnumKey("MovieDB.Gender")]

				public	enum	Gender

				{

								[Description("Male")]

								Male	=	1,

								[Description("Female")]

								Female	=	2

				}

}

Change	Gender	property	declaration	in	PersonRow.cs	as	below:

The	Cast	and	Characters	They	Played

131

//...

								[DisplayName("Gender")]

								public	Gender?	Gender

								{

												get	{	return	(Gender?)Fields.Gender[this];	}

												set	{	Fields.Gender[this]	=	(Int32?)value;	}

								}

//...

For	consistency,	change	type	of	Gender	property	in	PersonForm.cs	and	PersonColumns.cs
from	Int32	to	Gender.

Rebuilding	T4	Templates

As	we	declared	a	new	enumeration	and	used	it,	we	should	rebuild	solution,	convert	T4
templates

Now	after	launching	your	project,	you	should	be	able	to	enter	actors:

Declaring	FullName	Field

The	Cast	and	Characters	They	Played

132

On	the	title	of	edit	dialog,	first	name	of	the	person	is	shown	(Carrie-Anne).	It	would	be	nice	to
show	full	name.	And	also	search	with	full	name	in	grid.

So	let's	edit	our	PersonRow.cs:

namespace	MovieTutorial.MovieDB.Entities

{

				//...

				public	sealed	class	PersonRow	:	Row,	IIdRow,	INameRow

				{

								//...	remove	QuickSearch	from	FirstName

								[DisplayName("First	Name"),	Size(50),	NotNull]

								public	String	Firstname

								{

												get	{	return	Fields.Firstname[this];	}

												set	{	Fields.Firstname[this]	=	value;	}

								}

								[DisplayName("Last	Name"),	Size(50),	NotNull]

								public	String	Lastname

								{

												get	{	return	Fields.Lastname[this];	}

												set	{	Fields.Lastname[this]	=	value;	}

								}

								[DisplayName("Full	Name"),	

									Expression("(t0.Firstname	+	'	'	+	t0.Lastname)"),	QuickSearch]

								public	String	Fullname

								{

												get	{	return	Fields.Fullname[this];	}

												set	{	Fields.Fullname[this]	=	value;	}

								}

								//...	change	NameField	to	Fullname

								StringField	INameRow.NameField

								{

												get	{	return	Fields.Fullname;	}

								}

								//...

								public	class	RowFields	:	RowFieldsBase

								{

												public	readonly	Int32Field	PersonId;

												public	readonly	StringField	Firstname;

												public	readonly	StringField	Lastname;

												public	readonly	StringField	Fullname;

												//...

								}

				}

}

The	Cast	and	Characters	They	Played

133

We	specified	SQL	expression	Expression("(t0.Firstname	+	'	'	+	t0.Lastname)")	on	top	of
Fullname	property.	Thus,	it	is	a	server	side	calculated	field.

By	adding	QuickSearch	attribute	to	FullName,	instead	of	Firstname,	grid	will	now	search	by
default	on	Fullname	field.

But	dialog	will	still	show	Firstname.	We	need	to	build	and	transform	templates	to	make	it
show	Fullname.

Why	Had	to	Transform	Templates?

This	will	become	more	clear	after	looking	at	PersonDialog.ts	file:

namespace	MovieTutorial.MovieDB	{

				@Serenity.Decorators.registerClass()

				@Serenity.Decorators.responsive()

				export	class	PersonDialog	extends	Serenity.EntityDialog<PersonRow,	any>	{

								protected	getFormKey()	{	return	PersonForm.formKey;	}

								protected	getIdProperty()	{	return	PersonRow.idProperty;	}

								protected	getLocalTextPrefix()	{	return	PersonRow.localTextPrefix;	}

								protected	getNameProperty()	{	return	PersonRow.nameProperty;	}

								protected	getService()	{	return	PersonService.baseUrl;	}

								protected	form	=	new	PersonForm(this.idPrefix);

				}

}

Here	we	see	that	getNameProperty()	method	returns	PersonRow.nameProperty.
PersonRow	typing	in	TypeScript	is	in	a	file	(MovieDB.PersonRow.ts)	generated	by	our	T4
templates.

Thus,	unless	we	transform	T4	templates,	the	name	property	change	we	did	in	PersonRow.cs
won't	be	reflected	in	corresponding	MovieDB.PersonRow.ts	file	under
*Modules/Common/Imports/ServerTypings/	ServerTypings.tt":

The	Cast	and	Characters	They	Played

134

namespace	MovieTutorial.MovieDB	{

				export	interface	PersonRow	{

								PersonId?:	number;

								Firstname?:	string;

								Lastname?:	string;

								Fullname?:	string;

								//...

				}

				export	namespace	PersonRow	{

								export	const	idProperty	=	'PersonId';

								export	const	nameProperty	=	'Fullname';

								export	const	localTextPrefix	=	'MovieDB.Person';

								export	namespace	Fields	{

												export	declare	const	PersonId:	string;

												//...

								}

								//...

				}

}

This	metadata	(name	property	of	PersonRow)	is	transferred	to	TypeScript	with	a	code	file
(MovieDB.PersonRow.ts)	that	is	generated	by	ServerTypings.tt	file.

Similarly,	idProperty,	localTextPrefix,	Enum	Types	etc.	are	also	generated	under
ServerTypings.tt.	Thus,	when	you	make	a	change	that	affects	a	metadata	in	these	generated
files,	you	should	transform	T4	templates	to	transfer	that	information	to	TypeScript.

You	should	always	build	before	transforming,	as	T4	files	uses	output	DLL	of
MovieTutorial.Web	project.	Otherwise	you'll	be	generating	code	for	an	older	version	of
your	Web	project.

Declaring	PersonRow	Lookup	Script

While	we	are	still	here,	let's	declare	a	LookupScript	for	Person	table	in	PersonRow.cs:

namespace	MovieTutorial.MovieDB.Entities

{

				//...

				[LookupScript("MovieDB.Person")]

				public	sealed	class	PersonRow	:	Row,	IIdRow,	INameRow

				//...

We'll	use	it	for	editing	Movie	cast	later.

The	Cast	and	Characters	They	Played

135

Build	and	transform	templates	again,	you'll	see	that	MovieDB.PersonRow.ts	now	has	a
getLookup()	method	alongside	with	a	new	lookupKey	property:

namespace	MovieTutorial.MovieDB	{

				export	interface	PersonRow	{

								//...

				}

				export	namespace	PersonRow	{

								export	const	idProperty	=	'PersonId';

								export	const	nameProperty	=	'Fullname';

								export	const	localTextPrefix	=	'MovieDB.Person';

								export	const	lookupKey	=	'MovieDB.Person';

								export	function	getLookup():	Q.Lookup<PersonRow>	{

												return	Q.getLookup<PersonRow>('MovieDB.Person');

								}

				//...

}

Generating	Code	For	MovieCast	Table

Generate	code	for	MovieCast	table	using	sergen:

After	generating	code,	as	we	don't	need	a	separate	page	to	edit	movie	cast	table,	you	may
delete	files	listed	below:

The	Cast	and	Characters	They	Played

136

MovieCastIndex.cshtml

MovieCastPage.cs

MovieDialog.ts

MovieGrid.ts

Again,	build	and	transform	templates.

Master/Detail	Editing	Logic	For	MovieCast	Table

Up	until	now,	we	created	a	page	for	each	table,	and	list	and	edit	its	records	in	that	page.	This
time	we	are	going	to	use	a	different	strategy.

We'll	list	the	cast	for	a	movie	in	the	Movie	dialog	and	allow	them	to	be	edited	along	with	the
movie.	Also,	cast	will	be	saved	together	with	movie	entity	in	one	transaction.

Thus,	cast	editing	will	be	in	memory,	and	when	user	presses	save	button	in	Movie	dialog,
the	movie	and	its	cast	will	be	saved	to	database	in	one	shot	(one	transaction).

It	would	be	possible	to	edit	the	cast	independently,	here	we	just	want	to	show	how	it	can
be	done.

For	some	types	of	master/detail	records	like	order/detail,	details	shouldn't	be	allowed	to
be	edited	independently	for	consistency	reasons.	Serene	already	has	a	sample	for	this
kind	of	editing	in	Northwind/Order	dialog.

Creating	an	Editor	For	Movie	Cast	List

Next	to	MovieCastRow.cs	(at	MovieTutorial.Web/Modules/MovieDB/MovieCast/),	create	a
file	named	MovieCastEditor.ts	with	contents	below:

///	<reference	path="../../Common/Helpers/GridEditorBase.ts"	/>

namespace	MovieTutorial.MovieDB	{

				@Serenity.Decorators.registerEditor()

				export	class	MovieCastEditor	

										extends	Common.GridEditorBase<MovieCastRow>	{

								protected	getColumnsKey()	{	return	"MovieDB.MovieCast";	}

								protected	getLocalTextPrefix()	{	return	MovieCastRow.localTextPrefix;	}

								constructor(container:	JQuery)	{

												super(container);

								}

				}

}

The	Cast	and	Characters	They	Played

137

This	editor	derives	from	Common.GridEditorBase	class	in	Serene,	which	is	a	special	grid
type	that	is	designed	for	in-memory	editing.	It	is	also	the	base	class	for	Order	Details	editor
used	in	Order	dialog.

The		<reference	/>		line	at	top	of	the	file	is	important.	TypeScript	has	ordering	problems
with	input	files.	If	we	didn't	put	it	there,	TypeScript	would	sometimes	output
GridEditorBase	after	our	MovieCastEditor,	and	we'd	get	runtime	errors.

As	a	rule	of	thumb,	if	you	are	deriving	some	class	from	another	in	your	project	(not
Serenity	classes),	you	should	put	a	reference	to	file	containing	that	base	class.

This	helps	TypeScript	to	convert	GridEditorBase	to	javascript	before	other	classes	that
might	need	it.

To	reference	this	new	editor	type	from	server	side,	build	and	transform	all	templates.

This	base	class	might	be	integrated	to	Serenity	in	later	versions.	In	that	case,	its
namespace	will	become	Serenity,	instead	of	Serene	or	MovieTutorial.

Using	MovieCastEditor	in	Movie	Form

Open	MovieForm.cs,	between	Description	and	Storyline	fields,	add	a	CastList	property	like:

namespace	MovieTutorial.MovieDB.Forms

{

				//...

				public	class	MovieForm

				{

								public	String	Title	{	get;	set;	}

								[TextAreaEditor(Rows	=	3)]

								public	String	Description	{	get;	set;	}

								[MovieCastEditor]

								public	List<Entities.MovieCastRow>	CastList	{	get;	set;	}

								[TextAreaEditor(Rows	=	8)]

								public	String	Storyline	{	get;	set;	}

								//...

				}

}

By	putting	[MovieCastEditor]	attribute	on	top	of	CastList	property,	we	specified	that	this
property	will	be	edited	by	our	new	MovieCastEditor	type	which	is	defined	in	TypeScript	code.

We	could	also	write	[EditorType("MovieDB.MovieCast")]	but	who	really	likes	hard-coded
strings?	Not	me...

Now	build	and	launch	your	application.	Open	a	movie	dialog	and	you'll	be	greeted	by	our
new	editor:

The	Cast	and	Characters	They	Played

138

OK,	it	looked	easy,	but	i'll	be	honest,	we	are	not	even	half	the	way.

That	New	MovieCast	button	doesn't	work,	need	to	define	a	dialog	for	it.	The	grid	columns
are	not	what	i'd	like	them	to	be	and	the	field	and	button	titles	are	not	so	user	friendly...

Also	we'll	have	to	handle	a	bit	more	plumbing	like	loading	and	saving	cast	list	on	server	side
(we'll	show	the	harder	-	manual	way	first,	then	we'll	see	how	easy	it	can	be	using	a	service
behavior).

Configuring	MovieCastEditor	to	Use	MovieCastEditDialog

Create	a	MovieCastEditDialog.ts	file	next	to	MovieCastEditor.ts	and	modify	it	like	below:

The	Cast	and	Characters	They	Played

139

///	<reference	path="../../Common/Helpers/GridEditorDialog.ts"	/>

namespace	MovieTutorial.MovieDB	{

				@Serenity.Decorators.registerClass()

				export	class	MovieCastEditDialog	extends	

										Common.GridEditorDialog<MovieCastRow>	{

								protected	getFormKey()	{	return	MovieCastForm.formKey;	}

								protected	getNameProperty()	{	return	MovieCastRow.nameProperty;	}

								protected	getLocalTextPrefix()	{	return	MovieCastRow.localTextPrefix;	}

								protected	form:	MovieCastForm;

								constructor()	{

												super();

												this.form	=	new	MovieCastForm(this.idPrefix);

								}

				}

}

We	are	using	another	base	class	from	Serene,	Common.GridEditorDialog	which	is	also	used
by	OrderDetailEditDialog.

Open	MovieCastEditor.ts	again,	add	a	getDialogType	method	and	override
getAddButtonCaption:

///	<reference	path="../../Common/Helpers/GridEditorBase.ts"	/>

namespace	MovieTutorial.MovieDB	{

				@Serenity.Decorators.registerEditor()

				export	class	MovieCastEditor	

										extends	Common.GridEditorBase<MovieCastRow>	{

								protected	getColumnsKey()	{	return	"MovieDB.MovieCast";	}

								protected	getDialogType()	{	return	MovieCastEditDialog;	}

								protected	getLocalTextPrefix()	{	return	MovieCastRow.localTextPrefix;	}

								constructor(container:	JQuery)	{

												super(container);

								}

								protected	getAddButtonCaption()	{

												return	"Add";

								}

				}

}

We	specified	that	MovieCastEditor	uses	a	MovieCastEditDialog	by	default	which	is	also
used	by	Add	button.

The	Cast	and	Characters	They	Played

140

Now,	instead	of	doing	nothing,	Add	button	shows	a	dialog.

This	dialog	needs	some	CSS	formatting.	Movie	title	and	person	name	fields	accepts	integer
inputs	(as	they	are	actually	MovieId	and	PersonId	fields).

Editing	MovieCastForm.cs

getFormKey()	method	of	MovieCastEditDialog	returns	MovieCastForm.formKey,	so	it
currently	uses	MovieCastForm.cs	generated	by	Sergen.

It	is	possible	to	have	multiple	forms	for	one	entity	in	Serenity.	If	i	wanted	to	save
MovieCastForm	for	some	other	standalone	dialog,	e.g.	MovieCastDialog	(which	we	actually
deleted),	i	would	prefer	to	define	a	new	form	like	MovieCastEditForm,	but	this	is	not	the
case.

Open	MovieCastForm.cs	and	modify	it:

The	Cast	and	Characters	They	Played

141

namespace	MovieTutorial.MovieDB.Forms

{

				using	Serenity.ComponentModel;

				using	System;

				using	System.ComponentModel;

				[FormScript("MovieDB.MovieCast")]

				[BasedOnRow(typeof(Entities.MovieCastRow))]

				public	class	MovieCastForm

				{

								public	Int32	PersonId	{	get;	set;	}

								public	String	Character	{	get;	set;	}

				}

}

I	have	removed	MovieId	as	this	form	is	going	to	be	used	in	MovieCastEditDialog,	so
MovieCast	entities	will	have	the	MovieId	of	the	movie	currently	being	edited	in	the
MovieDialog	automatically.	Opening	Lord	of	the	Rings	movie	and	adding	a	cast	entry	for	the
Matrix	would	be	non-sense.

Next,	edit	MovieCastRow.cs:

				[ConnectionKey("Default"),	TwoLevelCached]

				[DisplayName("Movie	Casts"),	InstanceName("Cast")]

				[ReadPermission("Administration")]

				[ModifyPermission("Administration")]

				public	sealed	class	MovieCastRow	:	Row,	IIdRow,	INameRow

				{

								//...

								[DisplayName("Actor/Actress"),	NotNull,	ForeignKey("[mov].[Person]",	"PersonId

")]

								[LeftJoin("jPerson"),	TextualField("PersonFirstname")]

								[LookupEditor(typeof(PersonRow))]

								public	Int32?	PersonId

								{

												get	{	return	Fields.PersonId[this];	}

												set	{	Fields.PersonId[this]	=	value;	}

								}

I	have	set	editor	type	for	PersonId	field	to	a	lookup	editor	and	as	i	have	already	added	a
LookupScript	attribute	to	PersonRow,	i	can	reuse	that	information	for	setting	the	lookup	key.

We	could	have	also	written	[LookupEditor("MovieDB.Person")]

Changed	PersonId	display	name	to	Actor/Actress.

Also	changed	DisplayName	and	InstanceName	attributes	for	row	to	set	dialog	title.

The	Cast	and	Characters	They	Played

142

Build	solution,	launch	and	now	MovieCastEditDialog	has	a	better	editing	experience.	But	still
too	big	in	width	and	height.

Fixing	the	Look	Of	MovieCastEditDialog

Let's	check	site.less	to	understand	why	our	MovieCastEditDialog	is	not	styled.

.s-MovieDB-MovieCastDialog	{

				>	.size	{	width:	650px;	}

				.caption	{	width:	150px;	}

}

The	CSS	at	the	bottom	of	site.less	is	for	the	MovieCastDialog,	not	MovieCastEditDialog,
because	we	defined	this	class	ourselves,	not	with	code	generator.

We	created	a	new	dialog	type	MovieCastEditDialog,	so	now	our	new	dialog	has	a	CSS	class
of	s-MovieDB-MovieCastEditDialog,	but	code	generator	only	generated	CSS	rules	for	s-
MovieDB-MovieCastDialog.

Serenity	dialogs	automatically	assigns	CSS	classes	to	dialog	elements,	by	prefixing
type	name	with	"s-".	You	can	see	this	by	inspecting	the	dialog	in	developer	tools.
MovieCastEditDialog	has	CSS	classes	of	s-MovieCastEditDialog	and	s-MovieDB-
MovieCastEditDialog,	along	with	some	other	like	ui-dialog.

s-ModuleName-TypeName	CSS	class	helps	with	individual	styling	when	two	modules
has	a	type	with	the	same	name.

As	we	are	not	gonna	actually	use	MovieCastDialog	(we	deleted	it),	let's	rename	the	one	in
site.less:

.s-MovieDB-MovieCastEditDialog	{

				>	.size	{	width:	450px;	}

				.caption	{	width:	120px;	}

				.s-PropertyGrid	.categories	{	height:	120px;	}

}

Now	MovieCastEditDialog	has	a	better	look:

The	Cast	and	Characters	They	Played

143

Fixing	MovieCastEditor	Columns

MovieCastEditor	is	currently	using	columns	defined	in	MovieCastColumns.cs	(because	it
returns	"MovieDB.MovieCast"	in	getColumnsKey()	method.

We	have	MovieCastId,	MovieId,	PersonId	(shown	as	Actor/Actress)	and	Character	columns
there.	It	is	better	to	show	only	Actor/Actress	and	Character	columns.

We	want	to	show	actors	fullname	instead	of	PersonId	(integer	value),	so	we'll	declare	this
field	in	MovieCastRow.cs	first:

The	Cast	and	Characters	They	Played

144

namespace	MovieTutorial.MovieDB.Entities

{

				//...

				public	sealed	class	MovieCastRow	:	Row,	IIdRow,	INameRow

				{

								//	...

								[DisplayName("Person	Firstname"),	Expression("jPerson.Firstname")]

								public	String	PersonFirstname

								{

												get	{	return	Fields.PersonFirstname[this];	}

												set	{	Fields.PersonFirstname[this]	=	value;	}

								}

								[DisplayName("Person	Lastname"),	Expression("jPerson.Lastname")]

								public	String	PersonLastname

								{

												get	{	return	Fields.PersonLastname[this];	}

												set	{	Fields.PersonLastname[this]	=	value;	}

								}

								[DisplayName("Actor/Actress"),	

									Expression("(jPerson.Firstname	+	'	'	+	jPerson.Lastname)")]

								public	String	PersonFullname

								{

												get	{	return	Fields.PersonFullname[this];	}

												set	{	Fields.PersonFullname[this]	=	value;	}

								}

								//	...

								public	class	RowFields	:	RowFieldsBase

								{

												//	...

												public	readonly	StringField	PersonFirstname;

												public	readonly	StringField	PersonLastname;

												public	readonly	StringField	PersonFullname;

												//	...

								}

				}

}

and	modify	MovieCastColumns.cs:

The	Cast	and	Characters	They	Played

145

namespace	MovieTutorial.MovieDB.Columns

{

				using	Serenity.ComponentModel;

				using	System;

				[ColumnsScript("MovieDB.MovieCast")]

				[BasedOnRow(typeof(Entities.MovieCastRow))]

				public	class	MovieCastColumns

				{

								[EditLink,	Width(220)]

								public	String	PersonFullname	{	get;	set;	}

								[EditLink,	Width(150)]

								public	String	Character	{	get;	set;	}

				}

}

Rebuild	and	cast	grid	has	better	columns:

Now	try	adding	an	actor/actress,	for	example,	Keanu	Reeves	/	Neo:

The	Cast	and	Characters	They	Played

146

Why	Actor/Actress	column	is	empty??

Resolving	Empty	Actor/Actress	Column	Problem

Remember	that	we	are	editing	in-memory.	There	is	no	service	call	involved	here.	So,	grid	is
displaying	whatever	entity	is	sent	back	to	it	from	the	dialog.

When	you	click	the	save	button,	dialog	builds	an	entity	to	save	like	this:

{

				PersonId:	7,

				Character:	'Neo'

}

These	fields	corresponds	to	the	form	fields	you	previously	set	in	MovieCastForm.cs:

public	class	MovieCastForm

{

				public	Int32	PersonId	{	get;	set;	}

				public	String	Character	{	get;	set;	}

}

The	Cast	and	Characters	They	Played

147

But	in	grid,	we	are	showing	these	columns:

public	class	MovieCastColumns

{

				public	String	PersonFullname	{	get;	set;	}

				public	String	Character	{	get;	set;	}

}

There	is	no	PersonFullname	field	in	this	entity,	so	grid	can't	display	its	value.

We	need	to	set	PersonFullname	ourself.	Let's	first	transform	T4	templates	to	have	access	to
PersonFullname	field	that	we	recently	added,	then	edit	MovieCastEditor.ts:

///	<reference	path="../../Common/Helpers/GridEditorBase.ts"	/>

namespace	MovieTutorial.MovieDB	{

				@Serenity.Decorators.registerEditor()

				export	class	MovieCastEditor	extends	Common.GridEditorBase<MovieCastRow>	{

								//...

								protected	validateEntity(row:	MovieCastRow,	id:	number)	{

												if	(!super.validateEntity(row,	id))

																return	false;								

												row.PersonFullname	=	PersonRow.getLookup()

																.itemById[row.PersonId].Fullname;

												return	true;

								}								

				}

}

ValidateEntity	is	a	method	from	our	GridEditorBase	class	in	Serene.	This	method	is	called
when	Save	button	is	clicked	to	validate	the	entity,	just	before	it	is	going	to	be	added	to	the
grid.	But	we	are	overriding	it	here	for	another	purpose	(to	set	PersonFullname	field	value)
rather	than	validation.

As	we	saw	before,	our	entity	has	PersonId	and	Character	fields	filled	in.	We	can	use	the
value	of	PersonId	field	to	determine	the	person	fullname.

For	this,	we	need	a	dictionary	that	maps	PersonId	to	their	Fullname	values.	Fortunately,
person	lookup	has	such	a	dictionary.	We	can	access	the	lookup	for	PersonRow	through	its
getLookup	method.

Another	way	to	access	person	lookup	is	by	Q.getLookup('MovieDB.Person').	The	one	in
PersonRow	is	just	a	shortcut	defined	by	T4	templates.

The	Cast	and	Characters	They	Played

148

All	lookups	has	a	itemById	dictionary	that	allows	you	to	access	an	entity	of	that	type	by	its
ID.

Lookups	are	a	simple	way	to	share	server	side	data	with	client	side.	But	they	are	only
suitable	for	small	sets	of	data.

If	a	table	has	hundreds	of	thousands	of	records,	it	wouldn't	be	reasonable	to	define	a
lookup	for	it.	In	that	case,	we	would	use	a	service	request	to	query	a	record	by	its	ID.

Defining	CastList	in	MovieRow

While	having	a	Movie	dialog	open,	and	at	least	one	cast	in	CastList,	click	save	button,	and
you'll	get	such	an	error:

This	error	is	raised	from	->	Row	deserializer	(JsonRowConverter	for	JSON.NET)	at	server
side.

We	defined	CastList	property	in	MovieForm,	but	have	no	corresponding	field	declaration	in
MovieRow.	So	deserializer	can't	find	where	to	write	CastList	value	that	is	received	from
client	side.

If	you	open	developer	tools	with	F12,	click	Network	tab,	and	watch	AJAX	request	after
clicking	Save	button,	you'll	see	that	it	has	such	a	request	payload:

The	Cast	and	Characters	They	Played

149

{

				"Entity":	{

								"Title":	"The	Matrix",

								"Description":	"A	computer	hacker...",

								"CastList":	[

												{

																"PersonId":"1",

																"Character":"Neo",

																"PersonFullname":"Keanu	Reeves"

												}

],

								"Storyline":"Thomas	A.	Anderson	is	a	man	living	two	lives...",

								"Year":1999,

								"ReleaseDate":"1999-03-31",

								"Runtime":136,

								"GenreId":"",

								"Kind":"1",

								"MovieId":1

				}

}

Here,	CastList	property	can't	be	deserialized	at	server	side.	So	we	need	to	declare	it	in
MovieRow.cs:

namespace	MovieTutorial.MovieDB.Entities

{

				//	...

				public	sealed	class	MovieRow	:	Row,	IIdRow,	INameRow

				{

								[DisplayName("Cast	List"),	NotMapped]

								public	List<MovieCastRow>	CastList

								{

												get	{	return	Fields.CastList[this];	}

												set	{	Fields.CastList[this]	=	value;	}

								}

								public	class	RowFields	:	RowFieldsBase

								{

												//	...

												public	readonly	RowListField<MovieCastRow>	CastList;

												//	...

								}

				}

}

We	defined	a	CastList	property	that	will	accept	a	List	of	MovieCastRow	objects.	The	type	of
Field	class	that	is	used	for	such	row	list	properties	is	RowListField.

The	Cast	and	Characters	They	Played

150

By	adding	[NotMapped]	attribute,	we	specified	that	this	field	is	not	available	directly	in
database	table,	thus	can't	be	selected	through	simple	SQL	queries.	It	is	analogous	to	an
unmapped	field	in	other	ORM	systems.

Now,	when	you	click	the	Save	button,	you	will	not	get	an	error.

But	reopen	the	Matrix	entity	you	just	saved.	There	is	no	cast	entry	there.	What	happened	to
Neo?

As	this	is	an	unmapped	field,	so	movie	Save	service	just	ignored	the	CastList	property.

If	you	remember	that	in	prior	section,	our	GenreList	also	was	an	unmapped	field,	but
somehow	it	worked	there.	Thats	because	we	made	use	of	a	behavior,
LinkedSetRelationBehavior	with	that	property.

Here	we	are	sampling	what	would	happen	if	we	had	no	such	service	behavior.

Handling	Save	for	CastList

Open	MovieRepository.cs,	find	the	empty	MySaveHandler	class,	and	modify	it	like	below:

private	class	MySaveHandler	:	SaveRequestHandler<MyRow>

{

				protected	override	void	AfterSave()

				{

								base.AfterSave();

								if	(Row.CastList	!=	null)

								{

												var	mc	=	Entities.MovieCastRow.Fields;

												var	oldList	=	IsCreate	?	null	:

																Connection.List<Entities.MovieCastRow>(

																				mc.MovieId	==	this.Row.MovieId.Value);

												new	Common.DetailListSaveHandler<Entities.MovieCastRow>(

																oldList,	Row.CastList,

																x	=>	x.MovieId	=	Row.MovieId.Value).Process(this.UnitOfWork);

								}

				}

}

MySaveHandler,	processes	both	CREATE	(insert),	and	UPDATE	service	requests	for	Movie
rows.	As	most	of	its	logic	is	handled	by	base	SaveRequestHandler	class,	its	class	definition
was	empty	before.

The	Cast	and	Characters	They	Played

151

We	should	first	wait	for	Movie	entity	to	be	inserted	/	updated	successfully,	before	inserting	/
updating	the	cast	list.	Thus,	we	are	including	our	customized	code	by	overriding	the	base
AfterSave	method.

If	this	is	CREATE	(insert)	operation,	we	need	the	MovieId	field	value	to	reuse	in
MovieCast	records.	As	MovieId	is	an	IDENTITY	field,	it	is	only	available	after	inserting
the	movie	record.

As	we	are	editing	cast	list	in	memory	(client-side),	this	will	be	a	batch	update.

We	need	to	compare	old	list	of	the	cast	records	for	this	movie	to	the	new	list	of	cast	records,
and	INSERT/UPDATE/DELETE	them.

Let's	say	we	had	cast	records	A,	B,	C,	D	in	database	for	movie	X.

User	did	some	modifications	in	edit	dialogs	to	cast	list,	and	now	we	have	A,	B,	D,	E,	F.

So	we	need	to	update	A,	B,	D	(in	case	character	/	actor	changed),	delete	C,	and	insert	new
records	E	and	F.

Fortunately,	DetailListSaveHandler	class	that	is	defined	in	Serene,	handles	all	these
comparisons	and	performs	insert/update/delete	operations	automatically	(by	ID	values).
Otherwise	we	would	have	to	write	much	more	code	here.

To	get	a	list	of	old	records,	we	need	to	query	database	if	this	is	an	UPDATE	movie	operation.
If	this	is	a	CREATE	movie	operation	there	shouldn't	be	any	old	cast	record.

We	are	using	Connection.List<	Entities.MovieCastRow	>	extension	method.	Connection
here	is	a	property	of	SaveRequestHandler	that	returns	the	current	connection	used.	List
selects	records	that	matches	the	specified	criteria	(mc.MovieId	==	this.Row.MovieId.Value).

this.Row	refers	to	currently	inserted	/	updated	record	(movie)	with	its	new	field	values,	so	it
contains	the	MovieId	value	(new	or	existing).

To	update	cast	records,	we	are	creating	a	DetailListHandler	object,	with	old	cast	list,	new
cast	list,	and	a	delegate	to	set	the	MovieId	field	value	in	a	cast	record.	This	is	to	link	new
cast	records	with	the	current	movie.

Then	we	call	DetailListHandler.Process	with	current	unit	of	work.	UnitOfWork	is	a	special
object	that	wraps	the	current	connection/transaction.

All	Serenity	CREATE/UPDATE/DELETE	handlers	works	with	implicit	transactions
(IUnitOfWork).

Handling	Retrieve	for	CastList

The	Cast	and	Characters	They	Played

152

We	are	not	done	yet.	When	a	Movie	entity	is	clicked	in	movie	grid,	movie	dialog	loads	the
movie	record	by	calling	the	movie	Retrieve	service.	As	CastList	is	an	unmapped	field,	even	if
we	saved	them	properly,	they	won't	be	loaded	into	the	dialog.

We	need	to	also	edit	MyRetrieveHandler	class	in	MovieRepository.cs:

private	class	MyRetrieveHandler	:	RetrieveRequestHandler<MyRow>

{

				protected	override	void	OnReturn()

				{

								base.OnReturn();

								var	mc	=	Entities.MovieCastRow.Fields;

								Row.CastList	=	Connection.List<Entities.MovieCastRow>(q	=>	q

												.SelectTableFields()

												.Select(mc.PersonFullname)

												.Where(mc.MovieId	==	Row.MovieId.Value));

				}

}

Here,	we	are	overriding	OnReturn	method,	to	inject	CastList	into	movie	row	just	before
returning	the	it	from	retrieve	service.

I	used	a	different	overload	of	Connection.List	extension,	which	allows	me	to	modify	the
select	query.

By	default,	List	selects	all	table	fields	(not	foreign	view	fields	coming	from	other	tables),	but
to	show	actor	name,	i	needed	to	also	select	PersonFullName	field.

Now	build	the	solution,	and	we	can	finally	list	/	edit	the	cast.

Handling	Delete	for	CastList

When	you	try	to	delete	a	Movie	entity,	you'll	get	foreign	key	errors.	You	could	use	a
"CASCADE	DELETE"	foreign	key	while	creating	MovieCast	table.	But	we'll	handle	this	at
repository	level	again:

The	Cast	and	Characters	They	Played

153

private	class	MyDeleteHandler	:	DeleteRequestHandler<MyRow>

{

				protected	override	void	OnBeforeDelete()

				{

								base.OnBeforeDelete();

								var	mc	=	Entities.MovieCastRow.Fields;

								foreach	(var	detailID	in	Connection.Query<Int32>(

												new	SqlQuery()

																.From(mc)

																.Select(mc.MovieCastId)

																.Where(mc.MovieId	==	Row.MovieId.Value)))

								{

												new	DeleteRequestHandler<Entities.MovieCastRow>().Process(this.UnitOfWork,

																new	DeleteRequest

																{

																				EntityId	=	detailID

																});

								}

				}

}

The	way	we	implemented	this	master/detail	handling	is	not	very	intuitive	and	included
several	manual	steps	at	repository	layer.	Keep	on	reading	to	see	how	easily	it	could	be	done
by	using	an	integrated	feature	(MasterDetailRelationAttribute).

Handling	Save	/	Retrieve	/	Delete	With	a	Behavior

Master/detail	relations	are	an	integrated	feature	(at	least	on	server	side),	so	instead	of
manually	overriding	Save	/	Retrieve	and	Delete	handlers,	i'll	use	an	attribute,
MasterDetailRelation.

Open	MovieRow.cs	and	modify	CastList	property:

[MasterDetailRelation(foreignKey:	"MovieId",	IncludeColumns	=	"PersonFullname")]

[DisplayName("Cast	List"),	NotMapped]

public	List<MovieCastRow>	CastList

{

				get	{	return	Fields.CastList[this];	}

				set	{	Fields.CastList[this]	=	value;	}

}

We	specified	that	this	field	is	a	detail	list	of	a	master/detail	relation	and	master	ID	field
(foreignKey)	of	the	detail	table	is	MovieId.

Now	undo	all	changes	we	made	in	MovieRepository.cs:

The	Cast	and	Characters	They	Played

154

private	class	MySaveHandler	:	SaveRequestHandler<MyRow>	{	}

private	class	MyDeleteHandler	:	DeleteRequestHandler<MyRow>	{	}

private	class	MyRetrieveHandler	:	RetrieveRequestHandler<MyRow>	{	}

In	our	MasterDetailRelation	attribute,	we	specified	an	extra	property,	IncludeColumns:

[MasterDetailRelation(foreignKey:	"MovieId",	IncludeColumns	=	"PersonFullname")]

This	ensures	that	PersonFullname	field	on	cast	list	is	selected	on	retrieve.	Otherwise,	it
wouldn't	be	loaded	as	only	table	fields	are	selected	by	default.	When	you	open	a	movie
dialog	with	existing	cast	list,	full	name	would	be	empty.

Make	sure	you	add	any	view	field	you	use	in	grid	columns	to	IncludeColumns.	Put
comma	between	names	of	multiple	fields,	e.g.	IncludeColumns	=	"FieldA,	FieldB,
FieldC".

Now	build	your	project	and	you'll	see	that	same	functionality	works	with	much	less	code.

MasterDetailRelationAttribute	triggers	an	instrinsic	(automatic)	behavior,
MasterDetailRelationBehavior	which	intercepts	Retrieve/Save/Delete	handlers	and	methods
we	had	overriden	before	and	performs	similar	operations.

So	we	did	the	same	thing,	but	this	time	declaratively,	not	imperatively	(what	should	be	done,
instead	of	how	to	do	it)

https://en.wikipedia.org/wiki/Declarative_programming

We'll	see	how	to	write	your	own	request	handler	behaviors	in	following	chapters.

The	Cast	and	Characters	They	Played

155

https://en.wikipedia.org/wiki/Declarative_programming

Listing	Movies	in	Person	Dialog
To	show	list	of	movies	a	person	acted	in,	we'll	add	a	tab	to	PersonDialog.

By	default	all	entity	dialogs	(ones	we	used	so	far,	which	derive	from	EntityDialog)	uses
EntityDialog	template	at	MovieTutorial.Web/Views/Templates/EntityDialog.Template.html:

<div	class="s-DialogContent">

				<div	id="~_Toolbar"	class="s-DialogToolbar">

				</div>

				<div	class="s-Form">

								<form	id="~_Form"	action="">

												<div	class="fieldset	ui-widget	ui-widget-content	ui-corner-all">

																<div	id="~_PropertyGrid"></div>

																<div	class="clear"></div>

												</div>

								</form>	

				</div>

</div>

This	template	contains	a	toolbar	placeholder	(~_Toolbar),	form	(~_Form)	and	PropertyGrid
(*~_PropertyGrid).

~_	is	a	special	prefix	that	is	replaced	with	a	unique	dialog	ID	at	runtime.	This	ensures
that	objects	in	two	instances	of	a	dialog	won't	have	the	same	ID	values.

EntityDialog	template	is	shared	by	all	dialogs,	so	we	are	not	gonna	modify	it	to	add	a	tab	to
PersonDialog.

Defining	a	Tabbed	Template	for	PersonDialog

Create	a	new	file,	MovieDB.PersonDialog.Template.html	under	Modules/MovieDB/Person/
folder	with	contents:

Listing	Movies	in	Person	Dialog

156

<div	id="~_Tabs"	class="s-DialogContent">

				

								Person

								Movies

				

				<div	id="~_TabInfo"	class="tab-pane	s-TabInfo">

								<div	id="~_Toolbar"	class="s-DialogToolbar">

								</div>

								<div	class="s-Form">

												<form	id="~_Form"	action="">

																<div	class="fieldset	ui-widget	ui-widget-content	ui-corner-all">

																				<div	id="~_PropertyGrid"></div>

																				<div	class="clear"></div>

																</div>

												</form>

								</div>

				</div>

				<div	id="~_TabMovies"	class="tab-pane	s-TabMovies">

								<div	id="~_MoviesGrid">

								</div>

				</div>

</div>

The	syntax	we	used	here	is	specific	to	jQuery	UI	tabs	widget.	It	needs	an	UL	element	with
list	of	tab	links	pointing	to	tab	pane	divs	(.tab-pane).

When	EntityDialog	finds	a	div	with	ID	~_Tabs	in	its	template,	it	automatically	initializes	a	tabs
widget	on	it.

Naming	of	the	template	file	is	important.	It	must	end	with	.Template.html	extension.	All	files
with	this	extension	are	made	available	at	client	side	through	a	dynamic	script.

Folder	of	the	template	file	is	ignored,	but	templates	must	be	under	Modules	or
Views/Template	directories.

By	default,	all	templated	widgets	(EntityDialog	also	derives	from	TemplatedWidget	class),
looks	for	a	template	with	their	own	classname.	Thus,	PersonDialog	looks	for	a	template	with
the	name	MovieDB.PersonDialog.Template.html,	followed	by	PersonDialog.Template.html.

MovieDB	comes	from	PersonDialog	namespace	with	the	root	namespace
(MovieTutorial)	removed.	You	can	also	think	of	it	as	module	name	dot	class	name.

If	a	template	with	class	name	is	not	found,	search	continues	to	base	classes	and	eventually
a	fallback	template,	EntityDialog.Template.html	is	used.

Now,	we	have	a	tab	in	PersonDialog:

Listing	Movies	in	Person	Dialog

157

Meanwhile,	i	noticed	Person	link	is	still	under	MovieDB	and	we	forgot	to	remove
MovieCast	link.	I'm	fixing	them	now...

Creating	PersonMovieGrid

Movie	tab	is	empty	for	now.	We	need	to	define	a	grid	with	suitable	columns	and	place	it	in
that	tab.

First,	declare	the	columns	we'll	use	with	the	grid,	in	file	PersonMovieColumns.cs	next	to
PersonColumns.cs:

Listing	Movies	in	Person	Dialog

158

namespace	MovieTutorial.MovieDB.Columns

{

				using	Serenity.ComponentModel;

				using	System;

				[ColumnsScript("MovieDB.PersonMovie")]

				[BasedOnRow(typeof(Entities.MovieCastRow))]

				public	class	PersonMovieColumns

				{

								[Width(220)]

								public	String	MovieTitle	{	get;	set;	}

								[Width(100)]

								public	Int32	MovieYear	{	get;	set;	}

								[Width(200)]

								public	String	Character	{	get;	set;	}

				}

}

Next	define	a	PersonMovieGrid	class,	in	file	PersonMovieGrid.ts	next	to	PersonGrid.ts:

namespace	MovieTutorial.MovieDB	{

				@Serenity.Decorators.registerClass()

				export	class	PersonMovieGrid	extends	Serenity.EntityGrid<MovieCastRow,	any>

				{

								protected	getColumnsKey()	{	return	"MovieDB.PersonMovie";	}

								protected	getIdProperty()	{	return	MovieCastRow.idProperty;	}

								protected	getLocalTextPrefix()	{	return	MovieCastRow.localTextPrefix;	}

								protected	getService()	{	return	MovieCastService.baseUrl;	}

								constructor(container:	JQuery)	{

												super(container);

								}

				}

}

We'll	actually	use	MovieCast	service,	to	list	movies	a	person	acted	in.

Last	step	is	to	instantiate	this	grid	in	PersonDialog.ts:

Listing	Movies	in	Person	Dialog

159

@Serenity.Decorators.registerClass()

@Serenity.Decorators.responsive()

export	class	PersonDialog	extends	Serenity.EntityDialog<PersonRow,	any>	{

				protected	getFormKey()	{	return	PersonForm.formKey;	}

				protected	getIdProperty()	{	return	PersonRow.idProperty;	}

				protected	getLocalTextPrefix()	{	return	PersonRow.localTextPrefix;	}

				protected	getNameProperty()	{	return	PersonRow.nameProperty;	}

				protected	getService()	{	return	PersonService.baseUrl;	}

				protected	form	=	new	PersonForm(this.idPrefix);

				private	moviesGrid:	PersonMovieGrid;

				constructor()	{

								super();

								this.moviesGrid	=	new	PersonMovieGrid(this.byId("MoviesGrid"));

								this.tabs.on('tabsactivate',	(e,	i)	=>	{

												this.arrange();

								});

				}

}

Remember	that	in	our	template	we	had	a	div	with	id	~_MoviesGrid	under	movies	tab	pane.
We	created	PersonMovie	grid	on	that	div.

this.ById("MoviesGrid")	is	a	special	method	for	templated	widgets.	$('#MoviesGrid')
wouldn't	work	here,	as	that	div	actually	has	some	ID	like	PersonDialog17_MoviesGrid.
	~_		in	templates	are	replaced	with	a	unique	container	widget	ID.

We	also	attached	to	OnActivate	event	of	jQuery	UI	tabs,	and	called	Arrange	method	of	the
dialog.	This	is	to	solve	a	problem	with	SlickGrid,	when	it	is	initially	created	in	invisible	tab.
Arrange	triggers	relayout	for	SlickGrid	to	solve	this	problem.

OK,	now	we	can	see	list	of	movies	in	Movies	tab,	but	something	is	strange:

Listing	Movies	in	Person	Dialog

160

Filtering	Movies	for	the	Person

No,	Carrie-Anne	Moss	didn't	act	in	three	roles.	This	grid	is	showing	all	movie	cast	records	for
now,	as	we	didn't	tell	what	filter	it	should	apply	yet.

PersonMovieGrid	should	know	the	person	it	shows	the	movie	cast	records	for.	So,	we	add	a
PersonID	property	to	this	grid.	This	PersonID	should	be	passed	somehow	to	list	service	for
filtering.

Listing	Movies	in	Person	Dialog

161

namespace	MovieTutorial.MovieDB

{

				@Serenity.Decorators.registerClass()

				export	class	PersonMovieGrid	extends	Serenity.EntityGrid<MovieCastRow,	any>

				{

								protected	getColumnsKey()	{	return	"MovieDB.PersonMovie";	}

								protected	getIdProperty()	{	return	MovieCastRow.idProperty;	}

								protected	getLocalTextPrefix()	{	return	MovieCastRow.localTextPrefix;	}

								protected	getService()	{	return	MovieCastService.baseUrl;	}

								constructor(container:	JQuery)	{

												super(container);

								}

								protected	getButtons()	{

												return	null;

								}

								protected	getInitialTitle()	{

												return	null;

								}

								protected	usePager()	{

												return	false;

								}

								protected	getGridCanLoad()	{

												return	this.personID	!=	null;

								}

								private	_personID:	number;

								get	personID()	{

												return	this._personID;

								}

								set	personID(value:	number)	{

												if	(this._personID	!=	value)	{

																this._personID	=	value;

																this.setEquality(MovieCastRow.Fields.PersonId,	value);

																this.refresh();

												}

								}

				}

}

We	are	using	ES5	(EcmaScript	5)	property	(get/set)	features.	It's	pretty	similar	to	C#
properties.

Listing	Movies	in	Person	Dialog

162

We	store	the	person	ID	in	a	private	variable.	When	it	changes,	we	also	set	a	equality	filter	for
PersonId	field	using	SetEquality	method	(which	will	be	sent	to	list	service),	and	refresh	to
see	changes.

Equality	filter	is	the	list	request	parameter	that	is	also	used	by	quick	filter	items.

Overriding	GetGridCanLoad	method	allows	us	to	control	when	grid	can	call	list	service.	If	we
didn't	override	it,	while	creating	a	new	Person,	grid	would	load	all	movie	cast	records,	as
there	is	not	a	PersonID	yet	(it	is	null).

List	handler	ignores	an	equality	filter	parameter	if	its	value	is	null.	Just	like	when	a	quick
filter	dropdown	is	empty,	all	records	are	shown.

We	also	did	three	cosmetic	changes,	by	overriding	three	methods,	first	to	remove	all	buttons
from	toolbar	(getButtons),	second	to	remove	title	from	the	grid	(getInitialTitle)	as	tab	title	is
enough),	and	third	to	remove	paging	functionality	(usePager),	a	person	can't	have	a	million
movies	right?).

Setting	PersonID	of	PersonMovieGrid	in	PersonDialog

If	nobody	sets	grid's	PersonID	property,	it	will	always	be	null,	and	no	records	will	be	loaded.
We	should	set	it	in	afterLoadEntity	method	of	Person	dialog:

namespace	MovieTutorial.MovieDB

{

				//	...

				export	class	PersonDialog	extends	Serenity.EntityDialog<PersonRow>

				{

								//	...

								protected	afterLoadEntity()

								{

												super.afterLoadEntity();

												this.moviesGrid.personID	=	this.entityId;

								}

				}

}

afterLoadEntity	is	called	after	an	entity	or	a	new	entity	is	loaded	into	dialog.

Please	note	that	entity	is	loaded	in	a	later	phase,	so	it	won't	be	available	in	dialog
constructor.

this.EntityId	refers	to	the	identity	value	of	the	currently	loaded	entity.	In	new	record	mode,	it
is	null.

Listing	Movies	in	Person	Dialog

163

AfterLoadEntity	and	LoadEntity	might	be	called	several	times	during	dialog	lifetime,	so
avoid	creating	some	child	objects	in	these	events,	otherwise	you	will	have	multiple
instances	of	created	objects.	Thats	why	we	created	the	grid	in	dialog	constructor.

Fixing	Movies	Tab	Size

You	might	have	noticed	that	when	you	switch	to	Movies	tab,	dialog	gets	a	bit	less	in	height.
This	is	because	dialog	is	set	to	auto	height	and	grids	are	200px	by	default.	When	you	switch
to	movies	tab,	form	gets	hidden,	so	dialog	adjusts	to	movies	grid	height.

Edit	s-MovieDB-PersonDialog	css	in	site.less:

.s-MovieDB-PersonDialog	{

				>	.size	{	width:	650px;	}

				.caption	{	width:	150px;	}

				.s-PersonMovieGrid	>	.grid-container	{	height:	287px;	}

}

Listing	Movies	in	Person	Dialog

164

Adding	Primary	and	Gallery	Images
To	add	a	primary	image	and	multiple	gallery	images	to	both	Movie	and	Person	records,	need
to	start	with	a	migration:

using	FluentMigrator;

namespace	MovieTutorial.Migrations.DefaultDB

{

				[Migration(20160603205900)]

				public	class	DefaultDB_20160603_205900_PersonMovieImages	:	Migration

				{

								public	override	void	Up()

								{

												Alter.Table("Person").InSchema("mov")

																.AddColumn("PrimaryImage").AsString(100).Nullable()

																.AddColumn("GalleryImages").AsString(int.MaxValue).Nullable();

												Alter.Table("Movie").InSchema("mov")

																.AddColumn("PrimaryImage").AsString(100).Nullable()

																.AddColumn("GalleryImages").AsString(int.MaxValue).Nullable();

								}

								public	override	void	Down()

								{

								}

				}

}

Then	modify	MovieRow.cs	and	PersonRow.cs:

Adding	Primary	and	Gallery	Images

165

namespace	MovieTutorial.MovieDB.Entities

{

				//	...

				public	sealed	class	PersonRow	:	Row,	IIdRow,	INameRow

				{

								[DisplayName("Primary	Image"),	Size(100),	

									ImageUploadEditor(FilenameFormat	=	"Person/PrimaryImage/~")]

								public	string	PrimaryImage

								{

												get	{	return	Fields.PrimaryImage[this];	}

												set	{	Fields.PrimaryImage[this]	=	value;	}

								}

								[DisplayName("Gallery	Images"),	

									MultipleImageUploadEditor(FilenameFormat	=	"Person/GalleryImages/~")]

								public	string	GalleryImages

								{

												get	{	return	Fields.GalleryImages[this];	}

												set	{	Fields.GalleryImages[this]	=	value;	}

								}

								//	...

								public	class	RowFields	:	RowFieldsBase

								{

												//	...

												public	readonly	StringField	PrimaryImage;

												public	readonly	StringField	GalleryImages;

												//	...

								}

				}

}

Adding	Primary	and	Gallery	Images

166

namespace	MovieTutorial.MovieDB.Entities

{

				//	...

				public	sealed	class	MovieRow	:	Row,	IIdRow,	INameRow

				{

								[DisplayName("Primary	Image"),	Size(100),	

									ImageUploadEditor(FilenameFormat	=	"Movie/PrimaryImage/~")]

								public	string	PrimaryImage

								{

												get	{	return	Fields.PrimaryImage[this];	}

												set	{	Fields.PrimaryImage[this]	=	value;	}

								}

								[DisplayName("Gallery	Images"),	

									MultipleImageUploadEditor(FilenameFormat	=	"Movie/GalleryImages/~")]

								public	string	GalleryImages

								{

												get	{	return	Fields.GalleryImages[this];	}

												set	{	Fields.GalleryImages[this]	=	value;	}

								}

								//	...

								public	class	RowFields	:	RowFieldsBase

								{

												//	...

												public	readonly	StringField	PrimaryImage;

												public	readonly	StringField	GalleryImages;

												//	...

								}

				}

}

Here	we	specify	that	these	fields	will	be	handled	by	ImageUploadEditor	and
MultipleImageUploadEditor	types.

FilenameFormat	specifies	the	naming	of	uploaded	files.	For	example,	Person	primary	image
will	be	uploaded	to	a	folder	under	App_Data/upload/Person/PrimaryImage/.

You	may	change	upload	root	(App_Data/upload)	to	anything	you	like	by	modifying
UploadSettings	appSettings	key	in	web.config.

	~		at	the	end	of	FilenameFormat	is	a	shortcut	for	the	automatic	naming	scheme
	{1:00000}/{0:00000000}_{2}	.

Here,	parameter	{0}	is	replaced	with	identity	of	the	record,	e.g.	PersonID.

Parameter	{1}	is	identity	/	1000.	This	is	useful	to	limit	number	of	files	that	is	stored	in	one
directory.

Adding	Primary	and	Gallery	Images

167

Parameter	{2}	is	a	unique	string	like	6l55nk6v2tiyi,	which	is	used	to	generate	a	new	file
name	on	every	upload.	This	helps	to	avoid	problems	caused	by	caching	on	client	side.

It	also	provides	some	security	so	file	names	can't	be	known	without	having	a	link.

Thus,	a	file	we	upload	for	person	primary	image	will	be	located	at	a	path	like	this:

>	App_Data\upload\Person\PrimaryImage\00000\00000001_6l55nk6v2tiyi.jpg

You	don't	have	to	follow	this	naming	scheme.	You	can	specify	your	own	format	like
	PersonPrimaryImage_{0}_{2}	.

Next	step	is	to	add	these	fields	to	forms	(MovieForm.cs	and	PersonForm.cs):

namespace	MovieTutorial.MovieDB.Forms

{

				//...

				public	class	PersonForm

				{

								public	String	Firstname	{	get;	set;	}

								public	String	Lastname	{	get;	set;	}

								public	String	PrimaryImage	{	get;	set;	}

								public	String	GalleryImages	{	get;	set;	}

								public	DateTime	BirthDate	{	get;	set;	}

								public	String	BirthPlace	{	get;	set;	}

								public	Gender	Gender	{	get;	set;	}

								public	Int32	Height	{	get;	set;	}

				}

}

Adding	Primary	and	Gallery	Images

168

namespace	MovieTutorial.MovieDB.Forms

{

				//...

				public	class	MovieForm

				{

								public	String	Title	{	get;	set;	}

								[TextAreaEditor(Rows	=	3)]

								public	String	Description	{	get;	set;	}

								[MovieCastEditor]

								public	List<Entities.MovieCastRow>	CastList	{	get;	set;	}

								public	String	PrimaryImage	{	get;	set;	}

								public	String	GalleryImages	{	get;	set;	}

								[TextAreaEditor(Rows	=	8)]

								public	String	Storyline	{	get;	set;	}

								public	Int32	Year	{	get;	set;	}

								public	DateTime	ReleaseDate	{	get;	set;	}

								public	Int32	Runtime	{	get;	set;	}

								public	Int32	GenreId	{	get;	set;	}

								public	MovieKind	Kind	{	get;	set;	}

				}

}

I	also	modified	Person	dialog	css	a	bit	to	have	more	space:

.s-MovieDB-PersonDialog	{

				>	.size	{	width:	700px;	height:	600px;	}

				.caption	{	width:	150px;	}

				.s-PersonMovieGrid	>	.grid-container	{	height:	500px;	}

}

This	is	what	we	get	now:

Adding	Primary	and	Gallery	Images

169

ImageUploadEditor	stores	file	name	directly	in	a	string	field,	while	MultipleImageUpload
editor	stores	file	names	in	a	string	field	with	JSON	array	format.

Removing	Northwind	and	Other	Samples

As	i	think	our	project	has	reached	a	good	state,	i'm	now	going	to	remove	Northwind	and
other	samples	from	MovieTutorial	project.

See	following	how-to	topic:

How	To:	Removing	Northwind	and	Other	Samples

Adding	Primary	and	Gallery	Images

170

Multi	Tenancy
In	this	tutorial	we	are	going	to	turn	Norhwind	into	a	multi-tenant	application.

Here	is	a	definition	of	multi-tenant	sofware	from	Wikipedia:

Software	Multitenancy	refers	to	a	software	architecture	in	which	a	single	instance	of	a
software	runs	on	a	server	and	serves	multiple	tenants.	A	tenant	is	a	group	of	users	who
share	a	common	access	with	specific	privileges	to	the	software	instance.	With	a
multitenant	architecture,	a	software	application	is	designed	to	provide	every	tenant	a
dedicated	share	of	the	instance	including	its	data,	configuration,	user	management,
tenant	individual	functionality	and	non-functional	properties.	Multitenancy	contrasts	with
multi-instance	architectures,	where	separate	software	instances	operate	on	behalf	of
different	tenants.	---Wikipedia

We'll	add	a	TenantId	field	to	every	table,	including	Users,	and	let	user	see	and	modify	only
records	belonging	to	her	tenant.	So,	tenants	will	work	in	isolation,	as	if	they	are	working	with
their	own	database.

Multi	tenant	applications	has	some	advantages	like	reduced	cost	of	management.	But	they
also	have	some	disadvantages.	For	example,	as	all	tenant	data	is	in	a	single	database,	a
tenant	can't	simply	take	or	backup	her	data	alone.	Performance	is	usually	reduced	as	there
are	more	records	to	handle.

With	increasing	trend	of	cloud	applications,	decreased	cost	of	virtualization,	and	with
features	like	migration,	its	now	easier	to	setup	multi-instance	apps.

I'd	personally	avoid	multi-tenant	applications.	It's	better	to	have	one	database	per	customer
in	my	opinion.

But	some	users	asked	about	how	to	implement	this	feature.	This	tutorial	will	help	us	explain
some	advanced	Serenity	topics	as	a	bonus,	along	with	multi	tenancy.

You	can	find	source	code	for	this	tutorial	at:

https://github.com/volkanceylan/MultiTenancy

Create	a	new	project	named	MultiTenancy

In	Visual	Studio	click	File	->	New	Project.	Make	sure	you	choose	Serene	template.	Type
MultiTenancy	as	name	and	click	OK.

In	Solution	explorer,	you	should	see	a	project	with	name	MultiTenancy.Web.

Multi	Tenancy

171

https://github.com/volkanceylan/MultiTenancy

Multi	Tenancy

172

Adding	Tenants	Table	and	TenantId	Field
We	need	to	add	a	TenantId	field	to	all	tables,	to	isolate	tenants	from	each	other.

So,	we	first	need	a	Tenants	table.

As	Northwind	tables	already	have	records,	we'll	define	a	primary	tenant	with	ID	1,	and	set	all
existing	records	TenantId	to	it.

It's	time	to	write	a	migration,	actually	two	migrations,	one	for	Northwind	and	one	for	Default
database.

DefaultDB_20170430_134800_MultiTenant.cs:

Adding	Tenants	Table	and	TenantId	Field

173

using	FluentMigrator;

namespace	MultiTenancy.Migrations.DefaultDB

{

				[Migration(20170430134800)]

				public	class	DefaultDB_20170430_134800_MultiTenant

								:	AutoReversingMigration

				{

								public	override	void	Up()

								{

												this.CreateTableWithId32("Tenants",	"TenantId",	s	=>	s

																.WithColumn("TenantName").AsString(100)

																				.NotNullable());

												Insert.IntoTable("Tenants")

																.Row(new

																{

																				TenantName	=	"Primary	Tenant"

																});

												Insert.IntoTable("Tenants")

																.Row(new

																{

																				TenantName	=	"Second	Tenant"

																});

												Insert.IntoTable("Tenants")

																.Row(new

																{

																				TenantName	=	"Third	Tenant"

																});

												Alter.Table("Users")

																.AddColumn("TenantId").AsInt32()

																				.NotNullable().WithDefaultValue(1);

												Alter.Table("Roles")

																.AddColumn("TenantId").AsInt32()

																				.NotNullable().WithDefaultValue(1);

												Alter.Table("Languages")

																.AddColumn("TenantId").AsInt32()

																				.NotNullable().WithDefaultValue(1);

								}

				}

}

I	have	created	Tenants	table	in	Default	database	where	user	tables	are.	Here	we	add	3
predefined	tenants.	We	actually	only	need	first	one	with	ID	1.

Adding	Tenants	Table	and	TenantId	Field

174

We	didn't	add	TenantId	column	to	tables	like	UserPermissions,	UserRoles,	RolePermissions
etc,	as	they	instrinsicly	have	TenantId	information	through	their	UserId	or	RoleId	(as	these
tables	already	have	TenantId	value)

Let's	write	another	migration	for	Nortwhind	database	to	add	TenantId	column	to	required
tables:

NorthwindDB_20160110_093500_MultiTenant.cs:

Adding	Tenants	Table	and	TenantId	Field

175

using	FluentMigrator;

namespace	MultiTenancy.Migrations.NorthwindDB

{

				[Migration(20170430194100)]

				public	class	NorthwindDB_20170430_194100_MultiTenant

								:	AutoReversingMigration

				{

								public	override	void	Up()

								{

												Alter.Table("Employees")

																.AddColumn("TenantId").AsInt32()

																				.NotNullable().WithDefaultValue(1);

												Alter.Table("Categories")

																.AddColumn("TenantId").AsInt32()

																				.NotNullable().WithDefaultValue(1);

												Alter.Table("Customers")

																.AddColumn("TenantId").AsInt32()

																				.NotNullable().WithDefaultValue(1);

												Alter.Table("Shippers")

																.AddColumn("TenantId").AsInt32()

																				.NotNullable().WithDefaultValue(1);

												Alter.Table("Suppliers")

																.AddColumn("TenantId").AsInt32()

																				.NotNullable().WithDefaultValue(1);

												Alter.Table("Orders")

																.AddColumn("TenantId").AsInt32()

																				.NotNullable().WithDefaultValue(1);

												Alter.Table("Products")

																.AddColumn("TenantId").AsInt32()

																				.NotNullable().WithDefaultValue(1);

												Alter.Table("Region")

																.AddColumn("TenantId").AsInt32()

																				.NotNullable().WithDefaultValue(1);

												Alter.Table("Territories")

																.AddColumn("TenantId").AsInt32()

																				.NotNullable().WithDefaultValue(1);

								}

				}

}

Adding	Tenants	Table	and	TenantId	Field

176

Adding	Tenants	Table	and	TenantId	Field

177

Generating	Code	for	Tenants	Table
Launch	Sergen	and	generate	code	for	Tenants	table	in	Default	connection:

Next	we'll	define	a	lookup	script	in	TenantRow	and	set	DisplayName	property	to	Tenants:

namespace	MultiTenancy.Administration.Entities

{

				//...

				[ConnectionKey("Default"),	DisplayName("Tenants"),	

					InstanceName("Tenant"),	TwoLevelCached]

				[LookupScript("Administration.Tenant")]

				public	sealed	class	TenantRow	:	Row,	IIdRow,	INameRow

				{

								[DisplayName("Tenant	Id"),	Identity]

								public	Int32?	TenantId

								{

												get	{	return	Fields.TenantId[this];	}

												set	{	Fields.TenantId[this]	=	value;	}

								}

//...

Let's	define	a	Administration:Tenants	permission	that	only	admin	user	will	have	(in
AdministrationPermissionKeys.cs):

Generating	Code	for	Tenants	Table

178

namespace	MultiTenancy.Administration

{

				public	class	PermissionKeys

				{

								public	const	string	Security	=	"Administration:Security";

								public	const	string	Translation	=	"Administration:Translation";

								public	const	string	Tenants	=	"Administration:Tenants";

				}

}

And	use	it	on	TenantRow:

[ConnectionKey("Default"),	DisplayNahme("Tenants"),	

	InstanceName("Tenant"),	TwoLevelCached]

[ReadPermission(PermissionKeys.Tenants)]

[ModifyPermission(PermissionKeys.Tenants)]

[LookupScript("Administration.Tenant")]

public	sealed	class	TenantRow	:	Row,	IIdRow,	INameRow

{

Generating	Code	for	Tenants	Table

179

Tenant	Selection	in	User	Dialog
We	added	a	TenantId	field	to	Users	table,	but	it's	not	defined	in	UserRow,	and	not	visible	in
user	dialog.

This	field,	should	only	be	seen	and	edited	by	admin	user.	Other	users,	even	if	we	give	them
access	to	users	page	to	manage	their	tenant	users,	shouldn't	be	able	to	see	or	change	this
information.

Let's	first	add	it	to	UserRow.cs:

Tenant	Selection	in	User	Dialog

180

namespace	MultiTenancy.Administration.Entities

{

				//...

				public	sealed	class	UserRow	:	LoggingRow,	IIdRow,	INameRow

				{

								//...

								[DisplayName("Last	Directory	Update"),	Insertable(false),	Updatable(false)]

								public	DateTime?	LastDirectoryUpdate

								{

												get	{	return	Fields.LastDirectoryUpdate[this];	}

												set	{	Fields.LastDirectoryUpdate[this]	=	value;	}

								}

								[DisplayName("Tenant"),	ForeignKey("Tenants",	"TenantId"),	LeftJoin("tnt")]

								[LookupEditor(typeof(TenantRow))]

								public	Int32?	TenantId

								{

												get	{	return	Fields.TenantId[this];	}

												set	{	Fields.TenantId[this]	=	value;	}

								}

								[DisplayName("Tenant"),	Expression("tnt.TenantName")]

								public	String	TenantName

								{

												get	{	return	Fields.TenantName[this];	}

												set	{	Fields.TenantName[this]	=	value;	}

								}

								//...

								public	class	RowFields	:	LoggingRowFields

								{

												//...

												public	readonly	DateTimeField	LastDirectoryUpdate;

												public	readonly	Int32Field	TenantId;

												public	readonly	StringField	TenantName;

												//...

								}

				}

}

To	edit	it,	we	need	to	add	it	to	UserForm.cs:

Tenant	Selection	in	User	Dialog

181

namespace	MultiTenancy.Administration.Forms

{

				using	Serenity;

				using	Serenity.ComponentModel;

				using	System;

				using	System.ComponentModel;

				[FormScript("Administration.User")]

				[BasedOnRow(typeof(Entities.UserRow))]

				public	class	UserForm

				{

								public	String	Username	{	get;	set;	}

								public	String	DisplayName	{	get;	set;	}

								[EmailEditor]

								public	String	Email	{	get;	set;	}

								[PasswordEditor]

								public	String	Password	{	get;	set;	}

								[PasswordEditor,	OneWay]

								public	String	PasswordConfirm	{	get;	set;	}

								[OneWay]

								public	string	Source	{	get;	set;	}

								public	Int32?	TenantId	{	get;	set;	}

				}

}

Need	to	also	increase	size	of	user	dialog	a	bit,	in	site.administration.less	to	make	space	for
tenant	selection:

.s-Administration-UserDialog	{

				>	.size	{	width:	650px;	}

				.caption	{	width:	150px;	}

				.s-PropertyGrid	.categories	{	height:	470px;	}

}

Now	open	User	Management	page	and	create	a	user	tenant2	that	belongs	to	Second
Tenant.

Tenant	Selection	in	User	Dialog

182

After	creating	this	user,	edit	its	permissions	and	grant	him	User,	Role	Management	and
Permissions	permission	as	this	will	be	our	administrative	user	for	Second	Tenant.

Logging	In	With	Tenant2
Signout	and	login	with	user	tenant2.

When	you	open	User	Management	page,	there	may	be	two	different	cases	you	may
experience.

In	first	case,	tenant2	might	be	able	to	open	user	dialog	and	change	his	and	any	other	users
tenant.	This	happens	if	your	browser	cached	the	tenant	lookup.

In	the	second	case,	you'll	see	that	tenant2	can't	open	User	dialog.	When	you	click	a	user
nothing	happens.

If	you	check	browser	console	(whenever	such	a	thing	occurs,	you	should	first	check	browser
console	for	errors),	you'll	see	an	error	like	this:

Tenant	Selection	in	User	Dialog

183

This	is	because,	our	TenantRow	has	Administration:Tenants	read	permission	which	is
inherited	by	lookup	script.

We	could	change	read	permission	for	tenant	lookup	script	to	something	else	to	resolve	this
error,	but	in	that	case	Tenant2	would	be	able	to	see	and	change	tenant	of	himself	and	any
other	user	including	admin.

This	is	not	what	we	wanted.

Let's	first	prevent	him	seeing	users	of	other	tenants.

Tenant	Selection	in	User	Dialog

184

Filtering	Users	By	TenantId
We	first	need	to	load	and	cache	user	tenant	information	in	UserDefinition.

Open	UserDefinition.cs	under	Multitenancy.Web/	Modules/	Administration/	User/
Authentication	and	add	a	TenantId	property.

namespace	MultiTenancy.Administration

{

				using	Serenity;

				using	System;

				[Serializable]

				public	class	UserDefinition	:	IUserDefinition

				{

								public	string	Id	{	get	{	return	UserId.ToInvariant();	}	}

								public	string	DisplayName	{	get;	set;	}

								public	string	Email	{	get;	set;	}

								public	short	IsActive	{	get;	set;	}

								public	int	UserId	{	get;	set;	}

								public	string	Username	{	get;	set;	}

								public	string	PasswordHash	{	get;	set;	}

								public	string	PasswordSalt	{	get;	set;	}

								public	string	Source	{	get;	set;	}

								public	DateTime?	UpdateDate	{	get;	set;	}

								public	DateTime?	LastDirectoryUpdate	{	get;	set;	}

								public	int	TenantId	{	get;	set;	}

				}

}

This	is	the	class	that	is	returned	when	you	ask	for	current	user	through
Authorization.UserDefinition.

We	also	need	to	modify	the	code	where	this	class	is	loaded.	In	the	same	folder,	edit
UserRetrieveService.cs	and	change	GetFirst	method	like	below:

Filtering	Users	By	TenantId

185

private	UserDefinition	GetFirst(IDbConnection	connection,	BaseCriteria	criteria)

{

				var	user	=	connection.TrySingle<Entities.UserRow>(criteria);

				if	(user	!=	null)

								return	new	UserDefinition

								{

												UserId	=	user.UserId.Value,

												Username	=	user.Username,

												Email	=	user.Email,

												DisplayName	=	user.DisplayName,

												IsActive	=	user.IsActive.Value,

												Source	=	user.Source,

												PasswordHash	=	user.PasswordHash,

												PasswordSalt	=	user.PasswordSalt,

												UpdateDate	=	user.UpdateDate,

												LastDirectoryUpdate	=	user.LastDirectoryUpdate,

												TenantId	=	user.TenantId.Value

								};

				return	null;

}

Now,	it's	time	to	filter	listed	users	by	TenantId.	Open	UserRepository.cs,	locate
MyListHandler	class	and	modify	it	like	this:

private	class	MyListHandler	:	ListRequestHandler<MyRow>

{

				protected	override	void	ApplyFilters(SqlQuery	query)

				{

								base.ApplyFilters(query);

								var	user	=	(UserDefinition)Authorization.UserDefinition;

								if	(!Authorization.HasPermission(PermissionKeys.Tenants))

												query.Where(fld.TenantId	==	user.TenantId);

				}

}

Here,	we	first	get	a	reference	to	cached	user	definition	of	currently	logged	user.

We	check	if	he	has	tenant	administration	permission,	which	only	admin	will	have	in	the	end.
If	not,	we	filter	listed	records	by	TenantId.

Filtering	Users	By	TenantId

186

Removing	Tenant	Dropdown	From	User
Form
After	you	rebuild,	and	launch,	now	user	page	will	be	like	this:

Yes,	he	can't	see	admin	user	anymore,	but	something	is	wrong.	When	you	click	tenant2,
nothing	will	happen	and	you'll	get	an	error	"Can't	load	script	data:
Lookup.Administration.Tenant"	in	browser	console:

This	error	is	not	related	to	our	recent	filtering	at	repository	level.	It	can't	load	this	lookup
script,	because	current	user	has	no	permission	to	Tenants	table.	But	how	did	he	see	it	last
time	(in	one	case)?

He	could	see	it,	because	we	first	logged	in	as	admin	and	when	we	open	edit	dialog	for	user,
we	loaded	this	lookup	script.	Browser	cached	it,	so	when	we	logged	in	with	tenant2	and
open	edit	dialog,	it	loaded	tenants	from	browser	cache.

But	this	time,	as	we	rebuild	project,	browser	tried	to	load	it	from	server,	and	we	got	this	error,
as	tenant2	doesn't	have	this	permission.	It's	ok,	we	don't	want	him	to	have	this	permission,
but	how	to	avoid	this	error?

Removing	Tenant	Dropdown	From	User	Form

187

We	need	to	remove	Tenant	field	from	the	user	form.	But	we	need	that	field	for	admin	user,	so
we	can't	simply	delete	it	from	UserForm.cs.	Thus,	we	need	to	do	it	conditionally.

Build	the	project,	transform	all	templates	and	add	method	below	to	UserDialog.ts:

protected	getPropertyItems()	{

				var	items	=	super.getPropertyItems();

				if	(!Q.Authorization.hasPermission("Administration:Tenants"))

								items	=	items.filter(x	=>	x.name	!=	UserRow.Fields.TenantId);

				return	items;

}

Dialogs	gets	list	of	fields	it	will	show	in	its	form	by	getPropertyItems	method,	which	in	turn
loads	them	from	server	side	form	definition.

Here	we	exclude	TenantId	field,	if	current	user	doesn't	have	the	tenants	permission.

This	doesn't	modify	the	original	user	form,	it	just	changes	list	for	this	dialog	instance.

User	tenant2	can	now	open	the	user	dialog.

Removing	Tenant	Dropdown	From	User	Form

188

Securing	Tenant	Selection	At	Server	Side
When	you	log	in	with	tenant2	user	and	open	its	edit	form,	Tenant	selection	dropdown	is	not
displayed,	so	he	can't	change	his	tenant	right?

Wrong!

If	he	is	an	ordinary	user,	he	can't.	But	if	he	has	some	knowledge	of	how	Serenity	and	its
services	work,	he	could.

When	you	are	working	with	web,	you	got	to	take	security	much	more	seriously.

It's	very	easy	to	create	security	holes	in	web	applications	unless	you	handle	validations	both
at	client	side	and	server	side.

Let's	demonstrate	it.	Open	Chrome	console,	while	logged	in	with	user	tenant2.

Copy	and	paste	this	into	console:

Q.serviceCall({	

				service:	'Administration/User/Update',	

				request:	{	

								EntityId:	2,	

								Entity:	{	

												UserId:	2,	

												TenantId:	1	

								}

				}

});

Now	refresh	the	user	management	page,	you'll	see	that	tenant2	can	see	admin	user	now!

We	called	User	Update	service	with	javascript,	and	changed	tenant2	user	TenaNntId	to	1
(Primary	Tenant).

Let's	revert	it	back	to	Second	Tenant	(2)	first,	then	we'll	fix	this	security	hole:

Securing	Tenant	Selection	At	Server	Side

189

Q.serviceCall({	

				service:	'Administration/User/Update',	

				request:	{	

								EntityId:	2,	

								Entity:	{	

												UserId:	2,	

												TenantId:	2	

								}

				}

});

Luckily,	Serenity	provides	field	level	permissions.	Edit	UserRow.cs	to	let	only	users	with
Administration:Tenants	permission	to	see	and	edit	tenant	information.

[LookupEditor(typeof(TenantRow))]

[ReadPermission(PermissionKeys.Tenants)]

public	Int32?	TenantId

{

				get	{	return	Fields.TenantId[this];	}

				set	{	Fields.TenantId[this]	=	value;	}

}

Now	only	admin	can	see	and	update	tenant	field	for	users.

We	didn't	have	to	also	set	ModifyPermission	as	if	a	user	doesn't	have	the	read
permission,	he	doesn't	have	the	write	permission	by	default.

Build	your	project,	then	try	typing	this	into	console	again:

Q.serviceCall({	

				service:	'Administration/User/Update',	

				request:	{	

								EntityId:	2,	

								Entity:	{	

												UserId:	2,	

												TenantId:	1	

								}

				}

});

You	will	now	get	this	error:

Tenant	field	is	read	only!

Securing	Tenant	Selection	At	Server	Side

190

Securing	Tenant	Selection	At	Server	Side

191

Setting	TenantId	For	New	Users
While	logged	in	with	Tenant2,	try	to	create	a	new	user,	User2.

You	won't	get	any	error	but	by	suprise,	you	won't	see	the	newly	created	user	in	list.	What
happened	to	User2?

As	we	set	default	value	for	TenantId	to	1	in	migrations,	now	User2	has	1	as	TenantId	and	is
a	member	of	Primary	Tenant.

We	have	to	set	new	users	TenantId	to	same	value	with	logged	in	user.

Modify	SetInternalFields	method	of	UserRepository	like	below:

protected	override	void	SetInternalFields()

{

				base.SetInternalFields();

				if	(IsCreate)

				{

								Row.Source	=	"site";

								Row.IsActive	=	Row.IsActive	??	1;

								if	(!Authorization.HasPermission(Administration.PermissionKeys.Tenants)	||

												Row.TenantId	==	null)

								{

												Row.TenantId	=	((UserDefinition)Authorization.UserDefinition)

																.TenantId;

								}

				}

				if	(IsCreate	||	!Row.Password.IsEmptyOrNull())

				{

								string	salt	=	null;

								Row.PasswordHash	=	GenerateHash(password,	ref	salt);

								Row.PasswordSalt	=	salt;

				}

}

Here,	we	set	TenantId	to	the	same	value	with	current	user,	unless	he	has	tenant
administration	permission.

Now	try	to	create	a	new	user	User2b	and	this	time	you'll	see	him	on	the	list.

Setting	TenantId	For	New	Users

192

Preventing	Edits	To	Users	From	Other
Tenants
Remember	that	user	tenant2	could	update	his	TenantId	with	some	service	call,	and	we	had
to	secure	it	server	side.

Similar	to	this,	even	if	he	can't	see	users	from	other	tenants	by	default,	he	can	actually
retrieve	and	update	them.

Time	to	hack	again.

Open	Chrome	console	and	type	this:

new	MultiTenancy.Administration.UserDialog().loadByIdAndOpenDialog(1)

What?	He	could	open	user	dialog	for	admin	and	update	it!

MultiTenancy.Administration.UserDialog	is	the	dialog	class	that	is	opened	when	you	click	a
username	in	user	administration	page.

We	created	a	new	instance	of	it,	and	asked	to	load	a	user	entity	by	its	ID.	Admin	user	has	an
ID	of	1.

So,	to	load	the	entity	with	ID	1,	dialog	called	Retrieve	service	of	UserRepository.

Remember	that	we	did	filtering	in	List	method	of	UserRepository,	not	Retrieve.	So,	service
has	no	idea,	if	it	should	return	this	record	from	another	tenant,	or	not.

It's	time	to	secure	retrieve	service	in	UserRepository:

private	class	MyRetrieveHandler	:	RetrieveRequestHandler<MyRow>

{

				protected	override	void	PrepareQuery(SqlQuery	query)

				{

								base.PrepareQuery(query);

								var	user	=	(UserDefinition)Authorization.UserDefinition;

								if	(!Authorization.HasPermission(PermissionKeys.Tenants))

												query.Where(fld.TenantId	==	user.TenantId);

				}

}

We	did	same	changes	in	MyListHandler	before.

Preventing	Edits	To	Users	From	Other	Tenants

193

If	you	try	same	Javascript	code	now,	you'll	get	an	error:

Record	not	found.	It	might	be	deleted	or	you	don't	have	required	permissions!

But,	we	could	still	update	record	calling		Update		service	manually.	So,	need	to	secure
MySaveHandler	too.

Change	its	ValidateRequest	method	like	this:

protected	override	void	ValidateRequest()

{

				base.ValidateRequest();

				if	(IsUpdate)

				{

								var	user	=	(UserDefinition)Authorization.UserDefinition;

								if	(Old.TenantId	!=	user.TenantId)

												Authorization.ValidatePermission(PermissionKeys.Tenants);

								//	...

Here	we	check	if	it's	an	update,	and	if	TenantId	of	record	being	updated	(Old.TenantId)	is
different	than	currently	logged	user's	TenantId.	If	so,	we	call
Authorization.ValidatePermission	method	to	ensure	that	user	has	tenant	administration
permission.	It	will	raise	an	error	if	not.

Authorization	has	been	denied	for	this	request!

Preventing	To	Delete	Users	From	Other
Tenants
There	are	delete	and	undelete	handlers	in	UserRepository,	and	they	suffer	from	similar
security	holes.

Using	similar	methods,	we	need	to	secure	them	too:

Preventing	Edits	To	Users	From	Other	Tenants

194

private	class	MyDeleteHandler	:	DeleteRequestHandler<MyRow>

{

				protected	override	void	ValidateRequest()

				{

								base.ValidateRequest();

								var	user	=	(UserDefinition)Authorization.UserDefinition;

								if	(Row.TenantId	!=	user.TenantId)

												Authorization.ValidatePermission(PermissionKeys.Tenants);

				}

}

private	class	MyUndeleteHandler	:	UndeleteRequestHandler<MyRow>

{

				protected	override	void	ValidateRequest()

				{

								base.ValidateRequest();

								var	user	=	(UserDefinition)Authorization.UserDefinition;

								if	(Row.TenantId	!=	user.TenantId)

												Authorization.ValidatePermission(PermissionKeys.Tenants);

				}

}

Preventing	Edits	To	Users	From	Other	Tenants

195

Hiding	the	Tenant	Administration
Permission
We	now	have	one	little	problem.	User	tenant2	has	permission	Administration:Security	so	he
can	access	user	and	role	permission	dialogs.	Thus,	he	can	grant	himself
Administration:Tenants	permission	using	the	permission	UI.

Serenity	scans	your	assemblies	for	attributes	like	ReadPermission,	WritePermission,
PageAuthorize,	ServiceAuthorize	etc.	and	lists	these	permissions	in	edit	permissions	dialog.

We	should	first	remove	it	from	this	pre-populated	list.

Find	method,	ListPermissionKeys	in	UserPermissionRepository.cs:

Hiding	the	Tenant	Administration	Permission

196

public	ListResponse<string>	ListPermissionKeys()

{

				return	LocalCache.Get("Administration:PermissionKeys",	TimeSpan.Zero,	()	=>

				{

								//...

								result.Remove(Administration.PermissionKeys.Tenants);

								result.Remove("*");

								result.Remove("?");

								//...

Now,	this	permission	won't	be	listed	in	Edit	User	Permissions	or	Edit	Role	Permissions
dialog.

But,	still,	he	can	grant	this	permission	to	himself,	by	some	little	hacking	through
UserPermissionRepository.Update	or	RolePermissionRepository.Update	methods.

We	should	add	some	checks	to	prevent	this:

public	class	UserPermissionRepository

{

				public	SaveResponse	Update(IUnitOfWork	uow,	

								UserPermissionUpdateRequest	request)

				{

								//...

								var	newList	=	new	Dictionary<string,	bool>(

												StringComparer.OrdinalIgnoreCase);

								foreach	(var	p	in	request.Permissions)

												newList[p.PermissionKey]	=	p.Grant	??	false;

								var	allowedKeys	=	ListPermissionKeys()

												.Entities.ToDictionary(x	=>	x);

								if	(newList.Keys.Any(x	=>	!allowedKeys.ContainsKey(x)))

												throw	new	AccessViolationException();

								//...

Hiding	the	Tenant	Administration	Permission

197

public	class	RolePermissionRepository

{

				public	SaveResponse	Update(IUnitOfWork	uow,	

								RolePermissionUpdateRequest	request)

				{

								//...

								var	newList	=	new	HashSet<string>(

												request.Permissions.ToList(),

												StringComparer.OrdinalIgnoreCase);

								var	allowedKeys	=	new	UserPermissionRepository()

												.ListPermissionKeys()

												.Entities.ToDictionary(x	=>	x);

								if	(newList.Any(x	=>	!allowedKeys.ContainsKey(x)))

												throw	new	AccessViolationException();

								//...

Here	we	check	if	any	of	the	new	permission	keys	that	are	tried	to	be	granted,	are	not	listed
in	permission	dialog.	If	so,	this	is	probably	a	hack	attempt.

Actually	this	check	should	be	the	default,	even	without	multi-tenant	systems,	but	usually
we	trust	administrative	users.	Here,	administrators	will	be	only	managing	their	own
tenants,	so	we	certainly	need	this	check.

Hiding	the	Tenant	Administration	Permission

198

Making	Roles	Multi-Tenant
So	far,	we	have	made	users	page	work	in	multi-tenant	style.	Seems	like	we	did	too	many
changes	to	make	it	work.	But	remember	that	we	are	trying	to	turn	a	system	that	is	not
designed	to	be	multi-tenant	into	such	one.

Let's	apply	similar	principles	to	the	Roles	table.

Again,	a	user	in	one	tenant	shouldn't	see	or	modify	roles	in	other	tenants	and	work	in
isolation.

We	start	by	adding	TenantId	property	to	RoleRow.cs:

namespace	MultiTenancy.Administration.Entities

{

				//...

				public	sealed	class	RoleRow	:	Row,	IIdRow,	INameRow

				{

								[Insertable(false),	Updatable(false)]

								public	Int32?	TenantId

								{

												get	{	return	Fields.TenantId[this];	}

												set	{	Fields.TenantId[this]	=	value;	}

								}

								//...

								public	class	RowFields	:	RowFieldsBase

								{

												//...

												public	Int32Field	TenantId;

												//...

								}

				}

}

Then	we'll	do	several	changes	in	RoleRepository.cs:

private	class	MySaveHandler	:	SaveRequestHandler<MyRow>

{

				protected	override	void	SetInternalFields()

				{

								base.SetInternalFields();

								if	(IsCreate)

												Row.TenantId	=	((UserDefinition)Authorization.UserDefinition).TenantId;

				}

Making	Roles	Multi-Tenant

199

					protected	override	void	ValidateRequest()

					{

									base.ValidateRequest();

									if	(IsUpdate)

									{

													var	user	=	(UserDefinition)Authorization.UserDefinition;

													if	(Old.TenantId	!=	user.TenantId)

																	Authorization.ValidatePermission(PermissionKeys.Tenants);

									}

					}

}

private	class	MyDeleteHandler	:	DeleteRequestHandler<MyRow>

{

				protected	override	void	ValidateRequest()

				{

								base.ValidateRequest();

								var	user	=	(UserDefinition)Authorization.UserDefinition;

								if	(Row.TenantId	!=	user.TenantId)

												Authorization.ValidatePermission(PermissionKeys.Tenants);

				}

}

private	class	MyRetrieveHandler	:	RetrieveRequestHandler<MyRow>

{

				protected	override	void	PrepareQuery(SqlQuery	query)

				{

								base.PrepareQuery(query);

								var	user	=	(UserDefinition)Authorization.UserDefinition;

								if	(!Authorization.HasPermission(PermissionKeys.Tenants))

												query.Where(fld.TenantId	==	user.TenantId);

				}

}

private	class	MyListHandler	:	ListRequestHandler<MyRow>

{

				protected	override	void	ApplyFilters(SqlQuery	query)

				{

								base.ApplyFilters(query);

								var	user	=	(UserDefinition)Authorization.UserDefinition;

								if	(!Authorization.HasPermission(PermissionKeys.Tenants))

												query.Where(fld.TenantId	==	user.TenantId);

				}

}

Making	Roles	Multi-Tenant

200

Making	Roles	Multi-Tenant

201

Using	Serenity	Service	Behaviors
If	wanted	to	extend	this	multi-tenant	system	to	other	tables	in	Northwind,	we	would	repeat
same	steps	we	did	with	Roles.	Though	it	doesn't	look	so	hard,	it's	too	much	of	manual	work.

Serenity	provides	service	behavior	system,	which	allows	you	to	intercept	Create,	Update,
Retrieve,	List,	Delete	handlers	and	add	custom	code	to	them.

Some	operations	in	these	handlers,	like	capture	log,	unique	constraint	validation	etc.	are
already	implemented	as	service	behaviors.

Behaviors	might	be	activated	for	all	rows,	or	based	on	some	rule,	like	having	a	specific
attribute	or	interface.	For	example,	CaptureLogBehavior	activates	for	rows	with	[CaptureLog]
attribute.

We'll	first	define	an	interface	IMultiTenantRow	that	will	trigger	our	new	behavior.	Place	this
class	in	file	IMultiTenantRow.cs,	next	to	TenantRow.cs:

using	Serenity.Data;

namespace	MultiTenancy

{

				public	interface	IMultiTenantRow

				{

								Int32Field	TenantIdField	{	get;	}

				}

}

Than	add	this	behavior	in	file	MultiTenantBehavior.cs	next	to	it:

using	MultiTenancy.Administration;

using	Serenity;

using	Serenity.Data;

using	Serenity.Services;

namespace	MultiTenancy

{

				public	class	MultiTenantBehavior	:	IImplicitBehavior,

								ISaveBehavior,	IDeleteBehavior,

								IListBehavior,	IRetrieveBehavior

				{

								private	Int32Field	fldTenantId;

								public	bool	ActivateFor(Row	row)

								{

												var	mt	=	row	as	IMultiTenantRow;

Using	Serenity	Service	Behaviors

202

												if	(mt	==	null)

																return	false;

												fldTenantId	=	mt.TenantIdField;

												return	true;

								}

								public	void	OnPrepareQuery(IRetrieveRequestHandler	handler,	

												SqlQuery	query)

								{

												var	user	=	(UserDefinition)Authorization.UserDefinition;

												if	(!Authorization.HasPermission(PermissionKeys.Tenants))

																query.Where(fldTenantId	==	user.TenantId);

								}

								public	void	OnPrepareQuery(IListRequestHandler	handler,	

												SqlQuery	query)

								{

												var	user	=	(UserDefinition)Authorization.UserDefinition;

												if	(!Authorization.HasPermission(PermissionKeys.Tenants))

																query.Where(fldTenantId	==	user.TenantId);

								}

								public	void	OnSetInternalFields(ISaveRequestHandler	handler)

								{

												if	(handler.IsCreate)

																fldTenantId[handler.Row]	=

																				((UserDefinition)Authorization

																								.UserDefinition).TenantId;

								}

								public	void	OnValidateRequest(ISaveRequestHandler	handler)

								{

												if	(handler.IsUpdate)

												{

																var	user	=	(UserDefinition)Authorization.UserDefinition;

																if	(fldTenantId[handler.Old]	!=	fldTenantId[handler.Row])

																				Authorization.ValidatePermission(PermissionKeys.Tenants);

												}

								}

								public	void	OnValidateRequest(IDeleteRequestHandler	handler)

								{

												var	user	=	(UserDefinition)Authorization.UserDefinition;

												if	(fldTenantId[handler.Row]	!=	user.TenantId)

																Authorization.ValidatePermission(

																				PermissionKeys.Tenants);

								}

								public	void	OnAfterDelete(IDeleteRequestHandler	handler)	{	}

								public	void	OnAfterExecuteQuery(IRetrieveRequestHandler	handler)	{	}

								public	void	OnAfterExecuteQuery(IListRequestHandler	handler)	{	}

								public	void	OnAfterSave(ISaveRequestHandler	handler)	{	}

Using	Serenity	Service	Behaviors

203

								public	void	OnApplyFilters(IListRequestHandler	handler,	SqlQuery	query)	{	}

								public	void	OnAudit(IDeleteRequestHandler	handler)	{	}

								public	void	OnAudit(ISaveRequestHandler	handler)	{	}

								public	void	OnBeforeDelete(IDeleteRequestHandler	handler)	{	}

								public	void	OnBeforeExecuteQuery(IRetrieveRequestHandler	handler)	{	}

								public	void	OnBeforeExecuteQuery(IListRequestHandler	handler)	{	}

								public	void	OnBeforeSave(ISaveRequestHandler	handler)	{	}							

								public	void	OnPrepareQuery(IDeleteRequestHandler	handler,	SqlQuery	query)	{	}

								public	void	OnPrepareQuery(ISaveRequestHandler	handler,	SqlQuery	query)	{	}

								public	void	OnReturn(IDeleteRequestHandler	handler)	{	}

								public	void	OnReturn(IRetrieveRequestHandler	handler)	{	}

								public	void	OnReturn(IListRequestHandler	handler)	{	}

								public	void	OnReturn(ISaveRequestHandler	handler)	{	}

								public	void	OnValidateRequest(IRetrieveRequestHandler	handler)	{	}

								public	void	OnValidateRequest(IListRequestHandler	handler)	{	}

				}

}

Behavior	classes	with	IImplicitBehavior	interface	decide	if	they	should	be	activated	for	a
specific	row	type.

They	do	this	by	implementing	ActivateFor	method,	which	is	called	by	request	handlers.

In	this	method,	we	check	if	row	type	implements	IMultiTenantRow	interface.	If	not	it	simply
returns	false.

Then	we	get	a	private	reference	to	TenantIdField	to	reuse	it	later	in	other	methods.

ActivateFor	is	only	called	once	per	every	handler	type	and	row.	If	this	method	returns	true,
behavior	instance	is	cached	aggresively	for	performance	reasons,	and	reused	for	any
request	for	this	row	and	handler	type.

Thus,	everything	you	write	in	other	methods	must	be	thread-safe,	as	one	instance	is	shared
by	all	requests.

A	behavior,	might	intercept	one	or	more	of	Retrieve,	List,	Save,	Delete	handlers.	It	does	this
by	implementing	IRetrieveBehavior,	IListBehavior,	ISaveBehavior,	or	IDeleteBehavior
interfaces.

Here,	we	need	to	intercept	all	of	these	service	calls,	so	we	implement	all	interfaces.

We	only	fill	in	methods	we	are	interested	in,	and	leave	others	empty.

The	methods	we	implement	here,	corresponds	to	methods	we	override	in	RoleRepository.cs
in	previous	section.	The	code	they	contain	is	almost	same,	except	here	we	need	to	be	more
generic,	as	this	behavior	will	work	for	any	row	type	implementing	IMultiTenantRow.

Using	Serenity	Service	Behaviors

204

Reimplementing	RoleRepository	With	Using
the	Behavior
Now	revert	every	change	we	made	in	RoleRepository.cs:

private	class	MySaveHandler	:	SaveRequestHandler<MyRow>	{	}

private	class	MyDeleteHandler	:	DeleteRequestHandler<MyRow>	{	}

private	class	MyRetrieveHandler	:	RetrieveRequestHandler<MyRow>	{	}

private	class	MyListHandler	:	ListRequestHandler<MyRow>	{	}

And	add	IMultiTenantRow	interface	to	RoleRow:

namespace	MultiTenancy.Administration.Entities

{

				//...

				public	sealed	class	RoleRow	:	Row,	IIdRow,	INameRow,	IMultiTenantRow

				{

								//...

								public	Int32Field	TenantIdField

								{

												get	{	return	Fields.TenantId;	}

								}

								//...

				}

}

You	should	get	the	same	result	with	much	less	code.	Declarative	programming	is	almost
always	better.

Using	Serenity	Service	Behaviors

205

Extending	Multi-Tenant	Behavior	To
Northwind
As	now	we	have	a	behavior	handling	repository	details,	we	just	need	to	add
IMultiTenantRow	interface	to	rows	and	add	TenantId	property.

Start	with	SupplierRow.cs:

namespace	MultiTenancy.Northwind.Entities

{

				//...

				public	sealed	class	SupplierRow	:	Row,	

								IIdRow,	INameRow,	IMultiTenantRow

				{

								//...

								[Insertable(false),	Updatable(false)]

								public	Int32?	TenantId

								{

												get	{	return	Fields.TenantId[this];	}

												set	{	Fields.TenantId[this]	=	value;	}

								}

								public	Int32Field	TenantIdField

								{

												get	{	return	Fields.TenantId;	}

								}

								//...

								public	class	RowFields	:	RowFieldsBase

								{

												//...

												public	readonly	Int32Field	TenantId;

								}

				}

}

When	you	these	changes	in	SupplierRow	and	build,	you'll	see	that	tenant2	can't	see
suppliers	from	other	tenants	in	suppliers	page.

Now	repeat	these	for	EmployeeRow,	CategoryRow,	CustomerRow,	ShipperRow,	OrderRow,
ProductRow,	RegionRow	and	TerritoryRow.

Extending	Multi-Tenant	Behavior	To	Northwind

206

Extending	Multi-Tenant	Behavior	To	Northwind

207

Handling	Lookup	Scripts
If	we	open	Suppliers	page	now,	we'll	see	that	tenant2	can	only	see	suppliers	that	belongs	to
its	tenant.	But	on	top	right	of	the	grid,	in	country	dropdown,	all	countries	are	listed:

This	data	is	feed	to	script	side	through	a	dynamic	script.	It	doesn't	load	this	data	with	List
services	we	handled	recently.

The	lookup	script	that	produces	this	dropdown	is	defined	in	SupplierCountryLookup.cs:

Handling	Lookup	Scripts

208

namespace	MultiTenancy.Northwind.Scripts

{

				using	Serenity.ComponentModel;

				using	Serenity.Data;

				using	Serenity.Web;

				[LookupScript("Northwind.SupplierCountry")]

				public	class	SupplierCountryLookup	:	

								RowLookupScript<Entities.SupplierRow>

				{

								public	SupplierCountryLookup()

								{

												IdField	=	TextField	=	"Country";

								}

								protected	override	void	PrepareQuery(SqlQuery	query)

								{

												var	fld	=	Entities.SupplierRow.Fields;

												query.Distinct(true)

																.Select(fld.Country)

																.Where(

																				new	Criteria(fld.Country)	!=	""	&

																				new	Criteria(fld.Country).IsNotNull());

								}

								protected	override	void	ApplyOrder(SqlQuery	query)

								{

								}

				}

}

We	couldn't	use	a	simple	[LookupScript]	attribute	on	a	row	class	here,	because	there	is
actually	no	country	table	in	Northwind	database.	We	are	collecting	country	names	from
existing	records	in	Supplier	table	using	distinct.

We	should	filter	its	query	by	current	tenant.

But	this	lookup	class	derives	from	RowLookupScript	base	class.	Let's	create	a	new	base
class,	to	prepare	for	other	lookup	scripts	that	we'll	have	to	handle	later.

Handling	Lookup	Scripts

209

namespace	MultiTenancy.Northwind.Scripts

{

				using	Administration;

				using	Serenity;

				using	Serenity.Data;

				using	Serenity.Web;

				using	System;

				public	class	MultiTenantRowLookupScript<TRow>	:	

								RowLookupScript<TRow>

								where	TRow	:	Row,	IMultiTenantRow,	new()

				{

								public	MultiTenantRowLookupScript()

								{

												Expiration	=	TimeSpan.FromDays(-1);

								}

								protected	override	void	PrepareQuery(SqlQuery	query)

								{

												base.PrepareQuery(query);

												AddTenantFilter(query);

								}

								protected	void	AddTenantFilter(SqlQuery	query)

								{

												var	r	=	new	TRow();

												query.Where(r.TenantIdField	==

																((UserDefinition)Authorization.UserDefinition).TenantId);

								}

								public	override	string	GetScript()

								{

												return	TwoLevelCache.GetLocalStoreOnly("MultiTenantLookup:"	+	

																				this.ScriptName	+	":"	+

																				((UserDefinition)Authorization.UserDefinition).TenantId,	

																				TimeSpan.FromHours(1),

																new	TRow().GetFields().GenerationKey,	()	=>

																{

																				return	base.GetScript();

																});

								}

				}

}

This	will	be	our	base	class	for	multi-tenant	lookup	scripts.

We	first	set	expiration	to	a	negative	timespan	to	disable	caching.	Why	do	we	have	to	do
this?	Because	dynamic	script	manager	caches	lookup	scripts	by	their	keys.	But	we'll	have
multiple	versions	of	a	lookup	script	based	on	TenantId	values.

Handling	Lookup	Scripts

210

We'll	turn	off	caching	at	dynamic	script	manager	level	and	handle	caching	ourself	in
GetScript	method.	In	GetScript	method,	we	are	using	TwoLevelCache.GetLocalStoreOnly	to
call	base	method,	that	generates	our	lookup	script,	and	cache	its	result	with	a	cache	key
including	TenantId.

See	relevant	section	for	more	info	about	TwoLevelCache	class.

By	overriding,	PrepareQuery	method,	we	are	adding	a	filter	by	current	TenantId,	just	like	we
did	in	list	service	handlers.

Now	its	time	to	rewrite	our	SupplierCountryLookup	using	this	new	base	class:

namespace	MultiTenancy.Northwind.Scripts

{

				using	Serenity.ComponentModel;

				using	Serenity.Data;

				using	Serenity.Web;

				[LookupScript("Northwind.SupplierCountry")]

				public	class	SupplierCountryLookup	:	

								MultiTenantRowLookupScript<Entities.SupplierRow>

				{

								public	SupplierCountryLookup()

								{

												IdField	=	TextField	=	"Country";

								}

								protected	override	void	PrepareQuery(SqlQuery	query)

								{

												var	fld	=	Entities.SupplierRow.Fields;

												query.Distinct(true)

																.Select(fld.Country)

																.Where(

																				new	Criteria(fld.Country)	!=	""	&

																				new	Criteria(fld.Country).IsNotNull());

												AddTenantFilter(query);

								}

								protected	override	void	ApplyOrder(SqlQuery	query)

								{

								}

				}

}

We	just	called	AddTenantFilter	method	manually,	because	we	weren't	calling	base
PrepareQuery	method	here	(so	it	won't	be	called	by	base	class).

Please	first	delete	Northwind.DynamicScripts.cs	file,	if	you	have	it.

Handling	Lookup	Scripts

211

There	are	several	more	similar	lookup	scripts	in	CustomerCountryLookup,
CustomerCityLookup,
OrderShipCityLookup,	OrderShipCountryLookup.	I'll	do	similar	changes	in	them.	Change
base	class	to	MultiTenantRowLookupScript	and	call	AddTenantFilter	in	PrepareQuery
method.

Lookup	Script	Declarations	On	Rows
We	now	have	one	more	problem	to	solve.	If	you	open	Orders	page,	you'll	see	that	Ship	Via
and	Employee	filter	dropdowns	still	lists	records	from	other	tenants.	It	is	because	we	defined
their	lookup	scripts	by	a	[LookupScript]	attribute	on	their	rows.

By	default,	LookupScript	generates	a	lookup	instance	based	on		RowLookupScript<>		type.
We	need	to	change	it	to		MultiTenantRowLookupScript<>		for	these	multi-tenant	rows.

Let's	fix	employee	lookup	first.	Replace	[LookupScript]	attribute	like	below	in	EmployeeRow.

[LookupScript("Northwind.Employee",	

	LookupType	=	typeof(MultiTenantRowLookupScript<>))]

public	sealed	class	EmployeeRow	:	Row,	IIdRow,	

			INameRow,	IMultiTenantRow

{

				//...

Note	that	this	requires	Serenity	2.9.22+

Do	similar	(add	LookupType)	for	Shipper,	Product,	Supplier,	Category,	Region	and	Territory
rows.

Now	Northwind	supports	multi-tenancy.

There	might	be	some	glitches	i	missed,	report	in	Serenity	Github	repository	if	any.

Handling	Lookup	Scripts

212

Meeting	Management	(In	Progress...)
In	this	tutorial	we	are	going	to	develop	a	meeting	management	system	that	will	help	us	keep
a	track	of	corporate	meetings.

We'll	first	plan	a	meeting,	with	its	location,	time,	agenda	and	attendees,	then	send	an
invitation	to	those	attendees	with	an	e-mail.

Application	will	also	let	us	store	decisions	taken	in	the	meeting,	and	will	inform	attendees
with	a	meeting	report	e-mail	containing	these	decisions.

Code	for	this	tutorial	will	be	available	at:

https://github.com/volkanceylan/MeetingManagement

Creating	Project

Start	by	creating	a	new	project	using	Serene	template,	and	name	it	MeetingManagement.

Removing	Northwind

Remove	Northwind	using	the	how-to	guide.

Meeting	Management

213

https://github.com/volkanceylan/MeetingManagement

Creating	Lookup	Tables
Let's	start	by	creating	lookup	tables	we'll	need.

Here	is	a	list	of	these	tables:

Meeting	Types	(Board	Meeting,	Weekly	Analytics,	SCRUM	Meeting,	Annual	Meeting,	so
on...)
Locations	(where	meeting	will	be	held,	room	numbers,	address	etc.)
Agenda	Types	(what	subject(s)	an	agenda	is	about,	might	be	multiple)
Units	(which	unit	is	organizing	the	meeting)
Contacts	(people	which	would	attend	meetings,	reporters,	managers	etc.)

We'll	use	database	schema	met	for	tables.

Create	a	new	migration	under,	Modules/Common/Migrations/DefaultDB	with	name
DefaultDB_20160709_232400_MeetingLookups:

Creating	Lookup	Tables

214

using	FluentMigrator;

namespace	MeetingManagement.Migrations.DefaultDB

{

				[Migration(20160709232400)]

				public	class	DefaultDB_20160709_232400_MeetingLookups	

								:	AutoReversingMigration

				{

								public	override	void	Up()

								{

												Create.Schema("met");

												Create.Table("AgendaTypes").InSchema("met")

																.WithColumn("AgendaTypeId").AsInt32()

																				.Identity().PrimaryKey().NotNullable()

																.WithColumn("Name").AsString(100).NotNullable();

												Create.Table("Contacts").InSchema("met")

																.WithColumn("ContactId").AsInt32()

																				.Identity().PrimaryKey().NotNullable()

																.WithColumn("Title").AsString(30).Nullable()

																.WithColumn("FirstName").AsString(50).NotNullable()

																.WithColumn("LastName").AsString(50).NotNullable()

																.WithColumn("Email").AsString(100).NotNullable();

												Create.Table("Locations").InSchema("met")

																.WithColumn("LocationId").AsInt32()

																				.Identity().PrimaryKey().NotNullable()

																.WithColumn("Name").AsString(100).NotNullable()

																.WithColumn("Address").AsString(300).Nullable()

																.WithColumn("Latitude").AsDouble()

																.WithColumn("Longitude").AsDouble();

												Create.Table("MeetingTypes").InSchema("met")

																.WithColumn("MeetingTypeId").AsInt32()

																				.Identity().PrimaryKey().NotNullable()

																.WithColumn("Name").AsString(100).NotNullable();

												Create.Table("Units").InSchema("met")

																.WithColumn("UnitId").AsInt32()

																				.Identity().PrimaryKey().NotNullable()

																.WithColumn("Name").AsString(100).NotNullable();

								}

				}

}

Generating	Code	for	Lookup	Tables

Our	module	name	will	be	Meetings.	We	should	use	non-plural	entity	identifiers	for	generated
code:

Creating	Lookup	Tables

215

AgendaTypes	=>	AgendaType
Contacts	=>	Contact
Locations	=>	Location
MeetingTypes	=>	MeetingType
Units	=>	Unit

Generate	code	for	these	5	tables	using	the	entity	identifiers	given	above:

Generated	interface	for	these	tables	is	fine	enough.	Just	need	to	do	a	few	cosmetic	touches.

Creating	Lookup	Tables

216

Moving	Navigation	Links	to	NavigationItems.cs

Open	AgendaTypePage.cs,	ContactPage.cs,	LocationPage.cs,	MeetingTypePage.cs	and
UnitPage.cs	files	and	move	navigation	links	at	top	of	them	to	NavigationItems.cs:

using	Serenity.Navigation;

using	Administration	=	MeetingManagement.Administration.Pages;

using	Meeting	=	MeetingManagement.Meeting.Pages;

[assembly:	NavigationLink(1000,	"Dashboard",	

				url:	"~/",	permission:	"",	icon:	"icon-speedometer")]

[assembly:	NavigationMenu(2000,	"Meeting")]

[assembly:	NavigationLink(2500,	"Meeting/Agenda	Types",	

				typeof(Meeting.AgendaTypeController))]

[assembly:	NavigationLink(2600,	"Meeting/Contacts",	

				typeof(Meeting.ContactController))]

[assembly:	NavigationLink(2700,	"Meeting/Locations",	

				typeof(Meeting.LocationController))]

[assembly:	NavigationLink(2800,	"Meeting/Meeting	Types",	

				typeof(Meeting.MeetingTypeController))]

[assembly:	NavigationLink(2900,	"Meeting/Units",	

				typeof(Meeting.UnitController))]

Setting	DisplayName	and	InstanceName	Attributes	of
Lookup	Tables

Open	AgendaTypeRow.cs,	ContactRow.cs,	LocationRow.cs,	MeetingTypeRow.cs	and
UnitRow.cs	files	and	change	DisplayName	and	InstanceName	attributes	like	below:

AgendaTypeRow	=>	"Agenda	Types",	"Agenda	Type"

Creating	Lookup	Tables

217

ContactRow	=>	"Contacts",	"Contact"
LocationRow	=>	"Locations",	"Location"
MeetingTypeRow	=>	"Meeting	Types",	"Meeting	Type"
UnitRow	=>	"Units",	"Unit"

[ConnectionKey("Default"),	TwoLevelCached,

	DisplayName("Agenda	Types"),	InstanceName("Agenda	Type")]

[ReadPermission("Meeting")]

[ModifyPermission("Meeting")]

public	sealed	class	AgendaTypeRow	:	Row,	IIdRow,	INameRow

{

Creating	Lookup	Tables

218

How	To	Guides

How	To	Guides

219

How	To:	Remove	Northwind	&	Other
Samples	From	Serene
After	you	take	Northwind	as	a	sample,	and	develop	your	own	project,	you	would	want	to
remove	Northwind	module,	and	other	sample	artifacts	from	your	project.

Here	is	how	to	get	rid	of	them.

We	assume	your	solution	name	is	MyProject,	so	you	have	MyProject.Web	project	in	your
solution.

Perform	steps	below	in	Visual	Studio:

Removing	Project	Folders

Remove	MyProject.Web/Modules/AdminLTE	folder.	This	will	remove	all	server	side
code	related	to	theme	samples.

Remove	MyProject.Web/Modules/BasicSamples	folder.	This	will	remove	all	server	side
code	related	to	basic	samples.

Remove	MyProject.Web/Modules/Northwind	folder.	This	will	remove	all	server	side	code
related	to	Northwind.

Removing	Navigation	Items

Navigation	items	for	these	modules	are	moved	under	relevant	modules	folder	in	v2.5.3.	If
you	are	using	an	older	version,

Open	MyProject.Web/Modules/Common/Navigation/NavigationItems.cs,	remove	all
lines	with	Northwind,	Basic	Samples	and	Theme	Samples	and	remove	these	two	lines:

using	Northwind	=	MovieTutorial.Northwind.Pages;

using	Basic	=	MovieTutorial.BasicSamples.Pages;

Removing	Migration	Scripts

Remove	folder	MyProject.Web/Modules/Common/Migrations/NorthwindDB/	with	all	files
under	it.

How	To:	Remove	Northwind	&	Other	Samples	From	Serene

220

Remove	"Northwind"	from	following	line	in	MyProject.Web/App_Start/
SiteInitialization.Migrations.cs:

private	static	string[]	databaseKeys	=	new[]	{	"Default",	"Northwind"	};

Also	remove	Northwind	connection	string	from	web.config.

<add	name="Northwind"	connectionString="Data	Source=(LocalDb)\v11.0;	

				Initial	Catalog=MovieTutorial_Northwind_v1;	

				Integrated	Security=True"	

				providerName="System.Data.SqlClient"	/>

Removing	LESS	Entries

Open	MyProject.Web/Content/site/site.less	file,	remove	following	lines:

@import	"site.basicsamples.less";

@import	"site.northwind.less";

Remove	MyProject.Web/Content/site/site.basicsamples.less	file.
Remove	MyProject.Web/Content/site/site.northwind.less	file.

Open	MyProject.Web/Content/site/rtl.css	file,	remove	sections	with	Northwind.

Removing	Localization	Texts

Open	MyProject.Web/Modules/Texts.cs	and	remove	following	lines:

												public	static	LocalText	NorthwindPhone	=	"...";

												public	static	LocalText	NorthwindPhoneMultiple	=	"...";

Remove	folder	MyProject.Web/Scripts/site/texts/northwind
Remove	folder	MyProject.Web/Scripts/site/texts/samples

Removing	Northwind	/	Samples	Generated	Code

Expand	MyProject.Web/Modules/Common/Imports/	ServerTypings/ServerTypings.tt.
Select	files	starting	with	Northwind.,	BasicSamples.	and	delete	them.

Removing	Northwind	Numbers	From	Dashboard

How	To:	Remove	Northwind	&	Other	Samples	From	Serene

221

Open	DashboardPage.cs,	remove	these	using	lines:

using	Northwind;

using	Northwind.Entities;

As	Dashboard	gets	numbers	from	Northwind	tables,	you	should	modify	Index()	action	like
this:

[Authorize,	HttpGet,	Route("~/")]

public	ActionResult	Index()

{

				var	cachedModel	=	new	DashboardPageModel()

				{

				};

				return	View(MVC.Views.Common.Dashboard.DashboardIndex,	cachedModel);

}

You	should	replace	this	model	with	something	specific	to	your	site,	and	modify
DashboardIndex	accordingly.

Open	DashboardIndex.cshtml,	clear	href	attributes	containing	"Northwind"	like:

Building	Project	and	Running	T4	(.tt)	Templates

Now	rebuild	your	solution.

Make	sure	it	is	built	successfully	before	executing	next	step.

Click	Build	menu	and	click	Transform	All	Templates.

Rebuild	your	solution	again.

Search	for	Northwind,	Basic	Samples	and	Theme	Samples	in	all	solution	items.	It
should	find	no	results.

Run	your	project,	now	Northwind	and	Sample	menus	are	gone.

Removing	Northwind	Tables

Northwind	tables	are	in	a	separate	database,	so	you	can	just	drop	it.

How	To:	Remove	Northwind	&	Other	Samples	From	Serene

222

How	To:	Remove	Northwind	&	Other	Samples	From	Serene

223

How	To:	Update	Serenity	NuGet	Packages
Serene	template	contains	references	to	following	Serenity	NuGet	packages:

Serenity.Core

Serenity.Data

Serenity.Data.Entity

Serenity.Services

Serenity.Web

Serenity.CodeGenerator

To	update	Serenity	packages	to	latest	version,	open	package	manager	console	(click	View	-
>	Other	Windows	->	Package	Manager	Console).

And	type	following:

Update-Package	Serenity.Web

Update-Package	Serenity.CodeGenerator

Updating	these	two	packages	will	also	update	others	(because	of	dependencies).

How	To:	Update	Serenity	NuGet	Packages

224

How	To:	Upgrade	to	Serenity	2.0	and
Enable	TypeScript
Serenity	has	TypeScript	support	starting	with	version	2.0.

This	is	a	migration	guide	for	users	that	started	with	an	older	Serene	template,	and	wants	to
use	TypeScript	features.

If	you	don't	need	TypeScript,	just	update	your	Serenity	packages	and	it	should	work	as
normal.

Even	if	you	won't	need	TypeScript,	it's	recommended	to	perform	steps	listed	here	to
keep	your	project	up	to	date.	This	might	also	help	you	avoid	future	problems	as	there
has	been	many	changes	in	Serene	for	TypeScript	support.

Should	I	Switch	To	TypeScript?
TypeScript	support	in	Serenity	is	stable	as	of	writing	and	is	strongly	recommended.
TypeScript	is	the	future	for	Serenity	applications,	as	it	has	a	stronger	backing	at	the	moment
(Microsoft	and	average	number	of	users).

Also	TypeScript	feels	like	native	Javascript	with	proper	intellisense,	refactoring	and	compile
time	type	checking.

We've	been	using	Saltaralle	with	Serenity	since	start	but	its	future	is	a	bit	blurry.	It	didn't	get
any	updates	since	it	is	acquired	by	Bridge.NET,	last	June	(2015).

Your	old	code	written	in	Saltaralle	will	continue	to	work.	It	will	be	supported	as	long	as
possible	with	Serenity	for	backward	compability.

If	Bridge.NET	v2.0	(next	Saltaralle)	comes	out,	we	may	also	try	to	switch,	unless	it	involves
too	many	changes	to	handle.

Migrating	Your	Serene	Application	to	v2.0

Check	that	your	solution	is	building	properly

First	make	sure	your	solution	is	properly	building.

How	To:	Upgrade	to	Serenity	2.0	and	Enable	TypeScript

225

If	possible,	take	a	ZIP	backup	of	solution,	as	some	steps	we'll	perform	might	be	hard	to
revert.

Install	TypeScript

Install	TypeScript	1.8+	from

https://www.typescriptlang.org/#download-links

for	your	Visual	Studio	version.

Update	NuGet	Packages

Update	to	2.0	packages	as	you'd	normally	do:

Update-Package	Serenity.Web

Update-Package	Serenity.CodeGenerator

Update-Package	Serenity.Script

While	updating	Serenity.Web,	VS	might	show	a	dialog	with	text	"Your	Project	has	been
configured	to	support	TypeScript".	Click	YES.

Ensuring	Package	Updates	Caused	No	Problems

Rebuild	your	solution	again	and	run	it.	Open	some	pages,	dialogs	etc.	and	make	sure	that	it
is	working	properly	with	2.0	packages.

Configuring	Web	Project	for	TypeScript

Unload	MyProject.Web	and	edit	it.

Add	lines	below	after	TypeScriptToolsVersion	line:

				//	...

				<TypeScriptToolsVersion>1.8</TypeScriptToolsVersion>

				<TypeScriptCompileBlocked>True</TypeScriptCompileBlocked>

		</PropertyGroup>

		<PropertyGroup>

				<TypeScriptCharset>utf-8</TypeScriptCharset>

				<TypeScriptEmitBOM>True</TypeScriptEmitBOM>

				<TypeScriptGeneratesDeclarations>False</TypeScriptGeneratesDeclarations>

				<TypeScriptExperimentalDecorators>True</TypeScriptExperimentalDecorators>

				<TypeScriptOutFile>Scripts\site\Serene.Web.js</TypeScriptOutFile>

				<TypeScriptCompileOnSaveEnabled>False</TypeScriptCompileOnSaveEnabled>

		</PropertyGroup>

How	To:	Upgrade	to	Serenity	2.0	and	Enable	TypeScript

226

https://www.typescriptlang.org/#download-links

Replace	Serene.Web.js	with	your	project	name.

In	the	end	of	same	file,	you'll	see	lines	like	below:

		<Import	Project="...Microsoft.CSharp.targets"	/>

		<Import	Project="...Microsoft.WebApplication.targets"	/>

		<Import	Project="...Microsoft.TypeScript.targets"	/>

Make	sure	the	line	with	TypeScript.targets	with	is	under	all	other	targets.	Move	it	under
WebAplpication.targets	if	not.	VS	puts	them	before	Microsoft.WebApplication.targets	and
somehow	it	doesn't	work	that	way.

Also,	at	the	bottom	of	file,	you'll	find	CompileSiteLess	step,	add	TSC	to	end	of	it:

		<Target	Name="CompileSiteLess"	AfterTargets="AfterBuild">

				<Exec	Command=""$(ProjectDir)tools\node\lessc.cmd"	

								"$(ProjectDir)Content\site\site.less"	>	

								"$(ProjectDir)Content\site\site.css"">

				</Exec>

				<Exec	Command=""$(TscToolPath)\$(TypeScriptToolsVersion)\

								$(TscToolExe)"	-project	"

								$(ProjectDir)tsconfig.json""	ContinueOnError="true"	/>

		</Target>

Save	changes,	reload	the	project	and	follow	to	next	step.

Adding	tsconfig.json	File

Add	a	tsconfig.json	file	to	the	root	of	your	Web	project	(where	web.config	and	Global.asax
files	are)	with	content	like	below:

{

				"compileOnSave":	true,

				"compilerOptions":	{

								"preserveConstEnums":	true,

								"experimentalDecorators":	true,

								"declaration":	true,

								"emitBOM":	true,

								"sourceMap":	true,

								"target":	"ES5",

								"outFile":	"Scripts/site/Serene.Web.js"

				},

				"exclude":	[

								"Scripts/site/Serene.Web.d.ts"

]

}

How	To:	Upgrade	to	Serenity	2.0	and	Enable	TypeScript

227

Replace	Serene.Web	with	your	project	name.

Add	a	Test	TypeScript	File

Add	a	dummy.ts	file	under	YourProject.Web/scripts/site/dummy.ts.	Open	it	and	type
something	like	below:

namespace	MyProject	{

				export	class	Dummy	{

				}

}

When	you	save	it,	there	should	be	a	MyProject.Web.js	file	there	with	content	below.	If	you
can't	see	it,	click	Show	All	Files	and	refresh	folder.

var	MyProject;

(function	(MyProject)	{

				var	Dummy	=	(function	()	{

								function	Dummy()	{

								}

								return	Dummy;

				}());

				MyProject.Dummy	=	Dummy;

})(MyProject	||	(MyProject	=	{}));

//#	sourceMappingURL=SereneUpgrading.Web.js.map

Right	click	and	include	that	file	to	your	project.	Now	you	can	delete	dummy.ts.

If	you	are	using	a	version	before	VS2015	and	compile	on	save	is	not	working,	your	TS
files	will	be	compiled	at	project	build.

Including	MyProject.Web.js	file	in	_LayoutHead.cshtml

Edit	MyProject.Web/Views/Shared/_LayoutHead.cshtml	and	include	MyProject.Web.js	right
after	MyProject.Script.js	file:

//	...

@Html.Script("~/Scripts/Site/MyProject.Script.js")

@Html.Script("~/Scripts/Site/MyProject.Web.js")

//	...

Your	project	is	configured	for	TypeScript.

Changing	Location	for	T4	Templates

How	To:	Upgrade	to	Serenity	2.0	and	Enable	TypeScript

228

Serene	v2.0	has	merged	some	.TT	templates	and	created	new	one	for	TypeScript	code
generation.

Please	make	sure	your	project	is	building	successfully	and	DON'T	CLEAN	it	while
performing	these	steps,	otherwise	you	may	end	up	with	a	broken	project.

Locate	file	YourProject.Web\Modules\Common\Imports\	MultipleOutputHelper.ttinclude

Make	a	copy	of	it	in	same	folder	with	name	CodeGenerationHelpers.ttinclude

Get	latest	source	of	CodeGenerationHelpers.ttinclude	from	address	below	and	copy	paste	it
to	CodeGenerationHelpers.ttinclude	file	you	just	created:

https://raw.githubusercontent.com/volkanceylan/Serene/master/Serene/Serene.Web/Module
s/Common/Imports/CodeGenerationHelpers.ttinclude

Search	and	Replace	Serene	with	YourProjectName	in	this	file	if	any.	There	shouldn't	be
any	Serene	word	in	this	file	as	of	writing.

You	may	also	create	a	new	Serene	project	with	latest	version	of	template	to	get	these
files.

ClientTypes.tt

Create	folder	YourProject.Web\Modules\Common\Imports\ClientTypes	and	move
ScriptEditorTypes.tt	to	there,	then	rename	ScriptEditorTypes.tt	to	ClientTypes.tt.

Grab	latest	source	of	ClientTypes.tt	file	from	address	below	and	copy	paste	it	to
ClientTypes.tt	file	you	just	moved:

https://raw.githubusercontent.com/volkanceylan/Serene/master/Serene/Serene.Web/Module
s/Common/Imports/ClientTypes/ClientTypes.tt

Search	and	Replace	Serene	with	YourProjectName	in	this	file	if	any.

ServerTypings.tt

Create	folder	YourProject.Web\Modules\Common\Imports\ServerTypings	and	move
ScriptFormatterTypes.tt	to	there,	then	rename	ScriptFormatterTypes.tt	to	ServerTypings.tt.

Grab	latest	source	of	ServerTypings.tt	file	from	address	below	and	copy	paste	it	to
ServerTypings.tt	file	you	just	moved:

https://raw.githubusercontent.com/volkanceylan/Serene/master/Serene/Serene.Web/Module
s/Common/Imports/ServerTypings/ServerTypings.tt

Search	and	Replace	Serene	with	YourProjectName	in	this	file	if	any.

How	To:	Upgrade	to	Serenity	2.0	and	Enable	TypeScript

229

https://raw.githubusercontent.com/volkanceylan/Serene/master/Serene/Serene.Web/Modules/Common/Imports/CodeGenerationHelpers.ttinclude
https://raw.githubusercontent.com/volkanceylan/Serene/master/Serene/Serene.Web/Modules/Common/Imports/ClientTypes/ClientTypes.tt
https://raw.githubusercontent.com/volkanceylan/Serene/master/Serene/Serene.Web/Modules/Common/Imports/ServerTypings/ServerTypings.tt

Generate	Code

While	they	are	open	save	ClientTypes.tt	and	ServerTypings.tt	files,	and	wait	for	them	to
generate	codes.

Save	project	and	rebuild.

Changing	Location	for	FormContexts	and	ServiceContracts
T4	Templates

These	two	templates	are	merged	into	one.

We'll	repeat	similar	steps	like	in	Web	project.

Locate	file	YourProject.Script\Imports\	MultipleOutputHelper.ttinclude

Make	a	copy	of	it	in	same	folder	with	name	CodeGenerationHelpers.ttinclude

Get	latest	source	of	CodeGenerationHelpers.ttinclude	from	address	below	(it's	different!)	and
copy	paste	it	to	CodeGenerationHelpers.ttinclude	file	you	just	created:

https://raw.githubusercontent.com/volkanceylan/Serene/
b900c67b4c820284379b9c613b16379bb8c530f3/Serene/Serene.Script/
Imports/CodeGenerationHelpers.ttinclude

Search	and	Replace	Serene	with	YourProjectName	in	this	file.	There	must	be	several.

ServiceContracts.tt

Rename	folder	YourProject.Script\Imports\ServiceContracts	to	ServerImports.	Rename
ServiceContracts.tt	to	ServerImports.tt.

Grab	latest	source	of	ServerImports.tt	file	from	address	below	and	copy	paste	it	to
ServerImports.tt	file	you	just	renamed:

https://raw.githubusercontent.com/volkanceylan/Serene/
b900c67b4c820284379b9c613b16379bb8c530f3/Serene/Serene.Script/
Imports/ServerImports/ServerImports.tt

Search	and	Replace	Serene	with	YourProjectName	in	this	file.

Delete	folder	FormContexts	with	file	FormContext.tt	in	it.

Save	ServerImports.tt	and	wait	for	it	to	generate	code.	It	might	take	some	time	because	of
some	slow	down	due	to	Saltaralle.

Rebuild	solution	and	make	sure	it	builds	properly	without	any	error.

How	To:	Upgrade	to	Serenity	2.0	and	Enable	TypeScript

230

https://raw.githubusercontent.com/volkanceylan/Serene/b900c67b4c820284379b9c613b16379bb8c530f3/Serene/Serene.Script/Imports/CodeGenerationHelpers.ttinclude
https://raw.githubusercontent.com/volkanceylan/Serene/b900c67b4c820284379b9c613b16379bb8c530f3/Serene/Serene.Script/Imports/ServerImports/ServerImports.tt

Congratulations!	Your	project	is	ready	for	TypeScript	and	other	features.

What	are	These	New	.tt	Files

ServerTypings.tt:	generated	code	for	TypeScript,	containing	Row,	Form,	Column,
Service	declarations	imported	from	Server	(Web)	code.	Also	contains	import	classes
from	YourProject.Script	file	if	any.

ServerTypes.tt:	generated	code	for	Saltaralle,	containing	Row,	Form,	Column,	Service
declarations	imported	from	Server	(Web)	code.	There	is	no	import	classes	from
TypeScript	yet.	So	if	you	want	to	use	some	TypeScript	class	in	your	Saltaralle	code,	you
need	to	write	import	classes	manually.

ClientTypes.tt:	generated	code	for	Web	project,	containing	Editor	and	Formatter
imports	from	both	TypeScript	and	Saltaralle.

How	Can	I	Generate	TypeScript	Grid/Dialog	Code

There	is	such	an	option	in	Serenity	CodeGenerator	(Sergen)	now.	Just	check	*Generate
Grid/Dialog	Code	in	TypeScript	(instead	of	Saltaralle)	and	it	will	generate	YourDialog.ts	and
YourGrid.ts	files	under	YourProject.Web/Modules/YourEntity	directory,	instead	of	YourGrid.cs
and	YourDialog.cs	in	YourProject.Script	project.

Please	don't	generate	code	for	existing	Saltaralle	dialogs	or	grids	using	Sergen.
Otherwise	you'll	have	double	YourGrid	and	YourDialog	classes	and	it	may	lead	to
unexpected	errors.

How	To:	Upgrade	to	Serenity	2.0	and	Enable	TypeScript

231

How	To:	Authenticate	With	Active
Directory	or	LDAP
Serene	1.8.12+	has	some	basic	ActiveDirectory	/	LDAP	integration	samples.

To	enable	them,	you	have	to	fill	one	of	web.config	settings.

For	ActiveDirectory	add	a	appSetting	key		ActiveDirectory		with	contents	like	below:

<add	key="ActiveDirectory"	

					value="{	Domain:	'youractivedirectorydomain'	}"	/>

If	this	doesn't	work	for	your	Active	Directory	server	out	of	the	box,	you	might	have	to
modify	ActiveDirectoryService	class.

When	a	AD	user	tries	to	login	first	time,	Serene	authenticates	user	with	this	domain,
retrieves	user	details	and	inserts	a	user	with	type		directory		into	users	table.

AD	password	hash	and	user	information	is	cached	for	one	hour,	so	for	one	hour	user	can
login	with	cached	credentials,	without	even	hitting	AD.

After	that,	user	information	is	tried	to	be	updated	from	AD.	If	an	error	occurs,	user	will	be
allowed	to	login	with	cached	credentials.

These	details	can	be	seen	and	modified	in	AuthenticationService	class.

To	enable	LDAP	authentication	(tested	with	OpenLDAP)	you	need	to	add	a	appSetting	key
	LDAP		to	web.config:

<add	key="LDAP"	

					value="{	

								Host:	'123.124.125.126',	

								Port:	389,	

								DistinguishedName:	'dc=yourdomain,	dc=com',	

								Username:	'cn=someuserthatcanreadldap,ou=groupofthatuser,

																			dc=yourdomain,dc=com',	

								Password:	'passwordofthatuser'

					}"	

/>

Again,	there	are	many	different	configurations	of	LDAP	servers	out	there,	so	if	this
doesn't	work	for	you,	you	might	have	to	modify	LdapDirectoryService	class.

How	To:	Authenticate	With	Active	Directory	or	LDAP

232

How	To:	Authenticate	With	Active	Directory	or	LDAP

233

How	To:	Use	a	SlickGrid	Formatter
This	section	is	pending	update	for	TypeScript

To	use	a	SlickGrid	formatter	function,	like	percent	complete	bar	formatter	at	%Complete
column	of	SlickGrid	example:

http://mleibman.github.io/SlickGrid/examples/example2-formatters.html

Including	Required	Resources

First	include	javascript	file	containing	these	formatters	in	your	_LayoutHead.cshtml	file
(MyProject.Web/Views/Shared/_LayoutHead.cshtml):

//...

@Html.Script("~/Scripts/jquery.slimscroll.js")

@Html.Script("~/Scripts/SlickGrid/slick.formatters.js")

@Html.Script("~/Scripts/Site/MovieTutorial.Script.js")

//...

You	also	need	to	include	following	CSS	from	example.css	(can	be	inserted	in	site.less):

.percent-complete-bar	{

		display:	inline-block;

		height:	6px;

		-moz-border-radius:	3px;

		-webkit-border-radius:	3px;

}

Declaring	a	Serenity	DataGrid	Formatter

Let's	say	we	have	StudentCourseGrid	with	a	CourseCompletion	column	that	we	wan't	to	use
Slick.Formatters.PercentCompleteBar	formatter	with.

public	class	StudentCourseColumns

{

				//...

				[Width(200)]

				public	Decimal	CourseCompletion	{	get;	set;	}

}

How	To:	Use	a	SlickGrid	Formatter

234

http://mleibman.github.io/SlickGrid/examples/example2-formatters.html

To	reference	a	SlickGrid	formatter	at	server	side,	you	need	to	declare	a	formatter	type	for
Serenity	grids.

In	MyApplication.Script	project,	next	to	StudentCourseGrid.cs	for	example,	define	a	file
(PercentCompleteBarFormatter.cs)	with	contents:

using	Serenity;

using	System;

namespace	MyApplication

{

				public	class	PercentCompleteBarFormatter	:	ISlickFormatter

				{

								private	SlickColumnFormatter	formatter	=	

												Type.GetType("Slick.Formatters.PercentCompleteBar").As<SlickColumnFormatte

r>();

								public	string	Format(SlickFormatterContext	ctx)

								{

												return	formatter(ctx.Row,	ctx.Cell,	ctx.Value,	ctx.Column,	ctx.Item);

								}

				}

}

Replace	MyApplication	with	your	root	namespace	(solution	name).

Now	you	can	reference	it	at	server	side:

public	class	StudentCourseColumns

{

				//...

				[FormatterType("PercentCompleteBar"),	Width(200)]

				public	Decimal	CourseCompletion	{	get;	set;	}

}

Rebuild	your	project	and	you	will	see	that	CourseCompletion	column	has	a	percentage	bar
just	like	in	SlickGrid	example.

Getting	Intellisense	and	Compile	Time	Checking	To	Work

To	get	intellisense	for	PercentCompleteBarFormatter	server	side	(so	to	avoid	using	magic
strings),	you	should	transform	T4	templates	(make	sure	solution	builds	successfully	before
transforming).

After	this	you	can	reference	it	like	this	server	side:

How	To:	Use	a	SlickGrid	Formatter

235

public	class	StudentCourseColumns

{

				//...

				[PercentCompleteBarFormatter,	Width(200)]

				public	Decimal	CourseCompletion	{	get;	set;	}

}

Alternate	Option	(Not	Recommended)

It	is	also	possible	to	set	SlickGrid	column	formatter	function	directly	in	script	side	code
without	defining	a	Serenity	formatter	class,	e.g.	in	StudentCourseGrid.cs	by	overriding	its
GetColumns	method:

				protected	override	List<SlickColumn>	GetColumns()

				{

								var	columns	=	base.GetColumns();

								columns.Single(x	=>	x.Field	==	"CourseCompletion	").Formatter	=	

												Type.GetType("Slick.Formatters.PercentCompleteBar").As<SlickColumnFormatte

r>();

								return	columns;

				}

This	is	not	reusable	but	saves	you	from	defining	a	formatter	class.

How	To:	Use	a	SlickGrid	Formatter

236

How	To:	Add	a	Row	Selection	Column
This	section	is	pending	update	for	TypeScript

To	add	a	column	to	select	individual	rows	or	all	rows,	GridRowSelectionMixin	can	be	used.

GridRowSelectionMixin	is	available	in	Serenity	1.6.8+

Sample	code:

How	To:	Add	a	Row	Selection	Column

237

public	class	MyGrid	:	EntityGrid<MyRow>

{

				private	GridRowSelectionMixin	rowSelection;

				public	MyGrid(jQueryObject	container)

								:	base(container)

				{

								rowSelection	=	new	GridRowSelectionMixin(this);

				}

				protected	override	List<SlickColumn>	GetColumns()

				{

								var	columns	=	base.GetColumns();

								columns.Insert(0,	GridRowSelectionMixin.CreateSelectColumn(()	=>	rowSelection)

);

								return	columns;

				}

				protected	override	List<ToolButton>	GetButtons()

				{

								var	buttons	=	base.GetButtons();

								buttons.Add(new	ToolButton

								{

												CssClass	=	"tag-button",

												Title	=	"Do	Something	With	Selected	Rows",

												OnClick	=	delegate

												{

																var	selectedIDs	=	rowSelection.GetSelectedKeys();

																if	(selectedIDs.Count	==	0)

																				Q.NotifyWarning("Please	select	some	rows");

																else

																				Q.NotifySuccess("You	have	selected	"	+	selectedIDs.Count	+	

																								"	row(s)	with	ID(s):	"	+	string.Join(",	",	selectedIDs));

												}

								});

								return	buttons;

				}

}

How	To:	Add	a	Row	Selection	Column

238

How	To:	Setup	Cascaded	Editors
You	might	need	multi-level	cascaded	editors	like	Country	=>	City,	Course	=>	Class	Name	=>
Subject.

Starting	with	Serenity	1.8.2,	it's	rather	simple.	Lookup	editors	have	this	integrated
functionality.

For	versions	before	1.8.2,	it	was	also	possible,	and	there	was	some	samples	in	Serene,
but	you	had	to	define	some	editor	classes	to	make	it	work.

Let's	say	we	have	a	database	with	three	tables,	Country,	City,	District:

Country	Table:	CountryId,	CountryName
City	Table:	CityId,	CityName,	CountryId
District	Table:	DistrictId,	DistrictName,	CityId

First	make	sure	you	generate	code	for	all	three	tables	using	Sergen,	and	you	have	a
	[LookupScript]		attribute	on	all	of	them:

[LookupScript("MyModule.Country")]

public	sealed	class	CountryRow	:	Row...

{

				[DisplayName("Country	Id"),	Identity]

				public	Int32?	CountryId

				{

								get	{	return	Fields.CountryId[this];	}

								set	{	Fields.CountryId[this]	=	value;	}

				}

				[DisplayName("Country	Name"),	Size(50),	NotNull,	QuickSearch]

				public	String	CountryName

				{

								get	{	return	Fields.CountryName[this];	}

								set	{	Fields.CountryName[this]	=	value;	}

				}

}

How	To:	Setup	Cascaded	Editors

239

[LookupScript("MyModule.City")]

public	sealed	class	CityRow	:	Row...

{

				[DisplayName("City	Id"),	Identity]

				public	Int32?	CityId

				{

								get	{	return	Fields.CityId[this];	}

								set	{	Fields.CityId[this]	=	value;	}

				}

				[DisplayName("City	Name"),	Size(50),	NotNull,	QuickSearch]

				public	String	CityName

				{

								get	{	return	Fields.CityName[this];	}

								set	{	Fields.CityName[this]	=	value;	}

				}

				[DisplayName("Country"),	ForeignKey("Country",	"CountryId"),	LookupInclude]

				public	Int32?	CountryId

				{

								get	{	return	Fields.CountryId[this];	}

								set	{	Fields.CountryId[this]	=	value;	}

				}

}

How	To:	Setup	Cascaded	Editors

240

[LookupScript("MyModule.District")]

public	sealed	class	DistrictRow	:	Row...

{

				[DisplayName("District	Id"),	Identity]

				public	Int32?	DistrictId

				{

								get	{	return	Fields.DistrictId[this];	}

								set	{	Fields.DistrictId[this]	=	value;	}

				}

				[DisplayName("District	Name"),	Size(50),	NotNull,	QuickSearch]

				public	String	DistrictName

				{

								get	{	return	Fields.DistrictName[this];	}

								set	{	Fields.DistrictName[this]	=	value;	}

				}

				[DisplayName("City"),	ForeignKey("City",	"CityId"),	LookupInclude]

				public	Int32?	CityId

				{

								get	{	return	Fields.CityId[this];	}

								set	{	Fields.CityId[this]	=	value;	}

				}

}

Make	sure	you	add		LookupInclude		attribute	to	CityId	field	of	DistrictRow,	and	CountryId	field
of	CityRow.	We	need	them	to	be	available	at	client	side,	otherwise	they	are	not	included	by
default	in	lookup	scripts.

If	you	wanted	to	edit	these	fields	as	cascaded	lookup	editors	in	a	form,	e.g.	CustomerForm,
you	would	set	them	up	like	this:

How	To:	Setup	Cascaded	Editors

241

[FormScript("MyModule.Customer")]

[BasedOnRow(typeof(Entities.CustomerRow))]

public	class	CustomerForm

{

				public	String	CustomerID	{	get;	set;	}

				public	String	CustomeraName	{	get;	set;	}

				[LookupEditor(typeof(Entities.CountryRow))]

				public	Int32?	CountryId	{	get;	set;	}

				[LookupEditor(typeof(Entities.CityRow),	

								CascadeFrom	=	"CountryId",	CascadeField	=	"CountryId")]

				public	Int32?	CityId	{	get;	set;	}

				[LookupEditor(typeof(Entities.DistrictRow),	

								CascadeFrom	=	"CityId",	CascadeField	=	"CityId")]

				public	Int32?	DistrictId	{	get;	set;	}

}

You	could	also	set	these	attributes	in	CustomerRow

Here,	CascadeFrom	attribute	tells	city	editor,	ID	of	the	parent	editor	that	it	will	bind	to
(cascade).

When	this	form	is	generated,	CountryId	field	will	be	handled	with	an	editor	with	ID	CountryId,
so	we	set	CascadeFrom	attribute	of	CityId	lookup	editor	to	that	ID.

CascadeField	determines	the	field	to	filter	cities	on.	Thus,	when	country	editor	value
changes,	city	editor	items	will	be	filtered	on	their	CountryId	properties	like	this:

			this.Items.Where(x	=>	x.CountryId	==	CountryEditorValue)

If	CascadeFrom	and	CascadeField	attributes	are	same,	you	only	need	to	specify
CascadeFrom,	but	i	wanted	to	be	explicit	here.

If	you	wanted	to	add	these	cascaded	editors	to	filter	bar	of	customer	grid,	in
CreateToolbarExtensions	method	of	CustomerGrid.cs,	do	this:

How	To:	Setup	Cascaded	Editors

242

AddEqualityFilter<LookupEditor>("CountryId",

				options:	new	LookupEditorOptions	

				{	

								LookupKey	=	"MyModule.Country"	

				});

AddEqualityFilter<LookupEditor>("CityId",	

				options:	new	LookupEditorOptions	

				{

								LookupKey	=	"MyModule.City",	

								CascadeFrom	=	"CountryId",

								CascadeField	=	"CountryId"

				});

AddEqualityFilter<LookupEditor>("DistrictId",	

				options:	new	LookupEditorOptions	

				{

								LookupKey	=	"MyModule.District",	

								CascadeFrom	=	"CityId",

								CascadeField	=	"CityId"

				});

Here	i	suppose	you	have	CountryId,	CityId	and	DistrictId	fields	in	CustomerRow.

Now	you	have	useful	cascaded	editors	for	both	editing	and	filtering.

How	To:	Setup	Cascaded	Editors

243

How	To:	Use	Recaptcha
To	use	Recaptcha	in	login	form,	follow	these	steps:

Requires	Serenity	1.8.5+

You	might	also	use	it	for	another	form,	but	this	is	just	a	sample	for	login.

First,	you	need	to	register	a	new	site	for	Recaptcha	at:

https://www.google.com/recaptcha/admin

Once	you	have	your	site	key,	and	secret	key,	enter	them	in	web.config/appSettings	section:

<add	key="Recaptcha"	value="{	

				SiteKey:	'6LeIxAcTAAAAAJcZVRqyHh71UMIEGNQ_MXjiZKhI',	

				SecretKey:	'6LeIxAcTAAAAAGG-vFI1TnRWxMZNFuojJ4WifJWe'	}"	/>

The	keys	listed	above	are	only	for	testing	purposes.	Never	use	them	in	production.

Edit	LoginForm.cs	to	add	a	Recaptcha	property:

public	class	LoginForm

{

				[Placeholder("default	username	is	'admin'")]

				public	String	Username	{	get;	set;	}

				[PasswordEditor,	Placeholder("default	password	for	admin	user	is	'serenity'"),	Req

uired(true)]

				public	String	Password	{	get;	set;	}

				[DisplayName(""),	Recaptcha]

				public	string	Recaptcha	{	get;	set;	}

}

Edit	LoginRequest.cs	to	add	a	Recaptcha	property:

public	class	LoginRequest	:	ServiceRequest

{

				public	string	Username	{	get;	set;	}

				public	string	Password	{	get;	set;	}

				public	string	Recaptcha	{	get;	set;	}

}

Edit	Login	method	under	AccountPage.cs	to	validate	the	captcha	server	side:

How	To:	Use	Recaptcha

244

https://www.google.com/recaptcha/admin

[HttpPost,	JsonFilter]

public	Result<ServiceResponse>	Login(LoginRequest	request)

{

				return	this.ExecuteMethod(()	=>

				{

								request.CheckNotNull();

								if	(string.IsNullOrEmpty(request.Username))

												throw	new	ArgumentNullException("username");

								var	username	=	request.Username;

								//	just	add	line	below

								Serenity.Web.RecaptchaValidation.Validate(request.Recaptcha);

								if	(WebSecurityHelper.Authenticate(ref	username,	request.Password,	false))

												return	new	ServiceResponse();

								throw	new	ValidationError("AuthenticationError",

												Texts.Validation.AuthenticationError);

				});

}

How	To:	Use	Recaptcha

245

How	To:	Register	Permissions	in	Serene
Serene	shows	a	list	of	permissions	in	user	and	role	permission	dialogs.	To	show	your	own
permissions	there,	you	need	to	use	these	permissions	with	one	of	the	attributes	below:

Attributes	that	derive	from	PermissionAttributeBase:
ReadPermission
ModifyPermission
InsertPermission
UpdatePermission
DeletePermission

Page	and	Endpoint	Access	Control	Attributes:
PageAuthorize
ServiceAuthorize

These	attributes	can	be	used	with	and	located	from	one	of	these	types:

On	top	of	XYZRow	(Read,	Write,	Insert,	Update,	Delete	permissions)
On	top	of	XYZPage	and	in	action	methods	(PageAuthorize)
On	top	of	XYZEndpoint	and	in	service	actions	(ServiceAuthorize)

When	you	use	a	permission	key	with	one	of	such	attributes,	Serene	will	automatically
discover	them	using	reflection	at	application	start.

There	is	a	PermissionKeys	class	in	Serene.	Some	users	expected	that	when	they	write
their	permission	keys	in	this	class,	they	will	be	discovered.

But,	PermissionKeys	class	is	only	there	for	intellisense	purposes,	it	is	ignored	by
Serene.

If	you	don't	use	a	permission	key	with	any	of	them	but	still	want	to	show	it	in	permission
dialogs,	you	can	use	RegisterPermission	attribute	on	assembly	(write	this	anywhere	in
YourProject.Web):

[assembly:	Serenity.ComponentModel.RegisterPermissionKey("MySpecialPermissionKey")]

Organizing	Permission	Tree
To	create	permissions	in	tree	hierarchy,	use	colon	(:)	as	a	separator	in	your	permission	keys:

How	To:	Register	Permissions	in	Serene

246

MyModule:SubModule:General
MyModule:SubModule:Permission1
MyModule:SubModule:Permission2

These	keys	will	be	shown	under	MyModule	/	SubModule	category.	Thus	their	category	keys
will	be:

MyModule:SubModule:

Category	keys	ends	with	colon.	Don't	use	permission	keys	that	ends	with	colon.

Please	don't	use	permission	keys	that	matches	category	keys.	If	you	use	such	keys,	for
example	MyModule:SubModule	it	won't	be	shown	under	MyModule	/	SubModule	category
but	next	to	it	at	same	level.

If	you	need	a	generic	permission	for	such	a	category,	use	something	like
MyModule:SubModule:General.

General	has	no	special	meaning,	you	can	use	Common,	Module,	View,	whatever	you
like.

Handling	Category	Display	Texts
As	categories	are	automatically	determined	from	permission	keys,	they	don't	have	a	user
friendly	display	text	for	them.

You	need	to	add	display	texts	for	them	using	localization	system.

If	you	don't	need	localization,	just	add	texts	to	site.texts.invariant.json

For	example	in	site.texts.invariant.json	file,	there	are	such	keys:

				"Permission.Administration:":	"Administration",

				"Permission.Administration:Security":	"User,	Role	Management	and	Permissions",

				"Permission.Administration:Translation":	"Languages	and	Translations",

				"Permission.Northwind:Customer:":	"Customers",

				"Permission.Northwind:Customer:View":	"View",

				"Permission.Northwind:Customer:Delete":	"Delete",

				"Permission.Northwind:Customer:Modify":	"Create/Update",

				"Permission.Northwind:General":	"[General]"

The	keys	ending	with	colon	(:),	like	Administration:	and	Customer:	corresponds	to	categories
and	these	are	their	display	texts.

You	need	to	add	texts	for	categories	to	invariant	language	at	minimum.	You	may	also	add	to
other	languages,	if	you	want	localization.

How	To:	Register	Permissions	in	Serene

247

How	To:	Register	Permissions	in	Serene

248

How	To:	Use	a	Third	Party	Plugin	With
Serenity
To	use	a	third	party	/	custom	plugin	with	a	Serenity	application	involves	no	special	steps.
You	may	include	their	scripts	and	CSS	in	_LayoutHead.cshtml,	and	follow	their
documentation.

Especially	if	you	are	using	TypeScript,	there	are	no	special	steps	involved.

In	case	of	Saltaralle	(which	is	being	deprecated),	you	might	have	to	write	some	import
classes	or	use	dynamic	otherwise.

But,	if	you	want	that	component	to	work	well	among	other	Serenity	editors	in	dialogs,	you
may	try	wrapping	it	into	a	Serenity	widget.

Here	we'll	take	Bootstrap	MultiSelect	plugin	as	a	sample,	and	integrate	it	as	an	editor	into
Serenity,	similar	to	LookupEditor.

Here	is	the	documentation	and	samples	for	this	component:

http://davidstutz.github.io/bootstrap-multiselect/

Getting	Script	and	CSS	Files

First	we	should	download	its	script	and	CSS	files	and	place	them	in	correct	places	under
MyProject.Web/scripts/	and	MyProject.Web/content	folders.

This	component	has	a	NuGet	package	but	unfortunately	it	is	not	in	a	standard	fashion	(it
doesn't	place	files	into	your	project	folders),	so	we'll	have	to	download	files	manually.

Download	this	script	file	and	put	it	under	MyProject.Web/Scripts:

https://raw.githubusercontent.com/davidstutz/bootstrap-multiselect/master/dist/js/bootstrap-
multiselect.js

Download	this	CSS	file	and	put	it	under	MyProject.Web/Content:

https://raw.githubusercontent.com/davidstutz/bootstrap-multiselect/master/dist/css/bootstrap-
multiselect.css

Including	Script/Css	Files	in	_LayoutHead.cshtml

According	to	plugin	documentation,	we	should	include	these	files:

How	To:	Use	a	Third	Party	Plugin	With	Serenity

249

http://davidstutz.github.io/bootstrap-multiselect/
https://raw.githubusercontent.com/davidstutz/bootstrap-multiselect/master/dist/js/bootstrap-multiselect.js
https://raw.githubusercontent.com/davidstutz/bootstrap-multiselect/master/dist/css/bootstrap-multiselect.css

<!--	Include	the	plugin's	CSS	and	JS:	-->

<script	type="text/javascript"	

		src="js/bootstrap-multiselect.js">

</script>

<link	rel="stylesheet"	type="text/css"/

						href="css/bootstrap-multiselect.css"	/>

Open	_LayoutHead.cshtml	under	MyProject.Web/Views/Shared	and	include	these	files:

//	...

@Html.Stylesheet("~/Content/bootstrap-multiselect.css")

@Html.Stylesheet("~/Content/serenity/serenity.css")

@Html.Stylesheet("~/Content/site/site.css")

//	...

@Html.Script("~/Scripts/bootstrap-multiselect.js")

@Html.Script("~/Scripts/Site/Serene.Script.js")

@Html.Script("~/Scripts/Site/Serene.Web.js")

Creating	BSMultiSelectEditor.ts

Now	we	need	a	TypeScript	source	file	to	hold	our	component.	We	should	put	it	under
MyProject.Web/Scripts	or	MyProject.Web/Modules	directories.

I'll	create	it	under	MyProject.Web/Modules/Common/Widgets	(first	you	need	to	create	folder
Widgets)

Create	file	BSMultiSelectEditor.ts	at	this	location:

How	To:	Use	a	Third	Party	Plugin	With	Serenity

250

namespace	MyProject	{

				@Serenity.Decorators.element("<select/>")

				@Serenity.Decorators.registerClass(

								[Serenity.IGetEditValue,	Serenity.ISetEditValue])

				export	class	BSMultiSelectEditor

								extends	Serenity.Widget<BSMultiSelectOptions>

								implements	Serenity.IGetEditValue,	Serenity.ISetEditValue	{

								constructor(element:	JQuery,	opt:	BSMultiSelectOptions)	{

												super(element,	opt);

								}

								public	setEditValue(source:	any,	

												property:	Serenity.PropertyItem):	void	{

								}

								public	getEditValue(property:	Serenity.PropertyItem,	

												target:	any):	void	{

								}

				}

				export	interface	BSMultiSelectOptions	{

								lookupKey:	string;

				}

}

Here	we	defined	a	new	editor	type,	deriving	from	Widget.	Our	widget	takes	options	of	type
BSMultiSelectOptions,	which	contains	a	lookupKey	option,	similar	to	a	LookupEditor.	It	also
implements	IGetEditValue	and	ISetEditValue	TypeScript	interfaces	(this	is	different	than	C#
interfaces)

	@Serenity.Decorators.element("<select/>")	

With	above	line,	we	specified	that	our	widget	works	on	a	SELECT	element,	as	this	bootstrap
multiselect	plugin	requires	a	select	element	too.

@Serenity.Decorators.registerClass(

				[Serenity.IGetEditValue,	Serenity.ISetEditValue])

Above,	we	register	our	TypeScript	class,	with	Saltaralle	type	system	and	specify	that	our
widget	implements	custom	value	getter	and	setter	methods,	corresponding	to	getEditValue
and	setEditValue	methods.

Here	syntax	is	a	bit	terse	as	we	have	to	handle	interop	between	Saltaralle	and
TypeScript.

Our	constructor	and	getEditValue,	setEditValue	methods	are	yet	empty.	We'll	fill	them	in
soon.

How	To:	Use	a	Third	Party	Plugin	With	Serenity

251

Using	Our	New	Editor

Now,	build	your	project	and	transform	templates.

Open	CustomerRow.cs	and	locate	Representatives	property:

[LookupEditor(typeof(EmployeeRow),	Multiple	=	true),	NotMapped]

[LinkingSetRelation(typeof(CustomerRepresentativesRow),	

				"CustomerId",	"EmployeeId")]

public	List<Int32>	Representatives

{

				get	{	return	Fields.Representatives[this];	}

				set	{	Fields.Representatives[this]	=	value;	}

}

Here	we	see	that	Representatives	uses	a	LookupEditor	with	multiple	option	true.	We'll
replace	it	with	our	brand	new	editor:

[BSMultiSelectEditor(LookupKey	=	"Northwind.Employee"),	NotMapped]

[LinkingSetRelation(typeof(CustomerRepresentativesRow),	

				"CustomerId",	"EmployeeId")]

public	List<Int32>	Representatives

{

				get	{	return	Fields.Representatives[this];	}

				set	{	Fields.Representatives[this]	=	value;	}

}

Populating	Editor	With	Lookup	Items

If	you	now	build	your	project	and	open	a	Customer	dialog,	you'll	see	an	empty	SELECT	in
place	of	Customer	representatives	field.

Let's	first	fill	it	with	data:

export	class	BSMultiSelectEditor	{

				constructor(element:	JQuery,	opt:	BSMultiSelectOptions)	{

								super(element,	opt);

								let	lookup	=	Q.getLookup(this.options.lookupKey)	as	Q.Lookup<any>;

								for	(let	item	of	lookup.get_items())	{

												let	key	=	item[lookup.get_idField()];

												let	text	=	item[lookup.get_textField()]	||	'';

												Q.addOption(element,	key,	text);

								}								

				}

We	first	get	a	reference	to	lookup	object	specified	by	our	lookupKey	option.

How	To:	Use	a	Third	Party	Plugin	With	Serenity

252

Lookups	has	idField	and	textField	properties,	which	usually	corresponds	to	fields	determined
by	IIdRow	and	INameRow	interfaces	on	your	lookup	row.

We	enumerate	all	items	in	lookup	and	determine	key	and	text	properties	of	those	items,
using	idField	and	textField	properties.

Now	save	file,	and	open	Customer	dialog	again.	You'll	see	that	this	time	options	are	filled.

Bootstrap	Multi	Select	Typings

According	to	documentation	we	should	now	call	".multiselect()"	jQuery	extension	on	our
select	element.

I	would	cast	our	SELECT	element	to		<any>		and	call	.multiselect	on	it,	but	i	want	to	write	a
TypeScript	.d.ts	definition	file	to	reuse	multiselect	with	intellisense.

So,	under	MyProject.Web/Scripts/typings/bsmultiselect	folder,	create	a	file,	bsmultiselect.d.ts

interface	JQuery	{

				multiselect(options?:	BSMultiSelectOptions	|	string):	JQuery;

}

interface	BSMultiSelectOptions	{

				multiple?:	boolean;

				includeSelectAllOption?:	boolean;

				selectAllText?:	string;

				selectAllValue?:	string	|	number;

}

Here,	i	have	extended	JQuery	interface	which	belongs	to	jQuery	itself	and	is	defined	in
jquery.d.ts.	In	TypeScript	you	can	extend	any	interface	with	new	methods,	properties	etc.

I	used	plugin	documentation	to	define	BSMultiSelectOptions.	The	plugin	actually	has	much
more	options,	but	for	now	i	keep	it	short.

Creating	Bootstrap	MultiSelect	on	Our	Editor

Now	i'll	go	back	to	our	constructor	and	initialize	a	multiselect	plugin	on	it:

How	To:	Use	a	Third	Party	Plugin	With	Serenity

253

export	class	BSMultiSelectEditor	{

				constructor(element:	JQuery,	opt:	BSMultiSelectOptions)	{

								super(element,	opt);

								element.attr('multiple',	'multiple')

								let	lookup	=	Q.getLookup(this.options.lookupKey)	as	Q.Lookup<any>;

								for	(let	item	of	lookup.get_items())	{

												let	key	=	item[lookup.get_idField()];

												let	text	=	item[lookup.get_textField()]	||	'';

												Q.addOption(element,	key,	text);

								}								

								element

												.attr('name',	this.uniqueName	+	"[]")

												.multiselect();					

				}

Open	CustomerDialog	and	you'll	see	that	Representatives	has	our	bootstrap	multi	select
editor.

Handling	GetEditValue	and	SetEditValue	Method

If	we	don't	handle	these	methods,	Serenity	won't	know	how	to	read	or	set	your	editor	value,
so	even	if	you	select	some	representatives,	next	time	you	open	the	dialog,	you'll	have	empty
selections.

export	class	BSMultiSelectEditor	{

//...

public	setEditValue(source:	any,	property:	Serenity.PropertyItem):	void	{

				this.element.val(source[property.name]	||	[]).multiselect('refresh');

}

public	getEditValue(property:	Serenity.PropertyItem,	target:	any):	void	{

				target[property.name]	=	this.element.val()	||	[];

}

setEditValue	is	called	when	editor	value	needs	to	be	setted.	It	takes	a	source	object,	which
is	usually	your	entity	being	loaded	in	a	dialog.

Property	parameter	is	a	PropertyItem	object	that	contains	details	about	the	field	being
handled,	e.g.	our	Representatives	property.	It's	name	field	contains	field	name,	e.g.
Representatives.

How	To:	Use	a	Third	Party	Plugin	With	Serenity

254

Here	we	have	to	call	multiselect('refresh')	after	setting	select	value,	as	multiselect	plugin
can't	know	when	selections	are	changed.

getEditValue	is	opposite.	It	should	read	edit	value	and	set	it	in	target	entity.

Ok,	now	our	custom	editor	should	be	working	fine.

How	To:	Use	a	Third	Party	Plugin	With	Serenity

255

How	To:	Enable	Script	Bundling
In	Serene	template	there	are	about	3MB+	of	javascript	files	which	are	included	by	default	in
_LayoutHead.cshtml.

This	might	cause	bandwidth	and	performance	problems	for	some	systems,	especially	when
a	Serenity	based	site	is	accessed	from	mobile	devices.

There	are	several	ways	to	handle	these	problems,	like	minification	and	gzipping	to	decrease
script	size,	bundling	to	pack	scripts	into	fewer	files,	thus	reduce	number	of	requests.

You	might	prefer	to	use	tools	like	Webpack,	Grunt,	Gulp,	UglifyJS	etc,	but	in	case	you	want	a
simpler	and	effective	solution	with	much	less	manual	steps,	Serenity	comes	with	a	script
bundling	and	minification	/	compression	system	out	of	the	box.

Please	note	that	this	feature	requires	Serenity	2.0.13+

ScriptBundles.json

First,	you	need	a	ScriptBundles.json	file	under	MyProject.Web/scripts/site	folder.
ScriptBundles.json	configures	which	script	bundle	will	contain	which	files	when	bundling	is
turned	on.

This	file	is	included	by	default	in	Serene	template	2.0.13+	and	looks	like	this:

Unless	you	want	to	add	some	custom	scripts	to	bundles,	you	don't	need	to	modify	this
file.

How	To:	Enable	Script	Bundling

256

{

				"Libs":	[

								"~/Scripts/pace.js",

								"~/Scripts/rsvp.js",

								"~/Scripts/jquery-{version}.js",

								"~/Scripts/jquery-ui-{version}.js",

								"~/Scripts/jquery-ui-i18n.js",

								"~/Scripts/jquery.validate.js",

								"~/Scripts/jquery.blockUI.js",

								"~/Scripts/jquery.cookie.js",

								"~/Scripts/jquery.json.js",

								"~/Scripts/jquery.autoNumeric.js",

								"~/Scripts/jquery.colorbox.js",

								"~/Scripts/jquery.dialogextendQ.js",

								"~/Scripts/jquery.event.drag.js",

								"~/Scripts/jquery.scrollintoview.js",

								"~/Scripts/jsrender.js",

								"~/Scripts/select2.js",

								"~/Scripts/toastr.js",

								"~/Scripts/SlickGrid/slick.core.js",

								"~/Scripts/SlickGrid/slick.grid.js",

								"~/Scripts/SlickGrid/slick.groupitemmetadataprovider.js",

								"~/Scripts/SlickGrid/Plugins/slick.autotooltips.js",

								"~/Scripts/SlickGrid/Plugins/slick.headerbuttons.js",

								"~/Scripts/SlickGrid/Plugins/slick.rowselectionmodel.js",

								"~/Scripts/SlickGrid/Plugins/slick.rowmovemanager.js",

								"~/Scripts/bootstrap.js",

								"~/Scripts/Saltarelle/mscorlib.js",

								"~/Scripts/Saltarelle/linq.js",

								"~/Scripts/Serenity/Serenity.CoreLib.js",

								"~/Scripts/Serenity/Serenity.Script.UI.js",

								"~/Scripts/Serenity/Serenity.Externals.js",

								"~/Scripts/Serenity/Serenity.Externals.Slick.js",

								"~/Scripts/jquery.cropzoom.js",

								"~/Scripts/jquery.fileupload.js",

								"~/Scripts/jquery.iframe-transport.js",

								"~/Scripts/jquery.slimscroll.js",

								"~/Scripts/mousetrap.js",

								"~/Scripts/fastclick/fastclick.js"

],

				"Site":	[

								"~/Scripts/adminlte/app.js",

								"~/Scripts/Site/Serene.Script.js",

								"~/Scripts/Site/Serene.Web.js"

]

}

Here	we	define	two	distinct	bundles,	Libs	and	Site,	corresponding	to	Bundle.Libs.js	and
Bundle.Site.js	dynamic	script	files.

Bundle.Site.js	is	configured	to	contain	these	three	JS	files	(in	the	listed	order):

How	To:	Enable	Script	Bundling

257

"~/Scripts/adminlte/app.js",

"~/Scripts/Site/Serene.Script.js",

"~/Scripts/Site/Serene.Web.js"

While	Bundle.Libs.js	contains	all	other	javascript	files.

Here	we	used	2	bundles	by	default,	but	it	is	possible	to	use	one,	three	or	more	in	case
you	need	a	different	configuration.	Just	be	careful	about	dependencies.

Here,	the	ordering	inside	a	bundle	(package)	is	very	important.	You	must	include	scripts	in
the	order	they	appear	in	your	_LayoutHead.cshtml.

When	you	will	add	another	custom	script,	make	sure	that	it	is	placed	after	all	its
dependencies.

For	example,	if	you	include	a	jquery	plugin	before	jquery	is	loaded	itself,	you'll	have
errors.

Also	make	sure	that	you	don't	include	same	file	in	two	bundles.

Enabling	Bundling

You	should	enable	bundling	(especially	minification)	only	in	production.	Otherwise	it	might
become	very	difficult	to	debug	Javascript.

To	enable	bundling,	just	change	Enabled	property	of	ScriptBundling	application	setting	in
your	web.config	to	true:

<add	key="ScriptBundling"	value="

			{	Enabled:	true,	Minimize:	false,	UseMinJS:	false	}"	/>

When	Enabled	is	false	(default)	system	will	do	nothing,	and	you'll	work	as	usual	with	your
script	includes.	And	your	page	source	looks	like	this:

How	To:	Enable	Script	Bundling

258

<script	src="/Scripts/pace.js?v=..."></script>

<script	src="/Scripts/rsvp.js?v=..."></script>

<script	src="/Scripts/jquery-2.2.3.js?v=..."></script>

<script	src="/Scripts/jquery-ui-1.11.4.js?v=..."></script>

<script	src="/Scripts/jquery-ui-i18n.js?v=..."></script>

...

...

...

<script	src="/Scripts/adminlte/app.js?v=..."></script>

<script	src="/Scripts/Site/Serene.Script.js?v=..."></script>

<script	src="/Scripts/Site/Serene.Web.js?v=..."></script>

...

When	Enabled	is	true,	it	will	become	like	this	one:

<script	src="/DynJS.axd/Bundle.Libs.js?v=..."></script>

<script	src="/DynJS.axd/Bundle.Site.js?v=..."></script>

...

These	two	bundles	are	generated	in	memory	and	contains	all	other	script	files	configured	in
ScriptBundles.json	file.

They	are	also	compressed	with	GZIP	and	cached	in	memory	(in	gzipped	form),	so	now	our
scripts	will	consume	much	less	bandwidth	and	will	cause	fewer	requests	to	server.

Now	our	script	files	will	consume	600KB,	instead	of	3000KB	before,	a	%80	reduction,	not
bad...

Enabling	Minification

After	enabling	bundling,	you	may	also	enable	minification	of	scripts	with	the	same
web.config	setting.	Set	Minimize	property	to	true:

<add	key="ScriptBundling"	value="

			{	Enabled:	true,	Minimize:	true,	UseMinJS:	false	}"	/>

Please	note	that	Minimize	property	only	works	when	Enabled	is	true,	thus	when
bundling	is	enabled.

UglifyJS	library	is	used	for	minification.	This	will	be	applied	before	bundling	/	gzipping	so	our
bundles	will	become	about	%40	smaller,	but	will	be	much	harder	to	read,	so	enable	this	only
in	production.

Now	our	bundled	and	minified	script	files	will	consume	375KB,	instead	of	3000KB	before,	a
%87	reduction,	or	1/8	the	initial	size.

How	To:	Enable	Script	Bundling

259

UseMinJS	Setting

Minification	might	take	some	time,	and	first	request	to	your	site	might	take	around	5-40
seconds	more,	depending	on	speed	of	your	server.

Other	requests	will	not	be	affected	as	minification	is	only	performed	once	at	application	start.

Anyway,	if	you	still	need	more	performance	at	first	request,	you	may	ask	Serenity	to	reuse
already	minified	files	in	disk,	if	they	are	available.

Set	UseMinJS	to	true:

<add	key="ScriptBundling"	value="

				{	Enabled:	true,	Minimize:	true,	UseMinJS:	true	}"	/>

When	this	setting	is	ON,	before	minifying	a	file,	let's	say	jquery-ui-1.11.4.js,	Serenity	will	first
check	to	see	if	a	jquery-ui-1.11.4.min.js	already	exists	in	disk.	If	so,	instead	of	minifiying	with
UglifyJS,	it	will	simply	use	that	file.	Otherwise,	it	will	run	UglifyJS.

Serene	comes	with	minified	versions	of	almost	all	libraries,	including	Serenity	scripts,	so	this
setting	will	speed	up	initial	start	time.

There	is	a	little	risk	that	you	should	be	careful	about.	If	you	manually	modify	a	library	script,
make	sure	you	minify	it	manually	and	modify	its	.min.js	file	too,	otherwise	when	bundling	is
enabled	an	old	version	of	that	script	might	run	at	production.

How	Serenity	Modifies	Your	_LayoutHead.cshtml	Includes?

If	you	look	at	your	_LayoutHead.cshtml	you	might	spot	lines	like	these:

@Html.Script("~/Scripts/jquery.cropzoom.js")

@Html.Script("~/Scripts/jquery.fileupload.js")

@Html.Script("~/Scripts/jquery.iframe-transport.js")

When	bundling	is	disabled,	these	statements	generates	such	HTML	code:

<script	src="/Scripts/jquery.cropzoom.js"></script>

<script	src="/Scripts/jquery.fileupload.js"></script>

<script	src="/Scripts/jquery.iframe-transport.js"></script>

Html.Script	is	an	extension	method	of	Serenity,	so	when	bundling	is	enabled,	instead	of
generating	this	HTML	code,	Serenity	will	first	check	to	see	if	this	script	is	included	in	a
bundle.

How	To:	Enable	Script	Bundling

260

For	the	first	script	that	is	included	in	a	bundle,	let's	say	Bundle.Lib.js,	Serenity	will	generate
code	below:

<script	src="/DynJS.axd/Bundle.Libs.js?v=..."></script>

But,	for	other	Html.Script	calls	that	is	included	in	same	bundle,	Serenity	will	generate
nothing.	Thus,	even	though	you	call	Html.Script	50	times,	you'll	get	only	one		<script>	
output	in	page	code.

What	Is	v=p53uqJ...	In	My	Script	Tags?

This	is	a	version	number,	or	HASH	of	your	script.	Whether	bundling	is	enabled	or	not,	when
you	use	Html.Script,	it	will	add	these	hash	to	your	script	includes.	This	hash	allows	browser
to	cache	script	until	it	changes.	When	content	of	a	script	changes,	its	hash	will	change	too,
so	browser	won't	cache	and	use	an	older	version.

This	is	the	reason	you'll	never	have	script	caching	problems	with	Serenity	apps.

How	To:	Enable	Script	Bundling

261

How	To:	Debugging	with	Serenity	Sources
Sometimes	you	might	want	to	debug	(or	trace	into)	Serenity	sources.	There	are	two	ways	to
do	this.

By	Enabling	Source	Server	Support

Serenity	NuGet	packages	already	contains	.pdb	files	debugging,	which	are	modified	to	use
GitHub	as	a	symbol	source	by	using	excellent	GitLink	project:

https://github.com/GitTools/GitLink

You	don't	need	GitLink	to	debug,	it's	just	a	tool	used	by	Serenity	while	publishing

To	enable	source	server	support,	just	go	to	your	Visual	Studio	options,	and	under	Debugging
->	General,	click	Enable	source	server	support.

You	should	also	uncheck	Enable	Just	My	Code:

How	To:	Debugging	with	Serenity	Sources

262

https://github.com/GitTools/GitLink

Now	put	a	breakpoint	on	OrderRepository	->	MyListHandler	->	ApplyFilters	or	some	other
code	you	like:

How	To:	Debugging	with	Serenity	Sources

263

Launch	application	in	debug	mode,	navigate	to	Orders	page,	and	enjoy	debugging:

By	Adding	Serenity	as	a	SubModule

This	option	is	only	recommended	for	advanced	users	with	a	good	knowledge	of	Git,
Submodules	and	.NET	in	general.	You'll	also	lose	the	ability	to	update	Serenity	and	related
files	simply	with	NuGet.

I	don't	recommend	this	to	novice	users.	If	you	do	this	and	break	your	project,	sorry	but	i
can't	help	you.

I	assume	you	have	a	project	named	SereneSample,	and	have	a	GIT	repository	for	it	already.

In	GitExtensions,	enter	Repository	->	SubModules	->	Add	submodule:

Under	Path	to	submodule	enter:

https://github.com/volkanceylan/Serenity.git

Enter	Serenity	as	Local	path.

Then	click	Add	to	add	Serenity	as	a	submodule	to	your	repository.	Then	close	the
submodules	dialog,	and	return	to	Visual	Studio.

Expand	your	project	references	for	SereneSample.Web	and	remove	following	references:

How	To:	Debugging	with	Serenity	Sources

264

https://github.com/volkanceylan/Serenity.git

Serenity.Core

Serenity.Data

Serenity.Data.Entity

Serenity.Services

Serenity.Web

Right	click	your	solution,	click	Add	->	Existing	Project	and	select	Serenity.Core.csproj	under
Serenity	folder.

Repeat	it	for	Serenity.Data,	Serenity.Data.Entity,	Serenity.Services	and	Serenity.Web.

Right	click	your	project	references,	click	Add	Reference	->	Projects	->	Solution	and	check	all
projects	we	added	above,	then	click	OK.

Now	build	your	solution.	There	should	be	no	errors.

Unload	your	project	by	right	clicking	it	and	clicking	Unload.	Then	again	right	click	project
name	and	click	Edit.

Add	Import	statement	below,	after	the	last	Import	Project	statement	in	your	csproj	(there
should	be	4	Import	Project	statements,	5	after	including	this	one):

		<Import	Project="$(SolutionDir)Serenity\tools\Submodule\Serenity.Submodule.Web.targe

ts"	/>

Under	CompileSiteLess	include	this:

<Exec	Command=""$(ProjectDir)tools\node\lessc.cmd"	

	"$(ProjectDir)..\..\Serenity\Serenity.Web\Style\serenity.less"	

	>	"$(ProjectDir)Content\serenity\serenity.css"">

</Exec>

				...

Save	file	and	reload	project.

Now	you	can	use	Serenity	as	a	submodule	and	debug	normally.

How	To:	Debugging	with	Serenity	Sources

265

Frequently	Asked	Questions

Code	Generator	(Sergen)
Should	I	regenerate	code	after	adding	fields	to	my	table:

It's	recommended	to	only	generate	code	once.	You	should	add	new	fields	to	row,	column
and	form	classes	manually,	taking	existing	fields	as	a	sample.

But	if	you	made	too	many	changes,	and	want	to	generate	code	again	it	is	possible.	Sergen
will	launch	Kdiff3	to	let	you	merge	changes,	so	that	it	won't	override	the	changes	you	might
have	made	to	the	code	generated	before.

I'm	having	an	error	in	Sergen	about	KDiff3.	Where	to	set	its	location:

Sergen	looks	for	KDiff3	at	its	default	location	under	Program	Files	directory.	Install	it	if	you
didn't	yet.

If	Kdiff3	is	at	another	location,	edit	Serenity.CodeGenerator.config	in	your	solution	directory.
This	is	a	JSON	file	containing	settings	and	preferences	for	Sergen.

Permissions
I	want	to	separate	INSERT	permission	from	UPDATE	permission	:

Instead	of	[ModifyPermission]	attribute	use	[InsertPermission]	and	[UpdatePermission]
attributes	on	rows.

By	default,	for	INSERT,	save	handler	looks	for	these	permissions	on	row	in	this	order	on
row:

1)	InsertPermission
2)	ModifyPermission
3)	ReadPermission

Only	the	first	one	that	is	found	is	checked.

Similarly	for	UPDATE,	save	handler	looks	for	these	permissions	in	order	on	row:

1)	UpdatePermission

Frequently	Asked	Questions

266

2)	ModifyPermission
3)	ReadPermission

For	DELETE,	delete	handler	looks	for	these	permissions	in	order	on	row:

1)	DeleteInsertPermission
2)	ModifyPermission
3)	ReadPermission

For	LIST	/	RETRIEVE,	only	one	permission	is	checked:

1)	ReadPermission

Publishing	and	Deployment
How	can	i	publish	Serenity	applications:

Serenity	applications	are	x-copy	deployable.	You	just	need	to	setup	connection	strings	after
deployment.	You	might	exclude	source	files	from	deployment.

Make	sure	you	remove	database	migration	safety	check	from	RunMigrations	method	in
SiteInitialization.Migrations	file.

You	can	also	use	publish	feature	in	Visual	Studio.	Make	sure	build	action	for	all	content	files
that	you	use	are	set	to	Content,	and	not	None.

You	have	to	only	publish	MyApplication.Web,	not	script	project.

Serenity	uses	a	NuGet	version	of	ASP.NET	MVC,	so	there	is	no	need	to	install	MVC	on
server.	If	you	get	some	DLL	missing	error,	check	that	its	Copy	Local	option	of	VS	project
references	is	set	to	True.

Forms	and	Editors
How	to	allow	negative	values	in	DecimalEditor:

In	DecimalEditor	attribute	set	MinValue	and	MaxValue	properties:

[DecimalEditor(MinValue	=	"-999999999.99",	MaxValue	=	"999999999.99")]

public	Decimal	MyProperty	{	get;	set;	}

Make	sure	you	use	same	number	of	digits	for	min	and	max	value.

How	can	i	reload/refresh	a	lookup	editor	data

Frequently	Asked	Questions

267

Use	Q.ReloadLookup("MyModule.MyLookupKey")	to	reload	a	lookup	by	its	key.

How	to	create	filter	editor	for	an	Enum:

AddEqualityFilter<EnumEditor>(SomeRow.Fields.TheEnumField,

				options:	new	EnumEditor	{	EnumKey	=	"MyModule.MyEnumType"	});

How	to	set	current	date	in	a	date	editor	in	new	record	mode:

Add	[DefaultValue("today")]	for	date,	or	[DefaultValue("now")]	for	date	time	editor	in	form
declaration.

Don't	do	this	in	row.	It	may	cause	errors.

Another	option	is	to	do	this	in	dialog,	overriding	AfterLoadEntity:

form.MyDateField.AsDate	=	JsDate.Today;

Frequently	Asked	Questions

268

Troubleshooting

Initial	Setup
After	you	create	a	new	Serene	application	and	launch	it,	login	screen	doesn't	show
and	you	see	an	error	message	in	console	that	says	Template.LoginPanel	is	not	found:

You	probably	used	an	invalid	solution	name,	like	MyProject.Something	that	contains	dot	(.)

Template	system	might	not	be	able	to	locate	templates	when	projects	are	named	this	way.

Please	don't	use	dot	in	solution	name.	You	may	rename	solution	after	creation	if	required.

Compilation	Errors
I'm	getting	several	ambiguous	reference	errors	after	adding	a	file	to	Script	project	:

Remove	System.dll	reference	from	script	project.	Visual	Studio	adds	this	reference	when
you	use	Add	New	File	dialog.	Saltarelle	Compiler	doesn't	work	with	such	references,	as	it
has	a	completely	different	runtime.

Please	use	copy/paste	to	create	code	files	in	Script	project.

Error:	System.ComponentModel.DisplayName	attribute	exists	in	both
...\Serenity.Script.UI.dll	and	...\v2.0...\System.dll

Same	as	above,	remove	System.dll	reference	from	script	project.

Runtime	Errors
I'm	getting	NotImplementException	when	uploading	files,	or	adding	notes:

Such	features	requires	a	table	with	integer	identity	column.	String/Guid	primary	key	support
is	added	in	recent	Serenity	versions,	and	some	old	behaviors	doesn't	work	with	such	keys.

SQL	and	Connections
When	i	change	page	in	grid,	i'm	getting	error,	"Incorrect	syntax	near	'OFFSET'.	Invalid
usage	of	the	option	NEXT	in	the	FETCH	statement:

Troubleshooting

269

Your	SQL	server	version	is	2008	or	older.	By	default,	SQL	Server	connections	use	SQL2012
dialect.	Do	something	like	below	for	your	connections	in	SiteInitialization.cs	and	your	dialect
for	all	to	SqlServer2005	or	SqlServer2008:

		SqlConnections.GetConnectionString("Default").Dialect	=

				SqlServer2008Dialect.Instance;

T4	Template	Problems
My	enum	is	not	transferred	to	script	side,	after	transforming	templates:

If	you	use	an	enum	type	in	a	row	or	service	request	/	response	it	will	be	transferred,
otherwise	it	won't	by	default.	If	you	still	want	to	include	this	enum,	add	[ScriptInclude]
attribute	on	top	of	it.

Editors	and	Forms
Tried	to	setup	cascaded	dropdowns	but	my	second	dropdown	is	always	empty:

Make	sure	your	CascadeField	is	correct	and	it	matches	property	name	in	secondary	lookup
properly.	For	example	CountryID	doesn't	match	CountryId	at	script	side.	You	may	use
nameof()	operator	like	CascadeField	=	nameof(CityRow.CountryId)	to	be	sure.

A	similar	problem	might	occur	if	you	fail	to	correctly	set	CascadeFrom	option.	This
corresponds	to	first	dropdown	ID	in	your	form.	For	example,	if	there	are	MyCountryId	and
CustomerCityId	properties	in	the	form,	CascadeForm	should	be	CustomerCountryId.	Again,
you	can	use	nameof(MyCountryId)	to	be	certain.

CascadeFrom	is	an	editor	ID	in	form,	while	CascadeField	is	a	field	property	name	in
row.

Another	possibility	is	that	CascadeField	is	not	included	in	lookup	data	that	is	sent	to	script
side.	For	example,	if	second	dropdown	is	city	selection,	which	is	connected	to	a	country
dropdown	through	CountryId,	make	sure	that	CountryId	property	in	CityRow	has	a
[LookupInclude]	attribute	on	it.	By	default,	only	ID	and	Name	properties	are	sent	to	script
side	for	lookups.

Tried	to	create	tabs	using	a	dialog	template,	but	my	tab	is	not	shown	or	empty:

Make	sure	you	don't	put	a	tab	content,	inside	another	one,	like	DIV	inside	another	tab	DIV.

Troubleshooting

270

Master/Detail	Editing
I	created	a	in	memory	master	detail	editing	similar	to	one	in	Movie	Tutorial	cast	editor,
but	when	i	update	a	record,	i'm	getting	duplicate	entries:

Make	sure	you	don't	have	a	[IdProperty]	on	your	EditDialog	class.	As	edit	dialogs	work	in
memory	with	records	that	doesn't	yet	have	actual	IDs,	if	you	use	your	actual	ID	property	with
them,	dialog	will	think	that	you	are	adding	new	records	on	update	(as	their	actual	ID	value	is
always	null).

As	you	see	in	code	below,	GridEditorDialog	base	class	uses	a	fake	ID:

[IdProperty("__id")]

public	abstract	class	GridEditorDialog<TEntity>	:	EntityDialog<TEntity>

				where	TEntity	:	class,	new()

So	when	you	put	[IdProperty]	to	your	edit	dialog,	you're	overwriting	this	fake	ID	and	causing
unexpected	behavior.

I'm	succesfully	adding	details	but	later	when	open	an	existing	record,	some	view
fields	are	empty:

Please	put	[MinSelectLevel(SelectLevel.List)]	on	your	view	fields	in	YourDetailRow.cs.	By
default,	List	handlers	and	MasterDetailBehavior	only	loads	table	fields	(not	view	fields)	of
detail	rows.

Permissions
My	page	is	not	shown	in	navigation:

Page	access	permissions	are	read	from	PageAuthorize	attribute	on	Index	action	of
XYZPage.cs	file,	which	is	your	MVC	page	controller.	Make	sure	you	set	this	to	a	permission
user	has.

I	have	added	a	permission	to	PermissionKeys.cs	but	it	doesn't	show	in	user
permissions	dialog:

PermissionKeys	class	is	just	for	intellisense	purposes.	See	below	for	information	about
registering	keys.

Troubleshooting

271

How	To	Register	Permissions	in	Serene

Changed	permission	keys	on	row,	but	i'm	getting	an	error	when	i	open	the	page,	and
no	records	displayed:

Your	XYZEndpoint.cs	also	has	a	[ServiceAuthorize("SomePermission")]	on	it.	This	is	to
provide	a	secondary	level	security.	Replace	permission	key	with	the	one	on	Row.

Localization
My	localizations	lost	on	live	site	after	publishing:

The	translations	you	made	using	translation	interface	are	saved	to	files	under	~/App_Data
directory.	Either	copy	these	files	to	live	server,	or	move	texts	in	them	to	relevant	files	under
~/Scripts/site/texts.

I	have	added	some	custom	local	text	keys	but	can't	access	them	from	script	side:

Not	all	translations	are	transferred	to	script	side.	There	is	a	setting	in	web.config	with
LocalTextPackages	key,	that	controls	these	prefixes.	If	you	look	there,	you	can	see	that	only
text	keys	that	are	starting	with	Db.,	Dialogs.,	Forms.	etc	are	transferred	to	client	side.	This	is
to	limit	size	of	texts	as	not	all	of	them	are	used	in	script	code.

Either	add	your	own	prefix	there,	or	change	your	keys	to	start	with	one	of	default	prefixes.

NuGet	Packages	and	Updates
I	have	some	errors	after	updating	Select2:

Please	don't	update	Select2	to	a	version	later	than	3.5.1.	Recent	versions	has	some	known
compability	problems.

To	revert	to	Select2	3.5.1,	type	following	in	package	manager	console:

Update-Package	Select2.js	-Version	3.5.1

Deployment	and	Publishing

Troubleshooting

272

After	publishing	project	some	content	is	not	found,	or	not	displayed:

If	you	are	using	Visual	Studio	publish,	make	sure	that	css,	image	files	etc	are	included	in
web	project	and	their	build	action	is	set	to	content.

Another	possibility	is	that	IIS_IUSRS	user	group	can't	access	files.	Check	that	it	has
permissions	to	files	in	published	web	folder.

Table	not	found	(e.g.	User)	errors	after	publish:

Serene	has	a	check	to	avoid	running	migrations	on	an	arbitrary	database.	Find	this	check
under	RunMigrations	method	of	SiteInitialization.Migrations	file	and	remove	it.

FieldAccessExceptions	with	message	"Cannot	set	a	constant	field"	:

Your	hosting	provider	has	set	your	web	application	pool	to	medium	trust.	Ask	them	to	grant
high	trust,	or	if	possible	change	provider.

It	might	be	possible	to	change	trust	level	in	web.config	if	your	hosting	provider	didn't	lock	it:

<configuration>	

		<system.web>	

				<trust	level="Full"	/>

		</system.web>	

</configuration>

Serenity	initializes	field	objects	with	reflection.	Under	medium	trust,	it	can't	do	that.	You	may
try	replacing	all	*public	readonly"	field	declarations	with	"public	static"	in	*Row.cs,	but	not
sure	if	this	will	resolve	all	problems.

ASP.NET	has	made	Medium	trust	obsolete,	and	they	won't	fix	any	problems	related	to
this	anymore.	See	http://stackoverflow.com/questions/16849801/is-trying-to-develop-
for-medium-trust-a-lost-cause	It	is	strongly	recommended	to	change	your	hosting
provider

Troubleshooting

273

http://stackoverflow.com/questions/16849801/is-trying-to-develop-for-medium-trust-a-lost-cause

Service	Locator	&	Initialization
Serenity	uses	the	service	locator	pattern	to	abstract	its	dependencies	and	make	it	possible
to	work	with	your	chosen	libraries	and	service	providers.

For	example,	Serenity	doesn't	care	about	how	you	store	your	users,	but	it	can	query	current
user	through	an	abstraction	(IAuthorizationService,	IUserRetrieveService	etc.)

Similarly	you	may	use	Redis,	Couchbase,	Memcached	or	any	other	as	distributed	cache	in
your	application.	Serenity	doesn't	have	a	direct	dependency	on	any	of	their	client	libraries.
As	soon	as	you	implement	IDistributedCache	interface	and	register	it	with	the	service
locator,	Serenity	will	start	working	with	your	NoSQL	database.

Some	might	argue	that	Service	Locator	is	an	anti-pattern	that	should	be	avoided.	An
alternative	to	it	would	be	the	Dependency	Injection	pattern.	But	it	seems	unlogical
having	to	know	about	every	dependency	(and	dependencies	of	dependencies...)	of	an
object	to	just	be	able	to	use	it	(you	shouldn't	have	to	know	about	details	of	what	your
mobile	operator	uses	to	send	a	simple	SMS).	Maybe	DI	is	a	sample	of	over-
engineering.

Service	Locator	&	Initialization

274

Dependency	Static	Class
[namespace:	Serenity.Abstractions,	assembly:	Serenity.Core]

Dependency	class	is	the	service	locator	of	Serenity.	All	dependencies	are	queried	through
its	methods:

public	static	class	Dependency

{

				public	static	TType	Resolve<TType>()	where	TType	:	class;

				public	static	TType	Resolve<TType>(string	name)	where	TType	:	class;

				public	static	TType	TryResolve<TType>()	where	TType	:	class;

				public	static	TType	TryResolve<TType>(string	name)	where	TType	:	class;

				public	static	IDependencyResolver	SetResolver(IDependencyResolver	value);

				public	static	IDependencyResolver	Resolver	{	get;	}

				public	static	bool	HasResolver	{	get;	}

}

In	your	application's	start	method	(e.g.	in	global.asax.cs)	you	should	initialize	service	locator
by	setting	a	dependency	resolver	(IDependencyResolver)	implementation	(an	IoC	container)
with	SetResolver	method.

Dependency.SetResolver	Method
Configures	the	dependency	resolver	implementation	to	use.

You	can	use	IoC	container	of	your	choice	but	Serenity	already	includes	one	based	on	Munq:

var	container	=	new	MunqContainer();

Dependency.SetResolver(container);

SetResolver	methods	return	previously	configured	IDependencyResolver	implementation,	or
null	if	none	is	configured	before.

Dependency.Resolver	Property
Returns	currently	configured	IDependencyResolver	implementation.

Throws	a	InvalidProgramException	if	none	is	configured	yet.

Dependency	Static	Class

275

Depency.HasResolver	Property
Returns	true	if	a	IDependencyResolver	implementation	is	configured	through	SetResolver.
Returns	false,	if	not.

Dependency.Resolve	Method
Returns	the	registered	implementation	for	requested	type.

If	no	implementation	is	registered,	throws	a	KeyNotFoundException.

If	no	dependency	resolver	is	configured	yet,	throw	a	InvalidProgramException

Second	overload	of	Resolve	method	accepts	a	name	parameter.	This	should	be	used	if
different	providers	are	registered	for	an	interface	depending	on	scope.

For	example,	Serenity	has	a	IConfigurationRepository	interface	that	can	have	different
providers	based	on	setting	scope.	Some	settings	might	be	Application	scoped	(shared
between	all	servers	for	this	application),	while	some	might	be	Server	scoped	(each	server
might	use	a	different	unique	identifier).

So,	to	retrieve	a	IConfigurationRepository	provider	for	each	of	these	scopes,	you	would	call
the	method	like:

var	appConfig	=	Dependency.Resolve<IConfigurationRepository>("Application");

var	srvConfig	=	Dependency.Resolve<IConfigurationRepository>("Server");

Dependency.TryResolve	Method
This	is	functionally	equivalent	to	Resolve	method	with	one	difference.

If	a	provider	is	not	registered	for	requested	type,	or	no	dependency	resolver	is	configured
yet,	TryResolve	doesn't	throw	an	exception,	but	instead	returns	null.

Dependency	Static	Class

276

IDependencyResolver	Interface
[namespace:	Serenity.Abstractions,	assembly:	Serenity.Core]

This	interface	defines	the	contract	for	dependency	resolvers	which	are	usually	IoC
containers	that	handles	mapping	between	services	and	providers.

public	interface	IDependencyResolver

{

				TService	Resolve<TService>()	where	TService	:	class;

				TService	Resolve<TService>(string	name)	where	TService	:	class;

				TService	TryResolve<TService>()	where	TService	:	class;

				TService	TryResolve<TService>(string	name)	where	TService	:	class;

}

All	methods	are	functionally	equal	to	corresponding	methods	in	Dependency	static	class.

IDependencyResolver	Interface

277

IDependencyRegistrar	Interface
[namespace:	Serenity.Abstractions,	assembly:	Serenity.Core]

Dependency	resolvers	should	implement	this	interface	(IDependencyRegistrar)	to	register
dependencies:

public	interface	IDependencyRegistrar

{

				object	RegisterInstance<TType>(TType	instance)	where	TType	:	class;

				object	RegisterInstance<TType>(string	name,	TType	instance)	where	TType	:	class;

				object	Register<TType,	TImpl>()	where	TType	:	class	where	TImpl	:	class,	TType;

				object	Register<TType,	TImpl>(string	name)	where	TType	:	class	where	TImpl	:	class

,	TType;

				void	Remove(object	registration);

}

MunqContainer	and	other	IoC	containers	are	also	dependency	registrars	(they	implement
IDependencyRegistrar	interface),	so	you	just	have	to	query	for	it:

				var	registrar	=	Dependency.Resolve<IDependencyRegistrar>();

				registrar.RegisterInstance<ILocalTextRegistry>(new	LocalTextRegistry());

				registrar.RegisterInstance<IAuthenticationService>(...)

IDependencyRegistrar.RegisterInstance
Method
Registers	a	singleton	instance	of	a	type	(TType,	usually	an	interface)	as	provider	of	that
type.

object	RegisterInstance<TType>(TType	instance)	where	TType	:	class;

When	you	register	an	object	instance	with	this	overload,	whenever	an	implementation	of
	TType		is	requested,	the	instance	that	you	registered	is	returned	from	dependency	resolver.
This	is	similar	to	Singleton	Pattern.

				var	registrar	=	Dependency.Resolve<IDependencyRegistrar>();

				registrar.RegisterInstance<ILocalTextRegistry>(new	LocalTextRegistry());

IDependencyRegistrar	Interface

278

If	there	was	already	a	registration	for	TType,	it	is	overridden.

This	overload	is	the	most	used	method	of	registering	dependencies.

Make	sure	the	provider	which	you	registered	is	thread	safe,	as	all	threads	will	be	using
your	instance	at	same	time!

RegisterInstance	has	a	less	commonly	used	overload	with	a	name	parameter:

object	RegisterInstance<TType>(string	name,	TType	instance)	where	TType	:	class;

Using	this	overload,	you	can	register	different	providers	for	the	same	interface,	differentiated
by	a	string	key.

For	example,	Serenity	has	a	IConfigurationRepository	interface	that	can	have	different
providers	based	on	setting	scope.	Some	settings	might	be	Application	scoped	(shared
between	all	servers	for	this	application),	while	some	might	be	Server	scoped	(each	server
might	use	a	different	unique	identifier).

So,	to	register	a	IConfigurationRepository	provider	for	each	of	these	scopes,	you	would	call
the	method	like:

var	registrar	=	Dependency.Resolve<IDependencyRegistrar>();

registrar.RegisterInstance<IConfigurationRepository>(

				"Application",	new	MyApplicationConfigurationRepository());

registrar.RegisterInstance<IConfigurationRepository>(

				"Server",	new	MyServerConfigurationRepository());

And	when	querying	for	these	dependencies:

var	appConfig	=	Dependency.Resolve<IConfigurationRepository>("Application");

//	...

var	srvConfig	=	Dependency.Resolve<IConfigurationRepository>("Server");

//	...

IDependencyRegistrar.Register	Method
Unlike	RegisterInstance,	when	a	type	is	registered	with	this	method,	every	time	a	provider
for	that	type	is	requested,	a	new	instance	will	be	returned	(so	each	requestor	gets	a	unique
instance).

IDependencyRegistrar	Interface

279

				var	registrar	=	Dependency.Resolve<IDependencyRegistrar>();

				registrar.Register<ILocalTextRegistry,	LocalTextRegistry>();

IDependencyRegistrar.Remove	Method
All	registration	methods	of	IDependencyRegistrar	interface	returns	an	object	which	you	can
later	use	to	remove	that	registration.

Avoid	using	this	method	in	ordinary	applications	as	all	registrations	should	be	done	from	a
central	location	and	once	per	lifetime	of	the	application.	But	this	can	be	useful	for	unit	test
purposes.

				var	registrar	=	Dependency.Resolve<IDependencyRegistrar>();

				var	registration	=	registrar.Register<ILocalTextRegistry,	LocalTextRegistry>();

				//...

				registrar.Remove(registration);

This	is	not	an	undo	operation.	If	you	register	type	C	for	interface	A,	while	type	B	was
already	registered	for	the	same	interface,	prior	registration	is	overriden	and	lost.	You
can't	get	back	to	prior	state	by	removing	registration	of	C.

IDependencyRegistrar	Interface

280

MunqContainer	Class
[namespace:	Serenity,	assembly:	Serenity.Core]

Serenity	includes	a	slightly	modified	version	of	Munq	IoC	container
(http://munq.codeplex.com/).

MunqContainer	class	implements	both	IDependencyResolver	and	IDependencyRegistrar
interfaces	(all	containers	should).

Once	you	set	a	MunqContainer	instance	as	dependency	resolver	like:

var	container	=	new	MunqContainer();

Dependency.SetResolver(container);

You	can	access	its	registration	interface	by	querying	for	IDependencyRegistrar	interface:

var	registrar	=	Dependency.Resolve<IDependencyRegistrar>();

Here,	registrar	is	the	same	MunqContainer	instance	(container)	that	we	created	in	prior
sample.

If	you	would	like	to	use	another	IoC	container,	you	just	have	to	create	a	class	that
implements	IDependencyResolver	and	IDependencyRegistrar	interfaces	using	your
favorite	IoC	container.

MunqContainer	Class

281

http://munq.codeplex.com/

CommonInitialization	Static	Class
[namespace:	Serenity.Web,	assembly:	Serenity.Web]

If	you	are	going	to	use	defaults	in	a	web	environment,	instead	of	doing	the	service	locator
setup	and	some	other	configuration	manually,	you	may	just	call	CommonInitialization.Run()
in	your	application	start	method.	CommonInitialization	registers	default	implementations	for
some	of	Serenity	abstractions.

CommonInitialization.Run();

If	there	is	already	a	provider	registered	for	some	abstraction,	CommonInitialization
doesn't	override	them.

This	method	contains	calls	to	some	other	methods	to	initialize	Serenity	platform	defaults:

public	static	class	CommonInitialization

{

				public	static	void	Run()

				{

								InitializeServiceLocator();

								InitializeSelfAssemblies();

								InitializeConfigurationSystem();

								InitializeCaching();

								InitializeLocalTexts();

								InitializeDynamicScripts();

				}

				public	static	void	InitializeServiceLocator()

				{

								if	(!Dependency.HasResolver)

								{

												var	container	=	new	MunqContainer();

												Dependency.SetResolver(container);

								}

				}

				//...

}

CommonInitialization.InitializeServiceLocator	and	other	methods	may	also	be	used
individually	instead	of	calling	CommonInitialization.Run.

InitializeServiceLocator(),	registers	a	MunqContainer	instance	as	the	default
IDependencyResolver	implementation.

CommonInitialization	Static	Class

282

CommonInitialization	Static	Class

283

Authentication	&	Authorization
Serenity	uses	some	abstractions	to	work	with	your	application's	own	user	authentication	and
authorization	mechanism.

Serenity.Abstractions.IAuthenticationService

Serenity.Abstractions.IAuthorizationService

Serenity.Abstractions.IPermissionService

Serenity.Abstractions.IUserRetrieveService

As	Serenity	doesn't	have	default	implementation	for	these	abstractions,	you	should	provide
some	implementation	for	them,	using	dependency	registration	system.

For	example,	Serenity	Basic	Application	sample	registers	them	in	its
SiteInitialization.ApplicationStart	method	like	below:

var	registrar	=	Dependency.Resolve<IDependencyRegistrar>();

registrar.RegisterInstance<IAuthorizationService>(

				new	Administration.AuthorizationService());

registrar.RegisterInstance<IAuthenticationService>(

				new	Administration.AuthenticationService());

registrar.RegisterInstance<IPermissionService>(

				new	Administration.PermissionService());

registrar.RegisterInstance<IUserRetrieveService>(

				new	Administration.UserRetrieveService());

You	might	want	to	have	a	look	at	those	sample	implementations	before	writing	your	own.

Authentication	&	Authorization

284

IAuthenticationService	Interface
[namespace:	Serenity.Abstractions,	assembly:	Serenity.Core]

public	interface	IAuthenticationService

{

				bool	Validate(ref	string	username,	string	password);

}

This	is	the	service	that	you	usually	call	from	your	login	page	to	check	if	entered	credentials
are	correct.	Your	implementation	should	return	true	if	username/password	pair	matches.

A	dummy	authentication	service	could	be	written	like	this:

public	class	DummyAuthenticationService	:	IAuthenticationService

{

				public	bool	Validate(ref	string	username,	string	password)

				{

								return	username	==	password;

				}

}

This	service	returns	true,	if	username	is	equal	to	specified	password	(just	for	demo).

First	parameter	is	passed	by	reference	for	you	to	change	username	to	its	actual
representation	in	database	before	logging	in.	For	example,	the	user	might	have	entered
uppercase		JOE		in	login	form,	but	actual	username	in	database	could	be		Joe	.	This	is	not	a
requirement,	but	if	your	database	is	case	sensitive,	you	might	have	problems	during	login	or
later	phases.

You	might	register	this	service	from	global.asax.cs	/	SiteInitialization.ApplicationStart	like:

protected	void	Application_Start(object	sender,	EventArgs	e)

{

				Dependency.Resolve<IDependencyRegistrar>()

								.RegisterInstance(new	DummyAuthenticationService());

}

And	use	it	somewhere	in	your	login	form:

IAuthenticationService	Interface

285

void	DoLogin(string	username,	string	password)

{

				if	(Dependency.Resolve<IAuthenticationService>()

												.Validate(ref	username,	password))

				{

								//	FormsAuthentication.SetAuthenticationTicket	etc.

				}

}

IAuthenticationService	Interface

286

IAuthorizationService	Interface
[namespace:	Serenity.Abstractions,	assembly:	Serenity.Core]

This	is	the	interface	that	Serenity	checks	through	to	see	if	there	is	a	logged	user	in	current
request.

public	interface	IAuthorizationService

{

				bool	IsLoggedIn	{	get;	}

				string	Username	{	get;	}

}

Some	basic	implementation	for	web	applications	could	be:

using	Serenity;

using	Serenity.Abstractions;

public	class	MyAuthorizationService	:	IAuthorizationService

{

				public	bool	IsLoggedIn

				{

								get	{	return	!string.IsNullOrEmpty(Username);	}

				}

				public	string	Username

				{

								get	{	return	WebSecurityHelper.HttpContextUsername;	}

				}

}

///	...

void	Application_Start(object	sender,	EventArgs	e)

{

				Dependency.Resolve<IDependencyRegistrar>()

								.RegisterInstance(new	MyAuthorizationService());

}

IAuthorizationService	Interface

287

IPermissionService	Interface
[namespace:	Serenity.Abstractions,	assembly:	Serenity.Core]

A	permission	is	some	grant	to	do	some	action	(entering	a	page,	calling	a	certain	service).	In
Serenity	permissions	are	some	string	keys	that	are	assigned	to	individual	users	(similar	to
ASP.NET	roles).

For	example,	if	we	say	some	user	has		Administration		permission,	this	user	can	see
navigation	links	that	requires	this	permission	or	call	services	that	require	the	same.

You	can	also	use	composite	permission	keys	like		ApplicationID:PermissionID		(for
example		Orders:Create),	but	Serenity	doesn't	care	about	application	ID,	nor
permission	ID,	it	only	uses	the	composite	permission	key	as	a	whole.

public	interface	IPermissionService

{

				bool	HasPermission(string	permission);

}

You	might	have	a	table	like...

CREATE	TABLE	UserPermissions	(

				UserID	int,

				Permission	nvarchar(20)

}

and	query	on	this	table	to	implement	this	interface.

A	simpler	sample	for	applications	where	there	is	a		admin		user	who	is	the	only	one	that	has
the	permission		Administration		could	be:

IPermissionService	Interface

288

using	Serenity;

using	Serenity.Abstractions;

public	class	DummyPermissionService	:	IPermissionService

{

				public	bool	HasPermission(string	permission)

				{

								if	(Authorization.Username	==	"admin")

												return	true;

								if	(permission	==	"Administration")

												return	false;

								return	true;

				}

}

IPermissionService	Interface

289

IUserDefinition	Interface
[namespace:	Serenity,	assembly:	Serenity.Core]

Most	applications	store	some	common	information	about	a	user,	like	ID,	display	name	(nick	/
fullname),	email	address	etc.	Serenity	provides	a	basic	interface	to	access	this	information	in
an	application	independent	manner.

public	interface	IUserDefinition

{

				string	Id	{	get;	}

				string	Username	{	get;	}

				string	DisplayName	{	get;	}

				string	Email	{	get;	}

				Int16	IsActive	{	get;		}

}

Your	application	should	provide	a	class	that	implements	this	interface,	but	not	all	of	this
information	is	required	by	Serenity	itself.	Id,	Username	and	IsActive	properties	are	minimum
required.

	Id		can	be	an	integer,	string	or	GUID	that	uniquely	identifies	a	user.

	Username		should	be	a	unique	username,	but	you	can	use	e-mail	addresses	as	username
too.

	IsActive		should	return	1	for	active	users,	-1	for	deleted	users	(if	you	don't	delete	users
from	database),	and	0	for	temporarily	disabled	(account	locked)	users.

	DisplayName		and		Email		are	optional	and	currently	not	used	by	Serenity	itself,	though	your
application	may	require	them.

IUserDefinition	Interface

290

IUserRetrieveService	Interface
[namespace:	Serenity.Abstractions,	assembly:	Serenity.Core]

When	Serenity	needs	to	access	IUserDefinition	object	for	a	given	user	name	or	user	ID,	it
uses	this	interface.

public	interface	IUserRetrieveService

{

				IUserDefinition	ById(string	id);

				IUserDefinition	ByUsername(string	username);

}

In	your	implementation,	it	is	a	good	idea	to	cache	user	definition	objects,	as	a	common	WEB
application	might	use	this	interface	repeatedly	for	same	user.

Serenity	Basic	Application	sample	has	an	implementation	like	below:

IUserRetrieveService	Interface

291

public	class	UserRetrieveService	:	IUserRetrieveService

{

				private	static	MyRow.RowFields	fld	{	get	{	return	MyRow.Fields;	}	}

				private	UserDefinition	GetFirst(IDbConnection	connection,	BaseCriteria	criteria)

				{

								var	user	=	connection.TrySingle<Entities.UserRow>(criteria);

								if	(user	!=	null)

												return	new	UserDefinition

												{

																UserId	=	user.UserId.Value,

																Username	=	user.Username,

																//...

												};

								return	null;

				}

				public	IUserDefinition	ById(string	id)

				{

								if	(id.IsEmptyOrNull())

												return	null;

								return	TwoLevelCache.Get<UserDefinition>("UserByID_"	+	id,	CacheExpiration.Nev

er,	CacheExpiration.OneDay,	fld.GenerationKey,	()	=>

								{

												using	(var	connection	=	SqlConnections.NewByKey("Default"))

																return	GetFirst(connection,

																				new	Criteria(fld.UserId)	==	id.TryParseID32().Value);

								});

				}

				public	IUserDefinition	ByUsername(string	username)

				{

								if	(username.IsEmptyOrNull())

												return	null;

								return	TwoLevelCache.Get<UserDefinition>("UserByName_"	+	username,	CacheExpira

tion.Never,	CacheExpiration.OneDay,	fld.GenerationKey,	()	=>

								{

												using	(var	connection	=	SqlConnections.NewByKey("Default"))

																return	GetFirst(connection,	new	Criteria(fld.Username)	==	username);

								});

				}

}

IUserRetrieveService	Interface

292

Authorization	Static	Class
[namespace:	Serenity,	assembly:	Serenity.Core]

Authorization	class	provides	some	shortcuts	to	information	which	is	provided	by	services	like
IAuthorizationService,	IPermissionService	etc.

For	example,	instead	of	writing

Dependency.Resolve<IAuthorizationService>().HasPermission("SomePermission")

you	could	use

Authorization.HasPermission("SomePermission")

public	static	class	Authorization

{

				public	static	bool	IsLoggedIn	{	get;	}

				public	static	IUserDefinition	UserDefinition	{	get;	}

				public	static	string	UserId	{	get;	}

				public	static	string	Username	{	get;	}

				public	static	bool	HasPermission(string	permission);

				public	static	void	ValidateLoggedIn();

				public	static	void	ValidatePermission(string	permission);

}

	IsLoggedIn	,		UserDefinition	,		UserId	,		Username		and		HasPermission		make	use	of
corresponding	service	for	you	to	access	information	easier	about	current	user.

	ValidateLoggedIn		checks	if	there	is	a	logged	user	and	if	not,	throws	a		ValidationException	
with	error	code		NotLoggedIn	.

	ValidatePermission		checks	if	logged	user	has	specified	permission	and	throws	a
	ValidationException		with	error	code		AccessDenied		otherwise.

Authorization	Static	Class

293

Configuration	System
.NET	applications	usually	stores	their	configuration	in	app.config	(desktop)	or	web.config
(web)	files.

Though,	its	common	practice	to	store	configuration	in	such	files	for	web	applications,
sometimes	it	might	be	required	to	store	some	configuration	in	a	database	table	to	make	it
available	to	all	servers	in	a	web	farm,	and	set	it	from	one	location.

Just	like	IsolatedStorage	has	scopes	like	Application,	Machine,	User	etc,	a	configuration
setting	might	have	different	scopes:

Application	-	Shared	between	all	servers	that	runs	a	web	application
Server	-	Applies	to	current	server	only
User	-	Applies	to	current	user	only

Number	of	samples	can	be	increased.

If	you	have	just	one	server,	Application	and	Server	scopes	can	be	stored	in	web.config	file,
but	in	a	web	farm	setup,	Application	settings	should	be	stored	in	a	location	accessible	from
all	servers	(database	or	shared	folder).

User	settings	are	usually	stored	in	database	along	with	a	User	ID.

Serenity	provides	an	extensible	configuration	system.

Configuration	System

294

Defining	Configuration	Settings
In	Serenity	platform,	configuration	settings	are	just	simple	classes	like:

[SettingScope("Application"),	SettingKey("Logging")]

private	class	LogSettings

{

				public	LoggingLevel	Level	{	get;	set;	}

				public	string	File	{	get;	set;	}

				public	int	FlushTimeout	{	get;	set;	}

}

If	required,	default	settings	can	be	set	in	the	class	constructor.

SettingScope	Attribute
If	specified,	this	attribute	determines	the	scope	of	settings.

If	not	specified,	default	scope	is	Application.

SettingKey	Attribute
If	specified,	this	attribute	determines	a	key	for	settings	(e.g.	appSettings	key	for	web.config)
class.

If	not	specified,	class	name	is	used	as	the	key.

Defining	Configuration	Settings

295

IConfigurationRepository	Interface
[namespace:	Serenity.Abstractions,	assembly:	Serenity.Core]

All	applications	have	some	kind	of	configuration.	Scope,	storage	medium	and	format	for
these	settings	are	different	from	application	to	application,	so	Serenity	provides
IConfigurationRepository	interface	to	abstract	access	to	this	configuration.

public	interface	IConfigurationRepository

{

				object	Load(Type	settingType);

				void	Save(Type	settingType,	object	value);

}

IConfigurationRepository.Load	Method
This	method	returns	an	instance	of	settingType.	Provider	should	check	SettingKey	attribute
to	determine	key	for	the	setting	type.

If	same	provider	is	registered	for	multiple	scopes,	provider	should	also	check	for
SettingScope	attribute.

Provider	should	return	an	object	instance,	even	if	setting	is	not	found	(an	object	created	with
settingType's	default	constructor).

IConfigurationRepository.Save	Method
Saves	an	instance	of	settingType.	Provider	should	check	SettingKey	attribute	to	determine
key	for	the	setting	type.

If	same	provider	is	registered	for	multiple	scopes,	provider	should	also	check	for
SettingScope	attribute.

This	method	is	optional	to	implement,	as	you	may	not	want	settings	to	be	changed.	In	this
case,	just	throw	a	NotImplementedException.

IConfigurationRepository	Interface

296

AppSettingsJsonConfigRepository
[namespace:	Serenity.Configuration,	assembly:	Serenity.Data]

Most	web	applications	store	configuration	settings	in	web.config	file,	under	appSettings
section.

Serenity	provides	a	default	implementation	of	IConfigurationRepository	that	uses
appSettings	as	configuration	store.

public	class	AppSettingsJsonConfigRepository	:	IConfigurationRepository

{

				public	void	Save(Type	settingType,	object	value)

				{

								throw	new	NotImplementedException();

				}

				public	object	Load(Type	settingType)

				{

								return	LocalCache.Get("ApplicationSetting:"	+	settingType.FullName,

												TimeSpan.Zero,	delegate()

								{

												var	keyAttr	=	settingType.GetCustomAttribute<SettingKeyAttribute>();

												var	key	=	keyAttr	==	null	?	settingType.Name	:	keyAttr.Value;

												return	JSON.Parse(ConfigurationManager.AppSettings[key].TrimToNull()	??

																"{}",	settingType);

								});

				}

}

To	register	this	provider	manually:

var	registrar	=	Dependency.Resolve<IDependencyRegistrar>();

RegisterInstance<IConfigurationRepository>("Application",

				new	AppSettingsJsonConfigRepository())

When	you	call	Serenity.Web.CommonInitialization.Run(),	it	registers	this	class	as	the
default	provider	for	IConfigurationRepository	(in	Application	scope),	if	another	one	is	not
already	registered.

This	provider	expects	settings	to	be	defined	in	web.config	/	app.config	file	in	JSON	format:

AppSettingsJsonConfigRepository

297

		<appSettings>

				<add	key="Logging"	value="{		File:	'~\\App_Data\\Log\\App_{0}_{1}.log',

								FlushTimeout:	0,		Level:	'Debug'	}"	/>

		</appSettings>

Out	of	the	box,	Serenity	contains	this	configuration	provider	only.	You	may	take	it	as	a
sample,	and	write	another	one	for	your	setup	(load	from	database	etc.).

It	is	a	good	idea	to	cache	returned	objects	in	your	implementation	to	avoid	deserialization
costs	every	time	settings	are	read.

AppSettingsJsonConfigRepository

298

Config	Static	Class
[namespace:	Serenity,	assembly:	Serenity.Core]

This	is	the	central	location	to	access	your	configuration	settings.	It	contains	shortcut
methods	to	registered	IConfigurationRepository	provider.

public	static	class	Config

{

				public	static	object	Get(Type	settingType);

				public	static	TSettings	Get<TSettings>()	where	TSettings:	class,	new();

				public	static	object	TryGet(Type	settingType);

				public	static	TSettings	TryGet<TSettings>()	where	TSettings	:	class,	new();

}

Config.Get	Method
Used	to	read	configuration	settings	for	specified	type.

If	no	provider	is	registered	for	setting	type's	scope,	a	KeyNotFoundException	is	raised.

If	setting	is	not	found,	providers	usually	return	a	default	instance.

Prefer	generic	overload	to	avoid	having	to	cast	the	returned	object.

if	(Config.Get<LogSettings>().LoggingLevel	!=	LogginLevel.Off)

{

				//	..

}

Config.TryGet	Method
Used	to	read	configuration	settings	for	specified	type.

Functionally	equivalent	to	Get,	but	while	it	throws	an	exception	if	no	configuration	provider	is
registered	for	the	setting	scope,	TryGet	returns	null.

Config	Static	Class

299

if	((Config.TryGet<LogSettings>()	??	new	LogSettings()).LoggingLevel	!=	LogginLevel.Of

f)

{

				//	..

}

Prefer	this	method	over	Get	only	to	avoid	exceptions	when	configuration	system	is	not
initialized	yet.

Get	works	on	safe-side,	and	is	the	recommended	method	to	use.

Config	Static	Class

300

Localization
Most	web	applications	must	support	a	variety	of	languages.	Sites	like	Youtube,	Wikipedia,
Facebook	works	in	many	languages.

First	time	a	user	visits	such	a	site,	a	language	for	her	is	automatically	chosen	depending	on
the	browser	language	(pre-determined	by	regional	settings).

If	automatic	selection	is	not	what	they	expect,	users	can	set	their	preferred	language	and
this	selection	is	stored	in	a	client-side	cookie	(or	server	side	user	profile	table).

Once	a	language	is	chosen,	all	texts	are	displayed	in	the	selected	language.

Serenity	platform	is	designed	with	localization	in	mind	from	the	start.

If	you	are	using	Serenity	Basic	Application	Sample	you	can	see	this	yourself	by	setting	your
browser	language	or	changing	a	web.config	setting:

<system.web>

				<globalization	culture="en-US"	uiCulture="auto:en-US"	/>

</system.web>

Here,	UI	culture	is	set	to	automatic,	and	if	automatic	detection	fails,	en-US	is	used	as	a
fallback.

Localization

301

Change	this	configuration	as	below,	refresh	your	browser	and	you	will	the	site	in	Turkish:

<system.web>

				<globalization	culture="en-US"	uiCulture="tr"	/>

</system.web>

Localization

302

Here,	data	is	not	translated	but	it	is	also	possible	to	translate	user	entered	data	by
some	methods	like	culture	extension	tables.

Localization

303

LocalText	Class
[namespace:	Serenity,	assembly:	Serenity.Core]

At	the	core	of	string	localization	is	LocalText	class.

				public	class	LocalText

				{

								public	LocalText(string	key);

								public	string	Key	{	get;	}

								public	override	string	ToString();

								public	static	implicit	operator	string(LocalText	localText);

								public	static	implicit	operator	LocalText(string	key);

								public	static	string	Get(string	key);

								public	static	string	TryGet(string	key);

								public	const	string	InvariantLanguageID	=	"";

								public	static	readonly	LocalText	Empty;

				}

Its	constructor	takes	a	key	parameter,	which	defines	the	local	text	key	that	it	will	contain.
Some	of	sample	keys	are:

Enums.Month.January
Enums.Month.December
Db.Northwind.Customer.CustomerName
Dialogs.YesButton

Though	it	is	not	a	rule,	it	is	a	good	idea	to	follow	this	namespace	like	dot	convention	for
local	text	keys.

At	runtime,	through	ToString()	function,	the	local	text	key	is	translated	to	its	representation	in
the	active	language	(which	is	CultureInfo.CurrentUICulture).

var	text	=	new	LocalText("Dialogs.YesButton");

Console.WriteLine(text.ToString());

>	Yes

If	a	translation	is	not	found	in	local	text	table	(we	will	talk	about	this	later),	the	key	itself	is
returned.

LocalText	Class

304

var	text	=	new	LocalText("Unknown.Local.Text.Key");

Console.WriteLine(text.ToString());

>	Unknown.Local.Text.Key

This	is	by	design,	so	that	developer	can	determine	which	translations	are	missing.

LocalText.Key	Property
Gets	the	local	text	key	that	LocalText	instance	contains.

Implicit	Conversions	From	String
LocalText	has	implicit	conversion	from	String	type.

LocalText	someText	=	"Dialogs.YesButton";

Here	someText	variable	references	a	new	LocalText	instance	with	the	key
Dialogs.YesButton.	So	it	is	just	a	shortcut	to	LocalText	constructor.

Implicit	Conversions	To	String
LocalText	has	implicit	conversion	to	String	type	too,	but	it	returns	translation	instead	of	the
key	(just	like	calling	ToString()	method):

var	lt	=	new	LocalText("Dialogs.NoButton");

string	text	=	lt;

Console.WriteLine(text);

>	No

LocalText.Get	Static	Method
To	access	the	translation	for	a	local	text	key	without	creating	a	LocalText	instance,	use	Get
method:

LocalText	Class

305

Console.WriteLine(LocalText.Get("Dialogs.YesButton"));

>	Yes

ToString()	method	internally	calls	Get

LocalText.TryGet	Static	Method
Unlike	Get	method	which	returns	the	local	text	key	if	no	translation	is	found,	TryGet	returns
null.	Thus,	coalesce	operator	can	be	used	along	with	TryGet	where	required:

var	translation	=	LocalText.TryGet("Looking.For.This.Key")	??	"Default	Text";

Console.WriteLine(translation);

>	Default	Text

LocalText.Empty	Field
Similar	to	String.Empty,	LocalText	contains	an	empty	local	text	object	with	empty	key.

LocalText.InvariantLanguageID	Constant
This	is	just	an	empty	string	for	invariant	language	ID	which	is	the	invariant	culture	language
identifier	(default	language,	usually	English).

We	will	talk	about	language	identifiers	in	the	following	section.

LocalText	Class

306

Language	Identifiers
A	language	ID	is	a	code	that	assigns	letters	and/or	numbers	as	identifiers	or	classifiers	for
languages.

Language	IDs	follow	the	RFC	1766	standard	in	the	format		<languagecode2>-
<country/regioncode2>	,	where	languagecode2	is	a	lowercase	two-letter	code	derived	from
ISO	639-1	and	country/regioncode2	is	an	uppercase	two-letter	code	derived	from	ISO	3166.

Some	sample	language	IDs:

	en		:	English
	en-US		:	English	as	used	in	the	United	States	(US	is	the	ISO	3166-1	country	code)
	en-GB		:	English	as	used	in	the	United	Kingdom	(GB	is	the	ISO	3166-1	country	code)
	es		:	Spanish
	es-AR		:	Spanish	as	used	in	Argentina

Invariant	Language
Similar	to	CultureInfo.InvariantCulture,	invariant	language	is	the	default	language	with	empty
identifier.

Unless	specified	otherwise,	embedded	texts	in	your	assemblies	are	considered	to	be	written
in	invariant	language.

Though	it	is	usually	considered	to	be	English,	you	may	assume	your	natural	language	as	the
invariant	language.

Language	Identifiers

307

Language	Fallbacks

Neutral	Language	Fallback
When	a	translation	is	not	found	in		en-US	,	it	is	acceptable	to	look	for	a	translation	in		en	
language,	as	they	are	closely	related.

Two	letter	language	IDs	(neutral	languages)	are	implicitly	language	fallbacks	of	4	letter
country	specific	codes.

So		es		is	language	fallback	of		es-AR		and		en		is	language	fallback	of		en-US		and		en-GB	.

Invariant	Language	Fallback
Invariant	language	with	empty	code	is	the	final	fallback	of	all	languages	implicitly.

Implementation
Language	fallback	functionality	should	be	implemented	by	the	ILocalTextRegistry	provider
(e.g.	LocalTextRegistry	class).

Providers	may	also	support	setting	language	fallbacks	explicitly,	so	you	can	set		en-US		as
language	fallback	of		en-UK		if	needed.

This	is	how	looking	up	a	translation	for	a	local	text	key	works:

If	current	language	has	a	translation	for	the	key,	return	it.
Check	every	explicitly	defined	language	fallback	for	a	translation.
If	language	ID	is	a	4	letter	country	specific	code,	check	neutral	language	for	a
translation.
Check	invariant	language	for	a	translation.
Return	the	key	itself	or	null	for	TryGet.

Let's	say	we	set		en-US		as	language	fallback	of		en-UK	.

If	we	search	for	a	translation	in		en-UK	,	it	is	looked	up	in	this	order:

1.	 en-UK
2.	 en-US
3.	 en

Language	Fallbacks

308

4.	 invariant

Language	Fallbacks

309

ILocalTextRegistry	Interface
[namespace:	Serenity.Abstractions,	assembly:	Serenity.Core]

LocalText	class	accesses	translations	for	local	text	keys	through	the	provider	for	this
interface.

public	interface	ILocalTextRegistry

{

				string	TryGet(string	languageID,	string	key);

				void	Add(string	languageID,	string	key,	string	text);

}

ILocalTextRegistry.TryGet	Method
Gets	translation	for	the	specified	key	in	requested	language.

Current	language	is	determined	by	CultureInfo.CurrentUICulture.

It	is	providers	responsibility	to	check	language	fallbacks	for	the	key,	if	a	translation	is	not
found	in	requested	language.

This	method	returns	null	if	no	translation	is	found	in	the	language	hierarchy	(from	requested
language	down	to	invariant	language).

ILocalTextRegistry.Add	Method
Adds	a	translation	to	the	local	text	table	which	is	internally	hold	by	the	local	text	registry.

The	local	text	table	is	an	in-memory	table	(dictionary)	like:

Key LanguageID Text	(Translation)

Dialogs.YesButton en Yes

Dialogs.YesButton tr Evet

Dialogs.NoButton en No

Dialogs.NoButton tr Hayır

This	method	doesn't	throw	an	exception	if	same	key/language	ID	pair	is	added	twice.	It
simply	overrides	existing	translation.

ILocalTextRegistry	Interface

310

ILocalTextRegistry	Interface

311

LocalTextRegistry	Class
[namespace:	Serenity.Localization,	assembly:	Serenity.Core]

This	class	is	the	embedded,	default	implementation	of	ILocalTextRegistry	interface.

public	class	LocalTextRegistry	:	ILocalTextRegistry

{

				public	void	Add(string	languageID,	string	key,	string	text);

				public	string	TryGet(string	languageID,	string	key);

				public	void	SetLanguageFallback(string	languageID,	string	languageFallbackID);

				public	void	AddPending(string	languageID,	string	key,	string	text);

				public	string	TryGet(string	languageID,	string	textKey,	bool	isApprovalMode);

				public	Dictionary<string,	string>	GetAllAvailableTextsInLanguage(

								string	languageID,	bool	pending);

}

Add	and	TryGet	implements	corresponding	methods	in	ILocalTextRegistry	interface.

LocalTextRegistry.SetLanguageFallback
Method
Sets	language	fallback	for	specified	language.

var	registry	=	(LocalTextRegistry)(Dependency.Resolve<ILocalTextRegistry>());

registry.SetLanguageFallback('en-UK',	'en-US');

//	from	now	on	if	a	translation	is	not	found	in	"en-UK"	language,

//	it	will	be	looked	up	in	"en-US"	language	first,	followed	by	"en".

More	information	about	language	fallbacks	can	be	found	in	relevant	section.

Registering	LocalTextRegistry	as	Provider
This	is	usually	done	in	your	application	start	method:

var	registrar	=	Dependency.Resolve<IDependencyRegistrar>();

registrar.RegisterInstance<ILocalTextRegistry>(new	LocalTextRegistry());

LocalTextRegistry	Class

312

CommonInitialization.Run	or	CommonInitialization.InitializeLocalTexts	methods	also
register	a	LocalTextRegistry	instance	as	the	ILocalTextRegistry	provider,	if	none	is
already	registered.

LocalTextRegistry	Class

313

Pending	Approval	Mode
LocalTextRegistry	also	supports	an	optional	pending	approval	mode.

In	some	sites,	translations	might	be	needed	to	be	approved	by	some	moderators	before	they
are	published.

So	you	may	add	these	unapproved	texts	to	your	local	text	registry	but	want	them	to	be
shown	only	to	moderators	for	them	to	check	how	they	will	look	in	live	site	when	approved.

LocalTextRegistry	allows	you	to	mark	some	texts	as	pending	approval,	and	use	these
translations	for	only	approval	contexts	(e.g.	when	a	moderator	is	logged	in).

ILocalTextContext	Interface
[namespace:	Serenity.Localization,	assembly:	Serenity.Core]

public	interface	ILocalTextContext

{

				bool	IsApprovalMode	{	get;	}

}

Implement	this	interface	and	register	it	through	the	service	locator	(Dependency	class).

IsApprovalMode	property	is	used	to	determine	if	current	context	is	in	approval	mode	(e.g.
used	by	a	moderator).

Pending	Approval	Mode

314

public	class	MyLocalTextContext	:	ILocalTextContext

{

				public	bool	IsApprovalMode

				{

								get

								{

												//	use	some	method	to	determine	if	current	user	is	a	moderator

												return	Authorization.HasPermission("Moderation");

								}

				}

}

void	ApplicationStart()

{

				Dependency.Resolve<IDependencyRegistrar>()

								.RegisterInstance<ILocalTextContext>(new	MyLocalTextContext());

}

LocalTextRegistry.AddPending	Method
Adds	a	translation	to	local	text	table	for	pending	approval	texts.	These	texts	are	only	used
when	current	context	is	in	pending	approval	mode.

LocalTextRegistry.TryGet	Overload	With
Language	and	Pending	Arguments

public	string	TryGet(string	languageID,	string	textKey,	bool	isApprovalMode);

This	overload	lets	you	to	get	a	translation	in	specified	language	and	optionally	using
unapproved	texts	(isApprovalMode	=	true).

Other	TryGet	overload	returns	unapproved	texts	only	when	ILocalTextContext	provider
returns	true	for	IsApprovalMode	property.

LocalTextRegistry.GetAllAvailableTextsInLangu
age	Method
Returns	a	dictionary	of	all	currently	registered	translations	for	all	text	keys	in	a	language.

Dictionary	keys	are	local	text	keys,	while	values	are	translations.

Pending	Approval	Mode

315

It	also	contains	texts	found	from	language	fallbacks	for	if	a	translation	is	not	available	in
requested	language.

Pending	Approval	Mode

316

Registering	Translations
There	are	several	ways	to	define	local	text	keys	and	translations,	including:

Manually	through	ILocalTextRegistry.Add	Method
Declaring	nested	static	classes	containing	local	text	objects
Adding	Description	attribute	to	enumeration	classes
JSON	files	in	predetermined	locations	(~/scripts/serenity/texts,	~/scripts/site/texts	and
~/App_Data/texts)

We'll	talk	about	all	these	methods.

Registering	Translations

317

Manually	Registering	Translations
You	can	add	translations	to	local	text	registry	from	your	application	start	method.

Sources	for	these	translations	might	be	a	database	table,	xml	file,	embedded	resources	etc.

void	Application_Start()

{

				//	...

				var	registry	=	Dependency.Resolve<ILocalTextRegistry>();

				registry.Add("es",	"Dialogs.YesButton",	"Sí");

				registry.Add("fr",	"Dialogs.YesButton",	"Oui");

				//	..

}

Manually	Registering	Translations

318

Nested	Local	Texts
Serenity	allows	you	to	define	nested	static	classes	containing	LocalText	objects	to	define
translations	like	below:

[NestedLocalTexts]

public	static	partial	class	Texts

{

				public	static	class	Site

				{

								public	static	class	Dashboard

								{

												public	static	LocalText	WelcomeMessage	=

																"Welcome	to	Serenity	BasicApplication	home	page.	"	+

																"Use	the	navigation	on	left	to	browse	other	pages...";

								}

				}

				public	static	class	Validation

				{

								public	static	LocalText	DeleteForeignKeyError	=

												"Can't	delete	record.	'{0}'	table	has	records	that	depends	on	this	one!";

								public	static	LocalText	SavePrimaryKeyError	=

												"Can't	save	record.	There	is	another	record	with	the	same	{1}	value!";

				}

}

This	definitions	allow	you	to	reference	localized	texts	with	intellisense	support,	without
having	to	memorize	string	keys.

These	embedded	translation	definitions	are	commonly	used	to	define	default	translations	in
invariant	language	(ultimate	fallbacks).

Here	is	a	table	of	translations	that	are	defined	with	this	Texts	class:

Key LanguageID Text	(Translation)

Site.Dashboard.WelcomeMessage Welcome	to	Serenity	BasicApp...

Validation.DeleteForeignKeyError Can't	delete	record...

Validation.SavePrimaryKeyError Can't	save	record...

Local	text	keys	are	generated	from	nested	static	class	names	with	a	dot	inserted	between.
Topmost	static	class	(Texts)	name	is	ignored	though	it	is	a	good	idea	to	name	it	something
like	Texts	for	consistency.

Nested	Local	Texts

319

Unless	otherwise	stated,	language	ID	for	these	texts	are	considered	to	be	the	invariant
language	(empty	string).

NestedLocalTexts	Attribute
Topmost	class	(e.g.	Texts)	for	nested	local	text	registration	classes	must	have	this	attribute.

[AttributeUsage(AttributeTargets.Class,	AllowMultiple=false)]

public	sealed	class	NestedLocalTextsAttribute	:	Attribute

{

				public	NestedLocalTextsAttribute()

				{

				}

				public	string	LanguageID	{	get;	set;	}

				public	string	Prefix	{	get;	set;	}

}

It	has	two	optional	attributes,	LanguageID	and	Prefix.

LanguageID	allows	you	to	define	what	language	translations	are	in.

If	not	specified,	translations	are	considered	to	be	in	the	invariant	language.

It	is	a	good	idea	to	register	default	texts	in	invariant	language,	even	if	texts	are	not	in
English,	as	invariant	language	is	the	eventual	language	fallback	for	all	languages.

If	we	used	it	like:

[NestedLocalTexts(LanguageID	=	"en-US")]

public	static	partial	class	Texts

{

				//	..

}

LanguageID	column	in	translations	table	would	be	"en-US":

Key LanguageID Text	(Translation)

Site.Dashboard.WelcomeMessage en-US Welcome	to	Serenity	BasicApp...

Validation.DeleteForeignKeyError en-US Can't	delete	record...

Prefix	attribute	value	is	used	as	a	prefix	for	local	text	keys:

Nested	Local	Texts

320

[NestedLocalTexts(LanguageID	=	"en-US",	Prefix	=	"APrefix.")]

public	static	partial	class	Texts

{

				//	..

}

Key LanguageID Text	(Translation)

APrefix.Site.Dashboard.WelcomeMessage en-US Welcome	to	Serenity
BasicApp...

APrefix.Validation.DeleteForeignKeyError en-US Can't	delete	record...

NestedLocalTextRegistration	Class
[namespace:	Serenity.Localization,	assembly:	Serenity.Core]

For	nested	local	text	definitions	to	be	registered,	you	need	to	call
NestedLocalTextRegistration.Initialize()	method	in	your	application	start:

void	Application_Start()

{

				NestedLocalTextRegistration.Initialize();

}

CommonInitialization.Run	and	CommonInitialization.InitializeLocalTexts	methods	call	it
by	default.

Once	it	is	run,	all	translations	with	auto	generated	keys	are	added	to	current
ILocalTextRegistry	provider	and	LocalText	instances	in	nested	static	classes	are	replaced
with	actual	LocalText	instances	containing	generated	keys	(they	are	set	through	reflection).

Nested	Local	Texts

321

Enumeration	Texts
Display	text	for	enumeration	values	can	be	specified	with	Description	attribute.

namespace	MyApplication

{

				public	enum	Sample

				{

								[Description("First	Value")]

								Value1	=	1,

								[Description("Second	Value")]

								Value2	=	2

				}

}

This	enumeration	and	its	Description	attributes	defines	following	local	text	keys	and
translations:

Key LanguageID Text	(Translation)

Enums.MyApplication.Sample.Value1 First	Value

Enums.MyApplication.Sample.Value2 Second	Value

All	texts	are	defined	for	invariant	language	ID	by	default.

You	can	use	these	keys	to	access	translated	descriptions	for	enumeration	values,	or	use
extension	method	GetText()	defined	for	enumeration	types	(import	namespace	Serenity	to
make	this	extension	method	available).

using	Serenity;

//...

Console.WriteLine(MyApplication.Sample.Value1.GetText());

>	First	Value

EnumKey	Attribute
Enumeration	translations	use	full	name	of	enumeration	type	as	prefix	to	generate	local	text
keys.	This	prefix	can	be	overriden	with	EnumKeyAttribute:

Enumeration	Texts

322

namespace	MyApplication

{

				[EnumKey("Something")]

				public	enum	Sample

				{

								[Description("First	Value")]

								Value1	=	1,

								[Description("Second	Value")]

								Value2	=	2

				}

}

Now	defined	keys	and	translations	are:

Key LanguageID Text	(Translation)

Enums.Something.Value1 First	Value

Enums.Something.Value2 Second	Value

EnumLocalTextRegistration	Class
[namespace:	Serenity.Localization,	assembly:	Serenity.Core]

For	enumeration	local	text	definitions	to	be	registered,	you	need	to	call
EnumLocalTextRegistration.Initialize()	method	in	your	application	start:

void	Application_Start()

{

				EnumLocalTextRegistration.Initialize(ExtensibilityHelper.SelfAssemblies);

}

It	gets	list	of	assemblies	to	search	for	enumeration	types.	You	can	pass	list	of	assemblies
manually	or	use	ExtensibilityHelper.SelfAssemblies	which	contains	all	assemblies	that
reference	a	Serenity	assembly.

CommonInitialization.Run	and	CommonInitialization.InitializeLocalTexts	methods	call	it
by	default.

Enumeration	Texts

323

JSON	Local	Texts
Serenity	supports	local	text	registration	through	JSON	files	containing	a	simple	key/value
dictionary:

{

		"Forms.Administration.User.DisplayName":	"Display	Name",

		"Forms.Administration.User.Email":	"E-mail",

		"Forms.Administration.User.EntitySingular":	"User",

		"Forms.Administration.User.EntityPlural":	"Users"

}

To	register	all	local	text	keys	and	translations	from	JSON	files	in	a	folder	,	call
JsonLocalTextRegistration.AddFromFilesInFolder	with	the	path:

JsonLocalTextRegistration.AddFromFilesInFolder(@"C:\SomeFolder");

File	names	in	the	folder	must	follow	a	convention:

	{Some	Prefix	You	Choose}.{LanguageID}.json	

where		{LanguageID}		is	two	or	four	letter	language	code.	Use	invariant	as	language	code	for
invariant	language.

Some	sample	file	names	are:

	site.texts.en-US.json	

	MyCoolTexts.es.json	

	user.texts.invariant.json	

Files	in	a	folder	are	parsed	and	added	to	registry	in	their	file	name	order.	Thus	for	sample	file
names	above,	order	would	be:

1.	 	MyCoolTexts.es.json	

2.	 	site.texts.en-US.json	

3.	 	user.texts.invariant.json	

This	order	is	important	as	adding	a	translation	in	some	language	with	same	key
overrides	prior	translation.

JSON	Local	Texts

324

CommonInitialization	and	Predetermined
Folders
CommonInitialization.Run	and	CommonInitialization.InitializeLocalTexts	calls	this	method	for
three	predetermined	locations	under	your	web	site:

1.	 	~/Scripts/serenity/texts		(serenity	translations)
2.	 	~/Scripts/site/texts		(your	application	specific	translations)
3.	 	~/App_Data/texts		(user	translations	made	through	translation	interface)

Prefer	using	second	one	for	your	own	files	as	first	one	is	for	Serenity	resources.

Third	one	contains	user	translated	texts.	It	is	recommended	to	transfer	texts	from	these	files
to	application	translation	files	under		~/Scripts/site/texts		before	publishing.

JSON	Local	Texts

325

Caching
Caching	is	an	important	part	of	modern,	heavy-traffic	applications.	Even	if	your	web
application	isn't	getting	so	much	traffic	now,	it	might	later	and	it	is	a	good	idea	to	design	it
with	caching	in	mind	from	the	start.

Local	Caching
Distributed	Caching
Two	Level	Cache

Caching

326

Local	Caching
Serenity	provides	some	caching	abstractions	and	utility	functions	to	make	it	easier	to	work
with	local	cache.

The	term	local	means	that	cached	items	are	hold	in	local	memory	(thus	there	is	no
serialization	involved).

When	your	application	is	deployed	on	a	web	farm,	local	caching	might	not	be	enough	or
sometimes	suitable.	We	will	talk	about	this	scenario	in	Distributed	Caching	section.

Local	Caching

327

ILocalCache	Interface
[namespace:	Serenity.Abstrations]	-	[assembly:	Serenity.Core]

Defines	a	basic	interface	to	work	with	the	local	cache.

public	interface	ILocalCache

{

				void	Add(string	key,	object	value,	TimeSpan	expiration);

				TItem	Get<TItem>(string	key);

				object	Remove(string	key);

				void	RemoveAll();

}

A	default	implementation	of	ILocalCache	(Serenity.Caching.HttpRuntimeCache)	that
uses		System.Web.Cache		exists	in		Serenity.Web		assembly.

ILocalCache.Add	Method

Adds	a	value	to	cache	with	the	specified	key.	If	the	key	already	exists	in	cache,	its	value	is
updated.

Items	are	hold	in	cache	for		expiration		duration.	You	can	specify		TimeSpan.Zero		for	items
that	shouldn't	expire	automatically.

Values	are	added	to	cache	with	absolute	expiration	(thus	they	expire	at	a	certain	time,	not
sliding	expiration).

Dependency.Resolve<ILocalCache>.Add("someKey",	"someValue",	TimeSpan.FromMinutes(5));

This	method,	in	its	default	implementation,	uses	HttpRuntime.Cache.Insert	method.

Avoid	HttpRuntime.Cache.Add	method,	as	it	doesn't	update	value	if	there	is	already	a
key	with	same	key	in	the	cache,	and	it	doesn't	even	raise	an	error	so	you	won't	notice
anything.	A	mere	engineering	gem	from	ASP.NET)

ILocalCache.Get	<TItem>		Method

Gets	the	value	corresponding	to	the	specified	key	in	local	cache.

If	there	is	no	such	key	in	cache,	an	error	may	be	raised	only	if	TItem	is	of	value	type.	For
reference	types	returned	value	is		null	.

ILocalCache	Interface

328

If	value	is	not	of	type		TItem	,	an	exception	is	thrown.

You	may	use		object		as		TItem		parameter	to	prevent	errors	in	case	a	value	doesn't	exist,
or	not	of	requested	type.

ILocalCache.Remove	Method

Removes	the	item	with	specified	key	from	local	cache	and	returns	its	value.

No	errors	thrown	if	there	is	no	value	in	cache	with	the	specified	key,	simply		null		is
returned.

Dependency.Resolve<ILocalCache>.Remove("someKey");

ILocalCache.RemoveAll	Method

Removes	all	items	from	local	cache.	Avoid	using	this	except	for	special	situations	like	unit
tests,	otherwise	performance	might	suffer.

ILocalCache	Interface

329

LocalCache	Static	Class
[namespace:	Serenity]	-	[assembly:	Serenity.Core]

A	static	class	that	contains	shortcuts	to	work	easier	with	the	registered	ILocalCache	provider.

public	static	class	LocalCache

{

				public	static	void	Add(string	key,	object	value,	TimeSpan	expiration);

				public	static	TItem	Get<TItem>(string	key,	TimeSpan	expiration,

								Func<TItem>	loader)	where	TItem	:	class;

				public	static	void	Remove(string	key);

				public	static	void	RemoveAll();

}

Add,	Remove,	and	RemoveAll	methods	are	simply	shortcuts	to	corresponding	methods	in
ILocalCache	interface,	but	Get	method	is	a	bit	different	than	ILocalCache.Get.

LocalCache.Get	<TItem>		Method
Gets	the	value	corresponding	to	the	specified	key	in	local	cache.

If	there	is	no	such	key	in	cache,	uses	the	loader	function	to	produce	value,	and	adds	it	to
cache	with	the	specified	key.

If	the	value	that	exists	in	cache	is	DBNull.Value,	than	null	is	returned.	(This	way,	if	for
example	a	user	with	an	ID	doesn't	exist	in	database,	repeated	querying	of	database	for
that	ID	is	prevented)

LocalCache	Static	Class

330

If	the	value	exists,	but	of	not	type	TItem	an	exception	is	thrown,	otherwise	value	is
returned.

If	the	value	didn't	exist	in	cache,	loader	function	is	called	to	produce	the	value	(e.g.	from
database)	and...

If	the	value	produced	by	loader	function	is	null,	it	is	stored	as	DBNull.Value	in
cache.
Otherwise	the	produced	value	is	added	to	cache	with	the	specified	expiration
duration.

LocalCache	Static	Class

331

User	Profile	Caching	Sample
Lets	assume	we	have	a	profile	page	in	our	site	that	is	generated	using	several	queries.	We
might	have	a	model	for	this	page	e.g.	UserProfile	class	that	contains	all	profile	data	for	a
user,	and	a	GetProfile	method	that	produces	this	for	a	particular	user	id.

public	class	UserProfile

{

				public	string	Name	{	get;	set;	}

				public	List<CachedFriend>	Friends	{	get;	set;	}

				public	List<CachedAlbum>	Albums	{	get;	set;	}

				...

}

public	UserProfile	GetProfile(int	userID)

{

				using	(var	connection	=	new	SqlConnection("..."))

				{

								//	load	profile	by	userID	from	DB

				}

}

By	making	use	of	LocalCache.Get	method,	we	could	cache	this	information	for	one	hour
easily	and	avoid	DB	calls	every	time	this	information	is	needed.

public	UserProfile	GetProfile(int	userID)

{

				return	LocalCache.Get<UserProfile>(

								cacheKey:	"UserProfile:"	+	userID,

								expiration:	TimeSpan.FromHours(1),

								loader:	delegate	{

												using	(var	connection	=	new	SqlConnection("..."))

												{

																//	load	profile	by	userID	from	DB

												}

								}

);

}

User	Profile	Caching	Sample

332

Distributed	Caching
Web	applications	might	require	to	serve	hundreds,	thousands	or	even	more	users
simultaneously.	If	you	didn't	take	required	measures,	under	such	a	load,	your	site	might
crash	or	become	unresponsive.

Let's	say	you	are	showing	the	last	10	news	in	your	home	page	and	in	a	minute,	in	average
of	a	thousand	users	are	visiting	this	page.	For	every	page	view	you	might	be	querying	your
database	to	display	this	information:

SELECT	TOP	10	Title,	NewsDate,	Subject,	Body	FROM	News	ORDER	BY	NewsDate	DESC

Even	if	we	think	that	our	home	page	contains	only	this	information,	a	site,	that	gets	10000
visits	a	minute	would	run	150	SQL	queries	per	second.

These	queries,	as	their	result	doesn't	differ	from	user	to	user	(always	the	last	10	news),
might	be	cached	in	SQL	server	side	automatically.

But	query	results	consumes	some	valuable	network	bandwidth	while	being	transferred	from
SQL	server	to	your	WEB	server.	As	this	transfer	takes	some	time	(data	size	/	bandwidth)
and	your	connection	is	kept	open	during	this	time,	even	if	your	SQL	server	responded
instantly,	getting	the	results	wouldn't	be	so	fast.	The	time	to	transfer	might	vary	with	the	size
of	the	news	content.

Also	as	SQL	connections	which	can	be	kept	open	simultaneously	has	a	upper	limit
(connection	pool	limit)	and	when	you	reach	that	number,	the	connections	start	to	wait	in	the
queue	and	block	each	other.

By	taking	into	account	that	news	don't	change	every	second,	we	could	cache	them	in	our
WEB	server	memory	for	5	minutes.

Thus	as	soon	as	we	transfer	news	list	from	SQL	database,	store	them	in	local	cache.	For	the
next	5	minutes,	for	every	user	that	visits	the	home	page,	news	list	is	read	from	local	cache
instantly,	without	even	hitting	SQL:

Distributed	Caching

333

public	List<News>	GetNews()

{

				var	news	=	HttpRuntime.Cache["News"]	as	List<News>;

				if	(news	==	null)

				{

								using	(var	connection	=	new	SqlConnection("......"))

								{

												news	=	connection.Query<News>("

																			SELECT	TOP	10	Title,	NewsDate,	Subject,	Body

																			FROM	News

																			ORDER	BY	NewsDate	DESC")

															.ToList();

												HttpRuntime.Cache.Insert("News",	...,

																TimeSpan.FromMinutes(5),);

								}

				}

				return	news;

}

This	takes	us	from	150	queries	per	second	down	to	1/300	queries	per	second	(a	query	per
300	sec).

Also	these	news	items	should	be	converted	to	HTML	for	every	visitor.	By	moving	one
step	further,	we	could	also	cache	the	HTML	converted	state	of	the	news.

All	these	cached	information	is	stored	in	WEB	server	memory	which	is	the	fastest	location	to
access	them.

Note	that	caching	something	doesn't	always	mean	that	your	application	will	work	faster.
How	effectively	you	use	cache	is	more	important	than	caching	alone.	It	is	even	possible
to	slow	down	your	application	with	caching,	if	not	used	properly.

Distributed	Caching

334

WEB	Farms	and	Caching
Now	let's	consider	we	have	a	social	networking	site	and	have	millions	of	user	profiles.	Profile
pages	of	some	famous	users	might	be	getting	hundreds	or	thousands	of	visits	per	minute.

To	generate	a	users	profile,	we	would	need	more	than	one	SQL	query	(friends,	album
names	and	picture	counts,	profile	information,	last	status	etc.).

As	long	as	a	user	didn't	update	her	profile,	the	information	that	is	shown	on	her	page	would
be	almost	stastic.	Thus,	a	snapshot	of	profile	pages	could	be	cached	for	5	minutes	or	1	hour
etc.

But	this	might	not	be	enough.	We	are	talking	about	hundres	of	millions	of	profiles	and	users.
Users	would	be	doing	much	more	than	just	looking	at	some	profile	pages.	We	would	need
more	than	one	server	that	are	distributed	in	several	geographical	locations	on	earth	(a	WEB
Farm).

At	a	certain	time,	all	these	servers	might	have	cached	a	very	important	persons	(VIP)	profile
in	local	cache.	When	the	VIP	makes	a	change	in	her	profile,	all	these	servers	should	renew
their	local	cached	profile,	and	this	would	happen	in	a	few	seconds.	We	now	have	a	problem
of	load	per	server	instead	of	load	per	user.

Actually,	once	one	these	of	servers	loaded	the	VIP	profile	from	SQL	database	and	cached	it,
other	servers	could	make	use	of	the	same	information	without	hitting	database.	But,	as	each
server	stores	cached	information	in	its	own	local	memory,	it	is	not	trivial	to	access	this
information	by	other	servers.

If	we	had	a	shared	memory	that	all	servers	could	access:

Information	key Value

Profile:VeryFamousOne (Cached	information	for	VeryFamousOne)

Profile:SomeAnother ...

... ...

... ...

Profile:JohnDoe ...

Let's	call	this	memory	the	distributed	cache.	If	all	servers	have	a	look	at	this	common
memory	before	trying	DB	we	would	avoid	the	load	per	server	problem.

WEB	Farms	and	Caching

335

public	CachedProfileInformation	GetProfile(string	profileID)

{

				var	profile	=	HttpRuntime.Cache["Profil:"	+	profileID]

								as	CachedProfileInformation;

				if	(profile	==	null)

				{

								profile	=	DistributedCache.Get<CachedProfileInformation>(

												"Profil:"	+	profileID);

								if	(profile	==	null)

								{

												using	(var	connection	=	new	SqlConnection("......"))

												{

																profile	=	GetProfileFromDBWithSomeSQLQueries(profileID)

																				profile,	TimeSpan.FromMinutes(5));

																DistributedCache.Set("Profil:"	+	profileID,	profile,

																				TimeSpan.FromHours(1));

												}

								}

				}

				return	news;

}

You	can	find	many	variations	of	distributed	cache	systems	including	Memcached,
Couchbase	and	Redis.	They	are	also	called	NoSQL	database.	You	can	think	of	them	simply
as	a	remote	dictionary.	They	store	key/value	pairs	in	their	memory	and	let	you	access	them
as	fast	as	possible.

Warning!	When	it	is	used	properly,	distributed	cache	can	improve	performance	of	your
application,	just	like	local	cache.	Otherwise	it	can	have	a	worse	effect	than	local	cache
as	there	is	a	network	transfer	and	serialization	cost	involved.	Thus	"if	we	keep	things	in
distributed	cache	our	site	will	run	faster"	is	a	myth.

When	the	cached	data	becomes	too	much,	one	computer	memory	might	be	not	enough	to
store	all	key/value	pairs.	In	this	case	servers	like	memcached	distribute	data	by	clustering.
This	could	be	done	by	the	first	letter	of	keys.	One	server	could	hold	pairs	starting	with	A,
other	with	B	etc.	In	fact,	they	use	hash	of	keys	for	this	purpose.

WEB	Farms	and	Caching

336

IDistributedCache	Interface
[namespace:	Serenity.Abstractions,	assembly:	Serenity.Core]

All	NoSQL	server	types	provide	a	similar	interface	like	"store	this	value	for	this	key",	"give
me	value	corresponding	to	this	key"	etc.

Serenity	provides	its	distributed	cache	support	through	a	common	interface	to	not	depend	on
a	specific	kind	of	NoSQL	database:

public	interface	IDistributedCache

{

				long	Increment(string	key,	int	amount	=	1);

				TValue	Get<TValue>(string	key);

				void	Set<TValue>(string	key,	TValue	value);

				void	Set<TValue>(string	key,	TValue	value,	TimeSpan	expiration);

}

First	overload	of	Set	method	that	takes	key	and	value	arguments	is	used	to	store	a
key/value	pair	in	distributed	cache.

IoC.Resolve<IDistributedCache>().Set("someKey",	"someValue");

Later	we	could	read	back	this	value	using	Get	method:

var	value	=	IoC.Resolve<IDistrubutedCache().Get<string>("someKey")	//	someValue

If	we	wanted	to	keep	some	value	for	a	predetermined	duration,	we	could	use	the	second
overload	of	Get	method:

IoC.Resolve<IDistributedCache>().Set("someKey",	"someValue",

				TimeSpan.FromMinutes(10));

IDistributedCache.Increment	Method
Operation	on	distributed	cache	systems	are	usually	not	atomic	and	they	provide	no
transactional	systems	at	all.

Same	key	value	can	be	changed	by	multiple	servers	at	same	time	and	override	each	others
value	in	random	order.

IDistributedCache	Interface

337

Let's	say	we	needed	a	unique	counter	(to	generate	an	ID	for	example)	and	synchronize	it
through	distributed	cache	(to	prevent	using	same	ID	twice):

int	GetTheNextIDValue()

{

				var	lastID	=	IoC.Resolve<IDistributedCache>().Get("LastID");

				IoC.Resolve<IDistributedCache>().Set("LastID",	lastID	+	1);

				return	lastID;

}

Such	a	code	block	won't	function	as	expected.	Inside	the	duration	between	reading		LastID	
value	(get)	and	setting	it	to	increment		LastID		value	(set),	another	server	might	have	read
the	same	LastID	value.	Thus	two	servers	could	use	same	ID	value.

For	this	purpose,	you	can	use	Increment	method:

int	GetTheNextIDValue()

{

				return	IoC.Resolve<IDistributedCache>().Increment("LastID");

}

Increment	function	acts	just	like	Interlocked.Increment	method	that	is	used	in	thread
synchronization.	It	increases	an	identity	value	but	blocks	other	requests	while	doing	it,	and
returns	the	incremented	value.	So	even	if	two	WEB	servers	incremented	same	key	in	exact
same	moment,	they	end	up	with	different	ID	values.

IDistributedCache	Interface

338

Distributed	Cache	Static	Class
[namespace:	Serenity,	assembly:	Serenity.Core]

DistributedCache	class	provides	shortcuts	to	methods	for	currently	registered
IDistributedCache	implementation.	So	below	two	lines	are	functionally	equal:

				IoC.Resolve<IDistributedCache>().Increment("LastID");

				DistributedCache.Increment("LastID");

Distributed	Cache	Static	Class

339

DistributedCacheEmulator	Class
[namespace:	Serenity.Abstractions,	assembly:	Serenity.Core]

If	you	don't	need	a	distributed	cache	now,	but	you	wanted	to	write	code	that	will	work	with	a
distributed	cache	in	the	future,	you	could	use	the	DistributedCacheEmulator	class.

DistributedCacheEmulator	is	also	useful	for	unit	tests	and	development	environments	(so
that	developers	don't	need	to	access	a	distributed	cache	system	and	work	without	affecting
each	other).

DistributedCacheEmulator	emulates	the	IDistributedCache	interface	in	a	thread-safe	manner
by	using	a	in-memory	dictionary.

To	use	DistributedCacheEmulator,	you	need	to	register	it	with	the	Serenity	Service	Locator
(IDependencyRegistrar).	We	do	it	from	some	method	called	on	application	start
(global.asax.cs	etc):

private	static	void	InitializeDependencies()

{

				//	...

				var	registrar	=	Dependency.Resolve<IDependencyRegistrar>();

				registrar.RegisterInstance<IDistributedCache>(new	DistributedCacheEmulator());

				//	...

}

DistributedCacheEmulator	Class

340

CouchbaseDistributedCache	Class
[namespace:	Serenity.Caching,	assembly:	Serenity.Caching.Couchbase]

Couchbase	is	a	distributed	database	that	has	Memcached	like	access	interface.

You	can	get	Serenity	implementation	for	this	server	type	in	Serenity.Caching.Couchbase
NuGet	package.

Once	you	register	it	with	the	service	locator:

Dependency.Resolve<IDependencyRegistrar>()

				.RegisterInstance<IDistributedCache>(new	CouchbaseDistributedCache())

You	can	configure	CouchbaseDistributedCache	in	application	configuration	file	(with	JSON
format):

<appSettings>

				<add	key="DistributedCache"	value='{

								ServerAddress:	"http://111.22.111.97:8091/pools",

								BucketName:	"primary-bucket",

								KeyPrefix:	""

				}'	/>

Here	ServerAddress	is	Couchbase	server	address	and	BucketName	is	the	bucket	name.

If	you	wanted	to	use	same	server	/	bucket	for	more	than	one	application	you	can	put
something	like		DEV:	,		TEST:		into	KeyPrefix	setting.

CouchbaseDistributedCache	Class

341

RedisDistributedCache	Class
[namespace:	Serenity.Caching,	assembly:	Serenity.Caching.Couchbase]

Redis	is	another	in	memory	database	that	is	also	used	by	StackOverflow	for	its	performance
and	reliability.	They	use	just	one	Redis	database	for	all	their	WEB	servers.

You	can	get	Serenity	implementation	for	this	server	type	in	Serenity.Caching.Redis	NuGet
package.

It	can	be	registered	just	like	CouchbaseDistributedCache	and	configuration	is	similar	(though
there	is	no	bucket	setting):

<appSettings>

				<add	key="DistributedCache"	value="{

								ServerAddress:	'someredisserver:6379',

								KeyPrefix:	''

				}"/>

/>

RedisDistributedCache	Class

342

Two	Level	Caching
When	you	use	local	(in-memory)	caching,	one	server	can	cache	some	information	and
retrieve	it	as	fast	as	possible	but	as	other	servers	can't	access	that	cached	data,	they	have
to	query	for	the	same	information	from	database.

If	you	prefer	distributed	caching	to	let	other	servers	access	cached	data	as	it	has	some
serialization	/	deserialization	and	network	latency	overhead,	it	may	degrade	performance	in
some	cases.

There	is	also	another	problem	with	caching	that	needs	to	be	handled:	cache	invalidation:

There	are	only	two	hard	things	in	Computer	Science:	cache	invalidation	and	naming
things.

--	Phil	Karlton

When	you	cache	some	information,	you	have	to	make	sure	that,	when	the	source	data
changes,	cached	information	is	invalidated	(regenerated	or	removed	from	cache).

Two	Level	Caching

343

Using	Local	Cache	and	Distributed	Cache
in	Sync
We	might	enjoy	the	best	of	both	worlds	by	following	a	simple	algorithm:

1.	 Check	for	key	in	local	cache.
2.	 If	key	exists	in	local	cache	return	its	value.
3.	 If	key	doesn't	exist	in	local	cache,	try	distributed	cache.
4.	 If	key	exists	in	distributed	cache	return	its	value	and	add	it	to	local	cache	too.
5.	 If	key	doesn't	exist	in	distributed	cache,	produce	it	from	database,	add	it	to	both	local

cache	and	distributed	cache.	Return	the	produced	value.

This	way,	when	a	server	caches	some	information	in	local	cache,	it	also	caches	it	in
distributed	cache,	but	this	time	other	servers	can	re-use	information	in	distributed	cache	if
they	don't	have	a	local	copy	in	memory.

Once	all	servers	have	a	local	copy,	none	of	them	will	need	to	access	distributed	cache
again,	thus,	avoiding	serialization	and	latency	overhead.

Validating	Local	Copies
All	looks	fine.	But	now	we	have	a	cache	invalidation	problem.	What	if	in	one	of	the	servers
cached	data	is	changed.	How	do	we	notify	them	of	this	change,	so	that	they	can	invalidate
their	locally	cached	copy?

We	would	change	the	value	in	distributed	cache,	but	as	they	don't	check	distributed	cache
anymore	(shortcut	from	step	2	in	last	algorithm),	they	wouldn't	be	noticed.

One	solution	to	this	problem	would	be	to	keep	local	copies	for	a	certain	time,	e.g.	5	secs.
Thus,	when	a	server	changes	a	cached	data,	other	servers	would	use	out-of-date
information	for	5	seconds	mostly.

This	method	would	help	with	batch	operations	that	needs	same	cached	information
repeatedly.	But	even	if	nothing	changed	in	distributed	cache,	we	would	have	to	get	a	copy
from	distributed	cache	to	local	cache	every	5	seconds.	If	cached	data	is	big,	this	would
increase	network	bandwidth	usage	and	deserialization	cost.

We	need	a	way	to	know	if	the	data	in	distributed	cache	is	different	from	the	local	copy.	There
are	several	ways	of	it	that	i	can	imagine:

Store	hash	alongside	data	in	local	and	distributed	cache	(slight	hash	calculation	cost)

Using	Local	Cache	and	Distributed	Cache	In	Sync

344

Store	an	incrementing	version	number	of	data	(how	to	make	sure	that	two	servers
doesn't	generate	same	version	numbers?)
Store	last	time	data	is	set	in	distributed	cache	(time	sync	problems)
Store	a	random	number	(generation)	alongside	data

Serenity	uses	generation	numbers	(random	int)	as	version.

So	when	we	store	a	value	in	distributed	cache,	let's	say	SomeCachedKey,	we	also	store	a
random	number	with	key	SomeCachedKey$GENERATION$.

Now	our	prior	algorithm	becomes	this:

1.	 Check	for	key	in	local	cache.
2.	 If	key	exists	in	local	cache

Compare	its	generation	with	one	in	distributed	cache
If	they	are	equal,	return	local	cached	value
If	they	don't	match,	continue	to	4

3.	 If	key	doesn't	exist	in	local	cache,	try	distributed	cache.
4.	 If	key	exists	in	distributed	cache	return	its	value	and	add	it	to	local	cache	too,	alongside

its	generation.
5.	 If	key	doesn't	exist	in	distributed	cache,	generate	it	from	database,	add	it	to	both	local

cache	and	distributed	cache	with	some	random	generation.	Return	the	produced	value.

Validating	Multiple	Cached	Items	In	One	Shot
You	might	have	cached	data	produced	from	some	table.	There	might	be	more	than	one	key
in	distributed	cache	for	this	table.

Lets	say	you	have	a	profile	table	and	cached	profile	items	by	their	User	ID	values.

When	a	user's	profile	information	changes,	you	may	try	to	remove	its	cached	profile	from
cache.	But	what	if	another	server	or	application	you	don't	know	about,	cached	some
information	that	is	generated	from	same	user	profile	data?	You	may	not	know	what	cached
information	keys	exist	in	distributed	cache	that	depends	on	some	user	ID.

Most	distributed	cache	implementations	don't	provide	a	way	to	find	all	keys	that	start	with
some	string	or	it	is	computationally	intensive	(as	they	are	dictionary	based).

So	when	you	want	to	expire	all	items	depending	on	some	set	of	data,	it	might	not	be
feasible.

While	caching	items,	Serenity	allows	you	to	specify	a	group	key,	which	is	used	to	expire
them,	when	the	data	that	the	group	depends	on	changes.

Using	Local	Cache	and	Distributed	Cache	In	Sync

345

Let's	say	one	application	produced	CachedItem17	from	a	user	with	ID	17's	profile	data	and
we	use	this	ID	as	a	group	key	(Group17_Generation):

Key Value

CachedItem17 cxyzyxzcasd

CachedItem17_Generation 13579

Group17_Generation 13579

Here,	random	generation	(version)	for	the	group	is	13579.	Along	with	cached	data
(CachedItem17),	we	stored	whatever	was	the	group	generation	when	we	produced	this	data
(CachedItem17_Generation).

Suppose	that	another	server,	cached	AnotherItem17	from	User	17's	data:

Key Value

CachedItem17 cxyzyxzcasd

CachedItem17_Generation 13579

AnotherItem17 uwsdasdas

AnotherItem17_Generation 13579

Group17_Generation 13579

Here,	we	reused	Group17_Generation,	as	there	was	already	a	group	version	number	in
distributed	cache,	otherwise	we	would	have	to	generate	a	new	one.

Now,	both	items	in	cache	(CachedItem17	and	AnotherItem17)	are	valid,	because	their
version	numbers	matches	the	group	version.

If	somebody	changed	User	17's	data	and	we	wanted	to	expire	all	cached	items	related	to
her,	we	need	to	just	change	the	group	generation:

Key Value

CachedItem17 cxyzyxzcasd

CachedItem17_Generation 13579

AnotherItem17 uwsdasdas

AnotherItem17_Generation 13579

Group17_Generation 54237

Now	all	cached	items	are	expired.	Even	though	they	exist	in	cache,	we	see	that	their
generations	don't	match	the	group	generation,	so	they	are	not	considered	valid.

Using	Local	Cache	and	Distributed	Cache	In	Sync

346

Group	keys	we	use	are	usually	name	of	the	table	that	data	is	produced	from.

Using	Local	Cache	and	Distributed	Cache	In	Sync

347

TwoLevelCache	Class
[namespace:	Serenity]	-	[assembly:	Serenity.Core]

Out	of	the	box,	TwoLevelCache	provides	all	functionality	that	we	talked	about	so	far	and
some	more.

				public	static	class	TwoLevelCache

				{

								public	static	TItem	Get<TItem>(

												string	cacheKey,	TimeSpan	expiration,

												string	groupKey,	Func<TItem>	loader)

																where	TItem	:	class;

								public	static	TItem	Get<TItem>(

												string	cacheKey,	TimeSpan	localExpiration,	TimeSpan	remoteExpiration,

												string	groupKey,	Func<TItem>	loader)

																where	TItem	:	class;

								public	static	TItem	GetWithCustomSerializer<TItem,	TSerialized>(

												string	cacheKey,	TimeSpan	localExpiration,	TimeSpan	remoteExpiration,

												string	groupKey,	Func<TItem>	loader,

												Func<TItem,	TSerialized>	serialize,

												Func<TSerialized,	TItem>	deserialize)

																where	TItem	:	class

																where	TSerialized	:	class;

								public	static	TItem	GetLocalStoreOnly<TItem>(

												string	cacheKey,	TimeSpan	localExpiration,

												string	groupKey,	Func<TItem>	loader)

												where	TItem	:	class;

								public	static	void	ChangeGlobalGeneration(string	globalGenerationKey);

								public	static	void	Remove(string	cacheKey);

				}

TwoLevelCache.Get	Method
Tries	to	read	a	value	from	local	cache.	If	it	is	not	found	in	there	(or	has	an	expired
version),	tries	the	distributed	cache.

If	neither	contains	the	specified	key,	produces	value	by	calling	a	loader	function	and
adds	the	value	to	local	and	distributed	cache	for	a	given	expiration	time.

TwoLevelCache	Class

348

There	are	two	overloads	of	the	Get	method.	One	that	takes	expiration	time	for	local	and
distributed	caches	separately,	and	another	that	has	only	one	expiration	parameter	for
both.

By	using	a	group	key,	all	items	on	both	cache	types	that	are	members	of	this	group	can
be	expired	at	once	(this	is	generation	based	expiration,	not	time).

To	avoid	checking	group	generation	every	time	an	item	that	belongs	to	group	is
requested,	group	generation	itself	is	also	cached	in	local	cache.	Thus,	when	a
generation	number	changes,	local	cached	items	might	expire	after	5	seconds.

This	means	that,	if	you	use	this	strategy	in	a	web	farm	setup,	when	a	change	occurs	in
one	server,	other	servers	might	continue	to	use	old	local	cached	data	for	5	seconds
more.

If	this	is	a	problem	for	your	configuration,	you	should	use	DistributedCache	methods
directly	instead	of	depending	on	TwoLevelCache.

TwoLevelCache	Class

349

CachedProfile	GetCachedProfile(int	userID)

{

				TwoLevelCache.Get("CachedProfile:"	+	userID,	TimeSpan.FromDays(1),	"SomeGroupKey",

								()	=>

								{

												using	(var	connection	=	new	SqlConnection("..."))

												{

																connection.Open();

																return	LoadProfileFromDB(connection,	userID);

												}

								});

}

CachedProfile	LoadProfileFromDB(IDbConnection	connection,	int	userID)

{

				//	...

}

TwoLevelCache.GetWithCustomSerializer
Method
TwoLevelCache.Get	stores	cached	data	in	both	local	cache	and	distributed	cache.	While
storing	cached	items	in	local	cache,	serialization	is	not	required	(in-memory).	But	before
items	are	sent	to	distributed	cache,	some	kind	of	serialization	(binary,	json	etc.)	must	be
performed	(depends	on	provider	and	data	type).

Sometimes	this	serialization	/	deserialization	operation	can	be	costly,	so	you	might	want	to
provide	your	own	implementation	of	these	functions	for	your	data	type.

GetWithCustomSerializer	takes	two	extra	delegate	arguments	to	serialize	and	deserialize
values.	You	might	return	a	string	or	byte	array	from	serialization	function,	and	in
deserialization	take	this	string	or	byte	array	and	turn	it	back	into	your	original	data	type.

Most	providers	handle	simple	types	like	int,	string	or	byte[]	effectively,	so	for	such	data
types	you	don't	need	custom	serialization.

TwoLevelCache.GetLocalStoreOnly	Method
If	you	only	want	to	store	items	in	local	cache	and	not	distributed	cache,	GetLocalStoreOnly
can	be	useful.

When	cached	data	by	one	server	is	not	helpful	for	others	(changes	from	server	to	server),	so
big	or	slow	to	serialize	/	deserialize,	storing	such	data	in	distributed	cache	is	not	meaningful.

TwoLevelCache	Class

350

So,	why	shouldn't	you	use	LocalCache	directly	in	this	case?

You	could	but	not	if	you	want	to	specify	a	group	key,	and	expire	local	cached	items	easily
when	source	data	of	that	group	changes	(as	if	they	are	stored	in	distributed	cache).

TwoLevelCache.ExpireGroupItems	Method
This	method	allows	you	to	expire	all	items	that	are	members	of	one	group	key.	It	simply
removes	group	key	from	local	cache	and	distributed	cache,	so	another	version	will	be
generated	next	time	it	is	queried.

TwoLevelCache.ExpireGroupItems("SomeGroupKey");

You	should	call	this	from	methods	that	change	data.

If	your	entity	class	has	TwoLevelCached	attribute	on	it,	Create,	Update,	Delete	and
Undelete	handlers	do	this	automatically	with	ConnectionKey.TableName	as	group	key.

TwoLevelCache.Remove	Method
Removes	an	item	and	its	version	from	local	and	distributed	cache.

TwoLevelCache	Class

351

Entities	(Row)
Serenity	entity	system	is	a	micro-orm	that	is	in	love	with	SQL	just	like	Dapper.

Unlike	full	blown	ORMs	like	NHibernate	/	Entity	Framework,	Serenity	provides	minimum
features	required	to	map	and	query	databases	with	intellisense,	compile	time	checking	and
easy	refactoring.

Serenity	entities	are	usually	named	like	XYZRow.	They	are	subclasses	of
Serenity.Data.Row.

Let's	define	a	simple	row	class:

using	Serenity;

using	Serenity.ComponentModel;

using	Serenity.Data;

public	class	SimpleRow	:	Row

{

				public	string	Name

				{

								get	{	return	Fields.Name[this];	}

								set	{	Fields.Name[this]	=	value;	}

				}

				public	Int32?	Age

				{

								get	{	return	Fields.Age[this];	}

								set	{	Fields.Age[this]	=	value;	}

				}

				public	static	RowFields	Fields	=	new	RowFields().Init();

				public	SimpleRow()

								:	base(Fields)

				{

				}

				public	class	RowFields	:	RowFieldsBase

				{

								public	StringField	Name;

								public	Int32Field	Age;

				}				

}

Entities	(Row)

352

Yes,	it	looks	a	bit	more	complicated	than	a	simple	POCO	class.	This	is	required	to
make	some	features	work	without	using	proxy	classes	like	some	ORMs	use	(Entity
Framework,	NHibernate	etc).

This	structure	allows	us	to	build	queries	with	zero	reflection,	do	assignment	tracking,
enable	INotifyPropertyChanged	when	required.	It	makes	it	also	possible	to	work	with
custom,	user	defined	fields.

Rows	are	JSON	serializable,	so	they	can	be	returned	from	services	without	any
problems.	You	don't	need	extra	POCO/DTO	classes	unless	you	have	a	good	reason	to
use	them.

Let's	study	parts	of	a	row	declaration.

public	class	SimpleRow	:	Row

Here	we	define	an	entity	named	SimpleRow,	which	probably	maps	to	a	table	named		Simple	
in	database.

Row	suffix	here	is	not	required,	but	common	practice,	and	it	prevents	clashes	with	other
class	names.

All	entity	classes	derive	from		Serenity.Data.Row		base	class.

public	string	Name

{

				get	{	return	Fields.Name[this];	}

				set	{	Fields.Name[this]	=	value;	}

}

Now	we	declare	our	first	property.	This	property	maps	to	a	database	column	named		Name		in
the		Simple		table.

It	is	not	possible	to	use	an	auto	property	here	(like		get;	set;).	Field	values	must	be	read
and	set	through	a	special	object	called	Field.

Field	objects	are	very	similar	to	WPF	dependency	properties.	Here	is	a	dependency	property
declaration	sample:

Entities	(Row)

353

public	static	readonly	DependencyProperty	MyCustomProperty	=	

				DependencyProperty.Register("MyCustom",	typeof(string),	typeof(Window1));

public	string	MyCustom

{

				get	{	return	this.GetValue(MyCustomProperty)	as	string;	}

				set	{	this.SetValue(MyCustomProperty,	value);	}

}

Here	we	define	a	static	dependency	property	object	(MyCustomProperty),	that	contains
property	metadata	and	allows	us	to	set	and	get	property	value	through	its	GetValue	and
SetValue	methods.	Dependency	properties	allows	WPF	to	offer	features	like	validation,	data
binding,	animation,	and	more.

Similar	to	dependency	properties,	Field	objects	contains	column	metadata	and	clears	way
for	some	features	like	assignment	tracking,	building	queries	without	expression	trees,
change	notification	etc.

While	dependency	properties	are	declared	as	static	members	in	class	they	are	used,	Field
objects	are	declared	in	a	nested	class	named	RowFields.	This	allows	to	group	and	reference
them	easier,	without	having	to	add	Field	or	Property	suffix,	and	keeps	our	entity	clear	from
field	declarations.

public	Int32?	Age

{

				get	{	return	Fields.Age[this];	}

				set	{	Fields.Age[this]	=	value;	}

}

Here	is	our	second	property,	named		Age	,	with	type		Int32?	.

Serenity	entity	properties	are	always	nullable,	even	if	database	column	is	not	nullable.

Serenity	never	use	zero	in	place	of	null.

This	might	seem	unlogical,	if	you	have	a	background	of	other	ORMs,	but	consider	this:

Is	it	not	possible	for	a	not	null	field	to	have	a	null	value,	if	you	query	it	through	a	left/right
join?	How	can	you	say,	if	its	retrieved	value	is	null	or	zero	in	that	case?

Reference	types	are	already	nullable,	so	you	can't	write		String?	.

public	static	RowFields	Fields	=	new	RowFields().Init();

Entities	(Row)

354

We	noted	that	field	objects	are	declared	in	a	nested	subclass	named	RowFields	(usually).
Here	we	are	creating	its	sole	static	instance.	Thus,	there	is	only	one	RowFields	instance	per
row	type,	and	one	field	instance	per	row	property.

	Init		is	an	extension	method	that	initializes	members	of	RowFields.	It	creates	field	objects
that	are	not	explictly	initialized.

public	SimpleRow()

				:	base(Fields)

{

}

Now	we	define	SimpleRow's	parameterless	constructor.	Base	Row	class	requires	a
RowFields	instance	to	work,	and	we	pass	our	static	Fields	object.	So	all	instances	of	a	row
type	(SimpleRow)	share	a	single	RowFields	(SimpleRow.RowFields)	instance.	This	means
they	share	all	the	metadata.

public	class	RowFields	:	RowFieldsBase

{

				public	StringField	Name;

				public	Int32Field	Age;

}

Here	we	define	our	nested	class	that	contains	field	objects.	It	should	be	derived	from
	Serenity.Data.RowFieldsBase	.	RowFieldsBase	is	a	special	class	closely	related	to	Row	that
contains	table	metadata.

We	declared	a	StringField	and	a	Int32Field.	Their	type	is	based	on	their	property	types,	and
they	must	match	exactly.

Their	names	must	also	match	the	property	names,	or	you'll	get	an	initialization	error.

We	didn't	initialize	these	field	objects,	so	their	values	are	initially	null.

Remember	that	we	wrote		new	RowFields().Init()		above.	This	is	where	field	objects	are
automatically	created.

It's	also	possible	to	initialize	them	in	RowFields	constructor	manually,	but	not
recommended,	except	for	special	customizations.

Entities	(Row)

355

Mapping	Attributes
Serenity	provides	some	mapping	attributes,	to	match	database	table,	column	names	with
rows.

Column	and	Table	Mapping	Conventions
By	default,	a	row	class	is	considered	to	match	a	table	in	database	with	the	same	name,	but
Row	suffix	removed.

A	property	is	considered	to	match	a	column	in	database	with	the	same	name.

Let's	say	we	have	such	a	row	definition:

public	class	CustomerRow	:	Row

{

				public	string	StreetAddress

				{

								get	{	return	Fields.StreetAddress[this];	}

								set	{	Fields.StreetAddress[this]	=	value;	}

				}

}

If	we	wrote	a	query,	selecting	StreetAddress	field	from	CustomerRow,	it	would	be	generated
like	below:

SELECT	

T0.StreetAddress	AS	[StreetAddress]	

FROM	Customer	T0

CustomerRow	matches	table	Customer	by	convention.	Similarly,	StreetAddress	property
matches	a	column	named	StreetAddress.

	T0		is	a	special	alias	assigned	to	main	table	by	Serenity	rows.

As,	StreetAddress	column	belongs	to	main	table	(Customer),	it	is	selected	with	an
expression	of		T0.StreetAddress		and	with	a	column	alias	of		[StreetAddress]	.

Property	name	is	used	as	a	column	alias	by	default

SqlSettings.AutoQuotedIdentifiers	Flag

Mapping	Attributes

356

In	some	database	systems,	identifiers	are	case	sensitive.

For	example,	in	Postgress,	if	you	create	a	column	with	quoted	identifier		"StreetAddress"	,
you	have	to	use	quotes	when	selecting	it,	even	if	you	write		SELECT	StreetAddress	...		(same
case)	it	won't	work.

You	have	to	use	the	form		SELECT	"StreetAddress"	.

Thus,	Postgres	users	usually	prefer	lowercase	identifiers.	But	FluentMigrator	always	quotes
identifiers,	so	we	need	a	workaround	to	add	brackets/quotes	to	identifiers.

Serenity	doesn't	quote/bracket	column	and	table	names	by	default,	but	it	has	a	setting	for
compability.

If	SqlSettings.AutoQuotedIdentifiers	flag	is	set	to	true,	previous	query	would	look	like	this:

SELECT	

T0.[StreetAddress]	AS	[StreetAddress]	

FROM	[Customer]	T0

This	setting	defaults	to	false	in	Serenity	for	backwards	compability,	but	Serene	1.8.6+
sets	it	to	true	on	application	startup.

And	if	we	used	Postgress	dialect,	output	would	be:

SELECT	

T0."StreetAddress"	AS	"StreetAddress"

FROM	"Customer"	T0

Column	Attribute
[namespace:	Serenity.Data.Mapping]	-	[assembly:	Serenity.Data]

You	can	map	a	property	to	some	other	column	name	in	database	using	Column	attribute:

public	class	CustomerRow	:	Row

{

				[Column("street_address")]

				public	string	StreetAddress

				{

								get	{	return	Fields.StreetAddress[this];	}

								set	{	Fields.StreetAddress[this]	=	value;	}

				}

}

Mapping	Attributes

357

Now	the	query	becomes:

SELECT	

T0.street_address	AS	[StreetAddress]	

FROM	Customer	T0

It	is	also	possible	to	manually	add	brackets:

public	class	CustomerRow	:	Row

{

				[Column("[street_address]")]

				public	string	StreetAddress

				{

								get	{	return	Fields.StreetAddress[this];	}

								set	{	Fields.StreetAddress[this]	=	value;	}

				}

}

SELECT	

T0.[street_address]	AS	[StreetAddress]	

FROM	Customer	T0

If	SqlSettings.AutoQuotedIdentifiers	is	true,	brackets	are	automatically	added.

Use	SqlServer	specific	brackets	([])	if	you	need	to	work	with	multiple	database	types.
These	brackets	are	converted	to	dialect	specific	quotes	(double	quote,	backtick	etc.)
before	running	queries.

But,	if	you	only	target	one	type	of	database,	you	may	prefer	using	quotes	specific	to
that	database	type.

TableName	Attribute
[namespace:	Serenity.Data.Mapping]	-	[assembly:	Serenity.Data]

If	table	name	in	database	is	different	from	row	class	name,	use	this	attribute:

Mapping	Attributes

358

[TableName("TheCustomers")]

public	class	CustomerRow	:	Row

{

				public	string	StreetAddress

				{

								get	{	return	Fields.StreetAddress[this];	}

								set	{	Fields.StreetAddress[this]	=	value;	}

				}

}

SELECT	

T0.StreetAddress	AS	[StreetAddress]	

FROM	TheCustomers	T0

You	may	also	use	brackets	or	quotes:

[TableName("[My	Customers]")]

public	class	CustomerRow	:	Row

{

				public	string	StreetAddress

				{

								get	{	return	Fields.StreetAddress[this];	}

								set	{	Fields.StreetAddress[this]	=	value;	}

				}

}

SELECT	

T0.StreetAddress	AS	[StreetAddress]	

FROM	[My	Customers]	T0

Again,	prefer	brackets	for	database	compability

Expression	Attribute
[namespace:	Serenity.Data.Mapping]	-	[assembly:	Serenity.Data]

This	attribute	is	used	to	specify	expression	of	a	non-basic	field,	e.g.	one	that	doesn't	actually
exist	in	database.

There	can	be	several	types	of	such	fields.

One	example	is	a	Fullname	field	with	a	calculated	expression	like		(T0.[Firstname]	+	'	'	+
T0.[Lastname])	.

Mapping	Attributes

359

public	class	CustomerRow	:	Row

{

				public	string	Firstname

				{

								get	{	return	Fields.Firstname[this];	}

								set	{	Fields.Firstname[this]	=	value;	}

				}

				public	string	Lastname

				{

								get	{	return	Fields.Lastname[this];	}

								set	{	Fields.Lastname[this]	=	value;	}

				}

				[Expression("(T0.[Firstname]	+	'	'	+	T0.[Lastname])")]

				public	string	Fullname

				{

								get	{	return	Fields.Fullname[this];	}

								set	{	Fields.Fullname[this]	=	value;	}

				}

}

Be	careful	with	"+"	operator	here	as	it	is	Sql	Server	specific.	If	you	want	to	target
multiple	databases,	you	should	write	the	expression	as:

	CONCAT(T0.[Firstname],	CONCAT('	',	T0.[Lastname]))	

Firstname	and	Lastname	are	table	fields	(actual	fields	in	the	table),	but	even	if	they	don't
have	an	expression	attribute,	they	have	basic,	implicitly	defined	expressions,		T0.Firstname	
and		T0.Lastname		(main	table	is	assigned		T0		alias	in	Serenity	queries).

In	this	document,	when	we	talk	about	a	Table	Field,	it	means	a	field	that	actually
corresponds	to	a	column	in	database	table.

View	Field	means	a	field	with	a	calculated	expression	or	a	field	that	originates	from
another	table,	like	fields	that	comes	from	joins	in	SQL	views.

We	wrote	Fullname	expression	using		T0		alias	before	the	fields	that	we	reference.

It	would	probably	work	without	that	prefix	too.	But	it	is	better	to	use	it.	When	you	start	to
add	joins,	it	is	possible	to	have	more	than	one	field	with	same	name	and	experience
ambiguous	column	errors.

ForeignKey	Attribute
[namespace:	Serenity.Data.Mapping]	-	[assembly:	Serenity.Data]

Mapping	Attributes

360

This	attribute	is	used	to	specify	foreign	key	columns,	and	add	information	about	primary
table	and	primary	field	that	they	are	related	to.

public	class	CustomerRow	:	Row

{

				[ForeignKey("Countries",	"Id")]

				public	string	CountryId

				{

								get	{	return	Fields.Firstname[this];	}

								set	{	Fields.Firstname[this]	=	value;	}

				}

}

Here	we	specified	that	CountryId	field	in	Customer	table	has	a	foreign	key	to	Id	field	in
Countries	table.

The	foreign	key	doesn't	have	to	exist	in	database.	Serenity	doesn't	check	it.

Serenity	can	make	use	of	such	meta	information,	even	though	it	doesn't	affect	generated
queries	alone.

ForeignKey	is	more	meaningful	when	used	along	with	the	next	attribute	we'll	see.

LeftJoin	Attribute
Where	we	are	querying	database,	we	tend	to	make	many	joins	because	of	relations.	Most	of
these	joins	are	LEFT	or	INNER	joins.

With	Serenity	entities,	you'll	usually	be	using	LEFT	JOINs.

Database	admins	prefers	to	define	views	to	make	it	easier	to	query	a	combination	of	multiple
tables,	and	to	avoid	writing	these	joins	again	and	again.

Serenity	entities	can	be	used	just	like	SQL	views,	so	you	can	bring	in	columns	from	other
tables	to	an	entity,	and	query	it	as	if	they	are	one	big	combined	table.

Mapping	Attributes

361

public	class	CustomerRow	:	Row

{

				[ForeignKey("Cities",	"Id"),	LeftJoin("c")]

				public	Int32?	CityId

				{

								get	{	return	Fields.CityId[this];	}

								set	{	Fields.CityId[this]	=	value;	}

				}

				[Expression("c.[Name]")]

				public	string	CityName

				{

								get	{	return	Fields.CityName[this];	}

								set	{	Fields.CityName[this]	=	value;	}

				}

Here	we	specified	that	Cities	table	should	be	assigned	alias		c		when	joined,	and	its	join
type	should	be		LEFT	JOIN	.	The	join		ON		expression	is	determined	as		c.[Id]	==	T0.
[CityId]		with	some	help	from	ForeignKey	attribute.

LEFT	JOIN	is	preferred	as	it	allows	to	retrieve	all	records	from	left	table,	Customers,
even	if	they	don't	have	a	CityId	set.

CityName	is	a	view	field	(not	actually	a	column	of	Customer	table),	which	has	an	expression
c.Name.	It	is	clear	that	CityName	originates	from	Name	field	in	Cities	table.

Now,	if	we	wanted	to	select	city	names	of	all	customers,	our	query	text	would	be:

SELECT	

c.Name	AS	[CityName]	

FROM	Customer	T0	

LEFT	JOIN	Cities	c	ON	(c.[Id]	=	T0.CityId)

What	if	we	don't	have	a	CountryId	field	in	Customer	table,	but	we	want	to	bring	Country
names	of	cities	through	CountryId	field	in	city	table?

Mapping	Attributes

362

public	class	CustomerRow	:	Row

{

				[ForeignKey("Cities",	"Id"),	LeftJoin("c")]

				public	Int32?	CityId

				{

								get	{	return	Fields.CityId[this];	}

								set	{	Fields.CityId[this]	=	value;	}

				}

				[Expression("c.[Name]")]

				public	string	CityName

				{

								get	{	return	Fields.CityName[this];	}

								set	{	Fields.CityName[this]	=	value;	}

				}

				[Expression("c.[CountryId]"),	ForeignKey("Countries",	"Id"),	LeftJoin("o")]

				public	Int32?	CountryId

				{

								get	{	return	Fields.CountryId[this];	}

								set	{	Fields.CountryId[this]	=	value;	}				

				}

				[Expression("o.[Name]")]

				public	string	CountryName

				{

								get	{	return	Fields.CountryName[this];	}

								set	{	Fields.CountryName[this]	=	value;	}

				}				

}

This	time	we	did	a	LEFT	JOIN	on	CountryId	field	in	Cities	table.	We	assigned		o		alias	to
Countries	table	and	bring	in	the	name	field	from	it.

You	can	assign	any	table	alias	to	joins	as	long	as	they	are	not	reserved	words,	and	are
unique	between	other	joins	in	the	entity.	Sergen	generates	aliases	like	jCountry,	but	you
may	rename	them	to	shorter	and	more	natural	ones.

Let's	select	CityName	and	CountryName	fields	of	all	Customers:

SELECT	

c.[Name]	AS	[CityName],

o.[Name]	AS	[CountryName]	

FROM	Customer	T0	

LEFT	JOIN	Cities	c	ON	(c.[Id]	=	T0.CityId)	

LEFT	JOIN	Countries	o	ON	(o.[Id]	=	c.[CountryId])

We'll	see	how	to	build	such	queries	in	FluentSQL	chapter.

Mapping	Attributes

363

So	far,	we	used	LeftJoin	attribute	with	properties	that	has	a	ForeignKey	attribute	with	them.

It	is	also	possible	to	attach	LeftJoin	attribute	to	entity	classes.	This	is	useful	for	joins	without
a	corresponding	field	in	main	entity.

For	example,	let's	say	you	have	a	CustomerDetails	extension	table	that	stores	some	extra
details	of	customers	(1	to	1	relation).	CustomerDetails	table	has	a	primary	key,	CustomerId,
which	is	actually	a	foreign	key	to	Id	field	in	Customer	table.

[LeftJoin("cd",	"CustomerDetails",	"cd.[CustomerId]	=	T0.[Id]")]

public	class	CustomerRow	:	Row

{

				[Identity,	PrimaryKey]

				public	Int32?	Id

				{

								get	{	return	Fields.Id[this];	}

								set	{	Fields.Id[this]	=	value;	}

				}

				[Expression("cd.[DeliveryAddress]")]

				public	string	DeliveryAddress

				{

								get	{	return	Fields.DeliveryAddress[this];	}

								set	{	Fields.DeliveryAddress[this]	=	value;	}

				}

And	here	what	it	looks	like	when	you	select	DeliveryAddress:

SELECT	

cd.[DeliveryAddress]	AS	[DeliveryAddress]	

FROM	Customer	T0	

LEFT	JOIN	CustomerDetails	cd	ON	(cd.[CustomerId]	=	T0.[Id])

Mapping	Attributes

364

FieldFlags	Enumeration
[namespace:	Serenity.Data.Mapping]	-	[assembly:	Serenity.Data]

Serenity	has	a	set	of	field	flags	that	controls	field	behavior.

public	enum	FieldFlags

{

				None	=	0,

				Insertable	=	1,

				Updatable	=	2,

				NotNull	=	4,

				PrimaryKey	=	8,

				AutoIncrement	=	16,

				Foreign	=	32,

				Calculated	=	64,

				Reflective	=	128,

				NotMapped	=	256,

				Trim	=	512,

				TrimToEmpty	=	512	+	1024,

				DenyFiltering	=	2048,

				Unique	=	4096,

				Default	=	Insertable	|	Updatable	|	Trim,

				Required	=	Default	|	NotNull,

				Identity	=	PrimaryKey	|	AutoIncrement	|	NotNull

}

An	ordinary	table	field	has	Insertable,	Updatable	and	Trim	flags	set	by	default	which
corresponds	to	Default	combination	flag.

Insertable	Flag
Insertable	flag	controls	if	the	field	is	editable	in	new	record	mode.	By	default,	all	ordinary
fields	are	considered	to	be	insertable.

Some	fields	might	not	be	insertable	in	database	table,	e.g.	identity	columns	shouldn't	have
this	flags	set.

When	a	field	doesn't	have	this	flag,	it	won't	be	editable	in	forms	in	new	record	mode.	This	is
also	validated	in	services	at	repository	level.

Sometimes,	there	might	be	internal	fields	that	are	perfectly	valid	in	SQL	INSERT	statements,
but	shouldn't	be	edited	in	forms.	One	example	might	be	a	InsertedByUserId	which	should	be
set	on	service	level,	and	not	by	end	user.	If	we	would	let	end	user	to	edit	it	in	forms,	this

FieldFlags	Enumeration

365

would	be	a	security	hole.	Such	fields	shouldn't	have	Insertable	flag	set	too.

This	means	field	flags	don't	have	to	match	database	table	settings.

Insertable	Attribute
To	turn	off	Insertable	flag	for	a	field,	put	a	[Insertable(false)]	attribute	on	it:

[Insertable(false)]

public	string	MyField

{

				get	{	return	Fields.MyField[this];

				set	{	Fields.MyField[this]	=	value;

}

Use	Insertable(true)	to	turn	it	on.

Non	insertable	fields	are	not	hidden.	They	are	just	readonly.	If	you	want	to	hide	them,
use	[HideOnInsert]	attribute	(Serenity	1.9.8+)	or	write	something	like
form.MyField.GetGridField().Toggle(IsNew)	by	overriding	UpdateInterface	method	of
your	dialog.

Updatable	Flag
This	flag	is	just	like	Insertable	flag,	but	controls	edit	record	mode	in	forms	and	update
operations	in	services.	By	default,	all	ordinary	fields	are	considered	to	be	updatable.

Updatable	Attribute
To	turn	off	Updatable	flag	for	a	field,	put	a	[Updatable(false)]	attribute	on	it:

[Updatable(false)]

public	string	MyField

{

				get	{	return	Fields.MyField[this];

				set	{	Fields.MyField[this]	=	value;

}

Use	Updatable(true)	to	turn	it	on.

FieldFlags	Enumeration

366

Non	updatable	fields	are	not	hidden	in	dialogs.	They	are	just	readonly.	If	you	want	to
hide	them,	use	[HideOnUpdate]	attribute	(Serenity	1.9.8+)	or	write	something	like
form.MyField.GetGridField().Toggle(!IsNew)	by	overriding	UpdateInterface	method	of
your	dialog.

Trim	Flag
This	flag	is	only	meaningful	for	string	typed	fields	and	controls	whether	their	value	should	be
trimmed	before	save.	All	string	fields	have	this	flag	on	by	default.

When	a	field	value	is	empty	string	or	whitespace	only,	it	is	trimmed	to	null.

TrimToEmpty	Flag
Use	this	flag	if	you	prefer	to	trim	string	fields	to	empty	string	instead	of	null.

When	a	field	value	is	null	or	whitespace	only,	it	is	trimmed	to	empty	string.

SetFieldFlags	Attribute
This	attribute	can	be	used	on	fields	to	include	or	exclude	a	set	of	flags.	It	takes	a	first
required	parameter	to	include	flags,	and	a	second	optional	parameter	to	exclude	flags.

To	turn	on	TrimToEmpty	flag	on	a	field,	we	use	it	like	this:

[SetFieldFlags(FieldFlags.TrimToEmpty)]

public	string	MyField

{

				get	{	return	Fields.MyField[this];

				set	{	Fields.MyField[this]	=	value;

}

To	turn	off	Trim	flag:

[SetFieldFlags(FieldFlags.None,	FieldFlags.TrimToEmpty)]

public	string	MyField

{

				get	{	return	Fields.MyField[this];

				set	{	Fields.MyField[this]	=	value;

}

To	include	TrimToEmpty	and	Updatable	but	remove	Insertable:

FieldFlags	Enumeration

367

[SetFieldFlags(

				FieldFlags.Updatable	|	FieldFlags.TrimToEmpty,

				FieldFlags.Insertable)]

public	string	MyField

{

				get	{	return	Fields.MyField[this];

				set	{	Fields.MyField[this]	=	value;

}

Insertable	and	Updatable	attributes	are	subclasses	of	SetFieldFlags	attribute.

NotNull	Flag
Use	this	flag	to	set	fields	as	not	nullable.	By	default,	this	flag	is	set	for	fields	that	are	not
nullable	in	database,	using	NotNull	attribute.

When	a	field	is	not	nullable,	its	corresponding	label	in	forms	has	a	red	asterisk	and	they	are
required	to	be	entered.

NotNullable	Attribute
This	sets	the	NotNull	atttribute	on	a	field	to	ON.	Remove	attribute	to	turn	it	off.

You	may	also	use	[Required(false)]	to	make	field	not	required	in	forms,	even	if	it	is	not
nullable	in	database.	This	doesn't	clear	the	NotNull	flag.

Required	Flag
This	is	a	combination	of	Default	and	NotNullable	flags.

It	has	no	relation	to	[Required]	attribute	which	controls	validation	in	forms.

PrimaryKey	Flag	and	PrimaryKey	Attribute
Set	this	for	primary	key	fields	in	table.

Primary	key	fields	are	selected	on	Key	column	selection	mode	in	List	and	Retrieve
request	handlers.

[PrimaryKey]	attribute	sets	this	flag	ON.

FieldFlags	Enumeration

368

AutoIncrement	Flag	and	AutoIncrement
Attribute
Set	this	for	fields	that	are	auto	incremented	on	server	side,	e.g.	identity	columns,	or	columns
using	a	generator.

Identity	Flag	and	Identity	Attribute
This	is	a	combination	of	PrimaryKey,	AutoIncrement	and	NotNull	flags,	which	is	common	for
identity	columns.

Foreign	Flag
This	flag	is	set	for	foreign	view	fields,	that	are	originating	from	other	tables	through	a	join.

It	is	automatically	set	for	fields	with	expressions	containing	table	aliases	other	than	T0.

For	example,	if	a	field	has	an	attribute	like	[Expression("jCountry.CountryName")]	it	will	have
this	flag.

This	has	no	relation	to	ForeignKey	attribute

Calculated	Flag
If	a	field	has	an	expression	involving	more	than	one	field	or	some	mathematical	operations,
it	will	have	this	flag.

This	could	also	be	set	for	fields	that	are	calculated	on	SQL	server	side.

NotMapped	Flag	and	NotMapped	Attribute
Corresponds	to	an	unmapped	field	in	Serenity	entities.	They	don't	have	a	corresponding
field	in	database	table.

These	kinds	of	fields	can	be	used	for	temporary	calculation,	storage	and	transfer	on	client
and	service	layers.

Reflective	Flag

FieldFlags	Enumeration

369

This	is	used	for	an	advanced	form	of	unmapped	fields,	where	they	don't	have	a	storage	of
their	own	in	row,	but	reflects	value	of	another	field	in	a	different	form.	For	example,	a	field
that	displays	absolute	value	of	a	integer	field	that	can	be	negative.

This	should	only	be	used	in	rare	cases	for	such	unmapped	fields.

DenyFiltering	Flag
If	set,	denies	filtering	operations	on	a	sensitive	field.	This	can	be	useful	for	secret	fields	like
PasswordHash,	that	shouldn't	be	allowed	to	be	selected	or	filtered	by	client	side.

Unique	Flag	and	Unique	Attribute
When	a	field	has	this	flag,	its	value	is	checked	against	existing	values	in	database	to	be
unique.

You	can	turn	on	this	flag	with	Unique	attribute	and	determine	if	this	constraint	should	be
checked	on	service	level	(before	the	check	in	database	level	to	avoid	cryptic	constraint
errors).

FieldFlags	Enumeration

370

Fluent	SQL
Serenity	contains	a	set	of	query	builders	for	SELECT,	INSERT,	UPDATE	and	DELETE
statements.

These	builders	can	be	used	with	simple	strings	or	Serenity	entity	(row)	system.

Their	output	can	be	executed	directly,	through	a	micro-orm	like	Dapper	(which	is	integrated
with	Serenity),	or	Serenity	extensions.

Fluent	SQL

371

SqlQuery	Object
[namespace:	Serenity.Data]	-	[assembly:	Serenity.Data]

SqlQuery	is	an	object	to	compose	dynamic	SQL	SELECT	queries	through	a	fluent	interface.

Advantages
SqlQuery	offers	some	advantages	over	hand	crafted	SQL:

Using	IntelliSense	feature	of	Visual	Studio	while	composing	SQL

Fluent	interface	with	minimal	overhead

Reduced	syntax	errors	as	the	query	is	checked	compile	time,	not	execution	time.

Clauses	like	Select,	Where,	Order	By	can	be	used	in	any	order.	They	are	placed	at
correct	positions	when	converting	the	query	to	string.	Similary,	such	clauses	can	be
used	more	than	once	and	they	are	merged	during	string	conversion.	So	you	can
conditionally	build	SQL	depending	on	input	parameters.

No	need	to	mess	up	with	parameters	and	parameter	names.	All	values	used	are
converted	to	auto	named	parameters.	You	can	also	use	manually	named	parameters	if
required.

It	can	generate	a	special	query	to	perform	paging	on	server	types	that	doesn't	support	it
natively	(e.g.	SQL	Server	2000)

With	the	dialect	system,	query	can	be	targeted	at	specific	server	type	and	version.

If	it	is	used	along	with	Serenity	entities	(it	can	also	be	used	with	micro	ORMs	like
Dapper),	helps	to	load	query	results	from	a	data	reader	with	zero	reflection.	Also	it	does
left/right	joins	automatically.

How	To	Try	Samples	Here
I	recommend	using	LinqPad	to	try	samples	given	here.

You	should	add	reference	to	Serenity.Core,	Serenity.Data	and	Serenity.Data.Entity	NuGet
packages.

SqlQuery	Object

372

Another	option	is	to	locate	and	reference	these	DLLs	directly	from	a	Serene	application's	bin
or	packages	directory.

Make	sure	you	add	Serenity	and	Serenity.Data	to	Additional	Namespace	Imports	in	Query
Properties	dialog.

A	Simple	Select	Query

void	Main()

{

				var	query	=	new	SqlQuery();

				query.Select("Firstname");

				query.Select("Surname");

				query.From("People");

				query.OrderBy("Age");

				Console.WriteLine(query.ToString());

}

This	will	result	in	output:

SELECT	

Firstname,

Surname	

FROM	People	

ORDER	BY	Age

In	the	first	line	of	our	program,	we	called	SqlQuery	with	its	sole	parameterless	constructor.	If
ToString()	was	called	at	this	point,	the	output	would	be:

SELECT	FROM

SqlQuery	doesn't	perform	any	syntax	validation.	It	just	converts	the	query	you	build	yourself,
by	calling	its	methods.	Even	if	you	don't	select	any	fields	or	call	from	methods,	it	will
generate	this	basic	SELECT	FROM	statement.

SqlQuery	can't	generate	empty	queries.

Next,	we	called		Select		method	with	string	parameter		"FirstName"	.	Our	query	is	now	like
this:

SELECT	Firstname	FROM

SqlQuery	Object

373

When		Select("Surname")		statement	is	executed,	SqlQuery	put	a	comma	between
previously	selected	field	(Firstname)	and	this	one:

SELECT	Firstname,	Surname	FROM

After	executing	From	and	OrderBy	methods,	our	final	output	is:

SELECT	Firstname,	Surname	FROM	People	ORDER	BY	Age

Method	Call	Order	and	Its	Effects
In	previous	sample,	output	wouldn't	change	even	if	we	reordered	From,	OrderBy	and	Select
lines.	It	would	change	only	if	we	changed	order	of	Select	statements...

void	Main()

{

				var	query	=	new	SqlQuery();

				query.From("People");

				query.OrderBy("Age");

				query.Select("Surname");

				query.Select("Firstname");

				Console.WriteLine(query.ToString());

}

...but,	only	the	column	ordering	inside	the	SELECT	statement	would	change:

SELECT	

Surname,

Firstname	

FROM	People	

ORDER	BY	Age

You	might	use	methods	like	Select,	From,	OrderBy,	GroupBy	in	any	order,	and	can	also	mix
them	(e.g.	call	Select,	then	OrderBy,	then	Select	again...)

Putting	FROM	at	start	is	recommended,	especially	when	used	with	Serenity	entities,	as
it	helps	with	auto	joins	and	determining	database	dialect	etc.

Method	Chaining

SqlQuery	Object

374

It	is	a	bit	verbose	and	not	so	readable	to	start	every	line		query.	.	Almost	all	SqlQuery
methods	are	chainable,	and	returns	the	query	itself	as	result.

We	may	rewrite	the	query	like	this:

void	Main()

{

				var	query	=	new	SqlQuery()

								.From("People")

								.Select("Firstname")

								.Select("Surname")

								.OrderBy("Age");

				Console.WriteLine(query.ToString());

}

This	feature	is	similar	to	jQuery	and	LINQ	enumerable	method	chaining.

We	could	even	get	rid	of	the	query	variable:

void	Main()

{

				Console.WriteLine(

								new	SqlQuery()

												.From("People")

												.Select("Firstname")

												.Select("Surname")

												.OrderBy("Age")

												.ToString());

}

It	is	strongly	recommended	to	put	every	method	on	its	own	line,	and	indent	properly	for
readability	and	consistency	reasons.

Select	Method

public	SqlQuery	Select(string	expression)

In	the	samples	we	had	so	far,	we	used	the	overload	of	the	Select	method	shown	above	(it
has	about	11	overloads).

Expression	parameter	can	be	a	simple	field	name	or	an	expression	like		"FirstName	+	'	'	+
LastName"	

SqlQuery	Object

375

Whenever	this	method	is	called,	the	expression	you	set	is	added	to	the	SELECT	statement
of	resulting	query	with	a	comma	between.

There	is	also	a	SelectMany	method	to	select	multiple	fields	in	one	call:

public	SqlQuery	SelectMany(params	string[]	expressions)

For	example:

void	Main()

{

				var	query	=	new	SqlQuery()

								.From("People")

								.SelectMany("Firstname",	"Surname",	"Age",	"Gender")

								.ToString();

				Console.WriteLine(query.ToString());

}

SELECT	

Firstname,

Surname,

Age,

Gender	

FROM	People

I'd	personally	prefer	calling	Select	method	multiple	times.

You	might	be	wondering,	why	multiple	selection	is	not	just	another	Select	overload.	It's
because	Select	has	a	more	commonly	used	overload	to	select	a	column	with	alias:

public	SqlQuery	Select(string	expression,	string	alias)

void	Main()

{

				var	query	=	new	SqlQuery()

								.Select("(Firstname	+	'	'	+	Surname)",	"Fullname")

								.From("People")

								.ToString();

				Console.WriteLine(query.ToString());

}

SqlQuery	Object

376

SELECT	

(Firstname	+	'	'	+	Surname)	AS	[Fullname]	

FROM	People

From	Method

public	SqlQuery	From(string	table)

SqlQuery.From	method	should	be	called	at	least	once	(and	usually	once).

..and	it	is	recommended	to	be	called	first.

When	you	call	it	a	second	time,	table	name	will	be	added	to	FROM	statement	with	a	comma
between.	Thus,	it	will	be	a	CROSS	JOIN:

void	Main()

{

				var	query	=	new	SqlQuery()

								.From("People")

								.From("City")

								.From("Country")

								.Select("Firstname")

								.Select("Surname")

								.OrderBy("Age");

				Console.WriteLine(query.ToString());

}

SELECT	

Firstname,

Surname	

FROM	People,	City,	Country	

ORDER	BY	Age

Using	Alias	Object	with	SqlQuery
It	is	common	to	use	table	aliases	when	number	of	referenced	tables	increase	and	our
queries	become	longer:

SqlQuery	Object

377

void	Main()

{

				var	query	=	new	SqlQuery()

								.From("Person	p")

								.From("City	c")

								.From("Country	o")

								.Select("p.Firstname")

								.Select("p.Surname")

								.Select("c.Name",	"CityName")

								.Select("o.Name",	"CountryName")

								.OrderBy("p.Age")

								.ToString();

				Console.WriteLine(query.ToString());

}

SELECT	

p.Firstname,

p.Surname,

c.Name	AS	[CityName],

o.Name	AS	[CountryName]	

FROM	Person	p,	City	c,	Country	o	

ORDER	BY	p.Age

Although	it	works	like	this,	it	is	better	to	define		p	,		c	,	and		o		as	Alias	objects.

var	p	=	new	Alias("Person",	"p");

Alias	object	is	like	a	short	name	assigned	to	a	table.	It	has	an	indexer	and	operator
overloads	to	generate	SQL	member	access	expressions	like		p.Surname	.

void	Main()

{

				var	p	=	new	Alias("Person",	"p");

				Console.WriteLine(p	+	"Surname");	//	+	operator	overload

				Console.WriteLine(p["Firstname"]);	//	through	indexer

}

p.Surname

p.Firstname

Unfortunately	C#	member	access	operator	(.)	can't	be	overridden,	so	we	had	to	use	(+).
A	workaround	could	be	possible	with	dynamic,	but	it	would	perform	poorly.

Let's	modify	our	query	making	use	of	Alias	objects:

SqlQuery	Object

378

void	Main()

{

				var	p	=	new	Alias("Person",	"p");

				var	c	=	new	Alias("City",	"c");

				var	o	=	new	Alias("Country",	"o");

				var	query	=	new	SqlQuery()

								.From(p)

								.From(c)

								.From(o)

								.Select(p	+	"Firstname")

								.Select(p	+	"Surname")

								.Select(c	+	"Name",	"CityName")

								.Select(o	+	"Name",	"CountryName")

								.OrderBy(p	+	"Age")

								.ToString();

				Console.WriteLine(query.ToString());

}

SELECT	

p.Firstname,

p.Surname,

c.Name	AS	[CityName],

o.Name	AS	[CountryName]	

FROM	Person	p,	City	c,	Country	o	

ORDER	BY	p.Age

As	seen	above,	result	is	the	same,	but	the	code	we	wrote	is	a	bit	longer.	So	what	is	the
advantage	of	using	an	alias?

If	we	had	a	list	of	constants	with	field	names…

SqlQuery	Object

379

void	Main()

{

				const	string	Firstname	=	"Firstname";

				const	string	Surname	=	"Surname";

				const	string	Name	=	"Name";

				const	string	Age	=	"Age";

				var	p	=	new	Alias("Person",	"p");

				var	c	=	new	Alias("City",	"c");

				var	o	=	new	Alias("Country",	"o");

				var	query	=	new	SqlQuery()

								.From(p)

								.From(c)

								.From(o)

								.Select(p	+	Firstname)

								.Select(p	+	Surname)

								.Select(c	+	Name,	"CityName")

								.Select(o	+	Name,	"CountryName")

								.OrderBy(p	+	Age)

								.ToString();

				Console.WriteLine(query.ToString());

}

…we	would	take	advantage	of	intellisense	feature	and	have	some	more	compile	time
checks.

Obviously,	it	is	not	logical	and	easy	to	define	field	names	for	every	query.	This	should	be	in	a
central	location,	or	our	entity	declarations.

Let's	create	a	poor	mans	simple	ORM	using	Alias:

SqlQuery	Object

380

public	class	PeopleAlias	:	Alias

{

				public	PeopleAlias(string	alias)	

								:	base("People",	alias)	{	}

				public	string	ID	{	get	{	return	this["ID"];	}	}

				public	string	Firstname	{	get	{	return	this["Firstname"];	}	}

				public	string	Surname	{	get	{	return	this["Surname"];	}	}

				public	string	Age	{	get	{	return	this["Age"];	}	}

}

public	class	CityAlias	:	Alias

{

		public	CityAlias(string	alias)

						:	base("City",	alias)	{	}

		public	string	ID	{	get	{	return	this["ID"];	}	}

		public	string	CountryID	{	get	{	return	this["CountryID"];	}	}

		public	new	string	Name	{	get	{	return	this["Name"];	}	}

}

public	class	CountryAlias	:	Alias

{

		public	CountryAlias(string	alias)

						:	base("Country",	alias)	{	}

		public	string	ID	{	get	{	return	this["ID"];	}	}

		public	new	string	Name	{	get	{	return	this["Name"];	}	}

}

void	Main()

{

				var	p	=	new	PeopleAlias("p");

				var	c	=	new	CityAlias("c");

				var	o	=	new	CountryAlias("o");

				var	query	=	new	SqlQuery()

								.From(p)

								.From(c)

								.From(o)

								.Select(p.Firstname)

								.Select(p.Surname)

								.Select(c.Name,	"CityName")

								.Select(o.Name,	"CountryName")

								.OrderBy(p.Age)

								.ToString();

				Console.WriteLine(query.ToString());

}

Now	we	have	a	set	of	table	alias	classes	with	field	names	and	they	can	be	reused	in	all
queries.

SqlQuery	Object

381

This	is	just	a	sample	to	explain	aliases.	I	don't	recommend	writing	such	classes.	Entities
offers	much	more.

In	sample	above,	we	used	SqlQuery.From	overload	that	takes	an	Alias	parameter:

public	SqlQuery	From(Alias	alias)

When	this	method	is	called,	table	name	and	its	aliased	name	is	added	to	FROM	statement
of	query.

OrderBy	Method

public	SqlQuery	OrderBy(string	expression,	bool	desc	=	false)

OrderBy	can	also	be	called	with	a	field	name	or	expression	like	Select.

If	you	assign	desc	optional	argument	as	true,		DESC		keyword	is	appended	to	the	field	name
or	expression.

By	default,	OrderBy	appends	specified	expressions	to	end	of	the	ORDER	BY	statement.
Sometimes,	you	might	want	to	insert	an	expression/field	to	start.

For	example,	you	might	have	a	query	with	some	predefined	order,	but	if	user	orders	by	a
column	in	a	grid,	name	of	the	column	should	be	inserted	at	index	0.

public	SqlQuery	OrderByFirst(string	expression,	bool	desc	=	false)

void	Main()

{

				var	query	=	new	SqlQuery()

								.Select("Firstname")

								.Select("Surname")

								.From("Person")

								.OrderBy("PersonID");

				query.OrderByFirst("Age");

				Console.WriteLine(query.ToString());

}

SqlQuery	Object

382

SELECT	

Firstname,

Surname	

FROM	Person	

ORDER	BY	Age,	PersonID

Distinct	Method

public	SqlQuery	Distinct(bool	distinct)

Use	this	method	to	prepend	a	DISTINCT	keyword	before	SELECT	statement.

void	Main()

{

				var	query	=	new	SqlQuery()

								.Select("Firstname")

								.Select("Surname")

								.From("Person")

								.OrderBy("PersonID")

								.Distinct(true);

				Console.WriteLine(query.ToString());

}

SELECT	DISTINCT	

Firstname,

Surname	

FROM	Person	

ORDER	BY	PersonID

GroupBy	Method

public	SqlQuery	GroupBy(string	expression)

GroupBy	works	similar	to	OrderBy	but	it	doesn't	have	a	GroupByFirst	variant.

SqlQuery	Object

383

SELECT	

Firstname,

Lastname,

Count(*)	

FROM	Person	

GROUP	BY	Firstname,	LastName

SELECT	

Firstname,

Lastname,

Count(*)	

FROM	Person	

GROUP	BY	Firstname,	LastName

Having	Method

public	SqlQuery	Having(string	expression)

Having	can	be	used	with	GroupBy	(though	it	doesn't	check	for	GroupBy)	and	appends
expression	to	the	end	of	HAVING	statement.

void	Main()

{

				var	query	=	new	SqlQuery()

								.From("Person")

								.Select("Firstname")

								.Select("Lastname")

								.Select("Count(*)")

								.GroupBy("Firstname")

								.GroupBy("LastName")

								.Having("Count(*)	>	5");

				Console.WriteLine(query.ToString());

}

SELECT	

Firstname,

Lastname,

Count(*)	

FROM	Person	

GROUP	BY	Firstname,	LastName	

HAVING	Count(*)	>	5

SqlQuery	Object

384

Paging	Operations	(SKIP	/	TAKE	/	TOP	/	LIMIT)

public	SqlQuery	Skip(int	skipRows)

public	SqlQuery	Take(int	rowCount)

SqlQuery	has	paging	methods	similar	to	LINQ	Take	and	Skip.

These	are	mapped	to	SQL	keywords	depending	on	database	type.

As	SqlServer	versions	before	2012	doesn't	have	a	SKIP	equivalent,	to	use	SKIP	your
query	should	have	at	least	one	ORDER	BY	statement	as	ROW_NUMBER()	will	be
used.	This	is	not	required	if	you	are	using	SqlServer	2012+	dialect.

void	Main()

{

				var	query	=	new	SqlQuery()

								.From("Person")

								.Select("Firstname")

								.Select("Lastname")

								.Select("Count(*)")

								.OrderBy("PersonId")

								.Skip(100)

								.Take(50);

				Console.WriteLine(query.ToString());

}

SELECT	

Firstname,

Lastname,

Count(*)	

FROM	Person	

ORDER	BY	PersonId	OFFSET	100	ROWS	FETCH	NEXT	50	ROWS	ONLY

In	this	sample	we	are	using	the	default	SQLServer2012	dialect.

Database	Dialect	Support
In	our	paging	sample,	SqlQuery	used	a	syntax	that	is	compatible	with	Sql	Server	2012.

With	Dialect	method,	we	can	change	the	server	type	that	SqlQuery	targets:

SqlQuery	Object

385

public	SqlQuery	Dialect(ISqlDialect	dialect)

As	of	writing,	these	are	the	list	of	dialect	types	supported:

FirebirdDialect

PostgresDialect

SqliteDialect

SqlServer2000Dialect

SqlServer2005Dialect

SqlServer2012Dialect

If	we	wanted	to	target	our	query	to	Sql	Server	2005:

void	Main()

{

				var	query	=	new	SqlQuery()

								.Dialect(SqlServer2005Dialect.Instance)

								.From("Person")

								.Select("Firstname")

								.Select("Lastname")

								.Select("Count(*)")

								.OrderBy("PersonId")

								.Skip(100)

								.Take(50);

				Console.WriteLine(query.ToString());

}

SELECT	*	FROM	(

SELECT	TOP	150	

Firstname,

Lastname,

Count(*),	ROW_NUMBER()	OVER	(ORDER	BY	PersonId)	AS	__num__	

FROM	Person)	__results__	WHERE	__num__	>	100

With	SqliteDialect.Instance,	output	would	be:

SELECT	

Firstname,

Lastname,

Count(*)	

FROM	Person	

ORDER	BY	PersonId	LIMIT	50	OFFSET	100

SqlQuery	Object

386

If	you	are	using	only	one	type	of	database	server	with	your	application,	you	may	avoid
having	to	choose	a	dialect	every	time	you	start	a	query	by	setting	the	default	dialect:

SqlSettings.DefaultDialect	=	SqliteDialect.Instance;

Write	code	above	in	your	application	start	method,	e.g.	global.asax.cs.

SqlQuery	Object

387

Criteria	Objects
When	you	are	creating	dynamic	SQL	for	SELECT,	UPDATE	or	DELETE,	you	might	have	to
write	complex	WHERE	statements.

Building	these	statements	using	string	concentanation	is	possible	but	it	is	tedious	to	avoid
syntax	errors	and	opens	your	code	to	SQL	injection	attacks.

Using	parameters	might	solve	SQL	injection	problems	but	it	involves	too	much	manual	work
to	add	parameters.

Luckily,	Serenity	has	a	criteria	system	that	helps	you	build	parameterized	queries	with	a
syntax	similar	LINQ	expression	trees.

Serenity	criterias	are	implemented	by	utilitizing	operator	overloading	features	of	C#,	unlike
LINQ	which	uses	expression	trees.

Let's	write	a	basic	SQL	where	statement	as	string	first:

new	SqlQuery()

				.From("MyTable")

				.Select("Name")

				.Where("Month	>	5	AND	Year	<	2015	AND	Name	LIKE	N'%a%'")

and	same	statement	using	criteria	objects:

new	SqlQuery()

				.From("MyTable")

				.Select("Name")

				.Where(

								new	Criteria("Month")	>	5	&

								new	Criteria("Year")	<	4	&

								new	Criteria("Name").Contains("a")

It	looks	a	bit	longer,	but	it	uses	parameters

SELECT	

				Name

FROM

				MyTable

WHERE

				Month	>	@p1	AND

				Year	<	@p2	AND

				Name	LIKE	N'%a%'

Criteria	Objects

388

and	you	could	write	it	with	intellisense	if	you	had	an	entity:

var	m	=	MyTableRow.Fields;

new	SqlQuery()

				.From(m)

				.Select(m.Name)

				.Where(

								m.Month	>	5	&

								m.Year	<	4	&

								m.Name.Contains("a")

Here	we	didn't	have	to	use	new	Criteria()	because	field	objects	also	has	operator
overloads	that	builds	criteria.

BaseCriteria	Object
BaseCriteria	is	the	base	class	for	all	types	of	criteria	objects.

It	has	overloads	for	several	C#	operators,	including		>	,		<	,		&	,		|		that	can	be	used	to
build	complex	criteria	using	C#	expressions.

BaseCriteria	doesn't	have	a	constructor	of	itself	so	you	need	to	create	one	of	the	objects	that
derive	from	it.	Criteria	is	the	most	common	one	that	you	might	use.

Criteria	Object
Criteria	is	a	simple	object	that	contains	an	SQL	expression	as	a	string,	which	is	usually	a
field	name.

new	Criteria("MyField")

It	can	also	contain	an	SQL	expression	(though	not	recommended	this	way)

new	Criteria("a	+	b")

This	parameter	is	not	syntax	checked,	so	it	is	possible	to	build	a	criteria	with	invalid
expression:

new	Criteria("Some	invalid	expression()///''^')

Criteria	Objects

389

AND	(&)	Operator
It	is	possible	to	AND	two	criteria	objects	with	C#		&		operator:

new	Criteria("Field1	>	5")	&

new	Criteria("Field2	<	4")

`

Please	notice	that	we	are	not	using	shortcircuit	&&	operator	here.

This	creates	a	new	criteria	object	(BinaryCriteria)	with	operator	(AND)	and	reference	to
these	two	criterias.	It	doesn't	modify	original	criteria	objects.

BinaryCriteria	is	similar	to	BinaryExpression	in	expression	trees

It's	SQL	output	would	be:

Field1	>	5	AND	Field2	<	4

It	is	also	possible	to	use	C#	&=	operator:

BaseCriteria	c	=	new	Criteria("Field1	>	5)";

c	&=	new	Criteria("Field2	<	4")

BaseCriteria	is	the	base	class	for	all	criteria	object	types.	If	we	used	Criteria	c	=	...	in
the	first	line,	we	would	have	a	compile	time	error	on	second	line	as	&	operator	returns	a
BinaryCriteria	object,	which	is	not	assignable	to	a	Criteria	object.

OR	(|)	Operator
This	is	similar	to	AND	operator,	though	it	uses	OR.

new	Criteria("Field1	>	5")	|

new	Criteria("Field2	<	4")

`

Field1	>	5	OR	Field2	<	4

Parenthesis	Operator	(~)

Criteria	Objects

390

When	you	are	using	several	AND/OR	statements,	you	might	want	to	put	paranthesis.

new	Criteria("Field1	>	5")	&

(new	Criteria("Field2	>	7")	|	new	Criteria("Field2	<	3"))

But	this	won't	work	with	criteria	objects,	as	output	of	above	criteria	would	be:

Field1	>	5	AND	Field2	>	7	OR	Field2	<	3

Information	here	applies	to	Serenity	versions	before	1.9.8.	After	this	version	Serenity
puts	paranthesis	around	all	binary	criteria	(AND	OR	etc)	even	if	you	don't	use
paranthesis.

So	only	use	~	if	you	want	to	put	an	explicit	parenthesis	somewhere.

What	happened	to	our	paranthesis?	Let's	try	putting	more	paranthesis.

new	Criteria("Field1	>	5")	&

((((new	Criteria("Field2	>	7")	|	new	Criteria("Field2	<	3")))))

Still:

Field1	>	5	AND	Field2	>	7	OR	Field2	<	3

C#	doesn't	provide	a	way	to	overload	paranthesis,	it	just	uses	them	to	determine	calculation
order,	so	Serenity	criteria	has	no	idea	if	you	used	them	with	paranthesis	or	not.

We	have	to	use	a	special	operator,		~		(which	is	actually	two's	complement	in	C#):

new	Criteria("Field1	>	5")	&

~(new	Criteria("Field2	>	7")	|	new	Criteria("Field2	<	3"))

Now	SQL	looks	like	we	hoped	before:

Field1	>	5	AND	(Field2	>	7	OR	Field2	<	3)

As	Serenity	1.9.8+	auto	paranthesis	binary	criteria,	above	expression	would	actually	be:

(Field1	>	5)	AND	(((Field2	>	7)	OR	(Field2	<	3)))

Criteria	Objects

391

Comparison	Operators	(>,	>=,	<,	<=,	==,	!=)
The	most	of	C#	comparison	operators	are	overloaded,	so	you	can	use	them	as	is	with
criteria.

new	Criteria("Field1")	==	new	Criteria("1")	&

new	Criteria("Field2")	!=	new	Criteria("2")	&

new	Criteria("Field3")	>	new	Criteria("3")	&

new	Criteria("Field4")	>=	new	Criteria("4")	&

new	Criteria("Field5")	<	new	Criteria("5")	&

new	Criteria("Field6")	<=	new	Criteria("6")

Field1	==	1	AND

Field2	<>	2	AND

Field3	>	3	AND

Field4	>=	4	AND

Field5	<	5	AND

Field6	<=	6

Inline	Values
When	one	side	of	a	comparison	operator	is	a	criteria	and	other	side	is	an	integer,	string,
date,	guid	etc.	value,	it	is	converted	a	parameter	criteria.

new	Criteria("Field1")	==	1	&

new	Criteria("Field2")	!=	"ABC"	&

new	Criteria("Field3")	>	DateTime.Now	&

new	Criteria("Field4")	>=	Guid.NewGuid()	&

new	Criteria("Field5")	<	5L

Field1	==	@p1	AND

Field2	<>	@p2	AND

Field3	>	@p3	AND

Field4	>=	@p4	AND

Field5	<	@p5

These	parameters	has	corresponding	values,	when	a	query	containing	this	criteria	is	sent	to
SQL.

Automatic	parameter	numbering	starts	from	1	by	default,	but	last	number	is	stored	in	the
query	the	criteria	is	used	with,	so	numbers	might	change.

Let's	use	this	criteria	in	a	query:

Criteria	Objects

392

new	SqlQuery()

				.From("MyTable")

				.Select("Field999")

				.Where(new	Criteria("FirstOne")	>=	999)

				.Where(new	Criteria("SecondOne")	>=	999)

				.Where(

								new	Criteria("Field1")	==	1	&

								new	Criteria("Field2")	!=	"ABC"	&

								new	Criteria("Field3")	>	DateTime.Now	&

								new	Criteria("Field4")	>=	Guid.NewGuid()	&

								new	Criteria("Field5")	<	5L

)

SELECT	

		Field999

FROM

		MyTable

WHERE

		FirstOne	>=	@p1	AND	--	@p1	=	999

		SecondOne	>=	@p2	AND	--	@p2	=	999

		Field1	==	@p3	AND	--	@p3	=	1

		Field2	<>	@p4	AND	--	@p4	=	N'ABC'

		Field3	>	@p5	AND	--	@p5	=	'2016-01-31T01:16:23'

		Field4	>=	@p6	AND	--	@p6	=	'23123-DEFCD-....'

		Field5	<	@p7	--	@p7	=	5

Here	the	same	criteria	that	listed	before,	used	parameter	numbers	starting	from	3,	instead	of
1.	Because	prior	2	numbers	where	used	for	other	WHERE	statements	coming	before	it.

So	parameter	numbering	uses	the	query	as	context.	You	shouldn't	make	assumptions	about
what	parameter	name	will	be.

ParamCriteria	and	Explicit	Param	Names
If	you	want	to	use	some	explicitly	named	parameter,	you	can	make	use	of	ParamCriteria:

new	SqlQuery()

				.From("SomeTable")

				.Select("SomeField")

				.Where(new	Criteria("SomeField")	<=	new	ParamCriteria("@myparam"))

				.Where(new	Criteria("SomeOtherField")	==	new	ParamCriteria("@myparam"))

				.SetParam("@myparam",	5);

Here	we	set	param	value	using	SetParam	extension	of	SqlQuery.

Criteria	Objects

393

We	could	also	declare	this	param	beforehand	and	reuse	it:

var	myParam	=	new	ParamCriteria("@myparam");

new	SqlQuery()

				.From("SomeTable")

				.Select("SomeField")

				.Where(new	Criteria("SomeField")	<=	myParam)

				.Where(new	Criteria("SomeOtherField")	==	myParam)

				.SetParam(myParam.Name,	5);

ConstantCriteria
If	you	don't	want	to	use	parameterized	queries,	you	may	put	your	values	as	ConstantCriteria
objects.	They	will	not	be	converted	to	auto	parameters.

new	SqlQuery()

				.From("MyTable")

				.Select("MyField")

				.Where(

								new	Criteria("Field1")	==	new	ConstantCriteria(1)	&

								new	Criteria("Field2")	!=	new	ConstantCriteria("ABC")

)

SELECT	

		MyField

FROM

		MyTable

WHERE

		FirstOne	>=	1

		SecondOne	>=	N'ABC'

Null	Comparison
In	SQL,	comparing	against	NULL	values	using	operators	like		==	,		!=		returns	NULL.	You
should	use	IS	NULL	or	IS	NOT	NULL	for	such	comparisons.

Criteria	objects	don't	overload	comparisons	against	null	(or	object),	so	you	may	get	errors	if
you	try	to	write	expressions	like	below:

Criteria	Objects

394

new	Criteria("a")	==	null;	//	what	is	type	of	null?

int	b?	=	null;

new	Criteria("c")	==	b;	//	no	overload	for	nullable	types

These	could	be	written	using	IsNull	and	Nullable.Value	methods:

new	Criteria("a").IsNull();

new	Criteria("a").IsNotNull();

int?	b	=	5;

new	Criteria("c")	==	b.Value;

If	you	are	desperate	to	write	Field	=	NULL,	you	could	do	this:

new	Criteria("Field")	==	new	Criteria("NULL")

LIKE	Operators
Criteria	has	methods	Like,	NotLike,	StartsWith,	EndsWith,	Contains,	NotContains	to	help
with	LIKE	operations.

new	Criteria("a").Like("__C%")	&

new	Criteria("b").NotLike("D%")	&

new	Criteria("c").StartsWith("S")	&

new	Criteria("d").EndsWith("X")	&

new	Criteria("e").Contains("This")	&

new	Criteria("f").NotContains("That")

a	LIKE	@p1	AND	--	@p1	=	N'__C%'

b	NOT	LIKE	@p2	AND	--	@p2	=	N'D%'

c	LIKE	@p3	AND	--	@p3	=	'S%'

d	LIKE	@p4	AND	--	@p4	=	N'%X'

e	LIKE	@p5	AND	--	@p5	=	N'%This%'

f	NOT	LIKE	@p6	--	@p6	=	N'%That%'

IN	and	NOT	IN	Operators
Use	an	inline	array	to	use	IN	or	NOT	IN:

new	Criteria("A").In(1,	2,	3,	4,	5)

Criteria	Objects

395

A	IN	(@p1,	@p2,	@p3,	@p4,	@p5)	

--	@p1	=	1,	@p2	=	2,	@p3	=	3,	@p4	=	4,	@p5	=	5

new	Criteria("A").NotIn(1,	2,	3,	4,	5)

A	NOT	IN	(@p1,	@p2,	@p3,	@p4,	@p5)

--	@p1	=	1,	@p2	=	2,	@p3	=	3,	@p4	=	4,	@p5	=	5

You	may	also	pass	any	enumerable	to	IN	method:

IEnumerable<int>	x	=	new	int[]	{	1,	3,	5,	7,	9	};

new	Criteria("A").In(x);

A	IN	(1,	3,	5,	7,	9)

--	@p1	=	1,	@p2	=	3,	@p3	=	5,	@p4	=	7,	@p5	=	9

It	is	also	possible	to	use	a	subquery:

var	query	=	new	SqlQuery()

				.From("MyTable")

				.Select("MyField");

query.Where("SomeID").In(

				query.SubQuery()

								.From("SomeTable")

								.Select("SomeID")

								.Where(new	Criteria("Balance")	<	0));

SELECT	

		MyField

FROM

		MyTable

WHERE

		SomeID	IN	(

				SELECT	

								SomeID	

				FROM

								SomeTable

				WHERE

								Balance	<	@p1	--	@p1	=	0

)

Criteria	Objects

396

NOT	Operator
Use	C#	!	(not)	operator	to	use	NOT:

!(new	Criteria("a")	>=	5)

NOT	(a	>=	@p1)	--	@p1	=	5

Usage	with	Field	Objects
We	have	used	Criteria	object	constructor	so	far	to	build	criteria.	Field	objects	also	has	similar
overloads,	so	they	can	be	used	in	place	of	them.

For	example,	using	Order,	Detail	and	Customer	rows	from	Northwind	sample:

				var	o	=	OrderRow.Fields.As("o");

				var	od	=	OrderDetailRow.Fields.As("od");

				var	c	=	CustomerRow.Fields.As("c");

				var	query	=	new	SqlQuery()

								.From(o)

								.Select(o.CustomerID);

				query.Where(

								o.CustomerCountry	==	"France"	&

								o.ShippingState	==	1	&

								o.CustomerID.In(

												query.SubQuery()

																.From(c)

																.Select(c.CustomerID)

																.Where(c.Region	==	"North"))	&

								new	Criteria(

												query.SubQuery()

																.From(od)

																.Select(Sql.Sum(od.LineTotal.Expression))

																.Where(od.OrderID	==	o.OrderID))	>=	1000);

Its	output	would	be:

Criteria	Objects

397

SELECT	

				o.CustomerID	AS	[CustomerID]	

FROM	

				Orders	o	

LEFT	JOIN	

				Customers	o_c	ON	(o_c.CustomerID	=	o.CustomerID)	

WHERE	

				o_c.[Country]	=	@p2

				AND	(CASE	WHEN	

								o.[ShippedDate]	IS	NULL	THEN	0

					ELSE	1	

					END)	=	@p3	

				AND	o.CustomerID	IN	(

								SELECT	

												c.CustomerID	AS	[CustomerID]	

								FROM	

												Customers	c	

								WHERE	

												c.Region	=	@p1)	

				AND	(SELECT	

								SUM((od.[UnitPrice]	*	od.[Quantity]	-	od.[Discount]))	

					FROM

								[Order	Details]	od	

					WHERE	

								od.OrderID	=	o.OrderID)	>=	@p4

Criteria	Objects

398

Connections	and	Transactions
Serenity	uses	simple	ADO.NET	data	access	objects,	like	SqlConnection,	DbCommand	etc.

It	provides	some	basic	helpers	to	create	a	connection,	add	parameters,	execute	queries	etc.

SqlConnections	Class
[namespace:	Serenity.Data,	assembly:	Serenity.Data]

This	class	contains	static	functions	to	create	a	connection,	and	control	it	in	a	database
agnostic	way.

SqlConnections.NewByKey	method

public	static	IDbConnection	NewByKey(string	connectionKey)

Use	this	method	to	get	a	new	IDbConnection	for	a	connection	string	defined	in	application
configuration	file	(e.g.	app.config	or	web.config).

using	(var	connection	=	SqlConnections.NewByKey("Default"))	

{

				//	...

}

Try	to	always	wrap	connections	in	a	using	block...

This	reads	connection	string	with	"Default"	key	from	web.config,	and	creates	a	new
connection	using	ProviderName	information	that	is	also	specified	in	connection	setting.	For
example,	if	ProviderName	is	"System.Data.SqlClient"	this	creates	a	new	SqlConnection
object.

You	usually	don't	have	to	open	connections	explicitly	as	they	are	automatically	opened
when	needed	(as	long	as	you	use	Serenity	extensions).

SqlConnections.NewFor<	TClass	>	method

If	you	don't	want	to	memorize	connection	string	keys,	but	instead	reuse	information	on	a	row
(in	form	of	a	ConnectionKey	attribute),	you	may	prefer	this	variant.

Connections	and	Transactions

399

Looking	on	top	of	a	Row	class,	you	may	spot	ConnectionKey	attribute	generated	by	Sergen:

[ConnectionKey("Northwind")]

public	sealed	class	CustomerRow	:	Row,	IIdRow,	INameRow

{

}

When	you	are	going	to	query	for	customers,	instead	of	hardcoding	"Northwind",	you	may
reuse	this	information	from	a	CustomerRow:

using	(var	connection	=	SqlConnections.NewFor<CustomerRow>())	

{

				return	connection.List<CustomerRow>();

}

This	corresponds	to	SqlConnections.NewByKey("Northwind").

Here	we	didn't	have	to	open	the	connection,	as	List	extension	method	opens	it
automatically.

The	class	used	with	this	method	doesn't	have	to	be	a	Row,	any	class	with	a	ConnectionKey
attribute	would	work,	even	though	it	would	be	a	row	most	of	the	time.

SqlConnections.New	method

public	static	IDbConnection	New(string	connectionString,	string	providerName)

You	may	sometimes	want	to	create	a	connection	that	doesn't	exist	in	your	configuration	file.

using	(var	connection	=	SqlConnections.New(

				"Data	Source=(localdb)\v11.0;	Initial	Catalog=Northwind;	

					Integrated	Security=true",	"System.Data.SqlClient"))	

{

				//	...

}

Here	we	have	to	specify	connection	string	and	the	provider	name	like
"System.Data.SqlClient".

You	might	be	asking	yourself	"why	this	method	instead	of	simply	typing	new	SqlClient()?",
see	next	topic	for	advantages	of	these.

WrappedConnection

Connections	and	Transactions

400

All	methods	we	saw	so	far	returns	an	IDbConnection	object.	You'd	expect	it	to	be	a
SqlConnection,	FirebirdConnection	etc,	but	thats	not	exactly	true.

The	IDbConnection	object	you	receive	is	a	Serenity	specific	WrappedConnection	object	that
actually	contains	an	underlying	SqlConnection	or	FirebirdConnection	etc.

This	helps	Serenity	provide	some	features	like	auto	open,	dialect	support,	default
transactions,	unit	of	work	pattern,	overriding	connections	for	testability	etc.

You	may	not	notice	these	details	while	working	with	returned	IDbConnection	instances,
they'll	act	just	like	the	underlying	connections,	but	you	should	prefer	SqlConnections
methods	to	create	connections,	otherwise	you	might	lose	some	of	these	listed	features.

UnitOfWork	and	IUnitOfWork

UnitOfWork	is	a	simple	object	that	just	contains	a	transaction	reference.	It	has	two	extra
events	that	we	can	attach	to	OnCommit	and	OnRollback.

Let's	say	we	are	creating	tasks,	and	some	e-mails	should	be	sent	in	case	these	tasks	are
saved	to	database	succesfully.

If	we	hurry	and	send	these	e-mails	before	transaction	is	committed,	we	might	end	up	with	e-
mails	that	are	sent	for	non-existent	tasks	in	case	transaction	fails.	So	we	should	only	send	e-
mail	if	transaction	is	committed	successfully,	e.g.	in	OnCommit	event.

You	might	say	then	Commit	transaction	first	and	send	e-mails	right	after,	but	what	if	our
Create	Task	service	call	is	just	a	step	of	a	larger	operation,	so	we	are	not	controlling	the
transaction	and	it	should	be	committed	after	all	steps	are	success.

Another	scenario	is	about	uploading	files.	This	time	we	are	updating	some	File	entity,	and
let's	say	we	replace	an	old	file	with	uploaded	new	file.	If	we	again	hurry	and	delete	old	file
before	transaction	outcome	is	clear,	and	transaction	fails	eventually,	we'll	end	up	with	a	file
entity	without	an	actual	old	file	in	disk.	So,	we	should	actually	delete	file	and	replace	it	with
the	new	file	in	OnCommit	event,	and	remove	uploaded	file	in	OnRollback	event.

Connections	and	Transactions

401

void	SomeBatchOperation()	

{

				using	(var	connection	=	SqlConnections.NewByKey("Default"))	

				using	(var	uow	=	new	UnitOfWork(connection))

				{

								//	here	we	are	in	a	transaction	context

								//	create	several	tasks	in	transaction

								CreateATask(new	TaskRow	{	...	});

								CreateATask(new	TaskRow	{	...	});

								//...

								//	commit	the	transaction

								//	if	any	exception	occurs	here	or	at	prior

								//	lines	transaction	will	rollback

								//	and	no	e-mails	will	be	sent

								uow.Commit();

				}

}

void	CreateATask(IUnitOfWork	uow,	TaskRow	task)

{

				//	insert	task	using	connection	wrapped	inside	IUnitOfWork

				//	this	will	automatically	run	in	transaction	context

				uow.Connection.Insert(task);

				uow.OnCommit	+=	()	=>	{

							//	send	e-mail	for	this	task	now,	this	method	will	only

							//	be	called	if	transaction	commits	successfully

				};

				uow.OnRollback	+=	()	=>	{

							//	optional,	do	something	else	if	it	fails

				};							

}

Connections	and	Transactions

402

Working	With	Other	Database	Types
Serenity	has	a	dialect	system	for	working	with	database	types	other	than	Sql	Server.

If	you	need	to	support	multiple	database	types,	just	by	changing	connection	strings	in
web.config,	you	should	be	careful	about	not	using	database	specific	functions	in	expressions
and	avoid	using	reserved	words.

Warning	About	CONCAT	and	Other	Similar	Expressions	In
Rows

Serene	has	to	support	a	variety	of	database	engines,	including	MySQL,	Postgress	etc.
These	databases	don't	have	a	string	plus	(+)	operator	like	MsSqlServer.	Thus,	in	Northwind,
CONCAT	function	is	used	in	place	of	'+'	operator:

[Expression("CONCAT(T0.[FirstName],	CONCAT('	',	T0.[LastName]))")]

public	String	FullName

{

get	{	return	Fields.FullName[this];	}

set	{	Fields.FullName[this]	=	value;	}

}

CONCAT	is	available	after	Sql	Server	2012.	So	if	you	are	going	to	use	an	older	version	of
SQL	server,	e.g.	2005	or	2008,	replace	these	expressions	with	such:

[Expression("T0.[FirstName]	+	'	'	+	T0.[LastName]")]

public	String	FullName

{

get	{	return	Fields.FullName[this];	}

set	{	Fields.FullName[this]	=	value;	}

}

Working	with	Other	Databases

403

Set	Database	Dialect	for	Connections
Serenity	auto	detects	dialect	for	a	connection	by	using	the	providerName	in	web.config.

Sometimes,	automatic	dialect	detection	using	providerName	may	not	work	you,	or	you	might
want	to	use	SqlServer2000	or	SqlServer2005	dialect	for	some	connections.

Even	though	it	is	possible	to	set	a	default	global	dialect,	this	doesn't	override	automatic
detection):

SqlSettings.DefaultDialect	=	SqlServer2005Dialect.Instance;

As	provider	name	for	"Northwind"	and	"Default"	connections	is	"System.Data.SqlClient",
Serenity	will	automatically	set	their	dialects	to	SqlServer2012,	even	if	you	override	global
dialect.

But	it	is	possible	to	change	dialect	on	connection	key	basis:

public	static	partial	class	SiteInitialization

				{

								public	static	void	ApplicationStart()

								{

												try

												{

																SqlConnections.GetConnectionString("Default").Dialect	=

																				SqlServer2005Dialect.Instance;

																SqlConnections.GetConnectionString("Northwind").Dialect	=

																				SqlServer2005Dialect.Instance;

It	is	also	possible	to	set	this	through	an	application	configuration	entry	(recommended):

<configuration>

		<appSettings>

				<add	key="ConnectionSettings"	value="{	

								Default:	{	

												Dialect:	'SqlServer2005'	

								},	

								Northwind:	{	

												Dialect:	'Postgres'	

								}

				"/>

Setting	Connection	Dialect

404

Setting	Connection	Dialect

405

Dialect	Based	Expressions

Sometimes	it	might	not	be	possible	to	use	a	common	expression.	For	example,	Sqlite	has
no	CONCAT	operator.

Serenity	2.8.1+	supports	dialect	based	expressions,	e.g.

[DisplayName("FullName"),	QuickSearch]

[Expression("CONCAT(T0.[FirstName],	CONCAT('	',	T0.[LastName]))")]

[Expression("(T0.FirstName	||	'	'	||	T0.LastName)",	Dialect	=	"Sqlite")]

public	String	FullName

{

				get	{	return	Fields.FullName[this];	}

				set	{	Fields.FullName[this]	=	value;	}

}

Here,	as	the	first	Expression	has	no	dialect,	it	will	be	used	for	any	database	type,	unless	the
connection	corresponding	to	this	row	has	dialect	of	Sqlite,	e.g.	it	is	a	System.Data.Sqlite
connection.

How	Dialect	for	Row	is	Determined

To	determine	dialect	type	for	a	row,	the	ConnectionKey	attribute	on	row	is	used	(if	any),
otherwise	the	default	dialect	(SqlSettings.DefaultDialect)	is	used.

Expression	for	a	field	is	determined	(fixed)	at	application	start,	so	it	is	not	possible	to	switch
expressions	by	switching	connections	or	dialects.

It	is	also	possible	to	specify	multiple	dialects:

[DisplayName("FullName"),	QuickSearch]

[Expression("CONCAT(T0.[FirstName],	CONCAT('	',	T0.[LastName]))")]

[Expression("T0.[FirstName]	+	'	'	+	T0.[LastName]",	

					Dialect	=	"SqlServer2000,SqlServer2005")]

[Expression("(T0.FirstName	||	'	'	||	T0.LastName)",	

					Dialect	=	"Sqlite,MySql,Postgres")]

public	String	FullName

{

				get	{	return	Fields.FullName[this];	}

				set	{	Fields.FullName[this]	=	value;	}

}

Dialect	Matching

Dialect	Based	Expressions

406

ISqlDialect	interface	has	a	ServerType	property.	It	is	Postgres	for	PostgresDialect,	SqlServer
for	SqlServer2012Dialect,	SqlServer2008Dialect	and	SqlServer2005Dialect.

For	an	expression	dialect	to	match	a	connection	dialect,	it	should	start	with	the	ServerType
and/or	the	class	name	of	the	connection	dialect	(e.g.	SqlServer2012Dialect).

If	multiple	dialect	types	match	a	targeted	expression,	the	one	with	the	longest	name
matches.

Let's	say	we	wrote	these	two	expressions:

[Expression("CONCAT(T0.[FirstName],	T0.[LastName])",	Dialect	=	"SqlServer")]

[Expression("T0.[FirstName]	+	T0.[LastName]",	Dialect	=	"SqlServer200")]

If	connection	dialect	is	SqlServer2008,	both	expressions	would	match,	but	as	SqlServer200
is	a	longer	match	than	SqlServer,	second	expression	will	be	used.

If	connection	dialect	is	SqlServer2012,	only	the	first	expression	would	match.

Dialect	Based	Expressions

407

PostgreSQL

Registering	Npgsql	Provider

PostgreSQL	has	a	.NET	provider	named	Npgsql.	You	need	to	first	install	it	in
MyProject.Web:

Install-Package	Npgsql	-Project	MyProject.Web

If	you	didn't	install	this	provider	in	GAC/machine.config	before,	or	don't	want	to	install	it
there,	you	need	to	register	it	in	web.config	file:

<configuration>

		//	...

		<system.data>

				<DbProviderFactories>

						<remove	invariant="Npgsql"/>

						<add	name="Npgsql	Data	Provider"	

											invariant="Npgsql"	

											description=".Net	Data	Provider	for	PostgreSQL"

											type="Npgsql.NpgsqlFactory,	Npgsql,	Culture=neutral,

																	PublicKeyToken=5d8b90d52f46fda7"	

											support="FF"	/>

				</DbProviderFactories>

		</system.data>

		//	...

Setting	Connection	Strings

Next	step	is	to	replace	connection	strings	for	databases	you	want	to	use	with	Postgres:

Make	sure	you	replace	connection	string	parameters	with	values	for	your	server

<connectionStrings>

				<add	name="Default"	connectionString="

												Server=127.0.0.1;Database=serene_default_v1;

												User	Id=postgres;Password=yourpassword;"		

								providerName="Npgsql"	/>

				<add	name="Northwind"	connectionString="

												Server=127.0.0.1;Database=serene_northwind_v1;

												User	Id=postgres;Password=yourpassword;"	

								providerName="Npgsql"	/>

</connectionStrings>

PostgreSQL

408

Setting	Connection	Strings	-	.Net	Core	appsettings.json

		"Data":	{

				"Default":	{

						"ConnectionString":	"Server=127.0.0.1;Database=serene_default_v1;User	Id=postgre

s;Password=yourpassword;",

						"ProviderName":	"Npgsql"

				},

				"Northwind":	{

						"ConnectionString":	"Server=127.0.0.1;Database=serene_northwind_v1;User	Id=postg

res;Password=yourpassword;",

						"ProviderName":	"Npgsql"

				}

		},

Please	use	lowercase	database	names	like		serene_default_v1		as	Postgres	will	always
convert	it	to	lowercase.

Provider	name	must	be		Npgsql		for	Serenity	to	auto-detect	dialect.

Notes	About	Identifier	Case	Sensitivy

PostgreSQL	is	case	sensitive	for	identifiers.

FluentMigrator	automatically	quotes	all	identifiers,	so	tables	and	column	names	in	database
will	be	quoted	and	case	sensitive.	This	might	cause	problems	when	tables/columns	are	tried
to	be	selected	without	quoted	identifiers.

One	option	is	to	always	use	lowercase	identifiers	in	migrations,	but	such	naming	scheme
won't	look	so	nice	for	other	database	types,	thus	we	didn't	prefer	this	way.

To	prevent	such	problems	with	Postgres,	Serenity	has	an	automatic	quoting	feature,	to
resolve	compability	with	Postgres/FluentMigrator,	which	should	be	enabled	in	application
start	method	of	SiteInitialization.cs:

public	static	void	ApplicationStart()

{

				try

				{

								SqlSettings.AutoQuotedIdentifiers	=	true;

								Serenity.Web.CommonInitialization.Run();

Make	sure	it	is	before	CommonInitialization.Run	line

This	setting	automatically	quotes	column	names	in	entities,	but	not	manually	written
expressions	(with	Expression	attribute	for	example).

PostgreSQL

409

Use	brackets		[]		for	identifiers	in	expressions	if	you	want	to	support	multiple	database
types.	Serenity	will	automatically	convert	brackets	to	database	specific	quote	type	before
running	queries.

You	might	also	prefer	to	use	double	quotes	in	expressions,	but	it	might	not	be	compatible
with	other	databases	like	MySQL.

Registering	PostgreSQL	DbProviderFactory

Open	the		Startup.cs		file	under	{SerenityProject}/Initialization/	and	uncomment	the	last	line,
as	shown	below.

public	static	void	RegisterDataProviders()

{

			//	DbProviderFactories.RegisterFactory("System.Data.SqlClient",

			//			SqlClientFactory.Instance);

			//	DbProviderFactories.RegisterFactory("Microsoft.Data.Sqlite",

			//			Microsoft.Data.Sqlite.SqliteFactory.Instance);

			//	to	enable	FIREBIRD:	add	FirebirdSql.Data.FirebirdClient	reference,	set	connectio

ns,	and	uncomment	line	below

			//	DbProviderFactories.RegisterFactory("FirebirdSql.Data.FirebirdClient",	

			//			FirebirdSql.Data.FirebirdClient.FirebirdClientFactory.Instance);

			//	to	enable	MYSQL:	add	MySql.Data	reference,	set	connections,	and	uncomment	line	b

elow

			//	DbProviderFactories.RegisterFactory("MySql.Data.MySqlClient",

			//			MySql.Data.MySqlClient.MySqlClientFactory.Instance);

			//	to	enable	POSTGRES:	add	Npgsql	reference,	set	connections,	and	uncomment	line	be

low

			DbProviderFactories.RegisterFactory("Npgsql",	Npgsql.NpgsqlFactory.Instance);

}

Setting	Default	Dialect

This	step	is	optional.

Serenity	automatically	determines	which	dialect	to	use,	by	looking	at	providerName	of
connection	strings.

It	can	even	work	with	multiple	database	types	at	the	same	time.

For	example,	Northwind	might	stay	in	Sql	Server,	while	Default	database	uses	PostgreSQL.

But,	if	you	are	going	to	use	only	one	database	type	per	site,	you	can	register	which	you	are
going	to	use	by	default	in	SiteInitialization:

PostgreSQL

410

public	static	void	ApplicationStart()

{

				try

				{

								SqlSettings.DefaultDialect	=	PostgresDialect.Instance;

								SqlSettings.AutoQuotedIdentifiers	=	true;

								Serenity.Web.CommonInitialization.Run();

Default	dialect	is	used	when	the	dialect	for	a	connection	/	entity	etc.	couldn't	be	auto
determined.

This	setting	doesn't	override	automatic	detection,	it	is	just	used	as	fallback.

Launching	Application
Now	launch	your	application,	it	should	automatically	create	databases,	if	they	are	not
created	manually	before.

Configuring	Code	Generator
Sergen	doesn't	have	reference	to	PostgreSQL	provider,	so	if	you	want	to	use	it	to	generate
code,	you	must	also	register	this	provider	with	it.

Sergen.exe	is	an	exe	file,	so	you	can't	add	a	NuGet	reference	to	it.	We	need	to	register	this
provider	in	application	config	file.

It	is	also	possible	to	register	the	provider	in	GAC/machine.config	and	skip	this	step
completely.

Locate	Sergen.exe,	which	is	under	a	folder	like
packages/Serenity.CodeGenerator.1.8.6/tools	and	create	a	file	named		Sergen.exe.config	
next	to	it	with	contents	below:

PostgreSQL

411

<?xml	version="1.0"	encoding="utf-8"	?>

<configuration>

		<system.data>

				<DbProviderFactories>

						<remove	invariant="Npgsql"/>

						<add	name="Npgsql	Data	Provider"	

											invariant="Npgsql"	

											description=".Net	Data	Provider	for	PostgreSQL"

											type="Npgsql.NpgsqlFactory,	Npgsql,	Culture=neutral,

																	PublicKeyToken=5d8b90d52f46fda7"	

											support="FF"	/>

				</DbProviderFactories>

		</system.data>

		<appSettings>

				<add	key="LoadProviderDLLs"	value="Npgsql.dll"/>

		</appSettings>

</configuration>

Also	copy	Npgsql.dll	to	same	folder	where	Sergen.exe	resides.	Now	Sergen	will	be	able	to
generate	code	for	your	Postgres	tables.

You	might	want	to	remove		[public].		prefix	for	default	schema	from	tablename/column
expressions	in	generated	rows	if	you	want	to	be	able	to	work	with	multiple	databases.

PostgreSQL

412

MySql

.NET	Framework

Registering	MySql	Provider

MySQL	has	a	.NET	provider	named	MySql.Data.	You	need	to	first	install	it	in	MyProject.Web:

Install-Package	MySql.Data	-Project	MyProject.Web

If	you	didn't	install	this	provider	in	GAC/machine.config	before,	or	don't	want	to	install	it
there,	you	need	to	register	it	in	web.config	file	(MySql.Data	NuGet	package	already	does	this
on	install):

<configuration>

		//	...

		<system.data>

				<DbProviderFactories>

						<remove	invariant="MySql.Data.MySqlClient"/>

						<add	name="MySQL	Data	Provider"	

											invariant="MySql.Data.MySqlClient"	

											description=".Net	Framework	Data	Provider	for	MySQL"

											type="MySql.Data.MySqlClient.MySqlClientFactory,	

																	MySql.Data,	Culture=neutral,

																	PublicKeyToken=c5687fc88969c44d"	/>

					</DbProviderFactories>

		</system.data>

		//	...

Setting	Connection	Strings

Next	step	is	to	replace	connection	strings	for	databases	you	want	to	use	with	MySql:

Make	sure	you	replace	connection	string	parameters	with	values	for	your	server

MySQL

413

<connectionStrings>

				<add	name="Default"	connectionString="

												Server=localhost;	Port=3306;	Database=Serene_Default_v1;	

												Uid=root;	Pwd=yourpass"

								providerName="MySql.Data.MySqlClient"	/>

				<add	name="Northwind"	connectionString="

												Server=localhost;	Port=3306;	Database=Serene_Northwind_v1;	

												Uid=root;	Pwd=yourpass"	

								providerName="MySql.Data.MySqlClient"	/>

</connectionStrings>

Provider	name	must	be		MySql.Data.MySqlClient		for	Serenity	to	auto-detect	dialect.
Read	notes	above	to	override	default	dialect.

MySql	uses	lowercase	database	(schema)	and	table	names,	but	doesn't	have	the	case
sensitivity	problem	we	talked	about	Postgres.

Configuring	Code	Generator

Sergen	doesn't	have	reference	to	MySql	provider,	so	if	you	want	to	use	it	to	generate	code,
you	must	also	register	this	provider	with	it.

Sergen.exe	is	an	exe	file,	so	you	can't	add	a	NuGet	reference	to	it.	We	need	to	register	this
provider	in	application	config	file.

It	is	also	possible	to	register	the	provider	in	GAC/machine.config	and	skip	this	step
completely.

Locate	Sergen.exe,	which	is	under	a	folder	like
packages/Serenity.CodeGenerator.1.8.6/tools	and	create	a	file	named		Sergen.exe.config	
next	to	it	with	contents	below:

MySQL

414

<?xml	version="1.0"	encoding="utf-8"	?>

<configuration>

		<system.data>

				<DbProviderFactories>

						<remove	invariant="MySql.Data.MySqlClient"/>

						<add	name="MySQL	Data	Provider"	

											invariant="MySql.Data.MySqlClient"	

											description=".Net	Framework	Data	Provider	for	MySQL"

											type="MySql.Data.MySqlClient.MySqlClientFactory,	

																	MySql.Data,	Culture=neutral,

																	PublicKeyToken=c5687fc88969c44d"	/>

					</DbProviderFactories>

		</system.data>

		<appSettings>

				<add	key="LoadProviderDLLs"	value="MySql.Data.dll"/>

		</appSettings>

</configuration>

Also	copy	MySql.Data.dll	to	same	folder	where	Sergen.exe	resides.	Now	Sergen	will	be	able
to	generate	code	for	your	MySql	tables.

.NET	Core

Registering	MySql	Provider

MySQL	has	a	.NET	provider	named	MySql.Data.	You	need	to	first	install	it	in
MyProject.AspNetCore:

Open	project.json	and	add	package	as	follows:

{

		"dependencies":	{

				//	...

				"Serenity.FluentMigrator.Runner":	"1.6.903",

				"MySql.Data":	"7.0.6-IR31"

		},

Make	sure	you	have	Serenity.FluentMigrator.Runner	1.6.903+

Open	Initialization/Startup.cs	file,	register	this	factory	in	Serenity:

MySQL

415

DbProviderFactories.RegisterFactory(

		"System.Data.SqlClient",	SqlClientFactory.Instance);

DbProviderFactories.RegisterFactory(

		"MySql.Data.MySqlClient",

			MySql.Data.MySqlClient.MySqlClientFactory.Instance);

Configuring	Code	Generator

As	of	writing	dotnet-sergen	doesn't	yet	support	any	databases	other	than	Sql	Server.

MySQL

416

Sqlite

Registering	Sqlite	Provider

Sqlite	has	a	.NET	provider	named	System.Data.Sqlite.	You	need	to	first	install	it	in
MyProject.Web:

Install-Package	System.Data.SQLite.Core	-Project	MyProject.Web

If	you	didn't	install	this	provider	in	GAC/machine.config	before,	or	don't	want	to	install	it
there,	you	need	to	register	it	in	web.config	file:

<configuration>

		//	...

		<system.data>

				<DbProviderFactories>

								<remove	invariant="System.Data.SQLite"/>

								<add	name="SQLite	Data	Provider"

										invariant="System.Data.SQLite"

										description=".Net	Framework	Data	Provider	for	SQLite"

										type="System.Data.SQLite.SQLiteFactory,	System.Data.SQLite"/>

				</DbProviderFactories>

		</system.data>

		//	...

Setting	Connection	Strings

Next	step	is	to	replace	connection	strings	for	databases	you	want	to	use	with	Sqlite:

		<connectionStrings>

				<add	name="Default"	connectionString=

									"Data	Source=|DataDirectory|Serene_Default_v1.sqlite;"	

						providerName="System.Data.Sqlite"	/>

				<add	name="Northwind"	connectionString=

								"Data	Source=|DataDirectory|Serene_Northwind_v1.sqlite;"	

						providerName="System.Data.Sqlite"	/>

		</connectionStrings>

Applying	Sqlite	Changes	to	Serene

Sqlite	provider	has	been	added	recently,	so	if	you	already	have	an	application,	you'll	need	to
get	latest	version	of	SiteInitialization.Migrations.cs	from	latest	template	/	github	repository	to
get	Sqlite	support.

Sqlite

417

Provider	name	must	be		System.Data.Sqlite		for	Serenity	to	auto-detect	dialect.	Read
notes	above	to	override	default	dialect.

I'm	not	sure	why,	but	while	FluentMigrator	creates	Northwind	database	for	Sqlite	first
time,	it	takes	some	time.

Configuring	Code	Generator

Sergen	doesn't	have	reference	to	Sqlite	provider,	so	if	you	want	to	use	it	to	generate	code,
you	must	also	register	this	provider	with	it.

Sergen.exe	is	an	exe	file,	so	you	can't	add	a	NuGet	reference	to	it.	We	need	to	register	this
provider	in	application	config	file.

It	is	also	possible	to	register	the	provider	in	GAC/machine.config	and	skip	this	step
completely.

Locate	Sergen.exe,	which	is	under	a	folder	like
packages/Serenity.CodeGenerator.1.8.6/tools	and	create	a	file	named		Sergen.exe.config	
next	to	it	with	contents	below:

<?xml	version="1.0"	encoding="utf-8"	?>

<configuration>

		<system.data>

				<DbProviderFactories>

								<remove	invariant="System.Data.SQLite"/>

								<add	name="SQLite	Data	Provider"

													invariant="System.Data.SQLite"

													description=".Net	Framework	Data	Provider	for	SQLite"

													type="System.Data.SQLite.SQLiteFactory,	System.Data.SQLite"/>

				</DbProviderFactories>

		</system.data>

		<appSettings>

				<add	key="LoadProviderDLLs"	value="Sqlite.Data.dll"/>

		</appSettings>

</configuration>

Also	copy	System.Data.Sqlite.dll	and	its	x86	and	x64	folders	under	bin	directory	to	same
folder	where	Sergen.exe	resides.	Now	Sergen	will	be	able	to	generate	code	for	your	Sqlite
tables.

Sqlite

418

Oracle
Oracle	support	is	available	for	Serene	2.2.2+

Registering	Oracle	Provider

Oracle	has	a	managed	.NET	provider	named	Oracle.ManagedDataAccess.	You	need	to	first
install	it	in	MyProject.Web:

Install-Package	Oracle.ManagedDataAccess	-Project	MyProject.Web

If	you	didn't	install	this	provider	in	GAC/machine.config	before,	or	don't	want	to	install	it
there,	you	need	to	register	it	in	web.config	file	(Oracle.ManagedDataAccess	NuGet	package
already	does	this	on	install):

<configuration>

		//	...

		<system.data>

				<DbProviderFactories>

						<remove	invariant="Oracle.ManagedDataAccess.Client"/>

						<add	name="ODP.NET,	Managed	Driver"	

											invariant="Oracle.ManagedDataAccess.Client"	

											description="Oracle	Data	Provider	for	.NET,	Managed	Driver"

											type="Oracle.ManagedDataAccess.Client.OracleClientFactory,	

																	Oracle.ManagedDataAccess,	Version=4.121.2.0,	Culture=neutral,	

																	PublicKeyToken=89b483f429c47342"/>

					</DbProviderFactories>

		</system.data>

		//	...

Creating	Databases

Serene	can't	autocreate	database	(tablespace)	for	Oracle.	You	might	create	them	yourself,
or	use	a	script	like	below	(i	used	this	for	XE):

Oracle

419

CREATE	TABLESPACE	Serene_Default_v1_TABS	

				DATAFILE	'Serene_Default_v1_TABS.dat'	SIZE	10M	AUTOEXTEND	ON;

CREATE	TEMPORARY	TABLESPACE	Serene_Default_v1_TEMP	

				TEMPFILE	'Serene_Default_v1_TEMP.dat'	SIZE	5M	AUTOEXTEND	ON;

CREATE	USER	Serene_Default_v1	

				IDENTIFIED	BY	somepassword	

				DEFAULT	TABLESPACE	Serene_Default_v1_TABS	

				TEMPORARY	TABLESPACE	Serene_Default_v1_TEMP;

GRANT	CREATE	SESSION	TO	Serene_Default_v1;

GRANT	CREATE	TABLE	TO	Serene_Default_v1;

GRANT	CREATE	SEQUENCE	TO	Serene_Default_v1;

GRANT	CREATE	TRIGGER	TO	Serene_Default_v1;

GRANT	UNLIMITED	TABLESPACE	TO	Serene_Default_v1;

CREATE	TABLESPACE	Serene_Northwind_v1_TABS	

				DATAFILE	'Serene_Northwind_v1_TABS.dat'	SIZE	10M	AUTOEXTEND	ON;

CREATE	TEMPORARY	TABLESPACE	Serene_Northwind_v1_TEMP	

				TEMPFILE	'Serene_Northwind_v1_TEMP.dat'	SIZE	5M	AUTOEXTEND	ON;

CREATE	USER	Serene_Northwind_v1	

				IDENTIFIED	BY	somepassword	

				DEFAULT	TABLESPACE	Serene_Northwind_v1_TABS	

				TEMPORARY	TABLESPACE	Serene_Northwind_v1_TEMP;

GRANT	CREATE	SESSION	TO	Serene_Northwind_v1;

GRANT	CREATE	TABLE	TO	Serene_Northwind_v1;

GRANT	CREATE	SEQUENCE	TO	Serene_Northwind_v1;

GRANT	CREATE	TRIGGER	TO	Serene_Northwind_v1;

GRANT	UNLIMITED	TABLESPACE	TO	Serene_Northwind_v1;

Setting	Connection	Strings

You	might	want	to	configure	your	data	sources	for	ORACLE.	I	used	Express	Edition	(XE)
here:

<configuration>

		<oracle.manageddataaccess.client>

				<version	number="*">

						<dataSources>

								<dataSource	alias="XE"

										descriptor="

														(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)

														(HOST=localhost)(PORT=1521))

														(CONNECT_DATA=(SERVICE_NAME=XE)))	"/>

						</dataSources>

				</version>

		</oracle.manageddataaccess.client>

</configuration>

Next	step	is	to	replace	connection	strings	for	databases	you	want	to	use	with	Oracle:

Oracle

420

Make	sure	you	replace	connection	string	parameters	with	values	for	your	server

<connectionStrings>

				<add	name="Default"	connectionString="

								Data	Source=XE;User	Id=Serene_Default_v1;Password=somepassword;"	

								providerName="Oracle.ManagedDataAccess.Client"/>

				<add	name="Northwind"	connectionString="

								Data	Source=XE;User	Id=Serene_Northwind_v1;Password=somepassword;"	

								providerName="Oracle.ManagedDataAccess.Client"/>

</connectionStrings>

Provider	name	must	be		Oracle.ManagedDataAccess.Client		for	Serenity	to	auto-detect
dialect.	Read	notes	above	to	override	default	dialect.

Configuring	Code	Generator

Sergen	doesn't	have	support	for	Oracle	yet,	hopefully	coming	soon...

Oracle

421

Services

422

Service	Endpoints
In	Serenity,	Service	Endpoints	are	a	subclass	of	ASP.NET	MVC	controllers.

Here	is	an	excerpt	from	Northwind	OrderEndpoint:

namespace	Serene.Northwind.Endpoints

{

				[RoutePrefix("Services/Northwind/Order"),	Route("{action}")]

				[ConnectionKey("Northwind"),	ServiceAuthorize(Northwind.PermissionKeys.General)]

				public	class	OrderController	:	ServiceEndpoint

				{

								[HttpPost]

								public	SaveResponse	Create(IUnitOfWork	uow,	SaveRequest<MyRow>	request)

								{

												return	new	MyRepository().Create(uow,	request);

								}

								public	ListResponse<MyRow>	List(IDbConnection	connection,	ListRequest	request)

								{

												return	new	MyRepository().List(connection,	request);

								}

				}

}

Controller	Naming	and	Namespace

Our	class	has	name	OrderController,	even	though	its	file	is	named	OrderEndpoint.cs.	This	is
due	to	a	ASP.NET	MVC	limitation	(which	i	don't	find	so	logical)	that	all	controllers	must	end
with	Controller	suffix.

If	you	don't	end	your	controller	class	name	with	this	suffix,	your	actions	will	simply	won't
work.	So	be	very	careful	with	this.

I	also	did	this	mistake	several	times	and	it	cost	me	hours.

Namespace	of	this	class	(Serene.Northwind.Endpoints)	is	not	important	at	all,	though	we
usually	put	endpoints	under	MyProject.Module.Endpoints	namespace	for	consistency.

Our	OrderController	derives	from	ServiceEndpoint	(and	should),	which	provides	this	MVC
controller	with	not	so	usual	features	that	we'll	see	shortly.

Routing	Attributes

Service	Endpoints

423

[RoutePrefix("Services/Northwind/Order"),	Route("{action}")]

Routing	attributes	above,	which	belongs	to	ASP.NET	attribute	routing,	configures	base
address	for	our	service	endpoint.	Our	actions	will	be	available	under
"mysite.com/Services/Northwind/Order".

Please	avoid	classic	ASP.NET	MVC	routing,	where	you	configured	all	routes	in
ApplicationStart	method	with	routes.AddRoute	etc.	It	was	really	hard	to	manage.

All	Serenity	service	endpoints	uses	/Services/Module/Entity	addressing	scheme	by	default.
Again	even	though	you'd	be	able	to	use	another	address	scheme,	this	is	recommended	for
consistency	and	basic	conventions.

ConnectionKey	Attribute

This	attribute	specificies	which	connection	key	in	your	application	configuration	file	(e.g.
web.config)	should	be	used	to	create	a	connection	when	needed.

Let's	see	when	and	how	this	auto	created	connection	is	used:

public	ListResponse<MyRow>	List(IDbConnection	connection,	ListRequest	request)

{

				return	new	MyRepository().List(connection,	request);

}

Here	we	see	that	this	action	takes	a	IDbConnection	parameter.	You	can't	send	a
IDbConnection	to	an	MVC	action	from	client	side.	So	who	creates	this	connection?

Remember	that	our	controller	derives	from	ServiceEndpoint?	So	ServiceEndpoint
understands	that	our	action	requires	a	connection.	It	checks	[ConnectionKey]	attribute	on
top	of	controller	class	to	determine	connection	key,	creates	a	connection	using
SqlConnections.NewByKey(),	executes	our	action	with	this	connection,	and	when	action
ends	executing,	closes	the	connection.

You'd	be	able	to	remove	this	connection	parameter	from	the	action	and	create	it	manually:

public	ListResponse<MyRow>	List(ListRequest	request)

{

				using	(var	connection	=	SqlConnections.NewByKey("Northwind"))	

				{

								return	new	MyRepository().List(connection,	request);

				}

}

Service	Endpoints

424

Actually	this	is	what	ServiceEndpoint	does	behind	the	scenes.

Why	not	use	this	feature	while	platform	handles	this	detail	automatically?	One	reason	would
be	when	you	need	to	open	a	custom	connection	that	is	not	listed	in	the	config	file,	or	open	a
dynamic	one	depending	on	some	conditions.

We	have	another	method	that	takes	IUnitOfWork	(transaction),	instead	of	IDbConnection
parameter:

public	SaveResponse	Create(IUnitOfWork	uow,	SaveRequest<MyRow>	request)

{

				return	new	MyRepository().Create(uow,	request);

}

Here	situation	is	similar.	ServiceEndpoint	again	creates	a	connection,	but	this	time	starts	a
transaction	on	it	(IUnitOfWork),	calls	our	action	method,	and	when	it	returns	will	commit
transaction	automatically.	Again,	if	it	fails,	would	rollback	it.

Here	is	the	manual	version	of	the	same	thing:

public	SaveResponse	Create(SaveRequest<MyRow>	request)

{

				using	(var	connection	=	SqlConnections.NewByKey("Northwind"))

				using	(var	uow	=	new	UnitOfWork(connection))

				{

								var	result	=	new	MyRepository().Create(uow,	request);

								uow.Commit();

								return	result;

				}

}

So,	ServiceEndpoint	handles	something	that	takes	8	lines	in	1	line	of	code.

When	To	Use	IUnitOfWork	/	IDbConnection

By	convention,	Serenity	action	methods	that	modify	some	state	(CREATE,	UPDATE	etc.)
should	run	inside	a	transaction,	thus	take	an	IUnitOfWork	parameter,	and	ones	that	are	read
only	operations	(LIST,	RETRIEVE)	should	use	IDbConnection.

If	your	service	method	takes	a	IUnitOfWork	parameter,	this	is	a	signature	that	your	method
might	modify	some	data.

About	[HttpPost]	Attribute

Service	Endpoints

425

You	may	have	noticed	that	Create,	Update,	Delete	etc	methods	has	this	attribute	while	List,
Retrieve	etc.	not.

This	attribute	limits	Create,	Update,	Delete	actions	to	HTTP	POST	only.	It	doesn't	allow	them
to	be	called	by	HTTP	GET.

This	is	because,	these	methods	are	ones	that	modify	some	state,	e.g.	insert,	update,	delete
some	records	from	DB,	so	they	shouldn't	be	allowed	to	be	called	unintentionally,	and	their
results	shouldn't	be	allowed	to	be	cached.

This	also	has	some	security	implications.	Actions	with	GET	method	might	be	subject	to
some	attacks.

List,	Retrieve	doesn't	modify	anything,	so	they	are	allowed	to	be	called	with	GET,	e.g.	typing
in	a	browser	address	bar.

Even	though,	List,	Retrieve	can	be	called	by	GET,	Serenity	always	calls	services	using
HTTP	POST	when	you	use	its	methods,	e.g.	Q.CallService,	and	will	turn	of	caching	to	avoid
unexpected	results.

ServiceAuthorize	Attribute

Our	controller	class	has	ServiceAuthorize	attribute:

ServiceAuthorize(Northwind.PermissionKeys.General)

This	attribute	is	similar	to	ASP.NET	MVC	[Authorize]	attribute	but	it	checks	only	that	user	is
logged	in,	and	throws	an	exception	otherwise.

If	used	with	no	parameters,	e.g.	[ServiceAuthorize()]	this	attribute	also	checks	that	user	is
logged	in.

When	you	pass	it	a	permission	key	string,	it	will	check	that	user	is	logged	in	and	also	has
that	permission.

ServiceAuthorize("SomePermission")

If	user	is	not	granted	"SomePermission",	this	will	prevent	him	from	executing	any	endpoint
method.

There	is	also	[PageAuthorize]	attribute	that	works	similar,	but	you	should	prefer
[ServiceAuthorize]	with	service	endpoints,	because	its	error	handling	is	more	suitable	for
services.

Service	Endpoints

426

While	[PageAuthorize]	redirects	user	to	the	Login	page,	if	user	doesn't	have	the	permission,
ServiceAuthorize	returns	a	more	suitable	NotAuthorized	service	error.

It's	also	possible	to	use	[ServiceAuthorize]	attribute	on	actions,	instead	of	controller:

[ServiceAuthorize("SomePermissionThatIsRequiredForCreate")]

public	SaveResponse	Create(SaveRequest<MyRow>	request)

About	Request	and	Response	Objects

Except	the	specially	handled	IUnitOfWork	and	IDbConnection	parameters,	all	Serenity
service	actions	takes	a	single	request	parameter	and	returns	a	single	result.

public	SaveResponse	Create(IUnitOfWork	uow,	SaveRequest<MyRow>	request)

Let's	start	with	the	result.	If	you	have	some	background	on	ASP.NET	MVC,	you'd	know	that
controllers	can't	return	arbitrary	objects.	They	must	return	objects	that	derive	from
ActionResult.

But	our	SaveResponse	derives	from	ServiceResponse	which	is	just	an	ordinary	object:

public	class	SaveResponse	:	ServiceResponse

{

				public	object	EntityId;

}

public	class	ServiceResponse

{

				public	ServiceError	Error	{	get;	set;	}

}

How	this	is	possible?	Again	ServiceEndpoint	handles	this	detail	behind	the	scenes.	It
transforms	our	SaveResponse	to	a	special	action	result	that	returns	JSON	data.

We	don't	have	to	worry	about	this	detail	as	long	as	our	response	object	derives	from
ServiceResponse	and	is	JSON	serializable.

Again,	our	request	object	is	also	an	ordinary	class	that	derives	from	a	basic	ServiceRequest:

Service	Endpoints

427

public	class	SaveRequest<TEntity>	:	ServiceRequest,	ISaveRequest

{

				public	object	EntityId	{	get;	set;	}

				public	TEntity	Entity	{	get;	set;	}

}

public	class	ServiceRequest

{

}

ServiceEndpoint	takes	the	HTTP	request	content	which	is	usually	JSON,	deserializes	it	into
our	request	parameter,	using	a	special	MVC	action	filter	(JsonFilter).

If	you	want	to	use	some	custom	actions,	your	methods	should	also	follow	this	philosophy,
e.g.	take	just	one	request	(deriving	from	ServiceRequest)	and	return	one	response	(deriving
from	ServiceResponse).

Let's	add	a	service	method	that	returns	count	of	all	orders	greater	than	some	amount:

public	class	MyOrderCountRequest	:	ServiceRequest

{

				public	decimal	MinAmount	{	get;	set;	}

}

public	class	MyOrderCountResponse	:	ServiceResponse

{

				public	int	Count	{	get;	set;	}

}

public	class	OrderController	:	ServiceEndpoint

{

				public	MyOrderCountResponse	MyOrderCount(IDbConnection	connection,	

								MyOrderCountRequest	request)

				{

								var	fld	=	OrderRow.Fields;

								return	new	MyOrderCountResponse	

								{			

												Count	=	connection.Count<OrderRow>(fld.TotalAmount	>=	request.MinAmount);

								};

				}

}

Please	follow	this	pattern	and	try	not	to	add	more	parameters	to	action	methods.	Serenity
follows	message	based	pattern,	with	only	one	request	object,	that	can	be	extended	later	by
adding	more	properties.

Don't	do	this	(which	is	called	RPC	-	Remote	procedure	call	style):

Service	Endpoints

428

public	class	OrderController	:	ServiceEndpoint

{

				public	decimal	MyOrderCount(IDbConnection	connection,	

								decimal	minAmount,	decimal	maxAmount,)

				{

								//	...

				}

}

Prefer	this	(message	based	services):

public	class	MyOrderCountRequest	:	ServiceRequest

{

				public	decimal	MinAmount	{	get;	set;	}

				public	decimal	MaxAmount	{	get;	set;	}

}

public	class	OrderController	:	ServiceEndpoint

{

				public	MyOrderCountResponse	MyOrderCount(IDbConnection	connection,	

								MyOrderCountRequest	request)

				{

								//	...

				}

}

This	will	avoid	having	to	remember	parameter	order,	will	make	your	request	objects
extensible	without	breaking	backwards	compability,	and	have	many	more	advantages	that
you	may	notice	later.

Why	Endpoint	Methods	Are	Almost	Empty

We	usually	delegate	actual	work	to	our	repository	layer:

public	ListResponse<MyRow>	List(IDbConnection	connection,	ListRequest	request)

{

				return	new	MyRepository().List(connection,	request);

}

Remember	that	ServiceEndpoint	has	a	direct	dependency	to	ASP.NET	MVC.	This	means
that	any	code	you	write	inside	a	service	endpoint	will	have	a	dependency	to	ASP.NET	MVC,
and	thus	web	environment.

Service	Endpoints

429

You	may	not	be	able	to	reuse	any	code	you	wrote	here,	from	let's	say	a	desktop	application,
or	won't	be	able	to	isolate	this	code	into	a	DLL	that	doesn't	have	a	reference	to	WEB
libraries.

But	if	you	really	don't	have	such	a	requirement,	you	can	remove	repositories	all	together	and
write	all	your	code	inside	the	endpoint.

Some	people	might	argue	that	entities,	repositories,	business	rules,	endpoints	etc.	should	all
be	in	their	own	isolated	assemblies.	In	theory,	and	for	some	scenarios	this	might	be	valid,
but	some	(or	most)	users	don't	need	so	much	isolation,	and	may	fall	into	YAGNI	(you	aren't
gonna	need	it)	category.

Service	Endpoints

430

ListRequestHandler
This	is	the	base	class	that	handles	List	requests	originating	from	client	side,	e.g.	from	grids.

Let's	first	sample	when	and	how	this	class	handles	list	requests:

1.	 First	a	list	request	must	be	triggered	from	client	side.	Possible	options	are:

a)	You	open	a	list	page	that	contains	a	grid.	Right	after	your	grid	object	is	created	it
builds	up	a	ListRequest	object,	based	on	currently	visible	columns,	initial	sort	order,
filters	etc.	and	submits	it	to	server	side.

b)	User	clicks	on	a	column	header	to	sort,	clicks	paging	buttons	or	refresh	button	to
trigger	same	events	in	option	A.

c)	You	might	manually	call	a	list	service	using	XYZService.List	method.

2.	 A	service	request	(AJAX)	to	MVC	XYZController	(in	file	XYZEndpoint.cs)	arrives	at
server.	Request	parameters	are	deserialized	from	JSON	into	a	ListRequest	object.

3.	 XYZEndpoint	calls	XYZRepository.List	method	with	retrieved	ListRequest	object.
4.	 XYZRepository.List	method	creates	a	subclass	of	ListRequestHandler

(XYZRepository.MyListHandler)	and	invokes	its	Process	method	with	the	ListRequest.
5.	 ListRequestHandler.Process	method	builds	up	a	dynamic	SQL	query,	based	on	the

ListRequest,	metadata	in	its	entity	type	(Row)	and	other	information	and	executes	it.
6.	 ListRequestHandler.Process	returns	a	ListResponse	with	Entities	member	that	contains

rows	to	be	returned.
7.	 XYZEndpoint	receives	this	ListResponse,	returns	it	from	action.
8.	 ListResponse	is	serialized	to	JSON,	sent	back	to	client
9.	 Grid	receives	entities,	updates	its	displayed	rows	and	other	parts	like	paging	status.

We'll	cover	how	grids	build	and	submit	a	list	request	in	another	chapter.	Let's	focus	on
ListRequestHandler	for	now.

List	Request	Object
First	we	should	have	a	look	at	what	members	a	ListRequest	object	have:

List	Request	Handler

431

		public	class	ListRequest	:	ServiceRequest,	IIncludeExcludeColumns

		{

						public	int	Skip	{	get;	set;	}

						public	int	Take	{	get;	set;	}

						public	SortBy[]	Sort	{	get;	set;	}

						public	string	ContainsText	{	get;	set;	}

						public	string	ContainsField	{	get;	set;	}

						public	Dictionary<string,	object>	EqualityFilter	{	get;	set;	}

						[JsonConverter(typeof(JsonSafeCriteriaConverter))]

						public	BaseCriteria	Criteria	{	get;	set;	}

						public	bool	IncludeDeleted	{	get;	set;	}

						public	bool	ExcludeTotalCount	{	get;	set;	}

						public	ColumnSelection	ColumnSelection	{	get;	set;	}

						[JsonConverter(typeof(JsonStringHashSetConverter))]

						public	HashSet<string>	IncludeColumns	{	get;	set;	}

						[JsonConverter(typeof(JsonStringHashSetConverter))]

						public	HashSet<string>	ExcludeColumns	{	get;	set;	}

		}

ListRequest.Skip	and	ListRequest.Take	Parameters

These	options	are	used	for	paging	and	similar	to	Skip	and	Page	extensions	in	LINQ.

There	is	one	little	difference	about	Take.	If	you	Take(0),	LINQ	will	return	you	zero	records,
while	Serenity	will	return	ALL	records.	There	is	no	point	in	calling	a	LIST	service	and
requesting	0	records.

So,	SKIP	and	TAKE	has	default	values	of	0,	and	they	are	simply	ignored	when	0	/	undefined.

//	returns	all	customers	as	Skip	and	Take	are	0	by	default	

CustomerService.List(new	ListRequest

{

},	response	=>	{});

If	you	have	a	grid	that	has	page	size	50	and	switch	to	page	number	4,	SKIP	will	be	200	while
TAKE	is	50.

//	returns	customers	between	row	numbers	201	and	250	(in	some	default	order)

CustomerService.List(new	ListRequest

{

				Skip	=	200,

				Take	=	50

},	response	=>	{});

These	parameters	are	converted	to	relevant	SQL	paging	statements	based	on	SQL	dialect.

List	Request	Handler

432

ListRequest.Sort	Parameter

This	parameter	takes	an	array	to	sort	results	on.	Sorting	is	performed	by	generating	SQL.

SortBy	parameter	expects	a	list	of	SortBy	objects:

[JsonConverter(typeof(JsonSortByConverter))]

public	class	SortBy

{

				public	SortBy()

				{

				}

				public	SortBy(string	field)

				{

								Field	=	field;

				}

				public	SortBy(string	field,	bool	descending)

				{

								Field	=	field;

								Descending	=	descending;

				}

				public	string	Field	{	get;	set;	}

				public	bool	Descending	{	get;	set;	}

}

When	calling	a	List	method	of	XYZRepository	server	side	to	sort	by	Country	then	City
descending,	you	might	do	it	like	this:

new	CustomerRepository().List(connection,	new	ListRequest

{

				SortBy	=	new[]	{	

								new	SortBy("Country"),

								new	SortBy("City",	descending:	true)

				}

});

SortBy	class	has	a	custom	JsonConverter	so	when	building	a	list	request	client	side,	you
should	use	a	simple	string	array:

List	Request	Handler

433

//	CustomerEndpoint	and	thus	CustomerRepository	is	accessed	from	

//	client	side	(YourProject.Script)	through	CustomerService	class	static	methods	

//	which	is	generated	by	ServiceContracts.tt

CustomerService.List(connection,	new	ListRequest

{

				SortBy	=	new[]	{	"Country",	"City	DESC"	}

},	response	=>	{});

This	is	because	ListRequest	class	definition	at	client	side	has	a	bit	different	structure:

				[Imported,	Serializable,	PreserveMemberCase]

				public	class	ListRequest	:	ServiceRequest

				{

								public	int	Skip	{	get;	set;	}

								public	int	Take	{	get;	set;	}

								public	string[]	Sort	{	get;	set;	}

								//	...

				}

Column	names	used	here	should	be	Property	names	of	corresponding	fields.	Expressions
are	not	accepted.	E.g.	this	won't	work!:

CustomerService.List(connection,	new	ListRequest

{

				SortBy	=	new[]	{	"t0.FirstName	+	'	'	+	t0.LastName"	}

},	response	=>	{});

ListRequest.ContainsText	and	ListRequest.ContainsField
Parameters

These	parameters	are	used	by	quick	search	funtionality	which	is	search	input	on	top	left	of
grids.

When	only	ContainsText	is	specified	and	ContainsField	is	empty,	searching	is	performed	on
all	fields	with	[QuickSearch]	attribute	on	them.

It	is	possible	to	define	some	specific	field	list	to	perform	searches	on	grid	client	side,	by
overriding	GetQuickSearchField()	methods.	So	when	such	a	field	is	selected	in	quick	search
input,	search	is	only	performed	on	that	column.

If	you	set	ContainsField	to	a	field	name	that	doesn't	have	QuickSearch	attribute	on	it,	system
will	raise	an	exception.	This	is	for	security	purposes.

As	usual,	searching	is	done	with	dynamic	SQL	by	LIKE	statements.

List	Request	Handler

434

CustomerService.List(connection,	new	ListRequest

{

				ContainsText	=	"the",

				ContainsField	=	"CompanyName"

},	response	=>	{});

SELECT	...	FROM	Customers	t0	WHERE	t0.CompanyName	LIKE	'%the%'

If	ContainsText	is	null	or	empty	string	it	is	simply	ignored.

ListRequest.EqualityFilter	Parameter

EqualityFilter	is	a	dictionary	that	allows	quick	equality	filtering	by	some	fields.	It	is	used	by
quick	filter	dropdowns	on	grids	(ones	that	are	defined	with	AddEqualityFilter	helper).

CustomerService.List(connection,	new	ListRequest

{

				EqualityFilter	=	new	JsDictionary<string,	object>	{

								{	"Country",	"Germany"	}

				}

},	response	=>	{});

SELECT	*	FROM	Customers	t0	WHERE	t0.Country	=	"Germany"

Again,	you	should	use	property	names	as	equality	field	keys,	not	expressions.	Serenity
doesn't	allow	any	arbitrary	SQL	expressions	from	client	side,	to	prevent	SQL	injections.

Please	note	that	null	and	empty	string	values	are	simply	ignored,	similar	to	ContainsText,	so
it's	not	possible	to	filter	for	empty	or	null	values	with	EqualityFilter.	Such	a	request	would
return	all	records:

CustomerService.List(connection,	new	ListRequest

{

				EqualityFilter	=	new	JsDictionary<string,	object>	{

								{	"Country",	""	},	//	won't	work,	empty	string	is	ignored

								{	"City",	null	},	//	won't	work,	null	is	ignored

				}

},	response	=>	{});

Use	Criteria	parameter	if	you	intent	to	filter	customers	with	empty	countries.

ListRequest.Criteria

List	Request	Handler

435

This	parameter	accepts	criteria	objects	similar	to	server	side	Criteria	objects	we	talked	about
in	Fluent	SQL	chapter.	Only	difference	is,	as	these	criteria	objects	are	sent	from	client	side,
they	have	to	be	validated	and	can't	contain	any	arbitrary	SQL	expressions.

Service	request	below	will	only	return	customers	with	empty	country	or	null	city	values

CustomerService.List(connection,	new	ListRequest

{

				Criteria	=	new	Criteria("Country")	==	""	|	

								new	Criteria("City").IsNull()

},	response	=>	{});

You	could	set	Criteria	parameter	of	generated	ListRequest	that	is	about	to	be	submitted	in
your	XYZGrid.cs	like	below:

protected	override	bool	OnViewSubmit()

{

				//	only	continue	if	base	class	didn't	cancel	request

				if	(!base.OnViewSubmit())

								return	false;

				//	view	object	is	the	data	source	for	grid	(SlickRemoteView)

				//	this	is	an	EntityGrid	so	view.Params	is	a	ListRequest

				var	request	=	(ListRequest)view.Params;

				//	we	use	"	&=	"	here	because	otherwise	we	might	clear	

				//	filter	set	by	an	edit	filter	dialog	if	any.

				request.Criteria	&=

								new	Criteria(ProductRow.Fields.UnitsInStock)	>	10	&

								new	Criteria(ProductRow.Fields.CategoryName)	!=	"Condiments"	&

								new	Criteria(ProductRow.Fields.Discontinued)	==	0;

				return	true;

}

You	could	also	set	other	parameters	of	ListRequest	in	your	grids	similarly.

ListRequest.IncludeDeleted

This	parameter	is	only	useful	with	rows	that	implements	IIsActiveDeletedRow	interface.	If
row	has	such	an	interface,	list	handler	by	default	only	returns	rows	that	are	not	deleted
(IsActive	!=	-1).	It	is	a	way	to	not	delete	rows	actually	but	mark	them	as	deleted.

If	this	parameter	is	True,	list	handler	will	return	all	rows	without	looking	at	IsActive	column.

List	Request	Handler

436

Some	grids	for	such	rows	have	a	little	eraser	icon	on	top	right	to	toggle	this	flag,	thus
show	deleted	records	or	hide	them	(default).

ListRequest.ColumnSelection	Parameter

Serenity	tries	hard	to	load	only	required	columns	of	your	entities	from	SQL	server	to	limit
network	traffic	to	minimum	between	SQL	Server	<	-	>	WEB	Server	and	thus	keep	data	size
transferred	to	client	as	low	as	possible.

ListRequest	has	a	ColumnSelection	parameter	for	you	to	control	the	set	of	columns	loaded
from	SQL.

ColumnSelection	enumeration	has	following	values	defined:

public	enum	ColumnSelection

{

				List	=	0,

				KeyOnly	=	1,

				Details	=	2,

}

By	default	grid	requests	records	from	List	service	in	"ColumnSelection.List"	mode	(can	be
changed).	Thus,	its	list	request	looks	like	this:

new	ListRequest

{

				ColumnSelection	=	ColumnSelection.List

}

In	ColumnSelection.List	mode,	ListRequestHandler	returns	table	fields,	thus	fields	that
actually	belong	to	the	table,	not	view	fields	that	are	originating	from	joined	tables.

One	exception	is	expression	fields	that	only	contains	reference	to	table	fields,	e.g.
(t0.FirstName	+	'	'	+	t0.LastName).	ListRequestHandler	also	loads	such	fields.

ColumnSelection.KeyOnly	only	includes	ID	/	primary	key	fields.

ColumnSelection.Details	includes	all	fields,	including	view	ones,	unless	a	field	is	explicitly
excluded	or	marked	as	"sensitive",	e.g.	a	password	field.

Dialogs	loads	edited	records	in	Details	mode,	thus	they	also	include	view	fields.

ListRequest.IncludeColumns	Parameter

List	Request	Handler

437

We	told	that	grid	requests	records	in	List	mode,	so	loads	only	table	fields,	then	how	it	can
show	columns	that	originate	from	other	tables?

Grid	sends	list	of	visible	columns	to	List	service	with	IncludeColumns,	so	these	columns	are
included	in	selection	even	if	they	are	view	fields.

In	memory	grids	can't	do	this.	As	they	don't	call	services	directly,	you	have	to	put
[MinSelectLevel(SelectLevel.List)]	to	view	fields	that	you	wan't	to	load	for	in	memory
detail	grids.

If	you	have	a	ProductGrid	that	shows	SupplierName	column	its	actual	ListRequest	looks	like
this:

new	ListRequest

{

				ColumnSelection	=	ColumnSelection.List,

				IncludeColumns	=	new	List<string>	{

								"ProductID",

								"ProductName",

								"SupplierName",

								"..."

				}

}

Thus,	these	extra	view	fields	are	also	included	in	selection.

If	you	have	a	grid	that	should	only	load	visible	columns	for	performance	reasons,
override	its	ColumnSelection	level	to	KeyOnly.	Note	that	non-visible	table	fields	won't
be	available	in	client	side	row.

ListRequest.ExcludeColumns	Parameter

Opposite	of	IncludeColumns	is	ExcludeColumns.	Let's	say	you	have	a	nvarchar(max)	Notes
field	on	your	row	that	is	never	shown	in	the	grid.	To	lower	network	traffic,	you	may	choose	to
NOT	load	this	field	in	product	grid:

List	Request	Handler

438

new	ListRequest

{

				ColumnSelection	=	ColumnSelection.List,

				IncludeColumns	=	new	List<string>	{

								"ProductID",

								"ProductName",

								"SupplierName",

								"..."

				},

				ExcludeColumns	=	new	List<string>	{

								"Notes"

				}

}

OnViewSubmit	is	a	good	place	to	set	this	parameter	(and	some	others):

protected	override	bool	OnViewSubmit()

{

				if	(!base.OnViewSubmit())

								return	false;

				var	request	=	(ListRequest)view.Params;

				request.ExcludeColumns	=	new	List<string>	{	"Notes"	}

				return	true;

}

Controlling	Loading	At	Server	Side

You	might	want	to	exclude	some	fields	like	Notes	from	ColumnSelection.List,	without
excluding	it	explicitly	in	grid.	This	is	possible	with	MinSelectLevel	attribute:

[MinSelectLevel(SelectLevel.Details)]

public	String	Note

{

				get	{	return	Fields.Note[this];	}

				set	{	Fields.Note[this]	=	value;	}

}

There	is	a	SelectLevel	enumeration	that	controls	when	a	field	is	loaded	for	different
ColumnSelection	levels:

List	Request	Handler

439

public	enum	SelectLevel

{

				Default	=	0,

				Always	=	1,

				Lookup	=	2,

				List	=	3,

				Details	=	4,

				Explicit	=	5,

				Never	=	6

}

SelectLevel.Default,	which	is	the	default	value,	corresponds	to	SelectLevel.List	for	table
fields	and	SelectLevel.Details	for	view	fields.

By	default,	table	fields	have	a	select	level	of	SelectLevel.List	while	view	fields	have
SelectLevel.Details.

SelectLevel.Always	means	such	a	field	is	selected	for	any	column	selection	mode,	even	if	it
is	explicitly	excluded	using	ExcludeColumns.

SelectLevel.Lookup	is	obsolete,	avoid	using	it.	Lookup	columns	are	determined	with
[LookupInclude]	attribute.

SelectLevel.List	means	such	a	field	is	selected	for	ColumnSelection.List	and
ColumnSelection.Details	modes	or	if	it	is	explicitly	included	with	IncludeColumns	parameter.

SelectLevel.Details	means	such	a	field	is	selected	for	ColumnSelection.Details	mode,	or	if	it
is	explicitly	included	with	IncludeColumns	parameter.

SelectLevel.Explicit	means	such	a	field	shouldn't	be	selected	in	any	mode,	unless	it	is
explicitly	included	with	IncludeColumns	parameter.	Use	this	for	fields	that	are	not	meaningful
for	grids	or	edit	dialogs.

SelectLevel.Never	means	never	load	this	field!	Use	it	for	fields	that	shouldn't	be	sent	to	client
side,	like	a	password	hash.

List	Request	Handler

440

Widgets
Serenity	Script	UI	layer's	component	classes	(control)	are	based	on	a	system	that	is	similar
to	jQuery	UI's	Widget	Factory,	but	redesigned	for	C#.

You	can	find	more	information	about	jQuery	UI	widget	system	here:

http://learn.jquery.com/jquery-ui/widget-factory/

http://msdn.microsoft.com/en-us/library/hh404085.aspx

Widget,	is	an	object	that	is	attached	to	an	HTML	element	and	extends	it	with	some
behaviour.

For	example,	IntegerEditor	widget,	when	attached	to	an	INPUT	element,	makes	it	easier	to
enter	numbers	in	the	input	and	validates	that	the	entered	number	is	a	correct	integer.

Similarly,	a	Toolbar	widget,	when	attached	to	a	DIV	element,	turns	it	into	a	toolbar	with	tool
buttons	(in	this	case,	DIV	acts	as	a	placeholder).

Widgets

441

http://learn.jquery.com/jquery-ui/widget-factory/
http://msdn.microsoft.com/en-us/library/hh404085.aspx

ScriptContext	Class
C#,	doesn't	support	global	methods,	so	jQuery's		$		function	can't	be	used	as	simply	in
Saltarelle	as	it	is	in	Javascript.

A	simple	expression	like		$('#SomeElementId)		in	Javascript	corresponds	to	Saltarelle	C#
code		jQuery.Select("#SomeElementId")	.

As	a	workaround,	ScriptContext	class	can	be	used:

public	class	ScriptContext

{

				[InlineCode("$({p})")]

				protected	static	jQueryObject	J(object	p);

				[InlineCode("$({p},	{context})")]

				protected	static	jQueryObject	J(object	p,	object	context);

}

As		$		is	not	a	valid	method	name	in	C#,		J		is	chosen	instead.	In	subclasses	of
ScriptContext,	jQuery.Select()	function	can	be	called	briefly	as		J()	.

public	class	SampleClass	:	ScriptContext

{

				public	void	SomeMethod()

				{

								J("#SomeElementId").AddClass("abc");

				}

}

ScriptContext	Class

442

Widget	Class

Widget	Class	Diagram

A	sample	Widget
Let's	build	a	widget,	that	increases	a	DIV's	font	size	everytime	it	is	clicked:

Widget	Class

443

namespace	MySamples

{

				public	class	MyCoolWidget	:	Widget

				{

								private	int	fontSize	=	10;

								public	MyCoolWidget(jQueryObject	div)

												:	base(div)

								{

												div.Click(e	=>	{

																fontSize++;

																this.Element.Css("font-size",	fontSize	+	"pt");

												});

								}

				}

}

<div	id="SomeDiv">Sample	Text</div>

We	can	create	this	widget	on	an	HTML	element,	like:

var	div	=	jQuery.Select("#SomeDiv");

new	MyCoolWidget(div);

Widget	Class	Members

public	abstract	class	Widget	:	ScriptContext

{

				private	static	int	NextWidgetNumber	=	0;

				protected	Widget(jQueryObject	element);

				public	virtual	void	Destroy();

				protected	virtual	void	OnInit();

				protected	virtual	void	AddCssClass();

				public	jQueryObject	Element	{	get;	}

				public	string	WidgetName	{	get;	}

				public	string	UniqueName	{	get;	}

}

Widget.Element	Property

Widget	Class

444

Classes	derived	from	Widget	can	get	the	element,	on	which	they	are	created,	by	the
	Element		property.

public	jQueryObject	Element	{	get;	}

This	property	has	type	of	jQueryObject	and	returns	the	element,	which	is	used	when	the
widget	is	created.	In	our	sample,	container	DIV	element	is	referenced	as		this.Element		in
the	click	handler.

HTML	Element	and	Widget	CSS	Class

When	a	widget	is	created	on	an	HTML	element,	it	does	some	modifications	to	the	element.

First,	the	HTML	element	gets	a	CSS	class,	based	on	the	type	of	the	widget.

In	our	sample,		.s-MyCoolWidget		class	is	added	to	the		DIV		with	ID		#SomeDiv	.

Thus,	after	widget	creation,	the	DIV	looks	similar	to	this:

<div	id="SomeDiv"	class="s-MyCoolWidget">Sample	Text</div>

This	CSS	class	is	generated	by	putting	a		s-		prefix	in	front	of	the	widget	class	name	(it	can
be	changed	by	overriding	Widget.AddCssClass	method).

Styling	the	HTML	Element	With	Widget	CSS	Class

Widget	CSS	class	can	be	used	to	style	the	HTML	element	that	the	widget	is	created	on.

.s-MyCoolWidget	{

				background-color:	red;

}

Getting	a	Widget	Reference	From	an	HTML	Element	with
the	jQuery.Data	Function

Along	with	adding	a	CSS	class,	another	information	about	the	widget	is	added	to	the	HTML
element,	though	it	is	not	obvious	on	markup.	This	information	can	be	seen	by	typing
following	in	Chrome	console:

>	$('#SomeDiv').data()

>	Object	{	MySamples_MyCoolWidget:	$MySamples_MyCoolWidget	}

Widget	Class

445

Thus,	it	is	possible	to	get	a	reference	to	a	widget	that	is	attached	to	an	HTML	element,	using
	$.data		function.	In	C#	this	can	be	written	as:

var	myWidget	=	(MyCoolWidget)(J("#SomeDiv").GetDataValue('MySamples_MyCoolWidget'));

WidgetExtensions.GetWidget	Extension	Method

Instead	of	the	prior	line	that	looks	a	bit	long	and	complex,	a	Serenity	shortcut	can	be	used:

var	myWidget	=	J("#SomeDiv").GetWidget<MyCoolWidget>();

This	piece	of	code	returns	the	widget	if	it	exists	on	HTML	element,	otherwise	throws	an
exception:

Element	has	no	widget	of	type	'MySamples_MyCoolWidget'!

WidgetExtensions.TryGetWidget	Extension	Method

TryGetWidget	can	be	used	to	check	if	the	widget	exists,	simply	returning		null		if	it	doesn't:

var	myWidget	=	$('#SomeDiv').TryGetWidget<MyCoolWidget>();

Creating	Multiple	Widgets	on	an	HTML	Element

Only	one	widget	of	the	same	class	can	be	attached	to	an	HTML	element.

An	attempt	to	create	a	secondary	widget	of	the	same	class	on	a	element	throws	the
following	error:

The	element	already	has	widget	'MySamples_MyCoolWidget'.

Any	number	of	widgets	from	different	classes	can	be	attached	to	a	single	element	as	long	as
their	behaviour	doesn't	affect	each	other.

Widget.UniqueName	Property

Every	widget	instance	gets	a	unique	name	like		MySamples_MyCoolWidget3		automatically,
which	can	be	accessed	by		this.UniqueName		property.

Widget	Class

446

This	unique	name	is	useful	as	a	ID	prefix	for	the	HTML	element	and	its	descendant
elements	which	may	be	generated	by	the	widget	itself.

It	can	also	be	used	as	an	event	class	for		$.bind		and	`$.unbind'	methods	to	attach	/	detach
event	handlers	without	affecting	other	handlers,	which	might	be	attached	to	the	element:

jQuery("body").Bind("click."	+	this.UniqueName,	delegate	{	...	});

...

jQUery("body").Unbind("click."	+	this.UniqueName);

Widget.Destroy	Method

Sometimes	releasing	an	attached	widget	might	be	required	without	removing	the	HTML
element	itself.

Widget	class	provides		Destroy		method	for	the	purpose.

In	default	implementation	of	the	Destroy	method,	event	handlers	which	are	assigned	by	the
widget	itself	are	cleaned	(by	using	UniqueName	event	class)	and	its	CSS	class	(.s-
WidgetClass)	is	removed	from	the	HTML	element.

Custom	widget	classes	might	need	to	override	Destroy	method	to	undo	changes	on	HTML
element	and	release	resources	(though,	no	need	to	detach	handlers	that	are	attached
previously	with	UniqueName	class)

Destroy	method	is	called	automatically	when	the	HTML	element	is	detached	from	the	DOM.
It	can	also	be	called	manually.

If	destory	operation	is	not	performed	correctly,	memory	leaks	may	occur	in	some	browsers.

Widget	Class

447

Widget	<	TOptions	>	Generic	Class
If	a	widget	requires	some	additional	initialization	options,	it	might	be	derived	from	the
	Widget<	TOptions	>		class.

The	options	passed	to	the	constructor	can	be	accessed	in	class	methods	through	the
protected	field		options	.

public	abstract	class	Widget<	TOptions	>	:	Widget

				where	TOptions:	class,	new()

{

				protected	Widget(jQueryObject	element,	TOptions	opt	=	null)	{	...	}

				protected	readonly	TOptions	options;

}

Widget	With	Options

448

TemplatedWidget	Class
A	widget	that	generates	a	complicated	HTML	markup	in	its	constructor	or	other	methods
might	lead	to	a	class	with	much	spaghetti	code	that	is	hard	to	maintain.	Besides,	as	markup
lies	in	program	code,	it	might	be	difficult	to	customize	output.

public	class	MyComplexWidget	:	Widget

{

				public	MyComplexWidget(jQueryObject	div)

								:	base(div)

				{

								var	toolbar	=	J("<div>")

												.Attribute("id",	this.UniqueName	+	"_MyToolbar")

												.AppendTo(div);

								var	table	=	J("<table>")

												.AddClass("myTable")

												.Attribute("id",	this.UniqueName	+	"_MyTable")

												.AppendTo(div);

								var	header	=	J("<thead/>").AppendTo(table);

								var	body	=	J("<tbody/>").AppendTo(table);

								...

								...

								...

				}

}

Such	problems	can	be	avoided	by	using	HTML	templates.	For	example,	lets	add	the
following	template	into	the	HTML	page:

<script	id="Template_MyComplexWidget"	type="text/html">

<div	id="~_MyToolbar">

</div>

<table	id="~_MyTable">

				<thead><tr><th>Name</th><th>Surname</th>...</tr></thead>

				<tbody>...</tbody>

</table>

</script>

Here,	a		SCRIPT		tag	is	used,	but	by	specifying	its	type	as		"text/html"	,	browser	won't
recognize	it	as	a	real	scriptto	execute.

By	making	use	of	TemplatedWidget,	lets	rewrite	previous	spaghetti	code	block:

TemplatedWidget	Class

449

public	class	MyComplexWidget	:	TemplatedWidget

{

				public	MyComplexWidget(jQueryObject	div)

								:	base(div)

				{

				}

}

When	this	widget	is	created	on	an	HTML	element	like	following:

<div	id="SampleElement">

</div>

You'll	end	up	with	such	an	HTML	markup:

<div	id="SampleElement">

				<div	id="MySamples_MyComplexWidget1_MyToolbar">

				</div>

				<table	id="MySamples_MyComplexWidget1_MyTable">

								<thead><tr><th>Name</th><th>Surname</th>...</tr></thead>

								<tbody>...</tbody>

				</table>

</div>

TemplatedWidget	automatically	locates	the	template	for	your	class	and	applies	it	to	the
HTML	element.

TemplatedWidget	ID	Generation
If	you	watch	carefully,	in	our	template	we	specified	ID	for	descendant	elements	as
	~_MyToolbar		and		~_MyTable	.

But	when	this	template	is	applied	to	the	HTML	element,	resulting	markup	contained	ID's	of
MySamples_MyComplexWidget1_MyToolbar	and		MySamples_MyComplexWidget1_MyTable	
instead.

TemplatedWidget	replaces	prefixes	like		~_		with	the	widget's		UniqueName		and	underscore
("_")	(this.idPrefix		contains	the	combined	prefix).

Using	this	strategy,	even	if	the	same	widget	template	is	used	in	a	page	for	more	than	one
HTML	element,	their	ID's	won't	conflict	with	each	other	as	they	will	have	unique	ID's.

TemplatedWidget.ByID	Method

TemplatedWidget	Class

450

As	TemplateWidget	appends	a	unique	name	to	them,	the	ID	attributes	in	a	widget	template
can't	be	used	to	access	elements	after	widget	creation.

Widget's	unique	name	and	an	underscore	should	be	prepended	to	the	original	ID	attribute	in
the	template	to	find	an	element:

public	class	MyComplexWidget	:	TemplatedWidget

{

				public	MyComplexWidget(jQueryObject	div)

								:	base(div)

				{

								J(this.uniqueName	+	"_"	+	"Toolbar").AddClass("some-class");

				}

}

TemplatedWidget's	ByID	method	can	be	used	instead:

public	class	MyComplexWidget

{

				public	MyComplexWidget(jQueryObject	div)

								:	base(div)

				{

								ByID("Toolbar").AddClass("some-class");

				}

}

TemplatedWidget.GetTemplateName	Method
In	the	last	sample		MyComplexWidget		located	its	template	automatically.

TemplatedWidget	makes	use	of	a	convention	to	find	its	template	(convention	based
programming).	It	inserts		Template_		prefix	before	the	class	name	and	searches	for	a
	SCRIPT		element	with	this	ID	attribute	(Template_MyComplexWidget)	and	uses	its	HTML
content	as	a	template.

If	we	wanted	to	use	another	ID	like	following:

<script	id="TheMyComplexWidgetTemplate"	type="text/html">

				...

</script>

An	error	like	this	would	be	seen	in	the	browser	console:

TemplatedWidget	Class

451

Can't	locate	template	for	widget	'MyComplexWidget'	with	name	'Template_MyComplexWidget

'!

We	might	fix	our	template	ID	or	ask	the	widget	to	use	our	custom	ID:

public	class	MyComplexWidget

{

				protected	override	string	GetTemplateName()

				{

								return	"TheMyComplexWidgetTemplate";

				}

}

TemplatedWidget.GetTemplate	Method
	GetTemplate		method	might	be	overriden	to	provide	a	template	from	another	source	or
specify	it	manually:

public	class	MyCompleWidget

{

				protected	override	string	GetTemplate()

				{

								return	$('#TheMyComplexWidgetTemplate').GetHtml();

				}

}

Q.GetTemplate	Method	and	Server	Side
Templates
Default	implementation	for		TemplatedWidget.GetTemplate		method	calls		GetTemplateName		and
searches	for	a		SCRIPT		element	with	that	ID.

If	no	such	SCRIPT	element	is	found,		Q.GetTemplate		is	called	with	the	same	ID.

An	error	is	thrown	if	neither	returns	a	result.

	Q.GetTemplate		method	provides	access	to	templates	defined	on	the	server	side.	These
templates	are	compiled	from	files	with		.template.cshtml		extension	in		~/Views/Template		or
	~/Modules		folders	or	their	subfolders.

For	example,	we	could	create	a	template	for	MyComplexWidget	in	a	server	side	file	like
	~/Views/Template/SomeFolder/MyComplexWidget.template.cshtml		with	the	following	content:

TemplatedWidget	Class

452

<div	id="~_MyToolbar">

</div>

<table	id="~_MyTable">

				<thead><tr><th>Name</th><th>Surname</th>...</tr></thead>

				<tbody>...</tbody>

</table>

Template	file	name	and	extension	is	important	while	its	folder	is	simply	ignored.

By	using	this	strategy	there	would	be	no	need	to	insert	widget	templates	into	the	page
markup.

Also,	as	such	server	side	templates	are	loaded	on	the	first	use	(lazy	loading)	and	cached	in
the	browser	and	the	server,	page	markup	doesn't	get	polluted	with	templates	for	widgets	that
we	might	never	use	in	a	specific	page.	Thus,	server	side	templates	are	favored	over	inline
SCRIPT	templates.

TemplatedWidget	Class

453

TemplatedDialog	Class
TemplatedWidget's	subclass	TemplatedDialog	makes	use	of	jQuery	UI	Dialog	to	create	in-
page	modal	dialogs.

Unlike	other	widget	types	TemplatedDialog	creates	its	own	HTML	element,	which	it	will	be
atteched	to.

TemplatedDialog	Class

454

Attributes

Visible	Attribute
namespace:	Serenity.ComponentModel,	assembly:	Serenity.Core

Controls	visibility	of	a	column	or	form	field.

It	is	also	possible	to	hide	a	field	by	passing	false	as	its	value,	but	[Hidden]	attribute	is
recommended.

public	class	SomeColumns

{

				[Visible]

				public	string	ExplicitlyVisible	{	get;	set;	}

				[Visible(false)]

				public	string	ExplicitlyHidden	{	get;	set;	}

}

User	might	still	show	the	column	by	using	the	column	picker	if	any.

Hidden	Attribute
namespace:	Serenity.ComponentModel,	assembly:	Serenity.Core

Hides	a	column	or	form	field.

This	is	just	a	subclass	of	VisibleAttribute	with	false	value.

public	class	SomeColumns

{

				[Hidden]

				public	string	HiddenColumn	{	get;	set;	}

}

User	might	still	show	the	column	by	using	the	column	picker	if	any.

HideOnInsert	Attribute
namespace:	Serenity.ComponentModel,	assembly:	Serenity.Core

Attributes

455

Controls	whether	a	field	is	visible	on	new	record	mode.

This	only	works	with	forms,	not	columns.

public	class	SomeColumns

{

				[HideOnInsert]

				public	string	HideMeOnInsert	{	get;	set;	}

				[HideOnInsert(false)]

				public	string	DontHideMeOnInsert	{	get;	set;	}

}

HideOnUpdate	Attribute
namespace:	Serenity.ComponentModel,	assembly:	Serenity.Core

Controls	whether	a	field	is	visible	on	edit	record	mode.

This	only	works	with	forms,	not	columns.

public	class	SomeColumns

{

				[HideOnUpdate]

				public	string	HideMeOnUpdate	{	get;	set;	}

				[HideOnUpdate(false)]

				public	string	DontHideMeOnUpdate	{	get;	set;	}

}

Insertable	Attribute
namespace:	Serenity.ComponentModel,	assembly:	Serenity.Core

Controls	if	a	property	is	editable	in	new	record	mode.

When	used	on	row	fields,	turns	on	or	off	the	Insertable	flag.

It	has	no	effect	on	columns

public	class	SomeForm

{

				[Insertable(false)]

				public	string	ReadOnlyOnInsert	{	get;	set;	}

}

Attributes

456

Updatable	Attribute
namespace:	Serenity.ComponentModel,	assembly:	Serenity.Core

Controls	if	a	property	is	editable	in	edit	record	mode.

When	used	on	row	fields,	turns	on	or	off	the	Updatable	flag.

It	has	no	effect	on	columns

public	class	SomeForm

{

				[Updatable(false)]

				public	string	ReadOnlyOnUpdate	{	get;	set;	}

}

DisplayName	Attribute
namespace:	System.ComponentModel,	assembly:	System

Determines	default	title	for	grid	columns	or	form	fields.

public	class	SomeForm

{

				[DisplayName("Title	for	Some	Field")]

				public	string	SomeField	{	get;	set;	}

}

DisplayName	attribute	cannot	be	used	on	Enum	members,	so	you	have	to	use
Description	attribute

Titles	set	with	this	attribute	is	considered	to	be	in	invariant	language.

This	is	not	a	Serenity	attribute,	it	resides	in	.NET	System	assembly.

Description	Attribute
namespace:	System.ComponentModel,	assembly:	System

Determines	default	title	for	enum	members.

Attributes

457

public	class	SomeEnum

{

				[Description("Title	for	Value	1")]

				Value1	=	1,

				[Description("Value	2")]

				Value2	=	2

}

Titles	set	with	this	attribute	is	considered	to	be	in	invariant	language.

This	is	not	a	Serenity	attribute,	it	resides	in	.NET	System	assembly.

DisplayFormat	Attribute
namespace:	Serenity.ComponentModel,	assembly:	Serenity.Core

Sets	the	display	format	for	a	column.

This	has	no	effect	on	editors!	It	is	only	for	Display,	NOT	Editing.	For	editing,	you	have
to	change	culture	in	web.config	(not	UI	culture).

Display	format	strings	are	specific	to	column	data	and	formatter	type.

If	column	is	a	Date	or	DateTime	column,	its	default	formatter	accepts	custom	DateTime
format	strings	like	dd/MM/yyyy.

We	don't	suggest	setting	DisplayFormat	for	dates	explicitly,	use	culture	setting	(not	UI
culture)	in	web.config	unless	a	column	has	to	display	date/time	in	a	different	order	than
the	default.

You	may	also	use	following	standard	format	strings:

"d":		dd/MM/yyyy		where	DMY	order	changes	based	on	current	culture.
"g":		dd/MM/yyyy	HH:mm		where	DMY	order	changes	based	on	current	culture.
"G":		dd/MM/yyyy	HH:mm:ss		where	DMY	order	changes	based	on	current	culture.
"s":		yyydd-MM-ddTHH:mm:ss		ISO	sortable	date	time	format.
"u":		yyydd-MM-ddTHH:mm:ss.fffZ		ISO	8601	UTC.

If	column	is	an	integer,	double	or	decimal	it	accepts	.NET	custom	numeric	format
strings.

Attributes

458

public	class	SomeColumns

{

				[DisplayFormat("d")]

				public	DateTime	DateWithCultureDMYOrder	{	get;	set;	}

				[DisplayFormat("dd/MM/yyyy")]

				public	DateTime	DateWithConstantDMYOrder	{	get;	set;	}

				[DisplayFormat("g")]

				public	DateTime	DateTimeToMinWithCultureDMYOrder	{	get;	set;	}

				[DisplayFormat("dd/MM/yyyy	HH:mm")]

				public	DateTime	DateTimeToMinConstantDMYOrder	{	get;	set;	}

				[DisplayFormat("G")]

				public	DateTime	DateTimeToSecWithCultureDMYOrder	{	get;	set;	}

				[DisplayFormat("dd/MM/yyyy	HH:mm:ss")]

				public	DateTime	DateTimeToSecWithConstantDMYOrder	{	get;	set;	}

				[DisplayFormat("s")]

				public	DateTime	SortableDateTime	{	get;	set;	}

				[DisplayFormat("u")]

				public	DateTime	ISO8601UTC	{	get;	set;	}

				[DisplayFormat("#,##0.00")]

				public	Decimal	ShowTwoZerosAfterDecimalWithGrouping	{	get;	set;	}

				[DisplayFormat("0.00")]

				public	Decimal	ShowTwoZerosAfterDecimalNoGrouping	{	get;	set;	}

}

Placeholder	Attribute
namespace:	Serenity.ComponentModel,	assembly:	Serenity.Core

Sets	a	placeholder	for	a	form	field.

Placeholder	is	shown	inside	the	editor	with	gray	color	when	editor	value	is	empty.
Only	basic	input	based	editors	and	Select2	supports	this.	It	is	ignored	by	other	editor
types	like	Checkbox,	Grid,	FileUploadEditor	etc.

public	class	SomeForm

{

				[Placeholder("Show	this	inside	the	editor	when	it	is	empty")]

				public	string	FieldWithPlaceHolder	{	get;	set;	}

}

Hint	Attribute
namespace:	Serenity.ComponentModel,	assembly:	Serenity.Core

Sets	a	hint	for	a	form	field.

Attributes

459

Hint	is	shown	when	field	label	is	hovered.

This	has	no	effect	on	columns.

public	class	SomeForm

{

				[Hint("Show	this	when	my	caption	is	hovered")]

				public	string	FieldWithHint	{	get;	set;	}

}

CssClass	Attribute
namespace:	Serenity.ComponentModel,	assembly:	Serenity.Core

Sets	CSS	class	for	grid	columns	and	form	fields.

In	forms,	class	is	added	to	container	div	with	.field	class	that	contains	both	label	and
editor.

For	columns,	it	sets	cssClass	property	of	SlickColumn,	which	adds	this	class	to	slick
cells	for	all	rows.

Slick	column	headers	are	not	affected	by	this	attribute,	use		[HeaderCssClass]		for	that.

public	class	SomeForm

{

				[CssClass("extra-class")]

				public	string	FieldWithExtraClass	{	get;	set;	}

}

public	class	SomeColumn

{

				[CssClass("extra-class")]

				public	string	CellWithExtraClass	{	get;	set;	}

}

HeaderCssClass	Attribute
namespace:	Serenity.ComponentModel,	assembly:	Serenity.Core

Sets	CSS	class	for	grid	column	headers.

This	has	no	effect	for	forms.

Attributes

460

It	sets	headerCss	property	of	SlickColumn,	which	adds	this	class	to	slick	header	for	that
column.

public	class	SomeColumn

{

				[HeaderCssClass("extra-class")]

				public	string	FieldWithExtraHeaderClass	{	get;	set;	}

}

AlignCenter	Attribute
namespace:	Serenity.ComponentModel,	assembly:	Serenity.Core

Centers	text	horizontally.

Used	to	control	text	alignment	in	grids	by	adding		align-center		CSS	class	to
corresponding	SlickGrid	column.

Column	headers	are	not	affected	by	this	attribute.	You	may	use
	[HeaderCssClass("align-center")]		for	that.

Note	that	it	has	no	effect	on	editors	or	forms.

AlignRight	Attribute
namespace:	Serenity.ComponentModel,	assembly:	Serenity.Core

Right	aligns	text	horizontally.

Used	to	control	text	alignment	in	grids	by	adding		align-right		CSS	class	to
corresponding	SlickGrid	column.

Column	headers	are	not	affected	by	this	attribute.	You	may	use
	[HeaderCssClass("align-right")]		for	that.

Note	that	it	has	no	effect	on	editors	or	forms.

Ignore	Attribute
namespace:	Serenity.ComponentModel,	assembly:	Serenity.Core

Skips	a	property	while	generating	grid	column	or	form	field	list.

Attributes

461

Use	this	to	ignore	a	property	for	UI,	but	still	use	it	for	other	purposes	like	JSON
serialization.

This	might	be	useful	when	a	type	is	used	as	a	Service	Request	and	Form	Declaration	at
the	same	time.

public	class	SomeColumns

{

				[Ignore]

				public	string	DontGenerateAColumnForMe	{	get;	set;	}

}

Attributes

462

Grids

Grids

463

Formatter	Types

URLFormatter
This	formatter	lets	you	put	a	link	with	a	URL	to	a	grid	column.

It	takes	optional	arguments	below:

Option	Name Description

UrlFormat

This	is	the	format	of	URL.	A	sample	would	be
"http://www.site.com/{0}"	where	{0}	is	the	UrlProperty	value.

If	no	format	is	specified,	link	will	be	the	value	of	UrlProperty	as	is.

If	your	URL	format	starts	with	"~/",	it	will	be	resolved	to	application
root.	For	example,	if	format	is	"~/upload/{0}"	and	your	application
runs	at	"localhost:3045/mysite",	resulting	URL	will	be
"/mysite/upload/xyz.png".

UrlProperty

This	is	name	of	the	property	that	will	be	used	to	determine	link	URL.

If	not	specified,	it	is	the	name	of	the	column	that	this	formatter	is
placed	on.

If	UrlProperty	value	starts	with	"~/"	it	will	be	resolved	like	UrlFormat.

DisplayFormat

This	is	the	display	text	format	of	link.	A	sample	would	be	"click	to
open	{0}"	where	{0}	is	the	DisplayProperty	value.

If	no	format	is	specified,	link	will	be	the	value	of	DisplayProperty	as
is.

DisplayProperty

This	is	name	of	the	property	that	will	be	used	to	determine	link	text.

If	not	specified,	it	is	the	name	of	the	column	that	this	formatter	is
placed	on.

Target This	is	the	target	of	the	link.	Use	"_blank"	to	open	links	in	a	new	tab.

Formatter	Types

464

Persisting	Settings
Serenity	2.1.5	introduced	ability	to	persist	grid	settings	including	these	details:

Visible	Columns	and	Display	Order
Column	Widths
Sorted	Columns
Advanced	Filters	(ones	created	with	Edit	Filter	link	on	bottom	right)
Quick	Filters	(as	of	writing,	not	yet	available)
State	of	Include	Deleted	Toggle

By	default,	grids	doesn't	automatically	persist	anything.

Thus,	if	you	hide	some	columns	and	navigate	away	from	Orders	page,	when	you	come
back,	you'll	see	that	those	hidden	columns	became	visible	again.

You	need	to	turn	on	persistance	for	all	grids,	or	for	individual	ones	that	you	want	them	to
remember	their	settings.

Turning	On	Persistance	by	Default

DataGrid	has	a	static	configuration	parameter	with	name	DefaultPersistanceStorage.	This
parameter	controls	where	grids	save	their	settings	automatically	by	default.	It	is	initially	null.

In	ScriptInitialization.ts,	you	might	turn	on	persistance	for	all	grids	by	default	like	below:

namespace	Serene.ScriptInitialization	{

				Q.Config.responsiveDialogs	=	true;

				Q.Config.rootNamespaces.push('Serene');

				Serenity.DataGrid.defaultPersistanceStorage	=	window.sessionStorage;

}

This	saves	settings	to	browser	session	storage,	which	is	a	key/value	dictionary	that
preserves	data	while	any	browser	window	stays	open.	When	user	closes	all	browser
windows,	all	settings	will	be	lost.

Another	option	is	to	use	browser	local	storage.	Which	preserves	settings	between	browser
restarts.

Serenity.DataGrid.defaultPersistanceStorage	=	window.localStorage;

Persisting	Settings

465

Using	any	of	the	two	options,	grids	will	start	to	remember	their	settings,	between	page
reloads.

Handling	a	Browser	that	is	Shared	by	Multiple	Users

Both	sessionStorage	and	localStorage	is	browser	scoped,	so	if	a	browser	is	shared	by
multiple	users,	they'll	have	same	set	of	settings.

If	one	user	changes	some	settings,	and	logs	out,	and	other	one	logs	in,	second	user	will
start	with	settings	of	the	first	user	(unless	you	clear	localStorage	on	signout)

If	this	is	a	problem	for	your	application,	you	may	try	writing	a	custom	provider:

namespace	Serene	{

				export	class	UserLocalStorage	implements	Serenity.SettingStorage	{

								getItem(key:	string):	string	{

												return	window.localStorage.getItem(

																Authorization.userDefinition.Username	+	":"	+	key);

								}

								setItem(key:	string,	value:	string):	void	{

												window.localStorage.setItem(

																Authorization.userDefinition.Username	+	":"	+	key,	value);

								}

				}

}

//...

Serenity.DataGrid.defaultPersistanceStorage	=	new	UserLocalStorage();

Please	note	that	this	doesn't	provide	any	security.	It	just	lets	users	have	separate
settings.

Setting	Persistance	Storage	Per	Grid	Type

To	turn	on	persistance,	or	change	target	storage	for	a	particular	grid,	override
getPersistanceStorage	method:

Persisting	Settings

466

namespace	Serene.Northwind	{

				//...

				export	class	OrderGrid	extends	Serenity.EntityGrid<OrderRow,	any>	{

								//...

								protected	getPersistanceStorage():	Serenity.SettingStorage	{

												return	window.localStorage;

								}

				}

}

You	may	also	turn	off	persistance	for	a	grid	class	by	returning	null	from	this	method.

Determining	Which	Setting	Types	Are	Saved

By	default,	all	settings	noted	at	start	are	saved,	like	visible	columns,	widths,	filters	etc.	You
may	choose	to	not	persist	/	restore	specific	settings.	This	is	controlled	by
getPersistanceFlags	method:

namespace	Serene.Northwind	{

				//...

				export	class	OrderGrid	extends	Serenity.EntityGrid<OrderRow,	any>	{

								//...

								protected	getPersistanceFlags():	GridPersistanceFlags	{

												return	{

																columnWidths:	false	//	dont	persist	column	widths;

												}

								}

				}

}

Here	is	the	set	of	complete	flags:

interface	GridPersistanceFlags	{

				columnWidths?:	boolean;

				columnVisibility?:	boolean;

				sortColumns?:	boolean;

				filterItems?:	boolean;

				quickFilters?:	boolean;

				includeDeleted?:	boolean;

}

When	Settings	Are	Saved	/	Restored

Settings	are	automatically	saved	when	you	change	something	with	a	grid	like:

Persisting	Settings

467

Choosing	visible	columns	with	Column	Picker	dialog
Resizing	a	column	manually
Editing	advanced	filter
Dragging	a	column,	changing	position
Changing	sorted	columns

Settings	are	restored	on	first	page	load,	just	after	grid	creation.

Persisting	Settings	to	Database	(User	Preferences	Table)

Serene	2.1.5	comes	with	a	UserPreferences	table	that	you	may	use	as	a	persistance
storage.	To	use	this	storage,	you	just	need	to	set	it	as	storage	similar	to	other	storage	types.

///	<reference	path="../Common/UserPreference/UserPreferenceStorage.ts"	/>

Serenity.DataGrid.defaultPersistanceStorage	=	new	Common.UserPreferenceStorage();

Don't	forget	to	add	reference	statement,	or	you'll	have	runtime	errors,	as	TypeScript	has
problems	with	ordering	otherwise.

OR

namespace	Serene.Northwind	{

				//...

				export	class	OrderGrid	extends	Serenity.EntityGrid<OrderRow,	any>	{

								//...

								protected	getPersistanceStorage():	Serenity.SettingStorage	{

												return	new	Common.UserPreferenceStorage();

								}

				}

}

Manually	Saving	/	Restoring	Settings

If	you	need	to	save	/	restore	settings	manually,	you	may	use	methods	below:

protected	getCurrentSettings(flags?:	GridPersistanceFlags):	PersistedGridSettings;

protected	restoreSettings(settings?:	PersistedGridSettings,	flags?:	GridPersistanceFla

gs):	void;

These	are	protected	methods	of	DataGrid,	so	can	only	be	called	from	subclasses.

Persisting	Settings

468

Persisting	Settings

469

Code	Generator	(Sergen)
Sergen	has	some	extra	options	that	you	may	set	through	its	configuration	file
(Serenity.CodeGenerator.config)	in	your	solution	directory.

Here	is	the	full	set	of	options:

public	class	GeneratorConfig

{

				public	List<Connection>	Connections	{	get;	set;	}

				public	string	KDiff3Path	{	get;	set;	}

				public	string	TFPath	{	get;	set;	}

				public	string	TSCPath	{	get;	set;	}

				public	bool	TFSIntegration	{	get;	set;	}

				public	string	WebProjectFile	{	get;	set;	}

				public	string	ScriptProjectFile	{	get;	set;	}

				public	string	RootNamespace	{	get;	set;	}

				public	List<BaseRowClass>	BaseRowClasses	{	get;	set;	}

				public	List<string>	RemoveForeignFields	{	get;	set;	}

				public	bool	GenerateSSImports	{	get;	set;	}

				public	bool	GenerateTSTypings	{	get;	set;	}

				public	bool	GenerateTSCode	{	get;	set;	}

}

Connections,	RootNamespace,	WebProjectFile,	ScriptProjectFile,	GenerateSSImports,
GenerateSSTypings	and	GenerateTSCode	options	are	all	available	in	user	interface,	so	we'll
focus	on	other	options.

KDiff3	Path

Sergen	tries	to	launch	KDiff3	when	it	needs	to	merge	changes	to	an	existing	file.	This	might
happen	when	you	try	to	generate	code	for	an	entity	again.	Instead	of	overriding	target	files,
Sergen	will	execute	KDiff3.

Sergen	looks	for	KDiff3	at	its	default	location	under	C:\Program	Files\Kdiff3,	but	you	may
override	this	path	with	this	option,	if	you	installed	Kdiff3	to	another	location.

TFSIntegration	and	TFPath

For	users	that	work	with	TFS,	Sergen	provides	this	options	to	make	it	possible	to	checkout
existing	files	and	add	new	ones	to	source	control.	Set	TFSIntegration	to	true,	if	your	project
is	versioned	in	TFS,	and	set	TFPath	if	tf.exe	is	not	under	its	default	location	at	C:\Program
Files\Visual	Studio\x.y\Common7\ide\

Code	Generator	(Sergen)

470

{

		//	...

		"TFSIntegration":	true,

		"TFPath":	"C:\Program	Files\....\tf.exe"

}

RemoveForeignFields

By	default,	Sergen	examines	your	table	foreign	keys,	and	when	generating	a	row	class,	it
will	bring	all	fields	from	all	referenced	foreign	tables.

Sometimes,	you	might	have	some	fields	in	foreign	tables,	e.g.	some	logging	fields	like
InsertUserId,	UpdateDate	etc.	that	wouldn't	be	useful	in	another	row.

You'd	be	able	to	remove	them	manually	after	code	generation	too,	but	using	this	option	it
might	be	easier.	List	fields	you	want	to	remove	from	generated	rows	as	an	array	of	string:

{

		//	...

		"RemoveForeignFields":	["InsertUserId",	"UpdateUserId",	

						"InsertDate",	"UpdateDate"]

}

Note	that	this	doesn't	remove	this	fields	from	table	row	itself,	it	only	removes	these	view
fields	from	foreign	joins.

BaseRowClasses

If	you	are	using	some	base	row	class,	e.g.	something	like	LoggingRow	in	Serene,	you	might
want	Sergen	to	generate	your	rows	deriving	from	these	base	classes.

For	this	to	work,	list	your	base	classes,	and	the	fields	they	have.

{

		//	...

		"BaseRowClasses":	[{

						"ClassName":	"Serene.Administration.LoggingRow",

						"Fields":	["InsertUserId",	"UpdateUserId",	

										"InsertDate",	"UpdateDate"]

		}]					

}

Code	Generator	(Sergen)

471

If	Sergen	determines	that	a	table	has	all	fields	listed	in	"Fields"	array,	it	will	set	its	base	class
as	"ClassName",	and	will	not	generate	these	fields	explicity	in	row,	as	they	are	already
defined	in	base	row	class.

It	is	possible	to	define	more	than	one	base	row	class.	Sergen	will	choose	the	base	row	class
with	most	matching	fields,	if	a	row's	fields	matches	more	than	one	base	class.

Code	Generator	(Sergen)

472

Used	Tools	and	Libraries
Serenity	platform	makes	use	of	some	valuable	open	source	tools	and	libraries	that	are	listed
below	(in	alphabetic	order)

This	list	might	seem	a	bit	long,	but	not	all	of	them	are	direct	dependencies	for	a
Serenity	Application.

Some	of	them	are	only	used	during	development	of	Serenity	platform	itself,	while	some
are	dependencies	for	optional	features.

We	tried	to	reuse	open	source	libraries,	where	there	is	a	quality	one	available	to	avoid
reinventing	the	wheel.

Autonumeric	(https://github.com/BobKnothe/autoNumeric)

BlockUI	(https://github.com/malsup/blockui/)

Bootstrap	(https://github.com/twbs/bootstrap)

Cake	Build	(https://github.com/cake-build/cake)

Cecil	(https://github.com/jbevain/cecil)

Clean-CSS	[Node]
(https://github.com/jakubpawlowicz/clean-css)

Colorbox	(https://github.com/jackmoore/colorbox)

Dapper	(https://github.com/StackExchange/dapper-dot-net)

DialogExtend	(https://github.com/ROMB/jquery-
dialogextend)

jLayout	(https://github.com/bramstein/jlayout)

Json.NET	(https://github.com/JamesNK/Newtonsoft.Json)

Used	Tools	&	Libraries

473

https://github.com/BobKnothe/autoNumeric
https://github.com/malsup/blockui/
https://github.com/twbs/bootstrap
https://github.com/cake-build/cake
https://github.com/jbevain/cecil
https://github.com/jakubpawlowicz/clean-css
https://github.com/jackmoore/colorbox
https://github.com/StackExchange/dapper-dot-net
https://github.com/ROMB/jquery-dialogextend
https://github.com/bramstein/jlayout
https://github.com/JamesNK/Newtonsoft.Json

JSON2	(https://github.com/douglascrockford/JSON-js)

JSRender	(https://github.com/BorisMoore/jsrender)

jQuery	(https://github.com/jquery/jquery)

jQuery	Cookie	(https://github.com/carhartl/jquery-cookie)

jQuery	Validation	(https://github.com/jzaefferer/jquery-
validation)

jQuery	UI	(https://github.com/jquery/jquery-ui)

jQuery.event.drag
(http://threedubmedia.com/code/event/drag)

Less.JS	(Node)	(https://github.com/less/less.js)

Linq.js	(http://linqjs.codeplex.com/)

metisMenu	(https://github.com/onokumus/metisMenu)

Munq	(https://munq.codeplex.com/)

NodeJS	(https://github.com/joyent/node)

Pace	(https://github.com/HubSpot/pace)

PhantomJS	(https://github.com/ariya/phantomjs)

RazorGenerator	(https://razorgenerator.codeplex.com/)

RSVP	(https://github.com/tildeio/rsvp.js/)

Saltarelle	Compiler	(https://github.com/erik-
kallen/SaltarelleCompiler)

Used	Tools	&	Libraries

474

https://github.com/douglascrockford/JSON-js
https://github.com/BorisMoore/jsrender
https://github.com/jquery/jquery
https://github.com/carhartl/jquery-cookie
https://github.com/jzaefferer/jquery-validation
https://github.com/jquery/jquery-ui
http://threedubmedia.com/code/event/drag
https://github.com/less/less.js
http://linqjs.codeplex.com/
https://github.com/onokumus/metisMenu
https://munq.codeplex.com/
https://github.com/joyent/node
https://github.com/HubSpot/pace
https://github.com/ariya/phantomjs
https://razorgenerator.codeplex.com/
https://github.com/tildeio/rsvp.js/
https://github.com/erik-kallen/SaltarelleCompiler

Select2	(https://github.com/ivaynberg/select2)

SlickGrid	(https://github.com/mleibman/SlickGrid)

Toastr	(https://github.com/CodeSeven/toastr)

UglifyJS2	(Node)	(https://github.com/mishoo/UglifyJS2)

XUnit	(https://github.com/xunit/xunit)

Used	Tools	&	Libraries

475

https://github.com/ivaynberg/select2
https://github.com/mleibman/SlickGrid
https://github.com/CodeSeven/toastr
https://github.com/mishoo/UglifyJS2
https://github.com/xunit/xunit

	Introduction
	Getting Started
	Installing Serene From Visual Studio Marketplace
	Installing Serene Directly From Visual Studio
	Instaling Serene Asp.Net Core Version with Serin
	Starting Serene

	A Tour Of Serene Features
	Theming
	Localization
	User and Role Management
	Listing Pages
	Edit Dialogs

	Tutorials
	Movie Database
	Creating Movie Table
	Generating Code For Movie Table
	Customizing Movie Interface
	Handling Movie Navigation
	Customizing Quick Search
	Adding a Movie Kind Field
	Adding Movie Genres
	Updating Serenity Packages
	Allowing Multiple Genre Selection
	Filtering with Multiple Genre List
	The Cast and Characters They Played
	Listing Movies in Person Dialog
	Adding Primary and Gallery Images

	Multi Tenancy
	Adding Tenants Table and TenantId Field
	Generating Code for Tenants Table
	Tenant Selection in User Dialog
	Filtering Users By TenantId
	Removing Tenant Dropdown From User Form
	Securing Tenant Selection At Server Side
	Setting TenantId For New Users
	Preventing Edits To Users From Other Tenants
	Hiding the Tenant Administration Permission
	Making Roles Multi-Tenant
	Using Serenity Service Behaviors
	Extending Multi-Tenant Behavior To Northwind
	Handling Lookup Scripts

	Meeting Management
	Creating Lookup Tables

	How To Guides
	How To: Remove Northwind & Other Samples From Serene
	How To: Update Serenity NuGet Packages
	How To: Upgrade to Serenity 2.0 and Enable TypeScript
	How To: Authenticate With Active Directory or LDAP
	How To: Use a SlickGrid Formatter
	How To: Add a Row Selection Column
	How To: Setup Cascaded Editors
	How To: Use Recaptcha
	How To: Register Permissions in Serene
	How To: Use a Third Party Plugin With Serenity
	How To: Enable Script Bundling
	How To: Debugging with Serenity Sources

	Frequently Asked Questions
	Troubleshooting
	Service Locator & Initialization
	Dependency Static Class
	IDependencyResolver Interface
	IDependencyRegistrar Interface
	MunqContainer Class
	CommonInitialization Static Class

	Authentication & Authorization
	IAuthenticationService Interface
	IAuthorizationService Interface
	IPermissionService Interface
	IUserDefinition Interface
	IUserRetrieveService Interface
	Authorization Static Class

	Configuration System
	Defining Configuration Settings
	IConfigurationRepository Interface
	AppSettingsJsonConfigRepository
	Config Static Class

	Localization
	LocalText Class
	Language Identifiers
	Language Fallbacks
	ILocalTextRegistry Interface
	LocalTextRegistry Class
	Pending Approval Mode

	Registering Translations
	Manually Registering Translations
	Nested Local Texts
	Enumeration Texts
	JSON Local Texts

	Caching
	Local Caching
	ILocalCache Interface
	LocalCache Static Class
	User Profile Caching Sample

	Distributed Caching
	WEB Farms and Caching
	IDistributedCache Interface
	Distributed Cache Static Class
	DistributedCacheEmulator Class
	CouchbaseDistributedCache Class
	RedisDistributedCache Class

	Two Level Caching
	Using Local Cache and Distributed Cache In Sync
	TwoLevelCache Class

	Entities (Row)
	Mapping Attributes
	FieldFlags Enumeration

	Fluent SQL
	SqlQuery Object
	Criteria Objects

	Connections and Transactions
	Working with Other Databases
	Setting Connection Dialect
	Dialect Based Expressions
	PostgreSQL
	MySQL
	Sqlite
	Oracle

	Services
	Service Endpoints
	List Request Handler

	Widgets
	ScriptContext Class
	Widget Class
	Widget With Options
	TemplatedWidget Class
	TemplatedDialog Class

	Attributes
	Grids
	Formatter Types
	Persisting Settings

	Code Generator (Sergen)
	Used Tools & Libraries

