Siproxd Users Guide

Thomas Ries

Siproxd Users Guide
by Thomas Ries

Copyright © 2005 Thomas Ries

This document can be freely redistributed according to the terms of the GNU General Public License.

Revision History

Revision 0.1 2005-04-10 Revised by: tries@users.sourceforge.net
Initial version

Table of Contents

1. Overview 1
2. Building and Installation 3
2.1 Prer@qUISIEEScuoeiiicicieiietetctc s 3
2.2. Compiling and Installingcccccoeuvuririiiniininininiiiiicceeecce e 3
3. Configuration 5
3.1. The configuration file "sSiproxXd.CONf”cccoovviviiiiiiieccceeeeeeeeeenne 5
3.2. Command Line Options........ccccccueuviviiiiinininininiiiiiciccececee s 8
4. Features 9
4.1. Custom Firewall Modulec.ccccceuviiiniiniiiiiiiiiiceeeeeeee e 9
4.2. Chroot() Jail ..coceeereeireericereere ettt ettt ettt 9
4.3, QUICK DIAL...cviciiiiieiiciecieieeeeee ettt et sre e aesbeesa e b e saenes 9
5. Troubleshooting 11
5.1. Problem Reportingccccceviiiiiiiiniiiiiniiiiiiiiicccee s 11
5.2. Create @ Debug LOg........coouoviiiiiiii e 11
5.3. SIPTOXA Crashies.......ccociiuiiiiiiiiiiiicccc e 11
6. Sample Configurations 13
6.1. The "Standard Scenario’............cccovviiiinininiiiines 13
6.2. GS BT-100 behind NAT Router running SiproXdccccevvvevencccincnnnne. 13
6.3. GS BT-100 with Siproxd running "in front of" a NAT routerc........... 14
6.4. Transparent SIP PTOXYccccovviiiiiiiiiiiiicccicc s 15
6.5. Masquerading an Asterisk DOXccoeuveeieiiiciiiniciccc 16

iii

v

Chapter 1. Overview

Siproxd is an proxy/masquerading daemon for the SIP protocol. It handles registra-
tions of SIP clients on a private IP network and performs rewriting of the SIP message
bodies to make SIP connections possible via an masquerading firewall. It allows SIP
clients (like kphone, linphone) to work behind an IP masquerading firewall or router.

SIP (Session Initiation Protocol, RFC3261) is used by Softphones and Hardphones
(Voice over IP) to initiate communication. By itself, SIP does not work via masquerad-
ing firewalls as the transfered data contains IP addresses and port numbers.

There exist so called STUN servers that allow a SIP client to figure out its public visi-
ble IP address and use this one instead. As a drawback, usually on the masquerading
firewall a very wide port range must be opened up for the incoming RTP traffic. The
SIP client must support STUN (which most of them do).

Siproxd uses another approach (application layer proxy) and places itself as out-
bound proxy in between the local SIP client and the remote client or registrar. It does
rewrite the SIP traffic on the fly and also includes a RTP proxy for incoming and out-
going RTP traffic (the actual audio data). The port range to be used for receiving RTP
data is configurable, so the firewall only must allow incoming traffic for a small port
range.

A standard scenario would look like:

private IP address range : Internet
10.0.0.x : (public IP address range)
: foo.bar.org
B + [T —— +
! 1.10 .1 ! masquerading ! publiclP
! IntHost I ! Firewall e >>
! ! ! !
S R — + [+
ethO : pppO

« The Firewall does IP masquerading and is running siproxd
« IntHost is running an SIP softphone (like linphone, kphone)
« The SIP address used by the softphone is sip;johndoe@foo.bar.org

 The softphone is configured to register itself at siproxd running on the firewall host
(10.0.0.1) as sip;johndoe@foo.bar.org

« foo.bar.org is the domain name corresponding to the public IP address of the fire-
wall (e.g. use some dynamic DNS service [1])

Chapter 1. Overview

Chapter 2. Building and Installation

2.1. Prerequisites

Operating system of either:

+ Linux (should work with any kernel)
» FreeBSD
« Solaris (porting is still being worked on but you may try it)

Additional required Packages:

+ Libosip2 package'

2.2. Compiling and Installing

Notes

It is quite simple. If you have a more-or-less standard installation and libosip2 in-
stalled at a standard location, it should be sufficient to do:

Jconfigure

make
make install

This will install siproxd into /usr/local/. If you wish to install it into

another location, specify --prefix= <myprefix> when running
Jconfigure . If you have installed libosip2 in an non-standard location use
--with-libosip-prefix= <libosipprefix> to tell configure where to find
libosip2 (e.g. --with-libosip-prefix=$3HOME/lib).

Common features for ./configure:

--enable-static build statically linked executable
--with-libosip-prefix=DIR use libosip2 from DIR/include and DIR/lib
--with-extra-includes=DIR adds non standard include paths

--with-extra-libs=DIR adds non standard library paths

Edit /usr/etc/siproxd.conf according to your situation, at least configure

if_inbound and if_outbound . They must represent the interface names (e.g. on
Linux: ppp0, ethl) for the inbound and outbound interfaces.

Edit /usr/etc/siproxd_passwd.cfg if you enable client authentication.

Start siproxd:

siproxd

1. http://www.gnu.org/software/osip

Chapter 2. Building and Installation

Chapter 3. Configuration

3.1. The configuration file 'siproxd.conf’

Siproxd by default searches for its configuration file in the following locations:

$HOME/.siproxdrc

<buildingprefix>/etc/siproxd.conf

letc/siproxd.conf

Justr/etc/siproxd.conf

lusr/local/etc/siproxd.conf

The following is a list of directives that do exist. Note that string values MUST NOT
contain spaces or tabs. Also read the explanations included in the supplied example
configuration file fro more explanation. Items with a # in front are normally disabled
/ not defined.

To start with siproxd in the first run, just adapt the interface definition for the in-
bound and outbound network interfaces (if_inbound and if_outbound).

Definition of network interfaces for the inbound network (local network where your
SIP client is connected, this network normally uses IP addresses from on of the pri-
vate IP ranges like 10.x.x.x, 192.168.x.x) and outbound network (your connection to
the Internet, normally this interface has a public IP assigned by your provider).

eth0
pppo

if_inbound
if_outbound

Usually only the if_inbound and if_outbound directives will be used. The
host_outbound directive comes into play when running siproxd "in front of" a
NAT router. Please check the configuration examples in this document for more
details.

host_outbound = <my_public_ip_address>

Access control lists for incoming SIP registrations and SIP traffic in general. These are
comma separated lists of the form <IP>/<mask>, note that no spaces are allowed
within the list (the configuration file parser cannot yet handle spaces).

hosts_allow_reg = 192.168.1.0/24,192.168.2.0/24
hosts_allow_sip 123.45.0.0/16,123.46.0.0/16
hosts_deny_sip = 10.0.0.0/8,11.0.0.0/8

Port to listen for incoming SIP messages. 5060 is usually the correct choice, don’t
change this unless you have a reason to.

sip_listen_port = 5060

Shall siproxd run as daemon? Usually 1 is the correct choice. If you want siproxd not
to daemonize and keep running in foreground and writing its output to the terminal
set this to 0.

daemonize = 1

Siproxd does log using the syslog() facility when running a daemon. This setting
controls how much logging is done:

Chapter 3. Configuration

DEBUGS, INFOs, WARNINGs and ERRORs
- INFOs, WARNINGs and ERRORs
WARNINGs and ERRORs

- only ERRORs

absolutely nothing

.
A W N L, O
'

silence_log = 0
Siproxd can log call establishment to syslog.
log_calls = 1

If siproxd is started as root, it can drop the root privileges and change its user ID at
startup. It also can put itself into a chroot() jail (see 4.2 for details)

user = nobody
chrootjail = /var/lib/siproxd/

Where to store the current registrations. This allows siproxd to remember registration
across a restart. An empty value means we do not save registrations. The specified
directory path must exist.

registration_file = /var/lib/siproxd/siproxd_registrations
Where to create the PID file.
pid_file = /var/run/siproxd/siproxd.pid

Enable/disable the RTP proxy. This must always be enabled. In some future release
this directive may become obsolete.

rtp_proxy_enable = 1

Port range (UDP) that siproxd will use for incoming and outgoing RTP traffic. A
firewall must be configured to allow traffic from and to these ports (UDP only). By
default the range 7070 up to (and including) 7089 is used. This allows up to 10 si-
multaneous calls (2 ports per call). If you need more simultaneous calls, increase the

range.
rtp_port_low = 7070
rtp_port_high = 7089

Timeout for an RTP stream. If for the specified number of seconds no data is relayed
on an active stream, it is considered dead and will be killed.

rtp_timeout = 300

If a REGISTER request does not contain an Expires header or expires= parameter
in the Contact header, this number of seconds will be used and reported back to the
UA in the answer.

default_expires = 600

If siproxd is used as registration server and authentication is wanted, define the fol-
lowing directive. If proxy_auth_realm is defined (a string), clients will be forced to
authenticate themselfs to the proxy (for registration only). To disable Authentication,
simply comment out this line. Default is disabled.

proxy_auth_realm = Authentication_Realm

Chapter 3. Configuration

The password to be used for authentication may be a global one
proxy_auth_passwd = some_password

or on a per user base, stored in its own file. proxy_auth_pwfile takes precedence
over proxy_auth_passwd

proxy_auth_pwfile = /etc/mysiproxd_passwd.cfg

To enable additional debug output of siproxd. This is a bit pattern representing the
following items. Default is 0x0 - disabled. See below in this document for information
on how to create a debug log file.

« DBCLASS_BABBLE 0x00000001 // babble (like entering/leaving fnc)
« DBCLASS_NET 0x00000002 // network

 DBCLASS_SIP 0x00000004 // SIP manipulations

« DBCLASS_REG 0x00000008 // Client registration

¢ DBCLASS_NOSPEC 0x00000010 // non specified class
» DBCLASS_PROXY 0x00000020 // proxy

« DBCLASS_DNS 0x00000040 // DNS stuff
 DBCLASS_NETTRAF 0x00000080 // network traffic

« DBCLASS_CONFIG 0x00000100 // configuration

« DBCLASS_RTP 0x00000200 // RTP proxy

« DBCLASS_ACCESS 0x00000400 // Access list evaluation
e DBCLASS_AUTH 0x00000800 // Authentication

debug_level = 0x00000000

You may connect to this port from a remote machine and receive the debug output.
This allows bettwer creation of debug output on embedded systems that do not have
enough memory for large disk files. Port number 0 means this feature is disabled.

debug_port = 0

Some UAs (SIP clients) will always use the host/ip they register TO as host part in
the registration record (which will be the inbound ip address/hostname of the proxy)
and can not be told to register a different host (public IP address). This Mask feature
allows to force such a UA to be masqueraded to a different host. Siemens SIP Phones
seem to need this feature. Normally disabled.

mask_host=local.ip.of.sipphone
masked_host=public.domaind.org

Siproxd itself can be told to send all traffic to another outbound proxy. You can use
this feature to ‘chain’ multiple siproxd proxies if you have several masquerading
firewalls to cross. Normally disabled.

outbound_proxy_host = my.outboundproxy.org
outbound_proxy_port = 5060

Outbound proxies can be specified on a per-domain base. This allows to use an out-
bound proxy needed for ProviderA and none (or another) for ProviderB. Multiple

Chapter 3. Configuration

domain specific proxies may be specified, each one with one set of the following di-
rectives. Note: These directives must always be specified as a triple, skipping one of
them will affect later definitions.

#outbound_domain_name = freenet.de
#outbound_domain_host = proxy.for.domain.freende.de
#outbound_domain_port = 5060

Quick-Dial "Plug-in": ability to define quick dial numbers that can be accessed
by dialing "™nn" from a local phone. 'nn’ corresponds to the entry number
pi_shortdial_entry) below. The "*’ character can be chosen freely (pi_shortdial_akey).
Note: To call a real number like "*1234" you would have to dial "**1234"
pi_shortdial_enable = 1
pi_shortdial_akey = *

#

*01 sipphone echo test
pi_shortdial_entry = 17474743246
*02 sipphone welcome message
pi_shortdial_entry = 17474745000

3.2. Command Line Options

Siproxd knows the following command line options:

-h, --help help
-d, --debug <pattern> set debug-pattern
-c, --config <cfgfile> use the specified config file

These options take precedence over the values configured in the configuration file.

Chapter 4. Features

4.1. Custom Firewall Module
The API

make your library

example code

Jconfigure --with-custom-fwmodule=LIBRARY.a

4.2. Chroot() Jalil

Create chroot jail

What files must be present?

4.3. Quick Dial

Since 0.5.12, Siproxd includes a Quick-Dial feature. This allows you to define SIP
numbers that can be accessed by using a shortctu (like "*nn") from any local SIP
phone.

For example, the following lines in your siproxd.conf will configure 2 Quick-Dial
numbers:

*01 sipphone echo test
pi_shortdial_entry = 17474743246
*02 sipphone welcome message
pi_shortdial_entry = 17474745000

The numbering starts with "1" ("*01") and every following "pi_shortdial_entry" entry
will allocate the following position. Curently it is not possible to freely assign the
positions.

Chapter 4. Features

10

Chapter 5. Troubleshooting

5.1. Problem Reporting

If you encounter problems/crashes and ask for support, please include as much in-
formation as possible. Very helpful is a debug log that has been recorded at the time
of the misbehavior. Also include the exact versions of the siproxd package and li-
bosip2 that you are using. You should also include your siproxd.conf

5.2. Create a Debug Log

The easiest way to generate a debug log is:

1. make sure siproxd is not started as daemon (‘"daemonize = 0’ in the config file)
2. start siproxd: $./siproxd -d -1 2>debug.log
3. reproduce the error

4. include the generated debug.log in your error report

Another possibility of to use TCP logging. This method is recommended if you run
siproxd on a router with limited disk space (e.g. an embedded system). To enable
TCP logging:

1. Edit the configuration file and set debug_port to 5050 (or any other TCP port
number you like).

2. Restart siproxd
3.% telnet <IP_of siproxd> 5050 > debug.log

You may prefer to use netcat instead of telnet. Note: The TCP debug port is bound to
all available interfaces on the system, make sure no unauthorized people (like from
the outbound network) can connect.

5.3. Siproxd crashes

If siproxd crashes, a stack back trace usually is helpful to me:

1. start siproxd in the debugger (daemonize set to 0):
$ gdb ./src/siproxd
(gdb) set args -c /path/to/siproxd.conf
(gdb) run

2. reproduce the crash

3. use gdb to print the stack backtrace:
(gdb) info thread
(gdb) bt

#0 0x400ec9ee in __select ()
#1 Oxbffff6f8 in ?? ()

11

12

Chapter 5. Troubleshooting

#2

#3 0x4005bcb3 in __libc_start_ main (main=0x804a30c

argv=0xbffffc54, init=0x8049a08

rtld_fini=0x4000a350 <_dl_fini>, stack_end=0xbffffc4c)
at ../sysdeps/generic/libc-start.c:78
(gdb)

4. copy-paste all the output and include it in your problem report.

0x804a5c2 in main (argc=3, argv=0xbffffc54) at siproxd.c:186

<main>, argc=3,

<_init>, fini=0x804edac <_fini>,

Chapter 6. Sample Configurations

Check also the FAQ in the siproxd package.

6.1. The "Standard Scenario"

Scenario:
private IP address range : Internet
10.0.0.x : (public IP address range)
: foo.bar.org
R —— + [S —— +
! 1.10 .1 ! masquerading ! publiclP
! IntHost b I Firewall lemmmmmeeee >>
! ! ! !
Fommmmmm e + [—— +
ethO : ppp0

The Firewall does IP masquerading and is running siproxd. IntHost is running an
SIP softphone (like linphone, kphone). The SIP address used by the softphone is
sip:johndoe@foo.bar.org . The softphone is configured to register itself at siproxd
running on the firewall host (10.0.0.1) as sip:johndoe@foo.bar.org . Foo.bar.org

is the domain name corresponding to the public IP address of the firewall (e.g. use
some dynamic DNS service like DynDNS).

Firewall configuration (iptables):
allow incoming SIP and RTP traffic

iptables -A INPUT -m udp -p udp -i pppO --dport 5060 -j ACCEPT
iptables -A INPUT -m udp -p udp -i pppO --dport 7070:7089 -j ACCEPT

Firewall configuration (ipchains):

allow incoming SIP and RTP traffic

ipchains -A input --proto udp --dport 5060 -j ACCEPT
ipchains -A input --proto udp --dport 7070:7089 -j ACCEPT

The first line will allow incoming SIP traffic. The second line will allow incoming RTP
traffic on the ports 7070 - 7089 (the default port range used by siproxd for incoming
RTP traffic).

6.2. GS BT-100 behind NAT Router running Siproxd

Scenario:
private IP address range : Internet
10.0.0.x : (public IP address range)
foo.bar.org
B + [—— +
! 1.10 .1 ! masquerading ! publiclP
I SIP UA lememmememeeeeee I Firewall lemmomeeees >>
! BT-100 ! I siproxd !
B — + [— +
ethO : pppO

Siproxd is running on the same host as the masquerading firewall. The SIP phone
is a Grandstream BudgeTone-100. In this example the external SIP registrar used is
sipphone.com'.

siproxd.conf:
13

Chapter 6. Sample Configurations

if_inbound ethO

if_outbound pppO

hosts_allow_reg = 10.0.0.0/24
sip_listen_port = 5060

daemonize = 1

silence_log = 1

log_calls = 1

user = siproxd

registration_file = /var/lib/siproxd_registrations
pid_file = /var/run/siproxd/siproxd.pid
rtp_proxy_enable = 1

rtp_port_low = 7070

rtp_port_high = 7089

rtp_timeout = 300

default_expires
debug_level =
debug_port =

= 600
0
0

Firewall configuration (iptables):

allow incoming SIP and RTP traffic

iptables -A INPUT -m udp -p udp -i pppO --dport 5060 -j ACCEPT
iptables -A INPUT -m udp -p udp -i pppO --dport 7070:7089 -j ACCEPT

Phone configuration (only the relevant items are listed):

IP Address: 10.0.0.10

Subnet Mask: 255.255.255.0
Default Router: 10.0.0.1

DNS Server 1: <DNS Server of your Internet provider>
SIP Server: proxy01.sipphone.com
Outbound Proxy: 10.0.0.1

SIP User ID: 1747669xXxX
Authenticate ID: 1747660xxXxXX
Authenticate Passwd: Fkekokokokok

Name: Your Name Here
Use DNS SRV: no

User ID is phone #: no

Sip Registration: yes

Unregister on reboot:no

Register expiration: 60

Early Dial: no

local SIP port: 5060
local RTP port: 5004

Use random port: yes

NAT traversal: no

Use NAT IP: <empty>

Subscribe for MWI: No

Send DTMF: via RTP (RFC2833)

6.3. GS BT-100 with Siproxd running "in front of" a NAT router

14

Scenario:

private IP address range Internet
10.0.0.x (public IP address range)
foo.bar.org
Fommmmmm e + [T —— +
! 1.10 .1 ! masquerading ! publiclP
I SIP UA Jommmme e I NAT router R et >>
! BT-100 ! ! ! !
 —— + ! E— +
! ethO pppO

Chapter 6. Sample Configurations

etho 1.2
L — +
! siproxd !
! I
R S —— +

Siproxd is running on 10.0.0.2. The masquerading NAT router (e.g. a ADSL NAT
router that cannot run any user applications).

siproxd.conf:

if_inbound eth0

if_outbound = ethO

host_outbound = foo.bar.org

hosts_allow_reg = 10.0.0.0/24
sip_listen_port = 5060

daemonize = 1

silence_log = 1

log_calls = 1

user = siproxd

registration_file = /var/lib/siproxd_registrations
pid_file = /var/run/siproxd/siproxd.pid
rtp_proxy_enable = 1

rtp_port_low = 7070

rtp_port_high = 7089

rtp_timeout = 300

default_expires
debug_level =
debug_port =

= 600
0
0
NAT router configuration:

forward all incoming traffic on 5060/udp to 10.0.0.2
forward all incoming traffic from 7070/udp - 7089/udp to 10.0.0.2

Phone configuration:

IP Address: 10.0.0.10

Subnet Mask: 255.255.255.0
Default Router: 10.0.0.1

DNS Server 1: <DNS Server of your Internet provider>
SIP Server: proxy01l.sipphone.com
Outbound Proxy: 10.0.0.2

SIP User ID: 1747669xxxXX
Authenticate ID: 1747660xXXxX
Authenticate Passwd: Fkkkkokdokk

Name: Your Name Here
Use DNS SRV: no

User ID is phone #: no

Sip Registration: yes

Unregister on reboot:no

Register expiration: 60

Early Dial: no

local SIP port: 5060
local RTP port: 5004

Use random port: yes

NAT traversal: no

Use NAT IP: <empty>

Subscribe for MWI: No

Send DTMF: via RTP (RFC2833)

15

Chapter 6. Sample Configurations

6.4. Transparent SIP Proxy

Scenario:
private IP address range : Internet
10.0.0.x : (public IP address range)
foo.bar.org
S R — + P R +
! 1.10 .1 ! masquerading ! publiclP
I SIP UA lommmm e I Firewall I >>
! ! I siproxd !
R + [+
ethO : pppO

You may have a SIP UA (Phone) that does not allow the specification of an outbound
proxy. If siproxd is running on the masquerading router, the following configura-
tion will do so called transparent proxying. The firewall will redirect outgoing SIP

messages to siproxd, however the local Client is not aware of it.

siproxd.conf:

if_inbound ethO
if_outbound ppp0
hosts_allow_reg = 10.0.0.0/24
sip_listen_port = 5060
daemonize = 1

silence_log = 1

log_calls = 1

user = siproxd

registration_file = /var/lib/siproxd_registrations
pid_file = /var/run/siproxd/siproxd.pid
rtp_proxy_enable = 1

rtp_port_low = 7010

rtp_port_high = 7019

rtp_timeout = 300

default_expires = 600

debug_level = 0

debug_port = 0

Firewall configuration (iptables):

redirect outgoing SIP traffic to siproxd (myself)
iptables -t nat -A PREROUTING -m udp -p udp -i ethO \

--destination-port 5060 -j REDIRECT
allow incoming SIP and RTP traffic
iptables -A INPUT -m udp -p udp -i pppO --dport 5060 -j ACCEPT
iptables -A INPUT -m udp -p udp -i pppO --dport 7070:7089 -j ACCEPT

6.5. Masquerading an Asterisk box

16

Scenario:
private IP address range : Internet
10.0.0.x : (public IP address range)
foo.bar.org
S —— + —— +
! 1.10 .1 ! masquerading ! publiclP
I Asterisk L e I Firewall O >>
! I SIP trunk ! siproxd !
R + [+
et ethO : ppp0

Chapter 6. Sample Configurations

extensions
(local SIP clients)

Siproxd can also be used to masquerade an Asterisk server. The Asterisk server will
register itself as a SIP UA (Client) to an external SIP registrar. In this example this
would be again sipphone.com. As Asterisk does not allow to specify an SIP outbound
proxy we use the same setup for transparent proxying. The context values of the

asterisk configuration probably must be adapted to fit your needs.

siproxd.conf:

if_inbound = ethO
if outbound = pp
hosts_allow_reg = 10.0.0.0/24
sip_listen_port = 5060

daemonize =

silence_log =

log_calls = 1

user = siproxd

registration_file = /var/lib/siproxd_registrations
pid_file = /var/run/siproxd/siproxd.pid
rtp_proxy_enable = 1

rtp_port_low = 7070

rtp_port_high = 7089

rtp_timeout = 300

default_expires = 600

debug_level = 0

debug_port = 0

Firewall configuration (iptables):

redirect outgoing SIP traffic to siproxd (myself)
iptables -t nat -A PREROUTING -m udp -p udp -i ethO \

--source 10.0.0.11 --destination-port 5060 -j REDIRECT
allow incoming SIP and RTP traffic
iptables -A INPUT -m udp -p udp -i pppO --dport 5060 -j ACCEPT
iptables -A INPUT -m udp -p udp -i pppO --dport 7070:7080 -j ACCEPT

Asterisk configuration (SIP related part):

sip.conf:

[general]

port = 5060 ; Port to bind to (SIP is 5060)

bindaddr = 0.0.0.0 ; Address to bind to (all addresses on machine)

context = from-sip-external ; Send unknown SIP callers to this context
callerid = Unknown
defaultexpirey = 900

; codecs

disallow=all

allow=gsm ; 13 Kbps
allow=ulaw ; 64 Kbps
allow=alaw ; 64 Kbps

; SIP Trunk to sipphone.com
; the SIP number is taken randomly for this example
register=17476691234: <password>@proxy01l.sipphone.com

[17476691234]
type=user
nat=never
context=from-pstn
canreinvite=no

[sipphonel]

17

Chapter 6. Sample Configurations

username=17476691234

type=peer

qualify=2000
host=proxy01.sipphone.com
fromuser=17476691234
fromdomain=proxy01.sipphone.com
context=from-pstn

canreinvite=no

secret= <password>

; local SIP extensions
[200]

username=200
type=friend
secret=XXXXXX
qualify=500

port=5060
pickupgroup=
nat=never

mailbox=
host=dynamic
dtmfmode=rfc2833
disallow=
context=from-internal
canreinvite=no
callgroup=
callerid="Extension 200" <200>
allow=all

Notes
1. http://www.sipphone.com/

18

	Siproxd Users Guide
	Table of Contents
	Chapter 1. Overview
	Chapter 2. Building and Installation
	2.1. Prerequisites
	2.2. Compiling and Installing

	Chapter 3. Configuration
	3.1. The configuration file 'siproxd.conf'
	3.2. Command Line Options

	Chapter 4. Features
	4.1. Custom Firewall Module
	4.2. Chroot() Jail
	4.3. Quick Dial

	Chapter 5. Troubleshooting
	5.1. Problem Reporting
	5.2. Create a Debug Log
	5.3. Siproxd crashes

	Chapter 6. Sample Configurations
	6.1. The "Standard Scenario"
	6.2. GS BT100 behind NAT Router running Siproxd
	6.3. GS BT100 with Siproxd running "in front of" a NAT router
	6.4. Transparent SIP Proxy
	6.5. Masquerading an Asterisk box

